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Module Syllabus 

• Pipelining and implementation 

• Pipeline hazards and data dependency 

• Pipeline and performance 
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Our Simple Processor 
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A Simple Processor 

• Our processor executes each instruction in one clock cycle, i.e., it has a  

Clocks Per Instruction (CPI) of 1. 

• The minimum clock period will be the worst-case path through all of the logic and 

memories shown (plus some margin for variations in Process, Voltage, and 

Temperature, also known as “PVT”). 
• How might we improve our clock frequency without significantly increasing CPI? 



5 © 2021 Arm Limited 

What Is Pipelining? 
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What Is Pipelining? 

• We arrange for the different phases of 

execution to be overlapped. We aim to exploit 

“temporal” parallelism.  
• How are latency and throughput affected? 

Volkswagen Beetle Assembly Line 
(By Alden Jewell, license: CC BY 2.0) 

https://www.flickr.com/photos/autohistorian/32637661426
https://creativecommons.org/licenses/by/2.0/
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Pipelining and Maintaining Correctness 

• We can break the execution of instructions into stages and overlap the execution 

of different instructions. 

• We need to ensure that the results produced by our new pipelined processor are no 

 different to the unpipelined one. 

• What sort of situations could cause problems once we pipeline our processor? 
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Pipelining 

 

 

Clock period = T + C 

 

Now, if we create two pipeline 
stages: 
 

Clock period = T/2 + C 
 

If C is small, our clock 
frequency has almost doubled. 

Hence, our throughput will 
double, too. Pipelining 

register 

clk 

clk 

Combinational 

logic 

T 

T/2 T/2 

C 

C C C 



9 © 2021 Arm Limited 

Pipelining Our Processor 

• We can insert pipelining registers into our processor to divide the logic into different 

pipeline stages. 

• If added carefully, the worst-case delay between any two registers will be reduced. 

• We will also need to be careful to pipeline our control signals so that decoded control 

information accompanies each instruction as they progress down the pipeline. 
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Pipelining Our Processor 

                   FETCH                   DECODE                  EXECUTE             MEMORY             WRITEBACK 
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Pipelining Our Processor 

• We’ve simply taken our original datapath and added pipelining registers. 
(Note: its behavior is now different to our unpipelined processor – we’ll revisit this) 

• This has created a 5-stage pipeline: 

• FETCH – access our instruction memory. 

• DECODE – decode our instruction and read the source registers. 

• EXECUTE – perform an ALU operation, calculate a memory address,  

                     or compute a branch target address. 

• MEMORY – access our data memory. 

• WRITEBACK – write to the register file. 
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The Pipeline in Action 

• Clock 

• Cycle    1 2 3 4 5 6 7 8 

• Instruction 

• 1. LDR X1, [X2] 

• 2. ADD X2, X2, X3 

• 3. STR X4, [X5], #4 

• 4. SUB X0, X0, #1 

• 5. LDW X5, [X3] 
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On clock cycle 5, the pipeline contains 
all the instructions listed in different 

pipeline stages 
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An Ideal Pipeline 

In the ideal case, when our pipeline never stalls, our CPI will equal 1 (and IPC = 1). 

If we need to stall the pipeline, our CPI will increase, e.g.: 

If we must stall for 1 cycle for 20% of instructions, and 3 cycles for 5% of instructions, our 

new CPI would be: 

Pipeline CPI = ideal pipeline CPI + pipeline stalls per instruction 

          = 1 + 1*0.20 + 3*0.05 = 1.35 

Note: to make the best use of pipelining, we should avoid stalling as much as possible. 

(without increasing our clock period!) Remember: 

Time = instructions executed×Clocks Per Instruction (CPI)×clock period 
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Stalling to Access Memory 

The latency of accessing off-chip 

memory (DRAM) is typically 10-100 

times higher than our pipelined 

processor’s clock period . 
In order to avoid stalling, we must use 

on-chip caches. 

For a 28 nm process: 

Area: < 0.4 mm^2  

Clock: 1 GHz 

Power: ~90 mW 

A single Arm Cortex A35 with 8K L1 
instruction and data caches, no L2 

Processor pipeline 

L1 I-Cache L1 D-cache 

Memory interface 

Main 

Memory 

off-chip 

on-chip 
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Pipeline Hazards 
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Pipeline Hazards  

• Pipelining allows new instructions to start while others are still in the pipeline, i.e., the 

execution of instructions is overlapped. 

