
Unit III: Image Compression

Signal Processors Lab

Markus Quaritsch
markus.quaritsch@tugraz.at

SS 2017
Insitute for Technical Informatics

The topic of the third unit of the DSP lab is image compression using the TMS320C6713 DSP. The
goal is to develop and implement a codec (coder/decoder) for a compression chain similar to JPEG
using Code Composer Studio, C programming language and the DSK as evaluation environment.
A project framework which implements skeleton functions and some ready-to-use modules is pro-

vided. An overview of the compression chain as well as implementation details and evaluation results
of the processing steps can be found in the appendix.

1. Overview

Figure 1 gives an overview of the processing steps of JPEG, the same chain as you have to implement
in this lab unit. For more details consult the extra tasksheet.
Figure 2 shows how the compression chain is implemented by the project framework. It names

memory regions, global variable names and functions involved. Have a look on it to get an idea about
the dataflow of the framework.

Figure 1: Overview of the compression chain which is implemented in this task.

1

Signal Processors Lab Unit III. – Image Compression

Original
Image

320x200

Pixel
Block
8x8

INDATA1

GetPixelBlock()

float pixelBlock[N][N]

DCT
Block
8x8

PerformDCT()

float DCTBlock[N][N]

StoreDCTBlock()

Transformed Data
320x200

Compressed
Image

DCTdata_in

COMPDATA

Decompressed
Image

320x200

Pixel
Block
8x8

OUTDATA

SetPixelBlock()

DCT
Block
8x8

PerformIDCT()

LoadDCTBlock()

Transformed Data
320x200

DCTdata_out

CompressData() Un
co
mp
re
ss
Da
ta
()

T
r
a
n
s
f
o
r
m
I
m
g
(
)

D
e
T
r
a
n
s
f
o
r
m
I
m
g
(
)

Figure 2: Overview of the implementation of the compression chain.

Because the DSK lacks support for a video sensor and to obtain repeatable and comparable results
the data has to be copied into the DSP memory for algorithm evaluation. An image, which is stored
in a file on the workstation, is downloaded to the algorithm’s input buffer (e.g., address 0x80000000 in
SDRAM) via Code Composer Studio. The JPEG compression (i.e., TransformImg()) is applied on this
data and the result is written to a different memory region (e.g., at address COMPDATA in SDRAM). The
decompression works in the same way: the compressed image is decompressed via DeTransformImg()
and copied into OUTDATA. To check the final result of the compression/decompression chain, the output
image is transferred to the workstation and displayed using the viewer embedded in Code Composer
Studio.
CCS integrates some functionality to support this evaluation process, and also integrates a scripting

language (General Extension Language, GEL) which allows automatization of complex processes in
the environment.

Markus Quaritsch 2 Insitute for Technical Informatics

Signal Processors Lab Unit III. – Image Compression

startaddr pixel1,1
startaddr + 1 pixel1,2
· · ·
startaddr + width pixel2,1
· · ·
startaddr + (height ∗ width) pixelheight,width

Table 1: Mapping between pixels and memory addresses.

Download Images to the DSP: A GEL-script is provided to automate the downloading process to the
DSP. It can be found in gel/images.gel. To load the gel-file, start the Debugger, click Tools→GelFiles,
and load the file with a right-click on the appearing GEL-Dialog. When successfully loaded, it extends
the user interface with functions in the menu Scripts.
There are 7 different image files provided, 5 containing objects, one containing noise, one containing

black pixels only (for cleaning the memory) and one containing white pixels only. Use the functions
from the Scripts menu to download images to the appropriate memory region.
Three different memory regions of size 64k are reserved in SDRAM for storing images: Two input

memory regions starting at 0x80000000 and 0x80010000 and one output memory region starting at
0x80020000, respectively. The preprocessor macros INDATA1, INDATA2 and OUTDATAmake the addresses
available in C; use a cast to (unsigned char *) to get a pointer.

