

What are the values of potentials in N-doped and P-doped semiconductors ??

N-doped Semiconductors (doping density is N_d):

The potential in n-doped semiconductors is denoted by: ϕ_n

$n_o(x) \approx N_d$ $q \phi_n(x)$	Example: Suppose,
$\Rightarrow N_d = n_i e^{\frac{KT}{KT}}$	$N_d = 10^{17} \text{ cm}^{-3}$ and $n_i = 10^{10} \text{ cm}^{-3}$
$\Rightarrow \phi_n = \frac{KT}{q} \log \left[\frac{N_d}{n_i} \right]$	$\Rightarrow \phi_n = \frac{KT}{q} \log \left[\frac{N_d}{n_i} \right] = + 0.41 \text{ Volts}$

P-doped Semiconductors (doping density is N_a):

The potential in n-doped semiconductors is denoted by: ϕ_p

 $p_{o}(x) \approx N_{a}$ $\Rightarrow N_{a} = n_{i} e^{-\frac{q\phi_{p}(x)}{KT}}$ $\Rightarrow \phi_{p} = -\frac{KT}{q} \log \left[\frac{N_{a}}{n_{i}}\right]$ $\frac{Example:}{Suppose,}$ $N_{a} = 10^{17} \text{ cm}^{-3} \text{ and } n_{i} = 10^{10} \text{ cm}^{-3}$ $\Rightarrow \phi_{p} = -\frac{KT}{q} \log \left[\frac{N_{a}}{n_{i}}\right] = -0.41 \text{ Volts}$

