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Module Syllabus 

• Minimizing the impact of branches (control hazards) 

• Handling exceptions 

• The limits to pipelining 
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Control Hazards 

What happens immediately after we fetch a conditional branch instruction? 

 

1. We must determine if the branch is taken or not. 

2. If the branch is taken, we must compute and branch to the target address. 
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How Would We Like to Handle Branches? 

In a pipelined processor, we would like 

to calculate the next value of the 

program counter (PC) in parallel with 

reading our instruction memory. 

In practice, this is non-trivial to support 

as branches may not be decoded and 

evaluated until later in the pipeline. 

                   FETCH                   DECODE 
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How Would We Like to Handle Branches? 

• Option 1: Assume a branch is not taken 

• Option 2: Evaluate the branch earlier in the pipeline 

• Option 3: Delayed branch 

• Option 4: Branch prediction 
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Option 1: Assume the Branch Is Not Taken 
 

• Cycle    1 2 3 4 5 6 7 8 

• Instruction 

• 1. CBZ X3, label 

• 2. ADD X2, X2, X3 

• 3. STR X4, [X2], #4 

• 4. label: SUB X0, X0, #1 

 

 

FETCH 

FETCH 

FETCH 

FETCH 

EXE DEC 

DEC 

DEC 

DEC EXE 

EXE 

EXE 

MEM 

MEM 

MEM 

MEM 

WB 

WB 

WB 

WB 

(CBZ – branches if the operand is equal to zero) 

If the branch is evaluated in the execute stage, and it is taken, we must convert the two 
instructions that follow it into NOPs (we waste two cycles). 

A new PC, the branch target, is communicated to the fetch stage 

becomes a NOP 

becomes a NOP 
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Option 1: Assume a Branch Is Not Taken 

If we evaluate the branch in the execute stage, we would lose two cycles every time we 

encountered a taken branch. 

If we assume 20% of instructions are branches, and 60% are taken, and an otherwise 

perfect CPI of 1: 

CPI contribution from taken branches = 0.2*2 * 0.6 = 0.24 

Our new CPI = 1.0 + branch stalls = 1.24 
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Option 2: Evaluate the Branch Earlier in the Pipeline 

• Move the branch test and branch target address calculation to the decode stage. 

• This would reduce the branch penalty to a single cycle in the case of a taken branch. 
•  i.e., in the case of a taken branch, we would need to discard the instruction after the branch. 
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Option 2: Evaluate the Branch Earlier in the Pipeline 

Note: Data 
forwarding 
logic 
omitted for 
simplicity 
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Option 2: Evaluate the Branch Earlier in the Pipeline  

For this technique to work: 

• The branch condition must be simple to evaluate. 
• Test for zero is simple . 

• Tests requiring an ALU operation are probably too complex.  

• We don’t want to the branch test to extend the clock cycle time. 

• We must take care of potential data hazards. 
• If the instruction immediately before the branch writes to the register than the branch tests, we must 

stall for one cycle (i.e., until this instruction generates its result). 

• We will also need forwarding paths from the EXE and MEM pipeline stages to the decode stage. 
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Option 3: A Delayed Branch 

• We could decide to always execute the 

instruction after the branch, regardless 

of whether the branch is taken or not. 

• This instruction after the branch is now 

called the “branch delay slot.” 

  

 loop:   ……  

 

  

 SUB X3, X3, 1 

 CBZ X3, loop 

 ADD X2, X1, X5 

 …. 

 

The branch delay slot 

The branch 
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Option 3: A Delayed Branch 

• A compiler can usually fill a single branch delay slot around 60-70% of the time. 

• If we had a longer pipeline, we could introduce multiple branch delay slots, but they are 

typically hard to fill.  

• Question: where can we find an instruction to move to the branch delay slot?  

• If we can’t find an instruction to fill the slot, we have to fill it with a NOP. 
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Example 

This pipeline has 8 pipeline stages. 

• The basic branch delay is 3 cycles. 

• The branch condition and target address are evaluated in the ALU stage. 

• All branches are predicted as not taken. 

Fetch 1 Fetch 2 Decode ALU Mem 1 Mem 2 Mem 3 Writeback 
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Example 

• Impact on CPI: 

• Let’s make some reasonable assumptions:  
• 15% of instructions are unconditional or taken branches; the penalty here is 3 cycles.  

• 5% of instructions are untaken conditional branches; no penalty here, as we are 

predicting these not-taken. 

