
NTA-Isny FreeRTOS-API V1.1 1

FreeRTOS
-

API

1.1 Task Creation .. 2
1.2 Task Control.. 4
1.3 Task Utilities... 12
1.4 Kernel Control .. 14
1.4 Queue Management .. 19
1.5 Semaphores ... 28

Literatur: http://www.freertos.org/index.html?http://www.freertos.org/a00106.html

NTA-Isny FreeRTOS-API V1.1 2

1.1 Task Creation

Modules

• xTaskCreate
• vTaskDelete

Detailed Description
xTaskHandle

task. h

Type by which tasks are referenced. For example, a call to xTaskCreate returns (via a pointer
parameter) an xTaskHandle variable that can then be used as a parameter to vTaskDelete to
delete the task.

xTaskCreate
task. h

 portBASE_TYPE xTaskCreate(
 pdTASK_CODE pvTaskCode,
 const portCHAR * const pcName,
 unsigned portSHORT usSt ackDepth,
 void *pvParameters,
 unsigned portBASE_TYPE uxPriority,
 xTaskHandle *pvCreatedT ask
);

Create a new task and add it to the list of tasks that are ready to run.

Parameters: Comment
pvTaskCode Pointer to the task entry function. Tasks must be

implemented to never return (i.e. continuous loop).
pcName A descriptive name for the task. This is mainly use d

to facilitate debugging. Max length defined by
configMAX_TASK_NAME_LEN.

usStackDepth The size of the task stack specified as the number of
variables the stack can hold - not the number of
bytes. For example, if the stack is 16 bits wide an d
usStackDepth is defined as 100, 200 bytes will be
allocated for stack storage. The stack depth
multiplied by the stack width must not exceed the
maximum value that can be contained in a variable o f
type size_t.

pvParameters Pointer that will be used as the parameter for the
task being created.

uxPriority The priority at which the task should run.
pvCreatedTask Used to pass back a handle by which the created tas k

can be referenced.

Returns: Comment
pdPASS if the task was successfully created and added to a

ready list, otherwise an error code defined in the
file projdefs.h

NTA-Isny FreeRTOS-API V1.1 3

Example usage:

 // Task to be created.
 void vTaskCode(void * pvParameters)
 {
 for(;;)
 {
 // Task code goes here.
 }
 }

 // Function that creates a task.
 void vOtherFunction(void)
 {
 static unsigned char ucParameterToPass;
 xTaskHandle xHandle;

 //Create the task, storing the handle.

//Note that the passed parameter ucParameterToPass
//must exist for the lifetime of the task, so in th is case is
//declared static. If it was just an
//an automatic stack variable it might no longer ex ist, or at
//least have been corrupted, by the time

 //the new time attempts to access it.
xTaskCreate(vTaskCode, "NAME", STACK_SIZE, &ucPara meterToPass,

tskIDLE_PRIORITY, &xHandle);

 // Use the handle to delete the task.
 vTaskDelete(xHandle);
 }

vTaskDelete
task. h
void vTaskDelete(xTaskHandle pxTask);

INCLUDE_vTaskDelete must be defined as 1 for this function to be available. See the
configuration section for more information.

Remove a task from the RTOS real time kernels management. The task being deleted will be
removed from all ready, blocked, suspended and event lists.

NOTE: The idle task is responsible for freeing the kernel allocated memory from tasks that have
been deleted. It is therefore important that the idle task is not starved of microcontroller
processing time if your application makes any calls to vTaskDelete (). Memory allocated by the
task code is not automatically freed, and should be freed before the task is deleted.

See the demo application file death. c for sample code that utilises vTaskDelete ().

Parameters: Comment
pxTask The handle of the task to be deleted. Passing NULL

will cause the calling task to be deleted.

NTA-Isny FreeRTOS-API V1.1 4

Example usage:

 void vOtherFunction(void)
 {
 xTaskHandle xHandle;

 // Create the task, storing the handle.
 xTaskCreate(vTaskCode, "NAME", STACK_SIZE, NULL, tskIDLE_PRIORITY,
 &xHandle);

 // Use the handle to delete the task.
 vTaskDelete(xHandle);
 }

1.2 Task Control

Modules

• vTaskDelay
• vTaskDelayUntil

• uxTaskPriorityGet

• vTaskPrioritySet

• vTaskSuspend

• vTaskResume
• xTaskResumeFromISR
• vTaskSetApplicationTag
• xTaskCallApplicationTaskHook

vTaskDelay

task. h
void vTaskDelay(portTickType xTicksToDelay);

INCLUDE_vTaskDelay must be defined as 1 for this function to be available. See the
configuration section for more information.

Delay a task for a given number of ticks. The actual time that the task remains blocked depends
on the tick rate. The constant portTICK_RATE_MS can be used to calculate real time from the
tick rate - with the resolution of one tick period.

vTaskDelay() specifies a time at which the task wishes to unblock relative to the time at which
vTaskDelay() is called. For example, specifying a block period of 100 ticks will cause the task to
unblock 100 ticks after vTaskDelay() is called. vTaskDelay() does not therefore provide a good
method of controlling the frequency of a cyclical task as the path taken through the code, as well
as other task and interrupt activity, will effect the frequency at which vTaskDelay() gets called and
therefore the time at which the task next executes. See vTaskDelayUntil() for an alternative API
function designed to facilitate fixed frequency execution. It does this by specifying an absolute
time (rather than a relative time) at which the calling task should unblock.

Parameters: Comment
xTicksToDelay The amount of time, in tick periods, that the calli ng

task should block.

NTA-Isny FreeRTOS-API V1.1 5

Example usage:

 void vTaskFunction(void * pvParameters)
 {
 /* Block for 500ms. */
 const portTickType xDelay = 500 / portTICK_RATE_MS ;

 for(;;)
 {
 /*Simply toggle the LED every 500ms, blocking be tween each toggle.*/
 vToggleLED();
 vTaskDelay(xDelay);
 }
 }

vTaskDelayUntil

task. h
void vTaskDelayUntil(portTickType *pxPreviousWakeT ime, portTickType
xTimeIncrement);

INCLUDE_vTaskDelayUntil must be defined as 1 for this function to be available. See the
configuration section for more information.

Delay a task until a specified time. This function can be used by cyclical tasks to ensure a
constant execution frequency.

This function differs from vTaskDelay() in one important aspect: vTaskDelay() specifies a time at
which the task wishes to unblock relative to the time at which vTaskDelay() is called, whereas
vTaskDelayUntil() specifies an absolute time at which the task wishes to unblock.

vTaskDelay() will cause a task to block for the specified number of ticks from the time
vTaskDelay() is called. It is therefore difficult to use vTaskDelay() by itself to generate a fixed
execution frequency as the time between a task unblocking following a call to vTaskDelay() and
that task next calling vTaskDelay() may not be fixed [the task may take a different path though the
code between calls, or may get interrupted or preempted a different number of times each time it
executes].

