

Au0586 half title page 11/17/05 2:05 PM Page 1

EMBEDDED
LINUX SYSTEM

DESIGN AND
DEVELOPMENT

TE
AM
 F
LY

Au0586 title page 11/17/05 2:04 PM Page 1

Boca Raton New York

EMBEDDED
LINUX SYSTEM

DESIGN AND
DEVELOPMENT

P. Raghavan • Amol Lad • Sriram Neelakandan

Published in 2006 by
Auerbach Publications
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2006 by Taylor & Francis Group, LLC
Auerbach is an imprint of Taylor & Francis Group

No claim to original U.S. Government works
Printed in the United States of America on acid-free paper
10 9 8 7 6 5 4 3 2 1

International Standard Book Number-10: 0-8493-4058-6 (Hardcover)
International Standard Book Number-13: 978-0-8493-4058-1 (Hardcover)
Library of Congress Card Number 2005048179

This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted with
permission, and sources are indicated. A wide variety of references are listed. Reasonable efforts have been made to publish
reliable data and information, but the author and the publisher cannot assume responsibility for the validity of all materials
or for the consequences of their use.

No part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or
other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information
storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com
(http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC) 222 Rosewood Drive, Danvers, MA
01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For
organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for
identification and explanation without intent to infringe.

Library of Congress Cataloging-in-Publication Data

Raghavan, P. (Pichai), 1973-
Embedded Linux system design and development / P. Raghavan, Amol Lad, Sriram Neelakandan.

p. cm.
Includes bibliographical references and index.
ISBN 0-8493-4058-6 (alk. paper)
1. Linux. 2. Operating systems (Computers) 3. Embedded computer systems. I. Lad, Amol. II.

Neelakandan, Sriram. III. Title.

QA76.76.O63R335 2005
005.4'32--dc22 2005048179

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the Auerbach Publications Web site at
http://www.auerbach-publications.com

Taylor & Francis Group
is the Academic Division of T&F Informa plc.

All source code in the book is released under GNU GPL v2. It can be used as desired under terms and
conditions of GNU GPL v2.

Trademarks

�

MIPS is a registered trademark and YAMON is a trademark of MIPS Technologies.

�

IBM and ClearCase are registered trademarks and PowerPC is a trademark of International Business
Machines Corporation.

�

UNIX is a registered trademark in the United States and other countries, licensed exclusively through
X/Open Company Limited.

�

X11 is a trademark of Massachusetts Institute of Technology.

�

NEC is a registered trademark of NEC Corporation

�

HP is a registered trademark of Hewlett-Packard Company.

�

ColdFire is a registered trademark and Motorola is a trademark of Motorola, Inc

�

Microblaze is trademark of Xilinx Inc

�

Red Hat is a registered trademark and eCos and RedBoot are trademarks of Red Hat, Inc.

�

uClinux is a registered trademark of Arcturus Networks Inc

�

Linux is a registered trademark of Linus Torvalds

�

GoAhead is a registered trademark of GoAhead Software, Inc

�

RTLinux is a registered trademark and FSMLabs, RTLinuxPro and RTCore are trademarks of Finite State
Machine Labs, Inc

�

Debian is a registered trademark of Software in the Public Interest, Inc

�

LMBench is a trademark of BitMover, Inc

�

VRTX is a trademark of Microtech Research Inc

�

VxWorks and pSOS are registered trademarks of Wind River Systems, Inc

�

Trolltech is registered trademark and Qt is a trademark of Trolltech in Norway, the United States and
other countries

�

OpenGL is a registered trademark of Silicon Graphics, Inc

�

Perforce is a registered trademark of Perforce Software, Inc

�

Eclipse is trademark of Eclipse Foundation, Inc

�

KDE and K Desktop Environment are trademarks of KDE

�

FFmpeg is a trademark of Fabrice Bellard, originator of the FFmpeg project

�

NVIDIA is a registered trademark of NVIDIA Corporation in the United States and other countries

�

ViewML is a registered trademark of Century Software Inc

�

QNX and Neutrino are registered trademarks of QNX Software Systems Ltd

�

Nucleus is a trademark of Accelerated Technology, Inc

�

Accelerated Technology is a registered trademark of Mentor Graphics Corporation

�

ARM and StrongARM are registered trademarks and ARM7 and ARM9 are trademarks of Advanced RISC
Machines, Ltd.

�

AMD is a registered trademark of Advanced Micro Devices, Inc.

�

Intel and Pentium are registered trademarks and i386 and XScale are trademarks of Intel Corporation.

�

Sharp is a registered trademark of Sharp Electronics Corp.

�

SPARC is a registered trademark of SPARC International, Inc., and is used under license by Sun
Microsystems, Inc.

�

Toshiba is a registered trademark of the Toshiba Corporation.

�

MontaVista is registered trademark of MontaVista Software Inc.

�

LynxOS and BlueCat are registered trademarks and LynuxWorks, SpyKer and VisualLynux are trademarks
of LynuxWorks, Inc.

�

Samsung is a registered trademark of Samsung Electronics America, Inc. and its related entities.

�

Ericsson is a registered trademark of Ericsson, Inc.

�

Atmel is registered trademarks of Atmel Corporation.

�

TimeSys

®

, TimeStorm®, TimeStorm IDE™, TimeStorm LVS™, TimeStorm LDS™, TimeStorm LHD™,
TimeSys Reservations™, TimeTrace

®

, Linux/RT

TM

 and TimeWiz

®

 are registered or unregistered trademarks
of TimeSys Corporation in the United States and other countries.

�

NeoMagic is registered trademark of NeoMagic Corporation.

�

Transmeta is a trademark of Transmeta Corporation.

�

Broadcom is a registered trademark of Broadcom Corporation and/or its subsidiaries.

�

SuSE is a registered trademark of SuSE AG.

vi

Embedded Linux System Design and Development

�

Borland is a registered trademark of Borland Software Corporation in the United States and other
countries.

�

Merant is a registered trademark of Merant.

�

SnapGear is a registered trademark of SnapGear Inc.

�

Matsushita is a trademark of the Matsushita Electric Corporation.

�

I2C is a trademark of Philips Semiconductors Corporation.

�

Philips® is a registered trademark of Philips Consumer Electronics Corporation.

�

Cadenux is a trademark of Cadenux, LLC.

�

ELinOS is a registered trademark of SYSGO AG.

�

Metrowerks and CodeWarrior are trademarks of Metrowerks Corp. in the U.S. or other countries.

�

FreeBSD is a registered trademark of the FreeBSD Foundation.

�

IEEE and POSIX are registered trademarks of Institute of Electrical and Electronics Engineers, Inc. in
the United States.

�

Xtensa is a trademark belonging to Tensilica Inc.

�

Fujitsu is a registered trademark of Fujitsu, Ltd.

�

Firewire is a registered trademark of Apple computer.

�

SuperH is a trademark of Hitachi, Ltd.

�

Windows, WinCE and Microsoft are registered trademarks and MS-DOS and DirectX .are trademarks of
Microsoft Corporation.

�

Solaris and Java are registered trademarks and ChorusOS is a trademark of Sun Microsystems, Inc. in
the U.S. or other countries.

�

Symbian is a trademark of Symbian Ltd.

vii

Dedication

Raghavan

In memory of my late father

Amol

To Lord Krsna,

. . .

 my parents, my wife Parul, and my brother Amit

Sriram

To my family and all Linux enthusiasts

ix

Contents

1 Intr oduction ... 1
1.1 History of Embedded Linux .. 2

1.1.1 Year 1999 ... 3
1.1.2 Year 2000 ... 4
1.1.3 Year 2001 ... 4
1.1.4 Year 2002 ... 5
1.1.5 Year 2003 ... 6
1.1.6 Year 2004 ... 6

1.2 Why Embedded Linux? .. 7
1.2.1 Vendor Independence... 7
1.2.2 Time to Market .. 8
1.2.3 Varied Hardware Support ... 8
1.2.4 Low Cost .. 8
1.2.5 Open Source.. 9
1.2.6 Standards (POSIX®) Compliance............................. 10

1.3 Embedded Linux Versus Desktop Linux 10
1.4 Frequently Asked Questions.. 11

1.4.1 Is Linux Too Large? ... 11
1.4.2 Is Linux Real-Time Enough?..................................... 11
1.4.3 How Can I Protect My Proprietary Software?......... 12
1.4.4 Should I Buy a Commercial Embedded

Linux Distribution?... 12
1.4.5 Which Embedded Linux Distribution Do I

Choose? .. 12
1.5 Embedded Linux Distributions .. 13

1.5.1 BlueCat Linux .. 14
1.5.2 Cadenux ... 15
1.5.3 Denx... 17

x Embedded Linux System Design and Development

1.5.4 Embedded Debian (Emdebian)................................ 18
1.5.5 ELinOS (SYSGO) ... 19
1.5.6 Metrowerks .. 20
1.5.7 MontaVista Linux ... 22
1.5.8 RTLinuxPro™ ... 23
1.5.9 TimeSys Linux.. 24

1.6 Porting Roadmap .. 26
Notes ... 28

2 Getting Started .. 29
2.1 Architecture of Embedded Linux .. 29

2.1.1 Real-Time Executive.. 29
2.1.2 Monolithic Kernels .. 30
2.1.3 Microkernel .. 31

2.2 Linux Kernel Architecture .. 32
2.2.1 Hardware Abstraction Layer (HAL).......................... 33
2.2.2 Memory Manager... 33
2.2.3 Scheduler.. 34
2.2.4 File System... 35
2.2.5 IO Subsystem... 36
2.2.6 Networking Subsystems .. 36
2.2.7 IPC .. 36

2.3 User Space .. 36
2.4 Linux Start-Up Sequence.. 41

2.4.1 Boot Loader Phase .. 42
2.4.2 Kernel Start-Up .. 43
2.4.3 User Space Initialization ... 47

2.5 GNU Cross-Platform Toolchain ... 48
2.5.1 Building Toolchain .. 50
2.5.2 Building Toolchain for MIPS 55

3 Boar d Support Package ... 59
3.1 Inserting BSP in Kernel Build Procedure............................. 60
3.2 The Boot Loader Interface... 62
3.3 Memory Map... 66

3.3.1 The Processor Memory Map — MIPS Memory
Model.. 67

3.3.2 Board Memory Map .. 68
3.3.3 Software Memory Map.. 68

3.4 Interrupt Management.. 72
3.5 The PCI Subsystem... 77

3.5.1 Uniqueness of PCI Architecture 77
3.5.2 PCI Software Architecture... 79

Contents xi

3.6 Timers.. 81
3.7 UART ... 81

3.7.1 Implementing the Console 81
3.7.2 The KGDB Interface ... 82

3.8 Power Management.. 83
3.8.1 Hardware and Power Management 83
3.8.2 Power Management Standards 85
3.8.3 Supporting Processor’s Power-Saving Modes 86
3.8.4 Unified Driver Framework for Power

Management... 87
3.8.5 Power Management Applications............................. 88

4 Embedded Storage ... 89
4.1 Flash Map.. 89
4.2 MTD—Memory Technology Device...................................... 91

4.2.1 The MTD Model .. 91
4.2.2 Flash Chips .. 92
4.2.3 Flash Disks... 92

4.3 MTD Architecture ... 94
4.3.1 mtd_info Data Structure ... 96
4.3.2 Interface Between MTD Core and Low-Level

Flash Drivers .. 96
4.4 Sample MTD Driver for NOR Flash...................................... 97
4.5 The Flash-Mapping Drivers ... 106

4.5.1 Filling up mtd_info for NOR Flash Chip 106
4.5.2 Filling up mtd_info for NAND Flash Chip 108
4.5.3 Registering mtd_info .. 109
4.5.4 Sample Mapping Driver for NOR Flash 111

4.6 MTD Block and Character Devices..................................... 114
4.7 Mtdutils Package... 116
4.8 Embedded File Systems ... 116

4.8.1 Ramdisk.. 117
4.8.2 RAMFS .. 117
4.8.3 CRAMFS (Compressed RAM File System) 117
4.8.4 Journaling Flash File Systems — JFFS and

JFFS2... 117
4.8.5 NFS — Network File System.................................. 119
4.8.6 PROC File System.. 119

4.9 Optimizing Storage Space.. 120
4.9.1 Kernel Space Optimization..................................... 120
4.9.2 Application Space Optimization............................. 121
4.9.3 Applications for Embedded Linux 122

4.10 Tuning Kernel Memory.. 124

xii Embedded Linux System Design and Development

5 Embedded Drivers ... 127
5.1 Linux Serial Driver.. 128

5.1.1 Driver Initialization and Start-Up 130
5.1.2 Data Transmission ... 134
5.1.3 Data Reception .. 134
5.1.4 Interrupt Handler... 134
5.1.5 Terminos Settings .. 138

5.2 Ethernet Driver ... 138
5.2.1 Device Initialization and Clean-Up........................ 140
5.2.2 Data Transmission and Reception 142

5.3 I2C Subsystem on Linux .. 144
5.3.1 I2C Bus... 145
5.3.2 I2C Software Architecture 147

5.4 USB Gadgets ... 152
5.4.1 USB Basics ... 153
5.4.2 Ethernet Gadget Driver... 158

5.5 Watchdog Timer ... 161
5.6 Kernel Modules... 162

5.6.1 Module APIs .. 162
5.6.2 Module Loading and Unloading 164

Notes ... 164

6 Porting Applications .. 165
6.1 Architectural Comparison... 165
6.2 Application Porting Roadmap.. 166

6.2.1 Decide Porting Strategy .. 167
6.2.2 Write an Operating System Porting Layer

(OSPL) .. 169
6.2.3 Write a Kernel API Driver 170

6.3 Programming with Pthreads .. 171
6.3.1 Thread Creation and Exit 172
6.3.2 Thread Synchronization .. 174
6.3.3 Thread Cancellation .. 180
6.3.4 Detached Threads ... 181

6.4 Operating System Porting Layer (OSPL)............................. 182
6.4.1 RTOS Mutex APIs Emulation.................................. 182
6.4.2 RTOS Task APIs Emulation 185
6.4.3 IPC and Timer APIs Emulation 191

6.5 Kernel API Driver... 191
6.5.1 Writing User-Space Stubs.. 194
6.5.2 Kapi Driver Implementation................................... 195
6.5.3 Using the Kapi Driver... 199

Note... 200

Contents xiii

7 Real-Time Linux ... 201
7.1 Real-Time Operating System ... 202
7.2 Linux and Real-Time .. 202

7.2.1 Interrupt Latency ... 203
7.2.2 ISR Duration .. 204
7.2.3 Scheduler Latency.. 205
7.2.4 Scheduler Duration.. 207
7.2.5 User-Space Real-Time ... 209

7.3 Real-Time Programming in Linux 209
7.3.1 Process Scheduling.. 210
7.3.2 Memory Locking.. 213
7.3.3 POSIX Shared Memory ... 223
7.3.4 POSIX Message Queues.. 225
7.3.5 POSIX Semaphores.. 232
7.3.6 Real-Time Signals .. 233
7.3.7 POSIX.1b Clock and Timers................................... 241
7.3.8 Asynchronous I/O ... 246

7.4 Hard Real-Time Linux .. 252
7.4.1 Real-Time Application Interface (RTAI)................. 253
7.4.2 ADEOS.. 258

8 Building and Debugging .. 261
8.1 Building the Kernel .. 263

8.1.1 Understanding Build Procedure 265
8.1.2 The Configuration Process...................................... 266
8.1.3 Kernel Makefile Framework 268

8.2 Building Applications ... 270
8.2.1 Cross-Compiling Using Configure.......................... 273
8.2.2 Troubleshooting Configure Script 274

8.3 Building the Root File System... 275
8.4 Integrated Development Environment................................ 278

8.4.1 Eclipse .. 279
8.4.2 KDevelop ... 279
8.4.3 TimeStorm.. 279
8.4.4 CodeWarrior ... 280

8.5 Debugging Virtual Memory Problems 280
8.5.1 Debugging Memory Leaks...................................... 282
8.5.2 Debugging Memory Overflows.............................. 286
8.5.3 Debugging Memory Corruption 287

8.6 Kernel Debuggers... 291
8.7 Profiling ... 293

8.7.1 eProf—An Embedded Profiler................................ 294
8.7.2 OProfile .. 300

xiv Embedded Linux System Design and Development

8.7.3 Kernel Function Instrumentation 302
Notes ... 308

9 Embedded Graphics ... 309
9.1 Graphics System ... 309
9.2 Linux Desktop Graphics—The X Graphics System........... 311

9.2.1 Embedded Systems and X...................................... 312
9.3 Introduction to Display Hardware 313

9.3.1 Display System .. 313
9.3.2 Input Interface ... 316

9.4 Embedded Linux Graphics .. 316
9.5 Embedded Linux Graphics Driver 316

9.5.1 Linux Frame Buffer Interface 317
9.5.2 Frame Buffer Internals .. 326

9.6 Windowing Environments, Toolkits, and Applications 328
9.6.1 Nano-X ... 335

9.7 Conclusion... 340
Notes ... 340

10 uClinux ... 341
10.1 Linux on MMU-Less Systems ... 341

10.1.1 Linux Versus uClinux .. 342
10.2 Program Load and Execution.. 343

10.2.1 Fully Relocatable Binaries (FRB)............................ 345
10.2.2 Position Independent Code (PIC).......................... 345
10.2.3 bFLT File Format ... 346
10.2.4 Loading a bFLT File .. 347

10.3 Memory Management... 358
10.3.1 Heap ... 358
10.3.2 Stack ... 363

10.4 File / Memory Mapping—The Intricacies of mmap()
in uClinux ... 364

10.5 Process Creation ... 365
10.6 Shared Libraries .. 367

10.6.1 uClinux Shared Library Implementation
(libN.so).. 367

10.7 Porting Applications to uClinux .. 370
10.7.1 Creating uClinux Programs..................................... 370
10.7.2 Creating Shared Libraries in uClinux..................... 371
10.7.3 Using Shared Library in an Application 373
10.7.4 Memory Limitations... 375
10.7.5 mmap Limitations .. 375
10.7.6 Process-Level Limitations .. 375

Contents xv

10.8 XIP—eXecute In Place... 375
10.8.1 Hardware Requirements ... 377
10.8.2 Software Requirements ... 378

10.9 Building uClinux Distribution.. 378
Notes ... 380

Appendices

A Booting Faster .. 383
Techniques for Cutting Down Bootloader Initialization............. 384
Tuning Kernel for Decreased Boot-Up Time 385
Tuning User Space for Decreased Boot-Up Time 385
Measuring Boot-Up Time .. 386

B GPL and Embedded Linux ... 387
User-Space Applications .. 387
Kernel.. 388
Points to Remember .. 389
Notes ... 390

Index .. 391

xvii

Foreword

The industrial revolution appears as a knife-edge change from a rural self-
employed lifestyle to a clock-punching, whistle-blowing corporate urban way
of life. Being in the middle of the current revolution makes it hard to realize
that in fifty years most people will consider the messy, dynamic, no-rules
embedded product development environment of today as an obvious clean
transition caused by technological changes.

The first embedded software project I worked on didn’t use an off-the-
shelf operating system—there was none. It wasn’t until several years later that
WindRiver introduced VxWorks®. In the mid-1990s it appeared that nothing
could unseat VxWorks; yet, recently WindRiver announced a Linux-based
product. Why the change? Today the most common embedded operating
system used in new products is Linux.

For fourteen years I was part of a small army of firmware engineers working
on the development of HP LaserJet™ printers. The printer used a homegrown
operating system that as I recall was called LaserJet O.S. Usually the very best
engineers worked on supporting and extending the operating system. Any
LaserJet O.S. documentation that existed, engineers had created. Any test suite
was similarly a burden placed on the engineer’s shoulders. The effort and
expense of these highly talented engineers seldom led to any features that
differentiated the product from the competitors. The most important lesson I
learned from the experience was to always put your most talented engineers
on the features that make your product unique and outsource the infrastruc-
ture. Embedded Linux is often the best choice for the operating system
infrastructure for products needing nontrivial connectivity.

Whether you support Linux in-house or purchase a Linux board support
package for your processor, you will still need to understand the overall system
and at times the details of a particular subsystem. In this book the authors
have done a good job fitting all the pieces together that are necessary for
embedded Linux development. The book discusses topics such as board
support packages, embedded storage, and real-time Linux programming in

xviii Embedded Linux System Design and Development

depth. Embedded graphics and uClinux are also explained with clarity. The
book is a good attempt to address the concerns of an embedded Linux
developer.

The rapid growth of Linux as the top choice for an embedded operating
system in new products is in part due to the ease of using embedded Linux
to replace homegrown operating systems. Although this book is specifically
for running Linux on embedded systems it can also be used as a guide to
port a system from a traditional RTOS or homegrown operating system to
embedded Linux. It may be the need for TCP/IP networking, USB support,
SecureDigital support, or some other standard that causes a company to dump
their current operating system and switch to Linux. But it is the joy of
developing with Linux that keeps the engineers promoting it for future
products.

An astounding amount of Linux information is available on the Web. I
suspect it is the most extensively documented software ever. How can a book
about embedded Linux provide value over what is already available? First, the
scope of embedded Linux and related applications is so large that getting a
feel for what is available and what can be done is challenging. Seeing all the
pieces separately and working together can help you make sense of the
embedded Linux ecosystem. Second, there are technical reasons for needing
the right information. In an embedded device, the bootloader, kernel, and file
system containing the applications all need to be developed in concert for
the solution to work properly. Understanding the interdependencies and
getting the development environment to properly build all three images is not
straightforward. Also, when you encounter a problem, understanding the tools
available to debug the problem and knowing the techniques used for debug-
ging embedded devices can save a significant amount of time and effort.

Finally, the best reason for reading this book on embedded Linux is because
the technology is so fascinating. Anyone who had developed embedded
products the old way, with one single executable image, will be amazed at
the flexibility and power of using embedded Linux. Anyone new to embedded
development will find most of the power and flexibility available on their
desktop PC works the same in their embedded development environment.

Todd Fischer
President and Founder

Cadenux

xix

Preface

When we were in college in the mid-1990s we heard of an exciting new
technology called the Internet that was to have a profound impact on our
lives. Along with the Internet we also heard of an open source operating
system, Linux, which was being developed by hundreds of programmers
around the world. Linux gave us an opportunity to understand the internals
of the operating system and we quickly became Linux enthusiasts. We realized
that Linux was more than an operating system; here was a movement with
few parallels in human history as it was based on the concepts of human
dignity, choice, and freedom. Linux gave young programmers like us the reach
to the latest technology.

When we became embedded professionals Linux had yet to make a strong
presence in the embedded market. However, we were hearing of some exciting
improvements such as running a hard real-time kernel along with the Linux
kernel and running Linux on MMU-less microcontrollers. Our happiness grew
unbounded when we were asked by a customer to move our software on a
MIPS-based SoC from a commercial RTOS to embedded Linux. Our experience
revealed that the road to embedded Linux is not a very smooth ride. Some
of the main reasons were:

1. There is undoubtedly lots of information about embedded Linux on the
Internet but it is too scattered to give a consolidated view. Converting this
information into a knowledge base can be a time-consuming task. Most
of the product-based companies are normally short on time. Decisions
need to be made quickly and executed quickly. However, a wrong decision
especially on crucial issues such as licensing can prove disastrous to the
company.

2. There is a gross misconception that embedded systems are all about the
hardware or the operating system. As computing power increases rapidly
as per Moore’s law the amount of application software that goes into the
embedded system has also increased at the same rate. Hence the appli-
cations have become the USP for the embedded system. So building a

xx Embedded Linux System Design and Development

Linux-based embedded system does not stop with the OS but has to do
a lot with writing and building applications. And applications have their
own set of issues that are different from the operating system such as
licensing, toolchains, and so on.

3. Unlike a commercial RTOS, which gives a single point of support such as
patches and documentation, embedded Linux takes a whole new devel-
opment paradigm. Often the developers need to search for patches or for
new information from the various mailing lists. And this can be very time
consuming.

When we came out successfully with an embedded Linux design with a
variety of applications, we decided to share some of our thoughts and
experiences with the rest of the world. The result of that thought process is
this book. This book contains an entire development roadmap for embedded
Linux systems. Our primary aim is to make the reader aware of the various
issues that arise out of embedded Linux development.

The theme of the book is twofold:

� To facilitate movement to embedded Linux from a traditional RTOS
� To explain the system design model with embedded Linux

Benefits to the Reader
The book offers solutions to problems that a developer faces when program-
ming in an embedded Linux environment. Some of the common problems are:

� Understand the embedded Linux development model.
� Write, debug, and profile applications and drivers in embedded Linux.
� Understand embedded Linux BSP architecture.

The book offers practical solutions to the above problems.
After reading this book the reader will

� Understand the embedded Linux development environment.
� Understand and create Linux BSP for a hardware platform.
� Understand the Linux model for embedded storage and write drivers and

applications for the same.
� Understand various embedded Linux drivers such as serial, I2C, and so on.
� Port applications to embedded Linux from a traditional RTOS.
� Write real-time applications in embedded Linux.
� Learn methods to find memory leaks and memory corruption in applica-

tions and drivers.
� Learn methods to profile applications and the kernel.
� Understand uCLinux architecture and its programming model.
� Understand the embedded Linux graphics subsystem.

Preface xxi

The book is also an aid to managers in choosing an embedded Linux
distribution, creating a roadmap for the transition to embedded Linux, and
applying the Linux licensing model in a commercial product.

Audience

Primary Audience

� Architects: They are more concerned with real-time issues, performance,
and porting plans.

� Software programmers: They need to get into the minute details of the
technology.

Secondary Audience

� Legal staff: Because most embedded products involve intellectual property,
any wrong understanding of the licensing issues can prove detrimental to
the company itself.

� Managers: They are normally concerned about choosing the distribution,
version, toolset, and vendor.

� Testing and support team: Because the look and feel of the product can
change when moving to embedded Linux, the test and support team needs
to be educated.

Background
The authors expect a basic understanding of embedded system programming
in any embedded OS from the reader. The book is not a Linux kernel book.
Familiarity with basic Linux kernel concepts and the user-space programming
model is desirable.

The book attempts to be independent of the kernel version; however,
wherever necessary the 2.4 or the 2.6 kernels are used as examples.

Downloading Source Code
Readers can download source code from the following URL: http://www.
crcpress.com/e_products/downloads/download.asp?cat_no=AU0586

xxiii

Acknowledgments

I thank the management of my present employer, Philips, for giving me the
support to go ahead with the book. Any work of mine has always been
incomplete without the blessings of my dear mother. And last but not least I
would like to thank my wife, Bhargavi, for spending some cold days alone
when I was busy penning down the pages for this book.

Raghavan

I would like to thank all the people who made this work possible. First my
mother, who used to tell me to work for the book whenever she saw me
roaming here and there, like any mother telling her kid to study. I also express
thanks to my father who kept on asking me about the status of the manuscript,
like a project manager. I thank my wife, Parul, for her patience during
manuscript preparation. I remember when Raghav told me about this project
and asked me to join. It was just two months after my marriage. I thank Parul
for her encouragement and also thank her for helping me out in formatting
the manuscript.

Amol

Thanks to Raghav who had the idea of writing this book. I still remember
the first meeting when he instilled the confidence in me to take up this work.
I thank my dad, mom, and sister for their support. Thanks to the entire “boys”
gang at Bangalore who have been kind enough to share the powerful
“Athlon/Audigy/ATI Radeon 9500” game PC for mean activities such as running
Linux and typing sample code. They consider running a word processor on
such a PC as a gross waste of computing power.

Sriram

We take this opportunity to thank Todd Fischer, president and founder,
Cadenux, for giving us time from his busy schedule to write the foreword for
the book. We thank David McCullogh, one of the uClinux core maintainers,

xxiv Embedded Linux System Design and Development

and Dr. Paul Dale for reviewing the chapter on uClinux and for providing
their valuable comments. We also thank Greg Haerr, CEO of Century Software
and founder of the Nano-X windowing system, for his valuable review com-
ments on the embedded graphics chapter. We thank Satish MM, director of
Verismo Networks, for his valuable comments on GPL. We thank our close
friend and guide, Deepak Shenoy, for coming up with the idea to write a
book based on our development experience. Finally we thank all Linux kernel
developers and user-space programmers for taking Linux to new heights.

xxv

Introduction

The text is divided into ten chapters and two appendices.
Chapter 1, “Introduction,” gives a brief history of embedded Linux and

what the benefits of embedded Linux are over other RTOSs. It discusses in
detail the features of various open source and commercial embedded Linux
distributions available. The chapter concludes by presenting a transition road-
map from a traditional RTOS to embedded Linux.

Chapter 2, “Getting Started,” explains the architecture of embedded Linux
and compares it with traditional RTOS and microkernel architectures. In brief
various Linux kernel subsystems such as the hardware abstraction layer,
memory management, scheduler, file system, and so on are given. A small
description of the user-space Linux programming model is also given. The
second half of the chapter explains the Linux start-up sequence, from boot-
loaders to kernel start-up and user-space start-up scripts. The last section
explains the steps involved in building a GNU cross-platform toolchain.

Chapter 3, “Board Support Package,” explains bootloader architecture fol-
lowed by a discussion on the system memory map, both hardware and
software memory maps. The second half of the chapter explains interrupt
management, the PCI subsystem, timers, UART, and power management in
detail.

Chapter 4, “Embedded Storage,” explains the MTD subsystem architecture
for accessing flash devices. The second half of the chapter discusses various
embedded file systems such as RAMFS, CRAMFS, JFFS2, NFS, and so on. The
chapter also discusses various methods for optimizing storage space in an
embedded system, both kernel and user-space optimizations. A discussion of
various applications designed for embedded Linux such as Busybox is given.
Finally some steps for tuning the kernel memory are given.

Chapter 5, “Embedded Drivers,” discusses in detail various embedded
drivers such as the Serial driver, Ethernet driver, I2C subsystem, and USB
gadgets.

xxvi Embedded Linux System Design and Development

Chapter 6, “Porting Applications,” discusses an application porting roadmap
from a traditional RTOS to embedded Linux. The rest of the chapter explains
the porting roadmap in detail. First a discussion on Linux pthreads is given,
then the Operating System Porting Layer (OSPL), and finally a kernel API driver.

Chapter 7, “Real-Time Linux,” discusses the real-time features in Linux. It
explains the various latencies involved in the kernel such as interrupt and
scheduling latency and efforts that are made to improve the kernel response
time such as kernel preemption and O(1) scheduler. The core of the chapter
is the discussion of POSIX.1b programming interfaces in Linux. The chapter
explains various POSIX.1b real-time extensions such as real-time schedulers,
memory locking, message queues, semaphores, and asynchronous I/O in
detail. The last section explains in brief the hard real-time approach to Linux
followed by a real-time programming model in RTAI.

Chapter 8, “Building and Debugging,” is divided into three sections: build-
ing, debugging, and profiling. The first section explains various mechanisms
for building kernel and user-space applications. In the second section tools
such as mtrace, dmalloc, and valgrind to debug memory problems are
explained. Finally the last section discusses eProf, OProfile, and kernel function
instrumentation profiling methods to profile user-space and kernel functions.

Chapter 9, “Embedded Graphics,” explains in detail a generic frame buffer
driver and how to write applications using the frame buffer interface. It also
discusses in brief the X graphics subsystem and why it is not suitable for
embedded devices. The last section explains the Nano-X windowing envi-
ronment.

Chapter 10, “uClinux,” explains the architecture and programming environ-
ment in uClinux. The first half of the chapter explains the bFLT executable
file format and how programs are loaded and executed in uClinux-based
systems. Next a discussion about memory management, process creation, and
shared libraries in uClinux is given. The final section explains XIP and how
to port applications from standard Linux to uClinux. It also explains how to
build applications for uClinux.

Appendix A, “Booting Faster,” explains various techniques to reduce Linux
boot-up time.

Appendix B, “GPL and Embedded Linux,” discusses what GPL means to
embedded Linux and how proprietary software can be kept safe with embed-
ded Linux.

Source code is available for downloading from http://www.crcpress.com/e_
products/downloads/download.asp?cat_no=AU0586

xxvii

About the Authors

P. Raghavan has nine years of experience in embedded software develop-
ment. He has worked on a variety of embedded products ranging from graphics
displays and televisions to network equipment. Other than embedded Linux
he has worked on a variety of commercial operating systems such as VxWorks
and Nucleus. He understands the various issues related to the software
development life cycle for embedded systems. He holds an electronics engi-
neering degree from Bangalore University, India. Presently he is employed
with Philips Software, Bangalore.

Amol Lad is a computer science graduate from Motilal Nehru National Institute
of Technology, Allahabad, India, one of the prestigious engineering colleges
in the country. He first peeked into the Linux kernel sources in 1996 during
his second year of engineering. It was his curiosity to understand how things
work “under the hood” that attracted him to Linux. He started his career in
1999 as a device driver writer for satellite communication systems. His first
exposure to embedded Linux was in the year 2001 when he wrote a BSP for
a MIPS-based custom hardware platform. Presently he is employed by Verismo
Networks as a Linux kernel engineer. He is responsible for designing systems
based on embedded Linux for his company. If not busy reading kernel sources
you can find him playing (or watching) cricket. He is also devoted to music.
If he had not been a computer engineer he surely would have been a music
composer.

Sriram Neelakandan graduated with an electronics engineering degree and
started his career as a Windows device driver programmer. He likes problems
that require a soldering iron and an oscilloscope to solve rather than just the
keyboard. He has worked on device drivers for various technologies including
ISA, PCI, USB, PCMCIA, and CF+ across platforms such as Windows, VxWorks,
and Linux. His embedded Linux experience started with porting a MIPS-based
System-on-Chip (SoC) networking product. Working on the product gave him

xxviii Embedded Linux System Design and Development

the opportunity to understand various modules of Linux including the routing
subsystem (fib, netlink), MTD drivers, and flash file systems (CRAMFS, JFFS2).
Currently employed at Verismo Networks, India, he is part of the embedded
Linux team responsible for media solutions.

1

Chapter 1

Introduction

An embedded system is a special-purpose computer system that is designed
to perform very small sets of designated activities. Embedded systems date
back as early as the late 1960s where they used to control electromechanical
telephone switches. The first recognizable embedded system was the Apollo
guidance computer developed by Charles Draper and his team. Later they
found their way into the military, medical sciences, and the aerospace and
automobile industries. Today they are widely used to serve various purposes;
some examples are the following.

� Network equipment such as firewall, router, switch, and so on
� Consumer equipment such as MP3 players, cell phones, PDAs, digital

cameras, camcorders, home entertainment systems, and so on
� Household appliances such as microwaves, washing machines, televisions,

and so on
� Mission-critical systems such as satellites and flight control

Following are the key factors that differentiate an embedded system from
a desktop computer.

� Embedded systems are usually cost sensitive.
� Most embedded systems have real-time constraints.
� There are multitudes of CPU architectures (such as ARM®, MIPS®, Pow-

erPC™, etc.) that are used in embedded systems. Embedded systems
employ application-specific processors. For example, the processor in your
digital camera is specially tailored for image capturing and rendering.

� Embedded systems have (and require) very few resources in terms of RAM,
ROM, or other I/O devices as compared to a desktop computer.

� Power management is an important aspect in most embedded systems.

2 Embedded Linux System Design and Development

� The development and debugging environment in an embedded system is
very different from a desktop computer. Embedded systems generally have
an inbuilt circuitry for debugging purposes.

� An embedded system is designed from both the hardware and software
perspective, taking into account a specific application or set of applications.
For example, your MP3 player may have a separate hardware MP3 decoder
built inside it.

In the early days effectively no operating system was used in embedded
systems. There was in-house development of all the software that directly
drives the hardware with almost no or very minimal multitasking and user
interaction in place. But with the passage of time, more complex embedded
systems started emerging and along with that a growing list of features that
an embedded system should support. All of these requirements mandated use
of an operating system in embedded systems that should at least provide
multitasking/multithreading, process and memory management, interprocess
communication, timers, and so on. So the companies started enhancing their
in-house developed software so that they could have a minimal but a full-
featured operating system running on their embedded platform. Various firms
started efforts to provide an operating system aimed at embedded systems.

Today we have a multitude of embedded operating systems. Apart from
company in-house developed operating systems we have Wind River’s VxWorks®,
Microsoft® Windows® CE, QNX® Neutrino®, Accelerated Technology®’s
Nucleus™, Red Hat®’s eCos™, Sun Microsystems ChorusOS™, LynuxWorks™’s
LynxOS®, and embedded Linux as primary embedded operating systems.

1.1 History of Embedded Linux
Linus Benedict Torvalds at the University of Helsinki created the Linux®

operating system in 1991. It was his mail in a minix development mailing list
as shown in Listing 1.1 that is said to have started the Linux revolution.

Since then Linux has never looked back. Its open source development
model and GNU General Public License (GPL), under which Linux is released,
attracted contributions from thousands of developers worldwide. This license
allowed all the Linux kernel source code to be freely available for personal
or commercial use. As the Linux kernel source code is freely available, it
encouraged many developers to contribute to the Linux kernel. It is because
of this global pool of developers that we have a highly reliable, robust, and
powerful operating system. In early 1996 Linux saw its arrival in hard real-time
embedded systems as a research project of Michael Barabanov and Victor
Yodaiken. This RT-Linux research project was based on using a small real-time
kernel along with Linux to provide hard real-time deadline guarantees. In 1997
the uClinux® project was started with the aim of using Linux in no-MMU
processors. It was released for use in the year 1998. During the years 1999 to
2004 Linux was widely used in embedded systems. The following sections
mention some of the major developments in embedded Linux during this period.

Introduction 3

1.1.1 Year 1999

Linux started to develop its roots in the embedded systems area in the year
1999. Some of the major developments in this year were:

� At the Embedded Systems Conference (ESC) of September 1999 companies
including Lineo, FSM Labs, MontaVista®, and Zentropix made announce-
ments about embedded Linux support.

� Zentropix founded RealTimeLinux.org to discuss possibilities of real-time
Linux solutions.

� Lineo announced an Embedded Advisory Board (EMLAB) for discussing
the possibilities of using Linux in embedded areas.

� Rick Lehrbaum started an embedded Linux portal: Linuxdevices.com.
� RTAI was released by Paolo Mantegazza to add hard real-time support in

Linux.
� BlueCat® Linux was announced by Lynx real-time systems (now Lynux-

Works). It was the first commercial embedded Linux distribution.

Listing 1.1 The Origin of Linux

From: torvalds@klaava.Helsinki.FI (Linus Benedict Torvalds)
Newsgroups: comp.os.minix
Subject: What would you like to see most in minix?
Summary: small poll for my new operating system
Message-ID: <1991Aug25.205708.9541@klaava.Helsinki.FI>
Date: 25 Aug 91 20:57:08 GMT
Organization: University of Helsinki

Hello everybody out there using minix –

I’m doing a (free) operating system (just a hobby, won’t be big
and Professional like gnu) for 386(486) AT clones. This has been
brewing since april, and is starting to get ready. I’d like any
feedback on things people like/dislike in minix, as my OS resembles
it somewhat(same physical layout of the file-system (due to
practical reasons)among other things).

I’ve currently ported bash(1.08) and gcc(1.40), and things seem to
work. This implies that I’ll get something practical within a few
months, and I’d like to know what features most people would want.
Any suggestions are welcome, but I won’t promise I’ll implement
them :-)

Linus (torvalds@kruuna.helsinki.fi)

PS. Yes - it’s free of any minix code, and it has a multi threaded
fs. It is NOT portable (uses 386 task switching etc), and it
probably never will support anything other than AT-harddisks, as
that’s all I have :-(.

4 Embedded Linux System Design and Development

1.1.2 Year 2000

In the year 2000 many companies adopted embedded Linux in their product
lines.

� Samsung® launched Yopy, a PDA with Linux inside.
� Ericsson® launched HS210, a Linux-based cordless screen phone that

combines wireless connectivity with Internet access, telephony, and e-mail
functions.

� Atmel® announced a Linux-based single-chip Internet appliance, the
AT75C310, that includes support for VoIP and audio.

� Agenda Computing demonstrated a Linux-based PDA at Linuxworld.

This year also saw increased awareness about real-time support in Linux.

� TimeSys® Corporation announced Linux/RT™, an embedded Linux distri-
bution aiming to provide predictable application response times by using
resource reservation technology.

� MontaVista Software started a Linux Real-Time Characterization Project to
provide developers with a set of open source tools for measuring real-
time responsiveness of Linux systems.

� Red Hat released EL/IX version 1.1 specifications for adding real-time
support in Linux.

In this year many tools and utilities were released for use in embedded Linux.

� Busybox 0.43 was released. It was the first and most stable Busybox release.
� GoAhead® Software announced the GoAhead Web server for embedded

Linux applications.
� Trolltech® launched Qt™/Embedded, a GUI application framework and

windowing system for embedded Linux.
� ViewML® embedded browser was announced by Greg Haerr. ViewML is

based on the Microwindows windowing system.

In this year the Embedded Linux Consortium (ELC) was founded by Rick
Lehrbaum with major corporations such as Intel® and IBM® as its members.
The aim of this consortium was to facilitate the use of Linux and open source
software in embedded areas. ELC promoted Linux as an effective, secure, and
reliable operating system for embedded systems.

OSDL (Open Source Development Lab) was also founded in this year by
HP®, Intel, IBM, and NEC® with the goal of supporting enterprise Linux
solutions.

1.1.3 Year 2001

The biggest announcement of the year 2001 was the release of Linux kernel
2.4, which was later adopted in many embedded Linux distributions. In this
year Linux was also widely used in handheld devices and gadgets.

Introduction 5

� Sharp® Electronics introduced Linux-based PDAs.
� Trolltech and Lisa systems announced a wireless iPAQ solution for the

Compaq iPAQ palmtop computer.
� NeoMagic® also announced a Linux-based SOC platform for smart handheld

devices.
� Transmeta™ Corporation released “Midori” Linux, an open source distri-

bution targeting small devices.

Embedded Linux standardization efforts were also gaining pace in the year
2001.

� Japan Embedded Linux Consortium (EMBLIX) was founded by major
corporations including Toshiba® and NEC with the aim of promoting,
educating, and standardizing embedded Linux in Japan.

� TV Linux Alliance was formed to define a set of standards for using Linux
in set-top boxes. Broadcom®, Motorola, and Sun Microsystems were some
of its cofounders.

� The Free Standards Group (FSG) released Linux Standard Base (LSB)
specification version 1.0. The goal of LSB was to develop a set of standards
to increase compatibility among Linux distributions so that applications
can run on any compliant Linux system. LSB is widely recognized by the
enterprise Linux industry and is also considered useful for embedded Linux.

In terms of tools and utilities the following also occurred.

� First major release of uClibc, uClibc 0.9.8, was made. uClibc now is an
integral part of almost all embedded Linux distributions.

� Eclipse™ consortium was formed by major corporations including IBM,
SuSE®, Red Hat, QNX Software Systems, Borland®, and Merant® to provide
a development environment framework for embedded systems. Today
companies such as TimeSys, LynuxWorks, MontaVista, and others are using
the Eclipse framework to provide IDEs for embedded Linux development.

1.1.4 Year 2002

The year 2002 saw a major advancement of Linux in embedded markets with
more and more companies adopting Linux in their product designs. Real-time
support in Linux was also getting better.

� Kernel preemption patch from Robert Love, low latency patches by Andrew
Morton, and the O(1) scheduler by Ingo Molnar found their ways into the
Linux kernel.

� RTLinux® added hard real-time capability to user space.
� The ADEOS project announced the first release of ADEOS, a hardware

abstraction layer allowing a real-time kernel and a general-purpose OS to
co-exist.

In terms of standardization efforts, the following occurred.

6 Embedded Linux System Design and Development

� ELC released the Embedded Linux Consortium Platform Specification
(ELCPS). The ELCPS provided a standard for the API layer that increases
reusability and portability of program code. The standard helps developers
by decreasing time and cost to develop embedded applications in Linux.

� OSDL announced the Carrier Grade Linux (CGL) working group to promote
and standardize the use of Linux in carrier grade systems. CGL released
v1.x CGL requirements specifications in the same year.

� Free Standards Group announced the LSB 1.1 and LSB certification pro-
gram. The aim of the LSB certification program was to employ an inde-
pendent authority to verify that a Linux distribution or application adheres
to LSB.

In this year Linux saw more inroads in the digital entertainment industry.
Intel announced a reference design for a home digital media adapter. Trace
Strategies Inc. published a research report projecting Linux as a preferred OS
in devices such as digital interactive TV (ITV), set-top boxes, and so on.

In this year uClinux also gained shared library support from SnapGear® and
Ridgerun. It later found its way into mainstream Linux kernel version 2.5.46.

1.1.5 Year 2003

In the year 2003 Linux saw its growth in the cell phone and SOHO markets.

� Motorola announced its A760 mobile phone handset that uses Linux as its
embedded OS.

� Linux saw more penetration in gateway, routers, and wireless LANs for
SOHO and consumer markets.

In this year more stress was put on standardization.

� ELC added an extension to ELCPS to add support for power management,
user interface, and real-time standards.

� OSDL announced CGL v2.0 with major advances in security, high avail-
ability, and clustering.

� The Consumer Electronics Linux Forum (CELF) was formed in June 2003
to provide specifications for using Linux in CE devices and to maintain a
Linux kernel source tree that has enhancements specifically for CE devices.
CELF invites companies to contribute to the tree so that Linux can become
a de facto operating system for CE devices. Matsushita™, Sony, Hitachi,
NEC, Royal Philips® Electronics, Samsung, Sharp Corporation, and Toshiba
Corporation were the founders of CELF.

The year 2003 ended with the release of the Linux 2.6.0 kernel.

1.1.6 Year 2004

Some of the highlights of the year 2004 were as follows.

Introduction 7

� In this year LynuxWorks released the 2.6 Linux kernel-based BlueCat Linux
distribution. It was the first commercial embedded Linux distribution based
on the 2.6 Linux kernel.

� Sony Corporation introduced Linux-based devices for in-car navigation and
infotainment systems in Japan. The devices feature 3-D map navigation
technology, media players, hard drives, GPS, and PC connectivity.

� Trolltech announced a mobile phone application stack that delivers PDA-
like features on smartphones.

� OSDL’s CGL specifications saw wide acceptance in the telecommunications
industry.

� CELF released its first specification for using Linux in CE devices. The
specification is also supported by a reference implementation in the form
of a patched Linux kernel source tree supporting nine target boards.

� Free Standards Group (FSG) and OSDL released LSB 2.0.

Today lots of companies are adopting embedded Linux for their new
designs. More and more vendors are providing embedded Linux distribution
for various hardware platforms. Today embedded Linux is a preferred oper-
ating system for embedded systems. Silicon suppliers such as AMD®, ARM,
TI, Motorola™, IBM, Intel, and so on all use Linux as a preferred hardware
bring-up platform. CE devices OEMs such as Sony and NEC are deploying
Linux in DVDs, DVRs, and digital handsets.

1.2 Why Embedded Linux?
Any newcomer to the domain of embedded Linux is bound to be riddled with
a question: “Why choose embedded Linux as an operating system in the
target?” In this section we discuss some benefits of embedded Linux against
proprietary embedded operating systems.

1.2.1 Vendor Independence

Selecting a proprietary OS may lock you up with the same vendor for the
lifetime of your product. Bad support from the vendor can result in increased
time to market of your product. You may end up waiting days or even weeks
for the solution to even small problems. Changing the vendor may mean
restarting the whole product life cycle.

Embedded Linux brings vendor independence. Vendors of all embedded
Linux distributions have more or less the same business model. The distribu-
tions are variations of the same theme. They all have the same and common
basic components such as Linux kernel, libraries, basic utilities, and the like.
If at some point you feel that your embedded Linux distribution vendor is
not living up to your expectations, you can switch vendors at a relatively low
cost. Above all you can also decide to have no embedded OS vendor at all

8 Embedded Linux System Design and Development

for your product, as the source code of the Linux kernel and associated utilities
are freely available.

1.2.2 Time to Market

For embedded Linux, a rich set of toolsets and utilities is available. Most of
the vendors provide preview kits for various hardware platforms that can be
downloaded free of cost. It is highly likely that a Linux port for your hardware
is already available. Consequently you will spend time only in writing appli-
cations without worrying about the Linux port for the hardware or device
driver for a high-performance I/O card that is part of your system. With an
embedded Linux system a product can be rolled out very quickly.

One advantage of using Linux in an embedded platform is reduced devel-
opment time. By using a Linux-based host development environment, most
of the applications that are to be run on the target hardware can be tested
on a Linux host, reducing time to port applications. For example, if your target
needs a DHCP client, you can very well take any open source DHCP client
(meeting the size requirement for target), compile, and test on a Linux host.
If it works on the host then the only effort required is to cross-compile it for
your target. It should run on the target without any problems.

1.2.3 Varied Hardware Support

With the arrival of large numbers of new high-end, low-cost, and much more
sophisticated microprocessors and I/O devices it’s becoming increasingly
difficult for the vendors of proprietary embedded OSs to support them in
time. Even if the product demands high-end hardware, customers may not be
able to use it because their proprietary embedded OS vendor may not support
it.

Linux support for many architectures and high-end I/O devices gives you
the independence to choose appropriate hardware for your system. Linux is
also a preferred OS for any hardware or software innovation. It is widely
accepted in universities as a research and learning tool. Linux is also a preferred
bring-up platform for hardware manufacturers.

1.2.4 Low Cost

Embedded Linux brings minimal cost for development, training, and hiring
needs.

Development Cost

A vendor of proprietary software may charge a huge amount for licenses of
development tools. These are generally per-seat licenses and thus limit the
number of users that can use the development environment. With embedded

Introduction 9

Linux, all the tools and utilities such as compilers, linkers, libraries, shells,
and the like that constitute its development environment can be downloaded
for free. Good IDEs are also available at either very little cost or completely
free of charge. GUI-based configuration environment and profiling tools are
also available.

Training and Hiring Costs

New development environments are expensive. The manufacturing cost of
your product significantly increases when your developers require retraining
or if you decide to hire a specialist who understands the development process,
API usage, optimization techniques, and so on in the particular proprietary
OS. Linux has a UNIX®-based programming model, which is familiar to most
engineers. Thus the learning curve for embedded Linux is very small.

Runtime Royalty

Finally, a runtime royalty of the proprietary embedded OS (or some other
third-party component) adds to product cost. The embedded market is highly
cost sensitive. These days a lot of effort is being paid to reduce the cost of
the product that reaches the end user. Embedded Linux is royalty free. Most
vendors of embedded Linux distribution charge no runtime royalties to their
customers. Lack of runtime royalties reduces the BOM (Bill Of Materials) of
the product.

1.2.5 Open Source

One of the main reasons why Linux became so popular is its open source model
of development. Linux has the following advantages because of open source.

� There are thousands of developers around the world who are contributing
to and enhancing the Linux kernel and other applications.

� You are assured of global support during your development. There are
separate mailing lists for almost all the Linux ports whether ARM, MIPS,
or no-MMU. The mailing list archives might already contain answers to
most of your questions. If not, a proper reply can be expected for a
genuine question posted in these lists.

� It has a rich set of features with superior software and a rich talent pool
across the world reviews every feature that goes in the kernel. This makes
Linux robust and reliable.

� Availability of source code facilitates better understanding of what’s going
under the hood, how to customize it for optimal designs, and how to fix
bugs if they arise. The Linux kernel or some device driver can be tailored
for achieving high performance for your platform.

� Even the tools, applications, and utilities that come with Linux have an
open source nature, thus benefiting from the open source advantage.

10 Embedded Linux System Design and Development

1.2.6 Standards (POSIX®) Compliance

The idea of POSIX is to improve the portability of software written for UNIX,
thus making the job of a UNIX developer much easier. It aims at providing
standards that define common interfaces and features for a UNIX-like operating
system. The Linux kernel provides POSIX-compliant APIs for services such as
memory management, process and thread creation, interprocess communica-
tion, file systems, and TCP/IP.

It’s because of these benefits that the current system software trend for an
embedded system is shifting towards embedded Linux. From lower cost to
rich toolset, these benefits are providing a big thrust for using Linux in
embedded areas.

1.3 Embedded Linux Versus Desktop Linux
Linux is used in a variety of hardware: right from huge SMP servers to the
smallest of gadgets. But it is indeed a marvel that a single code base is used
for the kernel irrespective of its final destination. This was achieved by
implementing a high level of modularity within the kernel and making it easily
configurable to be employed across a variety of hardware. However, some
distributions do provide enhancements as patches to the standard Linux kernel
to “suit” it for embedded systems. But truly speaking one can simply download
a stable Linux kernel source, configure it as per system requirement, cross-
compile, and it should be ready for use. Features such as real-time scheduling
and kernel preemption, which are suited for embedded applications, are now
part of the main kernel source tree.

Following are some of the key differences.

� The way the Linux kernel is configured for embedded systems differs from
its desktop counterpart. The set of device drivers and file systems that is
needed differs in both. For example, an embedded system may need a
flash driver and a flash file system (such as CRAMFS or JFFS2) whereas
they are not needed in a desktop system.

� In embedded Linux more focus is paid to tools that are needed for
development, debugging, and profiling. In embedded Linux focus is paid
to a set of cross-development tools that allow developers to build appli-
cations for their target on say x86-based host systems. On the other hand,
in desktop Linux more focus is paid to a set of packages that are useful
for users such as word processors, e-mail, newsreaders, and so on.

� The utilities that are part of an embedded Linux distribution are different
from similar ones in desktop Linux. Ash, Tinylogin, and Busybox are
considered to be requirements for using with embedded Linux. Even the
application libraries such as uClibc are preferred for embedded applications
as opposed to its Glibc desktop counterpart.1

� Windowing and GUI environments that are used in embedded Linux differ
from the desktop ones. The X window system, which is quite common

Introduction 11

for desktop Linux, is not suited to embedded environments. For embedded
Linux, Microwindows (nanoX) serves a similar purpose.

� Targets deploying embedded Linux mostly run in single-user mode with
almost no system administration capabilities. On the other hand, system
administration plays a very important role in desktop Linux.

1.4 Frequently Asked Questions
In this section we try to answer some of the common questions regarding
embedded Linux.

1.4.1 Is Linux Too Large?

Generally one tends to think that as Linux was designed to run on desktop
systems, it might be bulky and unsuitable for embedded systems. But contrary
to all these speculations, Linux is highly modular and it has an excellent
component selection mechanism. Based on system configuration, one can
keep only the components needed. For example, if no network support is
needed, just disable it at Linux kernel configuration time; no file systems, just
disable them too.

One may also ask about SDRAM and flash requirements of embedded
Linux. A minimal working embedded Linux system with networking and file
system support needs around 4 MB of SDRAM and 2 MB of flash. 16 MB or
32 MB of SDRAM and 4 MB of flash will enable one to add a rich set of
applications to the platform with increased system performance

Some of the small-footprint embedded Linux efforts include the following.

� uClinux, a Linux port for no-MMU platforms such as Motorola 68k, ARM7™,
and so on has a full-featured version with minimum SDRAM and FLASH
requirement.

� ELKS (Embedded Linux Kernel Subset) plans to put embedded Linux in
the Palm Pilot.

� ThinLinux is yet another small-footprint distribution targeted at digital
cameras, MP3 players, and similar embedded applications.

1.4.2 Is Linux Real-Time Enough?

As Linux’s roots are in desktop computing, people question its usage in real-
time systems. There is a lot of work going on in the embedded Linux area
to enable it for real-time systems. The enhancements are either in the form
of a preemptive kernel or real-time–capable scheduler. For hard real-time
applications the dual kernel approach is used in which a real-time executive
is responsible for handling time-critical jobs while preserving the Linux advan-
tage. Today Linux is capable of satisfying the real-time needs of systems. We
discuss more about Linux real-time capabilities in Chapter 7.

12 Embedded Linux System Design and Development

1.4.3 How Can I Protect My Proprietary Software?
There is lot of concern regarding GPL licensing and proprietary software. GPL
licensing is seldom a problem for embedded applications. Proprietary software
can always be kept safe with embedded Linux. Please refer to Appendix B
for a complete discussion on GPL and its use in embedded systems.

1.4.4 Should I Buy a Commercial Embedded Linux Distribution?
This is one of the questions that you may come across when you decide to
use embedded Linux for your target. With embedded Linux, it is not at all
mandatory to go for any commercial distribution. You can always download
free sources and then customize them for the target. But there are some
disadvantages of the “on your own” approach. You may need to spend
considerable time and resources to create a Linux port for your target. Even
if a port is already available, lack of good support and enhanced development
tools can delay the development cycle.

The authors recommend using a commercial embedded Linux distribution,
unless your company has sufficient expertise in embedded Linux. There are
lots of very good open source distributions available. They can also be used
if they fit your requirements.

A commercial distribution comes with various advantages. Some of them
are as follows.

� Support: This is one of the biggest advantages of going with a commercial
distribution. Embedded Linux distribution firms generally have a well-
trained staff and expertise in the area of system software. They can assist
you with any part of your project and for a very low cost.

� Development tools and utilities: With commercial distribution comes a rich
development environment. Most distributions have GUI-based installation,
configuration, development, and debugging tools. Some provide special-
ized tools for profiling. Others have very user-friendly tools for download-
ing the image in the target. They all come with a rich set of utilities
compiled for your platform. All this drastically reduces development time.

� Kernel enhancements: The commercial distribution generally provides some
kernel enhancement either as a part of the kernel or as kernel modules. The
enhancements include increased real-time response of the kernel, reduced
kernel memory and flash footprint, drivers and utilities for supporting graph-
ical or networking needs of embedded applications, and so on.

In a nutshell, a commercial embedded Linux distribution reduces effort
and development time, thus reducing time to market of your product. For a
company that is moving to embedded Linux with no prior Linux experience,
these benefits may ease the movement.

1.4.5 Which Embedded Linux Distribution Do I Choose?
There are lots of embedded Linux distributions available. Choosing the right
one is very important for the successful completion of your project. The
following points should be considered before finalizing a distribution.

Introduction 13

� Package: Is the distribution providing all the software necessary for your
project? For example, it may have tons of utilities and drivers, but does it
really have all the drivers that are needed in your target? Does the package
include development, debugging, and profiling tools?

� Documentation: The distribution should provide documentation and sam-
ple programs for all the tools and utilities that are part of the package. It
should accompany a proper reference manual explaining in detail mech-
anisms such as how to build the binaries and load them in the target, how
to profile the system, and so on. If a distribution is accompanied by any
proprietary software then that too should be properly documented.

� Proprietary software: Some distributions ship proprietary software either
in the form of some tools or some device driver in the form of “binary
only” kernel modules. You should be very careful when choosing such a
distribution. You should be totally convinced that such software from the
distribution is really required and there are no other alternatives. Too much
dependence on proprietary software nullifies the vendor independence
aspect of embedded Linux. Also check if there is any runtime royalty
associated with such software.

� Software upgrades: An embedded Linux distribution vendor keeps enhanc-
ing the distribution either by adding more tools and utilities or using a
higher version of the Linux kernel. Make sure whether they are available
for free or there is extra cost involved.

� Flexibility: Is the distribution fitting well in short- or long-term company
goals? Can you reuse the same software for the future version of your
product? Can you use at least the tools provided, if not the kernel for
some other product on similar lines?

� Support: Finally and most important is the support aspect. Do you need to
sign any separate support contract? What is the cost involved? How good
is the support, whether it be for some bug fixing or writing a whole new
device driver? If possible, check with some existing customer of the vendor.

Choosing the right distribution is very important for the successful com-
pletion of your project. A vendor of an embedded Linux distribution should
guide you in all your system software needs. But a word of caution: too much
dependence on a vendor is also not recommended. A company should slowly
build proper expertise in Linux. This will be a long-term benefit for the
organization.

1.5 Embedded Linux Distributions
In this section we discuss various commercial and open source embedded
Linux distributions available today. The idea of this section is to give readers
a brief description of various embedded Linux distributions to facilitate decision
making for their platform.

In this section we cover prominent distributions such as Cadenux®, Embed-
ded Debian®, Denx, ELinOS®, RTLinux, BlueCat, Metrowerks™, MontaVista,
and TimeSys. We compare distributions against the following points.

14 Embedded Linux System Design and Development

� Features: What are the kernel and toolchain features?
� Development environment: How user-friendly is the development environ-

ment?
� Documentation: What documentation is provided with the distribution?
� Support: What is the support policy?

The distributions are discussed in alphabetical order.

1.5.1 BlueCat Linux

BlueCat Embedded Linux 5.0 from LynuxWorks (www.lynuxworks.com) is a
commercial distribution based on the Linux 2.6 kernel. The distribution is
targeted for use in embedded systems ranging from small consumer-type
devices to large-scale, multi-CPU systems.

Features

BlueCat uses Linux kernel version 2.6 thus providing

� Kernel preemption
� Low-latency fixed-time scheduler
� Improved POSIX threading support; new POSIX threads implementation

based on NPTL (New POSIX Thread Library)
� POSIX timers and real-time signals

It also includes

� Enhanced GNU cross-development tools including GCC 3.2.2, GDB mul-
tithreading debugging support, and kernel debuggers

� Target support for XScale™ micro architecture, PowerPC, IA-32, ARM, MIPS,
and x86 PC-compatibles

� Utilities such as Busybox, Tinylogin, uClibc, and so on
� Zebra routing protocol and enhanced network management and security

features
� Embedded target tools for footprint minimization and kernel configuration

Development Environment

LynuxWorks provides a range of development tools for speedy development.

� VisualLynux™: Windows-based IDE. VisualLynux is a plug-in for Microsoft
Visual Studio™ .NET IDE that lets developers build BlueCat Linux appli-
cations in a Windows host environment. The plug-in provides all the
commands and standard GNU tools needed to streamline application
development for BlueCat Linux targets in a Windows environment.

� CodeWarrior™: Linux- and Solaris®-based IDE. Combining an editor, code
browser, compiler, linker, debugger, and intuitive GUI, the CodeWarrior

Introduction 15

IDE speeds up Linux- and Solaris-based development for BlueCat Linux
targets.

Apart from the above IDEs, LynuxWorks provides the following debugging
tools.

� TotalView: Provides advanced debugging across multiple processors,
threads, and processes

� LynxInsure++: For runtime error detection and analysis
� SpyKer™ : To monitor all the events in a system environment when some

application is running

Documentation

BlueCat Linux 5.0 comes with an extensive user guide that is also available
for downloading from their site.

Support

LynuxWorks provides three support packages.

� BlueCat maintenance support: Mainly aimed at customers who need limited
support. This is competitively priced support for OS development seats
and tools.

� BlueCat priority support: Ideal if you require short response times, unlimited
access, corrections to known or observed defects, and assistance at the
implementation level.

� Block-of-time support: Apart from all the benefits of priority support, in
block-of-time support purchased support hours may be used any time
during a one-year period.

1.5.2 Cadenux

Cadenux specializes in providing embedded Linux distributions for the no-
MMU ARM7 and ARM9™ family of processors. Their distribution is also built
around uClinux.

Features

� Linux BSP: Cadenux provides prebuilt board support packages based on
the 2.0, 2.4, and 2.6 Linux kernels for ARM7 (TI DSC21, DSC25, DM270,
etc.) and ARM9 (TI DM310, OMAP1510, etc.). It also comes with useful
drivers for the above BSPs.

� Shared library support: Cadenux provides shared library support for no-
MMU platforms. Their XFLAT shared library technology allows applications
to link dynamically to libraries.

16 Embedded Linux System Design and Development

� Compressed kernel support: The Linux kernel can be compressed and stored
in flash, thus reducing the flash requirement.

� Real-time extensions: These include an interrupt latency measurement tool,
preemptive kernel, and real-time schedulers.

� File mapping support: Cadenux has implemented file mapping support into
its uClinux 2.4 kernel. File mapping support allows shared program text
sections. This program is like Busybox, which is large and may have
numerous copies running simultaneously. These capabilities were previ-
ously available only with a file system that supports eXecute In Place (XIP)
such as the ROMFS file system on a memory block driver. With file mapping,
these capabilities are available using any file system or block driver.

� Microwindows support: This enables rich GUI applications to run on the
target.

Development Environment

The Cadenux development environment consists of the GUI-based BSP con-
figuration tool, memconfig. This is a one stop for building all the components
of BSP such as the Linux kernel, bootloader, and file systems. Details such
as target platform, SDRAM and flash types, kernel, root file system, and device
details can all be configured with this tool. Cadenux BSPs ship with the rrload
bootloader. Cadenux provides the uClinux toolchain modified to support
XFLAT shared library support. Application libraries such as uClibc and pthreads
are also provided.

Documentation

Cadenux provides extensive documentation. Some of the manuals are the
following.

� Cadenux ARM board support package user’s guide
� RRload bootloader manual
� Cadenux board support package configuration tool
� XFLAT shared library support

The documents are available for download from the Cadenux Web site
(www.cadenux.com). These and other documents regarding device driver
architecture and usage ship with Cadenux BSP.

Support

Cadenux provides support through e-mail or telephone. They offer porting
services to get Linux running on your embedded hardware. They also provide
other services such as driver porting, performance tuning, application devel-
opment, and training for those new to embedded Linux.

Introduction 17

1.5.3 Denx

Denx Software Engineering (www.denx.de) provides open source Linux dis-
tribution in the form of the Embedded Linux Development Kit (ELDK). The
Denx ELDK provides a complete and powerful software development envi-
ronment for embedded and real-time systems. At the time of this writing the
latest version is ELDK 3.1.1.

Features

� Support for the PowerPC, ARM, MIPS, and Xscale processors. The PowerPC
version of the ELDK runs on x86/Linux, x86/FreeBSD®, and on SPARC®/
Solaris hosts and supports a wide range of PowerPC target processors (8xx,
82xx, 7xx, 74xx, 4xx). The ARM version of the ELDK runs on x86/Linux
and x86/FreeBSD hosts and supports especially the ARM920TDI target
processors. Little- and big-endian MIPS processors are also supported.

� Cross-development tools (GCC 3.3.3, GDB 5.2.1, binutils 2.14-6, and glibc
2.3.1).

� Linux kernel version 2.4.25 and U-Boot Open Source boot loader for
Embedded PowerPC, MIPS, ARM, and x86 Systems.

� RTAI (Real-Time Application Interface) extensions for systems requiring
hard real-time responses.

� SELF (Simple Embedded Linux Framework) provides an easily extensible
default configuration for embedded Linux systems.

� ELDK is available for free. Anonymous CVS access for build tools and
source, installation utilities for ELDK, and Linux 2.4.x kernel sources for
ARM, MIPS, and PowerPC.

� Linux STREAMS for Embedded PowerPC.
� Support for mini_fo overlay file system. This file system is similar to the

FreeBSD union file system and serves to virtually make a read-only device
writable.

� Microwindows supports for GUI-intensive applications.

Development Environment

The development environment is the standard Linux development environment
under the ELDK framework.

Documentation

Denx Software Engineering provides The DENX U-Boot and Linux Guide
(DULG). It is an extensive document regarding

� Installation and building ELDK components
� Target image configuration, RFS building, and downloading onto the target
� U-boot and Linux kernel debugging

18 Embedded Linux System Design and Development

Support

Denx Software Engineering provides software engineering services in the area
of embedded and real-time systems with a strong focus on open source
software, especially Linux, but also FreeBSD, NetBSD, and so on.

They provide firmware and operating system porting services for your
hardware. They also work on performance optimization and security concepts.
They also provide training in software development on embedded Linux
systems.

1.5.4 Embedded Debian (Emdebian)

The goal of the embedded Debian project (www.emdebian.org) is to make
Debian GNU/Linux a natural choice for embedded Linux. Debian’s open
development process, its reputation to provide reliability and security, powerful
package manager, and growing range of supported architectures provide a
solid technical foundation for the realization of this goal. Emdebian comes
under the category of open source embedded Linux distribution.

Features

Emdebian differs a bit from other embedded Linux distributions. Its idea is to
use the Debian project in embedded systems. Debian is too large to use as
is in an embedded system. Emdebian is a smaller version of Debian that
retains Debian’s good features such as its packaging system, the licensing, the
availability of source, the build system, and so on. Emdebian is Debian
optimized by size. The Debian core remains the same; only the way packages
are built differs and the packaging system is enhanced to suit an embedded
environment.

Today ports for Intel IA-32, Motorola m68k, Sparc, Alpha, ARM, PowerPC,
MIPS, HP PA-RISC, IA64, and s390 are available. Emdebian mainly targets the
PowerPC architecture.

Development Environment

Two main development environments in Emdebian are Stag and Emdebsys.
Stag is a recent development in Embdebian. However Emdebsys is not
currently under active maintenance.

� Stag is a framework to use the Debian GNU/Linux package management
system for embedded development. Changes are done in debhelper and
dpkg-cross tools to provide full cross-compiler support for Debian pack-
ages. The framework also comes with a fully tested cross-compiler tool-
chain. One of the advantages of the framework is the package dependency
checks. You can select all the packages that should go in the root file
system in one go. Framework then resolves all the package dependencies
giving you an idea of the size of the root file system.

TE
AM
 F
LY

Introduction 19

� Emdebsys is a tool to configure and construct a minimal file system and
kernel from both source and precompiled binaries. It uses Kconfig (or
Configuration Menu Language 2) to define a set of dependencies, so that
one doesn’t need to know everything in order to get a working combination
of modules, files, and binaries.

Documentation

At the time of this writing, work is going on for developing a guide to
embedding Debian. This guide will cover topics such as the following.

� Configuring and building a kernel and root file system
� Boot and runtime kernel configuration options
� Debugging kernel and applications
� Setting up a build system for your target
� Cross-compiling techniques

Support

Being an open source project, the primary means of support and communi-
cation about Emdebian is the Debian-embedded mailing list. Aleph One Ltd
(UK) and Simtec Ltd (UK) also provide commercial support for Emdebian.

1.5.5 ELinOS (SYSGO)

ELinOS is a commercial embedded Linux distribution from SYSGO
(www.sysgo.com). ELinOS is a development environment based on Linux for
the creation of embedded systems for intelligent devices. With ELinOS the
memory demand of Linux is reduced to less than 1 MB ROM and 2 MB RAM.
In this manner, Linux can conform to the reduced hardware conditions of
embedded systems. The core of ELinOS is a Linux kernel custom-tailored for
the target.

Features

ElinOS v3.1 is the latest available at the time of this writing. It has the following
features.

� GNU cross-development toolchain (GCC 3.2.3, GDB 6.0, GLibc 2.3.2)
� Linux kernel version 2.4.25 and 2.6.9
� Real-time extensions such as RTAI (for hard real-time applications), Linux

Trace Toolkit (LTT), Soft Real-Time Support, Real-Time Signal Extension,
and so on

� Support for migration from VxWorks or pSOS® to Linux using the emulation
libraries vxworks2linux and psos2linux

� Support for PowerPC, x86, ARM/Xscale, MIPS, and SH microprocessors

20 Embedded Linux System Design and Development

� Embedded Linux Konfigurator (ELK) 3.2: graphical user interface for the
creation of directly bootable ROM images with integrated kernel and root
file system

� Embedded utilities such as Busybox, thttpd, Tinylogin, and so on

Development Environment

ELinOS v3.1 is enhanced with a fully integrated development environment
(IDE) with two new tools, CODEO and COGNITO.

� CODEO: CODEO is the Eclipse-based integrated development environment
for ELinOS. It includes the ELinOS cross toolchain, the ProjectBuilder,
Target Remote Debugging support, and Target View as well as plug-ins
for target control and target communication.

� COGNITO: COGNITO is a graphical system browser for the analysis of
system runtime behavior and includes the collection, storage, and display
of all system parameters such as memory and system load, covering
modules, processes, and system objects with measurement of response
and scheduling latency.

Documentation

ELinOS v3.1 comes with extensive documentation and demo projects and
examples for typical application profiles such as network, real-time, Web
server, remote debugging, and so on.

Support

SYSGO offers a broad range of support services and training for ELinOS. They
have the following support packages.

� ProjectStart Package: An ELinOS engineer sets up the project at your
premises and assists with project-related queries.

� DevelopmentSupport Package: E-mail support for ELinOS development
toolchain.

� SolutionsSupport Package: Assisting in development of embedded Linux
applications. It is done through e-mail or telephone hotline.

� ProjectSupport Package: One dedicated support engineer for whole project
life cycle taking care of all system software issues and who can be involved
in writing device drivers.

ELinOS v3.1 comes by default with a one-year Development Support Package.

1.5.6 Metrowerks

Metrowerks (www.metrowerks.com) offers a complete end-to-end commercial
embedded Linux development solution, including tools, operating system,
middleware, and software stacks.

Introduction 21

Features

� Metrowerks Linux BSPs (BSPWerks): Metrowerks distribution comes with
in-house developed or third-party BSPs for various target platforms. They
provide a custom BSP for various hardware platforms. Some of the features
are Linux kernel version 2.4.21 with real-time enhancements, kernel and
application debugging support, and bootloaders such as rrload, grub, lilo,
uboot, and the like.

� Metrowerks Linux applications and services: They provide applications
ranging from Web server, Busybox, Tinylogin, and so on, to debugging
and network monitoring tools.

� Support x86, ARM, PowerPC, and ColdFire® architectures.

Development Environment

The development environment consists of the following.

� CodeWarrior™ Development Studio: It allows complete Linux development
from board bring-up through application development for ARM, ColdFire,
and PowerPC architectures. Some of the salient features are:
– IDE Features: Project manager, multifunctional text editor, graphical file

compare and merge, and so on
– Debugger: Multithreading/multiprocess debugging, source- and assem-

bly-level debugging; hardware debugging support using JTAG interface
– Toolchain: Integrated GNU build tools, GCC, linker, and assembler
– Host: Support on both Linux-based and Windows-based hosts

� Platform Creation Suite (PCS): Metrowerks’ Platform Creation Suite is a
tools framework into which Metrowerks Linux BSPs are integrated to
provide a full target Linux OS configure, extend, build, deploy environment.
Some of the utilities included in this suite are:
– TargetWizard: Its primary purpose is to manage and build the Linux

customized for the target.
– Linux Kernel Import Tool (LKIT): LKIT gives flexibility by allowing

replacing or patching of the original BSP kernel with another kernel/
patch you have downloaded, produced in-house, or acquired from
another Linux provider.

– Package Editor: It provides developers with the ability to quickly add
binary or build-from-source applications, services, and device drivers
into Target Wizard, for subsequent build and deployment to the target.

– GNU Tool Importer: The GNU Tool Importer gives the ability to replace
or supplement the existing tool chain with a new version obtained
from alternate sources such as the Internet, alternate Linux providers,
or developed in-house.

� Debugging and performance measurement tools: Some of the debugging
and monitoring tools are:
– Graphical Remote Process Analyzer (GRPA): GRPA facilitates target debug-

ging by displaying profiling information related to processes that are
running on the target. It also provides the ability to perform remote strace.

– CodeTEST®: It is a software verification tool. It delivers the least intrusive
real-time embedded software analysis solution in the industry.

22 Embedded Linux System Design and Development

Documentation

They have an extensive CodeWarrior IDE SDK manual along with documen-
tation for PCS, GRPA, and so on.

Support

Metrowerks provides 30 days of free installation e-mail support for customers
purchasing CodeWarrior development tools. They also provide one year of
technical support either by e-mail or telephone by signing a separate support
contract.

1.5.7 MontaVista Linux

MontaVista Software (www.mvista.com) is a leading global supplier of com-
mercial Linux-based system software and development tools for intelligent
connected devices and associated infrastructure.

Features

There are three different embedded Linux distributions targeted at different
market segments.

� Montavista Linux Professional Edition (3.1): Some of the features are:
– Real-time support: It includes kernel preemption, O(1) real-time sched-

uler, high-resolution POSIX timers, NPTL POSIX thread library.
– Rich Networking: Support for IPV4, IPV6 protocol standards, CPCI

backplane networking, wireless networking, and so on.
– Architecture support: Supports a wide range of PowerPC, ARM, MIPS,

IA32, SuperH™, Xscale, and Xtensa™ architectures.
– Host: Supports Windows-, Solaris-, and Linux-based cross-development

hosts.
� MontaVista Linux Carrier Grade Edition (3.1):

– Operating system features: PICMG 3.0 (ATCA platforms) support, SMP
and Hyper-threading support, IPMI, OSDL Carrier Grade Linux Speci-
fication 1.1 Compliance, support for AIS CLM (Cluster Membership),
API, and AIS AMF (Availability Management Framework), API, remote
boot support, and logical volume management.

– High availability: PICMG 2.12 Hot Swap, persistent device naming,
watchdog timer, CPCI redundant system slot, RAID disk mirroring,
Ethernet failover, and Raid multihost.

– Hardening: Device hardening across the board.
– Architectures: PowerPC, IA32, and PICMG 2.16 systems.

� MontaVista Linux Consumer Electronics Edition: This edition supports all
the features mentioned in the professional edition.
– Some other features are dynamic power management, fast boot, reduced

image footprint, XIP in kernel and applications.

Introduction 23

Development Environment

MontaVista DevRocket™ is a fully graphical IDE providing the tools and
functionality to develop and deploy system software and applications built on
MontaVista Linux. Some salient features are:

� It is ready to run on Windows, Solaris, and Linux host operating systems and
supports integration with third-party Eclipse-based development components.

� It provides comprehensive IDE capabilities, including the latest GNU
toolchains to support system software and application development.

� It includes target configuration and library optimization capabilities that
are used for kernel configuration and trimming libraries.

� It provides sophisticated tracing capabilities, based on the Linux Trace
Toolkit, for viewing, capturing, and analyzing system behavior.

� It supports more than 100 board-level platforms and nearly 30 processor
variants across seven CPU architectures.

� It is compatible with hardware-based, source-level debugging of the Linux
kernel and device drivers with BDM and JTAG-based in-circuit emulation.

Documentation

The distribution comes with extensive documented components of MontaVista
Linux and IDE.

Support

MontaVista provides support for all the MontaVista Linux products. Customers
can reach the MontaVista support through e-mail, phone, voicemail, or fax as
specified by the purchased Product Subscription package.

1.5.8 RTLinuxPro™

FSMLabs™ RTLinuxPro 2.2 (www.fsmlabs.com) is a hard real-time, POSIX
operating system that is based on dual-kernel architecture. The RTCore™ real-
time kernel is the heart of RTLinuxPro that provides hard real-time guarantees
with Linux running as an application program. More details about the dual-
kernel architecture can be found in Chapter 7. It is a commercial distribution.

Features

� Hard real-time: With the dual-kernel architecture RTLinuxPro guarantees
a hard real-time response time for applications.

� POSIX: Supports IEEE® 1003.13 profile 51 for real-time applications and
full access to Linux for non–real-time programs. For real-time applications
that get loaded under the RTcore there is a greater POSIX support, greater
portability, and quicker development.

24 Embedded Linux System Design and Development

� Quickboot: For subsecond boot times down to 200 msec on some platforms.
� IPC: Faster IPC mechanism between the real-time and not real-time appli-

cations. Support for lock-free POSIX I/O provides fast IPC performance.
� Regression suite: For testing the validity of the RTLinuxPro system compo-

nents.
� Drivers: Real-time drivers for serial interfaces, parallel ports, servo drivers,

A/D devices, and more. These are written to be usable and also to serve
as examples. The distribution comes with the 2.4.25 and 2.6 Linux kernel
versions.

� Processor reservation: Simple processor reservation technology providing
guaranteed access to CPU for real-time threads.

� Supports: x86, ARM, StrongARM®, MIPS, PowerPC, Alpha, and Fujitsu® FR-
V processor architectures.

RTLinuxPro also has some important components.

� PSDD: To provide user-space hard real-time with address space protection.
� LNet: To provide hard real-time networking over Ethernet or Firewire®.
� ControlKits: Automatic process control and XML integration tools. Users

can integrate easily with Web apps, spreadsheets, and more.

Development Environment

RTLinuxPro includes a full development kit for embedded Linux and also for
developing real-time applications that run under RTCore. For Linux, tools are
provided to simplify the task of building root file systems. The toolchain is
based on GCC 3.3, which includes full C++ support.

For RTCore, a NetBSD development system with a SMP-qualified NetBSD
2.0 kernel and all the needed tools and utilities are provided. All the tools
are currently BSD hosted.

Documentation

FSMLabs provide an extensive documentation for RTLinuxPro. The package
comes with a 200-plus–page book with examples, explanations, and introduc-
tion to the RTCore programming environment.

Support

FSMLabs’ basic support is sold by the engineering hour, which is an estimate
of how much time will be needed by FSMLabs engineering staff to solve the
problem. Customer support can be remote or even on-site call. Support
contracts can be e-mail/telephone or e-mail depending on the level of support.

1.5.9 TimeSys Linux

TimeSys Linux 5.0 is a 2.6 kernel-based commercial embedded Linux distri-
bution. Timesys Linux 4.0 is based on the 2.4 Linux kernel.

Introduction 25

Features

� Linux 2.6 kernel-based distribution: This includes features such as kernel
preemption, constant time scheduler, POSIX timers, and POSIX message
queues.

� Real-time extensions: This includes support for high-resolution timers,
priority inheritance, enhanced interrupt handling, softirq processing, peri-
odic tasks, and other POSIX 1003.13 real-time extensions.

� CPU reservations: This reserves a dedicated portion of the system’s pro-
cessor time for most critical applications thus protecting applications against
transient processor overloads. It provides simple APIs for managing CPU
reservations.

� Net reservations: This guarantees network bandwidth for critical applica-
tions. It uses a separate network buffer pool to isolate critical applications
from the rest of the system. It also provides a simple API for managing
network reservations.

� Carrier grade/high availability: This supports Hot swap, plug-n-play, Ether-
net Link Aggregation (failover), driver hardening, and IPMI (Intelligent
Platform Management Interface).

� Real-time Java: TimeSys is in the process of developing a Java® virtual
machine based on the Real-Time Specification for Java. This allows real-
time system designers to benefit from Java’s platform independence and
object orientation.

� Network protocols such as IPSec, SSL, NAT, and the like.
� Supports a wide range of architectures from ARM, Xscale, PowerPC, MIPS,

SuperH, IA32.
� Supports both Windows- and Linux-based cross-development hosts.
� Toolchain based on gcc/g++ 3.2.2, gdb 5.3, and binutils 2.13.

Development Environment

Timesys Linux comes with a set of development, debugging, and profiling tools.

� TimeStorm IDE™: It gives complete control over the development, editing,
compiling, and debugging of C/C++/Java-embedded and real-time appli-
cations.

� TimeStorm Linux Development Suite (LDS): TimeStorm LDS™ delivers a
complete set of tools to define, install, bring up, and develop a Linux
Software Development Kit (SDK) on your target platform. As a component
of TimeStorm LDS, the Target Configurator defines configurations and
contents of the root file system and controls the target build.

� TimeStorm Linux Verification Suite (LVS): TimeStorm LVS™ comprises an
automation framework of core elements required to develop, run, manage,
and automate the testing and validation of a Linux SDK on the target
platform.

� TimeStorm Linux Hardware-Assisted Debugging (LHD): TimeStorm LHD™
is a TimeSys product line of JTAG debugging tools that quickly gets Linux
up and running on target hardware, reducing the time spent on hardware/
software integration, initialization, and debugging.

26 Embedded Linux System Design and Development

� TimeWiz®: Windows-based integrated design tool for modeling, analyzing,
and simulating the predicted and simulated performance and timing behav-
ior of dynamic real-time systems.

� TimeTrace®: TimeTrace provides execution data from a running system
and reveals the critical events happening in an application, such as context
switches, timer events, scheduling events, and more, so you can pinpoint
problem areas.

Documentation

The Timesys Linux development kit comes with extensive manuals for the
tools shipped.

Support

Timesys provides various product maintenance and support contracts ranging
from hourly, monthly, to yearly support.

In this section we have discussed some of the prominent open source and
commercial embedded Linux distributions. There are many other embedded
Linux distributions available. ART Linux, miniRTL, KURT, Linux/Resource
Kernel, LOAF (Linux On A Floppy), RedHawk, REDICE Linux, Red Hat, and
Neo Linux are some of them. You are recommended to study their features
also.

1.6 Porting Roadmap
Often companies have their entire product built out of proprietary embedded
OSs. When they decide to move to Linux they are confused about the porting
process and its details, which often leads to wrong deadlines being set for
the porting process. Hence a porting roadmap is necessary; the roadmap will
identify the important milestones for the porting process. It is important that
for each of the milestones you ask the right questions. Depending on the
nature of the product the time needed in the porting process will change.
The following path should be chosen.

� Identify the legal issues behind the porting process: The embedded firms
have to fear more from the issues of GPL than the desktops and servers
in the sense that more often a lot of intellectual property is very tied within
the kernel space. This can range from ports to new architecture or archi-
tecture variants, optimization techniques, or device drivers for some pro-
prietary hardware. Many embedded companies invest huge amounts of
money in developing such components. Hence the most important step
is to get the software projects evaluated by a competent legal team and
to identify what pieces of software go inside the kernel. All the developers
should be informed to take care of licensing issues when porting software
to Linux. Appendix B talks about this in detail.

Introduction 27

� Choosing the kernel and an embedded Linux distribution: Depending on
the system requirements a choice has to be made about which Linux
variant to use: hard real-time Linux or normal Linux. Also depending on
whether your system has an MMU-based controller you need to identify
whether to use uClinux or standard Linux. Depending on the system feature
set you need to identify the appropriate kernel version to use (2.2, 2.4,
2.6). Kernel performance, memory requirements, and size of the distribu-
tion are other important factors that should be considered before finalizing
a kernel version. Chapter 7 discusses real-time features of Linux and
Chapter 10 discusses uClinux. Now the next question arises: Can we just
download the entire software and tools by ourselves and use them, or do
we go along with an embedded Linux distributor such as Timesys or
MontaVista? This depends on the money that the company wants to spend
and how confident it is of its engineering capabilities. The various distri-
butions and their feature sets have already been discussed in this chapter.
The decision regarding use of a commercial distribution should be made
at this point.

� Getting the tools: This includes the hardware environment such as the
Linux-based hosts for doing cross-development and debugging. Often
proprietary embedded operating systems offer Windows-based toolkits and
hence when we move to Linux-based tools, we need to have Linux-based
desktops for cross-development. The cross-development environment com-
prises the tools such as compilers, linkers, debuggers, IDEs, and so on. If
you are using help from a distributor it is very likely that they will supply
you all the tools else you need to download the entire set of tools and
build the development environment by yourself. In Chapter 2 we talk
about how to set up a cross-development environment.

� Porting bootloader and BSP: If you decide to go with a distributor then
there is a very good chance that the BSP for your target is already available
with the distributor, or else you need to port the BSP. The BSP porting is
a complicated task. It involves good understanding of the hardware, Linux
kernel design, and specialized knowledge such as assembly language
programming. In Chapter 3 we take a BSP porting exercise for a MIPS-
based board.

� Porting device drivers: If your target has some proprietary hardware then
you need to port drivers to Linux. If drivers are off-the-shelf hardware
then they should already be part of the kernel or available on the Web
or in the distribution. This book covers a variety of drivers such as storage,
frame buffer, serial, Ethernet, I2C™, and USB driver.

� Porting applications: This task can be done in parallel with the BSP and
the bootloader development as many applications can be tested on the
x86-based Linux host. In Chapter 6 we discuss various strategies for porting
applications to Linux.

� Packaging: This step is crucial if your software needs to be handed over
to an OEM. This includes providing proper configuration scripts and
Makefiles for the kernel and applications, keeping in mind the fact that
an OEM can add his or her own applications. Chapter 8 discusses in detail
building the kernel and applications.

28 Embedded Linux System Design and Development

� Tweaking for performance, memory, and size optimizations: Once the basic
software is in place then lots of tweaking has to be done so that the
required performance can be obtained. This may include optimizing the
code, tweaking the compiler options, and usage of profilers. Also the
memory and storage size is an important factor and usually cannot be
evaluated until the entire system is running with all the functionalities. The
book talks about memory and storage size optimization. Appendix A talks
about boot-up time reduction.

� Interacting with the community and getting latest updates in the kernel:
This is an important activity during the development and support phase
so that the latest patches can be acquired for bugs in the kernel. Your
distributor may also provide you with all the required patches.

Figure 1.1 shows an approximate porting effort estimate when migrating
from another RTOS to Linux. Please note that this is a rough estimate and
the numbers may differ across projects.

Notes
1. These utilities have a very small storage and memory footprint. This is the main

reason why they are preferred in an embedded system although they have fewer
features than their desktop peers.

Figure 1.1 Sample porting effort estimate.

8

7

6

5

4

3

2
1

1. Identifying legal issues (5%)

2. Choosing linux kernel and embedded linux distribution (5%)

3. Getting the tools (5%)

4. Porting bootloader and BSP (25%)

5. Porting device drivers (20%)

6. Porting applications (20%)

7. Packaging (5%)

8. Optimization (15%)

29

Chapter 2

Getting Started

This chapter is divided into three parts. The first part takes a tour of the
various embedded OS architectures and compares them to the Linux archi-
tecture. Then a brief overview of the Linux kernel and user space is given.
The second part of the chapter explains the Linux start-up sequence. The final
part explains the cross-development tools.

2.1 Architecture of Embedded Linux
The Linux OS is monolithic. Generally operating systems come in three flavors:
real-time executive, monolithic, and microkernel. The basic reasoning behind
the classification is how the OS makes use of hardware for protection.

2.1.1 Real-Time Executive

Traditional real-time executives are meant for MMU-less processors. On these
operating systems, the entire address space is flat or linear with no memory
protection between the kernel and applications, as shown in Figure 2.1.

Figure 2.1 shows the architecture of the real-time executive where the core
kernel, kernel subsystems, and applications share the same address space.
These operating systems have small memory and size footprint as both the
OS and applications are bundled into a single image. As the name suggests,
they are real-time in nature because there is no overhead of system calls,
message passing, or copying of data. However, because the OS provides no
protection, all software running on the system should be foolproof. Adding
new software becomes a not-so-pleasant action because it needs to be tested
thoroughly lest it bring down the entire system. Also it is very difficult to add
applications or kernel modules dynamically as the system has to be brought
down. Most of the proprietary and commercial RTOSs fall under this category.

30 Embedded Linux System Design and Development

For the last decade, embedded systems have seen paradigm shifts with
respect to architecture. The traditional embedded system model was based
on having tightly controlled software running on the boards; the cost of
memory and storage space further restricted the amount of software that could
be run on the system. Reliability on real-time executives using the flat memory
model was achieved by a rigorous testing process. However, as the prices of
memory and flash dropped and computing power became cheaper, embedded
systems started having more and more software on their systems. And lots of
this software was not just system software (such as drivers or networking
stack) but were applications. Thus software too started becoming the differ-
entiating factor in selling the embedded systems, which were traditionally
judged mainly by the hardware capabilities. Real-time executives were not
suited for large-scale software integration; hence alternative models were
seriously looked at with the aim of getting more software to run on the system.
Two such models are the monolithic and the microkernel models for operating
systems. These are suited for processors having MMU. Note that if the processor
itself lacks a MMU, then the OS has no alternative but to provide the flat
addressing model. (The Linux derivative uClinux that runs on the MMU-less
processors provides flat address space.)

2.1.2 Monolithic Kernels

Monolithic kernels have a distinction between the user and kernel space.
When software runs in the user space normally it cannot access the system
hardware nor can it execute privileged instructions. Using special entry points
(provided by hardware), an application can enter the kernel mode from user
space. The user space programs operate on a virtual address so that they
cannot corrupt another application’s or the kernel’s memory. However, the
kernel components share the same address space; so a badly written driver
or module can cause the system to crash.

Figure 2.2 shows the architecture of monolithic kernels where the kernel
and kernel submodules share the same address space and where the appli-
cations each have their private address spaces.

Figure 2.1 Architecture of traditional RTOS.

