
© 2021 Arm Limited

Fundamentals of
Computer Design

Module 2

2 © 2021 Arm Limited

Module Syllabus

• Explore a simple processor design.

• Introduce the fundamentals of computer design.

• Outline the principles of instruction set design.

• The Armv8-A Instruction Set Architecture.

3 © 2021 Arm Limited

A Simple Processor

We will only need a few simple components:

• Memories – to store our program (instructions) and data

• A register file – instructions will read their operands from the register file and also write

their results to it.

• Registers, an ALU and adders

• Decode and control logic

4 © 2021 Arm Limited

A Simple (32-bit) Processor

• Let’s assume all our instructions are encoded in 32-bits/

• Our registers and datapath are also 32-bits wide.

• Memory is accessed with a 32-bit address and returns 32-bit data.

• Our processor has 32 registers, hence we must use 5-bits to identify a particular register

(as 2^5 =32).

5 © 2021 Arm Limited

A Processor Datapath – Encoding Instructions

• A simple data processing instruction may have the following format, where Operand2

may be a register or immediate value.

• Given 32-bits to encode our instructions, we may invent two simple instruction

encoding formats for our processor, e.g.:

Instruction Rd, Rs, Operand2

op rs1 rs2 rd function

op rs1 rs2 / rd immediate

10 15 20 25 31
0

15

6 © 2021 Arm Limited

A Processor Datapath – PC and Instruction Memory

Our Program Counter (PC)
stores the address of the
instruction currently being
fetched from memory.

This simple datapath
increases the PC by 4 (bytes)
on each cycle and only allows
us to read each 32-bit
instruction in turn.

We need to add more logic to
actually compute, handle
branches, provide registers,
access data memory, etc.

7 © 2021 Arm Limited

A Processor Datapath – Add mux to Allow Jump/Branch

We add a multiplexor (mux)
to allow us to provide a
branch target address, i.e.,
the PC value following a
taken branch.

8 © 2021 Arm Limited

A Processor Datapath – Add a Register File and ALU

We also add decode logic that extracts
information from our instruction; in this
case, the source registers (rs1, rs2),
destination register (rd), and the ALU
function to be performed.

We could now
execute a simple
sequence of ALU
operations.

Although, we do
not yet have
access to data
memory and can’t
branch!

9 © 2021 Arm Limited

A Processor Datapath – Loading from Data Memory

We extend the datapath so we
can implement an instruction that
loads from data memory.

The effective address could be the
sum of the two source registers.

10 © 2021 Arm Limited

A Processor Datapath – Storing to Data Memory

Storing to memory requires we
provide both an address and
the data to write.

We have also added the ability to
extract immediate values from the
instructions and use them in ALU
operations or address calculations.

11 © 2021 Arm Limited

A Processor Datapath – Supporting Branch Instructions

Here, we assume
a simple “branch
if equal to zero”
instruction.

Our branch target address is computed
relative to the PC. Our immediate (the
offset) is shifted left by two (i.e., multiplied
by 4) as all instructions are 32-bits.

12 © 2021 Arm Limited

The Fundamentals of Computer Design

13 © 2021 Arm Limited

The Fundamentals of Computer Design

• Architecture

• Set of specifications that allows developers to write software and firmware. These

include the instruction set.

• Microarchitecture

• Logical organization of the inner structure of the computer. Sometimes also called

the “organization”

• Hardware or Implementation

• The realization or the physical structure, i.e., logic design and chip packaging

14 © 2021 Arm Limited

Amdahl’s Law

• How do we allocate our resources?

• Amdahl’s law

• Amdahl’s law provides a simple way of calculating the performance gain that can be
obtained by improving an element of a computer system.

15 © 2021 Arm Limited

Amdahl’s Law

• Diminishing returns
• Incremental improvements in speedup gained by enhancing just one portion of our design diminish as

improvements are made. Eventually, we reach the limit 1/(1-Fraction_enh).

• E.g., If Fraction_enh = 0.5

 Speedup_enh = 2, speedup = 1.33

 Speedup_enh = 4, speedup = 1.6

 Speedup_enh = 10, speedup = 1.8

 Speedup_enh = 100, speedup = 1.98

• If we focus on a single optimization, we will see diminishing returns from investing more

hardware. This suggests we should carefully re-evaluate where to make enhancements

(and invest hardware) after each optimization is applied.

