Introduction to the ARM[®] Cortex[™]-M Architecture

Delivering Cost-Sensitive High-Performance 32-Bit Devices

e Architecture for the

the Digital Wo

The ARM Cortex[™] Family

Intelligent Processors by ARM[®]

- ARM Cortex A Series Applications CPUs focused on the execution of complex OS and user applications
- ARM Cortex R Series Deeply embedded processors focused on Real-time environments
- ARM Cortex M Series Microcontroller cores focused on very cost sensitive, deterministic, interrupt driven environments

Introduction to the ARM® Cortex[™]-M Architecture

CORTEX-M3

Introduction to Cortex-M3 Processor

Cortex-M3 Architecture

- Harvard bus architecture
- 3-stage pipeline with branch speculation
- Integrated bus matrix
- Configurable nested vectored interrupt controller (NVIC)
- Advanced configurable debug and trace components
- Optional components for specific market requirements:
 - Wake-up Interrupt Controller (WIC)*
 - Memory Protection Unit (MPU)
 - Embedded Trace Macrocell (ETM)
 - Fault Robust Interface*

* Cortex-M3 Release 2

Cortex-M3 Processor Overview

optional blocks, please consult your silicon manufacturers data sheet

ARM Cortex-M3 - Designed for Performance

High Performance

- High efficiency processor core 1.25 DMIPS/MHz
- Advanced instructions for data manipulation
 - Single Cycle Multiply
 - Hardware Division
 - Bit Field Manipulation
- Exceptional performance at low frequency

Excellent Code Density

- Thumb-2 Instruction Set Architecture (ISA)
- Optimized applications for performance and code size
 - 32-Bit code performance
 - 16-Bit code density
- No interworking required between code objects

1,4 1,2 1,2 1 0,8 0,6 0,4 0,2 0 ARM7 (Thumb) ARM7 (ARM) Cortex-M3

Relative DMIPS/MHz

ARM Cortex-M3 - Designed for Low Power

Cortex-M3 features architected support for sleep states

- Enables ultra low-power standby operation
- Critical for extended life battery based applications
- Includes very low gate count Wake-Up Interrupt Controller (WIC)

ARM Cortex-M3 - Designed for Robustness

Cortex-M3 supports design of robust applications

- Processor Modes
 - Separation of main and interrupt code
- Privilege Levels
 - Separation of RTOS and user application
- NMI
 - Inform processor of critical events
- SYSTICK
 - Protected system timer for pre-empting RTOS
- Fixed Memory Map
- MPU*
 - Separation of user application tasks
- Fault Robust Observation Interface*
 - IEC61508 standard SIL3 certification

*optional

Coresight[™] Debug & Trace

- ARM CoreSight is a complete on-chip debug and real-time trace solution for the entire system-on-chip (SoC)
- Configurable to adapt for market requirements
 - Debug components can be configured or even removed (check device manufacturer data sheet)
- Enhanced debugging modes and features
 - Up to 8 (6 Instructions + 2 Literal) HW Breakpoints
 - Debug Access Port (DAP) allows memory access while processor is running
 - Up to 4 Data Watch Points (DWT)
 - Event Counters (DWT)

Serial Wire Debug (SWD) Mode

- 2 wire interface
- Offers extra functionality over JTAG using less I/O
- Serial Wire Viewer (SWV)
 - Real-time trace with no extra trace hardware, pins or silicon overhead
- Embedded Trace Macrocell
 - Instruction Trace using 4-bit port

Introduction to the ARM® Cortex[™]-M Architecture

CORTEX-M1

The Architecture for the Digital World®

ARM Cortex-M1

Soft processor for FPGA

- Upwards compatible with Cortex family on ASIC/ASSP/MCU
- 3 stage pipeline
- Delivers 0.8 DMIPS/MHz
- Capable of up to 200MHz
- Designed for synthesis on multiple FPGA types, e.g:
 - Actel ProASIC3, Actel Igloo and Actel Fusion
 - Altera Cyclone-III, Altera Stratix-III
 - Xilinx Spartan-3, Xilinx Virtex-5.

ARM Cortex-M1 Processor Features

A 3-stage, 32-bit RISC processor

- Highly configurable to enable design trade-offs
- Retains the same programmers model for software simplicity

Tightly Coupled Memories

- Internal FPGA block RAM used as single-cycle access memory
- ITCM, DTCM configurable from 0k to 1024kBytes

Configurable debug

- JTAG or reduced pin-count SWD interface
- Full 2 watchpoints, 4 breakpoints
- Small 1 watchpoint, 2 breakpoints
- None removable for cost reduction and security

ARM Cortex-M1 Processor Features (2)

Integrated Interrupt Controller

- Fast interrupt response
- Configurable 1, 8, 16, 32
- Software programmed priority levels (1-4)
- Non-Maskable Interrupt

Multiplier

- Fast option uses FPGA DSP blocks
- Small option uses adder to save area, can use DSP blocks
- Program function is the same with either no need for software modifications

AMBA AHB-lite 32-bit bus interface

Connection to external memory and peripherals

Big or Little Endian

Synthesis time configurable

AHB IF

NVIC

AHB Matrix

Debug

ARM Cortex-M1 Speed and Area

Results below are to give a guideline for MHz and area

- The nature of FPGA implementation means results may change per system
- The results will also change as tools and FPGA evolve

These are speed targeted synthesis run results

- For smallest configuration (0k TCM, no debug)
- Assuming fastest commercial speed grade

FPGA type	Example	Speed	Area (LUTS)
65nm	Altera Stratix III Xilinx Virtex-5	200 MHz	1900
90nm	Altera Stratix II Xilinx Virtex-4	150 MHz	2300
65nm	Altera Cyclone III	100 MHz	2900
90nm	Altera Cyclone II Xilinx Spartan-3	80 MHz	2600
130nm	Actel ProASIC3 Actel Fusion	70 MHz	4300 tiles

ARM Cortex-M1 Instruction Set

Cortex-M1 implements an ISA based primarily on Thumb

The high density 16-bit ISA introduced in ARM7TDMI

Cortex-M1 includes a few Thumb-2 system instructions

- To allow operation in Thumb state only
- Enables binary upwards compatible with Cortex-M3

Thumb

UXTH

User code, compiler generated

ADD	ADR	AND	ASR	В
BI	L	BX	CMN	CMP
LDM	LDR	LDRB	LDRH	LDRSB
LSL	LSR	MOV	MUL	M∨N
ORR	POP	PUSH	ROR	RSB
STM	STR	STRB	STRH	SUB
TST	BKPT	BLX	CPS	CPY
REV16	REVSH	SXTB	SXTH	UXTB
	BI LDM LSL ORR STM TST REV16	BLLDMLDRLSLLSRORRPOPSTMSTRTSTBKPTREV16REVSH	BLBXLDMLDRLDRBLSLLSRMOVORRPOPPUSHSTMSTRSTRBTSTBKPTBLXREV16REVSHSXTB	BLBXCMNLDMLDRLDRBLDRHLSLLSRMOVMULORRPOPPUSHRORSTMSTRSTRBSTRHTSTBKPTBLXCPSREV16REVSHSXTBSXTH