Kernel (scheduler, memory management, IPC)

File System Network Stack Device Drivers

App 1 App 2 App 1 App N. . .

Getting Started 31

Monolithic kernels can support a large application software base. Any fault
in the application will cause only that application to misbehave without causing
any system crash. Also applications can be added to a live system without
bringing down the system. Most of the UNIX OSs are monolithic.

2.1.3 Microkernel

These kernels have been subjected to lots of research especially in the late
1980s and were considered to be the most superior with respect to OS design
principles. However, translating the theory into practice caused too many
bottlenecks; very few of these kernels have been successful in the marketplace.
The microkernel makes use of a small OS that provides the very basic service
(scheduling, interrupt handling, message passing) and the rest of the kernel
(file system, device drivers, networking stack) runs as applications. On the
usage of MMU, the real-time kernels form one extreme with no usage of MMU
whereas the microkernels are placed on the other end by providing kernel
subsystems with individual address space. The key to the microkernel is to
come up with well-defined APIs for communication with the OS as well as
robust message-passing schemes.

Figure 2.3 shows a microkernel architecture where kernel subsystems such
as network stack and file systems have private address space similar to

Figure 2.2 Architecture of monolithic kernel.

Figure 2.3 Architecture of microkernel.

Hardware Abstraction Layer (HAL)

File

System

Network

Stack
Device

Drivers

App 1 App 2 App 1 App N . . .

IPC Scheduler
Memory

Mgmt

System Call Layer

U
se

r
S

p
ac

e
K

er
n

el
 S

p
ac

e

Kernel (message passing)

File

System
Network

Stack
Device

Drivers
App 1 App 2 App N. . . IPC

Sche-

duler

Memory

Mgmt

32 Embedded Linux System Design and Development

applications. Microkernels require robust message-passing schemes. Only if
the message passing is proper are real-time and modularity ensured. Micro-
kernels have been vigorously debated especially against the monolithic ker-
nels. One such widely known debate was between the creator of Linux, Linus
Torvalds, and Andrew Tanenbaum who was the creator of the Minix OS (a
microkernel). The debate may not be of very much interest for the reader
who wants to get right down into embedded Linux.

As we see, these three types of OS operate on totally different philosophies.
On one end of the spectrum we have the real-time kernel that provides no
memory protection; this is done to make the system more real-time but at the
cost of reliability. On the other end, the microkernel provides memory pro-
tection to individual kernel subsystems at the cost of complexity. Linux takes
the middle path of monolithic kernels where the entire kernel operates on a
single memory space. Is this single memory space for the kernel an issue? To
make sure that introduction of new kernel software does not cause any
reliability issues any addition goes through a great deal of scrutiny in terms
of functionality, design, and performance before it gets accepted into the
mainline kernel. This examination process, which can be very trying at times,
has made the Linux kernel one of the most stable pieces of software. It has
allowed the kernel to be employed in a varied range of systems such as
desktops, handhelds, and large servers.

There has been some confusion regarding the monolithic architecture of
Linux with the introduction of dynamically loadable kernel modules. Dynam-
ically loadable kernel modules are pieces of kernel code that are not linked
(included) directly in the kernel. One compiles them separately, and can insert
them into and remove them from the running kernel at almost any time.
Loadable kernel modules have a separate storage and are brought into memory
only when needed, thus saving memory. The point to be noted is that
increasing modularization of the kernel does not make it any less monolithic
because the kernel interacts with the drivers using direct function calls instead
of message passing.

The next two sections present a high-level overview of the Linux kernel
and user space.

2.2 Linux Kernel Architecture
Although the Linux kernel has seen major releases, the basic architecture of
the Linux kernel has remained more or less unchanged. The Linux kernel can
be split into the following subsystems.

� The hardware abstraction layer
� Memory manager
� Scheduler
� File system
� IO subsystem
� Networking subsystem
� IPC

Getting Started 33

We go briefly through each subsystem and detail its usage in an embedded
system.

2.2.1 Hardware Abstraction Layer (HAL)

The hardware abstraction layer (HAL) virtualizes the platform hardware so
that the different drivers can be ported easily on any hardware. The HAL is
equivalent to the BSP provided on most of the RTOSs except that the BSP
on commercial RTOSs normally has standard APIs that allow easy porting.
Why does the Linux HAL not have standard APIs for hooking to the rest of
the kernel? Because of legacy; because Linux was initially meant for the x86
desktop and support for other platforms was added along the way, the initial
developers did not think of standardizing the HAL. However, on recent kernel
versions the idea of coming up with standard APIs for hooking board-specific
software is catching up. Two prominent architectures, ARM and PowerPC,
have a well-described notation of data structures and APIs that make porting
to a new board easier.

The following are some embedded processors (other than x86) supported
on the Linux 2.6 kernel.

� MIPS
� PowerPC
� ARM
� M68K
� CRIS
� V850
� SuperH

The HAL has support for the following hardware components.

� Processor, cache, and MMU
� Setting up the memory map
� Exception and interrupt handling support
� DMA
� Timers
� System console
� Bus management
� Power management

The functions that initialize the platform are explained in more detail in
Section 2.4. Chapter 3 explains in detail steps for porting Linux to a MIPS-
based platform.

2.2.2 Memory Manager

The memory manager on Linux is responsible for controlling access to the
hardware memory resources. The memory manager is responsible for providing

34 Embedded Linux System Design and Development

dynamic memory to kernel subsystems such as drivers, file systems, and
networking stack. It also implements the software necessary to provide virtual
memory to user applications. Each process in the Linux subsystem operates
in its separate address space called the virtual address. By using virtual address,
a process can corrupt neither another process’s nor the operating system’s
memory. Any pointer corruptions within the process are localized to the process
without bringing down the system; thus it is very important for system reliability.

The Linux kernel divides the total memory available into pages. The typical
size of a page is 4 KB. Though all the pages are accessible by the kernel,
only some of them get used by the kernel; the rest are used by applications.
Note that the pages used by the kernel are not part of the paging process;
only the application pages get pulled into main memory on demand. This
simplifies the kernel design. When an application needs to be executing, the
entire application need not be loaded into memory; only the used pages flip
between memory and storage.

The presence of separate user and kernel memory is the most radical
change that a developer can expect when moving from a proprietary RTOS.
For the former all the applications form a part of the same image containing
the OS. Thus when this image is loaded, the applications get copied to memory
too. On Linux, however, the OS and applications are compiled and built
separately; each application needs its own storage instance, often referred to
as the program.

2.2.3 Scheduler

The Linux scheduler provides the multitasking capabilities and is evolving
over the kernel releases with the aim of providing a deterministic scheduling
policy. Before going into the history of the scheduler improvements, let’s
understand the execution instances that are understood by the scheduler.

� Kernel thread: These are processes that do not have a user context. They
execute in the kernel space as long as they live.

� User process: Each user process has its own address space thanks to the
virtual memory. They enter into the kernel mode when an interrupt,
exception, or a system call is executed. Note that when a process enters
the kernel mode, it uses a totally different stack. This is referred to as the
kernel stack and each process has its own kernel stack.

� User thread: The threads are different execution entities that are mapped
to a single user process. The user space threads share a common text,
data, and heap space. They have separate stack addresses. Other resources
such as open files and signal handlers are also shared across the threads.

As Linux started becoming popular, demand for supporting real-time appli-
cations increased. As a result, the Linux scheduler saw constant improvements
so that its scheduling policy became deterministic. The following are some of
the important milestones in the Linux kernel evolution with respect to real-
time features.

Getting Started 35

� Starting from the 1.3.55 kernel, there was support for round robin and
FIFO-based scheduling along with the classic time-sharing scheduler of
Linux. Also it had the facility to disable paging for selected regions of an
application memory; this is referred to as memory locking (because demand
paging makes the system nondeterministic).

� The 2.0 kernel provided a new function nanosleep() that allowed a
process to sleep or delay for a very short time. Prior to this, the minimum
time was around 10 msec; with nanosleep() a process can sleep from
a few microseconds to milliseconds.

� The 2.2 kernel had support for POSIX real-time signals.
� The 2.4 kernel series saw lots of improvements with respect to real-time

scheduling. Most important was the MontaVista patch for kernel preemption
and Andrew Morton’s low-latency patch. These were ultimately pulled in
to the 2.6 kernel.

� The 2.6 kernel has a totally new scheduler referred to as the O(1) scheduler
that brings determinism into the scheduling policy. Also more real-time
features such as the POSIX timers were added to the 2.6 kernel.

Chapter 7 discusses the real-time policies of Linux in more detail.

2.2.4 File System

On Linux, the various file systems are managed by a layer called the VFS or
the Virtual File System. The virtual file system provides a consistent view of
data as stored on various devices on the system. It does this by separating
the user view of file systems using standard system calls but allowing the
kernel developer to implement logical file systems on any physical device.
Thus it abstracts the details of the physical device and the logical file system
and allows users to access files in a consistent way.

Any Linux device, whether it’s an embedded system or a server, needs at
least one file system. This is unlike the real-time executives that need not
have any file system at all. The Linux necessity of file systems stems from
two facts.

� The applications have separate program images and hence they need to
have storage space in a file system.

� All low-level devices too are accessed as files.

It is necessary for every Linux system to have a master file system, the
root file system. This gets mounted at system start-up. Later many more file
systems can be mounted using this file system. If the system cannot mount
the root file system over the specified device it will panic and not proceed
with system start-up.

Along with disk-based file systems, Linux supports specialized file systems
that are flash- and ROM-based for embedded systems. Also there is support
for NFS on Linux, which allows a file system on a host to be mounted on
the embedded system. Linux supports memory-based file systems, which are

36 Embedded Linux System Design and Development

again useful on embedded systems. Also there is support for logical or pseudo
file systems; these can be used for getting the system information as well as
used as debugging tools. The following are some of the commonly used
embedded file systems.

� EXT2: A classical Linux file system that has a broad user base
� CRAMFS: A compressed read-only file system
� ROMFS: A read-only file system
� RAMFS: A read-write, memory-based file system
� JFFS2: A journaling file system built specifically for storage on flash
� PROCFS: A pseudo file system used for getting system information
� DEVFS: A pseudo file system for maintaining the device files

Chapter 4 discusses these file systems in more detail.

2.2.5 IO Subsystem

The IO subsystem on Linux provides a simple and uniform interface to onboard
devices. Three kinds of devices are supported by the IO subsystem.

� Character devices for supporting sequential devices.
� Block devices for supporting randomly accessible devices. Block devices

are essential for implementing file systems.
� Network devices that support a variety of link layer devices.

Chapter 5 discusses the device driver architecture on Linux in more detail
giving specific examples.

2.2.6 Networking Subsystems

One of the major strengths of Linux has been its robust support for various
networking protocols. Table 2.1 lists the major feature set along with the
kernel versions in which they are supported.

2.2.7 IPC

The interprocess communication on Linux includes signals (for asynchronous
communication), pipes, and sockets as well as the System V IPC mechanisms
such as shared memory, message queues, and semaphores. The 2.6 kernel
has the additional support for POSIX-type message queues.

2.3 User Space
The user space on Linux is based on the following concepts.

Getting Started 37

� Program: This is the image of an application. It resides on a file system.
When an application needs to be run, the image is loaded into memory
and run. Note that because of virtual memory the entire process image is
not loaded into memory but only the required memory pages are loaded.

� Virtual memory: This allows each process to have its own address space.
Virtual memory allows for advanced features such as shared libraries. Each
process has its own memory map in the virtual address space; this is
unique for any process and is totally independent of the kernel memory map.

� System calls: These are entry points into the kernel so that the kernel can
execute services on behalf of the application.

Table 2.1 Network Stack Features for 2.2, 2.4, and 2.6 Kernel

Kernel Availability

Feature 2.2 2.4 2.6

Layer 2

Support for bridging Yes Yes Yes

X.25 Yes Yes Yes

LAPB Experimental Yes Yes

PPP Yes Yes Yes

SLIP Yes Yes Yes

Ethernet Yes Yes Yes

ATM No Yes Yes

Bluetooth No Yes Yes

Layer 3

IPV4 Yes Yes Yes

IPV6 No Yes Yes

IP forwarding Yes Yes Yes

IP multicasting Yes Yes Yes

IP firewalling Yes Yes Yes

IP tunneling Yes Yes Yes

ICMP Yes Yes Yes

ARP Yes Yes Yes

NAT Yes Yes Yes

IPSEC No No Yes

Layer 4 (and above)

UDP and TCP Yes Yes Yes

BOOTP/RARP/DHCP Yes Yes Yes

38 Embedded Linux System Design and Development

Let’s take a small example in order to understand how an application runs
in Linux. Assume the following piece of code needs to run as an application
on a MIPS-based target.

#include <stdio.h>
char str[] = “hello world”;
void myfunc()
{
 printf(str);
}
main()
{
 myfunc();
 sleep(10);
}

The steps involved are:

1. Compiling and making an executable program: On an embedded system,
the programs are not built on the target but require a host system with
cross-development tools. More about this is discussed in Section 2.5; for
now assume that you have the host and the tools to build the application,
which we name hello_world.

2. Getting the executable program on a file system on the target board: Chapter
8 discusses the process of building a root file system and downloading
applications on the target. Hence assume that this step is readily available to
you; by some magic you are able to download hello_world onto /bin
of your root file system.

3. Running the program by executing it on the shell: A shell is a command
language interpreter; it can be used to execute files. Without going into
details of how the shell works, assume that when you type the command
/bin/hello_world, your program runs and you see the string on your
console (which is normally the serial port).

For a MIPS-based target the following command is used to generate the
executable.

 #mips_fp_le-gcc hello_world.c -o hello_world
 #ls -l hello_world
 -rwxrwxr-x 1 raghav raghav 11782 Jul 20 13:02 hello_world

Four steps are involved in it: Generating preprocessed output, followed
by generating assembly language output, which is followed by generating
object output, and then the last stage of linking. The output file hello_world
is a MIPS-executable file in a format called ELF (Executable Linkage Format).
All executable files have two formats: binary format and script files. Executable
binary formats that are most popular on embedded systems are the COFF,
ELF, and the flat format. The flat format is used on MMU-less uClinux systems
and is discussed in Chapter 10. COFF was the earlier default format and was
replaced by the more powerful and flexible ELF format. The ELF format

Getting Started 39

consists of a header followed by many sections including the text and the
data. You can use the nm command to find the list of symbols in an executable
as shown in Listing 2.1.

As you can see, the functions main and myfunc as well as the global data
str have been assigned addresses but the printf function is undefined
(specified by the “U”) and is defined as printf@@GLIBC. This means that
the printf is not a part of the hello_world image. Then where is this
function defined and how are the addresses resolved? This function is part of

Listing 2.1 Symbol Listing Using nm

#mips_fp_le-nm hello_world
0040157c A __bss_start
004002d0 t call_gmon_start
0040157c b completed.1
00401550 d __CTOR_END__
0040154c d __CTOR_LIST__
0040146c D __data_start
0040146c W data_start
00400414 t __do_global_ctors_aux
004002f4 t __do_global_dtors_aux
00401470 D __dso_handle
00401558 d __DTOR_END__
00401554 d __DTOR_LIST__
00401484 D _DYNAMIC
0040157c A _edata
00400468 r __EH_FRAME_BEGIN__
00401580 A _end
00400438 T _fini
0040146c A __fini_array_end
0040146c A __fini_array_start
00400454 R _fp_hw
00400330 t frame_dummy
00400468 r __FRAME_END__
00401560 D _GLOBAL_OFFSET_Table_
 w __gmon_start__
00400254 T _init
0040146c A __init_array_end
0040146c A __init_array_start
00400458 R _IO_stdin_used
0040155c d __JCR_END__
0040155c d __JCR_LIST__
 w _Jv_RegisterClasses
004003e0 T __libc_csu_fini
004003b0 T __libc_csu_init
 U __libc_start_main@@GLIBC_2.0
00400374 T main
0040035c T myfunc
00401474 d p.0
 U printf@@GLIBC_2.0
 U sleep@@GLIBC_2.0
004002ac T _start
00401478 D str

40 Embedded Linux System Design and Development

a library, libc (C library). Libc contains a list of commonly used functions. For
example, the printf function is used in almost all applications. Thus instead
of having it reside in every application image, the library becomes a common
placeholder for it. If the library is used as a shared library then not only does
it optimize storage space, it optimizes memory too by making sure that only
one copy of the text resides in memory. An application can have more libraries
either shared or static; this can be specified at the time of linking. The list of
dependencies can be found by using the following command (the shared
library dependencies are the runtime dynamic linker ld.so and the C library).

#mips_fp_le-ldd hello_world
libc.so.6
ld-linux.so.2

So in effect at the time of creating the executable, all relocation and the
symbol resolution have not happened. All functions and global data variables
that are not part of shared libraries have been assigned addresses and their
addresses resolved so that the caller knows their runtime addresses. However,
the runtime address of the shared libraries is not yet known and hence their
resolution (for example, from the myfunc function that calls printf) is
pending. This all happens at runtime when the program is actually run from
the shell.

Note that there is an alternative to using shared libraries and that is to
statically link all the references. For example, the above code can be linked
to a static C library libc.a (which is an archive of a set of object files) as
shown below.

#mips_fp_le-gcc -static hello-world.c -o hello_world

If you do the symbol listing of the file as shown above, the printf function
is given an address. Using static libraries has the disadvantage of wasting
storage and memory at the cost of faster application start-up speed. Now let
us run the program on the board and examine its memory map.

#/bin/hello_world &
[1] 4479
#cat /proc/4479/maps
00400000-00401000 r-xp 00000000 00:07 4088393 /bin/hello_world
00401000-00402000 rw-p 00001000 00:07 4088393 /bin/hello_world
2aaa8000-2aac2000 r-xp 00000000 00:07 1505291 /lib/ld-2.2.5.so
2aac2000-2aac4000 rw-p 00000000 00:00 0
2ab01000-2ab02000 rw-p 00019000 00:07 1505291 /lib/ld-2.2.5.so
2ab02000-2ac5f000 r-xp 00000000 00:07 1505859 /lib/
 libc-2.2.5.so
2ac5f000-2ac9e000 ---p 0015d000 00:07 1505859 /lib/
 libc-2.2.5.so
2ac9e000-2aca6000 rw-p 0015c000 00:07 1505859 /lib/
 libc-2.2.5.so
2aca6000-2acaa000 rw-p 00000000 00:00 0
7ffef000-7fff8000 rwxp ffff8000 00:00 0

Getting Started 41

As we see along with the main program’s hello_world, a range of the
addresses is allocated to libc and the dynamic linker ld.so. The memory map
of the application is created at runtime and then the symbol resolution (in
our case the printf) is done. This is done by a series of steps. The ELF
loader, which is built as a part of the kernel, scans the executable and finds
out that the process has shared library dependency; hence it calls the dynamic
linker ld.so. The ld.so, which is also implemented as a shared library, is a
bootstrap library; it loads itself and the rest of the shared libraries (libc.so)
into memory thus freezing the memory map of the application and does the
rest of the symbol resolution.

This leaves us with one last question: how does the printf actually work?
As we discussed above, any services to be done by the kernel require that
an application make a system call. The printf too does a system call after
doing all its internal work. Because the actual implementation of system calls
is very hardware dependent, the C library hides all this by providing wrappers
that invoke the actual system call. The list of all system calls that are done
by the application can be known using an application called strace; for
example, running strace on the application yields the following output a
part of which is shown below.

#strace hello_world
...
write(1, "hello world", 11) = 11
...

Now that we have a basic idea of the kernel and user space, let us proceed
to the Linux system start-up procedure.

2.4 Linux Start-Up Sequence
Now as we have a high-level understanding of Linux architecture, understand-
ing the start-up sequence will give the flow of how the various kernel
subsystems are started and how Linux gives control to the user space. The
Linux start-up sequence describes the series of steps that happen right from
the moment a Linux system is booted on until the user is presented with a
log-in prompt on the console. Why do you need to understand the start-up
sequence at this stage? The understanding of the start-up sequence is essential
to mark milestones in the development cycle. Also once the start-up is
understood, the basic pieces necessary for building a Linux system such as
the boot loader and the root file system will be understood. On embedded
systems the start-up time often has to be as small as possible; understanding
the details will help the user to tweak the system for a faster start-up. Please
refer to Appendix A for more details on fast boot-up.

The Linux start-up sequence can be split into three phases.

� Boot loader phase: Typically this stage does the hardware initialization and
testing, loads the kernel image, and transfers control to the Linux kernel.

42 Embedded Linux System Design and Development

� Kernel initialization phase: This stage does the platform-specific initializa-
tion, brings up the kernel subsystems, turns on multitasking, mounts the
root file system, and jumps to user space.

� User- space initialization phase: Typically this phase brings up the services,
does network initialization, and then issues a log-in prompt.

2.4.1 Boot Loader Phase

Boot loaders are discussed in detail in Chapter 3. This section skims over the
sequence of steps executed by the boot loader.

Hardware Initialization

This typically includes:

1. Configuring the CPU speed
2. Memory initialization, such as setting up the registers, clearing the memory,

and determining the size of the onboard memory
3. Turning on the caches
4. Setting up the serial port for the boot console
5. Doing the hardware diagnostics or the POST (Power On Self-Test diag-

nostics)

Once the above steps are completed successfully, the next step is loading
the Linux kernel.

Downloading Kernel Image and Initial Ram Disk

The boot loader needs to locate the kernel image, which may be on the
system flash or may be on the network. In either case, the image needs to
be loaded into memory. In case the image is compressed (which often is the
case), the image needs to be decompressed. Also if an initial ram disk is
present, the boot loader needs to load the image of the initial ram disk to
the memory. Note that the memory address to where the kernel image is
downloaded is decided by the boot loader by reading the ELF header of the
kernel image. In case the kernel image is a raw binary dump, additional
information needs to be passed to the boot loader regarding the placement
of the kernel sections and the starting address.

Setting Up Arguments

Argument passing is a very powerful option supported by the Linux kernel.
Linux provides a generic way to pass arguments to the kernel across all
platforms. Chapter 3 explains this in detail. Typically the boot loader has to
set up a memory area for argument passing, initialize it with the required data
structures (that can be identified by the Linux kernel), and then fill them up
with the required values.

Getting Started 43

Jumping to Kernel Entry Point

The kernel entry point is decided by the linker script when building the kernel
(which is typically present in linker script in the architecture-specific directory).
Once the boot loader jumps to the kernel entry point, its job is done and it
is of no use. (There are exceptions to this; some platforms offer a boot PROM
service that can be used by the OS for doing platform-specific operations.) If
this is the case and if the boot loader executes from memory, that memory
can be reclaimed by the kernel. This should be taken into account when
deciding the memory map for the system.

2.4.2 Kernel Start-Up

The kernel start-up can be split into the following phases.

CPU/Platform-Specific Initialization

If you are porting Linux to your platform this section is very important as it
marks the important milestones in BSP porting. The platform-specific initial-
ization consists of the following steps.

1. Setting up the environment for the first C routine: The kernel entry point
is an assembly language routine; the name of this entry point varies (stext
on ARM, kernel_entry on MIPS, etc.). Look at the linker script to know
the entry point for your platform. This function normally resides in the
arch/<name>/kernel/head.S file. This function does the following.
a. On machines that do not have the MMU turned on, this turns on the

MMU. Most of the boot loaders do not work with the MMU so the
virtual address equals the physical address. However, the kernel is
compiled with the virtual address. This stub needs to turn on the MMU
so that the kernel can start using the virtual address normally. This is
not required on platforms such as MIPS where the MMU is turned on
at power-on.

b. Do cache initialization. This is again platform-dependent.
c. Set up the BSS by zeroing it out (normally you cannot rely on the boot

loader to do this).
d. Set up the stack so that the first C routine can be invoked. The first C

routine is the start_kernel() function in init/main.c. This
function is a jumbo function that does a lot of things until it terminates
in an idle task (the first task in the system having a process id of 0).
This function invokes the rest of the platform initialization functions
that are discussed below.

2. The setup_arch() function: This function does the platform- and CPU-
specific initialization so that the rest of the initialization can be invoked
safely. Again this is highly platform-specific; only the common functional-
ities are explained:
a. Recognizing the processor. Because a CPU architecture can come in

various flavors, this function recognizes the processor (such as, if you

44 Embedded Linux System Design and Development

have selected the ARM processor this finds out the ARM flavor) using
hardware or information that may be passed at the time of building.
Again any processor-specific fixups can be done in this code.

b. Recognizing the board. Again because the kernel supports a variety of
boards this option recognizes the board and does the board-specific
fixups.

c. Analysis of command-line parameters passed to the kernel.
d. Identifying the ram disk if it has been set up by the boot loader so

that the kernel later can mount it as the root file system. Normally the
boot loader passes the starting of the ram disk area in memory and size.

e. Calling the bootmem functions. Bootmem is a misnomer; it refers to
the initial memory that the kernel can reserve for various purposes
before the paging code grabs all the memory. For example, you can
reserve a portion of a contiguous large memory that can be used for
DMA by your device by calling the bootmem allocator.

f. Calling the paging initialization function, which takes the rest of the
memory for setting up pages for the system.

3. Initialization of exceptions — the trap_init() function: This function
sets the kernel-specified exception handlers. Prior to this if an exception
happens, the outcome is platform-specific. (For example, on some plat-
forms the boot loader-specified exception handlers get invoked.)

4. Initialization of interrupt handling procedure — the init_IRQ() func-
tion: This function initializes the interrupt controller and the interrupt
descriptors (these are data structures that are used by the BSP to route
interrupts; more of this in the next chapter). Note that interrupts are not
enabled at this point; this is the responsibility of the individual, drivers
owning the interrupt lines to enable them during their initialization which
is called later. (For example, the timer initialization would make sure that
the timer interrupt line is enabled.)

5. Initialization of timers — the time_init() function: This function ini-
tializes the timer tick hardware so that the system starts producing the
periodic tick, which is the system heartbeat.

6. Initialization of the console—the console_init() function: This func-
tion does the initialization of the serial device as a console. Once the
console is up, all the start-up messages appear on the screen. To print a
message from the kernel, the printk() function has to be used.
(printk() is a very powerful function as it can be called from anywhere,
even from interrupt handlers.)

7. Calculating the delay loops for the platform — the calibrate_delay()
function: This function is used to implement microdelays within the kernel
using the udelay() function. The udelay() function spins for a few
cycles for the microseconds specified as the argument. For udelay to
work, the number of clock cycles per microsecond needs to be known
by the kernel. This is exactly done by this function; it calibrates the number
of delay loops. This makes sure that the delay loops work uniformly across
all platforms. Note that the working of this depends on the timer interrupt.

Getting Started 45

Subsystem Initialization

This includes

� Scheduler initialization
� Memory manager initialization
� VFS initialization

Note that most of the subsystem initialization is done in the
start_kernel() function. At the end of this function, the kernel creates
another process, the init process, to do the rest of the initialization (driver
initialization, initcalls, mounting the root file system, and jumping to user
space) and the current process becomes the idle process with process id of 0.

Driver Initialization

The driver initialization is done after the process and memory management
is up. It gets done in the context of the init process.

Mounting Root File System

Recall that the root file system is the master file system using which other file
systems can be mounted. Its mounting marks an important process in the
booting stage as the kernel can start its transition to user space. The block
device holding the root file system can be hard-coded in the kernel (while
building the kernel) or it can be passed as a command line argument from
the boot loader using the boot loader tag “root=”.

There are three kinds of root file systems that are normally used on
embedded systems:

� The initial ram disk
� Network-based file system using NFS
� Flash-based file system

Note that the NFS-based root file system is mainly used for debugging
builds; the other two are used for production builds. The ram disk simulates
a block device using the system memory; hence it can be used to mount file
systems provided a file system image is copied onto it. The ram disk can be
used as a root file system; this usage of the ram disk is known as initrd (short
form for initial ram disk). Initrd is a very powerful concept and has wide uses
especially in the initial parts of embedded Linux development when you do
not have a flash driver ready but your applications are ready for testing (often
this is the case when you have a driver and a separate application team
working in parallel). So how do you proceed without a flash-based root file
system? You can use a network-based file system provided your network driver
is ready; if not, the best alternative is the initrd. Creating an initial ram disk
is explained in more detail in Chapter 8. This section explains how the kernel

46 Embedded Linux System Design and Development

mounts an initrd as the root file system. If you want the kernel to load an
initrd, you should configure the kernel during the build process with the
CONFIG_BVLK_DEV_INITRD option. As previously explained, the initrd image
is loaded along with the kernel image and the kernel needs to be passed the
starting address and ending address of the initrd using command line argu-
ments. Once it is known, the kernel will mount a root file system loaded on
initrd. The file systems normally used are romfs and ext2 file systems.

There is more magic to initrd. Initrd is a use-and-throw root file system.
It can be used to mount another root file system. Why is this necessary?
Assume that your root file system is mounted on a storage device whose
driver is a kernel module. So it needs to be present on a file system. This
presents a chicken-and-egg problem; the module needs to be on a file system,
which in turn requires that the module be loaded first. To circumvent this,
the initrd can be used. The driver can be made as a module in the initrd;
once the initrd is mounted then the driver module can be loaded and hence
the storage device can be accessed. Then the file system on that storage device
can be mounted as the actual root file system and finally the initrd can be
discarded. The Linux kernel provides a way for this use-and-throw facility; it
detects a file linuxrc in the root of the initrd and executes it. If this binary
returns, then the kernel assumes that initrd is no longer necessary and it
switches to the actual root file system (the file linuxrc can be used to load
the driver modules). NFS and flash-based file systems are explained in more
detail in Chapter 4.

If the root file system is not mounted, the kernel will stall execution and
enter the panic mode after logging the complaint on the console:

Unable to mount root fs on device

Doing Initcall and Freeing Initial Memory

If you open the linker script for any architecture, it will have an init section.
The start of this section is marked using __init_begin and the end is marked
using __init_end. The idea of this section is that it contains text and data
that can be thrown away after they are used once during the system start-up.
Driver initialization functions are an example of the use-and-throw function.
Once a driver that is statically linked to the kernel does its registration and
initialization, that function will not be invoked again and hence it can be
thrown away. The idea behind putting all such functions together is that the
entire memory occupied by all such functions can be freed as a big chunk
and hence will be available for the memory manager as free pages. Considering
that memory is a scarce resource on the embedded systems, the reader is
advised to use this concept effectively. A use-and-throw function or variable
is declared using the __init directive. Once all the driver and subsystem
initialization is done, the start-up code frees all the memory. This is done just
before moving to user space.

Linux also provides a way of grouping functions that should be called at
system start-up time. This can be done by declaring the function with the

Getting Started 47

__initcall directive. These functions are automatically called during kernel
start-up, so you need not insert them into system start-up code.

Moving to User Space

The kernel that is executing in the context of the init process jumps to the
user space by overlaying itself (using execve) with the executable image of
a special program also referred to as init. This executable normally resides
in the root file system in the directory /sbin. Note that the user can specify
the init program using a command line argument to the kernel. However,
if the kernel is unable to load either the user-specified init program or the
default one, it enters the panic state after logging the complaint:

No init found. Try passing init= option to the kernel.

2.4.3 User Space Initialization

User space initialization is distribution dependent. The responsibility of the
kernel ends with the transition to the init process. What the init process
does and how it starts the services is dependent on the distribution. We now
study the generic model on Linux (which assumes that the init process is
/sbin/init); the generic model is pretty similar to the initialization sequence
of a UNIX variant, System V UNIX.

The /sbin/init Process and /etc/inittab

The init process is a very special process to the kernel; it has the following
capabilities.

� It can never be killed. Linux offers a signal called SIGKILL that can
terminate execution of any process but it cannot kill the init process.

� When a process starts another process, the latter becomes the child of the
former. This parent–child relationship is important. In case the parent dies
before the child then init adopts the orphaned processes.

� The kernel informs the init of special events using signals. For example:
if you press the Ctrl-Alt-Del on your system keyboard, this makes
the kernel send a signal to the init process, which typically does a
system shutdown.

The init process can be configured on any system using the inittab
file, which typically resides in the /etc directory. init reads the inittab
file and does the actions accordingly in a sequential manner. init also decides
the system state known as run level. A run level is a number that is passed
as an argument to init. In case none is passed the default run level can be
picked up by init from the inittab file. The following are the run levels
that are used.

48 Embedded Linux System Design and Development

� 0 – Halt the system
� 1 – Single-user mode (used for administrative purposes)
� 2 – Multi-user mode with restricted networking capabilities
� 3 – Full multi-user mode
� 4 – Unused
� 5 – Graphics mode (X11™)
� 6 – Reboot state

The inittab file has a special format. It generally has the following details.
(Please refer to the main page of inittab on your system for more information.)

� The default run level.
� The actions to be taken when init is moved to a run level. Typically a

script /etc/rc.d/rc is invoked with the run level as the argument.
� The process that needs to be executed during system start-up. This is

typically the file /etc/rc.d/rc.sysinit file.
� init can respawn a process if it is so configured in the inittab file.

This feature is used for respawning the log-in process after a user has
logged out from his previous log-in.

� Actions to trap special events such as Ctrl-Alt_Del or power failure.

The rc.sysinit File

This file does the system initialization before the services are started. Typically
this file does the following on an embedded system.

� Mount special file systems such as proc, ramfs
� Create directories and links if necessary
� Set the hostname for the system
� Set up networking configuration on the system

Starting Services

As mentioned above, the script /etc/rc.d/rc is responsible for starting the
services. A service is defined as a facility to control a system process. Using
services, a process can be stopped, restarted, and its status can be queried.
The services are normally organized into directories based on the run levels;
depending on what run level is chosen the services are stopped or started.
After performing the above steps, the init starts a log-in program on a TTY or
runs a window manager on the graphics display (depending on the run level).

2.5 GNU Cross-Platform Toolchain
One of the initial steps in the embedded Linux movement is setting up the
toolchains for building the kernel and the applications. The toolchain that is
used on embedded systems is known as the cross-platform toolchain. What

Getting Started 49

exactly does a cross-platform mean? Normally an x86 compiler is used to
generate code for the x86 platform. However, this may not be the case in
embedded systems. The target on which the application and kernel need to
run may not have enough memory and disk space to house the build tools.
Also in most cases the target may not have a native compiler. In such cases
cross-compilation is the solution. Cross-compilation generally happens on the
desktop (usually an x86-based one) by using a compiler that runs on Linux-
x86 (HOST) and generates code that is executable on the embedded (TARGET)
platform. This process of compiling on a HOST to generate code for the
TARGET system is called cross-compilation and the compiler used for the
purpose is called a cross-compiler.

Any compiler requires a lot of support libraries (such as libc) and binaries
(such as assemblers and linkers). One would require a similar set of tools for
cross-compilation too. This whole set of tools, binaries, and libraries is col-
lectively called the cross-platform toolchain. The most reliable open source
compiler toolkit available across various platforms is the GNU compiler and
its accessory tools are called the GNU toolchain. These compilers are backed
up by a host of developers across the Internet and tested by millions of people
across the globe on various platforms.

A cross-platform toolchain has the components listed below.

� Binutils: Binutils are a set of programs necessary for compilation/linking/
assembling and other debugging operations.

� GNU C compiler: The basic C compiler used for generating object code
(both kernel and applications).

� GNU C library: This library implements the system call APIs such as open,
read, and so on, and other support functions. All applications that are
developed need to be linked against this base library.

Apart from GCC and Glibc, binutils are also an important part of a toolchain.
Some of the utilities that constitute binutils are the following.

� addr2line: It translates program addresses into file names and line
numbers. Given an address and an executable, it uses the debugging
information in the executable to figure out which file name and line number
are associated with a given address.

� ar: The GNU ar program creates, modifies, and extracts from archives.
An archive is a single file holding a collection of other files in a structure
that makes it possible to retrieve the original individual files (called
members of the archive).

� as: GNU as is a family of assemblers. If you use (or have used) the GNU
assembler on one architecture, you should find a fairly similar environment
when you use it on another architecture. Each version has much in common
with the others, including object file formats, most assembler directives
(often called pseudo-ops), and assembler syntax.

� c++filt: The c++filt program does the inverse mapping: it decodes
low-level names into user-level names so that the linker can keep these
overloaded functions from clashing.

50 Embedded Linux System Design and Development

� gasp: The GNU assembler macro preprocessor.
� ld: The GNU linker ld combines a number of object and archive files,

relocates their data, and ties up symbol references. Often the last step in
building a new compiled program to run is a call to ld.

� nm: GNU nm lists the symbols from object files.
� objcopy: The GNU objcopy utility copies the contents of an object file

to another. objcopy uses the GNU BFD library to read and write the
object files. It can write the destination object file in a format different
from that of the source object file. The exact behavior of objcopy is
controlled by command-line options.

� objdump: The GNU objdump utility displays information about one or
more object files. The options control what particular information to
display, such as symbol table, GOT, and the like.

� ranlib: ranlib generates an index to the contents of an archive, and
stores it in the archive. The index lists each symbol defined by a member
of an archive that is a relocatable object file.

� readelf: It interprets headers on ELF files.
� size: The GNU size utility lists the section sizes and the total size for

each of the object files in its argument list. By default, one line of output
is generated for each object file or each module in an archive.

� strings: GNU strings print the printable character sequences that are
at least characters long and are followed by an unprintable character. By
default, it only prints the strings from the initialized and loaded sections
of object files; for other types of files, it prints the strings from the whole file.

� strip: GNU strip discards all symbols from the target object file(s).
The list of object files may include archives. At least one object file must
be given. strip modifies the files named in its argument, rather than
writing modified copies under different names.

2.5.1 Building Toolchain

Building a cross-platform toolchain is slightly tricky and can get highly irritating
at times when the build process fails. Hence it is advisable to download
prebuilt cross-platform toolchains directly for your target platform. Note that
although the binutils and the C compiler can be used for both kernel and
applications build, the C library is used only by the applications.

Here is a set of links where you can pick up the latest cross-platform
toolchain.

� ARM: http://www.emdebian.org/
� PPC: http:// www.emdebian.org/
� MIPS: http://www.linux-mips.org/
� M68K: http://www.uclinux.org/

Now if you are unlucky and the cross-compiler for your platform is not
available off the shelf then the steps outlined below will help you in compiling
a cross-platform.

Getting Started 51

1. Decide the TARGET.
2. Decide on the Kernel/GCC/Glibc/Binutils version combo.
3. Procure patches for all the above, if any available.
4. Decide PREFIX variable, where to put the image.
5. Compile binutils.
6. Obtain suitable KERNEL HEADERS for your platform.
7. Compile minimal GCC.
8. Build Glibc.
9. Recompile full-featured GCC.

Picking a Target Name

The target name decides the compiler that you are building and its output.
Here are some of the basic types.

� arm-linux: Support for ARM processors such as armV4, armv5t, and so on.
� mips-linux: Support for various MIPS core such as r3000, r4000, and so on.
� ppc-linux: Linux/PowerPC combination with support for various PPC chips.
� m68k-linux: This targets Linux running on the Motorola 68k processor.

A complete list can be found at http://www.gnu.org.

Picking the Right Version Combination

This is the trickiest portion of all steps and most likely the cause of all
problems. It is necessary to do some research and decide on the right version
combination that will work for your target. Check up on the most active
mailing list archives to guide you. For example, ARM/Kernel 2.6/GCC 2.95.1,
GCC 3.3/BINUTILS 2.10.x or ARM / Kernel 2.4/GCC 2.95.1/BINUTILS 2.9.5
are known good combinations for arm-linux.

Any Patches Available?

After you decide on the version number, also be sure to search for available
patches. The decision of taking up a patch or not solely depends on your
requirements.

Choosing a Directory Structure and Setting Variables

Before you build the toolchain, the directory tree for storing the tools and
the kernel headers must be decided. The directory tree is also exported using
certain specified variables to make the job of building smoother. The following
variables are used.

� TARGET: This variable represents the machine target name. For example,
TARGET=mips-linux.

52 Embedded Linux System Design and Development

� PREFIX: This is the base directory containing all the other subdirectories
of your toolchain; the default for the native toolchain on any system is
almost always /usr. This means, you will find gcc (binary) in BINDIR =
$PREFIX/bin and headers in INCLUDEDIR= $PREFIX/include. To
keep from stepping on your system’s native tools when you build a cross-
compiler you should put your cross-development toolchain in some path
other than the default /usr. For example, PREFIX=/usr/local/mips/.

� KERNEL_SOURCE_DIR: This is the place where your kernel source (or at
least kernel headers) is stored. Especially if you are cross-compiling this
may well be different from the native set of files. It is good practice to
keep the Linux kernel files under the PREFIX/TARGET directory. For
example, KERNEL_SOURCE_DIR = PREFIX/TARGET/linux (i.e., /usr/
local/mips/linux).

� NATIVE: The host platform (usually x86).

Building Binutils

The first step is to build GNU binutils. Version 2.9.5 is stable but the latest
release is recommended. The steps are as follows.

1. Download and unpack: Download the latest version from ftp://ftp.gnu.org/
gnu/binutils/. Unpack the archive using the commands:

cd $PREFIX/src
tar -xzf binutils-2.10.1.tar.gz

There may be target-specific patches available for binutils that resolve
various bugs; it’s usually a good idea to apply these to the source, if they
exist. The best place to get up-to-date information is the toolchain mailing
list.

2. Configure: The configure script sets up a lot of compilation parameters,
installed binaries, and machine configuration. The commands to cross-
compile on HOST for some TARGET are:

 ./configure --target=$TARGET --prefix=$PREFIX

For example,

./configure --target=mips-linux --prefix=/usr/local/mips

3. Build: Invoke make in the binutils directory to compile binutils.
4. Install: Invoke make install in the binutils folder to install the

toolchain. Before you install, ensure that the install path does not replace
existing binutils if you already have them, unless and until you really want
to force that. You’ll notice your new set of tools in PREFIX/TARGET/.

Getting Started 53

Obtain Suitable Kernel Headers

The first step in building a GCC is to set up kernel headers. Cross-compiling
the toolchain requires the kernel headers. The following is the list of steps
that are needed to do so.

1. Download a Linux kernel from ftp.kernel.org. Unpack the tar. We suggest
$PREFIX/linux (e.g., /usr/local/mips/linux).

2. Apply kernel patches if necessary.
3. Set the architecture for which you are extracting the header files. This is

done by setting the ARCH variable in the top-level Makefile such as
ARCH=mips.

4. Configure the kernel even though you won’t necessarily want to compile
from it. Issue make menuconfig in the top-level kernel source directory:

make menuconfig

This will bring up the kernel build configuration program. If you have X
running on your system, you may run make xconfig. Select the option:
System and processor type, and select a system consistent with the
tools you’re building.

5. Build dependencies (This step is only needed for 2.4 kernels). Exit the
configuration program saving the changes, and then run:

make dep

This command actually makes the links (linking /usr/local/mips/
linux/include/asm/ to /usr/local/mips/linux/include/asm-
arm, etc.) and ensures your kernel headers are in usable condition.

Building Minimal GCC

Minimal GCC is the compiler that has only basic C language support. Once
the minimal GCC is built, the glibc can be built for the target. Glibc is then
used for building full-featured GCC with C++ support. After setting up the
kernel headers we can now build minimal GCC. The steps are as follows.

1. Download and unpack: Download the latest version of GCC from http://
gcc.gnu.org. Unpack the downloaded GCC. You may then choose to apply
patches if they exist.

2. Configure: This could be done in a similar way as done for binutils.

./configure --target=$TARGET --prefix=$PREFIX
-–with-headers=$KERNEL_SOURCE_DIR/include --enable-languages=c

For example,

./configure --target=mips-linux --prefix=/usr/local/mips/
--with-headers=/usr/local/mips/linux/include --enable-languages=c

54 Embedded Linux System Design and Development

The last option given to configure -enable-languages=c is necessary
because the minimal GCC can support languages other than C and currently
we need C language support.

3. Build: For compiling the minimal GCC you need to just invoke the make
command. If you are compiling for the first time this may result in the
following error.

 ./libgcc2.c:41: stdlib.h: No such file or directory
 ./libgcc2.c:42: unistd.h: No such file or directory
 make[3]: *** [libgcc2.a] Error 1

This error can be fixed using a hack called inhibit-libc. The procedure is:
a. Edit the configuration file to add the line -Dinhibit_libc and -

D__gthr_ posix_h to TARGET_LIBGCC2_CFLAGS. That is, change
the line TARGET_LIBGCC2_CFLAGS = -fomit-frame-pointer
–fPIC to TARGET_LIBGCC2_CFLAGS = -fomit-frame-pointer
-fPIC -Dinhibit_libc -D__gthr_posix_h.

b. Rerun configure.
4. Install: Assuming that making the cross-compiler worked, you can now

install your new cross-compiler:

make install

Building Glibc

As mentioned earlier, glibc is linked to every application. The kernel, however,
does not make use of glibc (it has it own minimal C library built inside).
Chapter 4 discusses alternatives to glibc basically because glibc is a heavy-
weight for an embedded system. Irrespective of whether you use glibc on the
target, glibc is essential to build the C compiler.

1. Download and unpack: Because of certain restrictions on exporting soft-
ware and dependencies on external source code, glibc is split into the
core glibc and a set of packages. These packages are referred to as add-
ons. Along with the glibc source code, the add-ons need to be unpackaged
and at the time of configuring the add-on should be enabled. Embedded
systems mostly require the Linux threads add-on. Hence the downloading
and unpacking involves both the core and the Linux threads. Fetch the
latest glibc archive and the corresponding Linux threads archive from
ftp.gnu.org/gnu/glibc. Unpack the main glibc archive somewhere handy
such as $PREFIX/src/glibc. Then unpack the add-on archive inside
the directory created when you unpacked the main glibc archive.

2. Configure: The most important thing is to set the CC system variable that
prompts the build system with a compiler to be used. This is because you
want to do the cross-compilation of glibc using the newly built cross-
compiler. For this set the variable CC on the shell using the command:

export CC=$TARGET-linux-gcc

Getting Started 55

For example, for the mips target,

export CC= mips-linux-gcc

Run the configure command with the appropriate options.

./configure $TARGET --build=$NATIVE-$TARGET
--prefix=$PREFIX --enable-add-ons=linux threads, crypt

For example, for the mips target

configure mips-linux --build=i686-linux --prefix=/usr/local/
mips/ --enable-add-ons=linux threads, crypt

3. Build: Invoke make in the glibc folder to build glibc.
4. Install: Invoke make install in the glibc folder to install glibc.

Recompiling Full-Featured GCC

Repeat the steps for building GCC for adding extra language support. You
must also remove the Dinhibit_libc hack if you had to apply it before.
Also be sure to unset the CC environment variable when cross-compiling so
the native compiler will be used to finish building your cross-development
toolchain.

With this the entire toolchain should be available on your system. Chapter
8 explains how to build the kernel and applications using the toolchain.

2.5.2 Building Toolchain for MIPS

Following are the steps that are necessary to build a toolchain for a MIPS
target. This should be used as a reference for building other targets.

Source Directory Listing

We use

TARGET=mips-linux
PREFIX=/usr/local/mips

binutils - /usr/local/mips/src/binutils
gcc - /usr/local/mips/src/gcc
glibc - /usr/local/mips/src/glibc
Kernel sources - /usr/local/mips/linux/

It is always safe to create a separate build directory and run configure
from there.

cd /usr/local/mips/
mkdir build

56 Embedded Linux System Design and Development

cd build
mkdir binutils
mkdir gcc
mkdir glibc

Building Binutils

cd /usr/local/mips/build/binutils/

/usr/src/local/mips/src/binutils/configure
--target=mips-linux --prefix=/usr/local/mips

make
make install

Setting Kernel Headers

#cd /usr/local/mips/linux

Open Makefile and modify ARCH:=mips

#make menuconfig

Select a suitable MIPS target and exit with a save:

#make dep

Building Minimal GCC

cd /usr/local/mips/src/gcc/gcc/config/mips

Open file t-linux and modify the line TARGET_LIBGCC2_CFLAGS =
-fomit-frame-pointer –fPIC to TARGET_LIBGCC2_CFLAGS = -
fomit-frame-pointer -fPIC -Dinhibit_libc –D__gthr_posix_h

cd /usr/local/mips/build/gcc

#/usr/local/mips/src/gcc/configure --target=mips-linux
--host=i386-pc-linux-gnu --prefix=/usr/local/mips/
--disable-threads -–enable-languages=c

#make
#make install

Building Glibc

#cd /usr/src/build/glibc/

Getting Started 57

#/usr/src/glibc/configure mips-linux --build=i386-pc-linux-gnu
--prefix=/usr/local/mips/ --enable-add-ons=linuxthreads,crypt
--with-headers=/usr/local/mips/linux/include/linux

#make
#make install

Building GCC with Threads and Additional Languages

#cd /usr/local/mips/src/gcc/gcc/config/mips

Open t-linux and revert the changes done for inhibit_libc hack. Set the
TARGET_LIBGCC2_CFLAGS line as TARGET_LIBGCC2_CFLAGS = -fomit-
frame-pointer –fPIC

#cd /usr/local/mips/build/gcc/
#rm –rf *

#/usr/local/mips/src/gcc/configure --target=mips-linux
--host=i386-pc-linux-gnu --prefix=/usr/local/mips

#make
#make install

59

Chapter 3

Board Support Package

A BSP or “Board Support Package” is the set of software used to initialize the
hardware devices on the board and implement the board-specific routines
that can be used by the kernel and device drivers alike. BSP is thus a hardware
abstraction layer gluing hardware to the OS by hiding the details of the
processor and the board. The BSP hides the board- and CPU-specific details
from the rest of the OS, so portability of drivers across multiple boards and
CPUs becomes extremely easy. Another term that is often used instead of BSP
is the Hardware Abstraction Layer or the HAL. HAL is more famous with UNIX
users whereas the RTOS developer community more often uses BSP, especially
those using VxWorks. The BSP has two components:

1. The microprocessor support: Linux has wide support for all the leading
processors in the embedded market such as MIPS, ARM, and soon the
PowerPC.

2. The board-specific routines: A typical HAL for the board hardware will
include:
a. Bootloader support
b. Memory map support
c. System timers
d. Interrupt controller support
e. Real-Time Clock (RTC)
f. Serial support (debug and console)
g. Bus support (PCI/ISA)
h. DMA support
i. Power management

This chapter does not deal with the porting of Linux on a microprocessor
or microcontroller because this is an ocean by itself; a separate book needs
to be devoted to Linux porting on various processors and microcontrollers.

60 Embedded Linux System Design and Development

Rather this book assumes that the reader has a board based on one of the
already supported processors. So it is devoted entirely to the board-specific
issues. For making the terminology clean, we refer to the HAL as the layer
that combines the board- and the processor-specific software and the BSP as
the layer that has only the board-specific code. So when we talk about the
MIPS HAL it means the support for the MIPS processors and the boards built
with MIPS processors. When we talk about a BSP we refer to the software
that does not have the processor support software but just the additional
software for supporting the board. The HAL can be understood as a superset
of all supported BSPs and it additionally includes the processor-specific
software.

As mentioned in Chapter 2, neither the Linux HAL nor the BSP has any
standard. Hence it is very difficult to explain the HAL for multiple architectures.
This chapter delves into the Linux BSP and porting issues for a MIPS-based
architecture; wherever necessary the discussion may spill over to other pro-
cessors. For making things easier, we use a fictitious board EUREKA that is
MIPS-based having the following set of hardware components.

� A 32-bit MIPS processor
� 8 MB of SDRAM
� 4 MB of flash
� A 8259-based programmable interrupt controller
� A PCI bus with some devices such as Ethernet and a sound card connected

to it
� A timer chip for generating the system heartbeat
� A serial port that can be used for console and remote debugging

3.1 Inserting BSP in Kernel Build Procedure
The Linux HAL source code resides under arch/ and include/<asm-XXX>
(XXX = processor name such as PowerPC, MIPS) directories. Thus arch/ppc
will contain the source files for the PPC-based board and include/asm-ppc
will contain the header files.

Under each processor directory, all boards based on that CPU are catego-
rized again into subdirectories. The important directories under each subdi-
rectory are:

� kernel: This directory contains the CPU-specific routines for initializing,
IRQ set-up, interrupts, and traps routines.

� mm: Contains the hardware-specific TLB set-up and exception-handling
code.

For example, MIPS HAL has the two subdirectories arch/mips/kernel
and arch/mips/mm that hold the above code. Along with these two directories
there is a host of other subdirectories; these are the BSP directories that hold
the board-specific code only. The user needs to create a subdirectory tree
under the appropriate processor directory that contains the files necessary for

Board Support Package 61

the BSP. The next step is to integrate the BSP with the build process so that
the board-specific files can be chosen when the kernel image is built. This
may require that the kernel component selection process (done using the
make menuconfig command while the kernel is built) is aware of the board.
Why is this step necessary? Other than simplifying the build procedure there
are added advantages to doing this.

� Jumper settings often do lots of board-specific configuration. Some exam-
ples of such settings are processor speed, UART speed, and so on. Instead
of tweaking the code such as changing the header files, all such board-
specific details can be made as configuration options and centrally stored
in a configuration repository (such as the .config file used for the kernel
build); this makes the process of building the kernel easier and also avoids
the cluttering of source code.

� Often an OEM supplier is the buyer of an embedded solution and they
may want to add their own components into a kernel. They may not be
interested in choosing the kernel components for the board supplied by
you; they may want it to be fixed already as a part of the build process.
This is done by adding your board as a configurable item while building
the kernel; when the board gets chosen all the software components
required for the board automatically get pulled in. The OEM supplier need
not bother about the gory details of your board and what softwar e
components are required for building it.

The above two steps can be accomplished by hooking the BSP with the
configuration process. Linux kernel components are selected using the make
config (or the make menuconfig/make xconfig) command. The heart of
the configuration process is the configuration file placed under the specific
processor directory. This is dealt with in more detail in Chapter 8. For example,
you need to edit the file arch/mips/config.in (for the 2.4 kernel) or the
arch/mips/Kconfig (for the 2.6 kernel) as shown in Figure 3.1 for including
EUREKA board components in the kernel build process.

The CONFIG_EUREKA is the link between the configuration and the build
process. For the above example, the following lines need to be added to the
arch/mips/Makefile file.

ifdef CONFIG_EUREKA
LIBS += arch/mips/eureka/eureka.o
SUBDIRS += arch/mips/eureka
LOADADDR := 0x80000000
endif

The last line, LOADADDR, specifies the beginning address of the kernel. The
linker using the linker script pulls this in, so you can see the reference of this
address again in the linker script. Thus when the user has chosen the EUREKA
board at the time of configuration, the list of configurations specific to the
board such as the clock speed are chosen. In addition, when the kernel is
built, the build process is aware of the EUREKA-specific build options such
as the subdirectories it has to traverse to build the software.

62 Embedded Linux System Design and Development

3.2 The Boot Loader Interface
The boot loader is the piece of software that starts executing immediately
after the system is powered on. The boot loader is an important part of the
development process and one of the most complicated ones too. Most of the
boot-loading issues are specific to the CPU and the boards shipped out. Many
CPUs such as the ARM, x86, and MIPS start execution at specific vectors at
reset. Some others such as the M68K fetch the starting location from a boot
ROM. Thus questions arise as to whether the first and the only image that
can be loaded can be Linux itself thus eliminating the use of a boot loader.
Eliminating the boot loader and flashing the kernel that bootstraps itself is an
approach provided by many RTOSs including VxWorks, which provides boot
initialization routines to do POST, set up chip selects, initialize RAM and
memory caches, and transfer the image from ROM to RAM.

Most of the reset initialization is board-specific and normally manufacturers
of boards give an onboard PROM that does the above. It is better to make
use of the PROM to load either a kernel image or an intermittent boot loader
and thus save the developers from the job of programming the board. Even
if a PROM is not available, it is better to separate the boot process to a boot
loader than let the kernel bootstrap itself. The following are the advantages
with this approach.

� Other than ROM downloads, multiple methods of downloading the kernel
such as serial (Kermit) or network (TFTP) can be implemented.

� It provides protection against unsafe overwrites of the kernel image in
case the kernel image is stored in flash. Assume that there was a power
outage when a kernel image is upgraded; then the board is in limbo. The

Figure 3.1 EUREKA build options.

dep_bool 'Support for EUREKA board' CONFIG_EUREKA

if ["$CONFIG_EUREKA"="y"];then
 choice 'Eureka Clock Speed' \
 "75 CONFIG_SYSCLK_75 \

100 CONFIG_SYSCLK_100" 100
fi

...

if ["$CONFIG_EUREKA"="y"]; then
 define_bool CONFIG_PCI y
 define_bool CONFIG_ISA y
 define_bool CONFIG_NONCOHERENT_IO y
 define_bool CONFIG_NEW_TIME_C y
fi

Prompt user for choosing

EUREKA board

If EUREKA is chosen,

prompt for clock speed

Once EUREKA is chosen,

choose the relevant

board support software

TE
AM
 F
LY

Board Support Package 63

safer way is to burn a boot loader into some protected sectors of flash
(normally called boot sectors) and leave them untouched so that there is
a recovery route always available.

As a thumb rule Linux always assumes that it is executing from memory
(some patches for eXecute In Place [XIP] allow Linux to execute from ROM
directly; these are discussed later). Boot loaders are independent pieces of
software that need to be built independently of the Linux kernel. Unless your
board supports a PROM, the boot loader does the initialization of the processor
and the board. Hence the boot loader is highly board- and processor-specific.
The boot loader functionalities can be divided into two: the mandatory ones
and the optional ones. The optional boot loader functionalities are varied and
depend on the customer usage. The mandatory boot loader functionalities are:

1. Initializing the hardware: This includes the processor, the essential con-
trollers such as the memory controller, and the hardware devices necessary
for loading the kernel such as flash.

2. Loading the kernel: The necessary software to download the kernel and
copy it to the appropriate memory location.

The following is the list of steps that any boot loader normally follows;
these are generic steps and there can be exceptions depending on the usage.
Note that the X86 processors normally are shipped with an onboard BIOS
that helps with the basic power-on and loading a secondary boot loader for
loading the operating system; hence the following set of steps is meant for
the non-X86 processors such as MIPS and ARM.

1. Booting: Most boot loaders start from the flash. They do the initial processor
initialization such as configuring the cache, setting up some basic registers,
and verifying the onboard RAM. Also they run the POST routines to do
validation of the hardware required for the boot procedure such as vali-
dating memory, flash, buses, and so on.

2. Relocation: The boot loaders relocate themselves to the RAM. This is
because RAM is faster than flash. Also the relocation step may include
decompression as the boot loaders can be kept in a compressed format
to save costly storage space.

3. Device initialization: Next the boot loader initializes the basic devices
necessary for user interaction. This usually means setting up a console so
that a UI is thrown for the user. It also initializes the devices necessary
for picking up the kernel (and maybe the root file system). This may
include the flash, network card, USB, and so on.

4. UI: Next the UI is thrown for the user to select the kernel image she wishes
to download onto the target. There can be a deadline set for the user to
enter her choice; in case of a timeout a default image can be downloaded.

5. Image download: The kernel image is downloaded. In case the user has
been given the choice to download a root file system using the initrd
mechanism, the initrd image too gets downloaded to memory.

64 Embedded Linux System Design and Development

6. Preparing kernel boot: Next, in case arguments need to be passed to the
kernel, the command-line arguments are filled and placed at known
locations to the Linux kernel.

7. Booting kernel: Finally the transfer is given to the kernel. Once the Linux
kernel starts running, the boot loader is no longer necessary. Normally its
memory is reclaimed by the kernel; the memory map set for the kernel
needs to take care of this.

Figure 3.2 shows a generic boot loader start-up sequence.
There are many freely available boot loaders for Linux; the system architect

can evaluate the existing ones before deciding to write a new boot loader
from scratch. What are the criteria in choosing a boot loader for a given
embedded platform?

� Support for the embedded hardware: This should be the primary criterion.
There are many desktop boot loaders such as LILO that cannot be used
on embedded systems because of their dependency on the PC BIOS.
However there are some generic embedded boot loaders available: notably
U-Boot and Redboot. The following shows some of the nongeneric boot
loaders available for the most commonly used embedded processors.
– MIPS – PMON2000, YAMON
– ARM – Blob, Angel boot, Compaq bootldr
– X86 – LILO, GRUB, Etherboot
– PowerPC – PMON2000

� Licensing issues: These are discussed in detail in Appendix B.

Figure 3.2 Bootloader start-up sequence.

Execute from flash. Do POST

Relocate to RAM

Set up console for user interaction

Set up device drivers for kernel (& RFS) image

Choose the kernel (& RFS) images

Download the kernel (& RFS) images

Set up kernel command-line arguments

Jump to kernel start address

C
o

d
e

F
lo

w

Board Support Package 65

� Storage footprint: Many boot loaders support compression to save flash
space. This may be an important criterion especially when multiple kernel
images are stored.

� Support for network booting: Network booting may be essential especially
for debug builds. Most of the popular boot loaders support booting via
the network and may support the popular network protocols associated
with booting such as BOOTP, DHCP, and TFTP.

� Support for flash booting: Flash booting has two components associated
with it: flash reader software and file system reader software. The latter is
required in case the kernel image is stored on a file system on the flash.

� Console UI availability: Console UI is almost a must on most present-day
boot loaders. The console UI normally provides the user the following choices.
– Choosing the kernel image and location
– Setting the mode of kernel download (network, serial, flash)
– Configuring the arguments to be passed to the kernel

� Upgrade solutions availability: Upgrade solution requires a flash erase and
flash writing software in the boot loader.

One other important area of discussion surrounding the boot loaders is
the boot loader-to-kernel interface, which comprises the following components.

� Argument passing from the boot loader to Linux kernel: The Linux kernel
like any application can be given arguments in a well-notated form, which
the kernel parses and either consumes itself or passes to the concerned
drivers or applications. This is a very powerful feature and can be used
to implement workarounds for some hardware problems. The list of Linux
kernel boot time arguments can be verified after the system is fully up by
reading the proc file /proc/cmdline.
– Passing boot command arguments: A boot command argument can

have multiple, comma-separated values. Multiple arguments should be
space separated. Once the entire set is constructed the boot loader
should place them in a well-known memory address to the Linux kernel.

– Parsing of boot command arguments: A boot command of type foo
requires a function foo_setup() to be registered with the kernel.
The kernel on initialization walks through each command argument and
calls its appropriate registered function. If no function is registered, it is
either consumed as an environment variable or is passed to the init task.

� Some important boot parameters are:
– root: Specifies the device name to be used as the root file system.
– nfsroot: Specifies the NFS server, directory, and options to be used

as the root file system. (NFS is a very powerful step in building a Linux
system in the initial stages.)

– mem: Specifies the amount of memory available to the Linux kernel.
– debug: Specifies the debug level for printing messages to the console.

� Memory Map: On many platforms, especially the Intel and PowerPC, boot
loaders set up a memory map that can be picked up by the OS. This
makes it easy to port the OS across multiple platforms. More on the memory
map is discussed in the next section.

66 Embedded Linux System Design and Development

� Calling PROM routines from the kernel: On many platforms, the boot loader
that executes a PROM can be treated as a library so that calls can be made
to the PROM. For example, on the MIPS-based DEC station, the PROM-
based IO routines are used to implement a console.

3.3 Memory Map
The memory map defines the layout of the CPU’s addressable space. Defining
a memory map is one of the most crucial steps and has to be done at the
beginning of the porting process. The memory map is needed for the following
reasons.

� It freezes on the address space allocated for various hardware components
such as RAM, flash, and memory-mapped IO peripherals.

� It highlights the allocation of onboard memory to various software com-
ponents such as the boot loader and the kernel. This is crucial for building
the software components; this information is fed normally via a linker
script at the time of building.

� It defines the virtual-to-physical address mapping for the board. This
mapping is highly processor- and board-specific; the design of the various
onboard memory and bus controllers on the board decides this mapping.

There are three addresses that are seen on an embedded Linux system:

� CPU untranslated or the physical address: This is the address that is seen
on the actual memory bus.

� CPU translated address or the virtual address: This is the address range
that is recognized by the CPU as the valid address range. The main kernel
memory allocator kmalloc(), for example, returns a virtual address. The
virtual address goes through an MMU to get translated to a physical address.

� Bus address: This is the address of memory as seen by devices other than
the CPU. Depending on the bus, this address may vary.

A memory map binds the memory layout of the system as seen by the
CPU, the memory devices (RAM, flash, etc.), and the external devices; this
map indicates how the devices having different views of the addressable space
should communicate. In most of the platforms the bus address matches the
physical address, but it is not mandatory. The Linux kernel provides macros
to make sure that the device drivers are portable across all the platforms.

Defining the memory map requires the following understanding.

� Understanding the memory and IO addressing of the hardware components
on the board. This often requires understanding of how the memory and
IO bus controllers are configured.

� Understanding how the CPU handles memory management.

Board Support Package 67

The creation of the memory map for the system can be broken down into
the following tasks.

� The processor memory map: This is the first memory map that needs to be
created. It explains the CPU’s memory management policies such as how
the CPU handles the different address spaces (user mode, kernel mode),
what are the caching policies for the various memory regions, and so on.

� The board memory map: Once there is an idea of how the processor sees
the various memory areas, the next step is to fit the various onboard
devices into the processor memory areas. This requires an understanding
of the various onboard devices and the bus controllers.

� The software memory map: Next a portion of the memory needs to be
given for the various software components such as the boot loader and
the Linux kernel. The Linux kernel sets up its own memory map and decides
where the various kernel sections such as code and heap will reside.

The following sections explain each of these memory maps in detail with
respect to the EUREKA board.

3.3.1 The Processor Memory Map — MIPS Memory Model

The processor address space for the MIPS 32-bit processors (4 GB) is divided
into four areas as shown in Figure 3.3.

� KSEG0: The address range of this segment is 0x80000000 to 0x9fffffff.
These addresses are mapped to the 512 MB of physical memory. The
virtual-to-physical address translation happens by just knocking off the
topmost bit of the virtual address. This address space goes always to the
cache and it has to be generated only after the caches are properly
initialized. Also this address space does not get accessed via the TLB;
hence the Linux kernel makes use of this address space.

� KSEG1: The address range of this segment is 0xA0000000 to 0xBFFFFFFF.
These addresses are mapped again to the 512 MB of physical memory;
they are mapped by knocking down the last three bits of virtual address.

Figure 3.3 MIPS memory map.

KUSEG

KSEG 0

KSEG 1

KSEG 2

0 × 0000_0000

0 × 8000_0000

0 × A000_0000

0 × C000_0000

68 Embedded Linux System Design and Development

However, the difference between KSEG0 and KSEG1 is that KSEG1 skips
the cache. Hence this address space is used right after reset when the
system caches are in an undefined state. (The MIPS reset vector 0xBFC00000
lies in this address range.) Also this address space is used to map IO
peripherals because it bypasses the cache.

� KUSEG: The address range of this segment is 0x00000000 to 0x7FFFFFFF.
This is the address space allocated to the user programs. They get translated
via the TLB to physical addresses.

� KSEG2: The address range of this segment is 0xC0000000 to 0xFFFFFFFF.
This is the address space that is accessible via the kernel but gets translated
via the TLB.

3.3.2 Board Memory Map

The following is the memory map designed for the EUREKA board that has
8 MB of onboard SDRAM, 4 MB of flash, and IO devices that require 2 MB
of memory map range.

� 0x80000000 to 0x80800000: Used to map the 8 MB of SDRAM
� 0xBFC00000 to 0xC0000000: Used to map the 4 MB of flash
� 0xBF400000 to 0xBF600000: Used to map the 2 MB of IO peripherals

3.3.3 Software Memory Map

The 8 MB of SDRAM is made available for running both the boot loader and
Linux kernel. Normally the boot loader is made to run from the bottom of
the available memory so that once it transfers control to the Linux kernel, the
Linux kernel can easily reclaim its memory. If this is not the case then you
may need to employ some tricks to reclaim the boot loader memory if the
boot loader memory is not contiguous with the Linux address space or if its
address space lies before the kernel address space. The Linux memory map
setup is divided into four stages.

� The Linux kernel layout — the linker script
� The boot memory allocator
� Creating memory and IO mappings in the virtual address space
� Creation of various memory allocator zones by the kernel

Linux Kernel Layout

The Linux kernel layout is specified at the time of building the kernel using
the linker script file ld.script. For the MIPS architecture, the default linker
script is arch/mips/ld.script.in; a linker script provided by the platform
can override this. The linker script is written using a linker command language
and it describes how the various sections of the kernel need to be packed
and what addresses need to be given to them. Refer to Listing 3.1 for a sample
linker script, which defines the following memory layout.

Board Support Package 69

Listing 3.1 Sample Linker Script

OUTPUT_ARCH(mips)
ENTRY(kernel_entry)
SECTIONS
{
 /* Read-only sections, merged into text segment: */
 . = 0x80100000;
 .init : { *(.init) } = 0

 .text :
 {
 _ftext = . ; /* Start of text segment */
 *(.text)
 *(.rodata)
 (.rodata.)
 *(.rodata1)
 /* .gnu.warning sections are handled specially by elf32.em. */
 *(.gnu.warning)
 } =0

 .kstrtab : { *(.kstrtab) }

 . = ALIGN(16); /* Exception table */
 __start___ex_table = .;
 __ex_table : { *(__ex_table) }
 __stop___ex_table = .;

 __start___dbe_table = .;
 __dbe_table : { *(__dbe_table) }
 __stop___dbe_table = .;

 __start___ksymtab = .; /* Kernel symbol table
 __ksymtab : { *(__ksymtab) }
 __stop___ksymtab = .;

 _etext = .; /* End of text segment */

 . = ALIGN(8192);
 .data.init_task : { *(.data.init_task)

 . = ALIGN(4096);
 __init_begin = .; /* Start of Start-up code */
 .text.init : { *(.text.init) }
 .data.init : { *(.data.init) }

 . = ALIGN(16);
 __setup_start = .;
 .setup.init : { *(.setup.init) }
 __setup_end = .;

70 Embedded Linux System Design and Development

Listing 3.1 Sample Linker Script (continued)

 __initcall_start = .;
 .initcall.init : { *(.initcall.init) }
 __initcall_end = .;

 . = ALIGN(4096); /* Align double page for init_task_union */
 __init_end = .; /* End of Start-up code */

 . = .;
 .data :
 {
 _fdata = . ; /* Start of data segment */
 *(.data)
 /* Align the initial ramdisk image (INITRD) */
 . = ALIGN(4096);

 __rd_start = .;
 *(.initrd)
 . = ALIGN(4096);
 __rd_end = .;

 CONSTRUCTORS
 }

 .data1 : { *(.data1) }
 _gp = . + 0x8000;
 .lit8 : { *(.lit8) }
 .lit4 : { *(.lit4) }
 .ctors : { *(.ctors) }
 .dtors : { *(.dtors) }
 .got : { *(.got.plt) *(.got) }
 .dynamic : { *(.dynamic) }
 .sdata : { *(.sdata) }

 . = ALIGN(4);
 _edata = .; /* End of data segment */
 PROVIDE (edata = .);

 __bss_start = .; /* Start of bss segment */
 _fbss = .;
 .sbss : { *(.sbss) *(.scommon) }
 .bss :
 {
 *(.dynbss)
 *(.bss)
 *(COMMON)
 . = ALIGN(4);
 _end = . ; /* End of bss */
 PROVIDE (end = .);
 }

}

Board Support Package 71

� The text section starts at the address 0x8010-0000. All the other sections
follow the text section continuously. The address _ftext is the beginning
of the text section and the address _etext is the end of the text section.

� After _etext, a space aligned at 8 K is allocated for assigning the process
descriptor and the stack for process 0, also called the swapper process.

� Following this is the space for the init section. The addresses _init_
begin and _init_end denote the beginning and end of these sections,
respectively.

� Following is the initialized kernel data section. The symbols _fdata and
_edata denote the beginning and end of these sections, respectively.

� The last section is the uninitialized kernel data section or the BSS. Unlike
the other sections, this section is not a part of the kernel image but only
the space used by it is specified using the _bss_start and the _end
addresses. The kernel start-up routine uses these symbols to get the BSS
address range and zero the BSS space.

Figure 3.4 shows the kernel section’s layout as defined by the linker script.

Boot Memory Allocators

The boot memory allocators are the kernel dynamic allocators during the early
stages of the kernel (before paging is set up); once paging is set up the zone
allocators are responsible for dynamic memory allocation. The bootmem
allocators are invoked from the setup_arch() function. The bootmem allo-
cator acts on the memory map of the board, which is usually passed by the
boot loader; this is the normal procedure for the x86 series, which is why we
look at a memory map that is passed on by the boot loader on a Pentium® PC.

0000000000000000 - 000000000009f800 (usable)
000000000009f800 - 00000000000a0000 (reserved)
00000000000e0000 - 0000000000100000 (reserved)

Figure 3.4 Sections of a kernel image.

-end

_bss_start

_init_begin

_init_end

_edata

_fdata

_etext

_ftext

Init Task Structure

0 × 8010_0000

72 Embedded Linux System Design and Development

0000000000100000 - 000000001f6f0000 (usable)
000000001f6f0000 - 000000001f6fb000 (ACPI data)
000000001f6fb000 - 000000001f700000 (ACPI NVS)
000000001f700000 - 000000001f780000 (usable)
000000001f780000 - 0000000020000000 (reserved)
00000000fec00000 - 00000000fec10000 (reserved)
00000000fee00000 - 00000000fee01000 (reserved)
00000000ff800000 - 00000000ffc00000 (reserved)
00000000fffffc00 - 0000000100000000 (reserved)

The kernel starts using memory from the physical address of 1 MB. So the
bootmem allocator reserves the following regions.

� 640 K to 1 MB: These are reserved for the video and the extension ROMs.
� Above 1 MB: These are reserved for the kernel code and the data sections.

Setting Up Memory and IO Mappings
This needs to be done on processors that do not have virtual memory turned
on at reset. Examples of such processors are the Intel and the PowerPC. On
the other hand, MIPS live in a virtual memory environment from the reset.
For the Intel and the PowerPC, the virtual memory mappings need to be set
up so that they can access the memory and memory-mapped IO. For example,
on the PowerPC during the early stage of kernel initialization, the virtual
address is mapped one to one with the physical address. Once the memory
map is known, then the virtual mapping table is set up.

Setting Up the Zone Allocators
The zone allocator divides the memory into three zones.

� DMA zone: This zone is for allocation of memory that can be used for
DMA transfers. For the MIPS and the PowerPC platforms, all the dynamic
low memory gets added to the DMA zone. However, on the i386™-based
PC, this has a maximum size of 16 MB due to the memory addressing
restriction on the ISA bus.

� NORMAL zone: The kernel memory allocators try to allocate memory from
this zone, or else fall back to the DMA zone.

� HIGHMEM zone: Many processors cannot access all of the physical memory
because of the small size of the linear address space. This zone is used
to map such memory. This is not used normally on embedded systems
and is used more on desktops and servers.

3.4 Interrupt Management
Every board is unique with its hardware interrupt management, mostly because
of the PIC (Programmable Interrupt Controller) interface. This section details
the steps involved in the programming interrupt controller in Linux. Before

Board Support Package 73

going into the details of programming the interrupt controller, let us evaluate
the basic functionalities of a PIC.

� A microprocessor normally has a limited number of interrupts, which may
be a limitation if there are many devices on the board and all of these
need to interrupt the processor. The interrupt controller comes to the
rescue in such a case. By allowing many interrupts to be multiplexed over
a single interrupt line it expands the interrupt capability of the processor.

� PIC provides hardware priority for interrupts. This can be a useful feature
in case the processor itself does not support hardware interrupt priority.
When the processor is handling an interrupt of a higher priority, the PIC
does not deliver a lower-priority interrupt to the processor. Also when two
devices interrupt simultaneously, the PIC will look at a priority register to
recognize the higher-priority interrupt and then deliver it to the CPU.

� To do trigger conversions. Hardware delivers interrupts in two ways: level
and edge trigger. Edge-triggered interrupts happen on the transition of a
signal from one state to another (normally from high to low); basically it
is a short pulse that indicates the occurrence of an interrupt. Level-triggered
interrupts on the other hand hold the interrupt line high until the processor
turns it off. Edge-triggered interrupts are an older method of interrupts
and used by the ISA bus architectures. However, the basic disadvantage
of edge-triggered interrupts is that they do not allow interrupt sharing.
Level triggers allow interrupt sharing but have to be used carefully because
an improperly designed interrupt handler can cause the system to be stuck
forever in the interrupt loop. Some processors allow the interrupt process-
ing to be configured as either edge- or level-triggered whereas some
processors recognize only level interrupts. If a device generating edge
interrupts is connected to the latter set, then the edge interrupts will be
treated as spurious interrupts because the interrupting cause will be with-
drawn before the processing starts. In such a case, a PIC will be handy
because a PIC can translate the edge to level interrupts by latching the
input interrupt.

We take the 8259A as the example PIC for understanding the programming
issues. Why 8259A? Because it is a very popular and powerful hardware and
there are many variants of it used on embedded boards. Before we can
understand the hooking of the 8259A into a BSP, we need a basic understand-
ing of the 8259A. The basic features of the 8259A controller are:

� It has eight interrupt pins. Using the cascaded mode, it can be used to
service up to 64 interrupts.

� It can be programmable for various modes:
– Fully nested mode, which is entered right after initialization. In this

mode priorities are unique and fixed. During this mode, a higher-priority
interrupt can interrupt the CPU when it is servicing a lower-priority
interrupt.

– Automatic rotation mode to support interrupts having the same priority.
– Specific rotation mode where interrupt priority is programmable by

changing the lowest priority and thereby fixing all other priorities.

74 Embedded Linux System Design and Development

� The PIC can be programmed for either edge- or level-triggered operation.
� Individual interrupts can be masked.

Three registers get involved in the interrupt processing of the 8259A: the
IRR or the interrupt request register, IMR or the interrupt mask register, and
the ISR or the interrupt service register. When an external device needs to
interrupt, the corresponding bit in IRR is set. If the interrupt is not masked
depending on whether the bit in IMR is set, the interrupt is delivered to the
priority arbitration logic. This looks at the contents of the ISR register to find
out if a higher-priority interrupt is being serviced currently; if not, the interrupt
latch is raised so that the CPU sees the interrupt. The x86 processors issue
an INTA cycle so that the PIC drives the interrupt vector on the bus; however,
the processors do not have this functionality in hardware; software needs to
do this explicitly. The ISR bit remains set until an EOI (End Of Interrupt) is
issued. If the PIC is configured for the automatic end-of-interrupt mode, then
the acknowledgment of the interrupt itself causes the bit to be cleared.

A device can be directly connected to the processor in which case it interrupts
the processor on one of the processor’s interrupt lines; otherwise its interrupts
can be routed via a PIC. But the interrupt route taken should not be the concern
of the software device driver. The BSP should shield the driver from the actual
interrupt routing. For example, Figure 3.5 shows an Ethernet card connected
directly via a PIC to a MIPS processor (MIPS supports six input interrupts).

The Linux kernel treats all interrupts as logical interrupts; logical interrupts
are directly connected to the processor or may go via a PIC. In both the cases
when an interrupt is registered (via the request_irq() function), the device
driver needs to pass an interrupt number as an argument that identifies the
interrupt number; the interrupt number passed is that of the logical interrupt

Figure 3.5 Ethernet card IRQ connections.

IRQ 0IRQ 0

IRQ 1

IRQ 2

IRQ 3

IRQ 4

IRQ 5

MIPS Processor

Programmable Interrupt

Controller

Ethernet Card

IRQ 0IRQ 0

IRQ 1

IRQ 2

IRQ 3

IRQ 4

IRQ 5

MIPS Processor

Ethernet Card

Ethernet card connected

to MIPS via a PIC
Ethernet card connected

directly to MIPS

Board Support Package 75

number. The number of logical interrupts varies across processors; for the
MIPS processor it is fixed as 128. The mapping of the logical interrupts to the
actual physical interrupt is the responsiblility of the BSP. So in the above
example in both the cases the driver may use the same IRQ number but how
the IRQ number is routed to the actual hardware is decided by the BSP; this
makes portability of device drivers easier.

The core of the BSP interrupt interface is two data structures:

� The interrupt controller descriptor hw_interrupt_type: This structure
is declared in include/linux/irq.h. Every hardware interrupt–con-
trolling mechanism needs to implement this structure. The important fields
of this data structure are:
– start-up: Pointer to the function that gets invoked when interrupts

are probed or when they are requested (using the request_irq()
function)

– shutdown: Pointer to the function that gets invoked when an interrupt
is released (using the free_irq() function)

– enable: Pointer to the function that enables an interrupt line
– disable: Pointer to the function that disables the interrupt line
– ack: Pointer to a controller-specific function used to acknowledge

interrupts
– end: Pointer to a function that gets invoked after the interrupt has been

serviced
� The IRQ descriptor irq_desc_t: This again is declared in include/

linux/irq.h. Every logical interrupt is defined using this structure. The
important fields of this data structure are:
– status: The status of the interrupting source
– handler: Pointer to the interrupt controller descriptor (described

above)
– action: The IRQ action list

The usage of these data structures can be best explained using an example.
Figure 3.6 shows interrupt architecture on the EUREKA board.

MIPS supports six hardware interrupts. On the board in Figure 3.6, five of
these are connected directly to hardware devices whereas the sixth interrupt
is connected to a PIC, which in turn is used to connect five more hardware
devices. Thus there are ten interrupt sources on the board, which need to be
mapped to ten logical interrupts for use by the device drivers for the ten
devices. These are the steps that should be done by the BSP to implement
the logical interrupts.

� Create an hw_interrupt_type for the interrupts that are directly con-
nected to the processor. We name this the generic_irq_hw.

� Create an hw_interrupt_type for the PIC. We name this the
pic_irq_hw.

� Define ten irq_desc_t structures corresponding to the ten logical inter-
rupts. For the first five, we tie the handler field to generic_irq_hw
and for the last five, we tie it to pic_irq_hw.

76 Embedded Linux System Design and Development

� Write the interrupt start-up code that gets called when the CPU is inter-
rupted. This routine should check the MIPS interrupt status register and
then the PIC status register to evaluate if the interrupt was a direct interrupt
or was routed via a PIC. If the interrupt belongs to the PIC, it should read
the PIC status register and find out the logical interrupt number. Then the
generic IRQ handler function do_IRQ() needs to be called with the logical
interrupt number. It will do the appropriate PIC handling before and after
calling the actual handler.

Each interrupt controller support requires BSP hooks. The following func-
tions are filled up in the hw_interrupt_type described above and get called
during various phases of interrupt handling.

� Initialization routine: This needs to be called once (in the init_IRQ()
function). The function issues the ICW (Initialization Command Word)
commands that should be done before the 8259 can process and accept
interrupt requests.

� Start-up routine: This function gets called when an interrupt is requested
or when an interrupt is probed. On 8259 this routine just enables the
interrupt by unmasking it in the PIC.

� Shutdown routine: It is the complement of the start-up routine; it does
disabling of the interrupt.

� Enable routine: This routine unmasks a particular interrupt on 8259. This
is called from the kernel function enable_irq().

Figure 3.6 IRQ connections on EUREKA.

IRQ 0IRQ 0

IRQ 1

IRQ 2

IRQ 3

IRQ 4

IRQ 5

MIPS Processor

Programmable Internet

Controller
IRQ 0Dev 0

Dev 1

Dev 2

Dev 3

Dev 4

IRQ 0Dev 5

Dev 6

Dev 7

Dev 8

Dev 9

Dev 10

Board Support Package 77

� Disable routine: This routine sets the bit in the IMR. This function is called
from the kernel function disable_irq().

� Acknowledgment routine: The acknowledgment routine gets called in the
initial stages of interrupt handling. When an interrupt occurs, further
instances of the same interrupt are disabled before the interrupt handler
is run. This is to prevent the ISR reentrancy problem. So this routine masks
the IRQ that is being serviced currently. Additionally for the 8259, if the
auto end of interrupt mode is not set, this routine sends the EOI command
to the PIC.

� End of interrupt routine: This gets called at the final stages of interrupt
handling. This routine has to enable the interrupt that has got disabled in
the acknowledgment routine.

3.5 The PCI Subsystem
The PCI architecture on Linux has its roots with the x86 model. Linux assumes
that the BIOS or the firmware is responsible for configuring every PCI device
so that its resources (IO, memory, and interrupts) are allocated. By the time
a device driver accesses the device, its memory and IO regions should have
been mapped to the processor’s address space. Many of the boards do not
come with a BIOS or firmware that does PCI initialization. Even if it does,
the address range offered to the devices may not exactly meet Linux require-
ments. Hence it becomes the responsibility of the BSP to do the probing and
configuration of the PCI devices. We discuss BSP on the MIPS-based PCI
devices.

3.5.1 Uniqueness of PCI Architecture

Linux identifies three PCI objects: bus, device, and function. Up to 256 buses
can be on a system, each bus having 32 slots, which can host devices. Devices
can be either single- or multifunctioned. Multiple PCI buses are interlinked
via a PCI bridge. The connectivity of the PCI subsystem on a board can be
unique; this in turn can make the PCI architecture board-specific. Some of
the uniqueness can stem from the following.

Memory Map Issues

The piece of hardware that connects the processor bus to the PCI bus is called
the north bridge. The north bridge has a memory controller built in so that
it can access the processor’s memory. In addition, some north bridges have
the capability to make the PCI device address space part of the processor’s
address space; they do this by trapping the addresses on the processor’s bus
and issuing PCI read/write cycles. On the PC platform, the north bridge has
this capability and hence the PCI address space is mapped into the processor’s
address space.

78 Embedded Linux System Design and Development

However, it is possible that capability to map the PCI address space into
the processor’s virtual address space is not available on all boards. Linux
device drivers take this into account and hence none of the drivers reference
PCI IO and memory via direct pointers; rather they use the inb()/outb()
type of commands. These may translate to direct memory references in case
PCI is mapped directly to the processor’s virtual address space. Both MIPS
and PowerPC allow the PCI space to be mapped to the processor address
space, provided the board supports it. In such a case, the BSP needs to provide
IO base; this is the starting address in the processor’s virtual map for accessing
the PCI devices. For example, consider the board layout as shown in Figure
3.7 where the PCI bridge communicates to the processor via an FPGA and a
dual-port RAM. The FPGA provides specific registers for starting a configura-
tion, memory, and IO operation. Such a board has two anomalies when
compared to normal boards and hence two ramifications on the BSP.

� The PCI memory and IO address space cannot be mapped to the proces-
sor’s address space directly because IO and memory operation require
programming on the FPGA. So the BSP needs to provide routines to do
memory and IO operations on the PCI bus.

� The dual-ported RAM is provided so that the PCI devices can do DMA to
the RAM. But because the main memory is not accessible by the PCI
controller, the PCI device drivers requiring DMAble memory should be
supplied memory from within the dual-ported RAM area.

Configuration Space Access

Every PCI device has a configuration space that needs to be read and
programmed before the device can actually be used. The processor does not

Figure 3.7 PCI via FPGA.

CPU

FPGA Dual Port RAM

PCI Bridge

IRQ 0 Dev 0 Dev 3 Dev 1 Dev 4 Dev 2

Board Support Package 79

have direct access to the configuration space but is dependent on the PCI
controller for this. The PCI controller normally provides registers, which need
to be programmed for doing device configuration. Because this is board
dependent, the BSP needs to provide for these routines.

Interrupt Routing on the Board

PCI hardware provides four logical interrupts, A, B, C, and D, to be hard-
coded in every PCI device. This information is stored in the interrupt pin field
in the configuration header. How the PCI logical interrupts are actually
connected to the processor interrupts is board-specific. The configuration space
has another field called the interrupt line, which needs to be filled with the
actual interrupt line that the PCI device uses. The BSP needs to scan the
configuration header for the interrupt pin information and then from the
interrupt routing map fill the interrupt line field. For example, in Figure 3.8
all pins marked A and C are connected to IRQ0 and pins marked B and D
are connected to IRQ1. Hence on the interrupt line, the BSP needs to program
the former set of cards (Dev-A and Dev-C) with IRQ0 and the latter with IRQ1
(Dev-B and Dev-D).

3.5.2 PCI Software Architecture

The PCI software architecture can be divided into four layers for MIPS.

� BSP: The BSP gives the following information to the software.
– The IO base for accessing the PCI memory and IO regions
– The routines to access the PCI configuration space
– The interrupt routing map on the board

Figure 3.8 PCI IRQ routing.

IRQ 0

IRQ 1

IRQ 0Dev D

Dev A

Dev B

Dev C

Pin D of PCI

Pin B of PCI

Pin C of PCI

Pin A of PCI

80 Embedded Linux System Design and Development

� HAL: This layer implements the BIOS functionality of assigning the PCI
resources (memory and IO) to the various devices. The HAL uses the
information given by the BSP to assign resources. The HAL support includes
functions for scanning the bus, building the PCI device tree, and resource
management. As such the BSP developer need not bother about the details
of the HAL; it is a part of the MIPS HAL. The BSP developer needs to
bother about the interface between the BSP and HAL. This is discussed in
detail below under the PCI BSP section.

� PCI library: It provides APIs for the HAL and the device drivers.. The
library is located in the kernel source under the directory drivers/pci.

� PCI device drivers: They make use of the functions exported by the PCI
library.

In this section we discuss PCI BSP.

PCI BSP

The actual implementation of the information exchange between the BSP and
the HAL is architecture-dependent. MIPS defines a PCI channel structure for
this purpose; this data structure has the starting and ending of the memory
and IO regions and also has a pointer to the pci_ops structure containing
routines to access the configuration space. This data structure points to the
following data structures that need to be filled in.

� pci_ops: This is a pointer to the structure containing the routines to
access the PCI configuration space. The definition of this structure is from
include/linux/pci.h. Because the configuration access is board-
specific, the BSP needs to fill these routines so that the rest of the PCI
subsystem can access the configuration space.

� io_resource and mem_resource: These data structures specify the
starting and ending addresses of the IO and memory space that are assigned
to the PCI devices. Although the HAL does the scanning and resource
allocation, all the devices are assigned either memory or IO space within
the address range specified by the BSP.

The definition of the PCI channel structure varies across the 2.4 and 2.6
implementation. In the 2.4 implementation, the channel is defined statically
using the mips_pci_channels; this is picked up by the HAL. In the 2.6
implementation, the structure pci_controller implements the PCI channel;
the BSP needs to fill in this structure and register it specifically to the HAL
using the register_pci_controller() API.

Along with the filling in of the above structure, the PCI BSP has one more
responsibility and that is of doing the various fix-ups, which are described below.

� The most important fix-up is the one that does IRQ routing. Because IRQ
routing is very board-specific, the BSP has to read the interrupt pin number

Board Support Package 81

for every bus discovered and assign the interrupt line to that device; this is
done in a standard API pcibios_fixup_irqs() that is called by the HAL.

� The other set of fix-ups includes any systemwide fix-ups and device-specific
fix-ups. The former needs to be implemented by the BSP using the function
pcibios_fixup(). The device-specific fix-ups are registered in a table
pcibios_fixups[]. When a device is discovered on the PCI bus, using
its ID as the identifier, the fix-ups are applied for that particular device.
This is particularly useful to undo any anomalies with respect to the PCI
implementation for that particular device.

3.6 Timers
There are two timers that need to be programmed by the BSP:

� The Programmable Interval Timer (PIT): This timer is hooked to the timer
interrupt that provides the system pulse or ticks. The default value for a
tick on an MIPS Linux system is 10 msec.

� The Real-Time Clock (RTC): This is independent of the processor as it is
an external chip on the board. The RTC is operated by a special battery
that powers it even when the board is switched off; thus once programmed
it can provide the time of day services.

The first timer is mandatory on any Linux system; the RTC on the other
hand is not mandatory. The hardware implementation of the PIT again varies
across hardware architectures. On the PowerPC, the decrementer register,
which is a countdown register, can be used to generate a periodic interrupt;
hence it can be used as the PIT. However, similar counter registers are not
available on all MIPS processors and hence they need to rely on external
hardware. On the MIPS, board_timer_setup() is used for setting and
enabling the timer interrupt handler.