Whereas vTaskDelay() specifies a wake time relative to the time at which the function is called,
vTaskDelayUntil() specifies the absolute (exact) time at which it wishes to unblock.

It should be noted that vTaskDelayUntil() will return immediately (without blocking) if it is used to
specify a wake time that is already in the past. Therefore a task using vTaskDelayUntil() to
execute periodically will have to re-calculate its required wake time if the periodic execution is
halted for any reason (for example, the task is temporarily placed into the Suspended state)
causing the task to miss one or more periodic executions. This can be detected by checking the
variable passed by reference as the pxPreviousWakeTime parameter against the current tick
count. This is however not necessary under most usage scenarios.

NTA-Isny FreeRTOS-API V1.1 6

The constant portTICK_RATE_MS can be used to calculate real time from the tick rate - with the
resolution of one tick period.

This function must not be called while the scheduler has been suspended by a call to
vTaskSuspendAll().

Parameters: Comment
pxPreviousWakeTime Pointer to a variable that holds the time at which

the task was last unblocked. The variable must be
initialised with the current time prior to its firs t
use (see the example below). Following this the
variable is automatically updated within
vTaskDelayUntil().

xTimeIncrement The cycle time period. The task will be unblocked a t
time (*pxPreviousWakeTime + xTimeIncrement). Callin g
vTaskDelayUntil with the same xTimeIncrement
parameter value will cause the task to execute with
a fixed interval period.

Example usage:
 // Perform an action every 10 ticks.
 void vTaskFunction(void * pvParameters)
 {
 portTickType xLastWakeTime;
 const portTickType xFrequency = 10;

 // Initialise the xLastWakeTime variable with the current time.
 xLastWakeTime = xTaskGetTickCount();

 for(;;)
 {
 // Wait for the next cycle.
 vTaskDelayUntil(&xLastWakeTime, xFrequenc y);

 // Perform action here.
 }
 }

NTA-Isny FreeRTOS-API V1.1 7

uxTaskPriorityGet

task. h
unsigned portBASE_TYPE uxTaskPriorityGet(xTaskHandle pxTask);

INCLUDE_vTaskPriorityGet must be defined as 1 for this function to be available. See the
configuration section for more information.

Obtain the priority of any task.

Parameters: Comment
pxTask Handle of the task to be queried. Passing a NULL

handle results in the priority of the calling task
being returned.

Returns:
The priority of pxTask.

Example usage:

 void vAFunction(void)
 {
 xTaskHandle xHandle;

 // Create a task, storing the handle.
 xTaskCreate(vTaskCode, "NAME", STACK_SIZE, NU LL,
tskIDLE_PRIORITY, &xHandle);

 // ...

 // Use the handle to obtain the priority of th e created task.
 // It was created with tskIDLE_PRIORITY, but m ay have changed
 // it itself.
 if(uxTaskPriorityGet(xHandle) != tskIDLE_PR IORITY)
 {
 // The task has changed it's priority.
 }

 // ...

 // Is our priority higher than the created tas k?
 if(uxTaskPriorityGet(xHandle) < uxTaskPrior ityGet(NULL))
 {
 // Our priority (obtained using NULL handl e) is higher.
 }
 }

NTA-Isny FreeRTOS-API V1.1 8

vTaskPrioritySet

task. h
void vTaskPrioritySet(xTaskHandle pxTask, unsigned portBASE_TYPE
uxNewPriority);

INCLUDE_vTaskPrioritySet must be defined as 1 for this function to be available. See the
configuration section for more information.

Set the priority of any task.

A context switch will occur before the function returns if the priority being set is higher than the
currently executing task.

Parameters: Comment
pxTask Handle to the task for which the priority is being

set. Passing a NULL handle results in the priority of
the calling task being set.

uxNewPriority The priority to which the task will be set.

Example usage:

 void vAFunction(void)
 {
 xTaskHandle xHandle;

 // Create a task, storing the handle.
 xTaskCreate(vTaskCode, "NAME", STACK_SIZE, NU LL,
tskIDLE_PRIORITY, &xHandle);

 // ...

 // Use the handle to raise the priority of the created task.
 vTaskPrioritySet(xHandle, tskIDLE_PRIORITY + 1);

 // ...

 // Use a NULL handle to raise our priority to the same value.
 vTaskPrioritySet(NULL, tskIDLE_PRIORITY + 1) ;
 }

NTA-Isny FreeRTOS-API V1.1 9

vTaskSuspend

task. h
void vTaskSuspend(xTaskHandle pxTaskToSuspend);

INCLUDE_vTaskSuspend must be defined as 1 for this function to be available. See the
configuration section for more information.

Suspend any task. When suspended a task will never get any microcontroller processing time, no
matter what its priority.

Calls to vTaskSuspend are not accumulative - i.e. calling vTaskSuspend () twice on the same
task still only requires one call to vTaskResume () to ready the suspended task.

Parameters: Comment
pxTaskToSuspend Handle to the task being suspended. Passing a NULL

handle will cause the calling task to be suspended.

Example usage:

 void vAFunction(void)
 {
 xTaskHandle xHandle;

 // Create a task, storing the handle.
 xTaskCreate(vTaskCode, "NAME", STACK_SIZE, NU LL,
tskIDLE_PRIORITY, &xHandle);

 // ...

 // Use the handle to suspend the created task.
 vTaskSuspend(xHandle);

 // ...

 // The created task will not run during this p eriod, unless
 // another task calls vTaskResume(xHandle).

 //...

 // Suspend ourselves.
 vTaskSuspend(NULL);

 // We cannot get here unless another task call s vTaskResume
 // with our handle as the parameter.
 }

NTA-Isny FreeRTOS-API V1.1 10

vTaskResume

task. h
void vTaskResume(xTaskHandle pxTaskToResume);

INCLUDE_vTaskSuspend must be defined as 1 for this function to be available. See the
configuration section for more information.

Resumes a suspended task.

A task that has been suspended by one of more calls to vTaskSuspend () will be made available
for running again by a single call to vTaskResume ().

Parameters: Comment
pxTaskToResume Handle to the task being readied.

Example usage:

 void vAFunction(void)
 {
 xTaskHandle xHandle;

 // Create a task, storing the handle.
 xTaskCreate(vTaskCode, "NAME", STACK_SIZE, NU LL,
tskIDLE_PRIORITY, &xHandle);

 // ...

