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Preface

INTENDED AUDIENCE
This is an introductory textbook for a first course in applied statistics and probability for under-

graduate students in engineering and the physical or chemical sciences. These individuals play a

significant role in designing and developing new products and manufacturing systems and pro-

cesses, and they also improve existing systems. Statistical methods are an important tool in these

activities because they provide the engineer with both descriptive and analytical methods for

dealing with the variability in observed data. Although many of the methods we present are fun-

damental to statistical analysis in other disciplines, such as business and management, the life

sciences, and the social sciences, we have elected to focus on an engineering-oriented audience.

We believe that this approach will best serve students in engineering and the chemical/physical

sciences and will allow them to concentrate on the many applications of statistics in these dis-

ciplines. We have worked hard to ensure that our examples and exercises are engineering- and

science-based, and in almost all cases we have used examples of real data—either taken from a

published source or based on our consulting experiences.

We believe that engineers in all disciplines should take at least one course in statistics. Unfor-

tunately, because of other requirements, most engineers will only take one statistics course. This

book can be used for a single course, although we have provided enough material for two courses

in the hope that more students will see the important applications of statistics in their everyday

work and elect a second course. We believe that this book will also serve as a useful reference.

We have retained the relatively modest mathematical level of the first five editions. We have

found that engineering students who have completed one or two semesters of calculus and have

some knowledge of matrix algebra should have no difficulty reading all of the text. It is our intent

to give the reader an understanding of the methodology and how to apply it, not the mathematical

theory. We have made many enhancements in this edition, including reorganizing and rewriting

major portions of the book and adding a number of new exercises.

ORGANIZATION OF THE BOOK
Perhaps the most common criticism of engineering statistics texts is that they are too long. Both

instructors and students complain that it is impossible to cover all of the topics in the book in

one or even two terms. For authors, this is a serious issue because there is great variety in both

the content and level of these courses, and the decisions about what material to delete without

limiting the value of the text are not easy. Decisions about which topics to include in this edition

were made based on a survey of instructors.

Chapter 1 is an introduction to the field of statistics and how engineers use statistical method-

ology as part of the engineering problem-solving process. This chapter also introduces the reader

to some engineering applications of statistics, including building empirical models, designing

engineering experiments, and monitoring manufacturing processes. These topics are discussed in

more depth in subsequent chapters.

Chapters 2, 3, 4, and 5 cover the basic concepts of probability, discrete and continuous

random variables, probability distributions, expected values, joint probability distributions, and

independence. We have given a reasonably complete treatment of these topics but have avoided

many of the mathematical or more theoretical details.

Chapter 6 begins the treatment of statistical methods with random sampling; data summary

and description techniques, including stem-and-leaf plots, histograms, box plots, and probability

plotting; and several types of time series plots. Chapter 7 discusses sampling distributions, the
iv
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central limit theorem, and point estimation of parameters. This chapter also introduces some of the

important properties of estimators, the method of maximum likelihood, the method of moments,

and Bayesian estimation.

Chapter 8 discusses interval estimation for a single sample. Topics included are confidence

intervals for means, variances or standard deviations, proportions, prediction intervals, and tol-

erance intervals. Chapter 9 discusses hypothesis tests for a single sample. Chapter 10 presents

tests and confidence intervals for two samples. This material has been extensively rewritten and

reorganized. There is detailed information and examples of methods for determining appropriate

sample sizes. We want the student to become familiar with how these techniques are used to solve

real-world engineering problems and to get some understanding of the concepts behind them. We

give a logical, heuristic development of the procedures rather than a formal, mathematical one.

We have also included some material on nonparametric methods in these chapters.

Chapters 11 and 12 present simple and multiple linear regression including model adequacy

checking and regression model diagnostics and an introduction to logistic regression. We use

matrix algebra throughout the multiple regression material (Chapter 12) because it is the only easy

way to understand the concepts presented. Scalar arithmetic presentations of multiple regression

are awkward at best, and we have found that undergraduate engineers are exposed to enough

matrix algebra to understand the presentation of this material.

Chapters 13 and 14 deal with single- and multifactor experiments, respectively. The notions

of randomization, blocking, factorial designs, interactions, graphical data analysis, and fractional

factorials are emphasized. Chapter 15 introduces statistical quality control, emphasizing the con-

trol chart and the fundamentals of statistical process control.

WHAT’S NEW IN THIS EDITION
It is highly gratifying that the sixth edition of the text was the most widely used edition in its

history. For this seventh edition, we focused on revisions and enhancements aimed at lowering
costs to the students, better engaging them in the learning process, and providing increased
support for instructors.

Lower-Cost Product Formats
According to the publishing industry’s most trusted market research firm, Outsell, 2015 repre-

sented a turning point in text usage: for the first time, student preference for digital learning materi-

als was higher than for print, and the increase in preference for digital has been accelerating since.

While print remains important for many students as a pedagogical tool, the seventh edition

is being delivered in forms that emphasize support for learning from digital materials. All forms
we are providing dramatically reduce the cost to students compared to the sixth edition. These

forms are:

• WileyPLUS stand-alone. The WileyPLUS course incorporates the full text and delivers a

wealth of integrated, interactive learning aids. See the detailed list of the learning aids below.

• Stand-alone e-text now with significant enhancements. The e-text format for the seventh

edition adds approximately 100 practice problems with solutions, several hundred basic

“Check Your Understanding” exercises for student self-quizzing, and all of the videos

included in the WileyPLUS course.

• The two electronic formats listed above can be bundled with an Abridged Print Companion
that includes a loose-leaf copy of the entire text minus the exercises for a nominal additional

cost over the any of the value-priced forms listed above.

To explore these options further or to discuss other options, contact your Wiley account manager

(www.wiley.com/go/whosmyrep) or visit the product information page for this text on wiley.com.

Instructors may also order bound print companions for the bundled package by contacting their

Wiley account representative.

http://wiley.com
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Meticulous Ensuring of Accuracy
There is always room for improvement in this area for richly mathematical texts. We appreciate

the input of sixth edition adopters and made achieving the greatest possible accuracy of every

element of the seventh edition a very high-priority objective. We have been rigorous in review-

ing the retained and new content in the text and reviewing and testing the gradable exercises in

the WileyPLUS course. We thank the colleagues whom Wiley engaged to execute these activi-

ties: (1) the entire text, including all exposition, examples, exercises, and answers have been read

and checked for accuracy, including calculations; (2) answers and solutions to all exercises have

been checked via independent solution of problems; (3) all questions and exercises in the Wiley-

PLUS course have been checked with a focus on verifying the answers, correcting any conflicting

input instructions, and improving the precision of the numerical answers.

Increased Support for Student Engagement
The rapidly increasing use of approaches like flipped classrooms and online course delivery has

motivated us to enhance the features for student self-study, especially those that can better engage
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students. The following new and expanded interactive features are available in both the Wiley-

PLUS course and the interactive e-text:

• Video-based examples and problem walk-throughs. There are now over 100 video solutions

and about 40 example videos.

• Check Your Understanding exercises are placed at the end of each appropriate section in

the WileyPLUS e-text. These simple practice exercises allow students to test whether they

comprehend the material they have just read. They can also be used, if the instructor prefers,

to assess student readiness to apply concepts and techniques. The program contains over 600

Check Your Understanding questions.

Greater Selection of Assignable Exercises
The seventh edition contains over 1800 exercises, an increase of about 25%. Over 1100 of these

exercises are available to the students and appear in the instructor desk copy, e-text version of the

text, and about 750 of these exercises have been reserved for instructors in WileyPlus. The e-text

and WileyPLUS versions have also added about 300 new exercises to the Check Your Under-

standing program that consists of about 600 questions. These questions are integrated into the

appropriate point in the text exposition to provide students with the ability to test their compre-

hension of the material just presented before proceeding. In the WileyPLUS course the Check

Your Understanding exercises are assignable, enabling instructors to assess student readiness.

Instructor-Only and Algorithmic Exercises
for More Exercise Security
The wide and inexpensive availability of solutions to all published textbook problems has added

a huge challenge for instructors looking to assess learning. Wiley is embarking on a comprehen-

sive strategy to provide original and reconfigured problems that can decrease the proliferation of

problem solutions on the Web. As a first step in this direction, the instructor evaluation/desk copy

of this text includes about 750 problems that are reserved for the instructor only—they do not
appear in the student version. These problems are provided in the instructor desk copy for easy

reference. All of these reserved questions appear as assignable problems in WileyPLUS. About

40% of these problems are entirely brand new. The other 60% of these problems have been revised

from earlier editions and are now only available as assignable problems. The WileyPLUS course

also features algorithmic homework problems, machine-gradable problems in which each student

has unique values for key variables.

Exercises Collected in the Back of the Book
in Instructor Desk Copy
Many instructors have requested that we curtail the practice of frequent revisions of the text.

At the same time, the demand for fresh and new problems among instructors is quite high. The

exercises in the seventh edition are collected in the back of the instructor desk copy as well as the

student e-text and WileyPLUS e-text. We have done this in effort to be able to generate entirely

new problem collections that can be adopted without altering the contents of the book. We expect

that revisions going forward will be confined largely to expansion of learning aids in the digital

forms of the text and updates of the problems and to elongate the life of the print text.

STUDENT RESOURCES
• Data Sets Data sets for all examples and exercises in the text. Visit the student section of the

book Web site at www.wiley.com/college/montgomery to access these materials.

http://www.wiley.com/college/montgomery
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INSTRUCTOR RESOURCES
The following resources are available only to instructors who adopt the text:

• Solutions Manual All solutions to the exercises in the text.

• Data Sets Data sets for all examples and exercises in the text.

• Image Gallery of Text Figures
• Section on Logistic Regression

These instructor-only resources are password-protected. Visit the instructor section of the book

Web site at www.wiley.com/college/montgomery to register for a password to access these

materials.

COMPUTER SOFTWARE
We have used several different packages, including Excel, to demonstrate computer usage.

Minitab can be used for most exercises. A student version of Minitab is available as an option to

purchase in a set with this text. Student versions of software often do not have all the functionality

that full versions do. Consequently, student versions may not support all the concepts presented

in this text. If you would like to adopt for your course the set of this text with the student version

of Minitab, please contact your local Wiley representative at www.wiley.com/college/rep.

Alternatively, students may find information about how to purchase the professional version

of the software for academic use at www.minitab.com.

WileyPLUS
This online teaching and learning environment integrates the entire digital textbook with the

most effective instructor and student resources to fit every learning style.

With WileyPLUS:

• Students achieve concept mastery in a rich, structured environment that’s available 24/7.

• Instructors personalize and manage their course more effectively with assessment, assign-

ments, grade tracking, and more.

WileyPLUS can complement your current textbook or replace the printed text altogether.

For Students Personalize the learning experience
Different learning styles, different levels of proficiency, different levels of preparation—each

of your students is unique. WileyPLUS empowers them to take advantage of their individual

strengths:

• Students receive timely access to resources that address their demonstrated needs, and get

immediate feedback and remediation when needed.

• Integrated, multi-media resources—including audio and visual exhibits, demonstration prob-

lems, and much more—provide multiple study-paths to fit each student’s learning preferences

and encourage more active learning.

• WileyPLUS includes many opportunities for self-assessment linked to the relevant portions

of the text. Students can take control of their own learning and practice until they master the

material.

http://www.wiley.com/college/montgomery
http://www.wiley.com/college/rep
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For Instructors Personalize the teaching experience
WileyPLUS empowers you with the tools and resources you need to make your teaching even

more effective:

• You can customize your classroom presentation with a wealth of resources and functionality

from PowerPoint slides to a database of rich visuals. You can even add your own materials

to your WileyPLUS course.

• With WileyPLUS you can identify those students who are falling behind and intervene

accordingly, without having to wait for them to come to office hours.

• WileyPLUS simplifies and automates such tasks as student performance assessment, making

assignments, scoring student work, keeping grades, and more.

COURSE SYLLABUS SUGGESTIONS
This is a very flexible textbook because instructors’ ideas about what should be in a first course on

statistics for engineers vary widely, as do the abilities of different groups of students. Therefore,

we hesitate to give too much advice, but will explain how we use the book.

We believe that a first course in statistics for engineers should be primarily an applied statis-

tics course, not a probability course. In our one-semester course we cover all of Chapter 1 (in

one or two lectures); overview the material on probability, putting most of the emphasis on the

normal distribution (six to eight lectures); discuss most of Chapters 6 through 10 on confidence

intervals and tests (twelve to fourteen lectures); introduce regression models in Chapter 11 (four

lectures); give an introduction to the design of experiments from Chapters 13 and 14 (six lectures);

and present the basic concepts of statistical process control, including the Shewhart control chart

from Chapter 15 (four lectures). This leaves about three to four periods for exams and review.

Let us emphasize that the purpose of this course is to introduce engineers to how statistics can

be used to solve real-world engineering problems, not to weed out the less mathematically gifted

students. This course is not the “baby math-stat” course that is all too often given to engineers.

If a second semester is available, it is possible to cover the entire book, including much of

the supplemental material, if appropriate for the audience. It would also be possible to assign and

work many of the homework problems in class to reinforce the understanding of the concepts.

Obviously, multiple regression and more design of experiments would be major topics in a second

course.

USING THE COMPUTER
In practice, engineers use computers to apply statistical methods to solve problems. Therefore, we

strongly recommend that the computer be integrated into the class. Throughout the book we have

presented typical example of the output that can be obtained with modern statistical software.

In teaching, we have used a variety of software packages, including Minitab, Statgraphics, JMP,

and Statistica. We did not clutter up the book with operational details of these different packages

because how the instructor integrates the software into the class is ultimately more important than

which package is used. All text data are available in electronic form on the textbook Web site. We

have marked these problems with a special icon in the margin.

In our own classrooms, we use the computer in almost every lecture and demonstrate how the

technique is implemented in software as soon as it is discussed in the lecture. Many educational

institutions have file licenses for statistics software and students can access it for class use. Student

versions of many statistical software packages are available at low cost, and students can either

purchase their own copy or use the products available through the institution. We have found that

greatly improves the pace of the course and student understanding of the material.

Users should be aware that final answers may differ slightly due to different numerical pre-

cision and rounding protocols among softwares.
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C H A P T E R O U T L I N E

1.1 The Engineering Method and

Statistical Thinking

1.1.1 Variability

1.1.2 Populations and Samples

1.2 Collecting Engineering Data

1.2.1 Basic Principles

1.2.2 Retrospective Study

1.2.3 Observational Study

1.2.4 Designed Experiments

1.2.5 Observing Processes Over Time

1.3 Mechanistic and Empirical Models

1.4 Probability and Probability Models

L E A R N I N G O B J E C T I V E S

After careful study of this chapter, you should be able to do the

following:

1. Identify the role that statistics can play in the engineering

problem-solving process

2. Discuss how variability affects the data collected and used for

making engineering decisions

3. Explain the difference between enumerative and analytical

studies

4. Discuss the different methods that engineers use to collect

data

5. Identify the advantages that designed experiments have in

comparison to other methods of collecting engineering data

6. Explain the differences between mechanistic models and

empirical models

7. Discuss how probability and probability models are used in

engineering and science

1
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Statistics is a science that helps us make decisions and draw conclusions in the presence of

variability. For example, civil engineers working in the transportation field are concerned about

the capacity of regional highway systems. A typical problem related to transportation would

involve data regarding this specific system’s number of nonwork, home-based trips, the number

of persons per household, and the number of vehicles per household. The objective would be

to produce a trip-generation model relating trips to the number of persons per household and

the number of vehicles per household. A statistical technique called regression analysis can be

used to construct this model. The trip-generation model is an important tool for transportation

systems planning. Regression methods are among the most widely used statistical techniques in

engineering. They are presented in Chapters 11 and 12.

The hospital emergency department (ED) is an important part of the healthcare delivery

system. The process by which patients arrive at the ED is highly variable and can depend on the

hour of the day and the day of the week, as well as on longer-term cyclical variations. The service

process is also highly variable, depending on the types of services that the patients require, the

number of patients in the ED, and how the ED is staffed and organized. An ED’s capacity is

also limited; consequently, some patients experience long waiting times. How long do patients

wait, on average? This is an important question for healthcare providers. If waiting times become

excessive, some patients will leave without receiving treatment (LWOT). Patients who LWOT do

not have their medical concerns addressed and are at risk for further problems and complications.

Therefore, another important question is: What proportion of patients LWOT from the ED? These

questions can be solved by employing probability models to describe the ED, and from these

models very precise estimates of waiting times and the number of patients who LWOT can be

obtained. Probability models that can be used to solve these types of problems are discussed in

Chapters 2 through 5.

The concepts of probability and statistics are powerful ones and contribute extensively to

the solutions of many types of engineering problems. You encounter many examples of these

applications in this book.

1.1 The Engineering Method

and Statistical Thinking
An engineer is someone who solves problems of interest to society by the efficient application

of scientific principles. Engineers accomplish this by either refining an existing product or proc-

ess or by designing a new product or process that meets customers’ needs. The engineering, or

scientific, method is the approach to formulating and solving these problems. The steps in the

engineering method are as follows:

1. Develop a clear and concise description of the problem.

2. Identify, at least tentatively, the important factors that affect this problem or that may play a

role in its solution.

3. Propose a model for the problem, using scientific or engineering knowledge of the phe-

nomenon being studied. State any limitations or assumptions of the model.

4. Conduct appropriate experiments and collect data to test or validate the tentative model or

conclusions made in steps 2 and 3.

5. Refine the model on the basis of the observed data.

6. Manipulate the model to assist in developing a solution to the problem.
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FIGURE 1.1 The engineering method.

7. Conduct an appropriate experiment to confirm that the proposed solution to the problem is

both effective and efficient.

8. Draw conclusions or make recommendations based on the problem solution.

The steps in the engineering method are shown in Figure 1.1. Many engineering sciences employ

the engineering method: the mechanical sciences (statics, dynamics), fluid science, thermal sci-

ence, electrical science, and the science of materials. Notice that the engineering method features

a strong interplay among the problem, the factors that may influence its solution, a model of the

phenomenon, and experimentation to verify the adequacy of the model and the proposed solution

to the problem. Steps 2–4 in Figure 1.1 are enclosed in a box, indicating that several cycles or

iterations of these steps may be required to obtain the final solution. Consequently, engineers

must know how to efficiently plan experiments, collect data, analyze and interpret the data,

and understand how the observed data relate to the model they have proposed for the problem

under study.

The field of statistics deals with the collection, presentation, analysis, and use of data to

make decisions, solve problems, and design products and processes. In simple terms, statistics
is the science of data. Because many aspects of engineering practice involve working with data,

obviously knowledge of statistics is just as important to an engineer as are the other engineer-

ing sciences. Specifically, statistical techniques can be powerful aids in designing new products

and systems, improving existing designs, and designing, developing, and improving production

processes.

1.1.1 Variability
Statistical methods are used to help us describe and understand variability. By variability, we

mean that successive observations of a system or phenomenon do not produce exactly the same

result. We all encounter variability in our everyday lives, and statistical thinking can give us a

useful way to incorporate this variability into our decision-making processes. For example, con-

sider the gasoline mileage performance of your car. Do you always get exactly the same mileage

performance on every tank of fuel? Of course not—in fact, sometimes the mileage performance

varies considerably. This observed variability in gasoline mileage depends on many factors, such

as the type of driving that has occurred most recently (city versus highway), the changes in the

vehicle’s condition over time (which could include factors such as tire inflation, engine compres-

sion, or valve wear), the brand and/or octane number of the gasoline used, or possibly even the

weather conditions that have been recently experienced. These factors represent potential sources
of variability in the system. Statistics provides a framework for describing this variability and

for learning about which potential sources of variability are the most important or which have the

greatest impact on the gasoline mileage performance.
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The following example illustrates how we encounter variability in dealing with engineering

problems.

E X A M P L E 1.1 Pull-off Force Variability

Suppose that an engineer is designing a nylon connector to be

used in an automotive engine application. The engineer is con-

sidering establishing the design specification on wall thickness

at 3∕32 inch but is somewhat uncertain about the effect of this

decision on the connector pull-off force. If the pull-off force

is too low, the connector may fail when it is installed in an

engine. Eight prototype units are produced and their pull-off

forces measured, resulting in the following data (in pounds):

12.6, 12.9, 13.4, 12.3, 13.6, 13.5, 12.6, 13.1. As we antici-

pated, not all of the prototypes have the same pull-off force. We

say that there is variability in the pull-off force measurements.

Because the pull-off force measurements exhibit variability, we consider the pull-off force to

be a random variable. A convenient way to think of a random variable, say X, that represents a

measurement is by using the model

X = μ + ϵ (1.1)

where μ is a constant and ϵ is a random disturbance. The constant remains the same with every

measurement, but small changes in the environment, variance in test equipment, differences in

the individual parts themselves, and so forth change the value of ϵ. If there were no disturbances,

ϵ would always equal zero and X would always be equal to the constant μ. However, this never

happens in the real world, so the actual measurements X exhibit variability. We often need to

describe, quantify, and ultimately reduce variability.

Figure 1.2 presents a dot diagram of these data. The dot diagram is a very useful plot for

displaying a small body of data—say, up to about 20 observations. This plot allows us to easily

see two features of the data: the location, or the middle, and the scatter or variability. When

the number of observations is small, it is usually difficult to identify any specific patterns in the

variability, although the dot diagram is a convenient way to see any unusual data features.

The need for statistical thinking arises often in the solution of engineering problems.

Consider the engineer designing the connector. From testing the prototypes, he knows that

the average pull-off force is 13.0 pounds. However, he thinks that this may be too low for

the intended application, so he decides to consider an alternative design with a thicker wall,

1∕8 inch in thickness. Eight prototypes of this design are built, and the observed pull-off force

measurements are 12.9, 13.7, 12.8, 13.9, 14.2, 13.2, 13.5, and 13.1. The average is 13.4. Results

for both samples are plotted as dot diagrams in Figure 1.3. This display gives the impression

that increasing the wall thickness has led to an increase in pull-off force. However, there are

some obvious questions to ask. For instance, how do we know that another sample of prototypes

will not give different results? Is a sample of eight prototypes adequate to give reliable results?

If we use the test results obtained so far to conclude that increasing the wall thickness increases

the strength, what risks are associated with this decision? For example, is it possible that the

apparent increase in pull-off force observed in the thicker prototypes is due only to the inherent

variability in the system and that increasing the thickness of the part (and its cost) really has no

effect on the pull-off force?

12 1413 15

Pull-off force

FIGURE 1.2

Dot diagram of the pull-off force data
when wall thickness is 3∕32 inch.
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Pull-off force
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8
=

FIGURE 1.3

Dot diagram of pull-off force for two wall thicknesses.
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1.1.2 Populations and Samples
Often, physical laws (such as Ohm’s law and the ideal gas law) are applied to help design products

and processes. We are familiar with this reasoning from general laws to specific cases. But it is

also important to reason from a specific set of measurements to more general cases to answer

the previous questions. This reasoning comes from a sample (such as the eight connectors) to

a population (such as the connectors that will be in the products that are sold to customers).

The reasoning is referred to as statistical inference. See Figure 1.4. Historically, measurements

were obtained from a sample of people and generalized to a population, and the terminology has

remained. Clearly, reasoning based on measurements from some objects to measurements on all

objects can result in errors (called sampling errors). However, if the sample is selected properly,

these risks can be quantified and an appropriate sample size can be determined.

1.2 Collecting Engineering Data

1.2.1 Basic Principles
In the previous subsection, we illustrated some simple methods for summarizing data. Sometimes

the data are all of the observations in the population. This results in a census. However, in the

engineering environment, the data are almost always a sample that has been selected from the

population. Three basic methods of collecting data are

• A retrospective study using historical data

• An observational study
• A designed experiment

An effective data-collection procedure can greatly simplify the analysis and lead to improved

understanding of the population or process that is being studied. We now consider some examples

of these data-collection methods.

1.2.2 Retrospective Study
Montgomery, Peck, and Vining (2012) describe an acetone-butyl alcohol distillation column for

which concentration of acetone in the distillate (the output product stream) is an important vari-

able. Factors that may affect the distillate are the reboil temperature, the condensate temperature,

and the reflux rate. Production personnel obtain and archive the following records:

• The concentration of acetone in an hourly test sample of output product

• The reboil temperature log, which is a record of the reboil temperature over time

• The condenser temperature controller log

• The nominal reflux rate each hour

Physical

laws

Types of

reasoning

Product

designs

Population

Statistical inference

Sample FIGURE 1.4

Statistical inference is one type of reasoning.



�

� �

�

6 CHAPTER 1 The Role of Statistics in Engineering

The reflux rate should be held constant for this process. Consequently, production personnel

change this very infrequently.

A retrospective study would use either all or a sample of the historical process data archived

over some period of time. The study objective might be to discover the relationships among the

two temperatures and the reflux rate on the acetone concentration in the output product stream.

However, this type of study presents some problems:

1. We may not be able to see the relationship between the reflux rate and acetone concentration

because the reflux rate did not change much over the historical period.

2. The archived data on the two temperatures (which are recorded almost continuously) do not

correspond perfectly to the acetone concentration measurements (which are made hourly).

It may not be obvious how to construct an approximate correspondence.

3. Production maintains the two temperatures as closely as possible to desired targets or set

points. Because the temperatures change so little, it may be difficult to assess their real impact

on acetone concentration.

4. In the narrow ranges within which they do vary, the condensate temperature tends to increase

with the reboil temperature. Consequently, the effects of these two process variables on ace-

tone concentration may be difficult to separate.

As you can see, a retrospective study may involve a significant amount of data, but those data

may contain relatively little useful information about the problem. Furthermore, some of the

relevant data may be missing, there may be transcription or recording errors resulting in outliers
(or unusual values), or data on other important factors may not have been collected and archived.

In the distillation column, for example, the specific concentrations of butyl alcohol and ace-

tone in the input feed stream are very important factors, but they are not archived because the

concentrations are too hard to obtain on a routine basis. As a result of these types of issues, statis-

tical analysis of historical data sometimes identifies interesting phenomena, but solid and reliable

explanations of these phenomena are often difficult to obtain.

1.2.3 Observational Study
In an observational study, the engineer observes the process or population, disturbing it as little as

possible, and records the quantities of interest. Because these studies are usually conducted for a

relatively short time period, sometimes variables that are not routinely measured can be included.

In the distillation column, the engineer would design a form to record the two temperatures and

the reflux rate when acetone concentration measurements are made. It may even be possible to

measure the input feed stream concentrations so that the impact of this factor could be studied.

Generally, an observational study tends to solve problems 1 and 2 and goes a long way

toward obtaining accurate and reliable data. However, observational studies may not help resolve

problems 3 and 4 .

1.2.4 Designed Experiments
In a designed experiment, the engineer makes deliberate or purposeful changes in the controllable

variables of the system or process, observes the resulting system output data, and then makes an

inference or decision about which variables are responsible for the observed changes in output

performance. The nylon connector example in Section 1.1 illustrates a designed experiment; that

is, a deliberate change was made in the connector’s wall thickness with the objective of discover-

ing whether or not a stronger pull-off force could be obtained. Experiments designed with basic

principles such as randomization are needed to establish cause-and-effect relationships.

Much of what we know in the engineering and physical-chemical sciences is developed

through testing or experimentation. Often engineers work in problem areas in which no scientific
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or engineering theory is directly or completely applicable, so experimentation and observation

of the resulting data constitute the only way that the problem can be solved. Even when there is

a good underlying scientific theory that we may rely on to explain the phenomena of interest, it

is almost always necessary to conduct tests or experiments to confirm that the theory is indeed

operative in the situation or environment in which it is being applied. Statistical thinking and

statistical methods play an important role in planning, conducting, and analyzing the data from

engineering experiments. Designed experiments play a very important role in engineering design

and development and in the improvement of manufacturing processes.

For example, consider the problem involving the choice of wall thickness for the nylon

connector. This is a simple illustration of a designed experiment. The engineer chose two wall

thicknesses for the connector and performed a series of tests to obtain pull-off force measurements

at each wall thickness. In this simple comparative experiment, the engineer is interested in deter-

mining whether there is any difference between the 3∕32- and 1∕8-inch designs. An approach

that could be used in analyzing the data from this experiment is to compare the mean pull-off

force for the 3∕32-inch design to the mean pull-off force for the 1∕8-inch design using statistical

hypothesis testing, which is discussed in detail in Chapters 9 and 10. Generally, a hypothesis
is a statement about some aspect of the system in which we are interested. For example, the

engineer might want to know if the mean pull-off force of a 3∕32-inch design exceeds the typi-

cal maximum load expected to be encountered in this application, say, 12.75 pounds. Thus, we

would be interested in testing the hypothesis that the mean strength exceeds 12.75 pounds. This is

called a single-sample hypothesis-testing problem. Chapter 9 presents techniques for this type

of problem. Alternatively, the engineer might be interested in testing the hypothesis that increas-

ing the wall thickness from 3∕32 to 1∕8 inch results in an increase in mean pull-off force. It is an

example of a two-sample hypothesis-testing problem. Two-sample hypothesis-testing problems

are discussed in Chapter 10.

Designed experiments offer a very powerful approach to studying complex systems, such

as the distillation column. This process has three factors—the two temperatures and the reflux

rate—and we want to investigate the effect of these three factors on output acetone concentra-

tion. A good experimental design for this problem must ensure that we can separate the effects

of all three factors on the acetone concentration. The specified values of the three factors used

in the experiment are called factor levels. Typically, we use a small number of levels such as

two or three for each factor. For the distillation column problem, suppose that we use two levels,

“high” and “low” (denoted +1 and −1, respectively), for each of the three factors. A very rea-

sonable experiment design strategy uses every possible combination of the factor levels to form

a basic experiment with eight different settings for the process. This type of experiment is called

a factorial experiment. See Table 1.1 for this experimental design.

T A B L E 1.1 The Designed Experiment (Factorial Design) for the Distillation Column

Reboil Temp. Condensate Temp. Reflux Rate

−1 −1 −1

+1 −1 −1

−1 +1 −1

+1 +1 −1

−1 −1 +1

+1 −1 +1

−1 +1 +1

+1 +1 +1
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FIGURE 1.5

The factorial design for the distillation column.
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Figure 1.5 illustrates that this design forms a cube in terms of these high and low levels.