3.7 UART
The serial port on your board can be used for three purposes:

� The system console for displaying all the boot messages
� Standard TTY device
� The kernel debugger KGDB interface

3.7.1 Implementing the Console

The console is set up in the function console_init()in file init/main.c.
This is done during the initial stages of system bring-up so that it can be used
as an early debugging tool. All the kernel prints happen via the printk()

82 Embedded Linux System Design and Development

function; this function can take in a variable number of arguments (such as
printf()). The first argument to printk() can be a priority to the string
that needs to be printed; the lower the number is, the higher the priority of
the string. Priority number 0 is used for printing emergency statements whereas
7 (which is the highest) is used to spew out debug-level messages. printk()
compares the string priority against the console priority set using the syslog()
function; if the string priority is less than or equal to the console priority then
the messages are printed.

printk() keeps the list of messages that need to be printed in a circular
log buffer and calls a list of registered console device handlers to print the
queued-up messages. Registration of the console happens using the
register_console() function, which is taken in the console data structure;
this is the heart of the console subsystem. Any device such as the UART,
printer, or network can use this data structure to interface with the console
and capture the output from printk().

The console is implemented as a data structure; its definition can be found
from the header file include/linux/console.h. Important members of
the structure are:

� name: Name of the console device.
� write(): This is the main function; it gets called by the printk() to

spew out the messages. The printk function can be called from any part
of the kernel including the interrupt handlers, so you should be careful
in designing the write handler so that it does not sleep. Normally the write
handler is a simple routine that makes use of polling to transmit characters
to the device (UART, printer, etc.).

� device(): This function returns the device number for the underlying
TTY device that is currently acting as a console.

� unblank(): This function, if defined, is used to unblank the screen.
� setup(): This function is called when the console= command-line

argument matches the name for this console structure.

3.7.2 The KGDB Interface

KGDB is the kernel source-level debugger. It makes use of GDB for source-
level debugging of the kernel; because GDB is a widely used protocol, KGDB
is a very popular kernel debugging tool. More information on the actual usage
of KGDB is presented in Chapter 8. KGDB is used mainly over the serial
interface (there are some patches available for using KGDB over an Ethernet
interface). The KGDB architecture can be split into two portions: the GDB
stub and the serial driver. The GDB stub is available in the kernel HAL layer;
it implements the GDB protocol and fixes the exception handlers. Binding
the serial interface to the GDB stub is the responsibility of the BSP; the BSP
needs to implement two simple functions for sending and receiving characters
over the serial interface.

Board Support Package 83

3.8 Power Management
Many types of embedded devices have different power requirements depend-
ing on their usage. For example, network routers need to have minimal energy
consumption to avoid heating, especially when used under rugged conditions.
Devices such as PDAs and cell phones need to consume less energy so that
battery life is not cut short. This section explains the power management
schemes available under Linux for embedded systems and the power man-
agement framework on Linux, which spans across the BSP, drivers, and
application layers. But before that we discuss the nexus between hardware
design and power management.

3.8.1 Hardware and Power Management

In order to understand how an embedded system consumes power, it is very
useful to find out the power consumption of the various hardware devices
constituting it. Let’s consider a handheld device that consists of the following
components.

� A processor such as MIPS or StrongArm
� Memory (both DRAM and flash memory)
� A network card such as a wireless card
� A sound card
� An LCD-based display unit

Typically the LCD display unit would be the biggest power consumer in
the system; followed by the CPU; followed by the sound card, memory, and
the network card. Once the units that display maximum power can be
identified, then techniques to maintain the devices in their low-power modes
can be studied. Many hardware devices available on the market today have
different operation modes to satisfy varying power requirements; they have
the capability to work with very low power when not under use and switch
to normal power usage mode when they are normally used. The device drivers
for such devices need to take the power management into account. Of the
various hardware devices the most important is the CPU. Many CPUs for the
embedded market provide robust power-saving schemes, which we analyze now.

The basis of power management of the CPU lies in the following two facts.

� Power consumed by a processor is directly proportional to the clock
frequency.

� Power consumed by a processor is directly proportional to the square of
the voltage.

New embedded processors take these into account and offer two schemes:
dynamic frequency scaling and dynamic voltage scaling. An example of a
processor that supports dynamic frequency scaling is the SA1110 and an

84 Embedded Linux System Design and Development

example of a processor that supports dynamic voltage scaling is Transmeta’s
Crusoe processor. The modes offered by the CPUs are controlled typically by
the OS, which can deduce the mode depending on the system load. Typically
embedded systems are event-driven systems and the processor spends a lot
of time waiting for events from the user or from the external world. The OS
running on these systems can tune the processor’s power consumption
depending on the system load. In case the processor is idling waiting for user
events, it would be attending to minimal tasks necessary for the system such
as servicing timer interrupts. If a processor supports idle mode, then the OS
can put the CPU into the idle mode under such conditions. The idle mode is
the mode where the various processor clocks are stopped (the clocks to the
peripherals may be still active). Some processors go still further and offer
another mode called the sleep mode wherein the power to the CPU and most
of the peripherals is turned off. This is the lowest power-consumption mode;
however, making use of this mode is very tricky and the OS needs to consider
the following factors to use the sleep mode.

� The state of the system such as the CPU and the peripherals needs to be
saved in memory so that the saved context can be restored when the
system returns from the sleep condition.

� The time to come out of the sleep state should be fast enough so that
real-time characteristics of the system are met (both from a hardware and
software perspective).

� The events that need to awaken the system must be evaluated and
appropriately incorporated in the software.

� Keeping track of the time when the system goes to sleep is a very tricky
part. Other than the fact that the system should not lose track of the time
when going to sleep, the system should also consider the fact that there
may be tasks that are sleeping and need to be awakened after the system
goes to sleep. Usually there may be an external hardware clock (such as
the RTC) that does not get shut down in the sleep mode; the RTC can be
programmed to awaken the system for waking tasks. The RTC can also
be used to maintain the external time, which the system can sync up to
after returning from the sleep state.

The operating system plays a very important role in implementing the
power management framework. The role of the OS is multi-faceted:

� As discussed above, it makes decisions as to when the processor can go
into various modes such as idle mode and sleep mode. Also the appropriate
wake-up mechanisms need to be devised by the OS.

� Provides support for dynamically scaling the frequency and voltage
depending on the system load.

� Provides a driver framework so that the various device drivers can be
written to exploit the power-saving modes of the peripherals.

� Exports the power management framework to specific applications. This
step is a very important one because the power requirements of every
embedded device are very unique and hence it is very difficult to put in

Board Support Package 85

the policies in the OS to suit a variety of embedded devices. Rather the
OS should just build the framework but leave the policies to applications,
which can configure the framework depending on requirements.

We will show how Linux offers each of these to the embedded developers
but before that we need to understand the standards that are available with
respect to power management.

3.8.2 Power Management Standards

There are two power management standards supported by Linux: the APM
and the ACPI standard. Both these standards have their roots in the x86
architecture. The basic difference between these two standards is that ACPI
allows for more control within the OS whereas APM is more dependent on
the BIOS for doing power management. Power management is built in the
kernel by choosing the CONFIG_PM option during kernel configuration; the
user will be prompted to choose either APM or the ACPI standard. Depending
on the option chosen within the kernel, the corresponding user-space appli-
cations should be chosen; for example, if APM was chosen as the power
management standard within the kernel, then the application apmd should
also be chosen.

The APM standard introduced by Microsoft and Intel allocated most of the
power management control to the BIOS. The BIOS monitors the list of devices
it knows to deduce system inactivity to put the system into low-power modes.
The decision to let the BIOS do the control had many disadvantages:

� The BIOS may choose to put a system into low-power mode when the
system is actually involved in a computationally intensive task. This is
because the BIOS assumes the system state by just looking at the activity
on the IO ports such as the keyboard. So in the middle of a huge
compilation task where the activity on the keyboard may be nil, the BIOS
may choose to put the system in low-power mode.

� The BIOS detects activity only on devices that are residing on the moth-
erboard. Devices not on the motherboard such as those plugged into the
USB bus cannot participate in power management.

� Because the APM was dependent on the BIOS and each BIOS had its own
set of limitations and interfaces (and bugs!), getting the power management
working across all systems was too difficult.

When it was realized that APM was not the ideal power management
standard, a new standard called ACPI was developed. The rationale behind
APCI was that most of the power management policies should be handled
by the OS because it can make the best judgment with respect to the system
load and hence it can manage the power of the CPU and the peripherals. The
ACPI standard makes the system still dependent on the BIOS but to a lesser
degree. By using an interpreted language called AML (ACPI Machine Language),
an OS can operate on the devices without knowing much about the devices.

86 Embedded Linux System Design and Development

3.8.3 Supporting Processor’s Power-Saving Modes

One of the earliest things that happened in the Linux kernel with respect to
power management was the integration of the processor idle state in the idle
loop. The idle loop of the Linux kernel is the task with process ID 0; this
task gets scheduled when the CPU is idling and waiting for an interrupt to
occur. Entering the idle state during the loop and being awakened when an
external interrupt happens lowers the power consumption because the clocks
are stopped.

The next major thing that happened with respect to power management
was support for the APM model in Linux. This was followed by support for
the ACPI. Now a question arises: as these power management models are
mainly for the x86 architecture and dependent on the BIOS, could they be
used for other processors? The usage of these standards will ensure that the
set of interfaces is readily available even on non-x86 platforms; hence the
power management applications can be used directly. The method chosen on
non-x86 platforms was to introduce a hack within the Linux kernel to expose
APM/ACPI type interfaces to the user land by distributing the job of the x86
BIOS to the kernel and the boot loader. Let us look at how a platform based
on the StrongArm processor can do this.

� The StrongArm BSP on Linux provides routines for suspending and resum-
ing the entire system software; this is the job of the BIOS on the x86
platforms (routines sa1100_cpu_suspend() and sa1100_cpu_
resume() in file arch/arm/mach-sa1100/sleep.S). These routines
are used in a handler that is registered with the power management code
on Linux and get invoked when the system goes to sleep. However, before
going to sleep, a wake-up source is selected (such as activity on the GPIO
pin or an alarm from the RTC).

� Before the system goes into the sleep mode, the memory is put in a self-
refresh mode to make sure the contents of the memory are preserved
across suspends/wake-ups. The memory needs to be put out of the self-
refresh mode when the system is awakened. The boot loader does this.
If the boot loader was invoked because of a wake-up from a sleep event,
it puts the memory out of the self-refresh mode and jumps to an address
stored in a register (the PSPR register, which gets saved across sleep mode).
This address is provided by the kernel and contains a routine to bootstrap
the kernel out of the sleep mode by restoring the context and continuing
from where the kernel had suspended itself.

The 2.6 kernel has an integrated framework to do frequency scaling. The
framework provides a method for changing the frequency dynamically on the
supported architectures. However the kernel does not implement the policies;
rather they are left to applications that use the framework to drive the
frequency. This is because the frequency scaling policies depend on the nature
of the system usage. A generic solution is not possible; hence the implemen-
tation of the policy is left to user land applications or daemons. The following
are the important features of the frequency scaling mechanism.

Board Support Package 87

� The frequency scaling software inside the kernel is divided into two
components: the scalar core and the frequency driver. The frequency scalar
core is implemented in the file linux/kernel/cpufreq.c. The core
is the generic piece of code that implements the framework that is inde-
pendent of the hardware. However the actual job of controlling the
hardware to do frequency transitions is left to the frequency drivers, which
are platform dependent.

� The core does the important job of updating the important system variable
loops_per_jiffy, which is dependent on the CPU frequency. This
variable is used by various hardware devices to do small but timed pauses
using the kernel function udelay(). At system start-up time this variable
is set using the function calibrate_delay(). However, whenever the
system frequency changes later, this variable has to be updated. The core
does this.

� The changes in the clock frequency may affect the hardware components,
which are dependent on the CPU frequency. All the corresponding device
drivers need to be notified of the frequency changes so that they can
control the hardware accordingly. The core implements a driver notify
mechanism; a driver that is interested in receiving frequency change events
needs to register to the core.

� The frequency settings can be controlled from user land using the proc
interface. This can be used by applications to change the clock frequency.

� Various applications and tools are available in the user space to control
the frequency depending on the system load. For example, the cpufreqd
application monitors battery level, AC state, and running programs, and
adjusts the frequency governor according to a set of rules specified in the
configuration file.

3.8.4 Unified Driver Framework for Power Management

The device drivers are a central piece in the power management software; it
is important to ensure their cooperation especially if the power consumption
of the devices they control adds up to a significant portion of the power
consumption. Similar to the technique employed by the frequency scaling
mechanism, the kernel separates the device drivers from the actual power
management software in the kernel by allowing the device drivers to register
themselves before they participate in the power management. This is done
using the pm_register() call; one of the arguments to this function is a
callback function. The kernel maintains a list of all drivers that are registered
with the power management; whenever there is an event associated with the
power management the driver callbacks are invoked.

If the device driver participates in power management, it is necessary that
no operations on the device are done unless the device is in the running
state. For this Linux offers an interface pmaccess; a device driver needs to
call this interface before it operates on the hardware. An additional interface
pm_dev_idle is provided to identify idle devices so that they can be put to
sleep.

88 Embedded Linux System Design and Development

An important issue in implementing power management to enable drivers
is the issue of ordering. When a device is dependent on another device, they
should be turned on and off in the right order. The classic case for this is the
PCI subsystem. When all the PCI devices on a PCI bus are turned off, then
the PCI bus itself can be turned off. But if the bus is turned off while the
devices are still alive or if any device is awakened before the bus itself then
it can prove disastrous. The same holds true when the PCI buses are chained.
The PCI subsystem takes care of this by recursing through the PCI buses
bottom up and making sure that the devices are turned off before the bus is
turned off on every bus encountered. Upon resuming from the sleep the bus
is recursed top down to make sure that the bus is restored before the devices
on that bus are awakened.

3.8.5 Power Management Applications

As mentioned earlier, the Linux kernel provides mechanisms to implement
power management but leaves the decision making to user land. Both APM
and ACPI come with applications that are used to initiate system suspend/
standby transition. The apmd daemon for APM uses the /proc/apm interface
to check if there is support for APM in the Linux kernel; along with initiating
standby it does logging of the various PM events. The ACPI daemon acpid
listens on a file (/proc/acpi/event) and when an event occurs, executes
programs to handle the event. More information about these daemons can be
found from

� apmd: http://worldvisions.ca/
� acpid: http://acpid.sf.net/

89

Chapter 4

Embedded Storage

Traditional storage on embedded systems was done using a ROM for storage
of read-only code and a NVRAM for storage for the read-write data. However,
they were replaced by flash technology, which provides high-density nonvol-
atile storage. These advantages combined with the low cost of flash have
dramatically increased their usage in embedded systems. This chapter discusses
the storage systems primarily around flash devices and the various file systems
available on Linux meant for embedded systems. The chapter is divided into
four parts.

� Flash maps for embedded Linux.
� Understanding the MTD (Memory Technology Drivers) subsystem meant

primarily for flash devices.
� Understanding the file systems associated with embedded systems. There

are specialized file systems on flash and onboard memory for embedded
systems.

� Tweaking for more storage space: techniques to squeeze more programs
onto your flash.

4.1 Flash Map
On an embedded Linux system, a flash will be generally used for:

� Storing the boot loader
� Storing the OS image
� Storing the applications and application library images
� Storing the read-write files (having configuration data)

Of the four, the first three are read-only for most of the system execution
time (except at upgrade times). It is inherent that if you use a boot loader

90 Embedded Linux System Design and Development

you should have at least two partitions: one having the boot loader and the
other holding the root file system. The division of the flash can be described
as the flash map. It is very advisable that at the beginning of your project
you come up with a flash map. A flash map like the memory map fixes on
how you plan to partition the flash for storage of the above data and how
you plan to access the data.

The following are various design issues that will come up when you try
to freeze on a flash map.

� How would you like to partition the flash? You can have the OS, appli-
cations, and read-write files in a single partition but that increases the risk
of corrupting the entire system data because the entire partition is read-
write. On the other hand you can put the read-only data in a separate
partition and the read-write in a separate partition so that the read-only
data is safe from any corruptions; but then you would need to fix a size
on each partition making sure that the partition size will not be exceeded
at any point in the future.

� How would you like to access the partitions, as raw or would you like to
use a file system? Raw partitions can be useful for the boot loader because
you will not be requiring a file system; you can mark a flash sector for
holding boot configuration data and the rest of the sectors for holding
boot code. However, for partitions holding Linux data, it is safer to go via
file systems. What file system you choose for the data also plays a crucial
role in fixing the flash map.

� How would you like to do upgrades? Upgrades on an embedded system
can be done on a running system or from the boot. In case your upgrades
involve changing only the read-only data (as is usually the case) it is better
to partition the flash into read-only and read-write partitions so that you
will not have to do any backup and restore of read-write data.

Figure 4.1 shows the flash map on a 4 MB flash holding a boot loader,
OS images, and applications. As you see, the read-only data is kept in a
CRAMFS file system, which is a read-only file system, and the read-write data
is kept in the JFFS2 file system, which is a read-write file system.

Figure 4.1 Flash map for 4-MB flash.

Raw partition for boot loader

Raw partition for kernel 640 K

CRAMFS partition for RO data 2 M

JFFS 2 partition for RW data 1.2 M

256 K

Embedded Storage 91

4.2 MTD—Memory Technology Device
MTD stands for Memory Technology Device and is the subsystem used to
handle onboard storage devices. Is MTD a separate class of driver set like a
character or block? The simple answer is no. Then what exactly is the job of
MTD and when and how do you include flash devices under an MTD
subsystem? How will you put file systems on an MTD device? The following
subsections answer these questions.

4.2.1 The MTD Model

Although flash devices are storage devices like hard disks, there are some
fundamental differences between them.

� Normally hard disks have a sector that divides a page size (generally 4096
bytes). The standard value is 512 bytes. The Linux file system model,
especially the buffer cache (a memory cache between the file system and
block device layer), is based upon this assumption. Flash chips on the
other hand have large sector sizes; the standard size is 64 K.

� Flash sectors normally have to be erased before writing to them; the write
and the erase operations can be independent depending on the software
using the flash.

� Flash chips have a limited lifetime which is defined in terms of the number
of times a sector is erased. So if a particular sector is getting written very
often the lifespan gets shortened. To prevent this, the writes to a flash
need to be distributed to all the sectors. This is called wear leveling and
is not supported by the block devices.

� Normal file systems cannot be used on top of a flash because these go
through the buffer cache. Normal disk IO is slow; to speed it up a cache
in memory called the buffer cache stores the IO data to the disk. Unless
this data gets flushed back to the disk, the file system is in an inconsistent
state. (This is the reason why you need to shut down your OS on the PC
before switching it off.) However, embedded systems can be powered off
without proper shutdown and still have consistent data; so normal file
systems and the block device model do not go well with embedded
systems.

The traditional method to access flash used to be via the FTL, that is, the
Flash Translation Layer. This layer emulates a block device behavior on a flash
to get regular file systems to work on flash devices. However, getting a new
file system or a new flash driver working with the FTL is cumbersome and
this is the reason why the MTD subsystem was invented. (David Woodhouse
is the owner of the MTD subsystem and the developments regarding MTD
can be obtained on the Web site http://www.linux-mtd.infradead.org/. The
MTD subsystem was made a part of the 2.4 mainstream kernel.) MTD’s solution
to the above problems is simple: treat memory devices as memory devices
and not like disks. So instead of changing the low-level drivers or introducing
a translation layer, change the application to use memory devices as they are.

92 Embedded Linux System Design and Development

MTD is very much tied to the applications; the MTD subsystem is divided
into two parts: drivers and the applications.

The MTD subsystem does not implement a new kind of driver but rather
it maps any device to both a character and a block device driver. When the
driver is registered with the MTD subsystem, it exports the device in both
these driver flavors. Why is it done this way? The character device can let the
memory device be accessed directly using standard open/read/write/
ioctl calls. But in case you want to mount a regular file system on the
memory device using the traditional method, you can still mount it using the
block driver.

We go through each layer in Figure 4.1 but before that let’s understand
two devices that are presently supported by MTD: flash chips and flash disks.

4.2.2 Flash Chips

We look at the variety of flash chips supported by the MTD subsystem. Flash
devices come in two flavors: NAND and NOR flash. Although both of them
came around the same time (NOR was introduced by Intel and NAND by
Toshiba in the late 1980s), NOR caught up fast with the embedded world
because of its ease to use. However when embedded systems evolved to have
large storage (like media players and digital cameras), NAND flash became
popular for data storage applications. The MTD layer also evolved initially
around the NOR flash but the support for NAND was added later. Table 4.1
compares the two kinds of flashes.

NOR chips come in two flavors: older non-CFI chips and the newer CFI
compliant. CFI stands for Common Flash Interface and is an industry standard
for ensuring compatibility among flash chips coming from the same vendor.
Flash chips like any other memory device are always in a stage of evolution
with new chips replacing the older ones very quickly; this would involve
rewriting the flash drivers. Often these changes would be configuration
changes such as erase timeouts, block sizes, and the like. To circumvent this
effort, CFI standards were introduced that enable the flash vendors to allow
the configuration data to be read from the flash devices. So system software
could interrogate the flash devices and reconfigure itself. MTD supports the
CFI command sets from Intel and AMD.

NAND flash support was added in the late 2.4 series; along with the NFTL
(NAND Flash Translation Layer) it can mount regular file systems, but support
for JFFS2 was added only for the 2.6 kernel. The 2.6 kernel can be considered
a good port for using NAND flash.

4.2.3 Flash Disks

Flash disks were introduced for mass storage applications. As their name
suggests, flash disks mean local disks on a system based on flash technology.
Flash disks again come in two flavors: ATA-based and linear.

Embedded Storage 93

Table 4.1 NOR versus NAND Flash

NOR NAND

Access to
data

The data can be accessed at
random like SRAM. The
operations on the flash can
be:

Read routine: Read the
contents of the flash.

Erase routine: Erase is the
process of making all the
bits on a flash 1. Erase on
the NOR chips happens in
terms of blocks (referred to
as erase regions).

Write routine: Write is the
process of converting a 1 to
0 on the flash. Once a bit is
made 0, it cannot be
written into until the block
is erased, which sets all the
bits in a block to 1.

The NAND chips divide the storage
into blocks, which are divided into
pages again. Each page is divided
into regular data and out-of-band
data. The out-of-band data is used
for storing metadata such as ECC
(Error-Correction Code) data and
bad block information. The NAND
flash like the NOR flash has three
basic operations: read, erase,
and write. However, unlike NOR
which can access data randomly,
the NAND reads and writes are
done in terms of pages whereas
erases happen in terms of blocks.

Interface to
the board

These are connected like
the normal SRAM device to
the processor address and
data bus.

There are multiple ways of
connecting the NAND flash to the
CPU varying across vendors. Raw
NAND access is done by
connecting the data and command
lines to the usually 8 IO lines on
the flash chip.

Execution of
code

Code can be executed
directly from NOR because
it is directly connected to
the address/data bus.

If code is in NAND flash it needs to
be copied to memory for
execution.

Performance NOR flash is characterized
by slow erase, slow write,
and fast read.

NAND flash is characterized by fast
erase, fast write, and fast read.

Bad blocks NOR flash chips are not
expected to have bad
blocks because they have
been designed to hold
system data.

These flashes have been designed as
basically media storage devices at
lower prices, so expect that they
have bad blocks. Normally these
flash chips come with the bad
sectors marked in them. Also
NAND flash sectors suffer more
the problem of bit flipping where
a bit gets flipped when being
written to; this is detected by error-
correcting algorithms called ECC/
EDC, which are done either in
hardware or in software.

94 Embedded Linux System Design and Development

ATA-based flash disks use the standard disk interface for interfacing on the
motherboard, so they appear as IDE disks on the system. A controller sits on
the same silicon as the flash but does the FTL implementation to map the
flash to sectors. In addition, it implements the disk protocol so that the flash
appears as a normal disk to the system. This was the approach taken by the
CompactFlash designers. The main advantage of using this approach was
software compatibility but the disadvantage was that it was more expensive
because the total solution was done in hardware. Linux treats these devices
as regular IDE devices and the driver for these devices can be found in the
drivers/ide directory.

The linear flash disk is the mechanism that is employed by the M2000
systems. These are NAND-based devices that have boot capabilities (it has a
boot ROM that is recognized as a BIOS extension), a thin controller that
employs error-correction algorithms, and the trueFFFS software that does the
FTL emulation. Thus these devices can be used for directly booting the system
and can be used for running regular file systems on a blocklike device. These
are less expensive when compared to the compact flashes but at the same
time give all the features required as a block device. Because the access to
these flash devices is similar to a memory device access, Linux implements
the drivers for these under the MTD model.

4.3 MTD Architecture
The following two questions are generally asked when getting Linux to work
on a flash-based device.

� Does Linux support my flash driver; if not, how do I port the driver?
� If Linux supports my flash driver, how do I make it detect the flash on

my board and get its driver automatically installed?

Understanding the MTD architecture answers these questions. The MTD
architecture is divided into the following components.

Usage These are basically used for
code execution. Boot
loaders can exist on the
NOR flashes because the
code from these flashes
can be directly executed.
These flashes are pretty
expensive and they
provide lesser memory
densities and have a
relatively shorter life span
(around 100,000 erase
cycles).

These are used mainly as storage
devices for embedded systems
such as set-top boxes and MP3
players. If you plan to use a board
with only NAND, you may have to
put in an additional boot ROM.
They offer high densities at lower
prices and have a longer life span
(around 10 to the power of 6 erase
cycles).

Table 4.1 NOR versus NAND Flash (continued)

NOR NAND

Embedded Storage 95

� MTD core: This provides the interface between the low-level flash drivers
and the applications. It implements the character and block device mode.

� Low-level flash drivers: This section talks about NOR- and NAND-based
flash chips only.

� BSP for flash: A flash can be uniquely connected on a board. For example,
a NOR flash can be connected directly on the processor bus or may be
connected to an external PCI bus. The access to the flash also can be
unique depending on the processor type. The BSP layer makes the flash
driver work with any board/processor. The user has to provide the details
of how the flash is mapped on the board; we refer to this piece of the
code as the flash mapping-driver.

� MTD applications: This can be either kernel submodules such as JFFS2 or
NFTL, or user-space applications such as upgrade manager.

Figure 4.2 shows how these components interact with each other and the
rest of the kernel.

Figure 4.2 MTD architecture.

User-Space Applications

Regular fs (cramfs) MTD apps (jffs 2, nftl)

MTD core

read()/write()

erase()

sync()

lock()/unlock()

read_oob()/write_oob()

read_ecc()/write_ecc()

suspend()/resume()

FLASH DRIVERS

Map file +

I/O routines

Probe_chip,

add_device,

partition routines

FLASH BSP

Hardware (Flash + Board)

block device
char device raw MTD access

96 Embedded Linux System Design and Development

4.3.1 mtd_info Data Structure

mtd_info is the heart of the MTD software. It is defined in the file include/
linux/mtd/mtd.h. The software driver on detecting a particular flash fills
up this structure with the pointers to all the required routines (such as erase,
read, write, etc.) that are used by the MTD core and the MTD applications.
The list of the mtd_info structures for all devices added is kept in a table
called the mtd_table[].

4.3.2 Interface Between MTD Core and Low-Level Flash Drivers

As mentioned above, the low-level flash driver exports the following functions
to the MTD core.

� Functions common to both the NAND and NOR flash chips
– read()/write()
– erase()
– lock()/unlock()
– sync()
– suspend()/resume()

� Functions for NAND chips only
– read_ecc()/write_ecc()
– read_oob()/write_oob()

If you have a CFI-enabled NOR flash or a standard IO device-mapped 8-
bit NAND chip, then your driver is already ready. Otherwise you need to
implement the MTD driver. Some of the routines may require hardware
support; so you need to check your flash data sheet to implement the functions.
The following section gives the description of routines other than the read(),
write(), and erase() routines.

� lock() and unlock(): These are used to implement flash locking; a
portion of the flash can be write or erase protected to prevent accidental
overwriting of images. For example, you can lock all the partitions on
which you have read-only file systems for most of the system execution
except when upgrades are done. These are exported to the user applica-
tions using the ioctls MEMLOCK and MEMUNLOCK.

� sync(): This gets called when a device gets closed or released and it
makes sure that the flash is in a safe state.

� suspend() and resume(): These are useful only when you turn on the
CONFIG_PM option on building the kernel.

� read_ecc() and write_ecc(): These routines apply for NAND flash
only. ECC is the error-correction code that is used to detect any bad bits
in a page. These routines behave as the normal read()/write() except
that a separate buffer containing the ECC is also read or written along
with the data.

� read_oob() and write_oob(): These routines apply for NAND flash
only. Every NAND flash is divided into either 256- or 512-byte pages; each

Embedded Storage 97

of these pages contains an additional 8- or 16-byte spare area called out-
of-band data, which stores the ECC, bad block information, and any file
system–dependent data. These functions are used to access the out-of-
band data.

4.4 Sample MTD Driver for NOR Flash
We now go into the details of a NOR flash driver for Linux. The file mtd.c
contains the code for a simple NOR flash based on the following assumptions.

� The flash device has a single erase region so that all sectors have the same
size. (An erase region is defined as an area of a chip that contains the
sectors of the same size.)

� The flash chip is accessed using a 4-byte bus width.
� There are no locking, unlocking, suspend, and resume functionalities.

For simplicity’s sake we assume that the following information is available
to us as macros or as functions.

� DUMMY_FLASH_ERASE_SIZE: The flash erase sector size
� DUMMY_FLASH_SIZE: The flash size
� PROBE_FLASH(): The function that probes if the NOR flash is present at

the specified address
� WRITE_FLASH_ONE_WORD: The function/macro to write a word at a

specified address
� ERASE_FLASH_SECTOR: The function to erase a given sector
� DUMMY_FLASH_ERASE_TIME: Per-sector erase time in jiffies

First let us put all the header files we want for our flash driver.

/* mtd.c */
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/types.h>
#include <linux/sched.h>
#include <linux/errno.h>
#include <linux/interrupt.h>
#include <linux/mtd/map.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/cfi.h>
#include <linux/delay.h>

Now we put all the APIs/macros that we expect the user to define.

#define DUMMY_FLASH_ERASE_SIZE
#define PROBE_FLASH(map)
#define WRITE_FLASH_ONE_WORD(map, start, addr, data)
#define ERASE_FLASH_SECTOR(map, start, addr)

98 Embedded Linux System Design and Development

#define DUMMY_FLASH_ERASE_TIME
#define DUMMY_FLASH_SIZE

A brief explanation of the arguments that are passed to the above APIs is
as follows.

� map: This is a pointer to a structure map_info declared in the header
file include/linux/mtd/map.h. This structure is explained in more
detail in Section 4.5.

� start: This is the start address of the NOR flash chip. This address is
normally used for programming the flash with the command to erase or
write data.

� addr: This is the offset from the chip’s starting address to where data
needs to be written or the sector needs to be erased.

� data: This argument for the write API is a 32-bit word that specifies what
needs to be written at the specified address.

Next we define a structure that contains the information private to this flash.

struct dummy_private_info_struct
{
 int number_of_chips; /* Number of flash chips */
 int chipshift; /* Size of each flash */
 struct flchip *chips;
} ;

A brief explanation of each of the structure fields is as follows.

� number_of_chips: As the name suggests, this specifies how many
consecutive chips can be found at the pr obe address. The API
PROBE_FLASH() is required to return this number to the driver code.

� chipshift: It is the total number of address bits for the device, which
is used to calculate address offsets and the total number of bytes of which
the device is capable.

� chips: The struct flchip can be found in include/linux/mtd/
flashchip.h. More of it is explained in the dummy_probe() function.

Next is the list of the static functions that need to be declared.

static struct mtd_info * dummy_probe(struct map_info *);
static void dummy_destroy(struct mtd_info *);
static int dummy_flash_read(struct mtd_info *, loff_t , size_t ,
 size_t *, u_char *);
static int dummy_flash_erase(struct mtd_info *,
 struct erase_info *);
static int dummy_flash_write(struct mtd_info *, loff_t ,
 size_t , size_t *, const u_char *);
static void dummy_flash_sync(struct mtd_info *);

Embedded Storage 99

The structure mtd_chip_driver is used by the initialization routine
dummy_flash_init() and the exit function dummy_flash_exit(). The
most important field is the .probe that is called to detect if a flash of a
particular type is present at a specified address on the board. The MTD layer
maintains a list of these structures. The probe routines are accessed when the
routine do_map_probe() is invoked by the flash-mapping driver.

static struct mtd_chip_driver dummy_chipdrv =
{
 .probe = dummy_probe,
 .destroy = dummy_destroy,
 .name = "dummy_probe",
 .module = THIS_MODULE
};

Now we define the probe routine. This function validates if a flash can be
found at the address map->virt, which is filled by the mapping driver. If it
is able to detect a flash, then it allocates the mtd structure and the
dummy_private_info structure. The mtd structure is filled with the various
driver routines such as read, write, erase, and so on. The
dummy_private_info structure is filled with the flash-specific information.
Refer to Listing 4.1 for implementation of the probe routine.

The most interesting data structures that are initialized in the probe function
are the wait queue and the mutex. These are used to prevent concurrent
accesses to the flash, which is a requirement for almost all flash devices. Thus
whenever an operation such as read or write needs to be performed, the
driver needs to check if the flash is not already in use. This is done using
the state field, which is set to FL_READY at initialization time. If the flash is
being used, then the process needs to block on the wait queue until it is
awakened. The mutex (spinlock) is used to prevent race problems on SMP
machines or in case preemption is enabled.

Next we go to the read routines. The read routine registered with the MTD
core is dummy_flash_read(), which is called to read len number of bytes
from the flash offset from. Because the writes can span multiple chips, the
function dummy_flash_read_one_chip() gets called internally to read data
from a single chip. Refer to Listing 4.2 for their implementation.

Now we go to the write routines. The routine registered with the MTD
core is dummy_flash_write(). Because the write can start from unaligned
addresses, the function makes sure that it buffers data in such cases and in
turn calls the function dummy_flash_write_oneword() to write 32-bit data
to 32-bit aligned addresses. Refer to Listing 4.3 for their implementation.

The erase function registered to the MTD core is dummy_flash_erase().
This function needs to make sure that the erase address specified is sector
aligned and the number of bytes to be erased is a multiple of the sector size.
The function dummy_flash_erase_one_block() is called internally; this
erases one sector at a given address. Because the sector erase is time consuming,

100 Embedded Linux System Design and Development

Listing 4.1 Dummy Probe Function

static struct mtd_info *dummy_probe(struct map_info *map)
{
 struct mtd_info * mtd = kmalloc(sizeof(*mtd), GFP_KERNEL);
 unsigned int i;
 unsigned long size;
 struct dummy_private_info_struct * dummy_private_info =
 kmalloc(sizeof(struct dummy_private_info_struct), GFP_KERNEL);

 if(!dummy_private_info)
 {
 return NULL;
 }
 memset(dummy_private_info, 0, sizeof(*dummy_private_info));

 /* The probe function returns the number of chips identified */
 dummy_private_info->number_of_chips = PROBE_FLASH(map);
 if(!dummy_private_info->number_of_chips)
 {
 kfree(mtd);
 return NULL;
 }

 /* Initialize mtd structure */
 memset(mtd, 0, sizeof(*mtd));
 mtd->erasesize = DUMMY_FLASH_ERASE_SIZE;
 mtd->size = dummy_private_info->number_of_chips * DUMMY_FLASH_SIZE;
 for(size = mtd->size; size > 1; size >>= 1)
 dummy_private_info->chipshift++;
 mtd->priv = map;
 mtd->type = MTD_NORFLASH;
 mtd->flags = MTD_CAP_NORFLASH;
 mtd->name = "DUMMY";
 mtd->erase = dummy_flash_erase;
 mtd->read = dummy_flash_read;
 mtd->write = dummy_flash_write;
 mtd->sync = dummy_flash_sync;

 dummy_private_info->chips = kmalloc(sizeof(struct flchip) *
 dummy_private_info->number_of_chips, GFP_KERNEL);
 memset(dummy_private_info->chips, 0,
 sizeof(*(dummy_private_info->chips)));
 for(i=0; i < dummy_private_info->number_of_chips; i++)
 {
 dummy_private_info->chips[i].start = (DUMMY_FLASH_SIZE * i);
 dummy_private_info->chips[i].state = FL_READY;
 dummy_private_info->chips[i].mutex =
 &dummy_private_info->chips[i]._spinlock;
 init_waitqueue_head(&dummy_private_info->chips[i].wq);
 spin_lock_init(&dummy_private_info->chips[i]._spinlock);
 dummy_private_info->chips[i].erase_time = DUMMY_FLASH_ERASE_TIME;
 }

 map->fldrv = &dummy_chipdrv;
 map->fldrv_priv = dummy_private_info;

 printk("Probed and found the dummy flash chip\n");
 return mtd;
}

Embedded Storage 101

Listing 4.2 Dummy Read Routines

static inline int dummy_flash_read_one_chip(struct map_info *map,
 struct flchip *chip, loff_t addr, size_t len, u_char *buf)
{
 DECLARE_WAITQUEUE(wait, current);

again:
 spin_lock(chip->mutex);

 if(chip->state != FL_READY)
 {
 set_current_state(TASK_UNINTERRUPTIBLE);
 add_wait_queue(&chip->wq, &wait);
 spin_unlock(chip->mutex);
 schedule();
 remove_wait_queue(&chip->wq, &wait);
 if(signal_pending(current))
 return -EINTR;
 goto again;
 }

 addr += chip->start;
 chip->state = FL_READY;
 map_copy_from(map, buf, addr, len);
 wake_up(&chip->wq);
 spin_unlock(chip->mutex);
 return 0;
}

static int dummy_flash_read(struct mtd_info *mtd, loff_t from,
 size_t len,size_t *retlen, u_char *buf)
{
 struct map_info *map = mtd->priv;
 struct dummy_private_info_struct *priv = map->fldrv_priv;
 int chipnum = 0;
 int ret = 0;
 unsigned int ofs;
 *retlen = 0;

 /* Find the chip number and offset for the first chip */
 chipnum = (from >> priv->chipshift);
 ofs = from & ((1 << priv->chipshift) - 1);
 while(len)
 {
 unsigned long to_read;
 if(chipnum >= priv->number_of_chips)
 break;

 /* Check whether the read spills over to the next chip */
 if((len + ofs - 1) >> priv->chipshift)
 to_read = (1 << priv->chipshift) - ofs;
 else
 to_read = len;
 if((ret = dummy_flash_read_one_chip(map, &priv->chips[chipnum],
 ofs, to_read, buf)))
 break;

102 Embedded Linux System Design and Development

this function preempts the calling task making it sleep for DUMMY_FLASH_
ERASE_TIME jiffies. At the end of the erase, the MTD core is signaled that
the erase is finished by setting the erase state to MTD_ERASE_DONE and then
any erase callbacks that are registered get invoked before returning. Refer to
Listing 4.4 for the implementation of erase routines.

The sync function is invoked when the flash device is closed. This function
has to make sure that none of the flash chips are in use at the time of closing;
if they are then the function makes the calling process wait until all the chips
go into the unused state. Refer to Listing 4.5 for dummy flash sync function
implementation.

The function dummy_destroy is invoked in case the flash driver is loaded
as a module. When the module is unloaded, the function dummy_destroy()
does all the cleanup.

static void dummy_destroy(struct mtd_info *mtd)
{
 struct dummy_private_info_struct *priv =
 ((struct map_info *)mtd->priv)->fldrv_priv;
 kfree(priv->chips);
}

The following are the initialization and exit functions.

int __init dummy_flash_init(void)
{
 register_mtd_chip_driver(&dummy_chipdrv);
 return 0;
}

void __exit dummy_flash_exit(void)
{
 unregister_mtd_chip_driver(&dummy_chipdrv);
}

module_init(dummy_flash_init);
module_exit(dummy_flash_exit);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Embedded Linux book");
MODULE_DESCRIPTION("Sample MTD driver");

Listing 4.2 Dummy Read Routines (continued)

 *retlen += to_read;
 len -= to_read;
 buf += to_read;
 ofs=0;
 chipnum++;
 }
 return ret;
}

Embedded Storage 103

Listing 4.3 Dummy Write Routines

static inline int dummy_flash_write_oneword(struct map_info *map,
 struct flchip *chip, loff_t addr, __u32 datum)
{
 DECLARE_WAITQUEUE(wait, current);

again:
 spin_lock(chip->mutex);

 if(chip->state != FL_READY)
 {
 set_current_state(TASK_UNINTERRUPTIBLE);
 add_wait_queue(&chip->wq, &wait);
 spin_unlock(chip->mutex);
 schedule();
 remove_wait_queue(&chip->wq, &wait);
 if(signal_pending(current))
 return -EINTR;
 goto again;
 }

 addr += chip->start;
 chip->state = FL_WRITING;
 WRITE_FLASH_ONE_WORD(map, chip->start, addr, datum);
 chip->state = FL_READY;
 wake_up(&chip->wq);
 spin_unlock(chip->mutex);
 return 0;
}

static int dummy_flash_write(struct mtd_info *mtd, loff_t from,
 size_t len,size_t *retlen, const u_char *buf)
{
 struct map_info *map = mtd->priv;
 struct dummy_private_info_struct *priv = map->fldrv_priv;
 int chipnum = 0;
 union {
 unsigned int idata;
 char cdata[4]; }
 wbuf;
 unsigned int ofs;
 int ret;

 *retlen = 0;
 chipnum = (from >> priv->chipshift);
 ofs = from & ((1 << priv->chipshift) - 1);

 /* First check if the first word to be written is aligned */
 if(ofs & 3)
 {
 unsigned int from_offset = ofs & (~3);
 unsigned int orig_copy_num = ofs - from_offset;
 unsigned int to_copy_num = (4 - orig_copy_num);
 unsigned int i, len;

 map_copy_from(map, wbuf.cdata, from_offset +
 priv->chips[chipnum].start, 4);

104 Embedded Linux System Design and Development

Listing 4.3 Dummy Write Routines (continued)

 /* Overwrite with the new contents from buf[] */
 for(i=0; i < to_copy_num; i++)
 wbuf.cdata[orig_copy_num + i] = buf[i];

 if((ret = dummy_flash_write_oneword(map, &priv->chips[chipnum],
 from_offset, wbuf.idata)) < 0)
 return ret;

 ofs += i;
 buf += i;
 *retlen += i;
 len -= i;
 if(ofs >> priv->chipshift)
 {
 chipnum++;
 ofs = 0;
 }
 }

 /* Now write all the aligned words */
 while(len / 4)
 {
 memcpy(wbuf.cdata, buf, 4);
 if((ret = dummy_flash_write_oneword(map, &priv->chips[chipnum],
 ofs, wbuf.idata)) < 0)
 return ret;

 ofs += 4;
 buf += 4;
 *retlen += 4;
 len -= 4;
 if(ofs >> priv->chipshift)
 {
 chipnum++;
 ofs = 0;
 }
 }

 /* Write the last word */
 if(len)
 {
 unsigned int i=0;

 map_copy_from(map, wbuf.cdata, ofs + priv->chips[chipnum].start,
 4);
 for(; i<len; i++)
 wbuf.cdata[i] = buf[i];

 if((ret = dummy_flash_write_oneword(map, &priv->chips[chipnum],
 ofs, wbuf.idata)) < 0)
 return ret;
 *retlen += i;
 }

 return 0;
}

Embedded Storage 105

Listing 4.4 Dummy Erase Routines

static int dummy_flash_erase_one_block(struct map_info *map,
 struct flchip *chip, unsigned long addr)
{
 DECLARE_WAITQUEUE(wait, current);
again:
 spin_lock(chip->mutex);

 if(chip->state != FL_READY)
 {
 set_current_state(TASK_UNINTERRUPTIBLE);
 add_wait_queue(&chip->wq, &wait);
 spin_unlock(chip->mutex);
 schedule();
 remove_wait_queue(&chip->wq, &wait);
 if(signal_pending(current))
 return -EINTR;
 goto again;
 }

 chip->state = FL_ERASING;
 addr += chip->start;
 ERASE_FLASH_SECTOR(map, chip->start, addr);

 spin_unlock(chip->mutex);
 schedule_timeout(chip->erase_time);
 if(signal_pending(current))
 return -EINTR;

 /* We have been woken after the timeout. Take the mutex to proceed */
 spin_lock(chip->mutex);

 /* Add any error checks if the flash sector has not been erased. */

 /* We assume that here the flash erase has been completed */
 chip->state = FL_READY;
 wake_up(&chip->wq);
 spin_unlock(chip->mutex);
 return 0;
}

static int dummy_flash_erase(struct mtd_info *mtd,
 struct erase_info *instr)
{
 struct map_info *map = mtd->priv;
 struct dummy_private_info_struct *priv = map->fldrv_priv;
 int chipnum = 0;
 unsigned long addr;
 int len;
 int ret;

 /* Some error checkings initially */
 if((instr->addr > mtd->size) ||
 ((instr->addr + instr->len) > mtd->size) ||
 instr->addr & (mtd->erasesize -1)))
 return -EINVAL;

106 Embedded Linux System Design and Development

4.5 The Flash-Mapping Drivers
Irrespective of the type of device (NAND or NOR), the basis of the mapping-
driver operations is to get the mtd_info structure populated (by calling the
appropriate probe routines) and then register with the MTD core. The
mtd_info will have different function pointers depending on the device type.
The mtd_info structures are placed in an array mtd_table[]. A maximum
of 16 such devices can be stored in this table. How the entries in the
mtd_table are exported as character and block devices is explained later.
The process of flash-mapping driver can be split into:

� Creating and populating the mtd_info structure
� Registering mtd_info with the MTD core

4.5.1 Filling up mtd_info for NOR Flash Chip

The low-level NOR hardware is dependent on the board regarding the fol-
lowing things in case your flash is connected directly on the processor
hardware bus (as is the case normally).

� The address to which the flash is memory mapped
� The size of the flash
� The bus width; this can be an 8-, 16-, or 32-bit bus
� Routines to do 8-,16-, and 32-bit read and write
� Routines to do bulk copy

Listing 4.4 Dummy Erase Routines (continued)

 /* Find the chip number for the first chip */
 chipnum = (instr->addr >> priv->chipshift);
 addr = instr->addr & ((1 << priv->chipshift) - 1);
 len = instr->len;
 while(len)
 {
 if((ret = dummy_flash_erase_one_block(map, &priv-
>chips[chipnum], addr)) < 0)
 return ret;
 addr += mtd->erasesize;
 len -= mtd->erasesize;
 if(addr >> priv->chipshift)
 {
 addr = 0;
 chipnum++;
 }
 }

 instr->state = MTD_ERASE_DONE;
 if(instr->callback)
 instr->callback(instr);
 return 0;
}

TE
AM
 F
LY

Embedded Storage 107

The NOR flash map is defined in the map_info data structure and the
database for the various board configurations is found in the drivers/mtd/
maps directory. Once the map_info structure is filled, then the function
do_map_probe() is invoked with the map_info as an argument. This func-
tion returns a pointer to the mtd_info structure filled with the function
pointers for operating on the flash chip.

Listing 4.5 Dummy Sync Routine

static void dummy_flash_sync(struct mtd_info *mtd)
{
 struct map_info *map = mtd->priv;
 struct dummy_private_info_struct *priv = map->fldrv_priv;
 struct flchip *chip;
 int i;

 DECLARE_WAITQUEUE(wait, current);

 for(i=0; i< priv->number_of_chips;i++)
 {
 chip = &priv->chips[i];
again:
 spin_lock(chip->mutex);

 switch(chip->state)
 {
 case FL_READY:
 case FL_STATUS:
 chip->oldstate = chip->state;
 chip->state = FL_SYNCING;
 break;
 case FL_SYNCING:
 spin_unlock(chip->mutex);
 break;
 default:
 add_wait_queue(&chip->wq, &wait);
 spin_unlock(chip->mutex);
 schedule();
 remove_wait_queue(&chip->wq, &wait);
 goto again;
 }
 }

 for(i--; i >=0; i--)
 {
 chip = &priv->chips[i];
 spin_lock(chip->mutex);
 if(chip->state == FL_SYNCING)
 {
 chip->state = chip->oldstate;
 wake_up(&chip->wq);
 }
 spin_unlock(chip->mutex);
 }
}

108 Embedded Linux System Design and Development

4.5.2 Filling up mtd_info for NAND Flash Chip

As mentioned earlier, the NAND flash access is done by connecting the data
and command lines to the processor IO lines. The following are the important
pins found on a NAND flash chip.

� CE (Chip Enable) pin: When this pin is asserted low the NAND flash chip
is selected.

� WE (Write Enable) pin: When this pin is asserted low, the NAND flash
chip accepts data from the processor.

� RE (Read Enable) pin: When this pin is asserted low, the NAND flash chip
sends out data to the processor.

� CLE (Command Latch Enable) pin and ALE (Address Latch Enable) pin.

These pins determine the destination of the operations on the NAND chip.
Table 4.2 explains how these pins are used.

� WP (Write Protect) pin: This pin can be used for write protection.
� RB (Ready Busy) pin: This is used in data-transfer phases to indicate that

the chip is in use.
� IO pins: This is used for data transfer.

Unlike the NOR flash chip that calls the do_map_probe() to allocate the
mtd_info structure, a NAND-based mapping driver needs to allocate the
mtd_info structure. The key to this is a structure nand_chip, which is filled
by the NAND mapping driver. The following steps are done by the NAND
mapping driver.

� Allocate the mtd_info structure.
� Allocate a nand_chip structure and fill up the required fields.
� Make the mtd_info’s priv field point to the nand_chip structure.
� Call the function nand_scan(), which will probe for the NAND chip,

and fill the mtd_info structure with the functions for NAND operation.
� Register the mtd_info structure with the MTD core.

The parameters for the NAND that are stored in the nand_chip structure
can be classified into:

Table 4.2 ALE and CLE Pins Usage

ALE CLE Register

0 0 Data register

0 1 Command register

1 0 Address register

Embedded Storage 109

� Mandatory parameters:
– IO_ADDR_R, IO_ADDR_W: These are the addresses for accessing the

IO lines of the NAND chip.
– hwcontrol(): This function implements the board-specific mecha-

nism for setting and clearing the CLE, ALE, and the CE pins.
– eccmode: This is used to denote the ECC type for the NAND flash.

These include no ECC at all, software ECC, and hardware ECC.
� Mandatory parameters if hardware does ECC. Some hardware provides

ECC generation; in that case the following functions need to be imple-
mented. In case of software ECC, the NAND driver by default provides
the following functions.
– calculate_ecc(): Function to generate the ECC
– correct_data(): Function for ECC correction
– enable_hwecc(): Function to enable HW ECC generation

� Nonmandatory parameters. The driver provides default functions/values
for the following parameters. However they can be overridden by the
mapping driver:
– dev_ready(): This function is used to find the state of the flash.
– cmdfunc(): This function is for sending commands to the flash.
– waitfunc(): This function is invoked after a write or erase is done.

The default function provided by the NAND driver is a polling function;
in case the board can hook the RB pin to an interrupt line, this function
can be converted to an interrupt-driven function.

– chip_delay: This is the delay for transferring data from the NAND
array to its registers; the default value is 20 us.

4.5.3 Registering mtd_info

The following steps are generic and apply to both NAND and NOR flashes.
The basis of the registration is the function add_mtd_device() function,
which adds the device to the mtd_table[] array. However in most of the
cases you would not use this function directly because you want to create
partitions on the chip.

Partitioning

Partitioning allows multiple partitions on a flash to be created and to be added
into different slots in the mtd_table[] array. Thus the partitions will be
exported as multiple devices to the application. The various partitions share
the same functions for accessing the array. For example, you would want to
divide the 4-MB flash into a 1-MB and 3-MB partition as shown in Figure 4.3.

The key to partitioning is the mtd_partition data structure. You would
define an array of this data structure to export the partition.

struct mtd_partition partition_info[] =
{
 { .name=”part1”, .offset=0, .size= 1*1024*1024},

110 Embedded Linux System Design and Development

 { .name=”part2”, .offset=1*1024*1024, .size= 3*1024*1024}
}

The partitions are added using the add_mtd_partition() function. More
details of this may be found in the mapping driver example in Section 4.5.4.

Concatenation

This is a powerful technique that allows multiple devices to merge separate
devices into a single device. Assume that you have two flash devices on the
system. Figure 4.4 shows one flash having three partitions and the other flash
having a single partition.

As the file system needs to span across two flash chips, normally you
would need to create two file systems on each of the chips. This is a
cumbersome technique because you would need to maintain two file systems.

Figure 4.3 Flash partitioned into two halves.

Figure 4.4 Multipartition flash.

3-MB Partition

1-MB Partition

Flash Size 4 MB

Boot Partition 0.5 MB

FFS 2 File System

2-MB Partition

CRAMFS Partition

1.5 MB

Flash 1 (with 3 partitions)

JFFS 2 File System

4 MB

Flash 2 (only 1 partition)

Embedded Storage 111

This can be prevented by concatenating the two flash chips into a single
virtual device as shown in Figure 4.5. Then only one instance of the file
system needs to be mounted on the system.

4.5.4 Sample Mapping Driver for NOR Flash

Let’s take an example of a MIPS-based board having two flash chips placed
at addresses as shown in Figure 4.6.

Figure 4.5 Two flash devices concatenated into one virtual device.

Figure 4.6 Flash memory map.

6-MB Partition

obtained by

concatenating

a 4-MB and a 2-MB

partition

1.5-MB Partition

4-MB Partition

Virtual flash of size 8 MB

having 3 partitions

 0.5-MB Partition 0.5-MB Partition

1.5MB Parition
1.5-MB Partition

2-MB Partition

Flash 1

with

3 Partitions

Flash 2

with

1 Partition

0 × BF00_0000

0 × BFC0_0000

Single erase region 64 sectors

each of size 64 K

Erase region of 63 sectors

 each of size 64 K

Erase region having 8 sectors

 each of size 8 K

112 Embedded Linux System Design and Development

The following are the usage details of these flash chips.

� The first flash chip is mapped at address 0xBFC00000 and is of size 4 MB.
The first flash is the boot flash and it has two erase regions. The first erase
region has eight sectors each of size 8 K; this 64-K area is used for storing
boot loader and boot-up configuration parameters. The second erase region
has sectors of size 64 K and is totally used for storing a JFFS2 file system.

� The second flash chip is mapped at address 0xBF000000 and is again of
size 4 MB. The second flash contains only one erase region with all sectors
of size 64 K. This flash is totally used for storing the JFFS2 file system.

The requirement from our flash-mapping driver is to partition the first flash
starting at address 0xBFC00000 into two. The first partition of size 64 K will
be the boot partition. The second partition will be concatenated with the flash
starting at address 0xBF000000 to store the JFFS2 file system.

First let us start with the header files and the definitions.

/* mtd-bsp.c */
#include <linux/config.h>
#include <linux/module.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <asm/io.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/map.h>
#include <linux/mtd/cfi.h>
#include <linux/mtd/partitions.h>
#include <linux/mtd/concat.h>

#define WINDOW_ADDR_0 0xBFC00000
#define WINDOW_SIZE_0 0x00400000
#define WINDOW_ADDR_1 0xBF000000
#define WINDOW_SIZE_1 0x00400000

The map_info contains the details of the starting address (physical) of
each chip, size, and bus width. These are used by the chip probe routines.

static struct map_info dummy_mips_map[2] = {
 {
 .name = "DUMMY boot flash",
 .phys = WINDOW_ADDR_0,
 .size = WINDOW_SIZE_0,
 .bankwidth = 4,
 },
 {
 .name = "Dummy non boot flash",
 .phys = WINDOW_ADDR_1,
 .size = WINDOW_SIZE_1,
 .bankwidth = 4,
 }
};

Embedded Storage 113

The following structure is used to set up the partitions on the boot flash.

static struct mtd_partition boot_flash_partitions [] = {
 {
 .name = "BOOT",
 .offset = 0,
 .size = 0x00010000,
 },
 {
 .name = "JFFS2",
 .offset = 0x00010000,
 .size = 0x003f0000,
 },
};

/*
 * Following structure holds the mtd_info pointers for the
 * partitions we will be concatenating
 */
static struct mtd_info *concat_partitions[2];

/*
 * Following structure holds the mtd_info structure pointers for
 * each of the flash devices
 */
static struct mtd_info * mymtd[2], *concat_mtd;

The function init_dummy_mips_mtd_bsp() is the main function. Refer
to Listing 4.6 for its implementation. The function does the following.

� Probes for the flash at the address 0xBFC00000 and populates the MTD
structure for this flash in mymtd[0]

� Probes for the flash at the address 0xBF000000 and populates the MTD
structure for this flash in mymtd[1]

� Creates two partitions for the flash with starting address 0xBFC00000
� Concatenates the second partition with the flash whose starting address is

0xBF000000 and then creates a new device by calling the function
add_mtd_device()

Finally the cleanup function is as follows.

static void __exit cleanup_dummy_mips_mtd_bsp(void)
{
 mtd_concat_destroy(concat_mtd);
 del_mtd_partitions(mymtd[0]);
 map_destroy(mymtd[0]);
 map_destroy(mymtd[1]);
}

module_init (init_dummy_mips_mtd_bsp);
module_exit (cleanup_dummy_mips_mtd_bsp);
MODULE_LICENSE ("GPL");
MODULE_AUTHOR ("Embedded Linux book");
MODULE_DESCRIPTION ("Sample Mapping driver");

114 Embedded Linux System Design and Development

4.6 MTD Block and Character Devices
As mentioned earlier, the MTD devices are exported in two modes to the user
space: as character and as block devices. The character devices are represented
using the following device names.

/dev/mtd0
/dev/mtdr0
/dev/mtd1

Listing 4.6 init_dummy_mips_mtd_bsp Function

int __init init_dummy_mips_mtd_bsp (void)
{

 /* First probe for the boot flash */
 dummy_mips_map[0].virt =
 (unsigned long)ioremap(
 dummy_mips_map[0].phys,dummy_mips_map[0].size);
 simple_map_init(&dummy_mips_map[0]);
 mymtd[0] = do_map_probe("cfi_probe", &dummy_mips_map[0]);
 if(mymtd[0])
 mymtd[0]->owner = THIS_MODULE;

 /* Repeat for the second flash */
 dummy_mips_map[1].virt =
 (unsigned long)ioremap(dummy_mips_map[1].phys,
 dummy_mips_map[1].size);
 simple_map_init(&dummy_mips_map[1]);
 mymtd[1] = do_map_probe("cfi_probe", &dummy_mips_map[1]);
 if(mymtd[1])
 mymtd[1]->owner = THIS_MODULE;
 if (!mymtd[0] || !mymtd[1])
 return -ENXIO;

 /*
 * Now we will partition the boot flash. We are interested in the
 * new mtd object for the second partition since we will be
 * concatenating it with the other flash.
 */
 boot_flash_partitions[1].mtdp = &concat_partitions[0];
 add_mtd_partitions(mymtd[0], boot_flash_partitions, 2);

 /*
 * concat_partitions[1] should contain the mtd_info pointer for the
 * 2nd partition. Do the concatenation
 */
 concat_partitions[1] = mymtd[1];
 concat_mtd = mtd_concat_create(concat_partitions, 2,
 "JFFS2 flash concatenate");
 if(concat_mtd)
 add_mtd_device(concat_mtd);
 return 0;
}

Embedded Storage 115

/dev/mtdr1
...
/dev/mtd15
/dev/mtdr15

All the character devices have a major number of 90. The character devices
are exported as either read-write character devices or read-only character
devices. This usage is obtained using minor numbers. All MTD devices having
odd minor numbers (1, 3, 5, . . .) are exported as read-only devices. So both
/dev/mtd1 and /dev/mtdr1 point to the same device (the device holding
the second slot in the mtd_table[]); the former can be opened in read-
write mode whereas the latter can be opened only in the read-only mode.
The following is the list of ioctls that are supported by the MTD character
devices.

� MEMGETREGIONCOUNT: Ioctl to pass the number of erase regions back to
the user

� MEMGETREGIONINFO: Ioctl to get erase region information
� MEMERASE: Ioctl to erase specific sector of flash
� MEMWRITEOOB/MEMREADOOB: Ioctls used for accessing out-of-band data
� MEMLOCK/MEMUNLOCK: Ioctls used for locking specified sectors provided

there is support from hardware

Block devices have a major number of 31. Up to 16 minor devices are
supported. The block devices are used to mount file systems on top of the
flash devices (see Figure 4.7).

Figure 4.7 MTD device exported as character and block device.

/dev/mtd 1

/dev/mtdr 1
/dev/mtdb1

Character Device Driver Block Device Driver

0

1

15

...

mtd_table
Flash

Device

User Space

Kernel Space

Device: Major = 90,

Minor = 2, 3

Device: Major = 31,

Minor = 1

mtd_add_device()

116 Embedded Linux System Design and Development

4.7 Mtdutils Package
The mtdutils package is a set of useful programs such as for creating file
systems and testing flash device integrity. Note that some of the utilities are
host based (such as tools to create a JFFS2 file image) and some can be used
on the target (such as utilities to erase a flash device). The target-based
programs need to be cross-compiled for usage on the target. The following
is a description of the individual utilities in this package.

� erase: This utility is used to erase a specified number of blocks at a
given offset.

� eraseall: This utility is used to erase an entire device (because partitions
are represented by devices, an entire partition can be erased using this
program).

� nftl_fromat: This utility is used to create a NFTL (NAND Flash Trans-
lation Layer) partition on an MTD device. This gets used for the disk-on-
chip systems to format the disk on a chip.

� nftldump: This utility is used to dump the NFTL partition.
� doc_loadbios: This disk-on-chip utility is used to reprogram the disk-

on-chip with a new firmware (such as GRUB).
� doc_loadip1: This utility is used to load an IPL (initialization code) into

the DOC flash.
� ftl_fromat: This utility is used to create an FTL partition on a flash

device.
� nanddump: This utility dumps the contents of NAND chips (either raw or

those contained in the DOC).
� nandtest: This utility tests NAND devices (such as writing and reading

back to a NAND flash and checking if the write succeeds).
� nandwrite: This utility is used to write a binary image into a NAND flash.
� mkfs.jffs: Given a directory tree, this utility creates a JFFS image, which

can be burnt into the flash.
� mkfs.jffs2: Given a directory tree, this utility creates a JFFS2 image,

which can be burnt into the flash.
� lock: This utility locks one or more sectors of the flash.
� unlock: This utility unlocks all sectors of a flash device.
� mtd_debug: This is a very useful utility that can be used to get information

about a flash device, read, write, and erase to flash devices.
� fcp: This is a flash copy utility used to copy a file into a flash device.

4.8 Embedded File Systems
This section talks about the popular embedded file systems. Most of them are
flash-based whereas the rest are memory-based file systems. Memory-based
file systems can be used at boot-up time to hold a root file system and also
for storing volatile data that need not be saved across reboots; these are
discussed first.

Embedded Storage 117

4.8.1 Ramdisk
Ramdisk, as the name suggests, is a way by which Linux emulates a hard disk
using memory. You would need a ramdisk when you do not have a traditional
storage device such as a hard disk or a flash for storing a root file system.
Note that ramdisk is not a file system but a mechanism by which you can
load an actual file system into memory and use it as the root file system.

Initrd provides a mechanism by which a boot loader loads the kernel image
along with a root file system into memory. Using initrd would require the
following effort.

� Creating the initrd image and packing it with the kernel image. You need
to create the ramdisk image on the development (host) machine. Then
you need to pack the ramdisk image with the kernel. On certain platforms
this option is available when building the kernel. Normally there is an ELF
section called the .initrd that holds the ramdisk image, which can be
directly used by the boot loader.

� Changes to the boot loader to load the initrd.

Initrd also gives a mechanism by which you can switch to a new root file
system at a later point of time during system execution. Thus you can use
initrd for system recovery and upgrade procedures too for your production
releases. Chapter 8 discusses the steps necessary for building an initrd image.

4.8.2 RAMFS
Often an embedded system has files that are not useful across reboots and
these would be normally stored in the /tmp directory. Storing these files in
memory would be a better option than storing them in flash because flash
writes are expensive. Instead you could use a RAMFS (RAM File System);
these do not have a fixed size and they shrink and grow with the files stored.

4.8.3 CRAMFS (Compressed RAM File System)
This is a very useful file system for flash storage and was introduced in the
2.4 kernel. It is a high-compression “read-only” file system. CRAMFS is a
regular file system; that is, it goes via the buffer cache to talk to a block
device holding the actual data. Hence you need to enable the MTD block
device driver mode you want to use CRAMFS. CRAMFS uses the zlib routines
for compression and it does compression for every 4-KB (page size) block.
The CRAMFS image that needs to be burned in flash can be created using a
program called mkcramfs.

4.8.4 Journaling Flash File Systems — JFFS and JFFS2
The traditional file systems were not designed for embedded systems and not
for flash types of storage mechanisms. Let us do a quick recap of what we
want out of the flash file systems:

118 Embedded Linux System Design and Development

� Wear leveling
� No data corruption on sudden power outage
� Directly use the MTD-level APIs instead of going through the flash trans-

lation layers

In 1999, Axis Communications released the JFFS for the Linux 2.0 kernel
with all the above features. It was quickly ported to the 2.2 and 2.3 kernel
series. But then it lacked support for compression and hence the JFFS2 project
was started. JFFS2 was released to the 2.4 kernel series and quickly overtook
JFFS because of its advanced features. Both JFFS and JFFS2 are log-structured
file systems; any change to a file gets recorded as a log, which gets directly
stored on the flash (logs are also called nodes).

The contents of this log will be:

� Identification of the file to which the log belongs
� Version that is unique per log belonging to a particular file
� Metadata such as timestamp
� Data and data size
� Offset of the data in the file

A write to a file creates a log that records the offset in the file to where
the data is written and the size of the data written along with the actual data.
When a file needs to be read, the logs are played back and using the data
size and the offset, the file gets re-created. As time proceeds, certain logs
become obsolete partially or totally; they need to be cleaned. This process is
called garbage collection. The output of garbage collection is to identify clean
erase blocks. Garbage collection should also provide wear leveling to make
sure that all erase blocks have a chance to appear in the free list.

The main features of the JFFS2 file system are as follows.

� Management of erase blocks: In JFFS2, the erase blocks are placed in three
lists: clean, dirty, and free. The clean list contains only valid logs (i.e., logs
not invalidated by newer ones). The dirty list contains one or many logs that
are obsolete and hence can be purged when garbage collection is called.
The free list contains no logs and hence can be used for storing new logs.

� Garbage collection: JFFS2 garbage collection happens in the context of a
separate thread, which gets started when you mount a JFFS2 file system.
For every 99 out of 100 times, this thread will pick up a block from the
dirty list and for the other one out of 100 will pick up a block from the
clean list to ensure wear leveling. JFFS2 reserves five blocks for doing
garbage collection (this number seems to have been decided by heuristics).

� Compression: The distinguishing factor between JFFS and JFFS2 is that
JFFS2 gives a host of compression including zlib and rubin.

The JFFS/JFFS2 file system image can be created on the target using the
mkfs.jffs and mkfs.jffs2 commands. Both of these commands take a directory
tree as an argument and create an image on the host development machine.
These images need to be downloaded onto the target and burnt on the

Embedded Storage 119

corresponding flash partition; this support is provided by most of the Linux
boot loaders.

4.8.5 NFS — Network File System

The network file system can be used to mount a file system over the network.
The popular desktop file systems EXT2 and EXT3 are exportable via NFS;
hence the developer can use a standard Linux desktop for storing an EXT2
or EXT3 file system and access it as a root file system on the embedded
system. During the debugging stage, often the developer would like to make
changes to the root file system. In such a case writing to flash can be costly
(because flash has limited write cycles) and time consuming. NFS can be a
good choice provided the network driver is ready. Also with NFS you do not
have any size restrictions because all the storage is done on the remote server.

The Linux kernel provides a mechanism for automatically mounting a file
system using NFS at boot time using the following steps.

� The config options CONFIG_NFS_FS, which allow you to mount a file
system from a remote server and CONFIG_ROOT_NFS, which allows you
to use NFS as root file system needs to be turned on at build time. Also
if you are mounting an EXT2 or EXT3 root file system from the remote
desktop, the support for that file system needs to be included in the kernel.

� Because an IP address becomes necessary to connect to a NFS server at
boot time, you might want to turn on the network auto configuration using
BOOTP, RARP, or DHCP.

� Kernel command-line parameters to specify the NFS server have to be
specified.

For more details on the syntax of the command-line arguments refer to
Documentation/nfsroot.txt in the kernel source tree.

4.8.6 PROC File System

The proc file system is a logical file system used by the kernel to export its
information to the external world. The proc file system can be used for system
monitoring, debugging, and tuning. The proc files are created on the fly when
they get opened. The files can be read-only or read-write depending on the
information exported by the files. The read-only proc files can be used to get
some kernel status that cannot be modified at runtime. Examples of read-only
proc files are the process status information. The read-write proc files contain
information that can be changed at runtime; the kernel uses the changed value
on the fly. An example of this is the tcp keep-alive time. The proc file system
gets mounted by the startup scripts at the standard mount point /proc.

This file system makes use of the system RAM. Although system RAM is
expensive, still the advantages of having the proc file system outweigh the
disadvantages. The proc file system gets used by standard Linux programs

120 Embedded Linux System Design and Development

such as ps and mount. Hence readers are advised not to remove the proc
file system unless they are very sure.

4.9 Optimizing Storage Space
This section deals with a major problem often encountered on embedded
systems, which is how to use the storage space effectively. This is because
flash chips are costly. Though their prices have seen sharp declines in the
last few years, they are still a major component of the hardware BOM (Bill
Of Materials). The problem gets more acute when you pick up an open source
from the Web for running on your system; unless the program has been written
keeping in mind the embedded system, there is a very small chance that the
program has been optimized for space. Such a program might have lots of
unwanted code, which may add to unwanted storage space. We divide this
section into three main parts:

� Optimizing the Linux kernel for effective storage
� Space optimizing the applications
� Using compressed file systems for storing kernel and applications. Because

the file systems such as CRAMFS and JFFS2 that provide compression have
already been discussed, this section ignores this topic.

4.9.1 Kernel Space Optimization

The main way to reduce the size of the kernel is to remove unwanted code
from the kernel. Other than this, the compiler optimization technique (using
the -Os option) can be used to make smaller kernel images. (This holds true
for applications too.) The 2.6 kernel has a separate build option for embedded
systems; the CONFIG_EMBEDDED option is used to build a sleeker kernel. Also
some kernel submodules such as the swap subsystem can be disabled at build
time. Irrespective of the kernel version, it is imperative to make sure that
while you are configuring the kernel for choosing the various subsystems only
the necessary options are selected lest you should bloat the kernel size
unnecessarily.

The 2.6 kernel has an open source community project that is aimed at
making it run on embedded systems. This is the “Linux tiny kernel project”
started by Matt Mackall. The aim of this project is to maintain a kernel source
tree that includes patches aimed at making the kernel size smaller and making
the kernel use memory optimally. Some of the interesting patches that are
aimed at making a smaller kernel include:

� Option to remove printk and all the strings passed to printk
� Compilation checks that complains too much usage of inline functions

because they bloat code size

The tiny kernel tree can be referenced at www.selenic.com.

Embedded Storage 121

Because kernel memory tuning shares many tricks with kernel space
optimization, the last section of this chapter discusses techniques for tuning
kernel memory.

4.9.2 Application Space Optimization

The application space optimization can be effectively done using the following
steps.

� Pruning individual applications with respect to unwanted code
� Using tools such as the library optimizer
� Using smaller and sleeker programs/distributions aimed at embedded

systems
� Using a smaller C library such as uClibc

Library Optimizer

This tool is intended to remove unwanted code from shared libraries. Remem-
ber from the discussion of shared libraries in Chapter 2 that the shared libraries
may contain unwanted code that may never get referenced but still may waste
valuable storage space. The library optimizer is an open source tool that is used
at the end of the build to scan shared libraries and rebuild them so that they
contain only the necessary object files necessary for the system. The Web site
for the development of the library optimizer is http://libraryopt.sourceforge.net.

However, the library optimizer cannot be used on systems on which
applications need to be downloaded and executed dynamically (it may happen
very rarely for embedded systems) because the C library may not contain the
functions necessary for the new applications to execute.

Smaller C Libraries

The C library is a crucial component of the user space; all applications need
to link against the C library for commonly used functions. The standard C
library libc.so and libc.a, which is available from the GNU Web site, is often
known as the glibc. However, the glibc is aimed more towards desktop and
server environments. It contains redundant code that does not find much use
on embedded systems thus using expensive storage space. To quote the
maintainer of glibc, Ulrich Drepper,

Normally, something like glib or the gnu utilities would not be for
embedded systems. ... The ports are not really meant for embedded
environments, but the systems which Linux runs on (i.e. [S]VGA, Hard
drive, mouse, 64mb ram, etc).

There are two popular alternatives to using glibc on embedded systems:
the dietlibc and the uclibc. Both are discussed below.

122 Embedded Linux System Design and Development

� Dietlibc: dietlibc is a small libc, which can be downloaded from http://
www.dietlibc.org/

� Uclibc: uclibc is a very popular embedded libc. This project was started
and is maintained by Erik Andersen at the following W eb site:
www.uclibc.org. One important feature of uclibc is that it can be used on
both MMU and MMU-less processors. The list of processors that are
supported by uclibc are:
– x86
– ARM
– MIPS
– PPC
– M68K
– SH
– V850
– CRIS
– Microblaze™

4.9.3 Applications for Embedded Linux

We now discuss some popular distributions and applications used for embed-
ded linux systems.

Busybox

The Busybox program is a multicall program. This means that a single small
executable implements some commonly used programs in an embedded system.
Busybox is aimed at embedded systems. It also has a configure mechanism
wherein only the required programs for the system can be chosen at build time.
The Busybox can be downloaded from http://busybox.net. The Busybox contains
the following main programs known as applets in Busybox terminology.

� Shells such as the ash, lash, hush, and so on
� Core utilities such as cat, chmod, cp, dd, mv, ls, pwd, rm, and so on
� Process control and monitoring utilities such as ps, kill, and so on
� Module-loading utilities such as lsmod, rmmod, modprobe, insmod,

and depmod
� System tools such reboot, init, and so on
� Networking utilities such as ifconfig, route, ping, tftp, httpd,

telnet, wget, udhcpc (dhcp client), and so on
� Log-in and password management utilities such as login, passwd,

adduser, deluser, and so on
� Archival utilities such as ar, cpio, gzip, tar, and so on
� System logging utilities such as syslogd

Building Busybox is divided into two steps:

� Configure: Run make menuconfig to select applets you want to build.
� Building busybox: Run make to build busybox executable.

Embedded Storage 123

The next step is installing Busybox in your target. This is achieved by
calling Busybox with the --install option in the system startup script (for
example, rc script).

busybox mount -n -t proc /proc /proc
busybox --install –s

The Busybox install command creates soft links of all the applets
selected during configuration process. For example, after installation ls -l in
the /bin directory gives output as below.

-rwxr-xr-x 1 0 0 1065308 busybox
lrwxrwxrwx 1 0 0 7 init -> busybox
lrwxrwxrwx 1 0 0 12 ash -> /bin/busybox
lrwxrwxrwx 1 0 0 12 cat -> /bin/busybox
lrwxrwxrwx 1 0 0 12 chmod -> /bin/busybox
lrwxrwxrwx 1 0 0 12 cp -> /bin/busybox
lrwxrwxrwx 1 0 0 12 dd -> /bin/busybox
lrwxrwxrwx 1 0 0 12 echo -> /bin/busybox

As you can see, for each selected applet, Busybox install has created
a soft link by the name of that applet to itself. When any program is invoked
(say chmod), Busybox fetches the program name from its first command-line
argument and calls the associated function.

Tinylogin

Tinylogin is a multicall program similar to Busybox and is used for imple-
menting UNIX log-in and access applications. The following is the list of
functionalities implemented by Tinylogin.

� Adding and deleting users
� login and getty applications
� Changing password passwd application

Tinylogin can be downloaded from www.tinylogin.org.

Ftp Server

An ftp server is useful to copy files to and from an embedded system. There
are two ftp servers available, the standard wu-ftpd server and the more popular
proftpd server, which is highly configurable. They can be downloaded from
www.wu-ftpd.org and www.proftpd.org, respectively.

Web Server

Web servers are needed for remote management of an embedded device.
There are many Web servers aimed at embedded Linux, of which the most
popular are discussed below.

124 Embedded Linux System Design and Development

� BOA: An embedded single-tasking http server available from http://www.
boa.org/

� mini_httpd: A small Web server meant for low and medium Web traffic.
It can be downloaded from http://www.acme.com/

� GoAhead: It is a popular open source Web server meant for embedded
systems and can be downloaded from http://www.goahead.com

4.10 Tuning Kernel Memory
This section explains techniques to reduce memory usage by the kernel. The
Linux kernel does not participate in paging and hence the entire kernel (code,
data, and stack) always resides in main memory. Before going into the
optimization techniques, let us understand how to estimate the memory utilized
by the kernel. You can find the static memory that will be used by the kernel
by using the size command; this utility lists the various section sizes and
total size for an object file. The following is the output on a kernel compiled
for the MIPS processor.

bash >mips-linux-size vmlinux
text data bss dec hex filename
 621244 44128 128848 794220 c1e6c vmlinux

The above output shows that 621 K of memory is used by kernel text, 44
K by the data, and 128 K by the BSS. Note that the BSS is not part of the
kernel storage image; the start-up code allocates memory for the BSS and fills
it with 0, thus effectively creating it during runtime.

The next piece of useful information is displayed during Linux start-up:

Memory: 61204k/65536k available (1347k kernel code, 4008k
 reserved, 999k data, 132k init, 0k highmem)

The above message indicates that out of the 65,536 K memory present on
the system, around 4 M has been used for storing the kernel text, code, and
init sections and for setting up the data structures for memory management.
The rest of the 61 M is available to the kernel for dynamic memory allocation.

The /proc/meminfo records the runtime memory on the system. Sample
output for the 2.4 kernel is:

cat /proc/meminfo

 total: used: free: shared: buffers: cached:
Mem: 62894080 47947776 14946304 0 4964352 23674880
Swap: 0 0 0
MemTotal: 61420 Kb
MemFree: 14596 Kb
MemShared: 0 Kb
Buffers: 4848 Kb
Cached: 23120 Kb
SwapCached: 0 Kb

Embedded Storage 125

Active: 32340 Kb
ActiveAnon: 10760 Kb
ActiveCache: 21580 Kb
Inact_dirty: 6336 Kb
Inact_clean: 236 Kb
Inact_target: 7780 Kb
HighTotal: 0 Kb
HighFree: 0 Kb
LowTotal: 61420 Kb
LowFree: 14596 Kb
SwapTotal: 0 Kb
SwapFree: 0 Kb

The important fields are the used and free fields. The rest of the infor-
mation is about how the various caches on the system (buffer, page, etc.)
have locked up memory. In case the reader is interested in knowing these
details, she can refer to the documentation available along with the Linux
kernel. The Documentation/proc.txt file has a section that explains each
field displayed by /proc/meminfo.

Now let us look at techniques to optimize kernel memory usage.

� Cutting down on statically allocated data structures: Statically allocated
data structures reside either in the .data or in the .bss section. Many
of the data structures that get pulled in do not have a configurable option
(this would make the build process very complicated) and hence rest on
a default size, which would be of limited option to an embedded system.
Some of them are listed below.
– Number of default TTY consoles (MAX_NR_CONSOLES and MAX_NR_

USER_CONSOLES) defined in include/linux/tty.h as 63.
– Size of the console log buffer LOG_BUF_LEN defined in kernel/

printk.c as 16 K.
– Number of character and block devices (MAX_CHRDEV and MAX_BLKDEV)

defined in include/linux/major.h
� System.map file: The System.map file generated by the kernel build can

be a useful source of information in this regard. This file contains the
symbol addresses of each symbol; the difference between consecutive
symbol addresses will give the size of a symbol, which is either text or
data. All large-size data structures are targets of investigation. You can also
use the nm command with the --size option to get sizes of various
symbols in the kernel image.

� Cutting down unused code within the kernel: The kernel code can be
scanned to remove unused modules and functions. Note that the techniques
discussed for a smaller kernel in the section on kernel space optimization
holds good here.

� Improper usage of kmalloc: kmalloc is the generic kernel memory
allocator. Device drivers normally make use of kmalloc() for allocating
memory dynamically. kmalloc() operates on cache objects that are
multiples of 32 bytes; so any allocation of memory that lies between two
consecutive multiples of 32 bytes causes internal fragmentation. Assume
that a submodule does kmalloc of size 80 bytes; it gets allocated from

126 Embedded Linux System Design and Development

an object of 128 bytes and hence 48 bytes get wasted per allocation. If
your submodule or driver does lots of such allocations, then much memory
gets wasted. The remedy for this problem is to create private caches from
which you can allocate objects exactly of the size that is required. This is
done using the following two steps.
– Creating the cache associated with the slab object using the kmem_

cache_create(). (To destroy the cache call kmem_cache_
destroy().)

– Creating an object associated with the cache using the kmem_cache_
alloc(). (The free function is kmem_cache_free().)

� Using the __init directive: The .init section holds all the functions that
can be thrown away once the kernel is initialized. Usually all the initial-
ization functions are placed under the .init section. If you are including
your own driver or module within the kernel, identify sections that need
to be used only once during system start-up and place them under the
.init section using the __init directive. This will ensure that some free
kernel is released back to the system once all the functions in the .init
section are run.

� Cutting down on holes in physical memory: Holes in physical memory are
common phenomena with embedded systems. Sometimes board design or
processor design does not allow all the physical memory to be contiguous
thus causing holes. However large holes in physical memory can waste
space. This is because every 4 K of physical memory (page) requires a
60-byte page_struct data structure for maintenance. If there is a huge
hole, then these structures are unnecessarily allocated and the pages that
lie within the hold ar e marked unused. To prevent this, the
CONFIG_DISCONTIGMEM support provided by the Linux kernel can be
used.

� XIP: XIP or “eXecute In Place” is a technology by which a program executes
directly from flash; there is no need to copy the program to flash to get
it executing. Other than decreasing the memory requirements, it also
decreases the start-up time because the kernel need not be uncompressed
or copied to the RAM. The flip side is that compression cannot be used
on the file system where the kernel image is stored and hence you need
to have lots of flash. However, using XIP in file systems is of limited use
for applications because the code pages are loaded on demand (demand
paging). XIP is more popular in uClinux because of the lack of virtual
memory on uClinux systems. XIP is discussed at length in Chapter 10.

127

Chapter 5

Embedded Drivers

Porting device drivers from other RTOSs (Real-Time Operating System) to
embedded Linux is a challenging job. Device drivers are part of the Linux IO
subsystem. The IO subsystem provides access to low-level hardware to appli-
cations using a well-defined system call interface. Figure 5.1 gives a high-level
overview of how the applications make use of device drivers.

Device drivers in Linux are classified into three types:

� Character device drivers: These are used for driving sequential access
devices. The amount of data accessed is not of fixed size. The character
device drivers are accessed by the application using the standard calls
such as open, read, write. For example, a serial driver is a character
device driver.

� Block device drivers: These are used for driving random access devices.
The data exchange happens in terms of blocks. The block device drivers
are used for storing file systems. Unlike character drivers, the applications
cannot directly access block device drivers; they can be accessed only
through a file system. A file system is mounted on a block device thus
making the block device driver a mediator between the storage media and
the file system. For example, a disk driver is a block device driver.

� Network device drivers: Network device drivers are treated as a separate
class of device drivers because they interact with the network protocol
stack. Applications do not access them directly; only the networking
subsystem interacts with them.

This chapter explains some of the commonly used device driver subsystems
on embedded platforms. We discuss serial, Ethernet, I2C, USB gadgets, and
watchdog drivers.

128 Embedded Linux System Design and Development

5.1 Linux Serial Driver
The Linux serial driver is tightly coupled with the TTY subsystem. The TTY
layer is a separate class of character driver. On embedded systems having a
serial port, the TTY layer is used for providing access to the low-level serial
port. Often an embedded board may have more than one serial port; typically
the other ports may be used for dial-up access using protocols such as PPP
or SLIP. The question often asked is whether in such a case, different serial
drivers should be provided. The answer is no as TTY shields the serial driver
from the application so that a single serial driver can be provided irrespective
of how it gets used.

A user process does not talk to the serial driver directly. TTY presents a
stack of software over the driver and exports the entire functionality via TTY
devices. The TTY subsystem is split into three layers as shown in Figure 5.2.
As Figure 5.2 suggests, every device associated with the TTY subsystem is
bound to a line discipline that enforces how the transmitted or received data
is processed by the low-level driver. Linux offers a default line discipline
N_TTY that can be used for using a serial port as a standard terminal. But
line disciplines can also be used for implementing more complex protocols
such as X.25 or the PPP/SLIP protocol.

In Linux, user processes normally have a controlling terminal. The con-
trolling terminal is where the process takes its input from and to where its
standard output and error is redirected. The TTY and process management
automatically take care of assigning and managing controlling terminals.1

There is another set of TTY devices that are used in embedded systems.
These are the virtual or pseudo TTY devices (PTYs). PTYs are a powerful

Figure 5.1 Linux device driver architecture overview.

Hardware

Device Drivers

Filesystem/Networking

System Call Layer

Applications

Embedded Drivers 129

means of IPC. Processes using pseudo TTYs get all the benefits of both IPC
and the TTY subsystem. For example, the Telnet subsystem on Linux makes
use of a pseudo terminal for communication between the telnetd (master
Telnet daemon) and the process that is spawned by telnetd. By default the
number of pseudo TTYs is set to 256; this can be tweaked into a smaller
number because of its restricted usage in embedded systems.

Now we discuss an implementation of a serial driver in Linux. In the 2.4
kernel, the data structure used for hooking up a serial driver to the TTY
subsystem is tty_driver. The serial driver fills this structure with information
such as name of the device, major/minor numbers, and all the APIs needed
by the TTY IO and the line discipline layer to access the serial driver. In 2.4,
the file drivers/char/generic_serial.c contains functions exported to
the TTY layer from a serial driver; it can be used for hooking your low-level
serial driver to the TTY layer.

In the 2.6 kernel, the serial driver layer was cleaned up so that porting a
new serial driver to Linux becomes easier. The serial driver need not bother
about the TTY hookups; rather an abstraction layer handles it. This makes
the job of writing the serial driver easier. This section explains how a serial
driver can be written in the new framework.

We assume a fictitious UART hardware MY_UART with the following
functionalities:

Figure 5.2 TTY subsystem.

Hardware

Low Level Driver

Line Discipline

TTY IO Layer

Applications

130 Embedded Linux System Design and Development

� Simple transmission and reception logic; one register for sending data out
and one register for getting data

� Allows speed settings of either 9600 or 19200 bauds
� Uses interrupt to intimate either end of transmission or on reception of data
� The hardware has only one UART port (i.e., it’s single ported)

We assume that the macros shown in Listing 5.1 are already available for
accessing the hardware. Again these macros assume that the registers and the
buffers are mapped starting from the base address MY_UART_BASE. We also
assume that the BSP for this particular board has done this mapping so that
we can start using the address MY_UART_BASE effectively. However, we do
not discuss modem support by the driver; it is beyond the scope of this section.

First we discuss the device configuration. In the drivers/serial/Kconfig
file add the following lines.

config MY_UART
 select SERIAL_CORE
 help
 Test UART driver

Then add the following lines in the drivers/serial/Makefile.

obj-$(CONFIG_MY_UART)+= my_uart.o

The configuration option selects the file my_uart.c to be compiled along
with drivers/serial/serial_core.c. The file serial_core.c contains
the generic UART routines that interface with TTY and the line discipline
modules. Henceforth the generic UART layer implemented in serial_core.c
is referred to as the UART core.

5.1.1 Driver Initialization and Start-Up

Now let us discuss the initialization function for the driver. The initialization
function registers a TTY device and then sets the path between the UART
core and the driver. The main data structures involved in this process and
declared in file include/linux/serial_core.h are as follows.

� struct uart_driver: This data structure contains information about
the name, major and minor numbers, and number of ports of this driver.

� struct uart_port: This data structure contains all the configuration
data of the low-level hardware.

� struct uart_ops: This data structure contains the pointers to functions
that operate on the hardware.

These three data structures are linked together as shown in Figure 5.3 for
a UART device having two hardware ports. We are using a dual-ported
hardware as an example for now; however, our sample hardware is single-
ported.

Embedded Drivers 131

Listing 5.1 MY_UART Hardware Access Macros

/* my_uart.h */

/*
 * Indicate to hardware to setup the registers necessary for
 * sending out data
 */
#define START_TX()

/*
 * Indicate to hardware that we are no longer sending out any
 * data.
 */
#define STOP_TX()

/* Hardware macro to transmit a character */
#define SEND_CHAR()

/*
 * Macro that indicates that there is data in the UART receive
 * register
 */
#define CHAR_READY()

/* Macro that reads a character from the UART hardware */
#define READ_CHAR()

/* Macro to read the receive status register */
#define READ_RX_STATUS
/* Macros that show the error bits */
#define PARITY_ERROR
#define FRAME_ERROR
#define OVERRUN_ERROR
#define IGNORE_ERROR_NUM

/*
 * Macro that indicates the hardware to stop receiving
 * characters
 */
#define STOP_RX()

/*
 * Macros for interrupt processing; read interrupt mask and check
 * the interrupt type
 */
#define READ_INTERRUPT_STATUS
#define TX_INT_MASK
#define RX_INT_MASK

/*
 * Macro that indicates that the transmit buffer is empty
 */
#define TX_EMPTY()

/* Macros to set speed, stop bits, parity and number of bits */
#define SET_SPEED()
#define SET_STOP_BITS
#define SET_PARITY
#define SET_BITS

132 Embedded Linux System Design and Development

There is one private structure held by the kernel — uart_state. The
number of uart_state is equivalent to the number of hardware ports that
are accessed via the driver. Each state contains a pointer to the per-port settings
uart_port, which in turn contains the structure uart_ops holding the
routines for accessing the hardware.