 // Use the handle to suspend the created task.
 vTaskSuspend(xHandle);

 // ...

 // The created task will not run during this p eriod, unless
 // another task calls vTaskResume(xHandle).

 //...

 // Resume the suspended task ourselves.
 vTaskResume(xHandle);

 // The created task will once again get microc ontroller processing
 // time in accordance with it priority within the system.
 }

NTA-Isny FreeRTOS-API V1.1 11

xTaskResumeFromISR

task. h
portBASE_TYPE xTaskResumeFromISR(xTaskHandle pxTas kToResume);

INCLUDE_vTaskSuspend and INCLUDE_xTaskResumeFromISR must be defined as 1 for this
function to be available. See the configuration section for more information.

A function to resume a suspended task that can be called from within an ISR.

A task that has been suspended by one of more calls to vTaskSuspend() will be made available
for running again by a single call to xTaskResumeFromISR().

xTaskResumeFromISR() should not be used to synchronise a task with an interrupt if there is a
chance that the interrupt could arrive prior to the task being suspended - as this can lead to
interrupts being missed. Use of a semaphore as a synchronisation mechanism would avoid this
eventuality.

Parameters: Comment
 pxTaskToResume Handle to the task being readied.

Returns:pdTRUE if resuming the task should result i n a context switch,
otherwise pdFALSE. This is used by the ISR to deter mine if a context
switch may be required following the ISR.

Example usage:

 xTaskHandle xHandle;

 void vAFunction(void)
 {
 // Create a task, storing the handle.
 xTaskCreate(vTaskCode, "NAME", STACK_SIZE, NU LL,
tskIDLE_PRIORITY, &xHandle);

 // ... Rest of code.
 }

 void vTaskCode(void *pvParameters)
 {
 // The task being suspended and resumed.
 for(;;)
 {
 // ... Perform some function here.

 // The task suspends itself.
 vTaskSuspend(NULL);

 // The task is now suspended, so will not reach here until the
ISR resumes it.
 }
 }

NTA-Isny FreeRTOS-API V1.1 12

void vAnExampleISR(void)
 {
 portBASE_TYPE xYieldRequired;

 // Resume the suspended task.
 xYieldRequired = xTaskResumeFromISR(xHandle) ;

 if(xYieldRequired == pdTRUE)
 {
 // We should switch context so the ISR ret urns to a different
task.
 // NOTE: How this is done depends on the port you are using.
Check
 // the documentation and examples for your port.
 portYIELD_FROM_ISR();
 }
 }

1.3 Task Utilities

xTaskGetCurrentTaskHandle
task.h
xTaskHandle xTaskGetCurrentTaskHandle(void);

INCLUDE_xTaskGetCurrentTaskHandle must be set to 1 for this function to be
available.

Returns:
The handle of the currently running (calling) task.

xTaskGetTickCount
task.h
volatile portTickType xTaskGetTickCount(void);

Returns:
The count of ticks since vTaskStartScheduler was ca lled.

xTaskGetSchedulerState
task.h
portBASE_TYPE xTaskGetSchedulerState(void);

Returns:
One of the following constants (defined within task .h):
taskSCHEDULER_NOT_STARTED, taskSCHEDULER_RUNNING,
taskSCHEDULER_SUSPENDED.

uxTaskGetNumberOfTasks
task.h
unsigned portBASE_TYPE uxTaskGetNumberOfTasks(void);

Returns:
The number of tasks that the real time kernel is cu rrently managing.
This includes all ready, blocked and suspended task s. A task that has
been deleted but not yet freed by the idle task wil l also be included
in the count.

NTA-Isny FreeRTOS-API V1.1 13

vTaskList
task.h
void vTaskList(portCHAR *pcWriteBuffer);

configUSE_TRACE_FACILITY, INCLUDE_vTaskDelete and INCLUDE_vTaskSuspend must all
be defined as 1 for this function to be available. See the configuration section for more
information.

NOTE: This function will disable interrupts for its duration. It is not intended for normal application
runtime use but as a debug aid.

Lists all the current tasks, along with their current state and stack usage high water mark.

Tasks are reported as blocked ('B'), ready ('R'), deleted ('D') or suspended ('S').

Parameters:pcWriteBuffer A buffer into which the above menti oned
details will be written, in ascii form. This buffer is assumed to be
large enough to contain the generated report. Appro ximately 40 bytes
per task should be sufficient.

vTaskStartTrace
task.h
void vTaskStartTrace(portCHAR * pcBuffer, unsigned portLONG
ulBufferSize);

[The function relates to the original trace utility - which is still provided - however users may find
the newer Trace Hook Macros easier and more powerful to use.]

Starts a real time kernel activity trace. The trace logs the identity of which task is running when.

The trace file is stored in binary format. A separate DOS utility called convtrce.exe is used to
convert this into a tab delimited text file which can be viewed and plotted in a spread sheet.

Parameters:pcBuffer The buffer into which the trace will be w ritten.
ulBufferSize The size of pcBuffer in bytes. The tr ace will continue
until either the buffer in full, or ulTaskEndTrace() is called.

ulTaskEndTrace
task.h
unsigned portLONG ulTaskEndTrace(void);

[The function relates to the original trace utility - which is still provided - however users may find
the newer Trace Hook Macros easier and more powerful to use.]

Stops a kernel activity trace. See vTaskStartTrace().

Returns:
The number of bytes that have been written into the trace buffer.

vTaskGetRunTimeStats
task.h
void vTaskGetRunTimeStats(portCHAR *pcWriteBuffer);

NTA-Isny FreeRTOS-API V1.1 14

See the Run Time Stats page for a full description of this feature.

configGENERATE_RUN_TIME_STATS must be defined as 1 for this function to be available.
The application must also then provide definitions for
portCONFIGURE_TIMER_FOR_RUN_TIME_STATS() and
portGET_RUN_TIME_COUNTER_VALUE to configure a peripheral timer/counter and return the
timers current count value respectively. The counter should be at least 10 times the frequency of
the tick count.

NOTE: This function will disable interrupts for its duration. It is not intended for normal application
runtime use but as a debug aid.

Setting configGENERATE_RUN_TIME_STATS to 1 will result in a total accumulated execution
time being stored for each task. The resolution of the accumulated time value depends on the
frequency of the timer configured by the portCONFIGURE_TIMER_FOR_RUN_TIME_STATS()
macro. Calling vTaskGetRunTimeStats() writes the total execution time of each task into a buffer,
both as an absolute count value and as a percentage of the total system execution time.
Parameters:pcWriteBuffer A buffer into which the execution times will be written, in ascii
form. This buffer is assumed to be large enough to contain the generated report. Approximately
40 bytes per task should be sufficient.

