
u www.iti.tugraz.at

03.04.2018

Institute for Technical Informatics, DI Dr. Eugen Brenner

Signal Processors, 448.032

Signal Processors

Lecture Notes, Pt 1

1

Chapter Overview

1. Microprocessor Fundamentals

 Processor & Programming Models

 Performance Criteria

 Data Path Implementation

 CISC vs. RISC

 Superscalar Processors

 Very Long Instruction Word Processors (VLIW)

 Detour: Programming Model / Program Execution

 Out-of-Order Execution

 Memory System

 Direct Memory Access

 Conclusion

03.04.2018Institute for Technical Informatics, DI Dr. Eugen Brenner

Signal Processors, Pt 1

2

Processor & Programming Models

03.04.2018Institute for Technical Informatics, DI Dr. Eugen Brenner

Signal Processors, Pt 1

3

Basic Model

 Primary operation

 “sequential” execution of instructions

 Program execution

 CPU loads instruction and data if needed

 CPU executes instructions sequentially

 If required, stores results in register or memory

03.04.2018Institute for Technical Informatics, DI Dr. Eugen Brenner

Signal Processors, Pt 1

4

CPU Memory

Instructions

Data

Processor Architecture: “Accu Model”

(Example)

03.04.2018Institute for Technical Informatics, DI Dr. Eugen Brenner

Signal Processors, Pt 1

5

Processor Internals: Microarchitecture

(Example)

03.04.2018Institute for Technical Informatics, DI Dr. Eugen Brenner

Signal Processors, Pt 1

6

Programming Model

 Instruction set

 Interface for the programmer/compiler

 Set of “executable” instructions

 Complexity
 Instruction format

 Data format

 Available Registers

 Addressing modes

 Instruction Set Architecture (ISA)

 Defines “logical” behavior of a processor

 Can be implemented by different processor

 architectures resulting in different performance

03.04.2018Institute for Technical Informatics, DI Dr. Eugen Brenner

Signal Processors, Pt 1

7

Types of Instructions

03.04.2018Institute for Technical Informatics, DI Dr. Eugen Brenner

Signal Processors, Pt 1

8

Big-endian vs. Little-endian

X
015

0 1

78

015

0 1

78

015

1 0

78

X

XL0/1

Füllen: X ≥ 0 : 00000000

X < 0 : 11111111

8-bit
16-bit num.

015

1 0

78

XL0/1 fill

X
015

0 1

78

015

0 1

78

XL

The same bit ! (in 16-bit-Register)

015

1 0

78

X

015

1 0

78

XL

Sign-
Test

of 8-bit and
16-bit numbers

(N-Flag)
XH

N

N

N

N XH

Stringcomparison
(sorting!)

Readability vs.
Memory dumps

Blocktransfer

015

0 1

2 3

4 5

6

S T

R I

N G

78 015

01

23

45

6

ST

RI

NG

78

03.04.2018Institute for Technical Informatics, DI Dr. Eugen Brenner

Signal Processors, Pt 1

9

Byte Order

03.04.2018Institute for Technical Informatics, DI Dr. Eugen Brenner

Signal Processors, Pt 1

10

Inherent addressing /

Register direct addressing

Immediate addressing

Addressing Modes

03.04.2018Institute for Technical Informatics, DI Dr. Eugen Brenner

Signal Processors, Pt 1

11

e.g.: CLRA

X

A
R

Operand

Operand is part of the opcode
2 Byte

Operand

Data

Example:

86h (LDA#)Op-Code

Op-Code

Adress

8Eh (LDX#)

Addressed

by PC

Register block

ROp-Code Operand

Absolute addressing

Register indirect addressing

Addressing Modes

03.04.2018Institute for Technical Informatics, DI Dr. Eugen Brenner

Signal Processors, Pt 1

12

Addr

Op-Code

Operand
Bsp.:

LDA addr

STA addr

MEM[Addr]

