Lecture 19

High Frequency Analysis of FET Circuits

In this lecture you will learn:

* High Frequency Analysis of FET Circuits
* Miller Effect and the Miller Capacitance

Phasor Analysis: Complex Impedances
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Phasor Analysis: Calculations with Impedances
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One can compute the voltage phasors using the impedances:
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Phasor Analysis: Bode Plots
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A transfer function with a pole at frequency 1/RC
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Poles and Zeroes of Transfer Functions
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Laplace Transform Calculations: Language Differences to Note

One can compute the voltages using Laplace transforms as well:
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Phasor Analysis: Bode Plots
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A transfer function with a zero at zero frequency and a pole at frequency 1/RC
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The Miller Effect and the Miller Capacitance

Consider a voltage amplifier:
S

<
Vs(w)

John A. Miller (1920)
Al >> 1
A<0

1

Vout (@) = Avi, (@) = Avg (@)

Open circuit voltage gain

Consider now a capacitor sitting at the input of an amplifier:
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A
=Trjorc s (@)

Input voltage to the amplifier
decreases, and so does the
output voltage of the amplifier, at

Vs (@)

Rs +Zin (@) 1+ joR.C

high frequencies (but not too
bad.....)




The Miller Effect and the Miller Capacitance

Consider now a capacitor straddling the input and the output of an amplifier:
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The capacitance, as seen from the input end, is
effectively very large!

The Miller Effect and the Miller Capacitance

[A] >>1
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- A
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Capacitor straddling the input and the output of an amplifier:
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Z(0)= ———
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Vin (@) =V (@) Zin (@) - Vs (@) The pole has shifted to a
R +Zjn (@) 1+ joR,C(1-A) much lower frequency!

The amplifier input voltage, and the output voltage, will now begin to drop-off at a
much lower frequency!!

This is the Miller effect and the capacitance positioned this way is called the Miller
pacitance




The Miller Effect and the Miller Capacitance: Summary

In both cases:

1

Zin®)= —F—F= r .
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A capacitor C straddling the input-
(@) (o) Zi, (@) output terminals of an amplifier of gain
Vinl@)=Vs|@ A = -|A| behaves like a very large
in YR+ 7 (@) IA| y larg

— capacitor C(1-A) sitting between the
input and the ground terminals.

Vout (@)= Avi (@)
This capacitor reduces the gain
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NFET: Capacitances
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NFET: High Frequency Small Signal Model

FET high frequency model:
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NFET: High Frequency Small Signal Model
Our simplified high frequency model:
. Cqa ,
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+

[ ]
Source Base




NFET Gate Charge
The total gate charge Q. (units: Coulombs) consists of the image charge due to:

1) The total inversion layer charge Qq
2) The total depletion layer charge Qg

Drain

Qrc = —(Qrn +Qrs)

The inversion layer charge Qy (units:
Coulombs/unit area) is a function of
position “y” in the device:

Qu (¥) = —Cox (Vos —Vrn —Ves (V)

The total inversion layer charge Q. (units: Coulombs) can be found by integration
over the entire area of the FET:
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NFET Gate Charge
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Recall that (Lecture 10):
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NFET: Inversion Layer Charge in Linear and Saturation

For Vpg <Vgg —Vqy : Linear Region:

Channel potential: Vcs(Y)=Vps

The channel has

For Vpg 2Vgg —Vqy : Saturation Region:
been “pinched off’

Channel potential: Vg (y) =Vgs —V1n

hannel potential: Vg(y)=Vps

NFET Gate Charge

Inversion layer charge Q, :
Expression only

QTN = :I_n(WCOX )2 I:(VGS _VTN —VDS )3 - (VGS _VTN )3] V-VOrkS in the
D linear region

In saturation (Vg > Vg - V1) but the inversion charge remains fixed at the
value when Vg = Vg — V4 because of pinch-off:

2
QO = _EWLCOX (Vos —Vrn)

Therefore, in saturation (since the depletion region
thickness and charge do not change with the gate
voltage), we get:

Qrc =-(Qrn +Qrs)
4o = e __%0m ~2yic,,
oV, oV, 3
GS gp Ve GSVgp Vas




NFET Capacitances in Saturation: A Simple Model

={Vos )2

oty

In saturation, because of pinch off, the inversion
layer charge Q) is not affected by the drain
voltage:

__ 9Qrg|
NVps

_ 9Qm

" 0Vps

o
Cya = Qrg

T oV,
GD Ngs Vee VesVee Ves VeB

Capacitances

Parasitic
capacitances

., Overlap
capacitances

In Saturation:

Cys = Q| = EWLCOX +WC,, +WC,, > EWLCOX
B, 3 3
GSVgs Vsp
c., =% = 0+WC,, +WC, >0
94 " v, ovroTP
CD Vgs Vss
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NFET: High Frequency Small Signal Model for Saturation Region

Our simplified high frequency model:

) Cya .

Gate Iy | | ld  Drain
+ L v v *
Vgs Cys ImVgs ImbYbs 90 Vs

Vs

+

[ ]
Source Base

2
Cys = EWLCOX +WC,, +WC,

Cga =WGC,, +WC,

The Common Source Amplifier

Vs (t)=Re{v,(o)ei® |

Vout +Vout (t)

A high frequency small signal model
can be built as follows:

|
., | +
V(o) Vi:(al) Cgs __llvgs (@) gmv%@ Y0 % RS Vout (@)
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The Common Source Amplifier: Open Circuit Voltage Gain

ig(w)

Cqd
(1

)

ig (o)

Need to find: ( )
Y @

A (o) = out
<0)= ) )

KCL at (1) gives:

R%Lvo; (@)

|
s
Vin(aj)+ CQS _lvgs(a’) gmvgs¢ Jo %
' T

and H(w)_vout (w)

- Vs(@)

iq (w) =0oVout (w)"' ImVin (w)+ [Vout (w)_vin (al)]jaJng

Also:

Vout (w) =—ig (w)R

The above two give:

A, (@)= Vout (@)

9gmR - j@RCyg

Vin(a’)

1+gR+ ja)Rng

The Common Source Amplifier: Open Circuit Voltage Gain

1—ja)Cid
R - jawRC
Av(w)zvout(w)z_ Im J_ 9 _ g (RIIf). Im
Vin(w) 1+goR +joRCyqy 1+]a)ng(R||l’o)

10l0g4g/A, (@)’

1010g19— gnf(R 11 o )2 N
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1 m
A relatively large———»

frequency Rl )ng Cqu

These poles might not limit the frequency performance.......

PTO
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The Common Source Amplifier: Open Circuit Voltage Gain

1—ja)ng
Y, gnR—jwRC
A, (0)= out(a))z_ . : gd =—gm(RIIrg)7— 70— Im
Vin (@) 1+g,R + jaRCyq 1+Ja>ng(R||r0)

ZA, (@)
0 -

/2 -

1 g @

The Common Source Amplifier: Input-Output Response \

C
Rs ig (@) IQT ig (@)

[
* + +
Vs(a’) Vin(w) Cgs |Vgs (w) ImVgs 90 % R< Vout (w)

= 1 =

So far we have found the open circuit voltage gain:

. ng
V(@) 9mR-jeRCqq mley
Av(w)= out == - g =_gm(R”ro) - "
Vin(@)  1+goR+jaRCyq 1+ jaCqq (RIIT5)
What about:

Vout (w) =27
Vs (@)
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The Common Source Amplifier: Input Impedance
. : Cyd .
i@ i@ @ 4 (@)

+ I +
w(@() Vi) Css —_:Vgs(a» gmvgs¢ go% R%Lvou_t(ao

KCL at (2) gives:

Vout (@)
T =A, (@)
it (@) = jaCqsvy (@)+ jaCyq [Vt (@)= Vout (w)] { Vin(@)

=(j“’cgs +jaCyq [1-A, (“’)]) Vi (@)
1
B ijgs + ja)ng [1_A\/ (w)]

ot (ﬂ)) =Zjn a’)

it (@)