16 © 2021 Arm Limited

Complexity

“In engineering, all other things being equal, simpler is always better, and sometimes much
better,” Robert P. Colwell, from the book “The Pentium Chronicles”

• We normally want to seek simple elegant solutions.

• Complexity adds to design and verification costs.

• We often want to understand what we have built and predict how it will behave.

17 © 2021 Arm Limited

Making the Common-case Fast

• Pitfall: Isn’t every improvement we make worthwhile even if it only provides a small
performance improvement?

• No! Enhancements consume design, verification, and implementation resources – they

are never free.

• Adding an enhancement may disadvantage the common case:
• Less time can be spent optimizing the common case.

• Accelerating complex operations may require the cycle-time to be extended. This will slow all

operations.

• Resources (transistors, power) are redirected to less important (less often used) features.

18 © 2021 Arm Limited

Making the Common-case Fast

• What tools/techniques do we have at our disposal?

• Locality

• Speculation

• Prediction

• Indirection*

• Parallelism

• Specialization

* “All problems in computer science can be
solved by another level of indirection” –

David Wheeler (1927-2004),
 University of Cambridge

https://www.cl.cam.ac.uk/misc/obituaries/wheeler/

19 © 2021 Arm Limited

Benchmarks

• We use benchmarks to determine what the common cases are and to help guide the

design process.

• The challenge is to always carefully evaluate ideas quantitatively. This is difficult as the

actual workload is often unknown and the design space of possible designs is extremely

large.

• There is also the risk of looking backward:

“Computer architects often err by preparing for yesterday’s computations,”
Prof. Bill Dally, Stanford and Chief Scientist Nvidia.

20 © 2021 Arm Limited

The Instruction Set Architecture

21 © 2021 Arm Limited

Instruction Set Architecture (ISA)
• ISA is typically seen as the contract between software and hardware.

Instruction Set Architecture (ISA)

• Instruction Set Architecture
– instructions

– registers

– memory addressing

– addressing modes

– etc.

The computing abstraction stack

Microarchitecture

Architecture (ISA)

Program Language

Algorithm

Problem

Logic

Transistors

Runtime System

(OS/VM)

Electrons

22 © 2021 Arm Limited

The Instruction Set

The instruction set defines what information can be passed from the compiler to the

hardware - what hardware details are exposed to software and what is hidden.

This raises a number of questions:

• At what level do we draw this HW/SW dividing line or interface?

• What other information might it be useful to pass to the hardware to help simplify it?

• How do we ensure good code density?

23 © 2021 Arm Limited

Instruction Set Architecture

• Execute high-level languages directly.

• Execute complex instructions (CISC).

• Tailor instruction set for pipelined and high-performance implementations.

Expose the instruction pipeline to the compiler so it can optimize code and

help simplify the hardware (RISC).

We will explore this approach.

• Provide additional explicit information about the dependencies between

instructions. E.g., VLIW or

• Specify individual data transfers, e.g., Transport Triggered Architectures

(TTA)

High-level
interface

Low-level

interface

24 © 2021 Arm Limited

Instruction Set Architecture

• The best instruction set is the one that yields the “best” implementation.
• Changing the instruction set is difficult and happens infrequently .

• The factors that influence instruction set design do change over time, e.g., applications,

programming languages, compiler technology, transistor budgets, and the underlying

fabrication technology.

• We need to take care not to include “features” that will be regretted later.

25 © 2021 Arm Limited

The RISC Approach

• The RISC approach aims to ensure that we make the common-case fast by carefully

selecting the most useful instructions and addressing modes, etc.

• Instructions are designed to make good use of the register file.

• A RISC ISA is designed to ensure a simple high-performance implementation is possible.

26 © 2021 Arm Limited

Instruction Set Architecture

Common features of RISC instruction sets:

• Fixed length instruction encodings (or a small number of easily decoded formats)

• Each instruction follows similar steps when being executed.

• Access to data memory is restricted to special load/store instructions

(a so-called load/store architecture).

27 © 2021 Arm Limited

Arm1: The First Arm Processor (1985)

• Arm: Advanced RISC Machine (Arm)

• The first Arm processor was designed by

Sophie Wilson and Prof. Steve Furber. It was

inspired by early research papers from

Berkeley and Stanford on RISC.

