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Lecture 24 

CMOS Logic Gates and Digital VLSI – II

In this lecture you will learn:

• Static CMOS Logic Gates
• FET Scaling
• CMOS Memory, SRAM and DRAM
• CMOS Latches, and Registers (Flip-Flops)
• Clocked CMOS
• CCDs
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CMOS Logic: General Architecture
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Pull-up network

Pull-down network

Pull-up network:

Consists of only PFETs
Charges the output to HIGH

Pull-down network:

Consists of only NFETs
Discharges the output to LOW
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CMOS NAND Gate
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BAX 

A B X

0 0 1

0 1 1

1 0 1

1 1 0

When both A and B are HIGH, output is LOW
When either A or B is LOW, output is HIGH

In designing the pull-down network, see 
when the output ought to be LOW and 
then arrange the NFETs accordingly.

The pull-up network will have the 
complimentary topology.
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CMOS NOR Gate
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BAX 

A B X

0 0 1

0 1 0

1 0 0

1 1 0

When both A and B are LOW, output is HIGH
When either A or B is HIGH, output is LOW

In designing the pull-down network, see 
when the output ought to be LOW and 
then arrange the NFETs accordingly.

The pull-up network will have the 
complimentary topology.
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CMOS Gates: Pull Down Network Design

If A and B are both HIGH, output will be 
LOW

If either A or B is HIGH, output will be 
LOW

BA  BA 
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CMOS Gates: Pull Up Network Design

If either A or B is LOW, output will be 
HIGH

If A and B are both LOW, output will be 
HIGH

BA 

BABA  BABA 

BA 

De Morgan’s Law

In designing the pull-up network, see when the output ought to be HIGH and then 
arrange the PFETs accordingly. The pull-down network will have the complimentary 
topology.
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CMOS Gates: Pull Up and Pull Down Network Design

Pull up and pull down networks are “complimentary” of each other.

Hence the name “Complimentary MOS” or CMOS!
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CMOS Gates: More Complex Logic Gates

  CBAX 

Suppose we need to design a logic gate for:

If ((A or B) and C) are HIGH, the output will be LOW DDV

B

A

LC

  CBAX 

C

A B C X

0 0 0 1

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 0



5

ECE 315 – Spring 2005 – Farhan Rana – Cornell University

FET Scaling – Inverter 

DDV

A
A

LC

The mobility of electrons in NFETs is generally 
almost twice that of the holes in  PFETs

One would want the current drives for charging 
and discharging the output and, consequently, 
the rise and fall times for the output to be 
identical (i.e. one would want the NFETs and the 
PFETs to have the same current drives)

DDV

A
A

LC

Therefore the W/L ratio of the PFET is chosen to be 
twice that of the NFET in an inverter
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Fabricated FET Inverter: Dual Well CMOS Technology 

Gate

Source Drain Drain Source

Drain Source

DrainSource

Metal Metal Metal
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FET Scaling – NAND Gate 

As in the inverter case, one scales the 
PFETs by 2

A HIGH output has to be discharged 
through the two NFETs in series

Two FETs in series, with the same gate 
voltage, are like one FET that is twice as 
long 

Therefore, in order to keep the same 
current drive in discharging a HIGH 
output in the NAND gate as in the simple 
inverter, one needs to scale the NFETs 
by 2 each 

2 2

2

2
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FET Scaling – NOR Gate 

As in the inverter case, one scales the 
NFETs by 1

A LOW output has to be charged through 
the two PFETs in series

Two FETs in series, with the same gate 
voltage, are like one FET that is twice as 
long 

Therefore, in order to keep the same 
current drive in charging a LOW output 
in the NOR gate as in the simple inverter, 
one needs to scale the PFETs by 4 each 

4

4

1 1
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FET Scaling – A More Complex Example

22
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The Transmission Gate

B

A transmission gate allows the logical value to pass from the input to the output only 
if the gate is OPEN (i.e. the control signal B is HIGH and the switch above is closed)

If the gate is closed (i.e. the control signal B is LOW and the switch above is open) the 
input and the output are disconnected from each other

IN OUT



8

ECE 315 – Spring 2005 – Farhan Rana – Cornell University

The Transmission Gate
DDV DDV

B

B

A transmission gate allows the logical value to pass from the 
input to the output only if the gate is OPEN (meaning the 
control signal B is HIGH)

If the gate is closed (meaning the control signal B is LOW) the 
input and the output are disconnected from each other

B

B
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The Transmission Gate

L

H

H

L

L → H

Case I: Input is sitting at HIGH, the output is sitting at LOW, and the gate opens

Although both the NFET and the PFET 
will pass the current, the NFET will cut-
off when the output node is still VTN

below logical HIGH value (~VDD) 

