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Lecture 23 

CMOS Logic Gates and Digital VLSI – I

In this lecture you will learn:

• Digital Logic 
• The CMOS Inverter
• Charge and Discharge Dynamics
• Power Dissipation
• Digital Levels and Noise
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A NFET Inverter
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Digital Signal Levels

VIL , VIH and VOL , VOH are determined by the unity gain points on the transfer curve
(Otherwise amplification can corrupt the logic levels as they propagate in a chain)

Slope=-1

Slope=-1

A

Valid logic levels:

VIL = Maximum valid logical LOW input

VIH = Minimum valid logical HIGH input

VOL = Maximum valid logical LOW output 

VOH = Minimum valid logical HIGH output

Region of  
|gain| > 1

Gain is necessary to realize logic gates …!!!
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Digital Signal Levels and Noise

Slope=-1

Input with noise

Noise amplified at the 
output (actual signal 
can go outside the 
valid input level for 
the next stage)

Noise is reduced at the output when the input is within the valid range
Noise can be amplified at the output when the input is outside the valid range
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Noise Margins

A A
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And when noise is present……

ILOL VnoiseV 
One must have:

IHOH VnoiseV 

Noise margins:

L IL OLNM V V 

H OH IHNM V V 

ILV

IHV

Noise and device variations sets the minimum VDD one can use

Noise margin HIGH
(NMH)

Noise margin LOW
(NML)
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The Ideal Inverter Transfer Curve
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IHV

A perfectly symmetric curve with a near-vertical transition is an ideal transfer 
curve because:

● Noise margins can be made very large
● Logical HIGH voltage can be made very small (because the noise margins are 
so large) resulting smaller power dissipation

Noise margin HIGH

Noise margin LOW
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Problem:

The input/output characteristics are not 
symmetric

Noise margins are good but not excellent

A NFET Inverter: Noise Margins
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The Load Capacitance
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CL is the capacitance of the subsequent CMOS 
stage(s) as well as of the interconnects

DDV

OUTV

INV

R

DDV

R

DDV

R



5

ECE 315 – Spring 2005 – Farhan Rana – Cornell University

DDV

OUTV

INV

R

LC

A NFET Inverter: Charging Dynamics

Problem:

When the output is LOW, charging of the 
output to HIGH is slow because charging 
current is not uniform
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A NFET Inverter: Charging and Discharging Dynamics
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Problem:

When the input is HIGH, and the output is 
LOW, current keeps flowing through the 
FET and the resistor forever!!

This is an example of static power 
dissipation – extremely bad!

A NFET Inverter: Static Power Dissipation
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What Do We Want ….. Ideally?
DDV
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I

LC

L → H
Current

DDV

OUTV

I

LC
H → L

Current
Output going from LOW to HIGH

(Constant current charging) 

Output going from HIGH to LOW

(Constant current discharging)
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A CMOS Inverter: Noise Margins
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If VTN and VDD+VTP are close to each other, the transition region can be made narrow 
and sharp 
→The noise margins can be very wide!!

ECE 315 – Spring 2005 – Farhan Rana – Cornell University

A CMOS Inverter: Charging and Discharging Dynamics
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Charging and discharging by (non-ideal) FET current sources is better ………
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A CMOS Inverter: No Static Power Dissipation

When the input goes HIGH or LOW, power 
is only dissipated during the time when the 
output makes the transition – after this 
period, there is no power dissipation

There is no static power dissipation 
(ideally!), only dynamic power dissipation!!
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Rise Times, Fall Times and Propagation Delays

INV
OUTV

INV

OUTV

rt 

ft 

pHLt 

pLHt 

Rise time b/w 10% to 90% of 
the total upward swing 

Fall time b/w 90% to 10% of 
the total downward swing 

Propagation delay for H→L 
b/w 50% points

Propagation delay for L→H
b/w 50% points

rtft

pHLt pLHt
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A CMOS Inverter: Charging Dynamics
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When the output is LOW, initial charging of 
the output to HIGH is done with a uniform 
current supplied by the PFET in saturation:

When VOUT becomes larger than -VTP then the PFET goes into the linear region….
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Condition for the PFET to be in saturation:
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Assume 
the input 
changes 
abruptly
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A CMOS Inverter: Charging Dynamics
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For times 0 < t < t1 when the PFET (M2) is in saturation:
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A CMOS Inverter: Charging Dynamics
When VOUT becomes larger than -VTP then the PFET goes into the linear region, and 
from then onwards:
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One can obtain faster charging compared to a resistor in place of a PFET! 

