Самоорганизиращи се нанопорести оксиди на вентилни метали

Структура, получаване, приложение като инертни матрици за получаване на наноточки, нанотелчета и нанотръбички

лектор: доц. Боряна Цанева

Вентилни метали

- Покриват се с тънък оксиден слой с диелектрични свойства
 - предимства предпазва от корозия
 - недостатък затруднява запояването
- Проявяват различни свойства в зависимост от поляритета на приложеното напрежение

Проводник и електрод

електронни проводници:

йонни проводници (електролити):

Електрохимия

Електродни реакции в електрохимичните вериги:

анодна полуреакция: $\operatorname{Red}_1 - \operatorname{ne}^- \to \operatorname{Ox}_1$ катодна полуреакция: $\operatorname{Ox}_2 + \operatorname{ne}^- \to \operatorname{Red}_2$ обща електрохимична реакция: $\operatorname{Red}_1 + \operatorname{Ox}_2 \to \operatorname{Ox}_1 + \operatorname{Red}_2$

напрежение – движеща сила на реакцията електричен ток – скорост на реакцията

Електролиза: анодни процеси

Har Se

Получаване

- анодно окисление на алуминия: $2AI + 3H_2O - 6e \rightarrow Al_2O_3 + 6H^+$ $(2H_2O - 4e \rightarrow O_2 + 4H^+)$
- химично разтваряне на получения алуминиев оксид

 $\mathrm{AI}_2\mathrm{O}_3 + \mathrm{6H}^+ \longrightarrow \mathrm{AI}^{3+} + \mathrm{3H}_2\mathrm{O}$

тънък, плътен вътрешен слой (бариерен)
 0,01-0,1 μm от γAl₂O₃ с вентилно действие
 дебел (до 500 μm), силно порест слой.

Структура

[Lee, W.; Ji, R.; Gösele, U.; Nielsch, K. Nat. Mater. 2006, 5, 741.]

Typical HRSEM image of the templates used in this work. The pore diameter mean value range from 35 to 40 nm and inter-pore spacing range from 100 to 105 nm [Appl. Phys. A 80, 1701–1706 (2005)]

Структура

Зависят от:

- електрични параметри на електролизата;
- температура и състав на електролита;
- продължителност;
- разширяване на порите след анодиране.

Механизъм на самоструктуриране

Механизъм на самоструктуриране

Възпроизводим контрол на структурата

[Lee, W.; Kim, J.-C.; Gösele, U. Adv. Funct. Mater. 2010, 20, 21]

Промяна на структурата след анодиране

<u>Разширяване на порите</u> – възможно е поради анизотропното (не еднакво в трите измерения) разтваряне на анодния оксид. Той се разтваря със значително по-голяма скорост в посока изтъняване на стените на клетките, от колкото на дебелината на слоя.

влияние на концентрацията и температурата

след разширяване: 5% H₃PO₄, 35°C, 30 min крайна дебелина ~7 µm

250

Промяна на структурата след анодиране

Разширяване на порите с кисел разтвор :

 Престоят в кисел разтвор (напр. фосфорна или оксалова киселина) на мембрана от аноден алуминиев оксид <u>с бариерен слой</u> води до конично сечение на порите със стесняване към бариерния слой.

Промяна на структурата след анодиране

Престоят в кисел разтвор на мембрана от аноден алуминиев оксид без бариерен слой води до цилиндрично сечение на порите

Схематично представяне на разширяване на порите след предварително отстраняване на бариерния слой.

Предимства на нанопорестия ААО

- висока плътност на порите;
- прецизно и възпроизводимо регулиране на размера на порите;
- термична и електрична стабилност;
- висока твърдост и якост на натиск;
- широка област на оптична прозрачност;
- евтин и непретенциозен метод за получаване.

