







































Electron-Hole Density in Doped Semiconductors

Consider a N-doped semiconductor in thermal equilibrium:

Doping density = N_d

- Use condition of charge neutrality: $q(+N_d n_o + p_o) = 0$
- Together with the relation: $n_o p_o = n_i^2$

• To obtain:

$n_o = \frac{N_d}{2} + \sqrt{\left(\frac{N_d}{2}\right)^2 + n_i^2}$ $p_o = -\frac{N_d}{2} + \sqrt{\left(\frac{N_d}{2}\right)^2 + n_i^2}$

• If $N_d >> n_i$, which is usually the case for N-doping, then the above relations simplify:

n-doping lets one make the electron density much greater than the intrinsic value n_i

Electron-Hole Density in Doped Semiconductors

Now consider a P-doped semiconductor in thermal equilibrium:

Doping density = N_a

- Use condition of charge neutrality: $q(-N_a n_o + p_o) = 0$
- Together with the relation: $n_o p_o = n_i^2$

To obtain:

$$p_o = \frac{N_a}{2} + \sqrt{\left(\frac{N_a}{2}\right)^2 + n_i^2}$$
$$n_o = -\frac{N_a}{2} + \sqrt{\left(\frac{N_a}{2}\right)^2 + n_i^2}$$

 $n_{o} \approx \frac{n_{i}^{2}}{N_{a}}$

p-doping lets one make the hole density much greater than the intrinsic value n_i