With each setting of the process conditions, we allow the column to reach equilibrium, take a

sample of the product stream, and determine the acetone concentration. We then can draw specific

inferences about the effect of these factors. Such an approach allows us to proactively study a

population or process.

An important advantage of factorial experiments is that they allow one to detect an

interaction between factors. Consider only the two temperature factors in the distillation

experiment. Suppose that the response concentration is poor when the reboil temperature is low,

regardless of the condensate temperature. That is, the condensate temperature has no effect when

the reboil temperature is low. However, when the reboil temperature is high, a high condensate

temperature generates a good response, but a low condensate temperature generates a poor

response. That is, the condensate temperature changes the response when the reboil temperature

is high. The effect of condensate temperature depends on the setting of the reboil temperature,

and these two factors are said to interact in this case. If the four combinations of high and low
reboil and condensate temperatures were not tested, such an interaction would not be detected.

We can easily extend the factorial strategy to more factors. Suppose that the engineer wants

to consider a fourth factor, type of distillation column. There are two types: the standard one and a

newer design. Figure 1.6 illustrates how all four factors—reboil temperature, condensate temper-

ature, reflux rate, and column design—could be investigated in a factorial design. Because all four

factors are still at two levels, the experimental design can still be represented geometrically as a

cube (actually, it’s a hypercube). Notice that as in any factorial design, all possible combinations

of the four factors are tested. The experiment requires 16 trials.

Generally, if there are k factors and each has two levels, a factorial experimental design

will require 2k runs. For example, with k = 4, the 24 design in Figure 1.6 requires 16 tests.

Clearly, as the number of factors increases, the number of trials required in a factorial experiment

increases rapidly; for instance, eight factors each at two levels would require 256 trials. This

quickly becomes unfeasible from the viewpoint of time and other resources. Fortunately, with

four to five or more factors, it is usually unnecessary to test all possible combinations of factor

levels. A fractional factorial experiment is a variation of the basic factorial arrangement

in which only a subset of the factor combinations is actually tested. Figure 1.7 shows a frac-

tional factorial experimental design for the distillation column. The circled test combinations

in this figure are the only test combinations that need to be run. This experimental design
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FIGURE 1.6 A four-factorial experiment for the distillation column.
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FIGURE 1.7 A fractional factorial experiment for the distillation column.

requires only 8 runs instead of the original 16; consequently it would be called a one-half
fraction. This is an excellent experimental design in which to study all four factors. It will

provide good information about the individual effects of the four factors and some information

about how these factors interact.

Factorial and fractional factorial experiments are used extensively by engineers and scien-

tists in industrial research and development, where new technology, products, and processes are

designed and developed and where existing products and processes are improved. Since so much

engineering work involves testing and experimentation, it is essential that all engineers understand

the basic principles of planning efficient and effective experiments. We discuss these principles

in Chapter 13. Chapter 14 concentrates on the factorial and fractional factorials that we have

introduced here.

1.2.5 Observing Processes Over Time
Often data are collected over time. In this case, it is usually very helpful to plot the data versus

time in a time series plot. Phenomena that might affect the system or process often become more

visible in a time-oriented plot and the concept of stability can be better judged.

Figure 1.8 is a dot diagram of acetone concentration readings taken hourly from the distilla-

tion column described in Section 1.2.2. The large variation displayed on the dot diagram indicates

considerable variability in the concentration, but the chart does not help explain the reason for the

variation. The time series plot is shown in Figure 1.9. A shift in the process mean level is visible

in the plot and an estimate of the time of the shift can be obtained.

W. Edwards Deming, a very influential industrial statistician, stressed that it is important

to understand the nature of variability in processes and systems over time. He conducted an

80.5 87.584.0 91.0 94.5 98.0
x

Acetone concentration

FIGURE 1.8

The dot diagram illustrates variation but does not identify
the problem.
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FIGURE 1.9

A time series plot of concentration provides more
information than the dot diagram.
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FIGURE 1.10

Deming’s funnel experiment. Target Marbles

experiment in which he attempted to drop marbles as close as possible to a target on a table.

He used a funnel mounted on a ring stand and the marbles were dropped into the funnel.

See Figure 1.10. The funnel was aligned as closely as possible with the center of the target.

He then used two different strategies to operate the process. (1) He never moved the funnel. He

just dropped one marble after another and recorded the distance from the target. (2) He dropped

the first marble and recorded its location relative to the target. He then moved the funnel an equal

and opposite distance in an attempt to compensate for the error. He continued to make this type

of adjustment after each marble was dropped.

After both strategies were completed, he noticed that the variability of the distance from the

target for strategy 2 was approximately twice as large than for strategy 1. The adjustments to the

funnel increased the deviations from the target. The explanation is that the error (the deviation of

the marble’s position from the target) for one marble provides no information about the error that

will occur for the next marble. Consequently, adjustments to the funnel do not decrease future

errors. Instead, they tend to move the funnel farther from the target.

This interesting experiment points out that adjustments to a process based on random dis-

turbances can actually increase the variation of the process. This is referred to as overcontrol
or tampering. Adjustments should be applied only to compensate for a nonrandom shift in the

process—then they can help. A computer simulation can be used to demonstrate the lessons of the

funnel experiment. Figure 1.11 displays a time plot of 100 measurements (denoted as y) from a

process in which only random disturbances are present. The target value for the process is 10 units.

The figure displays the data with and without adjustments that are applied to the process mean

in an attempt to produce data closer to target. Each adjustment is equal and opposite to the devi-

ation of the previous measurement from target. For example, when the measurement is 11 (one

unit above target), the mean is reduced by one unit before the next measurement is generated.

The overcontrol increases the deviations from the target.

Without adjustment

With adjustment

0
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8
y
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12

14

16

1 11 21 31 41 51 61 71 81 91

Observation number

FIGURE 1.11 Adjustments applied to random disturbances overcontrol the process and increase
the deviations from target.
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Without adjustment

With adjustment
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Observation number

Process mean shift

is detected.

FIGURE 1.12 Process mean shift is detected at observation number 57, and one adjustment
(a decrease of two units) reduces the deviations from target.

Figure 1.12 displays the data without adjustment from Figure 1.11, except that the measure-

ments after observation number 50 are increased by two units to simulate the effect of a shift in

the mean of the process. When there is a true shift in the mean of a process, an adjustment can

be useful. Figure 1.12 also displays the data obtained when one adjustment (a decrease of two

units) is applied to the mean after the shift is detected (at observation number 57). Note that this

adjustment decreases the deviations from target.

The question of when to apply adjustments (and by what amounts) begins with an under-

standing of the types of variation that affect a process. The use of a control chart is an invaluable

way to examine the variability in time-oriented data. Figure 1.13 presents a control chart for the

concentration data from Figure 1.9. The center line on the control chart is just the average of

the concentration measurements for the first 20 samples (x = 91.5 g∕l) when the process is sta-

ble. The upper control limit and the lower control limit are a pair of statistically derived limits

that reflect the inherent or natural variability in the process. These limits are located 3 standard

deviations of the concentration values above and below the center line. If the process is operating

as it should without any external sources of variability present in the system, the concentration

measurements should fluctuate randomly around the center line, and almost all of them should

fall between the control limits.

In the control chart of Figure 1.13, the visual frame of reference provided by the center line

and the control limits indicates that some upset or disturbance has affected the process around

sample 20 because all of the following observations are below the center line, and two of them

actually fall below the lower control limit. This is a very strong signal that corrective action

is required in this process. If we can find and eliminate the underlying cause of this upset, we

can improve process performance considerably. Thus control limits serve as decision rules about

actions that could be taken to improve the process.

Furthermore, Deming pointed out that data from a process are used for different types of con-

clusions. Sometimes we collect data from a process to evaluate current production. For example,

we might sample and measure resistivity on three semiconductor wafers selected from a lot and

use this information to evaluate the lot. This is called an enumerative study. However, in many

cases, we use data from current production to evaluate future production. We apply conclusions

to a conceptual, future population. Deming called this an analytic study. Clearly this requires

an assumption of a stable process, and Deming emphasized that control charts were needed to

justify this assumption. See Figure 1.14 as an illustration.
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FIGURE 1.13

A control chart for the chemical process
concentration data.
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FIGURE 1.14

Enumerative versus analytic study.

The use of control charts is a very important application of statistics for monitoring, control-

ling, and improving a process. The branch of statistics that makes use of control charts is called

statistical process control, or SPC. We discuss SPC and control charts in Chapter 15.

1.3 Mechanistic and Empirical Models
Models play an important role in the analysis of nearly all engineering problems. Much of the

formal education of engineers involves learning about the models relevant to specific fields and the

techniques for applying these models in problem formulation and solution. As a simple example,

suppose that we are measuring the flow of current in a thin copper wire. Our model for this

phenomenon might be Ohm’s law:

Current = Voltage∕Resistance

or

I = E∕R (1.2)

We call this type of model a mechanistic model because it is built from our underlying knowl-

edge of the basic physical mechanism that relates these variables. However, if we performed this

measurement process more than once, perhaps at different times, or even on different days, the

observed current could differ slightly because of small changes or variations in factors that are not

completely controlled, such as changes in ambient temperature, fluctuations in performance of the

gauge, small impurities present at different locations in the wire, and drifts in the voltage source.

Consequently, a more realistic model of the observed current might be

I = E∕R + ϵ (1.3)

where ϵ is a term added to the model to account for the fact that the observed values of current

flow do not perfectly conform to the mechanistic model. We can think of ϵ as a term that includes

the effects of all unmodeled sources of variability that affect this system.

Sometimes engineers work with problems for which no simple or well-understood mechanis-

tic model explains the phenomenon. For instance, suppose that we are interested in the number

average molecular weight (Mn) of a polymer. Now we know that Mn is related to the viscosity

of the material (V), and it also depends on the amount of catalyst (C) and the temperature (T) in

the polymerization reactor when the material is manufactured. The relationship between Mn and

these variables is

Mn = f (V ,C,T) (1.4)
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say, where the form of the function f is unknown. Perhaps a working model could be developed

from a first-order Taylor series expansion, which would produce a model of the form

Mn = β0 + β1V + β2C + β3T (1.5)

where the β’s are unknown parameters. Now just as in Ohm’s law, this model will not exactly

describe the phenomenon, so we should account for the other sources of variability that may

affect the molecular weight by adding another term to the model; therefore,

Mn = β0 + β1V + β2C + β3T + ϵ (1.6)

is the model that we will use to relate molecular weight to the other three variables. This type of

model is called an empirical model; that is, it uses our engineering and scientific knowledge of the

phenomenon, but it is not directly developed from our theoretical or first-principles understanding

of the underlying mechanism.

To illustrate these ideas with a specific example, consider the data in Table 1.2, which

contains data on three variables that were collected in an observational study in a semiconductor

manufacturing plant. In this plant, the finished semiconductor is wire-bonded to a frame.

The variables reported are pull strength (a measure of the amount of force required to break the

bond), the wire length, and the height of the die. We would like to find a model relating pull

strength to wire length and die height. Unfortunately, there is no physical mechanism that we

can easily apply here, so it does not seem likely that a mechanistic modeling approach will be

successful.

Figure 1.15 presents a three-dimensional plot of all 25 observations on pull strength, wire

length, and die height. From examination of this plot, we see that pull strength increases as

both wire length and die height increase. Furthermore, it seems reasonable to think that a model

such as

Pull strength = β0 + β1(wire length) + β2(die height) + ϵ

would be appropriate as an empirical model for this relationship. In general, this type of empirical

model is called a regression model. In Chapters 11 and 12 we show how to build these models

and test their adequacy as approximating functions. We use a method for estimating the param-

eters in regression models, called the method of least squares, that traces its origins to work by

Karl Gauss. Essentially, this method chooses the parameters in the empirical model (the β’s) to

minimize the sum of the squared distances in each data point and the plane represented by the

model equation. Applying this technique to the data in Table 1.2 results in

̂Pull Strength = 2.26 + 2.74 (wire length) + 0.0125 (die height) (1.7)

where the “hat,” or circumflex, over pull strength indicates that this is an estimated or predicted

quality.

Figure 1.16 is a plot of the predicted values of pull strength versus wire length and die

height obtained from Equation 1.7. Notice that the predicted values lie on a plane above the

wire length–die height space. From the plot of the data in Figure 1.15, this model does not appear
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FIGURE 1.15

Three-dimensional plot of the wire
bond pull strength data.
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T A B L E 1.2 Wire Bond Pull Strength Data

Observation Number Pull Strength y Wire Length x1 Die Height x2

1 9.95 2 50

2 24.45 8 110

3 31.75 11 120

4 35.00 10 550

5 25.02 8 295

6 16.86 4 200

7 14.38 2 375

8 9.60 2 52

9 24.35 9 100

10 27.50 8 300

11 17.08 4 412

12 37.00 11 400

13 41.95 12 500

14 11.66 2 360

15 21.65 4 205

16 17.89 4 400

17 69.00 20 600

18 10.30 1 585

19 34.93 10 540

20 46.59 15 250

21 44.88 15 290

22 54.12 16 510

23 56.63 17 590

24 22.13 6 100

25 21.15 5 400

FIGURE 1.16

Plot of predicted values of pull
strength from the empirical model.
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unreasonable. The empirical model in Equation 1.7 could be used to predict values of pull strength

for various combinations of wire length and die height that are of interest. Essentially, an engineer

could use the empirical model in exactly the same way as a mechanistic model.

1.4 Probability and Probability Models
Section 1.1 mentioned that decisions often need to be based on measurements from only a subset

of objects selected in a sample. This process of reasoning from a sample of objects to conclu-

sions for a population of objects was referred to as statistical inference. A sample of three wafers

selected from a large production lot of wafers in semiconductor manufacturing was an example

mentioned. To make good decisions, an analysis of how well a sample represents a population

is clearly necessary. If the lot contains defective wafers, how well will the sample detect these

defective items? How can we quantify the criterion to “detect well”? Basically, how can we quan-

tify the risks of decisions based on samples? Furthermore, how should samples be selected to

provide good decisions—ones with acceptable risks? Probability models help quantify the risks

involved in statistical inference, that is, the risks involved in decisions made every day.

More details are useful to describe the role of probability models. Suppose that a produc-

tion lot contains 25 wafers. If all the wafers are defective or all are good, clearly any sample will

generate all defective or all good wafers, respectively. However, suppose that only one wafer in

the lot is defective. Then a sample might or might not detect (include) the wafer. A probability

model, along with a method to select the sample, can be used to quantify the risks that the defec-

tive wafer is or is not detected. Based on this analysis, the size of the sample might be increased

(or decreased). The risk here can be interpreted as follows. Suppose that a series of lots, each

with exactly one defective wafer, is sampled. The details of the method used to select the sample

are postponed until randomness is discussed in the next chapter. Nevertheless, assume that the

same-size sample (such as three wafers) is selected in the same manner from each lot. The pro-

portion of the lots in which the defective wafer are included in the sample or, more specifically,

the limit of this proportion as the number of lots in the series tends to infinity, is interpreted as

the probability that the defective wafer is detected.

A probability model is used to calculate this proportion under reasonable assumptions for the

manner in which the sample is selected. This is fortunate because we do not want to attempt to

sample from an infinite series of lots. Problems of this type are worked in Chapters 2 and 3. More

importantly, this probability provides valuable, quantitative information regarding any decision

about lot quality based on the sample.

Recall from Section 1.1 that a population might be conceptual, as in an analytic study that

applies statistical inference to future production based on the data from current production. When

populations are extended in this manner, the role of statistical inference and the associated prob-

ability models become even more important.

In the previous example, each wafer in the sample was classified only as defective or not.

Instead, a continuous measurement might be obtained from each wafer. In Section 1.2.5, con-

centration measurements were taken at periodic intervals from a production process. Figure 1.8

shows that variability is present in the measurements, and there might be concern that the process

has moved from the target setting for concentration. Similar to the defective wafer, one might

want to quantify our ability to detect a process change based on the sample data. Control limits

were mentioned in Section 1.2.5 as decision rules for whether or not to adjust a process. The

probability that a particular process change is detected can be calculated with a probability model

for concentration measurements. Models for continuous measurements are developed based on

plausible assumptions for the data and a result known as the central limit theorem, and the asso-

ciated normal distribution is a particularly valuable probability model for statistical inference.

Of course, a check of assumptions is important. These types of probability models are discussed

in Chapter 4. The objective is still to quantify the risks inherent in the inference made from the

sample data.
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Throughout Chapters 6 through 15, we base decisions on statistical inference from sample

data. We use continuous probability models, specifically the normal distribution, extensively to

quantify the risks in these decisions and to evaluate ways to collect the data and how large a

sample should be selected.

Important Terms and Concepts

Analytic study

Cause and effect

Designed experiment

Empirical model

Engineering method

Enumerative study

Factorial experiment

Fractional factorial experiment

Hypothesis

Hypothesis testing

Interaction

Mechanistic model

Observational study

Overcontrol

Population

Probability model

Random variable

Randomization

Retrospective study

Sample

Scientific method

Statistical inference

Statistical process control

Statistical thinking

Tampering

Time series

Variability
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C H A P T E R O U T L I N E

2.1 Sample Spaces and Events

2.1.1 Random Experiments

2.1.2 Sample Spaces

2.1.3 Events

2.2 Counting Techniques

2.3 Interpretations and Axioms

of Probability

2.4 Unions of Events and Addition Rules

2.5 Conditional Probability

2.6 Intersections of Events and

Multiplication and Total

Probability Rules

2.7 Independence

2.8 Bayes’ Theorem

2.9 Random Variables

L E A R N I N G O B J E C T I V E S

After careful study of this chapter, you should be able to do the

following:

1. Understand and describe sample spaces and events for

random experiments with graphs, tables, lists, or tree

diagrams

2. Interpret probabilities and use the probabilities of outcomes

to calculate probabilities of events in discrete sample spaces

3. Use permuations and combinations to count the number of

outcomes in both an event and the sample space

4. Calculate the probabilities of joint events such as unions and

intersections from the probabilities of individual events

5. Interpret and calculate conditional probabilities of events

6. Determine the independence of events and use independence

to calculate probabilities

7. Use Bayes’ theorem to calculate conditional probabilities

8. Describe random variables and the difference between

continuous and discrete random variables

17
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An athletic woman in her 20s arrives at the emergency department complaining of dizziness

after running in hot weather. An electrocardiogram is used to check for a heart attack, and the

patient generates an abnormal result. The test has a false-positive rate 0.1 (the probability of

an abnormal result when the patient is normal) and a false-negative rate of 0.1 (the probabil-

ity of a normal result when the patient is abnormal). Furthermore, it might be assumed that

the prior probability of a heart attack for this patient is 0.001. Although the abnormal test is a

concern, you might be surprised to learn that the probability of a heart attack given the elec-

trocardiogram result is still less than 0.01. See “Why Clinicians are Natural Bayesians” (2005,

www.bmj.com/content/330/7499/1080) for details of this example and others.

The key is to properly combine the given probabilities. Furthermore, the exact same analy-

sis used for this medical example can be applied to tests of engineered products. Consequently,

knowledge of how to manipulate probabilities in order to assess risks and make better decisions is

important throughout scientific and engineering disciplines. In this chapter, the laws of probability

are presented and used to assess risks in cases such as this one and numerous others.

2.1 Sample Spaces and Events

2.1.1 Random Experiments
If we measure the current in a thin copper wire, we are conducting an experiment. However,

day-to-day repetitions of the measurement can differ slightly because of small variations in vari-

ables that are not controlled in our experiment, including changes in ambient temperatures, slight

variations in the gauge and small impurities in the chemical composition of the wire (if different

locations are selected), and current source drifts. Consequently, this experiment (as well as many

we conduct) is said to have a random component. In some cases, the random variations are small

enough, relative to our experimental goals, that they can be ignored. However, no matter how care-

fully our experiment is designed and conducted, the variation is almost always present, and its

magnitude can be large enough that the important conclusions from our experiment are not obvi-

ous. In these cases, the methods presented in this book for modeling and analyzing experimental

results are quite valuable.

Our goal is to understand, quantify, and model the type of variations that we often encounter.

When we incorporate the variation into our thinking and analyses, we can make informed judg-

ments from our results that are not invalidated by the variation.

Models and analyses that include variation are not different from models used in other areas of

engineering and science. Figure 2.1 displays the important components. A mathematical model

(or abstraction) of the physical system is developed. It need not be a perfect abstraction. For

example, Newton’s laws are not perfect descriptions of our physical universe. Still, they are use-

ful models that can be studied and analyzed to approximately quantify the performance of a wide

range of engineered products. Given a mathematical abstraction that is validated with measure-

ments from our system, we can use the model to understand, describe, and quantify important

aspects of the physical system and predict the response of the system to inputs.

Throughout this text, we discuss models that allow for variations in the outputs of a system,

even though the variables that we control are not purposely changed during our study. Figure 2.2

graphically displays a model that incorporates uncontrollable inputs (noise) that combine with the

controllable inputs to produce the output of our system. Because of the uncontrollable inputs, the

same settings for the controllable inputs do not result in identical outputs every time the system

is measured.

Random Experiment
An experiment that can result in different outcomes, even though it is repeated in the same

manner every time, is called a random experiment.
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Physical system

Model

Measurements Analysis

FIGURE 2.1

Continuous iteration between model
and physical system.

Controlled

variables

Noise

variables

OutputInput System

FIGURE 2.2

Noise variables affect the transformation
of inputs to outputs.

For the example of measuring current in a copper wire, our model for the system might

simply be Ohm’s law. Because of uncontrollable inputs, variations in measurements of current

are expected. Ohm’s law might be a suitable approximation. However, if the variations are large

relative to the intended use of the device under study, we might need to extend our model to

include the variation. See Figure 2.3.

As another example, in the design of a communication system, such as a computer or voice

communication network, the information capacity available to serve individuals using the network

is an important design consideration. For voice communication, sufficient external lines need to

be available to meet the requirements of a business. Assuming each line can carry only a single

conversation, how many lines should be purchased? If too few lines are purchased, calls can be

delayed or lost. The purchase of too many lines increases costs. Increasingly, design and product

development is required to meet customer requirements at a competitive cost.
In the design of the voice communication system, a model is needed for the number of

calls and the duration of calls. Even knowing that, on average, calls occur every five minutes

and that they last five minutes is not sufficient. If calls arrived precisely at five-minute intervals

and lasted for precisely five minutes, one phone line would be sufficient. However, the slight-

est variation in call number or duration would result in some calls being blocked by others. See

Figure 2.4. A system designed without considering variation will be woefully inadequate for prac-

tical use. Our model for the number and duration of calls needs to include variation as an integral

component.

2.1.2 Sample Spaces
To model and analyze a random experiment, we must understand the set of possible outcomes
from the experiment. In this introduction to probability, we use the basic concepts of sets and

operations on sets. It is assumed that the reader is familiar with these topics.

Voltage

C
u
rr

e
n
t

FIGURE 2.3

A closer examination of the system identifies
deviations from the model.
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Variation causes disruptions in the system.
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Sample Space
The set of all possible outcomes of a random experiment is called the sample space of the

experiment. The sample space is denoted as S.

A sample space is often defined based on the objectives of the analysis. The following example

illustrates several alternatives.

E X A M P L E 2.1 Camera Flash

Consider an experiment that selects a cell phone camera and

records the recycle time of a flash (the time taken to ready the

camera for another flash). The possible values for this time

depend on the resolution of the timer and on the minimum and

maximum recycle times. However, because the time is posi-

tive, it is convenient to define the sample space as simply the

positive real line

S = R+ = {x | x > 0}

If it is known that all recycle times are between 1.5 and 5 sec-

onds, the sample space can be

S = {x | 1.5 < x < 5}

If the objective of the analysis is to consider only whether the

recycle time is low, medium, or high, the sample space can be

taken to be the set of three outcomes

S = {low,medium, high}

If the objective is only to evaluate whether or not a particular

camera conforms to a minimum recycle-time specification, the

sample space can be simplified to a set of two outcomes

S = {yes, no}

that indicates whether or not the camera conforms.

It is useful to distinguish between two types of sample spaces.

Discrete and Continuous Sample Spaces
A sample space is discrete if it consists of a finite or countable infinite set of outcomes.

A sample space is continuous if it contains an interval (either finite or infinite) of real

numbers.

In Example 2.1, the choice S = R+ is an example of a continuous sample space, whereas

S = {yes, no} is a discrete sample space. As mentioned, the best choice of a sample space

depends on the objectives of the study. As specific questions occur later in the book, appropriate

sample spaces are discussed.

E X A M P L E 2.2 Camera Specifications

Suppose that the recycle times of two cameras are recorded.

The extension of the positive real line R is to take the sample

space to be the positive quadrant of the plane

S = R+ × R+

If the objective of the analysis is to consider only whether

or not the cameras conform to the manufacturing specifica-

tions, either camera may or may not conform. We abbreviate

yes and no as y and n. If the ordered pair yn indicates that

the first camera conforms and the second does not, the sample

space can be represented by the four outcomes:

S = {yy, yn, ny, nn}

If we are interested only in the number of conforming

cameras in the sample, we might summarize the sample

space as

S = {0, 1, 2}

As another example, consider an experiment in which

cameras are tested unitl the flash recycle time fails to meet

the specifications. The sample space can be represented as

S = {n, yn, yyn, yyyn, yyyyn, and so forth}

and this is an example of a discrete sample space that is count-

ably infinite.
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Sample spaces can also be described graphically with tree diagrams. When a sample space can

be constructed in several steps or stages, we can represent each of the n1 ways of completing the

first step as a branch of a tree. Each of the ways of completing the second step can be represented

as n2 branches starting from the ends of the original branches, and so forth.

E X A M P L E 2.3 Message Delays

Each message in a digital communication system is classi-

fied as to whether it is received within the time specified

by the system design. If three messages are classified, use

a tree diagram to represent the sample space of possible

outcomes.

On time Late

On time Late

On time Late On time Late On time Late

On time Late

On time Late

Message 3

Message 2

Message 1

FIGURE 2.5

Tree diagram for three messages.

Each message can be received either on time or late.

The possible results for three messages can be displayed by

eight branches in the tree diagram shown in Figure 2.5.

Practical Interpretation: A tree diagram can effectively

represent a sample space. Even if a tree becomes too large to

construct, it can still conceptually clarify the sample space.

2.1.3 Events
Often we are interested in a collection of related outcomes from a random experiment. Related

outcomes can be described by subsets of the sample space.

Event
An event is a subset of the sample space of a random experiment.

We can also be interested in describing new events from combinations of existing events. Because

events are subsets, we can use basic set operations such as unions, intersections, and complements

to form other events of interest. Some of the basic set operations are summarized here in terms

of events:

• The union of two events is the event that consists of all outcomes that are contained in either

of the two events. We denote the union as E1 ∪ E2.

• The intersection of two events is the event that consists of all outcomes that are contained in

both of the two events. We denote the intersection as E1 ∩ E2.

• The complement of an event in a sample space is the set of outcomes in the sample space

that are not in the event. We denote the complement of the event E as E′. The notation EC is

also used in other literature to denote the complement.
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E X A M P L E 2.4 Events

Consider the sample space S = {yy, yn, ny, nn} in Example 2.2.

Suppose that the subset of outcomes for which at least one

camera conforms is denoted as E1. Then,

E1 = {yy, yn, ny}

The event such that both cameras do not conform, denoted

as E2, contains only the single outcome, E2 = {nn}. Other

examples of events are E3 = Ø, the null set, and E4 = S, the

sample space. If E5 = {yn, ny, nn},

E1 ∪ E5 = S E1 ∩ E5 = {yn, ny} E′
1
= {nn}

Practical Interpretation: Events are used to define out-

comes of interest from a random experiment. One is often

interested in the probabilities of specified events.

E X A M P L E 2.5 Camera Recycle Time

As in Example 2.1, camera recycle times might use the sample

space S = R+, the set of positive real numbers. Let

E1 = {x | 10 ≤ x < 12} and E2 = {x | 11 < x < 15}

Then,

E1 ∪ E2 = {x | 10 ≤ x < 15}

and

E1 ∩ E2 = {x | 11 < x < 12}

Also,

E′
1
= {x | x < 10 or 12 ≤ x}

and

E′
1
∩ E2 = {x | 12 ≤ x < 15}

E X A M P L E 2.6 Hospital Emergency Visits

The following table summarizes visits to emergency depart-

ments at four hospitals in Arizona. People may leave with-

out being seen by a physician, and those visits are denoted

as LWBS. The remaining visits are serviced at the emergency

department, and the visitor may or may not be admitted for a

stay in the hospital.

Let A denote the event that a visit is to hospital 1, and let B
denote the event that the result of the visit is LWBS. Calculate

the number of outcomes in A ∩ B, A′, and A ∪ B.

The event A∩B consists of the 195 visits to hospital 1 that

result in LWBS. The event A′ consists of the visits to hospitals

2, 3, and 4 and contains 6991 + 5640 + 4329 = 16,960 visits.

The event A ∪ B consists of the visits to hospital 1 or the

visits that result in LWBS, or both, and contains 5292 + 270 +
246 + 242 = 6050 visits. Notice that the last result can also be

calculated as the number of visits in A plus the number of visits

in B minus the number of visits A ∩ B (that would otherwise

be counted twice) = 5292 + 953 − 195 = 6050.

Practical Interpretation: Hospitals track visits that result

in LWBS to understand resource needs and to improve patient

services.

Hospital

1 2 3 4 Total

Total 5292 6991 5640 4329 22,252

LWBS 195 270 246 242 953

Admitted 1277 1558 666 984 4485

Not admitted 3820 5163 4728 3103 16,814

Diagrams are often used to portray relationships between sets, and these diagrams are also

used to describe relationships between events. We can use Venn diagrams to represent a sample

space and events in a sample space. For example, in Figure 2.6(a) the sample space of the random

experiment is represented as the points in the rectangle S. The events A and B are the subsets of

points in the indicated regions. Figures 2.6(b) to 2.6(d) illustrate additional joint events. Figure 2.7

illustrates two events with no common outcomes.
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A B

(a)

Sample space S with events A and B

(b)

A B

A B

(d)

A B

(c)

A ∩ B

S

(A ∩ C)'

SS

(A ∪ B) ∩ C

S

C C

FIGURE 2.6

Venn diagrams.

