
© 2021 Arm Limited

Pipelining

Module 3

2 © 2021 Arm Limited

Module Syllabus

• Pipelining and implementation

• Pipeline hazards and data dependency

• Pipeline and performance

3 © 2021 Arm Limited

Our Simple Processor

4 © 2021 Arm Limited

A Simple Processor

• Our processor executes each instruction in one clock cycle, i.e., it has a

Clocks Per Instruction (CPI) of 1.

• The minimum clock period will be the worst-case path through all of the logic and

memories shown (plus some margin for variations in Process, Voltage, and

Temperature, also known as “PVT”).
• How might we improve our clock frequency without significantly increasing CPI?

5 © 2021 Arm Limited

What Is Pipelining?

Order of manufacturing

(Car A, B, and then C)

Time

Order of
manufacturing

Time

A

B

C

A

B

C

Chassis

Engine
Paint

6 © 2021 Arm Limited

What Is Pipelining?

• We arrange for the different phases of

execution to be overlapped. We aim to exploit

“temporal” parallelism.
• How are latency and throughput affected?

Volkswagen Beetle Assembly Line
(By Alden Jewell, license: CC BY 2.0)

https://www.flickr.com/photos/autohistorian/32637661426
https://creativecommons.org/licenses/by/2.0/

7 © 2021 Arm Limited

Pipelining and Maintaining Correctness

• We can break the execution of instructions into stages and overlap the execution

of different instructions.

• We need to ensure that the results produced by our new pipelined processor are no

 different to the unpipelined one.

• What sort of situations could cause problems once we pipeline our processor?

8 © 2021 Arm Limited

Pipelining

Clock period = T + C

Now, if we create two pipeline
stages:

Clock period = T/2 + C

If C is small, our clock
frequency has almost doubled.

Hence, our throughput will
double, too. Pipelining

register

clk

clk

Combinational

logic

T

T/2 T/2

C

C C C

9 © 2021 Arm Limited

Pipelining Our Processor

• We can insert pipelining registers into our processor to divide the logic into different

pipeline stages.

• If added carefully, the worst-case delay between any two registers will be reduced.

• We will also need to be careful to pipeline our control signals so that decoded control

information accompanies each instruction as they progress down the pipeline.

10 © 2021 Arm Limited

Pipelining Our Processor

 FETCH DECODE EXECUTE MEMORY WRITEBACK

11 © 2021 Arm Limited

Pipelining Our Processor

• We’ve simply taken our original datapath and added pipelining registers.
(Note: its behavior is now different to our unpipelined processor – we’ll revisit this)

• This has created a 5-stage pipeline:

• FETCH – access our instruction memory.

• DECODE – decode our instruction and read the source registers.

• EXECUTE – perform an ALU operation, calculate a memory address,

 or compute a branch target address.

• MEMORY – access our data memory.

• WRITEBACK – write to the register file.

12 © 2021 Arm Limited

The Pipeline in Action

• Clock

• Cycle 1 2 3 4 5 6 7 8

• Instruction

• 1. LDR X1, [X2]

• 2. ADD X2, X2, X3

• 3. STR X4, [X5], #4

• 4. SUB X0, X0, #1

• 5. LDW X5, [X3]

FETCH

FETCH

FETCH

FETCH

EXE DEC

DEC

DEC

DEC EXE

EXE

EXE

MEM

MEM

MEM

MEM

WB

WB

WB

WB

FETCH DEC EXE MEM WB

On clock cycle 5, the pipeline contains
all the instructions listed in different

pipeline stages

13 © 2021 Arm Limited

An Ideal Pipeline

In the ideal case, when our pipeline never stalls, our CPI will equal 1 (and IPC = 1).

If we need to stall the pipeline, our CPI will increase, e.g.:

If we must stall for 1 cycle for 20% of instructions, and 3 cycles for 5% of instructions, our

new CPI would be:

Pipeline CPI = ideal pipeline CPI + pipeline stalls per instruction

 = 1 + 1*0.20 + 3*0.05 = 1.35

Note: to make the best use of pipelining, we should avoid stalling as much as possible.

