Lecture #27

ANNOUNCEMENTS

 <u>Design Project</u>: Your BJT design should meet the performance specifications to within 10% at both 300K and 360K.

($\beta_{\rm dc}$ > 45, $f_{\rm T}$ > 18 GHz, $V_{\rm A}$ > 9 V and $V_{\rm punchthrough}$ > 9 V)

OUTLINE

- Short channel effect
- · Drain-induced barrier lowering
- · Excess current effects
- Parasitic source/drain resistance

Spring 2003

EE130 Lecture 26, Slide 1

The Short Channel Effect (SCE)

"V_T roll-off"

- $|V_T|$ decreases with L
 - Effect is exacerbated by high values of |V_{DS}|

 This is undesirable (i.e. we want to minimize it!) because circuit designers would like V_T to be invariant with transistor dimensions and biasing conditions

Spring 2003

Qualitative Explanation of SCE

- Before an inversion layer forms beneath the gate, the surface of the Si underneath the gate must be depleted (to a depth W_{dm})
- The source & drain pn junctions assist in depleting the Si underneath the gate
 - Portions of the depletion charge in the channel region are balanced by charge in S/D regions, rather than by charge on the gate
 - \Rightarrow less gate charge is required to reach inversion (*i.e.* $|V_T|$ decreases)

Spring 2003

EE130 Lecture 26, Slide 3

The smaller the *L*, the greater percentage of charge balanced by the S/D pn junctions:

<u>Small L</u>:

Depletion charge supported by S/D

Spring 2003

First-Order Analysis of SCE

 The gate supports the depletion charge in the trapezoidal region. This is smaller than the rectangular depletion region underneath the gate, by the factor

 $\begin{array}{c} 2L \\ \\ \text{This is the factor by which the} \\ \\ \text{depletion charge } \mathbf{Q}_{\text{dep}} \text{ is} \\ \end{array}$

reduced from the ideal

• One can deduce from simple geometric analysis that $L' = L - 2r_j \sqrt{1 + \frac{2W_{dm}}{r_i}} - 1$

Spring 2003

EE130 Lecture 26. Slide 5

V_{T} Roll-Off: First-Order Model

$$\left|V_{T}\right| - \left|V_{T(long-channel)}\right| \equiv \Delta V_{T} = \frac{-qN_{A}W_{dm}}{C_{oxe}} \frac{r_{j}}{L} \left(\sqrt{1 + \frac{2W_{dm}}{r_{j}}} - 1\right)$$

Minimize ΔV_{T} by

- reducing T_{oxe}
- reducing r_i
- increasing N_A (trade-offs: degraded m, μ)

⇒ MOSFET vertical dimensions should be scaled along with horizontal dimensions!

Spring 2003

Source and Drain Structure

 To minimize SCE, we want shallow (small r_j) S/D regions -but the parasitic resistance of these regions will increase when r_i is reduced.

$$R_{source}, R_{drain} \propto \rho / W r_{j}$$

where ρ = resistivity of the S/D regions

 Shallow S/D "extensions" may be used to effectively reduce r_j without increasing the S/D sheet resistance too much

Spring 2003

EE130 Lecture 26. Slide 7

Electric Field Along Channel

- The lateral electric field peaks at the drain.
 - $\mathcal{E}_{\text{peak}}$ can be as high as 10 6 V/cm
- High E-field causes several problems:
 - impact ionization→ substrate current
 - damage to gate-oxide interface and bulk

Spring 2003

Lightly Doped Drain Structure

- Lower pn junction doping results in lower peak E-field
 - ✓ Hot-carrier effects reduced
 - × Series resistance increased

Spring 2003

EE130 Lecture 26, Slide 9

Parasitic Source-Drain Resistance

• If
$$I_{Dsat0} \propto V_{GS} - V_T$$
, $I_{Dsat} = \frac{I_{Dsat0}}{1 + \frac{I_{Dsat0}R_s}{(V_{GS} - V_T)}}$

$$+\frac{T_{Dsat0}K_s}{(V_{GS}-V_T)}$$

• I_{Dsat} is reduced by about 15% in a 0.1 μ m MOSFET.

•
$$V_{Dsat} = V_{Dsat0} + I_{Dsat}(R_s + R_d)$$

Spring 2003

Drain Induced Barrier Lowering (DIBL)

 As the source & drain get closer, they become electrostatically coupled, so that the drain bias can affect the potential barrier to carrier flow at the source junction

→ subthreshold current increases.

Spring 2003

EE130 Lecture 26, Slide 11

Excess Current Effects

Punchthrough

Spring 2003

Parasitic BJT action

Spring 2003

EE130 Lecture 26. Slide 13

Summary: MOSFET OFF State vs. ON State

- Sub-threshold regime (V_{GS} < V_T):
 - $-\ \emph{I}_{\rm DS}$ is limited by the rate at which carriers diffuse across the source pn junction
 - Subthreshold swing S, DIBL are issues
- ON state (V_{GS} > V_T):
 - I_{DS} is limited by the rate at which carriers drift across the channel
 - Punchthrough and parasitic BJT effects are of concern, particularly at high drain bias
 - I_{Dsat} increases rapidly with V_{DS}
 - Parasitic series resistances reduce drive current
 - source resistance R_S reduces effective V_{GS}
 - source and drain resistances $R_{\rm S}$ and $R_{\rm D}$ reduce effective $V_{\rm DS}$

Spring 2003

SUBMICRON DEVICE STRUCTURE AND DESIGN Low Series Resistance Polysilicon **Contact Technology Spacer Formation** Gate Stack Design Technology Silicide Deep S/D and Channel Profile LDD Tab Design Design LDD Profile Drain Profile Design Vertical (Channel) Engineering Design Horizontal (Drain) Engineering Spring 2003 EE130 Lecture 26, Slide 15