Thumb-2

OS & system

oo a system		
WFE		
YIELD		
DMB		
DSB		
ISB		
MRS		
MSR		

Cortex-M1 ISA

Introduction to the ARM® Cortex[™]-M Architecture

CORTEX-M0

The Architecture for the Digital World®

ARM Cortex-M0 Processor

The smallest, lowest power ARM processor ever

- A third of the area of ARM7TDMI-S
- 85 µW/MHz, 12K gates *
- Von-Neumann bus architecture
- 3-stage pipeline
- Delivers 0.9 DMIPS/MHz
- Configurable nested vectored interrupt controller (NVIC)
- Optional Wake-up Interrupt Controller (WIC)
- Configurable Debug

Binary and tools upwards compatible with ARM Cortex-M3 processor

* Implemented on 180ULL with ARM Physical IP

3

ARM Cortex-M0 Processor Features

Cortex-M0 RTL is configurable

- Tune for your application
- Check device manufacturer data sheet

Consistent programmer's model

- Software compatibility
- All tools remain compatible

Integrated Interrupt Controller (NVIC)

1, 8, 16, 24 or 32 interrupts

Multiplier options

Fast or small (1 or 32 cycle)

Optional OS extensions

- SYSTICK Timer
- PendSV (Pending System Call)

Configurable debug

- 4 or 2 breakpoints, 2 or 1 watchpoints
- JTAG or SWD interface

Energy Efficiency

Cortex-M0 designed for excellent power efficiency

- Significantly less activity required to match 8/16-bit device performance
- Fast interrupt response minimizes time in active state

Architected for ultra low power deep sleep

- Excellent static power results using ARM Physical IP Metro 180ULL libraries and PMK
- Easy integration to power management unit via Wake-up Interrupt Controller

Architected Sleep States

- Cortex-M0 processor supports ultra low-power standby implementation
- Critical for extended life battery-based applications
- Includes very low gate count Wake-Up Interrupt Controller (WIC)

ARM Cortex-M0 Instruction Set

Cortex-M0 implements an ISA based primarily on Thumb

The high density 16-bit ISA introduced in ARM7TDMI

Cortex-M0 includes a few Thumb-2 system instructions

- To allow operation in Thumb state only
- Enables binary upwards compatible with Cortex-M3

Thumb

UXTH

User code, compiler generated

ADC	ADD	ADR	AND	ASR	В
BIC	В	L	BX	CMN	CMP
EOR	LDM	LDR	LDRB	LDRH	LDRSB
LDRSH	LSL	LSR	MOV	MUL	MVN
NEG	ORR	POP	PUSH	ROR	RSB
SBC	STM	STR	STRB	STRH	SUB
SVC	TST	BKPT	BLX	CPS	CPY
REV	REV16	REVSH	SXTB	SXTH	UXTB
NEG SBC SVC REV	ORR STM TST REV16	POP STR BKPT REVSH	PUSH STRB BLX SXTB	ROR STRH CPS SXTH	RSB SUB CPY UXTB

Thumb-2

OS & system

oo a system			
NOP			
SEV	WFE		
WFI	YIELD		
DMB			
DSB			
ISB			
MRS			
MSR			

Cortex-M0 ISA

Introduction to the ARM[®] Cortex[™]-M Architecture

CORTEX-M - ARCHITECTURE

ARM Cortex-M - Designed for Ease of Use

- Virtually everything can be written in C/C++
- No need for assembler in top level interrupt handlers
- Easy to use atomic bit twiddling
- Fast, fully deterministic ISR entry with hardware stacking on interrupt entry
- Simpler programmer's model with state manipulation handled in hardware
- Memory Map, NMI and SYSTICK defined and integrated enabling better code reuse
 - Eases portability of applications and RTOS

ARM Cortex-M Processors

Cortex-M family optimised for deeply embedded

Microcontroller and low-power applications

Handler Mode

 Used to handle exceptions. The processor returns to Thread mode when it has finished exception processing.

Thread Mode

- Used to execute application software. The processor enters Thread mode when it comes out of reset.
- In Thread mode, the CONTROL register controls whether software execution is privileged or unprivileged, see CONTROL register. In Handler mode, software execution is always privileged.
- RTX is using processor modes

Unprivileged

The software:

- has limited access to the MSR and MRS instructions, and cannot use the CPS instruction
- cannot access the system timer, NVIC, or system control block
- might have restricted access to memory or peripherals.
- Unprivileged software executes at the unprivileged level

Privileged

The software can use all the instructions and has access to all resources.

Register File

Thread/Handle	r Thread
R0	
R1	
R2	
R3	
R4	
R5	
R6	
R7	
R8	
R9	
R10	
R11	
R12	
R13 (MSP)	R13 (PSP)
R14 (LR)	
PC	
PSR	
PRIMASK	
FAULTMASK*	
BASEPRI*	
CONTROL	

All registers are 32-bit wide

- 13 general purpose registers
 - R0 R7 are accessible by any instruction
 - R8 R12 are accessible to a few 16-bit instructions and to all 32-bit instructions

3 registers with special meaning/usage

- R13 Stack Pointer (SP)
 - 2 banked copies Main and Process
- R14 Link Register (LR)
- R15 Program Counter (PC)

Special-purpose registers

- PSR
- PRIMASK
- FAULTMASK
- BASEPRI
- CONTROL

Program Status Registers

PSR - Program Status Register combines

- APSR Application Program Status Register
 - Negative, Zero, Carry, OVerflow, Q-Sticky Saturation Flag
- IPSR Interrupt Program Status Register
 - ICI/IT Interrupt Continuable Instruction, IF-THEN instruction status
 - Thumb Always 1
- EPSR Execution Program Status Register
 - Exception Number Indicates which exception processor is handling

CPU Instructions MSR and MRS allow access (together or separate)

- For example:
 - MSR PSR, r0 MRS r1, IPSR

Memory Access

- The Cortex-M3 has an internal Harvard architecture
 - Separate instruction and data interfaces
- The internal bus matrix converts the internal Harvard to 3 AHB-Lite interfaces
 - I-Code Instruction accesses to the Code memory space
 - D-Code Data accesses to Code memory space
 - System All accesses to System memory space

In a typical system:

- Instructions stored in Code space (in Flash)
- SRAM accessed across System bus

This allows the interrupt latency to be minimized

- The exception vector is fetched over the ICode bus
- In parallel, the processor state is saved over the System bus

Memory Map

- Linear 4GB memory map
- Fixed map required to host system components and simplify implementation
- Bus Matrix partitions memory access via the AHB and PPB buses

Thumb-2 Technology

Thumb-2 ISA was introduced in ARMv7 architecture

- Original16-bit Thumb instructions maintain full compatibility with existing code
- New 16-bit Thumb instructions for improved program flow
- New 32-bit Thumb instructions for improved performance and code size.
 One 32-bit instruction replaces multiple 16-bit opcodes.
 32-bit instructions are handled in the same mode ~ no interworking required

Software Compatibility

Cortex-M0/M1 implements an ISA based primarily on Thumb

The high-density 16-bit instruction set introduced in ARM7TDMI

Cortex-M0/M1 includes a few Thumb-2 system instructions

- Enables Cortex-M0/M1 to operate in Thumb state only
- Enables binary upwards compatible with Cortex-M3

