Lecture #28

ANNOUNCEMENTS

* Quiz #6 next Thursday (May 8)
— Topics covered: MOSFET
— Closed book; calculator, 6 pages of notes allowed

OUTLINE
—MOSFET scaling
— CMOS technology
— Silicon on Insulator technology

Reading: Reader Part lll, Chapter 4
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Short-Channel MOSFET V;

* For short-channel MOSFETS, V; is usually defined as
the gate voltage at which the maximum barrier for
electrons at the surface equals 2. This is lower
than the long-channel V; by an amount

AVT = 2;I'V]-;xe \/wbi (wbi +VDS )e_II/z(de1+3Taxe)

dm

E
where ¢, =%+,
2q

Note: This equation assumes that r, > W,

= To minimize V; roll-off, N4, should be high enough
to ensure that L, > 2W,,,
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Constant-Field Scaling

» Voltages and MOSFET dimensions are scaled by the
same factor k>1, so that the electric field remains
unchanged
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Scaled device
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Constant-Field Scaling (cont.)

MOSFET Device and Circuit Parameters

Multiplicative Factor
(k=>1)

Scaling assumptions

Derived scaling
behavior of device
parameters

Derived scaling
behavior of circuit
parameters

Device dimensions (1., L, W, x;)
Doping concentration (N, Na)
Voltage (V)

Electric field (#)

Carrier velocity (v)
Depletion-layer width (W)
Capacitance (C = £A/1)
Inversion-layer charge density (Q;)
Current, drift (1)

Channel resistance (R;)

Circuit delay time (z ~ CV/I)
Power dissipation per circuit (P ~ VI)
Power—delay product per circuit (Pt)
Circuit density (o< 1/A)

Power density (P/A)

1/x

R_

1/k

1

1 « Circuit speed
1/k improves by K
1/

1 - Power dissipation
1/x per function

1 is reduced by k2
1/x

1/k?

1/k?

k':

1
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V; Design Trade-Off

» Low V; is desirable for high ON current:
lysae O (Vaq - V)7 1<n<15

» But V; is needed for low OFF current:

log Ips | o\ Vv, . N(.)rll-Tic’:allng factors:
** High V, : 5@
IOFF,Iow vr inv

- V; cannot be scaled
ively!

ok igh v aggressively!

VGS

Spring 2003 EE130 Lecture 28, Slide 5

+ Since V; cannot be scaled down aggressively, the
power-supply voltage (Vpp) has not been scaled
down in proportion to the MOSFET channel length

Feature Power-Supply Gate Oxide Oxide Field
Size (um) Voltage (V) Thickness (A) (MV/cm)

? 5 350 14

12 5 250 2.0

0.8 5 180 2.8

0.5 33 120 2.8

0.35 33 100 3:3

0.25 25 70 3.6
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Generalized Scaling

» Electric field intensity increases by a factor a>1

Nposy must be scaled up by o to control short-channel effects

Multiplicative Factor

MOSFET Device and Circuit Parameters (k> 1)

Scaling assumptions  Device dimensions (f,, L, W, x;) 1/x
Doping concentration (N, Ny) iT's
Voltage (V) afk
Derived scaling Electric field (&) o
behavior of device Depletion-layer width (W) 1/k
parameters Capacitance (C = eA/1) 1/k
Inversion-layer charge density (Q;) o
Long Ch. Vel. Sat.
Carrier velocity (v) o 1
Current, drift () ok ok
Derived scaling Circuit delay time (z ~ CV/I) 1/eexe 1/x
behavior of circuit Power dissipation per circuit (P ~ VI) o fic? ok
parameters Power—delay product per circuit (Pt) :r:_.-'x:
Circuit density (o< 1/A) K2
Power density (P/A) o a?
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* Reliability and
power density
are issues

CMOS Technology

Both n-channel and p-channel MOSFETs are

fabricated on the same chip (V, = -V7,)

* Primary advantage:
— Lower average power dissipation

* In steady state, either the NMOS or PMOS device is off,
so there is no d.c. current path between V5 and GND

» Disadvantages:

— More complex (expensive) process

— Latch-up problem
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Need p-regions (for NMOS) and n-regions (for PMOS)
on the wafer surface, e.g.:

Np

Single-well technology N,
n-well

* n-well must be deep enough
to avoid vertical punch-through

p-substrate

N, Np
Twin-well technology p-well n-well
* Wells must be deep enough
to avoid vertical punch-through p- or n-substrate
(lightly doped)
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CMOS Latch-up

CMOS Inverter: Vv
in V
VDD SS
L P | 2
[ | [ -
ln"| Lp*| Lp] ln"| [n"] [p*]
n-well p-Si

! Vop

Equivalent circuit: V. e j‘ v
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Coupled parasitic npn and pnp bipolar transistors:

+Vpp

If either BJT enters the active mode,
the SCR will enter into the forward
conducting mode (large current
flowing between V,; and GND) if

/Bnpmgpnp >1

=> circuit burnout!