(without increasing our clock period!) Remember:

Time = instructions executed×Clocks Per Instruction (CPI)×clock period

14 © 2021 Arm Limited

Stalling to Access Memory

The latency of accessing off-chip

memory (DRAM) is typically 10-100

times higher than our pipelined

processor’s clock period .
In order to avoid stalling, we must use

on-chip caches.

For a 28 nm process:

Area: < 0.4 mm^2

Clock: 1 GHz

Power: ~90 mW

A single Arm Cortex A35 with 8K L1
instruction and data caches, no L2

Processor pipeline

L1 I-Cache L1 D-cache

Memory interface

Main

Memory

off-chip

on-chip

15 © 2021 Arm Limited

Pipeline Hazards

16 © 2021 Arm Limited

Pipeline Hazards

• Pipelining allows new instructions to start while others are still in the pipeline, i.e., the

execution of instructions is overlapped.

• There may be cases where an instruction must wait and not move forward in the

pipeline to ensure correctness. These cases are known as pipeline hazards:

• Structural hazard – arise from resource conflicts

• Data hazard – arise from the need to ensure we always respect inter-instruction data

dependencies

• Control hazard – are caused by instructions that change the PC, i.e., branches and

jumps (details in next module)

17 © 2021 Arm Limited

Structural Hazard

• Instructions may need to stall in order to wait for access to a shared resource, e.g.:
• A functional unit that is not pipelined

• A register file read port or register file write port

• A memory

• Why permit any structural hazards?
• Designing for the worst-case may reduce the average (common) case performance, i.e., the added

complexity may reduce our CPI but increase our clock period.

• Adding support for the worst-case may be too costly (e.g., in terms of power and area). We may have

strict budgets or may want to use these limited resources elsewhere.

18 © 2021 Arm Limited

Data Dependencies – True Data Dependencies

True data dependence (green arrow). Also

known as a Read-After-Write (RAW)

dependence.

If we imagine two instructions, i followed by j

If j uses the result of i, we say that j is

data dependent on i. This is an example of a

true data dependence (a read after a write).

LDR X1, [X2]

ADD X1, X1, X3

LDR X3, [X2], #4

SUB X2, X3, #1

19 © 2021 Arm Limited

Data Dependencies – Name Dependencies

Name dependencies may also exist

when two instructions refer to the

same register. Unlike true data

dependencies, no data are

communicated:

• Output dependencies (red arrow)

• Anti-dependence (gold arrow)

LDR X1, [X2]

ADD X1, X1, X3

LDR X3, [X2], #4

SUB X2, X3, #1

20 © 2021 Arm Limited

Data Dependencies – Name Dependencies

• Output dependence (red arrow). Also

known as a Write-After-Write (WAW)

dependence

• We need to ensure we don’t reorder
writes to the same register. This would

mean subsequent instructions could

receive the wrong data value.

LDR X1, [X2]

ADD X1, X1, X3

LDR X3, [X2], #4

SUB X2, X3, #1

21 © 2021 Arm Limited

Data Dependencies – Name Dependencies

• Anti-dependence (gold arrows). Also

known as a Write-After-Read (WAR)

dependence

• Again, we need to be careful not to

overwrite a register whose current value

is still required by an earlier instruction.

• E.g., we can’t schedule the STR instruction
before the ADD instruction.

LDR X1, [X2]

ADD X1, X1, X3

LDR X3, [X2], #4

SUB X2, X3, #1

22 © 2021 Arm Limited

Data Hazards

A data hazard is created whenever the parallel execution of instructions makes it possible

for a dependency to be violated.

Read After Write (RAW) hazards – produced by true data dependencies, i.e., j attempts to

read a source register before i writes to it.

Write After Write (WAW) hazards – produced by output dependencies, i.e., j tries to write

to a destination register before it is written by i.

