
© 2021 Arm Limited

Advanced Pipelining:
Branch Prediction,

Exceptions, and
Limits to Pipelining

Module 4

2 © 2021 Arm Limited

Module Syllabus

• Minimizing the impact of branches (control hazards)

• Handling exceptions

• The limits to pipelining

3 © 2021 Arm Limited

Control Hazards

What happens immediately after we fetch a conditional branch instruction?

1. We must determine if the branch is taken or not.

2. If the branch is taken, we must compute and branch to the target address.

4 © 2021 Arm Limited

How Would We Like to Handle Branches?

In a pipelined processor, we would like

to calculate the next value of the

program counter (PC) in parallel with

reading our instruction memory.

In practice, this is non-trivial to support

as branches may not be decoded and

evaluated until later in the pipeline.

 FETCH DECODE

5 © 2021 Arm Limited

How Would We Like to Handle Branches?

• Option 1: Assume a branch is not taken

• Option 2: Evaluate the branch earlier in the pipeline

• Option 3: Delayed branch

• Option 4: Branch prediction

6 © 2021 Arm Limited

Option 1: Assume the Branch Is Not Taken

• Cycle 1 2 3 4 5 6 7 8

• Instruction

• 1. CBZ X3, label

• 2. ADD X2, X2, X3

• 3. STR X4, [X2], #4

• 4. label: SUB X0, X0, #1

FETCH

FETCH

FETCH

FETCH

EXE DEC

DEC

DEC

DEC EXE

EXE

EXE

MEM

MEM

MEM

MEM

WB

WB

WB

WB

(CBZ – branches if the operand is equal to zero)

If the branch is evaluated in the execute stage, and it is taken, we must convert the two
instructions that follow it into NOPs (we waste two cycles).

A new PC, the branch target, is communicated to the fetch stage

becomes a NOP

becomes a NOP

7 © 2021 Arm Limited

Option 1: Assume a Branch Is Not Taken

If we evaluate the branch in the execute stage, we would lose two cycles every time we

encountered a taken branch.

If we assume 20% of instructions are branches, and 60% are taken, and an otherwise

perfect CPI of 1:

CPI contribution from taken branches = 0.2*2 * 0.6 = 0.24

Our new CPI = 1.0 + branch stalls = 1.24

8 © 2021 Arm Limited

Option 2: Evaluate the Branch Earlier in the Pipeline

• Move the branch test and branch target address calculation to the decode stage.

• This would reduce the branch penalty to a single cycle in the case of a taken branch.
• i.e., in the case of a taken branch, we would need to discard the instruction after the branch.

9 © 2021 Arm Limited

Option 2: Evaluate the Branch Earlier in the Pipeline

Note: Data
forwarding
logic
omitted for
simplicity

10 © 2021 Arm Limited

Option 2: Evaluate the Branch Earlier in the Pipeline

For this technique to work:

• The branch condition must be simple to evaluate.
• Test for zero is simple .

• Tests requiring an ALU operation are probably too complex.

• We don’t want to the branch test to extend the clock cycle time.

• We must take care of potential data hazards.
• If the instruction immediately before the branch writes to the register than the branch tests, we must

stall for one cycle (i.e., until this instruction generates its result).

• We will also need forwarding paths from the EXE and MEM pipeline stages to the decode stage.

11 © 2021 Arm Limited

Option 3: A Delayed Branch

• We could decide to always execute the

instruction after the branch, regardless

of whether the branch is taken or not.

• This instruction after the branch is now

called the “branch delay slot.”

 loop: ……

 SUB X3, X3, 1

 CBZ X3, loop

 ADD X2, X1, X5

 ….

The branch delay slot

The branch

12 © 2021 Arm Limited

Option 3: A Delayed Branch

• A compiler can usually fill a single branch delay slot around 60-70% of the time.

• If we had a longer pipeline, we could introduce multiple branch delay slots, but they are

typically hard to fill.

• Question: where can we find an instruction to move to the branch delay slot?

• If we can’t find an instruction to fill the slot, we have to fill it with a NOP.

13 © 2021 Arm Limited

Example

This pipeline has 8 pipeline stages.

• The basic branch delay is 3 cycles.

• The branch condition and target address are evaluated in the ALU stage.

• All branches are predicted as not taken.

Fetch 1 Fetch 2 Decode ALU Mem 1 Mem 2 Mem 3 Writeback

14 © 2021 Arm Limited

Example

• Impact on CPI:

• Let’s make some reasonable assumptions:
• 15% of instructions are unconditional or taken branches; the penalty here is 3 cycles.

• 5% of instructions are untaken conditional branches; no penalty here, as we are

predicting these not-taken.