1.4 Kernel Control

Modules
• vTaskStartScheduler
• vTaskEndScheduler
• vTaskSuspendAll
• xTaskResumeAll

Detailed Description

taskYIELD
task. h
Macro for forcing a context switch.

taskENTER_CRITICAL
task. h
Macro to mark the start of a critical code region. Preemptive context switches cannot occur when
in a critical region.
NOTE: This may alter the stack (depending on the portable implementation) so must be used with
care!

taskEXIT_CRITICAL
task. h
Macro to mark the end of a critical code region. Preemptive context switches cannot occur when
in a critical region.
NOTE: This may alter the stack (depending on the portable implementation) so must be used with
care!

taskDISABLE_INTERRUPTS
task. h
Macro to disable all maskable interrupts.

NTA-Isny FreeRTOS-API V1.1 15

taskENABLE_INTERRUPTS
task. h
Macro to enable microcontroller interrupts.

vTaskStartScheduler

task. h
void vTaskStartScheduler(void);

Starts the real time kernel tick processing. After calling the kernel has control over which tasks
are executed and when.

The idle task is created automatically when vTaskStartScheduler() is called.

If vTaskStartScheduler() is successful the function will not return until an executing task calls
vTaskEndScheduler(). The function might fail and return immediately if there is insufficient RAM
available for the idle task to be created.

See the demo application file main. c for an example of creating tasks and starting the kernel.

Example usage:

 void vAFunction(void)
 {
 // Create at least one task before starting th e kernel.
 xTaskCreate(vTaskCode, "NAME", STACK_SIZE, NU LL, tskIDLE_PRIORITY, NULL);
 // Start the real time kernel with preemption.
 vTaskStartScheduler();
 // Will not get here unless a task calls vTask EndScheduler ()
 }

NTA-Isny FreeRTOS-API V1.1 16

vTaskEndScheduler

task. h
void vTaskEndScheduler(void);

Stops the real time kernel tick. All created tasks will be automatically deleted and multitasking
(either preemptive or cooperative) will stop. Execution then resumes from the point where
vTaskStartScheduler() was called, as if vTaskStartScheduler() had just returned.

See the demo application file main. c in the demo/PC directory for an example that uses
vTaskEndScheduler ().

vTaskEndScheduler () requires an exit function to be defined within the portable layer (see
vPortEndScheduler () in port. c for the PC port). This performs hardware specific operations such
as stopping the kernel tick.

vTaskEndScheduler () will cause all of the resources allocated by the kernel to be freed - but will
not free resources allocated by application tasks.

Example usage:

 void vTaskCode(void * pvParameters)
 {
 for(;;)
 {
 // Task code goes here.
 // At some point we want to end the real t ime kernel processing
 // so call ...
 vTaskEndScheduler ();
 }
 }
 void vAFunction(void)
 {
 // Create at least one task before starting th e kernel.
 xTaskCreate(vTaskCode, "NAME", STACK_SIZE, NU LL, tskIDLE_PRIORITY, NULL);
 // Start the real time kernel with preemption.
 vTaskStartScheduler();
 // Will only get here when the vTaskCode () ta sk has called
 // vTaskEndScheduler (). When we get here we are back to single task
 // execution.
 }

NTA-Isny FreeRTOS-API V1.1 17

vTaskSuspendAll

task. h
void vTaskSuspendAll(void);

Suspends all real time kernel activity while keeping interrupts (including the kernel tick) enabled.

After calling vTaskSuspendAll () the calling task will continue to execute without risk of being
swapped out until a call to xTaskResumeAll () has been made.

API functions that have the potential to cause a context switch (for example, vTaskDelayUntil(),
xQueueSend(), etc.) must not be called while the scheduler is suspended.

Example usage:

 void vTask1(void * pvParameters)
 {
 for(;;)
 {
 // Task code goes here.
 // ...
 // At some point the task wants to perform a long operation during
 // which it does not want to get swapped o ut. It cannot use
 // taskENTER_CRITICAL ()/taskEXIT_CRITICAL () as the length of the
 // operation may cause interrupts to be mi ssed - including the
 // ticks.
 // Prevent the real time kernel swapping o ut the task.
 vTaskSuspendAll ();
 // Perform the operation here. There is n o need to use critical
 // sections as we have all the microcontro ller processing time.
 // During this time interrupts will still operate and the kernel
 // tick count will be maintained.
 // ...
 // The operation is complete. Restart the kernel.
 xTaskResumeAll ();
 }
 }

NTA-Isny FreeRTOS-API V1.1 18

xTaskResumeAll

task. h
portBASE_TYPE xTaskResumeAll(void);

Resumes real time kernel activity following a call to vTaskSuspendAll (). After a call to
xTaskSuspendAll () the kernel will take control of which task is executing at any time.

Returns:
If resuming the scheduler caused a context switch then pdTRUE is returned, otherwise
pdFALSE is returned.

Example usage:

 void vTask1(void * pvParameters)
 {
 for(;;)
 {
 // Task code goes here.
 // ...
 // At some point the task wants to perform a long operation during
 // which it does not want to get swapped o ut. It cannot use
 // taskENTER_CRITICAL ()/taskEXIT_CRITICAL () as the length of the
 // operation may cause interrupts to be mi ssed - including the
 // ticks.
 // Prevent the real time kernel swapping o ut the task.
 xTaskSuspendAll ();
 // Perform the operation here. There is n o need to use critical
 // sections as we have all the microcontro ller processing time.
 // During this time interrupts will still operate and the real
 // time kernel tick count will be maintain ed.
 // ...
 // The operation is complete. Restart the kernel. We want to force
 // a context switch - but there is no poin t if resuming the scheduler
 // caused a context switch already.
 if(!xTaskResumeAll ())
 {
 taskYIELD ();
 }
 }
 }

NTA-Isny FreeRTOS-API V1.1 19

1.4 Queue Management

Modules

• xQueueCreate
• xQueueSend
• xQueueReceive
• xQueuePeek
• xQueueSendFromISR
• xQueueSendToBackFromISR
• xQueueSendToFrontFromISR
• xQueueReceiveFromISR
• vQueueAddToRegistry
• vQueueUnregisterQueue

Detailed Description

uxQueueMessagesWaiting
queue.h
unsigned portBASE_TYPE uxQueueMessagesWaiting(xQue ueHandle xQueue);

Return the number of messages stored in a queue.

Parameters:
xQueue A handle to the queue being queried.

