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Processor & Programming Models
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Basic Model

 Primary operation

 “sequential” execution of instructions

 Program execution

 CPU loads instruction and data if needed

 CPU executes instructions sequentially

 If required, stores results in register or memory
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Processor Architecture: “Accu Model”

(Example)
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Processor Internals: Microarchitecture

(Example)
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Programming Model

 Instruction set

 Interface for the programmer/compiler

 Set of “executable” instructions

 Complexity
 Instruction format

 Data format

 Available Registers

 Addressing modes

 Instruction Set Architecture (ISA)

 Defines “logical” behavior of a processor

 Can be implemented by different processor

 architectures resulting in different performance
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Types of Instructions
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Big-endian vs.      Little-endian
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Byte Order
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Inherent addressing /

Register direct addressing

Immediate addressing

Addressing Modes
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e.g.:    CLRA





X

A
R

Operand

Operand is part of the opcode
2 Byte

Operand

Data

Example: 

86h (LDA#)Op-Code

Op-Code

Adress

8Eh (LDX#)

Addressed 

by PC

Register block

ROp-Code Operand



Absolute addressing

Register indirect addressing

Addressing Modes
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Addr

Op-Code

Operand
Bsp.:

LDA addr

STA addr

MEM[Addr]

Registerblock

Operand Bsp.:
LDA @X

STA @X

XOp-Code

„X“-Reg. Indirekte Addr



Relative Addressing

Addressing Modes
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Offset

Op-Code

+PC Operand Bsp.:
BNE offset

015

PC
Fill:     Offset ≥ 0 : 00000000

Offset < 0 : 11111111
015 78

Offset
+

N

Usage:  „Position Independent Code“

Programs can be executed everywhere in memory –

because all of the addresses are relative to the 

program counter, no modifications are necessary

BRA

Offset

…

Target

Target

127 

Bytes

-128 

Bytes

Two’s complement



Addressing Modes
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Addr

Op-Code

Indirect Addr MEM[Addr]

Operand MEM[MEM[Addr]]

2 accesses to main memory!  - slow

Absolute-Indirect



Auto-Increment

Size of operand defines increment

+ 1 Byte-increment

+ 2 Word-increment

+ 4 Double word-increment

Addressing Modes
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Registerblock

Operand

Bsp.:
STA, X+

C:  *(ptr++)

ROp-Code

„R“-Reg. Indirect Addr.

+Operand-size

1

2

3



Auto-Decrement

Addressing Modes
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Registerblock

Operand Bsp.:
STA, -X

C:  *(--ptr)

ROp-Code 

„R“-Reg. Indirect Addr

-Operand size

1

2

3

Decrement first, then 

fetch operand



Based Indexed

Addressing Modes

03.04.2018Institute for Technical Informatics, DI Dr. Eugen Brenner 

Signal Processors, Pt 1

17

Operand = MEM[Basis + Offset]

Index register

Operand

Bsp.:
LDA B,X

(arrays, structures, object attributes,…)

RIOp-Code

„RB“-Reg.
Base address

RB

OffsetSign ext.

+



Comparison of different Processors
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3-Address Instruction Set (Example)
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Performance Criteria
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Performance Criteria

 Clock frequency and clocks per instruction

 clock frequency = 1/cycle time (τ)

 Number of instructions per program (IC)

 Average cycles per instruction (CPI)

 Execution time T

 T = IC × CPI × τ

 T = IC × (p + m × k) × τ

 p: number of processor cycles (decode, execute)

 m: number of memory cycles

 k: memory cycle time / processor cycle time
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Dependency of the Performance Factors
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Data Path Implementation
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Execution of Instructions

 Fetch: loading of next instruction

 PC register (“program counter”) points to instruction, memory 

access required

 Decode: decoding the instruction

 Determine also the operands

 Execute: execute the instruction (e.g. add, sub, branch, …)

 Write-back: store result

 Store results in target register or memory

 Several cycles are necessary (CPI > 1, typ. CPI ≈ 10)
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Design Space
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Design Space

 Energy consumption per instruction
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Scalar Processors 

 “Scalar Processor” = 1 functional unit / CPU

 e.g., integer unit or floating point unit

 CPI ≥ 1

 Coprocessor

 Floating-point, graphic, multimedia, … 
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Built-in FPU vs. Coprocessor
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Basic instruction cycle and Pipelining

