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Lecture 19 

High Frequency Analysis of FET Circuits

In this lecture you will learn:

• High Frequency Analysis of FET Circuits
• Miller Effect and the Miller Capacitance
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Phasor Analysis: Complex Impedances
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Phasor Analysis: Calculations with Impedances
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One can compute the voltage phasors using the impedances:
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Phasor Analysis: Bode Plots
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Poles and Zeroes of Transfer Functions
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With a little abuse of language we will say a pole at the frequency 
1

RC

With a little abuse of language we will say pole at the frequency          
and a zero at 0 frequency

1

RC
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Laplace Transform Calculations: Language Differences to Note

R

C

 v s

 i s

+

-

 rv s
 cv s

+ -

     
1

1
1 1c

sCv s v s v s
sRCR

sC

 


     
1 1r

R sRC
v s v s v s

sRCR
sC

 


One can compute the voltages using Laplace transforms as well:
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Phasor Analysis: Bode Plots
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A transfer function with a zero at zero frequency and a pole at frequency 1/RC
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The Miller Effect and the Miller Capacitance
John A. Miller (1920)

Consider a voltage amplifier:
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Consider now a capacitor straddling the input and the output of an amplifier:
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The Miller Effect and the Miller Capacitance
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|A| >> 1
A < 0

The capacitance, as seen from the input end, is 
effectively very large!
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Capacitor straddling the input and the output of an amplifier:
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The amplifier input voltage, and the output voltage, will now begin to drop-off at a 
much lower frequency!! 
This is the Miller effect and the capacitance positioned this way is called the Miller 
capacitance 

The Miller Effect and the Miller Capacitance
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The pole has shifted to a 
much lower frequency!
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The Miller Effect and the Miller Capacitance: Summary
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 Lesson: 

A capacitor C straddling the input-
output terminals of an amplifier of gain 
A = -|A| behaves like a very large 
capacitor C(1-A) sitting between the 
input and the ground terminals.

This capacitor reduces the gain 
bandwidth of the circuit
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NFET: Capacitances
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NFET: High Frequency Small Signal Model
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FET high frequency model:
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NFET: High Frequency Small Signal Model
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NFET Gate Charge
The total gate charge QTG (units: Coulombs) consists of the image charge due to:

1) The total inversion layer charge QTN

2) The total depletion layer charge QTB

 TG TN TBQ Q Q  

The inversion layer charge QN (units: 
Coulombs/unit area) is a function of 
position “y” in the device:

    N ox GS TN CSQ y C V V V y   

The total inversion layer charge QTN (units: Coulombs) can be found by integration 
over the entire area of the FET: 
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NFET Gate Charge
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Drain

Gate

SiO2

Ly 

L

The channel has 
been “pinched off”

Channel potential:   TNGSCS VVyV 

Channel potential:   DSCS VyV 

For   :DS GS TNV V V 

Drain

Gate

SiO2

Ly 

Channel potential:   DSCS VyV 

Linear Region:

For   :DS GS TNV V V  Saturation Region:

NFET: Inversion Layer Charge in Linear and Saturation
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NFET Gate Charge

Inversion layer charge QN :

     2 3 3
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In saturation (VDS > VGS - VTN) but the inversion charge remains fixed at the 
value when VDS = VGS – VTN because of pinch-off:
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Expression only 
works in the 
linear region

 

, ,

2

3
GD GB GD GB

TG TN TB

TG TN
gs ox

GS GSV V V V

Q Q Q

Q Q
C WLC

V V

  

 
   
 

Therefore, in saturation (since the depletion region 
thickness and charge do not change with the gate 
voltage), we get:
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NFET Capacitances in Saturation: A Simple Model
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In saturation, because of pinch off, the inversion 
layer charge QTN is not affected by the drain 
voltage:
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Capacitances

In Saturation:
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NFET: High Frequency Small Signal Model for Saturation Region
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The Common Source Amplifier: Open Circuit Voltage Gain

KCL at (1) gives:
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The Common Source Amplifier: Open Circuit Voltage Gain
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The Common Source Amplifier: Open Circuit Voltage Gain
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The Common Source Amplifier: Input-Output Response

So far we have found the open circuit voltage gain:

   
     ogd

m

gd

om
gdo

gdm

in

out
v rRCj

g

C
j

rRg
RCjRg

RCjRg

v

v
A

||1

1

||
1 



















What about:

 
 

??out

s

v

v








14

ECE 315 – Spring 2005 – Farhan Rana – Cornell University

The Common Source Amplifier: Input Impedance
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The Common Source Amplifier: Input Impedance
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Looking in from the input terminal the capacitance Cgd seems to be magnified by a 
factor proportional to the open circuit voltage gain of the amplifier!!

Input voltage divider Miller Effect!!
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The Common Source Amplifier: Total Gain
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The Common Source Amplifier: Poles and Zeros of the Total Gain
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A little tedious algebra can show that the transfer function above has two poles and a 
zero

1) Assuming gmRS >> 1, these poles are:
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The Common Source Amplifier: The Miller Approximation
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If the poles in Av() are at high enough frequencies such that the lowest poles of the full 
transfer function are determined by other poles (which would be the case if gmRS >> 1 ) 
then one may approximate the open circuit gain Av() by its low frequency value: 
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And now the single pole is at:
    somgdgs RrRgCC ||1

11






   
 

 
  1 1

out v

s gs gd v s

v A
H

v j C C A R

 


  
 

    

ECE 315 – Spring 2005 – Farhan Rana – Cornell University

+
 inv

-

 di

gsmvg
+
 outv

-
oggsC

 gi
gdC

R sv
+ gsv
-

sR

The Common Source Amplifier: Total Gain Under the Miller Approx
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Miller approximation is equivalent to saying that the following circuit will describe the 
input-output response at not too high frequencies………
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The Common Source Amplifier: Input Impedance
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Looking in from the input terminal the capacitance Cgd seems to be magnified by a 
factor proportional to the low frequency open circuit voltage gain of the amplifier!!
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Miller approximation is equivalent to saying that the following circuit will describe the 
input-output response at not too high frequencies………
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The Common Source Amplifier: Output Impedance 

This gives:
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The Common Source Amplifier: Output Impedance
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Not a bad approximation 
even at moderately high 
frequencies 
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The Common Source Amplifier: Short Circuit Current Gain
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Short Circuit Current Gain and the Transition Frequency (fT or T)

For most transistors, the short circuit current gain falls of with frequency with a 
-20 dB/dec slope (at high enough frequencies)

The frequency at which the short circuit current gain equals unity is called the 
transition frequency (fT or T)

The transition frequency expresses the maximum useful frequency of operation 
of the transistor
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The Common Source Amplifier: The Transition Frequency
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The transition frequency is:
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The Common Source Amplifier: The Transition Frequency
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The FET transition frequency is:

This is the highest frequency at which the transistor is still useful
Q: What is its physical significance?
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time through the 
FET

Therefore, the electron transit time sets the maximum frequency of operation of the FET!!
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