A B

S

FIGURE 2.7

Mutually exclusive events.

Mutually Exclusive Events
Two events, denoted as E1 and E2, such that

E1 ∩ E2 = Ø

are said to be mutually exclusive.

Additional results involving events are summarized in the following. The definition of the

complement of an event implies that

(E′)′ = E

The distributive law for set operations implies that

(A ∪ B) ∩ C = (A ∩ C) ∪ (B ∩ C) and (A ∩ B) ∪ C = (A ∪ C) ∩ (B ∪ C)

DeMorgan’s laws imply that

(A ∪ B)′ = A′ ∩ B′ and (A ∩ B)′ = A′ ∪ B′

Also, remember that

A ∩ B = B ∩ A and A ∪ B = B ∪ A

2.2 Counting Techniques
In many of the examples in this chapter, it is easy to determine the number of outcomes in each

event. In more complicated examples, determining the outcomes in the sample space (or an event)

becomes more difficult. In these cases, counts of the numbers of outcomes in the sample space

and various events are used to analyze the random experiments. These methods are referred to as

counting techniques. Some simple rules can be used to simplify the calculations.

The tree diagram in Figure 2.5 describes the sample space for all possible arrival prop-

erties from three messages. The size of the sample space equals the number of branches in

the last level of the tree, and this quantity equals 2 × 2 × 2 = 8. This leads to the following

useful result.
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Multiplication Rule (for counting techniques)
Assume an operation can be described as a sequence of k steps, and

• the number of ways to complete step 1 is n1, and

• the number of ways to complete step 2 is n2 for each way to complete step 1, and

• the number of ways to complete step 3 is n3 for each way to complete step 2, and

• so forth.

The total number of ways to complete the operation is

n1 × n2 × · · · × nk

E X A M P L E 2.7 Web Site Design

The design for a Website is to consist of four colors, three

fonts, and three positions for an image. From the multiplica-

tion rule, 4 × 3 × 3 = 36 different designs are possible.

Practical Interpretation: The use of the multiplication

rule and other counting techniques enables one to easily deter-

mine the number of outcomes in a sample space or event and

this, in turn, allows probabilities of events to be determined.

Permutations Another useful calculation finds the number of ordered sequences of the ele-

ments of a set. Consider a set of elements, such as S = {a, b, c}. A permutation of the elements

is an ordered sequence of the elements. For example, abc, acb, bac, bca, cab, and cba are all of

the permutations of the elements of S.

The number of permutations of n different elements is n! where

n! = n × (n − 1) × (n − 2) × · · · × 2 × 1 (2.1)

This result follows from the multiplication rule. A permutation can be constructed as follows.

Select the element to be placed in the first position of the sequence from the n elements, then

select the element for the second position from the remaining n − 1 elements, then select the

element for the third position from the remaining n − 2 elements, and so forth. Permutations such

as these are sometimes referred to as linear permutations.

In some situations, we are interested in the number of arrangements of only some of the

elements of a set. The following result also follows from the multiplication rule and the previous

discussion.

Permutations of Subsets
The number of permutations of subsets of r elements selected from a set of n different

elements is

Pn
r = n × (n − 1) × (n − 2) × · · · × (n − r + 1) = n!

(n − r)!
(2.2)
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E X A M P L E 2.8 Printed Circuit Board

A printed circuit board has eight different locations in which a

component can be placed. If four different components are to

be placed on the board, how many different designs are

possible?

Each design consists of selecting a location from the

eight locations for the first component, a location from the

remaining seven for the second component, a location from

the remaining six for the third component, and a location

from the remaining five for the fourth component. Therefore,

P8
4
= 8 × 7 × 6 × 5 = 8!

4!
= 1680 different designs are possible.

Sometimes we are interested in counting the number of ordered sequences for objects that

are not all different. The following result is a useful, general calculation.

Permutations of Similar Objects
The number of permutations of n = n1 + n2 + · · · + nr objects of which n1 are of one type,

n2 are of a second type, … , and nr are of an rth type is

n!
n1!n2!n3!… nr!

(2.3)

E X A M P L E 2.9 Hospital Schedule

A hospital operating room needs to schedule three knee sur-

geries and two hip surgeries in a day. We denote a knee and

hip surgery as k and h, respectively. The number of possible

sequences of three knee and two hip surgeries is

5!
2!3!

= 10

The 10 sequences are easily summarized:

{kkkhh, kkhkh, kkhhk, khkkh, khkhk, khhkk, hkkkh,
hkkhk, hkhkk, hhkkk}

Combinations Another counting problem of interest is the number of subsets of r elements

that can be selected from a set of n elements. Here, order is not important. These are called combi-
nations. Every subset of r elements can be indicated by listing the elements in the set and marking

each element with a “*” if it is to be included in the subset. Therefore, each permutation of r *’s and

n − r blanks indicates a different subset, and the numbers of these are obtained from Equation 2.3.

For example, if the set is S = {a, b, c, d}, the subset {a, c} can be indicated as

a b c d
∗ ∗

Combinations
The number of combinations, subsets of r elements that can be selected from a set of

n elements, is denoted as
(n

r
)

or Cn
r and

Cn
r =

(
n
r

)

= n!
r!(n − r)!

(2.4)
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E X A M P L E 2.10 Printed Circuit Board Layout

A printed circuit board has eight different locations in which a

component can be placed. If five identical components are to

be placed on the board, how many different designs are

possible?

Each design is a subset of size five from the eight loca-

tions that are to contain the components. From Equation 2.4,

the number of possible designs is

8!
5!3!

= 56

In random experiments in which items are selected from a batch, an item may or may not

be replaced before the next one is selected. This is referred to as sampling with or without
replacement, respectively. The following example uses the multiplication rule in combination

with Equation 2.4 to answer a more difficult, but common, question for sampling without

replacement.

E X A M P L E 2.11 Sampling without Replacement

A bin of 50 manufactured parts contains 3 defective parts and

47 nondefective parts. A sample of 6 parts is selected without

replacement. That is, each part can be selected only once, and

the sample is a subset of the 50 parts. How many different sam-

ples are there of size 6 that contain exactly 2 defective parts?

A subset containing exactly 2 defective parts can be

formed by first choosing the 2 defective parts from the

3 defective parts. Using Equation 2.4, the number of different

ways this step can be completed is
(

3

2

)

= 3!
2!1!

= 3

Then, the second step is to select the remaining 4 parts from

the 47 acceptable parts in the bin. The number of different

ways the second step can be completed is

(
47

4

)

= 47!
4!43!

= 178,365

Therefore, from the multiplication rule, the number of subsets

of size 6 that contain exactly 2 defective parts is

3 × 178,365 = 535,095

As an additional computation, the total number of differ-

ent subsets of size 6 is
(

50

6

)

= 50!
6!44!

= 15,890,700

2.3 Interpretations and Axioms of Probability
In this chapter, we introduce probability for discrete sample spaces—those with only a finite (or

countably infinite) set of outcomes. The restriction to these sample spaces enables us to simplify

the concepts and the presentation without excessive mathematics.

Probability is used to quantify the likelihood, or chance, that an outcome of a random

experiment will occur. “The chance of rain today is 30%” is a statement that quantifies our feeling

about the possibility of rain. The likelihood of an outcome is quantified by assigning a number

from the interval [0, 1] to the outcome (or a percentage from 0 to 100%). Higher numbers indi-

cate that the outcome is more likely than lower numbers. A 0 indicates an outcome will not occur.

A probability of 1 indicates that an outcome will occur with certainty.

The probability of an outcome can be interpreted as our subjective probability, or degree of
belief , that the outcome will occur. Different individuals will no doubt assign different probabili-

ties to the same outcomes. Another interpretation of probability is based on the conceptual model

of repeated replications of the random experiment. The probability of an outcome is interpreted

as the limiting value of the proportion of times the outcome occurs in n repetitions of the random

experiment as n increases beyond all bounds. For example, if we assign probability 0.2 to the

outcome that there is a corrupted pulse in a digital signal, we might interpret this assignment as

implying that, if we analyze many pulses, approximately 20% of them will be corrupted. This
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FIGURE 2.8

Relative frequency of corrupted pulses sent over a communication channel.

example provides a relative frequency interpretation of probability. The proportion, or relative

frequency, of replications of the experiment that result in the outcome is 0.2. Probabilities are

chosen so that the sum of the probabilities of all outcomes in an experiment adds up to 1. This

convention facilitates the relative frequency interpretation of probability. Figure 2.8 illustrates the

concept of relative frequency.

Probabilities for a random experiment are often assigned on the basis of a reasonable

model of the system under study. One approach is to base probability assignments on the simple

concept of equally likely outcomes. For example, suppose that we select 1 laser diode randomly

from a batch of 100. Randomly implies that it is reasonable to assume that each diode in the

batch has an equal chance of being selected. Because the sum of the probabilities must equal

1, the probability model for this experiment assigns probability of 0.01 to each of the 100

outcomes. We can interpret the probability by imagining many replications of the experiment.

Each time we start with all 100 diodes and select 1 at random. The probability 0.01 assigned

to a particular diode represents the proportion of replicates in which a particular diode is

selected. When the model of equally likely outcomes is assumed, the probabilities are chosen to

be equal.

Equally Likely Outcomes
Whenever a sample space consists of N possible outcomes that are equally likely, the

probability of each outcome is 1/N.

It is frequently necessary to assign probabilities to events that are composed of several out-

comes from the sample space. This is straightforward for a discrete sample space.

E X A M P L E 2.12 Laser Diodes

Assume that 30% of the laser diodes in a batch of 100 meet

the minimum power requirements of a specific customer.

If a laser diode is selected randomly, that is, each laser

diode is equally likely to be selected, our intuitive feeling is

that the probability of meeting the customer’s requirements

is 0.30.

Let E denote the subset of 30 diodes that meet the

customer’s requirements. Because E contains 30 outcomes

and each outcome has probability 0.01, we conclude that the

probability of E is 0.3. The conclusion matches our intuition.

Figure 2.9 illustrates this example.

E

Diodes

S

P(E) = 30(0.01) = 0.30

FIGURE 2.9

Probability of the event E is the sum of the probabilities
of the outcomes in E.
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For a discrete sample space, the probability of an event can be defined by the reasoning used

in the preceding example.

Probability of an Event
For a discrete sample space, the probability of an event E, denoted as P(E), equals the sum

of the probabilities of the outcomes in E.

E X A M P L E 2.13 Probabilities of Events

A random experiment can result in one of the outcomes

{a, b, c, d} with probabilities 0.1, 0.3, 0.5, and 0.1, respec-

tively. Let A denote the event {a, b}, B the event {b, c, d},

and C the event {d}. Then,

P(A) = 0.1 + 0.3 = 0.4

P(B) = 0.3 + 0.5 + 0.1 = 0.9

P(C) = 0.1

Also, P (A′) = 0.6, P (B′) = 0.1, and P(C′) = 0.9. Furthermore,

because A ∩ B = {b}, P (A ∩ B) = 0.3. Because A ∪ B =
{a, b, c, d}, P (A ∪ B) = 0.1 + 0.3 + 0.5 + 0.1 = 1. Because

A ∩ C is the null set, P (A ∩ C) = 0.

As another example, consider a random experiment in which more than one item is selected

from a batch. In this case, randomly selected implies that each possible subset of items is equally

likely.

E X A M P L E 2.14 Manufacturing Inspection

Consider the inspection described in Example 2.11. From a

bin of 50 parts, 6 parts are selected randomly without replace-

ment. The bin contains 3 defective parts and 47 nondefective

parts. What is the probability that exactly 2 defective parts are

selected in the sample?

The sample space consists of all possible (unordered)

subsets of 6 parts selected without replacement. As shown in

Example 2.11, the number of subsets of size 6 that contain

exactly 2 defective parts is 535,095 and the total number of

subsets of size 6 is 15,890,700. The probability of an event

is determined as the ratio of the number of outcomes in the

event to the number of outcomes in the sample space (for

equally likely outcomes). Therefore, the probability that a

sample contains exactly 2 defective parts is

535,095

15,890,700
= 0.034

A subset with no defective parts occurs when all 6 parts

are selected from the 47 nondefective ones. Therefore, the

number of subsets with no defective parts is

47!
6!41!

= 10,737,573

and the probability that no defective parts are selected is

10,737,573

15,890,700
= 0.676

Therefore, the sample of size 6 is likely to omit the defective

parts. This example illustrates the hypergeometric distribution

studied in Chapter 3.

Now that the probability of an event has been defined, we can collect the assumptions

into a set of axioms of probability that must be satisfied in any random experiment. The

axioms ensure that the probabilities assigned in an experiment can be interpreted as relative

frequencies and that the assignments are consistent with our intuitive understanding of rela-

tionships between relative frequencies. For example, if event A is contained in event B, we

should have P(A) ≤ P(B). The axioms do not determine probabilities; the probabilities are
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assigned based on our knowledge of the system under study. However, the axioms enable us

to easily calculate the probabilities of some events from knowledge of the probabilities of

other events.

Axioms of Probability
Probability is a number that is assigned to each member of a collection of events from a

random experiment that satisfies the following properties:

(1) P(S) = 1 where S is the sample space

(2) 0 ≤ P(E) ≤ 1 for any event E
(3) For two events E1 and E2 with E1 ∩ E2 = Ø

P(E1 ∪ E2) = P(E1) + P(E2)

The property that 0 ≤ P(E) ≤ 1 is equivalent to the requirement that a relative frequency must be

between 0 and 1. The property that P(S) = 1 is a consequence of the fact that an outcome from

the sample space occurs on every trial of an experiment. Consequently, the relative frequency

of S is 1. Property 3 implies that if the events E1 and E2 have no outcomes in common, the

relative frequency of outcomes in E1 ∪ E2 is the sum of the relative frequencies of the outcomes

in E1 and E2.

These axioms imply the following results. The derivations are left as exercises. Now,

P(Ø) = 0

and for any event E,

P(E′) = 1 − P(E)

For example, if the probability of the event E is 0.4, our interpretation of relative frequency implies

that the probability of E′ is 0.6. Furthermore, if the event E1 is contained in the event E2,

P(E1) ≤ P(E2)

2.4 Unions of Events and Addition Rules
Joint events are generated by applying basic set operations to individual events. Unions of events,

such as A ∪ B; intersections of events, such as A ∩ B; and complements of events, such as A′—

are commonly of interest. The probability of a joint event can often be determined from the

probabilities of the individual events that it comprises. Basic set operations are also sometimes

helpful in determining the probability of a joint event. In this section, the focus is on unions

of events.

E X A M P L E 2.15 Semiconductor Wafers

Table 2.1 lists the history of 940 wafers in a semiconductor

manufacturing process. Suppose that 1 wafer is selected at ran-

dom. Let H denote the event that the wafer contains high levels

of contamination. Then, P(H) = 358/940.

Let C denote the event that the wafer is in the center of a

sputtering tool. Then, P(C) = 626/940. Also, P(H ∩ C) is the

probability that the wafer is from the center of the sputtering

tool and contains high levels of contamination. Therefore,

P(H ∩ C) = 112∕940

The event H ∪ C is the event that a wafer is from the center

of the sputtering tool or contains high levels of contamination

(or both). From the table, P(H ∪ C) = 872/940. An alternative
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calculation of P(H ∪ C) can be obtained as follows. The 112

wafers in the event H ∩ C are included once in the calcula-

tion of P(H) and again in the calculation of P(C). Therefore,

P(H ∪ C) can be determined to be

P(H ∪ C) = P(H) + P(C) − P(H ∩ C)

= 358

940
+ 626

940
− 112

940
= 872

940

Practical Interpretation: To better understand the

sources of contamination, yield from different locations on

wafers are routinely aggregated.

T A B L E 2.1

Wafers in Semiconductor
Manufacturing Classified by
Contamination and Location

Location in Sputtering Tool

Contamination Center Edge Total

Low 514 68 582

High 112 246 358

Total 626 314

The preceding example illustrates that the probability of A or B is interpreted as P(A ∪ B)

and that the following general addition rule applies.

Probability of a Union

P(A ∪ B) = P(A) + P(B) − P(A ∩ B) (2.5)

Recall that two events A and B are said to be mutually exclusive if A ∩ B = Ø. Then,

P(A ∩ B) = 0, and the general result for the probability of A ∪ B simplifies to the third axiom

of probability.

If A and B are mutually exclusive events,

P(A ∪ B) = P(A) + P(B) (2.6)

Three or More Events More complicated probabilities, such as P(A ∪ B ∪ C), can be deter-

mined by repeated use of Equation 2.5 and by using some basic set operations. For example,

P(A ∪ B ∪ C) = P[(A ∪ B) ∪ C] = P(A ∪ B) + P(C) − P[(A ∪ B) ∩ C]

Upon expanding P(A ∪ B) by Equation 2.5 and using the distributed rule for set operations to

simplify P[(A ∪ B) ∩ C], we obtain

P(A ∪ B ∪ C) = P(A) + P(B) + P(C) − P(A ∩ B)
− P(A ∩ C) − P(B ∩ C) + P(A ∩ B ∩ C) (2.7)

Results for three or more events simplify considerably if the events are mutually exclusive.

In general, a collection of events, E1, E2, … , Ek, is said to be mutually exclusive if there is no

overlap among any of them. The Venn diagram for several mutually exclusive events is shown in
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E1

E2

E3

E4

FIGURE 2.10

Venn diagram of four mutually exclusive events.

Figure 2.10. By generalizing the reasoning for the union of two events, the following result can

be obtained:

Mutually Exclusive Events
A collection of events, E1, E2, … , Ek, is said to be mutually exclusive if for all pairs,

Ei ∩ Ej = Ø

For a collection of mutually exclusive events,

P(E1 ∪ E2 ∪… ∪ Ek) = P(E1) + P(E2) + · · ·P(Ek) (2.8)

E X A M P L E 2.16 pH

Here is a simple example of mutually exclusive events, which

are used quite frequently. Let X denote the pH of a sample.

Consider the event that X is greater than 6.5 but less than or

equal to 7.8. This probability is the sum of any collection of

mutually exclusive events with union equal to the same range

for X. One example is

P(6.5 < X ≤ 7.8) = P(6.5 ≤ X ≤ 7.0) + P(7.0 < X ≤ 7.5)
+ P(7.5 < X ≤ 7.8)

Another example is

P(6.5 < X ≤ 7.8) = P(6.5 < X ≤ 6.6) + P(6.6 < X ≤ 7.1)
+ P(7.1 < X ≤ 7.4) + P(7.4 < X ≤ 7.8)

The best choice depends on the particular probabilities

available.

Practical Interpretation: The partition of an event into

mutually exclusive subsets is widely used in later chapters to

calculate probabilities.

2.5 Conditional Probability
Sometimes probabilities need to be reevaluated as additional information becomes available.

A useful way to incorporate additional information into a probability model is to assume that the

outcome that will be generated is a member of a given event. This event, say A, defines the con-

ditions that the outcome will satisfy. Then probabilities can be revised to include this knowledge.

The probability of an event B under the knowledge that the outcome will be in event A is

denoted as

P(B | A)

and this is called the conditional probability of B given A.

A digital communication channel has an error rate of 1 bit per every 1000 transmitted. Errors

are rare, but when they occur, they tend to occur in bursts that affect many consecutive bits. If a

single bit is transmitted, we might model the probability of an error as 1/1000. However, if the
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FIGURE 2.11

Conditional probabilities for parts with
surface flaws.

5% defective

P(D ∣F') = 0.05

F' = parts without

       surface flaws

25%

defective

P(D ∣F) = 0.25

F = parts with

         surface flaws

previous bit was in error because of the bursts, we might believe that the probability that the next

bit will be in error is greater than 1/1000.

In a thin film manufacturing process, the proportion of parts that are not acceptable is 2%.

However, the process is sensitive to contamination problems that can increase the rate of parts that

are not acceptable. If we knew that during a particular shift there were problems with the filters

used to control contamination, we would assess the probability of a part being unacceptable as

higher than 2%.

In a manufacturing process, 10% of the parts contain visible surface flaws and 25% of the

parts with surface flaws are (functionally) defective parts. However, only 5% of parts without

surface flaws are defective parts. The probability of a defective part depends on our knowledge

of the presence or absence of a surface flaw. Let D denote the event that a part is defective, and

let F denote the event that a part has a surface flaw. Then we denote the probability of D given

or assuming that a part has a surface flaw, as P(D | F). Because 25% of the parts with surface

flaws are defective, our conclusion can be stated as P(D | F) = 0.25. Furthermore, because F′

denotes the event that a part does not have a surface flaw and because 5% of the parts without

surface flaws are defective, we have P(D | F′) = 0.05. These results are shown graphically in

Figure 2.11.

E X A M P L E 2.17 Surface Flaws and Defectives

Table 2.2 provides an example of 400 parts classified by

surface flaws and as (functionally) defective. For this table,

the conditional probabilities match those discussed previously

in this section. For example, of the parts with surface flaws

(40 parts), the number of defective ones is 10. Therefore,

P(D | F) = 10∕40 = 0.25

and of the parts without surface flaws (360 parts), the number

of defective ones is 18. Therefore,

P(D | F′) = 18∕360 = 0.05

Practical Interpretation: The probability of being

defective is five times greater for parts with surface flaws.

This calculation illustrates how probabilities are adjusted for

additional information. The result also suggests that there may

T A B L E 2.2 Parts Classified

Surface Flaws

Yes (event F) No Total

Defective Yes (event D) 10 18 28

No 30 342 372

Total 40 360 400

be a link between surface flaws and functionally defective

parts, which should be investigated.

In Example 2.17, conditional probabilities were calculated directly. These probabilities can

also be determined from the formal definition of conditional probability.
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Conditional Probability
The conditional probability of an event B given an event A, denoted as P(B | A), is

P(B | A) = P(A ∩ B)
P(A)

(2.9)

for P(A) > 0.

This definition can be understood in a special case in which all outcomes of a random experiment

are equally likely. If there are N total outcomes,

P(A) = (number of outcomes in A)∕N

Also,

P(A ∩ B) = (number of outcomes in A ∩ B)∕N

Consequently,
P(A ∩ B)

P(A)
= number of outcomes in A ∩ B

number of outcomes in A
Therefore, P(B | A) can be interpreted as the relative frequency of event B among the trials that

produce an outcome in event A.

E X A M P L E 2.18 Tree Diagram

Again consider the 400 parts in Table 2.2. From this table,

P(D | F) = P(D ∩ F)
P(F)

= 10

400

/
40

400
= 10

40

Note that in this example all four of the following probabilities

are different:

P(F) = 40∕400 P(F | D) = 10∕28

P(D) = 28∕400 P(D | F) = 10∕40

Here, P(D) and P(D | F) are probabilities of the same event,

but they are computed under two different states of knowledge.

Similarly, P(F) and P(F | D) are computed under two different

states of knowledge.

The tree diagram in Figure 2.12 can also be used to dis-

play conditional probabilities. The first branch is on surface

flaw. Of the 40 parts with surface flaws, 10 are functionally

defective and 30 are not. Therefore,

P(D | F) = 10∕40 and P(D′ | F) = 30∕40

Of the 360 parts without surface flaws, 18 are functionally

defective and 342 are not. Therefore,

P(D | F′) = 18∕360 and P(D′ | F′) = 342∕360

Surface flaw

No Yes

No Yes No Yes

Defective

360

400

40

400

342

360

18

360

30

40

10

40

FIGURE 2.12

Tree diagram for parts classified.
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Random Samples and Conditional Probability When sample spaces were presented earlier

in this chapter, sampling with and without replacement were defined and illustrated for the simple

case of a batch with three items {a, b, c}. If two items are selected randomly from this batch

without replacement, each of the six outcomes in the ordered sample space {ab, ac, ba, bc, ca,

cb} has probability 1/6. If the unordered sample space is used, each of the three outcomes in

{{a, b}, {a, c}, {b, c}} has probability 1/3.

When a sample is selected randomly from a large batch, it is usually easier to avoid enumer-

ation of the sample space and calculate probabilities from conditional probabilities. For example,

suppose that a batch contains 10 parts from tool 1 and 40 parts from tool 2. If two parts are

selected randomly, without replacement, what is the conditional probability that a part from tool

2 is selected second given that a part from tool 1 is selected first?

Although the answer can be determined from counts of outcomes, this type of question can

be answered more easily with the following result.

Random Samples
To select randomly implies that at each step of the sample, the items that remain in the batch

are equally likely to be selected.

If a part from tool 1 were selected with the first pick, 49 items would remain, 9 from tool 1 and

40 from tool 2, and they would be equally likely to be picked. Therefore, the probability that a

part from tool 2 would be selected with the second pick given this first pick is

P(E2 | E1) = 40∕49

In this manner, other probabilities can also be simplified. For example, let the event E con-

sist of the outcomes with the first selected part from tool 1 and the second part from tool 2.

To determine the probability of E, consider each step. The probability that a part from tool 1 is

selected with the first pick is P(E1) = 10 / 50. The conditional probability that a part from tool

2 is selected with the second pick, given that a part from tool 1 is selected first, is P(E2 | E1) =
40 / 49. Therefore,

P(E) = P(E2 | E1) P(E1) =
40

49
•
10

50
= 8

49

Sometimes a partition of the question into successive picks is an easier method to solve the

problem.

2.6 Intersections of Events and Multiplication

and Total Probability Rules
The probability of the intersection of two events is often needed. The conditional probability

definition in Equation 2.9 can be rewritten to provide a formula known as the multiplication rule
for probabilities.

Multiplication Rule

P(A ∩ B) = P(B | A)P(A) = P(A | B)P(B) (2.10)

The last expression in Equation 2.10 is obtained by interchanging A and B.
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E X A M P L E 2.19 Machining Stages

The probability that the first stage of a numerically controlled

machining operation for high-rpm pistons meets specifications

is 0.90. Failures are due to metal variations, fixture alignment,

cutting blade condition, vibration, and ambient environmen-

tal conditions. Given that the first stage meets specifications,

the probability that a second stage of machining meets speci-

fications is 0.95. What is the probability that both stages meet

specifications?

Let A and B denote the events that the first and second

stages meet specifications, respectively. The probability re-

quested is

P(A ∩ B) = P(B | A)P(A) = 0.95(0.90) = 0.855

Although it is also true that P(A∩B)=P(A | B)P(B), the infor-

mation provided in the problem does not match this second

formulation.

Practical Interpretation: The probability that both stages

meet specifications is approximately 0.85, and if additional

stages were needed to complete a piston, the probability would

decrease further. Consequently, the probability that each stage

is completed successfully needs to be large in order for a piston

to meet all specifications.

Sometimes the probability of an event is given under each of several conditions. With enough

of these conditional probabilities, the probability of the event can be recovered. For example,

suppose that in semiconductor manufacturing, the probability is 0.10 that a chip subjected to high

levels of contamination during manufacturing causes a product failure. The probability is 0.005

that a chip not subjected to high contamination levels during manufacturing causes a product

failure. In a particular production run, 20% of the chips are subject to high levels of contamination.

What is the probability that a product using one of these chips fails?

Clearly, the requested probability depends on whether or not the chip was exposed to high

levels of contamination. For any event B, we can write B as the union of the part of B in A and

the part of B in A′. That is,

B = (A ∩ B) ∪ (A′ ∩ B)

This result is shown in the Venn diagram in Figure 2.13. Because A and A′ are mutually exclusive,

A ∩ B and A′ ∩ B are mutually exclusive. Therefore, from the probability of the union of mutually

exclusive events in Equation 2.6 and the multiplication rule in Equation 2.10, the following total
probability rule is obtained.

Total Probability Rule (Two Events)
For any events A and B,

P(B) = P(B ∩ A) + P(B ∩ A′) = P(B | A)P(A) + P(B | A′)P(A′) (2.11)

E X A M P L E 2.20 Semiconductor Contamination

Consider the contamination discussion at the start of this

section. The information is summarized here.

Probability of Level of Probability of
Failure Contamination Level

0.1 High 0.2

0.005 Not high 0.8

Let F denote the event that the product fails, and let H
denote the event that the chip is exposed to high levels of

contamination. The requested probability is P(F), and the

information provided can be represented as

P(F | H) = 0.10 and P(F | H′) = 0.005

P(H) = 0.20 and P(H′) = 0.80

From Equation 2.11,

P(F) = 0.10(0.20) + 0.005(0.80) = 0.024

which can be interpreted as just the weighted average of the

two probabilities of failure.
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A A'

B

B ∩ A
B ∩ A'

FIGURE 2.13

Partitioning an event into two mutually exclusive subsets.

E1

B ∩ E1

E2 E3
E4

B ∩ E2
B ∩ E3

B ∩ E4

B = (B ∩ E1) ∪ (B ∩ E2) ∪ (B ∩ E3) ∪ (B ∩ E4) 

FIGURE 2.14

Partitioning an event into several mutually exclusive subsets.

The reasoning used to develop Equation 2.11 can be applied more generally. Because

A ∪ A′ = S, we know (A ∩ B) ∪ (A′ ∩ B) equals B, and because A ∩ A′ = ϕ, we know A ∩ B
and A′ ∩ B are mutually exclusive. In general, a collection of sets E1, E2, … , Ek such that

E1 ∪ E2 ∪ … ∪ Ek = S is said to be exhaustive. A graphical display of partitioning an event B
among a collection of mutually exclusive and exhaustive events is shown in Figure 2.14.

Total Probability Rule (Multiple Events)
Assume E1, E2, … , Ek are k mutually exclusive and exhaustive sets. Then

P(B) = P(B ∩ E1) + P(B ∩ E2) + · · · + P(B ∩ Ek)
= P(B | E1)P(E1) + P(B | E2)P(E2) + · · · + P(B | Ek)P(Ek) (2.12)

2.7 Independence
In some cases, the conditional probability of P(B | A) might equal P(B). In this special case,

knowledge that the outcome of the experiment is in event A does not affect the probability that

the outcome is in event B.