Write After Read (WAR) hazards – produced by anti-dependencies, i.e., j tries to write to

a destination before it is read by i.

23 © 2021 Arm Limited

RAW Hazards

Cycle 1 2 3 4 5 6 7 8

Instruction

1. LDR X1, [X2]

2. ADD X2, X2, X3

3. STR X4, [X2], #4

4. SUB X0, X0, #1

5. LDW X5, [X3]

FETCH

FETCH

FETCH

FETCH

EXE DEC

DEC

DEC EXE

EXE

EXE

MEM

MEM

MEM

WB

WB

FETCH DEC

…..

…..

…..

DEC STALL STALL

STALL STALL

Cycle 6:

ADD writes X2 and
STR reads X2

Cycle 7: perform

Address calculation

The result of the
ADD has been
produced by the
end of cycle 4

24 © 2021 Arm Limited

Data Forwarding

• Cycle 1 2 3 4 5 6 7 8

• Instruction

• 1. LDR X1, [X2]

• 2. ADD X2, X2, X3

• 3. STR X4, [X2], #4

• 4. SUB X0, X0, #1

• 5. LDW X5, [X3]

FETCH

FETCH

FETCH

FETCH

EXE DEC

DEC

DEC

DEC EXE

EXE

EXE

MEM

MEM

MEM

MEM

WB

WB

WB

WB

FETCH DEC EXE MEM WB

To avoid stalling due to RAW hazards, we must “forward”
the result from the execute stage’s pipeline register to the

input of the ALU (rather than communicating via the register

file).

25 © 2021 Arm Limited

Data Forwarding

26 © 2021 Arm Limited

• Cycle 1 2 3 4 5 6 7 8

• Instruction

• 1. LDR X1, [X2]

• 2. ADD X2, X1, X3

Load-use delay

FETCH

FETCH EXE DEC

DEC EXE MEM

MEM

WB

WB STALL

The LDR instruction loads data from memory in the “MEM” pipeline stage.

Even with data forwarding it is not possible to execute the LDR and ADD instructions at the
same time. The ADD must be stalled.

27 © 2021 Arm Limited

Control Hazards

 FETCH DECODE EXECUTE MEMORY WRITEBACK

28 © 2021 Arm Limited

Control Hazard

• Cycle 1 2 3 4 5 6 7 8

• Instruction

• 1. CBZ X3, label

• 2. ADD X2, X2, X3

• 3. STR X4, [X2], #4

• 4. label: SUB X0, X0, #1

FETCH

FETCH

FETCH

FETCH

EXE DEC

DEC

DEC

DEC EXE

EXE

EXE

MEM

MEM

MEM

MEM

WB

WB

WB

WB

(CBZ – branches if the operand is equal to zero)

If the branch is evaluated in the execute stage, and it is taken, we must convert the two
instructions that follow it into NOPs (we waste two cycles).

A new PC, the branch target, is communicated to the fetch stage

becomes a NOP

becomes a NOP

29 © 2021 Arm Limited

Control Hazards – Evaluate Branch in Decode Stage

• To reduce the cost of branches, we could evaluate the branch in the decode stage.

• Now, a taken branch only involves a single “dead” cycle.
• Potential data hazards

• If the instruction immediately before the branch writes to the register than the branch tests, we must

stall for one cycle (i.e., until this instruction generates its result).

• We will also need forwarding paths from the EXE and MEM pipeline stages to the decode stage.

30 © 2021 Arm Limited

Control Hazards – Evaluate Branch in Decode Stage

31 © 2021 Arm Limited

Pipeline and Performance

32 © 2021 Arm Limited

Pipeline CPI

Pipeline CPI = ideal pipeline CPI + Structural stalls + Data hazard stalls + Control stalls

Stalls can be reduced by using a combination of compiler (e.g., scheduling) and hardware

techniques.

Hardware techniques typically increase the area and complexity of our processor.