• There may be cases where an instruction must wait and not move forward in the 

pipeline to ensure correctness. These cases are known as pipeline hazards: 

• Structural hazard – arise from resource conflicts 

• Data hazard – arise from the need to ensure we always respect inter-instruction data 

dependencies  

• Control hazard – are caused by instructions that change the PC, i.e., branches and 

jumps (details in next module) 
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Structural Hazard 

• Instructions may need to stall in order to wait for access to a shared resource, e.g.: 
• A functional unit that is not pipelined 

• A register file read port or register file write port 

• A memory  

• Why permit any structural hazards? 
• Designing for the worst-case may reduce the average (common) case performance, i.e., the added 

complexity may reduce our CPI but increase our clock period.  

• Adding support for the worst-case may be too costly (e.g., in terms of power and area). We may have 

strict budgets or may want to use these limited resources elsewhere. 
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Data Dependencies – True Data Dependencies 

True data dependence (green arrow). Also 

known as a Read-After-Write (RAW) 

dependence. 

If we imagine two instructions, i followed by j 

If j uses the result of i, we say that j is 

data dependent on i. This is an example of a 

true data dependence (a read after a write). 

LDR X1, [X2] 

 

ADD X1, X1, X3 

 

LDR X3, [X2], #4 

 

SUB X2, X3, #1 
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Data Dependencies – Name Dependencies 

Name dependencies may also exist 

when two instructions refer to the 

same register. Unlike true data 

dependencies, no data are 

communicated: 

• Output dependencies (red arrow) 

• Anti-dependence (gold arrow) 

LDR X1, [X2] 

 

ADD X1, X1, X3 

 

LDR X3, [X2], #4 

 

SUB X2, X3, #1 
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Data Dependencies – Name Dependencies 

• Output dependence (red arrow). Also 

known as a Write-After-Write (WAW) 

dependence 

• We need to ensure we don’t reorder 
writes to the same register. This would 

mean subsequent instructions could 

receive the wrong data value. 

 

 

LDR X1, [X2] 

 

ADD X1, X1, X3 

 

LDR X3, [X2], #4 

 

SUB X2, X3, #1 
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Data Dependencies – Name Dependencies 

• Anti-dependence (gold arrows). Also 

known as a Write-After-Read (WAR) 

dependence 

• Again, we need to be careful not to 

overwrite a register whose current value 

is still required by an earlier instruction. 

• E.g., we can’t schedule the STR instruction 
before the ADD instruction. 

 

 

LDR X1, [X2] 

 

ADD X1, X1, X3 

 

LDR X3, [X2], #4 

 

SUB X2, X3, #1 
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Data Hazards 

A data hazard is created whenever the parallel execution of instructions makes it possible 

for a dependency to be violated. 

 

Read After Write (RAW) hazards – produced by true data dependencies, i.e., j attempts to 

read a source register before i writes to it. 

Write After Write (WAW) hazards – produced by output dependencies, i.e., j tries to write 

to a destination register before it is written by i. 

Write After Read (WAR) hazards – produced by anti-dependencies, i.e., j tries to write to 

a destination before it is read by i. 
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RAW Hazards 

 

Cycle    1 2 3 4 5 6 7 8 

Instruction 

1. LDR X1, [X2] 

2. ADD X2, X2, X3 

3. STR X4, [X2], #4 

4. SUB X0, X0, #1 

5. LDW X5, [X3] 
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STALL STALL 

Cycle 6: 

ADD writes X2 and 
STR reads X2 

Cycle 7: perform  

Address calculation  

The result of the 
ADD has been 
produced by the 
end of cycle 4 
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Data Forwarding 

 

• Cycle    1 2 3 4 5 6 7 8 

• Instruction 

• 1. LDR X1, [X2] 

• 2. ADD X2, X2, X3 

• 3. STR X4, [X2], #4 

• 4. SUB X0, X0, #1 

• 5. LDW X5, [X3] 
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To avoid stalling due to RAW hazards, we must “forward” 
the result from the execute stage’s pipeline register to the 

input of the ALU (rather than communicating via the register 

file). 
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Data Forwarding 
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• Cycle    1 2 3 4 5 6 7 8 

• Instruction 

• 1. LDR X1, [X2] 

• 2. ADD X2, X1, X3 

 

 

Load-use delay 

FETCH 

FETCH EXE DEC 

DEC EXE MEM 

MEM 

WB 

WB STALL 

The LDR instruction loads data from memory in the “MEM” pipeline stage.  

Even with data forwarding it is not possible to execute the LDR and ADD instructions at the 
same time. The ADD must be stalled.  
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Control Hazards 

                   FETCH                   DECODE                  EXECUTE             MEMORY             WRITEBACK 



28 © 2021 Arm Limited 

Control Hazard 
 

• Cycle    1 2 3 4 5 6 7 8 

• Instruction 

• 1. CBZ X3, label 

• 2. ADD X2, X2, X3 

• 3. STR X4, [X2], #4 

• 4. label: SUB X0, X0, #1 
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(CBZ – branches if the operand is equal to zero) 

If the branch is evaluated in the execute stage, and it is taken, we must convert the two 
instructions that follow it into NOPs (we waste two cycles). 