Data structures for MY_UART are defined as shown in Listing 5.2.
First we have the initialization routine.

int __init my_uart_init(void)
{
 /*
 * uart_register_driver binds the low level driver with
 * the serial CORE which in turn registers with the TTY
 * layer using the tty_register_driver() function. Also
 * the uart_state structures are created (the number of
 * these structures are equivalent to number of hardware
 * ports) and pointer to this array is stored in
 * my_uart_driver.
 */
 uart_register_driver (&my_uart_driver);

 /*
 * As indicated in the Figure 5.3 this function
 * connects the uart_state to the uart_port. Also this
 * function lets the TTY layer know that a device has
 * been added using the function tty_register_device().
 */
 uart_add_one_port (&my_uart_driver, &my_uart_port);

 return 0;
}

Figure 5.3 UART data structure linkage.

uart_state*

uart_driver

uart_port*

uart_port*

uart_state(0)

uart_state(1)

uart_ops*

uart_ops*

uart_port(0)

uart_port(1)

uart_ops

Embedded Drivers 133

We now discuss the functions in the my_uart_ops structure. The functions
request_port() and release_port() are typically used to request IO and
memory regions used by the port. Start-up and shutdown functions
my_uart_startup() and my_uart_shutdown() do the interrupt setup and
teardown, respectively.

static int my_uart_startup(struct uart_port *port)
{
 return(request_irq(MY_UART_IRQ, my_uart_irq_handler, 0,
 “my uart”, port));
}

static void my_uart_shutdown(struct uart_port *port)
{
 free_irq(MY_UART_IRQ, port);
}

Listing 5.2 MY_UART Data Structures

static struct uart_ops my_uart_ops= {
 .tx_empty = my_uart_tx_empty,
 .get_mctrl = my_uart_get_mctrl,
 .set_mctrl = my_uart_set_mctrl,
 .stop_tx = my_uart_stop_tx,
 .start_tx = my_uart_start_tx,
 .stop_rx = my_uart_stop_rx,
 .enable_ms = my_uart_enable_ms,
 .break_ctl = my_uart_break_ctl,
 .startup = my_uart_startup,
 .shutdown = my_uart_shutdown,
 .set_termios = my_uart_set_termios,
 .type = my_uart_type,
 .release_port = my_uart_release_port,
 .request_port = my_uart_request_port,
 .config_port = my_uart_config_port,
 .verify_port = my_uart_verify_port,
};

static struct uart_driver my_uart_driver = {
 .owner = THIS_MODULE,
 .driver_name = “serial”,
 .dev_name = “ttyS%d”,
 .major = TTY_MAJOR,
 .minor = MY_UART_MINOR,
 .nr = 1
};

static struct uart_port my_uart_port = {
 .membase = MY_UART_MEMBASE,
 .iotype = SERIAL_IO_MEM,
 .irq = MY_UART_IRQ,
 .fifosize = 1,
 .line = 0,
 .ops = &my_uart_ops
}

134 Embedded Linux System Design and Development

5.1.2 Data Transmission

The functions involved in transmission of data are shown in Listing 5.3.
Transmission starts with the my_uart_start_tx() function; this function is
invoked by the line discipline to start transmission. After the first character is
transmitted, the rest of the transmission is done from the interrupt handler
until all the characters queued up by the line discipline layer are transmitted.
It is implemented by the generic transmission function my_uart_char_tx().
The serial core provides a circular buffer mechanism for storing the characters
that need to be transmitted. The serial core provides macros to operate on
this buffer of which the following are used in this driver.

� uart_circ_empty() is used to find if the buffer is empty.
� uart_circ_clear() is used to empty the buffer.
� uart_circ_chars_pending() is used to find the number of characters

that are yet to be sent out.

5.1.3 Data Reception

Data reception happens in the context of an interrupt handler. The data receive
path is explained using a flowchart as shown in Figure 5.4.

The basis of the receive operation is the TTY flip buffer. This is a pair of
buffers that is provided by the TTY layer. While one buffer is consumed by
the line discipline for processing the characters received, the other buffer is
available for writing. The TTY layer provides standard APIs for accessing the
flip buffers. We are interested only in the functions for inserting the received
character inside the available flip buffer and then flushing the received
characters to the line discipline from the flip buffer. These are done using the
functions tty_insert_flip_char and tty_flip_buffer_push, respec-
tively. The functions my_uart_char_rx and my_uart_stop_rx are shown
in Listing 5.4.

5.1.4 Interrupt Handler

Now we list the interrupt handler that makes use of transmit and receive
functions.

static irqreturn_t
my_uart_irq_handler(int irq, void *dev_id,
 struct pt_regs *regs)
{
 unsigned int st= READ_INT_STATUS;

 if(st & TX_INT_MASK) my_uart_char_tx(my_uart_port); &
 if(st & RX_INT_MASK) my_uart_char_rx(my_uart_port);

 return IRQ_HANDLED;
}

Embedded Drivers 135

Listing 5.3 Transmit Functions

static void my_uart_char_tx(struct uart_port *port)
{
 struct circ_buf *xmit = &port->info->xmit;

 /*
 * If a XON/XOFF character needs to be transmitted out, the
 * x_char field of the port is set by the serial core
 */
 if(port->x_char)
 {
 SEND_CHAR(port->x_char);
 port->x_char = 0; /* Reset the field */
 return;
 }

 if(uart_tx_stopped(port) || uart_circ_empty(xmit))
 {
 my_uart_stop_tx(port, 0);
 return;
 }

 SEND_CHAR(xmit->buf[xmit->tail]);

 /*
 * UART_XMIT_SIZE is defined in include/linux/serial_core.h
 */
 xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE – 1);

 /*
 * Now check if there are more characters that need to be sent
 * and we have enough space in the transmission buffer which is
 * defined by the macro WAKEUP_CHARS set to 256 in the file
 * include/linux/serial_core.h. The function uart_write_wakeup
 * provided by the serial core ultimately ends up calling the
 * TTY wakeup handler function which in turn informs the line
 * discipline that the low level driver is ready to receive
 * more data.
 */
 if(uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
 uart_write_wakeup(port);

 if(uart_circ_empty(xmit))
 my_uart_stop_tx(port, 0);
}

static void
my_uart_stop_tx(struct uart_port *port, unsigned int c)
{
 STOP_TX();
}

136 Embedded Linux System Design and Development

Listing 5.3 Transmit Functions (continued)

static void
my_uart_start_tx(struct uart_port *port, unsigned int start)
{
 START_TX();
 my_uart_char_tx(port);
}

/* Return 0 if not empty */
static unsigned int my_uart_tx_empty(struct uart_port *port)
{
 return (TX_EMPTY()? TIOCSER_TEMT : 0);
}

Figure 5.4 Rx path flowchart.

Call from ISR

More data

available to

 read?

Is

buffer

available?

Read Data

Read

Status.

Any Errors?

Ignore

Errors?

Too

Many

Errors?

No

Yes

No

Yes

Yes

Yes

No

Yes

Insert character

in flip buffer

No

Set flag to signal

error to TTY layer

Deliver data to

line discipline

Exit

No

Embedded Drivers 137

Listing 5.4 Receive Functions

void my_uart_char_rx(struct uart_port *port)
{
 struct tty_struct *tty = port->info->tty;
 struct uart_count *icount = &port->icount;
 unsigned int i=0;

 while(CHAR_READY())
 {
 unsigned char c;
 unsigned char flag = TTY_NORMAL;
 unsigned char st = READ_RX_STATUS();

 if(tty->flip.count >= TTY_FLIPBUF_SIZE)
 break;

 c = READ_CHAR();

 icount->rx++;

 if(st & (PARITY_ERROR | FRAME_ERROR | OVERRUN _ERROR))
 {
 if(st & PARITY_ERROR)
 icount->parity ++;
 if(st & FRAME_ERROR)
 icount->frame ++;
 if(st & OVERRUN_ERROR)
 icount->overrun ++;

 /*
 * If we have been asked to ignore errors then do the
 * following
 */
 if(st & port->ignore_status_mask)
 {
 if(++i > IGNORE_ERROR_NUM)
 break;
 goto ignore;
 }

 /*
 * Report the errors that we have not been asked to ignore
 */
 st &= port->read_status_mask;
 if(st & PARITY_ERROR) flag = TTY_PARITY;
 if(st & FRAME_ERROR) flag = TTY_FRAME;
 /*
 * Overrun is a special case; it does not affect the
 * character read
 */
 if(st & OVERRUN_ERROR)
 {
 tty_insert_flip_char(tty, c, flag);
 c = 0;
 flag = TTY_OVERRUN;
 }
 }

138 Embedded Linux System Design and Development

5.1.5 Termios Settings

Finally we discuss the function that does the termios settings. Termios settings
are the set of terminal settings that include a variety of options; these are
roughly classified into:

� Control options such the baud rate, number of data bits, parity, and stop bits
� Line options, input options, and output options

Implementing the termios settings is done across various TTY layers; the
low-level driver has to bother only about the control options. These options
are set using the c_cflag field of the terminos structure. The function
my_uart_set_terminos that sets these options is shown in Listing 5.5.

5.2 Ethernet Driver
In Linux, the network device driver is treated as a separate class of drivers.
The network drivers are not bound to the file system but are rather bound
to a subsystem interface (such as an Ethernet interface). The application
program does not talk to the network device driver directly but rather makes
use of sockets and IP addresses. The network layer forwards the requests
done over a socket to the network driver. This section explains the process
of writing an Ethernet driver for the 2.4 Linux kernel.

This section makes use of a fictitious Ethernet hardware to explain the
architecture of the Ethernet driver. The Ethernet card is plugged directly to
the processor’s address space and hence its registers and internal memory are
mapped directly to the processor’s address space. We assume two banks of
memory: one for transmission and one for receiving. For the sake of simplicity
we assume the absence of DMA; the driver has to invoke a memcpy procedure
for transferring data from the system RAM to the Ethernet card and vice versa.

Again we assume the following functions/macros are available.

Listing 5.4 Receive Functions (continued)

 tty_insert_flip_char(tty,c,flag);

ignore:
 }
 tty_flip_buffer_push(tty);
}

static void my_uart_stop_rx(struct uart_port *port)
{
 STOP_RX();
}

Embedded Drivers 139

� NW_IOADDR: This is the base address for accessing the IO on the card.
We assume that system initialization has given a valid base address.

� NW_IRQ: The interrupt line used for the network card.
� FILL_ETHER_ADDRESS: A macro that programs the hardware with an

Ethernet address.
� INIT_NW: A routine that initializes the network card.
� RESET_NW: A routine that resets the network card.

Listing 5.5 Setting Termios

static void
my_uart_set_termios(struct uart_port *port,
 struct termios *termios, struct termios *old)
{
 unsigned int c_cflag = termios->c_cflag;
 unsigned int baud=9600, stop_bits=1, parity=0, data_bits=8;
 unsigned long flags;

 /* Calculate the number of data bits */
 switch (c_cflag & CSIZE) {
 case CS5: data_bits = 5; break;
 case CS6: data_bits = 6; break;
 case CS7: data_bits = 7; break;
 case CS8: data_bits = 8; break;
 default: data_bits = 8;
 }

 if(c_cflag & CSTOPB) stop_bits = 2;

 if(c_cflag & PARENB) parity = 1;
 if(c_cflag & PARODD) parity = 2;

 /*
 * We support only 2 speeds of 9600 and 19200. Translate the
 * termios settings into any one of these
 */
 baud = uart_get_baud_rate(port, termios, old_termios, 9600,
 19200)

 spin_lock_irqsave(&port->lock, flags);
 SET_SPEED(baud);
 SET_STOP_BITS(stop_bits);
 SET_PARITY(parity);
 SET_BITS(data_bits);

 port->read_status_mask = OVERRUN_ERROR;

 if(termios->c_iflag & INPCK)
 port->read_status_mask |= PARITY_ERROR | FRAME_ERROR;
 port->ignore_status_mask = 0;

 if(termios->c_iflag & IGNPAR)
 port->ignore_status_mask |= PARITY_ERROR | FRAME_ERROR;

 spin_lock_irqrestore(&port->lock, flags);
}

140 Embedded Linux System Design and Development

� READ_INTERRUPT_CONDITION: This macro specifies what has caused
the interrupt to happen. In our case, there are two reasons: one is receipt
of incoming data and the other is end of transmission.

� FILL_TX_NW: A routine to copy data from the network buffers to the
hardware memory. It is used on the transmit path.

� READ_RX_NW: A routine that copies the data from hardware memory to
network buffers. It is used on the receive path.

5.2.1 Device Initialization and Clean-Up

Linux maintains a struct net_device declared in include/linux/
netdevice.h. This control structure encompasses all the information
required by the device, from the high-level details such as driver settings and
pointers to functions supplied by the driver to the low-level details such as
the queue discipline and protocol pointers used internally by the kernel. The
usage of this structure by the driver is explained in this section.

During kernel build, enable CONFIG_NET, CONFIG_NETDEVICES, and
CONFIG_NET_ETHERNET config options. There are two methods of doing the
registration; one method is used when the network driver is loaded as a
module and the other method is used when the network driver is linked as
a part of the kernel. Both methods are explained below.

When the device driver is linked directly to the kernel address space then
the struct net_device structure is allocated by the kernel. The driver has
to supply a probe routine, which is called by the kernel at start-up time. The
file drivers/net/space.c contains the probe routines for various hardware
devices; so you need to add support for your Ethernet device here. Each
Ethernet device is associated with its unique probe list, which associates the
machine with its architecture and bus. Once a probe list has been identified,
then the probe function is added in that list as

#ifdef TEST_HARDWARE
 {lxNWProbe, 0},
#endif

During device initialization the kernel calls the probe functions. In our
case, the function lxNWProbe is called; the argument to the function includes
a struct net_device, which is initialized with default values including
device name.2 It is the responsibility of the probe function to fill in the rest
of the details in the net_device structure. We are assuming that this is the
only Ethernet card on the system and hence there is no necessity for doing
any hardware probing. lxNWprobe is shown in Listing 5.6.

In the case where the driver is written as a kernel module, the net_device
structure is allocated by the module and registered explicitly using the
register_netdev function. This function assigns a name to the device, calls
the initialization function (in this case it is lxNWprobe), adds it to the chain
of the network devices, and notifies the upper-layer protocols that a new
device has appeared.

Embedded Drivers 141

Listing 5.6 Probe Function

int __init lxNWprobe(struct net_device *dev)
{
 /*
 * This function is used only in case the driver is used as
 * module in which case this function initializes the owner of
 * the device
 */
 SET_MODULE_OWNER(dev);

 /*
 * Set the starting address for the IO access; this will be
 * used by the inb()/outb() family of commands
 */
 dev->base_addr = NW_IOADDR;

 dev->irq = NW_IRQ;

 /*
 * Fill up the ethernet address; this is normally obtained from
 * a some initial boot settings
 */
 FILL_ETHER_ADDRESS(dev->dev_addr);

 /* request IRQ */
 request_irq(dev->irq, &LXNWIsr, 0, "NW", dev);

 /* do the chip initialization */
 RESET_NW();

 /* Fill in the important functions in the device structure */
 dev->open = lxNW_open;
 dev->hard_start_xmit = lxNW_send_packet;
 dev->stop = lxNW_close;
 dev->get_stats = lxNW_get_stats;
 dev->set_multicast_list = lxNW_set_multicast_list;
 dev->watchdog_timeo = HZ;
 dev->set_mac_address = lxNW_set_mac_address;

 /*
 * ether_setup is provided to fill in the default ethernet
 * fields. One important field here is the transmit queue length
 * maintained per device. The default is 100. Also the
 * dev->flags set are IFF_BROADCAST and IFF_MULTICAST which
 * means that the device supports broadcasting and has multicast
 * support. In case your device does not support multicasting,
 * it needs to be explicitly cleared.
 */

 ether_setup(dev);

 return 0;
}

142 Embedded Linux System Design and Development

#ifdef MODULE

static struct net_device lxNW_dev;

static int init_module(void)
{
 dev->init = lxNWprobe;

 register_netdev(dev);
 return 0;
}

static void cleanup_module(void)
{
 unregister_netdev(dev);
}

module_init(init_module);
module_exit(cleanup_module);

#endif

The open function is called whenever the device is taken from the DOWN
to the UP state.

static int LXHWopen(struct net_device *dev)
{

 RESET_NW(); INIT_NW();

 /* Start the device's transmit queue */
 netif_start_queue(dev);
}

The close function is called to move the interface from the UP to the
DOWN state.

static int LXHWclose(struct net_device *dev)
{
 RESET_NW();

 /* Stop the device's transmit queue */
 netif_stop_queue(dev);
}

5.2.2 Data Transmission and Reception

Transmitting the packets from the driver to the hardware is complicated
because it involves data flow control between the kernel (layer 3 stack), the
driver’s transmission routine, the interrupt handler, and the hardware. The imple-
mentation is dependent on the hardware transmit capabilities. Our example

Embedded Drivers 143

device has only one onboard transmit buffer. So the software has to make
sure that the transmit buffer on the hardware is protected from overwrites
when the buffer is still being transmitted out by the hardware onto the network.
The buffers used by Linux for transmission and reception are called skbuff.

The kernel maintains a transmit queue for every device with a default size
of 100. There are two operations on this queue.3

1. Adding packets to the queue. This is done by the protocol stacks.
2. Removing packets from the queue. The output of the operation is a buffer

that is passed to the device driver’s transmit API.

In the second step the transmission API copies the buffer to the hardware.
In case the hardware has limited space this function should not be invoked
when the hardware is processing the buffer. Only after interrupts have signaled
that transmission is done and that the hardware is safe to use, should this function
be called. The Linux kernel provides this control using three functions.

� netif_start_queue: This is used by the driver to signal to the upper
layers that it is safe to call the driver transmission API for sending more data.

� netif_stop_queue: This is used by the driver to signal to the upper
layers that the transmission buffers are full and hence the driver transmis-
sion API should not be invoked.

� netif_wake_queue: Linux provides a softirq to automatically drain pack-
ets when the end of transmit interrupt has occurred and the upper stack
is disabled to send packets to the device driver. The softirq calls the device
driver’s transmission API to flush out the next packet in the queue. The
softirq is triggered by calling the function netif_wake_queue from the
interrupt handler.

So depending on the hardware, you need to call the above functions to
do flow control. Following is the thumb rule.

� If the transmission API of your driver stops the dequeueing from qdisc
because of limited buffer size, then the interrupt handler should arrange
for the softir q to drain the packets fr om qdisc using the
netif_wake_queue().

� However, if there is more space in the hardware when the transmission
API is called so that it can be called again by the upper layer, the function
netif_stop_queue need not be called.

For our sample driver we need to stop the device driver’s transmit function
being called until the end of transmit interrupt has occurred. Thus during the
time when the packet is being transmitted out, the higher-level stack can only
queue to the qdisc; the packets cannot be drained from the qdisc.

Reception is comparatively simpler; it allocates a skbuff and calls the
function netif_rx, which schedules a softirq to process the packet (see
Listing 5.7).

144 Embedded Linux System Design and Development

5.3 I2C Subsystem on Linux
The I2C (inter IC) bus is a two-wire serial bus developed by Philips Semicon-
ductor in the early 1980s. When originally invented its main intention was to

Listing 5.7 Transmit and Receive Functions

void LXNWIsr(int irq, void *id, struct pt_regs *regs)
{
 struct net_device *dev = id;

 switch (READ_INTERRUPT_CONDITION())
 {
 case TX_EVENT:
 netif_wake_queue(dev);
 break;

 case RX_Event:
 LXHWReceive(nCS);
 break;
 }

}

int LXNWSendPacket(struct sk_buff *skb, struct net_device *dev)
{

 /* disable the irq since that can trigger a softirq */
 disable_irq(dev->irq);
 netif_stop_queue(dev);
 FILL_TX_NW(skb);
 enable_irq(dev->irq);
 dev_kfree_skb(skb);

 return 0;

}

void LXHWReceive(struct net_device *dev)
{
 struct sk_buff *skb;

 /*
 * Allocate the skb after getting the length of the frame from
 *
 */
 skb = dev_alloc_skb(READ_RX_LEN + 2);

 /* This is done for alignment to 16 bytes */
 skb_reserve(skb,2);

 skb->dev = dev;
 READ_RX_NW(skb);
 skb->protocol = eth_type_trans(skb,dev);
 netif_rx(skb);
}

Embedded Drivers 145

connect various ICs onboard to the TV. However its ease of use and the lower
overhead in board design has made it a universal standard and it’s now used
to connect a variety of peripherals in a wide diversity of configurations. Initially
it was a slow-speed bus; it has evolved to offer a variety of speeds from 100
KB/sec to 3.4 MB/sec. The I2C bus offers various advantages such as saving
board space, saving the overall cost of the hardware, and offering easier
debugging facilities.

Today the I2C bus is heavily used in embedded systems and it is very
uncommon to find boards without a I2C bus. This section explains the I2C
subsystem in Linux. Before going into the details we have an overview of
how the I2C bus works.

5.3.1 I2C Bus

The I2C bus has two lines: the SDA (data) line and the SCL (clock) line. The
SDA line carries information such as address, data, and acknowledgment one
bit at a time. The receiver and the sender synchronize themselves via the
clock line. Many I2C devices can reside on a single I2C bus; devices are
classified as master or slave. A master is a device that starts and stops the
transfer and generates signals on the clock line. A slave is a device that is
addressed by the master. A master can be either a transmitter or receiver; the
same applies for slave devices too. Each device on the I2C bus has a unique
7-bit or 10-bit address that is used to identify that particular device. Figure
5.5 gives a sample implementation.

The I2C data transfer is divided into the following phases.

� Idle phase: When the I2C bus is not in use, both the SDA and SCL lines
are kept in the HIGH state.

� Start phase: When the SDA line changes from HIGH to LOW and when
the SCL is kept in the HIGH state, it indicates the start of the data phase.
This is initiated by the master.

� Address phase: During this phase, the master sends the address of the
target slave device and the transfer mode (read or write). The slave device
needs to reply with an acknowledgment so that the data transfer phase
can be initiated.

Figure 5.5 I2C bus.

Master

SDA

SCL

Slave 1 Slave 2 Slave n. . .

146 Embedded Linux System Design and Development

� Data transfer phase: The data is transmitted bitwise on the I2C bus. At the
end of each byte transfer, one bit acknowledgment is sent by the receiver
to the transmitter.

� Stop phase: The master indicates this by pulling the SDA line from LOW
to HIGH and when the SCL line is kept HIGH.

The following steps are performed when the master needs to send data
to a slave device on the I2C bus as shown in Figure 5.6.

1. Master signals a START condition.
2. Master sends the address of the slave it wishes to send data to and sends

write mode of transfer.
3. Slave sends an acknowledgment to the master.
4. Master sends the address where the data has to be written on the slave

device.
5. Slave sends an acknowledgment to the master.
6. Master sends data to be written on the SDA bus.
7. At the end of the byte transfer, the slave sends an acknowledgment bit.
8. The above two steps are again performed until all the required bytes are

written. The write address is automatically incremented.
9. Master signals a STOP condition.

The following steps are performed when the master needs to read data
from a slave device on the I2C bus as shown in Figure 5.7.

1. Master signals a START condition.
2. Master sends the address of the slave it wishes to send data to and sends

the mode of transfer to read.
3. Slave sends an acknowledgment to the master.
4. Master sends the address from where the data has to be read on the slave

device.

Figure 5.6 I2C data write.

Figure 5.7 I2C data read.

IDLE START
WRITE

MODE
ACK ACK DATA DATA ACK

SLAVE

ADDRESS
ADDRESS ACK STOP

Signal generated by master

Signal generated by slave

. . .

IDLE START
READ

MODE
ACK ACK DATA DATA

SLAVE

ADDRESS
ADDRESS ACK STOP

Signal generated by master

Signal generated by slave

. . .

Embedded Drivers 147

5. Slave sends an acknowledgment to the master.
6. Slave sends the data to be read on the SDA bus.
7. At the end of the byte transfer, the master sends an acknowledgment bit.
8. The above two steps are again performed until all the required bytes are

written. The read address is automatically incremented. However, for the
last byte the master does not send an acknowledgment. This prevents the
slave from sending any more data on the bus.

9. Master signals a STOP condition.

5.3.2 I2C Software Architecture

The I2C subsystem has seen a major overhaul with the 2.6 kernel release. In
this section we discuss the I2C architecture in the 2.6 kernel. Though the bus
by itself is very simple, the I2C subsystem architecture in Linux is quite complex
and is best understood using an example.

Assume your board is using I2C as shown in Figure 5.8, which shows
two I2C buses on a board; each I2C bus is controlled by a PCF8584-style I2C
bus adapter, which acts as the I2C master for that particular bus and additionally
acts as the interface between the CPU bus and the I2C bus. Thus the CPU
can access any of the I2C devices on the I2C buses by programming these
adapters. On the first I2C bus two EEPROMs are connected and on the other
I2C bus an RTC is connected.

Figure 5.8 Sample I2C bus topology.

Processor

Bus

PCF I2C

Adapter
PCF I2C

Adapter

EEPROM

EEPROM

I2C Bus

RTC

I2C Bus

148 Embedded Linux System Design and Development

The following are the logical software components as defined by the Linux
I2C subsystem.

� The I2C algorithm driver: Each I2C bus adapter has its own way of
interfacing with the processor and the I2C bus. In the above example both
bus adapters use the PCF style of interfacing, which defines the registers
that need to be implemented by the bus adapter and the implementation
of the algorithms for transmitting and receiving data. The algorithm driver
implements the basic data handshake routines (transmit and receive). For
example, in Figure 5.8 we provide just one algorithm driver, the PCF8584
algorithm driver.

� The I2C adapter driver: This can be considered as a BSP layer for the I2C
subsystem. The I2C adapter driver and the algorithm driver together drive
the I2C buses on the system. In the above example we define two I2C
adapter drivers for each of the two buses on the system. Both these adapter
drivers are bound to the PCF8584 algorithm driver.

� The I2C slave driver: The slave driver contains the routines to access a
particular kind of slave device on the I2C bus. In our example we provide
two slave drivers: one for accessing the EEPROMs on the first I2C bus and
the other for accessing the RTC chip on the second I2C bus.

� The I2C client driver: One client driver is instantiated for hardware that
needs to be accessed via the I2C bus. The slave and client drivers are
bound together. In our example we need to define three client drivers:
two EEPROM client drivers and one RTC client driver.

Why is the subsystem divided so? This is done to reuse software as much
as possible and to allow portability. This is done at the cost of complexity.
The I2C subsystem is located in the drivers/i2c directory of the kernel
source tree. In that directory the buses subdirectory contains the various bus
adapter drivers, algos contains the various algorithm drivers, and the chips
directory contains the various slave and client drivers. The generic portion of
the entire I2C subsystem is referred to as the I2C core and is implemented in
the file drivers/ic2/i2c-core.c.

Algorithm and Bus Adapter Driver

To understand more about how to write these drivers, we look at the
implementation of the PCF8584 algorithm driver in Linux and a bus adapter
that uses this algorithm. Before we dig into the source code let’s have a very
high-level overview of the PCF8584 I2C interfacing. The PCF8584 is an interface
device between standard high-speed parallel buses and the I2C bus. It carries
out the transfer between the I2C bus and the parallel bus microcontroller on
a wide basis using either an interrupt or polled handshake. The PCF8584
defines the following registers on the I2C bus adapter.

� S0: Data buffer/shift register that performs the parallel-to-serial conversion
between the processor and the I2C bus.

Embedded Drivers 149

� S0’: This is the internal address register and is filled during the initialization
time.

� S1: Control register and the status register used for bus access and control.
� S2: Clock register.
� S3: Interrupt vector register.

The PCF8584 data sheet contains more information on how to program
the registers for initialization, transmission, and reception. The data sheet can
be downloaded from the Philips Semiconductor Web site.

Each algorithm driver is associated with a data structure i2c_algorithm
declared in the file include/linux/i2c.h. This data structure has a function
pointer master_xfer, which points to the function that implements the actual
I2C transmit and receive algorithm. Other important fields of this structure are:

� name: Name of the algorithm.
� id: Each algorithm is identified using a unique number. The different types

of algorithms are defined in the header file include/linux/i2c-id.h.
� algo_control: This is a pointer to an ioctl-like function.
� functionality: This is a pointer to a function that returns those features

supported by the adapter such as what message types are supported by
the I2C driver.

static struct i2c_algorithm pcf_algo = {
 .name = "PCF8584 algorithm",
 .id = I2C_ALGO_PCF,
 .master_xfer = pcf_xfer,
 .functionality = pcf_func,
};

The algorithm driver by itself does not make sense unless it is bound by
the I2C bus adapter driver. The PCF algorithm driver provides a binding
function for this purpose: i2c_pcf_add_bus(). Each adapter driver is asso-
ciated with a data structure i2c_adapter (declared in the file include/
linux/i2c.h) that is instantiated by the adapter driver. The adapter driver
calls the function i2c_pcf_add_bus with a pointer to the i2c_adapter
structure. The important fields of the i2c_adapter structure that are set up
by the adapter driver are:

� name: Name for the adapter.
� class: This indicates the type of I2C class devices that this driver supports.
� algo: The pointer to the i2c_algorithm data structure. The i2c_pcf_

add_bus() sets algo point to pcf_algo.
� algo_data: This is a pointer to the algorithm-specific private data struc-

ture. For example, the PCF algorithm driver defines a data structure
i2c_algo_pcf_data private pointer set to this field. This data structure
contains the pointer to routines to access the various registers of the
adapter. Thus the algorithm driver is shielded from the board-level details;
the adapter driver exports the board-level details using this data structure.
The adapter driver defines the various routines that are defined in the
i2c_algo_pcf_data data structure as follows.

150 Embedded Linux System Design and Development

static struct i2c_algo_pcf_data pcf_data = {
 .setpcf = pcf_setbyte,
 .getpcf = pcf_getbyte,
 .getown = pcf_getown,
 .getclock = pcf_getclock,
 .waitforpin = pcf_waitforpin,
 .udelay = 10,
 .mdelay = 10,
 .timeout = 100,
};

The bus adapter driver needs to do the following to associate itself with
the algorithm driver.

� Define a structure of type i2c_adapter as follows.

static struct i2c_adapter pcf_ops = {
 .owner = THIS_MODULE,
 .id = I2C_HW_P_ID,
 .algo_data = &pcf_data,
 .name = "PCF8584 type adapter",
};

� Define the initialization function that does the following.
– Request the various resources needed for the adapter driver such as

the interrupt line.
– Call the function i2c_pcf_add_bus to bind the PCF algorithm with

this adapter driver. The i2c_pcf_add_bus function internally calls
the I2C core function i2c_add_adapter, which registers a new
adapter driver to the core. Thereafter the adapter is available for clients
to register.

I2C Slave and Client Drivers

To understand the I2C client driver model we assume a fictional device
connected on an I2C bus that implements one 32-bit register. The functionality
of the driver is to provide routines to perform register read and write. We
also assume the presence of an algorithm and an adapter driver software.
This involves creating a slave and client driver. The slave driver makes use
of the data structure i2c_driver declared in the header file include/
linux/i2c.h. The important fields of this data structure are:

� name: Name of the client.
� id: Unique id of this device. The list of all IDs can be found from the file

include/linux/i2c-id.h.
� flags: This is set to I2C_DF_NOTIFY, which allows for notification on

bus detection so that the driver can detect new devices.
� attach_adapter: It points to the function that detects the presence of

I2C devices on an I2C bus. If a device is found then it calls the function
for instantiating a new client and attaching the client to the I2C core.

TE
AM
 F
LY

Embedded Drivers 151

� detach_client: It points to the function that deletes the client instance
and notifies the I2C core about its removal.

� command: This is an ioctl-like command that can be used to do private
functions within the device.

For our sample driver we define the i2c_driver structure as follows.

static struct i2c_driver i2c_test_driver = {
 .owner = THIS_MODULE,
 .name = "TEST",
 .id = I2C_DRIVERID_TEST,
 .flags = I2C_DF_NOTIFY,
 .attach_adapter = i2c_test_scan_bus
 .detach_client = i2c_test_detach,
 .command = i2c_test_command
};

We first look at the i2c_test_scan_bus function, which is called when
a new adapter or a new device is added. The argument to this function is
the pointer to the i2c_adapter structure for the bus on which the slave
device is detected and added.

static int i2c_test_scan_bus(struct i2c_adapter *d)
{
 return i2c_probe(d, &addr_data, i2c_test_attach);
}

The i2c_probe function is provided by the I2C core; this function uses
the information in the data structure addr_data to call the function
i2c_test_attach; the latter instantiates a new client and registers it to the
subsystem. The addr_data structure is declared in the file include/linux/
i2c.h. The addr_data function is used to do the following.

� Force an I2C device at a given address to be registered as a client without
detection

� Ignore an I2C device at a given address
� Probe an I2C device at a given address using the adapter and detect its

presence
� Function in a normal mode that just picks up an I2C device at a given

address and detects its presence

The function i2c_test_attach creates the i2c_client data structure
for the client and populates it. The i2c_client data structure is again
declared in the file include/linux/i2c.h and its important fields are:

� id: identification
� addr: The I2C address where the slave was detected
� adapter: Pointer to the i2c_adapter structure for the bus on which

the client was detected
� driver: Pointer to the i2c_driver structure

152 Embedded Linux System Design and Development

static int
i2c_test_attach(struct i2c_adapter *adap, int addr,
 int type)
{
 struct i2c_client *client =
 kmalloc(sizeof(struct i2c_client), GFP_KERNEL);

 client->id = TEST_CLIENT_ID:
 client->addr = addr;
 client->adapter = adapter;
 client->driver = &i2c_test_driver;

 return(i2c_attach_client(client));
}

Finally the command function that implements the functionality of reading
and writing the single register on the chip is as follows.

static int
i2c_test_command(struct i2c_client *client,
 unsigned int cmd, void *arg)
{
 if(cmd == READ)
 return i2c_test_read(client, arg);
 else if(cmd == WRITE)
 return i2c_test_write(client, arg); return -EINVAL;
}

static int
i2c_test_read(struct i2c_client *client, void *arg)
{
 i2c_master_recv(client,arg,4);
}

static int
i2c_test_write(struct i2c_client *client, void *arg)
{
 i2c_master_send(client, arg ,4);
}

The i2c_master_recv and i2c_master_send functions read and write
bytes from a given client. They internally call the master_xfer function of
the driver. Another function i2c_transfer is also available; it sends a series
of messages that can be a mix of reads and writes causing combined transactions.

5.4 USB Gadgets
The universal serial bus (USB) is a master–slave communication bus for
connecting a PC to a set of peripherals. The bus topology is like a tree, with
the USB host at the root. The USB host/root runs a USB controller driver
responsible for controlling devices connected to the bus. New devices can be
attached or detached to or from the bus on the fly. The host is responsible

Embedded Drivers 153

for identifying these events and configuring the bus as required. Also devices
attached to the bus use a unique id to transfer data to or from the host. All data
transfer is host triggered. This means that even if a device has some data, it
cannot be transferred unless asked by the host to do so. The system also allows
for configuring bus bandwidth allocations on a device basis. This allows the host
to reserve bandwidth for a particular device. For example, a video or audio
device may request a specific bandwidth requirement when compared to that
of a human interface device such as a keyboard or mouse. The latest standards
allow high-speed USB connections with a theoretical transfer rate of 480 Mbps.

The Linux USB driver framework provides support for both the host and
slave devices. The host part is generally employed when devices need to
connect to a Linux system. For example, a PDA running Linux may detect a
USB storage class device attached to its bus. The slave part is used for
embedded devices that run Linux and get plugged into the bus of another
host. For example, consider a portable MP3 player running Linux with a USB
interface for transferring songs from the host.

This chapter explains the infrastructure/driver framework provided by the
Linux kernel on the slave (or device) side. This driver framework is called
the USB gadget device drivers. Before going into details of these drivers, we
have a high-level overview of the USB device architecture.

5.4.1 USB Basics

As stated earlier, USB is a high-speed serial bus capable of a maximum transfer
rate of 480 Mbps. Devices are attached to a root node, the host. The host
device is the USB bus controller attached via PCI to the system bus. Devices
are classified to fall under various standard device classes such as

� Storage Class: Hard disk, flash drives, and so on
� Human Interface Class: Mouse, keyboard, touchpad, and so on
� Extender /Hub: Hubs (used for providing additional connection points on

the bus)
� Communication Class: Modem, network cards, and so on

Figure 5.9 represents a typical bus topology.
Communication to a USB device happens over unidirectional pipes called

endpoints. Every logical USB device is a collection of endpoints. Each logical
device on the bus is assigned a unique number by the host when the device
is attached to the bus. Each endpoint on a device is associated with a device-
specified endpoint number. The combination of device and endpoint number
allows each endpoint to be identified uniquely.

USB defines four transfer types.

� Control transfers: They are setup/configuration transfers that usually hap-
pen over a configuration endpoint. Every device must have at least one
endpoint required for configuring the device on detection. This is called
endpoint 0.

154 Embedded Linux System Design and Development

� Interrupt transfers: They are used to transfer low-frequency, interrupt driver
data. HID devices use interrupt transfers.

� Bulk transfers: They are used to transfer large chunks of data that are not
bandwidth restricted. Printers and communication devices use bulk trans-
fers.

� Isochronous transfers: They are used for periodic, continuous data transfers.
Video, audio, and other streaming devices use isochronous transfers.

An endpoint is usually implemented over some memory registers or buffer
area exported by the hardware. The USB device driver writes data to these
registers to program the endpoint. High-speed transfer devices might provide
DMA transfers for their endpoints. One or more endpoints are grouped
together to form a device interface. An interface represents a logical device
such as a mouse or keyboard. Each logical device must have the corresponding
USB driver interface available on the host. Figure 5.10 shows an integrated
keyboard and mouse device and their corresponding drivers on the host.

Interfaces are grouped to form configurations. Each configuration sets the
device in a specific mode. For example, a modem might be configured with
two 64-KBps lines or in another configuration as a single 128-KBps line. The
host driver accesses the host controller to control the bus whereas the driver
on the device exposes the device to the bus. The USB gadget driver framework
provides the necessary APIs and data structures for implementing a USB device
function or interface. The framework consists of two layers.

� Controller driver: This layer provides hardware abstraction for the USB
device and implements the gadget APIs. The driver implements the hard-
ware-specific portion and provides the hardware-independent gadget API
layer to be used by the higher-level drivers.

� Gadget driver: This layer is the actual device implementation of the USB
device function using the gadget API. Each USB device function requires
a separate gadget driver to be written. The USB device functions supported
depend on the capability of the hardware underneath.

Figure 5.9 USB bus topology.

Root/Host Controller

Device 1 Device 2 Hub 1

Device 3 Device 4

Embedded Drivers 155

The controller driver handles only a limited set of standard USB control
requests related to device and endpoint state. All the other control requests,
including those pertaining to device configuration, are handled by the gadget
driver. The controller driver also manages the endpoint’s I/O queue and data
transfer between the hardware and the gadget driver’s buffers using DMA
wherever possible.

As discussed earlier, a gadget driver implements a particular device function.
For example, the Ethernet gadget driver implements functionalities such as
transmitting and receiving network packets. For this purpose the gadget driver
needs to bind itself to the Linux kernel and fit in the corresponding driver
stack. The driver on the higher end calls functions like netif_rx and
netdev_register and on the lower end it calls the controller driver via the
gadget API layer to perform the required hardware-specific action. Figure 5.11
shows the layers of the gadget USB drivers and how they interact with the
rest of the Linux system.

Generally, the controller attaches itself to the kernel as a regular PCI device
using the pci_driver.probe method. The controller driver provides usb_
gadget_register_driver API for device registration. The logical steps
involved in the controller probe function are as follows.

1. Register and allocate PCI resources using pci_enable_device() and
request_mem_region().

2. Initialize USB endpoint controller hardware such as resetting endpoints
and endpoint data structures.

3. Register for the controller’s interrupt handling using request_irq().
4. Initialize DMA registers of the controller and allocate DMA memory.
5. Register controller device to kernel using device_register().

The most important data structure is the usb_gadget_driver that hooks
a gadget device to the controller. Another important aspect of the controller

Figure 5.10 USB driver stack.

Keyboard

Mouse

Host Controller

Host Controller Driver

Keyboard Mouse

Keyboard Driver Mouse Driver

Hardware Bus Topology

Software Driver Stack

156 Embedded Linux System Design and Development

driver is that it takes care of various endpoint interactions. To implement this
the gadget layer provides a structure struct usb_ep_ops. Both data struc-
tures are shown in Listing 5.8.

Most function pointers in usb_ep_ops are wrapped by gadget API calls
that are used by gadget drivers. For example, the gadget driver API
usb_ep_enable enables operations on an endpoint.

static inline int
usb_ep_enable (struct usb_ep *ep,
 const struct usb_endpoint_descriptor *desc)
{
 return ep->ops->enable (ep, desc);
}

Similarly the gadget driver uses the usb_ep_queue function to submit any
USB to the device.

static inline int
usb_ep_queue (struct usb_ep *ep, struct usb_request *req,
 int gfp_flags)
{
 return ep->ops->queue (ep, req, gfp_flags);
}

The ops->queue is a controller-specific queue function. For a complete
list of gadget APIs refer to include/linux/usb_gadget.h.

Figure 5.11 USB gadget driver architecture.

Gadget Controller Driver

Gadget Device Drivers

Ethernet

Driver

Serial

Driver

 Network

Stack

 TTY Layer

USB Hardware Controller

Gadget API Layer

register_netdev tty_register_driver

usb_gadget_register_driver

Embedded Drivers 157

Listing 5.8 USB Gadget Driver Data Structures

struct usb_gadget_driver {

 /* String describing the gadget’s device function */
 char *function;

 /*
 * Highest speed the driver handles. (One of USB_SPEED_HIGH,
 * USB_SPEED_FULL, USB_SPEED_LOW)
 */
 enum usb_device_speed speed;

 /*
 * Device attach called from gadget driver during registration
 */
 int (*bind)(struct usb_gadget *);

 /*
 * setup is called for handling ep0 control requests that are
 * not handled by the controller driver
 */
 int (*setup)(struct usb_gadget *,
 const struct usb_ctrlrequest *);

 /* Host disconnection of device indicated using this call */
 void (*disconnect)(struct usb_gadget *);

 /* Called after device disconnect */
 void (*unbind)(struct usb_gadget *);

 /* Indicates USB suspend */
 void (*suspend)(struct usb_gadget *);

 /* Indicates USB resume */
 void (*resume)(struct usb_gadget *);
}

struct usb_ep_ops {

 /* Enable or Disable the endpoint */
 int (*enable) (struct usb_ep *ep,
 const struct usb_endpoint_descriptor *desc);
 int (*disable) (struct usb_ep *ep);

 /* URB Alloc and free routines */
 struct usb_request * (*alloc_request) (struct usb_ep *ep,
 int gfp_flags);
 void (*free_request) (struct usb_ep *ep,
 struct usb_request *req);
 void *(*alloc_buffer)(struct usb_ep *ep, unsigned bytes,
 dma_addr_t *dma, int gfp_flags);
 void (*free_buffer) (struct usb_ep *ep, void *buf,
 dma_addr_t dma, unsigned bytes);

 /* Endpoint Queue management functions */

158 Embedded Linux System Design and Development

5.4.2 Ethernet Gadget Driver

We take the Ethernet device as an example to explain the gadget device driver
model. It is implemented in the file drivers/usb/gadget/ether.c.

 The driver init of any gadget device driver needs to call the
usb_gadget_register_driver API.

static int __init init (void)
{
 return usb_gadget_register_driver (ð_driver);
}
module_init (init);

eth_driver is the usb_gadget_driver structure filled with the respec-
tive handlers.

static struct usb_gadget_driver eth_driver = {

#ifdef CONFIG_USB_GADGET_DUALSPEED
 .speed = USB_SPEED_HIGH,
#else
 .speed = USB_SPEED_FULL,
#endif

 .function = (char *) driver_desc,
 .bind = eth_bind,
 .unbind = eth_unbind,
 .setup = eth_setup,
 .disconnect = eth_disconnect,
};

usb_gadget_driver.bind is called from the controller driver during the
registration call. The bind() of a gadget driver is expected to do the following.

� Initialize device-specific data structures.
� Attach to the necessary kernel driver subsystem (such as serial driver,

network, storage, etc.).
� Initialize the endpoint 0 request block.

eth_bind is the bind function.

Listing 5.8 USB Gadget Driver Data Structures (continued)

 int (*queue) (struct usb_ep *ep, struct usb_request *req,
 int gfp_flags);
 int (*dequeue) (struct usb_ep *ep, struct usb_request *req);

 int (*set_halt) (struct usb_ep *ep, int value);
 int (*fifo_status) (struct usb_ep *ep);
 void (*fifo_flush) (struct usb_ep *ep);
};

Embedded Drivers 159

static int
eth_bind (struct usb_gadget *gadget)
{
 …
 …
 net = alloc_etherdev (sizeof *dev);
 …
 net->hard_start_xmit = eth_start_xmit;
 net->open = eth_open;
 net->stop = eth_stop;
 net->do_ioctl = eth_ioctl;

 /* EP0 allocation*/
 dev->req = usb_ep_alloc_request (gadget->ep0,
 GFP_KERNEL);
 …
 dev->req->complete = eth_setup_complete;
 dev->req->buf = usb_ep_alloc_buffer (gadget->ep0,
 USB_BUFSIZ, &dev->req->dma, GFP_KERNEL);
 …
 status = register_netdev (dev->net);
 …
}

Once the setup is complete the device is fully configured and functional
as a normal device on the kernel driver stack. In the example the USB Ethernet
driver has at tached i tsel f to the network driver stack using
register_netdev(). This enables applications to use this interface as a
standard network interface.

Each USB request block (URB) requires the block to be allocated and
has to be associated with a completion routine. All endpoint requests
are queued, because they wait for the host/root controller of the bus to
poll for data. Once the request has been processed by the hardware, the
controller driver calls the associated completion routine.

The data transmission function in any driver essentially does the following.

� Creates a new URB or gets one from a preallocated pool
� Points the URB’s data and length to the data and length provided by the

upper layer driver
� Queues the URB into the corresponding endpoint for data transmission

eth_start_xmit is the transmit function of the Ethernet gadget driver.

static int eth_start_xmit (struct sk_buff *skb,
 struct net_device *net)
{
 struct eth_dev*dev = (struct eth_dev *) net->priv;
 int length = skb->len;
 …
 req->buf = skb->data;
 req->context = skb;

160 Embedded Linux System Design and Development

 req->complete = tx_complete;
 req->length = length;
 …
 retval = usb_ep_queue (dev->in_ep, req, GFP_ATOMIC);
 …
}

Data reception also requires the usage of URBs and is done as follows.

� Create a list of empty URBs.
� Initialize each of them with a proper completion routine. The completion

routine for receive indicates upper layers of the network stack of the arrival
of data.

� Queue them up in the corresponding endpoint.

The Ethernet gadget driver fills up the endpoint queue with URBs at the
start-up using the rx_submit function.

static int
rx_submit (struct eth_dev *dev, struct usb_request *req,
 int gfp_flags)
{
 struct sk_buff *skb;
 size_t size;

 size = (sizeof (struct ethhdr) + dev->net->mtu +
 RX_EXTRA);

 skb = alloc_skb (size, gfp_flags);
 …
 req->buf = skb->data;
 req->length = size;
 req->complete = rx_complete;
 req->context = skb;
 retval = usb_ep_queue (dev->out_ep, req, gfp_flags);
 …
}

The indication of data reception to the network layer happens in the
completion routine.

static void rx_complete (struct usb_ep *ep,
 struct usb_request *req)
{
 struct sk_buff *skb = req->context;
 struct eth_dev *dev = ep->driver_da
 …
 skb_put (skb, req->actual);
 skb->dev = dev->net;
 skb->protocol = eth_type_trans (skb, dev->net);
 …
 netif_rx (skb);
}

Embedded Drivers 161

5.5 Watchdog Timer
Watchdog timers are hardware components that are used to help the system
recover from software anomalies by resetting the processor. A watchdog timer
needs to be primed with a counter and the watchdog starts counting down
from the primed value to zero. If the counter reaches zero before the software
reprimes it, then it is presumed that the system is malfunctioning and system
reset is required. Some watchdog timers have advanced support built in them
such as monitoring temperature and power over voltage.

Typically watchdog timers provide four sets of operations.

� Starting the watchdog
� Setting watchdog timeout
� Stopping the watchdog
� Repriming the watchdog

In Linux, the watchdog is exported as a character device to the applications.
The watchdog devices are registered as minor devices to a special character
device called miscellaneous device. The watchdog driver makes use of the
minor number 130.

The watchdog character device can be used by a daemon to reprime the
watchdog after a fixed interval. Many distributions provide a daemon called
the watchdog daemon4 that does this job. This approach can be used in the
2.6 kernel because of improved real-time features of the kernel. In the 2.4
kernel or if the watchdog timer has a very small reprime interval, it is better
to use a kernel timer to reprime the watchdog.5

A typical watchdog driver needs to implement the following functions.

� Initialization function: It includes
– Registering the watchdog driver as a miscellaneous character driver

(using the function misc_register)
– Registering a function that disables the watchdog to the system reboot

notifier (using the register_boot_notifier function). The regis-
tered function is called before the system is rebooted. This makes sure
that after the system is rebooted the watchdog is not running lest it
should reset the system again.

� Open function: It is called when the /dev/watchdog device is opened.
This function should fire the watchdog.

� Release function: Closing the driver should cause the watchdog to be
stopped. However, in Linux when a task exits, all the file descriptors are
automatically closed, irrespective of whether it exited safely or it crashed.
So if the watchdog daemon does not exit safely, then there is a chance
that the watchdog is disabled. To prevent such a condition in 2.6 kernel
before the safe exit of the watchdog daemon, it needs to signal to the
driver that it intends to do a clean disable of the watchdog. Normally the
magic character “V” is written to the watchdog driver and then this function
is invoked. Alternatively you can choose not to implement watchdog
disabling totally in your driver. Existent watchdog drivers on Linux provide
this option if config option CONFIG_WATCHDOG_NOWAYOUT is chosen.

162 Embedded Linux System Design and Development

� Write function: This function is invoked by the application to reprime the
watchdog.

� Ioctl: However, you can also use ioctl to r eprime the watchdog.
WDIOC_KEEPALIVE does this. Also you can set a timeout using WDIOC_
SETTIMEOUT.

Linux provides a software watchdog in case there is no watchdog support
from the hardware. The software watchdog makes use of timers internally,
however, software watchdogs do not always work; their working depends on
the system state and interrupt state.

5.6 Kernel Modules
Finally we discuss kernel modules in brief. Kernel modules are added dynam-
ically in a running kernel. This reduces the size of the kernel by making sure
that the kernel modules get loaded only when they are used. There are three
components to the kernel module interface.

� Module interface/APIs: How do you write a module?
� Module building: How do you build a module?
� Module loading and unloading: How can you load and unload modules?

All three components have undergone significant changes across the 2.4
and the 2.6 kernels. Module building is explained in detail in Chapter 8. This
section explains the other two components.

5.6.1 Module APIs

Listing 5.9 shows an example of a kernel module on the 2.4 and 2.6 kernels.
The module prints a string Hello world every time it is loaded and Bye
world every time it is unloaded. The number of times the first string gets
printed depends on a module parameter defined here as excount.

Some points to be noted are as follows.

� Entry and exit functions: A module must have an entry and an exit function
that is automatically invoked by the kernel when the module is loaded
and unloaded, respectively. In the 2.4 kernel, functions init_module()
and cleanup_module() are entry and exit functions. However, in the
2.6 kernel, they are specifically registered using the module_init() and
module_exit() macros.

� Parameter passing: Every module can be passed parameters; these are
passed as command-line arguments when the module is loaded. In the
2.4 kernel, the macro MODULE_PARM is used to supply the arguments to
the module. In the 2.6 kernel, parameters are declared with the module_
param()6 macro as shown in Listing 5.1.

Embedded Drivers 163

� Maintaining module usage count: Every module has a usage count that
indicates the number of references to this module. Reference count 0
means that the module can be safely unloaded. In the 2.4 kernel, the
module count was maintained by the individual modules. This approach
was defective with module unloading code on SMP systems. Hence on
2.6 systems, the module need not maintain the usage count but instead
the kernel maintains it. However, this leads to a problem if a module
function is being referenced after the module is unloaded. If you are calling
through a function pointer into a different module, you must hold a
reference to that module. Otherwise you risk sleeping in the module while
it is unloaded. To solve this the kernel provides APIs to access the module;
reference to the module is obtained using the try_module_get() API
and its reference is released using the module_put() API.

Listing 5.9 Kernel Modules

/* 2.4 kernel based module */

static int excount = 1;
MODULE_PARM(excount,”i”);
static int init_module(void)
{
 int i;
 if(excount <= 0) return -EINVAL;
 for(i=0; i<excount;i++)
 printk(“Hello world\n”);
 return 0;
}

static void cleanup_module(void)
{
 printk(“Bye world\n”);
}

/* 2.6 kernel based module code */

MODULE_LICENSE(“GPL”);
module_param(excount, int, 0);
static int init_module(void)
{
 int i;
 if(excount <= 0) return -EINVAL;
 for(i=0; i<excount;i++)
 printk(“Hello world\n”);
 return 0;
}

static void cleanup_module(void)
{
printk(“Bye world\n”);
}

module_init(init_module);
module_exit(cleanup_module);

164 Embedded Linux System Design and Development

� Declaring the license: Every module needs to declare if it is a proprietary
or a nonproprietary module. This is done using the MODULE_LICENSE
macro. If the argument passed is GPL, it means that it is released under GPL.

5.6.2 Module Loading and Unloading

The kernel provides system calls for loading, unloading, and accessing the
kernel modules. However, standard programs are available that do the job of
loading and unloading a module. The insmod program installs a loadable
module in the running kernel. insmod tries to link a module into the running
kernel by resolving all symbols from the kernel’s exported symbol table.
Sometimes the loading of a module is dependent on loading of other modules.
This dependence is stored in the file modules.dep. modprobe parses the
file and loads all the required modules before loading a given module. Finally
rmmod unlinks the module from the kernel. This step is successful of there
are no users of the module in the kernel and its reference count is zero.

Notes
1. Processes can prefer to run without a controlling terminal. Such processes are called

daemons. Daemons are used for running tasks in the background after detaching
from the controlling terminal so that they are not affected when the terminal gets
closed.

2. Ethernet devices are initialized by default with names from “eth0” to “eth7”.
3. This queue is known more popularly as qdisc (because every queue can have a

discipline associated with it that determines the mechanism by which packets are
enqueued and dequeued).

4. Busybox has a simple watchdog implementation too.
5. Some drivers use this approach; look at the AMD Elan SC520 processor watchdog

driver code.
6. MODULE_PARAM is deprecated on the 2.6 kernel.

165

Chapter 6

Porting Applications

A developer faces a challenging task when porting applications from a tradi-
tional RTOS such as VxWorks, pSoS, Nucleus, and so on, to embedded Linux.
The difficulty arises because of the entirely different programming model of
Linux as compared to other RTOSs. This chapter discusses a roadmap for
porting applications from a traditional RTOS to embedded Linux. It also
discusses various techniques that are generally employed to facilitate porting.

6.1 Architectural Comparison
In this section we compare the architecture of a traditional RTOS with
embedded Linux. A traditional RTOS is generally based on a flat memory
model. All the applications along with the kernel are part of a single image
that is then loaded into the target. Kernel services such as schedulers, memory
management, timers, and the like, run in the same physical address space as
user applications. Applications request any kernel service using a simple
function call interface. User applications also share common address space among
themselves. Figure 6.1 shows a flat memory model of a traditional RTOS.

The major drawback of such an RTOS is that it is based on a flat memory
model. MMU is not utilized for memory protection. Consequently any user
application can corrupt kernel code or data. It can also corrupt data structures
of some other application.

Linux on the other hand utilizes MMU to provide separate virtual address
space to each process. The virtual address space is protected; that is, a process
cannot access any data structure belonging to some other process. Kernel
code and data structures are also protected. Access to kernel services by user
applications is provided through a well-defined system call an interface. Figure
6.2 shows an MMU-based memory model of Linux.

166 Embedded Linux System Design and Development

From now on any reference to RTOS refers to a traditional RTOS with
a flat memory model and no memory protection unless specified.

The porting issues that are evident from the above comparison are

� Applications that “share” single address space in an RTOS should be ported
to the protected virtual address space model of Linux.

� An RTOS generally provides its own native set of APIs for various services
such as task creation, IPC, timers, and so on. Thus a mapping of each
such native API to an equivalent Linux API must be defined.

� A kernel interface in Linux is not a simple function call interface. So user
applications cannot make any direct driver or kernel calls.

Figure 6.1 RTOS flat memory model.

Device Drivers

Timers

IPC

Networking

Scheduler

Memory Management

OS Services

User Task 1

User Task 2

User Task 3
P

h
ys

ic
al

 M
em

o
ry

Start of

Physical Memory

End of

Physical Memory

Porting Applications 167

6.2 Application Porting Roadmap
In this section we discuss a generic application porting roadmap from an
RTOS to embedded Linux. The following sections cover the porting roadmap
in detail.

6.2.1 Decide Porting Strategy

Divide all your RTOS tasks into two broad categories: user-space tasks and
kernel tasks. For example, any UI task is a user-space task and any hardware
initialization task is a kernel task. You should also identify a list of user-space
and kernel functions. For example, any function that manipulates device
registers is a kernel function and any function that reads some data from a
file is a user-space function.

Two porting strategies could be adopted. Note that in both approaches
kernel tasks migrate as Linux kernel threads. The following discussion applies
to user space tasks only.

One-Process Model

In this approach user-space RTOS tasks migrate as separate threads in a single
Linux process as shown in Figure 6.3. The advantage of this approach is the
reduced porting effort as it requires fewer modifications in the existing code

Figure 6.2 Linux memory model.

Device Drivers

Timers

IPC

Networking

Scheduler

Memory Mangement

User

Process 1

User

Process 3
User

Process 2

Start of Virtual Memory

End of Virtual Memory

U
se

r
S

p
ac

e
K

er
n

el
OS Services

168 Embedded Linux System Design and Development

base. The biggest disadvantage is no memory protection between threads
inside the process. However kernel services, drivers, and so on are fully
protected.

Multiprocess Model

Categorize tasks as unrelated, related, and key tasks.

� Unrelated tasks: Loosely coupled tasks that use IPC mechanisms offered
by the RTOS to communicate with other tasks or stand-alone tasks1 that
are not related to other tasks could be migrated as separate Linux processes.

� Related tasks: Tasks that share global variables and function callbacks fall
under this category. They could be migrated as separate threads in one
Linux process.

� Key tasks: Tasks that perform key activities such as system watchdog tasks
should be migrated as separate Linux processes. This ensures that key
tasks are protected from memory corruption of other tasks.

Figure 6.4 shows this approach. The advantages of this model are

� Per-process memory protection is achieved. A task cannot corrupt address
space belonging to some other process.

� It’s extensible. New features can be added keeping this model in mind.
� Applications can fully exploit the benefits of the Linux programming model.

The biggest disadvantage of this approach is that migration to Linux using
this model is a time-consuming process. You may need to redesign most of
the applications. One such time-consuming activity is porting user-space

Figure 6.3 Migration in one-process model.

User Task 1

User Task 2

Kernel Task 1

Kernel Task 2

Thread 1

Thread 2

Kernel Thread 1

Kernel Thread 2

Linux Process

K
er

n
el

U

se
r

S
p

ac
e

RTOS Linux

Porting Applications 169

libraries. The trouble comes when the library maintains some global variables
that are manipulated by multiple tasks. Assume you decide to port a library
as a shared library in Linux. Thus you get the advantage of text sharing across
multiple processes. Now what about the global data in the library? In a shared
library only text is shared and data is per-process private. Thus all the global
variables in the library now become per-process globals. You cannot modify
them in one process and expect changes to become visible in another. Thus
to support this, you need to redesign applications using the library to use
proper IPC mechanisms among themselves. You may also be tempted to put
such tasks under the related tasks category but you lose the benefits of the
multiprocess model in that case.

6.2.2 Write an Operating System Porting Layer (OSPL)

This layer emulates RTOS APIs using Linux APIs as shown in Figure 6.5. A
well-written OSPL minimizes changes to your existing code base. To achieve
this, mapping between RTOS APIs and Linux APIs must be defined. The
mapping falls under the following two categories.

� One-to-one mapping: Every RTOS API can be emulated using a single
Linux API. The arguments or return value of the equivalent Linux API may
differ but the expected function behavior is the same.

� One-to-many mapping: More than one Linux API is necessary to emulate
an RTOS API.

For many RTOS APIs you also need to define the mapping with Linux
kernel APIs as these APIs may be used by kernel tasks. You can either have

Figure 6.4 Migration in multiprocess model.

User Task 1

User Task 2

Kernel Task 1

Thread 1

Thread 2

Kernel Thread 1

Linux Process 1

K
er

n
el

U

se
r

S
p

ac
e

RTOS Linux

User Task 3

User Task 4

Thread 1

Thread 2

Linux Process 2

IPC

170 Embedded Linux System Design and Development

a separate kernel and user OSPL or have a single library that links in both
user and kernel. An OSPL API for the latter case looks like the following.

void rtosAPI(void){
 #ifndef __KERNEL__
 /* Equivalent user space Linux API */
 #else
 /* Equivalent Linux kernel API */
 #endif
}

Note that when defining mapping of RTOS APIs to Linux APIs you may
come across some RTOS APIs that cannot be emulated using Linux APIs
without avoiding any changes to the existing code base. In such cases you
may need to rewrite some portion of your existing code.

6.2.3 Write a Kernel API Driver

Sometimes you face a difficulty when making a decision of porting a task to
user or kernel space as it calls both user and kernel functions. The same
problem occurs with the function that calls both user-space and kernel
functions. For example, consider function func calling function func1 and
func2. func1 is a user-space function and func2 is a kernel function.

void func(){
 func1(); <-- User-space function
 func2(); <-- Kernel function
}

Now where should the function func be ported? In user space or kernel
space? You need to write a kernel API driver to support such cases. In the

Figure 6.5 Operating system porting layer.

Applications

RTOS APIs

OSPL

Linux APIs

Porting Applications 171

kernel API driver model, function func is ported in user space by providing
an interface for function func2 in user space. The kernel API driver is
discussed in detail in Section 6.5.

In this section we discussed an application porting roadmap from an RTOS
to Linux. The rest of the chapter is divided into three parts.

� In the first part we discuss pthreads (POSIX threads) in brief. Pthreads is
a Linux threading model. The section covers all the pthreads operations
that one should understand before starting the porting process.

� In the second part we write a small OSPL supporting only task creation,
task destruction, and mutex APIs.

� Finally we discuss the kernel API driver.

6.3 Programming with Pthreads
To discuss various pthreads operations we have taken a very simple MP3
player located in file player.c. There are two main components of the player.

� Initialization: This includes audio subsystem initialization in a separate
thread. It’s used for demonstrating thread creation and exit routines.

� Decoding: This is the core of the application. Two threads of execution
are involved. The main thread reads MP3 data from a file and adds it in
a queue. The decoder thread dequeues the data, decodes it, and plays it
out. The queue is a shared data structure between the main and decoder
threads. Figure 6.6 shows the various entities that are involved during the
decoding phase. The idea here is to demonstrate various pthread synchro-
nization primitives in a greater detail.

Please note that this section is not a complete pthreads reference manual.
Our aim is give you sufficient details to kickstart your development with
pthreads. Also in our player example we have intentionally omitted player-
specific details regarding decoding and playback. This is done to give more
emphasis to pthreads operations in the player.

Figure 6.6 Simple audio player.

Main

Thread

Decoder

Thread

Input from File

Ouput

Shared Resource
Queue

172 Embedded Linux System Design and Development

6.3.1 Thread Creation and Exit

A new thread of execution is created by calling the pthread_create function.
The prototype of the function is

int pthread_create (pthread_t * thread_id,
 pthread_attr_t *thread_attributes,
 void * (*start_routine)(void *),
 void * arg);

The function returns zero on success and the identifier of the created thread
is stored in the first argument thread_id. The new thread starts its execution
from the start_routine function. arg is an argument to start_routine.
thread_attributes represents various thread attributes such as scheduling
policy, priority, stacksize, and the like. The function returns a nonzero value
on failure.

Let’s take our MP3 player in player.c. The player start-up calls
system_init function for various subsystem initializations. system_init
function runs in the context of the main thread.

int system_init(){
 pthread_t audio_tid;
 int sample = 1;
 void * audio_init_status;

 /* Initialize audio subsystem in a separate thread */
 if (pthread_create(&audio_tid, NULL, audio_init,
 (void *)sample) != 0){
 printf("Audio thread creation failed.\n");
 return FAIL;
 }

 /*
 * Initialize rest of application, data structures etc
 */

}

system_init calls pthread_create to perform audio subsystem initial-
ization in a new thread. On success, the thread id of the created thread is
stored in audio_tid. The new thread executes the audio_init function.
audio_init takes an integer argument sample. As the second argument to
pthread_create is NULL, the audio_tid thread starts with a default set of
attributes. (For example, scheduling policy and priority of the thread is
inherited from the caller.)

The new thread initializes the decoder and audio output subsystem. If
requested it also plays a sample sound for two seconds to verify if the
initialization is successful.

Porting Applications 173

void* audio_init(void *sample){

 int init_status = SUCCESS;

 printf("Audio init thread created with ID %d\n",

 pthread_self());

 /*

 * Initialize MP3 decoder subsystem.

 * set init_status = FAIL for failure.

 */

 /*

 * Initialize Audio output subsystem.

 * set init_status = FAIL for failure.

 */

 if ((int)sample){

 /*

 * Play sample output for 2 seconds.

 * Set init_status = FAIL if play fails

 */

 }

 printf("Audio subsystem initialized\n");

 pthread_exit((void *)init_status);

}

Two questions arise.

� How can the audio_init thread send its exit status to the main thread?
� Is it possible for the system_init function to wait for termination of

the audio_init thread before quitting? How can it fetch the exit status
of audio_init thread?

A thread sets its exit status using the pthread_exit function. This function
also terminates execution of the calling thread.

void pthread_exit(void *return_val);

audio_init calls pthread_exit to terminate its execution and also to
set its exit status. pthread_exit is analogous to the exit system call. From
the application developer’s point of view there is only one difference: exit
terminates the complete process and pthread_exit terminates the calling
thread only.

A thread can get the exit status of another thread by calling the
pthread_join function.

int pthread_join(pthread_t tid, void **thread_return_val);

174 Embedded Linux System Design and Development

pthread_join suspends execution of the calling thread until thread tid
exits. When pthread_join returns, the exit status of thread tid is stored in
the thread_return_val argument. pthread_join is analogous to the
wait4 system call. wait4 suspends the execution of a parent process until
the child specified in its argument terminates. Similarly pthread_join also
suspends the execution of the calling thread until the thread specified in its
argument exits. As you can see, system_init calls pthread_join to wait
for the audio_init thread to exit before returning. It also prints an error
message if audio_init fails.

int system_init(){
 ...
 void * audio_init_status;
 ...
 ...
 /* Wait for audio_init thread to complete */
 pthread_join(audio_tid, &audio_init_status);

 /* If audio init failed then return error */
 if ((int)audio_init_status == FAIL){
 printf("Audio init failed.\n");
 return FAIL;
 }

 return SUCCESS;
}

Note that a thread created using pthread_create with a default set of
attributes (the second argument to pthread_create is NULL) is a joinable
thread. Resources allocated to a joinable thread are not released until some
other thread calls pthread_join on the thread. It becomes a zombie.

6.3.2 Thread Synchronization

Pthreads provides thread synchronization in the form of mutex and condition
variables.

A mutex is a binary semaphore that provides exclusive access to a shared
data structure. It supports two basic operations: lock and unlock. A thread
should lock the mutex before entering the critical section and unlock it when
it is done. A thread blocks if it tries to lock an already locked mutex. It is
awakened when the mutex is unlocked. Mutex lock operation is atomic. If
two threads try to acquire the mutex at the same time, it’s assured that one
operation will complete or block before the other starts. A nonblocking version
of the lock operation, trylock, is also supported. Trylock returns success if
the mutex is acquired; it returns failure if the mutex is already locked.

A general sequence to protect a shared data structure using mutex is

lock the mutex
operate on shared data
unlock the mutex

Porting Applications 175

A condition variable is a synchronization mechanism that is more useful
for waiting for events than for resource locking. A condition variable is
associated with a predicate (a logical expression that evaluates to either TRUE
or FALSE) based on some shared data. Functions are provided to sleep on
the condition variable and to wake up single or all threads when the result
of the predicate changes.

In our player example the shared data structure between the main thread
and decoder thread is a queue. The main thread reads the data from a file
and enqueues it. The decoder thread dequeues the data and processes it. If
the queue is empty, the decoder thread sleeps until the data arrives in the
queue. The main thread after enqueueing the data awakens the decoder
thread. The whole synchronization logic is implemented by associating a
condition variable with the queue. The shared data is the queue and the
predicate is “queue is not empty.” The decoder thread sleeps on the condition
variable if the predicate is FALSE (i.e., the queue is empty). It is awakened
when the main thread “changes” the predicate by adding data in the queue.

Let’s now discuss in detail the pthreads implementation of mutex and
condition variable.

Pthreads Mutex

A mutex is initialized at the definition time as

pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;

It can also be initialized at runtime by calling the pthread_mutex_init
function.

int pthread_mutex_init(pthread_mutex_t *mutex,
 const pthread_mutexattr_t *mutexattr);

The first argument is a pointer to mutex that is being initialized and the
second argument is the mutex attributes. Default attributes are set if mutex-
attr is NULL (more about mutex attributes later).

A mutex is acquired by calling the pthread_mutex_lock function. It is
re leased by ca l l ing the pthread_mutex_unlock func t ion .
pthread_mutex_lock either acquires the mutex or suspends the execution
of the calling thread until the owner of the mutex (i.e., a thread that has
acquired the mutex by calling the pthread_mutex_lock function earlier)
releases it by calling pthread_mutex_unlock.

 int pthread_mutex_lock(pthread_mutex_t *mutex);
 int pthread_mutex_unlock(pthread_mutex_t *mutex);

Shared data can be protected by using the mutex lock and unlock functions
as

pthread_mutex_lock(&lock);
/* operate on shared data */
pthread_mutex_unlock(&lock);

176 Embedded Linux System Design and Development

There are three types of mutex.

� Fast mutex
� Recursive mutex
� Error-check mutex

The behavior of these three types of mutex is similar; they only differ when
the owner of the mutex again calls pthread_mutex_lock to reacquire it.

� For fast mutex, a deadlock condition occurs as the thread is now waiting
for itself to unlock the mutex

� For recursive mutex, the function returns immediately and the mutex
acquire count is incremented. The mutex is unlocked only if the count
reaches zero; that is, a thread has to call pthread_mutex_unlock for
every call to pthread_mutex_lock.

� For error-check mutex, pthread_mutex_lock returns the error with
error code EDEADLK.

Fast, recursive, and error-check mutex are initialized at definition time as

/* Fast Mutex */
pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;

/* Recursive mutex */
pthread_mutex_t lock =
 PTHREAD_RECURSIVE_MUTEX_INITIALIZER_NP;

/* Error-check mutex */
pthread_mutex_t lock =
 PTHREAD_ERRORCHECK_MUTEX_INITIALIZER_NP;

They can also be initialized at runtime by calling the pthread_mutex_
init function. Recall that passing NULL as the second argument of pthread_
mutex_init sets default attributes for the mutex. By default a mutex is
initialized as a fast mutex.

/* Fast Mutex */
pthread_mutex_t lock;
pthread_mutex_init(&lock, NULL);

A recursive mutex is initialized at runtime as

pthread_mutex_t lock;
pthread_mutexattr_t mutex_attr;
pthread_mutexattr_init(&mutex_attr);
pthread_mutexattr_settype(&mutex_attr,
 PTHREAD_RECURSIVE_MUTEX_INITIALIZER_NP);
pthread_mutex_init(&lock, &mutex_attr);

Porting Applications 177

Error-check mutex is initialized at runtime similarly to the above; only
change the mutex type to PTHREAD_ERRORCHECK_MUTEX_INITIALIZER_NP
in the call to pthread_mutexattr_settype.

Pthreads Condition Variable

Like mutex, a condition variable is initialized either at definition time or at
runtime by calling the pthread_cond_init function.

pthread_cond_t cond_var = PTHREAD_COND_INITIALIZER;

or

pthread_cond_t cond_var;
pthread_cond_init(&cond_var, NULL);

Let’s come back to our MP3 player to understand the various pthreads
condition variable operations. Three entities are involved as shown in Figure
6.6.

� Main thread: It spawns the audio decoder thread. It’s also the producer
of data for the decoder thread.

� Decoder thread: It decodes and plays back the data provided by the main
thread.

� Queue: This is a shared data structure between the main and decoder
threads. The main thread reads the data from the file and enqueues it and
the decoder thread dequeues the data and consumes it.

The main thread spawns the decoder thread at application start-up.

int main(){

 pthread_t decoder_tid;
 ...

 /* Create audio decoder thread */
 if (pthread_create(&decoder_tid, NULL, audio_decoder,
 NULL) != 0){
 printf("Audio decoder thread creation failed.\n");
 return FAIL;
 }
 ...
 ...
}

Three questions arise.

� How does the decoder thread know that there is data available in the
queue? Should it poll? Is there some better mechanism?

178 Embedded Linux System Design and Development

� Is there any way for the main thread to inform the decoder thread of data
availability in the queue?

� How can the queue be protected from simultaneous access by the main
and decoder threads?

To answer these questions let’s first see the details of the audio decoder
thread.

void* audio_decoder(void *unused){

 char *buffer;
 printf("Audio Decoder thread started\n");

 for(;;){
 pthread_mutex_lock(&lock);
 while(is_empty_queue())
 pthread_cond_wait(&cond, &lock);

 buffer = get_queue();

 pthread_mutex_unlock(&lock);

 /* decode data in buffer */
 /* send decoded data to ouput for playback */

 free(buffer);
 }
}

Please pay attention to the following piece of code in the audio_decoder
function.

while(is_empty_queue())
 pthread_cond_wait(&cond, &lock);

Here we have introduced a condition variable cond. The predicate for
this condition variable is “queue is not empty.” Thus if the predicate is false
(i.e., queue is empty), the thread sleeps on the condition variable by calling
the pthread_cond_wait function. The thread would remain in wait state
until some other thread signals the condition (i.e., changes the predicate by
adding data in the queue, which makes it nonempty). The prototype of the
function is

int pthread_cond_wait(pthread_cond_t *cond,
 pthread_mutex_t *mutex);

You can see in the above declaration that a mutex is also associated with
a condition variable. The mutex is required to protect the predicate when a
thread is checking its status. It avoids the race condition where a thread
prepares to wait on a condition variable and another thread signals the
condition just before the first thread actually waits on it.

Porting Applications 179

while(is_empty_queue())
 <--- Other thread signals the condition --->
 pthread_cond_wait(...);

In our example, without mutex the decoder thread would wait on the
condition variable even if data is available in the queue. So the rule is: checking
the predicate and sleeping on the condition variable should be an atomic
operation. This atomicity is achieved by introducing a mutex along with a
condition variable. Thus the steps are

pthread_mutex_lock(&lock); <-- Get the mutex
while(is_empty_queue()) <-- check the predicate
 pthread_cond_wait(&cond,&lock);<-- sleep on condition var

To make this work it is necessary that all the participating threads should
acquire the mutex, change/check the condition, and then release the mutex.

Now what happens to the mutex when a thread goes to sleep in
pthread_cond_wait? If the mutex remains in the lock state then no other
thread can signal the condition as that thread too would try to acquire the
same mutex before changing the predicate. We have a deadlock: one thread
holding the lock and sleeping on the condition variable, and the other thread
waiting for the lock to change the condition. To avoid deadlock the associated
mutex should be unlocked after a thread slept on a condition variable. This
is done in the function pthread_cond_wait. The function puts the thread
in the sleep state and releases the mutex automatically.

The thread sleeping on a condition variable is awakened and the function
pthread_cond_wait returns when some other thread signals the condition
(by calling the pthread_cond_signal or pthread_cond_broadcast func-
tion as discussed later in the section). pthread_cond_wait also reacquires
the mutex before returning. The thread can now operate on the condition
and release the mutex.

pthread_mutex_lock(&lock); <-- Get the mutex
while(is_empty_queue()) <-- Check the condition
 pthread_cond_wait(&cond,&lock); <-- wait on condition var

<-- Mutex is reacquired internally by pthread_cond_wait-->

buffer = get_queue(); <-- Operate on the condition
pthread_mutex_unlock(&lock);<-- Release the mutex when done

Let’s see how a thread can signal a condition. The steps are

� Get the mutex.
� Change the condition.
� Release the mutex.
� Wake up single or all threads that are sleeping on the condition variable.

The main thread of our player awakens the audio decoder thread after
adding data in the queue.

180 Embedded Linux System Design and Development

fp = fopen("song.mp3", "r");

while (!feof(fp)){

 char *buffer = (char *)malloc(MAX_SIZE);

 fread(buffer, MAX_SIZE, 1, fp);

 pthread_mutex_lock(&lock); <-- Get the mutex

 add_queue(buffer); <-- change the condition. Adding

 buffer in queue makes it non

 empty

 pthread_mutex_unlock(&lock); <-- Release the mutex

 pthread_cond_signal(&cond); <-- Wakeup decoder thread

 usleep(300*1000);

}

The pthread_cond_signal awakens a single thread sleeping on the
condition variable. A function pthread_cond_broadcast is also available
to wake up all the threads that are sleeping on a condition variable.

int pthread_cond_signal(pthread_cond_t *cond);
int pthread_cond_broadcast(pthread_cond_t *cond);

6.3.3 Thread Cancellation

How can a thread terminate execution of another thread? In our player
example, after playback is done, the main thread should terminate the decoder
thread before the application quits. This is achieved by the pthread_cancel
function.

int pthread_cancel(pthread_t thread_id);

pthread_cancel sends a termination request to thread thread_id. In
our player the main thread calls the pthread_cancel function to send the
cancellation request to the decoder thread and waits to terminate before
exiting.

int main(){

 ...

 ...

 pthread_cancel(decoder_tid); <-- send cancellation

 request

 pthread_join(decoder_tid, NULL);

}

The thread that receives the cancellation request can ignore it, honor it
immediately, or defer the request. Two functions are provided that determine
the action taken whenever a cancellation request is received by a thread.

Porting Applications 181

int pthread_setcancelstate(int state, int *oldstate);
int pthread_setcanceltype(int type, int *oldtype);

pthread_setcancelstate is called to ignore or accept the cancellation
request. The request is ignored if the state argument is PTHREAD_CANCEL_
DISABLE. Cancellation is enabled if the state is PTHREAD_CANCEL_ENABLE.
If cancellation is enabled, pthread_setcanceltype is called to set either
the immediate or deferred cancellation type. Cancellation is immediately
executed if the type argument is PTHREAD_CANCEL_ASYNCHRONOUS. If the
type is PTHREAD_CANCEL_DEFERRED, the cancellation request is deferred
until the next cancellation point.

By default a thread always starts with the cancellation enabled with the
deferred cancellation type. In the player example, the decoder thread calls the
function pthread_setcanceltype to set the immediate cancellation type.

void* audio_decoder(void *unused){
 ...
 ...
 pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, NULL);
 ...
}

As mentioned earlier, execution of a cancellation request can be deferred
until the next cancellation point. So what are these cancellation points?
Cancellation points are those functions where the test for a pending cancel-
lation request is performed. Cancellation is immediately executed if the request
is pending. In general any function that suspends the execution of a current
thread for a long time should be a cancellation point. The pthread functions
pthread_join, pthread_cond_wait, pthread_cond_timedwait, and
pthread_testcancel serve as cancellation points. Please note that executing
a cancellation request at any given point is equivalent to calling
pthread_exit(PTHREAD_CANCELED) at that point.

A thread can check whether a cancellation request is pending by calling
the pthread_testcancel function.

void pthread_testcancel(void);

Cancellation is immediately executed if a cancellation request is pending
when the function is called.

6.3.4 Detached Threads
As discussed earlier, a thread created using pthread_create with a default
set of attributes is a joinable thread. It is necessary to call pthread_join on
joinable threads to release resources allocated to them. Sometimes we want
to create “independent” threads. They should exit whenever they want without
any need for some other thread to join them. To achieve this we need to put
them in a detached state. It could be done in two ways.

182 Embedded Linux System Design and Development

� Setting the DETACH attribute at thread creation time

pthread_attr_t attr;
pthread_attr_init(&attr);
pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
pthread_create(&tid, &attr, routine, arg);

� pthread_detach function

int pthread_detach(pthread_t tid);

� Any thread can put thread tid in the detached state by calling the
pthread_detach function. A thread can also put itself in the detached
state by calling

pthread_detach(pthread_self());

6.4 Operating System Porting Layer (OSPL)
An OSPL emulates your RTOS APIs using Linux APIs. A well-written OSPL
should minimize changes in your existing code base. In this section we discuss
the structure of an OSPL. For this purpose we have defined our own RTOS
APIs. These APIs are similar to APIs found in a traditional RTOS. We discuss
task creation, task destruction, and mutex APIs. Our OSPL is a single library
that links in both kernel and user space. The definitions are present in the
file ospl.c. The ospl.h header file emulates RTOS datatypes using Linux
datatypes. We discuss RTOS mutex APIs first as they have one-to-one mapping
with Linux mutex APIs in our implementation. RTOS task APIs have one-to-
many mapping with equivalent Linux APIs.

In this section we discuss OSPL for tasks that are implemented as threads
in a Linux process. In Section 6.4.3 we show the mapping of timers and
IPC APIs that can be used across Linux processes.

6.4.1 RTOS Mutex APIs Emulation

The prototypes of our RTOS mutex APIs are

� rtosError_t rtosMutexInit(rtosMutex_t *mutex): Initialize a
mutex for lock, unlock, and trylock mutex operations.

� rtosError_t rtosMutexLock(rtosMutex_t *mutex): Acquire
mutex if it is unlocked; sleep if the mutex is already locked.

� rtosError_t rtosMutexUnlock(rtosMutex_t *mutex): Unlock
mutex that was acquired previously by calling rtosMutexLock.

� rtosError_t rtosMutexTrylock(rtosMutex_t *mutex): Acquire
mutex if it is unlocked. Return RTOS_AGAIN if the mutex is already locked.

Porting Applications 183

Note that all the above APIs return one of the values in enum rtosError_t
in file rtosTypes.h. This RTOS file is included in ospl.h.

typedef enum {
 RTOS_OK,
 RTOS_AGAIN,
 RTOS_UNSUPPORTED,
 ...
 RTOS_ERROR,
}rtosError_t;

The functions take the pointer to rtosMutex_t object as an argument.
rtosMutex_t is emulated in file ospl.h as

#ifndef __KERNEL__
 typedef pthread_mutex_t rtosMutex_t; <-- user space
 definition
#else
 typedef struct semaphore rtosMutex_t; <-- kernel
 definition
#endif

In user space, RTOS mutex APIs are emulated using pthreads mutex
operations. In the kernel they are emulated using kernel semaphores. Let’s
discuss the implementation of these APIs in our OSPL.

The function rtosMutexInit is emulated in user space using the
pthread_mutex_init function. In the kernel the init_MUTEX function is
used. init_MUTEX initializes a semaphore with value 1.

rtosError_t rtosMutexInit(rtosMutex_t *mutex){
#ifndef __KERNEL__
 pthread_mutex_init(mutex, NULL);
#else
 init_MUTEX(mutex);
#endif
 return RTOS_OK;
}

The user-space version of rtosMutexLock uses the pthread_mutex_
lock function. In the kernel the down function is used.

rtosError_t rtosMutexLock(rtosMutex_t *mutex){
 int err;
#ifndef __KERNEL__
 err = pthread_mutex_lock(mutex);
#else
 down(mutex);
 err = 0;
#endif
 return (err == 0) ? RTOS_OK : RTOS_ERROR;
}

184 Embedded Linux System Design and Development

down automatically decreases the semaphore count. The semaphore is
acquired if the count becomes zero after decrement; if the count becomes
negative then the current task is put to uninterruptible sleep on the sema-
phore’s wait queue. The task only wakes up when the owner of the semaphore
releases it by calling up function. The disadvantage of using down is its
uninterruptible sleep nature. You can by no means terminate the execution
of a task that is sleeping in down. To fully control execution of a task the
down_interruptible function should be used instead. The function is
similar to down except it returns -EINTR if the sleep is interrupted. Thus the
new rtosMutexLock implementation is

rtosError_t rtosMutexLock(rtosMutex_t *mutex){
 int err;
#ifndef __KERNEL__
 err = pthread_mutex_lock(mutex);
#else
 err = down_interruptible(mutex);
#endif
 return (err == 0) ? RTOS_OK : RTOS_ERROR;
}

The function rtosMutexUnlock is implemented in user space using the
pthread_mutex_unlock function. In the kernel the function up is used. up
atomically increments the semaphore count and awakens the tasks sleeping
(interruptible or uninterruptible) on the semaphore’s wait queue.

rtosError_t rtosMutexUnlock(rtosMutex_t *mutex){
 int err;
#ifndef __KERNEL__
 err = pthread_mutex_unlock(mutex);
#else
 up(mutex);
 err = 0;
#endif
 return (err == 0) ? RTOS_OK : RTOS_ERROR;
}

Finally rtosMutexTryLock uses pthread_mutex_trylock in user space
and the function down_trylock in the kernel. down_trylock does not block
and returns immediately if the semaphore is already acquired.

rtosError_t rtosMutexTrylock(rtosMutex_t *mutex){
 int err;
#ifndef __KERNEL__
 err = pthread_mutex_trylock(mutex);
 if (err == 0)
 return RTOS_OK;
 if (errno == EBUSY)
 return RTOS_AGAIN;
 return RTOS_ERROR;

Porting Applications 185

#else
 err = down_trylock(mutex);
 if (err == 0)
 return RTOS_OK;
 return RTOS_AGAIN;
#endif
}

To summarize, one-to-one mapping between RTOS mutex APIs and Linux
mutex APIs are listed in Table 6.1.

6.4.2 RTOS Task APIs Emulation

Let’s look into a slightly complex part of an OSPL, one-to-many mapping of
RTOS APIs with Linux APIs. We take task creation and termination RTOS APIs
as an example. The prototypes of our RTOS task creation and termination
APIs are

rtosError_t rtosCreateTask
 (char *name, <-- name of the task
 rtosEntry_t routine, <-- entry point
 char * arg1, <-- Argument to entry point
 int arg, <-- Argument to entry point
 void * arg3, <-- Argument to entry point
 int priority, <-- Priority of new task
 int stackSize, <-- Stacksize
 rtosTask_t *tHandle); <-- task handle

The function rtosCreateTask spawns a new task that starts its execution
from the function routine. Priority of the new task is set using argument
priority. The function returns RTOS_OK on success and stores the task
handle of the created task in the tHandle argument.

void rtosDeleteTask(rtosTask_t tHandle <-- task handle
);

Table 6.1 RTOS and Linux Mutex APIs

RTOS

Linux

User Space Kernel Space

Mutex init pthread_mutex_init init_MUTEX

Mutex lock pthread_mutex_lock down, down_interruptible

Mutex unlock pthread_mutex_unlock up

Mutex trylock pthread_mutex_trylock down_trylock

186 Embedded Linux System Design and Development

The function rtosDeleteTask terminates the execution of task tHandle
and waits for its termination. When the function rtosDeleteTask returns,
it is guaranteed that task tHandle is dead. We first discuss the user-space
implementation of these APIs followed by the kernel implementation.

User-Space Task APIs Emulation

Before moving to implementation details of rtosCreateTask and rtos-
DeleteTask let’s discuss two datatypes involved: rtosEntry_t and
rtosTask_t. rtosEntry_t is defined in ospl.h and it should be used
without redefining as in our implementation. Changing this type would mean
changing declarations of all the functions based on this type, which we want
to avoid. rtosEntry_t is defined as

typedef void (*rtosEntry_t) (char *arg1, int arg2,
 void *arg3);

The internals of rtosTask_t are understood only by the task APIs. For
other APIs it’s just an opaque data type. As we are implementing RTOS task
APIs using Linux APIs, we have the liberty to redefine this type as per our
needs. The new definition is in file ospl.h.

typedef struct {
 char name[100]; <-- name of the task
 pthread_t thread_id; <-- thread id
}rtosTask_t;

First we discuss rtosCreateTask.

rtosError_t
rtosCreateTask(char *name, rtosEntry_t routine,
 char * arg1, int arg2, void *arg3,
 int priority, int stackSize,
 rtosTask_t *tHandle){
#ifndef __KERNEL__

int err;
uarg_t uarg;
strcpy(tHandle->name, name);
uarg.entry_routine = routine;
uarg.priority = priority;
uarg.arg1 = arg1;
uarg.arg2 = arg2;
uarg.arg3 = arg3;
err = pthread_create (&tHandle->thread_id, NULL,
 wrapper_routine, (void *)&uarg);
return (err) ? RTOS_ERROR : RTOS_OK;

#else
 ...
}

Porting Applications 187

We define a new structure uarg_t that holds all the RTOS task entry
routine arguments, the pointer to the entry routine, and the priority of the task.

typedef struct _uarg_t {
 rtosEntry_t entry_routine;
 int priority;
 char *arg1;
 int arg2;
 void *arg3;
}uarg_t;

For every call to rtosCreateTask a new thread of execution is created
by calling the pthread_create function. The identifier of the created thread
is stored in the tHandle->thread_id argument. The new thread executes
the wrapper_routine function.

void wrapper_routine(void *arg){
 uarg_t *uarg = (uarg_t *)arg;
 nice(rtos_to_nice(uarg->priority));
 uarg->entry_routine(uarg->arg1, uarg->arg2,
 uarg->arg3);
}

In wrapper_routine, the priority of the thread is adjusted using the
nice system call. The rtos_to_nice function does priority scale conversion
from RTOS to Linux. You need to rewrite this function depending on your
RTOS. Finally it transfers control to the actual entry routine with proper
arguments.

You may be surprised to see that we have ignored the stackSize argument
in the implementation. In Linux, it’s not necessary to specify the stack size of
a thread or a task. The kernel takes care of stack allocation. It grows the stack
dynamically when needed. If for any reason you want to specify stack size,
call pthread_attr_setstacksize before calling pthread_create.

Now we discuss rtosDeleteTask.

void rtosDeleteTask(rtosTask_t tHandle){
#ifndef __KERNEL__
 pthread_cancel(tHandle.thread_id);
 pthread_join(tHandle.thread_id, NULL);
#else
...
}

The function calls pthread_cancel to send a cancellation request to the
thread tHandle. It then calls pthread_join to wait for its termination.

Note from our earlier discussion of thread cancellation that
pthread_cancel does not terminate the execution of a given thread. It just
sends a cancellation request. The thread that receives the request has the
option of either accepting it or ignoring it. Thus to successfully emulate
rtosTaskdelete all threads should accept the cancellation request. They

188 Embedded Linux System Design and Development

can do this by adding explicit cancellation points in the code such as the
following.

static void rtosTask (char * arg1, int arg2, void * arg3){
 while(1){
 /*
 * Thread body
 */
 pthread_testcancel(); <-- Add explicit cancellation
 point
 }
}

In fact a thread can use any method discussed earlier to accept a cancel-
lation request. But you should be careful when using the immediate thread
cancellation type (PTHREAD_CANCEL_ASYNCHRONOUS). A thread using
immediate cancellation could be terminated when it is holding some lock and
is in a critical section. On termination the lock is not released and this could
lead to deadlock if some other thread tries to get the lock.

Kernel Task APIs Emulation
Let’s discuss implementation of rtosCreateTask and rtosDeleteTask task
APIs in the kernel. Before moving to implementation details we first discuss
two kernel functions: wait_for_completion and complete. These two
functions are used in the kernel for synchronizing code execution. They are
also used for event notification. A kernel thread can wait for an event to occur
by calling wait_for_completion on a completion variable. It is awakened
by another thread by calling complete on that completion variable when the
event occurs.

Where do we need wait_for_completion and complete kernel func-
tions? In our OSPL a RTOS task is implemented using a kernel thread. A
kernel thread is created using the kernel_thread function. It can be termi-
nated by sending a signal to it. Our rtosDeleteTask implementation sends
a signal to the kernel thread and calls wait_for_completion to wait for
the termination. The kernel thread, on reception of the signal, calls complete
to wake up the caller of rtosDeleteTask before exiting.