Cortex-M3 implements Thumb-2

Instruction Set Comparison

Present in ARM7TDMI

Nested Vector Interrupt Controller

NVIC is a core peripheral

- Consistent between Cortex-M cores
- Tailored towards fast and efficient interrupt handling
- Number of interrupts can be configured by device manufacturer
 - 1 ... 240 interrupt channels for M3
 - 1 ... 32 interrupt channels for M0
 - Each peripheral has its own interrupt vector(s)
- 8 256 interrupt priorities (1 4 Cortex M1/M0)
- Configured via memory-mapped control registers
- Exceptions/interrupts processed in Handler mode
 - Supervisor privilege
- Interruptible LDM/STM (and PUSH/POP) for low interrupt latency
 - Continued on return from interrupt
- Non Maskable Interrupt (NMI)

Nested Vector Interrupt Controller

When an interrupt occurs:

- The exception vector is fetched over the ICODE bus
- In parallel, the processor state is saved over the SYSTEM bus
- Automatic save and restore of processor state
 - PC, xPSR, R0-R3, R12, R14
 - Provides low latency interrupt/exception entry and exit
 - Allows handler to be written entirely in 'C'
- Interrupt Latency for Cortex M3 max. 12 Cycles
- Interrupt Latency into pending interrupts 6 Cycles

Vector Table

ARMv7M architecture implements a re-locatable vector table

- Contains initial stack pointer value
- Contains the address of RESET handler
- Contains the address of the function to execute for a particular handler
- The first sixteen entries are special with the others mapping to specific interrupts

Exception & Pre-emption Ordering

Exception handling order is defined by programmable priority

- Reset, Non Maskable Interrupt (NMI) and Hard Fault have predefined pre-emption.
- NVIC catches exceptions and pre-empts current task based on priority

	Exception	Name	Priority	Descriptions
ร	1	Reset	-3 (Highest)	Reset
e & dle	2	NMI	-2	Non-Maskable Interrupt
lod	3	Hard Fault	-1	Default fault if other hander not implemented
It M up F	4	MemManage Fault	Programmable	MPU violation or access to illegal locations
Fau art-I	5	Bus Fault	Programmable	Fault if AHB interface receives error
Sta	6	Usage Fault	Programmable	Exceptions due to program errors
ຼູ	11	SVCall	Programmable	System SerVice call
ter	12	Debug Monitor	Programmable	Break points, watch points, external debug
Sys land	14	PendSV	Programmable	Pendable SerVice request for System Device
Ť	15	Systick	Programmable	System Tick Timer
ີ ຈ	16	Interrupt #0	Programmable	External Interrupt #0
ton		•••		
ust				
U B	255	Interrupt #239	Programmable	External Interrupt #239

Exception Model

Exceptions cause current machine state to be stacked

- Stacked registers conform to Embedded Application Binary Interface (EABI)
- Exception handlers are trivial as register manipulation carried out in hardware
 - No assembler code required
 - Simple 'C' interrupt service routines

```
void MY_IRQHandler(void) { /* my handler */ }
```


Interrupt Response – Tail Chaining

26 cycles from IRQ1 to ISR1 (up to 42 cycles if in LSM)
42 cycles from ISR1 exit to ISR2 entry
16 cycles to return from ISR2

- 12 cycles from IRQ1 to ISR1 (Interruptible/Continual LSM)
- 6 cycles from ISR1 exit to ISR2 entry
- 12 cycles to return from ISR2

Interrupt Response – Late Arriving

ARM7TDMI

- 26 cycles to ISR2 entered
- Immediately pre-empted by IRQ1
 Additional 26 cycles to enter ISR1.
- ISR 1 completes Additional 16 cycles return to ISR2.

Cortex-M3

12 cycles to ISR entry
Parallel stacking & instruction fetch
Target ISR may be changed until last cycle (PC is set)
When IRQ1 occurs new target ISR set

Interrupt Response – Pop Pre-emption

ARM7TDMI

Load multiple not interruptible
Core must complete the recovery of the stack then re-stack to enter the ISR

Cortex-M3

Hardware un-stacking interruptible
If interrupted only 6 cycles required to enter ISR2

SYSTICK Timer

Simple 24 Bit down counter

4 Registers

- CTRL Control and Status
- LOAD Reload Value
- VAL Current Value
- CALIB Calibration Value
- Exception Vector #15
- Accesible from Privileged Mode
 - Can be protected from user application
- Makes porting OS and software easier, because SYSTICK timer will be the same across different Cortex-M products

Atomic Bit Manipulation

- Internal and peripheral data represented as individual bits without the processing overhead normally associated with this type of action.
- For deterministic systems with lots of peripheral data, such as microcontrollers, atomic bit manipulation can compact some types of data by 32 times

0x20100000

0x20000000

1MB

Bit Manipulation – BFI / BFC

Insert or clear any number of adjacent bits anywhere in a register

- Ideal for modifying or stripping packet headers
- BFI Bit Field Insert
- BFC Bit Filed Clear

The Architecture for the Digital World®

Not available in Cortex-M0 / Cortex-M1

Memory Protection Unit (MPU)

- MPU provides access control for various memory regions
- Zero Latency Memory Protection
 - 8 register-stored regions
 - Same regions used for instructions and data
 - Minimum region size 32 Bytes (max 4GB)
 - No address translation or Page Tables
- Configured via memory-mapped control registers

Introduction to the ARM® Cortex[™]-M Architecture

CORESIGHT[™]

Verification Challenges

Debug a running system

- Many embedded systems cannot be stopped for debug
 - Brushless DC Motor control
 - Communication protocols lose their handshaking
 - · · · ·
- Analyze dynamic system behaviour
 - Not just a snapshot
- Optimize performance bottlenecks of real-time systems

System verification

- Many applications require certification
 - Automotive, medical, aero-space, security, and ...
- Code coverage is standard to prove testing

CoreSight™ Introduction

 ARM CoreSight is a complete on-chip debug and real-time trace solution for the entire system-on-chip (SoC)

Configurable to adapt for market requirements

 Debug components can be configured or even removed (check your device manufacturers data sheet)

On-the-fly debugging

- Debug application while the processor is running
 - Set breakpoints, read/write memory locations
- Direct debug access to memory (no software overhead)
- Increased number of breakpoints and watchpoints

Flexible trace options

- Integrated Data Trace (Cortex-M3)
- Optional Instruction Trace (ETM)
- Reduced pin count interface
 - 2-pin Serial Wire Debug (SWD)
 - 1-pin Serial Wire Viewer (SWV)
 - Standard JTAG mode

Cortex-M3 CoreSight Debug

Real-Time Debug

- While processor is running
- Run, stop and single-step
- Read/Write registers & memory
- Set 8 breakpoints/watchpoints
- Flash download and verify

Multiple interfaces

- Debug via reduced pin-count interface
 - 2-pin Serial Wire Debug (SWD) interface
- CoreSight debug also available via standard JTAG interface

Cortex-M3 Data Trace via SWV

Integrated trace capability

- Instrumentation Trace Macrocell (ITM)
- Data Watchpoint and Trace unit (DWT)

Data Trace provides

- PC (Program Counter) sampling
- Event counters showing CPU cycle statistics
- Exception and Interrupt execution with timing statistics
- Trace data used for timing analysis or simple printf-style debugging

Serial Wire Viewer (SWV)