Returns:
The number of messages available in the queue.

vQueueDelete
queue.h
void vQueueDelete(xQueueHandle xQueue);

Delete a queue - freeing all the memory allocated for storing of items placed on the queue.

Parameters:
xQueue A handle to the queue to be deleted.

NTA-Isny FreeRTOS-API V1.1 20

xQueueCreate

queue. h

 xQueueHandle xQueueCreate(
 unsigned portBASE_TYPE uxQueueLength,
 unsigned portBASE_TYPE uxItemSize
);

Creates a new queue instance. This allocates the storage required by the new queue and returns
a handle for the queue.

Parameters:
uxQueueLength The maximum number of items that the queue can contain.
uxItemSize The number of bytes each item in the queue will require. Items are

queued by copy, not by reference, so this is the number of bytes that will
be copied for each posted item. Each item on the queue must be the
same size.

Returns:
If the queue is successfully create then a handle to the newly created queue is returned.
If the queue cannot be created then 0 is returned.

Example usage:

 struct AMessage
 {
 portCHAR ucMessageID;
 portCHAR ucData[20];
 };
 void vATask(void *pvParameters)
 {
 xQueueHandle xQueue1, xQueue2;
 // Create a queue capable of containing 10 unsi gned long values.
 xQueue1 = xQueueCreate(10, sizeof(unsigned po rtLONG));
 if(xQueue1 == 0)
 {
 // Queue was not created and must not be us ed.
 }
 // Create a queue capable of containing 10 poin ters to AMessage structures.
 // These should be passed by pointer as they co ntain a lot of data.
 xQueue2 = xQueueCreate(10, sizeof(struct AMes sage *));
 if(xQueue2 == 0)
 {
 // Queue was not created and must not be us ed.
 }
 // ... Rest of task code.
 }

NTA-Isny FreeRTOS-API V1.1 21

xQueueSend

queue.h

 portBASE_TYPE xQueueSend(
 xQueueHandle xQueue,
 const void * pvItemToQu eue,
 portTickType xTicksToWa it
);

This is a macro that calls xQueueGenericSend(). It is included for backward compatibility with
versions of FreeRTOS.org that did not include the xQueueSendToFront() and
xQueueSendToBack() macros. It is equivalent to xQueueSendToBack().

Post an item on a queue. The item is queued by copy, not by reference. This function must not be
called from an interrupt service routine. See xQueueSendFromISR() for an alternative which may
be used in an ISR.

xQueueSend() is part of the fully featured intertask communications API. xQueueAltSend() is the
alternative API equivalent. Both versions require the same parameters and return the same
values.

Parameters:
xQueue The handle to the queue on which the item is to be posted.
pvItemToQueue A pointer to the item that is to be placed on the queue. The size of the

items the queue will hold was defined when the queue was created, so
this many bytes will be copied from pvItemToQueue into the queue
storage area.

xTicksToWait The maximum amount of time the task should block waiting for space to
become available on the queue, should it already be full. The call will
return immediately if the queue is full and xTicksToWait is set to 0. The
time is defined in tick periods so the constant portTICK_RATE_MS
should be used to convert to real time if this is required.

If INCLUDE_vTaskSuspend is set to '1' then specifying the block time as
portMAX_DELAY will cause the task to block indefinitely (without a
timeout).

Returns:
pdTRUE if the item was successfully posted, otherwise errQUEUE_FULL.

NTA-Isny FreeRTOS-API V1.1 22

Example usage:

 struct AMessage
 {
 portCHAR ucMessageID;
 portCHAR ucData[20];
 } xMessage;
 unsigned portLONG ulVar = 10UL;
 void vATask(void *pvParameters)
 {
 xQueueHandle xQueue1, xQueue2;
 struct AMessage *pxMessage;
 // Create a queue capable of containing 10 unsi gned long values.
 xQueue1 = xQueueCreate(10, sizeof(unsigned po rtLONG));
 // Create a queue capable of containing 10 poin ters to AMessage structures.
 // These should be passed by pointer as they co ntain a lot of data.
 xQueue2 = xQueueCreate(10, sizeof(struct AMes sage *));
 // ...
 if(xQueue1 != 0)
 {
 // Send an unsigned long. Wait for 10 tick s for space to become
 // available if necessary.
 if(xQueueSend(xQueue1, (void *) &ulVar, (portTickType) 10) !=
pdPASS)
 {
 // Failed to post the message, even aft er 10 ticks.
 }
 }
 if(xQueue2 != 0)
 {
 // Send a pointer to a struct AMessage obje ct. Don't block if the
 // queue is already full.
 pxMessage = & xMessage;
 xQueueSend(xQueue2, (void *) &pxMessage, (portTickType) 0);
 }
 // ... Rest of task code.
 }

NTA-Isny FreeRTOS-API V1.1 23

xQueueReceive

queue. h

 portBASE_TYPE xQueueReceive(
 xQueueHandle xQueue,
 void *pvBuffer,
 portTickType xTicksT oWait
);

This is a macro that calls the xQueueGenericReceive() function.

Receive an item from a queue. The item is received by copy so a buffer of adequate size must be
provided. The number of bytes copied into the buffer was defined when the queue was created.

This function must not be used in an interrupt service routine. See xQueueReceiveFromISR for
an alternative that can.

xQueueReceive() is part of the fully featured intertask communications API. xQueueAltReceive()
is the alternative API equivalent. Both versions require the same parameters and return the same
values.

Parameters:
pxQueue The handle to the queue from which the item is to be received.
pvBuffer Pointer to the buffer into which the received item will be copied.
xTicksToWait The maximum amount of time the task should block waiting for an item to

receive should the queue be empty at the time of the call. Setting
xTicksToWait to 0 will cause the function to return immediately if the queue
is empty. The time is defined in tick periods so the constant
portTICK_RATE_MS should be used to convert to real time if this is
required.

If INCLUDE_vTaskSuspend is set to '1' then specifying the block time as
portMAX_DELAY will cause the task to block indefinitely (without a
timeout).

Returns:
pdTRUE if an item was successfully received from the queue, otherwise pdFALSE.