E X A M P L E 2.21 Sampling with Replacement

Consider the inspection described in Example 2.11. Six parts

are selected randomly from a bin of 50 parts, but assume that

the selected part is replaced before the next one is selected.

The bin contains 3 defective parts and 47 nondefective parts.

What is the probability that the second part is defective given

that the first part is defective?

In shorthand notation, the requested probability is

P(B | A), where A and B denote the events that the first and

second parts are defective, respectively. Because the first part

is replaced prior to selecting the second part, the bin still

contains 50 parts, of which 3 are defective. Therefore, the

probability of B does not depend on whether or not the first

part is defective. That is,

P(B | A) = 3

50

Also, the probability that both parts are defective is

P(A ∩ B) = P(B | A)P(A) = 3

50
•

3

50
= 9

2500

The preceding example illustrates the following conclusions. In the special case that P(B | A)

= P(B), we obtain

P(A ∩ B) = P(B | A)P(A) = P(B)P(A)

and

P(A | B) = P(A ∩ B)
P(B)

= P(A)P(B)
P(B)

= P(A)

These conclusions lead to an important definition.
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Independence (two events)
Two events are independent if any one of the following equivalent statements is true:

(1) P(A | B) = P(A)
(2) P(B | A) = P(B)
(3) P(A ∩ B) = P(A)P(B) (2.13)

It is left as an exercise to show that independence implies related results such as

P(A′ ∩ B′) = P(A′)P(B′)

The concept of independence is an important relationship between events and is used

throughout this text. A mutually exclusive relationship between two events is based only on

the outcomes that compose the events. However, an independence relationship depends on the

probability model used for the random experiment. Often, independence is assumed to be part of

the random experiment that describes the physical system under study.

E X A M P L E 2.22

Consider the inspection described in Example 2.11. Six

parts are selected randomly without replacement from a

bin of 50 parts. The bin contains 3 defective parts and

47 nondefective parts. Let A and B denote the events that the

first and second parts are defective, respectively.

We suspect that these two events are not independent

because the knowledge that the first part is defective suggests

that it is less likely that the second part selected is defective.

Indeed, P(B | A) = 2/49. Now, what is P(B)? Finding the

unconditional P(B) takes some work because the possible

values of the first selection need to be considered:

P(B) = P(B | A)P(A) + P(B | A′)P(A′)

= 2

49
•

3

50
+ 3

49
•
47

50
= 3

50

Interestingly, P(B), the unconditional probability that the

second part selected is defective, without any knowledge of

the first part, is the same as the probability that the first part

selected is defective. Yet our goal is to assess independence.

Because P(B | A) does not equal P(B), the two events are not

independent, as we expected.

When considering three or more events, we can extend the definition of independence with

the following general result.

Independence (multiple events)
The events E1, E2, … , En are independent if and only if for any subset of these events

P
(
Ei1 ∩ Ei2 ∩ · · · ∩ Eik

)
= P

(
Ei1

)
× P

(
Ei2

)
× · · · × P

(
Eik

)
(2.14)

This definition is typically used to calculate the probability that several events occur, assum-

ing that they are independent and the individual event probabilities are known. The knowledge

that the events are independent usually comes from a fundamental understanding of the random

experiment.
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E X A M P L E 2.23 Series Circuit

The following circuit operates only if there is a path of func-

tional devices from left to right. The probability that each

device functions is shown on the graph. Assume that devices

fail independently. What is the probability that the circuit

operates?

0.8 0.9

Let L and R denote the events that the left and right

devices operate, respectively. There is a path only if both

operate. The probability that the circuit operates is

P(L and R) = P(L ∩ R) = P(L)P(R) = 0.80(0.90) = 0.72

Practical Interpretation: Notice that the probability that

the circuit operates degrades to approximately 0.7 when all

devices are required to be functional. The probability that each

device is functional needs to be large for a circuit to operate

when many devices are connected in series.

E X A M P L E 2.24 Parallel Circuit

The following circuit operates only if there is a path of

functional devices from left to right. The probability that each

device functions is shown on the graph. Assume that devices

fail independently. What is the probability that the circuit

operates?

0.90

0.95

a b

Let T and B denote the events that the top and bottom

devices operate, respectively. There is a path if at least one

device operates. The probability that the circuit operates is

P(T or B) = 1 − P[(T or B)′] = 1 − P(T ′and B′)

A simple formula for the solution can be derived from the com-

plements T ′ and B′. From the independence assumption,

P(T ′and B′) = P(T ′)P(B′) = (1 − 0.95)(1 − 0.90) = 0.005

so

P(T or B) = 1 − 0.005 = 0.995

Practical Interpretation: Notice that the probability that

the circuit operates is larger than the probability that either

device is functional. This is an advantage of a parallel archi-

tecture. A disadvantage is that multiple devices are needed.

E X A M P L E 2.25 Advanced Circuit

The following circuit operates only if there is a path of

functional devices from left to right. The probability that each

device functions is shown on the graph. Assume that devices

fail independently. What is the probability that the circuit

operates?

0.9

0.9

0.95

0.95

0.9 0.99a b

The solution can be obtained from a partition of the graph

into three columns. Let L denote the event that there is a path

of functional devices only through the three units on the left.

From the independence and based on the previous example,

P(L) = 1 − 0.13

Similarly, let M denote the event that there is a path of func-

tional devices only through the two units in the middle. Then,

P(M) = 1 − 0.052

The probability that there is a path of functional devices only

through the one unit on the right is simply the probability that

the device functions, namely, 0.99. Therefore, with the inde-

pendence assumption used again, the solution is

(1 − 0.13)(1 − 0.052)(0.99) = 0.987
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2.8 Bayes’ Theorem
The examples in this chapter indicate that information is often presented in terms of conditional

probabilities. These conditional probabilities commonly provide the probability of an event (such

as failure) given a condition (such as high or low contamination). But after a random experiment

generates an outcome, we are naturally interested in the probability that a condition was present

(high contamination) given an outcome (a semiconductor failure). Thomas Bayes addressed this

essential question in the 1700s and developed the fundamental result known as Bayes’ theorem.

Do not let the simplicity of the mathematics conceal the importance. There is extensive interest

in such probabilities in modern statistical analysis.

From the definition of conditional probability,

P(A ∩ B) = P(A | B)P(B) = P(B ∩ A) = P(B | A)P(A)

Now, considering the second and last terms in the preceding expression, we can write

P(A | B) = P(B | A)P(A)
P(B)

for P(B) > 0 (2.15)

This is a useful result that enables us to solve for P(A | B) in terms of P(B | A).

E X A M P L E 2.26

Reconsider Example 2.20. The conditional probability that

a high level of contamination was present when a failure

occurred is to be determined. The information from Example

2.20 is summarized here.

Probability of Level of Probability of
Failure Contamination Level

0.1 High 0.2

0.005 Not high 0.8

The probability of P(H | F) is determined from

P(H | F) = P(F | H)P(H)
P(F)

= 0.10(0.20)
0.024

= 0.83

The value of P(F) in the denominator of our solution was

found from P(F) = P(F | H)P(H) + P(F | H′)P(H′).

In general, if P(B) in the denominator of Equation 2.15 is written using the total proba-

bility rule in Equation 2.12, we obtain the following general result, which is known as

Bayes’ theorem.

Bayes’ Theorem
If E1, E2, … , Ek are k mutually exclusive and exhaustive events and B is any event,

P(E1 | B) =
P(B | E1)P(E1)

P(B | E1)P(E1) + P(B | E2)P(E2) + · · · + P(B | Ek)P(Ek)
(2.16)

for P(B) > 0
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Notice that the numerator always equals one of the terms in the sum in the denominator.

E X A M P L E 2.27 Medical Diagnostic

Because a new medical procedure has been shown to be

effective in the early detection of an illness, a medical

screening of the population is proposed. The probability

that the test correctly identifies someone with the illness as

positive (known as the sensitivity) is 0.99, and the probability

that the test correctly identifies someone without the illness

as negative (known as the specificity) is 0.95. The incidence

of the illness in the general population is 0.0001. You take

the test, and the result is positive. What is the probability that

you have the illness?

Let D denote the event that you have the illness, and let S
denote the event that the test signals positive. The probability

requested can be denoted as P(D | S). The probability that the

test correctly signals someone without the illness as negative

is 0.95. Consequently, the probability of a positive test without

the illness is

P(S | D′) = 0.05

From Bayes’ theorem,

P(D | S) = P(S | D)P(D)
P(S | D)P(D) + P(S | D′)P(D′)

= 0.99(0.0001)
0.99(0.0001) + 0.05(1 − 0.0001)

= 1∕506 = 0.002

Practical Interpretation: The probability that the illness

is present given a positive result from the test is only 0.002.

Surprisingly, even though the test is effective, in the sense that

the sensitivity and specificity are both high, because the inci-

dence of the illness in the general population is low, the chance

is quite small that you actually have the disease even with a

positive result.

2.9 Random Variables
We often summarize the outcome from a random experiment by a simple number. In many of the

examples of random experiments that we have considered, the sample space has been a description

of possible outcomes. In some cases, descriptions of outcomes are sufficient, but in other cases,

it is useful to associate a number with each outcome in the sample space. Because the particular

outcome of the experiment is not known in advance, the resulting value of our variable is not

known in advance. For this reason, the variable that associates a number with the outcome of a

random experiment is referred to as a random variable.

Random Variable
A random variable is a function that assigns a real number to each outcome in the sample

space of a random experiment.

Notation is used to distinguish between a random variable and the real number.

Notation
A random variable is denoted by an uppercase letter such as X. After an experiment is con-

ducted, the measured value of the random variable is denoted by a lowercase letter such as

x = 70 milliamperes.

Sometimes a measurement (such as current in a copper wire or length of a machined part) can

assume any value in an interval of real numbers (at least theoretically). Then arbitrary precision

in the measurement is possible. Of course, in practice, we might round off to the nearest tenth
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or hundredth of a unit. The random variable that represents this measurement is said to be a

continuous random variable. The range of the random variable includes all values in an interval

of real numbers; that is, the range can be thought of as a continuum.

In other experiments, we might record a count such as the number of transmitted bits that are

received in error. Then, the measurement is limited to integers. Or we might record that a propor-

tion such as 0.0042 of the 10,000 transmitted bits were received in error. Then, the measurement

is fractional, but it is still limited to discrete points on the real line. Whenever the measurement

is limited to discrete points on the real line, the random variable is said to be a discrete random
variable.

Discrete and Continuous Random Variables
A discrete random variable is a random variable with a finite (or countably infinite) range.

A continuous random variable is a random variable with an interval (either finite or infi-

nite) of real numbers for its range.

In some cases, the random variable X is actually discrete but, because the range of possible

values is so large, it might be more convenient to analyze X as a continuous random variable. For

example, suppose that current measurements are read from a digital instrument that displays the

current to the nearest 100th of a milliampere. Because the possible measurements are limited,

the random variable is discrete. However, it might be a more convenient, simple approximation

to assume that the current measurements are values of a continuous random variable.

Examples of Random Variables
Examples of continuous random variables:

electrical current, length, pressure, temperature, time, voltage, weight

Examples of discrete random variables:

number of scratches on a surface, proportion of defective parts among 1000 tested, num-

ber of transmitted bits received in error

Important Terms and Concepts

Addition rule

Axioms of probability

Bayes’ theorem

Combination

Conditional probability

Counting techniques

Equally likely outcomes

Event

Independence

Multiplication rule

Mutually exclusive events

Outcome

Permutation

Probability

Random samples

Random variables—discrete and continuous

Sample spaces—discrete and continuous

Total probability rule

Tree diagram

Venn diagram

With or without replacement
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Discrete Random
Variables and
Probability
Distributions
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C H A P T E R O U T L I N E

3.1 Probability Distributions and

Probability Mass Functions

3.2 Cumulative Distribution Functions

3.3 Mean and Variance of a Discrete

Random Variable

3.4 Discrete Uniform Distribution

3.5 Binomial Distribution

3.6 Geometric and Negative

Binomial Distributions

3.7 Hypergeometric Distribution

3.8 Poisson Distribution

L E A R N I N G O B J E C T I V E S

After careful study of this chapter, you should be able to do the

following:

1. Determine probabilities from probability mass functions and

the reverse

2. Determine probabilities and probability mass functions from

cumulative distribution functions and the reverse

3. Calculate means and variances for discrete random variables

4. Understand the assumptions for some common discrete

probability distributions

5. Calculate probabilities and determine means and variances

for some common discrete probability distributions

42
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A redundant array of independent disks (RAID) uses multiple physical disk drives as one logical

unit in a computer system. The array can increase performance and robustness to a disk failure.

Data copies can be written simultaneously to multiple drives (known as mirroring) to provide

immediate backup and the ability to recover from failures but with less storage capacity than

would otherwise be available. Alternatively, to increase performance, the data can be distributed

among multiple disks with only a fraction of the data on each one (known as striping). But a failure

to even a single disk can lead to loss of data. An intermediate design is to distribute the source data

along with additional data (known as parity data) across multiple disks. With the parity data, the

source data can be recovered even with disk failures. In particular, a RAID 5 design uses striping

and parity to be able to recover the source data if one disk in the array fails, and a RAID 6 design

allows for data recovery even if two disks fail. Disk failures due to hardware malfunction are often

assumed to be independent with constant probability. With a large number of disks in an array,

the risk of data loss and the appropriate array design to meet the system performance, availability,

and cost criteria are important. The number of failed drives can be modeled as a discrete random

variable; the risk of data loss in a redundant system is only one example of the use of the topics

in this chapter.

3.1 Probability Distributions and Probability

Mass Functions
Many physical systems can be modeled by the same or similar random experiments and random

variables. The distribution of the random variables involved in each of these common systems can

be analyzed, and the results can be used in different applications and examples. In this chapter,

we present the analysis of several random experiments and discrete random variables that fre-

quently arise in applications.

Random variables are so important in random experiments that sometimes we essentially

ignore the original sample space of the experiment and focus on the probability distribu-

tion of the random variable. In Example 3.1, we might summarize the random experiment in

terms of the three possible values of X, namely {0, 1, 2}. In this manner, a random variable can

simplify the description and analysis of a random experiment.

The probability distribution of a random variable X is a description of the probabilities

associated with the possible values of X. For a discrete random variable, the distribution is often

specified by just a list of the possible values along with the probability of each. For other cases,

probabilities are expressed in terms of a formula.

E X A M P L E 3.1 Flash Recharge Time

The time to recharge the flash is tested in three cell-phone

cameras. The probability that a camera meets the recharge

specification is 0.8, and the cameras perform independently.

See Table 3.1 for the sample space for the experiment and

associated probabilities. For example, because the cameras

are independent, the probability that the first and second

cameras pass the test and the third one fails, denoted as ppf , is

P(ppf ) = (0.8)(0.8)(0.2) = 0.128

The random variable X denotes the number of cameras that

pass the test. The last column of the table shows the values of

X assigned to each outcome of the experiment.

T A B L E 3.1 Camera Flash Tests

Camera 1 Camera 2 Camera 3 Probability X
Pass Pass Pass 0.512 3

Fail Pass Pass 0.128 2

Pass Fail Pass 0.128 2

Fail Fail Pass 0.032 1

Pass Pass Fail 0.128 2

Fail Pass Fail 0.032 1

Pass Fail Fail 0.032 1

Fail Fail Fail 0.008 0
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E X A M P L E 3.2 Particles of Contamination

Define the random variable X to be the number of contami-

nation particles on a wafer in semiconductor manufacturing.

Although wafers possess a number of characteristics, the ran-

dom variable X summarizes the wafer only in terms of the

number of particles.

The possible values of X are integers from zero up to

some large value that represents the maximum number of

particles that can be found on one of the wafers. If this

maximum number is large, we might simply assume that the

range of X is the set of integers from zero to infinity.

Note that more than one random variable can be defined

in an experiment. We might also define the random variable Y
to be the number of chips from a wafer that fails the final

test.

E X A M P L E 3.3 Digital Channel

There is a chance that a bit transmitted through a digital trans-

mission channel is received in error. Let X equal the number of

bits in error in the next four bits transmitted. The possible val-

ues for X are {0, 1, 2, 3, 4}. Based on a model for the errors that

is presented in the following section, probabilities for these

values will be determined. Suppose that the probabilities are

P(X = 0) = 0.6561 P(X = 1) = 0.2916

P(X = 2) = 0.0486 P(X = 3) = 0.0036

P(X = 4) = 0.0001

The probability distribution of X is specified by the possible

values along with the probability of each. A graphical

description of the probability distribution of X is shown in

Figure 3.1.

Practical Interpretation: A random experiment can often

be summarized with a random variable and its distribution.

The details of the sample space can often be omitted.

Suppose that a loading on a long, thin beam places mass only at discrete points.

See Figure 3.2. The loading can be described by a function that specifies the mass at each of the

discrete points. Similarly, for a discrete random variable X, its distribution can be described by a

function that specifies the probability at each of the possible discrete values for X.

Probability Mass Function
For a discrete random variable X with possible values x1, x2,… , xn, a probability mass
function is a function such that

(1) f (xi) ≥ 0

(2)
n∑

i=1

f (xi) = 1

(3) f (xi) = P(X = xi) (3.1)

x0 1 2 3 4

0.2916 0.0036
0.0001

0.0486

0.6561

f (x)

FIGURE 3.1

Probability distribution for bits in error.

Loading

x

FIGURE 3.2

Loadings at discrete points on a long, thin beam.
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For the bits in error in Example 3.3, f (0) = 0.6561, f (1) = 0.2916, f (2) = 0.0486, f (3) = 0.0036,

and f (4) = 0.0001. Check that the probabilities sum to 1.

E X A M P L E 3.4 Wafer Contamination

Let the random variable X denote the number of semiconduc-

tor wafers that need to be analyzed in order to detect a large

particle of contamination. Assume that the probability that a

wafer contains a large particle is 0.01 and that the wafers are

independent. Determine the probability distribution of X.

Let p denote a wafer in which a large particle is present,

and let a denote a wafer in which it is absent. The sample space

of the experiment is infinite, and it can be represented as all

possible sequences that start with a string of a’s and end with p.

That is,

s = {p, ap, aap, aaap, aaaap, aaaaap, and so forth}

Consider a few special cases. We have P(X = 1) =
P(p) = 0.01. Also, using the independence assumption,

P(X = 2) = P(ap) = 0.99(0.01) = 0.0099

A general formula is

P(X = x) = P(aa… a
⏟⏟⏟

(x − 1)a’s

p) = 0.99x−1(0.01), for x = 1, 2, 3,…

Describing the probabilities associated with X in terms of this

formula is a simple method to define the distribution of X in

this example. Clearly f (x) ≥ 0. The fact that the sum of the

probabilities is 1 is left as an exercise. This is an example of a

geometric random variable for which details are provided later

in this chapter.

Practical Interpretation: The random experiment here

has an unbounded number of outcomes, but it can still be

conveniently modeled with a discrete random variable with a

(countably) infinite range.

3.2 Cumulative Distribution Functions
An alternate method for describing a random variable’s probability distribution is with cumulative

probabilities such as P(X ≤ x). Furthermore, cumulative probabilities can be used to find the

probability mass function of a discrete random variable. Consider the following example.

E X A M P L E 3.5 Digital Channel

In Example 3.3, we might be interested in the probability that

three or fewer bits are in error. This question can be expressed

as P(X ≤ 3).

The event that {X ≤ 3} is the union of the events

{X = 0}, {X = 1}, {X = 2}, and {X = 3}. Clearly, these three

events are mutually exclusive. Therefore,

P(X ≤ 3) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3)
= 0.6561 + 0.2916 + 0.0486 + 0.0036 = 0.9999

This approach can also be used to determine

P(X = 3) = P(X ≤ 3) − P(X ≤ 2) = 0.0036

In general, for any discrete random variable with possible values x1, x2,… , the events

{X = x1}, {X = x2},… are mutually exclusive. Therefore, P(X ≤ x) =
∑

xi≤x
P(X = xi). This leads

to the following definition.

Cumulative Distribution Function
The cumulative distribution function of a discrete random variable X, denoted as

F(x), is

F(x) = P(X ≤ x) =
∑

xi≤x
f (xi)
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For a discrete random variable X, F(x) satisfies the following properties.

(1) F(x) = P(X ≤ x) =
∑

xi≤x
f (xi)

(2) 0 ≤ F(x) ≤ 1

(3) If x ≤ y, then F(x) ≤ F(y) (3.2)

Properties (1) and (2) of a cumulative distribution function follow from the definition.

Property (3) follows from the fact that if x ≤ y, the event that {X ≤ x} is contained in the

event {X ≤ y}. Like a probability mass function, a cumulative distribution function provides

probabilities.

Even if the random variable X can assume only integer values, the cumulative distribution

function is defined at noninteger values. In Example 3.5, F(1.5) = P(X ≤ 1.5) = P{X = 0} +
P(X = 1) = 0.6561 + 0.2916 = 0.9477. Also, F(x) = 0.9477 for all 1 ≤ x < 2 and

F(x) =

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

0 x < 0

0.6561 0 ≤ x < 1

0.9477 1 ≤ x < 2

0.9963 2 ≤ x < 3

0.9999 3 ≤ x < 4

1 4 ≤ x

That is, F(x) is piecewise constant between the values x1, x2,… .

Furthermore, P(X = xi) can be determined from the jump at the value xi. More specifically,

P(X = xi) = F(xi) − lim
x↑xi

F(x)

and this expression calculates the difference between F(xi) and the limit of F(x) as x increases

to xi.

E X A M P L E 3.6 Cumulative Distribution Function

Determine the probability mass function of X from the follow-

ing cumulative distribution function:

F(x) =
⎧
⎪
⎨
⎪
⎩

0 x < −2

0.2 −2 ≤ x < 0

0.7 0 ≤ x < 2

1 2 ≤ x

Figure 3.3 displays a plot of F(x). From the plot, the

only points that receive nonzero probability are −2, 0, and 2.

The probability mass function at each point is the jump in the

cumulative distribution function at the point. Therefore,

f (−2) = 0.2 − 0 = 0.2

f (0) = 0.7 − 0.2 = 0.5

f (2) = 1.0 − 0.7 = 0.3

0

0.2

2–2

0.7

1.0

x

F(x)

FIGURE 3.3

Cumulative distribution function for Example 3.6.
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3.3 Mean and Variance of a Discrete

Random Variable
Two numbers are often used to summarize a probability distribution for a random variable X.

The mean is a measure of the center or middle of the probability distribution, and the variance is

a measure of the dispersion, or variability in the distribution. These two measures do not uniquely

identify a probability distribution. That is, two different distributions can have the same mean and

variance. Still, these measures are simple, useful summaries of the probability distribution of X.

Mean, Variance, and Standard Deviation
The mean or expected value of the discrete random variable X, denoted as μ or E(X), is

μ = E(X) =
∑

x
xf (x) (3.3)

The variance of X, denoted as σ2 or V(X), is

σ2 = V(X) = E(X − μ)2 =
∑

x
(x − μ)2f (x) =

∑

x
x2f (x) − μ2

The standard deviation of X is σ =
√
σ2.

The mean of a discrete random variable X is a weighted average of the possible values of

X with weights equal to the probabilities. If f (x) is the probability mass function of a loading on

a long, thin beam, E(X) is the point at which the beam balances. Consequently, E(X) describes

the “center” of the distribution of X in a manner similar to the balance point of a loading.

See Figure 3.4.

The variance of a random variable X is a measure of dispersion or scatter in the possible

values for X. The standard deviation is also a widely used measure. The variance of X uses

weight f (x) as the multiplier of each possible squared deviation (x − μ)2. Figure 3.4 illustrates

probability distributions with equal means but different variances. Properties of summations and

the definition of μ can be used to show the equality of the formulas for variance in Equation 3.3.

V(X) =
∑

x
(x − μ)2 f (x) =

∑

x
x2 f (x) − 2μ

∑

x
xf (x) + μ2

∑

x
f (x)

=
∑

x
x2 f (x) − 2μ2 + μ2 =

∑

x
x2f (x) − μ2

Either formula for V(x) can be used. Figure 3.5 illustrates that two probability distributions can

differ even though they have identical means and variances.

0 8642 10

(a)

0 8642 10

(b)

FIGURE 3.4

A probability distribution can be viewed as a loading with the mean equal to the balance point. Parts
(a) and (b) illustrate equal means, but part (a) illustrates a larger variance.
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0 8642 10

(a)

0 8642 10

(b)

FIGURE 3.5

The probability distributions illustrated in parts (a) and (b) differ even though they have equal
means and equal variances.

E X A M P L E 3.7 Digital Channel

In Example 3.3, there is a chance that a bit transmitted through

a digital transmission channel is received in error. Let X equal

the number of bits in error in the next four bits transmitted.

The possible values for X are {0, 1, 2, 3, 4}. Based on a model

for the errors presented in the following section, probabilities

for these values will be determined. Suppose that the proba-

bilities are

P(X = 0) = 0.6561 P(X = 2) = 0.0486 P(X = 4) = 0.0001

P(X = 1) = 0.2916 P(X = 3) = 0.0036

Now

μ = E(X) = 0 f (0) + 1 f (1) + 2 f (2) + 3 f (3) + 4 f (4)
= 0(0.6561) + 1(0.2916) + 2(0.0486) + 3(0.0036)
+ 4(0.0001)

= 0.4

Although X never assumes the value 0.4, the weighted average

of the possible values is 0.4.

To calculate V(X), a table is convenient.

x x − 0.4 (x − 0.4)2 f (x) f (x)(x − 0.4)2

0 −0.4 0.16 0.6561 0.104976

1 0.6 0.36 0.2916 0.104976

2 1.6 2.56 0.0486 0.124416

3 2.6 6.76 0.0036 0.024336

4 3.6 12.96 0.0001 0.001296

V(X) = σ2 =
5∑

i=1

f (xi)(xi − 0.4)2 = 0.36

The alternative formula for variance could also be used to

obtain the same result.

Practical Interpretation: The mean and variance sum-

marize the distribution of a random variable. The mean is a

weighted average of the values, and the variance measures the

dispersion of the values from the mean. Different distributions

may have the same mean and variance.

E X A M P L E 3.8 Marketing

Two new product designs are to be compared on the basis of

revenue potential. Marketing believes that the revenue from

design A can be predicted quite accurately to be $3 million.

The revenue potential of design B is more difficult to assess.

Marketing concludes that there is a probability of 0.3 that the

revenue from design B will be $7 million, but there is a 0.7

probability that the revenue will be only $2 million. Which

design do you prefer?

Let X denote the revenue from design A. Because there

is no uncertainty in the revenue from design A, we can model

the distribution of the random variable X as $3 million with

probability 1. Therefore, E(X) = $3 million. Let Y denote the

revenue from design B. The expected value of Y in millions of

dollars is

E(Y) = $7(0.3) + $2(0.7) = $3.5

Because E(Y) exceeds E(X), we might prefer design B.

However, the variability of the result from design B is larger.

That is,

σ2 = (7 − 3.5)2(0.3) + (2 − 3.5)2(0.7)
= 5.25 millions of dollars squared

Because the units of the variables in this example are

millions of dollars and because the variance of a random vari-

able squares the deviations from the mean, the units of σ2 are

millions of dollars squared. These units make interpretation

difficult.

Because the units of standard deviation are the same as

the units of the random variable, the standard deviation σ is

easier to interpret. Here σ =
√

5.25 = 2.29 millions of dollars

and σ is large relative to μ.
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The variance of a random variable X can be considered to be the expected value of a specific

function of X, namely, h(X) = (X − μ)2. In general, the expected value of any function h(X) of a

discrete random variable is defined in a similar manner.

Expected Value of a Function of a Discrete Random Variable
If X is a discrete random variable with probability mass function f (x),

E[h(X)] =
∑

x
h(x) f (x) (3.4)

E X A M P L E 3.9 Digital Channel

In Example 3.7, X is the number of bits in error in the next

four bits transmitted. What is the expected value of the square

of the number of bits in error? Now, h(X) = X2. Therefore,

E[h(X)] = 02 × 0.6561 + 12 × 0.2916 + 22 × 0.0486

+32 × 0.0036 + 42 × 0.0001 = 0.52

Practical Interpretation: The expected value of a func-

tion of a random variable is simply a weighted average of the

function evaluated at the values of the random variable.

In Example 3.9, the expected value of h(X) = X2 does not equal h[E(X)]. However, in the

special case that h(X) = aX + b (for any constants a and b), the following can be shown from the

properties of sums in Equation 3.4.

E(aX + b) = aE(X) + b

and

V(aX + b) = a2V(X)

In Example 3.8, suppose that the revenue for design B is increased by 10%. Let the random vari-

able U denote the new revenue. Then U = h(Y) = 1.1Y and

E(U) = 1.1E(Y) = 1.1(3.5) = 3.85

in millions of dollars and

V(U) = 1.12V(Y) = 1.12(5.25) = 6.35

in millions of dollars squared.

3.4 Discrete Uniform Distribution
The simplest discrete random variable is one that assumes only a finite number of possible values,

each with equal probability. A random variable X that assumes each of the values x1, x2,… , xn
with equal probability 1/n is frequently of interest.

Discrete Uniform Distribution
A random variable X has a discrete uniform distribution if each of the n values in its range,

x1, x2,… , xn, has equal probability. Then

f (xi) =
1

n
(3.5)
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E X A M P L E 3.10 Serial Number

The first digit of a part’s serial number is equally likely to be

any one of the digits 0 through 9. If one part is selected ran-

domly from a large batch and X is the first digit of the serial

number, X has a discrete uniform distribution with probability

0.1 for each value in R = {0, 1, 2,… , 9}. That is,

f (x) = 0.1

for each value in R. The probability mass function of X is

shown in Figure 3.6.

f(x)

x0 1 2 3 4 5 6 7 8 9

0.1

FIGURE 3.6

Probability mass function for a discrete uniform
random variable.