- 1-pin output for data trace information in Serial Wire mode
- Minimal overhead
 - Instrument code to output debug messages
 - Configure DWT unit

Cortex-M3 Instruction Trace (ETM)

Instruction Trace via Embedded Trace Macrocell (ETM)

Instruction by instruction execution history

Enables

- Analysis of execution history leading up to an event
- Code coverage
- Performance analysis
- Application optimization

ETM Interface

4 pins for trace information

CoreSight Connectors

20-pin 0.1" Standard JTAG connector

5 JTAG signals, plus power and GND pins

10-pin 0.05" Cortex Debug Connector

- Includes traditional 5-pin JTAG interface signals
- Plus CoreSight interface
 - 2-pin Serial Wire Debug (SWD)
 - 1-pin Serial Wire Viewer (SWV) Output
 - for Data Trace at minimum cost

20-pin 0.05" Cortex Debug + ETM Connector

- Same as 10-pin 0.05" **Cortex Debug** Connector
- Plus 4 ETM trace pins
 - for Data and Instruction Trace

Introduction to the ARM[®] Cortex[™]-M Architecture

CORESIGHT[™] IN MDK ARM

CoreSight Support in MDK-ARM

Debug Windows for

- Trace records
- Event counters
- Exceptions and interrupts
- ITM debug messages
- ETM instruction trace

Analysis and Optimization Tools

- Logic Analyzer displays state changes and behavior of variables
- Performance analysis of functional blocks
- Execution profiling for finding and resolving bottlenecks
- Code coverage improves testing and verification

Trace Records

Trace Records display program flow

- Capture timestamp, PC sample, and Read/Write accesses
- Time delay and lost cycles are noted

Raw trace data from all trace sources

- Filter window to refine the view
- Can be updated while CPU is running

Trace Records									
Туре	Ovf	Num	Address	Data	PC	Dly	Cycles	Time[s]	
Exception Return	Х	0				Х	831623418	11.55032525	
Exception Entry		15					832335378	11.56021358	
Data Write	×		20000004H	00000038H	080001A2H	×	832343424	11.56032533	
Exception Return	×	0				×	832343424	11.56032533	
Exception Entry		15					833055386	11.57021369	
Data Write	×		20000004H	00000039H	080001A2H	×	833063430	11.57032542	
Exception Return	Х	0				Х	833063430	11.57032542	
Data Write			20000018H	000008BAH	080003D6H	×	833333241	11.57407279	
Data Write			20000018H	000008C4H	080003D6H	Х	833384693	11.57478740	
Exception Entry		15					833775394	11.58021381	
Data Write	X		20000004H	0000003AH	080001/ 011			11.58032550	
Exception Return	×	0			∕ ∪	ount	er Events	11.58032550	
Data Write			20000018H	000008BAH	- 080003[🗸 F	xcep	tions	11.58232724	
Data Write			20000018H	000008C5H	0800030			11.58305306	
Exception Entry		15			∨ P	'C Sa	mples	11.59021392	
Data Write	×		20000004H	0000003BH	080001/ J T	TM F	vents	11.59032558	
Exception Return	Х	0			• 1			11.59032558	
Exception Entry		15			· · · · · · · · · · · · · · · · · · ·)ata (Reads	11.60021403	
Data Write	X	_	20000004H	0000003CH	0800014 J	loto l	Aritas	11.60032567	
Exception Return	X	0			¥ L	aua	whites	11.60032567	-

Event Counters

Display real-time values of event counters

Provide performance indications

- Extra cycles taken to execute instructions
 - May be due to memory contentions (Flash waitstates)
- Cycles of overhead caused by handling exceptions
- Cycles spent in sleep mode
- Number of cycles spent performing memory accesses
- Number of folded branch instructions

Event Counters			×
Counters			
CPICNT:	2987625	0	Extra Cycles per Instruction
EXCONT:	818	0	Exception overhead cycles
SLEEPCNT:	2048	0	Sleep Cycles
LSUCNT:	58956	0	Load Store Unit Cycles
FOLDCNT:	46	0	Folded Instructions

Exception and Interrupt Trace

Statistical information about exceptions and interrupts

Captures detailed information

- Name and number of exception; number of times entered
- Max and Min time spent in and out of exceptions

Ехсер	tion Trace									×
Num	Name	Count	Total Time	Min Time In	Max Time In	Min Time Out	Max Time Out	First Time [s]	Last Time [s]	~
2	NMI	0	0 s							
3	HardFault	0	Os							=
4	MemManage	0	0 s							
5	BusFault	0	0 s							
6	UsageFault	0	0 s							
11	SVCall	475	158.236 us	77.500 us	80.736 us	135.861 us	14.549 s	0.00021660	25.44279225	
12	DbgMon	0	Os							
14	PendSV	0	Os							
15	SysTick	2576	4.309 ms	1.417 us	93.694 us	765.222 us	10.066 ms	0.00087276	25.47015878	
16	ExtIRQ 0	0	Os							
17	ExtIRQ 1	0	Os							
18	ExtIRQ 2	0	Os							
19	ExtIRQ 3	0	Os							
20	ExtIRQ 4	0	0 s							
21	ExtIRQ 5	0	Os							
22	ExtIRQ 6	0	Os							
23	ExtIRQ 7	0	0 s							~

ITM (Instrumented) Trace

Adva

Acti

Displays *printf*-style debug information

- 32 user-defined channels
- **ITM Viewer window**
 - **RTX** event viewer
 - Real-time Update

6	TM View	er			3
AD	value	=	0x083F	1	•
AD	value	=	0x083F		
AD	value	=	0x083F		
AD	value	=	0x0840		
AD	value	=	0x0840		
AD	value	=	0x0840		
AD	value	=	0x0840		
AD	value	=	0x0840		
AD	value	=	0x0840		
AD	value	=	0x0840		
AD	value	=	0x083F		
AD	value	=	0x0840		
AD	value	=	0x083F		
AD	value	=	0x0840		
AD	value	=	0x083F		
AD	value	=	0x0840		
AD	value	=	0x0840		
AD	value	=	0x0840		
AD	value	=	0x0840		
AD	value	=	0x0840	_	
AD	value	=	0x083F	~	1
<				≥.	::

vanc	ed RTX								
tive :	Tasks Sys	tem							
TID	ID Task Name Priority State Delay Event Value Event Mask Stack								
0	os_clock_	demon	255	WAIT_ITV	1			14%	
2	clock		1	RUNNING				0%	
3	command		1	READY				60%	
4	lights		1	WAIT_DLY	50			15%	
5	keyread	RTX Kernel						×	
.55		A stice Testes Curter	. Event Vi	ewer					
		Active Lasks Dyster	III LIGIKII					1	
		Min Time: Ma	ax Time:	Range: G	rid: <u>Z</u>	oom:			
		0.000626 s 344	0.000626 s 344.4193 s 200.0000 s 10.00000 s [in] Out All Sel 🔽 Running						
		L lala							
		nue nhaseA			· · · · ·			· · · ·	
		phaseB				· `` · · · `` · · · ·	· · · · · · · · · ·		
		, phaseC	1 1 1				· · · · · · · · · · · · · · · · · · ·		
		phaseD							
		clock	•						
		lcd	\mathbb{N}						
			· · · /	Mous	e Pos	Cursor	Delta		
		Time: 165.1030 s 0.000000 s 165.1030 s = 0.00605683 Hz							
		150.0	0000 s		25	0.0000 s	3	350.0000 s	
	<								
		<u>e</u>							

