

Degenerately Doped Semiconductor

• If a semiconductor is very heavily doped, the Boltzmann approximation is not valid.

In Si at T=300K: $E_c - E_F < 3kT$ if $N_D > 1.6 \times 10^{18} \text{ cm}^{-3}$

 $E_{\rm F}-E_{\rm v} < 3kT$ if $N_{\rm A} > 9.1 \times 10^{17}$ cm⁻³

The semiconductor is said to be *degenerately doped* in this case.

$$E_v + 3kT \le E_F \le E_c - 3kT$$

Spring 2003

EE130 Lecture 4, Slide 3

Example: Dopant Compensation

Consider the same Si sample, doped *additionally* with 10¹⁷/cm³ Arsenic. What is its resistivity?

N_A = 10¹⁶/cm³, *N_D* = 10¹⁷/cm³ (*N_D*>>*N_A* → n-type) → *n* ≈ 9x10¹⁶/cm³ and *p* ≈ 1.1x10³/cm³ $\rho = \frac{1}{qn\mu_n + qp\mu_p} \cong \frac{1}{qn\mu_n}$ $= [(1.6 \times 10^{-19})(9 \times 10^{16})(600)]^{-1} = 0.12 \,\Omega - cm$

Spring 2003

EE130 Lecture 4, Slide 21