NTA-Isny FreeRTOS-API V1.1 24

Example usage:

 struct AMessage
 {
 portCHAR ucMessageID;
 portCHAR ucData[20];
 } xMessage;
 xQueueHandle xQueue;
 // Task to create a queue and post a value.
 void vATask(void *pvParameters)
 {
 struct AMessage *pxMessage;
 // Create a queue capable of containing 10 poin ters to AMessage structures.
 // These should be passed by pointer as they co ntain a lot of data.
 xQueue = xQueueCreate(10, sizeof(struct AMess age *));
 if(xQueue == 0)
 {
 // Failed to create the queue.
 }
 // ...
 // Send a pointer to a struct AMessage object. Don't block if the
 // queue is already full.
 pxMessage = & xMessage;
 xQueueSend(xQueue, (void *) &pxMessage, (po rtTickType) 0);
 // ... Rest of task code.
 }
 // Task to receive from the queue.
 void vADifferentTask(void *pvParameters)
 {
 struct AMessage *pxRxedMessage;
 if(xQueue != 0)
 {
 // Receive a message on the created queue. Block for 10 ticks if a
 // message is not immediately available.
 if(xQueueReceive(xQueue, &(pxRxedMessage), (portTickType) 10))
 {
 // pcRxedMessage now points to the stru ct AMessage variable posted
 // by vATask.
 }
 }
 // ... Rest of task code.
 }

NTA-Isny FreeRTOS-API V1.1 25

xQueueSendFromISR

queue.h

 portBASE_TYPE xQueueSendFromISR(
 xQueueHandle pxQ ueue,
 const void *pvIt emToQueue,
 portBASE_TYPE
*pxHigherPriorityTaskWoken
);

This is a macro that calls xQueueGenericSendFromISR(). It is included for backward compatibility
with versions of FreeRTOS.org that did not include the xQueueSendToBackFromISR() and
xQueueSendToFrontFromISR() macros.

Post an item into the back of a queue. It is safe to use this function from within an interrupt
service routine.

Items are queued by copy not reference so it is preferable to only queue small items, especially
when called from an ISR. In most cases it would be preferable to store a pointer to the item being
queued.

Parameters:
xQueue The handle to the queue on which the item is to be posted.
pvItemToQueue A pointer to the item that is to be placed on the queue. The

size of the items the queue will hold was defined when the
queue was created, so this many bytes will be copied from
pvItemToQueue into the queue storage area.

pxHigherPriorityTaskWoken xQueueSendFromISR() will set *pxHigherPriorityTaskWoken
to pdTRUE if sending to the queue caused a task to unblock,
and the unblocked task has a priority higher than the currently
running task. If xQueueSendFromISR() sets this value to
pdTRUE then a context switch should be requested before
the interrupt is exited.

Returns:
pdTRUE if the data was successfully sent to the queue, otherwise errQUEUE_FULL.

NTA-Isny FreeRTOS-API V1.1 26

Example usage for buffered IO (where the ISR can obtain more than one value per call):

void vBufferISR(void)
{
portCHAR cIn;
portBASE_TYPE xHigherPriorityTaskWoken;

 /* We have not woken a task at the start of the ISR . */
 xHigherPriorityTaskWoken = pdFALSE;

 /* Loop until the buffer is empty. */
 do
 {
 /* Obtain a byte from the buffer. */
 cIn = portINPUT_BYTE(RX_REGISTER_ADDRESS) ;

 /* Post the byte. */
 xQueueSendFromISR(xRxQueue, &cIn, &xHigher PriorityTaskWoken);

 } while(portINPUT_BYTE(BUFFER_COUNT));

 /* Now the buffer is empty we can switch context if necessary. */
 if(xHigherPriorityTaskWoken)
 {
 /* Actual macro used here is port specific. */
 taskYIELD_FROM_ISR ();
 }
}

xQueueReceiveFromISR

queue. h

 portBASE_TYPE xQueueReceiveFromISR(
 xQueueHandle pxQueue,
 void *pvBuff er,
 portBASE_TYP E *pxTaskWoken
);

Receive an item from a queue. It is safe to use this function from within an interrupt service
routine.

Parameters:
pxQueue The handle to the queue from which the item is to be received.
pvBuffer Pointer to the buffer into which the received item will be copied.
pxTaskWoken A task may be blocked waiting for space to become available on the queue.

If xQueueReceiveFromISR causes such a task to unblock *pxTaskWoken
will get set to pdTRUE, otherwise *pxTaskWoken will remain unchanged.

Returns:
pdTRUE if an item was successfully received from the queue, otherwise pdFALSE.

NTA-Isny FreeRTOS-API V1.1 27

Example usage:

 xQueueHandle xQueue;
 // Function to create a queue and post some values .
 void vAFunction(void *pvParameters)
 {
 portCHAR cValueToPost;
 const portTickType xBlockTime = (portTickType)0x ff;
 // Create a queue capable of containing 10 char acters.
 xQueue = xQueueCreate(10, sizeof(portCHAR)) ;
 if(xQueue == 0)
 {
 // Failed to create the queue.
 }
 // ...
 // Post some characters that will be used withi n an ISR. If the queue
 // is full then this task will block for xBlock Time ticks.
 cValueToPost = 'a';
 xQueueSend(xQueue, (void *) &cValueToPost, x BlockTime);
 cValueToPost = 'b';
 xQueueSend(xQueue, (void *) &cValueToPost, x BlockTime);
 // ... keep posting characters ... this task ma y block when the queue
 // becomes full.
 cValueToPost = 'c';
 xQueueSend(xQueue, (void *) &cValueToPost, x BlockTime);
 }
 // ISR that outputs all the characters received on the queue.
 void vISR_Routine(void)
 {
 portBASE_TYPE xTaskWokenByReceive = pdFALSE;
 portCHAR cRxedChar;
 while(xQueueReceiveFromISR(xQueue, (void *) &cRxedChar,
&xTaskWokenByReceive))
 {
 // A character was received. Output the ch aracter now.
 vOutputCharacter(cRxedChar);
 // If removing the character from the queue woke the task that was
 // posting onto the queue xTaskWokenByRecei ve will have been set to
 // pdTRUE. No matter how many times this l oop iterates only one
 // task will be woken.
 }
 if(xTaskWokenByPost != pdFALSE)
 {
 // We should switch context so the ISR retu rns to a different task.
 // NOTE: How this is done depends on the p ort you are using. Check
 // the documentation and examples for your port.
 taskYIELD ();
 }
 }

NTA-Isny FreeRTOS-API V1.1 28

1.5 Semaphores
Modules

• vSemaphoreCreateBinary
• vSemaphoreCreateCounting
• xSemaphoreCreateMutex
• xSemaphoreTake
• xSemaphoreGive
• xSemaphoreGiveFromISR

vSemaphoreCreateBinary

semphr. h
vSemaphoreCreateBinary(xSemaphoreHandle xSemaphore)

Macro that creates a semaphore by using the existing queue mechanism. The queue length is 1
as this is a binary semaphore. The data size is 0 as we don't want to actually store any data - we
just want to know if the queue is empty or full.