First is rtosCreateTask.

rtosError_t
rtosCreateTask(char *name, rtosEntry_t routine, void * arg,
 int priority, int stackSize,
 rtosTask_t *tHandle){
#ifndef __KERNEL__
 ...
#else

struct completion *complete_ptr =
 (struct completion *)kmalloc(sizeof(structcompletion),
 GFP_KERNEL);

Porting Applications 189

karg_t *karg = (karg_t *)kmalloc(sizeof(karg_t),
 GFP_KERNEL);
strcpy(tHandle->name, name);
init_completion(complete_ptr); <-- Initialize a completion
 variable
tHandle->exit = complete_ptr;
karg->entry_routine = routine;
karg->priority = priority;
karg->arg1 = arg1;
karg->arg2 = arg2;
karg->arg3 = arg3;
karg->exit = complete_ptr;
tHandle->karg = karg;
tHandle->thread_pid =

 kernel_thread(wrapper_routine, (void *)karg, CLONE_KERNEL);
return RTOS_OK;

#endif

}

Every kernel RTOS task is associated with a completion variable complete_
ptr to facilitate its termination. It is initialized by calling the
init_completion kernel function. complete_ptr is wrapped along with
entry routine arguments arg and priority priority in a structure karg of
type karg_t. Finally the kernel_thread function is called to create a kernel
thread that starts its execution from the wrapper_routine function. The
argument to wrapper_routine is karg. kernel_thread returns the thread
identifer of the created thread that is stored in tHandle->thread_pid. Note
that the tHandle structure also holds complete_ptr and karg for later use
in the rtosDeleteTask function.

The wrapper_routine sets the priority using sys_nice and calls the
actual entry routine.

void wrapper_routine(void *arg){
 karg_t *karg = (karg_t *)arg;
 sys_nice(rtos_to_nice(karg->priority));
 karg->entry_routine(karg->arg1, karg->arg2,
 karg->arg3,karg->exit);
}

Note that we made changes to the prototype of the entry routine function
to accommodate one more argument, the completion variable pointer.

typedef void (*rtosEntry_t) (char *arg1, int arg2,
 void *arg3, struct completion * exit);

The change is necessary to facilitate kernel thread termination in rtos-
DeleteTask as discussed next.

Finally we discuss rtosDeleteTask.

190 Embedded Linux System Design and Development

void rtosDeleteTask(rtosTask_t tHandle){

#ifndef __KERNEL__

 ...

#else

 kill_proc(tHandle.thread_pid, SIGTERM, 1);

 wait_for_completion(tHandle.exit);

 kfree(tHandle.exit);

 kfree(tHandle.karg);

#endif

}

The implementation calls the kill_proc kernel function to send the signal
SIGTERM to the thread tHandle.thread_pid. The caller of rtosDele-
teTask then waits for the thread to exit by calling wait_for_completion
on the tHandle.exit completion variable. On wake-up it frees the resources
allocated in rtosCreateTask and returns.

Sending a signal to a kernel thread is not enough for its termination. The
thread that received the signal should check for pending signals in its execution
path. If the termination signal (in our case SIGTERM) is pending then it should
call complete on the completion variable before exiting. A kernel thread in
this implementation would look like

static int

my_kernel_thread (char *arg1, int arg2, void *arg3,

 struct completion * exit)

{

 daemonize("%s", "my_thread");

 allow_signal(SIGTERM);

 while (1) {

 /*

 * Thread body

 */

 /* Check for termination */

 if (signal_pending (current)) {

 flush_signals(current);

 break;

 }

 }

 /* signal and complete */

 complete_and_exit (exit, 0);

}

To summarize, mappings between RTOS mutex APIs and Linux mutex APIs
are listed in Table 6.2.

Porting Applications 191

6.4.3 IPC and Timer APIs Emulation

The next major set of APIs after successfully emulating task APIs are the IPC
and timers. The mapping of IPC and timer APIs with equivalent Linux APIs
is shown in Table 6.3. As you can see, the majority of timers and IPC functions
can be implemented using POSIX.1b real-time extensions. We discuss more
about POSIX.1b support in Linux in Chapter 7.

6.5 Kernel API Driver
One of the major challenges a developer faces when porting applications to
embedded Linux is the kernel-space/user-space mode of programming in
Linux. In Linux, because of the protected kernel address space, an application
cannot directly call any kernel function or access any kernel data structure.
All the kernel facilities must be accessed using well-defined interfaces called

Table 6.2 RTOS and Linux Task APIs

RTOS

Linux

User Space Kernel Space

Task create pthread_create kernel_thread

Task delete pthread_cancel kill_proc

Table 6.3 RTOS, Linux Timers, and IPC APIs

RTOS

Linux

User Space Kernel Space

Timers POSIX.1b timers, BSD timers Kernel timer APIs —
add_timer,
mod_timer, and
del_timer

Shared memory SVR4 shared memory, POSIX.1b
shared memory

Custom implementation

Message queues
and mailboxes

SVR4 message queues, POSIX.1b
message queues

Custom implementation

Semaphores SVR4 semaphores,
POSIX.1b semaphores

Kernel semaphore
functions: down, up,
and friends

Events and signals POSIX.1b Real-time signals Kernel signal functions:
kill_proc,
send_signal, and
friends

192 Embedded Linux System Design and Development

system calls. The protected kernel address space significantly increases the
application porting effort from a traditional RTOS that has a flat memory model
to embedded Linux.

Let’s take an example to understand the difficulty a developer faces when
porting applications from an RTOS to Linux.

A target running an RTOS has an RTC. A function rtc_set is available to
set the RTC. rtc_set modifies RTC registers to configure the new value.

rtc_set(new_time){
 Get year, month, day, hour, min & sec from new_time;
 program RTC registers with new values;
}

A function rtc_get_from_user is also available that takes the new RTC
value from the user and calls the function rtc_set.

rtc_get_from_user(){
 read time value entered by user in new_time;
 call rtc_set(new_time);
}

The developer faces a dilemma when porting the above application to
Linux. The function rtc_set directly modifies RTC registers so it should go
in the kernel. On the other hand, the function rtc_get_from_user reads
the user input so it should go in the user space. In Linux, the function rtc_
get_from_user cannot call the function rtc_set as the latter is a kernel
function.

The following solutions are available when porting such applications to
Linux.

� Port everything in the kernel: This solution may work but this defeats the
advantage of moving to Linux, memory protection.

� Write new system calls: In this approach, for every function ported in the
kernel a system call interface could be provided to call that function in
user space. The drawbacks of this approach are
– All the system calls are registered in a kernel system call table. This

table would be difficult to maintain if the number of functions ported
in the kernel is large.

– Upgrading to a new kernel version requires revisiting the system call
table to verify whether the kernel has not allocated a system call table
entry of your function for some other kernel function.

 In this section we discuss an efficient technique for porting such appli-
cations to Linux. We call it the kernel API driver (kapi). In this approach, a
user-space stub is written for every kernel function that should be exported
to user space. The stub when called traps into the kernel API driver that then
calls the actual function in the kernel. The kernel API driver (or kapi driver)
is implemented as a character driver /dev/kapi. It provides an ioctl

Porting Applications 193

interface for all the functions that should be exported to user space. Figure
6.7 explains the case of our above RTC example.

Thus to port the above RTC application to Linux a developer has to

� Provide an ioctl RTC_SET in kapi driver: The implementation of this ioctl
in the driver calls the rtc_set kernel function with necessary arguments.

� Write a user-space stub rtc_set: The stub calls RTC_SET ioctl on /dev/
kapi. It also passes the necessary parameters to the ioctl.

Thus using kapi driver, user-space function rtc_get_from_user calls
stub function rtc_set as if it’s calling the actual kernel function.

In this section we discuss

� Steps for writing user-space stubs
� Implementation of the kapi driver
� How to add the custom function ioctl in the kapi driver

A sample kapi driver is a kernel module written for the 2.6 kernel.
The sources are divided into the following files.

� kapi-user.c: Contains a sample user-space stub
� kapi-kernel.c: Contains source code of kapi driver
� kapi.h: A header file that should be included by both kapi-user.c

and kapi-kernel.c

In this example we export the my_kernel_func kernel function in user
space. The prototype of the function is

int my_kernel_func(int val, char* in_str, char *out_str);

This function takes three arguments, one integer and two character pointers.
The first character pointer is input to the function (copy-in) and the second
pointer is populated by the function (copy-out). The return value of the
function is an integer.

Figure 6.7 Exporting kernel functions using kapi.

rtc_get_from_user() rtc_set()
Call Stub

Stub Function

Trap in to Kapi

Driver

Kapi driver /dev/kapi

Kapi Driver

calls actual Function

rtc_set() Kernel Function

Direct call

not Possible

U
se

rs
p

ac
e

K
er

n
el

194 Embedded Linux System Design and Development

6.5.1 Writing User-Space Stubs
Listing 6.1 shows the data structures involved in writing stubs and they are
located in file kapi.h.

The stub must fill appropriate data structures before calling the appropriate
kapi driver ioctl. The data structures are

� dir_t: Every argument passed to the function has a direction associated
with it. An argument with DIR_IN direction is an input to the function.
An argument with DIR_OUT direction is populated by the function.

� arg_t: This is a placeholder for a single argument to the function. The
actual argument is cast as a void * pointer and its size and direction of
copy are stored in size and dir fields, respectively.

� kfunc_t: This is the main data structure. A pointer to an object of type
kfunc_t is passed as an argument to the ioctl. The kapi driver also uses
this structure to send back the return value of the kernel function to the stub.
– num: Number of arguments
– args: Objects of type arg_t filled for each argument
– ret: Return value of the function

� function_id: The enum contains ioctl commands for every function that
should be exported to user space.

Listing 6.1 Kapi Header File

/* kapi.h */

#ifndef _KAPI_H
#define _KAPI_H

#define MAX_ARGS 7

typedef enum _dir_t {
 DIR_IN = 1,
 DIR_OUT,
}dir_t;

typedef struct _arg_struct {
 void *val;
 unsigned int size;
 dir_t dir;
}arg_t;

typedef struct _kfunc_struct {
 int num;
 arg_t arg[MAX_ARGS];
 arg_t ret;
}kfunc_t;

enum _function_id {
 MY_KERNEL_FUNC = 1,
 MAX_FUNC
};

#endif /* _KAPI_H */

TE
AM
 F
LY

Porting Applications 195

So the stub my_kernel_func that represents the actual my_kernel_func
in the kernel is in file kapi-user.c and listed in Listing 6.2.

Before calling stub functions you should ensure that you have successfully
opened kapi driver as it is done in function main in kapi-user.c.

char out[MAX_SIZE];
int ret;

dev_fd = open("/dev/kapi", O_RDONLY, 0666);

if (dev_fd < 0){
 perror("open failed");
 return 0;
}

/* call the stub */
ret = my_kernel_func(10, "Hello Kernel World", out);

printf("result = %d, out_str = %s\n", ret, out);

6.5.2 Kapi Driver Implementation

Kapi driver is a character driver implemented as a kernel module. This section
discusses the implementation details of the driver for the 2.6 kernel.

There are two main data structures.

� struct file_operations kapi_fops: This table contains file opera-
tion routines such as open, close, ioctl, and so on for the driver.

static struct file_operations kapi_fops = {
 .owner = THIS_MODULE,
 .llseek = NULL,
 .read = NULL,
 .write = NULL,
 .ioctl = kapi_ioctl,
 .open = kapi_open,
 .release = kapi_release,
};

� Note that read, write, and lseek file operations are set to NULL.
These operations are not valid for the kapi driver as all the operations are
performed through the ioctl interface.

� struct miscdevice kapi_dev: kapi driver is registered as a miscella-
neous character driver. The minor number is KAPI_MINOR (111). The
major number of any miscellaneous character driver is 10.

static struct miscdevice kapi_dev = {
 KAPI_MINOR,
 "kapi",
 &kapi_fops,
};

196 Embedded Linux System Design and Development

Listing 6.2 Sample User Stub

/* kapi-user.c */

#include <fcntl.h>
#include "kapi.h"

/* File handler for “/dev/kapi” */
int dev_fd;

#define MAX_SIZE 50

int my_kernel_func(int val, char* in_str, char *out_str){

 kfunc_t data;
 int ret_val;

 /* Total number of arguments are three */
 data.num = 3;

 /*
 * Argument 1.
 * Even non pointer arguments should be passed as pointers. The
 * direction for such arguments is DIR_IN
 */
 data.arg[0].val = (void *)&val;
 data.arg[0].size = sizeof(int);
 data.arg[0].dir = DIR_IN;

 /* Argument 2 */
 data.arg[1].val = (void *)in_str;
 data.arg[1].size = strlen(in_str) + 1;
 data.arg[1].dir = DIR_IN;

 /*
 * Argument 3. As this is copy-out argument, we need to specify
 * the receive buffer size
 */
 data.arg[2].val = (void *)out_str;
 data.arg[2].size = MAX_SIZE;
 data.arg[2].dir = DIR_OUT;

 /*
 * kernel function return value. Setting direction field is not
 * needed as it is always copy-out
 */
 data.ret.val = (void *)&ret_val;
 data.ret.size = sizeof(int);

 /*
 * Finally call ioctl on /dev/kapi. Kapi driver then calls
 * my_kernel_func kernel function. It also populates
 * data.ret.val with the return value of the kernel function
 */
 if (ioctl(dev_fd, MY_KERNEL_FUNC, (void *)&data) < 0){
 perror("ioctl failed");
 return -1;
 }

Porting Applications 197

� Every kernel module has a module init function and a module clean-up
function. The kapi driver provides kapi_init and kapi_cleanup_
module as its init and clean-up functions, respectively.

The kapi_init function registers kapi driver as a miscellaneous character
driver with minor number KAPI_MINOR. The function is called when the
module is loaded.

static int __init
kapi_init(void)
{
 int ret;

 ret = misc_register(&kapi_dev);
 if (ret)
 printk(KERN_ERR "kapi: can't misc_register on
 minor=%d\n", KAPI_MINOR);
 return ret;
}

The kapi_cleanup_module is called when the module is unloaded. The
function unregisters as a miscellaneous character driver.

static void __exit
kapi_cleanup_module(void)
{
 misc_deregister(&kapi_dev);
}

The open and close routines just keep track of a number of simultaneous
users of this driver. They are mainly for debugging purposes.

static int
kapi_open(struct inode *inode, struct file *file)
{
 kapi_open_cnt++;
 return 0;
}

static int
kapi_release(struct inode *inode, struct file *file)
{

 kapi_open_cnt--;
 return 0;
}

Listing 6.2 Sample User Stub (continued)

 /* return value of the function */
 return ret_val;
}

198 Embedded Linux System Design and Development

Let’s now discuss the core of kapi driver, the kapi_ioctl function.
kapi_ioctl is registered as an ioctl operation for this driver in the fops
table.

The kapi_ioctl function performs the following operations.

1. Copy-in the user-passed kfunc_t object in a kernel kfunc_t object.
2. Allocate memory for the DIR_IN and DIR_OUT arguments.
3. Copy-in all the arguments that have the DIR_IN direction flag in kernel

buffers from user buffers.
4. Call the requested kernel function.
5. Copy-out all the arguments with the DIR_OUT direction flag from kernel

buffers to user buffers.
6. Finally, copy-out the return value of the kernel function to user space and

free all the kernel buffers allocated.

The argument to kapi_ioctl is the pointer to an object of type kfunc_t.
The first step is to copy the kfunc_t object in the kernel memory.

static int
kapi_ioctl(struct inode *inode, struct file *file,
 unsigned int cmd, unsigned long arg)
{
 int i,err;
 kfunc_t kdata,udata;

 if(copy_from_user(&udata, (kfunc_t *)arg,
 sizeof(kfunc_t)))
 return -EFAULT;

Allocate kernel buffers for all the arguments and return value. Perform
copy-in operation if any argument has DIR_IN direction.

for (i = 0 ; i < udata.num ; i++){
 kdata.arg[i].val = kmalloc(udata.arg[i].size,
 GFP_KERNEL);
 if (udata.arg[i].dir == DIR_IN){
 if (copy_from_user(kdata.arg[i].val, udata.arg[i].val,
 udata.arg[i].size))
 goto error;
 }
}
kdata.ret.val = kmalloc(udata.ret.size, GFP_KERNEL);

Call the requested kernel function. In this example we have provided ioctl
for the my_kernel_func kernel function. You need to add your functions
similarly in the switch statement. The function id should also be added in the
function_id enum in kapi.h. The return value of the called function
should be stored in kdata.ret.val.

switch (cmd) {

 case MY_KERNEL_FUNC:

Porting Applications 199

 *(int *)(kdata.ret.val) =
 my_kernel_func(*(int *)kdata.arg[0].val,
 (char *)kdata.arg[1].val,
 (char *)kdata.arg[2].val);
 break;

 default:
 return -EINVAL;
}

Now it’s time to send the result of the called kernel function back to the
user-space stub. Copy-out all the DIR_OUT arguments and function return
value to the user space. Also free the allocated kernel buffers.

err = 0;
for (i = 0 ; i < udata.num ; i++){
 if (udata.arg[i].dir == DIR_OUT){
 if (copy_to_user(udata.arg[i].val, kdata.arg[i].val,
 udata.arg[i].size))
 err = -EFAULT;
 }
 kfree(kdata.arg[i].val);
}

/* copy-out the return value */
if (copy_to_user(udata.ret.val, kdata.ret.val,
 udata.ret.size))
 err = -EFAULT;

kfree(kdata.ret.val);
return err;
}

Finally, the my_kernel_func just prints out the user input and returns
an integer value 2. For the sake of simplicity we have put this function in
kapi-kernel.c. You should not add your functions in this file. Also remem-
ber to export the function using EXPORT_SYMBOL as kapi driver is loaded as
a kernel module.

int my_kernel_func(int val, char *in_str, char *out_str){
 printk(KERN_DEBUG"val = %d, str = %s\n", val, in_str);
 strcpy(out_str, "Hello User Space");
 return 2;
}

EXPORT_SYMBOL(my_kernel_func);

6.5.3 Using the Kapi Driver
� Build kapi driver as a kernel module. Refer to Chapter 8, Building and

Debugging, for instructions.
� Compile kapi-user.c.

gcc -o kapi-user kapi-user.c

200 Embedded Linux System Design and Development

� Load the kernel module.

insmod kapi-kernel.ko

� Create /dev/kapi character device.

mknod /dev/kapi c 10 111

� Finally, run the application.

./kapi-user

result = 2, out_str = Hello User Space

� See the kapi driver output.

dmesg
 ...
val = 10, str = Hello Kernel World

Note
1. For example, DHCP client is a stand-alone task. It can easily migrate as a separate

Linux process.

201

Chapter 7

Real-Time Linux

Real-time systems are those in which the correctness of the system depends
not only on its functional correctness but also on the time at which the results
are produced. For example, if the MPEG decoder inside your DVD player is
not capable of decoding frames at a specified rate (say 25 or 30 frames per
second) then you will experience video glitches. Thus although the MPEG
decoder is functionally correct because it is able to decode the input video
stream, it is not able to produce the result at the required time. Depending
on how critical the timing requirement is, a real-time system can be classified
either as a hard real-time or a soft real-time system.

� Hard real-time systems: A hard real-time system needs a guaranteed worst
case response time. The entire system including OS, applications, HW, and
so on must be designed to guarantee that response requirements are met.
It doesn’t matter what the timings requirements are to be hard real-time
(microseconds, milliseconds, etc.), just that they must be met every time.
Failure to do so can lead to drastic consequences such as loss of life.
Some examples of hard real-time systems include defense systems, flight
and vehicle control systems, satellite systems, data acquisition systems,
medical instrumentation, controlling space shuttles or nuclear reactors,
gaming systems, and so on.

� Soft real-time systems: In soft real-time systems it is not necessary for system
success that every time constraint be met. In the above DVD player
example, if the decoder is not able to meet the timing requirement once
in an hour, it’s ok. But frequent deadline misses by the decoder in a short
period of time can leave an impression that the system has failed. Some
examples are multimedia applications, VoIP, CE devices, audio or video
streaming, and so on.

202 Embedded Linux System Design and Development

7.1 Real-Time Operating System
POSIX 1003.1b defines real-time for operating systems as the ability of the
operating system to provide a required level of service in a bounded response
time.

The following set of features can be ascribed to an RTOS.

� Multitasking/multithreading: An RTOS should support multitasking and
multithreading.

� Priorities: The tasks should have priorities. Critical and time-bound func-
tionalities should be processed by tasks having higher priorities.

� Priority inheritance: An RTOS should have a mechanism to support priority
inheritance.

� Preemption: An RTOS should be preemptive; that is, when a task of higher
priority is ready to run, it should preempt a lower-priority task.

� Interrupt latency: Interrupt latency is the time taken between a hardware
interrupt being raised and the interrupt handler being called. An RTOS
should have predictable interrupt latencies and preferably be as small as
possible.

� Scheduler latency: This is the time difference when a task becomes run-
nable and actually starts running. An RTOS should have deterministic
scheduler latencies.

� Interprocess communication and synchronization: The most popular form
of communication between tasks in an embedded system is message
passing. An RTOS should offer a constant time message-passing mecha-
nism. Also it should provide semaphores and mutexes for synchronization
purposes.

� Dynamic memory allocation: An RTOS should provide fixed-time memory
allocation routines for applications.

7.2 Linux and Real-Time
Linux evolved as a general-purpose operating system. As Linux started making
inroads into embedded devices, the necessity for making it real-time was felt.
The main reasons stated for the non–real-time nature of Linux were:

� High interrupt latency
� High scheduler latency due to nonpreemptive nature of the kernel
� Various OS services such as IPC mechanisms, memory allocation, and the

like do not have deterministic timing behavior.
� Other features such as virtual memory and system calls also make Linux

undeterministic in its response.

The key difference between any general-purpose operating system like
Linux and a hard real-time OS is the deterministic timing behavior of all the
OS services in an RTOS. By deterministic timing we mean that any latency
involved or time taken by any OS service should be well bounded. In
mathematical terms you should be able express these timings using an algebraic

Real-Time Linux 203

formula with no variable component. The variable component introduces
nondeterminism, a scenario unacceptable for hard real-time systems.

As Linux has its roots as a general-purpose OS, it requires major changes
to get a well-bounded response time for all the OS services. Hence a fork
was done: hard real-time variants of Linux, RTLinux, and RTAI are done to
use Linux in a hard real-time system. On the other hand, support was added
in the kernel to reduce latencies and improve response times of various OS
services to make it suitable for soft real-time needs.

This section discusses the kernel framework that supports the usage of
Linux as a soft real-time OS. The best way to understand this is to trace the
flow of an interrupt in the system and note the various latencies involved.
Let’s take an example where a task is waiting for an I/O from a disk to
complete and the I/O finishes. The following steps are performed.

� The I/O is complete. The device raises an interrupt. This causes the block
device driver’s ISR to run.

� The ISR checks the driver wait queue and finds a task waiting for I/O. It
then calls one of the wake-up family of functions. The function removes
the task from the wait queue and adds it to the scheduler run queue.

� The kernel then calls the function schedule when it gets to a point where
scheduling is allowed.

� Finally schedule() finds the next suitable candidate for running. The
kernel context switches to our task if it has sufficient high priority to get
scheduled.

Thus kernel response time is the amount of time that elapses from when
the interrupt is raised to when the task that was waiting for I/O to complete
runs. As you can see from the example there are four components to the
kernel response time.

� Interrupt latency: Interrupt latency is the time difference between a device
raising an interrupt and the corresponding handler being called.

� ISR duration: the time needed by an interrupt handler to execute.
� Scheduler latency: Scheduler latency is the amount of time that elapses

between the interrupt service routine completing and the scheduling func-
tion being run.

� Scheduler duration: This is the time taken by the scheduler function to
select the next task to run and context switch to it.

Now we discuss various causes of the above latencies and the ways that
are incorporated to reduce them.

7.2.1 Interrupt Latency

As already mentioned, interrupt latency is one of the major factors contributing
to nondeterministic system response times. In this section we discuss some
of the common causes for high-interrupt latency.

204 Embedded Linux System Design and Development

� Disabling all interrupts for a long time: Whenever a driver or other piece
of kernel code needs to protect some data from the interrupt handler, it
generally disables all the interrupts using macros local_irq_disable
or local_irq_save. Holding a spinlock using functions spin_lock_
irqsave or spin_lock_irq before entering the critical section also
disables all the interrupts. All this increases the interrupt latency of the
system.

� Registering a fast interrupt handler by improperly written device drivers: A
device driver can register its interrupt handler with the kernel either as a
fast interrupt or a slow interrupt. All the interrupts are disabled whenever
a fast interrupt handler is executing and interrupts are enabled for slow
interrupt handlers. Interrupt latency is increased if a low-priority device
registers its interrupt handler as a fast interrupt and a high-priority device
registers its interrupt as a slow interrupt.

As a kernel programmer or a driver writer you need to ensure that your
module or driver does not contribute to the interrupt latency. Interrupt latency
could be measured using a tool intlat written by Andrew Morton. It was
last modified during the 2.3 and 2.4 kernel series, and was also x86 architecture
specific. You may need to port it for your architecture. It can be downloaded
from http://www.zipworld.com. You can also write a custom driver for mea-
suring interrupt latency For example, in ARM, this could be achieved by
causing an interrupt to fire from the timer at a known point in time and then
comparing that to the actual time when your interrupt handler is executed.

7.2.2 ISR Duration

ISR duration is the time taken by an interrupt handler to execute and it is
under the control of the ISR writer. However nondeterminism could arise if
an ISR has a softirq component also. What exactly is a softirq? We all know
that in order to have less interrupt latency, an interrupt handler needs to do
minimal work (such as copying some IO buffers to the system RAM) and the
rest of the work (such as processing of the IO data, waking up tasks) should
be done outside the interrupt handler. So an interrupt handler has been split
into two portions: the top half that does the minimal job and the softirq that
does the rest of the processing. The latency involved in softirq processing is
unbounded. The following latencies are involved during softirq processing.

� A softirq runs with interrupts enabled and can be interrupted by a hard
IRQ (except at some critical sections).

� A softirq can also be executed in the context of a kernel daemon ksoft-
irqd, which is a non–real-time thread.

Thus you should make sure that the ISR of your real-time device does not
have any softirq component and all the work should be performed in the top
half only.

Real-Time Linux 205

7.2.3 Scheduler Latency

Among all the latencies discussed, scheduler latency is the major contributor
to the increased kernel response time. Some of the reasons for large scheduler
latencies in the earlier Linux 2.4 kernel are as follows.

� Nonpreemptive nature of the kernel: Scheduling decisions are made by the
kernel in the places such as return from interrupt or return from system
call, and so on. However, if the current process is running in kernel mode
(i.e., executing a system call), the decision is postponed until the process
comes back to user mode. This means that a high-priority process cannot
preempt a low-priority process if the latter is executing a system call. Thus,
because of the nonpreemptive nature of kernel mode execution, scheduling
latencies may vary from tens to hundreds of milliseconds depending on
the duration of a system call.

� Interrupt disable times: A scheduling decision is made as early as the return
from the next timer interrupt. If the global interrupts are disabled for a
long time, the timer interrupt is delayed thus increasing scheduling latency.

Much effort is being made to reduce the scheduling latency in Linux. Two
major efforts are kernel preemption and low-latency patches.

Kernel Preemption

As support for SMP in Linux grew, its locking infrastructure also began to
improve. More and more critical sections were identified and they were
protected using spinlocks. It was observed that it’s safe to preempt a process
executing in the kernel mode if it is not in any critical section protected using
spinlock. This property was exploited by embedded Linux vendor MontaVista
and they introduced the kernel preemption patch. The patch was incorporated
in the mainstream kernel during the 2.5 kernel development and is now
maintained by Robert Love.

Kernel preemption support introduced a new member preempt_count in
the process task structure. If the preemp_count is zero, the kernel can be safely
preempted. Kernel preemption is disabled for nonzero preempt_count.
preemp_count is operated on by the following main macros.

� preempt_disable: Disable preemption by incrementing preemp_
count.

� preempt_enable: Decrement preemp_count. Preemption is only
enabled if the count reaches zero.

All the spinlock routines were modified to call preempt_disable and
preempt_enable macros appropriately. Spinlock routines call preempt_
disable on entry and unlock routines call preempt_enable on exit. The
architecture-specific files that contain assembly code for return from interrupts
and the system call were also modified to check preempt_count before
making scheduling decisions. If the count is zero then the scheduler is called
irrespective of whether the process is in kernel or user mode.

206 Embedded Linux System Design and Development

Please see files include/linux/preempt.h, kernel/sched.c, and
arch/<your-arch>/entry.S in kernel sources for more details. Figure 7.1
shows how scheduler latency decreases when the kernel is made preemptible.

Low-Latency Patches

Low-latency patches by Ingo Molnar and Andrew Morton focus on reducing
the scheduling latency by adding explicit schedule points in the blocks of
kernel code that execute for longer duration. Such areas in the code (such
as iterating a lengthy list of some data structure) were identified. That piece
of code was rewritten to safely introduce a schedule point. Sometimes this
involved dropping a spinlock, doing a rescheduling, and then reacquiring the
spinlock. This is called lock breaking.

Using the low-latency patches, the maximum scheduling latency decreases
to the maximum time between two rescheduling points. Because these patches
have been tuned for quite a long time, they perform surprisingly well.
Scheduling latency can be measured using the tool Schedstat. You can
download the patch from http://eaglet.rain.com/.

The measurements show that using both kernel preemption and low-latency
patches gives the best result.

Figure 7.1 Scheduler latency in preemptible and nonpreemptible kernels.

User Mode Kernel Mode User Mode

T0 T1 T2

TASK 1

High Priority Task TASK 2

TASK 2 Runnable at T1 TASK 2 Scheduled at T2

Scheduler Latency = T2 – T1

User Mode

Kernel Mode

User Mode

T0 T1 T2

TASK 1

High Priority Task TASK 2

TASK 2 Runnable at T1
TASK 2 Scheduled at T1'

Scheduler Latency = T1' – T1

T0'

T1'

Critical

Region

Non-preemptive Kernel

Preemptive Kernel

TASK 1 - Low Priority Task
TASK 2 - High Priority Task

Real-Time Linux 207

7.2.4 Scheduler Duration

As discussed earlier the scheduler duration is the time taken by the scheduler
to select the next task for execution and context switch to it. The Linux
scheduler like the rest of the system was written originally for the desktop
and it remained almost unchanged except for the addition of the POSIX real-
time capabilities. The major drawback of the scheduler was its nondeterministic
behavior: The scheduler duration increased linearly with the number of tasks
in the system, the reason being that all the tasks including real-time tasks are
maintained in a single run queue and every time the scheduler was called it
went through the entire run queue to find the highest-priority task. This loop
is called the goodness loop. Also when the time quantum of all runnable
processes expires, it recalculates their new timeslices all over again. This loop
is famous as the recalculation loop. The greater the number of tasks (irre-
spective of whether they are real- or non–real-time), the greater was the time
spent by the scheduler in both these loops.

Making the Scheduler Real-Time: The O(1) Scheduler

In the 2.4.20 kernel the O(1) scheduler was introduced, which brought in
determinism. The O(1) scheduler by Ingo Molnar is a beautiful piece of code
that tries to fix scheduling problems on big servers trying to do load balancing
all the way to embedded systems that require deterministic scheduling time.
As the name suggests, the scheduler does an O(1) calculation instead of the
previous O(n) (where n stands for the number of processes in the run queue)
for recalculating the timeslices of the processes and rescheduling them. It does
this by implementing two arrays: the active array and the expired array. Both
arrays are priority ordered and they maintain a separate run queue for each
priority. The array indices are maintained in a bitmap, so searching for the
highest-priority task becomes an O(1) search operation. When a task exhausts
its time quantum, it is moved to the expired array and its new time quantum
is refilled. When the active array becomes empty the scheduler switches both
arrays so that the expired array becomes the new active array and starts
scheduling from the new array. The active and the expired queue are accessed
using pointers, so switching between the two arrays involves just switching
pointers.

Thus having the ordered arrays solves the goodness loop problem and
switching between pointers solves the recalculation loop problem. Along with
these the O(1) scheduler offers giving higher priority to interactive tasks.
Although this is more useful for desktop environments, real-time systems
running a mix of real-time and ordinary processes too can benefit from this
feature. Figure 7.2 shows the O(1) scheduler in a simplified manner.

Context Switch Time

Linux context switching time measurements have been a favorite pastime for
Linux real-time enthusiasts. How does Linux scale against a commercial RTOS

208 Embedded Linux System Design and Development

context switching time? Because the context switch is done by the scheduler
it affects the scheduler duration and hence the kernel response time. The
schedulable items on Linux are:

� Kernel threads: They spend their lifetimes in the kernel mode only. They
do not have memory mappings in the user space.

� User processes and user threads: The user-space threads share a common
text, data, and heap space. They have separate stacks. Other resources
such as open files and signal handlers are also shared across the threads.

While making scheduling decisions, the scheduler does not distinguish
among any of these entities. The context switch time varies when the scheduler
tries to switch processes against threads. The context switching basically
involves the following.

� Switching to new register set and kernel stack: The context switch time is
common across threads and processes.

� Switching from one virtual memory area to other: This is required for
context switching across processes. It either explicitly or implicitly causes
the TLB (or page tables) to be reloaded with new values, which is an
expensive operation.

Figure 7.2 Simplified O(1) scheduler.

0

1

2

n

n–1

n–2

Task A Task BTask C

Task DH
ig

h
er

 P
ri

o
ri

ty

Expired Array Active Array

Run Queue

Array pointers are swapped when

Active array becomes empty

High priority task

at the begining of

list is selected

for execution

Task after exhausting

its timeslice is moved

to expired array

Real-Time Linux 209

The context switching numbers vary across architectures. Measurement of
the context switching is done using the lmbench program. Please visit www.bit-
mover.com/lmbench/ for more information on LMBench™.

7.2.5 User-Space Real-Time

Until now we have discussed various enhancements made in the kernel to
improve its responsiveness. The O(1) scheduler along with kernel preemption
and low-latency patches make Linux a soft real-time operating system. Now
what about user-space applications? Can’t something be done to make sure
that they too have some guidelines to behave in a deterministic manner?

To support real-time applications, IEEE came out with a standard POSIX.1b.
The IEEE 1003.1b (or POSIX.1b) standard defines interfaces to support port-
ability of applications with real-time requirements. Apart from 1003.1b, POSIX
also defines 1003.1d, .1j, .21, and .2h standards for real-time systems but
extensions defined in .1b are commonly implemented. The various real-time
extensions defined in POSIX.1b are:

� Fixed-priority scheduling with real-time scheduling classes
� Memory locking
� POSIX message queues
� POSIX shared memory
� Real-time signals
� POSIX semaphores
� POSIX clocks and timers
� Asynchronous I/O (AIO)

The real-time scheduling classes, memory locking, shared memory, and
real-time signals have been supported in Linux since the very early days.
POSIX message queues, clocks, and timers are supported in the 2.6 kernel.
Asynchronous I/O has also been supported since the early days but that imple-
mentation was completely done in the user-space C library. Linux 2.6 has a
kernel support for AIO. Note that along with the kernel, GNU C library and
glibc also underwent changes to support these real-time extensions. Both the
kernel and glibc work together to provide better POSIX.1b support in Linux.

In this section we discussed soft real-time support in Linux. We also briefly
discussed various POSIX.1b real-time extensions. As an application developer
it’s your responsibility to write applications in a manner such that the soft
real-time benefits provided by Linux are not nullified. The end user needs to
understand each of these techniques so that the applications can be written
to support the real-time framework provided in Linux. The rest of this chapter
explains each of these techniques with suitable examples.

7.3 Real-Time Programming in Linux
In this section we discuss various POSIX 1003.1b real-time extensions sup-
ported in Linux and their effective usage. We discuss in detail scheduling,

210 Embedded Linux System Design and Development

clocks and timers, real-time message queues, real-time signals, memory lock-
ing, Async I/O, POSIX shared memory, and POSIX semaphores. Most of the
real-time extensions are implemented and distributed in the glibc package but
are located in a separate library librt. Therefore, to compile a program that
makes use of POSIX.1b real-time features in Linux, the program must also
link with librt along with glibc. This section covers the various POSIX.1b
real-time extensions supported in the Linux 2.6 kernel.

7.3.1 Process Scheduling

In the previous section we discussed the details of the Linux scheduler. Now
we understand how the real-time tasks are managed by the scheduler. In this
section we discuss the scheduler for the 2.6 kernel as reference. There are
three basic parameters to define a real-time task on Linux:

� Scheduling class
� Process priority
� Timeslice

These are further explained below.

Scheduling Class

The Linux scheduler offers three scheduling classes, two for real-time appli-
cations and one for non–real-time applications. The three classes are:

� SCHED_FIFO: First-in first-out real-time scheduling policy. The scheduling
algorithm does not use any timeslicing. A SCHED_FIFO process runs to
completion unless it is blocked by an I/O request, preempted by a higher-
priority process, or it voluntarily relinquishes the CPU. The following points
should be noted.
– A SCHED_FIFO process that has been preempted by another process of

higher priority stays at the head of the list for its priority and will resume
execution as soon as all processes of higher priority are blocked again.

– When a SCHED_FIFO process is ready to run (e.g., after waking from
a blocking operation), it will be inserted at the end of the list of its
priority.

– A call to sched_setscheduler or sched_setparam will put the
SCHED_FIFO process at the start of the list. As a consequence, it may
preempt the currently running process if its priority is the same as that
of the running process.

� SCHED_RR: Round-robin real-time scheduling policy. It’s similar to
SCHED_FIFO with the only difference being that the SCHED_RR process
is allowed to run for a maximum time quantum. If a SCHED_RR process
exhausts its time quantum, it is put at the end of the list of its priority. A
SCHED_RR process that has been preempted by a higher-priority process
will complete the unexpired portion of its time quantum after resuming
execution.

Real-Time Linux 211

� SCHED_OTHER: Standard Linux time-sharing scheduler for non–real-time
processes.

Functions sched_setscheduler and sched_getscheduler are used to
set and get the scheduling policy of a process, respectively.

Priority

Priority ranges for various scheduling policies are listed in Table 7.1. Functions
sched_get_priority_max and sched_get_priority_min return the
maximum and minimum priority allowed for a scheduling policy, respectively.
The higher the number, the higher is the priority. Thus the SCHED_FIFO or
SCHED_RR process always has higher priority than SCHED_OTHER processes.
For SCHED_FIFO and SCHED_RR processes, functions sched_setparam and
sched_getparam are used to set and get the priority, respectively. The nice
system call (or command) is used to change the priority of SCHED_OTHER
processes.

The kernel allows the nice value to be set for SCHED_RR or SCHED_FIFO
process but it won’t have any effect on scheduling until the task is made
SCHED_OTHER.

The kernel view of process priorities is different from the process view. Figure
7.3 shows the mapping between user-space and kernel-space priorities for
real-time tasks in 2.6.3 kernel.

Table 7.1 User-Space Priority Range

Scheduling Class Priority Range

SCHED_OTHER 0

SCHED_FIFO 1–99

SCHED_RR 1–99

Figure 7.3 Real-time task priority mapping.

Process View

Kernel View

1 2 99

019798

Higher Priority

212 Embedded Linux System Design and Development

For the kernel, a low value implies high priority. Real-time priorities in the
kernel range from 0 to 98. The kernel maps SCHED_FIFO and SCHED_RR user
priorities to kernel priorities using the following macros.

#define MAX_USER_RT_PRIO 100
kernel priority = MAX_USER_RT_PRIO -1 – (user priority);

Thus user priority 1 maps to kernel priority 98, priority 2 to 97, and so on.

Timeslice

As discussed earlier, timeslice is valid only for SCHED_RR processes.
SCHED_FIFO processes can be thought of as having an infinite timeslice. So
this discussion applies only to SCHED_RR processes.

Linux sets a minimum timeslice for a process to 10 msec, default timeslice
to 100 msec, and maximum timeslice to 200 msec. Timeslices get refilled after
they expire. In 2.6.3, the timeslice of a process is calculated as

#define MIN_TIMESLICE (10)
#define MAX_TIMESLICE (200)
#define MAX_PRIO (139) // MAX internal kernel priority
#define MAX_USER_PRIO 39 // MAX nice when converted to
 positive scale

/* ‘p’ is task structure of a process */
#define BASE_TIMESLICE(p) \
 (MIN_TIMESLICE + ((MAX_TIMESLICE - MIN_TIMESLICE) *
 (MAX_PRIO-1 - (p)->static_prio) / (MAX_USER_PRIO-1)))

static_prio holds the nice value of a process. The kernel converts the
–20 to +19 nice range to an internal kernel nice range of 100 to 139. The
nice of the process is converted to this scale and stored in static_prio.
Thus –20 nice corresponds to static_prio 100 and +19 nice is static_
prio 139. Finally the task_timeslice function returns the timeslice of a
process.

static inline unsigned int task_timeslice(task_t *p) {
 return BASE_TIMESLICE(p);
}

Please note that the static_prio is the only variable in calculating the
timeslice. Thus we can draw some important conclusions.

� All SCHED_RR processes run at the default timeslice of 100 msec as they
normally have nice 0.

� A nice –20 SCHED_RR process will get a timeslice of 200 msec and a nice
+19 SCHED_RR process will get a timeslice of 10 msec. Thus the nice
value can be used to control timeslice allocation for SCHED_RR processes.

� The lower the nice value (i.e., higher priority), the higher the timeslice is.

Real-Time Linux 213

Scheduling Functions

Scheduling functions provided for supporting real-time applications under
Linux are listed in Table 7.2.

Functions sched_setscheduler and sched_setparam should be
called with superuser privileges.

Listing 7.1 illustrates the usage of these functions. The example creates a
SCHED_FIFO process with priority, which is the average of minimum and
maximum priority for the SCHED_FIFO scheduling class. It also dynamically
changes the priority of the SCHED_FIFO process. Listing 7.2 shows how nice
can be used to control the SCHED_RR timeslice allocation.

The effect of nice on the SCHED_RR timeslice allocation is not man-
dated by POSIX. It’s the scheduler implementation in Linux that makes
this happen. You should not use this feature in portable programs. This
behavior of nice on SCHED_TR is derived from 2.6.3 kernel and may
change in the future.

7.3.2 Memory Locking
One of the latencies that real-time applications needs to deal with is demand
paging. Real-time application requires deterministic response timing and pag-
ing is one major cause of unexpected program execution delays. Latency due
to paging could be avoided by using memory locking. Functions are provided
either to lock complete program address space or selective memory area.

Memory Locking Functions
Memory locking functions are listed in Table 7.3. mlock disables paging for
the specified range of memory and mlockall disables paging for all the pages
that map into process address space. This includes the pages of code, data,

Table 7.2 POSIX.1b Scheduling Functions

Method Description

sched_getscheduler Get the scheduling class of a process.

sched_setscheduler Set the scheduling class of a process.

sched_getparam Get the priority of a process.

sched_setparam Set the priority of a process.

sched_get_priority_max Get the max allowed priority for a scheduling class.

sched_get_priority_min Get the min allowed priority for a scheduling class.

sched_rr_get_interval Get the current timeslice of the SCHED_RR process.

sched_yield Yield execution to another process.

214 Embedded Linux System Design and Development

Listing 7.1 Process Scheduling Operations

/* sched.c */

#include <sched.h>
int main(){
 struct sched_param param, new_param;

 /*
 * A process starts with the default policy SCHED_OTHER unless
 * spawned by a SCHED_RR or SCHED_FIFO process.
 */

 printf("start policy = %d\n", sched_getscheduler(0));
 /*
 * output -> start policy = 0 .
 * (For SCHED_FIFO or SCHED_RR policies, sched_getscheduler
 * returns 1 and 2 respectively
 */

 /*
 * Create a SCHED_FIFO process running with average priority
 */
 param.sched_priority = (sched_get_priority_min(SCHED_FIFO) +
 sched_get_priority_max(SCHED_FIFO))/2;

 printf("max priority = %d, min priority = %d,
 my priority = %d\n",sched_get_priority_max(SCHED_FIFO),
 sched_get_priority_min(SCHED_FIFO),
 param.sched_priority);
 /*
 * output -> max priority = 99, min priority = 1,
 * my priority = 50
 */

 /* Make the process SCHED_FIFO */
 if (sched_setscheduler(0, SCHED_FIFO, ¶m) != 0){
 perror("sched_setscheduler failed\n");
 return;
 }

 /*
 * perform time critical operation
 */

 /*
 * Give some other RT thread / process a chance to run.
 * Note that call to sched_yield will put the current process
 * at the end of its priority queue. If there are no other
 * process in the queue then the call will have no effect
 */
 sched_yield();

 /* You can also change the priority at run time */
 param.sched_priority = sched_get_priority_max(SCHED_FIFO);
 if (sched_setparam(0, ¶m) != 0){
 perror("sched_setparam failed\n");
 return;
 }

Real-Time Linux 215

Listing 7.1 Process Scheduling Operations (continued)

sched_getparam(0, &new_param);
 printf("I am running at priority %d\n",
 new_param.sched_priority);
 /* output -> I am running at priority 99 */

 return ;
}

Listing 7.2 Controlling Timeslice of SCHED_RR Process

/* sched_rr.c */

#include <sched.h>
int main(){
 struct sched_param param;
 struct timespec ts;
 param.sched_priority = sched_get_priority_max(SCHED_RR);

 /* Need maximum timeslice */
 nice(-20);
 sched_setscheduler(0, SCHED_RR, ¶m);
 sched_rr_get_interval(0, &ts);
 printf ("max timeslice = %d msec\n", ts.tv_nsec/1000000);
 /* output -> max timeslice = 199 msec */

 /* Need minimum timeslice. Also note the argument to nice
 * is 'increment' and not absolute value. Thus we are
 * doing nice(39) to make it running at nice priority +19
 */
 nice(39);
 sched_setscheduler(0, SCHED_RR, ¶m);
 sched_rr_get_interval(0, &ts);
 printf ("min timeslice = %d", ts.tv_nsec/1000000);
 /* output -> min timeslice = 9 msec */

 return ;
}

Table 7.3 POSIX.1b Memory Locking Functions

Method Description

mlock Lock specified region of process address space

mlockall Lock complete process address space

munlock Unlock region locked using mlock

munlockall Unlock complete process address

216 Embedded Linux System Design and Development

Listing 7.3 Memory Locking Operations

/* mlock.c */

#include <sys/mman.h>
#include <unistd.h>

#define RT_BUFSIZE 1024
int main(){

 /* rt_buffer should be locked in memory */
 char *rt_buffer = (char *)malloc(RT_BUFSIZE);
 unsigned long pagesize, offset;

 /*
 * In Linux, you need not page align the address before
 * mlocking, kernel does that for you. But POSIX mandates page
 * alignment of memory address before calling mlock to
 * increase portability. So page align rt_buffer.
 */
 pagesize = sysconf(_SC_PAGESIZE);
 offset = (unsigned long) rt_buffer % pagesize;
 /* Lock rt_buffer in memory */
 if (mlock(rt_buffer - offset, RT_BUFSIZE + offset) != 0){
 perror("cannot mlock");
 return 0;
 }

 /*
 * After mlock is successful the page that contains rt_buffer
 * is in memory and locked. It will never get paged out. So
 * rt_buffer can safely be used without worrying about
 * latencies due to paging.
 */

 /* After use, unlock rt_buffer */
 if (munlock(rt_buffer - offset, RT_BUFSIZE + offset) != 0){
 perror("cannot mulock");
 return 0;
 }

 /*
 * Depending on the application, you can choose to lock
 * complete process address space in memory.
 */

 /* Lock current process memory as well as all the future
 * memory allocations.
 * MCL_CURRENT - Lock all the pages that are currently
 * mapped in process address space
 * MCL_FUTURE - Lock all the future mappings as well.
 */
 if (mlockall(MCL_CURRENT | MCL_FUTURE) != 0){
 perror("cannot mlockall");
 return 0;
 }

Real-Time Linux 217

stack, shared libraries, shared memory, and memory-mapped files. Listing 7.3
illustrates the usage of these functions. These functions should be called with
superuser privilege.

An application with a real-time requirement is generally multithreaded with
some real-time threads and some non–real-time threads. For such applications
mlockall should not be used as this also locks the memory of non–real-
time threads. In the next two sections we discuss two linker approaches to
perform selective memory locking in such applications.

Effective Locking Using Linker Script

The idea is to place object files containing real-time code and data in a separate
linker section using linker script. mlocking that section at program start-up
would do the trick of locking only the real-time code and data. We take a
sample application to illustrate this. In Listing 7.4 we assume that hello_rt_
world is a real-time function that operates on rt_data with rt_bss as unini-
tialized data.

The following steps should be performed for achieving selective locking.

1. Divide the application at file level into real-time and non–real-time files.
Do not include any non–real-time function in real-time files and vice versa.
In this example we have
a. hello_world.c: Contains non–real-time function
b. hello_rt_world.c: Contains real-time function
c. hello_rt_data.c: Contains real-time data
d. hello_rt_bss.c: Contains real-time bss
e. hello_main.c: Final application

2. Generate object code but do not link.

gcc -c hello_world.c hello_rt_world.c hello_rt_data.c \
 hello_rt_bss.c hello_main.c

Listing 7.3 Memory Locking Operations (continued)

 /*
 * if mlockall above is successful, all new memory allocations
 * will be locked. Thus page containing rt_buffer will get
 * locked in memory
 */
 rt_buffer = (char *)realloc(rt_buffer , 2*RT_BUFSIZE);

 /*
 * Finally unlock any memory that was locked either by mlock
 * or by mlockall by calling munlockall function
 */
 if (munlockall() != 0){
 perror("cannot munlock");
 return 0;
 }
 return 0;
}

218 Embedded Linux System Design and Development

Listing 7.4 Effective Locking—1

/* hello_world.c */

#include <stdio.h>
/* Non-real time function */
void hello_world(void) {
 printf("hello world");
 return;
}

/* hello_rt_world.c */

#include <stdio.h>
/* This is a real-time function */
void hello_rt_world(void){
 extern char rt_data[],rt_bss[];
 /* operating on rt_data */
 printf("%s", rt_data);
 /* operating on rt_bss */
 memset(rt_bss, 0xff, sizeof(rt_bss));
 return ;
}

/* hello_rt_data.c */

/* Real-time data */
char rt_data[] = "Hello Real-time World";

/* hello_rt_bss.c */

/* real-time bss */
char rt_bss[100];

/* hello_main.c */

#include <stdio.h>
extern void hello_world(void);
extern void hello_rt_world(void);

/*
 * We are defining these symbols in linker script. It shall get
 * clear in coming steps
 */
extern unsigned long __start_rt_text, __end_rt_text;
extern unsigned long __start_rt_data, __end_rt_data;
extern unsigned long __start_rt_bss, __end_rt_bss;

/*
 * This function locks all the real-time function and data in
 * memory
 */

Real-Time Linux 219

3. Get the default linker script and make a copy.

ld –verbose > default
cp default rt_script

4. Edit rt_script and remove linker details. (Remove everything before
the OUTPUT_FORMAT command and also ==== .. at the end of the file.)

5. Locate .text, .data, and .bss sections in rt_script and add entries
rt_text, rt_data, and rt_bss before them, respectively, as shown
in Listing 7.5. Thus all the functions defined in hello_rt_world.c go
in the rt_text section. Data defined in hello_rt_data.c goes in the
rt_data section and all uninitialized data in hello_rt_bss.c goes in
the rt_bss section. Variables __start_rt_text, __start_rt_
data, and __start_rt_bss mark the beginning of sections rt_text,
rt_data, and rt_bss, respectively. Similarly __end_rt_text, __
end_rt_data, and __end_rt_bss mark the end address of the respec-
tive sections.

6. Finally link the application.

gcc -o hello hello_main.o hello_rt_bss.o \
 hello_rt_data.o hello_rt_world.o hello_world.o \
 -T rt_script

You can verify that all the real-time functions and data are in proper sections
using the objdump command as below.

objdump -t hello

08049720 g .rt_bss 00000000 __start_rt_bss
08049760 g O .rt_bss 00000064 rt_bss
080497c4 g .rt_bss 00000000 __end_rt_bss.....

Listing 7.4 Effective Locking—1 (continued)

void rt_lockall(void){
 /* lock real-time text segment */
 mlock(&__start_rt_text, &__end_rt_text - &__start_rt_text);
 /* lock real-time data */
 mlock(&__start_rt_data, &__end_rt_data - &__start_rt_data);
 /* lock real-time bss */
 mlock(&__start_rt_bss, &__end_rt_bss - &__start_rt_bss);
}

int main(){
 /* First step is to do memory locking */
 rt_lockall();
 hello_world();
 /* This is our rt function */
 hello_rt_world();
 return 0;
}

220 Embedded Linux System Design and Development

080482f4 g .rt_text 00000000 __start_rt_text
080482f4 g F .rt_text 0000001d hello_rt_world
0804834a g .rt_text 00000000 __end_rt_text

080496c0 g .rt_data 00000000 __start_rt_data
080496c0 g O .rt_data 00000011 rt_data
08049707 g .rt_data 00000000 __end_rt_data

Effective Locking Using GCC Section Attribute

If it is difficult to put real-time and non–real-time code in separate files, this
approach could be used. In this approach we use the GCC section attribute
to place our real-time code and data in appropriate sections. Finally locking
those sections alone achieves our goal. This approach is very flexible and
easy to use. Listing 7.6 shows Listing 7.4 rewritten to fall in this category.

You can verify that all the real-time functions and data are in proper sections
using the objdump command as below.

Listing 7.5 Modified Linker Script

.plt : { *(.plt) }
.rt_text :
{
 PROVIDE (__start_rt_text = .);
 hello_rt_world.o
 PROVIDE (__end_rt_text = .);
 } =0x90909090
.text :

.got.plt : { . = DATA_SEGMENT_RELRO_END (. + 12); *(.got.plt) }
.rt_data :
{
 PROVIDE (__start_rt_data = .);
 hello_rt_data.o
 PROVIDE (__end_rt_data = .);
}
.data :

__bss_start = .;
.rt_bss :
{
 PROVIDE (__start_rt_bss = .);
 hello_rt_bss.o
 . = ALIGN(32 / 8);
 PROVIDE (__end_rt_bss = .);
}
.bss :

Real-Time Linux 221

Listing 7.6 Effective Locking—2

/* hello.c */

#include <stdio.h>

/*
 * Define macros for using GCC section attribute. We define three
 * sections, real_text, read_data & real_bss to hold our realtime
 * code, data and bss
 */
#define __rt_text __attribute__ ((__section__ ("real_text")))
#define __rt_data __attribute__ ((__section__ ("real_data")))
#define __rt_bss __attribute__ ((__section__ ("real_bss")))

/*
 * Linker is very kind. It generally defines symbols holding
 * start and end address of sections. Following symbols are
 * defined by linker
 */
extern unsigned long __start_real_text, __stop_real_text;
extern unsigned long __start_real_data, __stop_real_data;
extern unsigned long __start_real_bss, __stop_real_bss;

/* Initialized data for real_bss section */
char rt_bss[100] __rt_bss;

/* Uninitialized data for real_data section */
char rt_data[] __rt_data = "Hello Real-time World";

/* Function that goes in real_text section */
void __rt_text hello_rt_world(void){
 printf("%s", rt_data);
 memset(rt_bss, 0xff, sizeof(rt_bss));
 return ;
}

/* Finally lock our ‘real-time’ sections in memory */
void rt_lockall(void){
 mlock(&__start_real_text,
 &__stop_real_text – &__start_real_text);
 mlock(&__start_real_data,
 &__stop_real_data - &__start_real_data);
 mlock(&__start_real_bss,
 &__stop_real_bss - &__start_real_bss);
}

/* Non real-time function */
void hello_world(void) {
 printf("hello world");
 return;
}

int main(){
 rt_lockall();
 hello_world();
 hello_rt_world();
 return 0;
}

222 Embedded Linux System Design and Development

gcc -o hello hello.c
objdump -t hello

08049724 g *ABS* 00000000 __stop_real_bss
08048560 g *ABS* 00000000 __stop_real_text
080496a0 g *ABS* 00000000 __start_real_data
080496b1 g *ABS* 00000000 __stop_real_data
080496c0 g *ABS* 00000000 __start_real_bss
0804852c g *ABS* 00000000 __start_real_text
080496c0 g O real_bss 00000064 rt_bss
080496a0 g O real_data 00000011 rt_data
0804852c g F real_text 00000034 hello_rt_world

Note the linker-defined symbols __start_real_text, __stop_real_
text, and so on.

Points to Remember

� Single call to munlock or munlockall will unlock the region of memory
even if it’s being locked multiple times by a process.

� Pages mapped to several locations or by several processes stay locked into
RAM as long as they are locked by at least one process or at one location.

� Child processes do not inherit page locks across a fork.
� Pages locked by mlock or mlockall are guaranteed to stay in RAM until

the pages are unlocked by munlock or munlockall, the pages are
unmapped via munmap, or until the process terminates or starts another
program with exec.

� It is better to do memory locking at program initialization. All the dynamic
memory allocations, shared memory creation, and file mapping should be
done at initialization followed by mlocking them.

� In case you want to make sure that stack allocations also remain deter-
ministic, then you also need to lock some pages of stack. To avoid paging
for the stack segment, you can write a small function lock_stack and
call it at init time.

void lock_stack(void){
 char dummy[MAX_APPROX_STACK_SIZE];
 /* This is done to page in the stack pages */
 memset(dummy, 0, MAX_APPROX_STACK_SIZE);
 mlock(dummy, MAX_APPROX_STACK_SIZE);
 return;
}

MAX_APPROX_STACK_SIZE is an estimate of stack usage of your real-
time thread. Once this is done, the kernel ensures that this space for the
stack always remains in memory.

� Be generous to other processes running in your system. Aggressive locking
may take resources from other processes.

Real-Time Linux 223

7.3.3 POSIX Shared Memory
Real-time applications often require fast, high-bandwidth interprocess com-
munication mechanisms. In this section we discuss POSIX shared memory,
which is the fastest and lightest weight IPC mechanism. Shared memory is
the fastest IPC mechanism for two reasons:

� There is no system call overhead while reading or writing data.
� Data is directly copied to the shared memory region. No kernel buffers

or other intermediate buffers are involved.

Functions used to create and remove shared memory are listed in Table 7.4.
shm_open creates a new POSIX shared memory object or opens an existing

one. The function returns a handle that can be used by other functions such
as ftruncate and mmap. shm_open creates a shared memory segment of
size 0. ftruncate sets the desired shared memory segment size and mmap
then maps the segment in process address space. The shared memory segment
is deleted by shm_unlink. Listing 7.7 illustrates the usage.

Linux Implementation

The POSIX shared memory support in Linux makes use of the tmpfs file
system mounted under /dev/shm.

cat /etc/fstab
none /dev/shm tmpfs defaults 0 0

The shared memory object created using shm_open is represented as a
file in tmpfs. In Listing 7.7 remove the call to shm_unlink and run the
program again. You should see file my_shm in /dev/shm

ls -l /dev/shm
-rw-r--r-- 1 root root 1024 Aug 19 18:57 my_shm

This shows a file my_shm with size 1024 bytes, which is our shared memory
size. Thus we can use all the file operations on shared memory. For example,
we can get the contents of shared memory by cat’ing the file. We can also
use the rm command directly from the shell to remove the shared memory.

Points to Remember

� Remember mlocking the shared memory region.
� Use POSIX semaphores to synchronize access to the shared memory region.

Table 7.4 POSIX.1b Shared Memory Functions

Method Description

shm_open Open a shared memory object

shm_unlink Remove the shared memory object

224 Embedded Linux System Design and Development

Listing 7.7 POSIX Shared Memory Operations

/* shm.c */

#include <sys/types.h>
#include <sys/mman.h>
#include <fcntl.h>

/* Size of our shared memory segment */
#define SHM_SIZE 1024

int main(){
 int shm_fd;
 void *vaddr;

 /* Get shared memory handle */
 if ((shm_fd = shm_open("my_shm", O_CREAT | O_RDWR, 0666)) ==
 -1){
 perror("cannot open");
 return -1;
 }

 /* set the shared memory size to SHM_SIZE */
 if (ftruncate(shm_fd, SHM_SIZE) != 0){
 perror("cannot set size");
 return -1;
 }

 /*
 * Map shared memory in address space. MAP_SHARED flag tells
 * that this is a shared mapping
 */
 if ((vaddr = mmap(0, SHM_SIZE, PROT_WRITE, MAP_SHARED,
 shm_fd, 0)) == MAP_FAILED){
 perror("cannot mmap");
 return -1;
 }

 /* lock the shared memory. Do not forget this step */
 if (mlock(vaddr, SHM_SIZE) != 0){
 perror("cannot mlock");
 return -1;
 }

 /*
 * Shared memory is ready for use
 */

 /*
 * Finally unmap shared memory segment from address space. This
 * will unlock the segment also
 */
 munmap(vaddr, SHM_SIZE);
 close(shm_fd);
 /* remove shared memory segment */
 shm_unlink("my_shm");
 return 0;
}

Real-Time Linux 225

� Size of shared memory region can be queried using the fstat function.
� If multiple processes open the same shared memory region, the region is

deleted only after the final call to shm_unlink.
� Don’t call shm_unlink if you want to keep the shared memory region

even after the process exits.

7.3.4 POSIX Message Queues

The POSIX 1003.1b message queue provides deterministic and efficient means
of IPC. It offers the following advantages for real-time applications.

� Message buffers in the message queue are preallocated ensuring availability
of resources when they are needed.

� Messages can be assigned priority. A high-priority message is always
received first, irrespective of the number of messages in the queue.

� It offers asynchronous notification when the message arrives if receiver
doesn’t want to wait to receive a message.

� Message send and receive functions by default are blocking calls. Appli-
cations can specify a wait timeout while sending or receiving messages to
avoid nondeterministic blocking.

The interfaces are listed in Table 7.5. Listing 7.8 illustrates the usage of
some basic message queue functions. In this example two processes are
created: one sending a message on the message queue and the other receiving
the message from the queue.

Compiling and running the above two programs gives the following output.

Table 7.5 POSIX.1b Message Queue Functions

Method Description

mq_open Open/create a message queue.

mq_close Close the message queue.

mq_getattr Get the message queue attributes.

mq_setattr Set the message queue attributes.

mq_send Send a message to queue.

mq_receive Receive a message from queue.

mq_timedsend Send a message to queue. Block until timeout.

mq_timedreceive Receive a message from queue. Block until timeout.

mq_notify Register for notification whenever a message is received
on an empty message queue.

mq_unlink Delete the message queue.

226 Embedded Linux System Design and Development

Listing 7.8 POSIX Message Queue Operations

/* mqueue-1.c */

/* This program sends a message to the queue */
#include <stdio.h>
#include <string.h>
#include <mqueue.h>

#define QUEUE_NAME "/my_queue"
#define PRIORITY 1
#define SIZE 256

int main(){

 mqd_t ds;
 char text[] = "Hello Posix World";
 struct mq_attr queue_attr;

 /*
 * Attributes for our queue. They can be set only during
 * creating.
 */
 queue_attr.mq_maxmsg = 32; /* max. number of messages in queue
 at the same time */
 queue_attr.mq_msgsize = SIZE; /* max. message size */

 /*
 * Create a new queue named "/my_queue" and open it for sending
 * and receiving. The queue file permissions are set rw for
 * owner and nothing for group/others. Queue limits set to
 * values provided above.
 */
 if ((ds = mq_open(QUEUE_NAME, O_CREAT | O_RDWR , 0600,
 &queue_attr)) == (mqd_t)-1){
 perror("Creating queue error");
 return -1;
 }

 /*
 * Send a message to the queue with priority 1. Higher the
 * number, higher is the priority. A high priority message is
 * inserted before a low priority message. First-in First-out
 * for equal priority messages.
 */
 if (mq_send(ds, text, strlen(text), PRIORITY) == -1){
 perror("Sending message error");
 return -1;
 }

 /* Close queue... */
 if (mq_close(ds) == -1)
 perror("Closing queue error");

 return 0;
}

Real-Time Linux 227

Listing 7.8 POSIX Message Queue Operations (continued)

/* mqueue-2.c */

/* This program receives the message from the Queue */
#include <stdio.h>
#include <mqueue.h>

#define QUEUE_NAME "/my_queue"
#define PRIORITY 1
#define SIZE 256

int main(){

 mqd_t ds;
 char new_text[SIZE];
 struct mq_attr attr, old_attr;
 int prio;

 /*
 * Open "/my_queue" for sending and receiving. No blocking when
 * receiving a message(O_NONBLOCK). The queue file permissions
 * are set rw for owner and nothing for group/others.
 */
 if ((ds = mq_open(QUEUE_NAME, O_RDWR | O_NONBLOCK, 0600,
 NULL)) == (mqd_t)-1){
 perror("Creating queue error");
 return -1;
 }

 /*
 * Change to blocking receive. (This is done to demonstrate
 * usage of mq_setattr and mq_getattr functions. To put the
 * queue in blocking mode you can also call mq_open above
 * without O_NONBLOCK). Remember that mq_setattr cannot be used
 * to changes values of message queue parameters mq_maxmsg,
 * mq_msgsize etc. It can only be used to change
 * mq_flags field of mq_attr struct. mq_flags is one of
 * O_NONBLOCK, O_RDWR etc.
 */
 attr.mq_flags = 0; /* set !O_NONBLOCK */
 if (mq_setattr(ds, &attr, NULL)){
 perror("mq_setattr");
 return -1;
 }

 /*
 * Here we will convince ourself that O_NONBLOCK is not
 * set. Infact this function also populates message queue
 * parameters in structure old_addr
 */
 if (mq_getattr(ds, &old_attr)) {
 perror("mq_getattr");
 return -1;
 }

228 Embedded Linux System Design and Development

gcc –o mqueue-1 mqueue-1.c –lrt
gcc –o mqueue-2 mqueue-2.c –lrt
./mqueue-1
./mqueue-2
O_NONBLOCK not set
Message: Hello Posix World, prio = 1

The blocking time of an application for sending or receiving messages can
be controlled by using the mq_timedsend and mq_timedreceive functions.
If the message queue is full and O_NONBLOCK is not set, the mq_timedsend
function terminates at a specified timeout (it may happen if the queue is full
and the send function blocks until it gets a free buffer). Similarly,
mq_timedreceive terminates at a specified timeout if there are no messages
in the queue. The following code fragment illustrates the usage of the
mq_timedsend and mq_timedreceive functions. Both wait for a maximum
of 10 seconds for sending or receiving a message.

/* sending message */
struct timespec ts;

Listing 7.8 POSIX Message Queue Operations (continued)

 if (!(old_attr.mq_flags & O_NONBLOCK))
 printf("O_NONBLOCK not set\n");

 /*
 * Now receive the message from queue. This is a blocking call.
 * Priority of message received is stored in prio.The function
 * receives the oldest of the highest priority message(s) from
 * the message queue. If the size of the buffer, specified by
 * the msg_len argument, is less than the mq_msgsize
 * attribute of the message queue the function shall fail and
 * return an error
 */
 if (mq_receive(ds, new_text, SIZE, &prio) == -1){
 perror("cannot receive");
 return -1;
 }

 printf("Message: %s, prio = %d\n", new_text, prio);

 /* Close queue... */
 if (mq_close(ds) == -1)
 perror("Closing queue error");

 /*
 * ...and finally unlink it. After unlink message queue is
 * removed from system.
 */
 if (mq_unlink(QUEUE_NAME) == -1)
 perror("Removing queue error");

 return 0;
}

Real-Time Linux 229

/* Specify timeout as 10 seconds from now */
ts.tv_sec = time(NULL) + 10;
ts.tv_nsec = 0;
if (mq_timedsend(ds, text, SIZE,PRIOTITY, &ts) == -1){
 if (errno == ETIMEDOUT){
 printf("Timeout when waiting for message.");
 return 0;
 }
 return -1;
}

/* receiving message */
if (mq_timedreceive(ds, new_text, SIZE, &prio, &ts) == -1){
 if (errno == ETIMEDOUT){
 printf("Timeout when waiting for message.");
 return 0;
 }
 return -1;
}

Asynchronous Notification

The mq_notify function provides an asynchronous mechanism for processes
to receive notification that messages are available in a message queue rather
than synchronously blocking in mq_receive or mq_timedreceive. This
interface is very useful for real-time applications. A process can call the
mq_notify function to register for asynchronous notification and then it can
proceed to do some other work. A notification is sent to the process when
a message arrives in the queue. After notification, the process can call
mq_receive to receive the message. The prototype of mq_notify is

int mq_notify(mqd_t mqdes,
 const struct sigevent *notification);

An application can register for two types of notification.

� SIGEV_SIGNAL: Send signal specified in notification->sigev_
signo to the process when a message arrives in the queue. Listing 7.9
illustrates the usage.

� SIGEV_THREAD: Call notification->sigev_notify_function in
a separate thread when a message arrives in the queue. Listing 7.10
illustrates the usage.

Linux Implementation

Like POSIX shared memory, Linux implements POSIX message queues as an
mqueue file system. The mqueue file system provides the necessary kernel
support for the user-space library that implements the POSIX message queue
APIs. By default, the kernel mounts the file system internally and it is not
visible in user space. However, you can mount mqueue fs.

230 Embedded Linux System Design and Development

mkdir /dev/mqueue
mount -t mqueue none /dev/mqueue

This command mounts the mqueue file system under /dev/mqueue. A
message queue is represented as a file under /dev/mqueue. But you can’t
send or receive a message from the queue by “writing” or “reading” from the
message queue “file.” Reading the file gives the queue size and notification
information that isn’t accessible through standard routines. Remove
mq_unlink from Listing 7.8 and then compile and execute it.

gcc mqueue-1.c -lrt
./a.out
cat /dev/mqueue/my_queue
QSIZE:17 NOTIFY:0 SIGNO:0 NOTIFY_PID:0

In the above output

Listing 7.9 Asynchronous Notification Using SIGEV_SIGNAL

struct sigevent notif;
sigset_t sig_set;
siginfo_t info;

/* SIGUSR1 is notification signal.*/
sigemptyset(&sig_set);
sigaddset(&sig_set, SIGUSR1);

/*
 * Block SIGUSR1 as we shall wait for it in sigwaitinfo call
 */
sigprocmask(SIG_BLOCK, &sig_set, NULL);

/* Now set notification */
notif.sigev_notify = SIGEV_SIGNAL;
notif.sigev_signo = SIGUSR1;

if (mq_notify(ds, ¬if)){
 perror("mq_notify");
 return -1;
}

/*
 * SIGUSR1 will get delivered if a message
 * arrives in the queue
 */
do {
 sigwaitinfo(&sig_set, &info);
} while(info.si_signo != SIGUSR1);

/* Now we can receive the message. */
if (mq_receive(ds, new_text, SIZE, &prio) == -1)
 perror("Receiving message error");

Real-Time Linux 231

� QSIZE: Message queue size
� NOTIFY: Either 0, SIGEV_SIGNAL, or SIGEV_THREAD
� SIGNAL: Signal number used for notification
� NOTIFY_PID: PID of process waiting for notification

The mqueue file system also provides sysctls in folder /proc/sys/fs/
mqueue for tuning the amount of resources used by the file system. The
sysctls are:

� queues_max: read/write file for getting/setting the maximum number of
message queues allowed in the system. For example, echo 128 >
queues_max allows creation of a maximum of 128 message queues in
the system.

Listing 7.10 Asynchronous Notification Using SIGEV_THREAD

struct sigevent notif;
sigset_t sig_set;
siginfo_t info;

/*
 * Set SIGEV_THREAD notification. Note that notification
 * function, when invoked, runs in a separate thread
 */
notif.sigev_notify = SIGEV_THREAD;
/* notification routine to be called */
notif.sigev_notify_function = notify_routine;

/*
 * Pass message queue id as argument to the notification function
 * when it is called
 */
notif.sigev_value.sival_int = ds;
/* Notification thread should be in DETACHED state */
notif.sigev_notify_attributes = NULL;

/* Finally set the notification */
if (mq_notify(ds, ¬if)){
 perror("mq_notify");
 return -1;
}

/*
 * .. and this is the notification routine. This will be called
 * whenever there is a message in the queue
 */
void notify_routine(sigval_t value){
 ...
 /* now of course we can receive this message. */
 if ((len = mq_receive(value.sival_int, new_text, SIZE,
 &prio)) == -1)
 perror("Receiving message error");
 ...
}

232 Embedded Linux System Design and Development

� msg_max: read/write file for getting/setting the maximum number of
messages in a queue. The maximum number of messages specified during
mq_open should be less than or equal to msg_max.

� msgsize_max: read/write file for getting/setting the maximum message
size value. It is the default if the maximum message size is not specified
during mq_open.

Points to Remember

� When a process receives a message from a queue, the message is removed
from the queue.

� If O_NONBLOCK is not specified, mq_send blocks until space becomes
available in the queue to enqueue the message. If more than one thread
or process is waiting to send a message and space becomes available in
the queue, then the thread/process of the highest priority that has been
waiting the longest is unblocked to send its message. The same applies
for mq_receive.

� At any time only one process may be registered for notification on a
message queue. If the calling process or any other process has already
registered for notification of message arrival, subsequent attempts to register
for that message queue by the same or a different process will fail.

� Call mq_notify with NULL notification to cancel the existing registration.
� After sending notification to the registered process, its registration is

removed and the message queue is available for further registration.
� If some thread of a process is blocked in mq_receive and the process

has also registered a notification, the arriving message satisfies the
mq_receive and no notification is sent.

7.3.5 POSIX Semaphores

Semaphores are counters for resources shared between threads or processes.
The basic operations on semaphores are:

� Increment the counter atomically.
� Wait until the counter is not zero and then decrement it atomically.

Binary semaphores can be also be used for interprocess or interthread
synchronization. They are mostly used in synchronizing access to shared
resources such as shared memory, global data structures, and so on. There
are two types of POSIX semaphores.

� Named semaphores: They can be used between multiple unrelated pro-
cesses.

� Unnamed semaphores: They can be used by threads inside a process or
between related processes (such as the parent and child processes).

Real-Time Linux 233

The pthread library, which is part of the glibc package, implements POSIX
1003.1b semaphores in Linux. Glibc 2.3 with NPTL has full support for
semaphores, including named and process-shared semaphores. Earlier glibc
versions supported only unnamed semaphores. Semaphore operations are
listed in Table 7.6. Listing 7.11 illustrates the usage of a named semaphore.

Points to Remember

� Semaphore protection works only between cooperating processes; that is,
a process should wait for a semaphore if it is not available and should
release the semaphore after use.

� Semaphore descriptor is inherited across the fork. Child processes need
not open the semaphore again. They can call sem_close after usage.

� sem_post function is async-signal safe and can be called from signal
handlers.

� Priority inversion can happen if a low-priority process locks a semaphore
needed by a high-priority process.

7.3.6 Real-Time Signals

POSIX 1003.1b signal extensions play a very important role in real-time
applications. They are used to notify processes of the occurrence of asynchro-
nous events such as high-resolution timer expiration, asynchronous I/O com-
pletion, message reception in an empty POSIX message queue, and so on.
Some of the advantages that real-time signals have over native signals are
listed in Table 7.7. These advantages make them suitable for real-time appli-
cations. POSIX.1b real-time signal interfaces are listed in Table 7.8.

We explain the above interfaces with an example. In this example, the
parent process sends real-time signals to the child process and later handles
them. The example is divided into two parts as shown in Figure 7.4.

Table 7.6 POSIX.1b Semaphore Functions

Method Description

sem_open Open/create a named semaphore.

sem_close Close a named semaphore.

sem_unlink Remove a named semaphore.

sem_init Initialize unnamed semaphore.

sem_destroy Delete unnamed semaphore.

sem_getvalue Get current semaphore count.

sem_wait Perform semaphore lock operation.

sem_trywait Perform semaphore timed lock operation.

sem_post Release the semaphore.

234 Embedded Linux System Design and Development

Listing 7.11 POSIX Semaphore Operations

/* sem.c */

#include <stdio.h>
#include <semaphore.h>
#include <sys/types.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <sys/fcntl.h>
#include <errno.h>

#define SEM_NAME "/mysem"
/*
 * Named semaphore interfaces are called in following order
 * sem_open()
 * ...
 * sem_close()
 * sem_unlink()
 * Unnamned semaphore interfaces are called in following order
 * sem_init()
 * ...
 * sem_destroy()
 */

int main(){
 /* Our named semaphore */
 sem_t *sema_n;
 int ret,val;

 /*
 * Create a named semaphore (O_CREAT) with initial value 1
 * (i.e. unlocked)(If you want to create unnamed semaphore then
 * replace call to sem_open with sem_init)
 */
 if ((sema_n = sem_open(SEM_NAME, O_CREAT , 0600, 1)) ==
 SEM_FAILED){
 perror("sem_open");
 return -1;
 }

 /* Get the current semaphore value */
 sem_getvalue(sema_n, &val);
 printf("semaphore value = %d\n", val);

 /*
 * Try to get the semaphore. If it fails then use the blocking
 * version. This is only done to give sematics of both
 * sem_trywait and sem_wait. You need not call them like this
 * in real code
 */
 if ((ret = sem_trywait(sema_n)) != 0 && errno == EAGAIN)
 /* permanent wait */
 sem_wait(sema_n);
 else if (ret != 0){
 perror("sem_trywait");
 return -1;
 }

Real-Time Linux 235

Main Application

#include <signal.h>
#include <sys/types.h>
#include <unistd.h>
#include <errno.h>

int child(void);
int parent(pid_t);
/* Signal handler */

Listing 7.11 POSIX Semaphore Operations (continued)

 /*
 * Semaphore is acquired. Operate on shared data
 */

 /*
 * release the semaphore after shared data has been manipulated
 */
 if (sem_post(sema_n) != 0)
 perror("post error");

 /*
 * close and remove the semaphore. (For unnamed semaphores,
 * replace following two calls with sem_destroy. sem_unlink is
 * not valid for unnamed semaphore)
 */
 sem_close(sema_n);
 sem_unlink(SEM_NAME);
 return 0;
}

Table 7.7 Real-Time Signals versus Native Signals

Real-Time Signals Native Signals

Range of application-specific signals from
SIGRTMIN to SIGRTMAX. All real-time signals are
defined in this range such as SIGRTMIN + 1,
SIGRTMIN + 2, SIGRTMAX – 2, etc.

Only two application-specific
signals, SIGUSR1 and
SIGUSR2.

Delivery of signals can be prioritized. The lower
the signal number the higher the priority. For
example, if SIGRTMIN and SIGRTMIN + 1 are
pending, then SIGRTMIN will be delivered first.

No priority for signal delivery.

Sender can deliver extra information along with
the real-time signal to the receiving process.

Cannot send extra
information with signal.

Signals are queued (i.e., if a signal is delivered
multiple times to a process, the receiver will
process all the signal instances). Real-time signals
are not lost.

Signals can get lost. If a signal
is delivered multiple times to
a process, the receiver will
process only one instance.

236 Embedded Linux System Design and Development

void rt_handler(int signum, siginfo_t *siginfo,
 void * extra);

int main(){
 pid_t cpid;
 if ((cpid = fork()) == 0)
 child();

Table 7.8 POSIX.1b Real-Time Signal Functions

Method Description

sigaction Register signal handler and notification mechanism.

sigqueue Send a signal and extra information to a process.

sigwaitinfo Wait for signal delivery.

sigtimedwait Wait for signal delivery and timeout if signal doesn’t arrive.

sigsuspend Suspend a process until signal is delivered.

sigprocmask Operate on process’s current block mask.

sigaddset Add a signal to the signal set.

sigdelset Remove a signal from the signal set.

sigemptyset Clear all the signals in the signal set.

sigfillset Set all the signals in the signal set.

sigismember Test whether a signal is a member of a signal set.

Figure 7.4 Real-time signals: sample application.

Send

SIGRTMIN and

SIGRTMIN + 1

to child

Use signal wait

functions to

process these

signals

Process SIGRTMIN

using a signal

handler

Send SIGRTMIN

to child process

PART 1

PART 2

Parent Child

Real-Time Linux 237

 else
 parent(cpid);
}

Parent Process
The parent uses the sigqueue function to send SIGRTMIN and SIGRTMIN +
1 to the child process. The last argument of the function is used to send extra
information with the signal.

int parent(pid_t cpid){
 union sigval value;

 /* ------- PART 1 STARTS -------------- */

 /* Sleep a while for child to get start */
 sleep(3);
 /* Extra information for SIGRTMIN */
 value.sival_int = 1;
 /* send SIGRTMIN to child */
 sigqueue(cpid, SIGRTMIN, value);

 /* send SIGRTMIN+1 to child */
 sleep(3);
 value.sival_int = 2;
 sigqueue(cpid, SIGRTMIN+1, value);

 /* ------- PART 2 STARTS -------------- */

 /* Finally send SIGRTMIN once more */
 sleep(3);
 value.sival_int = 3;
 sigqueue(cpid, SIGRTMIN, value);

 /* ------- PART 2 ENDS -------------- */
}

Child Process

int child(void){
 sigset_t mask, oldmask;
 siginfo_t siginfo;
 struct sigaction action;
 struct timespec tv;
 int count = 0, recv_sig;

We define mask of type sigset_t to hold the signals that we need to block.
Before proceeding, clear the mask by calling sigemptyset. This function
initializes the mask to exclude all the signals. Then call sigaddset to add
the signals SIGRTMIN and SIGRTMIN + 1 to the blocked set. Finally call
sigprocmask to block the signal delivery. (We are blocking these signals to
process their delivery using signal wait functions instead of using a signal
handler.)

238 Embedded Linux System Design and Development

 /* ------- PART 1 STARTS -------------- */

 /* clear mask */
 sigemptyset(&mask);
 /* add SIGRTMIN to mask */
 sigaddset(&mask, SIGRTMIN);
 /* add SIGRTMIN+1 to mask */
 sigaddset(&mask, SIGRTMIN+1);

 /*
 * Block SIGRTMIN, SIGRTMIN+1 signal delivery. After
 * return, previous value of blocked signal mask is stored
 * in oldmask
 */
 sigprocmask(SIG_BLOCK, &mask, &oldmask);

The child now waits for the delivery of SIGRTMIN and SIGRTMIN + 1.
Functions sigwaitinfo or sigtimedwait are used to wait for blocked
signals. The set of signals to wait for is the first argument. The second argument
is populated with any extra information received along with the signal (more
about siginfo_t later). For sigtimedwait, the last argument is the wait
time.

 /* specify 1 sec timeout */
 tv.tv_sec = 1;
 tv.tv_nsec = 0;

 /*
 * wait for signal delivery. We wait for two signals,
 * SIGRTMIN and SIGRTMIN+1. Loop will terminate when
 * both of them are received
 */
 while(count < 2){
 if ((recv_sig = sigtimedwait(&mask, &siginfo, &tv)) ==
 -1){
 if (errno == EAGAIN){
 printf("Timed out\n");
 continue;
 }else{
 perror("sigtimedwait");
 return -1;
 }
 }else{
 printf("signal %d received\n", recv_sig);
 count++;
 }
 }
 /* ------- PART 1 ENDS -------------- */

The other method to handle signals is to register a signal handler. In this
case, the process should not block the signal. The registered signal handler
is called when the signal is delivered to the process. The sigaction function
registers a signal handler. Its second argument struct sigaction is defined as

TE
AM
 F
LY

Real-Time Linux 239

struct sigaction {
 void (*sa_handler)(int);
 void (*sa_sigaction)(int, siginfo_t *, void *);
 sigset_t sa_mask;
 int sa_flags;
}

Fields of this structure are:

� sa_handler: Signal handler registration function for non–real-time signals.
� sa_sigaction: Signal handler registration function for real-time signals.
� sa_mask: Mask of signals that should be blocked when signal handler is

executing.
� sa_flags: SA_SIGINFO is used for real-time signals. On reception of a

signal that has SA_SIGINFO set, the sa_sigaction function is called
instead of sa_handler.

The child now registers a signal handler rt_handler for handling the
SIGRTMIN real-time signal. This function will be called when SIGRTMIN is
delivered to the child.

 /* ------- PART 2 STARTS -------------- */

 /* Set SA_SIGINFO */
 action.sa_flags = SA_SIGINFO;
 /* Clear the mask */
 sigemptyset(&action.sa_mask);

 /*
 * Register signal handler for SIGRTMIN. Note that we are
 * using action.sa_sigaction interface to register the
 * handler
 */
 action.sa_sigaction = rt_handler;
 if (sigaction(SIGRTMIN, &action, NULL) == -1){
 perror("sigaction");
 return 0;
 }

The child then waits for the signal to be delivered. sigsuspend temporarily
replaces the current signal mask with the mask specified in its argument. It
then waits for delivery of an unblocked signal. On signal delivery, sigsus-
pend restores the original mask and returns after the signal handler is executed.
If the signal handler causes process termination, sigsuspend does not return.

 /* Wait from SIGRTMIN */
 sigsuspend(&oldmask);

 /* ------- PART 2 ENDS -------------- */
}

Thus the child has successfully handled signals using both signal wait
functions and using a signal handler.

240 Embedded Linux System Design and Development

Finally the signal handler is:

/* Signal handler for SIGRTMIN */
void rt_handler(int signum, siginfo_t *siginfo,
 void * extra){
 printf("signal %d received. code = %d, value = %d\n",
 siginfo->si_signo, siginfo->si_code,
 siginfo->si_int);
}

The second argument of the signal handler is of type siginfo_t and it
contains all the information of the received signal. The structure is defined as:

siginfo_t {
 int si_signo; // Signal number
 int si_errno; // Signal error
 int si_code; // Signal code
 union {
 ...
 // POSIX .1b signals
 struct {
 pid_t pid;
 uid_t uid;
 sigval_t sigval;
 }_rt;
 ...
 }_sifields
}

Please refer to /usr/include/bits/siginfo.h for all the fields of the
structure. Apart from si_signo, si_errno, and si_code all the rest of the
fields are union. So one should only read the fields that are meaningful in
the given context. For example, the fields shown above are valid only for
POSIX.1b signals.

� si_signo is the signal number of the received signal. This is the same
as the first argument of the signal handler.

� si_code gives the source of the signal. Important si_code values for
real-time signals are listed in Table 7.9.

� si_value is extra information given by the sender.
� pid and uid are the process ID and user ID of the sender, respectively.

The above fields should be accessed using the following macros, which
are defined in siginfo.h.

#define si_value _sifields._rt._sigval
#define si_int _sifields._rt._sigval.sival_int
#define si_ptr _sifields._rt._sigval.sival_ptr
#define si_pid _sifields._kill._pid
#define si_uid _sifields._kill._uid

Real-Time Linux 241

Thus you can use siginfo->si_int and siginfo->si_ptr to access
the extra information given by the sender.

7.3.7 POSIX.1b Clock and Timers

Traditional BSD timers in Linux, setitimer and getitimer functions, are
inadequate for most of the real-time applications. POSIX.1b timers offer the
following advantages over BSD timers.

� A process can have multiple timers.
� Better timer precision. Timers can be specified in nanosecond resolution.
� Timeout notification can be done either using any arbitrary (real-time)

signal or using threads. There are only limited signals for timeout notifi-
cation in BSD timers.

� POSIX.1b timers provide support for various clocks such as
CLOCK_REALTIME, CLOCK_MONOTONIC, and so on that can have dif-
ferent sources with different resolutions. The BSD timer on the other hand
is tied to the system clock.

The core of POSIX.1b timers is a set of clocks that are used as a timing
reference. Linux provides support for the following clocks.

� CLOCK_REALTIME: The systemwide real-time clock, visible to all processes
running in the system. The clock measures the amount of time in seconds
and nanoseconds since Epoch (i.e., 00:00:00 Jan 1, 1970, GMT). The
resolution of the clock is 1/HZ seconds. Thus if HZ is 100 then the clock
resolution is 10 msec. If HZ is 1000 then the clock resolution is 1 msec.
Please see file <kernel-source>/include/asm/param.h for the
value of HZ in your system. As this clock is based on wall time, it can be
changed.

� CLOCK_MONOTONIC: The system uptime clock visible to all processes on
the system. In Linux, it measures the amount of time in seconds and
nanoseconds since system boot. Its resolution is 1/HZ sec. Its support is
available since kernel 2.5 and glibc 2.3.3. This clock cannot be changed
by any process.

Table 7.9 Signal Codes

SignalCode Value Origin

SI_USER 0 kill, sigsend, or raise

SI_KERNEL 0x80 Kernel

SI_QUEUE -1 sigqueue function

SI_TIMER -2 POSIX timer expiration

SI_MESGQ -3 POSIX message queue state change from nonempty to empty

SI_ASYNCIO -4 Async IO completed

242 Embedded Linux System Design and Development

� CLOCK_PROCESS_CPUTIME_ID: The clock measuring process up-time.
The time the current process has spent executing on the system is measured
in seconds and nanoseconds. The resolution is 1/HZ. The clock can be
changed.

� CLOCK_THREAD_CPUTIME_ID: The same as CLOCK_PROCESS_CPUTIME_
ID but for the current thread.

Generally CLOCK_REALTIME is used for specifying absolute timeouts.
CLOCK_MONOTONIC is used for relative timeouts and periodic tasks. Because
this clock cannot be changed, periodic tasks need not bother about premature
or delayed wake-up that could occur with CLOCK_REALTIME. The other two
clocks can be used for accounting purposes. The POSIX.1b clock and timer
interfaces are listed in Table 7.10.

We explain usage of the above interfaces with an example. In this example
we create a POSIX timer based on CLOCK_MONOTONIC. It’s a periodic timer
with a period of four seconds. Timer expiration is notified to the process
using the SIGRTMIN real-time signal. The process has registered a signal
handler for SIGRTMIN that keeps count of timer expiration. When the counter
reaches a specified value referred to as MAX_EXPIRE in the example, the
timer is disarmed and the process exits.

#include <unistd.h>
#include <time.h>
#include <signal.h>

#define MAX_EXPIRE 10
int expire;

void timer_handler(int signo, siginfo_t *info,
 void *context);

int main(){

Table 7.10 POSIX.1b Clock and Timer Functions

Method Description

clock_settime Set specified clock to a value.

clock_gettime Get clock value.

clock_getres Get clock resolution.

clock_nanosleep Suspend calling process execution for specified time.

timer_create Create a timer based on specified clock.

timer_delete Delete a timer.

timer_settime Arm the timer.

timer_gettime Return current timer value.

timer_getoverrun Return number of times timer expired between signal
generation and delivery.

Real-Time Linux 243

 struct timespec ts, tm, sleep;
 sigset_t mask;
 siginfo_t info;
 struct sigevent sigev;
 struct sigaction sa;
 struct itimerspec ival;
 timer_t tid;

First print some statistics of CLOCK_MONOTONIC. clock_getres gives the
resolution of the clock and clock_gettime gives system up-time. Please
note that the resolution of CLOCK_MONOTONIC is 1/HZ.

 clock_getres(CLOCK_MONOTONIC, &ts);
 clock_gettime(CLOCK_MONOTONIC, &tm);
 printf("CLOCK_MONOTONIC res: [%d]sec [%d]nsec/n",
 ts.tv_sec, ts.tv_nsec);
 printf("system up time: [%d]sec [%d]nsec\n",
 tm.tv_sec, tm.tv_nsec);

Set up a signal handler for SIGRTMIN. As mentioned earlier, the process
will receive a SIGRTMIN real-time signal at timer expiration.

 /* We don't want any blocked signals */
 sigemptyset(&mask);
 sigprocmask(SIG_SETMASK, &mask, NULL);

 /* Register handler for SIGRTMIN */
 sa.sa_flags = SA_SIGINFO;
 sigemptyset(&sa.sa_mask);
 sa.sa_sigaction = timer_handler;
 if (sigaction(SIGRTMIN, &sa, NULL) == -1) {
 perror("sigaction failed");
 return -1;
 }

Create the timer. The second argument of timer_create is the type of
notification desired on timer expiration. Please recall from our discussion on
POSIX message queues that the notifications are of two types, SIGEV_SIGNAL
and SIGEV_THREAD. With POSIX timers, either could be used as a notification
mechanism. In this example we are using the SIGEV_SIGNAL notification
mechanism.

 /*
 * Timer expiration should send SIGRTMIN signal with some
 * dummy value 1
 */
 sigev.sigev_notify = SIGEV_SIGNAL;
 sigev.sigev_signo = SIGRTMIN;
 sigev.sigev_value.sival_int = 1;

 /*
 * Create timer. Note that if the call is successful,
 * timer-id is returned in the third argument.