• CPI contribution from branch stalls = 0.15 * 3 + 0.05 * 0 = 0.45 



15 © 2021 Arm Limited 

Option 4: Branch Prediction  

• For high-performance processors, with deep pipelines, the techniques described so far 

are inadequate. 

• E.g., Arm Cortex-A15 
• 15-stage pipeline  

• Branches are evaluated late in the pipeline. 

• Branch misprediction penalty ~14 cycles  

• It also fetches 4 instructions per cycle and decodes 3 at a time (i.e., there are multiple instructions in 

a single pipeline stage). 

• We may discard>40 instructions if we must flush the pipeline due to a mispredicted branch. 
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Static Branch Prediction (Mostly Historic) 

• Static prediction methods exploit the observation that a given branch instruction is 

likely to be highly biased in one direction. 

• Schemes are often based on whether the branch is branching forward or backward in 

the code or alternatively depend on the op-code of the branch instruction. 

• Displacement-based prediction 
• We can exploit a simple observation that backward branches are usually loop branches and are likely 

to be taken. 

• Now, if the branch’s target address < PC, we predict the branch taken. 
• The accuracy of this sort of scheme is around 65% (or 80-95% with aid of profiling). 
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Example: Arm10 Processor 

• The integer pipeline had 6 stages. 

• The Arm10 employed a static displacement-

based branch prediction scheme. 

• The Arm10’s Branch Prediction Unit also 
worked ahead of the fetch stage (prefetching 

instructions) in order to reduce the costs of 

branches. 
Arm10 (Circa 2000) 

Transistor count: ~250,000 

Clock frequency: 400 MHz 

Technology: 0.18-micron 

Applications: modems, cellular 
phones, automotive, etc. 
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A Simple One-level Dynamic Branch Predictor 

A simple dynamic branch prediction algorithm is 

to predict a branch taken only if it was the latest 

time we executed it. We can use a simple table 

of 1-bit entries to store our predictions  

The drawback of these 1-bit table entries is that 

a single event can flip the prediction. We 

probably want some hysteresis, e.g., in the case 

of loops to avoid two mis-predictions per loop 

(upon entry and exit). 

Branch Address 

Branch Prediction Buffer 

Prediction 

Update 
with actual 
branch 
outcome 
(once 
known) 
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One-level Branch Predictors 
In practice, 2-bit saturating 
counters are a good choice. 
Why is there no need to 
consider k>2. 



20 © 2021 Arm Limited 

Correlating Predictors 

• How can we improve on simple bimodal predictors? 

• We can take advantage of the fact that the outcome of many branches is correlated 

either with the past outcomes of the same branch (the local history) or with other 

recent branches (the global history). 

• Now instead of simply hashing the PC to select a counter, we can include local or global 

branch history to improve our prediction. 
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Correlating Predictors (Local History) 

If a particular branch’s outcome has a repetitive pattern, its local history can be used to 
improve prediction accuracy. 

E.g., a particular branch instruction may be predictable if we look at its local history: 

….010110101101011010110101101011 

 
History     Next 

0101       1 

1011       0 

0110        1 

… 
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Local-history Two-level Predictor 

We now have two 
memories or tables: 

• The Branch History 
Table (BHT)  

• The Pattern History 
Table (PHT) 
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Exploiting Global Branch History 

• In addition to exploiting the local history of a particular branch, we can also note that 

the behavior of a branch is often correlated with the behavior of other recent branches 

(the global history): 

 

• If (cond1) { .... } 

• If (cond2) { .... } 

• If (cond1 && cond2) { .... }  // dependent on outcome of  

                 // previous branches 
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Global History Two-level Predictor 
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Optimizations  

Tournament Predictors 

More advanced schemes employ both local and global history predictors 

These so-called “tournament predictors” also employ a third predictor (another table of 2-

bit counters) to select which predictor’s output (local or global) to use. 
Aliasing problems  

Performance may be limited by negative interference, i.e., when two branches map to 

same entry in PHT but are biased in opposite directions. Numerous schemes try to deal 

with this, e.g., by using multiple PHTs or using a small tagged “cache” to hold branches that 
experience interference. 
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Limits to Dynamic Branch Prediction 

• Some branches are unpredictable (dependent on input data). 

• Need to “train” predictor for some period before predictions are accurate 

• Predictor accuracy will be limited by the area (cost), cycle time, or power of the 

hardware. 

• Aliasing and interference 
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Example: Arm Cortex-A15 

 

  

Arm Cortex-A15 pipeline 
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Example: Arm Cortex-A15 

The Cortex A-15 uses a “bi-mode” predictor, an extension of the global history two-level 

predictor to reduce limitations due to destructive aliasing. 