Suppose that the range of the discrete random variable X equals the consecutive integers a,

a + 1, a + 2,… , b, for a ≤ b. The range of X contains b − a + 1 values each with probability

1 / (b − a + 1). Now

μ =
b∑

k=a
k
(

1

b − a + 1

)

The algebraic identity

b∑

k=a
k = b(b + 1) − (a − 1)a

2
can be used to simplify the result to

μ = (b + a) / 2. The derivation of the variance is left as an exercise.

Mean and Variance
Suppose that X is a discrete uniform random variable on the consecutive integers a, a + 1,

a + 2,… , b, for a ≤ b. The mean of X is

μ = E(X) = b + a
2

The variance of X is

σ2 = (b − a + 1)2 − 1

12
(3.6)

E X A M P L E 3.11 Number of Voice Lines

Let the random variable X denote the number of 48 voice

lines that are used at a particular time. Assume that X is a

discrete uniform random variable with a range of 0 to 48.

Then,

E(X) = (48 + 0)∕2 = 24

and

σ =
√

(48 − 0 + 1)2 − 1

12
= 14.14

Practical Interpretation: The average number of lines in

use is 24, but the dispersion (as measured by σ) is large. There-

fore, at many times far more or fewer than 24 lines are used.

Equation 3.6 is more useful than it might first appear. For example, suppose that the discrete

uniform random variable Y has range 5, 10,… , 30. Then Y = 5X where X has range 1, 2,… , 6.
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The mean and variance of Y are obtained from the formulas for a linear function of X in

Section 3.3 to be

E(Y) = 5E(X) = 5
(

1 + 6

2

)

= 17.5

V(Y) = 52V(X) = 25

[
(6 − 1 + 1)2 − 1

12

]

= 72.92

E X A M P L E 3.12 Proportion of Voice Lines

Let the random variable Y denote the proportion of the 48

voice lines used at a particular time, and X denote the number

of lines used at a particular time. Then Y = X / 48. Therefore,

E(Y) = E(X)∕48 = 0.5

and

V(Y) = V(X)∕482 = 0.087

3.5 Binomial Distribution
Consider the following random experiments and random variables:

1. Flip a coin 10 times. Let X = number of heads obtained.

2. A worn machine tool produces 1% defective parts. Let X = number of defective parts in the

next 25 parts produced.

3. Each sample of air has a 10% chance of containing a particular rare molecule. Let X = the

number of air samples that contain the rare molecule in the next 18 samples analyzed.

4. Of all bits transmitted through a digital transmission channel, 10% are received in error. Let

X = the number of bits in error in the next five bits transmitted.

5. A multiple-choice test contains 10 questions, each with four choices, and you guess at each

question. Let X = the number of questions answered correctly.

6. In the next 20 births at a hospital, let X = the number of female births.

7. Of all patients suffering a particular illness, 35% experience improvement from a medication.

In the next 100 patients administered the medication, let X = the number of patients who

experience improvement.

These examples illustrate that a general probability model that includes these experiments as

particular cases would be very useful. Each of these random experiments can be thought of as

consisting of a series of repeated, random trials: 10 flips of the coin in experiment 1, the production

of 25 parts in experiment 2, and so forth. The random variable in each case is a count of the number

of trials that meet a specified criterion. The outcome from each trial either meets the criterion that

X counts or it does not; consequently, each trial can be summarized as resulting in either a success

or a failure. For example, in the multiple-choice experiment, for each question, only the choice

that is correct is considered a success. Choosing any one of the three incorrect choices results in

the trial being summarized as a failure.

The terms success and failure are just labels. We can just as well use A and B or 0 or 1.

Unfortunately, the usual labels can sometimes be misleading. In experiment 2, because X counts

defective parts, the production of a defective part is called a success.

A trial with only two possible outcomes is used so frequently as a building block of a random

experiment that it is called a Bernoulli trial. It is usually assumed that the trials that constitute the

random experiment are independent. This implies that the outcome from one trial has no effect
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on the outcome to be obtained from any other trial. Furthermore, it is often reasonable to assume

that the probability of a success in each trial is constant. In the multiple-choice experiment, if the

test taker has no knowledge of the material and just guesses at each question, we might assume

that the probability of a correct answer is 1/4 for each question.

E X A M P L E 3.13 Digital Channel

The chance that a bit transmitted through a digital transmis-

sion channel is received in error is 0.1. Also, assume that the

transmission trials are independent. Let X = the number of bits

in error in the next four bits transmitted. Determine P(X = 2).

Let the letter E denote a bit in error, and let the letter

O denote that the bit is okay, that is, received without error.

We can represent the outcomes of this experiment as a list of

four letters that indicate the bits that are in error and those that

are okay. For example, the outcome OEOE indicates that the

second and fourth bits are in error and the other two bits are

okay. The corresponding values for x are

Outcome x Outcome x

OOOO 0 EOOO 1

OOOE 1 EOOE 2

OOEO 1 EOEO 2

OOEE 2 EOEE 3

OEOO 1 EEOO 2

OEOE 2 EEOE 3

OEEO 2 EEEO 3

OEEE 3 EEEE 4

The event that X = 2 consists of the six outcomes:

{EEOO,EOEO,EOOE,OEEO,OEOE,OOEE}

Using the assumption that the trials are independent, the prob-

ability of {EEOO} is

P(EEOO) = P(E)P(E)P(O)P(O) = (0.1)2(0.9)2 = 0.0081

Also, any one of the six mutually exclusive outcomes for

which X = 2 has the same probability of occurring. Therefore,

P(X = 2) = 6(0.0081) = 0.0486

In general, P(X = x) = (number of outcomes that result in

x errors) × (0.1)x(0.9)4−x.

To complete a general probability formula, only an

expression for the number of outcomes that contain x errors is

needed. An outcome that contains x errors can be constructed

by partitioning the four trials (letters) in the outcome into two

groups. One group is of size x and contains the errors, and

the other group is of size n − x and consists of the trials that

are okay. The number of ways of partitioning four trials into

two groups, one of which is of size x, is

(
4

x

)

= 4!
x!(4 − x)!

.

Therefore, in this example,

P(X = x) =
(

4

x

)

(0.1)x(0.9)4−x

Notice that

(
4

2

)

= 4!∕[2!2!] = 6, as found above. The prob-

ability mass function of X was shown in Example 3.3 and

Figure 3.1.

The previous example motivates the following result.

Binomial Distribution
A random experiment consists of n Bernoulli trials such that

(1) The trials are independent.

(2) Each trial results in only two possible outcomes, labeled as “success” and “failure.”

(3) The probability of a success in each trial, denoted as p, remains constant.

The random variable X that equals the number of trials that result in a success is a

binomial random variable with parameters 0 < p < 1 and n = 1, 2,… . The probability

mass function of X is

f (x) =
(

n
x

)

px(1 − p)n−x x = 0, 1,… , n (3.7)
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FIGURE 3.7

Binomial distributions for selected values of n and p.

As in Example 3.13,

(
n
x

)

equals the total number of different sequences of trials that contain

x successes and n − x failures. The total number of different sequences that contain x successes

and n − x failures times the probability of each sequence equals P(X = x).

The preceding probability expression is a very useful formula that can be applied in a number

of examples. The name of the distribution is obtained from the binomial expansion. For constants

a and b, the binomial expansion is

(a + b)n =
n∑

k=0

(
n
k

)

akbn−k

Let p denote the probability of success on a single trial. Then by using the binomial expansion

with a = p and b = 1 − p, we see that the sum of the probabilities for a binomial random variable

is 1. Furthermore, because each trial in the experiment is classified into two outcomes, {success,
failure}, the distribution is called a “bi”-nomial. A more general distribution, for more than two

outcomes, is the multinomial distribution.

Examples of binomial distributions are shown in Figure 3.7. For a fixed n, the distribution

becomes more symmetric as p increases from 0 to 0.5 or decreases from 1 to 0.5. For a fixed p,

the distribution becomes more symmetric as n increases.

E X A M P L E 3.14 Binomial Coefficient

Several examples using the binomial coefficient

(
n
x

)

follow.

(
10

3

)

=10!∕[3!7!] = (10 • 9 • 8)∕(3 • 2) = 120

(
15

10

)

=15!∕[10!5!] = (15 • 14 • 13 • 12 • 11)∕(5 • 4 • 3 • 2)

=3003

(
100

4

)

= 100!∕[4!96!] = (100 • 99 • 98 • 97)∕(4 • 3 • 2)

= 3,921,225

Also recall that 0! = 1.
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E X A M P L E 3.15 Organic Pollution

Each sample of water has a 10% chance of containing a

particular organic pollutant. Assume that the samples are

independent with regard to the presence of the pollutant. Find

the probability that in the next 18 samples, exactly 2 contain

the pollutant.

Let X = the number of samples that contain the pollutant

in the next 18 samples analyzed. Then X is a binomial random

variable with p = 0.1 and n = 18. Therefore,

P(X = 2) =
(

18

2

)

(0.1)2(0.9)16

Now

(
18

2

)

= 18!∕[2!16!] = 18(17)∕2 = 153. Therefore,

P(X = 2) = 153(0.1)2(0.9)16 = 0.284

Determine the probability that at least four samples con-

tain the pollutant. The requested probability is

P(X ≥ 4) =
18∑

x=4

(
18

x

)

(0.1)x(0.9)18−x

However, it is easier to use the complementary event,

P(X ≥ 4) = 1 − P(X < 4) = 1 −
3∑

x=0

(
18

x

)

(0.1)x(0.9)18−x

= 1 − [0.150 + 0.300 + 0.284 + 0.168] = 0.098

Determine the probability that 3 ≤ X < 7. Now

P(3 ≤ X < 7) =
6∑

x=3

(
18

x

)

(0.1)x(0.9)18−x

= 0.168 + 0.070 + 0.022 + 0.005

= 0.265

Practical Interpretation: Binomial random variables are

used to model many physical systems and probabilities for all

such models can be obtained from the binomial probability

mass function.

A table of cumulative binomial probabilities is provided in Appendix A, and it can sim-

plify some calculations. For example, the binomial distribution in Example 3.13 has p = 0.1 and

n = 4. A probability such as P(X = 2) can be calculated from the table as

P(X = 2) = P(X ≤ 2) − P(X ≤ 1) = 0.9963 − 0.9477 = 0.0486

and this agrees with the result obtained previously.

The mean and variance of a binomial random variable can be obtained from an analysis of

the independent trials that comprise the binomial experiment. Define new random variables

Xi =
{

1 if ith trial is a success

0 otherwise

for i = 1, 2,… , n. Then

X = X1 + X2 + · · · + Xn

Also, it is easy to derive the mean and variance of each Xi as

E(Xi) = 1p + 0(1 − p) = p

and

V(Xi) = (1 − p)2 p + (0 − p)2(1 − p) = p(1 − p)

Sums of random variables are discussed in Chapter 5, and there the intuitively reasonable

result that

E(X) = E(X1) + E(X2) + · · · + E(Xn)

is derived. Furthermore, for the independent trials of a binomial experiment, Chapter 5 also

shows that

V(X) = V(X1) + V(X2) + · · · + V(Xn)

Because E(Xi) = p and V(Xi) = p(1 − p), we obtain the solution E(X) = np and V(X) = np(1 − p).
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Mean and Variance
If X is a binomial random variable with parameters p and n,

μ = E(X) = np and σ2 = V(X) = np(1 − p) (3.8)

E X A M P L E 3.16 Mean and Variance

For the number of transmitted bits received in error in Ex-

ample 3.13, n = 4 and p = 0.1, so

E(X) = 4(0.1) = 0.4 and V(X) = 4(0.1)(0.9) = 0.36

and these results match those obtained from a direct calcula-

tion in Example 3.7.

3.6 Geometric and Negative

Binomial Distributions

Geometric Distribution Consider a random experiment that is closely related to the one used

in the definition of a binomial distribution. Again, assume a series of Bernoulli trials (independent

trials with constant probability p of a success on each trial). However, instead of a fixed number of

trials, trials are conducted until a success is obtained. Let the random variable X denote the number

of trials until the first success. Example 3.4 analyzed successive wafers until a large particle was

detected. Then X is the number of wafers analyzed.

E X A M P L E 3.17 Digital Channel

The probability that a bit transmitted through a digital trans-

mission channel is received in error is 0.1. Assume that the

transmissions are independent events, and let the random vari-

able X denote the number of bits transmitted until the first

error.

Then P(X = 5) is the probability that the first four bits

are transmitted correctly and the fifth bit is in error. This event

can be denoted as {OOOOE}, where O denotes an okay bit.

Because the trials are independent and the probability of a cor-

rect transmission is 0.9,

P(X = 5) = P(OOOOE) = 0.940.1 = 0.066

Note that there is some probability that X will equal any integer

value. Also, if the first trial is a success, X = 1. Therefore, the

range of X is {1, 2, 3, …}, that is, all positive integers.

Geometric Distribution
In a series of Bernoulli trials (independent trials with constant probability p of a success),

the random variable X that equals the number of trials until the first success is a geometric
random variable with parameter 0 < p < 1 and

f (x) = (1 − p)x−1 p x = 1, 2,… (3.9)

Examples of the probability mass functions for geometric random variables are shown in

Figure 3.8. Note that the height of the line at x is (1 − p) times the height of the line at x − 1.

That is, the probabilities decrease in a geometric progression. The distribution acquires its name

from this result.
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FIGURE 3.8

Geometric distributions for selected values
of the parameter p.
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E X A M P L E 3.18 Wafer Contamination

The probability that a wafer contains a large particle of con-

tamination is 0.01. If it is assumed that the wafers are inde-

pendent, what is the probability that exactly 125 wafers need

to be analyzed before a large particle is detected?

Let X denote the number of samples analyzed until a large

particle is detected. Then X is a geometric random variable

with p = 0.01. The requested probability is

P(X = 125) = (0.99)124 0.01 = 0.0029

The mean of a geometric random variable is

μ =
∞∑

k=1

kp(1 − p)k−1 = p
∞∑

k=1

kqk−1

where q = p − 1. The right-hand side of the previous equation is recognized to be the partial

derivative with respect to q of

p
∞∑

k=1

qk =
pq

1 − q

where the last equality is obtained from the known sum of a geometric series. Therefore,

μ = ∂
∂q

⌊
pq

1 − q

⌋

=
p

(1 − q)2
=

p
p2

= 1

p

and the mean is derived. To obtain the variance of a geometric random variable, we can first derive

E(X2) by a similar approach. This can be obtained from partial second derivatives with respect to

q. Then the formula V(X) = E(X2) − (E(X))2 is applied. The details are a bit more work, and this

is left as a mind-expanding exercise.
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Mean and Variance
If X is a geometric random variable with parameter p,

μ = E(X) = 1∕p and σ2 = V(X) = (1 − p)∕p2 (3.10)

E X A M P L E 3.19 Mean and Standard Deviation

Consider the transmission of bits in Example 3.17. Here

p = 0.1. The mean number of transmissions until the first

error is 1/0.1 = 10. The standard deviation of the number of

transmissions before the first error is

σ = [(1 − 0.1)∕0.12]1∕2 = 9.49

Practical Interpretation: The standard deviation here is

approximately equal to the mean, and this occurs when p is

small. Therefore, the actual number of trials until the first suc-

cess may be much different from the mean when p is small.

Lack of Memory Property A geometric random variable has been defined as the number

of trials until the first success. However, because the trials are independent, the count of the

number of trials until the next success can be started at any trial without changing the probability

distribution of the random variable. For example, if 100 bits are transmitted, the probability that

the first error, after bit 100, occurs on bit 106 is the probability that the next six outcomes are

OOOOOE. This probability is (0.9)5(0.1) = 0.059, which is identical to the probability that the

initial error occurs on bit 6.

The implication of using a geometric model is that the system presumably does not wear out.

The probability of an error remains constant for all transmissions. In this sense, the geometric

distribution is said to lack any memory. The lack of memory property is discussed again in the

context of an exponential random variable in a later chapter.

E X A M P L E 3.20 Lack of Memory Property

In Example 3.17, the probability that a bit is transmitted

in error is equal to 0.1. Suppose that 50 bits have been

transmitted. The mean number of bits until the next error is

1/0.1 = 10—the same result as the mean number of bits until

the first error.

Negative Binomial Distribution A generalization of a geometric distribution in which the

random variable is the number of Bernoulli trials required to obtain r successes results in the

negative binomial distribution.

E X A M P L E 3.21 Digital Channel

As in Example 3.17, suppose that the probability that a bit

transmitted through a digital transmission channel is received

in error is 0.1. Assume that the transmissions are independent

events, and let the random variable X denote the number of

bits transmitted until the fourth error.

Then X has a negative binomial distribution with

r = 4. Probabilities involving X can be found as follows.

For example, P(X = 10) is the probability that exactly three

errors occur in the first 9 trials and then trial 10 results in the

fourth error. The probability that exactly three errors occur in

the first 9 trials is determined from the binomial distribution

to be
(

9

3

)

(0.1)3(0.9)6

Because the trials are independent, the probability that exactly

three errors occur in the first 9 trials and trial 10 results in

the fourth error is the product of the probabilities of these two

events, namely,

(
9

3

)

(0.1)3(0.9)6(0.1) =
(

9

3

)

(0.1)4(0.9)6
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In general, probabilities for X can be determined as follows. Here P(X = x) implies that r − 1

successes occur in the first x − 1 trials and the rth success occurs on trial x. The probability that

r − 1 successes occur in the first x − 1 trials is obtained from the binomial distribution to be

(
x − 1

r − 1

)

pr−1(1 − p)x−r

for r ≤ x. The probability that trial x is a success is p. Because the trials are independent, these

probabilities are multiplied so that

P(X = x) =
(

x − 1

r − 1

)

pr−1(1 − p)x−rp

This leads to the following result.

Negative Binomial Distribution
In a series of Bernoulli trials (independent trials with constant probability p of a success),

the random variable X that equals the number of trials until r successes occur is a negative
binomial random variable with parameters 0 < p < 1 and r = 1, 2, 3,… , and

f (x) =
(

x − 1

r − 1

)

(1 − p)x−rpr x = r, r + 1, r + 2,… (3.11)

Because at least r trials are required to obtain r successes, the range of X is from r to ∞. In the

special case that r = 1, a negative binomial random variable is a geometric random variable.

Selected negative binomial distributions are illustrated in Figure 3.9.

FIGURE 3.9

Negative binomial distributions for selected
values of the parameters r and p.
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1 2 3 4 5 6 7 8 9 10 11 12

Trials

 indicates a trial that results in a "success."

X1 X2 X3

X = X1 + X2 + X3

FIGURE 3.10

Negative binomial random variable repre-
sented as a sum of geometric random
variables.

Let X denote the total number of trials required to obtain r successes. Let X1 denote the num-

ber of trials required to obtain the first success, let X2 denote the number of extra trials required

to obtain the second success, let X3 denote the number of extra trials to obtain the third success,

and so forth. Then the total number of trials required to obtain r successes is X = X1 + X2 + · · ·
+ Xr. Because of the lack of memory property, each of the random variables X1, X2,… , Xr has a

geometric distribution with the same value of p. Consequently, a negative binomial random vari-

able can be interpreted as the sum of r geometric random variables. This concept is illustrated in

Figure 3.10.

Recall that a binomial random variable is a count of the number of successes in n Bernoulli

trials. That is, the number of trials is predetermined, and the number of successes is random.

A negative binomial random variable is a count of the number of trials required to obtain r suc-

cesses. That is, the number of successes is predetermined, and the number of trials is random.

In this sense, a negative binomial random variable can be considered the opposite of a binomial

random variable, although the name is based on the less intuitive result that the probability mass

function can be written to appear similar to the binomial one if negative parameters are used.

The description of a negative binomial random variable as a sum of geometric random vari-

ables leads to the following results for the mean and variance.

Mean and Variance
If X is a negative binomial random variable with parameters p and r,

μ = E(X) = r∕p and σ2 = V(X) = r(1 − p)∕p2 (3.12)

E X A M P L E 3.22 Camera Flashes

Consider the time to recharge the flash in Example 3.1. The

probability that a camera passes the test is 0.8, and the cameras

perform independently. What is the probability that the third

failure is obtained in five or fewer tests?

Let X denote the number of cameras tested until three

failures have been obtained. The requested probability is

P(X ≤ 5). Here X has a negative binomial distribution with

p = 0.2 and r = 3. Therefore,

P(X ≤ 5) =
5∑

x=3

(
x − 1

2

)

0.23(0.8)x−3

= 0.23 +
(

3

2

)

0.23(0.8) +
(

4

2

)

0.23(0.8)2 = 0.058

3.7 Hypergeometric Distribution
A day’s production of 850 manufactured parts contains 50 parts that do not conform to customer

requirements. Two parts are selected at random without replacement from the day’s production.

Let A and B denote the events that the first and second parts are nonconforming, respectively.

From counting parts in the sample space, P(B | A) = 49 / 849 and P(A) = 50 / 850. Consequently,

knowledge that the first part is nonconforming suggests that it is less likely that the second part

selected is nonconforming.
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Let X equal the number of nonconforming parts in the sample. Then,

P(X = 0) = P(both parts conform) = 800

850
•
799

849
= 0.886

P(X = 1) = P (first part selected conforms and the second part selected does not, or the first

part selected does not and the second part selected conforms)

= 800

850
•

50

849
+ 50

850
•
800

849
= 0.111

P(X = 2) = P(both parts do not conform) = 50

850
•

49

849
= 0.003

This experiment is fundamentally different from the examples based on the binomial distri-

bution. In this experiment, the trials are not independent. Note that, in the unusual case that each

unit selected is replaced before the next selection, the trials are independent and there is a constant

probability of a nonconforming part on each trial. Then the number of nonconforming parts in

the sample is a binomial random variable.

But samples are often selected without replacement. Although probabilities can be deter-

mined by the preceding reasoning, a general formula for computing probabilities when samples

are selected without replacement is quite useful. The counting rules presented in Chapter 2 can

be used to justify the following formula.

Hypergeometric Distribution
A set of N objects contains

K objects classified as successes

N − K objects classified as failures

A sample of size n objects is selected randomly (without replacement) from the N objects

where K ≤ N and n ≤ N.

The random variable X that equals the number of successes in the sample is a hyper-
geometric random variable and

f (x) =

(
K
x

)(
N − K
n − x

)

(
N
n

) x = max{0, n + K − N} to min{K, n} (3.13)

The expression min{K, n} is used in the definition of the range of X because the maximum num-

ber of successes that can occur in the sample is the smaller of the sample size, n, and the number

of successes available, K. Also, if n + K > N, at least n + K − N successes must occur in the

sample. Selected hypergeometric distributions are illustrated in Figure 3.11.

E X A M P L E 3.23 Sampling Without Replacement

The computations at the start of this section can be reanalyzed

by using the general expression in the definition of a hyper-

geometric random variable. That is,

P(X = 0) =

(
50

0

)(
800

2

)

(
850

2

) = 319,600

360,825
= 0.886

P(X = 1) =

(
50

1

)(
800

1

)

(
850

2

) = 40,000

360,825
= 0.111

P(X = 2) =

(
50

2

)(
800

0

)

(
850

2

) = 1,225

360,825
= 0.003
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FIGURE 3.11

Hypergeometric distributions for selected values
of parameters N, K, and n.

E X A M P L E 3.24 Parts from Suppliers

A batch of parts contains 100 from a local supplier of circuit

boards and 200 from a supplier in the next state. If four parts

are selected randomly and without replacement, what is the

probability they are all from the local supplier?

Let X equal the number of parts in the sample from the

local supplier. Then X has a hypergeometric distribution and

the requested probability is P(X = 4). Consequently,

P(X = 4) =

(
100

4

)(
200

0

)

(
300

4

) = 0.0119

What is the probability that two or more parts in the sample

are from the local supplier?

P(X ≥ 2) =

(
100

2

)(
200

2

)

(
300

4

) +

(
100

3

)(
200

1

)

(
300

4

) +

(
100

4

)(
200

0

)

(
300

4

)

= 0.298 + 0.098 + 0.0119 = 0.407

What is the probability that at least one part in the sample is

from the local supplier?

P(X ≥ 1) = 1 − P(X = 0) = 1 −

(
100

0

)(
200

4

)

(
300

4

) = 0.804

Practical Interpretation: Sampling without replacement

is frequently used for inspection and the hypergeometric dis-

tribution simplifies the calculations.

The mean and variance of a hypergeometric random variable can be determined from the

trials that compose the experiment. However, the trials are not independent, so the calculations

are more difficult than for a binomial distribution. The results are stated as follows.

Mean and Variance
If X is a hypergeometric random variable with parameters N, K, and n, then

μ = E(X) = np and σ2 = V(X) = np(1 − p)
(N − n

N − 1

)

(3.14)

where p = K/N.

Here p is the proportion of successes in the set of N objects.
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E X A M P L E 3.25 Mean and Variance

In Example 3.24, the sample size is four. The random variable

X is the number of parts in the sample from the local supplier.

Then, p = 100/300 = 1/3. Therefore,

E(X) = 4
(

100

300

)

= 1.33

and

V(X) = 4
(

1

3

)(
2

3

)(
300 − 4

299

)

= 0.88

For a hypergeometric random variable, E(X) is similar to the mean of a binomial random

variable. Also, V(X) differs from the result for a binomial random variable only by the following

term.

Finite Population Correction Factor
The term in the variance of a hypergeometric random variable

N − n
N − 1

(3.15)

is called the finite population correction factor.

Sampling with replacement is equivalent to sampling from an infinite set because the propor-

tion of success remains constant for every trial in the experiment. As mentioned previously, if

sampling were done with replacement, X would be a binomial random variable and its variance

would be np(1 − p). Consequently, the finite population correction represents the correction to

the binomial variance that results because the sampling is without replacement from the finite set

of size N.

If n is small relative to N, the correction is small and the hypergeometric distribution is similar

to the binomial distribution. In this case, a binomial distribution can effectively approximate the

hypergeometric distribution. A case is illustrated in Figure 3.12.
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FIGURE 3.12

Comparison of hypergeometric and binomial distributions.
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3.8 Poisson Distribution
A widely used distribution emerges from the concept that events occur randomly in an interval

(or, more generally, in a region). The random variable of interest is the count of events that occur

within the interval. Consider the following example.

E X A M P L E 3.26 Wire Flaws

Flaws occur at random along the length of a thin copper wire.

Let X denote the random variable that counts the number of

flaws in a length of T millimeters of wire and suppose that the

average number of flaws per millimeter is λ.

We expect E(X) = λT from the definition of λ. The

probability distribution of X is determined as follows.

Partition the length of wire into n subintervals of small length

Δt = T/n (say, one micrometer each). If the subintervals are

chosen small enough, the probability that more than one

flaw occurs in a subinterval is negligible. Furthermore, we

can interpret the assumption that flaws occur at random to

imply that every subinterval has the same probability of

containing a flaw, say p. Also, the occurrence of a flaw in a

subinterval is assumed to be independent of flaws in other

subintervals.

Then we can model the distribution of X as approxi-

mately a binomial random variable. Each subinterval gen-

erates an event (flaw) or not. Therefore,

E(X) = λT = np

and one can solve for p to obtain

p = λT
n

From the approximate binomial distribution

P(X = x) ≈
(

n
x

)

px(1 − p)n−x

With small enough subintervals, n is large and p is small. Basic

properties of limits can be used to show that as n increases

(
n
x

)(λT
n

)x
→

(λT)x

x!

(

1 − λT
n

)−x
→ 1

(

1 − λT
n

)n
→ e−λT

Therefore,

lim
n→∞

P(X = x) = e−λT (λT)x

x!
, x = 0, 1, 2,…

Because the number of subintervals tends to infinity, the range

of X (the number of flaws) can equal any nonnegative integer.

Example 3.26 can be generalized to include a broad array of random experiments. The inter-

val that was partitioned was a length of wire. However, the same reasoning can be applied to

an interval of time, an area, or a volume. For example, counts of (1) particles of contamination

in semiconductor manufacturing, (2) flaws in rolls of textiles, (3) calls to a telephone exchange,

(4) power outages, and (5) atomic particles emitted from a specimen have all been successfully

modeled by the probability mass function in the following definition.

In general, consider subintervals of small length Δt and assume that as Δt tends to zero,

1. The probability of more than one event in a subinterval tends to zero.

2. The probability of one event in a subinterval tends to λΔt.
3. The event in each subinterval is independent of other subintervals.

A random experiment with these properties is called a Poisson process.

These assumptions imply that the subintervals can be thought of as approximate inde-

pendent Bernoulli trials with the number of trials equal to n = T/Δt and success probability

p = λΔt = λT/n. This leads to the following result.

Poisson Distribution
The random variable X that equals the number of events in a Poisson process is a Poisson
random variable with parameter 0 < λ, and

f (x) = e−λT (λT)x

x!
x = 0, 1, 2,…
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Poisson distributions for selected values of the parameters.

The sum of the probabilities is 1 because

∞∑

x=0

e−λT (λT)x

x!
= e−λT

∞∑

x=0

(λT)x

x!

and the summation on the right-hand side of the previous equation is recognized to be Taylor’s

expansion of ex evaluated at λT . Therefore, the summation equals eλT and the right-hand side

equals 1. Figure 3.13 illustrates Poisson distributions for selected values of the parameter. The dis-

tribution is named after its developer Siméon-Denis Poisson.

Historically, the term process has been used to suggest the observation of a system over time.

In our example with the copper wire, we showed that the Poisson distribution can also apply to

lengths, and it also can be applied to areas.

The parameter λ is the mean number of events per unit length. It is important to use consistent
units for λ and T . For example, if λ = 2.3 flaws per millimeter, then T should be expressed in

millimeters. If λ = 7.1 flaws per square centimeter, then an area of 4.5 square inches should be

expressed as T = 4.5(2.542) = 29.03 square centimeters.

E X A M P L E 3.27 Calculations for Wire Flaws

For the case of the thin copper wire, suppose that the number

of flaws follows a Poisson distribution with a mean of 2.3 flaws

per millimeter.