244 Embedded Linux System Design and Development

 */
 if (timer_create(CLOCK_MONOTONIC, &sigev, &tid) == -1){
 perror("timer_create");
 return -1;
 }
 printf("timer-id = %d\n", tid);

Arm the timer. The time will expire after five seconds and after every four
seconds subsequently.

 ival.it_value.tv_sec = 5;
 ival.it_value.tv_nsec = 0;
 ival.it_interval.tv_sec = 4;
 ival.it_interval.tv_nsec = 0;
 if (timer_settime(tid, 0, &ival, NULL) == -1){
 perror("timer_settime");
 return -1;
 }

Finally wait for timer to expire. If timer expiration count expire reaches
MAX_EXPIRE then disarm the timer and quit.

 /* Sleep and wait for signal */
 for(;;){
 sleep.tv_sec = 3;
 sleep.tv_nsec = 0;
 clock_nanosleep(CLOCK_MONOTONIC, 0, &sleep, NULL);
 printf("woken up\n");
 if (expire >= MAX_EXPIRE){
 printf("Program quitting.\n");
 /*
 * If it_value == 0 then call to timer_settime
 * disarms the the timer
 */
 memset(&ival, 0, sizeof (ival));
 timer_settime(tid, 0, &ival, NULL);
 return 0;
 }
 }
 return 0;
}

Finally we have timer_handler: Recall our discussion on signal handlers
from Section 7.3.6. The second argument of the handler is of type siginfo_t,
which contains information regarding the received signal. In this case info-
>si_code is SI_TIMER.

void timer_handler(int signo, siginfo_t *info,
 void *context)
{
 int overrun;
 printf("signal details: signal (%d), code (%d)\n",
 info->si_signo, info->si_code);

Real-Time Linux 245

 if (info->si_code == SI_TIMER){
 printf("timer-id = %d \n", info->si_timerid);
 expire++;

 /*
 * Specification says that only a single signal
 * instance is queued to the process for a given
 * timer at any point in time. When a timer for which a
 * signal is still pending expires, no signal is
 * queued and a timer overrun condition occurs.
 * timer_getoverrun returns the number of extra timer
 * expirations that occurred between the time the
 * signal was generated (queued) and when it was
 * delivered or accepted
 */
 if ((overrun = timer_getoverrun(info->si_timerid)) !=
 -1 && overrun != 0){
 printf("timer overrun %d\n", overrun);
 expire += overrun;
 }
 }
}

High-Resolution Timers

For the clocks discussed above, Linux provides the best resolution of 1 msec
(HZ = 1000). This resolution is not enough for most real-time applications as
they require resolution on the order of microseconds and nanoseconds. To
support such applications, the High-Resolution Timers (HRT) project was
started by engineers at MontaVista. HRT are POSIX timers with microsecond
resolution. Two additional POSIX clocks are introduced, CLOCK_REALTIME_
HR and CLOCK_MONOTONIC_HR. They are the same as their non-HR counter-
part; the only difference is the clock resolution that is on the order of
microseconds or nanoseconds depending on the hardware clock source. At
the time of this writing the HRT support is not included in the main source
tree and is available as a patch. More details about the project are available
at www.sourceforge.net/projects/high-res-timers.

Points to Remember
� Resolution of the clock is fixed and cannot be changed at runtime by the

application.
� To disarm a timer, call timer_settime with it_value member of

itimespec set to zero.
� A timer can be periodic or one-shot. If the it_interval member of

itimerspec during call to timer_setime is zero then the timer is one-
shot; otherwise it is periodic.

� POSIX.1b also provides a nanosleep function. This is the same as
clock_nanosleep with CLOCK_REALTIME as its first argument.

� Per-process timers are not inherited by a child process.

246 Embedded Linux System Design and Development

7.3.8 Asynchronous I/O

Traditional read and write system calls are blocking calls. Most real-time
applications may need to overlap their compute and I/O processing to improve
determinism. For example, an application may prefer Asynchronous I/O (AIO)
if it requires high-volume data collection from some source and if data
processing is computation intensive. POSIX.1b defines asynchronous I/O
interfaces to fulfill demands of such applications.

The mechanism is very simple. An application can queue a request for
AIO and then continue normal processing. The application is notified when
the I/O completes. It can then query the status of I/O for success or failure.
An application can do the following operations using AIO interfaces.

� Issue multiple nonblocking I/O requests from different sources with a
single call. (Thus an application can have many I/O operations in progress
while it is executing other code.)

� Cancel any outstanding I/O request.
� Wait for I/O completion.
� Track the status of I/O: in-progress, error, or completed.

AIO Control Block

The AIO control block, struct aiocb, is the core of POSIX.1b AIO. The
structure contains the details that are necessary for submitting an AIO. The
structure is defined as follows.

struct aiocb
{
 int aio_fildes; /* File desriptor. */
 int aio_lio_opcode; /* Operation to be performed,
 read or write. Used while
 submitting multiple AIOs in a
 single request */
 int aio_reqprio; /* Request priority offset. */
 volatile void *aio_buf; /* Location of buffer for read
 or write */
 size_t aio_nbytes; /* Length of transfer. */
 struct sigevent aio_sigevent; /* Notification info. */
 off_t aio_offset /* File offset to start read or
 write from */
}

Note that unlike traditional read or write operations, you need to specify
the file offset from where to start the AIO. After performing the I/O, the kernel
won’t increment the file offset field in the file descriptor. You need to keep
track of file offsets manually.

Real-Time Linux 247

AIO Functions

The AIO functions are listed in Table 7.11. Listing 7.12 illustrates the usage
of POSIX.1b AIO interfaces. The example simply copies one file to another
using AIO. For the sake of simplicity we assume that the AIO functions don’t
return an error.

List-Directed I/O

The lio_listio function could be used to submit an arbitrary number of
read or write requests in one call.

int lio_listio(int mode, struct aiocb *list[], int nent,
 struct sigevent *sig);

� mode: This argument could be LIO_WAIT or LIO_NOWAIT. If the argu-
ment is LIO_WAIT, the function waits until all I/O is complete and sig
is ignored. If the argument is LIO_NOWAIT, the function returns imme-
diately and async notification will occur as specified in sig after I/O
completes.

� aiocb list: This argument contains the list of aiocbs.
� nent: Number of aiocbs in second argument.
� sig: Desired notification mechanism. No notification is generated if this

argument is NULL.

Listing 7.12 could be modified to use the lio_listio function.

while(1){
 memcpy(write_buf, read_buf, read_n);
 a_write.aio_nbytes = read_n;
 a_read.aio_nbytes = XFER_SIZE;

 /* Prepare aiocb list for lio_listio */
 cblist_lio[0] = &a_read;

Table 7.11 AIO Functions

Method Description

aio_read Start async read.

aio_write Start async write.

aio_error Return completion status of last aio_read or aio_write.

aio_return Return number of bytes transferred in aio_read or aio_write.

aio_cancel Cancel any pending AIO operations.

aio_suspend Call process until any of specified requests complete.

lio_listio Submit multiple async read or write operation.

248 Embedded Linux System Design and Development

Listing 7.12 File Copy Using AIO

/* aio_cp.c */

#include <unistd.h>
#include <aio.h>
#include <sys/types.h>
#include <errno.h>

#define INPUT_FILE "./input"
#define OUTPUT_FILE "./output"
/* Transfer size of one read or write operation */
#define XFER_SIZE 1024
#define MAX 3

/* Function to fill the aiocb values */
void populate_aiocb(struct aiocb *aio, int fd, off_t offset,
 int bytes, char *buf){
 aio->aio_fildes = fd;
 aio->aio_offset = offset;

 /*
 * We are not using any notification mechanism here to put more
 * emphasis on AIO interfaces. We can use SIGEV_SIGNAL or
 * SIGEV_THREAD notification mechanisms to get notification
 * after AIO is complete.
 */
 aio->aio_sigevent.sigev_notify = SIGEV_NONE;
 aio->aio_nbytes = bytes;
 aio->aio_buf = buf;
}

/*
 * The application copies one file to the other
 */
int main(){

 /* read/write file descriptors */
 int fd_r , fd_w;
 /* AIO control blocks for reading and writing */
 struct aiocb a_write, a_read;

 /*
 * This list is used to hold control blocks of outstanding
 * read or write requests
 */
 struct aiocb *cblist[MAX];
 /* Status of read or write operation */
 int err_r, err_w;
 /* no. of bytes actually read */
 int read_n = 0;
 /* Marks end of stream for source file */
 int quit = 0;
 /* Used for xfer from source to destination file */
 char read_buf[XFER_SIZE];
 char write_buf[XFER_SIZE];

Real-Time Linux 249

Listing 7.12 File Copy Using AIO (continued)

 /*
 * Open the source and destination files. Call populate_aiocb
 * function to initialize AIO control blocks for read and write
 * operation. Its good practice to clear the aiocbs before
 * using them
 */
 fd_r = open(INPUT_FILE, O_RDONLY, 0444);
 fd_w = open(OUTPUT_FILE, O_CREAT | O_WRONLY, 0644);

 memset(&a_write, 0 , sizeof(struct aiocb));
 memset(&a_read, 0 , sizeof(struct aiocb));

 /* populate aiocbs to defaults */
 populate_aiocb(&a_read, fd_r, 0, XFER_SIZE, read_buf);
 populate_aiocb(&a_write, fd_w, 0, XFER_SIZE, write_buf);

 /*
 * Start async read from the source file using aio_read
 * function. The function reads a_read.aio_nbytes bytes from
 * file a_read.aio_fildes starting from offset
 * a_read.aio_offset into buffer a_read.aio_buf. On success 0
 * is returned. This function returns immediately after
 * queuing the request
 */
 aio_read(&a_read);

 /*
 * Wait for read to complete. After starting any async
 * operation (read or write), you can get its status using
 * aio_error function. The function returns EINPROGRESS if the
 * request has not been completed, it returns 0 if the request
 * completed successfully, otherwise an error value is
 * returned. If aio_read return EINPROGRESS, then call
 * aio_suspend to wait for operation to complete.
 */
 while((err_r = aio_error(&a_read)) == EINPROGRESS){
 /*
 * The aio_suspend function suspends the calling process
 * until at least one of the asynchronous I/O requests in the
 * list cblist have completed or a signal is delivered, Here
 * we are waiting for aio_read completion on a_read.
 */
 cblist[0] = &a_read;
 aio_suspend(cblist, 1, NULL);
 }

 /*
 * If the return value of aio_error function is 0 then the read
 * operation was successful. Call aio_return to find of number
 * of bytes read. The function should be called only once after
 * aio_error returns something other than EINPROGRESS.
 */
 if (err_r == 0){
 read_n = aio_return(&a_read);
 if (read_n == XFER_SIZE)

250 Embedded Linux System Design and Development

Listing 7.12 File Copy Using AIO (continued)

 /* We need to manage the offsets */
 a_read.aio_offset += XFER_SIZE;
 else {
 /*
 * For the sake of simplicity we assume source file size is
 * greater than XFER_SIZE
 */
 printf(“Source file size < %d\n”, XFER_SIZE);
 exit(1);
 }
 }

 /*
 * In this loop we copy data read above into the write buffer
 * and start async write operation. We also go ahead and queue
 * read request for the next cycle.
 */
 while(1){
 memcpy(write_buf, read_buf, read_n);

 /*
 * Setup write control block. Call aio_write to queue write
 * request. The function will write a_write.aio_nbytes bytes
 * from buffer a_write.aio_buf to file a_write.aio_fildes at
 * offset a_write.aio_offset. Returns 0 on success
 */
 a_write.aio_nbytes = read_n;
 aio_write(&a_write);

 /* Queue next read request */
 a_read.aio_nbytes = XFER_SIZE;
 aio_read(&a_read);

 /*
 * Wait for both read and write to get complete before
 * proceeding
 */
 while((err_r = aio_error(&a_read)) == EINPROGRESS ||
 (err_w = aio_error(&a_write)) == EINPROGRESS){
 cblist[0] = &a_read;
 cblist[1] = &a_write;
 aio_suspend(cblist, 2, NULL);
 }

 /* Is this the end ? */
 if (quit)
 break;

 /* Increment the write pointer */
 a_write.aio_offset += aio_return(&a_write);
 /* Increment the read pointer */
 read_n = aio_return(&a_read);
 if (read_n == XFER_SIZE)
 a_read.aio_offset += XFER_SIZE;
 else

Real-Time Linux 251

 cblist_lio[1] = &a_write;

 /*
 * Call lio_listio to submit read and write AIO requests
 */
 lio_listio(LIO_NOWAIT, cblist_lio, 2, NULL);
 ……………
}

Linux Implementation

Initially AIO in Linux was completely implemented in the user space using
threads. There was one user thread created per request. This resulted in poor
scalability and poor performance. Since 2.5, kernel support for AIO has been
added. However, the interfaces the kernel provides for AIO are different from
POSIX interfaces. The interfaces are based on a new set of system calls. They
are listed in Table 7.12. The interfaces are provided in user space by the
libaio library.

Listing 7.12 File Copy Using AIO (continued)

 /* This is the last block */
 quit = 1;
 }
 }

 /* cleanup */
 close(fd_r);
 close(fd_w);
}

Table 7.12 Kernel AIO Interfaces

Method Description

io_setup Create a new request context for an AIO.

io_submit Submit an AIO request
(aka aio_read, aio_write, lio_listio).

io_getevents Reap completed I/O operations
(aka aio_error, aio_return).

io_wait Wait for I/O to complete (aka aio_suspend).

io_cancel Cancel I/O (aka aio_cancel).

io_destroy Destroy the AIO context. Happens by default on process exit.

252 Embedded Linux System Design and Development

Points to Remember

� The control block should not change while the read or write operation is
in progress. Also the buffer pointer in aiocb should be valid until the
request is completed.

� Return value of lio_listio does not indicate the status of individual I/
O requests. Failure of a request does not prevent completion of other
requests.

7.4 Hard Real-Time Linux
Recall that standard Linux does not provide hard real-time deadline guarantees.
Several extensions are added to support hard real-time applications under
Linux. The most popular is the dual-kernel approach in which Linux is treated
as a lowest-priority task of a real-time executive. Figure 7.5 shows the basic
architecture of a dual-kernel approach.

In the dual-kernel approach, Linux executes only when there are no real-
time tasks to run. It can never disable interrupts or prevent itself from
preemption. The interrupt hardware is controlled by the real-time executive
and interrupts are only dispatched to Linux if there are no takers for it in the
real-time executive. Even if Linux disables an interrupt (using cli), the
hardware interrupt is not disabled. The real-time executive just won’t send an
interrupt to Linux if the latter has disabled it. Thus the real-time executive
behaves like an “interrupt controller” for Linux. Linux never adds any latency
to the interrupt response time of the real-time executive. In this design, Linux
handles all the non–real-time activities such as logging, system initialization,
managing hardware not involved in real-time processing, and so on.

There are two primary variants of hard real-time Linux: RTLinux and RTAI.
RTLinux was developed at the New Mexico Institute of Technology by Michael
Barabanov under the direction of Professor Victor Yodaiken. RTAI was devel-
oped at the Dipartimento di Ingeneria Aerospaziale, Politecnico di Milano by

Figure 7.5 Dual-kernel architecture.

Hard Real-time Executive

Linux

Kernel

Linux

Process

Linux

Process

Realtime

Task

Realtime

Task

Low priority

Real-Time Linux 253

Professor Paolo Mantegazza. Both these variants are implemented as Linux
kernel modules. They are similar in nature in that all the interrupts are initially
handled by the real-time kernel and then passed to Linux if there are no
active real-time tasks.

In this section we discuss the RTAI solution for providing hard real-time
support in Linux. In the end we also discuss very briefly ADEOS, which is a
framework for supporting the real-time kernel and general-purpose OS (such
as Linux) on the same platform.

7.4.1 Real-Time Application Interface (RTAI)

RTAI is an open source real-time extension to Linux. The core of RTAI is the
hardware abstraction layer on the top of which Linux and hard real-time core
can run. The HAL provides a mechanism to trap the peripheral interrupts and
route them to Linux only if it is not required for any hard real-time processing.
A hard real-time task can be created and scheduled under RTAI using RTAI
APIs. RTAI uses its own scheduler to schedule real-time tasks. This scheduler
is different from the native Linux scheduler. The real-time task can use IPC
mechanisms provided by RTAI to communicate with other real-time tasks or
normal Linux processes.

We use the term real-time task for the task scheduled under RTAI unless
specified.

Figure 7.6 shows the architecture of an RTAI-based Linux system. (For the
sake of simplicity we have omitted LXRT tasks from the diagram.) The details
in the diagram become clear in the coming paragraphs.

RTAI supports several architectures such as x86, ARM, MIPS, PowerPC,
CRIS, and so on. RTAI modules such as the scheduler, IPC, and so on do not
run in separate address space. They are implemented as Linux kernel modules;
thus they run in the address space of Linux. Not all the kernel modules need
to be present always; rtai is the core module and should always be present
and other modules can be loaded dynamically when required. For example,
rtai_fifo implements RTAI FIFO functionality and should be loaded only
if this feature is required.

HAL

The HAL intercepts all hardware interrupts and routes them to either standard
Linux or to real-time tasks depending on the requirements of the RTAI
schedulers. Interrupts meant for a scheduled real-time task are sent directly
to that task, whereas interrupts not required by any scheduled real-time task
are sent to Linux. In this manner, the HAL provides a framework onto which
RTAI is mounted with the ability to fully control peripheral interrupts and
preempt Linux. There are two implementations of HAL in RTAI.

254 Embedded Linux System Design and Development

� RTHAL (Real-Time Hardware Abstraction Layer): It replaces Linux interrupt
descriptor tables with its own table to intercept peripheral interrupts.

� ADEOS: In this model, RTAI is a higher-priority domain than Linux.

Schedulers

The RTAI distribution includes four different priority-based, preemptive real-
time schedulers.

� UP: The scheduler is intended for uniprocessor platforms.
� SMP: Intended for SMP machines.
� MUP: Intended for multiprocessor non-SMP machines.
� NEWLXRT: It unifies the above three schedulers and can schedule Linux

tasks and kernel threads along with RTAI kernel tasks thus extending hard
real-time application interface to Linux tasks and kernel threads.

UP, MUP, and SMP schedulers can schedule only RTAI kernel tasks.

LXRT

All the real-time tasks scheduled under RTAI run in the kernel address space.
RTAI applications are loaded as kernel modules. The first function they call
is rt_task_init. rt_task_init creates an RTAI real-time task that is
scheduled under the RTAI scheduler. The task can now use all the RTAI real-
time services.

Figure 7.6 RTAI architecture.

Linux Interrupt

Management

RTAI HAL RTAI Scheduler RTAI IPC

Interrupts intercepted

by RTAI and then

passed to

Linux

Kernel Mode

RTAI

Task

RTAI

Task

Peripheral Interrupts

RTAI Tasks run under

RTAI Scheduler

Linux

Process
User Mode

Use RTAI IPC for

Communication L
in

u
x

 A
d

d
ress S

p
ace

Real-Time Linux 255

LXRT extends the RTAI real-time services in user space. Thus any normal
Linux process can call RTAI APIs. This is a very powerful mechanism that
bridges the gap between RTAI real-time tasks and normal user-space Linux
processes. When a Linux process calls rt_task_init, LXRT creates an RTAI
kernel task that acts as a proxy for the Linux process. The proxy executes
RTAI services on behalf of the Linux process. For example, if a Linux process
calls rt_sleep, the proxy will execute the function under the RTAI scheduler.
Control returns to the Linux process when the proxy returns from rt_sleep.

IPC

RTAI supports a number of IPC mechanisms that can be used for communi-
cation between RTAI–RTAI tasks and RTAI–Linux processes. They are listed
in Table 7.13.

Miscellaneous Modules

RTAI also provides the following.

Table 7.13 RTAI IPC Mechanisms

IPC Description Kernel Module

Event flags They are used to synchronize a task with
the occurrence of multiple events. Their
usage is similar to semaphores except that
the signal and wait operation does not
depend on a counter but on the set of
events that can occur.

rtai_bits.o

FIFO They allow communication between Linux
user-space applications and kernel-space
RTAI tasks.

rtai_fifos.o

Shared memory Module allows sharing memory between
RTAI tasks and Linux processes.

rtai_shm.o

Semaphores RTAI semaphores support priority
inheritance.

rtai_sem.o

Mailbox Very flexible IPC mechanism. It can be used
for sending variable-size messages
between Linux and RTAI. RTAI also
supports typed mailboxes for message
broadcasting and urgent message delivery.

rtai_mbx.o,
rtai_tmbx.o
(typed mailbox)

NetRPC Intertask message-passing mechanism that
extends RTAI in distributed environment.

rtai_netrpc.o

Pqueues RTAI pqueues implement POSIX 1003.1b
message queue APIs.

rtai_mq.o

256 Embedded Linux System Design and Development

� Real-time malloc (rtai_malloc): RTAI provides a real-time implemen-
tation of malloc(). An RTAI task can safely allocate or free memory
without any blocking. This is achieved by satisfying real-time memory
allocation from the preallocated global heap.

� Tasklets (rtai_tasklets): Sometimes applications need to execute a
function periodically or when some event occurs. Using RTAI scheduler
services for this purpose could be expensive in terms of resources used.
RTAI provides tasklets to address such application needs. They are of two
types.
– Normal tasklets: They are simple functions executed in kernel space.

They are called either from a real-time task or an interrupt handler.
– Timed tasklets: They are simple timer functions that are executed by

an RTAI server task in one shot or periodic mode.
� Pthreads (rtai_pthread): Supports POSIX.1c threads (including

mutexes and condition variables).
� Watchdog (rtai_wd): This module protects RTAI and Linux from pro-

gramming errors in RTAI applications.
� Xenomai: This subsystem facilitates smooth movement from proprietary

OS (such as VxWorks, pSOS, and VRTX™) to RTAI.
� Real-time drivers: RTAI provides real-time serial line and parallel port

drivers. It also supports the comedi device driver interface. The comedi
project develops open source drivers, tools, and libraries for data acquisi-
tion cards (http://www.comedi.org/).

Writing RTAI Applications

A real-time task under RTAI could either be a kernel module or an LXRT user-
space task. In this section we explain both approaches using simple examples.

An RTAI task running as a kernel module consists of three parts.

� module_init function: This function is called whenever a module is
loaded (using insmod or modprobe). It should allocate necessary
resources, create a real-time task, and schedule it for execution.

� Real-time task specific code: It consists of various routines that implement
the functionality of the real-time task.

� module_cleanup function: This function is called whenever a kernel
module is unloaded. It should destroy all the resources allocated, stop and
delete the real-time task, and so on.

Listing 7.13 shows the structure of an RTAI task as a kernel module. In
this example we create a periodic task that prints “Hello Real-Time World.”

As already mentioned, LXRT exports RTAI APIs in user space. To support
this, LXRT requires user-space tasks to use the SCHED_FIFO scheduling policy
with all its memory locked (by calling mlockall system call). LXRT offers
the following advantages over an RTAI task running as a kernel module.

� User-space debugging tools can be used to debug the LXRT real-time task.

Real-Time Linux 257

Listing 7.13 RTAI Task as a Kernel Module

/* rtai-kernel.c */

/* Kernel module header file */
#include <linux/module.h>

/* RTAI APIs that we are using are in these headers */
#include <rtai.h>
#include <rtai_sched.h>

/* Timer tick rate in nanosecond */
#define TIMER_TICK500000 /* 0.5 msec */

/* Task structure for our real-time task */
static RT_TASK hello_task;

/* This will be called when the module is loaded */
int init_module(void)
{
 /* ‘period’ of our periodic task*/
 RTIME period;
 RTIME curr; /* current time */

 /*
 * rt_task_init creates a real-time task in suspended state
 */
 rt_task_init(&hello_task, /* task structure */
 hello_thread, /* task function */
 0, /* argument to task function */
 1024, /* stack size */
 0, /* Priority.
 Highest priority –>0,
 Lowest ->RT_LOWEST_PRIORITY
 */
 0, /* task does not use FPU */
 0 /* no signal handler */
);

 /*
 * The following two timer functions are meant to be called
 * just once at the start of the whole real-time activity. The
 * timer started is actually ‘real-time system clock’. The
 * timer is used by scheduler as a timing reference
 */

 /* Timers can be set in periodic or oneshot mode */
 rt_set_oneshot_mode();

 /*
 * Timer tick in nanoseconds is converted into internal
 * countunits
 */
 period = start_rt_timer(nano2count(TICKS));

 /* Get the current time */
 curr = rt_get_time();

258 Embedded Linux System Design and Development

� LXRT real-time tasks are subject to the Linux memory protection mecha-
nism. Thus a bug in the task does not crash the whole system.

� As there is no kernel dependency, a binary-only task can be shipped
without giving out source code.

� You need not be the root to run the task (this support is provided via an
API rt_allow_nonroot_hrt).

We again write our “Hello Real-Time World” example to illustrate the
structure of the user-space LXRT real-time task. Please refer to Listing 7.14.

7.4.2 ADEOS

ADEOS (Adaptive Domain Environment for Operating Systems) provides an
environment that enables sharing of hardware resources among multiple
operating systems or among multiple instances of the same operating system.
Every OS in ADEOS is represented as a domain. Interrupt handling is the key
in an ADEOS environment. To handle interrupts it uses an interrupt pipeline.

Listing 7.13 RTAI Task as a Kernel Module (continued)

 /* Finally make the task periodic */
 rt_task_make_periodic(&hello_task, // pointer to task
 structure
 curr + 5*period, /* start time of the
 task */

 period // period of the task
);
 return 0;
}

void cleanup_module(void)
{
 /*
 * Stop the timer, busy wait for some time and finally delete
 * the task
 */
 stop_rt_timer();
 rt_busy_sleep(10000000);
 rt_task_delete(&hello_task);
}

/* Our main real-time thread */
static void hello_thread(int dummy)
{
 while(1){
 rt_printk(“Hello Real-time world\n”);

 /* Wait for next period */
 rt_task_wait_period();
 }
}

Real-Time Linux 259

Listing 7.14 LXRT Process

/* lxrt.c */

/* Headers that define scheduling and memory locking functions */
#include <sys/mman.h>
#include <sched.h>

/* RTAI headers */
#include <rtai.h>
#include <rtai_sched.h>
#include "rtai_lxrt.h"

#define TICK_TIME 500000

int main(){

 RT_TASK *task;
 RTIME period;
 struct sched_param sched;

 /* Create a SCHED_FIFO task with max priority */
 sched.sched_priority = sched_get_priority_max(SCHED_FIFO);
 if (sched_setscheduler(0, SCHED_FIFO, &sched) != 0){
 perror("sched_setscheduler failed\n");
 exit(1);
 }

 /* Lock all the current and future memory allocations */
 mlockall(MCL_CURRENT | MCL_FUTURE);

 /* ---- module_init ---- */

 /* rt_task_init creates a real-time proxy in kernel for this
 * task. All the RTAI APIs will be executed by the proxy under
 * RTAI scheduler on the behalf of this task. Please note that
 * the first argument is a unsigned long. A string can be
 * converted to unsigned long using nam2num function.
 */
 if (!(task = rt_task_init(nam2num(“hello”), 0, 0, 0))) {
 printf("LXRT task creation failed\n”);
 exit(2);
 }

 rt_set_oneshot_mode();
 period = start_rt_timer(nano2count(TICK_TIME));
 /* Finally make the task periodic */
 rt_task_make_periodic(task, rt_get_time() + 5*period, period);

 /* ---- Main job of our real-time task ---- */

 count = 100;
 while(count--) {
 rt_printk(“Hello Real-time World\n”);
 rt_task_wait_period();
 }

260 Embedded Linux System Design and Development

Each domain is represented as a pipeline stage. Interrupts are propagated
from a higher-priority domain to a lower-priority domain in the pipeline. A
domain can choose to accept, discard, or terminate an interrupt. If a domain
accepts the interrupt, ADEOS calls its interrupt handler and then passes the
interrupt to the lower-priority domain next in the pipeline. If a domain discards
an interrupt, the interrupt is simply passed to the next pipeline stage. If a
domain terminates an interrupt, the interrupt is passed no further in the
pipeline.

ADEOS and Linux

ADEOS can provide hard real-time support in Linux. Two domains could be
implemented under ADEOS: one domain encompassing normal Linux and the
other a real-time executive that provides hard real-time guarantees. RTAI is
already using ADEOS as its HAL. Figure 7.7 shows the ADEOS interrupt
pipeline in RTAI.

ADEOS also provides an environment for implementing kernel debuggers
and profilers in Linux. In the ADEOS framework, kernel debuggers and
profilers can be represented as a high-priority domain and Linux as a low-
priority domain. They can then easily control the behavior of Linux by trapping
various interrupts.

Listing 7.14 LXRT Process (continued)

 /* ---- cleanup_module ---- */

 stop_rt_timer();
 rt_busy_sleep(10000000);
 rt_task_delete(task);
}

Figure 7.7 ADEOS interrupt pipeline.

RTAI

(higher

priority

domain)

Linux

(lower

priority

domain)

Hardware

Interrupts

Adeos Interrupt Pipeline

261

Chapter 8

Building and Debugging

This chapter is divided into two parts. The first half deals with the Linux build
environment. This includes:

� Building the Linux kernel
� Building user-space applications
� Building the root file system
� Discussion of popular Integrated Development Environments (IDEs)

The second half of the chapter deals with debugging and profiling techniques
in embedded Linux. This includes:

� Memory profiling
� Kernel and application debugging
� Application and kernel profiling

Generally a traditional RTOS builds the kernel and applications together
into a single image. It has no delineation between kernel and applications.
Linux offers a completely different build paradigm. Recall that in Linux, each
application has its own address space, which is in no way related to the
kernel address space. As long as the proper header files and C library are
used, any application can be built independently of the kernel. The result is
that the kernel build and application build are totally disjoint.

Having a separate kernel and application build has its advantages and
disadvantages. The main advantage is that it is easy to use. If you want to
introduce a new application, you need to just build that application and
download it to the board. The procedure is simple and fast. This is unlike
most real-time executives where the entire image has to be rebuilt and the
system has to be rebooted. However, the main disadvantage of the disjoint
build procedure is that there is no automatic correlation between the kernel
features and applications. Most of the embedded developers would like to

262 Embedded Linux System Design and Development

have a system build mechanism where once the configuration is chosen for
the system, the individual components (kernel, applications, and root file
system) get automatically built with all dependencies in place. However, in
Linux this is not the case. Added to the build complexity is the boot loader
building and the process of packing the root file system into a single down-
loadable image.

In order to elaborate this problem let us consider the case of an OEM who
is shipping two products: an Ethernet bridge and a router on a single hardware
design. Though much of the software remains the same (such as the boot
loader, the BSP, etc.), the basic differentiating capabilities between the two
products lie in the software. As a result the OEM would like to maintain a
single code base for both the products but the software for the system gets
built depending on the system choice (bridge versus router). This in effect
boils down to something as follows: a make bridge from a top-level directory
needs to choose the software needed for the bridge product and a similar
make router would build the software for a router. There is a lot of work
that needs to be done to achieve this:

� The kernel needs to be configured accordingly and the corresponding
protocols (such as the spanning bridge for the bridge or IP forwarding for
the router), drivers, and so on should be selected.

� The user-space applications should be built accordingly (such as the
routed daemon needs to be built).

� The corresponding start-up files should be configured accordingly (such
as the network interface initialization).

� The corresponding configuration files (such as HTML files and CGI scripts)
need to be selected and packed into the root file system.

 The user would be tempted to ask: why not push the software needed
for both the bridge and router into the root file system and then exercise the
drivers and applications depending on the runtime usage? Unfortunately such
an exercise would require waste storage space, which is not a luxury with
embedded systems; hence component selection at build time is advisable. The
desktops and servers can do this; hence this is rarely a concern for desktop
and server distributors.

The component selection during the build process needs some intelligence
so that a framework for a systemwide build can be developed. This can be
done by developing in-house scripts and integrating the various build proce-
dures. Alternatively the user can evaluate some IDEs available in the market-
place for his or her requirements. The IDE market for Linux is still in the
infant phase and there is more concentration on the kernel build mechanisms
simply because application building varies across applications (there are no
standards followed by application builds). Adding your own applications or
exporting the dependencies across applications simply may not be offered by
many IDEs; even if they do offer it, it may require a learning curve. IDEs are
discussed in a separate section. If you have decided to use an IDE then skip
the build section and go directly to the debugging section. But in case you
plan to tweak the build procedures stay on and read ahead.

Building and Debugging 263

8.1 Building the Kernel
The kernel build system (a more popular term for it is kbuild) is bundled
along with the kernel sources. The kbuild system is based on the GNU make;
hence all the commands are given to make. The kbuild mechanism gives a
highly simplified build procedure to build the kernel; in a few steps one can
configure and build the kernel and modules. Also it is very extensible in the
sense that adding your own hooks in the build procedure or customizing the
configuration process is very easy.

The kbuild procedure has seen some major changes in the 2.6 kernel
release. Hence this chapter explains both the 2.4 and 2.6 kernel build proce-
dures. Building the kernel is divided into four steps.

1. Setting up the cross-development environment: Because Linux has support
for many architectures, the kbuild procedure should be configured for the
architecture for which the kernel image and modules are being built. By
default the kernel build environment builds the host-based images (on
which the build is being done).

2. Configuration process: This is the component selection procedure. The list
of what software needs to go into the kernel and what can be compiled
as modules can be specified using this step. At the end of this step, kbuild
records this information in a set of known files so that the rest of kbuild
is aware of the selected components. Component selection objects are
normally:
a. Processor selection
b. Board selection
c. Driver selection
d. Some generic kernel options
There are many front ends to the configuration procedure; the following
are the ones that can be used on both the 2.4 and 2.6 kernels.
a. make config: This is a complicated way of configuring because this

would throw the component selection on your terminal.
b. make menuconfig: This is a curses-based front end to the kbuild

procedure as shown in Figure 8.1. This is useful on hosts that do not
have access to a graphic display; however, you need to install the
ncurses development library for running this.

c. make xconfig: This is a graphical front end to the configuration
process as shown in Figure 8.2. The 2.4 version made use of X whereas
the 2.6 version uses QT. The 2.6 has another version that makes use
of GTK and is invoked by running make gconfig.

d. make oldconfig: Often you would want to do minimal changes to
an existing configuration. This option allows the build to retain defaults
from an existing configuration and prompt only for the new changes.
This option is very useful when you want to automate the build
procedure using scripts.

3. Building the object files and linking them to make the kernel image: Once
the component selection is done, the following steps are necessary to build
the kernel.

264 Embedded Linux System Design and Development

a. On the 2.4 kernel, the header file dependency information (which .c
file depends on which .h files) needs to be generated using a command
make dep. This is not necessary on the 2.6 kernel.

b. However, the clean-up step is common to both the 2.4 and 2.6 kernel;
the make clean command cleans up all object files, kernel image, and
all intermediate files but the configuration information is maintained.
There is one more command that does whatever make clean does
along with cleaning the configuration information: this is the make
mrpoper command.

Figure 8.1 Curses-based kernel configuration.

Figure 8.2 X-based kernel configuration.

Building and Debugging 265

c. The final step is to create the kernel image. The name of the kernel
image is vmlinux and is the output if you just type make. However,
the kernel build does not stop here; there is usually some postprocessing
that needs to be done such as compressing it, adding bootstrapping
code, and so on. The postprocessing actually creates the image that
can be used in the target (the postprocessing is not standardized because
it varies across platforms and boot loaders used).

4. Building dynamically loadable modules: The command make modules
will do the job of creating modules.

 The above commands are sufficient for an end user to use the kbuild for
building the kernel. On embedded systems, however, you would want to
customize the build process further; some reasons are quoted below.

� You may want to add your BSP in a separate directory and alter the
configuration so that the kbuild builds the software components necessary
for your board.

� You may want to add your own linker, compiler, and assembler flags to
the build process.

� You may want to customize postprocessing of the kernel image once it is
built.

� You may want to build intelligence in the kbuild for doing a systemwide
build.

Taking into account these reasons, the next section will go into finer details
of the build process.

8.1.1 Understanding Build Procedure

The salient features of the kbuild procedure for both the 2.4 and 2.6 kernels
are described below.

� The top-level Makefile in the kernel sources is responsible for building
both the kernel image and the modules. It does so by recursively descend-
ing into the subdirectories of the kernel source tree. The list of the
subdirectories that need to be entered into depends on the component
selection, that is, the kernel configuration procedure. How exactly this is
done is explained later. The subdirectory Makefiles inherits the rules for
building objects; in 2.4 they do so by including a rules file called Rules.
make, which needs to be explicitly included in every subdirectory Make-
file. However, this requirement was dropped in the 2.6 kbuild procedure.

� Every architecture (the processor port) needs to export a list of components
for selection during the configuration process; this includes:
– Any processor flavor. For example, if your architecture is defined as

ARM, then you will be prompted as to which ARM flavor needs to be
chosen.

– The hardware board
– Any board-specific hardware configuration

266 Embedded Linux System Design and Development

– The kernel subsystem components, which more or less remain uniform
across all architectures such as the networking stack

Each architecture maintains a component, database in a file; this can be
found in the arch/$ARCH subdirectory. In the 2.4 kernel, the name of
this file is config.in, whereas on the 2.6 kernel it is the Kconfig file.
During the kernel configuration, this file is parsed and the user is prompted
with a component list for selection. You may need to add your hardware-
specific configuration in this file.

� Every architecture needs to export an architecture-specific Makefile; the
following list of build information is unique to every architecture.
– The flags that need to be passed to the various tools
– The subdirectories that need to be visited for building the kernel
– The postprocessing steps once the image is built
These are supplied in the architecture-specific Makefile in the arch/
$(ARCH) subdirectory. The top-level Makefile imports the architecture-
specific Makefile. The reader is advised to go through some architecture-
specific file in the kernel source tree (such as arch/mips/Makefile)
to understand the architecture-specific build definitions.

The following are some of the major differences between the 2.4 and 2.6
kernel build procedures.

� The 2.6 configuration and build mechanism has a different framework.
The 2.6 kbuild is much simpler. For example, in the 2.4 kernel the
architecture-specific Makefile does not have any standard; hence it varies
across various architectures. In 2.6 the framework has been fixed to
maintain uniformity.

� In 2.4, just typing a make would end up in different results depending on
the state of the build procedure. For example, if the user has not done
configuration and types make, kbuild would invoke make config throw-
ing questions on the terminal to the confused user. In 2.6, however, it
would result in an error with the proper help to guide the user.

� In 2.4, the object files get created in the same source directory. However,
2.6 allows the source tree and the output object tree (including configu-
ration output) to be in totally different files; this is done by an option to
make O=dir where dir is the object tree.

� In 2.4, the source files are touched (i.e., their timestamps are modified)
when doing a make dep. It causes problems with some source manage-
ment systems. On the other hand, in the 2.6 kernel the source files are
not touched during kernel build. This ensures that you can have a read-
only source tree. It saves disk space if many users want to share a single
source tree but have their individual object trees.

8.1.2 The Configuration Process

Though the configuration process is invoked using the make command, a
separate configuration grammar has been defined. This again differs across
the 2.4 and 2.6 kernels. Note that this grammar is simple and close to spoken

Building and Debugging 267

English; so just a glance at the configuration files (Kconfig for 2.6 kernel
and the Config.in files for the 2.4 kernel) can help you understand it. This
section does not go into the details of the grammar; rather it focuses on the
techniques used.1

� Every kernel subsection defines the rules for configuration in a separate file.
For example, the networking configuration is maintained in a Config.in
(for the 2.4 kernel) or Kconfig file (for 2.6 kernel) in the kernel source
directory net/. This file is imported by the architecture-defined configu-
ration file. For example, in 2.4, the MIPS architecture configuration file
arch/mips/config-shared.in has the line for importing the config-
uration rules for the VFS source (fs/config.in).

� A configuration item is stored as a name=value pair. The name of the
configuration item starts with a CONFIG_ prefix. The rest of the name is
the component name as defined in the configuration file. The following
are the values that a configuration variable can have:
– bool: The configuration variable can have value y or n.
– tristate: Here the variable can have the values y, n, or m (for

module).
– string: Any ASCII string can be given here. For example, in case you

need to pass the address of the NFS server from where you want to
mount the initial root file system, it can be given at build time using
a variable that holds a string value.

– integer: Any decimal number can be assigned to the variable.
– hexadecimal: Any hexadecimal can be assigned to the variable.

� While defining the configuration variable, it can be specified if the user
should be prompted for assigning a value to this variable. If not, a default
value is assigned to this variable.

� Dependencies can be created while defining a variable. Dependencies are
used to determine the visibility of an entry.

� Each configuration variable can have a help text associated with it. It is
displayed at the time of configuration. In the 2.4 kernel, all the help text
is stored in a single file Documentation/Configure.help; the help
text associated with a particular variable is stored following the name of
the variable. However, on the 2.6 kernel, the individual Kconfig files hold it.

Now we come to the last but the most important part. This is to understand
how the configuration process exports the list of selected components to the
rest of the kbuild. To achieve this it creates a .config file that contains the
list of selected components in name = value format. The .config file is
stored in the kernel base directory and is included in the top-level Makefile.
While evaluating a source file as a build candidate, the component value field
is used to find out if the component should be built (as a module or directly
linked to kernel). The kbuild uses a clever technique for this. Let’s assume
there is a driver sample.c in directory drivers/net that is exported to the
configuration process under the name CONFIG_SAMPLE. At the time of con-
figuration using the command make config the user will be prompted:

268 Embedded Linux System Design and Development

Build sample network driver (CONFIG_SAMPLE) [y/N]?

If he chooses y then CONFIG_SAMPLE=y will be added in the .config
file. In the drivers/net/Makefile there will be a line

obj-$(CONFIG_SAMPLE)+= sample.o

When this Makefile is encountered while recursing into the drivers/net
subdirectory, the kbuild will translate this line to

obj-y+= sample.o

This is because the .config file that is included has defined
CONFIG_SAMPLE=y. The kernel build has a rule to build obj-y; hence this
source file is chosen to be built. Likewise if this variable is selected as a
module then at the time of building modules this line would appear as

obj-m+= sample.o

Again the rule to build obj-m is defined by the kbuild. The kernel source
code too needs to be made aware of the list of components that are selected.
For example, in the 2.4 kernel init/main.c code there is a line as follows:

#ifdef CONFIG_PCI
 pci_init();
#endif

The macro CONFIG_PCI must be defined if the user has chosen PCI at the
time of configuration. In order to do this, the kbuild translates the name=value
pair as macro definitions in a file include/linux/autoconf.h. This file
gets split into a set of header files under the include/config directory. For
example, in the above example, there would be a file include/config/
pci.h having the line

#define CONFIG_PCI

Thus the kbuild mechanism ensures that the source files too can be
component aware.

8.1.3 Kernel Makefile Framework
We take a sample driver Makefile to understand the kernel Makefile framework.
For this we take drivers/net/Makefile. We look at the 2.4 Makefile
followed by the 2.6 version of it.

Listing 8.1 shows the Linux 2.4 drivers/net/Makefile simplified for
reading purposes. The initial four variables have special meaning. The obj-
y stands for the list of objects that are built into the kernel directly. The obj-m
stands for the list of object files that are built as modules. The other two
variables are just ignored by the build process.

Building and Debugging 269

The O_TARGET is the target (i.e., output) for this Makefile; the final kernel
image is created by pulling all the O_TARGET files from various subdirectories.
The rule for packing all the object files into the file specified by O_TARGET
is defined by $TOPDIR/Rules.make2, which is included explicitly by the
Makefile. The file net.o gets pulled into the final kernel image by the top-
level Makefile.

A special object file called multipart objects is given a special rule by the
make process. A multipart object is generated using multiple object files. A
single-part object does not require a special rule; the build mechanism chooses
the source file for building by replacing the .o part of the target object with
.c. On the other hand while building the multipart object, the list of objects
that make up the multipart object needs to be specified. The list of multipart
objects is defined in the variable list-multi. For each name that appears
in this list, the variable got by appending the string -objs to the name gets
the list of objects needed to build the multipart module.

Along with the obj-$(…), the 2.4 kernel needs to specify the list of
subdirectories to traverse using subdir-$(…). Again the same rule that applies

Listing 8.1 2.4 Kernel Sample Makefile

obj-y :=
obj-m :=
obj-n :=
obj- :=

mod-subdirs := appletalk arcnet fc irda … wan

O_TARGET := net.o

export-objs := 8390.o arlan.o … mii.o

list-multi := rcpci.o
rcpci-objs := rcpci45.o rclanmtl.o

ifeq ($(CONFIG_TULIP),y)
obj-y+= tulip/tulip.o
endif

subdir-$(CONFIG_NET_PCMCIA)+= pcmcia
…
subdir-$(CONFIG_E1000) += e1000

obj-$(CONFIG_PLIP) += plip.o
…
obj-$(CONFIG_NETCONSOLE) += netconsole.o

include $(TOPDIR)/Rules.make

clean:
 rm –f core *.o *.a *.s

rcpci.o : $(rcpci-objs)
 $(LD) –r –o $@ $(rcpci-objs)

270 Embedded Linux System Design and Development

for obj-* holds for subdirs also (i.e., subdir-y is used to traverse the list
of directories while building a kernel image, whereas subdir-m is used to
traverse while building modules). Finally we come to the export-objs
variable. This is the list of files that can export symbols.

The 2.6 kernel Makefile is much simpler as shown in Listing 8.2.
The major differences in the 2.6 build procedure as compared to the 2.4

build procedure are:

� There is no need to pull in Rules.make; the rules for building get
exported implicitly.

� The Makefile does not specify the target name because there is a build-
identified target built-in.o. The built-in.o from the various subdi-
rectories is linked to build the kernel image.

� The list of subdirectories that need to be visited uses the same variable
obj-* (unlike 2.4 where the subdirs-* variable is used).

� Objects that export symbols need not be specifically mentioned (the build
process uses the EXPORT_SYMBOL macro encountered in the source to
deduce this information).

8.2 Building Applications
Now that we have understood the procedure to build the kernel, we proceed
to building user-space programs. This domain is very diverse; there may be
umpteen build mechanisms employed by individual packages. However, most
of the open source programs follow a common method for configuration and
building. Considering the richness of the open source software that can be
deployed for embedded systems, understanding this topic can ease the porting
of the commonly available open source programs to your target board. Also
you would want to tweak the build procedure to make sure that unwanted
components are not chosen for building the program; this ensures that your
valuable storage space is not wasted in storing unnecessary software.

Like the kernel, the applications also have to be built using the cross-
development tools. Most of the open source programs follow the GNU build
standard. The GNU build system addresses the following portability issues.

Listing 8.2 2.6 Kernel Sample Makefile

rcpci-objs:= rcpci45.o rclanmtl.o

ifeq ($(CONFIG_ISDN_PPP),y)
 obj-$(CONFIG_ISDN) += slhc.o
endif

obj-$(CONFIG_E100) += e100/
…
obj-$(CONFIG_PLIP) += plip.o
…
obj-$(CONFIG_IRDA) +=irda

Building and Debugging 271

� Hardware differences such as endianness, data type sizes, and so on
� OS differences such as device file naming conventions, and so on
� Library differences such as version number, API arguments, and so on
� Compiler differences such as compiler name, arguments, and so on

GNU build tools are a collection of several tools, the most important of
which are listed below.

� autoconf: It provides a general portability framework, based on testing the
features of the host system at build time. It does this by performing tests
to discover the host features.

� automake: It is a system for describing how to build a program, permitting
the developer to write a simplified Makefile.

� libtool: It is a standardized approach to building shared libraries.

Note that understanding these tools is a primary concern only if a developer
of an application intends to create an application to be used on multiple
platforms including various hardware architectures as well as various UNIX
platforms such as Linux, FreeBSD, and Solaris. On the other hand if the reader
is interested in only cross-compiling the application, then all that she needs
to do is to type the following commands on the command line.

./configure
make

In this chapter we discuss in brief the various pieces that help the con-
figure script to generate the Makefiles necessary for compilation of the
program. Also we provide tips on troubleshooting and working around some
common problems that arise when using configure for cross-compilation.
However, how to write the configure script for a program is not discussed
and is beyond the scope of this book. If the reader is interested in writing
the configure script then please refer to www.gnu.org on the GNU configure
system.

All programs that employ the GNU configure build system, ship a shell
script called configure and a couple of support files, along with the program
sources. Any Linux project that uses the GNU configure build system requires
this set of support files for the build process. Along with the set of files that
accompanies the distribution statically, there are files generated dynamically
during the build process. Both these sets of files are described below.

Files that are part of the distribution include configure, Makefile.in,
and config.in. configure is a shell script. Use ./configure -–help to
see the various options that it takes. The configure script in essence contains
a series of programs or test cases to be executed on the host system based
on which the build inputs change. For the reader to understand the type of
tests done by configure, some commonly performed checks are listed below.

� Checking for the existence of a header files such as stdlib.h, unistd.h,
and so on

272 Embedded Linux System Design and Development

� Checking for the presence of library APIs such as strcpy, memcpy, and
so on

� Obtaining the size of a data type such as sizeof(int), sizeof
(float), and so on

� Checking/locating the presence of other external libraries required by the
program. For example, libjpeg for JPEG support, or libpng for PNG
support

� Checking if the library version number matches

These are generally the dependencies that make a program system-depen-
dent. Making the configure script aware of these dependencies will ensure
that the program becomes portable across UNIX platforms. For performing
the above tasks configure uses two main techniques.

� Trial build of a test program: This is used where configure has to find the
presence of a header or an API or library. configure just uses a simple
program like the one listed below to look for the presence of stdlib.h.

#include <stdlib.h>
main() {
 return 0;
}

If the above program compiles successfully, that indicates the presence of
a usable stdlib.h. Similar tests are done for API and library presence
detection.

� Execute a test program and capture the output: In situations where con-
figure has to obtain the size of a data type, the only method available
is to compile, execute, and obtain output of the program. For instance, to
find the size of an integer on a platform, the program given below is
employed.

main() {
 return sizeof(int)
};

The result of the tests/programs executed by configure are generally
stored in config.h as configuration (preprocessor) macros and if this com-
pletes successfully, configure starts the creation of Makefiles. These config-
uration macros can then be used in code to select portions of code required
for a particular UNIX platform. The configure script takes many input argu-
ments; they can be found out by running configure with the –help option.

The configure script works on Makefile.in to create Makefile at
build time. There will be one such file in each subdirectory of the program.
The configure script also converts config.in to config.h, which alters
CFLAGS defined for compilation. The CFLAGS definition gets changed based
on the host system on which the build process is run. Most of the portability
issues are addressed using the preprocessor macros that get defined in this file.

Files that are generated during the application build include:

Building and Debugging 273

� Makefile: This is the file that make will use to build the program. The
configure script transforms Makefile.in to Makefile.

� config.status: The configure script creates a file config.status,
which is a shell script. It contains the rules to regenerate the generated
files and is invoked automatically when any of the input file changes. For
example, let us take the case when you have an already preconfigured
build directory (i.e., one in which the configure script has been run at
least once). Now if you change Makefile.in, then Makefiles will get
generated automatically when you just invoke the make command. The
regeneration happens using this script without having to invoke the con-
figure script.

� config.h: This file defines the config preprocessor macros that C code
can use to adjust its behavior on different systems.

� config.cache: configure caches results between the script runs in
this file. The output results for various configure steps are saved to this
file. Each line is a variable = value assignment. The variable is a script-
generated name that is used by configure at build time. The configure
script reads the values of the variables in this file into memory before
proceeding with the actual checks on the host.

� config.log: It stores the output when the configure script is run.
Experienced users of configure can use this script to discover problems
with the configuration process.

8.2.1 Cross-Compiling Using Configure
The most generic form of using configure for cross-compilation is:

export CC=<target>-linux-gcc
export NM=<target>-linux-nm
export AR=<target>-linux-ar
./configure --host=<target> --build=<build_system>

The <build_system> is the system on which the build is done to create
programs that run on <target>. For example, for a Linux/i686 desktop and
ARM-based target, <build_system> is i686-linux and the <target> is
arm-linux.

export CC=arm-linux-gcc
export NM=arm-linux-nm
export AR=arm-linux-ar
./configure --host=arm-linux --build=i686-linux

The --build flag need not always be supplied. In most cases the con-
figure script makes a decent guess of the build system.

Note that it’s not always necessary that running configure for cross-
compilation be successful in the first attempt. The most common error during
cross-compilation is:

configure: error: cannot run test program while
 cross compiling

274 Embedded Linux System Design and Development

This error occurs because configure is trying to run some test program
and obtain its output. If you are cross-compiling, in that case the test program
compiled is an executable for the target and cannot run on the build system.

To fix this problem, study the output of the configure script to identify
the test that is failing. Open the config.log file to get more details about
the error. For example, assume you run configure and get an error.

export CC=arm-linux-gcc
./configure --host=arm-linux

 …
checking for fcntl.h... yes
checking for unistd.h... yes
checking for working const... yes
checking size of int...
configure: error: cannot run test program while
 cross compiling

In the above run configure is trying to find the size of int. To achieve
this it compiles a program of form main(){ return (sizeof(int))} to
find the size of an integer on the target system. The program execution will
fail as the build system does not match the target system.

To fix such problems you need to edit the config.cache file. Recall that
configure reads in values from the config.cache file before starting the
checks. All you need to do is look for the test variable in the configure
script and add its entry as desired in the config.cache file. In the above
example, assume the ac_sizeof_int_set variable defines the size of an
integer in the configure script. Then add the following line in con-
fig.cache.

ac_sizeof_int_set=4

After this change the output of configure is:

 …
checking for fcntl.h... yes
checking for unistd.h... yes
checking for working const... yes
checking size of int...(cached) yes
 …

8.2.2 Troubleshooting Configure Script

Now that we have the idea of what the configure script does, we try to see
what can go wrong. There are two failure triggers. One is when the configure
script is correct, and your system really does lack a prerequisite. Most often,
this will be correctly diagnosed by the configure script. A more disturbing
case is when the configure script is incorrect. This can result either in failing
to produce a configuration, or producing an incorrect configuration. In the

Building and Debugging 275

first case when the configure script detects that a prerequisite is missing,
usually most configure scripts are good enough to spit out a decent error
message describing the required version of the missing component. All that
we have to do is install this required missing component and rerun the
configure script. Following are some tips to troubleshoot problems related to
configure script.

� Read the README and go through the options in ./configure -–help:
There might be some special option to specify the path to a dependent
library, which when not specified might default to some wrong path
information.

� Plot the dependency tree: Take care when reading the project documenta-
tion and note down the dependent libraries and the version number
requirements. This will save a lot of your time. For example, the GTK
library depends on GLIB library, which depends on ATK and PANGO
libraries. PANGO library in turn depends on FREETYPE library. It is better
to have a dependency chart handy, so that you compile and install the
independent nodes (libraries) in the tree and then compile the parent (library).

� Trial run on i386: Sometimes before cross-compiling, running a configure
script on i386 might be helpful in understanding the flow of the script and
its dependencies.

� Learn to read config.log: When the configure script runs, it creates a
file called the config.log. This file has the complete log of the execution
path of the script. Each line has the exact shell command that is being
executed. Reading the log file carefully will reveal the test being made
and will help you understand the reason for the failure.

� Fixing poor configure scripts: Poorly written configure scripts are always
a nightmare to handle. They might be doing incorrect test programs or
have hard codings for library paths and the like. All you need is a little
patience and time to fix the script.

8.3 Building the Root File System
Now that we have learned the process of building the kernel and applications,
the next logical step is to understand the process of making a root file system.
As explained in Chapters 2 and 4, there are three techniques that can be used
for this purpose.

� Using the initrd/initramfs: The initrd was discussed in detail in Chapters
2 and 4. In this section we discuss initramfs. The scripts at the end of this
section can be used to create these images.

� Mounting the root file system over the network using NFS: This makes sense
during the development stages; all changes can be done on the develop-
ment (host) machine and the root file system can be mounted across the
network from the host. The details of how to mount the root file system
using NFS can be obtained from the documentation that is part of the
kernel source tree under Documentation/nfsroot.

276 Embedded Linux System Design and Development

� Burning the root file system into flash: This is done during the production
stage. The image of the root file system to be run on the target (such as
JFFS2 or CRAMFS) is created on the host and is then burned to flash. The
various tools that are available for making the images are explained in
Chapter 4.

Listing 8.3 shows a generic initrd script. Its usage is:

mkinitrd <rfs-folder> <ramdisk-size>

Listing 8.3 mkinitrd

#!/bin/sh

create ramdisk image file
/bin/rm -f /tmp/ramdisk.img
dd if=/dev/zero of=/tmp/ramdisk.img bs=1k count=$2

Setup loop device
/sbin/losetup -d /dev/loop0 > /dev/null 2>&1
/sbin/losetup /dev/loop0 /tmp/ramdisk.img || exit $!

First, unmount /tmp/ramdisk0 just in case it's already mounted
if [-e /tmp/ramdisk0]; then
 umount /tmp/ramdisk0 > /dev/null 2>&1
fi

Create filesystem
/sbin/mkfs -t ext2 /dev/loop0 || exit $!

Create mount-point
if [-e /tmp/ramdisk0]; then
 rm -rf /tmp/ramdisk0
fi
mkdir /tmp/ramdisk0

Mount filesystem
mount /dev/loop0 /tmp/ramdisk0 || exit $!

Copy filesystem data
echo "Copying files and directories from $1"
(cd $1; tar -cf - *) | (cd /tmp/ramdisk0; tar xf -)
chown -R root /tmp/ramdisk0/*
chgrp -R root /tmp/ramdisk0/*

ls -lR /tmp/ramdisk0

unmount
umount /tmp/ramdisk0
rm -rf /tmp/ramdisk0

unhook loop device
/sbin/losetup -d /dev/loop0

Building and Debugging 277

where

� <rfs-folder> is the absolute path of the parent directory containing
the root file system.

� <ramdisk-size> is the size of initrd.

The script creates an initrd image /tmp/ramdisk.img that could be
mounted as an ext2 file system on the target. It uses a loopback device /
dev/loop0 to copy files from the root file system folder <rfs-folder> to
the target image /tmp/ramdisk.img.

Initramfs was introduced in the 2.6 kernel to provide early user space. The
idea was to move a lot of initialization stuff from kernel to user space. It was
observed that initializations such as finding the root device, mounting the root
file system either locally or over NFS, and so on that were part of the kernel
boot-up sequence can easily be handled in user space. It makes the kernel
clean. Thus initramfs was devised to achieve this purpose.

As you can mount the initrd image as the root file system, you can also
similarly mount the initramfs image as the root file system. Initramfs is based
on the RAMFS file system and initrd is based on ramdisk. The differences
between RAMFS and ramdisk are shown in Table 8.1. The initramfs image
can be created using mkinitramfs script. Its usage is:

mkinitramfs <rfs-folder>

Table 8.1 RAMFS versus RAMDISK

RAMDISK RAMFS

Ramdisk is implemented as a block
device in RAM and one needs to create
a file system on top of it to use it.

RAMFS on the other hand is a file system
implemented directly in RAM. For
every file created in the RAMFS, the
kernel maintains the file data and
metadata in the kernel caches.

Ramdisk needs to be preallocated in
RAM before use.

No preallocation necessary, dynamic
growth based on requirement.

Two copies of program pages are
maintained: one in the ramdisk and the
other in the kernel page cache when
any program is executed out of
ramdisk.

Whenever a program is executed from a
RAMFS, only one copy that is in the
kernel cache is used. No duplication.

Ramdisk is slower because any data
access needs to go through the file
system and block device driver.

RAMFS is relatively faster as actual file
data and metadata are in kernel cache
and no file system and block device
driver overheads are involved.

278 Embedded Linux System Design and Development

where <rfs-folder> is the absolute path of the parent directory containing
the root file system. To create an initramfs image you need to create a cpio
archive of the <rfs-folder> followed by gziping the archive.

#!/bin/sh

#mkinitramfs

(cd $1 ; find . | cpio --quiet -o -H newc | gzip -9
 >/tmp/img.cpio.gz)

8.4 Integrated Development Environment
As a programming project grows in size so do its building and management
needs. The components that are involved during program development are:

� Text editor: It is needed to write the source code files. It’s an advantage
having text editors that understand your programming language. Syntax
highlighting, symbol completion, and code navigation are some of the
other desired features.

� Compiler: To generate the object code.
� Libraries: To localize the reusable code.
� Linker: To link the object code and produce the final binary.
� Debugger: A source-level debugger to find programming errors.
� Make system: To manage the build process effectively.

 A lot of time can be saved if the tools needed to accomplish the above
tasks work together under a single development environment, that is, under
an IDE. An IDE integrates all the tools that are needed in the development
process into one single environment.

An IDE used for an embedded Linux development should have the fol-
lowing features.

� Building applications: Generating Makefiles for imported source code,
importing existing Makefiles, and checking source code dependencies are
some of the desired features.

� Managing applications: It should integrate with source code management
tools such as CVS, ClearCase®, Perforce®, and so on.

� Configuring and building the kernel: It should provide an interface to
configure and build the kernel.

� Building the root file system: The root file system may be flash-based,
memory-based, or network-based depending on the system. An IDE should
provide a mechanism to add or remove applications, utilities, and so on
in the root file system.

� Debugging applications: It should provide a source code–level debugging
of applications running on the target.

� Debugging kernel: This is an added advantage if an IDE provides support
for debugging the kernel and kernel modules.

Building and Debugging 279

In this section we discuss both open source and commercial IDEs that can
be used as a development environment.

8.4.1 Eclipse

Eclipse is an open source software development project (www.eclipse.org)
dedicated to providing a robust, full-featured platform for the development
of IDEs. Eclipse provides a basic framework and various features of the IDEs
are implemented as separate modules called plug-ins. It is actually this plug-
in framework that makes Eclipse very powerful. When the Eclipse is launched,
the user is presented with an IDE composed of the set of available plug-ins.
Most of the commercial IDEs such as TimeStorm are built using the Eclipse
framework.

8.4.2 KDevelop

KDevelop is an open source IDE for KDE™ (www.kdevelop.org). Some of
the features of KDevelop are:

� It manages all development tools such as compiler, linker, and debugger
in one environment.

� It provides an easy-to-use front end for most needed functions of source
code management systems such as CVS.

� It supports Automake Projects for automatic Makefile generation and man-
aging the build process. It also supports Custom Projects to let the user
manage the Makefiles and build processes.

� Cross-compilation support.
� Integrated text editor based on KDE’s Kwrite, Trolltec’s Qeditor, and so

on with features such as syntax highlighting, auto symbol completion, and
so on.

� Doxygen integration to generate API documentation.
� Application wizard to generate sample applications.
� Support for Qt/embedded projects.
� GUI-based front end for GDB.

8.4.3 TimeStorm

The TimeStorm Linux Development Suite (LDS) is a commercial embedded
Linux development environment provided by TimeSys (www.timesys.com). It
is based on the Eclipse IDE framework. Some of the features are:

� Runs on Linux and Windows systems.
� Integrated with source code management tools such as CVS, ClearCase,

Perforce, and so on.
� Tools for developing and debugging embedded applications.
� Works with non-TimeSys Linux distributions.

280 Embedded Linux System Design and Development

� Interface for configuring and compiling the Linux kernel for the specified
target.

� GUI-based interface for creating root file system for the target.
� It gives an ability to download and execute the programs on the target.
� GUI front end for remote debugging of applications using GDB.

8.4.4 CodeWarrior

Metrowerks CodeWarrior Development Studio is a complete commercial IDE
that facilitates development from hardware bring-up to debugging applications
(www.metrowerks.com). Some of the features are:

� Integrated text editor with features such as syntax coloring, auto-indenting,
and so on.

� Includes a search engine for fast source code navigation.
� Integrated instruction set simulator for kickstarting application development.
� It provides a high-performance, windowed, source-level debugger. The

debugger includes a flash programmer and a hardware diagnostic tool.
� Integrated version control system such as CVS, Perforce, and so on.

8.5 Debugging Virtual Memory Problems
When running applications on Linux, often the user runs into memory man-
agement problems. They can be roughly classified into three categories:

� Memory leaks: Memory leaks are caused when a memory chunk that has
been allocated is not freed. Repeated memory leaks can prove fatal to an
embedded system because the system may run short of memory.

� Overflow: Overflow is the condition wherein addresses beyond the end
of an allocated area are accessed. Overflow is a very grave security hazard
and is used by intruders to hack into a system.

� Corruption: Memory corruption happens when the memory pointers hold
wrong or invalid values. Usage of these pointers may lead to haywire
program execution and usually lead to program termination.

 Memory management problems are very trying in the sense that they are
very difficult to find by code inspection or may happen inconsistently or after
many hours of system usage. Fortunately there are a number of open source
tools to trace problems related to memory management. The following sub-
sections talk about them in detail with adequate examples. Chapter 10 dis-
cusses how dynamic memory gets allocated on Linux.

Memory leaks are due primarily to two reasons:

� Carelessness by the coder: The developer of a program does not pay much
attention to freeing the allocated memory when it is no longer used.

� Pointer corruption: This happens when a pointer holding a reference to a
memory chunk gets corrupted hence losing reference to the memory chunk.

Building and Debugging 281

Repeated memory leaks on an embedded system without swap makes the
system go low on memory. How does the system behave in such a case?
When the system goes low on memory, it goes into a prune mode and tries
to squeeze the system caches (such as page cache, buffer cache, and file
system caches as well as the slab caches) and in this process flushes process
image files. Even at the end of this exercise if the system is low on memory,
the infamous out of memory or OOM killer is invoked. When OOM is invoked
you see the following message on the console.

Out of Memory: Killed process 10(iisd)

In this case OOM killer killed a process iisd (with pid 10). Rik Van Reil
introduced the OOM killer in the 2.2.15 kernel. The underlying philosophy
behind the OOM killer is that when the memory is very low on the system,
instead of allowing the kernel to panic or the system to be locked out, kill a
process or set of processes so that the memory is released back to the system.
So instead of allowing the system to crash, let it run with one or some
applications killed. Obviously the key to the OOM implementation is the
choice of process to be killed; killing systemwide important processes can be
as harmful as a system crash. Hence the OOM killer has been a highly debated
topic especially because it is very difficult to give a generic solution as Linux
runs on a wide variety of systems. The OOM design has seen evolution in
this regard. In the 2.6 kernel, the OOM killer goes through the list of all
processes and comes up with a memory badness value. The process that has
the maximum badness value is killed.

The OOM is a last-ditch effort by the system to recover from low-memory
problems. It is the responsibility of the developer to make sure that the
condition does not happen in the first place. Following are two techniques
that can make the system more robust to memory leaks:

� Setting a memory water mark for every process: The first step in this
direction is to identify bad programs that cause memory leaks. This can
be done by setting an RSS limit for every process running on the system
using the setrlimit() system call. There are two system calls provided
by the Linux kernel in this regard: setrlimit() and getrlimit() for
setting and getting resource limits, respectively. Each resource has a hard
and soft limit as defined by an rlimit structure (see header file sys/
resource.h). The soft limit is the value that the kernel enforces for the
corresponding resource. The hard limit acts as a ceiling for the soft limit.
Various kinds of resource limitations can be placed; the most significant
one related to memory is the RLIMIT_RSS, which limits the number of
pages belonging to a process resident in RAM. (Refer to the main page of
setrlimit for its usage.)

� Disabling over-commit on the system: Over-commit is a memory mortgage
scheme wherein the kernel commits more dynamic memory to an appli-
cation even though it may not have adequate memory resources. The idea
behind over-commit is that normally desktop-based applications allocate
lots of memory but seldom use most of it. Hence the kernel passes the

282 Embedded Linux System Design and Development

memory allocation without caring to check if it has the resources. (Anyway
because of demand paging the actual memory does not get allocated unless
it is used.) On an embedded system, it is not advisable to turn on this
feature for two reasons:
– You should not have any application wanting to allocate a huge amount

and then use it only partially. Such applications are careless with
memory usage and are not optimized for embedded systems. (If an
application is careless about memory allocations, it may be careless
about freeing memory too.)

– It is better to fail when an application requests memory and memory
is scarce rather than allowing the memory allocation to pass and then
trigger an out-of-memory condition later when the memory is accessed.
The former is easy to debug and it can be rectified more easily. Linux
offers the user to turn off over-commit using a proc file /proc/sys/
vm/overcommit. Writing a 0 to this file turns off over-commit.

However, in case you hit the OOM condition and you are sure that some
application is leaking memory, then the best solution is to use memory
debuggers that are aimed towards detecting leaks.

8.5.1 Debugging Memory Leaks

In this section we discuss mtrace and dmalloc tools to debug memory leaks.

mtrace

mtrace is a glibc tool for fighting memory leaks. As the name suggests, it is
used to trace memory allocations and freeing. There are two glibc calls that
are provided for this purpose:

� mtrace(void): This starts the tracing. When the mtrace function is
called it looks for an environment variable named MALLOC_TRACE. This
variable is supposed to contain a valid file name for which the user needs
to have write access. Nothing is done if the environment variable is not
set or if the file cannot be opened for writing. However, if the named file
is successfully opened, mtrace installs special handlers for the allocator
functions, which writes the trace logs into the file.

� muntrace(void): This stops the tracing by deinstalling the trace han-
dlers.

 Listing 8.4 shows a simple program that causes a memory leak. We show
how the leak can be detected using mtrace. Compile the program and execute
the following steps.

gcc -g leak.c -o leak
export MALLOC_TRACE=./log
./a.out
cat log

TE
AM
 F
LY

Building and Debugging 283

= Start
@ ./a.out:(mtrace+0xf5)[0x8048445] + 0x8049a40 0x13
@ ./a.out:(mtrace+0x105)[0x8048455] + 0x8049a58 0x11
@ ./a.out:(mtrace+0x162)[0x80484b2] - 0x8049a58
= End

As you see, the log file that has been generated by mtrace is rather cryptic.
Glibc provides a program with the name as mtrace again (which is derived
from a Perl script mtrace.pl). This program parses the contents of the log
file and shows the actual leak in a human-friendly manner.

mtrace ./a.out log
Memory not freed:

Address Size Caller
0x8048445 0x13 at ./leak.c:6

Thus the user is informed that while tracing was turned on, a memory
leak was detected. A chunk of memory of size 19 bytes (0 × 13) that was
allocated in the file leak.c at line number 6 was not freed.

dmalloc

dmalloc is a more advanced tool that provides memory leak detection along
with a host of other features such as fencepost checking and heap verification.
This section focuses on usage of dmalloc primarily for memory leak detection.
The official Web site for dmalloc is http://dmalloc.com.

Listing 8.4 Mtrace Usage

/* leak.c */

#include <mcheck.h>
func()
{
 char *str[2];
 mtrace();
 str[0] = (char *)malloc(sizeof("memory leak start\n"));
 str[1] = (char *)malloc(sizeof("memory leak end\n"));
 strcpy(str[0] ,"memory leak start\n");
 strcpy(str[1] ,"memory leak end\n");
 printf("%s",str[0]);
 printf("%s",str[1]);
 free(str[1]);
 muntrace();
 return;
}

main()
{
 func();
}

284 Embedded Linux System Design and Development

dmalloc is implemented using a library that provides a wrapper around
memory allocation APIs such as malloc, free, and so on. Hence the
application needs to be linked against this library to make use of dmalloc.
We illustrate this further using an example shown in Listing 8.5. Compile and
link dmalloc_test.c with libdmalloc.a.3

ls -l libdmalloc.a
-rw-rw-r-- 1 raghav raghav 255408 Sep 4 10:48 libdmalloc.a
gcc dmalloc_test.c -o dmalloc_test ./libdmalloc.a

Now that we have linked our application, it is time to run it. But before
we run the program we need to set an environment variable that will inform
the library that runtime debugging needs to be turned on and where logging
has to be done among a host of other things. We discuss the environment
variable in detail later.

export DMALLOC_OPTIONS=debug=0x3,log=dlog
./dmalloc_test

The output is shown in Listing 8.6. The lines marked bold indicate the
number of memory leaks. Note that the debugging information such as file
number and line number is absent. We can get this information by using tools
such as gdb or addr2line. However, dmalloc provides a mechanism to
include more debugging information in the log file using the dmalloc.h file.
This file comes with the dmalloc package. All the C files that are linked to
form the application to be debugged need to include this header file. This
header file declares the memory allocator functions such as malloc()and

Listing 8.5 Dmalloc Usage

/* dmalloc_test.c */

#include <stdio.h>
#include <stdlib.h>

#ifdef USE_DMALLOC
#include <dmalloc.h>
#endif

int main()
{
 char *test[5];
 unsigned int i;

 for (i=0; i < 5; i++)
 {
 unsigned int size = rand()%1024;
 test[i] = (char *)malloc(size);
 printf ("Allocated memory of size %d\n",size);
 }
 for (i=0; i<2; i++)
 free(test[i*2]);
}

Building and Debugging 285

free() with the preprocessor macros such as __FILE__ and __LINE__. For
example, the definition of malloc from dmalloc.h goes as follows.

#undef malloc
#define malloc(size) \
 dmalloc_malloc(__FILE__, __LINE__, (size), DMALLOC_FUNC_MALLOC,

 0, 0)

Listing 8.6 Dmalloc Output

calling dmalloc malloc
Allocated memory of size 359
calling dmalloc malloc
Allocated memory of size 966
calling dmalloc malloc
Allocated memory of size 105
calling dmalloc malloc
Allocated memory of size 115
calling dmalloc malloc
Allocated memory of size 81
bash>cat dlog
1094293908: 8: Dmalloc version '5.3.0' from 'http://dmalloc.com/'
1094293908: 8: flags = 0x3, logfile 'dlog'
1094293908: 8: interval = 0, addr = 0, seen # = 0, limit = 0
1094293908: 8: starting time = 1094293908
1094293908: 8: process pid = 4709
1094293908: 8: Dumping Chunk Statistics:
1094293908: 8: basic-block 4096 bytes, alignment 8 bytes, heap
 grows up
1094293908: 8: heap address range: 0x80c3000 to 0x80ca000, 28672
 bytes
1094293908: 8: user blocks: 3 blocks, 12217 bytes (42%)
1094293908: 8: admin blocks: 4 blocks, 16384 bytes (57%)
1094293908: 8: external blocks: 0 blocks, 0 bytes (0%)
1094293908: 8: total blocks: 7 blocks, 28672 bytes
1094293908: 8: heap checked 0
1094293908: 8: alloc calls: malloc 5, calloc 0, realloc 0, free 3
1094293908: 8: alloc calls: recalloc 0, memalign 0, valloc 0
1094293908: 8: alloc calls: new 0, delete 0
1094293908: 8: current memory in use: 1081 bytes (2 pnts)
1094293908: 8: total memory allocated: 1626 bytes (5 pnts)
1094293908: 8: max in use at one time: 1626 bytes (5 pnts)
1094293908: 8: max alloced with 1 call: 966 bytes
1094293908: 8: max unused memory space: 294 bytes (15%)
1094293908: 8: top 10 allocations:
1094293908: 8: total-size count in-use-size count source
1094293908: 8: 1626 5 1081 2 ra=0x8048a46
1094293908: 8: 1626 5 1081 2 Total of 1
1094293908: 8: Dumping Not-Freed Pointers Changed Since Start:
1094293908: 8: not freed: '0x80c6c00|s1' (966 bytes) from
 'ra=0x8048a46'
1094293908: 8: not freed: '0x80c8f00|s1' (115 bytes) from
 'ra=0x8048a46'
1094293908: 8: total-size count source
1094293908: 8: 1081 2 ra=0x8048a46
1094293908: 8: 1081 2 Total of 1
1094293908: 8: ending time = 1094293908, elapsed since start =
 0:00:00

286 Embedded Linux System Design and Development

The first line is to undefine any malloc declarations that come in from
previously included header files (stdlib.h). Needless to say, the dmalloc.h
should be the last file to be included.

The DMALLOC_OPTIONS as shown in the above example controls the
debugging at runtime. This environment variable can be set manually or by
using a utility program called dmalloc. For an embedded environment you
may prefer setting this option manually. To get more information on the
dmalloc utility, run it on the command line with the argument --usage.
The DMALLOC_OPTIONS is a list of the following (important) tokens separated
by commas:

� debug: This token takes a hexadecimal value derived by adding all
functionality tokens. A functionality token turns on a debugging feature
at runtime. For example, the functionality token 0x1 turns on logging
general statistics and 0x2 turns on logging memory leaks. So adding them
yields 0x3 and turns on logging of general statistics and memory leaks.
The list of all functionality tokens can be obtained by running the dmalloc
program with the argument --DV.

� log: This is used to set a filename for logging statistics, leaks, and other errors.
� addr: When this is set, dmalloc will abort when it operates on that address.
� inter: This is used if the heap checking functionality is turned on. For

example, if this value is set to 10, then the heap is checked for errors
every 10 times.

8.5.2 Debugging Memory Overflows

Though easy to use, the C language is an insecure language because it does
not prevent buffer overflows. Many functions in the C library are documented
as unsafe to use (such as the infamous gets() function) but that does not
prevent a careless programmer from using such functions and causing security
breaches in the system. The following are some of the exploits that are
encountered due to such careless programming.

� Changing code execution: The buffer overflow can modify the return
address in the stack or an arbitrary function pointer in memory.

� Overwriting a data variable: The variable that holds some secret informa-
tion such as a database connect string.

If you have downloaded an application source from the Net and would
like to scan it for overflows, there are ready tools available for helping you.
The tool that was primarily written to hunt buffer overflows is the Electric
Fence. Note that dmalloc is also capable of doing fencepost checking. But
the method provided by dmalloc is not exactly foolproof because it is imple-
mented totally in software. There are two drawbacks to the dmalloc scheme:

� dmalloc implements fencepost checking by padding the allocated area
with a magic number and making sure that the magic number does not

Building and Debugging 287

get overwritten. The frequency of the checks is controlled using the debug
token inter. This scheme can be effective in finding if there was an
overflow but it may not be effective in pointing to the offending instruction.

� dmalloc can detect only writes beyond buffer boundaries; however, reads
beyond buffer boundaries still go undetected.

Electric Fence makes use of the hardware to catch the exact offending
instruction that tries to read and write beyond buffer boundaries. Additionally,
it can be used to detect any conditions of software accessing memory that
has already been freed. Electric Fence manages this by allocating a page (or
set of pages) for every memory request and then rendering the pages beyond
the buffer inaccessible for reading or writing. Thus if the software tries to
access memory beyond the boundaries, it results in a segmentation fault.
Similarly if memory released by the free() call is made inaccessible by virtual
memory protection, any code that touches the freed memory will get a
segmentation fault.

Electric Fence is available as a library libefence.a; this needs to be
linked against the application that needs to be debugged for buffer overruns.
Listing 8.7 illustrates the usage of Electric Fence. As you see in Listing 8.7,
the recommended way of running Electric Fence is to run it from gdb so that
the offending instruction can be caught with full debugging information. This
example shows the case of buffer overflow. Underflows can also be caught
by Electric Fence but in order to do this an environment variable
EF_PROTECT_BELOW needs to be exported before running the application.
This is necessary because by default Electric Fence catches only buffer over-
flows by placing inaccessible memory after the end of every allocation. Setting
this variable makes sure that the inaccessible memory is placed before the
start of the allocation. Thus in order to make sure that the application has
neither overflows nor underruns the application should be invoked twice:
once without setting the EF_PROTECT_BELOW variable and the second time
after setting it.

Because Electric Fence requires that at least one memory page be allocated
for every allocation, it can be quite a memory hog. The recommended use
of Electric Fence is only for debugging systems; for production systems it
should be turned off.

8.5.3 Debugging Memory Corruption

Memory corruption happens when a memory location gets written with a
wrong value leading to wrong program behavior. Memory overflow discussed
in the previous section is a type of memory corruption. Some common
examples of memory corruption are:

� Memory pointers holding uninitialized values are dereferenced.
� Memory pointers are overwritten with wrong values and then dereferenced.
� Dereferencing memory pointers after the original memory has been freed.

288 Embedded Linux System Design and Development

 Such bugs are extremely difficult to catch. Finding the bug manually may
prove to be a Herculean task as it would mean scanning the entire code base.
We inspect a programming tool to deal with memory corruptions, Valgrind.
Valgrind can be downloaded from the Web site http://valgrind.kde.org.

The following are some of the important features of Valgrind.

� Valgrind works only for Linux on the x86 platform. This may appear as a
major deterrent from using it considering that many embedded platforms
are not based on x86 architecture. However, many embedded development
projects initially run their applications on the x86-based platform before
porting them to their target; this is because the target may not be available
when the applications are being developed. In such cases the developers

Listing 8.7 Electric Fence Usage

/* efence-test.c */

#include <stdio.h>

main()
{
 int i,j;
 char * c = (char *)malloc(20);
 printf("start of efence test\n");
 for(i=0; i < 24; i++)
 c[i] = 'c';
 free(c);
 printf("end of efence test\n");
 }

ls -l libefence.a
-rw-rw-r-- 1 raghav raghav 76650 Sep 4 20:38 libefence.a

gcc -g efence-test.c -L. -lefence -lpthread -o efence-test
gdb ./efence-test

...
(gdb) run
Starting program: /home/raghav/BK/tmp/memory-debugging/src/efence/
efence-test
[New Thread 1073838752 (LWP 6413)]

Electric Fence 2.4.10
Copyright (C) 1987-1999 Bruce Perens <bruce@perens.com>
Copyright (C) 2002-
2004 Hayati Ayguen <hayati.ayguen@epost.de>, Procitec GmbH
start of efence test:4004dfec

Program received signal SIGSEGV, Segmentation fault.
[Switching to Thread 1073838752 (LWP 6413)]
0x08048a20 in main () at efence-test.c:9
9 c[i] = 'c';
(gdb) print i
$1 = 20
(gdb)

Building and Debugging 289

can test their applications completely on the x86 platform for memory
corruption before transferring them to the target.

� Valgrind is very much tied to the OS and the libraries; at the time of this
writing, the 2.2.0 distribution of Valgrind is supposed to run on the 2.4 or
2.6 kernel and glibc version 2.2.x or 2.3.x.

� The application can run as it is with Valgrind without any rebuilding. For
example, if you want to run Valgrind with the ps executable you would
run it as shown in Listing 8.8.

� Valgrind works by simulating a x86 CPU for running your program. The
side effect of this is that the program runs slower because Valgrind traps
the appropriate calls (system calls, memory calls) for bookkeeping. Also
the application tends to consume more memory when used with Valgrind.
Valgrind is an advanced tool that can do much more than fight memory
corruption such as cache profiling and finding race conditions for multi-
threaded programs. However, the present section studies the usage of
Valgrind in fighting memory corruption. The following is the list of the
memory checks that can be done using Valgrind.
– Using uninitialized memory
– Memory leaks
– Memory overflows
– Stack corruption
– Using memory pointers after the original memory has been freed
– Nonmatching malloc/free pointers

Listing 8.8 Valgrind Example

shell> valgrind ps
==4187== Memcheck, a.k.a. Valgrind, a memory error detector for
 x86-linux.
==4187== Copyright (C) 2002-2003, and GNU GPL'd, by Julian
 Seward.
==4187== Using valgrind-2.0.0, a program supervision framework
 for x86-linux.
==4187== Copyright (C) 2000-2003, and GNU GPL'd, by Julian
 Seward.
==4187== Estimated CPU clock rate is 2194 MHz
==4187== For more details, rerun with: -v
==4187==
 PID TTY TIME CMD
 3753 pts/3 00:00:00 bash
 4187 pts/3 00:00:00 ps
==4187== discard syms in /lib/libnss_files-2.3.2.so due to
 munmap()
==4187==
==4187== ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 2
 from 1)
==4187== malloc/free: in use at exit: 125277 bytes in 117 blocks.
==4187== malloc/free: 353 allocs, 236 frees, 252784 bytes
 allocated.
==4187== For a detailed leak analysis, rerun with: --leak-
 check=yes
==4187== For counts of detected errors, rerun with: -v

290 Embedded Linux System Design and Development

The Valgrind architecture can be decomposed into two layers: the core
and the skins. The core is the x86 simulator that translates all the executable
code into its own opcode. The translated opcode is then instrumented and
executed on the real CPU. The instrumentation depends on the skin type
chosen. The architecture of Valgrind is very modular allowing a new skin to
be plugged easily with the core.

We focus our attention on the memory checker skin, memcheck. This is
the default skin used by Valgrind (any other skin has to be specifically invoked
using the command line argument --skin). Memcheck works by associating
every byte of working memory with two values: the V (valid value) bit and
the A (valid address) bit. The V bit defines whether the byte has been defined
a value by the program. For example, the initialized byte of memory has the
V bit set; thus uninitialized variables can be tracked using the A bit. The A
bit tracks whether the memory location can be accessed. Similarly when a
call to memory allocation using malloc() is done, all the memory bytes
allocated have their V bit set. Another skin, addrcheck, provides all the features
of memcheck other than the undefined value check. It does this by making
use of the A bit only. The addrcheck skin can be used as a lightweight memory
checker; it is faster and lighter than memcheck.

Now let us look at some practical demonstrations of Valgrind. The first
example shows how Valgrind detects using an uninitialized variable. Valgrind
detects the wrong usage of an uninitialized variable in a conditional branch
or when it is used to generate memory address as shown below.

#include <stdlib.h>
main()
{
 int *p;
 int c = *p;
 if(c == 0)
 ...
 return;
}

When running this program with Valgrind it will generate the following out-
put.

==4409== Use of uninitialized value of size 4
==4409== at 0x804833B: main (in /tmp/x)
==4409== by 0x40258A46: __libc_start_main
 (in /lib/libc-2.3.2.so)
==4409== by 0x8048298: ??? (start.S:81)
==4409==
==4409== ERROR SUMMARY: 1 errors from 1 contexts
 (suppressed: 0 from 0)
==4409== malloc/free: in use at exit: 0 bytes in 0 blocks.
==4409== malloc/free: 0 allocs, 0 frees, 0 bytes allocated.

The second example shows how Valgrind can be used to detect a memory
pointer dereferencing after the memory has been freed.

Building and Debugging 291

#include <stdlib.h>
main()
{
 int *i = (int *)malloc(sizeof(int));
 *i = 10;
 free(i);
 printf("%d\n",*i);
}

When running this program with Valgrind it will generate the following
output.

==4437== 1 errors in context 1 of 1:
==4437== Invalid read of size 4
==4437== at 0x80483CD: main (x.c:6)
==4437== by 0x40258A46: __libc_start_main
 (in /lib/libc-2.3.2.so)
==4437== by 0x8048300: ??? (start.S:81)
==4437== Address 0x411C7024 is 0 bytes inside a block of
 size 4 free'd

8.6 Kernel Debuggers
Unlike a conventional RTOS where there is a single debugger to debug the
software, a Linux-based system requires two debuggers: a kernel debugger
and an application debugger. This is because the kernel and applications make
use of different address spaces. This section talks about using two popular
kernel debuggers: KDB and KGDB.

The Linux kernel does not have any inbuilt debugger; the kernel debuggers
are maintained as separate projects.4 KDB and KGDB have different operating
environments and provide varied functionalities. Whereas KDB is a part of
the Linux kernel and provides a runtime mechanism to view the various
components such as memory and kernel data structures, KGDB works in
tandem with GDB and requires a host machine to communicate with a KGDB
stub running on the target. Table 8.2 compares KGDB and KDB.

The usage of KDB can be divided into two steps.

� Building the kernel with the KDB patch: Download the patches from the
Web site given in Table 8.2 and apply to the kernel source tree. Build the
kernel after configuring the kernel with the KDB option turned on.

� Running the kernel with KDB enabled: The build configuration KDB_OFF
decides if KDB is turned on or off when the kernel is booted; when this
option is selected KDB is not activated. In such a case, KDB has to be
explicitly activated; this is done by two methods. One method is to pass
a boot line argument to the kernel kdb=on. The other method is to activate
it using the file /proc/sys/kernel/kdb by the following command.

 echo “1” > /proc/sys/kernel/kdb

292 Embedded Linux System Design and Development

The list of KDB commands can be found from the files in the Documen-
tation/kdb directory under the patched kernel source tree.

The usage of KGDB can be divided into three steps:

� Building the kernel with the KGDB patch: This requires getting the KGDB
kernel patch, patching the kernel, building the kernel with the KGDB
support enabled, and building the kernel.

� Making the connection between the target and host using the GDB protocol:
When the kernel boots up, it waits for a connection establishment from
the host using the KGDB protocol and indicates this to the user by throwing
the following output.

 Waiting for connection from remote gdb...

Table 8.2 KDB versus KGDB

KDB KGDB

Debugger
environment

It is a debugger that needs to
be built inside the kernel.
All it requires is a console
using which commands can
be entered and output
displayed on the console.

It requires a development
machine to run the debugger as
a normal process that
communicates with the target
using the GDB protocol over a
serial cable. Recent versions of
KGDB support the Ethernet
interface.

Kernel
support/
patches
required

KDB requires two patches: a
common kernel patch that
implements the
architecture-independent
functionality and an
architecture-dependent
patch.

KGDB makes use of a single patch
that has three components:
� GDB stub that implements the

GDB protocol on the target
side,

� Changes to the serial (or
Ethernet) driver for sending
and receiving the messages
between the target and the
development machine,

� The changes to the exception
handlers for giving control to
the debugger when an excep-
tion happens.

Support for
source-level
debugging

No support for source-level
debugging

Support for source-level
debugging provided the kernel is
compiled with the -g flag on the
development machine and the
kernel source tree is available.
On the development machine
where the debugger application
runs, -g option tells gcc to
generate debugging information
while compiling, which in
conjunction with source files
provides source-level debugging.

Building and Debugging 293

On the host machine, the user is expected to launch the debugger and
connect to the target, which will indicate to the kernel to continue booting.

� Using the debugger to debug the kernel: After this the kernel can be remotely
debugged using the standard GDB commands.

8.7 Profiling
Profiling is a way to find bottlenecks during program execution so that the
results can be used to increase its performance. There are some important
questions that need to be answered.

Table 8.2 KDB versus KGDB (continued)

KDB KGDB

Debugging
features
offered

The most commonly used
debugging features of KDB
are:
� displaying and modify-

ing memory and regis-
ters

� applying breakpoints
� stack backtrace

Along with the user-applied
breakpoints, KDB is
invoked when the kernel
hits an irrecoverable error
condition such as panic or
OOPS. The user can use the
output of KDB to diagnose
the problem.

Supports GDB execution control
commands, stack trace, and
KGDB-specific watchpoints
among a host of other features
such as thread analysis.

Kernel
module
debugging

KDB provides support for
kernel module debugging.

Debugging modules using KGDB
is tricky because the module is
loaded on the target machine and
the debugger (GDB) runs on a
different machine; so the KGDB
debugger needs to be informed
of the module load address.
KGDB 1.9 is accompanied by a
special GDB that can
automatically detect module
loading and unloading. For KGDB
versions equal to or less than 1.8,
the developer has to make use of
an explicit GDB command add-
symbol-file to load the
module object into GDB’s
memory along with the module
load address.

Web sites for
download

http://oss.sgi.com/projects/
kdb/

http://kgdb.linsyssoft.com/

294 Embedded Linux System Design and Development

� Why profile? Most embedded systems have very limited resources in terms
of total memory and CPU frequency. Therefore it is very important to
ensure that these resources are used optimally. By profiling, various bot-
tlenecks in the program are identified. Fixing those bottlenecks will result
in increased system performance and optimal resource utilization.

� What is measured during profiling? This includes the quantities such as
percentage of execution time in each part of the program and memory
utilization by the various modules of the program. For drivers, it could be
the total interrupt disable time, and so on.