ETM Instruction Trace

Cycle-by-cycle record of execution history

Captures all executed instructions and data accesses

Instruction Trace window displays

Cycle count, Opcode, and Assembly code

Filter:	Execution-All			
Nr.	Cycles	Address	Opcode	Instruction
7617	14364	0x000004C4	E59F1264	LDB B1.[PC,#0x0264]
7618	14366	0x000004C8	E1C101B0	STRH R0,[R1,#0x10]
7619	14366	0x000004CC	E1C10000	BIC R0,R1,R0
7620	14366	0x000004CC	E1C10000	98: TIM3->CR2 &= 0xFF00; /* Clear prescaler value */
7621	14367	0x000004D0	E1D001B8	LDRH R0,[R0,#0x18]
7622	14369	0x000004D4	E2000CFF	AND R0,R0,#0x0000FF00
7623	14369	0x000004D8	E1C101B8	STRH R0,[R1,#0x18]
7624	14370	0x000004DC	E1A00001	MOV R0,R1
7625	14370	0x000004DC	E1A00001	99: TIM3->CR2 = 0x000F; /* Setup TIM3 prescaler */
7626	14372	0x000004E0	E1D001B8	LDRH R0,[R0,#0x18]
7627	14372	0x000004E4	E380000F	ORR R0,R0,#0x0000000F
7628	14373	0x000004E8	E1C101B8	STRH R0,[R1,#0x18]
7629	14375	0x000004EC	E1A00001	M0V R0,R1
7630	14375	0x000004EC	E1A00001	100: TIM3->CR2 = 0x2000; /* TIM3 timer overflow intrupt en
7631	14375	0x000004F0	E1D001B8	LDRH R0,[R0,#0x18]
7632	14376	0x000004F4	E3800A02	ORR R0,R0,#0x00002000
7633	14378	0x000004F8	E1C101B8	STRH R0,[R1,#0x18]
7634	14378	0x000004FC	E1A00001	MOV R0,R1
7635	14378	0x000004FC	E1A00001	101: TIM3->CR1 = 0x8000; /* TIM3 counter enable */
7636	14379	0x00000500	E1D001B4	LDRH R0,[R0,#0x14]
7637	14381	0x00000504	E3800902	ORR R0,R0,#0x00008000
7638	14381	0x00000508	E1C101B4	STRH R0,[R1,#0x14]
7639	14382	0x0000050C	EA00009B	B 0x00000780
7640	14382	0x0000050C	EA00009B	103: while (1) { /* Loop forever */
7641	14384	0x00000510	E3A00000	M0V R0,#0x00000000

Supported by:

ULINKPro, J-Trace, JTAGjet-Trace

Logic Analyzer

Allows signals to be monitored graphically

- Intuitive view of signal behaviour
- Accurate timing
 - Easy, fast analysis of signal timing with access to source code
 - View delta changes from cursor to current location

Code analysis

View instruction that caused variable change

Supported by: ULINK*Pro*, J-Trace, JTAGjet-Trace

Performance Analyzer

- Analysis of functions and program blocks
- Records and displays execution times for functions
 - Number of calls for each function and program block
 - Time spent executing that block
 - Bar graph display

Optimize applications

 See where the program is spending the most time

Module/Function	Calls	Time(Sec)	Time(%)					
🗆 Measure		3095µs	100%					
Startup		788µs	25%					
🗄 🔤 Syscalls		11µs	0% [
i⊒ Serial		2016µs	65%					
init_serial	1	5µs	0%					
putchar	3	2011µs	65%					
getchar	0	Ομε	0%					
🚊 🚥 Measure		280µs	9% 🔲					
save_current_m	0	Ομε	0%					
tc0	10	220µs	7% 🔲					
read_index	0	Ομε	0%					
clear_records	1	44µs	1%					
main	1	17µs	1% 🖡					
🗄 🚥 Mcommand		Ομε	0% [
± Getline		Ομε	0% [
Show: Modules Sort descending								

Supported by: ULINK*Pro*

Execution Profiling

Instruction by instruction execution analysis

Generates detailed profiling records

- How many times each line of code was called
- Execution time for each instruction

Analyze your code's performance

Which instructions are taking longer than expected to execute

R Disassembly				
131: voi 132: i: 2.628 ms0x0000029A 133: ru 134: 1.971 ms0x0000029C 1.971 ms0x0000029E 1.971 ms0x000002A0 1.971 ms0x000002A2 1.971 ms0x000002A4	d DPhase (shu nt res; B470 Pl es = B0*s + 1 4C55 L1 4B56 L1 680A L1 4344 M1 4353 M1	ort s, struc USH {R4 B1*b->x[0] + DR R4, DR R3, DR R2, UL R4, UL R3,	t quad -R6} B2*b-: [PC,#0: [PC,#0: [R1,#0: R0 R2	بو. (short ·s, • struct ·quad•*b) • • (
		133 26.942 m 134 135 1.314 m 136 1.314 m 136 1.314 m 137 1.314 m 138 1.971 m 139 1.971 m 140 141	<pre>s ··res·=·B s ··b->x[1] ··b->x[0] s ··b->y[1] s ··b->y[0] } □ struct·av</pre>	0*s++B1*b->x[0] ++B2*b->x[1] ·=·b->x[0]; ·=·s; ·=·b->y[0]; ·=·(res·>>·16);··

Supported by: ULINK*Pro*

Code Coverage

Helps tune testing to ensure all lines of code are executed

Often used for certification

Color-coded instruction status

- Whether a line has executed
- Taken and skipped branches

Ensures complete testing

- Save current coverage
- Update testing and re-run code coverage

	Code Co	verage		? 🛛
	Current	Module: Measure		•
	Module	es/Functions	Execution pe	rcentage
	ini	_task	100% of 49 in	structions
	clock_task get_escape command_task measure_task			tructions istructions, 1 condjump(s) not fully executed istructions, 1 condjump(s) not fully executed istructions tructions
			00% (00)	Additional, F contaitampto) not haily choose a
🔒 Disass	embly			
37	78:		SUB	RO, RO, #SVC_Stack_Size 🔺
37 38 0x000 38 0x000 38 38	79: 30: // 0000D0 31: 0000D4 32: 33:	Enter User E2400020 E321F010	Mode and SUB MSR MSR MOV	<pre>set its Stack Pointer R0,R0,#SVC_Stack_Size(0) CPSR_c, #Mode_USR CPSR_c,#Mode_USR(0x0000(SP, R0</pre>
30 38 0x000 38 0x000 38 0x000 38 0x000 38 39	34: // 0000D8 35: 0000DC 36: 0000E0 37: 0000E4 38: 0000E8 39: 90:	Enter the E1A0D000 E59F0020 E3100001 059FE01C 159FE01C	C code MOV LDR TST TST LDREQ LDREQ LDRNE LDRNE BX ENDP	R13,R0 R0,=?C?INIT R0,[PC,#0x0020] R0,#1 ; Bit-0 set: R0,#PLL_SETUP(0x00000000000000000000000000000000000