Determine the probability of 10 flaws in 5 millimeters of

wire. Let X denote the number of flaws in 5 millimeters of

wire. Then, X has a Poisson distribution with

λT = 2.3 flaws∕mm × 5 mm = 11.5 flaws

Therefore,

P(X = 10) = e−11.5 11.510

10!
= 0.113

Determine the probability of at least one flaw in

2 millimeters of wire. Let X denote the number of flaws in

2 millimeters of wire. Then X has a Poisson distribution with

λT = 2.3 flaws∕mm × 2 mm = 4.6 flaws

Therefore,

P(X ≥ 1) = 1 − P(X = 0) = 1 − e−4.6 = 0.9899

Practical Interpretation: Given the assumptions for a

Poisson process and a value for λ, probabilities can be calcu-

lated for intervals of arbitrary length. Such calculations are

widely used to set product specifications, control processes,

and plan resources.
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The mean of a Poisson random variable is

E(X) =
∞∑

x=1

xe−λT (λT)x

x!
= λT

∞∑

x=1

e−λT (λT)x−1

(x − 1)!

where the summation can start at x = 1 because the x = 0 term is zero. If a change of variable

y = x − 1 is used, the summation on the right-hand side of the previous equation is recognized

to be the sum of the probabilities of a Poisson random variable and this equals 1. Therefore, the

previous equation simplifies to

E(X) = λT

To obtain the variance of a Poisson random variable, we can start with E(X2) and this equals

E(X2) =
∞∑

x=1

x2 e−λT (λT)x

x!
= λT

∞∑

x=1

xe−λT (λT)x−1

(x − 1)!
Write x = (x − 1) + 1 to obtain

E(X2) = λT
∞∑

x=1

(x − 1)e−λT (λT)x−1

(x − 1)!
+ λT

∞∑

x=1

e−λT (λT)x−1

(x − 1)!

The summation in the first term on the right-hand side of the previous equation is recognized to be

the mean of X, which equals λT so that the first term is (λT)2. The summation in the second term

on the right-hand side is recognized to be the sum of the probabilities, which equals 1. Therefore,

the previous equation simplifies to E(X2) = (λT)2 + λT . Because the V(X) = E(X2) − (EX)2,

we have

V(X) = (λT)2 + λT − (λT)2 = λT

and the variance is derived.

Mean and Variance
If X is a Poisson random variable over an interval of length T with parameter λ, then

μ = E(X) = λT and σ2 = V(X) = λT (3.16)

The mean and variance of a Poisson random variable are equal. For example, if particle counts

follow a Poisson distribution with a mean of 25 particles per square centimeter, the variance is also

25 and the standard deviation of the counts is 5 per square centimeter. Consequently, information

on the variability is very easily obtained. Conversely, if the variance of count data is much greater

than the mean of the same data, the Poisson distribution is not a good model for the distribution

of the random variable.

Important Terms and Concepts

Bernoulli trial

Binomial distribution

Cumulative distribution function—discrete

random variable

Discrete uniform distribution

Expected value of a function of a discrete

random variable

Finite population correction factor

Geometric distribution

Hypergeometric distribution

Lack of memory property—discrete random

variable

Mean—discrete random variable

Negative binomial distribution

Poisson distribution

Poisson process

Probability distribution—discrete random

variable

Probability mass function

Standard deviation—discrete random

variable

Variance—discrete random variable
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C H A P T E R O U T L I N E

4.1 Probability Distributions and

Probability Density Functions

4.2 Cumulative Distribution Functions

4.3 Mean and Variance of a Continuous

Random Variable

4.4 Continuous Uniform Distribution

4.5 Normal Distribution

4.6 Normal Approximation to the

Binomial and Poisson Distributions

4.7 Exponential Distribution

4.8 Erlang and Gamma Distributions

4.9 Weibull Distribution

4.10 Lognormal Distribution

4.11 Beta Distribution

L E A R N I N G O B J E C T I V E S

After careful study of this chapter, you should be able to do the

following:

1. Determine probabilities from probability density functions

2. Determine probabilities from cumulative distribution

functions and cumulative distribution functions from

probability density functions, and the reverse

3. Calculate means and variances for continuous random

variables

4. Understand the assumptions for some common continuous

probability distributions

5. Calculate probabilities, determine means and variances for

some common continuous probability distributions

6. Approximate probabilities for binomial and Poisson

distributions

66
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The kinetic theory of gases provides a link between statistics and physical phenomena. Physicist

James Maxwell used some basic assumptions to determine the distribution of molecular velocity

in a gas at equilibrium. As a result of molecular collisions, all directions of rebound are equally

likely. From this concept, he assumed equal probabilities for velocities in all the x, y, and z
directions and independence of these components of velocity. This alone is sufficient to show that

the probability distribution of the velocity in a particular direction x is the continuous probability

distribution known as the normal distribution. This fundamental probability distribution can

be derived from other approaches (such as the central limit theorem, to be discussed in a

later chapter), but the kinetic theory may be the most parsimonious. This role for the normal

distribution illustrates one example of the importance of continuous probability distributions

within science and engineering.

4.1 Probability Distributions and Probability

Density Functions
Suppose that a dimensional length is measured on a manufactured part selected from a day’s pro-

duction. In practice, there can be small variations in the measurements due to many causes, such

as vibrations, temperature fluctuations, operator differences, calibrations, cutting tool wear, bear-

ing wear, and raw material changes. In an experiment such as this, the measurement is naturally

represented as a random variable X, and it is reasonable to model the range of possible values of

X with an interval of real numbers. Recall from Chapter 2 that a continuous random variable
is a random variable with an interval (either finite or infinite) of real numbers for its range. The

model provides for any precision in length measurements.

Because the number of possible values of X is uncountably infinite, X has a distinctly different

distribution from the discrete random variables studied previously. But as in the discrete case,

many physical systems can be modeled by the same or similar continuous random variables.

These random variables are described, and example computations of probabilities, means, and

variances are provided in the sections of this chapter.

Density functions are commonly used in engineering to describe physical systems. For

example, consider the density of a loading on a long, thin beam as shown in Figure 4.1. For any

point x along the beam, the density can be described by a function (in grams/cm). Intervals with

large loadings correspond to large values for the function. The total loading between points a
and b is determined as the integral of the density function from a to b. This integral is the area

under the density function over this interval, and it can be loosely interpreted as the sum of all

the loadings over this interval.

Similarly, a probability density function f (x) can be used to describe the probability dis-

tribution of a continuous random variable X. If an interval is likely to contain a value for X, its

probability is large and it corresponds to large values for f (x). The probability that X is between

a and b is determined as the integral of f (x) from a to b. See Figure 4.2.

L
o
a
d
in

g

x

FIGURE 4.1

Density function of a loading on a long,
thin beam.

P(a < X < b)

a b x

f (x)

FIGURE 4.2

Probability determined from the area
under f (x).
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Probability Density Function
For a continuous random variable X, a probability density function is a function such that

(1) f (x) ≥ 0

(2)
∫

∞

−∞
f (x)dx = 1

(3) P(a ≤ X ≤ b) =
∫

b

a
f (x)dx = area under f (x) from a to b for any a and b (4.1)

A probability density function provides a simple description of the probabilities associated

with a random variable. As long as f (x) is nonnegative and
∫

∞

−∞
f (x)dx = 1, 0 ≤ P(a < X < b) ≤ 1

so that the probabilities are properly restricted. A probability density function is zero for x values

that cannot occur, and it is assumed to be zero wherever it is not specifically defined.

A histogram is an approximation to a probability density function. See Figure 4.3. For each

interval of the histogram, the area of the bar equals the relative frequency (proportion) of the

measurements in the interval. The relative frequency is an estimate of the probability that a mea-

surement falls in the interval. Similarly, the area under f (x) over any interval equals the true

probability that a measurement falls in the interval.

The important point is that f (x) is used to calculate an area that represents the probability

that X assumes a value in [a, b]. For the current measurement example, the probability that X
results in [14 mA, 15 mA] is the integral of the probability density function of X over this inter-

val. The probability that X results in [14.5 mA, 14.6 mA] is the integral of the same function,

f (x), over the smaller interval. By appropriate choice of the shape of f (x), we can represent the

probabilities associated with any continuous random variable X. The shape of f (x) determines

how the probability that X assumes a value in [14.5 mA, 14.6 mA] compares to the probability

of any other interval of equal or different length.

For the density function of a loading on a long, thin beam, because every point has zero

width, the loading at any point is zero. Similarly, for a continuous random variable X and any
value x,

P(X = x) = 0

Based on this result, it might appear that our model of a continuous random variable is useless.

However, in practice, when a particular current measurement, such as 14.47 milliamperes,

is observed, this result can be interpreted as the rounded value of a current measurement

that is actually in a range such as 14.465 ≤ x ≤ 14.475. Therefore, the probability that the

rounded value 14.47 is observed as the value for X is the probability that X assumes a value in the

interval [14.465, 14.475], which is not zero. Similarly, because each point has zero probability,

one need not distinguish between inequalities such as < or ≤ for continuous random variables.

FIGURE 4.3

Histogram approximates a probability
density function.  x

f (x)
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If X is a continuous random variable, for any x1 and x2,

P(x1 ≤ X ≤ x2) = P(x1 < X ≤ x2) = P(x1 ≤ X < x2) = P(x1 < X < x2) (4.2)

E X A M P L E 4.1 Electric Current

Let the continuous random variable X denote the current

measured in a thin copper wire in milliamperes. Assume

that the range of X is [4.9, 5.1] mA, and assume that the

probability density function of X is f (x) = 5 for 4.9 ≤ x ≤ 5.1.

What is the probability that a current measurement is less

than 5 milliamperes?

The probability density function is shown in Figure 4.4.

It is assumed that f (x) = 0 wherever it is not specifically

defined. The shaded area in Figure 4.4 indicates the

probability.

P(X < 5) =
∫

5

4.9

f (x)dx =
∫

5

4.9

5 dx = 0.5

As another example,

P(4.95 < X < 5.1) =
∫

5.1

4.95

f (x)dx = 0.75

E X A M P L E 4.2 Hole Diameter

Let the continuous random variable X denote the diameter of

a hole drilled in a sheet metal component. The target diameter

is 12.5 millimeters. Most random disturbances to the process

result in larger diameters. Historical data show that the distri-

bution of X can be modeled by a probability density function

f (x) = 20e−20(x−12.5), for x ≥ 12.5.

If a part with a diameter greater than 12.60 mm is

scrapped, what proportion of parts is scrapped? The den-

sity function and the requested probability are shown in

Figure 4.5. A part is scrapped if X > 12.60. Now,

P(X > 12.60) =
∫

∞

12.6

f (x)dx =
∫

∞

12.6

20e−20(x−12.5)dx

= −e−20(x−12.5)||
|

∞

12.6
= 0.135

What proportion of parts is between 12.5 and

12.6 millimeters? Now,

P(12.5 < X < 12.6) =
∫

12.6

12.5

f (x)dx

= −e−20(x−12.5)||
|

12.6

12.5
= 0.865

Because the total area under f (x) equals 1, we can also calcu-

late P(12.5 < X < 12.6) = 1 − P(X > 12.6) = 1 − 0.135 =
0.865.

Practical Interpretation: Because 0.135 is the propor-

tion of parts with diameters greater than 12.60 mm, a large

proportion of parts is scrapped. Process improvements are

needed to increase the proportion of parts with dimensions

near 12.50 mm.

4.9 5.1

5

f (x)

x

FIGURE 4.4

Probability density function for
Example 4.1.

12.5

f (x)

x12.6

FIGURE 4.5

Probability density function for
Example 4.2.
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4.2 Cumulative Distribution Functions
An alternative method to describe the distribution of a discrete random variable can also be used

for continuous random variables.

Cumulative Distribution Function
The cumulative distribution function of a continuous random variable X is

F(x) = P(X ≤ x) =
∫

x

−∞
f (u)du (4.3)

for −∞ < x < ∞.

The cumulative distribution function is defined for all real numbers.

E X A M P L E 4.3 Electric Current

For the copper current measurement in Example 4.1, the

cumulative distribution function of the random variable X
consists of three expressions. If x < 4.9, f (x) = 0. Therefore,

F(x) = 0, for x < 4.9

and

F(x) =
∫

x

4.9

f (u)du = 5x − 24.5, for 4.9 ≤ x < 5.1

Finally,

F(x) =
∫

x

4.9

f (u)du = 1, for 5.1 ≤ x

Therefore,

F(x) =

{
0 x < 4.9
5x − 24.5 4.9 ≤ x < 5.1
1 5.1 ≥ x

The plot of F(x) is shown in Figure 4.6.

5.1

1

0

x4.9

f(x)

FIGURE 4.6

Cumulative distribution function for
Example 4.3.

Notice that in the definition of F(x), any < can be changed to ≤ and vice versa. That is, in

Example 4.3 F(x) can be defined as either 5x − 24.5 or 0 at the end-point x = 4.9, and F(x) can be

defined as either 5x − 24.5 or 1 at the end-point x = 5.1. In other words, F(x) is a continuous func-

tion. For a discrete random variable, F(x) is not a continuous function. Sometimes a continuous

random variable is defined as one that has a continuous cumulative distribution function.

The probability density function of a continuous random variable can be determined from

the cumulative distribution function by differentiating. The fundamental theorem of calculus

states that
d
dx∫

x

−∞
f (u)du = f (x)

Probability Density Function from the Cumulative Distribution Function
Given F(x),

f (x) = dF(x)
dx

as long as the derivative exists.
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E X A M P L E 4.4 Reaction Time

The time until a chemical reaction is complete (in millisec-

onds) is approximated by the cumulative distribution function

F(x) =
{

0 x < 0

1 − e−0.01x 0 ≤ x

Determine the probability density function of X. What pro-

portion of reactions is complete within 200 milliseconds?

Using the result that the probability density function is the

derivative of F(x), we obtain

f (x) =
{

0 x < 0

0.01e−0.01x 0 ≤ x

The probability that a reaction completes within 200 millisec-

onds is

P(X < 200) = F(200) = 1 − e−2 = 0.8647

4.3 Mean and Variance of a Continuous

Random Variable
The mean and variance can also be defined for a continuous random variable. Integration replaces

summation in the discrete definitions. If a probability density function is viewed as a loading on

a beam as in Figure 4.1, the mean is the balance point.

Mean and Variance
Suppose that X is a continuous random variable with probability density function f (x). The

mean or expected value of X, denoted as μ or E(X), is

μ = E(X) =
∫

∞

−∞
xf (x)dx (4.4)

The variance of X, denoted as V(X) or σ2, is

σ2 = V(X) =
∫

∞

−∞
(x − μ)2 f (x)dx =

∫

∞

−∞
x2f (x)dx − μ2

The standard deviation of X is σ =
√
σ2.

The equivalence of the two formulas for variance can be derived from the same approach used

for discrete random variables.

E X A M P L E 4.5 Electric Current

For the copper current measurement in Example 4.1, the mean

of X is

E(X) =
∫

5.1

4.9

xf (x)dx = 5x2

2

|
|
|

5.1

4.9
= 5

The variance of X is

V(X) =
∫

5.1

4.9

(x − 5)2 f (x)dx = 5(x − 5)3

3

|
|
|

5.1

4.9
= 0.0033

The expected value of a function h(X) of a continuous random variable is also defined in a

straightforward manner.
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Expected Value of a Function of a Continuous Random Variable
If X is a continuous random variable with probability density function f (x),

E[h(X)] =
∫

∞

−∞
h(x)f (x)dx (4.5)

In the special case that h(X) = aX + b for any constants a and b, E[h(X)] = aE(X) + b. This can

be shown from the properties of integrals.

E X A M P L E 4.6

In Example 4.1, X is the current measured in milliam-

peres. What is the expected value of power when the

resistance is 100 ohms? Use the result that power in watts

P = 10−6RI2, where I is the current in milliamperes and

R is the resistance in ohms. Now, h(X) = (10−6)100X2.

Therefore,

E[h(X)] = 10−4

∫

5.1

4.9

5x2dx = 0.0001
x3

3

|
|
|

5.1

4.9
= 0.0025 watts

4.4 Continuous Uniform Distribution
The simplest continuous distribution is analogous to its discrete counterpart.

Continuous Uniform Distribution
A continuous random variable X with probability density function

f (x) = 1∕(b − a), a ≤ x ≤ b (4.6)

is a continuous uniform random variable.

The probability density function of a continuous uniform random variable is shown in Figure 4.7.

The mean of the continuous uniform random variable X is

E(X) =
∫

b

a

x
b − a

dx = 0.5x2

b − a
|
|
|

b

a
= (a + b)

2

The variance of X is

V(X) =

⎧
⎪
⎪
⎪
⎭

b

a

(

x − (a + b)
2

)2

b − a
dx =

(

x − (a + b)
2

)3

3(b − a)

|
|
|
|
|
|
|

b

a
= (b − a)2

12

These results are summarized as follows.

FIGURE 4.7

Continuous uniform probability density function. a

1

b – a

x

f(x)

b



�

� �

�

4.5 Normal Distribution 73

Mean and Variance
If X is a continuous uniform random variable over a ≤ x ≤ b,

μ = E(X) = a + b
2

and σ2 = V(X) = (b − a)2

12
(4.7)

E X A M P L E 4.7 Uniform Current

In Example 4.1, the random variable X has a continuous uni-

form distribution on [4.9, 5.1]. The probability density func-

tion of X is f (x) = 5, 4.9 ≤ x ≤ 5.1.

What is the probability that a measurement of current is

between 4.95 and 5.0 milliamperes? The requested probability

is shown as the shaded area in Figure 4.8.

P(4.95 < x < 5.0) =
∫

5.0

4.95

f (x)dx = 5(0.05) = 0.25

The mean and variance formulas can be applied with

a = 4.9 and b = 5.1. Therefore,

E(X) = 5 mA and V(X) = 0.22∕12 = 0.0033 mA2

Consequently, the standard deviation of X is 0.0577 mA.

x

f(x)

4.9 4.95 5.0 5.1

5

FIGURE 4.8

Probability for Example 4.7.

The cumulative distribution function of a continuous uniform random variable is obtained

by integration. If a < x < b,

F(x) =
∫

x

a

1

b − a
du = x − a

b − a

Therefore, the complete description of the cumulative distribution function of a continuous uni-

form random variable is

F(x) =
⎧
⎪
⎨
⎪
⎩

0 x < a
x − a
b − a

a ≤ x < b

1 b ≤ x

An example of F(x) for a continuous uniform random variable is shown in Figure 4.6.

4.5 Normal Distribution
Undoubtedly, the most widely used model for a continuous measurement is a normal random
variable. Whenever a random experiment is replicated, the random variable that equals the aver-

age (or total) result over the replicates tends to have a normal distribution as the number of

replicates becomes large. De Moivre presented this fundamental result, known as the central
limit theorem, in 1733. Unfortunately, his work was lost for some time, and Gauss independently

developed a normal distribution nearly 100 years later. Although De Moivre was later credited

with the derivation, a normal distribution is also referred to as a Gaussian distribution.

When do we average (or total) results? Almost always. For example, an automotive engineer

may plan a study to average pull-off force measurements from several connectors. If we assume

that each measurement results from a replicate of a random experiment, the normal distribu-

tion can be used to make approximate conclusions about this average. These conclusions are the

primary topics in the subsequent chapters of this book.
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FIGURE 4.9

Normal probability density functions for
selected values of the parameters 𝛍 and 𝛔2. x

σ2 = 1

σ2 = 4

σ2 = 1
f (x)

= 15μ= 5μ

Furthermore, sometimes the central limit theorem is less obvious. For example, assume

that the deviation (or error) in the length of a machined part is the sum of a large number

of infinitesimal effects, such as temperature and humidity drifts, vibrations, cutting angle

variations, cutting tool wear, bearing wear, rotational speed variations, mounting and fixture

variations, variations in numerous raw material characteristics, and variations in levels of

contamination. If the component errors are independent and equally likely to be positive or

negative, the total error can be shown to have an approximate normal distribution. Furthermore,

the normal distribution arises in the study of numerous basic physical phenomena. For example,

physicist James Maxwell developed a normal distribution from simple assumptions regarding

the velocities of molecules. Our objective now is to calculate probabilities for a normal random

variable. The central limit theorem is stated more carefully in Chapter 5.

Figure 4.9 illustrates several normal probability density functions with selected values of the

mean μ and the variance σ2. Each has the characteristic symmetric bell-shaped curve, but the cen-

ters and dispersions differ. The following definition provides the formula for normal probability

density functions.

Normal Distribution
A random variable X with probability density function

f (x) = 1
√

2πσ
e
−(x−μ)2

2σ2 −∞ < x < ∞ (4.8)

is a normal random variable with parameters μ where −∞ < μ <∞ and σ > 0. Also,

E(X) = μ and V(X) = σ2 (4.9)

and the notation N(μ, σ2) is used to denote the distribution.

The mean and variance of X are shown to equal μ and σ2, respectively, in an online exercise in

Chapter 5.

E X A M P L E 4.8

Assume that the current measurements in a strip of wire follow

a normal distribution with a mean of 10 milliamperes and a

variance of 4 (milliamperes)2. What is the probability that a

measurement exceeds 13 milliamperes?

Let X denote the current in milliamperes. The requested

probability can be represented as P(X > 13). This probabil-

ity is shown as the shaded area under the normal probabil-

ity density function in Figure 4.10. Unfortunately, there is no

closed-form expression for the integral of a normal probability

density function, and probabilities based on the normal distri-

bution are typically found numerically or from a table (that we

introduce soon).

10 x13

f (x)

FIGURE 4.10

Probability that X > 13 for a normal random variable
with 𝛍 = 10 and 𝛔2 = 4.



�

� �

�

4.5 Normal Distribution 75

– 3 xμ σ – 2μ σ – μ σ μ +μ σ + 2μ σ + 3μ σ

68%

95%

99.7%

f (x)

FIGURE 4.11

Probabilities associated with a normal
distribution.

The following equations and Figure 4.11 summarize some useful results concerning a normal

distribution. For any normal random variable,

P(μ − σ < X < μ + σ) = 0.6827

P(μ − 2σ < X < μ + 2σ) = 0.9545

P(μ − 3σ < X < μ + 3σ) = 0.9973

Also, from the symmetry of P(X < μ) = P(X > μ) = 0.5. Because f (x) is positive for all x, this

model assigns some probability to each interval of the real line. However, the probability density

function decreases as x moves farther from μ. Consequently, the probability that a measurement

falls far from μ is small, and at some distance from μ, the probability of an interval can be approx-

imated as zero.

The area under a normal probability density function beyond 3σ from the mean is quite small.

This fact is convenient for quick, rough sketches of a normal probability density function. The

sketches help us determine probabilities. Because more than 0.9973 of the probability of a nor-

mal distribution is within the interval (μ − 3σ, μ + 3σ), 6σ is often referred to as the width of

a normal distribution. Advanced integration methods can be used to show that the area under the

normal probability density function from −∞ < x <∞ is 1.

Standard Normal Random Variable
A normal random variable with

μ = 0 and σ2 = 1

is called a standard normal random variable and is denoted as Z. The cumulative distri-

bution function of a standard normal random variable is denoted as

Φ(z) = P(Z ≤ z)

Appendix Table III provides cumulative probabilities for a standard normal random vari-

able. Cumulative distribution functions for normal random variables are also widely available

in computer packages. They can be used in the same manner as Appendix Table III to obtain

probabilities for these random variables. The use of Table III is illustrated by the following

example.
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E X A M P L E 4.9 Standard Normal Distribution

Assume that Z is a standard normal random variable.

Appendix Table III provides probabilities of the form

Φ(z) = P(Z ≤ z). The use of Table III to find P(Z ≤ 1.5) is

illustrated in Figure 4.12. Read down the z column to the

row that equals 1.5. The probability is read from the adjacent

column, labeled 0.00, to be 0.93319.

z0

= shaded area
P(Z ≤ 1.5) = Φ (1.5)

1.5

0.00 0.01 0.02

0

1.5

z

0.93319

. 
. 

.

. 
. 

.

0.93448 0.93574

0.50000 0.50399 0.50800

0.03

0.93699

0.51197

FIGURE 4.12

Standard normal probability density function.

The column headings refer to the hundredths digit of

the value of z in P(Z ≤ z). For example, P(Z ≤ 1.53) is

found by reading down the z column to the row 1.5 and then

selecting the probability from the column labeled 0.03 to be

0.93699.

Probabilities that are not of the form P(Z ≤ z) are found by using the basic rules of proba-

bility and the symmetry of the normal distribution along with Appendix Table III. The following

examples illustrate the method.

E X A M P L E 4.10 Normal Distribution Calculations

The following calculations are shown pictorially in Fig-

ure 4.13. In practice, a probability is often rounded to one or

two significant digits.

1. P(Z > 1.26) = 1 − P(Z ≤ 1.26) = 1 − 0.89616 =
0.10384.

2. P(Z < −0.86) = 0.19490.

3. P(Z > −1.37) = P(Z < 1.37) = 0.91465.

4. P(−1.25 < Z < 0.37). This probability can be found

from the difference of two areas, P(Z < 0.37) − P(Z
< −1.25). Now,

P(Z < 0.37) = 0.64431

and

P(Z < −1.25) = 0.10565

Therefore,

P(−1.25 < Z < 0.37) = 0.64431 − 0.10565

= 0.53866

5. P(Z ≤ −4.6) cannot be found exactly from Appendix

Table III. However, the last entry in the table can be

used to find that P(Z ≤−3.99) = 0.00003. Because P(Z
≤ −4.6) < P(Z ≤ −3.99), P(Z ≤ −4.6) is nearly zero.

6. Find the value z such that P(Z > z) = 0.05.

This probability expression can be written as

P(Z ≤ z) = 0.95. Now Table III is used in reverse.

We search through the probabilities to find the value

that corresponds to 0.95. The solution is illustrated in

Figure 4.13. We do not find 0.95 exactly; the nearest

value is 0.95053, corresponding to z = 1.65.

7. Find the value of z such that P(−z < Z < z) = 0.99.

Because of the symmetry of the normal distribution,

if the area of the shaded region in Figure 4.13(7) is to

equal 0.99, the area in each tail of the distribution must

equal 0.005. Therefore, the value for z corresponds to

a probability of 0.995 in Table III. The nearest proba-

bility in Table III is 0.99506 when z = 2.58.
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FIGURE 4.13

Graphical displays for standard normal distributions.

The cases in Example 4.10 show how to calculate probabilities for standard normal random

variables. To use the same approach for an arbitrary normal random variable would require the

availability of a separate table for every possible pair of values for μ and σ. Fortunately, all nor-

mal probability distributions are related algebraically, and Appendix Table III can be used to

find the probabilities associated with an arbitrary normal random variable by first using a simple

transformation.

Standardizing a Normal Random Variable
If X is a normal random variable with E(X) = μ and V(X) = σ2, the random variable

Z =
X − μ
σ

(4.10)

is a normal random variable with E(Z) = 0 and V(Z) = 1. That is, Z is a standard normal

random variable.

Creating a new random variable by this transformation is referred to as standardizing.

The random variable Z represents the distance of X from its mean in terms of standard
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deviations. It is the key step to calculating a probability for an arbitrary normal random

variable.

E X A M P L E 4.11 Normally Distributed Current

Suppose that the current measurements in a strip of wire are

assumed to follow a normal distribution with a mean of 10 mil-

liamperes and a variance of 4 (milliamperes)2. What is the

probability that a measurement exceeds 13 milliamperes?

Let X denote the current in milliamperes. The re-

quested probability can be represented as P(X > 13). Let

Z = (X − 10)/2. The relationship between the several values

of X and the transformed values of Z are shown in Figure 4.14.

We note that X > 13 corresponds to Z > 1.5. Therefore, from

Appendix Table III,

P(X > 13) = P(Z > 1.5) = 1 − P(Z ≤ 1.5)
= 1 − 0.93319 = 0.06681

4 x7 9 10 13 16

–3 z–1.5 –0.5 0 1.5 3

11

0.5

0 1.5

Distribution of Z =
X – μ

σ

Distribution of X

10 13 x

z

FIGURE 4.14

Standardizing a normal random variable.

Rather than using Figure 4.14, the probability can be

found from the inequality X > 13. That is,

P(X > 13) = P
(X − 10

2
>

13 − 10

2

)

= P(Z > 1.5) = 0.06681

Practical Interpretation: Probabilities for any normal

random variable can be computed with a simple transform to

a standard normal random variable.

In Example 4.11, the value 13 is transformed to 1.5 by standardizing, and 1.5 is often referred

to as the z-value associated with a probability. The following summarizes the calculation of prob-

abilities derived from normal random variables.

Standardizing to Calculate a Probability
Suppose that X is a normal random variable with mean μ and variance σ2. Then,

P(X ≤ x) = P
(

X − μ
σ

≤
x − μ
σ

)

= P(Z ≤ z) (4.11)

where Z is a standard normal random variable, and z =
(x − μ)

σ
is the z-value obtained

by standardizing X. The probability is obtained by using Appendix Table III with

z = (x − μ)/σ.
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E X A M P L E 4.12 Normally Distributed Current

Continuing Example 4.11, what is the probability that a cur-

rent measurement is between 9 and 11 milliamperes? From

Figure 4.14, or by proceeding algebraically, we have

P (9 < X < 11) = P
(

9 − 10

2
<

X − 10

2
<

11 − 10

2

)

= P(−0.5 < Z < 0.5)
= P(Z < 0.5) − P(Z < −0.5)
= 0.69146 − 0.30854 = 0.38292

Determine the value for which the probability that a cur-

rent measurement is less than this value is 0.98. The requested

value is shown graphically in Figure 4.15. We need the value of

x such that P(X < x) = 0.98. By standardizing, this probability

expression can be written as

10 x

z = = 2.05
x – 10

2

0.98

FIGURE 4.15

Determining the value of x to meet a specified probability.

P(X < x) = P
(X − 10

2
<

x − 10

2

)

= P
(

Z <

x − 10

2

)

= 0.98

Appendix Table III is used to find the z-value such that

P(Z < z) = 0.98. The nearest probability from Table III

results in

P(Z < 2.06) = 0.980301

Therefore, (x − 10)/2 = 2.06, and the standardizing transfor-

mation is used in reverse to solve for x. The result is

x = 2(2.06) + 10 = 14.1 mA

4.6 Normal Approximation to the Binomial

and Poisson Distributions
We began our section on the normal distribution with the central limit theorem and the

normal distribution as an approximation to a random variable with a large number of trials.