Access Image Data: The images downloaded to SDRAM are directly addressable by the image
processing functions. All images are 320 by 200 in size, and 8-bit in color resolution (luminance
channel only, no compression). Each of the 64000 pixels is stored in a single byte, line-by-line, starting
from top-left. When accessing all pixels in sequence, a pointer to the starting address and the increment
function can be used to iterate over all pixels. When addressing a single pixel, the location (x, y) of
the pixel has to be transformed into the corresponding location in memory. Table 1 illustrates the
mapping between pixels and memory addresses.

Display Images: CCS integrates an image viewer, which can display images directly from DSP mem-
ory. The viewer is available via GUI at View→Other. . . and then select Image under Analysis Views.
In the new view you need to set the properties of the image to show (i.e., start address, resolution, etc.).
The image is automatically refreshed at a breakpoint. Improved control over image viewer updates
can be achieved by using Probe Points1.

Suggested Implementation Approach

Implementing the whole JPEG compression and decompression chain at once is a big step and thus
error prone. Thus the following tasks give you a guidance to break down the processing and implement
the compression/decompression chain in smaller steps. The following description of the task is just to
give an overview of the following tasks, more details are given in the next section.

1As downloading an image from the DSK to CCS via JTAG takes some time, it is wise to update only when the final
result is available

Markus Quaritsch 3 Insitute for Technical Informatics

Signal Processors Lab Unit III. – Image Compression

In Task 1 you implement the first step of the compression/decompression. TransformImg sim-
ply copies blocks of 8× 8 pixels from the input image into the processing buffer PixelBlock[][] and
DeTransformImg() copies the processing buffer PixelBlock[][] to the output image. To test your im-
plementation you need to modify the main() function and use GetPixelBlock() and SetPixelBlock()
to copy the input image to the output buffer, i.e. “shortcut” the whole compression/decompression.
In Task 2 you implements the discrete cosine transformation and inverse cosine transformation. For

the transformation, the block of 8 × 8 pixels from PixelBlock[][] is transformed and stored into
DCTBlock[][] while for the inverse transformation data from DCTBlock[][] is de-tranformed and
stored into PixelBlock[][]. Include both, the transformation and in inverse transformation (i.e.,
PerformDCT() and PerformIDCT()) in your processing chain.
In Task 3 the actual lossy compression/de-compression is done by quantizing/de-quantizing the

transformed block of pixels in DCTBlock[][]. For the transformation the quantized data is stored
into the DCTdata_in buffer, for the de-tranformation the data is loaded from DCTdata_out. Use the
global variable dctdataoff to store the current position in DCTdata_in/DCTdata_out. The DCTdata_in
buffer is still the same size as the input image. As a last step Huffman encoding/decoding is applied
to reduce the required storage capacity. The according functions are provided in the skeleton. As a
final step, chain all compression steps and all de-compression steps together in TransfomrImg() and
DeTransformImg().

Markus Quaritsch 4 Insitute for Technical Informatics

Signal Processors Lab Unit III. – Image Compression

2. Tasks

Task 1 – Basic functionality: In the first task you should implement helper functions for reading and
writing blocks of pixels.

(a) Implement GetPixelBlock(): This function copies a block of data, given by a pointer to
the image area and the coordinates of the upper-left pixel within this area, to the global
pixel buffer PixelBuffer[][]. The dimension of the block is given by the preprocessor
define N. Avoid multiplications!

(b) Implement SetPixelBlock(): This function is the inverse of GetPixelBlock(). It copies
the pixel block stored in PixelBuffer[][] to an image, which is given by a pointer to the
image area and the coordinates of the upper-left pixel within this area. Avoid multiplica-
tions!

(c) To test both functions, implement a testfunction for copying INDATA1 to OUTDATA by using
GetPixelBlock() and SetPixelBlock() only.

Task 2 – Discrete Cosine Transformation FDCT/IDCT: In this task the cosine transformation (DCT)
and its inverse (IDCT) must be implemented. Information about the transformation, the equa-
tion and some results for testing can be found in the extra tasksheet.