Supported by: ULINK*Pro*

Introduction to the ARM® Cortex[™]-M Architecture

CMSIS

The Architecture for the Digital World®

ARM

What is CMSIS

CMSIS - Cortex Microcontroller Software Interface Standard

- Abstraction layer for all Cortex-M processor based devices
- Developed in conjunction with silicon, tools and middleware Partners

CMSIS Peripheral Access Layer defines

- Consistent layout of all peripheral registers
- Vector definitions for all exceptions and interrupts
- Functions to access core registers and core peripherals
- Device independent interface for RTOS Kernels
- Debug channel (for printf-style + RTOS Kernel)

CMSIS Middleware Access Layer provides

- Common methods of accessing communication peripherals
- CMSIS compliant software components allow
 - Easy reuse of example applications or template code
 - Combination of software components from multiple vendors

CMSIS - Structure

ARM

Goal of CMSIS

Reduce Complexity

- Only a small number of files and functions are provided
- Register Interface to access simple peripheral functions
- Ensure that efficient code can be generated by C compilers

Provide Industry-Wide Programming Standards

- Ensure a consistent method for accessing peripherals
- Adapt Object-Oriented programming techniques
- Conform to safety requirements (MISRA)

Support Partnerships and Innovation

- Support a wide range of silicon, tool, and middleware Partners
- Allow differentiation and innovation in peripherals
- Simple Licensing Terms (freely available to everyone)
- Potential for new software business models

CMSIS – Files for Peripheral Access Layer

Compiler Vendor-Independent Files:

- Cortex-Mx Core Files (provided by ARM)
 - core_cm3.h+core_cm3.c core_cm0.h+core_cm0.c
- Device-specific Files (provided by Silicon Vendors)
 - Register Header File (*device*.h)
 - System Startup File (system_device.c)
- Compatible with all supported Compilers (IAR, RealView, GNU, ...)

Compiler-Vendor + Device-Specific Startup File:

- Device Specific Compiler Startup Code (provided by Silicon Vendors)
 - startup_*device*.s

CMSIS Files are available via <u>www.onARM.com</u>:

- Device Database that lists all available devices
 - CMSIS Files can be downloaded

CMSIS – Example

```
#include <device.h>
                                         // file name depends on device
void SysTick_Handler (void) {
                                         // SysTick Interrupt Handler
   ;
}
void TIM1_UP_IRQHandler (void) {
                                      // Timer Interrupt Handler
  ;
}
void timer1_init(int frequency) { // set up Timer (device specific)
  NVIC_SetPriority (TIM1_UP_STM_IRQn, 1); // Set Timer priority
 NVIC_EnableIRQ (TIM1_UP_STM_IRQn); // Enable Timer Interrupt
void main (void) {
  SystemInit ();
                                        // global system setup
  if (SysTick_Config (SystemFrequency / 1000)) { // SysTick 1mSec
       : // Handle Error
  timer1 init ();
                                         // setup device specific timer
```


Standards Make Sense & CMSIS

Intelligent Processors by ARM

GARMINI AD173 1 03.09

Standards Make Sense

Today's electronics industry is based upon standards. These standards have enabled the development of ever more advanced technology which has been adopted and applied by system designers around the globe.

The ARM Cortex[™]-M processors are rapidly setting the standard for advanced microcontroller applications, a fact illustrated by a growing number of leading MCU vendors each providing a differentiated product, but based upon the same standard ARM architecture.

ARM The Architecture for the Digital World®

Cortex-M Microcontrollers

For more information visit www.onARM.com

ARM[®] Cortex[™] Microcontroller Software Interface Standard

The ARM® Cortex[®] Microcontroller Software Interface Standard (CMSIS) is a vendor-independent hardware abstraction layer for the Cortex-M processor series. The CMSIS enables consistent and simple software interfaces to the processor for interface peripherals, real-time operating systems, and middleware, simplifying software re-use, reducing the learning curve for new microcontroller developers and reducing the time to market for new devices.

Creation of software is acknowledged as a major cost factor by the embedded industry. By standardizing the software interfaces across all Cortex silicon vendor products, this cost is significantly reduced, especially when creating projects for new devices or migrating existing software to a Cortex processor-based microcontroller from other silicon vendors. The creation of the CMSIS enables silicon vendors to focus their resources on the differentiating peripheral features of their product, and eliminates the need to maintain their own individual and incompatible standards for programming a microcontroller.

The standard is fully scalable to ensure that it is suitable for all Cortex-M processor series microcontrollers from the smallest 8KB device up to devices with sophisticated communication peripherals such as Ethernet or USB-OTG. (The CMSIS memory requirement for the Core Peripheral Access Layer is less the 1KB code, less then 10 bytes RAM).

The CMSIS answers the challenges that are faced when software components are deployed to physical microcontroller devices based on a Cortex-M0, Cortex-M1 or Cortex-M3 processor. The CMSIS will be also expanded to future Cortex-M processor cores.

The complete offering for ARM MCU applications

IAR Embedded Workbench The complete set of development tools for building and debugging embedded applications with 1400 example projects

Support for ARM7[™], ARM9[™], ARM9E[™], ARM10[™], ARM11, Cortex-M0, Cortex-M1, Cortex-M3

IAR visualSTATE

State machine development tool that provides advanced verification and validation utilities and generates very compact C/C++ code that is 100% consistent with your system design.

IAR Development kits

30+ development kits with all you need to get started in 30 minutes! Includes development tools, PCB, J-Link probe and example projects

IAR PowerPac

The tightly integrated RTOS and middleware alternative for your ARM application with support for USB and TCP/IP connectivity

Debug probes Fastest debug probes on the market

- IAR J-Link
- IAR J-Trace
- IAR J-Trace CM3

Development Tools & Middleware

Microcontroller Development Kit

Complete software development environment for Cortex-MI/M3 and ARM7/9 microcontrollers

Easy to learn and use, yet powerful enough for the most demanding embedded ARM application

RealView[®] Microcontroller Development Kit

RTX and **Real-Time** Library

Fully featured real-time kernel

Library of middleware components to speed up software development and solve real-time and communication challenges

ULINK2 USB Adapter

On-the-fly debugging and Flash programming via JTAG or serial interface

KEIL

ULINK2

Flash File System

USB Device Interface

CAN

xamples
Introduction to the ARM® Cortex[™]-M Architecture

CORTEX-M MCU OVERVIEW

Cortex-M - Success in Market

Over 20 licensees of Cortex-M3 processor Over 150 Cortex-M3 processor-based devices Over 400 ARM processor-based MCUs 140% CAGR units shipped by vendors

Introduction to the ARM[®] Cortex[™]-M Architecture

ATMEL

- World's First Cortex M3 Flash MCU with High Speed USB device
 - Optimized for applications requiring USB High Speed
- First CM3 MCU with Dual bank Flash with boot bank select
- Lowest CM3 MCU operating supply voltage at 1.62V

Many applications require more than 12Mbps:

- USB Dongle: HDTV, Wireless, Memory Stick
- Dataloggers: Fast data download
- PC Application: Webcam, Printer, External HDD
- Replacement of inter-PCB links like high-speed SPI and parallel wires by USB