Consequently, it should not be surprising to learn that the normal distribution can be used

to approximate binomial probabilities for cases in which n is large. The following example

illustrates that for many physical systems, the binomial model is appropriate with an extremely

large value for n. In these cases, it is difficult to calculate probabilities by using the binomial

distribution. Fortunately, the normal approximation is most effective in these cases. An

illustration is provided in Figure 4.16. The area of each bar equals the binomial probability of x.

Notice that the area of bars can be approximated by areas under the normal probability density

function.

From Figure 4.16, it can be seen that a probability such as P(3≤X ≤ 7) is better approximated

by the area under the normal curve from 2.5 to 7.5. Consequently, a modified interval is used to

better compensate for the difference between the continuous normal distribution and the discrete

binomial distribution. This modification is called a continuity correction.
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FIGURE 4.16

Normal approximation to the
binomial distribution.
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E X A M P L E 4.13

Assume that in a digital communication channel, the number

of bits received in error can be modeled by a binomial random

variable, and assume that the probability that a bit is received

in error is 1 × 10−5. If 16 million bits are transmitted, what is

the probability that 150 or fewer errors occur?

Let the random variable X denote the number of errors.

Then X is a binomial random variable and

P(X ≤ 150) =
150∑

x= 0

(
16,000,000

x

)

(10−5)x(1 − 10−5)16,000,000−x

Practical Interpretation: Clearly, this probability is

difficult to compute. Fortunately, the normal distribution

can be used to provide an excellent approximation in this

example.

Normal Approximation to the Binomial Distribution
If X is a binomial random variable with parameters n and p,

Z =
X − np

√
np(1 − p)

(4.12)

is approximately a standard normal random variable. To approximate a binomial probability

with a normal distribution, a continuity correction is applied as follows:

P(X ≤ x) = P(X ≤ x + 0.5) ≈ P

(

Z ≤
x + 0.5 − np
√

np(1 − p)

)

and

P(x ≤ X) = P(x − 0.5 ≤ X) ≈ P

(
x − 0.5 − np
√

np(1 − p)
≤ Z

)

The approximation is good for np > 5 and n(1 − p) > 5.
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Recall that for a binomial variable X, E(X) = np and V(X) = np(1 − p). Consequently, the expres-

sion in Equation 4.12 is nothing more than the formula for standardizing the random variable

X. Probabilities involving X can be approximated by using a standard normal distribution. The

approximation is good when n is large relative to p.

A way to remember the continuity correction is to write the probability in terms of ≤ or ≥

and then add or subtract the 0.5 correction factor to make the probability greater.

E X A M P L E 4.14

The digital communication problem in Example 4.13 is solved

as follows:

P(X ≤ 150) = P(X ≤ 150.5)

= P

(

X − 160
√

160(1 − 10−5)
≤

150.5 − 160
√

160(1 − 10−5)

)

≈ P(Z ≤ −0.75) = 0.227

Because np = (16 × 106)(1 × 10−5) = 160 and n(1 − p) is

much larger, the approximation is expected to work well in this

case.

Practical Interpretation: Binomial probabilities that are

difficult to compute exactly can be approximated with easy-to-

compute probabilities based on the normal distribution.

E X A M P L E 4.15 Normal Approximation to Binomial

Again consider the transmission of bits in Example 4.14. To

judge how well the normal approximation works, assume that

only n = 50 bits are to be transmitted and that the probability

of an error is p = 0.1. The exact probability that two or fewer

errors occur is

P(X ≤ 2) =
(

50

0

)

0.950 +
(

50

1

)

0.1(0.949)

+
(

50

2

)

0.12(0.948) = 0.112

Based on the normal approximation,

P(X ≤ 2) = P

(

X − 5
√

50(0.1)(0.9)
≤

2.5 − 5
√

50(0.1)(0.9)

)

≈ P(Z < −1.18) = 0.119

We can also approximate P(X = 5) as

P(5 ≤ X ≤ 5) = P(4.5 ≤ X ≤ 5.5)

≈ P
(

4.5 − 5

2.12
≤ Z ≤

5.5 − 5

2.12

)

= P(−0.24 ≤ Z ≤ 0.24) = 0.19

and this compares well with the exact answer of 0.1849.

Practical Interpretation: Even for a sample as small as

50 bits, the normal approximation is reasonable, when p = 0.1.

The correction factor is used to improve the approximation. However, if np or n(1 − p) is

small, the binomial distribution is quite skewed and the symmetric normal distribution is not a

good approximation. Two cases are illustrated in Figure 4.17.

Recall that the binomial distribution is a satisfactory approximation to the hypergeometric

distribution when n, the sample size, is small relative to N, the size of the population from

which the sample is selected. A rule of thumb is that the binomial approximation is effective

if n/N < 0.1. Recall that for a hypergeometric distribution, p is defined as K/N. That is, p is

interpreted as the number of successes in the population. Therefore, the normal distribution can

provide an effective approximation of hypergeometric probabilities when n/N < 0.1, np > 5, and

n(1 − p) > 5. Figure 4.18 provides a summary of these guidelines.

Recall that the Poisson distribution was developed as the limit of a binomial distribution as

the number of trials increased to infinity. Consequently, it should not be surprising to find that the

normal distribution can also be used to approximate probabilities of a Poisson random variable.
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FIGURE 4.17

Binomial distribution is not symmetrical
if p is near 0 or 1.
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Normal Approximation to the Poisson Distribution
If X is a Poisson random variable with E(X) = λ and V(X) = λ,

Z = X − λ
√
λ

(4.13)

is approximately a standard normal random variable. The same continuity correction used

for the binomial distribution can also be applied. The approximation is good for

λ > 5

E X A M P L E 4.16 Normal Approximation to Poisson

Assume that the number of asbestos particles in a squared

meter of dust on a surface follows a Poisson distribution with

a mean of 1000. If a squared meter of dust is analyzed, what

is the probability that 950 or fewer particles are found?

This probability can be expressed exactly as

P(X ≤ 950) =
950∑

x=0

e−10001000x

x!

The computational difficulty is clear. The probability can be

approximated as

P(X ≤ 950) = P(X ≤ 950.5) ≈ P

(

Z ≤
950.5 − 1000

√
1000

)

= P(Z ≤ −1.57) = 0.058

Practical Interpretation: Poisson probabilities that are

difficult to compute exactly can be approximated with easy-to-

compute probabilities based on the normal distribution.

Hypergeometric

distribution

≈
n
N

< 0.1
Binomial

distribution

≈
np > 5

n(1 − p) > 5

Normal

distribution

FIGURE 4.18

Conditions for approximating hypergeometric and binomial probabilities.
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4.7 Exponential Distribution
The discussion of the Poisson distribution defined a random variable to be the number of flaws

along a length of copper wire. The distance between flaws is another random variable that is often

of interest. Let the random variable X denote the length from any starting point on the wire until

a flaw is detected. As you might expect, the distribution of X can be obtained from knowledge of

the distribution of the number of flaws. The key to the relationship is the following concept. The

distance to the first flaw exceeds 3 millimeters if and only if there are no flaws within a length of

3 millimeters—simple but sufficient for an analysis of the distribution of X.

In general, let the random variable N denote the number of flaws in x millimeters of wire.

If the mean number of flaws is λ per millimeter, N has a Poisson distribution with mean λx.

We assume that the wire is longer than the value of x. Now,

P(X > x) = P(N = 0) = e−λx(λx)0

0!
= e−λx

Therefore,

F(x) = P(X ≤ x) = 1 − e−λx
, x ≥ 0

is the cumulative distribution function of X. By differentiating F(x), the probability density func-

tion of X is calculated to be

f (x) = λe−λx
, x ≥ 0

The derivation of the distribution of X depends only on the assumption that the flaws in the

wire follow a Poisson process. Also, the starting point for measuring X does not matter because

the probability of the number of flaws in an interval of a Poisson process depends only on the

length of the interval, not on the location. For any Poisson process, the following general result

applies.

Exponential Distribution
The random variable X that equals the distance between successive events from a Poisson

process with mean number of events λ > 0 per unit interval is an exponential random
variable with parameter λ. The probability density function of X is

f (x) = λe−λx for 0 ≤ x < ∞ (4.14)

The exponential distribution obtains its name from the exponential function in the probability

density function. See plots of the exponential distribution for selected values of λ in Figure 4.19.

For any value of λ, the exponential distribution is quite skewed. The following results are easily

obtained and are left as an exercise.

Mean and Variance
If the random variable X has an exponential distribution with parameter λ,

μ = E(X) = 1

λ
and σ2 = V(X) = 1

λ2
(4.15)

It is important to use consistent units to express intervals, X, and λ. The following example

illustrates unit conversions.
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FIGURE 4.19

Exponential probability density functions for
selected values of 𝛌.
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E X A M P L E 4.17 Computer Usage

In a large corporate computer network, user log-ons to the

system can be modeled as a Poisson process with a mean of

25 log-ons per hour. What is the probability that there are no

log-ons in an interval of 6 minutes?

Let X denote the time in hours from the start of the inter-

val until the first log-on. Then X has an exponential distribu-

tion with λ = 25 log-ons per hour. We are interested in the

probability that X exceeds 6 minutes. Because λ is given in

log-ons per hour, we express all time units in hours. That is,

6 minutes = 0.1 hour. Therefore,

P(X > 0.1) =
∫

∞

0.1

25e−25xdx = e−25(0.1) = 0.082

The cumulative distribution function can also be used to obtain

the same result as follows:

P(X > 0.1) = 1 − F(0.1) = e−25(0.1)

An identical answer is obtained by expressing the mean num-

ber of log-ons as 0.417 log-ons per minute and computing

the probability that the time until the next log-on exceeds

6 minutes. Try it.

What is the probability that the time until the next log-on

is between 2 and 3 minutes? Upon converting all units to

hours,

P(0.033 < X < 0.05) =
∫

0.05

0.033

25e−25xdx

= −e−25x||
|

0.05

0.033
= 0.152

An alternative solution is

P(0.033 < X < 0.05) = F(0.05) − F(0.033) = 0.152

Determine the interval of time such that the probability

that no log-on occurs in the interval is 0.90. The question asks

for the length of time x such that P(X > x) = 0.90. Now,

P(X > x) = e−25x = 0.90

Take the (natural) log of both sides to obtain −25x = ln(0.90)

= −0.1054. Therefore,

x = 0.00421 hour = 0.25 minute

Furthermore, the mean time until the next log-on is

μ = 1∕25 = 0.04 hour = 2.4 minutes

The standard deviation of the time until the next log-on is

σ = 1∕25 hours = 2.4 minutes

Practical Interpretation: Organizations make wide use

of probabilities for exponential random variables to evaluate

resources and staffing levels to meet customer service

needs.
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In Example 4.17, the probability that there are no log-ons in a six-minute interval is 0.082

regardless of the starting time of the interval. A Poisson process assumes that events occur uni-

formly throughout the interval of observation; that is, there is no clustering of events. If the log-ons

are well modeled by a Poisson process, the probability that the first log-on after noon occurs after

12:06 P.M. is the same as the probability that the first log-on after 3:00 P.M. occurs after 3:06 P.M.

And if someone logs on at 2:22 P.M., the probability that the next log-on occurs after 2:28 P.M. is

still 0.082.

Our starting point for observing the system does not matter. However, if high-use periods

occur during the day, such as right after 8:00 A.M., followed by a period of low use, a Poisson

process is not an appropriate model for log-ons and the distribution is not appropriate for com-

puting probabilities. It might be reasonable to model each of the high- and low-use periods by a

separate Poisson process, employing a larger value for λ during the high-use periods and a smaller

value otherwise. Then an exponential distribution with the corresponding value of λ can be used

to calculate log-on probabilities for the high- and low-use periods.

Lack of Memory Property An even more interesting property of an exponential random

variable concerns conditional probabilities.

E X A M P L E 4.18 Lack of Memory Property

Let X denote the time between detections of a particle with a

Geiger counter and assume that X has an exponential distribu-

tion with E(X) = 1.4 minutes. The probability that we detect a

particle within 0.5 minute of starting the counter is

P(X < 0.5) = F(0.5) = 1 − e−0.5∕1.4 = 0.30

Now, suppose that we turn on the Geiger counter and wait

3 minutes without detecting a particle. What is the probability

that a particle is detected in the next 30 seconds?

Because we have already been waiting for 3 minutes,

we feel that a detection is “due.” That is, the probability of a

detection in the next 30 seconds should be higher than 0.3.

However, for an exponential distribution, this is not true. The

requested probability can be expressed as the conditional

probability that P(X < 3.5 | X > 3). From the definition of

conditional probability,

P(X < 3.5 | X > 3) = P(3 < X < 3.5)∕P(X > 3)

where

P(3 < X < 3.5) = F(3.5) − F(3)
= [1 − e−3.5∕1.4] − [1 − e−3∕1.4] = 0.035

and

P(X > 3) = 1 − F(3) = e−3∕1.4 = 0.117

Therefore,

P(X < 3.5 | X > 3) = 0.035∕0.117 = 0.30

Practical Interpretation: After waiting for 3 minutes

without a detection, the probability of a detection in the next

30 seconds is the same as the probability of a detection in the

30 seconds immediately after starting the counter. The fact

that we have waited 3 minutes without a detection does not

change the probability of a detection in the next 30 seconds.

Example 4.18 illustrates the lack of memory property of an exponential random variable,

and a general statement of the property follows. In fact, the exponential distribution is the only

continuous distribution with this property.

Lack of Memory Property
For an exponential random variable X,

P(X < t1 + t2 | X > t1) = P(X < t2) (4.16)

Figure 4.20 graphically illustrates the lack of memory property. The area of region A divided

by the total area under the probability density function (A + B + C + D = 1) equals P(X < t2).
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FIGURE 4.20

Lack of memory property of an exponential distribution. t2 x
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The area of region C divided by the area C + D equals P(X < t1 + t2 | X > t1). The lack of memory

property implies that the proportion of the total area that is in A equals the proportion of the area

in C and D that is in C.

The lack of memory property is not so surprising when we consider the development of a

Poisson process. In that development, we assumed that an interval could be partitioned into small

intervals that were independent. These subintervals are similar to independent Bernoulli trials that

comprise a binomial experiment; knowledge of previous results does not affect the probabilities

of events in future subintervals. An exponential random variable is the continuous analog of a

geometric random variable, and it shares a similar lack of memory property.

The exponential distribution is often used in reliability studies as the model for the time until

failure of a device. For example, the lifetime of a semiconductor chip might be modeled as an

exponential random variable with a mean of 40,000 hours. The lack of memory property of the

exponential distribution implies that the device does not wear out. That is, regardless of how long

the device has been operating, the probability of a failure in the next 1000 hours is the same as the

probability of a failure in the first 1000 hours of operation. The lifetime L of a device with failures

caused by random shocks might be appropriately modeled as an exponential random variable.

However, the lifetime L of a device that suffers slow mechanical wear, such as bearing wear,

is better modeled by a distribution such that P(L < t + Δt | L > t) increases with t. Distributions

such as the Weibull distribution are often used in practice to model the failure time of this type

of device. The Weibull distribution is presented in a later section.

4.8 Erlang and Gamma Distributions
An exponential random variable describes the length until the first event is obtained in a Poisson

process. A generalization of the exponential distribution is the length until r events occur in a

Poisson process.

E X A M P L E 4.19 Processor Failure

The failures of the central processor units of large computer

systems are often modeled as a Poisson process. Typically,

failures are not caused by components wearing out but by

more random failures of the large number of semiconductor

circuits in the units. Assume that the units that fail are

immediately repaired and assume that the mean number of

failures per hour is 0.0001. Let X denote the time until four

failures occur in a system. Determine the probability that X
exceeds 40,000 hours.

Let the random variable N denote the number of failures

in 40,000 hours of operation. The time until four failures occur

exceeds 40,000 hours if and only if the number of failures in

40,000 hours is three or less. Therefore,

P(X > 40,000) = P(N ≤ 3)

The assumption that the failures follow a Poisson process

implies that N has a Poisson distribution with

E(N) = λT = 0.0001(40,000) = 4

failures per 40,000 hours. Therefore,

P(X > 40,000) = P(N ≤ 3) =
3∑

k=0

e−44k

k!
= 0.433
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The previous example can be generalized to show that if X is the time until the r th event in a

Poisson process, then

P(X > x) =
r−1∑

k=0

e−λx(λx)k

k!
(4.17)

Because P(X > x) = 1 − F(x), the probability density function of X equals the negative of the

derivative of the right-hand side of the previous equation. After extensive algebraic simplification,

the probability density function of X can be shown to equal

f (x) = λrxr−1e−λx

(r − 1)!
for x > 0 and r = 1, 2,… .

This probability density function defines an Erlang random variable. Clearly, an Erlang random

variable with r = 1 is an exponential random variable.

It is convenient to generalize the Erlang distribution to allow r to assume any nonnegative

value. Then the Erlang and some other common distributions become special cases of this gener-

alized distribution. To accomplish this step, the factorial function (r − 1)! is generalized to apply

to any nonnegative value of r, but the generalized function should still equal (r − 1)! when r is a

positive integer.

Gamma Function
The gamma function is

Γ(r) =
∫

∞

0

xr−1e−x dx, for r > 0 (4.18)

It can be shown that the integral in the definition ofΓ(r) is finite. Furthermore, by using integration

by parts, it can be shown that

Γ(r) = (r − 1)Γ(r − 1)

This result is left as an exercise. Therefore, if r is a positive integer (as in the Erlang distribution),

Γ(r) = (r − 1)!

Also, Γ(1) = 0! = 1 and it can be shown that Γ(1∕2) = π1∕2. Now the Erlang distribution can be

generalized.

Gamma Distribution
The random variable X with probability density function

f (x) = λrxr−1e−λx

Γ(r)
, for x > 0 (4.19)

is a gamma random variable with parameters λ > 0 and r > 0. If r is an integer, X has an

Erlang distribution.

The parameters λ and r are often called the scale and shape parameters, respectively. However,

one should check the definitions used in software packages. For example, some statistical software

defines the scale parameter as 1/λ. Sketches of the gamma distribution for several values of λ and r
are shown in Figure 4.21. Many different shapes can be generated from changes to the parameters.
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FIGURE 4.21

Gamma probability density functions for
selected values of 𝛌 and r.
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Also, the change of variable u = λ x and the definition of the gamma function can be used to show

that the probability density function integrates to 1.

For the special case when r is an integer and the value of r is not large, Equation 4.17 can be

applied to calculate probabilities for a gamma random variable. However, in general, the integral

of the gamma probability density function is difficult to evaluate so computer software is used to

determine probabilities.

Recall that for an exponential distribution with parameter λ, the mean and variance are 1/λ
and 1/λ2, respectively. An Erlang random variable is the time until the rth event in a Poisson

process and the time between events are independent. Therefore, it is plausible that the mean and

variance of a gamma random variable multiply the exponential results by r. This motivates the

following conclusions. Repeated integration by parts can be used to derive these, but the details

are lengthy and omitted.

Mean and Variance
If X is a gamma random variable with parameters λ and r,

μ = E(X) = r∕λ and σ2 = V(X) = r∕λ2

E X A M P L E 4.20

The time to prepare a slide for high-throughput genomics is

a Poisson process with a mean of two hours per slide. What

is the probability that 10 slides require more than 25 hours to

prepare?

Let X denote the time to prepare 10 slides. Because of

the assumption of a Poisson process, X has a gamma distri-

bution with λ = 1/2, r = 10, and the requested probability is

P(X > 25). The probability can be obtained from software that

provides cumulative Poisson probabilities or gamma proba-

bilities. For the cumulative Poisson probabilities, we use the

method in Example 4.19 to obtain

P(X > 25) =
9∑

k=0

e−12.5(12.5)k

k!
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In software we set the mean = 12.5 and the input = 9 to obtain

P(X > 25) = 0.2014.

What are the mean and standard deviation of the time to

prepare 10 slides? The mean time is

E(X) = r∕λ = 10∕0.5 = 20

The variance of time is

V(X) = r∕λ2 = 10∕0.52 = 40

so that the standard deviation is 401/2 = 6.32 hours.

The slides will be completed by what length of time with

probability equal to 0.95? The question asks for x such that

P(X ≤ x) = 0.95

where X is gamma with λ = 0.5 and r = 10. In software, we

use the gamma inverse cumulative probability function and set

the shape parameter to 10, the scale parameter to 0.5, and the

probability to 0.95. The solution is

P(X ≤ 31.41) = 0.95

Practical Interpretation: Based on this result, a schedule

that allows 31.41 hours to prepare 10 slides should be met 95%

of the time.

Furthermore, the chi-square distribution is a special case of the gamma distribution in

which λ = 1/2 and r equals one of the values 1/2, 1, 3/2, 2,… . This distribution is discussed

and used extensively in interval estimation and tests of hypotheses in subsequent chapters.

4.9 Weibull Distribution
As mentioned previously, the Weibull distribution is often used to model the time until failure

of many different physical systems. The parameters in the distribution provide a great deal of

flexibility to model systems in which the number of failures increases with time (bearing wear),

decreases with time (some semiconductors), or remains constant with time (failures caused by

external shocks to the system).

Weibull Distribution
The random variable X with probability density function

f (x) =
β
δ

( x
δ

)β−1

exp

[

−
( x
δ

)β
]

, for x > 0 (4.20)

is a Weibull random variable with scale parameter δ > 0 and shape parameter β > 0.

The graphs of selected probability density functions in Figure 4.22 illustrate the flexibility of the

Weibull distribution. By inspecting the probability density function, we can see that when β = 1,

the Weibull distribution is identical to the exponential distribution. Also, the Raleigh distribution
is a special case when the shape parameter is 2.

The cumulative distribution function is often used to compute probabilities. The following

result can be obtained.

Cumulative Distribution Function
If X has a Weibull distribution with parameters δ and β, then the cumulative distribution

function of X is

F(x) = 1 − e−
(

x
δ

)β
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FIGURE 4.22

Weibull probability density functions for
selected values of 𝛅 and 𝛃.
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Also, the following results can be obtained.

Mean and Variance
If X has a Weibull distribution with parameters δ and β,

μ = E(X) = δΓ
(

1 + 1

β

)

and σ2 = V(X) = δ2Γ
(

1 + 2

β

)

− δ2

[

Γ
(

1 + 1

β

)]2

(4.21)

E X A M P L E 4.21 Bearing Wear

The time to failure (in hours) of a bearing in a mechanical

shaft is satisfactorily modeled as a Weibull random variable

with β = 1/2 and δ = 5000 hours. Determine the mean time

until failure.

From the expression for the mean,

E(X) = 5000Γ[1 + (1∕2)] = 5000Γ[1.5] = 5000 × 0.5
√
π

= 4431.1 hours

Determine the probability that a bearing lasts at least

6000 hours. Now,

P(X > 6000) = 1 − F(6000) = exp

[

−
(

6000

5000

)2
]

= e−1.44 = 0.237

Practical Interpretation: Consequently, only 23.7% of all

bearings last at least 6000 hours.

4.10 Lognormal Distribution
Variables in a system sometimes follow an exponential relationship as x = exp(w). If the exponent

is a random variable W, then X = exp(W) is a random variable with a distribution of interest.

An important special case occurs when W has a normal distribution. In that case, the distribution

of X is called a lognormal distribution. The name follows from the transformation ln (X) = W.

That is, the natural logarithm of X is normally distributed.
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Probabilities for X are obtained from the transform of the normal distribution. Suppose that

W is normally distributed with mean θ and variance ω2; then the cumulative distribution function

for X is

F(x) = P[X ≤ x] = P[exp(W) ≤ x] = P[W ≤ ln(x)]

= P
[

Z ≤
ln(x) − θ

ω

]

= Φ
[

ln(x) − θ
ω

]

for x > 0, where Z is a standard normal random variable and Φ( • ) is the cumulative distribu-

tion function of the standard normal distribution. Therefore, Appendix Table III can be used to

determine the probability. Also, F(x) = 0 for x ≤ 0.

The probability density function of X can be obtained from the derivative of F(x). Because

Φ( • ) is the integral of the standard normal density function, the fundamental theorem of calculus

is used to calculate the derivative. Furthermore, from the probability density function, the mean

and variance of X can be derived. The details are omitted, but a summary of results follows.

Lognormal Distribution
Let W have a normal distribution with mean θ and variance ω2; then X = exp(W) is a

lognormal random variable with probability density function

f (x) = 1

xω
√

2π
exp

[

−(ln(x) − θ)2

2ω2

]

0 < x < ∞

The mean and variance of X are

E(X) = eθ+ω2∕2 and V(X) = e2θ+ω2 (eω2 − 1) (4.22)

The parameters of a lognormal distribution are θ and ω2, but these are the mean and variance of

the normal random variable W. The mean and variance of X are the functions of these parameters

shown in Equation 4.22. Figure 4.23 illustrates lognormal distributions for selected values of the

parameters.

The lifetime of a product that degrades over time is often modeled by a lognormal random

variable. For example, this is a common distribution for the lifetime of a semiconductor laser.

A Weibull distribution can also be used in this type of application, and with an appropriate choice
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Lognormal probability density func-
tions with 𝛉 = 0 for selected values
of 𝛚2.
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for parameters, it can approximate a selected lognormal distribution. However, a lognormal dis-

tribution is derived from a simple exponential function of a normal random variable, so it is easy

to understand and easy to evaluate probabilities.

E X A M P L E 4.22 Semiconductor Laser

The lifetime (in hours) of a semiconductor laser has a

lognormal distribution with θ = 10 and ω = 1.5. What is the

probability that the lifetime exceeds 10,000 hours?

From the cumulative distribution function for X,

P(X > 10,000) = 1 − P[exp(W) ≤ 10,000]
= 1 − P[W ≤ ln(10,000)]

= 1 − Φ
(

ln(10,000) − 10

1.5

)

= 1 − Φ(−0.52)

= 1 − 0.30 = 0.70

What lifetime is exceeded by 99% of lasers? The question

is to determine x such that P(X > x) = 0.99. Therefore,

P(X > x) = P[exp(W) > x] = P[W > ln(x)]

= 1 − Φ
(

ln(x) − 10

1.5

)

= 0.99

From Appendix Table III, 1 − Φ(z) = 0.99 when z = −2.33.

Therefore,

ln(x) − 10

1.5
= −2.33 and x = exp(6.505) = 668.48 hours

Determine the mean and standard deviation of lifetime.

Now,

E(X) = eθ+ω2∕2 = e(10+1.125) = 67,846.3

V(X) = e2θ+ω2 (eω2 − 1) = e(20+2.25)(e2.25−1)
= 39,070,059,886.6

hours squared, so the standard deviation of X is 197,661.5

hours.

Practical Interpretation: The standard deviation of

a lognormal random variable can be large relative to the

mean.

4.11 Beta Distribution
A continuous distribution that is flexble but bounded over a finite range is useful for probability

models. The proportion of solar radiation absorbed by a material or the proportion (of the maxi-

mum time) required to complete a task in a project are examples of continuous random variables

over the interval [0, 1].

The random variable X with probability density function

f (x) =
Γ(α + β)
Γ(α) Γ(β)

xα−1(1 − x)β−1
, for x in [0, 1]

is a beta random variable with parameters α > 0 and β > 0.

The shape parameters α and β allow the probability density function to assume many differ-

ent shapes. Figure 4.24 provides some examples. If α = β, the distribution is symmetric about

x= 0.5, and if α= β= 1, the beta distribution equals a continuous uniform distribution. Figure 4.24

illustrates that other parameter choices generate nonsymmetric distributions.

In general, there is not a closed-form expression for the cumulative distribution function, and

probabilities for beta random variables need to be computed numerically. The exercises provide

some special cases in which the probability density function is more easily handled.
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FIGURE 4.24

Beta probability density functions for selected
values of the parameters 𝛂 and 𝛃.

E X A M P L E 4.23

The service of a constant-velocity joint in an automobile

requires disassembly, boot replacement, and assembly.

Suppose that the proportion of the total service time for

disassembly follows a beta distribution with α = 2.5 and

β = 1. What is the probability that a disassembly proportion

exceeds 0.7?

Let X denote the proportion of service time for disassem-

bly. The probability is

P(X > 0.7) =
∫

1

0.7

Γ(α + β)
Γ(α) Γ(β)

xα−1(1 − x)β−1

=
∫

1

0.7

Γ(3.5)
Γ(2.5) Γ(1)

x1.5 =
2.5(1.5)(0.5)

√
π

(1.5)(0.5)
√
π

x2.5

2.5

|
|
|
|
|
|

1

0.7

= 1 − 0.72.5 = 0.59

If α > 1 and β > 1, the mode (peak of the density) is in the interior of [0, 1] and equals

mode = α − 1

α + β − 2

This expression is useful to relate the peak of the probability density function to the parameters.

Suppose that the proportion of time to complete one task among several follows a beta distribution

with α = 2.5 and β = 1. The mode of this distribution is (2.5 − 1)/(3.5 − 2) = 1. The mean and

variance of a beta distribution can be obtained from the integrals, but the details are left as an

exercise.

Also, although a beta random variable X is defined over the interval [0, 1], a generalized

beta random variable W, defined over the finite interval [a, b], can be constructed from

W = a + (b − a)X.