• Basic instruction cycle
• fetch / decode / execute / write back

• Some phases may take several base-

cycles

• Pipelining
• Overlapping of different phases of the  

execution

• First result available after n base-cycles 

(n ... number of segments)

• Subsequent results available after one 

additional cycle each

• (Theoretical) maximum speedup is equal 

to the number of segments

• Used with control-flow and arithmetic 

pipelines

• Pipeline has to be flushed when 

asynchronous events take place
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Pipelining issues

 Problem with control flow

 Prerequisite: “next” instruction to execute is “next” instruction in 

memory

 Branches (conditional and unconditional), calls, etc. violate this 

prerequisite

 => pipeline needs to be flushed and re-filled

 Objective: Avoid flushing the pipeline

 Delayed branches

 Branch prediction

 Conditional execution
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Branches & Instruction Pipeline
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MOV

MOV

MOV

MOV

CMP

CMP

CMP

CMP

BNE

BNE

BNE

BNE

ADD

ADD

SUB AND

AND

AND

AND

MOV R8, [R0]

CMP R1, R2

BNE L1

ADD R3, R4, R5

SUB R4, R4, #1

…

L1: AND R9, R10, R11
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Delayed Branches 

MOV R8, [R0]

CMP R1, R2

DBNE L1

ADD R3, R4, R5

SUB R4, R4, #1

…

L1: AND R9, R10, R11

• Branch happens “delayed”

• Different OP-Code for branch instruction required
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Branch Prediction

 Predict branch target

 Observation: most branches are “easy to predict”

for (i = 0; i < 100; i++) {

sum = x[i] * c[N - i];

}

 Only if prediction fails, pipeline must be flushed 

(predicted target ≠ “real” target)

 Prediction is based on historical data

 Simple rule: “use same target as at last branch”

 Exploit statistics on previous branching behavior, i.e., if a specific 

branch target has been chosen often it is likely that the same 

target will be chosen in the future 
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Branch Prediction Models
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Branch Prediction Models

2-bit non-saturating counter

Two-level adaptive predictor
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Conditional Execution
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Other Pipelining Techniques

 Arithmetic Pipelining

 E.g., for floating-point operations

 Super Pipelining

 Additional partitioning of pipeline stages

 Clocked at higher rates

 Linear/non-linear pipelines

 Address Pipelines

 Determination of physical address
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Arithmetic Pipelining
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Issues with Pipelining 

 Interlocking

 either in Software

 or in Hardware

 Bypass

 Resolve data hazards

 Interrupt handling
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Interlocking

add  r1, r2, r3

nop

sub  r3, r4, r1

...

add  r1, r2, r3

nop

sub  r3, r4, r1

...
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Bypass

add  r1, r2, r3

sub  r3, r4, r1

...
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CISC vs. RISC
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CISC vs. RISC

 Paradigm change for ISA (mid 1980s)

 from ‘Complex Instruction Set Architectures’ (CISC)

 to ‘Reduced Instruction Set Architectures’ (RISC)

 RISC: all instructions have similar complexity

=> more feasible for pipelining

 Complexity of the ISA

 Instruction format

 Data format

 Addressing modes

 Registers 
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Features CISC 

• Has moderate number of instructions

• Combines these instructions with numerous addressing modes (up to 13, 

can access memory, combines indexed, indirect; this is the main reason for 

complexity...)

• Sometimes orthogonal instruction-set (every instruction with every 

addressing mode)

• Calculation of the EA (= effective address) of operands is solved in 

microcode, which requires several steps / cycles if external access is 

necessary

• Medium number of registers (up to 16)

• Compact code (compression effect of addressing-modes)

• Sometimes variable opcode-size for compact code

• 8-32 bit register- / accu-size

• Can also have aggregate (=complex) instructions

03.04.2018Institute for Technical Informatics, DI Dr. Eugen Brenner 

Signal Processors, Pt 1

44



Features RISC

• Higher number of (specialized) instructions

• Only some (typically 5) addressing modes, “reduced”

• “Load-Store-Architecture” – only few instructions can access memory

• No micro-code, therefore each cycle faster, but more code needed

• Evaluation of EA of operand requires several instructions

• Typically 32 registers (3 address-fields in opcode, 5 bit each)