=V
Latch-up is triggered by a transient increase in current, caused by
« transient currents (ionizing radiation, impact ionization, etc.)

* voltage transients
* e.g. negative voltage spikes which forward-bias the pn junction momentarily
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How to Prevent CMOS Latchup

1. Reduce minority-carrier lifetimes in well/substrate
2. Use highly doped substrate or wells:

(a) n-well p-epi Rsub i
p'-substrate B, |

(b) :11 p-sub Rwell i
Bonp ¥

“retrograde well”
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Modern CMOS Fabrication Process

p-type Silicon Substrate

V2,

Shallow Trench Isolation (STI) - oxide

N\
.

iz

p-type Silicon Substrate

p-type Silicon Substrate

Spring 2003

A series of lithography, etch,
and fill steps are used to
create silicon islands
isolated by oxide

Lithography and implant
steps are used to set NMOS
and PMOS doping levels
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W, . Wi

p-type Silicon Substrate

W, . Wi

p-type Silicon Substrate

=/ —

wh—

p-type Silicon Substrate
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A thin gate oxide is grown

Poly-Si is deposited and
patterned to form gate
electrodes

Lithography and implantation
is used to form NLDD and
PLDD regions
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p-type Silicon Substrate

p-type Silicon Substrate

A series of steps is used to
form the deep source / drain
regions as well as body
contacts

A series of steps is used to
encapsulate the devices and
form metal interconnections
between them.
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Intel’s 90 nm CMOS Technology

50nm

To be used for volume
manufacturing of ICs
on 300 mm wafers
beginning this year

* Lgate =90 NnM

*T=1.2nm

* Strained Si channel
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Strained Si

IDsat D v X Qinv

2 Ipsot €N be increased by enhancing field-effect
mobilities, by straining the Si channel:

Spring 2003

NMOS PMOS
Welser, et al., IEDM 1994 Rim, et al., IEDM 1995
Gale high mobility Gate
g channels
n* poly Drain \SOEE n* poly Drain
i ‘j/ Si0p 120 A
, 700T “A ) Strained Si 100 A
i LMy Strained Si1_xGe Wl KTy
750G = =
— -
50
y=005 y=005|
p* SiSubstrate | n* Si Substrate
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Courtesy of J. Hoyt, MIT

Mobility Enhancement with Strain

NMOS PMOS
20 T L L . T T T T T T T T

v =10my £ 2.6 [—— Calculation by 5

2 18k 30k 8 94 C Oherhuber et al. ]

E L =71 m Rimetal g

= =22} . L i

S 16F ] [ & Curieand LI

E Eapnl Leitz, etal. ]
g g2

14} 4 B B

% ® Measured, J. Welser, ot al., % 18 u - b

= IEDM 1994, = - 4

T 12} S 161 . B

= = -

= A =14 ]

= 40 Calculated for strained Si = L i

% MOS inversion layer B0l 7

S. Takagi, et al., J. Appl. Phys. 80, 1998, o =L i

%0 o0 oz 230 =10 L1
. - o] 10 20 30 40 50
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Substrate Ge fraction, x
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Substrate Ge Content (%)




14 nm CMOSFETs

NiSi Hokazono et al., Toshiba Corporation,
presented at the International Electron

Poly-SiGe
Devices Meeting (San Francisco, CA) Dec. ‘02

* 1.3 nm SiO,N, gate dielectric
* Poly-Si; ,Ge, , gate

1E-03

VG078V

pMOS | nmos

1E-04
b, =-0.76 V' Vg =0.75
1E-05

oMOS
1,=251 psdpm
1=185 nAfm
S factor=113 mVidec

hMOS
1,,=564 pApm
1.=264 nium
S factor=98 miidec.

1E-06

Drain Current 1, (A/um)

Drain Current /s (nAfjam)
7
2

1E-08

1E-09

-1 -05 0 05 1

4 07 05 025 0 02 05 075 1 Gate Voltage V, (V)

Drain Voltage (V)

Silicon on Insulator (SOI) Technology

» Advantages over bulk-Si:
— very low junction capacitance
— no body effect
— soft-error immunity

Silicon substrate
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