различни типове сензори (налягане, температура, концентрация, скорост и т.н.);

и микронагреватели;

• мембрани за ултра- и нанофилтрация;

• матрица за израстване на подредени нанотелчета;

□ шаблон за нанолитография;

шаблон от Al₂O₃-мембрана за нанолитография за получаване на супер решетъчни структури от Si, GaAs и GaN субстрати чрез йонно ецване.

SEM изображение на подредени наноточки от Si

Изображение от атомно-силов микроскоп на нанопорест GaAs след ецване през маска от AAO: (а) изглед от горе и (б) 3D изображение

Условия за сухо ецване:

Substrate	Si	GaAs	GaN
Gas	$CBrF_3 + CF_4$	BCl ₃	Cl ₂
Flow rate (sccm)	10+2	20	60
Pressure (mTorr)	70	15	80
Power (W)	80	100	200

Приложение:

- > проводящи изображения върху диелектрична повърхност
- различни сензори (за газ, температура, налягане и др.)
- > микронагреватели . . .

Пример: електрохимично запълване на нанопори с метал

 $M^{n+} + ne^- \rightarrow M^{\circ}$

WD: 8.527 mm Det: SE 5 μm Date(m/d/y): 07/10/13 Performance in nanospace

Det: SE Vac: HiVac 5 µm Performance in nanospace SEM MAG: 10.00 kx Date(m/d/y): 11/20/13

Performance in nanospace

Типични SEM изображения на слоеве от аноден алуминиев AAO (a) и титанов ATO (b) оксид. AAO филмът се приготвя чрез двуетапно анодиране: алуминиева пластина се анодира в 0,3 М оксалова киселина при 40 V в продължение на 3 часа, слоят от порест оксид се отстранява чрез смесен разтвор на хромова и фосфорна киселина и пластината се анодира отново за 10 ч. ATO филмът се формира при анодиращо напрежение 60 V за 16 часа

ТіО₂ - получаване

- хидротермален
- ЗОЛ-ГЕЛ
- послойно атомно отлагане
- електрохимично предимства:
 - ▶ бързо израстване,
 - ▶ възпроизводим контрол на размерите,
 - подредени нанотръбички,
 - евтин и непретенциозен метод

свободни или под форма на клъстери нанотръбички с различен размер

Електрохимичен синтез на TiO₂

- Кисели електролити (HF) до няколко стотин нанометра (15-25 V)
- Буферирани неутрални електролити (NaF, KF, NH₄F) до няколко µm
- Безводни органични полярни електролити (етиленгликол) до 1 mm (80-120 V)

Етапи на израстване на аноден ТіО₂

начален етап – плътен слой (1-2 min)

- втори етап начало на порест слой (10-15 min)
- трети етап установяване на квазистатично състояние

Процеси при формиране на ТіО₂

▶ електрохимичено разтваряне:
(A) Ti – 4e⁻ → Ti⁴⁺
(K) 4H⁺ + 4e⁻ → H₂

≻ химично разтваряне Ti + H₂O → TiO₂ + 2H₂ TiO₂ + 6F⁻ + 4H⁺ → TiF₆⁻² + 2H₂O

ДОЛУ – граница Ti/TiO₂

странично

ГОРЕ – граница ТіО₂/електролит

изглед от:

Формиране на нанопори при различна степен на диелектричния пробив

Схематична диаграма, илюстрираща образуването на нанопорьозни анодни оксиди, когато степента на локализиран диелектричен пробив е ниска (а-с), и образуването на нанотръбни анодни оксиди с ръбове между съседните тръби, когато степента на локализиран диелектричен пробив е висока (d-g). Стрелките показват потенциалните посоки на движение навътре на кислородните аниони.