• Typically 32 bit, but not exclusively

• Typically no variable code size

• Typically separate caches for instructions and data

• Typically larger (two times higher) code-size compared to CISC 

• Specialized architectures  also might have lower number of instructions
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Comparison RISC - CISC 

• Naming grown historically

• Reduced refers mainly to number of addressing modes

• Each cycle in RISC executes faster (10-20%)

• In average RISC requires double code-size

• RISC good with large caches and short programs (loops)

• Originally replacement of “microcode” against “cache”

• Small controllers still resemble original CISC

• CISC good with large opcodes and/or large data

• High-performance CISC:

• Has separate caches

• Has separate buses

• Does pre-decode and pre-fetch of operands

• Internally uses RISC-architecture
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post-RISC Era 

 Superscalar execution

 Out-of-order execution

 Branch prediction

 Additional instructions

 SIMD operations

 . . .

After all, whether RISC or CISC, modern processors use this 

techniques. Features are included in today’s processors not 

because it’s part of a design philosophy called “RISC”, but because 

it enhances performance 
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Superscalar Processors
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Superscalar Processors

• Multiple functional units

• Multiple (instruction-) 

Pipelines

• Instructions can be 

executed on multiple 

functional units in parallel 

=> CPI < 1 possible

• On n functional units 

(n pipelines), up to n 

instructions per clock can 

be executed
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Superscalar Processors

 Processor “decides” which instructions can be executed in 

parallel

 Implemented in hardware, dynamically scheduled

 Data dependencies among instructions must be considered!

 All current “desktop CPUs” are superscalar processors
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Very Long Instruction Word Processors (VLIW)
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VLIW Processors

 Multiple functional units

 Pipelining

 Common register file

 Static assignment of instructions to functional units 

(at compile time)
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VLIW Processors

 Very long instruction format (e.g., 1024 bit)

 Increased program memory

 Can be reduced for idle units

 Simpler hardware architecture 

(compared to superscalar proc.)

 Performance strongly dependent on compiler

 Explicit parallelism
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Detour: Programming Model / Program Execution
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A Few Assembler Lines

DIV  A, Y, Z ; A = Y / Z

SUB  B, C, A ; B = C - A

MUL  C, W, X ; C = W * X

ADD  A, U, V ; A = U + V

A = ? B = ? C = ?

 Semantic of a program is defined by the operations and data 

dependencies between them.

 Read-after-write (RAW)

 Write-after-read (WAR)

 Write-after-write (WAW)
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Out-of-Order Execution
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Out-of-Order Execution

 Properties

 Until now: rigid sequential execution order of instructions

 External memory access can cause long delays/stalls in the 

pipeline

 Principle

 Instruction fetch/decode: in-order, potentially multiple instructions

 Pool of instructions

 Out-of-order execution (considering data dependencies!)

 In-order write-back
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Out-of-Order Execution Techniques

 Parallel execution

 Scoreboard

 Additional bits for every register:

indicate validity, read-tag, preference bit (r/w), . . .

 Reservation station (Tomasulo Algorithm)

 Working registers & reservation registers

 In-order write-back

 Register renaming, re-order buffer

 History buffer
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Tomasulo Algorithm
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Register Renaming & Re-order Buffer
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Out-of-order Execution

 Issues

 Data dependencies

 Different number of pipeline stages

 Consistent “observable” processor state

 Interrupt & Exception handling
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Memory System
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Memory System

 Memory parameters

 Access time

 Storage size

 Cost per byte

 Transmission bandwidth

 Transmission unit

 Persistency

 Hierarchical organization
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Memory Hierarchy
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Memory Hierarchy: Inclusion

03.04.2018Institute for Technical Informatics, DI Dr. Eugen Brenner 

Signal Processors, Pt 1

65



Cache

 Cache is a small high-speed memory

 Cache memory helps to reduce the time for accessing data

CPU  Main memory

 Reduce access time based on “locality of reference”
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Memory: Coherence

 Copies of same data must remain consistent on higher layers

 Example: Modifications of cached data

=> update modified data on higher layers

 Cache strategies

 Write-through (WT): immediate update

 Write-back (WB): delayed update

 Cache coherency important in multi-core systems
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Cache & Locality

 Programs (typ.) spend 90% of the time in 10% of the code

 Temporal locality

 LRU algorithm, working sets, loops, stacks

 Spatial locality

 Used memory regions are in close proximity

 Arrays, structs, . . .