• CPI contribution from branch stalls = 0.15 * 3 + 0.05 * 0 = 0.45

15 © 2021 Arm Limited

Option 4: Branch Prediction

• For high-performance processors, with deep pipelines, the techniques described so far

are inadequate.

• E.g., Arm Cortex-A15
• 15-stage pipeline

• Branches are evaluated late in the pipeline.

• Branch misprediction penalty ~14 cycles

• It also fetches 4 instructions per cycle and decodes 3 at a time (i.e., there are multiple instructions in

a single pipeline stage).

• We may discard>40 instructions if we must flush the pipeline due to a mispredicted branch.

16 © 2021 Arm Limited

Static Branch Prediction (Mostly Historic)

• Static prediction methods exploit the observation that a given branch instruction is

likely to be highly biased in one direction.

• Schemes are often based on whether the branch is branching forward or backward in

the code or alternatively depend on the op-code of the branch instruction.

• Displacement-based prediction
• We can exploit a simple observation that backward branches are usually loop branches and are likely

to be taken.

• Now, if the branch’s target address < PC, we predict the branch taken.
• The accuracy of this sort of scheme is around 65% (or 80-95% with aid of profiling).

17 © 2021 Arm Limited

Example: Arm10 Processor

• The integer pipeline had 6 stages.

• The Arm10 employed a static displacement-

based branch prediction scheme.

• The Arm10’s Branch Prediction Unit also
worked ahead of the fetch stage (prefetching

instructions) in order to reduce the costs of

branches.
Arm10 (Circa 2000)

Transistor count: ~250,000

Clock frequency: 400 MHz

Technology: 0.18-micron

Applications: modems, cellular
phones, automotive, etc.

18 © 2021 Arm Limited

A Simple One-level Dynamic Branch Predictor

A simple dynamic branch prediction algorithm is

to predict a branch taken only if it was the latest

time we executed it. We can use a simple table

of 1-bit entries to store our predictions

The drawback of these 1-bit table entries is that

a single event can flip the prediction. We

probably want some hysteresis, e.g., in the case

of loops to avoid two mis-predictions per loop

(upon entry and exit).

Branch Address

Branch Prediction Buffer

Prediction

Update
with actual
branch
outcome
(once
known)

19 © 2021 Arm Limited

One-level Branch Predictors
In practice, 2-bit saturating
counters are a good choice.
Why is there no need to
consider k>2.

20 © 2021 Arm Limited

Correlating Predictors

• How can we improve on simple bimodal predictors?

• We can take advantage of the fact that the outcome of many branches is correlated

either with the past outcomes of the same branch (the local history) or with other

recent branches (the global history).

• Now instead of simply hashing the PC to select a counter, we can include local or global

branch history to improve our prediction.

21 © 2021 Arm Limited

Correlating Predictors (Local History)

If a particular branch’s outcome has a repetitive pattern, its local history can be used to
improve prediction accuracy.

E.g., a particular branch instruction may be predictable if we look at its local history:

….010110101101011010110101101011

History Next

0101 1

1011 0

0110 1

…

22 © 2021 Arm Limited

Local-history Two-level Predictor

We now have two
memories or tables:

• The Branch History
Table (BHT)

• The Pattern History
Table (PHT)

23 © 2021 Arm Limited

Exploiting Global Branch History

• In addition to exploiting the local history of a particular branch, we can also note that

the behavior of a branch is often correlated with the behavior of other recent branches

(the global history):

• If (cond1) { }

• If (cond2) { }

• If (cond1 && cond2) { } // dependent on outcome of

 // previous branches

24 © 2021 Arm Limited

Global History Two-level Predictor

25 © 2021 Arm Limited

Optimizations

Tournament Predictors

More advanced schemes employ both local and global history predictors

These so-called “tournament predictors” also employ a third predictor (another table of 2-

bit counters) to select which predictor’s output (local or global) to use.
Aliasing problems

Performance may be limited by negative interference, i.e., when two branches map to

same entry in PHT but are biased in opposite directions. Numerous schemes try to deal

with this, e.g., by using multiple PHTs or using a small tagged “cache” to hold branches that
experience interference.

26 © 2021 Arm Limited

Limits to Dynamic Branch Prediction

• Some branches are unpredictable (dependent on input data).

• Need to “train” predictor for some period before predictions are accurate

• Predictor accuracy will be limited by the area (cost), cycle time, or power of the

hardware.

• Aliasing and interference

27 © 2021 Arm Limited

Example: Arm Cortex-A15

Arm Cortex-A15 pipeline

28 © 2021 Arm Limited

Example: Arm Cortex-A15

The Cortex A-15 uses a “bi-mode” predictor, an extension of the global history two-level

predictor to reduce limitations due to destructive aliasing.