Registerblock

Operand Bsp.:
LDA @X

STA @X

XOp-Code

„X“-Reg. Indirekte Addr

Relative Addressing

Addressing Modes

03.04.2018Institute for Technical Informatics, DI Dr. Eugen Brenner

Signal Processors, Pt 1

13

Offset

Op-Code

+PC Operand Bsp.:
BNE offset

015

PC
Fill: Offset ≥ 0 : 00000000

Offset < 0 : 11111111
015 78

Offset
+

N

Usage: „Position Independent Code“

Programs can be executed everywhere in memory –

because all of the addresses are relative to the

program counter, no modifications are necessary

BRA

Offset

…

Target

Target

127

Bytes

-128

Bytes

Two’s complement

Addressing Modes

03.04.2018Institute for Technical Informatics, DI Dr. Eugen Brenner

Signal Processors, Pt 1

14

Addr

Op-Code

Indirect Addr MEM[Addr]

Operand MEM[MEM[Addr]]

2 accesses to main memory! - slow

Absolute-Indirect

Auto-Increment

Size of operand defines increment

+ 1 Byte-increment

+ 2 Word-increment

+ 4 Double word-increment

Addressing Modes

03.04.2018Institute for Technical Informatics, DI Dr. Eugen Brenner

Signal Processors, Pt 1

15

Registerblock

Operand

Bsp.:
STA, X+

C: *(ptr++)

ROp-Code

„R“-Reg. Indirect Addr.

+Operand-size

1

2

3

Auto-Decrement

Addressing Modes

03.04.2018Institute for Technical Informatics, DI Dr. Eugen Brenner

Signal Processors, Pt 1

16

Registerblock

Operand Bsp.:
STA, -X

C: *(--ptr)

ROp-Code

„R“-Reg. Indirect Addr

-Operand size

1

2

3

Decrement first, then

fetch operand

Based Indexed

Addressing Modes

03.04.2018Institute for Technical Informatics, DI Dr. Eugen Brenner

Signal Processors, Pt 1

17

Operand = MEM[Basis + Offset]

Index register

Operand

Bsp.:
LDA B,X

(arrays, structures, object attributes,…)

RIOp-Code

„RB“-Reg.
Base address

RB

OffsetSign ext.

+

Comparison of different Processors

03.04.2018Institute for Technical Informatics, DI Dr. Eugen Brenner

Signal Processors, Pt 1

18

3-Address Instruction Set (Example)

03.04.2018Institute for Technical Informatics, DI Dr. Eugen Brenner

Signal Processors, Pt 1

19

Performance Criteria

03.04.2018Institute for Technical Informatics, DI Dr. Eugen Brenner

Signal Processors, Pt 1

20

Performance Criteria

 Clock frequency and clocks per instruction

 clock frequency = 1/cycle time (τ)

 Number of instructions per program (IC)

 Average cycles per instruction (CPI)

 Execution time T

 T = IC × CPI × τ

 T = IC × (p + m × k) × τ

 p: number of processor cycles (decode, execute)

 m: number of memory cycles

 k: memory cycle time / processor cycle time

03.04.2018Institute for Technical Informatics, DI Dr. Eugen Brenner

Signal Processors, Pt 1

21

Dependency of the Performance Factors

03.04.2018Institute for Technical Informatics, DI Dr. Eugen Brenner

Signal Processors, Pt 1

22

Data Path Implementation

03.04.2018Institute for Technical Informatics, DI Dr. Eugen Brenner

Signal Processors, Pt 1

23

Execution of Instructions

 Fetch: loading of next instruction

 PC register (“program counter”) points to instruction, memory

access required

 Decode: decoding the instruction

 Determine also the operands

 Execute: execute the instruction (e.g. add, sub, branch, …)

 Write-back: store result

 Store results in target register or memory

 Several cycles are necessary (CPI > 1, typ. CPI ≈ 10)

03.04.2018Institute for Technical Informatics, DI Dr. Eugen Brenner

Signal Processors, Pt 1

24

Design Space

03.04.2018Institute for Technical Informatics, DI Dr. Eugen Brenner

Signal Processors, Pt 1

25

Design Space

 Energy consumption per instruction

03.04.2018Institute for Technical Informatics, DI Dr. Eugen Brenner

Signal Processors, Pt 1

26

Scalar Processors

 “Scalar Processor” = 1 functional unit / CPU

 e.g., integer unit or floating point unit

 CPI ≥ 1

 Coprocessor

 Floating-point, graphic, multimedia, …

03.04.2018Institute for Technical Informatics, DI Dr. Eugen Brenner

Signal Processors, Pt 1

27

Built-in FPU vs. Coprocessor

03.04.2018Institute for Technical Informatics, DI Dr. Eugen Brenner

Signal Processors, Pt 1

28

Basic instruction cycle and Pipelining

• Basic instruction cycle
• fetch / decode / execute / write back

• Some phases may take several base-

cycles

• Pipelining
• Overlapping of different phases of the

execution

• First result available after n base-cycles

(n ... number of segments)

