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Lecture #25
• Design Project:  

– Due in class (5 PM) on Thursday May 1st

• 20 pt penalty for late submissions, accepted until 5 PM 
on 5/8 

– Your BJT design does not need to meet the 
performance specifications when WB and NB are varied 
by +/- 10%

– Equation for ∆EG assumes NE is in cm-3 and T is in K

• Quiz#5 Results:
(undergrad.’s only)
N=60
Mean=20.5
Std.Dev.=3.6
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OUTLINE
• NMOSFET I-V
• Effective mobility
• Transconductance
• PMOSFET I-V
• Subthreshold current
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Ideal MOSFET I-V Characteristics

Linear
region

Saturation
region

(Enhancement Mode NMOS Transistor)
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Review: Qualitative Operation of the NMOSFET
depletion layer

The potential barrier to electron flow from the source 
into the channel is lowered by applying VGS> VT

Electrons flow from the 
source to the drain by drift, 
when VDS>0.  (IDS > 0.)

The channel potential 
varies from VS at the 
source end to VD at the 
drain end.
(The inversion layer can be 
modeled as a resistor.)
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When VD is increased to be equal to 
VG-VT, the inversion-layer charge 
density at the drain end of the 
channel equals zero, i.e. the 
channel becomes “pinched off”

As VD is increased above VG-VT, the 
length ∆L of the “pinch-off” region 
increases.  The voltage applied 
across the inversion layer is always 
VDsat=VGS-VT, and so the current 
saturates:

If ∆L is significant compared to L, then 
IDS will increase slightly with increasing 
VDS>VDsat, due to “channel-length 
modulation”

DsatDS VVDSDsat II
=

=
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NMOSFET I-V Characteristics
• VD > VS

• Current in the channel flows by drift
• Channel voltage VC(y) varies continuously between 

the source and the drain

• Channel inversion charge
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1st-Order Approximation
• Neglect variation of Qdep with y

where VT = threshold voltage at the source end: 
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NMOSFET Current (1st-order approx.)
• Consider an incremental length dy in the channel.  

The voltage drop across this region is
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Effective Mobility

where µeff is the effective electron mobility

The NMOSFET can be modelled as a resistor at low VDS:
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Scattering mechanisms:

• coulombic scattering

• phonon scattering

• surface roughness 
scattering

      (Vgs  + Vt + 0.2)/6Toxe (MV/cm)

–(Vgs  + 1.5Vt – 0.25)/6Tox e (MV/cm)

 
 (NFET)

 (PFET)

µeff vs. Effective Normal Field
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VT is a function of VSB:

The “Body Effect”
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where γ is the body effect parameter

When the source-body pn junction is reverse-biased, |VT| 
increases. Usually, we want to minimize γ so that IDsat
∝ |VGS – VT| will be the same for all transistors in a circuit
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Problem with the “Square Law Theory”
• Assumes that gate charge is purely balanced by 

inversion charge
• Ignores variation in depletion width with distance y
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• transconductance: gm= dIDS/dVGS
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• saturation region:
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Modified Model: IDsat & Transconductance

m
VVVV TGS

DsatD
−=≥



8

EE130 Lecture 25, Slide 15Spring 2003

MOSFET VT Measurement
• VT can be determined by plotting IDS vs. VGS, 

using a low value of VDS
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P-Channel MOSFET
• The PMOSFET turns on when VGS < VTp

– Holes flow from SOURCE to DRAIN
⇒ DRAIN is biased at a lower potential than the SOURCE

• In CMOS technology, the threshold voltages 
are usually symmetric:  VTp = -VTn

P+ P+

N

GATE
VS VD

VG

IDS

VB

• VDS < 0

• IDS < 0

• |IDS| increases with 
• |VGS - VTp|
• |VDS| (linear region)



9

EE130 Lecture 25, Slide 17Spring 2003

DSDSTpGSeffpoxeDS VVmVVC
L

WI )
2

(, −+−= µ

PMOSFET I-V

• Linear region:

• Saturation region:
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m = 1 + (3Toxe/Wdm ) is the bulk-charge factor
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Sub-Threshold Leakage Current
• We had previously assumed 
that there is no channel current 
when VGS < VT.  This is incorrect.

• Consider VS close to 2ψB: 
There is some inversion charge 
at the surface, which gives rise 
to subthreshold current flowing 
between the source and drain:
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Sub-Threshold Slope S
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VT Design Tradeoff