The input impedance is:

1
Zin(w)z

jml.cgs + ng (1 - Av (w))J

The Common Source Amplifier: Input Impedance
Cqd

Rs ig () || ig (@)
[
+ + +
vs(@) Vin(@)  Cos _|Vgs (@) nggS¢ 90 % R%jout (@)
Vin(w)z Zip (o) _ 1
Vs(®)  Rs+Zin(@) 1+je[Cys +Cyq (1- A, (@))Rs
L — l—Y—J
Input voltage divider Miller Effect!!

Looking in from the input terminal the capacitance C,, seems to be magnified by a
factor proportional to the open circuit voltage gain of the amplifier!!
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The Common Source Amplifier: Total Gain
C
gd

R | 4(@)

+ I +
vs(@) Vi:(w) Cqs __|Ivgs(w) nggS¢ 90% R%:’out(m)
Finally:

» _Vout(w) Vout(m)vln(w) ( )
M) = o) v~ W @
A, (a))
T+ ja)l_Cgs+ng(1 A, (@)Rs
Where:
(@) _ o
Vout\@) _ _ r Im
Ave)= )~ IRl s Ri)

The Common Source Amplifier: Poles and Zeros of the Total Gain

A () H(0)(1- jwr3)
H H(0)= - RI|r
(o) = 1+Jw[Cgs+ng(1 A, (@))Rs T (1+ jory 1+ jory) ©)=-gnm(RIlTo)
A little tedious algebra can show that the transfer function above has two poles and a
zero 1 gn

73 ng

1) Assuming gnRs >> 1, these poles are:
1 1 1
LS Im L LY
71 Cgs ng (R I ro) T2 [Cgs +ng (gm(R ” o ))] R

This pole will likely determine the smallest frequency at which the total gain rolls over

2) Assuming g,,Rs << 1, these poles are:
1 1 1 1

~

71 RsCys E ) Cyd (RIlITo)

This pole will likely determine the smallest frequency at which the total gain rolls over




The Common Source Amplifier: The Miller Approximation
H (o) = Vout (@) _ A, (»)

Vs (@) 14 jo[Cye +Cyy (1-A, (@))] R
If the poles in A (w) are at high enough frequencies such that the lowest poles of the full

transfer function are determined by other poles (which would be the case if g,,Rs >> 1)
then one may approximate the open circuit gain A () by its low frequency value:

A (0) o (®)__ InR = JoRCq0

- : ~A, (@=0)=-g., (R]|lr,)4Miller
Vin (@) 1+goR+ joRCyq A (@=0)=-gn (RIl%)

approximation

And then:

o) = Yout (w)= A, (@)
(o) Vs (@) 1+ jo[Cgs +Cgq (1-A, (@))] R
—Om (R ||I’ )

~

1+ ja)[C +ng (1+gm (Rl ro)):l

Looking in from the input terminal the capacitance C,, seems to be magnified by a
factor proportional to the low frequency open circuit voltage gain of the amplifier!!

1

d now the single pole is at: 1 =
[Cgs +Cyq (1+gm (R lIro ))]

The Common Source Amplifier: Total Gain Under the Miller Approx
ng .
ig (@)

| |
+ 1 +
5“—‘ (@) Cos |Vgs( ®) 9mVgs Y0 R Vout (@)
L T -

Miller approximation is equivalent to saying that the following circuit will describe the
input-output response at not too high frequencies.........

Rs |g(a)) Cgd [1+gm(R”ro)] id(a’)

n | . .
§\M— () Vgs Cygs _|L_ ImVgs 90 RS Vout (@
\: ) :
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The Common Source Amplifier: Input Impedance

N

Miller approximation is equivalent to saying that the following circuit will describe the
input-output response at not too high frequencies.........

