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Module Syllabus 

• Explore a simple processor design. 

• Introduce the fundamentals of computer design. 

• Outline the principles of instruction set design. 

• The Armv8-A Instruction Set Architecture. 
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A Simple Processor 

We will only need a few simple components: 

• Memories – to store our program (instructions) and data 

• A register file – instructions will read their operands from the register file and also write 

their results to it.  

• Registers, an ALU and adders 

• Decode and control logic 
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A Simple (32-bit) Processor 

• Let’s assume all our instructions are encoded in 32-bits/ 

• Our registers and datapath are also 32-bits wide. 

• Memory is accessed with a 32-bit address and returns 32-bit data. 

• Our processor has 32 registers, hence we must use 5-bits to identify a particular register 

(as 2^5 =32). 
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A Processor Datapath – Encoding Instructions 

• A simple data processing instruction may have the following format, where Operand2 

may be a register or immediate value. 

 

 

• Given 32-bits to encode our instructions, we may invent two simple instruction 

encoding formats for our processor, e.g.: 

 

 

 

 

Instruction Rd, Rs, Operand2  

op rs1 rs2 rd function 

op rs1 rs2 / rd immediate 

10 15 20 25 31 
0 

15 
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A Processor Datapath – PC and Instruction Memory 

Our Program Counter (PC) 
stores the address of the 
instruction currently being 
fetched from memory. 

This simple datapath 
increases the PC by 4 (bytes) 
on each cycle and only allows 
us to read each 32-bit 
instruction in turn. 

We need to add more logic to 
actually compute, handle 
branches, provide registers, 
access data memory, etc. 
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A Processor Datapath – Add mux to Allow Jump/Branch 

We add a multiplexor (mux) 
to allow us to provide a 
branch target address, i.e., 
the PC value following a 
taken branch.  
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A Processor Datapath – Add a Register File and ALU 

We also add decode logic that extracts 
information from our instruction; in this 
case, the source registers (rs1, rs2), 
destination register (rd), and the ALU 
function to be performed. 

We could now 
execute a simple 
sequence of ALU 
operations. 

 

Although, we do 
not yet have 
access to data 
memory and can’t 
branch!  
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A Processor Datapath – Loading from Data Memory 

We extend the datapath so we 
can implement an instruction that 
loads from data memory. 

The effective address could be the 
sum of the two source registers. 
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A Processor Datapath – Storing to Data Memory 

Storing to memory requires we 
provide both an address and 
the data to write. 

We have also added the ability to 
extract immediate values from the 
instructions and use them in ALU 
operations or address calculations. 
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A Processor Datapath – Supporting Branch Instructions 

Here, we assume 
a simple “branch 
if equal to zero” 
instruction. 

Our branch target address is computed 
relative to the PC. Our immediate (the 
offset) is shifted left by two (i.e., multiplied 
by 4) as all instructions are 32-bits. 
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The Fundamentals of Computer Design 
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The Fundamentals of Computer Design 

• Architecture 

• Set of specifications that allows developers to write software and firmware. These 

include the instruction set.   

• Microarchitecture 

• Logical organization of the inner structure of the computer. Sometimes also called 

the “organization” 

• Hardware or Implementation 

• The realization or the physical structure, i.e., logic design and chip packaging 
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Amdahl’s Law 

• How do we allocate our resources? 

• Amdahl’s law 

 

 

 

 

• Amdahl’s law provides a simple way of calculating the performance gain that can be 
obtained by improving an element of a computer system.  
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Amdahl’s Law 

• Diminishing returns 
• Incremental improvements in speedup gained by enhancing just one portion of our design diminish as 

improvements are made.  Eventually, we reach the limit  1/(1-Fraction_enh). 

• E.g., If Fraction_enh = 0.5 

 Speedup_enh = 2, speedup = 1.33 

 Speedup_enh = 4, speedup =  1.6 

 Speedup_enh = 10, speedup =  1.8  

 Speedup_enh = 100, speedup = 1.98 

• If we focus on a single optimization, we will see diminishing returns from investing more 

hardware. This suggests we should carefully re-evaluate where to make enhancements 

(and invest hardware) after each optimization is applied. 
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Complexity  

“In engineering, all other things being equal, simpler is always better, and sometimes much 
better,” Robert P. Colwell, from the book “The Pentium Chronicles” 

• We normally want to seek simple elegant solutions. 