(a) Implement PerformDCT(): This functions performs the DCT. It takes the pixel data from
the global pixel buffer PixelBlock[][], transforms the pixel block to frequency domain
and stores the result to the global DCT buffer DCTBlock[][].

(b) Implement PerformIDCT(): This function performs the inverse DCT. It takes the DCT
transformed block from the global buffer DCTBlock[][], transforms the block into spacial
domain and stores the result in the global pixel buffer PixelBlock[][].

• Implement both functions in the file dct.c.

• Take care of possible rounding errors in the IDCT (avoid them by using clipping).

• Check the results using the memory view of CCS. Furthermore call the IDCT on the results
of the DCT, and check whether the final result is the same as the origin block.

Task 3 – Quantization and Huffman-Coder: : In this task quantization and entropy coding of the
compression chain are implemented.

(a) Implement StoreDCTBlock(): This function quantizes the DCT-transformed data block
(DCTBlock[][]), does a saturated conversion to signed char (except the DC value, which
is an unsigned char) and stores the result to linear output memory.

(b) Implement LoadDCTBlock(): This function, which is the inverse of the previous, loads a
block of quantized data from the linear input memory, requantizes the values and stores
them to the global DCT block buffer (DCTBlock[][]).

(c) Implement TransformImg(): This function controls the transformation process of the to-
tal image. It loads each block of the input image from INDATA1 using GetPixelBlock(),
transformates the blocks using PerformDCT(), and stores the quantized blocks to the DCT
image buffer DCTdata_out using StoreDCTBlock().

Markus Quaritsch 5 Insitute for Technical Informatics

Signal Processors Lab Unit III. – Image Compression

(d) Implement DeTransformImg(): This function is the inverse from the previous. It uses
DCTdata_in as input memory and OUTDATA as output memory.

(e) Implement CompressData() and UncompressData(): These functions implement the com-
pression and the uncompression using the available adaptive huffman coder. The according
huffman functions to call are ahuff_CompressBlock() and ahuff_ExpandBlock(). The
memory area at COMPDATA is used for storing the compressed data.

(f) Test the proper function of your implementation. The compression and uncompression chain
should now be fully working. Do performance analysis using compiler optimization.

Task 4 – Quality and Compression Rate: After finalizing the implementation of the compression chain
in task 3, the results should be evaluated in regarding compression rate and image quality.

(a) Implement CalcErrorRMS(). This function returns the root mean square (RMS) of the
original image at INDATA1 and the decompressed image at OUTDATA. The RMS value is an
indicator for the image quality.

(b) The size of the compressed image is returned by the huffman coder. Use this value for
calculating the compression rate.

(c) Analyse the compression rate and the RMS using different quality levels (the quality can is
set by the preprocessor define picquality).

Task 5* – Runtime Improvements: The runtime of the DCT can be improved by using lookup tables
(LUTs) for complex calculations.

(a) Initialize LUTs: The function InitTables() initializes the quantization table only. Extend
this function to initialize the LUTs also for the cosines and for the coefficients.

(b) Implement DCT and IDCT functions which make use of the LUTs (PerformDCT_opt() and
PerformIDCT_opt()).

(c) Measure the runtime (without InitTables()) and compare them with the prior implemen-
tation (speed-up).

Task 6* – Improving Image Quality: To reduce the blocking effect of the block-based DCT, the image
can be smoothed using a lowpass filter after the decompression step. Use the box-filter of unit 3
to fullfill this step. Evalute the results by using the RMS function.

3. Questionaire

Generally

(1) Which step implements the compression?

(2) What is the lossy step of this compression method? Why?

(3) Which properties of the compression chain are influenced by the values in the quantization table?
In which way?