• Subsequent results available after one

additional cycle each

• (Theoretical) maximum speedup is equal

to the number of segments

• Used with control-flow and arithmetic

pipelines

• Pipeline has to be flushed when

asynchronous events take place

03.04.2018Institute for Technical Informatics, DI Dr. Eugen Brenner

Signal Processors, Pt 1

29

N
u
m

b
e
r

o
f
S

e
g
m

e
n
ts

Time in Base Cycles

N
u
m

b
e
r

o
f
S

e
g
m

e
n
ts

Time in Base Cycles

 ifetch Decode Exec. Writebk

Pipelining issues

 Problem with control flow

 Prerequisite: “next” instruction to execute is “next” instruction in

memory

 Branches (conditional and unconditional), calls, etc. violate this

prerequisite

 => pipeline needs to be flushed and re-filled

 Objective: Avoid flushing the pipeline

 Delayed branches

 Branch prediction

 Conditional execution

03.04.2018Institute for Technical Informatics, DI Dr. Eugen Brenner

Signal Processors, Pt 1

30

Branches & Instruction Pipeline

F

D

E

W

MOV

MOV

MOV

MOV

CMP

CMP

CMP

CMP

BNE

BNE

BNE

BNE

ADD

ADD

SUB AND

AND

AND

AND

MOV R8, [R0]

CMP R1, R2

BNE L1

ADD R3, R4, R5

SUB R4, R4, #1

…

L1: AND R9, R10, R11

03.04.2018Institute for Technical Informatics, DI Dr. Eugen Brenner

Signal Processors, Pt 1

31

Delayed Branches

MOV R8, [R0]

CMP R1, R2

DBNE L1

ADD R3, R4, R5

SUB R4, R4, #1

…

L1: AND R9, R10, R11

• Branch happens “delayed”

• Different OP-Code for branch instruction required

03.04.2018Institute for Technical Informatics, DI Dr. Eugen Brenner

Signal Processors, Pt 1

32

F

D

E

W

MOV

MOV

MOV

MOV

CMP

CMP

CMP

CMP

DBNE ADD

ADD

SUB AND

AND

AND

AND

DBNE

DBNE

DBNE

ADD

ADD

SUB

SUB

SUB

Branch Prediction

 Predict branch target

 Observation: most branches are “easy to predict”

for (i = 0; i < 100; i++) {

sum = x[i] * c[N - i];

}

 Only if prediction fails, pipeline must be flushed

(predicted target ≠ “real” target)

 Prediction is based on historical data

 Simple rule: “use same target as at last branch”

 Exploit statistics on previous branching behavior, i.e., if a specific

branch target has been chosen often it is likely that the same

target will be chosen in the future

03.04.2018Institute for Technical Informatics, DI Dr. Eugen Brenner

Signal Processors, Pt 1

33

Branch Prediction Models

03.04.2018Institute for Technical Informatics, DI Dr. Eugen Brenner

Signal Processors, Pt 1

34

taken

will branch

not taken

will not branch

t

n

t

n

1-bit saturating counter (last outcome of the branch)