L
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A CMOS Inverter: Charging Dynamics
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A CMOS Inverter: Charging Dynamics

One can obtain faster charging compared 
to a resistor:
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Current

In reality, the load capacitance is not just 
due to the next FET gate - it also includes 
the interconnect capacitances

FET transit time

~tr
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A CMOS Inverter: Discharging Dynamics
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One can obtain faster discharging compared to a resistor:
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In reality, the load capacitance is not just 
due to the next FET gate - it also includes 
the interconnect capacitances

FET transit time

Assume 
the input 
changes 
abruptly
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A CMOS Inverter: Charging and Discharging Dynamics
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How to charge and discharge faster?

● Decrease L

● Increase charging current 
→ Increase supply voltage VDD
At what price?

Current

Assuming CL is not dominated by interconnect 
capacitance (not generally true), the only way to 
increase kn and kp of FETs and at the same time 
decrease Cgs is to decrease the FET length L:
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Intel FET Gate length Trends

Smaller transistor 
provides:

● Higher performance

● Lower power

● Lower cost per FET

Mark Bohr, Intel (2014)
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A CMOS Inverter: Dynamic Power Dissipation
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Q: How much energy is dissipated (in the 
PFET and the wires) in charging the 
capacitor to HIGH from LOW?

A: Irrespective of how it is charged, the 
net energy dissipation in charging a 
capacitor equals the energy stored in the 
capacitor after charging!

2

2
1

DDLD VCE 
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Current

A CMOS Inverter: Dynamic Power Dissipation

Q: How much energy is dissipated (in the 
NFET and the wires) in discharging the 
capacitor from HIGH to LOW?

A: Irrespective of how it is discharged, 
the net energy dissipation in discharging 
a capacitor equals the energy stored in 
the capacitor before discharging!

2

2
1

DDLD VCE 

Total energy dissipation in one charge and discharge cycle:

2
DDLD VCE 
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Thermodynamics, Entropy, Information, and Computation

Question: How much energy does it require to compute or process one 
bit of information?

The question was answered by Rolf W. Landauer (1927-1999)
(IBM)

Any thermodynamically irreversible operation that manipulates information increases 
entropy, and an associated amount of energy is unavoidably dissipated as heat.

The minimum amount of energy needed to process or compute one bit of information 
equals:

 log 2KT

2 30 eVD L DDE C V 

For the smallest CMOS inverter intel  has:

 log 2 17.9 meVKT  at room temperature

172
2 2 2 10  Farads

3

0.5 V

ox
L gs

ox

DD

C C WL
t

V

      



This is almost ~1600 times larger than the fundamental thermodynamic limit …!!!
So there is plenty of room for improvement…!!! 
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Dynamic Power Dissipation in CMOS Chips
DDV
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DDV
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Total energy dissipation in one charge and discharge cycle per FET:
2
DDgsD VCE 

Total energy dissipation in one charge and discharge cycle if NFET FETs in the chip 
are active: 2

DDgsFETD VCNE 

Total power dissipation (energy dissipation per second) if NFET FETs are active:

2
DDgsCLKFETD VCfNP 

Number of cycles per second ~ fCLK

Ignoring interconnect capacitance
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Dynamic Power Dissipation in CMOS Chips

Clock speed = 3.16 GHz
Gate length: 45 nm = .045 m
Number of FETs in the chip =  410 X 106

Power supply voltage ~ 2 V

2
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! Watts!42      

2



 DDgsCLKFETD VCfNP

E8500 45 nm Chipset

(equivalent low- thickness)

Actual published number:

Our power dissipation estimate:

SD

T
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P




      

! Watts!65

Fraction of active FETs at any instant on the average (~0.4%)
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Intel FET Gate length Trends

Smaller transistor 
provides:

● Higher performance

● Lower power

● Lower cost per FET

Mark Bohr, Intel (2014)
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CMOS Trends
Recent trends: 

1) Number of FETs/chip keeps increasing
2) Clock frequency is not increasing
3) Number of switching operation per sec is limited by our ability to remove heat from the chip

(which at the moment is ~100 W/cm2)
4) And most FETs remain inactive most of the time in modern chips