So the PFET is required to charge the 
output to the HIGH value (~VDD) 

H L

H

L

H → L

Although both the NFET and the PFET 
will pass the current, the PFET will cut-
off when the output node is still –VTP 

above the logical LOW value (~0)

So the NFET is required to discharge 
the output to the LOW value (~0) 

Case II: Input is sitting at LOW, the output is sitting at HIGH, and the gate opens

2

1

2

1
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CMOS Memory Element

Two inverters can be used to realize a bistable memory element

Both of the following states are allowed:

L H

H L
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DDVDDV

CMOS Memory Element

Two inverters can be used to realize a bistable memory element

L

H

H

L

L

H

DDVDDV

H

L

L

H

Just drawn differently

Two stable states
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DDVDDV

Two inverters can be used together with NFET gates to realize a 6 FET SRAM cell

H

L

L

H

Static Random Access Memory (SRAM)

WL
BLBL

SRAM is fast

Used for implementing fast caches in microprocessors or fast memories in 
electronic instruments

(Word Line)

(Bit Line)

=> 1

=> 0
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Static Random Access Memory (SRAM)
BL BL BL BL BL BL

0 1

1

The indicated values show the voltages when a logical 1 is being written in 
the cell shown
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Intel Core-i7 (4 Core) with 8MB L3 Cache (SRAM)
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Intel Core-i7 (6 Core) with 12MB L3 Cache (SRAM)

1.17 Billion FETs
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A DRAM cell can be implemented using just one FET and one capacitor

Dynamic Random Access Memory (DRAM)

BL

DRAM is much slower than SRAM
Capacitor can discharge via leakage currents (needs periodic refresh)
Reading a stored bit destroys the stored bit – every read must be followed by a write
Used for implementing large memory in computers

BL

WL (Word Line)

(Bit Line)
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Dynamic Random Access Memory (DRAM)

The DRAM cell (0.5 µm2) uses stacked cylindrical 
capacitors with hemispherical silicon grains 
(HSG) in a capacitor (SAMSUNG)

Types of DRAM Capacitors
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CMOS Latch

D Q

CLK

● Data passes through from the input (D) to the output (Q) when the CLK is HIGH (i.e. 
the latch is transparent)

● Data at the output (Q) is latched (and held in place) when the CLK is LOW
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CMOS Latch

● Data passes through from the input 
(D) to the output (Q) when the CLK is 
HIGH (i.e. the latch is transparent)

● Data at the output (Q) is latched (and 
held in place) when the CLK is LOW

D

Q

CLK

CLK

CLK = HIGH
CLK = LOW
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CMOS Latch: One Example

DDV DDV
CLK

CLK

CLK
DDV

D

Q

There are many different 
way to realize a latch in 
CMOS

This is one example…
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CMOS Latch: Operation

DDV DDV
CLK

CLK

CLK
DDV

D
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H L

L

L

H
H

L

Gate open

Gate closed

Suppose the CLK goes HIGH, the input gate 
opens, and the input data is written into the 
latch

As long as the CLK is HIGH, D and Q are the 
same (i.e. the latch is transparent)
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CMOS Latch: Operation

DDV DDV
CLK

CLK

CLK
DDV

D
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H L

L

L

H
H

L

Gate closed

Gate open

When the CLK goes LOW, the input gate 
closes, and the data written into the latch 
is held in place (i.e. latched)

t
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CMOS Data Register or a Flip-Flip

D Q

CLK

● When the CLK goes from LOW to HIGH, input data (D) is transferred to the 
output (Q) and held in place

● A data register or a flip-flop can be realized by using two master/slave latches

D Q

CLK CLK

Master Slave
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Clocked CMOS Design

D1

CLK

D2

CLK

D3

CLK

CLK

CLK

CLK

Combinational Logic

Q1

Q2

Q3
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Clocked CMOS Design

Data
bus

CLK CLK

Combinational Logic Data
bus

Register Register
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Pipelined CMOS Digital Design

Data bus

Data bus

Data bus
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A 24-MP CCD imaging chip

Willard S. Boyle and George E. Smith
(Bell Labs)
(2009 Nobel Prize in Physics)

FETs and Charge-Coupled Devices (CCDs)
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MOS Structures and Charge-Coupled Devices (CCDs)
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FETs and Charge-Coupled Devices (CCDs)

Challenge: 

How to get photo-generated charge out of each 
individual pixel in a simple cost-effective way??

Pixels in a CCD array

Photogenerated
electrons
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Solution: 

Charge-coupled MOS structures can be 
used as shift-registers to move charge!

FETs and Charge-Coupled Devices (CCDs)
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