Binary semaphores and mutexes are very similar but have some subtle differences: Mutexes
include a priority inheritance mechanism, binary semaphores do not. This makes binary
semaphores the better choice for implementing synchronisation (between tasks or between tasks
and an interrupt), and mutexes the better choice for implementing simple mutual exclusion.

A binary semaphore need not be given back once obtained, so task synchronisation can be
implemented by one task/interrupt continuously 'giving' the semaphore while another continuously
'takes' the semaphore. This is demonstrated by the sample code on the
xSemaphoreGiveFromISR() documentation page.

The priority of a task that 'takes' a mutex can potentially be raised if another task of higher priority
attempts to obtain the same mutex. The task that owns the mutex 'inherits' the priority of the task
attempting to 'take' the same mutex. This means the mutex must always be 'given' back -
otherwise the higher priority task will never be able to obtain the mutex, and the lower priority task
will never 'disinherit' the priority. An example of a mutex being used to implement mutual
exclusion is provided on the xSemaphoreTake() documentation page.

Parameters:
xSemaphore Handle to the created semaphore. Should be of type xSemaphoreHandle.

Example usage:

 xSemaphoreHandle xSemaphore;
 void vATask(void * pvParameters)
 {
 // Semaphore cannot be used before a call to vS emaphoreCreateBinary ().
 // This is a macro so pass the variable in dire ctly.
 vSemaphoreCreateBinary(xSemaphore);
 if(xSemaphore != NULL)
 {
 // The semaphore was created successfully.
 // The semaphore can now be used.
 }
 }

xSemaphoreCreateCounting

NTA-Isny FreeRTOS-API V1.1 29

semphr. h
xSemaphoreHandle xSemaphoreCreateCounting(unsigned portBASE_TYPE
uxMaxCount, unsigned portBASE_TYPE uxInitialCount)

Macro that creates a counting semaphore by using the existing queue mechanism.

Counting semaphores are typically used for two things:

1. Counting events.

In this usage scenario an event handler will 'give' a semaphore each time an event
occurs (incrementing the semaphore count value), and a handler task will 'take' a
semaphore each time it processes an event (decrementing the semaphore count value).
The count value is therefore the difference between the number of events that have
occurred and the number that have been processed. In this case it is desirable for the
initial count value to be zero.

2. Resource management.

In this usage scenario the count value indicates the number of resources available. To
obtain control of a resource a task must first obtain a semaphore - decrementing the
semaphore count value. When the count value reaches zero there are no free resources.
When a task finishes with the resource it 'gives' the semaphore back - incrementing the
semaphore count value. In this case it is desirable for the initial count value to be equal to
the maximum count value, indicating that all resources are free.

Parameters:
uxMaxCount The maximum count value that can be reached. When the semaphore

reaches this value it can no longer be 'given'.
uxInitialCount The count value assigned to the semaphore when it is created.

Returns:
Handle to the created semaphore. Of type xSemaphoreHandle. NULL if the semaphore
could not be created.

Example usage:

 void vATask(void * pvParameters)
 {
 xSemaphoreHandle xSemaphore;

 // Semaphore cannot be used before a call to xS emaphoreCreateCounting().
 // The max value to which the semaphore can cou nt shall be 10, and the
 // initial value assigned to the count shall be 0.
 xSemaphore = xSemaphoreCreateCounting(10, 0);

 if(xSemaphore != NULL)
 {
 // The semaphore was created successfully.
 // The semaphore can now be used.
 }
 }

NTA-Isny FreeRTOS-API V1.1 30

xSemaphoreCreateMutex

Only available from FreeRTOS.org V4.5.0 onwards.

semphr. h

xSemaphoreHandle xSemaphoreCreateMutex(void)

Macro that creates a mutex semaphore by using the existing queue mechanism.

Mutexes created using this macro can be accessed using the xSemaphoreTake() and
xSemaphoreGive() macros. The xSemaphoreTakeRecursive() and xSemaphoreGiveRecursive()
macros should not be used.

Mutexes and binary semaphores are very similar but have some subtle differences: Mutexes
include a priority inheritance mechanism, binary semaphores do not. This makes binary
semaphores the better choice for implementing synchronisation (between tasks or between tasks
and an interrupt), and mutexes the better choice for implementing simple mutual exclusion.

The priority of a task that 'takes' a mutex can potentially be raised if another task of higher priority
attempts to obtain the same mutex. The task that owns the mutex 'inherits' the priority of the task
attempting to 'take' the same mutex. This means the mutex must always be 'given' back -
otherwise the higher priority task will never be able to obtain the mutex, and the lower priority task
will never 'disinherit' the priority. An example of a mutex being used to implement mutual
exclusion is provided on the xSemaphoreTake() documentation page.

A binary semaphore need not be given back once obtained, so task synchronisation can be
implemented by one task/interrupt continuously 'giving' the semaphore while another continuously
'takes' the semaphore. This is demonstrated by the sample code on the
xSemaphoreGiveFromISR() documentation page.

Both mutex and binary semaphores are assigned to variables of type xSemaphoreHandle and
can be used in any API function that takes a parameter of this type.

Return:
 Handle to the created semaphore. Should be of type xSemaphoreHandle.

Example usage:

 xSemaphoreHandle xSemaphore;
 void vATask(void * pvParameters)
 {
 // Mutex semaphores cannot be used before a cal l to
 // xSemaphoreCreateMutex(). The created mutex is returned.
 xSemaphore = xSemaphoreCreateMutex();
 if(xSemaphore != NULL)
 {
 // The semaphore was created successfully.
 // The semaphore can now be used.
 }
 }

NTA-Isny FreeRTOS-API V1.1 31

xSemaphoreTake

semphr. h

 xSemaphoreTake(
 xSemaphoreHandle xSemaphore,
 portTickType xBlockTime
)

Macro to obtain a semaphore. The semaphore must have previously been created with a call to
vSemaphoreCreateBinary(), xSemaphoreCreateMutex() or xSemaphoreCreateCounting().

This macro must not be called from an ISR. xQueueReceiveFromISR() can be used to take a
semaphore from within an interrupt if required, although this would not be a normal operation.
Semaphores use queues as their underlying mechanism, so functions are to some extent
interoperable.

xSemaphoreTake() is part of the fully featured intertask communications API.
xSemaphoreAltTake() is the alternative API equivalent. Both versions require the same
parameters and return the same values.

Parameters:
xSemaphore A handle to the semaphore being taken - obtained when the semaphore was

created.
xBlockTime The time in ticks to wait for the semaphore to become available. The macro

portTICK_RATE_MS can be used to convert this to a real time. A block time
of zero can be used to poll the semaphore.