• Complexity adds to design and verification costs. 

• We often want to understand what we have built and predict how it will behave. 
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Making the Common-case Fast 

• Pitfall: Isn’t every improvement we make worthwhile even if it only provides a small 
performance improvement? 

• No! Enhancements consume design, verification, and implementation resources – they 

are never free. 

• Adding an enhancement may disadvantage the common case: 
• Less time can be spent optimizing the common case. 

• Accelerating complex operations may require the cycle-time to be extended. This will slow all 

operations. 

• Resources (transistors, power) are redirected to less important (less often used) features. 
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Making the Common-case Fast 

• What tools/techniques do we have at our disposal? 

• Locality  

• Speculation 

• Prediction 

• Indirection* 

• Parallelism  

• Specialization 

* “All problems in computer science can be 
solved by another level of indirection” –  

David Wheeler (1927-2004), 
 University of Cambridge 

https://www.cl.cam.ac.uk/misc/obituaries/wheeler/
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Benchmarks 

• We use benchmarks to determine what the common cases are and to help guide the 

design process. 

• The challenge is to always carefully evaluate ideas quantitatively. This is difficult as the 

actual workload is often unknown and the design space of possible designs is extremely 

large.   

• There is also the risk of looking backward: 

“Computer architects often err by preparing for yesterday’s computations,”  
Prof. Bill Dally, Stanford and Chief Scientist Nvidia. 
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The Instruction Set Architecture 
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Instruction Set Architecture (ISA)  
• ISA is typically seen as the contract between software and hardware. 

Instruction Set Architecture (ISA) 

• Instruction Set Architecture 
– instructions 

– registers 

– memory addressing 

– addressing modes 

– etc. 

 

The computing abstraction stack 

Microarchitecture 

Architecture (ISA) 

Program Language 

Algorithm 

Problem 

Logic 

 
Transistors 

Runtime System 

(OS/VM) 

Electrons 
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The Instruction Set 

The instruction set defines what information can be passed from the compiler to the 

hardware - what hardware details are exposed to software and what is hidden. 

This raises a number of questions: 

• At what level do we draw this HW/SW dividing line or interface? 

• What other information might it be useful to pass to the hardware to help simplify it? 

• How do we ensure good code density? 
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Instruction Set Architecture 

• Execute high-level languages directly. 

• Execute complex instructions (CISC). 

• Tailor instruction set for pipelined and high-performance implementations. 

Expose the instruction pipeline to the compiler so it can optimize code and 

help simplify the hardware (RISC). 

We will explore this approach. 

• Provide additional explicit information about the dependencies between 

instructions. E.g., VLIW or  

• Specify individual data transfers, e.g., Transport Triggered Architectures 

(TTA) 

High-level 
interface 

Low-level 

interface 
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Instruction Set Architecture 

• The best instruction set is the one that yields the “best” implementation. 
• Changing the instruction set is difficult and happens infrequently . 

• The factors that influence instruction set design do change over time, e.g., applications, 

programming languages, compiler technology, transistor budgets, and the underlying 

fabrication technology. 

• We need to take care not to include “features” that will be regretted later. 
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The RISC Approach 

• The RISC approach aims to ensure that we make the common-case fast by carefully 

selecting the most useful instructions and addressing modes, etc.  

• Instructions are designed to make good use of the register file.  

• A RISC ISA is designed to ensure a simple high-performance implementation is possible. 
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Instruction Set Architecture 

Common features of RISC instruction sets: 

• Fixed length instruction encodings (or a small number of easily decoded formats) 

• Each instruction follows similar steps when being executed. 

• Access to data memory is restricted to special load/store instructions  

(a so-called load/store architecture). 
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Arm1: The First Arm Processor (1985) 

• Arm: Advanced RISC Machine (Arm) 

• The first Arm processor was designed by 

Sophie Wilson and Prof. Steve Furber. It was 

inspired by early research papers from 

Berkeley and Stanford on RISC. 