Markus Quaritsch 6 Insitute for Technical Informatics

Signal Processors Lab Unit III. – Image Compression

Task 2

(1) Runtime analysis using compiler optimization (-O3):

PerformDCT(): cycles PerformIDCT(): cycles

Task 3

(1) What is the largest possible DC value after performing the DCT (before quantization)? What is
the size of an according quantization value to avoid overflow?

Task 4

(1) Give the following evaluation results using the tiger image:

Quality = 8 ErrorRMS = Compression Rate =

Quality = 16 ErrorRMS = Compression Rate =

Quality = 32 ErrorRMS = Compression Rate =

(2) Runtime analysis using compiler optimization (-O3):

CompressData(): cycles UncompressData(): cycles

Task 5*

(1) Runtime analysis using compiler optimization (-O3):

PerformDCT_opt(): cycles PerformIDCT_opt(): cycles

Task 6*

(1) Give the following evaluation results using the tiger image:

Quality = 16 ErrorRMS = .

Quality = 32 ErrorRMS = .

Markus Quaritsch 7 Insitute for Technical Informatics

Signal Processors Lab Unit III. – Image Compression

A. Appendix

Introduction

The resolution of typical digital images increased over the last few years. For example, an RGB image
with XGA resolution and 24-bit color depth needs about 2.25 MB of memory (1024x768x3Byte). The
high memory usage drives researchers and developers to investigate methods for reducing the amount of
data needed to store images. Compression methods, which are based on redundancy in the image data,
can be divided into lossless and lossy methods. The difference in general is, that lossy compression
methods remove information from the image (e.g., for web applications) while lossless methods do not
remove any information (e.g., for archival storage).
Usually, lossy compression methods consist of two stages. In the first stage the least important

information is removed from the image (lossy step). The amount of information removed influences
the quality of the compressed image and the compressiong rate. In the second stage the remaining
information is compressed lossless using e.g., Huffman Coder or Arithmetic Coder.
The most common image compression standard is JPEG (Joint Picture Expert Group). The first

research activities began in the late 80’s and became more and more popular with the increasing
processing power of state-of-the-art CPUs. JPEG defines lossy and lossless processes, the lossy method
is the more prominent (higher compression rates).
In this document, essential steps of the lossy JPEG method are explained and a guideline for imple-

mentation are demonstrated. Details about the standard can be found online.

Details about JPEG

JPEG, as we use it in this lab, is a lossy compression standard. This means, that information is lost
when compressing with the consequence that the original image cannot be restored after compres-
sion. The following figure gives an overview of the compression/decompression chain, followed by a
description of each step.

Raster Image: The raster image is the original, uncompressed image which is seperated into 8x8
blocks. This seperation is needed for speeding up the complex 2-dimensional DCT of runtime
O(n4).

Markus Quaritsch 8 Insitute for Technical Informatics

Signal Processors Lab Unit III. – Image Compression

Forward Discrete Cosine Transformation (FDCT): The FDCT transforms an 8x8 block of image
data from the spatial domain into the frequency domain. The result is an 8x8 block containing
the spectral components of the original block, with lower frequencies at the top-left, and higher
frequencies at the bottom-right. By applying the transformation on the block, no information is
lost, except potential rounding errors.

Quantizer: In the quantizer step a block of data in frequency domain is quantized using a predefined
quantization table. The quantization table is defined in a way that lower frequencies, which are
of more importance for the image quality, are quantized with small values, and high-frequency
components with large values. The result of the quantization is that high frequency components
become zero – redundancy which leads to high compression rates using an entropy coder. There-
fore the quantization table defines the achievable compression rate as well as the quality of the
compressed image.

Entropy Coder: The entropy coder compresses the the data by finding redundant information, e.g. by
using a dictionary for recurrent code sequences or by using short codes for most frequent values.
For JPEG, an adaptive Huffman coder is used.

Discrete Cosine Transformation (DCT)

The Discrete Cosine Transformation was discovered in 1974 as a fast alternative to the discrete fourier
transformation. As the runtime of the DCT is of O(n4), applying the transformation on large images
would lead to huge runtimes. To avoid this, the image is divided into blocks of pixels (for JPEG 8x8),
which are processed separately.