2-bit saturating counter, bimodal predictor – state machine

strong taken

will branch

weak not taken

will not branch

t

t

weak taken

will branch

strong not taken

will not branch

n

n

t

n n

t

Branch Prediction Models

2-bit non-saturating counter

Two-level adaptive predictor

03.04.2018Institute for Technical Informatics, DI Dr. Eugen Brenner

Signal Processors, Pt 1

35

strong taken

will branch

weak not taken

will not branch

t

t

weak taken

will branch

strong not taken

will not branch

n

n

t

n n

t

Conditional Execution

03.04.2018Institute for Technical Informatics, DI Dr. Eugen Brenner

Signal Processors, Pt 1

36

Other Pipelining Techniques

 Arithmetic Pipelining

 E.g., for floating-point operations

 Super Pipelining

 Additional partitioning of pipeline stages

 Clocked at higher rates

 Linear/non-linear pipelines

 Address Pipelines

 Determination of physical address

03.04.2018Institute for Technical Informatics, DI Dr. Eugen Brenner

Signal Processors, Pt 1

37

Arithmetic Pipelining

03.04.2018Institute for Technical Informatics, DI Dr. Eugen Brenner

Signal Processors, Pt 1

38

Issues with Pipelining

 Interlocking

 either in Software

 or in Hardware

 Bypass

 Resolve data hazards

 Interrupt handling

03.04.2018Institute for Technical Informatics, DI Dr. Eugen Brenner

Signal Processors, Pt 1

39

Interlocking

add r1, r2, r3

nop

sub r3, r4, r1

...

add r1, r2, r3

nop

sub r3, r4, r1

...

03.04.2018Institute for Technical Informatics, DI Dr. Eugen Brenner

Signal Processors, Pt 1

40

F

D

E

W

ADD

ADD

ADD

ADD

SUB

SUB

SUB

SUB

...

F

D

E

W

ADD

ADD

ADD

ADD

SUB

SUB

SUB

SUB

...

...

Bypass

add r1, r2, r3

sub r3, r4, r1

...

03.04.2018Institute for Technical Informatics, DI Dr. Eugen Brenner

Signal Processors, Pt 1

41

CISC vs. RISC

03.04.2018Institute for Technical Informatics, DI Dr. Eugen Brenner

Signal Processors, Pt 1

42

CISC vs. RISC

 Paradigm change for ISA (mid 1980s)

 from ‘Complex Instruction Set Architectures’ (CISC)

 to ‘Reduced Instruction Set Architectures’ (RISC)

 RISC: all instructions have similar complexity

=> more feasible for pipelining

 Complexity of the ISA

 Instruction format

 Data format

 Addressing modes

 Registers

03.04.2018Institute for Technical Informatics, DI Dr. Eugen Brenner

Signal Processors, Pt 1

43

Features CISC

• Has moderate number of instructions

• Combines these instructions with numerous addressing modes (up to 13,

can access memory, combines indexed, indirect; this is the main reason for

complexity...)

• Sometimes orthogonal instruction-set (every instruction with every

addressing mode)

• Calculation of the EA (= effective address) of operands is solved in

microcode, which requires several steps / cycles if external access is

necessary

• Medium number of registers (up to 16)

• Compact code (compression effect of addressing-modes)

• Sometimes variable opcode-size for compact code

• 8-32 bit register- / accu-size

• Can also have aggregate (=complex) instructions

03.04.2018Institute for Technical Informatics, DI Dr. Eugen Brenner

Signal Processors, Pt 1

44

Features RISC

• Higher number of (specialized) instructions

• Only some (typically 5) addressing modes, “reduced”

• “Load-Store-Architecture” – only few instructions can access memory

• No micro-code, therefore each cycle faster, but more code needed

• Evaluation of EA of operand requires several instructions

• Typically 32 registers (3 address-fields in opcode, 5 bit each)

• Typically 32 bit, but not exclusively

• Typically no variable code size

• Typically separate caches for instructions and data

• Typically larger (two times higher) code-size compared to CISC

• Specialized architectures also might have lower number of instructions

03.04.2018Institute for Technical Informatics, DI Dr. Eugen Brenner

Signal Processors, Pt 1

45

Comparison RISC - CISC

• Naming grown historically

• Reduced refers mainly to number of addressing modes

• Each cycle in RISC executes faster (10-20%)

• In average RISC requires double code-size

• RISC good with large caches and short programs (loops)

• Originally replacement of “microcode” against “cache”

• Small controllers still resemble original CISC

• CISC good with large opcodes and/or large data

• High-performance CISC:

• Has separate caches

• Has separate buses

• Does pre-decode and pre-fetch of operands

• Internally uses RISC-architecture

03.04.2018Institute for Technical Informatics, DI Dr. Eugen Brenner

Signal Processors, Pt 1

46

post-RISC Era

 Superscalar execution

 Out-of-order execution

 Branch prediction

 Additional instructions

 SIMD operations

 . . .