Rs ig(aJ) Cqd [1+gm(R”ro)] id("’)

+ + Jl_ +
S(CU) Vin-(m) VgS(w-);:;Cgs —|_ gmvgs¢ 9o % R_VOU-t (CU
J_ —

Looking in from the input terminal the capacitance C,, seems to be magnified by a
factor proportional to the low frequency open circuit voltage gain of the amplifier!!

1
jwl.cgs +Cyd (1+gm (R lITo ))J

Zin(a’)z

-
\

The Common Source Amplifier: Total Gain Under the Miller Approx

-
B

Rs ig(@) Cyd [1+lgm(R lIro)] iy (@)
+ + J_ +
s(‘@%vv\jn (@) Vgs(w)_lcgs _|_ gmvgs¢ 9o % RS Vout (@
— , L
10|Og1o‘H(W)‘ . Vout (ﬂ)) _ H(a))
\\\ i Vs(w)
\“‘Iz __________
ml°g10‘_gm(R"ro)‘2 N
i -20 dB/dec
1 ’ .
Rs [Cgs "'lcgd (1+gm (R lIro ))]
T J Can be lar
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The Common Source Amplifier: Output Impedance
Cyd .
Rs (2) ’ 1) it (@)

| |
+ [ 1
Vgs(”’) Cys | gmvgs¢ go% Ri §Vt("’)
1 -7

Need to find:
Zoyt (a))

KCL at (2) gives:

. ) v
[Vt (a’)_vgs (a))]Ja)ng = jaCysV gs +$

S

This gives:
_ jwcgd Rs
Vos(0)= j0(Cqs +Cqq JRs 41! ()
The Common Source Amplifier: Output Impedance
Rs @
[
+
ot O g<l? N % %L év‘(“”
Ja)ng R
Vos (@)= jo(Cqs +Cqa )Rs @)
KCL at (1) gives:

@)= ) 0 @)+ b (0)-vgs @

1 1 (gm +ja)Cgs)ijgd Rs
= = o
Zout (w) (R Il ro) Ja)(cgs +ng )Rs +1

I

Not a bad approximation
even at moderately high
frequencies
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The Common Source Amplifier: Short Circuit Current Gain

. . Cyd .
'g(@)7in(@) ] (1) iout (@)
Re] + 1
is(w) Vin(a’) CQS _Vgs(w) ImVgs Jdo R
Need to find: —

iout (@) Z (@) ~ 1
in(®) { in(@) jo[Cqs +Cya |
Start from KCL at (1):

(0-vi, (a’))jwcgd +gmVin (@) +iou (@) =0

= o @) gn - jocyo)

= lout (@) = lout (@) Vin (@) = _(gm —jaCqyq )Zin (©)* -9 mZin (@)

iin(@)  Vin(@) iin (@)

_ Im

~ jalCys +Cyq)

Short Circuit Current Gain and the Transition Frequency (f; or ay)

For most transistors, the short circuit current gain falls of with frequency with a
-20 dB/dec slope (at high enough frequencies)

The frequency at which the short circuit current gain equals unity is called the
transition frequency (f; or @)

The transition frequency expresses the maximum useful frequency of operation
of the transistor

. 2t .,
10log4q 7|.out (w) T

lin (a’)

Slope = -20 dB/decade
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The Common Source Amplifier: The Transition Frequency

out (a))=_ Im
fin (a)) j"’(Cgs +Cyq )

iout (w)Z

10'0910

lin

Slope = -20 dB/decade

The transition frequency is:

9m  _9m

a)l— =
Cgs +Cqa  Cys

The Common Source Amplifier: The Transition Frequency
The FET transition frequency is:

wrzcgm
gs

This is the highest frequency at which the transistor is still useful
Q: What is its physical significance?

V=0

W
Im =7 HnCox Ves =Vin)
2
Cgs = EWLCox Ves=VesVn

Source

Ves=Vps)|

Therefore the transition frequency is:

op = 9m =§ﬂ Ves —Vin)
Cgs 27" L2 Electron transit
time through the

Ves —Vin) FET
2

\ L L L L n }

| Therefore, the electron transit time sets the maximum frequency of operation of the FET!! |
" g
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