 Sequential locality

 Instructions are executed sequentially (except branches)
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Cache Cycles

 CPU performs read or write

 Cache intercepts the bus transaction & decreases response time

 Cache Hit: When ever the cache contains the information requested

 Cache Miss: When ever the cache does not contain the information 

requested

 Cache Consistency: Cache always reflects what is in main memory

 Snoop: Cache is watching the address lines for transactions

 Snarf: When a cache takes the information from the data lines

 Dirty data: When data is modified within cache but not modified in 

main memory

 Stale data: When data is modified within main memory but not 

modified in cache
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Cache Architecture

 Read architectures: “Look Aside” or “Look Through”

 Write policies: “Write-Back” or “Write-Through”

 Look Aside: sits in parallel with main memory

 Both, main memory and cache see a bus cycle at the same time

 Look aside caches are less complex and less expensive

 The architecture provides better response to cache miss because 

both, DRAM and cache, see the bus cycle at the same time

 Main drawback: processor can not access cache while other bus 

master is accessing main memory.
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Cache: Look Aside Architecture
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Cache Architecture

 Look Through: cache sits between processor and main memory

 The cache sees the processor bus cycle before allowing it to pass 

on to the system bus

 This architecture allows the processor to read out of cache while 

another bus master is accessing the main memory

 This cache architecture is more complex and more costly

 Another downside is that memory access on cache misses are 

slower because main memory is not accessed until after the 

cache is checked.
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Cache: Look Through Architecture
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Cache Architecture: Write Policy

 Write-back policy: Cache acts like a buffer

 Write cycle updates the data in the cache

 Update of main memory is performed later (cp. “dirty data”)

 Might reduce main memory updates, but increases complexity

 Write-through policy: The processor writes through the cache to 

main memory

 Write cycle updates both cache and memory

 Access to main memory at each write (no “dirty data”)

 Simpler but less effective
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Cache Components

 SRAM: Static Random Access Memory (SRAM) is the memory 

block that holds the data (== cache size)

 Tag RAM: stores the address of the data that is currently stored 

in the SRAM

 Cache controller: implements the cache policies

 Updates SRAM and TRAM

 Read/write policy

03.04.2018Institute for Technical Informatics, DI Dr. Eugen Brenner 

Signal Processors, Pt 1

75



Cache Organization

 Main memory is divided into 

equal pieces (Cache Page)

 Size of a page is dependent on 

the size of the cache

 Cache page is broken into 

smaller pieces (Cache Line)

 Cache line is determined by 

processor and cache design
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Fully-Associative Cache

 Any line in main memory is allowed to store in any location in 

the cache

 Disadvantage: complexity of implementation

 TRAM access time is critical for overall performance
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Direct-Mapped Cache
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 Main memory is divided into cache pages. Size of each page is 

equal to the size of the cache

 Unique cache line for line i of all pages

 It is the least complex of all three caching schemes



Set-Associative Cache

 Cache SRAM is divided into equal sections called cache ways

 Cache page is equal to the size of the cache way

 Each cache way is treated like a small direct mapped cache

 n lines of memory may be stored at any time

 Helps to reduce trashing (loading/replacing the same line)
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Direct Memory Access
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Data Transfer Mechanisms

 Polling

 Processor is dedicated to acquire data

 Not efficient, processor cannot do other tasks

 Interrupts

 Processor is interrupted when incoming data is 

ready & acquires data

 Direct Memory Access

 Dedicated unit for data acquisition

 Reads incoming data and stores the data in system memory

 Processor can work on other tasks in parallel
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Direct Memory Access

 External peripherals communicate with 

DMA controller for data transfer

 DMA controller manages several channels for 

data transfer and DMA requests

 Channels must be enabled by the processor for 

DMA controller to respond to DMA requests
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DMA Data Flow
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DMA Transfer Types

 Fly-by DMA Transfer

 Fastest data transfer, single cycle or single address transfer

 DMA controller supplies the address, device reads or writes the 

data

 Memory-to-memory transfers are not possible!

 Fetch-and-deposit DMA transfer

 Dual-cycle or dual address transfer

 1st cycle: Data is read into a temporary register of DMA controller

 2nd cycle: Data is written to memory or other device

 Used for different bus widths
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DMA Applications

 Network cards

 Intra-chip data transfer (multi-core processors)

 Graphic cards

 Disk drive controllers

 Sound cards

 . . .
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Conclusion
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