After all, whether RISC or CISC, modern processors use this

techniques. Features are included in today’s processors not

because it’s part of a design philosophy called “RISC”, but because

it enhances performance

03.04.2018Institute for Technical Informatics, DI Dr. Eugen Brenner

Signal Processors, Pt 1

47

Superscalar Processors

03.04.2018Institute for Technical Informatics, DI Dr. Eugen Brenner

Signal Processors, Pt 1

48

Superscalar Processors

• Multiple functional units

• Multiple (instruction-)

Pipelines

• Instructions can be

executed on multiple

functional units in parallel

=> CPI < 1 possible

• On n functional units

(n pipelines), up to n

instructions per clock can

be executed

03.04.2018Institute for Technical Informatics, DI Dr. Eugen Brenner

Signal Processors, Pt 1

49

N
u
m

b
e

r
o

f
S

e
g

m
e

n
ts

Time in Base Cycles

 i
fe

tc
h

D

e
c
o
d

e

E
x
e

c
.

W

ri
te

b
k

Superscalar Processors

 Processor “decides” which instructions can be executed in

parallel

 Implemented in hardware, dynamically scheduled

 Data dependencies among instructions must be considered!

 All current “desktop CPUs” are superscalar processors

03.04.2018Institute for Technical Informatics, DI Dr. Eugen Brenner

Signal Processors, Pt 1

50

Very Long Instruction Word Processors (VLIW)

03.04.2018Institute for Technical Informatics, DI Dr. Eugen Brenner

Signal Processors, Pt 1

51

VLIW Processors

 Multiple functional units

 Pipelining

 Common register file

 Static assignment of instructions to functional units

(at compile time)

03.04.2018Institute for Technical Informatics, DI Dr. Eugen Brenner

Signal Processors, Pt 1

52

N
u
m

b
e

r
o

f
S

e
g

m
e

n
ts

Time in Base Cycles

VLIW Processors

 Very long instruction format (e.g., 1024 bit)

 Increased program memory

 Can be reduced for idle units

 Simpler hardware architecture

(compared to superscalar proc.)

 Performance strongly dependent on compiler

 Explicit parallelism

03.04.2018Institute for Technical Informatics, DI Dr. Eugen Brenner

Signal Processors, Pt 1

53

Detour: Programming Model / Program Execution

03.04.2018Institute for Technical Informatics, DI Dr. Eugen Brenner

Signal Processors, Pt 1

54

A Few Assembler Lines

DIV A, Y, Z ; A = Y / Z

SUB B, C, A ; B = C - A

MUL C, W, X ; C = W * X

ADD A, U, V ; A = U + V

A = ? B = ? C = ?

 Semantic of a program is defined by the operations and data

dependencies between them.

 Read-after-write (RAW)

 Write-after-read (WAR)

 Write-after-write (WAW)

03.04.2018Institute for Technical Informatics, DI Dr. Eugen Brenner

Signal Processors, Pt 1

55

C=10

U=7

V=5

W=3

X=5

Y=24

Z=6

RAW

WAR

WAW

Out-of-Order Execution

03.04.2018Institute for Technical Informatics, DI Dr. Eugen Brenner

Signal Processors, Pt 1

56

Out-of-Order Execution

 Properties

 Until now: rigid sequential execution order of instructions

 External memory access can cause long delays/stalls in the

pipeline

 Principle

 Instruction fetch/decode: in-order, potentially multiple instructions

 Pool of instructions

 Out-of-order execution (considering data dependencies!)

 In-order write-back

03.04.2018Institute for Technical Informatics, DI Dr. Eugen Brenner

Signal Processors, Pt 1

57

Out-of-Order Execution Techniques

 Parallel execution

 Scoreboard

 Additional bits for every register:

indicate validity, read-tag, preference bit (r/w), . . .