� How are the profiling results used? The profiling results are used to optimize
the programs; problematic portions of the code can be written using a
better algorithm.

� What are profiling tools? The role of the profiling tool is to associate
bottlenecks that are identified during execution with the underlying source
code. Profiling tools also present to the user of the profiling data in the
form of a graph, histogram, or some other human-readable format.

� What should the profiling environment be? Realistic inputs should be given
to the program during profiling. All the debugging information should be
disabled to get more accurate profiling results. Finally the impact of the
profiling tool itself on the results should be known a priori.

In this section, we discuss three profilers: eProf, OProfile, and Kernel
Function Instrumentation (KFI). First we discuss eProf, an embedded profiler
that could be used during program development. Next we discuss OProfile,
which is a very powerful profiling tool. Finally we discuss KFI to profile kernel
functions. These profilers mainly concentrate on the execution time of various
parts of the program.

8.7.1 eProf—An Embedded Profiler

At the time of program development you often want to find the time a function
takes to execute or the time taken to reach from one point of the program
to another. At this stage, you do not need a full-blown profiler. You can write
your own profiler (which the authors call eProf) to assist you with your small
profiling needs. eProf is a function-based profiler. The interfaces provided can
be embedded into the program to measure the execution delays between any
two points in the program. eProf provides multiple profiler instances with
each instance capable of timing different program areas at the same time. The
interfaces provided are listed in Table 8.3.

Let us first discuss the usage of these interfaces followed by their imple-
mentation. In Listing 8.9 we profile two functions that are executing concur-
rently. Run the program in Listing 8.9 to get the profiling results.

gcc –o prof prof.c eprof.c -lpthread
./prof

eProf Result:

Building and Debugging 295

ID name calls usec/call

0: func1 1 10018200
1: func2 10 501894

eprof_print prints the profiling data of all the instances. The output
shows

� Profiler instance ID
� Profiler instance label
� Number of times the instance was invoked (i.e., number of times

eprof_start and eprof_stop pair was called)
� Average code execution time in microseconds from call to eprof_start

to eprof_stop

eProf Implementation

In this section we discuss the implementation of eProf.

 /*** eprof.c ***/
#include <stdio.h>
#include <sys/time.h>

MAX_INSTANCE defines the total number of profiler instances supported
by eProf. You can change this value to support more profiler instances.

#define MAX_INSTANCE 5

eProf data structures include eprof_curr, which holds the current
timestamp and is populated by function eprof_start. eprof_diff stores
the difference in the timestamps recorded by eprof_stop and eprof_start.
eprof_calls stores the number of times the eprof_start - eprof_stop
pair has been called for a given instance. Finally eprof_label stores the
instance label. It is populated by function eprof_alloc.

Table 8.3 eProf Functions

Interface Description

eprof_init Initialize the profiler subsystem.

eprof_alloc Allocate a profiler instance.

eprof_start Start profiling.

eprof_stop Stop profiling.

eprof_free Free profiler instance.

eprof_print Print profiler results.

296 Embedded Linux System Design and Development

Listing 8.9 eProf Usage

/* prof.c */

#include <pthread.h>

/*
 * eProf header file. The source code of various eProf interfaces
 * is in eprof.c
 */
#include "eprof.h"
#define MAX_LOOP 10 // loop count

/*
 * This function runs in a context of a different thread. Here we
 * profile the time taken to execute the main loop of the
 * function
 */
void func_1(void * dummy){
 int i;
 /*
 * Allocate a profiler instance. Assign a name to this it –
 * ‘func1’
 */
 int id = eprof_alloc("func1");

 /*
 * Start the profiler. Argument is the instance id returned
 * using eprof_alloc
 */
 eprof_start(id);

 /* We profile this loop */
 for (i = 0; i < MAX_LOOP; i++){
 usleep(1000*1000);
 }

 /*
 * Stop the profiler. We print the profiling results at the end
 * of the program
 */
 eprof_stop(id);
}

/*
 * In this example we profile each iteration of the loop. This
 * function is called by main
 */

void func_2(void){
 int i;
 /* Allocate the profiler instance */
 int id = eprof_alloc("func2");

 /*
 * As you can see we call the eprof_start and eprof_stop pair
 * multiple times. The profiler records the total number of

Building and Debugging 297

/* Stores the current timestamp. Filled in eprof_start */
long long int eprof_curr[MAX_INSTANCE] ;
/*
 * timestamp(eprof_stop) – timestamp(eprof_start).
 * Populated in eprof_stop
 */
long long int eprof_diff[MAX_INSTANCE] ;
/*
 * Number of times the {eprof_start,eprof_stop} pair has
 * been called
 */
long eprof_calls[MAX_INSTANCE] ;
/* Instance label */
char * eprof_label[MAX_INSTANCE] ;

get_curr_time is the core of eProf. It records the current timestamp. To
achieve high precision in the profiler result it is necessary that this function
be implemented using a high-resolution clock source. Some of the options are:

Listing 8.9 eProf Usage (continued)

 * times this pair has been called and then shows results on an
 * average basis
 */
 for (i = 0 ; i < MAX_LOOP; i++){
 /* Start the profiler */
 eprof_start(id);
 usleep(500*1000);
 /* Stop the profiler */
 eprof_stop(id);
 }
}

/*
 * The main application. It creates a thread the runs function
 * func_1. It then calls func_2 and then waits for thread to
 * terminate. Finally it prints the profiling results
 */
int main(){
 pthread_t thread_id;

 /*
 * Initialize eProf. It should be done once during program
 * startup
 */
 eprof_init();
 /* Create thread that runs function func_1 */
 pthread_create(&thread_id, NULL, func_1, NULL);
 /* Run function func_2 */
 func_2();
 /* Wait for thread to exit */
 pthread_join(thread_id, NULL);
 /* Print the results */
 eprof_print();
 return 0;
}

298 Embedded Linux System Design and Development

� Use hardware counters such as Time Stamp Counter (TSC) on Pentium.
get_curr_time could be implemented using TSC as below.

static unsigned long long get_curr_time()
{
 unsigned long long int x;
 __asm__ volatile("rdtsc" : "=A"(x));

 /* convert x to microseconds */

 return x;

}

� Use High-Resolution POSIX Timers (HRT) if available. Refer to Chapter 7
for their usage.

� If your target provides support for high-resolution hardware timers then
they could be used. Generally interfaces to access hardware timers may
not be available in user space. You can use the kapi driver as explained
in Chapter 6 to export its interfaces to user space.

� Finally if no hardware clock source is available then use gettimeofday
to get the current timestamp. The precision of gettimeofday is deter-
mined by the system clock. So if the value of HZ is 100, the precision is
10 msecs. If the value of HZ is 1000, the precision is 1 msec.

/* Returns the current timestamp */
static unsigned long long get_curr_time(){
 struct timeval tv;
 gettimeofday(&tv,NULL);
 return tv.tv_sec*1000000 + tv.tv_usec;
}

eprof_init initializes the various data structures.

/* Initialize */
void eprof_init () {
 int i;
 for (i=0; i<MAX_INSTANCE; i++) {
 eprof_diff[i] = 0;
 eprof_curr[i] = 0;
 eprof_calls[i] = 0;
 eprof_label[i] = NULL;
 }
}

eprof_alloc allocates a profiler instance. It checks a non-NULL entry in
eprof_label and returns the corresponding index.

int eprof_alloc(char *label) {
 int id;
 for (id = 0; id < MAX_INSTANCE &&
 eprof_label[id] != NULL; id++)

Building and Debugging 299

 ;
 if (id == MAX_INSTANCE)
 return -1;
 /* Store the label and return index */
 eprof_label[id] = label;
 return id;
}

eprof_start records the current timestamp in eprof_curr.

void eprof_start(int id) {
 if (id >= 0 && id < MAX_INSTANCE)
 eprof_curr[id] = get_curr_time();
}

eprof_stop stores the timestamp difference between self and
eprof_curr in eprof_diff. Recall that eprof_curr is populated in
eprof_start. It also keeps track of the number of times the profiler instance
has been invoked in eprof_calls.

void eprof_stop(int id) {
 if (id >= 0 && id < MAX_INSTANCE) {
 eprof_diff[id] += get_curr_time() - eprof_curr[id];
 eprof_calls[id]++;
 }
}

eprof_free frees up the entry in eprof_label.

void eprof_free(char *label){
 int id;
 for (id = 0; id < MAX_INSTANCE &&
 strcmp(label,eprof_label[id]) != 0; id++)
 ;
 if (id < MAX_INSTANCE)
 eprof_label[id] = NULL;
}

eprof_print is more of a formatting function. It prints the profiling data
of all the profiler instances.

void eprof_print () {
 int i;
 printf ("\neProf Result:\n\n"
 "%s %.15s %20s %10s\n"
 "---\n",
 "ID", "name", "calls", "usec/call");
 for (i=0; i<MAX_INSTANCE; i++) {
 if (eprof_label[i]) {
 printf ("%d: %.15s %20d", i, eprof_label[i],
 eprof_calls[i]);
 if (eprof_calls[i])
 printf(" %15lld", eprof_diff[i] / eprof_calls[i]);

300 Embedded Linux System Design and Development

 printf ("\n");
 }
 }
}

8.7.2 OProfile

OProfile is a profiling tool for Linux. It has the capability to capture the
performance behavior of the entire system including the kernel, shared librar-
ies, and applications. It can also be used in profiling kernel modules and
interrupt handles. It runs transparently in the background collecting informa-
tion at a low overhead.

In this section we discuss the OProfile usage in the Linux 2.6 kernel. For
this you need to rebuild the kernel with the CONFIG_OPROFILE option set.
You also need to cross-compile OProfile for your target. Please follow the
cross-compiling instructions in Section 8.2 and the OProfile installation instruc-
tions available at http://oprofile.sourceforge.net to set up OProfile for your
target.

OProfile uses various hardware performance counters to record various
events such as CPU cycles, cache misses, TLB flush, and so on. In architectures
that don’t have performance counters, OProfile uses the RTC clock interrupt
to collect samples. If the RTC clock is also not available then OProfile falls
back to timer interrupt. You can also forcibly enable the timer interrupt mode
by passing oprofile.timer = 1 on the kernel boot command line. Also
note that various events such as the TLB flush, cache miss, and so on that
are generally associated with performance counters are not available in RTC/
timer-interrupt mode.

In this section we profile a video player application, FFmpeg™ (http://
ffmpeg.sourceforget.net) using OProfile on a PC. The idea of this exercise is
to give you a quick start with OProfile. For the complete OProfile usage refer
to http://oprofile.sourceforge.net. The following steps are followed to profile
ffmpeg. Note that you need root permission to execute OProfile commands.

1. Set up the Oprofile: We don’t want to profile the kernel.

 # opcontrol --no-vmlinux

2. Start the profiler:

 # opcontrol –start
 Using default event: GLOBAL_POWER_EVENTS:100000:1:1:1
 Using 2.6+ OProfile kernel interface.
 Using log file /var/lib/oprofile/oprofiled.log
 Daemon started.
 Profiler running.

3. Start the application:

 # cd /usr/local/bin
 # ./ffplay_g /data/movies/matrix.mpeg &

Building and Debugging 301

4. Collect samples: Listing 8.10 shows the command to collect the samples
along with output. The first column of the output is the total number of
samples taken in the function and the second column shows the relative
percentage of total samples for the function. As GLOBAL_POWER_EVENTS
represents the CPU time, so we can say that the function synth_filter
has utilized 28.8 per cent of total CPU time wher eas function
mpeg_decode_mb has utilized 16.5 percent of total CPU time during video
playback.

5. Get the annotated source: Application should be compiled with debug on.
In this example, the annotated source files for all the samples collected
are created in the /usr/local/bin/ann folder. mpegaudiodec.c and
mpeg12.c contain the annotated source for symbols synth_filter and
mpeg_decode_mb functions, respectively. Refer to Listing 8.11 for details.

6. Get the complete system performance report:

 # opreport --long-filenames
 CPU: P4 / Xeon with 2 hyper-threads, speed 2993.82 MHz
 (estimated)
 Counted GLOBAL_POWER_EVENTS events (time during which
 processor is not stopped) with a unit mask of 0x01
 (count cycles when processor is active) count 100000
 GLOBAL_POWER_E...|
 samples| %|

 223651 73.9875 /no-vmlinux
 22727 7.5185 /lib/tls/libc.so.6
 15134 5.0066 /usr/bin/local/ffplay_g
 7329 2.4246 /usr/bin/nmblookup
 ……..
 ……..

7. Shut down the profiler:

 # opcontrol --shutdown

Listing 8.10 OProfile Output

 # opreport –l ./ffplay_g
 CPU: P4 / Xeon with 2 hyper-threads, speed 2993.82 MHz
 (estimated)
 Counted GLOBAL_POWER_EVENTS events (time during which
 processor is not stopped) with a unit mask of 0x01 (count
 cycles when processor is active) count 100000
 samples % symbol name
 120522 28.8691 synth_filter
 68783 16.4758 mpeg_decode_mb
 36292 8.6932 ff_simple_idct_add_mmx
 24678 5.9112 decode_frame
 15623 3.7422 MPV_decode_mb
 15514 3.7161 put_pixels8_mmx
 14861 3.5597 clear_blocks_mmx
 …………….
 ……………..

302 Embedded Linux System Design and Development

8.7.3 Kernel Function Instrumentation
In the last two sections we discussed methods for profiling user-space appli-
cations. In this section we discuss Kernel Function Instrumentation (KFI), a
tool to profile kernel functions.5

KFI can be used to measure time taken by any kernel function. It is based
on the function instrumentation and profiling feature of GCC, the -finstru-
ment-functions6 GCC flag. KFI is available in the form of a kernel patch
and set of utilities for the 2.4 and 2.6 kernels. The kernel patch adds support
for generating profiler data and utilities are used for postanalysis of the profiler
data. Download them from www.celinuxforum.org. Apply the kernel patch
and enable the CONFIG_KFI option in the kernel build. During kernel con-
figuration you can also decide to do KFI static run if you want to measure
kernel boot time and time taken by various kernel functions during boot. This
is achieved by enabling the KFI_STATIC_RUN config flag. In this section we

Listing 8.11 OProfile Output with Associated Source

opannotate --source --output-dir=/usr/local/bin/ann ./ffplay_g
vim /usr/local/bin/ann/data/ffmpeg/libavcodec/mpegaudiodec.c

 :static void synth_filter(MPADecodeContext *s1,
 : int ch, int16_t *samples, int incr,
 : int32_t sb_samples[SBLIMIT])
 179 0.0407 :{ /* synth_filter total: 126484 28.7945 */
 ……
 75 0.0171 : offset = s1->synth_buf_offset[ch];
 89 0.0203 : synth_buf = s1->synth_buf[ch] + offset;
 ……
 1097 0.2497 : p = synth_buf + 16 + j;
 38956 8.8685 : SUM8P2(sum, +=, sum2, -=, w, w2, p);
 1677 0.3818 : p = synth_buf + 48 - j;
 41582 9.4663 : SUM8P2(sum, -=, sum2, -=, w + 32, w2 + 32, p);
 ……

vim /usr/local/bin/ann/data/ffmpeg/libavcodec/mpeg12.c

 :static int mpeg_decode_mb(MpegEncContext *s,
 : DCTELEM block[12][64])
 296 0.0674 :{ /* mpeg_decode_mb total: 72484 16.5012 */
 : int i, j, k, cbp, val, mb_type, motion_type;
 155 0.0353 : const int mb_block_count = 4 + (1<< s-
 >chroma_format)
 ……
 257 0.0585 : if (s->mb_skip_run-- != 0) {
 74 0.0168 : if(s->pict_type == I_TYPE){
 ……
 : /* skip mb */
 2 4.6e-04 : s->mb_intra = 0;
 114 0.0260 : for(i=0;i<12;i++)
 54 0.0123 : s->block_last_index[i] = -1;
 51 0.0116 : if(s->picture_structure == PICT_FRAME)
 ……

Building and Debugging 303

discuss KFI dynamic run; that is, we collect profiling data when the kernel
is up and running. Please follow instructions in README.kfi, which is part
of the KFI package, for steps to do a static run.

KFI Toolset

Before going into usage of KFI we must understand various tools that are
part of the KFI toolset. The KFI toolset consists of three utilities: kfi,
kfiresolve, and kd. kfi triggers profiling data collection in the kernel.
kfiresolve and kd examine the collected data and present it to the user in
a readable format.

You need to cross-compile the kfi program for your target. The various
kfi commands are:

./kfi
Usage: ./kfi <cmds>
commands: new, start, stop, read [id], status [id], reset

� new: Start a new profiling session. Each session is identified by a run-id.
� start: Start profiling.
� stop: Stop profiling.
� read: Read the profiler data from the kernel.
� status: Check the status of your profiling session.
� reset: Reset KFI.

Most of the time you may not want to profile the complete kernel. You
may just want to profile interrupt handlers or some specific kernel functions.
KFI provides filters to do selective profiling. You need to set appropriate filters
before starting a profiler session. To set up filters you need to modify the
kfi program. The source code of the kfi program is located in file kfi.c
and structure definitions are in kfi.h.

Every profiling session is associated with a struct kfi_run that contains
all the necessary details for the session.

typedef struct kfi_run {
 ...
 struct kfi_filters filters;
 ...
} kfi_run_t;

The filters can be specified by setting fields appropriately in structure
kfi_filters_t.

typedef struct kfi_filters {
 unsigned long min_delta;
 unsigned long max_delta;
 int no_ints;
 int only_ints;

304 Embedded Linux System Design and Development

 void** func_list;
 int func_list_size;
 ...
} kfi_filters_t;

The various fields of kfi_filters_t are:

� min_delta: Don’t profile functions with execution time less than min_
delta.

� max_delta: Don’t profile functions with execution time greater than max_
delta.

� no_ints: Don’t profile functions that execute in interrupt context.
� only_ints: Profile functions that execute in interrupt context.
� func_list: Profile functions given in the list.
� func_list_size: If func_list is valid then func_list_size con-

tains the number of entries in func_list.

In kfi.c, myrun is a structure of type kfi_run_t.

struct kfi_run myrun = {
 0, 0,
 { 0 },
 { 0 },
 { 0 }, /* struct kfi_filters_t filters */
 myrunlog, MAX_RUN_LOG_ENTRIES, 0,
 0,
 NULL,
};

As you can see, all the fields of its filter members are set to zero. You
need to change filters members as per your need. For example, assume
you need to profile the do_fork kernel function. The following steps should
be performed to set up the appropriate filter.

1. Open System.map file of your kernel and locate do_fork.

 c0119751 T do_fork

2. Define func_list.

 void *func_list[] = {0xc0119751};

3. Modify filters member of myrun.

 struct kfi_run myrun = {
 ...
 { 0,0,0,0,func_list,1 },
 ...
 };

Building and Debugging 305

4. Recompile kfi.c and generate kfi.

Other filters can be set similarly. The generated profiler data can be
examined using two phython scripts kfiresolve and kd. We discuss their
usage in the next section.

Using KFI

In this section we discuss a KFI dynamic run with an example. We profile
the do_fork kernel function. All the changes mentioned in the previous
section to set up function-based filters are done. Our setup is a KFI-enabled
2.6.8.1 kernel running on a 2.8 GHz P4 machine. Our sample program is:

/* sample.c */
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>

int main(int argc, char *argv[]){
 int i;
 printf("Pid = %d\n", getpid());
 for (i = 0; i < 2; i++){
 if (fork() == 0)
 exit(0);
 }
}

The steps are:

1. Create device node.

 mknod /dev/kfi c 10 51

2. Reset kfi to ensure fresh KFI start-up.

 ./kfi reset

3. Create a new KFI session.

 # ./kfi new
 new run created, id = 0

Note that if you get a memory allocation failure error when executing this
command then set MAX_RUN_LOG_ENTRIES in kfi.h to some lesser
number.

4. Start profiling.

 # ./kfi start
 runid 0 started

306 Embedded Linux System Design and Development

5. Run application.

 # ./sample
 Pid = 4050

6. Stop profiling.

 ./kfi stop
 runid 0 stopped

7. Read profiler data from kernel.

 ./kfi read 0 > sample.log

8. Postprocess data.

 ./kfiresolve.py sample.log /boot/System.map > sample.out

File sample.out contains the profiler result. All the timings are measured
in microsecond units. In the output shown in Listing 8.12, Entry is the time
when the function was entered and Delta is the time taken by the function.
In the output, entries corresponding to PID 4095 are from our application.
The other two entries corresponding to PID 3982 are from the shell.

You can also use kd to analyze profiler data.

Listing 8.12 KFI Sample Run

Kernel Instrumentation Run ID 0

Logging started at 2506287415 usec by system call
Logging stopped at 2506609002 usec by system call

Filters:
 1-entry function list
 no functions in interrupt context
 function list

Filter Counters:
No Interrupt functions filter count = 0
Function List filter count = 57054552
Total entries filtered = 57054552
Entries not found = 0

Number of entries after filters = 4

 Entry Delta PID Function Called At
-------- -------- ----- -------- ---------------
 137565 82 3982 do_fork sys_clone+0x4a
 138566 22 4050 do_fork sys_clone+0x4a
 138661 21 4050 do_fork sys_clone+0x4a
 320729 70 3982 do_fork sys_clone+0x4a

Building and Debugging 307

./kd sample.out
Function Count Time Average Local
------------------------- ----- -------- -------- --------
do_fork 4 195 48 195

Porting KFI

KFI is architecture independent. The core of KFI is the kfi_readclock
function that returns the current time in microseconds.

static inline unsigned long __noinstrument kfi_readclock(void)
{
 unsigned long long t;
 t = sched_clock();
 /* convert to microseconds */
 do_div(t,1000);
 return (unsigned long)t;
}

kfi_readclock calls sched_clock, which is generally defined in arch/
<your-arch>/kernel/time.c.

/*
 * Scheduler clock — returns current time in nanosec units.
 */
unsigned long long sched_clock(void)
{
 return (unsigned long long)jiffies * (1000000000 / HZ);
}

The above implementation of sched_clock is architecture independent
and returns a value based on jiffies. On many embedded platforms the
resolution of jiffies is 10 msec. Thus to have better precision in profiler results
you should provide a better sched_clock based on some hardware clock
source with at least microsecond-level resolution. For example, sched_clock
is implemented using the timestamp counter in x86 processors with TSC
support.

unsigned long long sched_clock(void)
{
 unsigned long long this_offset;

 /* Read the Time Stamp Counter */
 rdtscll(this_offset);

 /* return the value in ns */
 return cycles_2_ns(this_offset);
}

308 Embedded Linux System Design and Development

Alternatively you can write your own version of kfi_readclock if you
do not want to use sched_clock as its clock source. One such implementation
is included in the patch for PPC.

static inline unsigned long kfi_readclock(void)
{
 unsigned long lo, hi, hi2;
 unsigned long long ticks;

 do {
 hi = get_tbu();
 lo = get_tbl();
 hi2 = get_tbu();
 } while (hi2 != hi);
 ticks = ((unsigned long long) hi << 32) | lo;
 return (unsigned long)((ticks>>CLOCK_SHIFT) &
 0xffffffff);
}

Notes
1. The techniques have remained almost the same across the 2.4 and 2.6 versions.
2. The TOPDIR is a build variable and is used to get the base kernel source directory

throughout so that the build is independent of the base directory location.
3. For multithreaded programs link with libdmallocth.a. For C++ programs link with

libdmallocxx.a and for multithreaded c++ programs link with libdmallocthcxx.a.
4. Though a sore point with many kernel developers, Linus feels that debuggers fix

the symptoms rather than offering a cure.
5. You can also use OProfile for kernel profiling.
6. GCC expects the user to define two functions: __cyg_profile_func_enter

and __cyg_profile_func_exit. These functions are added at the entry and
exit of a function, respectively, by GCC when the -finstrument-functions
flag is used. KFI defines these two functions in which it collects the profiling data.

309

Chapter 9

Embedded Graphics

In an attempt to provide a better user experience, electronic products these
days provide a graphical user interface. The complexity of the interface
depends on the product and its usage scenario. For instance, consider these
devices: a DVD/MP3 player, a mobile phone, and a PDA. A DVD/MP3 player
requires some form of primitive interface that is capable of listing the CD/
DVD contents. Creating playlists and searching tracks would be the most
complex of operations that can be done on a DVD/MP3 player. Obviously
this is not sufficient for a mobile phone. A mobile phone has more function-
ality. The most complex requirement is in the PDA. One should be able to
run almost all applications such as word processors, spreadsheets, schedulers,
and the like on a PDA.

One might have various questions regarding graphics support on embedded
Linux.

� What comprises a graphics system? How does it work?
� Can I use Linux desktop graphics on embedded systems as is?
� What are the choices available for graphics on embedded Linux systems?
� Is there a generic solution that can address the entire range of embedded

devices requiring graphics (i.e., mobile phone to DVD player)?

This chapter is outlined to answer these questions.

9.1 Graphics System
The graphics system is responsible for

� Managing the display hardware
� Managing one or more human input interface(s), if necessary

310 Embedded Linux System Design and Development

� Providing an abstraction to the underlying display hardware (for use by
applications)

� Managing different applications so that they co-exist and share the display
and input hardware effectively

 Regardless of operating systems and platforms, a generic graphics system
can be conceptualized into different module layers as shown in Figure 9.1.
The various layers are:

� Layer1 is the graphics display hardware and the input hardware, the
essential hardware components in any graphics system. For example, an
ATM kiosk has a touchscreen as both its input interface and display
hardware, a DVD player has video output on the TV, and a front panel
LCD has its display hardware and a remote control as input interface.

� Layer2 is the driver layer that provides interfacing with the operating
system. Each operating system has its own interfacing mechanism and
device manufacturers try to make sure that they provide drivers for all
popular OSs. For example, the NVIDIA® driver cards ship with video drivers
for Linux and Windows.

� Layer3 consists of a windowing environment that is a drawing engine
responsible for graphics rendering and a font engine responsible for font
rendering. For example, drawing engines provide line, rectangle, and other
geometric shape-drawing functionalities.

� Layer4 is the toolkit layer. A toolkit is built over a particular windowing
environment and provides APIs for use by the application. Some toolkits
are available over multiple windowing environments and thus provide
application portability. Toolkits provide functions to draw complex controls
such as buttons, edit boxes, list boxes, and so on.

� The topmost layer is the graphics application. The application need not
always use a toolkit and a windowing environment. With some minimum

Figure 9.1 Graphics system architecture.

Display

Hardware
Input

Hardware

Device Drivers

Windowing Environment

Toolkit

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5 Graphics Applications

Embedded Graphics 311

abstraction or glue layer it might be possible to write an application that
directly interacts with the hardware via the driver interface. Also some
applications such as a video player require an accelerated interface to
bypass the graphics layer and interface with the driver directly. For such
cases the graphics system provides special interfacing such as the famous
Direct-X in Windows. Figure 9.2 compares layers across various operating
systems.

The chapter progressively discusses each layer in detail with respect to
embedded Linux.

9.2 Linux Desktop Graphics—The X Graphics System
The X Windowing System provides Linux desktop graphics. We use this as a
case study to understand the layered architecture of a complete graphics solution.

The X system is primarily written for the desktop computer. Desktop graphic
cards follow predefined standards, VGA/SVGA. Input devices such as the
mouse and keyboard input drivers also have standards. Hence a generic driver
handles the display and input hardware. The X system implements a driver
interface necessary to interact with PC display hardware. The driver interface
isolates the rest of the X system from hardware-specific details.

Figure 9.2 Graphics layers across operating systems.

OS Specific Driver Layer

Graphics Hardware

Graphics Engine Layer

Toolkit Layer

Windows GDI

Layer

Windows Video

Miniport Driver
Symbian

Graphics Driver

Linux Frame-

buffer Driver

Win CE

MFC/SDK

Windows CE Symbian
Embedded

Linux

Symbian

Graphics API

FLNX/

Qt-E/GTK -fb

Nano-X/

Qt-E/GDK-fb
Symbian

Graphics Engine

Graphics Applications on different OS

312 Embedded Linux System Design and Development

The windowing environment in X has a client/server model. X applications
are clients; they communicate with the server and issue requests and also
receive information from the server. The X server controls the display and
services requests from clients. Applications (clients) only need to know how
to communicate with the server, and need not be concerned with the details
of rendering graphics on the display device. This commutation mechanism
(protocol) can work over any interprocess communication mechanism that
provides a reliable octet stream. X uses sockets for the same: the result, X
Protocol. Because X is based on sockets it can run over a network and can
be used for remote graphics as well. X-clients use APIs provided by the X
windowing system to render objects on the screen. These APIs are part of a
library, X-lib, which gets linked with the client application.

The X-Toolkit architecture is shown in Figure 9.3. It comprises APIs that
provide windowing capabilities. Controls such as list boxes, buttons, check
boxes, edit boxes, and the like are also windows built over the X-lib primitives
and a collection of such libraries is called a widget/toolkit. The toolkit makes
the life of the application programmer easy by providing simple functions for
drawing controls. With multiple clients connecting to the server, there arises
a need to manage different client windows. The X server provides a window
manager, another X client, but a privileged one. The X architecture provides
special functions for the window manager to perform, actions such as moving,
resizing, minimizing or maximizing a window, and so on. For more details
you can check the X11 official site, http://www.x.org.

9.2.1 Embedded Systems and X
X is highly network oriented and does not directly apply over an embedded
system. The reasons why X cannot be used in an embedded system are listed
in the following.

Figure 9.3 X toolkit architecture.

X Server

X Client Using Xlib

X Toolkit

X Applications

X Protocol

Embedded Graphics 313

� X has mechanisms for exporting a display over a network. This is not
required in an embedded system. The client/server model is not aimed at
single-user environments such as the one on embedded systems.

� X has many dependencies such as the X font server, X resource manager,
X window manager, and the list goes on. All the above increase the size
of X and its memory requirements.

� X was written to be run on resource-full giant Pentium processor machines.
Hence running X as-is on power/cycle savvy embedded microprocessors
is not possible.

The requirements for a graphics framework an on embedded system are:

� Quick/near real-time response
� Low on memory usage
� Small toolkit library (footprint) size

Many modifications have been done to X, and microversions are available
for running on embedded platforms. Tiny-X and Nano-X are popular and
successful embedded versions based on the X graphics system. We discuss
Nano-X in Section 9.6.

9.3 Introduction to Display Hardware
In this section we discuss various graphics terminologies and also generic
graphics hardware functions.

9.3.1 Display System

Every graphics display system has a video/display controller, which is the essential
graphics hardware. The video controller has an area of memory known as the
frame buffer. The content of the frame buffer is displayed on the screen.

Any image on the screen comprises horizontal scan lines traced by the
display hardware. After each horizontal scan line the trace is moved down in
the vertical direction, and traces the next horizontal scan line. Thus the whole
image is composed of horizontal lines scanned from top to bottom and each
scan cycle is called a refresh. The number of screen refreshes that happen in
a second is expressed as the refresh rate.

The image before being presented on the screen is available on the frame
buffer memory of the controller. This digital image is divided into discrete
memory regions called pixels (short for pictorial elements). The number of
pixels in the horizontal and vertical direction is expressed as the screen
resolution. For instance, a screen resolution of 1024 × 768 is a pixel matrix
of 1024 columns and 768 rows. These 1024 × 768 pixels are transferred to
the screen in a single refresh cycle.

Each pixel is essentially the color information at a particular (row, column)
index of the display matrix. The color information present at a pixel is denoted

314 Embedded Linux System Design and Development

using a color representation standard. Color is either represented in the RGB
domain, using Red, Green, and Blue bits, or in the YUV1 domain, using
luminance (Y) and chrominance (U and V) values. RGB is the common
representation on most graphic systems. The bit arrangement and the number
of bits occupied by each color results in various formats listed in Table 9.1.

The number or range of color values to be displayed determines the number
of bytes occupied by a single pixel, expressed by the term pixel width. For
example, consider a mobile display unit of resolution 160 × 120 with 16 colors.
The pixel width here is 4 bits per pixel (16 unique values best represented
using 4 bits), in other words a ½ byte per pixel. The frame buffer memory
area required is calculated using the formula

Frame Buffer-Memory = Display Width * Display Height * Bytes-per-pixel.

In the example discussed above the required memory area is 160 × 120 ×
(½) bytes. Most frame buffer implementations are linear, in the sense that it
is a contiguous memory location, similar to an array. The start byte of each
line is separated by the constant width of the bytes, called the line width or
stride. In our example, 160 * (½) bytes is the line width. Thus the location
of any pixel (x, y) = (line_width * y) + x. Figure 9.4 illustrates the location
of pixel (40, 4), which is marked in bold.

Now, look at the first three entries in Table 9.1. They are different from
the remaining entries, in the sense that they are indexed color formats. Indexed
formats assign indices that map to a particular color shade. For example, in
a monochrome display system, with just a single bit, two values (0 or 1), one
can map 0 to red and 1 to black. Essentially what we now have is a table
with color values against their indices. This table is called a Color LookUp
Table (CLUT). CLUTs are also called color palettes. Each palette entry maps a
pixel value to a user-defined red, green, and blue intensity level. Now, with
the CLUT introduced, note that the frame buffer contents get translated to
different color shades based on the values in the CLUT. For instance, the
CLUT can be intelligently used on a mobile phone to change color themes
as shown in Figure 9.5.

Table 9.1 RGB Color Formats

Format Bits Red Green Blue Colors

Monochrome 1 — — — 2

Indexed—4 bit 4 — — — 2^4 = 16

Indexed—8 bit 8 — — — 2^8 = 256

RGB444 12 4 4 4 2^12

RGB565 16 5 6 5 2^16

RGB888 24 8 8 8 2^24

Embedded Graphics 315

Figure 9.4 Pixel location in a linear frame buffer.

Figure 9.5 CLUT mapping.

0

1

2

3

4

.

.

.

0 1 2 3 . . . 78 79 80 . . . 40

X Axis

Pixel (40, 4) = (160 * 1/2 * 4) + 40 = 360

80

160

240

320

400

Total offset

from base

Y
 A

x
is

Index R

FF

00

00

FF

00

G

00

FF

00

FF

00

B

00

00

FF

FF

00

1

2

3

4

5

Red

Green

Blue

White

Black

W
h

ite

B
lu

e

R
ed

G
reen

B
lack

5 2 1 3 4

Framebuffer Memory

Color Lookup Table

Color Translation

On Screen Pixels

316 Embedded Linux System Design and Development

9.3.2 Input Interface

An embedded system’s input hardware generally uses buttons, IR remote,
touchscreen, and so on. Standard interfaces are available on the Linux kernel
for normal input interfaces such as keyboards and mice. IR remote units can
be interfaced over the serial interface. The LIRC project is about interfacing
IR receivers and transmitters with Linux applications. The 2.6 kernel has a
well-defined input device layer that addresses all classes of input devices. HID
(Human Interface Device) is a huge topic and discussing it is beyond the
scope of this chapter.

9.4 Embedded Linux Graphics
The previous section discussed hardware pertaining to embedded systems. In
the next sections we cover in depth the various embedded Linux graphics
components. Figure 9.6 provides a quick overview of the various layers involved.

9.5 Embedded Linux Graphics Driver
The first frame buffer driver was introduced in kernel version 2.1. The original
frame buffer driver was devised to just provide a console to systems that lack
video adapters with native text modes (such as the m68k). The driver provided
means to emulate a character mode console on top of ordinary pixel-based
display systems. Because of its simplistic design and easy-to-use interface, the
frame buffer driver was finding inroads in graphics applications on all types
of video cards. Many toolkits that were essentially written for traditional X
window systems were ported to work on a frame buffer interface. Soon new
windowing environments were written from scratch targeting this new graphics

Figure 9.6 Embedded Linux graphics system.

Display

Hardware

Input

Hardware

Framebuffer

Driver
Input Driver

Qt-E/Nano-X/

GDK-Fb/Direct FB

Qt-E/FLNX/

GTK-Fb

Layer 1

Layer 2

K
er

n
el

U
se

r
sp

ac
e

Layer 3

Layer 4

Layer 5Graphics Applications

Embedded Graphics 317

interface on Linux. Today, the kernel frame buffer driver is more of a video
hardware abstraction layer that provides a generic device interface for graphics
applications. Today almost all graphical applications on embedded Linux
systems make use of the kernel frame buffer support for graphics display.
Some of the reasons for wide usage of the frame buffer interface are:

� Ease of use and simple interface that depend on the most basic principle
of graphics hardware, a linear frame buffer

� Provides user-space applications to access video memory directly, immense
programming freedom

� Removes dependency on legacy display architecture, no network, no client-
server model; simple single-user, direct display applications

� Provides graphics on Linux without hogging memory and system resources

9.5.1 Linux Frame Buffer Interface

The frame buffer on Linux is implemented as a character device interface.
This means applications call standard system calls such as open(), read(),
write(), and ioctl() over a specific device name. The frame buffer device
in user space is available as /dev/fb[0-31]. Table 9.2 lists the interfaces
and the operations. The first two operations on the list are common to any
other device. The third one, mmap, is what makes the frame buffer interface
unique. We go slightly off track now to discuss the features of the mmap()
system call.

The Power of mmap

Drivers are a part of the kernel and hence run in kernel memory, whereas
applications belong to user land and run in user memory. The only interface
available to communicate between drivers and applications is the file opera-
tions (the fops) such as open, read, write, and ioctl. Consider a simple
write operation. The write call happens from the user process, with the data
placed in a user buffer (allocated from user-space memory) and is passed
over to the driver. The driver allocates a buffer in the kernel space and copies
the user buffer to the kernel buffer using the copy_from_user kernel function
and does the necessary action over the buffer. In the case of frame buffer
drivers, there is a need to copy/DMA it to actual frame buffer memory for

Table 9.2 Frame Buffer Interface

Interface Operation

Normal I/O Open, read, write over /dev/fb

Ioctl Commands for setting the video mode, query chipset information,
etc.

Mmap Map the video buffer area into program memory

318 Embedded Linux System Design and Development

output. If the application has to write over a specified offset then one has to
call seek() followed by a write(). Figure 9.7 shows in detail the various
steps involved during the write operation.

Now consider a graphics application. It has to write data all over the screen
area. It might have to update one particular rectangle or sometimes the whole
screen or sometimes just the blinking cursor. Each time performing seek(),
followed by a write() is costly and time consuming. The fops interface
provides the mmap() API for use in such applications. If a driver implements
mmap() in its fops structure then the user application can directly obtain the
user-space memory-mapped equivalent of the frame buffer hardware address.
mmap() implementation is a must for the frame buffer class of drivers.2 Figure
9.8 shows the various steps when mmap is used.

Figure 9.7 Repeated seek/write.

Figure 9.8 mmaped write.

Open

(device name)

Seek

(offset)

Write

(bytes)

Driver open,

Init Hardware

Seek to

Buffer Offset

Write/DMA to

Framebuffer

User Space Application

Kernel Driver

Repeat seek/write

Open

(device name)
Mmap

Mmapped

user Spacebuffer

Driver open,

Inithardware

Mmap

Framebuffer

User Space Application

Kernel Driver

Video

Memory

Embedded Graphics 319

All frame-buffer applications simply call open() of /dev/fb, issue neces-
sary ioctl() to set the resolution, pixel width, refresh rate, and so on, and
then finally call mmap(). The mmap implementation of the driver simply maps
the whole of the hardware video frame buffer. As a result the application gets
a pointer to the frame buffer memory. Any changes done to this memory area
are directly reflected on the display.

To understand the frame buffer interface better we set up the frame buffer
driver on the Linux desktop and write a sample frame buffer application.

Setting Up Frame Buffer Driver

The Linux kernel must be booted with the frame buffer option to use the
frame buffer console and to init the frame buffer driver. Pass the vga=0x761
command line option during the kernel boot.3 The number represents a
resolution mode of the card; for a complete listing on what the number means,
refer to Documentation/fb.txt under the Linux kernel source directory. If
the kernel boots with the frame buffer mode enabled, you will immediately
notice the famous tux boot image on the top-left portion of your screen. Also
kernel prints will be displayed in high-resolution fonts. To confirm further,
just cat some file onto /dev/fb0. You will see some garbage on the screen.
If that did not work, then you might have to compile frame buffer support
into your kernel and then try again. For further assistance on setting up the
frame buffer device refer to the frame buffer HOWTO available at http://
www.tldp.org/.

Now we discuss data structures and ioctls that provide the frame buffer
user-space interface. Generally graphics devices have support for multiple
resolution and modes. For example, a single device might have the following
configurable modes.

� Mode 1: 640 × 480, 24-bit color, RGB 888
� Mode 2: 320 × 480, 16-bit color, RGB 565
� Mode 3: 640 × 480, monochrome, indexed

The fixed parameters in a particular mode are reported by the device driver
using the fb_fix_screeninfo structure. In other words, the fb_fix_
screeninfo structure defines the fixed or unalterable properties of a graphics
card when set to work in a particular resolution/mode.

struct fb_fix_screeninfo {
 char id[16]; /*Identification string ex
 "ATI Radeon 360"*/
 unsigned long smem_start; /*Start of frame buffer
 memory*/
 __u32 smem_len; /*Length of frame buffer
 memory*/
 __u32 type; /*one of various FB_TYPE_XXX
 */
 __u32 visual; /*one of FB_VISUAL_XXX*/

320 Embedded Linux System Design and Development

 …
 …
 __u32 line_length; /*length of a line in bytes*/
 …
 …
};

smem_start is the physical start address of the frame buffer memory of
length smem_len. Fields type and visual indicate the pixel format and
color mode. The FBIOGET_FSCREENINFO ioctl is used to read the
fb_fix_screeninfo structure.

 fb_fix_screeninfo fix;
 ioctl(FrameBufferFD, FBIOGET_FSCREENINFO, &fix)

The fb_var_screeninfo structure contains the alterable features of a
graphics mode. One can use this structure and set up the required graphics
mode. The important structure members are:

struct fb_var_screeninfo {
 __u32 xres; /*visible X, Y resolution*/
 __u32 yres;
 __u32 xres_virtual; /*virtual resolution*/
 __u32 yres_virtual;
 __u32 xoffset; /*offset from virtual to visible
 resolution*/
 __u32 yoffset;
 __u32 bits_per_pixel; /*Number of bits in a pixel*/
 __u32 grayscale; /*!= 0 Graylevels instead of
 colors*/
 …
 …
 struct fb_bitfield red; /*bitfield in fb mem if true
 color*/
 struct fb_bitfield green;
 struct fb_bitfield blue;
 struct fb_bitfield transp; /*transparency level*/
 __u32 nonstd; /*!= 0 Nonstandard pixel
 format*/
 …
 …

};

The structure fb_bitfield above details the length and bit offset of each
color in a pixel.

struct fb_bitfield {
 __u32 offset; /*beginning of bitfield*/
 __u32 length; /*length of bitfield*/
 __u32 msb_right; /*!= 0 : Most significant bit is
 right*/
};

Embedded Graphics 321

Recall the different color modes that were discussed, RGB565, RGB888,
and so on, and the fb_bitfield elements represent the same. For example,
a single RGB 565 pixel is of 2 bytes’ width and has the following format as
shown in Figure 9.9.

� red.length =5, red.offset = 16 → 32 pure red shades
� green.length = 6 and green.offset = 11 → 64 pure green shades
� blue.length = 5 and blue.offset = 5 → 32 pure blue shades
� pixel length is 16 bits or 2 bytes → 65536 shades in total.

Fields xres and yres represent the X and Y resolution of the visible
screen. Fields xres_virtual and yres_virtual indicate the virtual reso-
lution of the card, which might be greater than visible coordinates. For
example, consider the case where the visible Y resolution is 480, whereas the
virtual Y resolution is 960. Because only 480 lines are visible it is necessary
to indicate which 480 lines out of the 960 are to be made visible on the
screen. The xoffset and yoffset field is used for this purpose. In our
example if yoffset is 0, then the first 480 lines will be visible or, if yoffset
is 480, the last 480 lines are made visible. By just changing the offset value
programmers can implement double buffering and page flipping4 in their
graphics applications.

FBIOGET_VSCREENINFO ioctl retrieves the fb_var_screenifno structure
and FBIOSET_VSCREENINFO ioctl sets a configured fb_var_screeninfo
structure.

 fb_var_screeninfo var;
 /* Read the var info */
 ioctl(FrameBufferFD, FBIOGET_VCREENINFO, &var);

 /* Set 1024x768 screen resolution */
 var.xres = 1024; var.yres = 768;
 ioctl(FrameBufferFD, FBIOSET_VCREENINFO, &var);

The next important structure in frame buffer programming is the fb_cmap
structure.

struct fb_cmap {
 __u32 start; /* First entry*/

Figure 9.9 RGB565 pixel format.

Bit 0Bit 16 15 14 ...

5 Red bits 6 Green bits 5 Blue bits

Byte 1 Byte 2

322 Embedded Linux System Design and Development

 __u32 len; /* Number of entries */
 __u16 *red; /* Color values */
 __u16 *green;
 __u16 *blue;
 __u16 *transp; /* transparency, can be NULL */
};

Each color field red, green, and blue is an array of color values of length
len. Thus the structure represents a color map table or CLUT, where the color
value for any index n is obtained by looking up the table at red[n],
green[n], blue[n], where start < n < len. transp field is used to indicate
the level of transparency,5 if required and is optional.

The FBIOGETCMAP ioctl is used to read out the existing color map table
and FBIOPUTCMAP ioctl programs/loads a new color map table/CLUT.6

/* Read the current color map */
fb_cmap cmap;
/* Initialize cmap data structure */
allocate_cmap(&cmap, 256);
ioctl(FrameBufferFD, FBIOGETCMAP, &cmap);

/* Change the cmap entries and load 8 bit indexed color map */
#define RGB(r, g, b) ((r<<red_offset)|
 (g << green_offset)|
 (b << blue_offset))

/* Setup offset for RGB332 mode */
red_offset = 5; green_offset = 2; blue_offset = 0;
for(r=0;r<3;r++) {
 for(g=0;j<3;g++) {
 for(b=0;b<2;b++) {
 q=RGB(r, g, b);
 cmap.red[q]=r;
 cmap.green[q]=g;
 cmap.blue[q]=b;
 }
 }
}

/* Finally load the CLUT */
ioctl(FrameBufferFD, FBIOPUTCMAP, &cmap);

Now, we are ready to write our frame buffer Hello world program. Listing
9.1 plots a single white pixel in the middle of the screen.

The first step is obvious enough: open the frame buffer device /dev/fb0,
with O_RDWR (read/write). The second step is to read the device information
structures. The frame buffer device has two important structures: fixed and
variable. Fixed information is read-only: read using FBIOGET_FSCREENINFO
ioctl. The fb_fix_screeninfo structure includes frame buffer device iden-
tification, information about the pixel format supported by this device, and

Embedded Graphics 323

Listing 9.1 Sample Frame Buffer Example

/* File: fbs.c */

#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>
#include <errno.h>
#include <string.h>
#include <unistd.h>
#include <asm/page.h>
#include <sys/mman.h>
#include <sys/ioctl.h>
#include <asm/page.h>
#include <linux/fb.h>

/* Device Name like /dev/fb */
char *fbname;
/* handle to fb device */
int FrameBufferFD;
/* fixed screen information */
struct fb_fix_screeninfo fix_info;
/* configurable screen info */
struct fb_var_screeninfo var_info;
/* The frame buffer memory pointer */
void *framebuffer;
/* function to plot pixel at position (x,y) */
void draw_pixel(int x,int y, u_int32_t pixel);

int main(int argc, char *argv[])
{

 int size;
 u_int8_t red, green, blue;
 int x, y;
 u_int32_t pixel;

 fbname = "/dev/fb0";

 /* Open the framebuffer device in read write */
 FrameBufferFD = open(fbname, O_RDWR);
 if (FrameBufferFD < 0) {
 printf("Unable to open %s.\n", fbname);
 return 1;
 }

 /* Do Ioctl. Retrieve fixed screen info. */
 if (ioctl(FrameBufferFD, FBIOGET_FSCREENINFO, &fix_info) < 0) {
 printf("get fixed screen info failed: %s\n",
 strerror(errno));
 close(FrameBufferFD);
 return 1;
 }

 /* Do Ioctl. Get the variable screen info. */
if (ioctl(FrameBufferFD, FBIOGET_VSCREENINFO, &var_info) < 0) {
 printf("Unable to retrieve variable screen info: %s\n",

324 Embedded Linux System Design and Development

Listing 9.1 Sample Frame Buffer Example (continued)

 strerror(errno));
 close(FrameBufferFD);
 return 1;
 }

 /* Print some screen info currently available */
 printf("Screen resolution: (%dx%d)\n",
 var_info.xres,var_info.yres);
 printf("Line width in bytes %d\n", fix_info.line_length);
 printf("bits per pixel : %d\n", var_info.bits_per_pixel);
 printf("Red: length %d bits, offset %d\n",
 var_info.red.length,var_info.red.offset);
 printf("Green: length %d bits, offset %d\n",
 var_info.red.length, var_info.green.offset);
 printf("Blue: length %d bits, offset %d\n",
 var_info.red.length,var_info.blue.offset);

 /* Calculate the size to mmap */
 size=fix_info.line_length * var_info.yres;

 /* Now mmap the framebuffer. */
 framebuffer = mmap(NULL, size, PROT_READ | PROT_WRITE,
 MAP_SHARED, FrameBufferFD,0);
 if (framebuffer == NULL) {
 printf("mmap failed:\n");
 close(FrameBufferFD);
 return 1;
 }

 printf("framebuffer mmap address=%p\n", framebuffer);
 printf("framebuffer size=%d bytes\n", size);

 /* The program will work only on TRUECOLOR */
 if (fix_info.visual == FB_VISUAL_TRUECOLOR) {
 /* White pixel ? maximum red, green & blue values */
 /* Max 8 bit value = 0xFF */
 red = 0xFF;
 green = 0xFF;
 blue = 0xFF;

 /*
 * Now pack the pixel based on the rgb bit offset.
 * We compute each color value based on bit length
 * and shift it to its corresponding offset in the pixel.
 *

 * For example: Considering a RGB565, the formula will
 * expand as:-
 * Red len=5, off=11 : Green len=6, off=6 : Blue len=5, off=0
 * pixel_value = ((0xFF >> (8 - 5) << 11)|
 * ((0xFF >> (8 - 6) << 6) |
 * ((0xFF >> (8 - 5) << 0) = 0xFFFF // White
 */
 pixel = ((red >> (8-var_info.red.length)) <<
 var_info.red.offset) |

Embedded Graphics 325

Listing 9.1 Sample Frame Buffer Example (continued)

 ((green >> (8-var_info.green.length)) <<
 var_info.green.offset) |
 ((blue >>(8-var_info.blue.length)) <<
 var_info.blue.offset);

 }else {
 printf("Unsupported Mode.\n");
 return 1;
 }

 /* Obtain center of the screen */
 x = var_info.xres / 2 + var_info.xoffset;
 y = var_info.yres / 2 + var_info.yoffset;

 /* Plot the pixel at x,y */
 draw_pixel(x,y, pixel);

 /* Release mmap. */
 munmap(framebuffer,0);
 close(FrameBufferFD);
 return 0;
}

void draw_pixel(int x, int y, u_int32_t pixel)
{

 /*
 * Based on bits per pixel we assign the pixel_value to the
 * framebuffer pointer. Recollect the matrix indexing method
 * described for the linear framebuffer.

 * pixel(x,y)=(line_width * y) + x.
 */

 switch (var_info.bits_per_pixel) {

 case 8:
 *((u_int8_t *)framebuffer + fix_info.line_length * y +x) =
 (u_int8_t)pixel;
 break;

 case 16:
 *((u_int16_t *)framebuffer +fix_info.line_length/2 *y +x) =
 (u_int16_t)pixel;
 break;

 case 32:
 *((u_int32_t *)framebuffer + fix_info.line_length/4*y +x) =
 (u_int32_t)pixel;
 break;

 default:
 printf("Unknown depth.\n");
 }
}

326 Embedded Linux System Design and Development

addresses for memory mapping the frame buffer. The variable screen infor-
mation is read/write retrieved using the FBIOGET_VSCREENINFO ioctl and set
using the FBIOSET_VSCREENINFO ioctl. The fb_var_screeninfo structure
describes the geometry and timings of the current video mode. The next step
is to mmap the hardware buffer into our application’s process space using the
mmap() system call.

Now we are ready for plotting our pixel. We take care of the various bit
depths and pixel-packing schemes. The fb_var_screeninfo structure pro-
vides the bit length and offsets of individual color channels. Finally, using the
property (pixel (x,y) = (line_width * y) + x) of the linear frame buffer, we
plot the single pixel. So much for getting one pixel!

9.5.2 Frame Buffer Internals

The kernel provides a frame buffer driver framework (implemented in drivers/
vieo/fbmem.c and drivers/video/fbgen.c). This framework provides
for easy integration of the actual frame buffer hardware driver into the kernel.
All board-specific frame buffer drivers register to this interface in the kernel.
The framework provides APIs and defines data structures to hook up the
hardware-dependent code. The skeleton of any driver that uses this framework
looks like the following.

� Fill up driver operations structure struct fb_ops.
� Fill up frame buffer fixed info struct fb_fix_screeninfo.
� Fill up driver information structure struct fb_info.
� Initialize hardware registers and video memory area.
� Allocate and initialize color map struct fb_cmap, if necessary.7

� Register the fb_info structure with driver framework using register_
framebuffer.

We have already discussed the fb_fix_screeninfo, fb_var_screeninfo,
and fb_cmap structures. Hence, we look into the other two driver structures,
fb_ops and fb_info. The important fields of struct fb_ops are function
pointers to operations like open, close, read, write, and ioctl. Many of
them are handled generically by the framework. So unless there is a need to
do something special for your hardware there is no need to define most of
these fields. For example, blanking a screen, fb_blank, and setting color
register, fb_setcolreg, are hardware-specific routines. These need to be
filled up if your hardware supports them and handled accordingly. Descriptions
of the various structure members of struct fb_info can be found in
include/linux/fb.h.

struct fb_info is the most important structure as it is the single hook
point for all the other data structures. The driver registers with the kernel with
a pointer to the driver-specific fb_info structure. The important fields in this
structure are:

TE
AM
 F
LY

Embedded Graphics 327

struct fb_info {
 …
 …
 struct fb_var_screeninfo var; /*Current variable
 screen information*/
 struct fb_fix_screeninfo fix; /*The fixed screen
 information */
 …
 …
 struct fb_cmap cmap; /*Current Color map*/
 struct fb_ops *fbops; /*Pointer to fb_ops
 structure */
 char *screen_base; /*Video memory base
 address (virtual)*/
 …
 …
};

The field screen_base is the video memory base address, a pointer to
the actual frame buffer hardware memory. But it is to be noted that the
hardware address has to be io-remaped before providing the address to the
kernel. Once the data structures are ready the driver should register with the
kernel by calling register_framebuffer.

int register_framebuffer(struct fb_info *fb_info);

To summarize, the driver needs to fill

� fb_info.fix: Fixed information on screen area and type.
� fb_info.var: Variable information on screen resolution and pixel depth

for the current mode.
� fb_info.fb_ops: Function pointers for frame buffer operations; use

only when hardware-specific handling is required.
� fb_info.screen_base: Video memory base (virtual) address, exposed

to user applications via mmap.
� fb_info.fb_cmap: Set up the color map entries, if necessary.
� fb_ops.fb_blank, fb_ops.fb_setcolreg: Set up hardware-specific

fb_ops entries, if necessary.
� And finally call register_framebuffer(&fb_info).

 For an idea on writing a simple frame buffer driver you can look at
drivers/video/vfb.c, the virtual frame buffer example in the kernel. One
can also look at the other driver source code to get an idea of the driver
coding details. Now we discuss a sample Linux 2.6 kernel frame buffer driver.8

Tables 9.3 and 9.4 list the specification/data sheet details of our hypothetical
graphical hardware: Simple Frame Buffer (SFB) device.

Let’s first fill the hardware-specific macros for this driver. The rest of the
code is generic and hardware independent. All the hardware-related details
are in Listing 9.2. Listing 9.3 is a simple skeleton frame buffer driver that would
work with any hardware, provided Listing 9.2 is updated accordingly.

328 Embedded Linux System Design and Development

9.6 Windowing Environments, Toolkits, and Applications
Applications written directly over the frame buffer interface do exist, but only
simple ones. As the GUI gets complex with more shapes and controls, there
is a need for abstraction. Libraries/API layers that make GUI programming
simple and easy have been in existence on desktop platforms for many years.
These libraries abstract the driver interface over simpler APIs that make sense
for a graphics application programmer. These libraries are essential in all
windowing environments. A generic windowing environment consists of:

Table 9.3 SFB Hardware Details

Parameter Value

Video memory start address 0xA00000

Video memory size 0x12C000

Video memory end address 0xB2C000

Max X resolution 640

Max Y resolution 480

Min X resolution 320

Min Y resolution 240

Color formats 32-bit, true color, RGBX888, MSB 8 bits don’t care
16-bit, high color, RGB565
8-bit, indexed color, palette programming required

Palette present Yes, 256 hardware color index registers

Palette register start 0xB2C100

Mode register 0xB2C004

Resolution register 0xB2C008. High 2 bytes are Y resolution and low 2
bytes are X resolution

Table 9.4 Mode Register

Value in Register Mode of the Card

0x100 RGB X888

0x010 RGB 565

0x001 8-bit, indexed mode

Embedded Graphics 329

Listing 9.2 Frame Buffer Driver Hardware-Specific Definitions

/* sfb.h */

#define SFB_VIDEOMEMSTART 0xA00000
#define SFB_VIDEOMEMSIZE 0x12C000
#define SFB_MAX_X 640
#define SFB_MAX_Y 480
#define SFB_MIN_X 320
#define SFB_MIN_Y 240

/* No transparency support in our hardware */
#define TRANSP_OFFSET 0
#define TRANSP_LENGTH 0

/*
 * Hardware has 0 to 255 (256) programmable color pallete
 * registers
 */
#define SFB_MAX_PALETTE_REG256
#define SFB_PALETTE_START 0xB2C100

/* Mode register and modes */
#define SFB_MODE_REG 0xB2C004
#define SFB_8BPP 0x1
#define SFB_16BPP 0x10
#define SFB_32BPP 0x100

/* Resolution register */
#define SFB_RESOLUTION_REG 0xB2C008

/*
 * The different bits_per_pixel mode (8/16/24/32) is hardware
 * specific. Hence the mode needs to be correspondingly handled.
 * SFB hardware supports only 8, 16 and 32 bit modes, Check for
 * validity of modes and adjust accordingly
 */

static inline int sfb_check_bpp(struct fb_var_screeninfo *var)
{
 if (var->bits_per_pixel <= 8)
 var->bits_per_pixel = 8;
 else if (var->bits_per_pixel <= 16)
 var->bits_per_pixel = 16;
 else if (var->bits_per_pixel <= 32)
 var->bits_per_pixel = 32;
 else
 return -EINVAL;
 return 0;
}

static inline void sfb_fixup_var_modes(struct fb_var_screeninfo *var)
{
 switch (var->bits_per_pixel) {

 case 8:
 var->red.offset = 0;

330 Embedded Linux System Design and Development

Listing 9.2 Frame Buffer Driver Hardware-Specific Definitions (continued)

 var->red.length = 3;
 var->green.offset = 3;
 var->green.length = 3;
 var->blue.offset = 6;
 var->blue.length = 2;
 var->transp.offset = TRANSP_OFFSET;
 var->transp.length = TRANSP_LENGTH;
 break;

 case 16: /*RGB565*/
 var->red.offset = 0;
 var->red.length = 5;
 var->green.offset = 5;
 var->green.length = 6;
 var->blue.offset = 11;
 var->blue.length = 5;
 var->transp.offset = TRANSP_OFFSET;
 var->transp.length = TRANSP_LENGTH;
 break;

 case 24:
 case 32: /* RGBX 888 */
 var->red.offset = 0;
 var->red.length = 8;
 var->green.offset = 8;
 var->green.length = 8;
 var->blue.offset = 16;
 var->blue.length = 8;
 var->transp.offset = TRANSP_OFFSET;
 var->transp.length = TRANSP_LENGTH;
 break;
 }
 var->red.msb_right = 0;
 var->green.msb_right = 0;
 var->blue.msb_right = 0;
 var->transp.msb_right = 0;
}
/* Program the hardware based on user settings */
static inline sfb_program_hardware(struct fb_info *info)
{
 ((unsigned int)(SFB_RESOLUTION_REG)) =
 ((info->var.yres_virtual & 0xFFFF) << 0xFFFF) |
 (info->var.xres_virtual & 0xFFFF)

 switch(info->var.bits_per_pixel) {

 case 8:
 ((unsigned int)(SFB_MODE_REG)) = SFB_8BPP;
 break;

 case 16:
 ((unsigned int)(SFB_MODE_REG)) = SFB_16BPP;
 break;

Embedded Graphics 331

� An interface layer for low-level drivers, such as the screen and input drivers
� A graphics engine for drawing objects on the screen
� A font engine that is capable of decoding one or more font file formats

and rendering them
� APIs that provide access to the various features exported by graphics and

font engines

Recall we discussed X as a windowing environment used on Linux desk-
tops. X-lib is the API layer provided by the X windowing environment. GUI
toolkits are also libraries built over windowing environments to overcome
some disadvantages of the lower library.

� Windowing environment libraries are platform-specific. For instance, appli-
cation code written over X-lib is almost impossible to port to Windows.
Most toolkits are available on multiple platforms and hence make porting
possible. Qt is a cross-platform toolkit available on various platforms such
as Qt/Windows (Windows XP, 2000, NT 4, Me/98/95), Qt/X11 (X windows),
Qt/Mac (Mac OS X), and Qt/Embedded (embedded Linux).

� APIs exported by windowing environment libraries perform simple tasks.
Toolkits implement many GUI components/objects and provide APIs for
them. For example, toolkits provide APIs for commonly used dialog boxes
such as File-Open, File-Print, Color Selection, and so on.

� Native widgets are too simple and applications cannot change the way a
widget looks when they use windowing libraries. Toolkits provide theme
support and widgets that are often loaded with features such as 3-D look
and feel, animation, and so on.

� Most important of all, toolkits provide GUI designers or Rapid Application
Development (RAD) tools. RAD tools are GUI builders that offer a point-
and-click interface for tasks such as widget placement or callback defini-
tions. Qt provides Qt Designer. Glade is used for Gtk programming.

 Toolkits are not always advantageous. Some of them bloat up your code
heavily, in return for the huge feature set that they carry along. There are lots
of options available when it comes to embedded Linux windowing environ-
ments/toolkit combinations. Table 9.5 lists the popular ones.

A major advantage of the Linux toolkit is that it provides a simulation
environment on the PC. Applications can be developed and prototyped on
the desktop, thus decreasing developing time and simplifying debugging. In
this section we discuss the Nano-X windowing environment.

Listing 9.2 Frame Buffer Driver Hardware-Specific Definitions (continued)

 case 32:
 ((unsigned int)(SFB_MODE_REG)) = SFB_32BPP;
 break;
 }
}

332 Embedded Linux System Design and Development

Listing 9.3 Generic Frame Buffer Driver

/* sfb.c */

#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/tty.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <asm/uaccess.h>
#include <linux/fb.h>
#include <linux/init.h>

static char *videomemory = VIDEOMEMSTART;
static u_long videomemorysize = VIDEOMEMSIZE;
static struct fb_info fb_info;

/* Set up some default screeninfo*/
static struct fb_var_screeninfo sfb_default __initdata = {
 .xres = SFB_MAX_X,
 .yres = SFB_MAX_Y,
 .xres_virtual = SFB_MAX_X,
 .yres_virtual = SFB_MAX_Y,
 .bits_per_pixel = 8,
 .red = { 0, 8, 0 },
 .green = { 0, 8, 0 },
 .blue = { 0, 8, 0 },
 .activate = FB_ACTIVATE_TEST,
 .height = -1,
 .width = -1,
 .left_margin = 0,
 .right_margin = 0,
 .upper_margin = 0,
 .lower_margin = 0,
 .vmode = FB_VMODE_NONINTERLACED,
};

static struct fb_fix_screeninfo sfb_fix __initdata = {
 .id = "SimpleFB",
 .type = FB_TYPE_PACKED_PIXELS,
 .visual = FB_VISUAL_PSEUDOCOLOR,
 .xpanstep = 1,
 .ypanstep = 1,
 .ywrapstep = 1,
 .accel = FB_ACCEL_NONE,
};

/* Function prototypes */
int sfb_init(void);
int sfb_setup(char *);

Embedded Graphics 333

Listing 9.3 Generic Frame Buffer Driver (continued)

static int sfb_check_var(struct fb_var_screeninfo *var,
 struct fb_info *info);
static int sfb_set_par(struct fb_info *info);
static int sfb_setcolreg(u_int regno, u_int red, u_int green,
 u_int blue, u_int transp,
 struct fb_info *info);
static int sfb_pan_display(struct fb_var_screeninfo *var,
 struct fb_info *info);
static int sfb_mmap(struct fb_info *info, struct file *file,
 struct vm_area_struct *vma);

/*
 * Define fb_ops structure that is registered with the kernel.
 * Note: The cfb_xxx routines, these are generic routines
 * implemented in the kernel. You can override them in case
 * your hardware provides accelerated graphics function
 */
static struct fb_ops sfb_ops = {
 .fb_check_var = sfb_check_var,
 .fb_set_par = sfb_set_par,
 .fb_setcolreg = sfb_setcolreg,
 .fb_fillrect = cfb_fillrect,
 .fb_copyarea = cfb_copyarea,
 .fb_imageblit = cfb_imageblit,
};

/*
 * Recollect the discussion on line_length under the Graphics
 * Hardware section. Line length expressed in bytes, denotes the
 * number of bytes in each line.
 */
static u_long get_line_length(int xres_virtual, int bpp)
{
 u_long line_length;
 line_length = xres_virtual * bpp;
 line_length = (line_length + 31) & ~31;
 line_length >>= 3;
 return (line_length);
}

/*
 * xxxfb_check_var, does not write anything to hardware, only
 * verify based on hardware data for validity
 */

static int sfb_check_var(struct fb_var_screeninfo *var,
 struct fb_info *info)
{
 u_long line_length;
 /* Check for the resolution validity */
 if (!var->xres)
 var->xres = SFB_MIN_XRES;
 if (!var->yres)
 var->yres = SFB_MIN_YRES;

334 Embedded Linux System Design and Development

Listing 9.3 Generic Frame Buffer Driver (continued)

if (var->xres > var->xres_virtual)
 var->xres_virtual = var->xres;
 if (var->yres > var->yres_virtual)
 var->yres_virtual = var->yres;

 if (sfb_check_bpp(var)) return –EINVAL;

 if (var->xres_virtual < var->xoffset + var->xres)
 var->xres_virtual = var->xoffset + var->xres;
 if (var->yres_virtual < var->yoffset + var->yres)
 var->yres_virtual = var->yoffset + var->yres;

 /*
 * Make sure the card has enough video memory in this mode
 * Recall the formula
 * Fb Memory = Display Width * Display Height * Bytes-per-pixel
 */
 line_length = get_line_length(var->xres_virtual,
 var->bits_per_pixel);
 if (line_length * var->yres_virtual > videomemorysize)
 return -ENOMEM;

 sfb_fixup_var_modes(var);
 return 0;
}

/*
 * This routine actually sets the video mode. All validation has
 * been done already
 */

 static int sfb_set_par(struct fb_info *info)
 {
 sfb_program_hardware(info);
 info->fix.line_length = get_line_length(
 info->var.xres_virtual,
 info->var.bits_per_pixel);
 return 0;
 }

 /*
 * Set a single color register. The values supplied are already
 * rounded down to the hardware's capabilities (according to the
 * entries in the var structure). Return != 0 for invalid regno.
 */

 static int sfb_setcolreg(u_int regno, u_int red, u_int green,
 u_int blue, u_int transp,
 struct fb_info *info)
 {
 unsigned int *palette = SFB_PALETTE_START;

 if (regno >= SFB_MAX_PALLETE_REG) //no. of hw registers
 return 1;

Embedded Graphics 335

9.6.1 Nano-X

The Nano-X project is an open source project available under MPL/GPL
licenses. It provides a simple but powerful embedded graphic programming
interface. The prime features in Nano-X that make it suitable as an embedded
Windowing environment are listed below.

� Developed from scratch targeting embedded devices, accounting for var-
ious constraints such as memory and footprint. The entire library is less
than 100 K and only uses 50 to 250 K of runtime memory.

Listing 9.3 Generic Frame Buffer Driver (continued)

 unsigned int v = (red << info->var.red.offset) |
 (green << info->var.green.offset) |
 (blue << info->var.blue.offset) |
 (transp << info->var.transp.offset);

 /* Program the hardware */
 *(palette+regno) = v;
 return 0;
 }

/* Driver Entry point */
 int __init sfb_init(void)
{
 /* Fill fb_info structure */
 fb_info.screen_base = io_remap(videomemory, vidememory);
 fb_info.fbops = &sfb_ops;
 fb_info.var = sfb_default;
 fb_info.fix = sfb_fix;
 fb_info.flags = FBINFO_FLAG_DEFAULT;

 fb_alloc_cmap(&fb_info.cmap, 256, 0);

 /* Register the driver */
 if (register_framebuffer(&fb_info) < 0) {
 return -EINVAL;
 }

 printk(KERN_INFO "fb%d: Sample frame buffer device
 initialized \n", fb_info.node);
 return 0;
}

static void __exit sfb_cleanup(void)
{
 unregister_framebuffer(&fb_info);
}

module_init(sfb_init);
module_exit(sfb_cleanup);

MODULE_LICENSE("GPL");

336 Embedded Linux System Design and Development

� The architecture of Nano-X allows for adding different types of display,
mouse, touchscreen, and keyboard devices. This is done by providing a
separate device driver interface layer. This makes porting to any hardware
platform simple.

� Nano-X implements two popular APIs: a Microsoft Windows-based API
layer and an X-lib such as the Nano-X API layer. This reduces the API
learning time.

� The screen driver layer has support for all possible pixel formats such as
1, 2, 4, 16, 24, and 32 bits per pixel, and hence is portable to any device
right from monochrome LCDs to true-color OSDs.

� It provides highly configurable and component-selectable architecture. For
instance, one can add or remove support for any image or font library
almost instantaneously.

Nano-X Architecture

Nano-X architecture is highly modular and has primarily three layers. These are:

Table 9.5 Popular Windowing Environments

Name License Comments

Nano-X
www.microwindows.org

GPL/MPL Windowing environment providing
Win32- and X11–like APIs, targeting
embedded systems.

FLNX
www.fltk.org

LGPL FLTK toolkit ported over
Microwindows

MiniGUI
www.minigui.com

LGPL Compact graphic user interface
support system for Linux. MiniGUI
defines some Win32-like APIs for the
applications; provides a small
windowing system support library

DirectFB
www.directfb.org

LGPL A thin library that provides hardware
graphics acceleration, input device
handling and abstraction, integrated
windowing system with support for
translucent windows, and multiple
display layers

PicoGUI
www.picogui.org

LGPL A new graphic user interface
architecture designed with
embedded systems in mind; includes
low-level graphics and input,
widgets, themes, layout, font
rendering, network transparency

Qt/Embedded
www.trolltech.com/products/
embedded/index.html

QPL
GPL

C++-based windowing system for
embedded devices, provides most of
the Qt API

GTK+/FB
www.gtk.org

LGPL Frame buffer port of the popular GTK+
windowing system.

Embedded Graphics 337

� Device driver layer
� Device-independent graphics engine
� API layer (Nano-X and Microwindows)

Figure 9.10 explains the Nano-X architecture.
The lowest-level device driver layer has an interface for various devices

such as the screen over frame buffer, touchpad, mouse, and keyboard. This
layer allows for adding any new hardware device to Nano-X without affecting
the rest of the layers.

The core of Nano-X is the graphics engine that implements graphics routines
for line, circle, and polygon draw. It also supports image drawing from various
formats such as JPEG, BMP, and PNG. This layer also comprises the font
engine responsible for rendering fonts and drawing text on the screen. The
font engine supports both true-type and bitmapped fonts.

Nano-X supports two different API layers. Both the API layers run on top
of the core graphics engine and the device driver. One set is very similar to
the X Lib APIs and hence is referred to as Nano-X. Another API layer is similar
to the Microsoft Win32 and WinCE APIs and hence is called Microwindows.
Due to this dual API support, programmers of both the X and WIN32 SDK
worlds are at great advantage and require little or no learning curve. The Nano-
X API layer is based on the X framework and essentially has a client/server
model. Nano-X server is a separate process that runs the server code. The
application, the Nano-X client, runs as a separate process and is linked against
a special library that provides for the UNIX/IPC socket communication with
the server. There is also the option of linking the client and the server together
to form a single application. This speeds things up by removing the IPC.

Microwindows API on the other hand is based on the Win32 SDK model.
Microwindows essentially has a message-passing mechanism very similar to
its Windows counterpart. Most windowing objects and methods have the same

Figure 9.10 Nano-X windowing system architecture.

Device Driver Layer

Device Independent Graphics Engine

Twin API Layer

Mouse &

Touchpad

Screen

display
Keyboard &

Buttons

Nano-X API

Nano-X Client

Application

Mwindows

Application

Win 32-like API

338 Embedded Linux System Design and Development

structures as in Windows SDK. Please refer to the architecture document
available from http://www.microwindows.org/.

Getting Started with Nano-X

1. Obtain latest source code: At the time of this writing the latest version is
Nano-X v0.91 and is available at ftp://microwindows.censoft.com/pub/.

2. Compile: Untar the sources (say /usr/local/microwin). cd to direc-
tory src/Configs/. This directory consists of preconfigured config files
for various platforms. Choose and copy a suitable one for your platform
and copy to microwin/src/config. Every item in the config file has
a good amount of comment. That will give you an idea of the configuration
flexibility that microwindows provides. For getting started we compile it
for the i386. Enable the X11 option by setting X11=Y. This will ensure
that we can run Nano-X as just another X11 application. The font engine
of Nano-X supports a wide variety of font file formats including true-type
(outline) fonts and bitmap fonts. The font engine uses external libraries
such as Freetype-1, Freetype-2, and the like to provide support for TTF
files. Choose a font-rendering system that is available on your PC, most
likely Freetype-2. Finally compile using make in the microwin/src
directory.

3. Run demo: After the compilation is complete, start the demo program in
the directory microwin/src by running ./demo2.sh. This script starts
off the Nano-X server and some sample client programs.

The src/demos directory contains a number of sample programs at various
difficulty levels. One must go through at least a few of them to get acquainted
with Nano-X programming.

Building a Sample Nano-X Application

Listing 9.4 is a simple Nano-X application that just draws a box.
Compile the program using the command

#gcc simple.c –o simple
 –I$(MICROWINDIR)/src/include –lnano-x

We need to start the Nano-X server before starting the application.

#nano-X &; simple

Any Nano-X client application must call GrOpen() first to connect to the
Nano-X server. After the connection is successful, the application creates a
window of size 200 by 100 at the pixel location (100,100) using the function
GrNewWindow(). The border specified for the window is 5 pixels wide, with
border color as red and window fill color as white. Next the window is
displayed on the screen using the GrMapWindow(). Mapping the window to

Embedded Graphics 339

the screen is followed by the all-important “event loop” of the program. The
call to GrGetNextEvent() checks if there is a mouse, keyboard, or GUI
event available to be read. Though the sample application does not handle
any events, applications will have to react in response to these various events
accordingly. For more information on programming using Microwindows refer
to the various tutorials at http://www.microwindows.org.

Nano-X Toolkit

Simple GUI applications don’t require any toolkit and should not be a problem
to write in Nano-X. In this section we discuss the toolkit options available
over Nano-X.

FLTK (Fast Light Tool Kit) has a port for Nano-X called FLNX. FLTK provides
C++ abstraction over Nano-X APIs. FLTK also provides a GUI designer called
Fluid that can be used to design GUI forms. The Nano-X/FLTK combination

Listing 9.4 Sample Nano-X Application

/* nano_simple.c */

#define MWINCLUDECOLORS
#include <stdio.h>
#include "nano-X.h"

int main(int ac,char **av)
{
 GR_WINDOW_ID w;
 GR_EVENT event;

 if (GrOpen() < 0) {
 printf("Can't open graphics\n");
 exit(1);
 }

 /*
 * GrNewWindow(GR_ROOT_WINDOW_ID, X, Y, Width, Height,
 * Border, Windowcolor, Bordercolor);
 */

 w = GrNewWindow(GR_ROOT_WINDOW_ID, 100, 100, 200, 100, 5, WHITE,
 RED);

 GrMapWindow(w);

 /* Enter event loop */
 for (;;) {
 GrGetNextEvent(&event);
 }

 GrClose();
 return 0;
}

340 Embedded Linux System Design and Development

is proven and tested; many embedded applications have successfully employed
this combination. For instance, the ViewML browser is an HTML browser
implemented using the same combination.

NXLIB (Nano-X/X-lib Compatibility Library) allows X11 binaries to run
unmodified using the Nano-X server. This means that many full-featured
applications that run on the X-server would run on the Nano-X server as well
with little or no modifications. The NXLIB is not a complete replacement of
X-lib, because it provides only a subset of X-lib APIs. NXLIB will help reduce
porting time of huge applications that were written using other toolkits built
over X-lib. For example, a program written using Gtk-X will run on Nano-X
without many code changes.

9.7 Conclusion
The chapter addressed various queries about graphics systems and their archi-
tecture and options available on Linux embedded systems. One question remains
unanswered: is there a generic solution that can address the entire range of
embedded devices requiring graphics, that is, mobile phones to DVD players?

The Linux frame buffer provides a solution for all types of devices. If the
application is simple enough as in the case of a DVD player, then programmers
can use the frame buffer interface along with a tiny windowing engine such
as Nano-X and get the whole system up and running. The mobile phone
solution requires a lot of programs such as calendar, phone book, camera,
and the like to run over a user-friendly menu-driven GUI, which can be
implemented using a toolkit such as Qt/Embedded or FLNX. Smart phones
using Qt are already available on the market at the time of this writing.

Notes
1. YUV is more commonly employed in video encoding/decoding systems.
2. Note that this is not required in non-MMU operating systems such as VxWorks or

uClinux because the whole memory address space is one flat area. In the flat-
addressing model any process can address any memory space, regardless of kernel
or user.

3. You can edit /etc/lilo.conf or grub.conf boot loader configuration files to achieve
the same.

4. Double buffering and page flipping are graphics techniques in which the image is
drawn to an off-screen (nonvisible) buffer. A simple pointer swap between visible
and nonvisible buffers renders the image on the screen.

5. The transparency field is also called the alpha channel. We add a new mode to
the list of known modes, the 32-bit RGBA8888 mode, where A stands for the alpha
channel (8 bits).

6. Loading a new CLUT or color map is referred to as palette programming.
7. Not all hardware supports storing color map tables.
8. There is a small difference between the frame buffer drivers in the 2.4 and 2.6

kernels. The 2.4 frame buffer info structure directly stores pointers to the console
driver data; the 2.6 removed this dependency separating the console from the
graphic interface completely.

341

Chapter 10

uClinux

A new version of Linux ported to an M68k processor was released in January
1998. The major difference in this release from standard Linux was that this
variant of Linux was running for the first time on a processor without an
MMU. This variation of Linux is widely known as uClinux.1 Until then, MMU-
less processors used to run only commercial or custom-made RTOSs. The
possibility of running Linux on such processors means a major design and
development advantage. This chapter tries to address some queries related to
running Linux on MMU-less processors.

� Why use a separate Linux for MMU-less systems?
� What tools are required to build and run uClinux on an embedded system?
� What are the changes involved at the various levels such as kernel, user

space, file system, and so on?
� Will applications compiled for standard Linux run on uClinux?
� What are the application porting guidelines from Linux to uClinux?

10.1 Linux on MMU-Less Systems
Standard Linux primarily runs on general-purpose processors that have inbuilt
hardware support for memory management in the form of an MMU. The MMU
essentially provides the following major functions.

� Address translation using TLB2

� Demand paging using page faults
� Address protection using protection modes3

 Linux is tightly integrated with virtual memory implemented using an MMU
and hence was never meant for MMU-less processors. As Linux had this
dependency on MMU, it was necessary to restructure some portions of the
virtual memory management code in the kernel. The idea of running Linux

342 Embedded Linux System Design and Development

on MMU-less processors and the impact of the changes on the then-stable
Linux 2.0 kernel was not clear to everyone. Hence a new project was started
to support Linux on MMU-less processors, the uClinux project (http://
www.uclinux.org).

The uClinux project provided a Linux that was capable of running on
MMU-less processors. Although uClinux has always focused on Linux for
systems without an MMU, support for MMU-capable processors has always
remained as is. uClinux adds support for MMU-less processors to the kernel,
but removes nothing in the process, a small but important point that is often
overlooked when discussing uClinux. It is to be noted that uClinux is capable
of running on systems with an MMU too, but the chapter is concerned only
with uClinux running on MMU-less systems.

10.1.1 Linux Versus uClinux

On a regular Linux system, a user process can be defined as a program in
execution. Every program is an executable file stored in the file system; it is
either stand-alone (statically linked) or dynamically linked with shared libraries.
Virtual memory allows the allocation of private memory space for every
process. However on uClinux, because there is no MMU, you will have doubts
as to whether there are separate programs in uClinux or will it be similar to
a traditional flat-memory OS where the OS and applications form one single
image. In this section we look in detail at the differences between uClinux
and Linux.

Process Address Space and Memory Protection

In standard Linux, applications are user processes that execute in private
address space called the process address space. The MMU provides for memory
protection and hence no application can corrupt any other application’s
address space. MMU also provides for virtual memory (VM) and each appli-
cation is capable of addressing the maximum virtual memory limit4 irrespective
of the system’s physical memory limit.

On the other hand, uClinux without VM applications cannot run in indi-
vidual virtual process address space. Hence address space allocations across
applications are shared from the available memory. The lack of MMU means
there is no way to implement memory protection and hence all processes
share a single global memory space. Because all processes share the same
memory space, a process can corrupt another process’ data. This is a major
drawback with which uClinux developers will have to live.

User Mode and Kernel Mode

The user mode/kernel mode memory protection in a Linux system is realized
by efficiently using MMU along with the processor operating modes. uClinux
does have kernel and user-space applications because of lack of MMU and

uClinux 343

no memory protection. This means that any user-space application can corrupt
kernel memory or even cause a system crash.

Demand Paging and Swapping

In an MMU-enabled processor, one can program page fault handlers. Linux
uses the page fault handler5 to implement demand paging and swapping.
Because page fault handlers cannot be set up on an MMU-less processor it
means that there can be no demand paging and swapping. Although uClinux
has a common memory space for the kernel and applications, it allows an
application image to be different from the kernel. Thus the application and
the kernel can be kept as separate programs on the file system and can be
loaded separately. uClinux achieves this by cleverly tweaking the toolchain
(compilers, linkers, etc.) and the loaders that are necessary for program
execution. uClinux has its own development toolchain. As a matter of fact, a
major portion of porting uClinux to a new platform is to get the toolchain
working. Once the toolchain is available, getting the applications to work on
uClinux becomes a surprisingly easy effort. Discussing the changes required
for porting a toolchain is beyond the scope of this chapter; rather this chapter
focuses on how uClinux strives to maintain the same environment as regular
Linux for the developers.

The design challenges involved in running a Linux platform on an MMU-
less processor and keeping the platform as close as possible to the existing
system are many and complex. In this chapter we try to point out a few of
those design challenges and how uClinux engineers have solved them, explain-
ing the basics involved in each approach.

The rest of this chapter is divided into two parts.

� The first part (Sections 10.2 to 10.6) discusses in detail the concepts behind
uClinux, outlines the building blocks, and describes the modifications done
to Linux to be able to run on an MMU-less system.

� The second part details a guideline for porting applications to uClinux. If
you are interested in only porting applications and not bothered about
system internals, then you can skip these sections and move on to Section
10.7.

10.2 Program Load and Execution
Standard Linux applications are linked with absolute addresses. In other words
the compiler and linker build the applications with the assumption that each
application has the complete virtual memory address range available.

We write a small program on the x86 to get an idea of how the different
segments are organized in the address space available.6

int data1=1; //will go to .data section
int data2=2; // will also go to .data section
int main(int argc, char *argv[]) // .text

344 Embedded Linux System Design and Development

{
 int stack1=1; // program stack
 int stack2=2; // program stack
 char *heap1 = malloc(0x100); //heap allocation
 char *heap2 = malloc(0x100); //again from heap

 printf(“ text %p\n”, main);
 printf(“ data %p %p\n”, &data1, &data2);
 printf(“ heap %p %p\n”, heap1, heap2);
 printf(“ stack %p %p\n”, &stack1, &stack2);
}

Program Output:

text 0x804835c
data 0x80494f0 0x80494f4
heap 0x8049648 0x8049750
stack 0xbfffe514 0xbfffe510

The program output makes things clear on where a section is located and
in which direction a particular segment grows. The stack is near the top of
the PAGE_OFFSET (0xC000_0000) and grows downwards. Text is located
closer to the bottom of the memory (libraries have some regions reserved
below), followed by the data section. After the end of data (i.e., initialized
data + bss), heap allocation starts and grows above towards the growing stack.
What happens when heap and stack meet? In this case the page fault hander
posts signal SIGSEGV to the program. Figure 10.1 shows the standard Linux
application memory map.

Figure 10.1 Linux application memory map.

Text

.data + .bss

Heap

Stack

Load Address/Base (0)

Heap Start (grows up)

Stack Start (grows down)

Libraries

Top Address/User limit (0 × C000_0000)

uClinux 345

Start multiple instances of the program and the output will be in the same
range for all instances of the application. This is made possible because of
MMU, which aids in providing a separate virtual address space for each
process. The application deals only with the virtual address. The kernel virtual
memory software and MMU hardware map the virtual address to the actual
physical address.

Now in the absence of VM individual virtual address space cannot be
created for each program. Hence in uClinux applications are forced to share
all the available address space as one huge contiguous physical chunk.
Programs are loaded in an available free chunk of memory, at any arbitrary
memory location. Recall that on MMU-enabled systems this arbitrary location
will get mapped to virtual address zero in the process’ map. Unlike standard
Linux, this means that the start address of a program is unknown (rather than
an arbitrary address) and the addressing used in the instructions cannot be
absolute.7 The uClinux loaders take up this additional job of patching a
program at start-up based on the start address available. The compilers and
linkers also need to interop with the loader to assist in the same. uClinux has
two different methods to solve this unknown address problem.

10.2.1 Fully Relocatable Binaries (FRB)

The binary is compiled with the text starting at zero address. The toolchain
generates fixed non-Position Independent Code (PIC). To aid the loader to load
the image at any arbitrary address, the linker adds a relocation table at the end
of the data segment. The entries in the relocation table point to locations in the
file that are in need of a fix-up. The loader copies the text and data segments
to RAM and runs through the relocation table, patching each entry by adding
the start address of the particular segment available at load time.

10.2.2 Position Independent Code (PIC)

In this case the compiler generates position independent code using program
counter–relative text addresses.8 Relative addressing requires hardware sup-
port, instructions that are capable of interpreting PC-relative addressing modes.
All data is referenced using a table called the Global Offset Table (GOT). The
GOT is placed at the start of the data segment and contains address pointers
to data used in the code. The size of the GOT is limited in some architectures
such as the m68k.

eXecute In Place (XIP)

PIC mode also comes in handy in implementing eXecute-In-Place (XIP). Unlike
the relocation case where text and data both need to be copied to RAM before
execution (for patching jumps and calls), there is nothing that needs to be
patched for a PIC-based binary file. The program can start execution once
the data segment has been set up.9 XIP leverages this property and runs the

346 Embedded Linux System Design and Development

text as is directly from flash/ROM in place. Multiple instances of the program
just create new data segments and the text segment is actually shared across
all instances. Table 10.1 summarizes the differences between FRB and PIC.

10.2.3 bFLT File Format

The standard Linux execution file format is ELF. uClinux introduces a new
file format that is designed with the following design goals.

� Simplify the application load and execute process.
� Create a small and memory-efficient file format (ELF headers are large).
� Create a file format that will help solve problems in loading programs in

an MMU-less system.
� Provide for storing the relocation table for FRBs or GOT in case of PIC

binaries.

The file format used in uClinux is binary FLAT (bFLT). uClinux compilers
and linkers have special flags that help generate a relocation or PIC-based
bFLT file. The uClinux kernel also has a new loader that can interpret the
bFLT headers. Following is the 64-byte bFLT header structure, present at offset
0 of any bFLT file.

struct flat_hdr {
 char magic[4];
 unsigned long rev; /* version */
 unsigned long entry; /* Offset of first executable
 instruction with text
 segment from beginning of
 file */
 unsigned long data_start; /* Offset of data segment from
 beginning of file */
 unsigned long data_end; /* Offset of end of data
 segment from beginning of
 file */
 unsigned long bss_end; /* Offset of end of bss segment
 from beginning of file */

Table 10.1 FRB versus PIC

Fully Relocatable Binary Position Independent Code

XIP not possible. XIP possible.

Multiple instances of the same program result
in wastage of memory as text segments need
to be copied to RAM for every instance.

With XIP the text segment is shared
across multiple instances without
allocating RAM.

Start-up time is high as relocations need to
be patched up before start-up.

Less start-up time.

Works for all targets. PIC requires target support
(relative addressing mode).

uClinux 347

/*
 * It is assumed that data_end through bss_end forms the
 * bss segment.
 */

 unsigned long stack_size; /* Size of stack, in bytes */
 unsigned long reloc_start; /* Offset of relocation
 records from beginning of
 file */
 unsigned long reloc_count; /* Number of relocation
 records */
 unsigned long flags;
 unsigned long filler[6]; /* Reserved, set to zero */
};

The magic string in any bFLT file is the 4-byte ASCII sequence
‘b’,’f’,’l’,’t’ or 0x62, 0x46, 0x4C, 0x54. rev identifies the version
number of the file. Entry indicates the start offset of the text segment from
the beginning of the file. This is generally 0×40 (64), the size of this header.
Immediately following the text is the data segment and the size of the data
segment is stored in data_start and data_end. The bss segment starts at
data_end and runs through bss_end. The bFLT header stores the stack size
allocated for the application in the stack_size.10 Later we show why we
need to specify stack size.

The fields reloc_start and reloc_count provide information about the
relocation start offset and the number of relocation entries. Recall that each
relocation entry is a pointer to an absolute address that needs to be patched.
The new address for an entry is calculated by adding the base address of the
relevant segment to the absolute address pointed by an entry.

The kernel bFLT file loader is implemented in the file linux/fs/
binfmt_flat.c. The core function is load_flat_binary. This function
is responsible for the loading and execution of a bFLT file on a uClinux
system. The function reads the header and allocates necessary memory. Based
on the entries in the flags field, the amount of memory allocated for a PIC
binary will be the size of stack and data (including GOT). If it is a non-PIC
binary then it is the size of stack, data (including relocation table), and text.
It also maps in the necessary text segments and marks the pages executable.
The file format also allows for a gzip compressed text section, which is
indicated using the flags field. In this case the loader takes care of decom-
pressing the text sections in RAM as well. Once all the sections are mapped
in, we are ready for the relocations. Figure 10.2 shows the sections of a bFLT
file and Figure 10.3 shows the flat file when loaded in memory. Note that the
stack falling into bss will result in a system crash as there is no fault handler.

10.2.4 Loading a bFLT File

The flat file format loading is handled in the function load_flat_file. The
steps in the load procedure are as follows.

348 Embedded Linux System Design and Development

1. First the function reads in various fields of the header and calculates the
required memory and type of loading required.

text_len = ntohl(hdr->data_start);
data_len = ntohl(hdr->data_end) - ntohl(hdr->data_start);
bss_len = ntohl(hdr->bss_end) - ntohl(hdr->data_end);
stack_len = ntohl(hdr->stack_size);

Figure 10.2 bFLT file sections.