High Speed USB 480 Mbps is the solution

High Speed peripherals

- USB HS Device
- SPI
- SD/MMC
- SDIO
- Memory mapped FPGA or ASSP

High Speed Peripheral	Maximum bandwidth
USB Device	425 Mbps
External Bus Interface	>500 Mbps out of 7ns SRAM
MMC interface	384 Mbps
SDIO/SDCard	192 Mbps
SPI	48 Mbps

SAM3U Key Feature	Customer Benefit
First CM3 MCU with USB High speed Device and	Fast down and up loading of datafiles.
integrated transceiver	USB is a robust, EMI tolerant, plug and play and low cost high speed serial interconnect
96 MHz max operating frequency	Processing power for today and tomorrow
DMA and distributed SRAM, High Speed SDIO, SD/MMC Card, SPI and EBI	Ability to sustain high data transfer rates between multiple high-speed peripherals
First CM3 MCU with Dual bank Flash with boot bank select	Save In Application Programming (IAP) including for the boot program
Lowest CM3 MCU operating supply voltage at 1.62V	True 1.8V operation (except ADC and USB transceiver)
	Extended operation when running from two AA alkaline batteries
Memory Protection Unit (MPU)	Improved code protection and secures multi- application/ task execution
Differential input and Programmable Gain Amplifier (PGA) on 12-bit 1Msps ADC	Reduced BOM cost and board space

Introduction to the ARM® Cortex[™]-M Architecture

NXP

The Architecture for the Digital World®

ARM®

NXP ARM Cortex™ Microcontroller Product Series Overview

LPC1700 Block Diagram

LPC1700 Block Diagram

LPC1700 Variations

Part Number	Flash (KB)	SRAM (KB)	Ethernet	USB	CAN	l²S	DAC	Package
LPC1768	512	64	Y	Device/Host/OTG	2	Y	Y	LQFP100
LPC1766	256	64	Y	Device/Host/OTG	2	Y	Y	LQFP100
LPC1765	256	64	N	Device/Host/OTG	2	Y	Y	LQFP100
LPC1764	128	32	Y	Device	2	Ν	Ν	LQFP100
LPC1758	512	64	Y	Device/Host/OTG	2	Y	Y	LQFP80
LPC1756	256	32	N	Device/Host/OTG	2	Y	Y	LQFP80
LPC1754	128	32	N	Device/Host/OTG	1	Ν	Y	LQFP80
LPC1752	64	16	N	Device	1	Ν	Ν	LQFP80
LPC1751	32	8	N	Device	1	Ν	Ν	LQFP80

LPC1700 Features

- Highest bandwidth Ethernet
- USB On-The-Go/Host/Device adding to the industry's widest choice of USB options
- Quadrature Encoder Interface and Motor Control Pulse Width Modulator (PWM) for flexible, motor control with power to spare
- Two CAN interfaces
- True 12-bit analog-to-digital converter (ADC) and 10-bit digital-to-analog converter (DAC)
- Fast-Mode Plus (1 Mb/s) I²C bus, in addition to 4 UARTs, 3 SPI/SSP buses and an I²S bus
- Real-Time Clock operating at less than 1 uA
- Pin compatibility with the NXP LPC2300 ARM7 microcontrollers series

NXP's Portfolio Strengths

Technology	NXP offers
USB	 Widest choice Leads the industry with more than 45 USB-equipped ARM MCUs Complete USB functionality: device, host, On-The-Go (OTG) Pin- and software-compatible options across NXP families
LCD	 Unique functions, low-cost integration Fully integrated, color LCD controllers supporting 24-bpp color and up to 1024 x 768 pixels Simplifies design, reduces board space, lowers cost Software-compatible across NXP families
Ethernet	 Highest bandwidth & Easy to use 10/100 Ethernet MAC with multilayered bus structure Optimized performance with DMA hardware acceleration Pin- and software-compatible options across NXP families
Motor Control	 Sophisticated features & Performance to spare Dedicated motor-control features support even advanced functions Low overhead extends MCU's capacity, enabling a richer feature set

Ē

Introduction to the ARM[®] Cortex[™]-M Architecture

ST MICROELECTRONICS

Flash Size	Performance	STM32	Full	Qualified	Portfolio		57
(bytes)	Access Line	178693		STM32F103RE	STM32F103VE	STM32F1032	ZE
512 K	• 72MHz	<mark>z Cortex™-M</mark> 3	CPU	STM32F101RE	STM32F101VE	STM32F1012	ZE
384 K	– 4K – Th	B to 64KB SRAM ree lines	Л	STM32F103RD	STM32F103VD	STM32F1032	ZD
	acr	 FULL compatibility across 60 part numbers 			STM32F101VD	STM32F1012	ZD
256 K				STM32F103RC	STM32F103VC	STM32F1032	ZC
				STM32F101RC	STM32F101VC	STM32F1012	zC
		STM32	F103CB	STM32F103RB	STM32F103VB		
128 K		STM32	F102CB	STM32F102RB			
		STM32	-101CB	STM32F101RB	STM32F101VB		
	STM32F1	03T8 STM32	F103C8	STM32F103R8	STM32F103V8		
64 K		STM32	F102C8	STM32F102R8			
	STM32F1	01T8 STM32	F101C8	STM32F101R8	STM32F101V8	STNSZ	
	STM32F1	03T6 STM32	F103C6	STM32F103R6		Corte	
32 K		STM32	F102C6	STM32F102R6		FFFFFFFF	
	STM32F1	01T6 STM32	F101C6	STM32F101R6			
16 K	STM32E1	03T4 STM32	E103C4	STM32E103P4	All in Fu	Ill Productio	n
	011110211	STM32F103T4 STM32F103C4		STM32F103R4	All pin to	pin Compati	ble
	STM32F1	01T4 STM32	F101C4	STM32F101R4			
	🖌 36 pir	ns 48 p	oins	64 pins	100 pins	144 pins	
ST	132 Releasing	your creativito	FP	LQFP	LQFP/BGA*		BGA package3or erformance line o

STM32 Implementation Advantages (1)

- Family Concept:
 - Software & Peripheral compatibility across all STM32.
 - 100% pin-to-pin compatibility per package
- Precise Analog:
 - up to 3x12-bit ADCs @ 1Ms/sec (up to 21channels)
 - Dual-channel 12-bit DAC with buffered outputs
- Optimized Consumption & Battery Operation
 - Run @ ~0.5mA/MHz with half of peripherals ON
 - RTC Mode down to 1uA and 1.8V (VBAT)
 - Full operation starting 2.0V (except ADC starting 2.4V)

STM32 Implementation Advantages (2)

57

- 3-Phase Motor Control
 - Up to 2 dedicated Timers, i.e. drive 2 motors in parallel
 - Incl. dead-time generation & HW synchro with ADCs
 - Full library covering all types or BLDC motors
- Safety Support
 - Dual Watchdog with separated clocks
 - Automatic switch to internal RC if crystal fails
 - CRC module, e.g. for memory check
 - Pre-Certified Library for IEC60335 Class B
- Exhaustive Software libraries (8) & Application Notes (25) available.