There are now two PHTs, each with 8192 entries and an additional “choice” predictor to
choose between the two PHTs.

Overall, the branch predictor is relatively large and consumes ~15% of the core’s power.

29 © 2021 Arm Limited

Branching Without Stalls

What do we need to know to completely avoid stalling on a branch?

1. Need to know the instruction we are “currently” fetching is a branch
(remember, it hasn’t returned from memory yet, so how can we know?)

2. We need to predict the branch taken or not-taken.

3. If the branch is predicted as taken, we will need to know the branch’s target address.

To provide the information to solve issues 1 and 3, we store recent branches together with

their target addresses in a Branch Target Buffer (BTB).

30 © 2021 Arm Limited

The Branch Target Buffer (BTB)

31 © 2021 Arm Limited

Putting It All Together

32 © 2021 Arm Limited

Other BTB Tricks: Branch Folding

• In addition to storing the branch target address, we could store the target instruction in

the BTB.

• No need to fetch the next instruction; CPI for branch is effectively zero now.

• Could also allow us to take longer to access (a larger) BTB

• The branch has now been removed from the instruction stream that is presented to the

execution pipeline – instead, the branch is substituted for the branch target instruction

• We may also create a separate structure to cache instructions at the branch target (i.e.

the Branch Target Instruction Cache or BTIC)

33 © 2021 Arm Limited

Return Address Predictors

Functions may be called from multiple places in the program.

The accuracy of the branch target (return address) stored in the BTB may be very low.

Solution: use a small hardware stack to store these addresses (the return-address stack).

What if this stack overflows?

34 © 2021 Arm Limited

Exceptions

35 © 2021 Arm Limited

Exceptions

• In some situations, we are required to interrupt a program’s execution and take some
action. These conditions or system events are called exceptions. The necessary action is

taken by privileged software, i.e., the exception handler.

• Exceptions may occur for many different reasons, e.g.,
• A page fault, breakpoint, I/O device request, floating-point errors, memory protection violation, etc.

36 © 2021 Arm Limited

Exceptions

Types of exceptions (for Arm):

• Interrupts

• Aborts

• Reset

• Exception generating instructions

37 © 2021 Arm Limited

Exceptions

An exception will cause the processor to

perform the following:

1. Save the Processor State (PSTATE), e.g.,

processor flags, interrupt mask bits,

exception level, etc.

2. Save the return address (current PC).

3. Branch to handler specified in vector

table

4. Save registers, execute handler code,

restore registers.

5. Return from exception (ERET instruction).

38 © 2021 Arm Limited

Exceptions

The intention is to temporarily interrupt program execution, deal with the exception, and

then to resume execution.

A good way to ensure we can easily resume is to ensure that the architectural state is

consistent with the sequential model of program execution before the exception is taken,

i.e., if the instruction that causes the exception is instruction E:

1. All instructions prior to E should have completed and updated their destination

registers. All exceptions caused by these instructions should have been handled.

2. Any instructions after E in program order should not have completed and not have

modified any processor state.

3. Whether E should complete or not will depend on the exception.

These are called “precise exceptions.”

39 © 2021 Arm Limited

Precise Exceptions and Pipelining

The requirements on the previous slide are trivial in the case of an unpipelined processor,

but more complex for a pipelined processor.

V, U, T, S, R, Q, P, O, N, M, L, K, J, I, ….

V, U, T, S, R, Q, P, O, N, M, L, K, J, I, ….

Unpipelined

Pipelined

40 © 2021 Arm Limited

Precise Exceptions

41 © 2021 Arm Limited

The Limits of Pipelining

42 © 2021 Arm Limited

Limits to Pipelining

• As we saw in the last module, a deeper pipeline doesn’t necessarily lead to better
performance.

• We need to work hard to feed the pipeline with instructions and data and to minimize

pipeline stalls.

• If we pipeline our execute stage, we will also need to find successive independent

instructions to keep our pipeline from stalling.

43 © 2021 Arm Limited

Limits to Pipelining

Pipelining is also ultimately limited by lower-level concerns:

• Register and clocking overheads are non-zero. If we have very little logic per pipeline

stage, these may represent a significant fraction of our critical path delay.

• Need to balance logic between pipeline stages. Clock period is determined by worst-

case delay.

• Limits on number of pipelining registers

44 © 2021 Arm Limited

Limits to Pipelining

• Ultimately, we will be unable to increase the performance of a processor that only

attempts to issue a single instruction per clock cycle.

• Even before this point is reached, it is preferable to use multiple-issue techniques, i.e.,

do more work in each pipeline stage: fetch and execute multiple instructions per clock

cycle.

• Details in the next module

