Lecture 7

Large and Small Signal Modelling of PN Junction Diodes

In this lecture you will learn:

- Circuit models of PN junction diodes
- Small signal modeling of nonlinear circuit elements
- Small signal models of PN junction diodes
- Junction resistance and capacitances

Small Signal Modeling of Nonlinear Circuit Elements Taylor expand the current-voltage relation around the bias voltage: $I_{BIAS} + i_{ac}(t) = I(V_{BIAS} + v_{ac}(t))$ $= I(V_{BIAS}) + \frac{dI}{dV}\Big|_{V = V_{BIAS}} v_{ac}(t) + \frac{1}{2} \frac{d^2I}{dV^2}\Big|_{V = V_{BIAS}} v_{ac}(t) + \dots$ $I_{BIAS} + i_{ac}(t) \approx I(V_{BIAS}) + \frac{dI}{dV}\Big|_{V = V_{BIAS}} v_{ac}(t)$ $= I(V_{BIAS}) + gv_{ac}(t)$ $\Rightarrow i_{ac}(t) \approx gv_{ac}(t)$ Incremental resistance or incremental conductance

Small Signal Model of a PN Junction Diode: Total Capacitance

At high frequencies, part of the current $\,i_d\,$ flows through the junction but part of it also charges up the junction capacitance and the diffusion capacitance

$$i_d \approx g_d v_d + (C_j + C_d) \frac{dv_d}{dt}$$

$$C_d$$

$$C_j$$

$$C_j$$

$$V_d$$

Capacitances of a PN Junction Diode

Total Capacitance: $C = C_j + C_d$