There are now two PHTs, each with 8192 entries and an additional “choice” predictor to 
choose between the two PHTs.  

Overall, the branch predictor is relatively large and consumes ~15% of the core’s power. 
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Branching Without Stalls 

What do we need to know to completely avoid stalling on a branch? 

1. Need to know the instruction we are “currently” fetching is a branch  
(remember, it hasn’t returned from memory yet, so how can we know?) 

2. We need to predict the branch taken or not-taken. 

3. If the branch is predicted as taken, we will need to know the branch’s target address. 
 

To provide the information to solve issues 1 and 3, we store recent branches together with 

their target addresses in a Branch Target Buffer (BTB). 
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The Branch Target Buffer (BTB) 
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Putting It All Together 
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Other BTB Tricks: Branch Folding 

• In addition to storing the branch target address, we could store the target instruction in 

the BTB. 

• No need to fetch the next instruction; CPI for branch is effectively zero now. 

• Could also allow us to take longer to access (a larger) BTB 

• The branch has now been removed from the instruction stream that is presented to the 

execution pipeline – instead, the branch is substituted for the branch target instruction 

• We may also create a separate structure to cache instructions at the branch target (i.e. 

the Branch Target Instruction Cache or BTIC)  
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Return Address Predictors 

Functions may be called from multiple places in the program. 

The accuracy of the branch target (return address) stored in the BTB may be very low. 

Solution: use a small hardware stack to store these addresses (the return-address stack). 

What if this stack overflows? 
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Exceptions 
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Exceptions 

• In some situations, we are required to interrupt a program’s execution and take some 
action. These conditions or system events are called exceptions. The necessary action is 

taken by privileged software, i.e., the exception handler. 

• Exceptions may occur for many different reasons, e.g.,  
• A page fault, breakpoint, I/O device request, floating-point errors, memory protection violation, etc. 
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Exceptions 

Types of exceptions (for Arm): 

• Interrupts  

• Aborts 

• Reset 

• Exception generating instructions 
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Exceptions 

An exception will cause the processor to 

perform the following: 

1. Save the Processor State (PSTATE), e.g., 

processor flags, interrupt mask bits, 

exception level, etc. 

2. Save the return address (current PC). 

3. Branch to handler specified in vector 

table 

4. Save registers, execute handler code, 

restore registers. 

5. Return from exception (ERET instruction). 
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Exceptions 

The intention is to temporarily interrupt program execution, deal with the exception, and 

then to resume execution. 

A good way to ensure we can easily resume is to ensure that the architectural state is 

consistent with the sequential model of program execution before the exception is taken, 

i.e., if the instruction that causes the exception is instruction E: 

1. All instructions prior to E should have completed and updated their destination 

registers. All exceptions caused by these instructions should have been handled. 

2. Any instructions after E in program order should not have completed and not have 

modified any processor state. 

3. Whether E should complete or not will depend on the exception. 

These are called “precise exceptions.” 
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Precise Exceptions and Pipelining 

The requirements on the previous slide are trivial in the case of an unpipelined processor, 

but more complex for a pipelined processor. 

 

V, U, T, S, R, Q, P, O, N, M, L, K, J, I, …. 
 

V, U, T, S, R, Q, P, O, N, M, L, K, J, I, …. 
 

 

 

Unpipelined 
 

Pipelined 
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Precise Exceptions 
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The Limits of Pipelining 



42 © 2021 Arm Limited 

Limits to Pipelining 

• As we saw in the last module, a deeper pipeline doesn’t necessarily lead to better 
performance. 

• We need to work hard to feed the pipeline with instructions and data and to minimize 

pipeline stalls. 

• If we pipeline our execute stage, we will also need to find successive independent 

instructions to keep our pipeline from stalling. 
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Limits to Pipelining 

Pipelining is also ultimately limited by lower-level concerns: 

• Register and clocking overheads are non-zero. If we have very little logic per pipeline 

stage, these may represent a significant fraction of our critical path delay. 

• Need to balance logic between pipeline stages. Clock period is determined by worst-

case delay.  

• Limits on number of pipelining registers 
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Limits to Pipelining 

• Ultimately, we will be unable to increase the performance of a processor that only 

attempts to issue a single instruction per clock cycle. 

• Even before this point is reached, it is preferable to use multiple-issue techniques, i.e., 

do more work in each pipeline stage: fetch and execute multiple instructions per clock 

cycle. 

• Details in the next module 


