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Lecture #22

OUTLINE
The MOS Capacitor
• Capacitance
• Effect of Oxide Charges

Reading: Course Reader (Part III, Chap. 2)
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• For p-type Si (“NMOS”):

• For n-type Si (“PMOS”): 
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Review: Threshold Voltage
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ψs and Wd vs. VG (p-type Si)
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Total Charge Density in Si, Qs
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MOS Capacitance Measurement

vac

iac

C-V Meter

Si

GATE

MOS Capacitor

• VG is scanned slowly
• Capacitive current due 

to vac is measured
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dvCi ac
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MOS C-V Characteristics (p-type Si)
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Capacitance in Accumulation (p-type Si)
• As the gate voltage is varied, incremental charge is 
added/subtracted to/from the gate and substrate.

• The incremental charges are separated by the gate oxide.
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Flat-Band Capacitance
• At the flat-band condition, variations in VG give rise to 

the addition/subtraction of incremental charge in the 
substrate, at a depth LD

• LD is the “extrinsic Debye Length”
– characteristic shielding distance, or the distance where the 

electric field emanating from a perturbing charge falls off by 
a factor of 1/e
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Capacitance in Depletion (p-type Si)
• As the gate voltage is varied, the width of the depletion 
region varies.

→ Incremental charge is effectively added/subtracted at a 
depth Wd in the substrate.
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Capacitance in Inversion (p-type Si)
CASE 1: Inversion-layer charge can be supplied/removed 
quickly enough to respond to changes in the gate voltage.
→ Incremental charge is effectively added/subtracted at the 

surface of the substrate.
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Time required to build inversion-layer
charge = 2NAτo/ni , where 
τo = minority-carrier lifetime at surface
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Capacitance in Inversion (p-type Si)
CASE 2: Inversion-layer charge cannot be supplied/removed 
quickly enough to respond to changes in the gate voltage.
→ Incremental charge is effectively added/subtracted at a 

depth Wd in the substrate.
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Capacitor vs. Transistor C-V
(or LF vs. HF C-V)

p-type Si:

VG
accumulation depletion inversion

VFB VT

C MOS transistor at any f,
MOS capacitor at low f, or
quasi-static C-V

MOS capacitor at high f
Cmin

Cmax=Cox
CFB
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The quasi-static C-V characteristic is obtained by slowly ramping the 
gate voltage (< 0.1V/s), while measuring the gate current IG with a very 
sensitive DC ammeter. C is calculated from IG = C·dVG/dt.

Quasi-Static C-V Measurement

VG
accumulation depletion inversion
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C

Cmax=Cox

p-type Si:

Cmin

CFB
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Does the QS or the HF-capacitor C-V characteristic apply?
(1) MOS capacitor, f=10kHz.

(2) MOS transistor, f=1MHz.

(3) MOS capacitor, slow VG ramp.

(4) MOS transistor, slow VG ramp.

Examples: C-V Characteristics

VG
VFB VT

C

Cox

QS

HF-Capacitor
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Deep Depletion
• If VG is scanned quickly, Qinv cannot respond to the 

change in VG.  The increase in substrate charge 
density Qs must then come from an increase in 
depletion charge density Qdep

⇒ depletion depth Wd increases as VG increases
⇒ C decreases as VG increases

VG

VFB VT

C
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Cmin
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Parameter Extraction from C-V
From a single C-V measurement, we can extract much
information about the MOS device.
• Suppose we know that the gate-electrode material is 

heavily doped n-type poly-Si (ΦM=4.05eV), and that the 
gate dielectric is SiO2 (εr=3.9):
– From Cmax = Cox we determine the oxide thickness tox

– From Cmin and Cox we determine substrate doping (by iteration)

– From substrate doping and Cox we calculate the flat-band 
capacitance CFB

– From the C-V curve, we can find 

– From ΦM, ΦS, Cox, and VFB we can determine Qf
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Example: Effect of Doping

• How would C-V characteristic change if substrate 
doping NA were increased?
– VFB

– VT

– Cmin

VG
VFB VT

C/Cox

1
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Example: Effect of Oxide Thickness

• How would C-V characteristic change if oxide 
thickness tox were decreased?
– VFB

– VT

– Cmin

VG
VFB VT

1

C/Cox
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Oxide Charges

• In the oxide:
– Trapped charge Qot

• High-energy electrons 
and/or holes injected into 
oxide

– Mobile charge QM
• Alkali-metal ions, which 

have sufficient mobility to 
drift in oxide under an 
applied electric field

• At the interface:
– Fixed charge QF

• Excess Si (?)
– Trapped charge Qit

• Dangling bonds

In real MOS devices, there is 
always some charge in the oxide 
and at the Si/oxide interface.
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Effect of Oxide Charges

• In general, charges in the oxide cause a shift 
in the gate voltage required to reach the 
threshold condition:

(x defined to be 0 at metal-oxide interface)

• In addition, they may alter the field-effect 
mobility of mobile carriers (in a MOSFET) 
due to Coulombic scattering
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Determination of QF
Measure C-V characteristics of capacitors with different 
oxide thicknesses.  Plot VFB as a function of tox.
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Mobile Ions
• Odd shifts in C-V characteristics were once a mystery:

• Source of problem: Mobile charge moving to/away from 
interface, changing charge centroid
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Interface Traps

Traps cause “sloppy” C-V and also 
greatly degrade mobility in channel
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