

reverse-biased body	MOSFET Device and Circuit Parameters	Multiplicative Factor $(\kappa > 1)$	
Scaling assumptions	Device dimensions (t_{ox}, L, W, x_j) Doping concentration (N_a, N_d) Voltage (V)	1/κ κ 1/κ	technologies, et al., 1990),
Derived scaling behavior of device parameters	Electric field $(\widetilde{\mathscr{C}})$ Carrier velocity (v) Depletion-layer width (W_d) Capacitance $(C = \varepsilon A/t)$ Inversion-layer charge density (Q_i) Current, drift (I) Channel resistance (R_{ch})	$ \begin{array}{c} 1 \\ 1 \\ 1/\kappa \\ 1 \\ 1/\kappa \\ 1 \\ 1 1 1 1 1 $	 Circuit speed improves by κ Power dissipation per function is reduced by κ²
Derived scaling behavior of circuit parameters	Circuit delay time ($\tau \sim CV/I$) Power dissipation per circuit ($P \sim VI$) Power-delay product per circuit ($P\tau$) Circuit density ($\propto 1/A$) Power density (P/A)	$\frac{1/\kappa}{1/\kappa^2}$ $\frac{1}{\kappa^3}$ $\frac{1}{\kappa^2}$	

nce v _T c	annot be scale	a down addre	recively tr
	-1 -1(() /		
wer-sup	ply voltage (v	_{DD}) has not be	en scaled
wn in pr	oportion to the	e MOSFET cha	annel leng
	•		•
F 4	Domon Supply	Cate Ovide	Oxide Field
Size (µm)	Voltage (V)	Thickness (Å)	(MV/cm)
2	5	350	1.4
4 3115 3 4 1	5	250	2.0
12			20
1.2 0.8	5	180	2.0
1.2 0.8 0.5	5 3.3	180 120	2.8
1.2 0.8 0.5 0.35	5 3.3 3.3	180 120 100	2.8 3.3

p-type Silicon Substrate	
Shallow Trench Isolation (STI) - oxide p-type Silicon Substrate	 A series of lithography, etch and fill steps are used to create silicon islands isolated by oxide
p-type Silicon Substrate	 Lithography and implant steps are used to set NMOS and PMOS doping levels