A new PC, the branch target, is communicated to the fetch stage 

becomes a NOP 

becomes a NOP 
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Control Hazards – Evaluate Branch in Decode Stage 

• To reduce the cost of branches, we could evaluate the branch in the decode stage. 

• Now, a taken branch only involves a single “dead” cycle. 
• Potential data hazards 

• If the instruction immediately before the branch writes to the register than the branch tests, we must 

stall for one cycle (i.e., until this instruction generates its result). 

• We will also need forwarding paths from the EXE and MEM pipeline stages to the decode stage. 
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Control Hazards – Evaluate Branch in Decode Stage 
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Pipeline and Performance 
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Pipeline CPI 

Pipeline CPI = ideal pipeline CPI + Structural stalls + Data hazard stalls + Control stalls 

 

Stalls can be reduced by using a combination of compiler (e.g., scheduling) and hardware 

techniques.  

Hardware techniques typically increase the area and complexity of our processor. 

Consequently, power consumption typically grows quickly (not just linearly) as we try to 

boost the performance of our processor. 
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An Analytical Model of Performance 

• Let’s construct a simple analytical model of 
pipeline performance. 

• We start with a critical path of delay T. 

• Divide it into S stages of delay T/S. 

• We then add a clocking overhead C to our 

clock period, to give T/S+C. 
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An Analytical Model of Performance 

We can now create a simple analytical model of pipeline performance.  

Pipeline CPI = ideal pipeline CPI + pipeline stalls per instruction 

Freq = 1 / (clock period) = 1 / (T/S + C) 

Throughput = Freq / CPI 

Let’s assume stalls occur at frequency b, and their cost is proportional to pipeline depth, 
say (S-1), now: 

Throughput = 1 / (1+(S-1)b) x 1 / (T/S+C) 
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Optimal Pipeline Depth 

T = 5 ns, penalty of 

interruption is (S-1) 

 

Simple pipeline design 

C= 300 ps 

Pipeline interruption every 6 

instructions 

 

Aggressive pipeline design 

C = 100 ps 

Pipeline interruption every 25 

instructions 
 

Source: Robert Mullins, University of Cambridge 
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Typical Pipeline Lengths 

• Area optimized cores may have 2-3 stages. 

• Simple, efficient scalar pipelines are normally implemented with 5-7 stages. 

• Higher performance cores, which fetch and issue multiple instructions in a single cycle, 

may have 8-16 stages. 

• Pipeline lengths for general-purpose processors peaked at 31 stages with Intel’s 
Pentium 4 in 2004. Why have they reduced since 2004 instead of increasing? 
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Summary 

Pipelining is often an effective and efficient way to improve performance. Of course, we 

must be careful that gains from a faster clock are not lost due to the cost of stalling the 

pipeline. 

We must take care to: 

1. Supply instructions without stalling: 
• Ensure branches are handled efficiently in our pipeline. 

• Try to minimize our instruction cache miss rate. 

2. Supply data – minimizing our data cache miss rate. 

3. Minimize pipeline stalls due to structural hazards and data hazards. 
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Backup Slides:  
Diversified Pipelines &  

Arm10 Pipeline Case Study 
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Diversified Pipelines 

• It is impractical to require that all instructions execute in a single cycle. 

• We also want to avoid sending all instructions down a single long pipeline. 

• We can instead introduce multiple (or “diversified”) execution pipelines. 
• Could this introduce new hazards? 
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Diversified Pipelines 

• Fetch Decode 

EX 

Mem WB F1 F2 F3 

FD (unpipelined 

Latency = 20 cycles) 

F4 

Integer 

Floating point and integer 
multiplier 

Floating point and integer 
divider 
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Example: Arm10 Pipeline (1999) 

Branch 
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Instruction 
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    Fetch               Issue                Decode            Execute        Memory          Write  

Buffers up to 3 
instructions 

We can have numerous 
instructions executing in 
parallel in these stages 
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Arm10 Pipeline 
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Arm10 Pipeline Hazards 

• ALU instructions need not necessarily wait for load/store operations in the load/store 

pipeline to complete, i.e., they may bypass or overtake them if they are independent. 

• Data Hazards 
• We cannot allow all ALU instructions to bypass memory instructions. We must respect dependencies. 

• RAW (i.e., the ALU operation requires the result from a load) or a WAW hazard 

• Structural Hazards 
• Load/store or multiply pipeline is occupied. 

• Check for hazards late. 
• The use of interlocks is minimized by checking for hazards late, not simply in the decode stage. 