If INCLUDE_vTaskSuspend is set to '1' then specifying the block time as
portMAX_DELAY will cause the task to block indefinitely (without a timeout).

Returns:

pdTRUE if the semaphore was obtained. pdFALSE if xBlockTime expired without the
semaphore becoming available.

Example usage:

 xSemaphoreHandle xSemaphore = NULL;
 // A task that creates a semaphore.
 void vATask(void * pvParameters)
 {
 // Create the semaphore to guard a shared resou rce. As we are using
 // the semaphore for mutual exclusion we create a mutex semaphore
 // rather than a binary semaphore.
 xSemaphore = xSemaphoreCreateMutex();
 }
 // A task that uses the semaphore.
 void vAnotherTask(void * pvParameters)
 {
 // ... Do other things.
 if(xSemaphore != NULL)
 {
 // See if we can obtain the semaphore. If t he semaphore is not available
 // wait 10 ticks to see if it becomes free.
 if(xSemaphoreTake(xSemaphore, (portTickT ype) 10) == pdTRUE)
 {
 // We were able to obtain the semaphore and can now access the
 // shared resource.
 // ...

NTA-Isny FreeRTOS-API V1.1 32

 // We have finished accessing the share d resource. Release the
 // semaphore.
 xSemaphoreGive(xSemaphore);
 }
 else
 {
 // We could not obtain the semaphore an d can therefore not access
 // the shared resource safely.
 }
 }
 }

xSemaphoreGive

semphr. h
xSemaphoreGive(xSemaphoreHandle xSemaphore)

Macro to release a semaphore. The semaphore must have previously been created with a call to
vSemaphoreCreateBinary(), xSemaphoreCreateMutex() or xSemaphoreCreateCounting(), and
obtained using sSemaphoreTake().

This must not be used from an ISR. See xSemaphoreGiveFromISR() for an alternative which can
be used from an ISR.

This macro must also not be used on semaphores created using
xSemaphoreCreateRecursiveMutex().

xSemaphoreGive() is part of the fully featured intertask communications API.
xSemaphoreAltGive() is the alternative API equivalent. Both versions require the same
parameters and return the same values.

Parameters:
xSemaphore A handle to the semaphore being released. This is the handle returned when

the semaphore was created.
Returns:

pdTRUE if the semaphore was released. pdFALSE if an error occurred. Semaphores are
implemented using queues. An error can occur if there is no space on the queue to post
a message - indicating that the semaphore was not first obtained correctly.

Example usage:

 xSemaphoreHandle xSemaphore = NULL;
 void vATask(void * pvParameters)
 {
 // Create the semaphore to guard a shared resou rce. As we are using
 // the semaphore for mutual exclusion we create a mutex semaphore
 // rather than a binary semaphore.
 xSemaphore = xSemaphoreCreateMutex();

 if(xSemaphore != NULL)
 {
 if(xSemaphoreGive(xSemaphore) != pdTRUE)
 {
 // We would expect this call to fail be cause we cannot give
 // a semaphore without first "taking" i t!
 }

 // Obtain the semaphore - don't block if th e semaphore is not
 // immediately available.
 if(xSemaphoreTake(xSemaphore, (portTickT ype) 0))

NTA-Isny FreeRTOS-API V1.1 33

 {
 // We now have the semaphore and can ac cess the shared resource.

 // ...

 // We have finished accessing the share d resource so can free the
 // semaphore.
 if(xSemaphoreGive(xSemaphore) != pdT RUE)
 {
 // We would not expect this call to fail because we must have
 // obtained the semaphore to get he re.
 }
 }
 }
 }

xSemaphoreGiveFromISR

semphr. h
xSemaphoreGiveFromISR(
 xSemaphoreHandle xSemaphor e,
 portBASE_TYPE *pxHigherPri orityTaskWoken
)

Macro to release a semaphore. The semaphore must have previously been created with a call to
vSemaphoreCreateBinary() or xSemaphoreCreateCounting().

Mutex type semaphores (those created using a call to xSemaphoreCreateMutex()) must not be
used with this macro.

This macro can be used from an ISR.

Parameters:
xSemaphore A handle to the semaphore being released. This is the handle

returned when the semaphore was created.
pxHigherPriorityTaskWoken xSemaphoreGiveFromISR() will set

*pxHigherPriorityTaskWoken to pdTRUE if giving the
semaphoree caused a task to unblock, and the unblocked
task has a priority higher than the currently running task. If
xSemaphoreGiveFromISR() sets this value to pdTRUE then a
context switch should be requested before the interrupt is
exited.

Returns:

pdTRUE if the semaphore was successfully given, otherwise errQUEUE_FULL.

NTA-Isny FreeRTOS-API V1.1 34

Example usage:
#define LONG_TIME 0xffff
#define TICKS_TO_WAIT 10

xSemaphoreHandle xSemaphore = NULL;

/* Repetitive task. */
void vATask(void * pvParameters)
{
 /* We are using the semaphore for synchronisation s o we create a binary
 semaphore rather than a mutex. We must make su re that the interrupt
 does not attempt to use the semaphore before it is created! */
 vSemaphoreCreateBinary(xSemaphore);

 for(;;)
 {
 /* We want this task to run every 10 ticks of a tim er. The semaphore
 was created before this task was started.

 Block waiting for the semaphore to become a vailable. */
 if(xSemaphoreTake(xSemaphore, LONG_TIME) == pdTRUE)
 {
 /* It is time to execute. */

 ...

 /* We have finished our task. Return to the top of the loop where
 we will block on the semaphore until it is time to execute
 again. Note when using the semaphore f or synchronisation with an
 ISR in this manner there is no need to 'give' the semaphore back. */
 }
 }
}

/* Timer ISR */
void vTimerISR(void * pvParameters)
{
static unsigned portCHAR ucLocalTickCount = 0;
static portBASE_TYPE xHigherPriorityTaskWoken;

 /* A timer tick has occurred. */

 ... Do other time functions.

 /* Is it time for vATask() to run? */
 xHigherPriorityTaskWoken = pdFALSE;
 ucLocalTickCount++;
 if(ucLocalTickCount >= TICKS_TO_WAIT)
 {
 /* Unblock the task by releasing the semaphore. */
 xSemaphoreGiveFromISR(xSemaphore, &xHigher PriorityTaskWoken);

 /* Reset the count so we release the semaphore agai n in 10 ticks time.
*/
 ucLocalTickCount = 0;
 }

 /* If xHigherPriorityTaskWoken was set to true you
 we should yield. The actual macro used here is
 port specific. */
 portYIELD_FROM_ISR(xHigherPriorityTaskWoken);
}