Figure 10.3 bFLT file loaded in memory.

Flat File Header

.Text

.data

GOT Entries

Reloc Entries =

flat_hdr.reloc_count

File Beginning, Offset = 0

Text Start, Offset = flat_hdr.entry

Data Start, Offset = flat_hdr.data_start

Data end, Offset = flat_hdr.data_end

Relocation start, Offset = flat_hdr.reloc_start

Text

.data + .bss +

GOT + Reloc

Global Heap

Stack

Load Address/Base (0x 00AA_0000)

Fixed Stack Size

Global Heap Used Across Process

Physical Memory Start

Physical Memory End

uClinux 349

if (extra_stack) {
 stack_len += *extra_stack;
 *extra_stack = stack_len;
}
relocs = ntohl(hdr->reloc_count);
flags = ntohl(hdr->flags);
rev = ntohl(hdr->rev);

 …
 …
/*
 * calculate the extra space we need to map in
 */
extra = max(bss_len + stack_len, relocs *
 sizeof(unsigned long));

2. The loader then maps sections of the file into RAM or from the flash based
on flags set in the file header. For instance, if the file has compressed data
or text sections, then the loader needs to read the file into memory and
decompress those sections first. Listing 10.1 indicates each logical step in
this process.

3. The loader sets up the process task structure with details about location
of stack, data, and text.

current->mm->start_code = start_code;
current->mm->end_code = end_code;
current->mm->start_data = datapos;
current->mm->end_data = datapos + data_len;

4. Finally it performs relocations as shown in Listing 10.2.

The check for the presence of GOT is made using the flags variable set
up earlier from the bFLT file header. Also note that datapos is the start of
the GOT table offset after mapping the file into memory. Now the loader
needs to patch every entry present in the GOT. The calc_reloc function
does the necessary address patching as shown in the following snippet.

static unsigned long
calc_reloc(unsigned long r, struct lib_info *p, int curid,
 int internalp)
{
 …
 …
 if (r < text_len) /* In text segment */
 addr = r + start_code;
 else /* In data segment */
 addr = r - text_len + start_data;

 return addr;
}

The calculation is simple. If the address to be relocated is within the text
segment then the start address of the text segment is added to it. Otherwise

350 Embedded Linux System Design and Development

Listing 10.1 bFLT Loader

 …
if ((flags & (FLAT_FLAG_RAM|FLAT_FLAG_GZIP)) == 0) {
 …

/*
 * ROM Mapping case: Map from the file for XIP
 */
textpos = do_mmap(bprm->file, 0, text_len, PROT_READ|PROT_EXEC,
 0, 0);

 …

/*
 * Allocate memory for data, stack and relocation sections. Note
 * that this is done for Shared libraries also
 */
realdatastart = do_mmap(0, 0, data_len + extra +
 MAX_SHARED_LIBS * sizeof(unsigned long),
 PROT_READ|PROT_WRITE|PROT_EXEC, 0, 0);

 …
 …

/*
 * Read .data section from file in to memory, decompress if
 * necessary
 */
#ifdef CONFIG_BINFMT_ZFLAT
if (flags & FLAT_FLAG_GZDATA) {
 result = decompress_exec(bprm, fpos, (char *) datapos,
 data_len + (relocs * sizeof(unsigned long)), 0);
}else
#endif
{
result = bprm->file->f_op->read(bprm->file, (char *) datapos,
 data_len + (relocs * sizeof(unsigned long)), &fpos);
}

 …
 …
} else {
/*
 * RAM Mapping case: Allocate memory for all (text, data, stack,
 * reloc)
 */
textpos = do_mmap(0, 0, text_len + data_len + extra +
 MAX_SHARED_LIBS * sizeof(unsigned long),

PROT_READ | PROT_EXEC | PROT_WRITE, 0, 0);
 …
 …

/*
* Read .text, .data sections from file in to RAM, decompress if
* necessary

uClinux 351

the address is in the data segment and hence relocation is done based on the
start address of the data segment. After fixing up the GOT entries, the relocation
table entries are run through and fixed up using the calc_reloc function.
We take an example to understand the finer details of relocation.

FRB Case

Write a sample.c file with just an empty main function.

Sample.c
main {}

Compile and create a flat file. Refer to Section 10.7.1 on how to compile
FRB files with the correct compiler options. Let the output file be sample
and the symbol file be symbol.gdb. The flat file header is dumped using
the flthdr program.

#flthdr sample
 Magic: bFLT
 Rev: 4
 Entry: 0x48
 Data Start: 0x220
 Data End: 0x280
 BSS End: 0x290
 Stack Size: 0x1000
 Reloc Start: 0x280
 Reloc Count: 0x1c
 Flags: 0x1 (Load-to-Ram)

The output can be directly related to the bFLT header described previously.
Because this is a relocatable binary, note the Load-to-RAM flag set in the
header. Also Reloc Count is 0x1C; that is, 28 relocation entries for a dummy
main file have been created. To solve the mystery let’s look at the symbol
file symbol.gdb.

Listing 10.1 bFLT Loader (continued)

 */
if (flags & FLAT_FLAG_GZIP) {
 result = decompress_exec(bprm, sizeof (struct flat_hdr),
 (((char *) textpos) + sizeof (struct flat_hdr)),
 (text_len + data_len + (relocs * sizeof(unsigned long))
 - sizeof (struct flat_hdr)), 0);

 …

result = bprm->file->f_op->read(bprm->file, (char *) textpos,
 text_len, &fpos);

 …

352 Embedded Linux System Design and Development

nm sample.gdb
 00000004 T _stext
 00000008 T _start
 00000014 T __exit
 0000001a t empty_func

Listing 10.2 Relocations Done by Loader

/* Check for GOT and do relocations in GOT */

if (flags & FLAT_FLAG_GOTPIC) {
 for (rp = (unsigned long *)datapos; *rp != 0xffffffff; rp++) {
 unsigned long addr;
 if (*rp) {
 addr = calc_reloc(*rp, libinfo, id, 0);
 if (addr == RELOC_FAILED)
 return -ENOEXEC;
 *rp = addr;
 }
 }
}

/* Run through relocation entries and patch them as well */

for (i=0; i < relocs; i++) {
 unsigned long addr, relval;

 /* Get the address of the pointer to be relocated (of course,
 * the address has to be relocated first).
 */
 relval = ntohl(reloc[i]);
 addr = flat_get_relocate_addr(relval);
 rp = (unsigned long *) calc_reloc(addr, libinfo, id, 1);

 …
 …

 /* Get the pointer's value. */
 addr = flat_get_addr_from_rp(rp, relval, flags);
 if (addr != 0) {
 /*
 * Do the relocation. PIC relocs in the data section are
 * already in target order
 */
 if ((flags & FLAT_FLAG_GOTPIC) == 0)
 addr = ntohl(addr);

 addr = calc_reloc(addr, libinfo, id, 0);

 …
 …

 /* Write back the relocated pointer. */
 flat_put_addr_at_rp(rp, addr, relval);
}

uClinux 353

 0000001a W atexit
 0000001c T main
 00000028 T __uClibc_init
 0000004a T __uClibc_start_main
 000000ba T __uClibc_main
 000000d0 T exit
 …
 …

 00000214 D _errno
 00000214 V errno
 00000218 D _h_errno
 00000218 V h_errno
 0000021c d p.3
 …
 …
 00000240 B __bss_start
 00000240 b initialized.10
 00000240 B _sbss
 00000240 D _edata
 00000250 B _ebss
 00000250 B end

The listing shows the various symbols in the file. As any application needs
to link with libc, so in the symbol dump all the symbols except the 0x1c T
main() are from the libc, in this case uClibc. The libc data and text have
relocation points in them indicated by the relocation table: 28 reloc entries.

Now add code to the sample.c file.

Sample.c

int x=0xdeadbeef;
int *y=&x;

main () {
 *y++;
}

Once again compile and dump the file header.

#flthdr sample

 Magic: bFLT
 Rev: 4
 Entry: 0x48
 Data Start: 0x220
 Data End: 0x280
 BSS End: 0x290
 Stack Size: 0x1000
 Reloc Start: 0x280
 Reloc Count: 0x1f
 Flags: 0x1 (Load-to-Ram)

354 Embedded Linux System Design and Development

Note the increase in relocation count from 0x1c to 0x1f; two additional
relocation entries are created. In the new sample.c the reference to the
address of variable x in y creates a relocation entry in the data section. Also
the increment to the contents of y creates a relocation entry in the text section.

Using nm on sample.gdb we get addresses of x and y as follows.

 …
00000200 D x
00000204 D y
 …

The relocation table entry for y is added. The table has entry 204 that
needs to be relocated. Also the address pointed to by 204 (i.e., 200) should
be relocated. This is what is achieved in Listing 10.2. Following is a simpler
interpretation of the relocation code.

Do a dump of the sample using od. We dump only the relocation table
here starting at byte offset 280 as specified by the flat header.

#od –Ax –x sample –j280

 000280 0000 1e00 0000 2400 0000 2c00 0000 3600
 000290 0000 4000 0000 4600 0000 6400 0000 6c00
 0002a0 0000 7600 0000 7e00 0000 8c00 0000 9e00
 …

Now note the second nonzero entry 0x2400. The steps involved in relo-
cations are:

� Step 1:

relval = ntohl(reloc[i]);
addr = relval;

0x2400 has to be converted to host byte order and it is 0x0024.

� Step 2:

rp = (unsigned long *) calc_reloc(addr, libinfo, id, 1);

This means entry 0x0024 has to be relocated. calc_reloc will return the
relocated address at runtime based on the start address of text (because
0x24 < text_len).

� Step 3:

addr = *rp;

The content of (start_of_text + 0x0024) for the sample file is actually the
address of y 0x204, which has to be relocated.

uClinux 355

� Step 4:

addr = calc_reloc(addr, libinfo, id, 0);
*rp=addr;

calc_reloc for 0x204 and write the actual entry in memory.

To summarize, Figure 10.4 shows the various steps involved in relocation. A
similar entry will be created for the text reference also.

PIC Case

Again take a sample.c file with just empty main.

Figure 10.4 Flat file relocation.

Relocation Table

0x2400

...

...

0x0024
Step 1

FLT File in Memory

SoT

SoD

te
x

t_
le

n

0
x

1
E

0

EoD

0x204 (addr of 'y')
Step 2

Reloc entry points

to absolute data

reference in text

(SoT + 0x24)

te
x

t_
le

n

0
x

1
E

0 SoD +

(0x204 – 0x1E0)

* (SoT + 0x24) = 0x204

Step 3

Step 4

Location of 'y'

in Memory

(0x204 – 0x1E0)

Relocate to

data segment

and

de-reference

text entry

Key

SoT - Start of Text

SoD - Start of Data

EoD - End of Data

EoD

SoD

SoT

356 Embedded Linux System Design and Development

Sample.c
main {}

Compile the program with PIC enabled and examine the code generated.

#flthdr sample

 Magic: bFLT
 Rev: 4
 Entry: 0x48
 Data Start: 0x220
 Data End: 0x2e0
 BSS End: 0x2f0
 Stack Size: 0x1000
 Reloc Start: 0x2e0
 Reloc Count: 0x2
 Flags: 0x2 (Has-PIC-GOT)

Note that there are only two relocation entries and the flags field indicates
the presence of GOT. Recall that GOT is present at the beginning of the data
section with the last entry indicated by –1. We use od to examine the bits of
the flat file to see the presence of GOT.

#od –Ax –x sample

 000000 4662 544c 0000 0400 0000 4800 0000 2002
 000010 0000 e002 0000 f002 0000 0010 0000 e002
 000020 0000 0200 0000 0200 1342 678b 0000 0000
 …
 …
 000220 0000 0000 0000 0000 0000 0000 0000 6802
 000230 0000 7c02 0000 a002 0000 aa01 0000 7402
 000240 0000 6002 0000 6c02 0000 7002 0000 2001
 000250 0000 8802 0000 6402 0000 2800 0000 1c00
 000260 0000 0000 0000 0000 0000 0000 0000 c800
 000270 0000 0000 0000 0001 0000 4400 0000 0000
 000280 ffff ffff 0000 0000 0000 0000 0000 0000
 000290 0000 0000 0000 0000 0000 0000 0000 0000
 …

Note the beginning of GOT at 0x220 as indicated by Data Start: 0x220
and the end of GOT at 0x280 by a value 0xFFFFFFFF, a total of 16 valid
(nonzero) GOT entries. All these GOT entries are for standard libc symbols.

Now we add our lines back in sample.c, compile, and dump the flat
header.

Sample.c

int x=0xdeadbeef;
int *y=&x;

main () {
 *y++;

uClinux 357

}

#flthdr sample
 Magic: bFLT
 Rev: 4
 Entry: 0x48
 Data Start: 0x220
 Data End: 0x2e0
 BSS End: 0x2f0
 Stack Size: 0x1000
 Reloc Start: 0x2e0
 Reloc Count: 0x3
 Flags: 0x2 (Has-PIC-GOT)

We immediately notice the increase in Reloc count by 1. This relocation
is for the x address in y. The reference of y in the text has created a GOT
entry as expected. We take the od dump of sample.

000220 0000 0000 0000 0000 0000 0000 0000 7002
000230 0000 8402 0000 a002 0000 b601 0000 7c02
000240 0000 6802 0000 7402 0000 7802 0000 2c01
000250 0000 9002 0000 6c02 0000 3400 0000 1c00
000260 0000 6402 0000 0000 0000 0000 0000 0000
000270 0000 d400 0000 0000 0000 0c01 0000 5000
000280 ffff ffff 0000 0000 0000 0000 0000 0000

We have a total of 17 GOT entries, that is, one extra entry. We need to
identify the one GOT entry that corresponds to y. Do nm sample.gdb and
spot the variables as before.

 …
00000260 D x
00000264 D y
 …

The bold entry in the GOT table above shows the entry for y.
The loader in Listing 10.2 checks for the GOT flag and relocates the GOT

entries first and then proceeds to fix the relocation entries. Figure 10.5 shows
how the GOT entry gets relocated.

We sum up our discussion for this section.

� uClinux uses bFLT (Binary FLAT) file format.
� bFLT is either FRB or PIC.
� FRB has absolute references to both data and text, relocation entry points

to locations that need to be fixed by the loader.
� PIC employs relative text addressing and hence requires platform support.

Data references in text are done using GOT. GOT has data pointers that
are fixed up by the loader.

� XIP provides for running files from flash, thus saving on the text space
otherwise occupied in RAM.

358 Embedded Linux System Design and Development

10.3 Memory Management
In this section we understand the changes done in the kernel and libc with
respect to memory management in uClinux. We divide our discussions based
on the two memory sections, heap and stack.

10.3.1 Heap

Memory Allocation

malloc, realloc, calloc, and free are the library calls used for heap
allocation/deallocation. The base function is malloc and we need to under-
stand how malloc works in standard Linux and why it cannot be used in
uClinux.

The malloc provides for dynamic heap allocation in a process. It essentially
uses the low-level system calls sbrk()/brk() to manage the size of process
address space. sbrk() adds memory to the end of the process address space
thus increasing the size. brk() on the other hand can set an arbitrary size to
the process space. These are effectively used by the malloc/free library
calls to allocate/deallocate memory for the application, respectively. Process
space on standard Linux is virtual address space and hence adding more
memory is simply done by tweaking the virtual memory structures in the
kernel, which provides the necessary mapping to the physical address. So

Figure 10.5 GOT entry relocation.

GOT

0x264

...

...

Relocated GOT

SOD + (0x264

– 0x1E0)

...

...

SoT

SoD

te
x

t_
le

n

0
x

1
E

0
EoD

GOT (x)

Relocate GOT entry

and write to offset

Location of 'y'

in Memory

Text Reference

via GOT

Key

SoT - Start of Text

SoD - Start of Data

EoD - End of Data

(0x264 – 0x1E0)

uClinux 359

malloc simply increases the VM size and free reduces the VM size as
necessary. For example, consider an application of size 64 K (including bss
size) with an initial heap size of 0. This uses up 0 to 64 K in virtual memory
(total VM size = 64 K + stack size) as shown in Figure 10.6.

Now, let us assume the application calls malloc(4096). This would
increase the VM size to 68 K as shown in Figure 10.6. The actual physical
memory gets allocated only at the actual usage time in the page fault handler.

In uClinux without VM it is not possible to add or alter the limits of the
process address space. Hence we are forced to provide alternate solutions.
The alternate solution should allow for very little or no change while porting
an application to uClinux. So simple ones such as no heap available on
uClinux, preallocating all required memory using static arrays, providing
fixed size heap, and so on, are all ruled out. These will require huge porting
efforts and even redesigning a majority of the applications, which is not
desirable.

The solution in uClinux is provided by using a systemwide pool of free
memory for heap allocation across all processes. Because all processes allocate
from the same pool, a single process can allocate all the available memory
and result in a systemwide memory crunch. This a system-level disadvantage
on any MMU-less design.

The simplest malloc implementation uses direct calls to mmap() / mun-
map(). All memory required is requested directly using the kernel memory
allocator. The implementation is given below.

� Call mmap() system call to obtain memory from the kernel memory pool.

void * malloc(size_t size) {
 …
 result = mmap((void *) 0, size, PROT_READ | PROT_WRITE,
 MAP_SHARED | MAP_ANONYMOUS, 0, 0);
 if (result == MAP_FAILED)
 return 0;

Figure 10.6 Heap allocation.

.bss + .text

Stack

Heap Allocated

Heap

.bss + .text

Stack

No Heap Allocated

Startup Size (64 k)

Size = 4 k

360 Embedded Linux System Design and Development

 return(result);
}

� Call munmap() to return the used memory.

 The problems with this approach become evident from its implementation
as shown in Listing 10.3, where mmap is hooked to the kernel memory allocator,
kmalloc, to get free memory. The returned memory is maintained in a link-
list of pointers for bookkeeping purposes. The bookkeeping is necessary so
that the system can keep track of the memory allocated by a particular process

Listing 10.3 uClinux mmap Implementation

do_mmap_pgoff() {

 …
 …

 if (file) {
 error = file->f_op->mmap(file, &vma);
 if (!error)
 return vma.vm_start;

 …
 }

 …

 tblock = (struct mm_tblock_struct *)
 kmalloc(sizeof(struct mm_tblock_struct),GFP_KERNEL);
 …
 …
 tblock->rblock = (struct mm_rblock_struct *)

kmalloc(sizeof(struct mm_rblock_struct), GFP_KERNEL);

 …
 …
 result = kmalloc(len, GFP_KERNEL);
 …
 …

 /* Reference counting */
 tblock->rblock->refcount = 1;
 tblock->rblock->kblock = result;
 tblock->rblock->size = len;

 …
 …

 /* Attach block to list of blocks in task struct */
 tblock->next = current->mm->context.tblock.next;
 current->mm->context.tblock.next = tblock;
 current->mm->total_vm += len >> PAGE_SHIFT;

 return (unsigned long)result;

}

uClinux 361

and therefore these are linked to the process structure so that it can be freed
up when the process exits. The tblock and rblock data structures amount
to 56-byte overhead per allocation. Applications that need small malloc
chunks will obviously waste memory.

Also kmalloc returns memory chunks of a size rounded to the nearest power
of 2, limited to a maximum size of 1 MB. For example, an allocation request of
1.5 K (1536) will result in wastage of 0.5 K (512), as the closest power of 2
available is only 2 K (2048). Thus the allocator is very inefficient and limited.

The 56-byte overhead can be reduced by making the malloc API more
intelligent. For example, one can either group allocations or allocate larger
chunks and then manage those chunks using smaller data structures. Also the
problem has been addressed in the 2.6 kernel and the rblock and tblock
structures have been removed. The second problem needs a rewrite of the
kernel memory allocation scheme. A modified kernel allocation method is
available in the uClinux kernel. This helps reduce the overhead in memory
allocations. The new kmalloc uses power-of-2 allocation for memory requests
up to 1 page size (e.g., 4 KB or 4096 bytes) and for sizes above 1 page, it
rounds to the nearest page boundary. For example, consider allocating 100
K using standard kmalloc. This will result in an allocation of 128 K and
wastage of 28 K. But using the new kmalloc, it is possible to allocate an
exact 100 K.

uClibc provides three different malloc implementations. We list each of
their advantages and disadvantages.

� malloc-simple [uClinux-dist\uClibc\libc\stdlib\malloc-
simple]:

malloc(size_t size) {
 …
 …
 result = mmap((void *) 0, size, PROT_READ | PROT_WRITE,
 MAP_SHARED | MAP_ANONYMOUS, -1, 0);

 if (result == MAP_FAILED)
 return 0;
 return(result);
}

This is the simplest form of malloc used in uClinux. It is simple one-line
implementation with fast and direct allocations. The disadvantage is the
56-byte overhead, which is evident when used by applications that require
a large number of small-size mallocs.

� malloc [uClinux-dist\uClibc\libc\stdlib\malloc]: In this
implementation, malloc has an internal heap allocated in the static area.
The function malloc_from_heap(), based on the requested size,
decides whether to allocate from this static area or to fall back on mmap.
In this approach small-size requests do not have allocation overhead issues
as allocations happen from the internal heap. The implementation is shown
in Listing 10.4.

362 Embedded Linux System Design and Development

� malloc-standard [uClinux-dist\uClibc\libc\stdlib\
malloc-standard]: This is the most complex of all malloc implemen-
tations and is used in the standard libc call. Essentially, the malloc library
maintains small-size allocations internal to itself by using bins of various
sizes. If an allocation request falls in a particular bin size, then a bin is
removed from the free list and marked as used (until it is freed or the
application exits). If the allocation request size is larger than the available
bin size or if all bins are used up, then the library calls mmap provided
the allocation size is greater than a threshold size. This threshold size is
adjusted so that the allocation overhead due to mmap is minimized. Oth-
erwise brk is used to increase the process heap size and on failure, it
finally falls back on mmap. In this approach very efficiently managed bins
reduce the allocation overhead added by mmap but this solution is available
only on MMU-based systems.

Listing 10.4 uClibc malloc Implementation Using Heap

HEAP_DECLARE_STATIC_FREE_AREA (initial_fa, 256);
struct heap __malloc_heap = HEAP_INIT_WITH_FA (initial_fa);

void * malloc(size_t size) {
 …
 …
 mem = malloc_from_heap (size, &__malloc_heap);
 if (unlikely (!mem))
 {
 oom:
 __set_errno (ENOMEM);
 return 0;
 }
 return mem;
}

static void *
malloc_from_heap (size_t size, struct heap *heap){

/* First try to allocate from internal heap area */
 __heap_lock (heap);

 mem = __heap_alloc (heap, &size);

 __heap_unlock (heap);

 /* on failure call mmap */
 if (unlikely (! mem)) {
 /* We couldn't allocate from the heap, */
 block = mmap (0, block_size, PROT_READ | PROT_WRITE,
 MAP_SHARED | MAP_ANONYMOUS, 0, 0);
 }

}

uClinux 363

Memory Fragmentation
The amount of free memory available does not guarantee the same amount
of allocatable memory. For example, if a system has 100 K free memory, it
does not necessarily mean that a malloc(100K) will be successful. This arises
due to a problem called memory fragmentation. The available memory may
not be contiguous and hence the allocation request cannot be met. The systems
allocation process begins only at a page boundary. A free page is requested
from the available free list and added to the used list. Any subsequent memory
request that fits inside the remaining space is given away from the same page.
And once a page is marked as used it can be returned to the system free list
only when all allocations using the page have been freed.

For example, let us assume a program allocated 16, 256-byte allocations.
Assuming zero overhead in the allocation scheme, this matches a single page
size; in our case 4 K = 16*256. Now unless and until the application frees all
16 pointers, the page that is used cannot be freed. Thus there might be a
situation when there is enough memory available on the system, but still not
sufficient to service the current allocation.

Defragmenting Memory
In standard Linux, all user-space applications use virtual addresses. Defrag-
menting memory is simpler in the sense that one has to alter the process’
virtual mappings to point to new physical locations. Even if the actual physical
memory location has changed, programs still use the virtual address and are
able to run seamlessly even after the relocation. This becomes impossible
without VM.

There is no solution for defragmentation on uClinux and developers need
to be aware of the situation and avoid it by altering memory allocation patterns
of the applications.

10.3.2 Stack
The program stack on standard Linux systems grows on demand. This is made
possible by an intelligent page fault handler. The stack grows downwards
from the top of the user-space data segment. The growing stack is only limited
by the program’s own growing heap that grows in the opposite direction
starting from the end of bss.

On MMU-less systems there is no way to implement a page fault handler
and hence on-demand stack growth is not possible. The only solution uClinux
offers here is fixed stack size. This stack size is specified at the time of
compilation and stored as a part of the application’s executable image.

As seen in the previous section, the bFLT header has an entry called
stack_size to store the amount of stack to be reserved by the loader at
program start-up. For now it is with the developers to make a good guess of
the maximum stack size for a required program and make it available at the
time of binary image creation.

364 Embedded Linux System Design and Development

10.4 File / Memory Mapping—The Intricacies of mmap()
in uClinux

Memory regions in Linux are mapped into the process address space using
the mmap() system call. The mapped region is controlled using protection
flags such as PROT_READ and PROT_WRITE and the usability specified either
private or shared mapping using MAP_PRIVATE and MAP_SHARED flags. For
example, the loader maps text regions of a shared library as read-only, shared
(PROT_READ and MAP_SHARED) regions in the application’s process space.

mmap() internally fills up VM data structures that describe the property of
each region mapped and leaves the rest to the page fault handler. Using the
fault condition and the flags in the VM data structures the page fault handler
does the necessary action. For example, it might allocate fresh pages if it finds
the region valid and page entries missing. Or it might choose to expand the
region if the region is marked expandable (such as stack).

In uClinux, without the page fault handler the mmap functionality provided
is very primitive. The following two forms of mmap cannot be implemented
due to lack of MMU. We discuss the reason briefly here.

� mmap(MAP_PRIVATE, PROT_WRITE) is not implemented. This type of
mapping creates a writable mapping of the file in the process virtual
address area. This means that pages have to be allocated at the time of
write and maintained per process, and the process alone (private) sees
the changes. The page fault handler takes care of allocation of pages as
and when written by the process and thus only those pages of the file
modified by the process are allocated.

� mmap(MAP_SHARED, PROT_WRITE, file) is not implemented. Standard
implementation in Linux for this type of mmap call creates shared memory
pages across processes and writes to the area will get synced onto the
disk. Pages mapped as above trigger a page fault the first time the page
is written to and are marked as dirty. Later the kernel writes dirty pages
to disk and marks them ready for the next fault handling in case of a later
write.

Both the above require a working page fault handler, available only on
MMU hardware. Hence in uClinux this cannot be implemented. In uClinux,
the implementation of mmap is the do_mmap_pgoff() function in the kernel.
do_mmap_pgoff() for the MMU-less case does the following.

1. Checks validity of protection and map flags for the cases that are not
implemented.

 …
if ((flags & MAP_SHARED) && (prot & PROT_WRITE) && (file)) {
 printk("MAP_SHARED not supported (cannot write mappings
 to disk)\n");
 return -EINVAL;

uClinux 365

}
if ((prot & PROT_WRITE) && (flags & MAP_PRIVATE)) {
 printk("Private writable mappings not supported\n");
 return -EINVAL;
}
…

2. If a file pointer is provided and if the file operations of the file support
the mmap function, then the file specific mmap is called.

…
if (file && file->f_ops->mmap)
 file->f_ops->mmap(file, &vma)
return vma.vm_start;
…

3. If no file pointer is provided then it allocates the requested memory from
the kernel memory allocator using kmalloc.

…
…
result = kmalloc(len, GFP_KERNEL);
…
…

10.5 Process Creation
Process creation in Linux is done using the fork() system call. fork()
creates a new child process for the caller. Once fork returns, the parent and
child are two independent entities having individual PIDs. Theoretically what
fork() needs to do is to create an exact replica of all the parent process
data structures including memory pages private to the parent process. In Linux
this duplication of the parent’s memory pages is postponed. Instead the parent
and child share the same pages in memory until one of the two attempts to
modify the shared pages. This approach is called COW (Copy on Write). Now
let us see how fork() achieves this. We discuss the Linux 2.6 implementation
of fork. In Linux 2.4 the APIs called are different but the functionality is still
the same.

1. Allocate a new process task structure for the child.

p = dup_task_struct(current);

This will create a new task structure, and copy some pointers from
current.

2. Get a PID for the child process.

p->pid = alloc_pidmap();

366 Embedded Linux System Design and Development

3. Copy file descriptors, signal handlers, scheduling policies, and so on from
the parent to the child process.

/* copy all the process information */
 …
 …
// Copy file descriptors
if ((retval = copy_files(clone_flags, p)))
 goto bad_fork_cleanup_semundo;
if ((retval = copy_fs(clone_flags, p)))
 goto bad_fork_cleanup_files;

// Copy signal handlers
if ((retval = copy_sighand(clone_flags, p)))
 goto bad_fork_cleanup_fs;

// Copy signal information
if ((retval = copy_signal(clone_flags, p)))
 goto bad_fork_cleanup_sighand;

// Copy memory pages
if ((retval = copy_mm(clone_flags, p)))
 goto bad_fork_cleanup_signal;
 …
 …

4. Add the child to the scheduler’s queue and return.
 …
 …
/* Perform scheduler-related setup */
sched_fork(p);
 …
 …

if (!(clone_flags & CLONE_STOPPED))
 wake_up_new_task(p, clone_flags);
else
 p->state = TASK_STOPPED;
 …
 …

This will change the process state to TASK_RUNNING and insert the process
into the runnable process list maintained in the scheduler.

Once fork returns, the child process is a runnable process and will be
scheduled as per the scheduling policy of the parent. Note that only the data
structures of a parent are copied in the fork. Its text, data, and stack segments
are not copied. fork has marked those pages COW for later on-demand
allocation.

In step 3 the copy_mm() function essentially marks pages of the parent
as shared read-only between the parent and the child. The read-only attribute
ensures that the memory contents cannot be modified as long as they are

uClinux 367

shared. Whenever either of the two processes attempts to write into this page,
the page fault handler identifies a COW page using a special check of the
page descriptors. The page corresponding to the fault is duplicated and marked
writable in the process that attempted the write. The original page remains
write protected until the other process attempts a write, during which this
page is marked writable only after making sure that it is no longer shared
with any other process.

As seen above, process duplication in Linux done via COW is implemented
using the page fault handler and hence uClinux does not support fork().
Also it is not possible for parent and child to have a similar virtual address
space as expected from fork. Instead of using fork() to create a child
process, uClinux developers suggest the usage of vfork() along with
exec(). The vfork() system call creates a child process and blocks execu-
tion of the parent process until the child exits or executes a new program.
This will ensure that the parent and child need not share memory pages.

10.6 Shared Libraries
The dynamic linker that takes care of shared library loading is extensively
based on MMU and virtual addressing. A shared library gets loaded in RAM
when an application uses it for the first time. Other programs using the same
library that start later (but before the first app exits) get the text location
mapped into their virtual address spaces. In other words only one copy of
the library text is present in physical memory. All future references are just
virtual entries that point to this single physical copy. Also note that only text
is shared; data still needs to be allocated per process. The shared pages are
freed when the last application using the library exits.

Without MMU it is not possible to map the same physical memory into
individual process address space. Hence uClinux employs a different method
to implement shared libraries.

10.6.1 uClinux Shared Library Implementation (libN.so)

As we have already seen, uClinux uses the bFLT format for executables. The
uClinux kernel loader does the job of loading the application into the available
memory location by setting up necessary data and code sections. Also recall
that if the bFLT file being loaded has XIP capabilities then the kernel loader
will reuse the text segment across multiple instances of the application, and
set up individual data sections for respective instances. This XIP support is
used as the base for implementing a shared library in uClinux. If text is not
XIPable then shared libraries can’t work. This is because shared text pages
cannot exist in memory without support from MMU. Hence the idea is to
store them in a common place (flash) and all programs access directly from
the same location.

368 Embedded Linux System Design and Development

There are a few different types of shared library implementations on
uClinux. We discuss the m68k implementation of shared libraries that uses
bFLT files, popularly known as the libN.so method. In this method, shared
libraries are binary bFLT files, but those that contain a specific library ID in
them. This requires changes in the compiler as well as the loader. Each symbol
referenced in an executable has the specific library ID added to it. When the
loader has to resolve a symbol, it looks up the reference using the ID contained
in the symbol and thus identifies the required library. For making the lookup
simple, shared library names follow a particular pattern. A library that has
ID=X, has the name libX.so. Hence the loader simply loads the file /lib/
libX.so when it has to resolve a symbol with ID=X in it.

The compiler generates a separate GOT and data segment for the appli-
cation and for each library. When the program is loaded it is ensured that
the individual data segments (of the shared libraries) are available at fixed
offsets from the base. The unique identification number allotted per library is
used to determine the offset to locate a particular data segment. The application
also has to use the same referencing method using an id, and the id value 0
is reserved for the application.

The shared library support in the kernel is component selectable using the
flag CONFIG_BINFMT_SHARED_FLAT. The primary structure to support shared
library support in uClinux is the following lib_info structure.

struct lib_info {
 struct {
 unsigned long start_code; /* Start of text segment */
 unsigned long start_data; /* Start of data segment */
 unsigned long start_brk; /* End of data segment */
 unsigned long text_len; /* Length of text segment */
 unsigned long entry; /* Start address for this
 module */
 unsigned long build_date; /* When this one was
 compiled */
 short loaded; /* Has this library been
 loaded? */
 } lib_list[MAX_SHARED_LIBS];
};

The macro MAX_SHARED_LIBS is defined to 4 if CONFIG_BINFMT_
SHARED_FLAT is set or else it defaults to value 1. This structure is used to
hold the list of the libraries loaded per application. Though the theoretical
limit for the maximum number of libraries is 255 – 1, the kernel defines it at
4, enabling the use of 3 shared libraries per application. The ID at value 0 is
used to refer to the application being loaded. The symbol resolution of an
application using a shared library is done from within the calc_reloc
function shown in Listing 10.5.

Note the extraction of id from the value to be relocated r, using id = (r
>> 24) & 0xff. Modifications in the linker enable the padding of the id
value into the high byte of the symbol address. For example, if a symbol foo

uClinux 369

is undefined in the application, but defined in the library with ID=3, then
that particular symbol in the application will have an entry of the form
0x03XX_XXXX = (0x03FF_FFFF | address of foo() in lib3.so). Thus all
symbols external to the application will have the id corresponding to the
library in its high byte.

The actual loading of the library into program memory takes place inside
the function load_flat_shared_library. This function loads the file /
lib/libX.so using the regular binary flat file loader function
load_flat_file by passing the corresponding id=X11 value. The binary flat
file loader maintains the lib_info.lib_list[] array to track all files being
loaded, including the application that is loaded at location 0. The loader
ensures that all unresolved/external symbols required for execution are made
available.

Listing 10.5 Shared Library Symbol Resolution

static unsigned long
calc_reloc(unsigned long r, struct lib_info *p, int curid,
 int internalp)
{
 …
 …

#ifdef CONFIG_BINFMT_SHARED_FLAT
 if (r == 0)
 id = curid; /* Relocs of 0 are always self referring */
 else {
 id = (r >> 24) & 0xff; /* Find ID for this reloc */
 r &= 0x00ffffff; /* Trim ID off here */
 }

 if (id >= MAX_SHARED_LIBS) {
 printk("BINFMT_FLAT: reference 0x%x to shared library %d",
 (unsigned) r, id);
 goto failed;
 }

 if (curid != id) {
 …
 …
 }else if (! p->lib_list[id].loaded &&
 load_flat_shared_library(id, p) > (unsigned long) -4096) {
 printk("BINFMT_FLAT: failed to load library %d", id);
 goto failed;
 }
 …
 …
#else
 id = 0;
#endif
 …
 …
}

370 Embedded Linux System Design and Development

The above-explained implementation is the one that is most widely used
in m68k-based processors and was contributed by Paul Dale. There are other
implementations of shared library available in uClinux. XFLAT from Cadenux
is another shared library implementation used widely on ARM processors.
FRV-uClinux also has an implementation of shared library. Each implementa-
tion has been done with different design goals, addressing variant concerns.

10.7 Porting Applications to uClinux
In this section we discuss the steps necessary to create uClinux programs and
shared libraries and what points should be considered before porting an
application from standard Linux to uClinux.

10.7.1 Creating uClinux Programs

uClinux executables are in binary flat file format. The regular ELF file is not
supported on uClinux. The uClinux toolchain provides a special tool to convert
an ELF file to a bFLT file. Not all ELF files can be converted into BFLT. For
this the code generated has to be position independent. uClinux has two
variants of position-independent binaries: the fully relocatable binaries and
the PIC binaries. A list of compiler commands for creating different forms of
the bFLT file using the m68k toolchain is listed below.

Creating Fully Relocatable Binaries

� Compile the file. This will create sample.o.

m68k-elf-gcc -m68000 -Os -g -fomit-frame-pointer -m68000
-fno-common -Wall -Dlinux -D__linux__ -Dunix
-D__uClinux__ -DEMBED -nostdinc
-I/home/sriramn/work/uclinux/uClinux-dist/include
-I/home/sriramn/work/uclinux/uClinux-dist/include/include
-fno-builtin -c -o sample.o sample.c

� Link and create flt file. This step will create executable sample and
symbol file sample.gdb.

m68k-elf-gcc -m68000 -Os -g -fomit-frame-pointer -m68000
-fno-common -Wall -Dlinux -D__linux__ -Dunix
-D__uClinux__ -DEMBED -nostdinc
-I/home/sriramn/work/uclinux/uClinux-dist/include
-I/home/sriramn/work/uclinux/uClinux-dist/include/include
-fno-builtin -Wl,-elf2flt -Wl,-move-rodata -nostartfiles
/home/sriramn/work/uclinux/uClinux-dist/lib/crt0.o
-L/home/sriramn/work/uclinux/uClinux-dist/lib o sample
 sample.o -lc

TE
AM
 F
LY

uClinux 371

Creating PIC Binaries

� Compile the file.

m68k-elf-gcc -m68000 -Os -g -fomit-frame-pointer -m68000
-fno-common -Wall -Dlinux -D__linux__ -Dunix
-D__uClinux__ -DEMBED -nostdinc
-I/home/sriramn/work/uclinux/uClinux-dist/include
-I/home/sriramn/work/uclinux/uClinux-dist/include/include
-fno-builtin -msep-data -c -o sample.o sample.c

� Link and create flt file.

m68k-elf-gcc -m68000 -Os -g -fomit-frame-pointer -m68000
-fno-common -Wall -Dlinux -D__linux__ -Dunix
-D__uClinux__ -DEMBED -nostdinc
-I/home/sriramn/work/uclinux/uClinux-dist/include
-I/home/sriramn/work/uclinux/uClinux-dist/include/include
-fno-builtin -msep-data -Wl,-elf2flt -Wl,-move-rodata
-nostartfiles
/home/sriramn/work/uclinux/uClinux-dist/lib/crt0.o
-L/home/sriramn/work/uclinux/uClinux-dist/lib -o testhw1
 sample.o -lc

� Note that –msep-data forces –fPIC internally. And –elf2flt is passed
to the linker forcing a conversion from ELF to bFLT format. Also –msep-
data enables XIP.

� To alter the stack size of a bFLT file use the command

elf2flt –s <stack _size> test.flt

� To compress the file (all but the headers) use

elft2flt –z –o test.flt test.elf

Compressed images are not XIPable as they need to be decompressed in
RAM before execution.

10.7.2 Creating Shared Libraries in uClinux

Shared libraries in uClinux are normal bFLT files, created using special compiler
flags. The compiler flags help identify the symbol references using a fixed
library ID number. The steps required to create and use a shared library are
listed below. In this example we use a.c and b.c to create a shared library
libtest.

File: a.c
void a()
{

372 Embedded Linux System Design and Development

 printf("I am a\n");
}

File: b.c
void b()
{
 printf("I am b\n");
}

� Compile the individual files. Note that we use the flag –mid-shared-
library.

m68k-elf-gcc -Wall -Wstrict-prototypes -Wno-trigraphs
-fno-strict-aliasing -Os -g -fomit-frame-pointer
-m68000 -fno-common -Wall -fno-builtin -DEMBED
-mid-shared-library -nostdinc
-I/home/sriramn/work/uclinux/uClinux-dist/include
-I/home/sriramn/work/uclinux/uClinux-dist/include/include
-Dlinux -D__linux__ -D__uClinux__ -Dunix -msoft-float
-fno-builtin a.c -c -o a.o

m68k-elf-gcc -Wall -Wstrict-prototypes -Wno-trigraphs
-fno-strict-aliasing -Os -g -fomit-frame-pointer -m68000
-fno-common -Wall -fno-builtin -DEMBED -mid-shared-library -
nostdinc -I/home/sriramn/work/uclinux/uClinux-dist/include -
I/home/sriramn/work/uclinux/uClinux-dist/include/include
-Dlinux -D__linux__ -D__uClinux__ -Dunix -msoft-float
-fno-builtin b.c -c -o b.o

� Create the archive.

m68k-elf-ar r libtest.a a.o b.o

m68k-elf-ranlib libtest.a

� Create the binary flat file library with proper library id (here we use 2,
libc has id =1). Note the addition of file uClibc/lib/main.o for a
dummy main function and option -shared-lib-id=2.

m68k-elf-gcc -nostartfiles -o libtest -Os -g
-fomit-frame-pointer -m68000 -fno-common -Wall
-fno-builtin -DEMBED -mid-shared-library -nostdinc
-I/home/sriramn/work/uclinux/uClinux-dist/include
-I/home/sriramn/work/uclinux/uClinux-dist/include/include
-Dlinux -D__linux__ -D__uClinux__ -Dunix -Wl,-elf2flt
-nostdlib -Wl,-shared-lib-id,2
/home/sriramn/work/uclinux/uClinux-dist/uClibc/lib/main.o
-Wl,-R,/home/sriramn/work/uclinux/uClinux-dist/lib/libc.gdb
-lc –lgcc -Wl,--whole-archive,libtest.a,--no-whole-archive

� Remove start-up symbols. As we need to be able to use the library with
another application, start-up symbols that get added via C runtime linking
such as _main, _start, and the like have to be removed. It is done by
using the following command.

uClinux 373

m68k-elf-objcopy -L _GLOBAL_OFFSET_Table_ -L main -L __main
-L _start -L __uClibc_main -L __uClibc_start_main
-L lib_main -L _exit_dummy_ref
-L __do_global_dtors -L __do_global_ctors
-L __CTOR_LIST__ -L __DTOR_LIST__
-L _current_shared_library_a5_offset_
libtest.gdb

� Install the library in the rootfs under the proper name.

 cp libtest.gdb romfs/lib/lib2.so

Do nm on this symbol file to analyze the symbols created.

#nm libtest.gdb | sort
 0100001c A __assert
 01000098 A isalnum
 010000b8 A isalpha
 010000d8 A isascii
 …
 …
 010355c4 A __ti19__pointer_type_info
 010355d0 A __ti16__ptmd_type_info
 010355dc A __ti19__builtin_type_info
 020000cc T a
 020000e4 T b
 02000100 D __data_start
 02000100 D data_start

Note the presence of 01xxxxxx symbols from libc (lib1.so) and the
symbols of our library lib2.so starting with 02xxxxxx.

10.7.3 Using Shared Library in an Application

Now we see how to use the created library with an application. The linker
needs to be informed about the external references in the application, so that
it can mark them as shared library references in the generated bFLT file. To
compile the program we need to do the following two steps.

File: use.c

extern void a();
extern void b();

main()
{

 a();
 b();

}

374 Embedded Linux System Design and Development

� Compile use.c (note shared-library-id=0).

m68k-elf-gcc -m68000 -Os -g -fomit-frame-pointer -m68000
-fno-common -Wall -Dlinux -D__linux__ -Dunix
-D__uClinux__ -DEMBED -nostdinc
-I/home/sriramn/work/uclinux/uClinux-dist/include
-I/home/sriramn/work/uclinux/uClinux-dist/include/include
-fno-builtin -mid-shared-library -mshared-library-id=0 -c
-o use.o use.c

� Link use.c with libc and libtest.

m68k-elf-gcc -m68000 -Os -g -fomit-frame-pointer -m68000
-fno-common -Wall -Dlinux -D__linux__ -Dunix
-D__uClinux__ -DEMBED -nostdinc
-I/home/sriramn/work/uclinux/uClinux-dist/include
-I/home/sriramn/work/uclinux/uClinux-dist/include/include
-fno-builtin -mid-shared-library -mshared-library-id=0
-Wl,-elf2flt -Wl,-move-rodata -Wl,-shared-lib-id,0
-nostartfiles
/home/sriramn/work/uclinux/uClinux-dist/lib/crt0.o
-L/home/sriramn/work/uclinux/uClinux-dist/lib -L. -o use
use.o -Wl,-R,
/home/sriramn/work/uclinux/uClinux-dist/lib/libc.gdb -lc
-Wl,-R,libtest.gdb -ltest

Again we do an nm on use.gdb to notice the presence of the library.

#nm use.gdb | sort
 00000004 T _stext
 00000008 T _start
 00000014 T __exit
 0000001a t empty_func
 0000001c T main
 …
 …
 00000260 B end
 00000260 B _end
 0100001c A __assert
 01000098 A isalnum
 010000b8 A isalpha
 010000d8 A isascii
 010000ec A iscntrl
 …
 …
 010355d0 A __ti16__ptmd_type_info
 010355dc A __ti19__builtin_type_info
 020000cc A a
 020000e4 A b

After understanding the steps necessary to create uClinux programs, you
should also understand various uClinux limitations before porting applications
from standard Linux to uClinux.

uClinux 375

10.7.4 Memory Limitations
uClinux does not provide a dynamic stack. Executables have a predefined
stack size set at compile time using elf2flt. Programmers should avoid
huge allocations on the stack. Instead use the heap or if the requirement is
not dynamic, move it to the bss section.

C++ programs use malloc even for built-in data-type declarations via the
new operator. Many C++ applications have had problems running on uClinux.
The lack of MMU and a wise malloc results in an unsolvable memory
fragmentation issue, rendering the system useless. Hence C++ is not recom-
mended on an MMU-less system. Redesign any application that has to allocate
small chunks of malloc or if possible write application-specific allocation
methods that will internally manage a preallocated memory region.

10.7.5 mmap Limitations
uClinux mmap() is very primitive in its functionality and programs that depend
on the behavior of mmap() might fail. So we present here a list of mmap()
calls that will fail, and those that work along with the limitations if any.

� Write-enabled, shared file mapping is not possible on uClinux.

mmap(MAP_SHARED, PROT_WRITE, file)

� Any write-enabled, private mapping is not supported on uClinux.

mmap(MAP_PRIVATE, PROT_WRITE, file or nofile)

� Unprotected shared mapping on a nonfile descriptor returns the requested
size. It is similar to MMU systems, but memory is direct kernel address.
mmap(MAP_SHARED, 0, nofile, size) allocates size memory from
the kernel allocator.

10.7.6 Process-Level Limitations
There is no fork() call implemented in uClinux. So to make programs (that
require fork()) work one needs to supplement the call to fork() using a
call to vfork() followed by an exec(). The child process should not modify
the data of the parent until an exec() is called. Listing 10.6 shows a normal
Linux program using fork() and how it can be ported to uClinux.

10.8 XIP—eXecute In Place
In standard Linux, programs are usually loaded and executed from system
memory. The loader loads sections of text from the storage medium (disk or
flash) in the memory. More pages get demand paged when required by the
page fault handler. In case of uClinux as page fault handling is not possible,

376 Embedded Linux System Design and Development

Listing 10.6 Porting Applications to uClinux

/* Sample program on standard Linux */

/* fork.c */
#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>

int main(int argc, char *argv[])
{
 pid_t pid;
 /*
 * When fork returns -1, implies fork failed no child process
 * created pid of child process in parent’s thread of execution
 * 0 in child’s thread of execution
 */
 if ((pid = fork()) < 0) {
 printf("Fork() failed\n");
 exit(1);
 }else if (pid != 0) {
 /* Parent code */
 printf(“Parent exiting.\n”);
 exit(0);
 }
 /* Child code */
 printf(“Starting child...\n”);
 while (1) {
 sleep(2);
 printf("...Child running\n");
 }
}

/* Above application can be ported to uClinux */

/* vfork.c */
#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>

int main(int argc, char *argv[])
{
 pid_t pid;
 int c_argc = 0;
 char *c_argv[3];
 char child=0;

 /* Indentify child, we use the magic argument argv[1]=child */
 if (argc > 2 && !strcmp(argv[1],”child”)) child=1;

 /* use vfork(), return values similar to fork() */

uClinux 377

the whole of the text section has to be directly read into RAM by the loader.
The flat file loader allocates memory for the size of the text along with the
stack, data, and relocation table.

In a system tight on memory uClinux provides an alternative, XIP. With
XIP it becomes possible to execute code from the storage device without
having to load it in the RAM. The loader directly uses a pointer to the storage
memory and this saves on the allocation otherwise done for the text section.
Note that data and stack still need to be allocated for execution. XIP has some
limitations or design requirements. We list those here.

10.8.1 Hardware Requirements

� Processor support for PIC: XIP is possible only if the processor has support
for generating position-independent code. It should be able to do PC-
relative addressing. This is required to avoid (hard) references to addresses
in the text. In the absence of PIC, the generated code will have address
offsets from zero and the loader will have to patch the addresses based

Listing 10.6 Porting Applications to uClinux (continued)

if (!child) {
 if ((pid = vfork()) < 0) {
 printf("vfork() failed\n");
 exit(1);
 } else if (pid != 0) {
 /* Parent code */
 printf(“Parent exiting.\n”);
 exit(0);
 }

 /*
 * Invoke the child exec here. We pass the special argument to
 * identify the child
 */
 c_argv[c_argc++] = argv[0];
 c_argv[c_argc++] = "child";
 c_argv[c_argc++] = NULL;
 execv(c_argv[0], c_argv);

 /* Note that if successful, execv never returns */
 printf(“execv() failed\n”);
 exit(1);

 }else { // Child code
 printf(“Starting child...\n”);
 while (1) {
 sleep(2);
 printf("...Child running\n");
 }
 }

}

378 Embedded Linux System Design and Development

on the load address and hence will require the load of text to RAM, defying
the purpose of XIP.

� NOR flash only: There are two types of flash devices, NOR and NAND,
both employed widely in embedded systems. NOR flash allows for random
read access to all its sectors and is readable just like SRAM. NAND on the
other hand requires programming of some control registers to read from
its memory. Usually a flash driver is required to read contents from NAND
flash. When the program is being executed from flash it means the
instruction pointer or program counter is simply incremented to fetch the
next instruction pointing to the next word in flash memory. It will not be
possible to run driver code to fetch the next instruction. Hence only NOR
flash is suitable for XIP.

10.8.2 Software Requirements

� File system support: ROMFS (can’t use CRAMFS or JFFS2). The file system
used in conjunction with XIP should be raw and cannot be compressed.
If the files are compressed, then they need to be decompressed into pages
allocated from RAM. Hence this rules out any file system that tries to use
compression. It is good design to put all XIP executables in a ROMFS
partition and have CRAMFS, JFFS2 partitions for other compressed files
based on system requirements.

10.9 Building uClinux Distribution
In this section we discuss how to build uClinux distribution. The build
procedure for uClinux is fairly simple. The build system is well integrated and
controlled by the GNU make system. The top-level build integrates the
following.

� Platform/vendor selection
� Kernel version selection and build
� C library selection and build
� Building support libraries (libmath, libz, etc.)
� Selection of user applications (Busybox, Tinylogin, etc.)
� Building the root file system
� Making the final ROM/flash image for the target

 We run through the various steps and the menu configurations. Download
the latest tar from http://www.uclinux.org. Untar the distribution under a
directory.

#tar jxvf uClinux-dist-20041215.tar.bz2

This untars the distribution files under the uClinux-dist directory. The steps
to build the distribution are:

uClinux 379

1. Build configuration: Go to the distribution directory and issue

make config (or)
make menuconfig (or)
make xconfig

It prompts the top-level menu. Figure 10.7 shows the top-level menu for
make xconfig.

2. Choose platform: The Vendor/Product Selection menu lists all the platforms
on which uClinux is available. Choose a suitable vendor and product from
the available list. Figure 10.8 shows the Vendor/Product Selection menu
for make xconfig.

3. Kernel/Library selection: The Kernel/Library Selection menu is shown in
Figure 10.9. uClinux distribution supports three versions of Linux kernels:
2.0, 2.4, and 2.6. Based on features required and project needs choose a
suitable kernel. uClinux provides three options for the C library: glibc,
uClibc, and uC-libc. uC-libc is an old version of uClibc. uClibc is written

Figure 10.7 make xconfig.

Figure 10.8 Vendor/product selection.

380 Embedded Linux System Design and Development

for embedded systems and hence is most suitable. uClibc will be sufficient
for most systems. Set Customize Kernel Settings to y if you need to modify
the kernel configuration. Set Customize Vendor/User Settings to y if you
need to modify the user-space applications and support libraries.

4. User-space configuration: Setting Customize Vendor/User Settings to y pro-
vides the user-space configuration menu. This menu provides options to
choose the applications that you need on the target. The libraries required
for the build can also be selected. The menu is shown in Figure 10.10.

5. Dependency and build:

make dep
make

6. This completes the build procedure. The build procedure will make all
files and place the final ROM/flash image in the images directory.

Notes
1. uClinux is pronounced as in you-see Linux and stands for Micro(μ)Controller Linux.
2. TLB stands for Translation LookUp Buffer, a hardware lookup table used for

translating physical address to virtual address and vice versa.

Figure 10.9 Kernel/library selection.

Figure 10.10 Application selection.

uClinux 381

3. Processors provide different modes of protection such as Intel’s Real mode, Pro-
tected mode, and so on. Each mode can be programmed to address a different
range of memory addresses.

4. The virtual memory limit on 32-bit (x86) machines is 4 GB.
5. In fact most of the virtual memory features of Linux-like page cache, COW, and

swap have portions implemented in the page fault handler.
6. Each application on x86 is capable of addressing a 4-GB virtual address range.

1 GB of this space is reserved for the kernel area and the remaining 3 GB are
available for the user area of the application.

7. This problem is called the unknown address problem.
8. For example, a function call will use “call 0x500” meaning call the function located

at PC+0x500 or “jmp 0x20” meaning branch to location PC+0x20.
9. Note that for this the data and text segments must be separated using appropriate

compiler arguments.
10. Stack size can be set at the time of conversion of ELF to an FLT file.
11. Note that during execution of a flat binary exec() uses the same function with id=0.

383

Appendix A

Booting Faster

Fast booting is an important system requirement in most of the embedded
systems. As Linux is gaining a strong foothold in the embedded systems
market, it is becoming increasingly important for a Linux-based embedded
system to boot up as fast as possible. However, decreasing the boot time for
an embedded Linux system is not a trivial task due to the following reasons.

� If we define turn-on state as a state in which the basic services (depending
on the system functionality) are available, then different embedded systems
have different requirements for the turn-on state. Let us analyze a router
and a handheld device for defining the turn-on state. For a router the turn-
on state becomes effective when the router has configured all the network
interfaces, started all the required network protocols, and has configured
the various routing tables. However, for a handheld this state is effective
when a windowing system and the input/output devices are available for
the user. Unlike the router the network connectivity stack initialization is
not a must for reaching the turn-on state for the handheld; rather the
networking stack can be initialized at a later point in time. Throughout
this section the boot-up time refers to the time taken by the system to
reach the turn-on state after it is powered on.

� Linux has evolved with the desktop and server market for which the boot-
up time is not an important requirement. On the desktops and servers,
Linux takes as much as a few minutes to come up; this is totally unac-
ceptable for embedded systems.

� As processing power of embedded systems increases, the software on
embedded systems too has increased manyfold. More software stack simply
means more boot-up time.

Decreasing the boot-up time hence is a customized process for an embed-
ded system. This section explains some of the generic techniques for cutting

384 Embedded Linux System Design and Development

down on the boot-up time. However, each of the techniques normally has a
tradeoff with respect to memory or speed; those are also discussed. The boot-
up time for a Linux-based system can be divided into three stages as shown
in Table A.1.

Techniques for Cutting Down Bootloader Initialization

� POST: Power-on self test can be done only during a cold boot operation;
during warm boot it can be skipped and hence can cause decreased boot-
up time.

� Locating, uncompressing, and downloading the kernel memory: This step
can be one of the most time-consuming operations as it may take between
500 msec and 1 sec depending on the size of the kernel. The larger the
size of the kernel the more will be the time to uncompress and copy it
to memory. If the kernel is a part of a Linux file system stored on the
flash, then locating the kernel and parsing the file headers (such as ELF
headers) can be time consuming. Storing the kernel image in a raw partition
can circumvent it. To avoid uncompression the file can be stored in
uncompressed format but that would be at the expense of expensive flash
storage space. To avoid copying the kernel to memory, the kernel can be
XIPed. eXecute In place is a method by which the kernel is executed
directly out of flash. XIP is discussed in detail in Chapter 10. Other than
cutting down start-up time the other benefit of XIP is that it conserves
memory because the kernel’s text section is not copied to memory.
However, the disadvantages of using XIP are:
– XIP slows the execution time of the kernel because it is executed out

of flash.

Table A.1 Linux Boot Stages

State Description Time-Consuming Activities

Bootloader The boot loader does the
POST, starts a screen for user
interaction, and downloads a
Linux kernel to memory for
initialization.

POST, locating a kernel, copying
it to memory, uncompressing
the kernel.

Kernel turn-on Kernel needs to initialize the
hardware, set up the various
subsystems and the drivers,
mount a root file system, and
transfer the control to user
space.

Driver initialization, file system
mounting.

User-space
turn-on

Start the various services on
the system.

Services getting started
sequentially, services getting
started that can be deferred to
later, loading of kernel
modules.

Booting Faster 385

– Because the XIPed image cannot be compressed that would mean that
you would want more flash for storing the uncompressed image.

– Using a kernel XIP would require changes to the flash driver code
because operations such as flash erase and write cannot be done when
the kernel is executed out of flash. The changes to the flash driver
would typically be copying a portion of it to RAM and executing it
with interrupts disabled. However this is not required if the kernel is
XIPed from a flash that has only a read-only file system such as CRAMFS.

� However, if XIP is too expensive an operation then it is imperative that
the kernel image should be kept as small as possible to avoid the copying
time. Some additional tricks can be used to cut down copying time such
as using DMA to transfer the image from the flash to the memory.

Tuning Kernel for Decreased Boot-Up Time

� Disabling kernel prints: If the kernel prints are directed to a serial console
(which is a slow device) then the prints can cause a huge delay while the
kernel is initialized. To avoid this kernel prints can be disabled using the
kernel command line option quiet. However, the messages can be
viewed later by the dmesg command.

� Hard coding the loops_per_jiffies value within the kernel: As already
explained in Chapter 2, the kernel initialization includes invoking the
function calibrate_delay() to calculate the value of loops_per_
jiffies. Depending on the processor architecture this can take up to
500 msec. If the process frequency can be known at the time of compiling
the kernel, then this value can be hard-coded inside the kernel or else a
command line option can be added to the kernel to pass the value of this
variable when the kernel is downloaded.

� Cutting down driver initialization time: Different drivers have different
initialization times. This can be caused by spins in the driver. Also probing
for hardware devices on certain buses such as PCI can cause increased
boot-up time. Tweaking the initialization time in such cases would mean
changes to the drivers such as presetting them with values already known
at the time of building the kernel.

� Using the proper root file system: Different file systems have different
initialization times. The boot time for journaling file systems such as JFFS2
is extremely high because they scan the entire flash during the initialization
for searching the records. Read-only file systems such as CRAMFS and
ROMFS have shorter initialization times.

Tuning User Space for Decreased Boot-Up Time

� Module loading: The more the number of kernel modules, the more time
is taken to load the modules. In case there are many kernel modules then
making them into a single module can effectively decrease the module
loading time.

386 Embedded Linux System Design and Development

� Starting the services concurrently: As explained in Chapter 2, the system
RC scripts are used to turn on the system services, which are started
sequentially. Considerable improvement can be found by starting the
services in parallel. However, if that is done care should be taken regarding
dependency between services.

Measuring Boot-Up Time
There are lots of methods to measure system boot-up time. In this section we
discuss Instrumented printks to measure boot time. The patch can be down-
loaded from www.celinuxforum.org. The patch adds support for displaying
timestamps along with printk output. Apply the patch to the kernel and
enable Show timing information on printks under Kernel hacking. Compile
and boot the new kernel. A sample output is shown in Listing A.1.

The core of the patch is the sched_clock function. As discussed in Chapter
8, high precision during measurement is achieved if the BSP provides better
support for the sched_clock function.

Listing A.1 Sample Instrumented Printk Output

[4294667.296000] Linux version 2.6.8.1 (root@amol) (gcc version
 3.2.2 20030222 (Red Hat Linux 3.2.2-5)) #4 Wed
 Mar 9 15:22:08 IST 2005
[4294667.296000] BIOS-provided physical RAM map:
[4294667.296000] BIOS-e820: 0000000000000000 - 000000000009fc00
 (usable)
[4294667.296000] BIOS-e820: 000000000009fc00 - 00000000000a0000
 (reserved)
[4294667.296000] BIOS-e820: 00000000000e6000 - 0000000000100000
 (reserved)
[4294667.296000] BIOS-e820: 0000000000100000 - 000000000ef2fc00
 (usable)

 …
 …

 [4294671.443000] Dentry cache hash table entries: 32768 (order:
 5, 131072 bytes)
[4294671.444000] Inode-cache hash table entries: 16384 (order: 4,
 65536 bytes)
[4294671.570000] Memory: 237288k/244924k available (2099k kernel
 code, 6940k reserved, 673k data, 172k init,
 0k highmem)
[4294671.570000] Checking if this processor honors the WP bit
 even in supervisor mode... Ok.
[4294671.570000] Calibrating delay loop... 5488.64 BogoMIPS
 …
 …

387

Appendix B

GPL and Embedded Linux

Linux and most of the open source applications, libraries, drivers, and so on
are distributed under GNU GPL. In earlier days companies were reluctant to
move to embedded Linux because of its GPL licensing. They feared that
moving to Linux might force them to make their intellectual property public.
As time passed companies gained more insight into GPL and they realized
that proprietary software can always be kept safe with embedded Linux.

In your design you may decide to use some open source applications in
the product. You should not assume that all the open source software comes
under GPL. Apart from GPL there are other licenses such as Mozilla Public
License (MPL), Lesser GPL (LGPL), Apache License, BSD License, and so on.1

We highly recommend that you contact an open source legal advisor and
clarify that you are not violating any of the licenses.

In this appendix we discuss how proprietary software can be kept safe
with Linux. First we discuss the user-space applications and then the kernel.

User-Space Applications
Linus Torvalds made a clarification regarding user-space programs that run on
Linux.

This copyright does *not* cover user programs that use kernel services by
normal system calls - this is merely considered normal use of the kernel,
and does *not* fall under the heading of "derived work." 2

It means that you can write a code from a fresh code base and use services
of Linux and keep your code proprietary. It does not come under GPL and
you need not release the source code either. But you must make sure that

388 Embedded Linux System Design and Development

you are not using any GPL software accidentally in your user-space programs.
The following points should be taken care of.

� You must not use source code of any program under GPL in your
application.

� You must not link your application with any GPL library either statically
or dynamically. You can link your application with LGPL libraries. Most
of the key libraries in Linux such as libc, pthreads, and so on are released
under LGPL. You can link LGPL libraries in your program with no obligation
to release the application’s source code.

 It’s allowed to use IPC mechanisms between GPL and non-GPL programs.
For example, you can download the DHCP server released under GPL and
write your own DHCP client. You are not obliged to release your DHCP client
under GPL. However, any modifications done by you to any GPL application
and that use the IPC mechanisms to work around GPL are very dangerous.
You must take advice from an attorney in such cases.

Note that GPL only applies when it comes to distributing a program or a
product. You can use any GPL programs, drivers, and so on in any manner
you want as long as it’s for internal use and not for distribution. For example,
you can use open source debuggers and profilers for debugging your propri-
etary programs. You can also make modifications to them without releasing
any code as long as they are for internal use.

Thus, user applications can always be kept proprietary in Linux. You only
need to take some precautions while developing applications.

Kernel
There is a general opinion that loadable kernel modules using standard
exported kernel interfaces can be kept safe and need not come under GPL.
For example, you can have proprietary device drivers implemented as a Linux
kernel module and need not release the source code of the driver provided
you use standard interfaces exported by the kernel. However, this is one of
the gray areas and you should consult your attorney.

Listing B.1 shows an excerpt from mail from Linus Torvalds to the kernel
mailing list regarding his view on loadable kernel modules and GPL.

Thus the following points should be taken care of.

� Consult your attorney to find out whether you can use loadable kernel
modules to protect your proprietary software.

� Any modifications done to the Linux kernel come under GPL.
� In the kernel do not export any nonexported kernel interface to support

your loadable module.
� Any changes done to the kernel in the form of a kernel patch come under

GPL.

GPL and Embedded Linux 389

Points to Remember

� As a manager of a project you should make sure that the developers
understand GPL and other licenses involved in the project.

� During development, the developers should take care when using a piece
of software (in the form of a library or some source code) available on
the Net for their project. They should not accidentally violate any licenses
involved. As rightly said, prevention is better than cure.

� One point where you must take care is software patent violation. It is
possible that you are using some off-the-shelf source code that is violating
some software patent. These violations are very difficult to catch and you
should be extremely careful.

But one gray area in particular is something like a driver that was originally
written for another operating system (i.e. clearly not a derived work of Linux
in origin). At exactly what point does it become a derived work of the kernel
(and thus fall under the GPL)?

THAT is a gray area, and _that_ is the area where I personally believe that
some modules may be considered to not be derived works simply because
they weren't designed for Linux and don't depend on any special Linux
behavior.

Basically:

� Anything that was written with Linux in mind (whether it then _also_
works on other operating systems or not) is clearly partially a derived work.

� Anything that has knowledge of and plays with fundamental internal Linux
behavior is clearly a derived work. If you need to muck around with core
code, you're derived, no question about it.

Listing B.1 Linus Torvalds’ Mail Regarding GPL and Binary Kernel
Modules

From: Linus Torvalds

Subject: Re: Linux GPL and binary module exception clause?

Date: 2003-12-03 16:10:18 PST

….

And in fact, when it comes to modules, the GPL issue is exactly the same. The kernel
is GPL. No ifs, buts and maybe's about it. As a result, anything that is a derived
work has to be GPL'd. It's that simple.

Now, the "derived work“ issue in copyright law is the only thing that leads to any
gray areas. There are areas that are not gray at all: user space is clearly not a derived
work, while kernel patches clearly _are_ derived works.

390 Embedded Linux System Design and Development

Historically, there's been things like the original Andrew filesystem
module: a standard filesystem that really wasn't written for Linux in the
first place, and just implements a UNIX filesystem. Is that derived just
because it got ported to Linux that had a reasonably similar VFS interface
to what other UNIXes did? Personally, I didn't feel that I could make
that judgment call. Maybe it was, maybe it wasn't, but it clearly is a
gray area.

Personally, I think that case wasn't a derived work, and I was willing
to tell the AFS guys so.

Does that mean that any kernel module is automatically not a derived
work? NO! It has nothing to do with modules per se, except that non-
modules clearly are derived works (if they are so central to the kernel
that you can't load them as a module, they are clearly derived works
just by virtue of being very intimate - and because the GPL expressly
mentions linking).

So being a module is not a sign of not being a derived work. It's just
one sign that _maybe_ it might have other arguments for why it isn't
derived.

Notes
1. http://www.gnu.org/philosophy/license-list.html has the complete list. GPL license

can be downloaded from http://www.fsf.org/licensing.
2. See the COPYING file in kernel sources.

391

Index

8259A controller, 73–74

A

Adaptive Domain Environment for Operating
Systems (ADEOS), 5, 258–260

interrupt pipeline, 260
Linux and, 260
RTAI in, 254

Alpha processor, 24
API driver, 170–171, 191–192
Application porting road map, 167

decide porting strategy, 167–170
write kernel API driver, 170–171

ARM processor, 10, 17, 19, 21, 24, 33, 253, 370
booting, 62, 63–64
RTAI support, 253
uclibc support, 122

B

Binutils, 25
building, 52–53, 56
utilities, 49–50

Block device drivers, 127
BlueCat Linux, 14–15

development environment, 14–15
documentation, 15
features, 14
support, 15

Board support package (BSP), 15, 59–88, 262, 386
board-specific routines, 59
components, 16

broad-specific routines, 59
microprocessor support, 59

configuration tool, 16
custom, 21
defined, 59
directories, 60

flash, 95
for I2C adapter driver, 148
function, 77, 82
GUI-based configuration tool, 16
HAL and, 33
insertion in kernel build procedure, 60–61
interrupt interface, 75
microprocessor support, 59
on commercial RTOSs, 33
on MIPS-based PCI devices, 77
patching, 21
PCI, 80–81
porting, 27, 28, 43
StrongArm, 83, 86
timer, 241

Boot loader, 62–66
advantages, 62–63
considerations in selection, 64–65

console UI availability, 65
licensing issues, 64
storage footprint, 65
support for embedded hardware, 64
support for flash booting, 65
support for network booting, 65
upgrade solutions availability, 65

functionalities of mandatory, 63
initialization, 63–64

cutting down, 384–385
memory map, 66–72

board, 68
defining, 66–67
functions, 66
MIPS, 67–68
processor, 66–67
software, 68
zone allocators, 72

start-up sequence, 63–64
booting, 63
booting kernel, 64

AU0586_Index.fm Page 391 Thursday, November 17, 2005 10:00 AM

392

Embedded Linux System Design and Development

device initialization, 63
image download, 63
preparing kernel boot, 64
relocation, 63
UI, 63

storage, 89
Boot loader-to-kernel interface, 65–66
Boot memory allocations, 71–72
Boot-up time, measuring, 386
Booting, 63, 293

fast, 383–386
flash, 65
kernel, 64
NAND-based devices for, 94
network, 65

Bootmem functions, 44
BSP.

See

 Board support package (BSP)

C

Cadenux, 15–16
BSP, 16
development environment, 16
documentation, 16
features, 15–16
specialization, 15
support, 16
Web site, 16
XFLAT, 370

Character device drivers, 127
CodeWarrior, 14, 280
ColdFire processor, 21
Compiler, 278
Compressed RAM file system (CRAMFS), 117
CPU/platform-specific initialization, 43–44
CRIS processor, 33

RTAI support, 253
uclibc support, 122

Cross-compilation, 49
Cross-compiler, 49
Cross-platform toolchain, 49–57

building, 50–55
for MIPS, 52–57

D

Debuggers, 278, 388
Denx, 17–18

development environment, 17
documentation, 17
features, 17
support, 18

Deterministic timing, 202
DirectFB, 336
Display hardware, 313–316

display system, 313–315
color palettes, 314
frame buffer, 313

indexed color formats, 314
line width, 314
pixel, 313

width, 314
refresh, 313
refresh rate, 313
screen resolution, 313

input interface, 316
Downloading kernel image and initial ram disk,

42
Driver initialization, 45
Dynamic frequency scaling, 83
Dynamic voltage scaling, 83

E

Eclipse, 279
Electric Fence, 286–287, 288
ELinOS, 19–20

development environment, 20
documentation, 20
features, 19–20
support, 20

Embedded drivers, 127–164
Ethernet, 138–144

data transmission and reception,
142–144

device initialization and clean-up, 140–142
I2C subsystem, 144–152

adapter driver, 148, 149–150
algorithm driver, 148, 149
bus, 145–147
client driver, 148, 149, 150–152
data transfer, 145–146

address phase, 145
data transfer phase, 146
idle phase, 145
start phase, 145
stop phase, 146

slave driver, 148, 149, 150–152
Linux serial termios settings, 138
types of, 127

block device, 127
character device, 127
network device, 127

Embedded file systems, 116–120
CRAMFS, 117
JFFS, 117–119
NFS, 119
PROC file system, 119–120
ramdisk, 117
RAMFS, 117

Embedded Linux
addresses, 66
advantages of commercial distribution, 12
applications, 122–124

Busybox, 122–123
Ftp server, 123

AU0586_Index.fm Page 392 Thursday, November 17, 2005 10:00 AM

Index

393

Tinylogin, 123
Web server, 123–124

architecture, 29–32
microkernel, 31–32
monolithic kernels, 30–31
real-time executive, 29–30

benefits of, 7–10
low cost, 8–9
open source model of development, 9
reduction in marketing time, 8
standards compliance, 10
varied hardware support, 8
vendor independence, 7–8

distributions
advantages, 12
BlueCat Linux, 14–15

development environment, 14–15
documentation, 15
features, 14
support, 15

Cadenux, 15–16
development environment, 16
documentation, 16
features, 15–16
support, 16

Denx, 17–18
development environment, 17
documentation, 17
features, 17
support, 18

ELinOS, 19–20
development environment, 20
documentation, 20
features, 19–20
support, 20

Embedian, 18–19
development environment, 18–19
documentation, 19
features, 18
support, 19

Metrowerks, 20–21
development environment, 21
documentation, 22
features, 21
support, 22

MontaVista Linux, 22–23
development environment, 23
documentation, 23
features, 22
support, 23

RT LinuxPro, 23–24
development environment, 24
documentation, 24
features, 23–24
support, 24

selection, 12–13
TimeSys Linux, 24–26

development environment, 25–26

documentation, 26
features, 25
support, 26

factors to consider when selecting,
12–13

documentation, 13
flexibility, 13
package, 13
proprietary software, 13
software upgrades, 13
support, 13

flash maps, 89–90
function, 89

graphics
driver, 316–328

frame buffer interface, 317–326,
329–330, 332–335

frame buffer internals, 326–328,
329–330, 332–335

windowing environments, toolkits, and
applications, 328–339

history, 2–7
protection of proprietary software, 12
rationale for, 7–10
real-time capability, 11
size, 11
smallfoot print, 11
traditional RTOS

vs.,

 165, 191, 202
Embedded processors, 33

ARM, 10, 17, 19, 21, 24, 33, 253
booting, 62, 63–64
RTAI support, 253
uclibc support, 122

CRIS, 33
RTAI support, 253
uclibc support, 122

M68K, 33
uclibc support, 122

MIPS, 10, 17, 19, 24, 33
booting, 62, 63–64
cross-platform toolchain, 52–57
HAL, 60, 80
memory map, 67–68
RTAI support, 253
uclibc support, 122

PowerPC, 10, 17, 19, 24, 33
RTAI support, 253
uclibc support, 122

SuperH, 33
uclibc support, 122

V850, 33
uclibc, 122

x86, 10, 21, 24, 33, 253
booting, 62
compiler, 49
INTA cycle, 74
RTAI support, 253
uclibc support, 122

AU0586_Index.fm Page 393 Thursday, November 17, 2005 10:00 AM

394

Embedded Linux System Design and Development

Embedded storage, 89–126
flash maps for, 89–90

Embedded system
defined, 1
desktop computer

vs.,

 1, 10–11
examples, 2
historical perspective, 1
key features, 1–2
uses, 1

Embedian, 18–19
development environment, 18–19
documentation, 19
features, 18
support, 19

Emdebsys, 18
End of transit interrupt, 143
Endpoints, 153
Ethernet, 138–144

data transmission and reception,
142–144

device initialization and clean-up,
140–142

PIC and, 60
USB, 158–160

EUREKA components, 61
eXecute In place (XIP), 16, 22, 126, 375–378

advantages, 63, 384
hardware requirements, 377–378
ROMFS and, 378
software requirements, 378
uClinux

vs.,

 126

F

Flash-mapped drivers, 95, 106–114
filling up mtd_info for NAND flash chip,

108–109
filling up mtd_info for NOR flash chip,

106–107
registering mtd_info, 109–114

concatenation, 110
partitioning, 109–110

FLNX, 336

G

GNU cross-platform tool chain, 48–57
GPL software, 387–388
Graphics system, 309

architecture, 310–311
display hardware, 313–316

display system, 313–315
color palettes, 314
frame buffer, 313
indexed color formats, 314
line width, 314
pixel, 313
refresh, 313

refresh rate, 313
screen resolution, 313

input interface, 316
driver, 316–328
function, 309–310
layers, 310–311

GTK+/FB, 336

H

Hardware abstraction layer (HAL), 31, 59.

See also

Board support package (BSP)

board-specific routines, 59
function, 80, 253
hardware components supported by, 33
information exchange between BSP and, 80
source code, 60
subdirectories, 60

Hardware initialization, 42

I

I2C subsystem, 144–152
adapter driver, 148, 149–150
algorithm driver, 148, 149
bus, 145–147
client driver, 148, 149, 150–152
data read, 146
data transfer, 145–146

address phase, 145
data transfer phase, 146
idle phase, 145
start phase, 145
stop phase, 146

slave driver, 148, 149, 150–152
software architecture, 147–152

adapter driver, 148, 149–150
algorithm driver, 148, 149
client driver, 148, 149, 150–152
components, 148
slave driver, 148, 149, 150–152

Instrumented printks, 386
Interrupt

end of transit, 143
interface, 75
latency, 203–204
management, 72–77, 134 (

See also

Programmable Interrupt Controller
(PIC))

pipeline, 260
timers, 44, 81, 84, 205
transfers, 154

IO mappings, 72
ISR duration, 203, 204

J

JFFS2 file system, 118–119

AU0586_Index.fm Page 394 Thursday, November 17, 2005 10:00 AM

Index

395

Journaling Flash file system (JFFS), 117–119
Jumping to kernel entry point, 43

K

KDB, 291
KGDB

vs.,

 292–293
KDevelop, 279
Kernel, 388

building, 263–280
applications, 270–275
configuration process, 263, 266–268
creating object files and linking them to

make kernel image, 263–265
cross-compiling using configure, 273–274
develop dynamically loadable modules,

265
Makefile framework, 268–270
root file system, 275–278
setting upcross-development environment,

263
steps, 263
touble shooting configure script,

274–275
understanding procedures, 265–266

curses-based configuration, 264
debuggers, 291–293
initialization phase, 42
memory, 124
modules, 162–164

declaring license, 164
entry and exit functions, 162
interface/APIs, 162–164
loading and unloading, 164
maintaining module usage count, 163
parameter passing, 162

response time, 203
space optimization, 120–121
tuning for decreased boot-up time, 385
tuning memory, 124–126
X-based configuration, 264

Kernel API driver (Kapi), 191
header file, 194
implementation, 195–200
writing user-space stubs, 194–195

Kernel framework, for usage of Linus as soft real-
time OS, 203

KGDB, 291
KDB

vs.,

 292–293

L

Libraries, 278
PIC, 80
pthreads, 233
shared, 367–378
windowing environment, 331

Linker, 278

Linus Torvald, 387
mail regarding GPL and binary kernel, 389

Linux
ADEOS and, 260
boot stages, 384

boot loader, 384
kernel turn-on, 384
user-space turn-on, 384

BSP, 15
commercial, 279–280

CodeWarrior, 280
TimeStorm, 279–280

desktop graphics, 311–313
display system, 313–314
input interface, 316

embedded
addresses, 66
advantages of commercial distribution,

12
applications, 122–124

Busybox, 122–123
Ftp server, 123
Tinylogin, 123
Web server, 123–124

architecture, 29–32
microkernel, 31–32
monolithic kernels, 30–31
real-time executive, 29–30

benefits of, 7–10
low cost, 8–9
open source model of development,

9
reduction in marketing time, 8
standards compliance, 10
varied hardware support, 8
vendor independence, 7–8

distributions
advantages, 12
BlueCat Linux, 14–15
Cadenux, 15–16
Denx, 17–18
ELinOS, 19–20
Embedian, 18–19
Metrowerks, 20–21
MontaVista Linux, 22–23
RT LinuxPro, 23–24
selection, 12–13
TimeSys Linux, 24–26

factors to consider when selecting,
12–13

documentation, 13
flexibility, 13
package, 13
proprietary software, 13
software upgrades, 13
support, 13

flash maps, 89–90
function, 89

AU0586_Index.fm Page 395 Thursday, November 17, 2005 10:00 AM

396

Embedded Linux System Design and Development

graphics
driver, 316–328
windowing environments, toolkits, and

applications, 328–339
history, 2–7
protection of proprietary software, 12
rationale for, 7–10
real-time capability, 11
size, 11
smallfoot print, 11
traditional RTOS

vs.,

 165, 191, 202
HAL, 60
integrated development environment,

278–280
building applications, 278
building root file system, 278
configuring and building kernel, 278
debugging applications, 278
debugging kernel, 278
features, 278
managing applications, 278

kernel
architecture, 32–36

file system, 35–36
hardware abstraction layer, 33
interprocess communication (IPC),

36
IO subsystem, 36
memory manager, 33–34
networking subsystems, 36
scheduler, 34–35

layout, 68–71
power management applications, 88

memory management problems, 280–282
classification of, 280
corruption, 280

debugging, 287
leaks, 280

debugging, 282–286
overflow, 280

debugging, 286–287
memory model, 167
non–real-time nature, 202
on MMU-less systems, 341 (

See also

 uClinux)
open source, 279

Eclipse, 279
KDevelop, 279

process creation, 365–367
real-time, 202–209

hard, 252–260
application interface, 253–258
dual-kernel architecture, 252

kernel framework for, 203
programming in, 209–252

memory locking, 213, 215–223
process scheduling, 210–213, 214–215
task-priority mapping, 211

signals, 233–241

serial driver, 128–138
data reception, 134
data transmission, 134
driver initialization and start-up, 130–133
interrupt handler, 134

start-up sequence, 41–48
boot loader phase, 41–43
kernel start-up, 43–47
user apace initialization, 47–48

StrongArm BSP on, 86
toolkits, 331
uClinux

vs.,

 342–343
user space application, 36–41, 387–388
variants sof hard real-time, 252

LM Bench, 209

M

M68K processor, 33
uclibc support, 122

Make system, 278
Makefile framework, 268–270
Memory

boot allocations, 71–72
limit, 342, 375, 381
locking, 213, 215–223
management, 33–34, 358–364

problems, 280–282
classification of, 280
corruption, 280, 287
leaks, 280, 282–286
overflow, 280, 286–287

map, 66–72
board, 68
defining, 66–67
functions, 66
MIPS, 67–68
processor, 66–67
setting, 72
software, 68
zone allocators, 72

model, 91–92, 166, 167
shared, 191, 209, 223–225
tuning, 124–126
virtual, 34, 72

address range, 343
debugging problems in, 280–291
function, 37, 342
in Linux model, 167, 202
limit, 342, 381
management code, 341
mapping, 72
protection, 287
switching from one to another, 208
tweaking structures, 358

Memory Technology Device (MTD), 91–106
architecture

applications, 94–97, 95

AU0586_Index.fm Page 396 Thursday, November 17, 2005 10:00 AM

Index

397

BSP for flash, 95
data structure, 96
interface between core and low-level flash

drivers, 96–97
MTD core, 95

block and character devices, 114–115
flash chips, 92

erase routine, 93, 97
NAND vs. NOR, 93–94
probe routine, 97, 98
read routine, 93, 101–102
write routine, 93, 97, 103–104

flash disks, 92, 94
ATA-based, 94

model, 91–92
sample driver for NOR flash, 97–106

erase routine, 93, 97, 105–106
probe routine, 97, 98, 100
read routine, 93, 101–102
write routine, 93, 97, 103–104

Metrowerks, 20–21
development environment, 21
documentation, 22
features, 21
support, 22

MiniGUI, 336
MIPS processor, 10, 17, 19, 24, 33

booting, 62, 63–64
cross-platform toolchain, 52–57
HAL, 60, 80
memory map, 67–68
PCI space and, 78
RTAI support, 253
uclibc support, 122

MontaVista DevRocket, 14, 23
MontaVista Linux, 22–23

development environment, 23
documentation, 23
features, 22
support, 23

MP3 player
components, 171
decoding, 171
initializing, 171

MPEG decoder, 201
Mtdutils package, 116

N

Nano-X, 336–340
Network device drivers, 127
Network file system (NFS), 119

O

OOM killer, 281
Operating System Porting Layer (OSPL), 170,

182–191

IPC and timer APIs emulation, 191
RTOS mutex APIs emulation, 182–185
RTOS task APIs emulation, 185–190

P

PIC.

See

 Programmable Interrupt Controller (PIC)
PicoGUI, 336
Porting application, 165–200
Porting road map, 26–28

choosing kernel and embedded Linux
distribution, 27

getting tools, 27
identify legal issues behind porting process,

26
interacting with community and getting latest

updates in kernel, 28
packaging, 27
porting applications, 27
porting bootloaders and BSP, 27
porting device drivers, 27
tweaking performance, memory, and size

optimizations, 28
POSIX, 10.

See also

 POSIX.1b
improved threading with BlueCat, 14
in RTLinuxPro, 23
message queues, 25
real-time capabilities, 207
real-time signals, 35
threads, 171 (

See also

 pthread)
timers, 14, 25

POSIX.1b, 209
asynchronous I/O, 209, 246–252
clocks and timers, 191, 209, 241–245
message queues, 225–232
real-time extensions

asynchronous I/O, 209, 246–252
clocks and timers, 191, 209, 241–245
fixed priority scheduling classes, 209
memory locking, 209, 213, 215
message queues, 209, 225–232
semaphores, 191, 209, 232–233, 234, 235
shared memory, 191, 209, 223–225
signals, 191, 209, 233, 235, 241

scheduling functions, 209, 213, 214, 215
semaphores, 191, 209, 232–233, 234–235,

235
shared memory, 191, 209, 223–225

POSIX 1003.1b, 202, 209, 225
message queue, 255
real-time extensions, 260
semaphores, 233
signal extensions, 233

Power management, 59, 83–88
applications, 88
hardware and, 83–85
standards, 85
unified driver framework for, 87–88

AU0586_Index.fm Page 397 Thursday, November 17, 2005 10:00 AM

398

Embedded Linux System Design and Development

PowerPC processor, 10, 17, 19, 24, 253
PCI space and, 78
RTAI support, 253
uclibc support, 122

Profilers, 294–308
eProf, 294–300
Kernel Function Instrumentation,

302–308
OProfile, 300–302

Profiling, 293–308
environment for, 294
measurables, 294
performance and, 293
rationale for, 294
tools, 294

Program development, components, 278
Programmable Interrupt Controller (PIC),

72
basic functionalities, 73
bootup time, 385
BSP, 80–81
channel structure, 80
configuration space, 79, 80
controller, 79
device, 88, 155

drivers, 80
Ethernet and, 60
for logical interrupts, 79
FPGA

vs.,

 78
initialization, 77
IRQ routing, 79
library, 80
memory and address space, 78
north bridge, 77
software architecture, 79–81
subsystem, 77–81
uniqueness of architecture, 77–79

PROM, 62
Proprietary programs, 388
pthreads, 171–182

cancellation, 180–182
creation and exit, 172–174
library, 233
programming with, 171–182
synchronization, 174–180

Q

Qt Embedded, 336

R

RAM file system (RAMFS), 117
RAMFS

vs.

 RAMDISK, 277
Rc.sysinit file, 48
Real-time

Linux, 202–209
hard, 252–260

application interface, 253–258
dual-kernel architecture, 252

kernel framework for, 203
programming in, 209–252

memory locking, 213, 215–223
process scheduling, 210–213, 214–215
task-priority mapping, 211

signals, 233–241
operating system, 202

embedded Linux

vs.,

 165, 191, 202
architecture, 165–167

features
dynamic memory allocation, 202
flat memory model, 166
interprocess communication and

synchronization, 202
interrupt latency, 202
multitasking/multithreading, 202
preemption, 202
priorities, 202
priority inheritance, 202
scheduler latency, 202, 203, 205–206

systems, 201
hard, 201
soft, 201

Real-time application interface (RTAI), 3, 17, 19,
253–258

architecture, 254
core, 253
development, 252
HAL in, 253
hard real-time variants, 203
IPC mechanisms, 255
LXRT, 254, 255
miscellaneous modules, 255–256

pthreads, 256
real-time drivers, 256
real-time malloc, 256
tasklets, 256
watchdog, 256
xenomai, 256

schedulers, 253, 254
writing applications, 256–258

Real-Time Hardware Abstraction Layer, 254
Root file system, 16, 35, 90

building, 275–278
for uClinux distribution, 378
mounting, 45–46, 384
NFS as, 119
packages, 18
selection, 385
size, 18

RT LinuxPro, 23–24
development environment, 24
documentation, 24
features, 23–24
support, 24

RTAI.

See

 Real-time application interface (RTAI)

AU0586_Index.fm Page 398 Thursday, November 17, 2005 10:00 AM

Index

399

S

Scheduler(s), 34–35
duration, 203, 207–209
latency, 202, 205–206

defined, 203
RTAI, 253, 254

selection, 13
Setting up arguments, 42
Sleep mode, 84
Space optimization, 120–124
Stag, 18
Storage space, 120–124
StrongArm processor, 24, 83, 86

BSP on Linux, 86
Subsystem initialization, 45
SuperH processor, 33

uclibc support, 122
Symbol resolution, 41

T

Text editor, 278
Timer(s), 81

API, 191
BSD, 241
chip, 60
creation, 243
expiration, 233, 241, 242
high resolution, 14, 22, 25, 233, 245, 298
initialization, 44
interrupt, 44, 81, 84, 205
kernel, 161, 191
POSIX, 25, 242
POSIX1b, 241–245
programmable interval, 81
tick hardware, 44
watchdog, 22, 161–162

TimeStorm, 279–280
TimeSys Linux, 24–26

development environment, 25–26
documentation, 26
features, 25
support, 26

U

UART, 61, 82 129
data structure linkage, 132
routines, 130

uClinux
bFLT file

format, 346–347
loading, 347–357

creating programs, 370–371
creating shared libraries in, 371–373
distribution, 378–380
intricacies of mmp in, 364–365
Linux

vs.,

 342–343
memory limitations, 375

memory management, 358–364
heap, 358–363
stack, 363

mmap limitations, 375
porting applications to, 370–375, 376–377
process-level limitations, 375
program load and execution, 343–357

fully relocatable binaries, 345
position independent code, 345–346

shared libraries, 367–370
using shared library in application, 373–375
XIP

vs.,

 126
Universal serial bus (USB)

bulk transfers, 154
controller driver, 153
devices

communication, 153
extender/hub, 153
interface, 153, 154
storage, 153

driver framework, 154–155
gadget drivers, 153, 154

architecture, 156
data structure, 157–158
Ethernet, 158–160

interrupt transfers, 154
isochronous transfers, 154
topology, 154
transfer types, 153–154

User space
initialization phase, 42
real time, 209–210
tuning for decreased boot-up time, 385

V

V850 processor, 33
uclibc support, 122

Valgrind, 288–291
Virtual file system, 35
Virtual memory, 34, 72

address range, 343
debugging problems in, 280–291
function, 37, 342
in Linux model, 167, 202
limit, 342, 381
management code, 341
mapping, 72
protection, 287
switching from one to another, 208
tweaking structures, 358

VisualLynux, 14

W

Watchdog timer, 161–162
initialization function, 161
Ioctl, 162

AU0586_Index.fm Page 399 Thursday, November 17, 2005 10:00 AM

400

Embedded Linux System Design and Development

open function, 161
release function, 161
write function, 162

Windowing environment, 328–339
generic, 328, 331
libraries, 331
popular, 336

X

x86 processor, 10, 21, 24, 253

booting, 62

compiler, 49

INTA cycle, 74

RTAI support, 253

uclibc support, 122

XIP.

See

 eXecute In place (XIP)

Z

Zone allocators, 72

AU0586_Index.fm Page 400 Thursday, November 17, 2005 10:00 AM