Markus Quaritsch 9 Insitute for Technical Informatics

Signal Processors Lab Unit III. – Image Compression

DCT: z(k, l) =
2

N
α(k)α(l)

N−1∑
m=0

N−1∑
n=0

x(m,n)cos

(
π(2m+ 1)k

2N

)
cos

(
π(2n+ 1)l

2N

)

IDCT: x(m,n) =
2

N

N−1∑
k=0

N−1∑
l=0

α(k)α(l)z(k, l)cos

(
π(2m+ 1)k

2N

)
cos

(
π(2n+ 1)l

2N

)

α(k) =

{
1√
2
|k = 0

1 |k 6= 0
α(l) =

{
1√
2
|l = 0

1 |l 6= 0

z(0, 0) . . .DC component of the block in frequency domain
x(0, 0) . . .pixel at position (0/0) in the spatial domain

But the processing based on blocks leads also to some problems. When using high quantization
values, edges between blocks could get visible in the decompressed image. The reason for that is that
neighboring pixels which belong to different blocks loose their correlation information. The influence
of this blocking effect can be reduced by applying a lowpass filter after decompression. The following
images show the blocking effect:

Example for DCT and Quantization

The following tables shows an example for the DCT and the quantization by using the top-left 8x8
block of the tiger image.

NOTE: The tables are only 4 columns wide, so each line of the 8x8 block corresponds to two lines
in each table.

Markus Quaritsch 10 Insitute for Technical Informatics

Signal Processors Lab Unit III. – Image Compression

First pixelblock (8x8) of the tiger image:

Quantization matrix (quality=8):

Block after DCT but before quantization:

Markus Quaritsch 11 Insitute for Technical Informatics

Signal Processors Lab Unit III. – Image Compression

DCT Block after requantization:

Pixel block after IDCT (compression rate 80%):

Entropy Coding

Zig Zag Sequence

The values of the DCT matrix are read in zig-zag order, which means that components with the same
quantization are read consecutively, e.g., (0, 1) and (1, 0). This zig-zag order leads to many consecutive
zeros in the output, which can be very easily compressed by using runlength encoding.

Markus Quaritsch 12 Insitute for Technical Informatics

Signal Processors Lab Unit III. – Image Compression

Adaptive Huffman Coding

After the transformation and the lossy quantization, image data is compressed using an entropy coder.
A widely used method is the adaptive huffman coder. The idea is that symbols which appear very
frequently are coded with fewer bits than symbols which appear rather infrequently. The special thing
on the adaptive huffman is, that the coding table is generated dynamically (single pass).
Functions for adaptive huffman coding and decoding are already implemented for the lab, and are

ready for being used. More information about the adaptive huffman can be found in the web.

Weblinks

JPEG http://www.cs.cf.ac.uk/Dave/Multimedia/node234.html

DCT http://www.cs.cf.ac.uk/Dave/Multimedia/node231.html
http://en.wikipedia.org/wiki/Discrete_cosine_transform
http://www.icaen.uiowa.edu/ dip/LECTURE/LinTransforms.html

Adaptive Huffman http://www.cs.duke.edu/csed/curious/compression/adaptivehuff.html
http://www.cs.cf.ac.uk/Dave/Multimedia/node212.html

Markus Quaritsch 13 Insitute for Technical Informatics

http://www.cs.cf.ac.uk/Dave/Multimedia/node234.html
http://www.cs.cf.ac.uk/Dave/Multimedia/node231.html
http://en.wikipedia.org/wiki/Discrete_cosine_transform
http://www.icaen.uiowa.edu/~dip/LECTURE/LinTransforms.html
http://www.cs.duke.edu/csed/curious/compression/adaptivehuff.html
http://www.cs.cf.ac.uk/Dave/Multimedia/node212.html

	Overview
	Tasks
	Questionaire
	Appendix