[J. Mater. Chem., 2012, 22, 535–544]

- (а) ТЕМ изображения, показващи типични дъна на нанотръби от аноден TiO₂,
- (b) две съседни нанотръби с периодично разположени О-пръстени като хребети около стените,
- (с) единична нанотръба с груба външна повърхност.
- (d) SEM изображение на голяма площ от напречно сечение на нанотръбички от аноден титанов диоксид с ръбове като О-пръстени

[J. Mater. Chem., 2012, 22, 535–544]

Приложение на ТіО₂

- Фотоволтаици
- Фотокатализ
- Фотоелектролиза
- Газови сензори
- Биомедицински импланти
- батерии

Други метали

- Хафний висока химична и термична стабилност, висок отражателен индекс и относително висока диелектрична константа (50 V, 1 M H2SO4 + 0.2 wt% NaF)
- Ниобий Ni₂O₅ приложение за газови сензори, катализа, оптични и електрохромни устлойства. Дебелина до 0,5 um от 1 М H2SO4 + 1 wt% HF and 1.5% HF
- Тантал Та₂O₅ оптични устройства и защитни покрития за химични процеси,
 - ▶ от електролити на сярна и фосфорна киселина, натриев сулфат аморфен
 - ➤ ot 1 M H2SO4 + 2 wt % HF 20 V самоподреден порест оксиден слой
- Волфрам WO₃ Газови сензори, електрохромни и фотохромни процеси оксалова при 35V
- Ванадий V₂O₅ от натриев тартарат

Аноден Nb₂O₅ за преобразуване на слънчева енергия

- (a) FESEM изображение на напречно сечение на Nb_2O_5 NTs, анодирани в 1M H_2SO_4 + 1 wt% HF (10 минути, 20 V).
- (b) FESEM изображение на напречно сечение на Nb_2O_5 , анодиран в 1 wt% HF+1 M H_3PO_4 (1 h, 2.5 V).
- (c & d) Изглед отгоре и FESEM изображения на напречно сечение на порьозен Nb₂O₅, приготвен чрез анодиране-отгряване, анодизация в 1 тегл.% HF + 1 M H₃PO₄ (150 °C, 2,5 V, 2 h).

Аноден Ta_2O_5

SEM изглед отгоре на нанопорести Ta_2O_5 филми, израстнати анодно в 0,2 M NH4F, съдържащ етиленгликол 5 vol %/глицерол електролит при 20 V с различни количества (NH₄)₂SO₄: (a) 0, (b) 0,05, (c) 0,05 и (d) 0,15. (b) Преходни токове записани по време на анодирането на Та в a-d.

Фактори влияещи върху пробивното напрежение

- Природа на анодирания метал
 Zr (300 V) > Al (245 V) > Ta (200 V) > Nb (190 V)
- Електролит природа, концентрация
 $U_{\rm B}$ = A + B log $\rho_{\rm e}$
- Плътност на тока слабо влияние (500 пъти увеличение намаля до до 15%); води до увеличаване на дефектите; U_{MB} = A_{MB} + B_{MB} log j A_{MB} и B_{MB} зависят от йонния състав на електролита
- Други фактори състояние на повърхността (дефекти), температура...

Литературни източници:

- Dusan Losic, Abel Santos, Electrochemically Engineered Nanoporous Materials: Methods, Properties and Applications, Springer, Springer International Publishing Switzerland 2015, ISSN 2196-2812 (electronic), DOI 10.1007/978-3-319-20346-1
- Woo Lee, Sang-Joon Park, Porous Anodic Aluminum Oxide: Anodization and Templated Synthesis of Functional Nanostructures, Chem. Rev. 2014, 114, 7487–7556, dx.doi.org/10.1021/cr500002z
- Zixue Su, Wuzong Zhou, Feilong Jiang and Maochun Hong, Anodic formation of nanoporous and nanotubular metal oxides, J. Mater. Chem., 2012, 22, 535-544, DOI: 10.1039/c1jm13338a
- A.M.M. Jani, D. Losic, N,H. Voelcker, Nanoporous anodic aluminium oxide: Advances in surface engineering and emerging applications, Progress in Materials Science 58 (2013) 636–704