• Arm1 
• 25,000 transistors 

• 3-stage pipeline 

• 8 MHz clock 

• No on-chip cache 

Prof. Steve Furber (left)1 and Sophie Wilson (right)2 

1.By Peter Howkins, CC BY-SA 3.0  

2.By Chris Monk, CC BY-SA-2.0 

https://en.wikipedia.org/wiki/Steve_Furber/media/File:Steve_Furber.jpg
https://en.wikipedia.org/wiki/Sophie_Wilson/media/File:Sophie_Wilson.jpg
https://en.wikipedia.org/wiki/Steve_Furber/media/File:Steve_Furber.jpg
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/
https://en.wikipedia.org/wiki/Sophie_Wilson/media/File:Sophie_Wilson.jpg
https://creativecommons.org/licenses/by-sa/2.0/
https://creativecommons.org/licenses/by-sa/2.0/
https://creativecommons.org/licenses/by-sa/2.0/
https://creativecommons.org/licenses/by-sa/2.0/
https://creativecommons.org/licenses/by-sa/2.0/
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CISC 

• Not all processors use RISC ISAs; some are Complex Instruction Set Computers (CISC). 

• CISC designs have evolved since the 1970s. 

• How are modern CISC machines (e.g., x86) implemented? 
• They first convert the CISC instructions to (possibly numerous) RISC-like micro-ops!  

• Their microarchitectures are otherwise very similar to other modern high-performance processors. 
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The Armv8-A ISA 
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Case Study: The Armv8 Architecture 

Announced 2011 
2006 

2004 
2000 

Armv1 – 1985 

Armv2 – 1989 

Armv3 – 1991 

Armv4 – 1996 
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A64 Instructions 

• 64-bit pointers and registers 

• Fixed-length 32-bit instructions 

• Load/store architecture 

• Simple addressing modes 

• 32 x 64-bit general-purpose registers (including the R31 the zero/stack register) 

• The PC cannot be specified as the destination of a data processing instruction or load 

instruction. 
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AArch64 - Registers 

In the AArch64 Execution state, each register (X0-X30) is 64-bits wide. The increased width 

(vs. 32-bit) helps to reduce register pressure in most applications. 

Each 64-bit general-purpose register (X0 - X30) also has a 32-bit form (W0 - W30). 

Zero register – X31 

 

 
63       32  31    0 

Wn 

Xn 
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AArch64 – Load/Store Instructions 

LDR – load data from an address into a register. 

STR – store data from a register to an address. 

LDR X0, <addr>  ; load from <addr> into X0 

STR X0, <addr>  ; store contents of X0 to <addr> 

 

In these cases, X0 is a 64-bit register, so 64-bits will be loaded or stored from/to memory. 
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AArch64 – Addressing Modes 

Base register only: Address to load/store from is a 64-bit base register.   

LDR X0, [X1]        ; load from address held in X1 

STR X0, [X1]  ; store to address held in X1 

Base plus offset: We can add an immediate or register offset (register indexed). 

LDR X0, [X1, #8] ; load from address [X1 + 8 bytes] 

LDR X0, [X1, #-8] ; load from address [X1 – 8 bytes] 

LDR X0, [X1, X2] ; load from address [X1 + X2] 

LDR X0, [X1, X2, LSL #3] ; left-shift X2 three places 

       before adding to X1 

•          
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AArch64 – Addressing Modes 

Pre-indexed:  source register changed before load 

LDR W0, [X1, #4]!   ; equivalent to: 

     ADD X1, X1, #4 

     LDR W0, [X1] 

Post-indexed: source register changed after load 

LDR W0, [X1], #4    ; equivalent to: 

     LDR W0, [X1] 

     ADD X1, X1, #4 
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AArch64 – Data Processing 

• Values in registers can be processed 

using many different instructions: 
• Arithmetic, logic, data moves, bit field 

manipulations, shifts, conditional 

comparisons, etc. 

• These instructions always operate 

between registers, or between a register 

and an immediate. 

Example loop: 

MOV X0, #<loop count> 

Loop: 

LDR W1, [X2] 

ADD W1, W1, W3 

STR W1, [X2], #4 

SUB X0, X0, #1 

CBNZ X0, loop 
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AArch64 - Branching 

B <offset> 

PC relative branch (+/- 128MB) 

BL <offset> 

Similar to B, but also stores return address in LR (link register), likely a function call 

BR Xm 

Absolute branch to address stored in Xm 

BRL Xm 

Similar to BR, but also stores return address in LR 
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AArch64 - Branching 

RET Xm or simply RET 

- Similar to BR, likely a function return 

- Uses LR if register is omitted 

 

Subroutine calls: 

The Link Register (LR) stores the return address when a subroutine call is made. This is 

then used at the end of our subroutine to return back to the instruction following our 

subroutine call. 