• Arm1
• 25,000 transistors

• 3-stage pipeline

• 8 MHz clock

• No on-chip cache

Prof. Steve Furber (left)1 and Sophie Wilson (right)2

1.By Peter Howkins, CC BY-SA 3.0

2.By Chris Monk, CC BY-SA-2.0

https://en.wikipedia.org/wiki/Steve_Furber/media/File:Steve_Furber.jpg
https://en.wikipedia.org/wiki/Sophie_Wilson/media/File:Sophie_Wilson.jpg
https://en.wikipedia.org/wiki/Steve_Furber/media/File:Steve_Furber.jpg
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/
https://en.wikipedia.org/wiki/Sophie_Wilson/media/File:Sophie_Wilson.jpg
https://creativecommons.org/licenses/by-sa/2.0/
https://creativecommons.org/licenses/by-sa/2.0/
https://creativecommons.org/licenses/by-sa/2.0/
https://creativecommons.org/licenses/by-sa/2.0/
https://creativecommons.org/licenses/by-sa/2.0/

28 © 2021 Arm Limited

CISC

• Not all processors use RISC ISAs; some are Complex Instruction Set Computers (CISC).

• CISC designs have evolved since the 1970s.

• How are modern CISC machines (e.g., x86) implemented?
• They first convert the CISC instructions to (possibly numerous) RISC-like micro-ops!

• Their microarchitectures are otherwise very similar to other modern high-performance processors.

29 © 2021 Arm Limited

The Armv8-A ISA

30 © 2021 Arm Limited

Case Study: The Armv8 Architecture

Announced 2011
2006

2004
2000

Armv1 – 1985

Armv2 – 1989

Armv3 – 1991

Armv4 – 1996

31 © 2021 Arm Limited

A64 Instructions

• 64-bit pointers and registers

• Fixed-length 32-bit instructions

• Load/store architecture

• Simple addressing modes

• 32 x 64-bit general-purpose registers (including the R31 the zero/stack register)

• The PC cannot be specified as the destination of a data processing instruction or load

instruction.

32 © 2021 Arm Limited

AArch64 - Registers

In the AArch64 Execution state, each register (X0-X30) is 64-bits wide. The increased width

(vs. 32-bit) helps to reduce register pressure in most applications.

Each 64-bit general-purpose register (X0 - X30) also has a 32-bit form (W0 - W30).

Zero register – X31

63 32 31 0

Wn

Xn

33 © 2021 Arm Limited

AArch64 – Load/Store Instructions

LDR – load data from an address into a register.

STR – store data from a register to an address.

LDR X0, <addr> ; load from <addr> into X0

STR X0, <addr> ; store contents of X0 to <addr>

In these cases, X0 is a 64-bit register, so 64-bits will be loaded or stored from/to memory.

34 © 2021 Arm Limited

AArch64 – Addressing Modes

Base register only: Address to load/store from is a 64-bit base register.

LDR X0, [X1] ; load from address held in X1

STR X0, [X1] ; store to address held in X1

Base plus offset: We can add an immediate or register offset (register indexed).

LDR X0, [X1, #8] ; load from address [X1 + 8 bytes]

LDR X0, [X1, #-8] ; load from address [X1 – 8 bytes]

LDR X0, [X1, X2] ; load from address [X1 + X2]

LDR X0, [X1, X2, LSL #3] ; left-shift X2 three places

 before adding to X1

•

35 © 2021 Arm Limited

AArch64 – Addressing Modes

Pre-indexed: source register changed before load

LDR W0, [X1, #4]! ; equivalent to:

 ADD X1, X1, #4

 LDR W0, [X1]

Post-indexed: source register changed after load

LDR W0, [X1], #4 ; equivalent to:

 LDR W0, [X1]

 ADD X1, X1, #4

36 © 2021 Arm Limited

AArch64 – Data Processing

• Values in registers can be processed

using many different instructions:
• Arithmetic, logic, data moves, bit field

manipulations, shifts, conditional

comparisons, etc.

• These instructions always operate

between registers, or between a register

and an immediate.