STM32F103 Performance 512K

- 2V-3.6V Supply
- 5V tolerant I/Os
- Excellent safe
 clock modes
- Low-power modes
 with wake-up
- Internal RC
- Embedded reset
- 36 pins to 100 pins (BGA 5x5, QFN 6x6 available)
- -40/+105°C

STM32 Connectivity Line STM32F105/107

STM32F105/7 Connectivity Line

- Up to 256KB Flash / up to 64KB SRAM
- Ethernet 10/100 MAC with IEEE1588, MII & RMII
- USB 2.0 FS OTG w/ OTG PHY
- Preloaded bootloader:
 - USART+CAN+USB
 DFU
- 2x Audio Classe I²S interfaces
- 2x CAN 2.0B with dedicated 512B buffer
- LQFP64, LQFP100
- -40/+105°C

STM32 Evolution

Introduction to the ARM[®] Cortex[™]-M Architecture

TEXAS INSTRUMENTS LUMINARY

The Architecture for the Digital World®

ARM

D[°] Luminary Micro, Inc.

LUMINARYMICRO

The Frost & Sullivan 2008 Global Entrepreneurial Company of the Year

Luminary Micro's Stellaris Family of Industrial-Grade 32-bit MCUs

- ... the first 32-bit ARM® microcontroller offered for \$1.00
- ... the first available ARM Cortex[™]-M3-based microcontrollers in production
- ... the first to bring serious motion control capability to the ARM architecture
- ... the only to integrate 10/100 Ethernet MAC and PHY in an ARM architecture
- ... the largest ARM portfolio in the world
- ... now featuring over 100 (and growing!) compatible family members all available today!
- ... a complete and fully functional StellarisWare™ Peripheral Driver Library
- ... extensive world-class third-party tools support
- ... optimized for battery-backed applications

Stellaris® Family Technology

ARM® Cortex[™]-M3 v7-M Processor Core

Up to 100 MHz Up to 125 MIPS (at 100 MHz)

On-chip Memory

256 KB Flash; 96 KB SRAM ROM loaded with Stellaris DriverLib, BootLoader, AES tables, and CRC

External Peripheral Interface (EPI)

32-bit dedicated parallel bus for external peripherals Supports SDRAM, SRAM/Flash, M2M

Advanced Serial Integration

10/100 Ethernet MAC and PHY 3 CAN 2.0 A/B Controllers USB (full speed) OTG / Host / Device 3 UARTs with IrDA and ISO 7816 support* 2 I²Cs

2 Synchronous Serial Interfaces (SSI) Integrated Interchip Sound (I²S)

System Integration

32-channel DMA Controller Internal Precision 16MHz Oscillator

Two watchdog timers with separate clock domains

ARM Cortex Systick Timer

4 32-bit timers (up to 8 16-bit) with RTC capability Lower-power battery-backed hibernation module Flexible pin-muxing capability

Advanced Motion Control

8 advanced PWM outputs for motion and energy applications 2 Quadrature Encoder Inputs (QEI)

Analog

2x 8-ch 10-bit ADC (for a total of 16 channels) 3 analog comparators On-chip voltage regulator (1.2V internal operation)

LUMINARY MICRO[®] * One UART features full modem controls

Stellaris Family: Unique Value Proposition

The only ARM MCU with 10/100 Ethernet MAC / PHY

- Enables network connectivity and embedded web servers
- Lower external power budget requirements than solutions using an external PHY
- Savings in board space and system cost

And now even more value in the same small package:

Hardware support for Precision Time Protocol (IEEE 1588 PTP)

Stellaris Family: Unique Value Proposition

Stellaris Motion Control Advantage!

- Most competitors do not even have motion-control Pulse Width Modulators (PWMs)! (e.g. NXP)
- Stellaris supports up to 8 general-purpose PWMs and up to 8 channels of motion control PWMs.
- General-purpose PWMs
 - Stellaris 16-bit timer simple PWM mode with programmable output negation.
- Motion-control PWM Module
 - > Can generate simple PWM signals for a simple charge pump.
 - > Can generate paired PWM signals with dead-band delays for a half-H bridge driver.
 - > Can generate the full six channels of gate controls for a 3-Phase inverter bridge.
 - > Dead-band generator providing shoot-through protection.
 - > Synchronization of timers enables precise alignment of *all* edges.
- Stellaris Exclusive! Up to 4 fault-condition handling inputs in hardware quickly provide low-latency shutdown.
- Stellaris Exclusive! Up to 2 Quadrature Encoder Inputs provide accurate positioning for closed-feedback control.

LUMINARY MICRO®

Stellaris features single-cycle Flash memory up to 50MHz!

- Some competitors claim faster core speeds with ARM7 and Cortex-M3, but the flash is not single-cycle!
- > Some competitors claim single-cycle, but the max core speed is very limited

Vendor	MCU Line	Flash Access Time 20MHz CPU	Flash Access Time 25MHz CPU	Flash Access Time 50MHz CPU	Unit of Measure
Luminary Micro	Stellaris				Cycle
ST Micro	STM32	1	2	3	Cycles
Atmel	AVR8	1	n/a	n/a	Cycles
TI	MSP430	n/a	n/a	n/a	Cycles

Flash access specifications from published datasheets

D Stellaris Family: Unique Value Proposition

StellarisWare[™]

Free license and royalty-free source code:

- Peripheral Driver Library
- Graphics Library
- USB Library
- Boot Loader
- IEC 60730 Library

Enabling our customers with the ability to rapidly develop and deploy their products at competitive costs yielding a higher overall value for the Stellaris solution!

Introduction to the ARM® Cortex[™]-M Architecture

TOSHIBA

TOSHIBA TX03 series MCU

ARM[®] Cortex[™]-M3 based MCU

© Toshiba Electronics Europe GmbH 2009

TOSHIBA MCU CPU core roadmap

Cortex-M3 family concept

111

Leading Innovation >>>

	M330	General purpose application; Low cost derivates
	M340	For consumer application like digital camera and camcorder. High volume memory; $\Delta\Sigma ADC$;
	M350	Automotive devices; IECQ100; PPAP; CAN;
	M360	For consumer application like TV and video. CEC and remote interface; High volume memory (up to 2MB Flash)
	M370	Motor control with vector engine: For industrial and HA market. Vop=5V, POR, LVD, OFD; analoge circuit incl. Op-AMPs;
	M380	For industrial and HA market. Vop=5V, POR, LVD, int. Osc., OFD, wide product line up (48pin to 144pin package; up to 512kB Flash)
	M390	For industrial application. Vop=3.3V, POR, LVD, int. Osc.,
то	SHIBA 444	@ Teachiba Electronica Europa Cmb4 2000

TX03 series Product Road Map

Leading Innovation >>>

112

© Toshiba Electronics Europe GmbH 2009
TOSHIBA Key Features

TOSHIBA Leading Innovation >>>

113

© Toshiba Electronics Europe GmbH 2009

Introduction to the ARM® Cortex[™]-M Architecture

MORE INFORMATION

The Architecture for the Digital World®

More Information

ARM website www.arm.com

- **Technical Reference Manuals**
- **Connected Community**

www.OnARM.com

- Vendor List
- **CMSIS 1.20**
- **Tools Overview**

Books

- Joseph Yiu The Definitive Guide to the ARM Cortex M3
 - ISBN: 978-0-7506-8534-4
- C und C++ für Embedded Systems
 - ISBN: 978-3-8266-5949-2

Training

- http://www.arm.com/support/training.html
- http://www.doulos.com

RAININ CENTER

ARM

DOULOS

The Architecture for the Digital World®

END

Thank you

The Architecture for the Digital World®