 Reservation station (Tomasulo Algorithm)

 Working registers & reservation registers

 In-order write-back

 Register renaming, re-order buffer

 History buffer

03.04.2018Institute for Technical Informatics, DI Dr. Eugen Brenner

Signal Processors, Pt 1

58

Tomasulo Algorithm

03.04.2018Institute for Technical Informatics, DI Dr. Eugen Brenner

Signal Processors, Pt 1

59

Register Renaming & Re-order Buffer

03.04.2018Institute for Technical Informatics, DI Dr. Eugen Brenner

Signal Processors, Pt 1

60

Out-of-order Execution

 Issues

 Data dependencies

 Different number of pipeline stages

 Consistent “observable” processor state

 Interrupt & Exception handling

03.04.2018Institute for Technical Informatics, DI Dr. Eugen Brenner

Signal Processors, Pt 1

61

Memory System

03.04.2018Institute for Technical Informatics, DI Dr. Eugen Brenner

Signal Processors, Pt 1

62

Memory System

 Memory parameters

 Access time

 Storage size

 Cost per byte

 Transmission bandwidth

 Transmission unit

 Persistency

 Hierarchical organization

03.04.2018Institute for Technical Informatics, DI Dr. Eugen Brenner

Signal Processors, Pt 1

63

Memory Hierarchy

03.04.2018Institute for Technical Informatics, DI Dr. Eugen Brenner

Signal Processors, Pt 1

64

Memory Hierarchy: Inclusion

03.04.2018Institute for Technical Informatics, DI Dr. Eugen Brenner

Signal Processors, Pt 1

65

Cache

 Cache is a small high-speed memory

 Cache memory helps to reduce the time for accessing data

CPU Main memory

 Reduce access time based on “locality of reference”

03.04.2018Institute for Technical Informatics, DI Dr. Eugen Brenner

Signal Processors, Pt 1

66

Memory: Coherence

 Copies of same data must remain consistent on higher layers

 Example: Modifications of cached data

=> update modified data on higher layers

 Cache strategies

 Write-through (WT): immediate update

 Write-back (WB): delayed update

 Cache coherency important in multi-core systems

03.04.2018Institute for Technical Informatics, DI Dr. Eugen Brenner

Signal Processors, Pt 1

67

Cache & Locality

 Programs (typ.) spend 90% of the time in 10% of the code

 Temporal locality

 LRU algorithm, working sets, loops, stacks

 Spatial locality

 Used memory regions are in close proximity

 Arrays, structs, . . .

 Sequential locality

 Instructions are executed sequentially (except branches)

03.04.2018Institute for Technical Informatics, DI Dr. Eugen Brenner

Signal Processors, Pt 1

68

Cache Cycles

 CPU performs read or write

 Cache intercepts the bus transaction & decreases response time

 Cache Hit: When ever the cache contains the information requested

 Cache Miss: When ever the cache does not contain the information

requested

 Cache Consistency: Cache always reflects what is in main memory

 Snoop: Cache is watching the address lines for transactions

 Snarf: When a cache takes the information from the data lines

 Dirty data: When data is modified within cache but not modified in

main memory

 Stale data: When data is modified within main memory but not

modified in cache

03.04.2018Institute for Technical Informatics, DI Dr. Eugen Brenner

Signal Processors, Pt 1

69

Cache Architecture

 Read architectures: “Look Aside” or “Look Through”

 Write policies: “Write-Back” or “Write-Through”

 Look Aside: sits in parallel with main memory

 Both, main memory and cache see a bus cycle at the same time

 Look aside caches are less complex and less expensive

 The architecture provides better response to cache miss because

both, DRAM and cache, see the bus cycle at the same time

 Main drawback: processor can not access cache while other bus

master is accessing main memory.

03.04.2018Institute for Technical Informatics, DI Dr. Eugen Brenner

Signal Processors, Pt 1

70

Cache: Look Aside Architecture

03.04.2018Institute for Technical Informatics, DI Dr. Eugen Brenner

Signal Processors, Pt 1

71

Cache Architecture

 Look Through: cache sits between processor and main memory

 The cache sees the processor bus cycle before allowing it to pass

on to the system bus

 This architecture allows the processor to read out of cache while

another bus master is accessing the main memory

 This cache architecture is more complex and more costly

 Another downside is that memory access on cache misses are

slower because main memory is not accessed until after the

cache is checked.