Example loop:

MOV X0, #<loop count>

Loop:

LDR W1, [X2]

ADD W1, W1, W3

STR W1, [X2], #4

SUB X0, X0, #1

CBNZ X0, loop

37 © 2021 Arm Limited

AArch64 - Branching

B <offset>

PC relative branch (+/- 128MB)

BL <offset>

Similar to B, but also stores return address in LR (link register), likely a function call

BR Xm

Absolute branch to address stored in Xm

BRL Xm

Similar to BR, but also stores return address in LR

38 © 2021 Arm Limited

AArch64 - Branching

RET Xm or simply RET

- Similar to BR, likely a function return

- Uses LR if register is omitted

Subroutine calls:

The Link Register (LR) stores the return address when a subroutine call is made. This is

then used at the end of our subroutine to return back to the instruction following our

subroutine call.

•

39 © 2021 Arm Limited

AArch64 – Conditional Execution

The A64 instruction set does not include the concept of widespread predicated or

conditional execution (as earlier Arm ISAs did).

The NZCV register holds copies of the N, Z, C, and V condition flags.

A small set of conditional data processing instructions are provided that use the condition

flags as an additional input. Only the conditional branch is conditionally executed.

• Conditional branch

• Add/subtract with carry

• Conditional select with increment, negate, or invert

• Conditional compare (set the condition flags)

40 © 2021 Arm Limited

AArch64 – Conditional Branches

B.cond

Branch to label if condition code evaluates to true, e.g.,

 CMP X0, #5

 B.EQ label

CBZ/CBNZ – branch to label if operand register is zero (CBZ) or not equal to zero (CBNZ)

TBZ/TBNZ – branch to label if specific bit in operand register is set (TBZ) or clear (TBNZ)

 TBZ W0, #20, label ; branch if (W0[20]==#0b0)

41 © 2021 Arm Limited

AArch64- Conditional Operations

CSEL – select between two registers based on a condition

CSEL X7, X2, X0, EQ ; if (cond==true) X7=X2, else X7=X0

There are also variants of this that cause the second source register to be incremented,

inverted, or negated.

42 © 2021 Arm Limited

Backup Slides

43 © 2021 Arm Limited

The Fundamentals of Computer Design

• Let’s assume our architecture and
fabrication technology are fixed.

• There are still many different

microarchitectural design choices.

• If we want to minimize power consumption,

the “best” microarchitecture will depend on
the required performance.

O. Azizi, A. Omid & A. Mahesri, M. Aqeel & B. Lee, L. Benjamin & S. Patel, P.

Sanjay & M. Horowitz. Energy-performance tradeoffs in processor

architecture and circuit design: A marginal cost analysis, 2010. ACM

SIGARCH Computer Architecture News. 38. 26-36.

10.1145/1815961.1815967.

44 © 2021 Arm Limited

AArch64 – How Does It Differ from Older Arm ISAs?

• Conditional execution mostly dropped

• No free shifts in arithmetic instructions

• Program counter not a part of integer register set

• No load/store multiple instructions

• Adopts a more regular instruction encoding

45 © 2021 Arm Limited

Compressed Instruction Sets

• We could encode instructions using 16-bits to produce much smaller programs.

• This improved code density would come at the cost of some performance.

• The T32 (Thumb-2) instruction set (part of the Armv8 AArch32 execution state) allows

us to mix 16- and some 32-bit instructions (without a mode change).

This allows us to improve code density and maintain performance, e.g., in performance

critical loops.

46 © 2021 Arm Limited

Specifying More Work in One Instruction

• It is often beneficial to specify more work in a single instruction if this simplifies our

hardware or enables us to make better use of it.
• See earlier comments regarding Armv8 addressing modes.

• Going further, we might be able to specify more work and hence fetch fewer

instructions, or perform more work per cycle.

• We might actually also be able to reduce fetch and control overheads in this way, e.g.,

SIMD or vector instructions.

47 © 2021 Arm Limited

Early RISC Ideas: IBM 801 (~1974-1980)

The IBM 801’s architectural aims to:
• Make effective use of the registers and

ensure registers are general-purpose.

• Avoid complex instructions where the same

effects can be realized by simple ones. Ensure

hard-wired control is possible.

• Use separate instruction and data caches

• Ensure all instructions are usable by

compilers.

• Provide an optimizing compiler.

“In some sense, the 801 appears to be
rushing in the opposite direction to the

conventional wisdom of this field. Namely,

everyone else is busily moving software

into hardware and we are clearly moving

hardware into software. Rather than

consuming the projected cheaper, faster

hardware, we are engaged in an effort to

save circuits, cut path lengths and reduce

functions at every level of the normal

hierarchy.”

From “The 801 Microcomputer – An

Overview”, Internal IBM memo, 1976.