 

 

 

•   
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AArch64 – Conditional Execution 

The A64 instruction set does not include the concept of widespread predicated or 

conditional execution (as earlier Arm ISAs did). 

The NZCV register holds copies of the N, Z, C, and V condition flags.  

A small set of conditional data processing instructions are provided that use the condition 

flags as an additional input. Only the conditional branch is conditionally executed. 

• Conditional branch 

• Add/subtract with carry 

• Conditional select with increment, negate, or invert 

• Conditional compare (set the condition flags) 
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AArch64 – Conditional Branches 

B.cond 

Branch to label if condition code evaluates to true, e.g.,  

 CMP X0, #5 

 B.EQ label 

CBZ/CBNZ – branch to label if operand register is zero (CBZ) or not equal to zero (CBNZ) 

TBZ/TBNZ – branch to label if specific bit in operand register is set (TBZ) or clear (TBNZ) 

 TBZ W0, #20, label ; branch if (W0[20]==#0b0) 
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AArch64- Conditional Operations 

CSEL – select between two registers based on a condition 

CSEL X7, X2, X0, EQ ; if (cond==true) X7=X2, else X7=X0 

There are also variants of this that cause the second source register to be incremented, 

inverted, or negated. 
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Backup Slides 
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The Fundamentals of Computer Design 

• Let’s assume our architecture and 
fabrication technology are fixed. 

• There are still many different 

microarchitectural design choices. 

• If we want to minimize power consumption, 

the “best” microarchitecture will depend on 
the required performance. 

O. Azizi, A. Omid & A. Mahesri, M. Aqeel & B. Lee, L. Benjamin & S. Patel, P. 

Sanjay & M. Horowitz. Energy-performance tradeoffs in processor 

architecture and circuit design: A marginal cost analysis, 2010. ACM 

SIGARCH Computer Architecture News. 38. 26-36. 

10.1145/1815961.1815967.   
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AArch64 – How Does It Differ from Older Arm ISAs? 

• Conditional execution mostly dropped 

• No free shifts in arithmetic instructions 

• Program counter not a part of integer register set 

• No load/store multiple instructions 

• Adopts a more regular instruction encoding 
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Compressed Instruction Sets 

• We could encode instructions using 16-bits to produce much smaller programs. 

• This improved code density would come at the cost of some performance. 

• The T32 (Thumb-2) instruction set (part of the Armv8 AArch32 execution state) allows 

us to mix 16- and some 32-bit instructions (without a mode change). 

This allows us to improve code density and maintain performance, e.g., in performance 

critical loops. 
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Specifying More Work in One Instruction 

• It is often beneficial to specify more work in a single instruction if this simplifies our 

hardware or enables us to make better use of it. 
• See earlier comments regarding Armv8 addressing modes. 

• Going further, we might be able to specify more work and hence fetch fewer 

instructions, or perform more work per cycle.  

• We might actually also be able to reduce fetch and control overheads in this way, e.g., 

SIMD or vector instructions. 
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Early RISC Ideas: IBM 801 (~1974-1980) 

The IBM 801’s architectural aims to: 
• Make effective use of the registers and 

ensure registers are general-purpose. 

• Avoid complex instructions where the same 

effects can be realized by simple ones. Ensure 

hard-wired control is possible. 

• Use separate instruction and data caches 

• Ensure all instructions are usable by 

compilers. 

• Provide an optimizing compiler. 

 

 

“In some sense, the 801 appears to be 
rushing in the opposite direction to the 

conventional wisdom of this field. Namely, 

everyone else is busily moving software 

into hardware and we are clearly moving 

hardware into software. Rather than 

consuming the projected cheaper, faster 

hardware, we are engaged in an effort to 

save circuits, cut path lengths and reduce 

functions at every level of the normal 

hierarchy.”  
 

From “The 801 Microcomputer – An 

Overview”, Internal IBM memo, 1976. 
 

 

 