Consequently, power consumption typically grows quickly (not just linearly) as we try to

boost the performance of our processor.

33 © 2021 Arm Limited

An Analytical Model of Performance

• Let’s construct a simple analytical model of
pipeline performance.

• We start with a critical path of delay T.

• Divide it into S stages of delay T/S.

• We then add a clocking overhead C to our

clock period, to give T/S+C.

34 © 2021 Arm Limited

An Analytical Model of Performance

We can now create a simple analytical model of pipeline performance.

Pipeline CPI = ideal pipeline CPI + pipeline stalls per instruction

Freq = 1 / (clock period) = 1 / (T/S + C)

Throughput = Freq / CPI

Let’s assume stalls occur at frequency b, and their cost is proportional to pipeline depth,
say (S-1), now:

Throughput = 1 / (1+(S-1)b) x 1 / (T/S+C)

35 © 2021 Arm Limited

Optimal Pipeline Depth

T = 5 ns, penalty of

interruption is (S-1)

Simple pipeline design

C= 300 ps

Pipeline interruption every 6

instructions

Aggressive pipeline design

C = 100 ps

Pipeline interruption every 25

instructions

Source: Robert Mullins, University of Cambridge

36 © 2021 Arm Limited

Typical Pipeline Lengths

• Area optimized cores may have 2-3 stages.

• Simple, efficient scalar pipelines are normally implemented with 5-7 stages.

• Higher performance cores, which fetch and issue multiple instructions in a single cycle,

may have 8-16 stages.

• Pipeline lengths for general-purpose processors peaked at 31 stages with Intel’s
Pentium 4 in 2004. Why have they reduced since 2004 instead of increasing?

37 © 2021 Arm Limited

Summary

Pipelining is often an effective and efficient way to improve performance. Of course, we

must be careful that gains from a faster clock are not lost due to the cost of stalling the

pipeline.

We must take care to:

1. Supply instructions without stalling:
• Ensure branches are handled efficiently in our pipeline.

• Try to minimize our instruction cache miss rate.

2. Supply data – minimizing our data cache miss rate.

3. Minimize pipeline stalls due to structural hazards and data hazards.

38 © 2021 Arm Limited

Backup Slides:
Diversified Pipelines &

Arm10 Pipeline Case Study

39 © 2021 Arm Limited

Diversified Pipelines

• It is impractical to require that all instructions execute in a single cycle.

• We also want to avoid sending all instructions down a single long pipeline.

• We can instead introduce multiple (or “diversified”) execution pipelines.
• Could this introduce new hazards?

40 © 2021 Arm Limited

Diversified Pipelines

• Fetch Decode

EX

Mem WB F1 F2 F3

FD (unpipelined

Latency = 20 cycles)

F4

Integer

Floating point and integer
multiplier

Floating point and integer
divider

41 © 2021 Arm Limited

Example: Arm10 Pipeline (1999)

Branch

Predictor,

Instruction

Buffer,

Address

Generator

Arm and

Thumb

Instruction

Decode

Register File

Read and

Result

Forward

Scoreboard

Shifter/ALU

Multiplier
Multiply

adder

Data

address calc
Data Cache

Register File

Write

 Fetch Issue Decode Execute Memory Write

Buffers up to 3
instructions

We can have numerous
instructions executing in
parallel in these stages

42 © 2021 Arm Limited

Arm10 Pipeline

43 © 2021 Arm Limited

Arm10 Pipeline Hazards

• ALU instructions need not necessarily wait for load/store operations in the load/store

pipeline to complete, i.e., they may bypass or overtake them if they are independent.

• Data Hazards
• We cannot allow all ALU instructions to bypass memory instructions. We must respect dependencies.

• RAW (i.e., the ALU operation requires the result from a load) or a WAW hazard

• Structural Hazards
• Load/store or multiply pipeline is occupied.

• Check for hazards late.
• The use of interlocks is minimized by checking for hazards late, not simply in the decode stage.