03.04.2018Institute for Technical Informatics, DI Dr. Eugen Brenner

Signal Processors, Pt 1

72

Cache: Look Through Architecture

03.04.2018Institute for Technical Informatics, DI Dr. Eugen Brenner

Signal Processors, Pt 1

73

Cache Architecture: Write Policy

 Write-back policy: Cache acts like a buffer

 Write cycle updates the data in the cache

 Update of main memory is performed later (cp. “dirty data”)

 Might reduce main memory updates, but increases complexity

 Write-through policy: The processor writes through the cache to

main memory

 Write cycle updates both cache and memory

 Access to main memory at each write (no “dirty data”)

 Simpler but less effective

03.04.2018Institute for Technical Informatics, DI Dr. Eugen Brenner

Signal Processors, Pt 1

74

Cache Components

 SRAM: Static Random Access Memory (SRAM) is the memory

block that holds the data (== cache size)

 Tag RAM: stores the address of the data that is currently stored

in the SRAM

 Cache controller: implements the cache policies

 Updates SRAM and TRAM

 Read/write policy

03.04.2018Institute for Technical Informatics, DI Dr. Eugen Brenner

Signal Processors, Pt 1

75

Cache Organization

 Main memory is divided into

equal pieces (Cache Page)

 Size of a page is dependent on

the size of the cache

 Cache page is broken into

smaller pieces (Cache Line)

 Cache line is determined by

processor and cache design

03.04.2018Institute for Technical Informatics, DI Dr. Eugen Brenner

Signal Processors, Pt 1

76

Fully-Associative Cache

 Any line in main memory is allowed to store in any location in

the cache

 Disadvantage: complexity of implementation

 TRAM access time is critical for overall performance

03.04.2018Institute for Technical Informatics, DI Dr. Eugen Brenner

Signal Processors, Pt 1

77

Direct-Mapped Cache

03.04.2018Institute for Technical Informatics, DI Dr. Eugen Brenner

Signal Processors, Pt 1

78

 Main memory is divided into cache pages. Size of each page is

equal to the size of the cache

 Unique cache line for line i of all pages

 It is the least complex of all three caching schemes

Set-Associative Cache

 Cache SRAM is divided into equal sections called cache ways

 Cache page is equal to the size of the cache way

 Each cache way is treated like a small direct mapped cache

 n lines of memory may be stored at any time

 Helps to reduce trashing (loading/replacing the same line)

03.04.2018Institute for Technical Informatics, DI Dr. Eugen Brenner

Signal Processors, Pt 1

79

Direct Memory Access

03.04.2018Institute for Technical Informatics, DI Dr. Eugen Brenner

Signal Processors, Pt 1

80

Data Transfer Mechanisms

 Polling

 Processor is dedicated to acquire data

 Not efficient, processor cannot do other tasks

 Interrupts

 Processor is interrupted when incoming data is

ready & acquires data

 Direct Memory Access

 Dedicated unit for data acquisition

 Reads incoming data and stores the data in system memory

 Processor can work on other tasks in parallel

03.04.2018Institute for Technical Informatics, DI Dr. Eugen Brenner

Signal Processors, Pt 1

81

Direct Memory Access

 External peripherals communicate with

DMA controller for data transfer

 DMA controller manages several channels for

data transfer and DMA requests

 Channels must be enabled by the processor for

DMA controller to respond to DMA requests

03.04.2018Institute for Technical Informatics, DI Dr. Eugen Brenner

Signal Processors, Pt 1

82

DMA Data Flow

03.04.2018Institute for Technical Informatics, DI Dr. Eugen Brenner

Signal Processors, Pt 1

83

DMA Transfer Types

 Fly-by DMA Transfer

 Fastest data transfer, single cycle or single address transfer

 DMA controller supplies the address, device reads or writes the

data

 Memory-to-memory transfers are not possible!

 Fetch-and-deposit DMA transfer

 Dual-cycle or dual address transfer

 1st cycle: Data is read into a temporary register of DMA controller

 2nd cycle: Data is written to memory or other device

 Used for different bus widths

03.04.2018Institute for Technical Informatics, DI Dr. Eugen Brenner

Signal Processors, Pt 1

84

DMA Applications

 Network cards

 Intra-chip data transfer (multi-core processors)

 Graphic cards

 Disk drive controllers

 Sound cards

 . . .

03.04.2018Institute for Technical Informatics, DI Dr. Eugen Brenner

Signal Processors, Pt 1

85

Conclusion

03.04.2018Institute for Technical Informatics, DI Dr. Eugen Brenner

Signal Processors, Pt 1

86