Mean and Variance
If X has a beta distribution with parameters α and β,

μ = E(X) = α
α + β

and σ2 = V(X) =
αβ

(α + β)2 (α + β + 1)
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Important Terms and Concepts

Beta random variable

Chi-squared distribution

Continuity correction

Continuous random variable

Continuous uniform random variable

Cumulative distribution function

Erlang random variable

Expected value of a function of a random

variable

Exponential random variable

Gamma function

Gamma random variable

Gaussian distribution

Lack of memory property—continuous

random variable

Lognormal random variable

Mean—continuous random variable

Mean—function of a continuous random

variable

Normal approximation to binomial and

Poisson probabilities

Normal random variable

Poisson process

Probability density function

Probability distribution—continuous

random variable

Raleigh distribution

Standard deviation—continuous random

variable

Standard normal random variable

Standardizing

Variance—continuous random variable

Weibull random variable
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C H A P T E R O U T L I N E

5.1 Joint Probability Distributions

for Two Random Variables

5.2 Conditional Probability

Distributions and Independence

5.3 Joint Probability Distributions

for More Than Two Random

Variables

5.4 Covariance and Correlation

5.5 Common Joint Distributions

5.5.1 Multinomial Probability

Distribution

5.5.2 Bivariate Normal Distribution

5.6 Linear Functions of Random

Variables

5.7 General Functions of Random

Variables

5.8 Moment-Generating Functions

L E A R N I N G O B J E C T I V E S

After careful study of this chapter, you should be able to do the

following:

1. Use joint probability mass functions and joint probability

density functions to calculate probabilities and calculate

marginal probability distributions from joint probability

distributions

2. Calculate conditional probability distributions from joint

probability distributions and assess independence of random

variables

3. Interpret and calculate covariances and correlations between

random variables

4. Use the multinomial distribution to determine probabilities

and understand properties of a bivariate normal distribution

and be able to draw contour plots for the probability density

function

5. Calculate means and variances for linear functions of random

variables and calculate probabilities for linear functions of

normally distributed random variables

6. Determine the distribution of a general function of a random

variable

7. Calculate the moment-generating functions and use the

functions to determine moments and distributions.

95
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Air-quality monitoring stations are maintained throughout Maricopa County, Arizona, and the

Phoenix metropolitan area. Measurements for particulate matter and ozone are measured hourly.

Particulate matter (known as PM10) is a measure (in μg/m3) of solid and liquid particles in the

air with diameters less than 10 micrometers. Ozone is a colorless gas with molecules comprised

of three oxygen atoms that make it very reactive. Ozone is formed in a complex reaction from

heat, sunlight, and other pollutants, especially volatile organic compounds. The U.S. Environmen-

tal Protection Agency sets limits for both PM10 and ozone. For example, the limit for ozone is

0.075 ppm. The probability that a day in Phoenix exceeds the limits for PM10 and ozone is impor-

tant for compliance and remedial actions with the county and city. But this might be more involved

than the product of the probabilities for each pollutant separately. It might be that days with high

PM10 measurements also tend to have ozone values. That is, the measurements might not be inde-

pendent, so the joint relationship between these measurements becomes important. The study of

probability distributions for more than one random variable is the focus of this chapter and the

air-quality data is just one illustration of the ubiquitous need to study variables jointly.

5.1 Joint Probability Distributions

for Two Random Variables
In Chapters 3 and 4, you studied probability distributions for a single random variable. However,

it is often useful to have more than one random variable defined in a random experiment.

For example, the continuous random variable X can denote the length of one dimension of an

injection-molded part, and the continuous random variable Y might denote the length of another

dimension. We might be interested in probabilities that can be expressed in terms of both X
and Y . If the specifications for X and Y are (2.95 to 3.05) and (7.60 to 7.80) millimeters, respec-

tively, we might be interested in the probability that a part satisfies both specifications; that is,

P(2.95 < X < 3.05 and 7.60 < Y < 7.80).

Because the two random variables are measurements from the same part, small disturbances

in the injection-molding process, such as pressure and temperature variations, might be more

likely to generate values for X and Y in specific regions of two-dimensional space. For example, a

small pressure increase might generate parts such that both X and Y are greater than their respec-

tive targets, and a small pressure decrease might generate parts such that X and Y are both less than

their respective targets. Therefore, based on pressure variations, we expect that the probability of

a part with X much greater than its target and Y much less than its target is small.

In general, if X and Y are two random variables, the probability distribution that defines their

simultaneous behavior is called a joint probability distribution. In this chapter, we investigate

some important properties of these joint distributions. For simplicity, we begin by considering

random experiments in which only two random variables are studied. In later sections, we

generalize the presentation to the joint probability distribution of more than two random

variables.

E X A M P L E 5.1 Mobile Response Time

The response time is the speed of page downloads and it is

critical for a mobile Web site. As the response time increases,

customers become more frustrated and potentially abandon the

site for a competitive one. Let X denote the number of bars

of service, and let Y denote the response time (to the nearest

second) for a particular user and site.

By specifying the probability of each of the points in

Figure 5.1, we specify the joint probability distribution of X
and Y . Similarly to an individual random variable, we define

the range of the random variables (X,Y) to be the set of points

(x, y) in two-dimensional space for which the probability that

X = x and Y = y is positive.
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x = Number of Bars of Signal Strengthy = Response Time
(nearest second) 1 2 3

4 0.15 0.1 0.05

3 0.02 0.1 0.05

2 0.02 0.03 0.2

1 0.01 0.02 0.25

FIGURE 5.1

Joint probability distribution of X and Y in Example 5.1.

Joint Probability Mass Function If X and Y are discrete random variables, the joint probabil-

ity distribution of X and Y is a description of the set of points (x, y) in the range of (X,Y) along with

the probability of each point. Also, P(X = x and Y = y) is usually written as P(X = x,Y = y).
The joint probability distribution of two random variables is sometimes referred to as the

bivariate probability distribution or bivariate distribution of the random variables. One way

to describe the joint probability distribution of two discrete random variables is through a joint

probability mass function f (x, y) = P(X = x,Y = y).

Joint Probability Mass Function
The joint probability mass function of the discrete random variables X and Y , denoted as

fXY (x, y), satisfies

(1) f XY (x, y) ≥ 0

(2)
∑

X

∑

Y
fXY (x, y) = 1

(3) fXY (x, y) = P(X = x,Y = y) (5.1)

Just as the probability mass function of a single random variable X is assumed to be zero at all

values outside the range of X, so the joint probability mass function of X and Y is assumed to be

zero at values for which a probability is not specified.

Joint Probability Density Function The joint probability distribution of two continuous

random variables X and Y can be specified by providing a method for calculating the probabil-

ity that X and Y assume a value in any region R of two-dimensional space. Analogous to the

probability density function of a single continuous random variable, a joint probability den-
sity function can be defined over two-dimensional space. The double integral of fXY (x, y) over a

region R provides the probability that (X,Y) assumes a value in R. This integral can be interpreted

as the volume under the surface fXY (x, y) over the region R. Typically, fXY (x, y) is defined over all

of two-dimensional space by assuming that fXY (x, y) = 0 for all points for which fXY (x, y) is not

specified.
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FIGURE 5.2

Joint probability density function for
random variables X and Y. Probability
that (X,Y) is in the region R is
determined by the volume of fXY(x, y)
over the region R.

fXY (x, y)

x

y

R

A joint probability density function for X and Y is shown in Figure 5.2. The probability that

(X,Y) assumes a value in the region R equals the volume of the shaded region in Figure 5.2. In

this manner, a joint probability density function is used to determine probabilities for X and Y .

Joint Probability Density Function
A joint probability density function for the continuous random variables X and Y , denoted

as fXY (x, y), satisfies the following properties:

(1) f XY (x, y) ≥ 0 for all x, y
(2) ∞

∫
−∞

∞

∫
−∞

fXY (x, y) dx dy = 1

(3) For any region R of two-dimensional space,

P((X,Y) ∈ R) =
∫ ∫

R

fXY (x, y) dx dy (5.2)

At the start of this chapter, the lengths of different dimensions of an injection-molded part

were presented as an example of two random variables. However, because the measurements are

from the same part, the random variables are typically not independent. If the specifications for

X and Y are [2.95, 3.05] and [7.60, 7.80] millimeters, respectively, we might be interested in the

probability that a part satisfies both specifications; that is, P(2.95 < X < 3.05, 7.60 < Y < 7.80).
Suppose that fXY (x, y) is shown in Figure 5.3. The required probability is the volume of

fXY (x, y) within the specifications. Often a probability such as this must be determined from a

numerical integration.

FIGURE 5.3

Joint probability density function for
the lengths of different dimensions of
an injection-molded part.

fXY(x, y)

y
x

3.0

2.95

3.057.70

7.80

7.60
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E X A M P L E 5.2 Server Access Time

Let the random variable X denote the time until a computer

server connects to your machine (in milliseconds), and let Y
denote the time until the server authorizes you as a valid user

(in milliseconds). Each of these random variables measures

the wait from a common starting time and X < Y . Assume that

the joint probability density function for X and Y is

fXY (x, y) = 6 × 10−6 exp (−0.001x − 0.002y) for x < y

Reasonable assumptions can be used to develop such a distri-

bution, but for now, our focus is on only the joint probability

density function.

The region with nonzero probability is shaded in

Figure 5.4. The property that this joint probability density

function integrates to 1 can be verified by the integral of

fXY (x, y) over this region as follows:

∞

∫
−∞

∞

∫
−∞

fXY (x, y) dy dx =
∞

∫
0

⎛
⎜
⎜
⎝

∞

∫
x

6 × 10−6e−0.001x−0.002y dy
⎞
⎟
⎟
⎠

dx

= 6 × 10−6

∞

∫
0

⎛
⎜
⎜
⎝

∞

∫
x

e−0.002y dy
⎞
⎟
⎟
⎠

e−0.001x dx

= 6 × 10−6

∞

∫
0

(
e−0.002x

0.002

)

e−0.001x dx

= 0.003

⎛
⎜
⎜
⎝

∞

∫
0

e−0.003x dx
⎞
⎟
⎟
⎠

= 0.003
(

1

0.003

)

= 1

y

x0

FIGURE 5.4

The joint probability density function of X and Y is
nonzero over the shaded region.

The probability that X < 1000 and Y < 2000 is determined as

the integral over the darkly shaded region in Figure 5.5.

P(X ≤ 1000, Y ≤ 2000) =
1000

∫
0

2000

∫
x

fXY (x, y) dy dx

= 6 × 10−6

1000

∫
0

⎛
⎜
⎜
⎝

2000

∫
x

e−0.002y dy
⎞
⎟
⎟
⎠

e−0.001x dx

= 6 × 10−6

1000

∫
0

(
e−0.002x − e−4

0.002

)

e−0.001x dx

= 0.003

1000

∫
0

e−0.003x − e−4e−0.001x dx

= 0.003

[(
1 − e−3

0.003

)

− e−4

(
1 − e−1

0.001

)]

= 0.003 (316.738 − 11.578) = 0.915

Practical Interpretation: A joint probability density

function enables probabilities for two (or more) random

variables to be calculated as in these examples.

y

x0
0

2000

1000

FIGURE 5.5

Region of integration for the probability that X < 1000
and Y < 2000 is darkly shaded.

Marginal Probability Distributions If more than one random variable is defined in a random

experiment, it is important to distinguish between the joint probability distribution of X and Y and

the probability distribution of each variable individually. The individual probability distribution

of a random variable is referred to as its marginal probability distribution.

The marginal probability distribution of X can be determined from the joint probability

distribution of X and other random variables. For example, consider discrete random variables
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X and Y . To determine P(X = x), we sum P(X = x,Y = y) over all points in the range of

(X,Y) for which X = x. Subscripts on the probability mass functions distinguish between the

random variables.

E X A M P L E 5.3 Marginal Distribution

The joint probability distribution of X and Y in Figure 5.1

can be used to find the marginal probability distribution of X.

For example,

fX(3) = P(X = 3) = P(X = 3,Y = 1) + P(X = 3,Y = 2)
+P(X = 3,Y = 3) + P(X = 3,Y = 4)

= 0.25 + 0.2 + 0.05 + 0.05 = 0.55

x = Number of Bars of Signal Strength

y = Response Time
(nearest second) 1 2 3

Marginal
Probability

Distribution of Y

4 0.15 0.1 0.05 0.3

3 0.02 0.1 0.05 0.17

2 0.02 0.03 0.2 0.25

1 0.01 0.02 0.25 0.28

0.2 0.25 0.55

Marginal Probability Distribution of X

FIGURE 5.6

Marginal probability distributions of X and Y from Figure 5.1.

The marginal probability distribution for X is found

by summing the probabilities in each column whereas the

marginal probability distribution for Y is found by summing

the probabilities in each row. The results are shown in

Figure 5.6.

For continuous random variables, an analogous approach is used to determine marginal prob-

ability distributions. In the continuous case, an integral replaces the sum.

Marginal Probability Density Function
If the joint probability density function of random variables X and Y is fXY (x, y), the marginal
probability density functions of X and Y are

fX(x) =
∫

fXY (x, y) dy and fY (y) =
∫

fXY (x, y) dx (5.3)

where the first integral is over all points in the range of (X,Y) for which X = x and the second

integral is over all points in the range of (X,Y) for which Y = y.

A probability for only one random variable, say, for example, P(a < X < b), can be found

from the marginal probability distribution of X or from the integral of the joint probability

distribution of X and Y as

P(a < X < b) =
b

∫
a

fX(x) dx =
b

∫
a

⎡
⎢
⎢
⎣

∞

∫
−∞

fXY (x, y) dy
⎤
⎥
⎥
⎦

dx =
b

∫
a

∞

∫
−∞

fXY (x, y) dydx
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E X A M P L E 5.4 Server Access Time

For the random variables that denote times in Example 5.2,

calculate the probability that Y exceeds 2000 milliseconds.

This probability is determined as the integral of fXY (x, y)
over the darkly shaded region in Figure 5.7. The region is par-

titioned into two parts and different limits of integration are

determined for each part.

P(Y > 2000) =
2000

∫
0

⎛
⎜
⎜
⎝

∞

∫
2000

6 × 10−6e−0.001x−0.002y dy
⎞
⎟
⎟
⎠

dx

+
∞

∫
2000

⎛
⎜
⎜
⎝

∞

∫
x

6 × 10−6e−0.001x−0.002y dy
⎞
⎟
⎟
⎠

dx

The first integral is

6 × 10−6

2000

∫
0

(
e−0.002y

−0.002

|
|
|
|

∞

2000

)

e−0.001x dx = 6 × 10−6

0.002
e−4

×
2000

∫
0

e−0.001x dx = 6 × 10−6

0.002
e−4

(
1 − e−2

0.001

)

= 0.0475

y

x0
0

2000

2000

FIGURE 5.7

Region of integration for the probability that Y > 2000 is
darkly shaded, and it is partitioned into two regions with
x < 2000 and x > 2000.

The second integral is

6 × 10−6

∞

∫
2000

(
e−0.002y

−0.002

|
|
|
|

∞

x

)

e−0.001x dx = 6 × 10−6

0.002

×
∞

∫
2000

e−0.003x dx = 6 × 10−6

0.002

(
e−6

0.003

)

= 0.0025

Therefore,

P(Y > 2000) = 0.0475 + 0.0025 = 0.05

Alternatively, the probability can be calculated from the

marginal probability distribution of Y as follows. For y > 0,

fY (y) =
y

∫
0

6 × 10−6e−0.001x−0.002y dx = 6 × 10−6e−0.002y

×
y

∫
0

e−0.001x dx = 6 × 10−6e−0.002y
(

e−0.001x

−0.001

|
|
|
|

y

0

)

= 6 × 10−6e−0.002y
(

1 − e−0.001y

0.001

)

= 6 × 10−3e−0.002y(1 − e−0.001y) for y > 0

We have obtained the marginal probability density function of

Y . Now,

P(Y > 2000) = 6 × 10−3

∞

∫
2000

e−0.002y(1 − e−0.001y) dy

= 6 × 10−3

[(
e−0.002y

−0.002

|
|
|
|

∞

2000

)

−
(

e−0.003y

−0.003

|
|
|
|

∞

2000

)]

= 6 × 10−3

[
e−4

0.002
− e−6

0.003

]

= 0.05

Also, E(X) and V(X) can be determined from the marginal probability distribution of X in

the usual manner or from the joint probability distribution of X and Y as follows.

Mean and Variance from a Joint Distribution

E(X) =
∫

∞

−∞
xfX(x)dx =

∫

∞

−∞ ∫

∞

−∞
xfX,Y (x, y)dydx

and

V(X) =
∫

∞

−∞
(x − μX)2fX(x)dx =

∫

∞

−∞ ∫

∞

−∞
(x − μX)2fX,Y (x, y)dydx (5.4)

In Figure 5.6, the marginal probability distributions of X and Y are used to obtain the means as

E(X) = 1(0.2) + 2(0.25) + 3(0.55) = 2.35

E(Y) = 1(0.28) + 2(0.25) + 3(0.17) + 4(0.3) = 2.49
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5.2 Conditional Probability Distributions

and Independence
When two random variables are defined in a random experiment, knowledge of one can change the

probabilities that we associate with the values of the other. Recall that in Example 5.1, X denotes

the number of bars of service and Y denotes the response time. One expects the probability Y = 1

to be greater at X = 3 bars than at X = 1 bar. From the notation for conditional probability in

Chapter 2, we can write such conditional probabilities as P(Y = 1 | X = 3) and P(Y = 1 | X = 1).
Consequently, the random variables X and Y are expected to be dependent. Knowledge of the

value obtained for X changes the probabilities associated with the values of Y .

Recall that the definition of conditional probability for events A and B is P(B | A) =
P(A ∩ B)∕P(A). This definition can be applied with the event A defined to be X = x and event B
defined to be Y = y.

E X A M P L E 5.5 Conditional Probabilities for Mobile

Response Time

For Example 5.1, X and Y denote the number of bars of signal

strength and response time, respectively. Then,

P(Y = 1 | X = 3) = P(X = 3,Y = 1)
P(X = 3)

=
fXY (3, 1)

fX(3)

= 0.25

0.55
= 0.454

The probability that Y = 2 given that X = 3 is

P(Y = 2 | X = 3) = P(X = 3,Y = 2)
P(X = 3)

=
fXY (3, 2)

fX(3)

= 0.2

0.55
= 0.364

Further work shows that

P(Y = 3 | X = 3) = 0.091

and

P(Y = 4 | X = 3) = 0.091

Note that P(Y = 1 | X = 3) + P(Y = 2 | X = 3) + P(Y
= 3 | X = 3) + P(Y = 4 | X = 3) = 1. This set of probabili-

ties defines the conditional probability distribution of Y given

that X = 3.

Example 5.5 illustrates that the conditional probabilities for Y given that X = x can be thought

of as a new probability distribution called the conditional probability mass function for Y given

X = x. For Example 5.5, the conditional probability mass function for Y given that X = 3 consists

of the four probabilities fY|3(1) = 0.454, fY|3(2) = 0.364, fY|3(3) = 0.091, fY|3(4) = 0.091.

The following definition applies these concepts to continuous random variables.

Conditional Probability Density Function
Given continuous random variables X and Y with joint probability density function fXY (x, y),
the conditional probability density function of Y given X = x is

fY|x(y) =
fXY (x, y)

fX(x)
for fX(x) > 0 (5.5)

The conditional probability density function provides the conditional probabilities for the values

of Y given that X = x.
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Because the conditional probability density function fY|x(y) is a probability density function

for all y in Rx, the following properties are satisfied:

(1) fY|x(y) ≥ 0

(2)
∫

fY|x(y) dy = 1

(3) P(Y ∈ B | X = x) =
∫

B

fY|x(y) dy for any set B in the range of Y (5.6)

It is important to state the region in which a joint, marginal, or conditional probability density

function is not zero. The following example illustrates this.

E X A M P L E 5.6 Conditional Probability

For the random variables that denote times in Example 5.2,

determine the conditional probability density function for Y
given that X = x.

First, the marginal density function of x is determined.

For x > 0,

fX(x) =
∫

x

6 × 10−6e−0.001x−0.002y dy

= 6 × 10−6e−0.001x
(

e−0.002y

−0.002

|
|
|
|

∞

x

)

= 6 × 10−6e−0.001x
(

e−0.002x

0.002

)

= 0.003e−0.003x for x > 0

This is an exponential distribution with λ = 0.003. Now

for 0 < x and x < y, the conditional probability density func-

tion is

fY|x(y) =
fXY (x, y)

fx(x)
= 6 × 10−6e−0.001x−0.002y

0.003e−0.003x

= 0.002e0.002x−0.002y for 0 < x and x < y

The conditional probability density function of Y , given that

X = 1500, is nonzero on the solid line in Figure 5.8.

Determine the probability that Y exceeds 2000, given

that x = 1500. That is, determine P(Y > 2000 | X = 1500).

y

x0
0

1500

1500

FIGURE 5.8

The conditional probability density function for Y,
given that x = 1500, is nonzero over the solid line.

The conditional probability density function is integrated as

follows:

P(Y > 2000 | X = 1500) =
∞

∫
2000

fY|1500(y) dy

=
∞

∫
2000

0.002e0.002(1500)−0.002y dy

= 0.002e3

(
e−0.002y

−0.002

|
|
|
|

∞

2000

)

= 0.002e3

(
e−4

0.002

)

= 0.368
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Conditional Mean and Variance
The conditional mean of Y given X = x, denoted as E(Y | x) or μY |x, is

E(Y | x) =
∫

y

y fY |x(y) (5.7)

and the conditional variance of Y given X = x, denoted as V(Y | x) or σ2
Y|x, is

V(Y | x) =
∫

y

(y − μY|x)2fY|x(y) =
∫

y

y2fY|x(y) − μ2
Y|x

E X A M P L E 5.7 Conditional Mean and Variance

For the random variables that denote times in Example 5.2,

determine the conditional mean for Y given that x = 1500.

The conditional probability density function for Y was

determined in Example 5.6. Because fY|1500(y) is nonzero for

y > 1500,

E(Y | X = 1500) =
∞

∫
1500

y(0.002e0.002(1500)−0.002y) dy

= 0.002e3

∞

∫
1500

ye−0.002y dy

Integrate by parts as follows:

∞

∫
1500

ye−0.002y dy = y e−0.002y

−0.002

|
|
|
|

∞

1500

−
∞

∫
1500

(
e−0.002y

−0.002

)

dy

= 1500

0.002
e−3 −

(
e−0.002y

(−0.002)(−0.002)
|
|
|
|

∞

1500

)

= 1500

0.002
e−3 + e−3

(0.002)(0.002)

= e−3

0.002
(2000)

With the constant 0.002e3 reapplied,

E(Y | X = 1500) = 2000

Practical Interpretation: If the connect time is 1500 ms,

then the expected time to be authorized is 2000 ms.

For the discrete random variables in Example 5.1, the conditional mean of Y given X = 3 is

obtained from the conditional distribution in Example 5.5:

E(Y | 3) = μY|3 = 1(0.494) + 2(0.364) + 3(0.091) + 4(0.091) = 1.86

The conditional mean is interpreted as the expected response time given that one bar of signal

is present. The conditional variance of Y given X = 3 is

V(Y | 3) = (1−1.86)2 0.494 + (2−1.86)2 0.364 + (3−1.86)2 0.091 + (4−1.86)2 0.091 = 0.91

Independence In some random experiments, knowledge of the values of X does not change

any of the probabilities associated with the values for Y . In this case, marginal probability distri-

butions can be used to calculate probabilities more easily.
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E X A M P L E 5.8 Independent Random Variables

An orthopedic physician’s practice considers the number of

errors in a bill and the number of X-rays listed on the bill.

There may or may not be a relationship between these random

variables. Let the random variables X and Y denote the number

of errors and the number of X-rays on a bill, respectively.

Assume that the joint probability distribution of X and Y
is defined by fXY (x, y) in Figure 5.9(a). The marginal probabil-

ity distributions of X and Y are also shown in Figure 5.9(a).

Note that

fXY (x, y) = fX(x) fY (y).

4

3

2

1

0
0.225 0.060 0.015

0.210 0.056 0.014

0.1875 0.050 0.0125

0.1275 0.034 0.0085

(a) (b)

0.28

0.3

0.75 0.2 0.05

0 1 2

0.17

0.25

4

3

2

1

0
0.30 0.30 0.30

0.28 0.28 0.28

0.25 0.25 0.25

0.17 0.17 0.17

0.28

0.3

0.75 0.2 0.05

0 1 2

0.17

0.25

fX(x)

fY(y)

fX(x)

fY(y)

FIGURE 5.9

(a) Joint and marginal probability distributions of X and Y. (b) Conditional probability
distribution of Y given X = x.

The conditional probability mass function fY|x(y) is

shown in Fig. 5.9(b). Notice that for any x, fY|x(y) = fY (y).
That is, knowledge of whether or not the bill has errors does

not change the probability of the number of X-rays listed on

the bill.

By analogy with independent events, we define two random variables to be independent
whenever fXY (x, y) = fX(x) fY (y) for all x and y. Notice that independence implies that fXY (x, y) =
fX(x) fY (y) for all x and y. If we find one pair of x and y in which the equality fails, then X and Y
are not independent.

If two random variables are independent, then for fX(x) > 0,

fY|x(y) =
fXY (x, y)

fX(x)
=

fX(x) fY (y)
fX(x)

= fY (y)

With similar calculations, the following equivalent statements can be shown.

Independence
For random variables X and Y , if any one of the following properties is true, the others are

also true, and X and Y are independent.

(1) fXY (x, y) = fX(x) fY (y) for all x and y
(2) fY|x(y) = fY (y) for all x and y with fX(x) > 0

(3) fX|y(x) = fX(x) for all x and y with fY (y) > 0

(4) P(X ∈ A,Y ∈ B) = P(X ∈ A) P(Y ∈ B) for any sets A and B in the range of X
and Y , respectively. (5.8)
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Rectangular Range for (X, Y) Let D denote the set of points in two-dimensional space that

receive positive probability under fXY (x, y). If D is not rectangular, then X and Y are not indepen-

dent because knowledge of X can restrict the range of values of Y that receive positive probability.

If D is rectangular, independence is possible but not demonstrated. One of the conditions in

Equation 5.8 must still be verified.

The variables in Example 5.2 are not independent. This can be quickly determined because

the range of (X, Y) shown in Figure 5.4 is not rectangular. Consequently, knowledge of X changes

the interval of values for Y with nonzero probability.

E X A M P L E 5.9 Independent Random Variables

Suppose that Example 5.2 is modified so that the joint

probability density function of X and Y is fXY (x, y) =
2 × 10−6 exp (−0.001x − 0.002y) for x ≥ 0 and y ≥ 0.

Show that X and Y are independent and determine

P(X > 1000,Y < 1000).
Note that the range of positive probability is rectangular

so that independence is possible but not yet demonstrated. The

marginal probability density function of X is

fX(x) =
∞

∫
0

2 × 10−6e−0.001x−0.002y dy

= 0.001e−0.001x for x > 0

The marginal probability density function of Y is

fY (y) =
∞

∫
0

2 × 10−6e−0.001x−0.002y dx

= 0.002e−0.002y for y > 0

Therefore, fXY (x, y) = fX(x) fY (y) for all x and y, and X and Y
are independent.

To determine the probability requested, property (4) of

Equation 5.8 can be applied along with the fact that each ran-

dom variable has an exponential distribution. Therefore,

P(X > 1000,Y < 1000) = P(X > 1000) P(Y < 1000)
= e−1(1 − e−2) = 0.318

Often, based on knowledge of the system under study, random variables are assumed to be

independent. Then probabilities involving both variables can be determined from the marginal

probability distributions. For example, the time to complete a computer search should be inde-

pendent of an adult’s height.

E X A M P L E 5.10 Machined Dimensions

Let the random variables X and Y denote the lengths of two

dimensions of a machined part, respectively. Assume that X
and Y are independent random variables, and further assume

that the distribution of X is normal with mean 10.5 millimeters

and variance 0.0025 (mm2) and that the distribution of Y is

normal with mean 3.2 millimeters and variance 0.0036 (mm2).

Determine the probability that 10.4 < X < 10.6 and 3.15 < Y
< 3.25.

Because X and Y are independent,

P(10.4 < X < 10.6, 3.15 < Y < 3.25)

= P(10.4 < X < 10.6)
× P(3.15 < Y < 3.25)

= P
(

10.4 − 10.5

0.05
< Z <

10.6 − 10.5

0.05

)

× P
(

3.15 − 3.2

0.06
< Z <

3.25 − 3.2

0.06

)

= P(−2 < Z < 2) P(−0.833 < Z < 0.833)
= 0.568

where Z denotes a standard normal random variable.

Practical Interpretation: If random variables are inde-

pendent, probabilities for multiple variables are often much

easier to compute.
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5.3 Joint Probability Distributions for More

Than Two Random Variables
More than two random variables can be defined in a random experiment. Results for multiple

random variables are straightforward extensions of those for two random variables. A summary

is provided here.

E X A M P L E 5.11 Machined Dimensions

Many dimensions of a machined part are routinely measured

during production. Let the random variables, X1, X2, X3, and

X4 denote the lengths of four dimensions of a part. Then at

least four random variables are of interest in this study.

The joint probability distribution of random variables X1,X2,X3,… ,Xp can be specified with

a method to calculate the probability that X1,X2,X3,… ,Xp assume a value in any region R of

p-dimensional space. For continuous random variables, a joint probability density function
fX1X2…Xp

(x1, x2,… , xp) is used to determine the probability that (X1,X2,X3,… ,Xp) ∈ R by the

multiple integral of fX1X2…Xp
(x1, x2,… , xp) over the region R.

Joint Probability Density Function
A joint probability density function for the continuous random variables X1, X2, X3, … ,

Xp, denoted as fX1X2…Xp
(x1, x2,… , xp), satisfies the following properties:

(1) fX1X2…Xp
(x1, x2,… , xp) ≥ 0

(2)
∞

∫
−∞

∞

∫
−∞

· · ·
∞

∫
−∞

fX1X2…Xp
(x1, x2,… , xp) dx1dx2 … dxp = 1

(3) For any region B of p-dimensional space,

P[(X1,X2,… ,Xp) ∈ B] =
∫ ∫

B

fX1X2…Xp
(x1, x2,… , xp) dx1dx2 … dxp (5.9)

Typically, fX1X2…Xp
(x1, x2,… , xp) is defined over all of p-dimensional space by assuming that

fX1X2…Xp
(x1, x2,… , xp) = 0 for all points for which fX1X2…Xp

(x1, x2,… , xp) is not specified.

E X A M P L E 5.12 Component Lifetimes

In an electronic assembly, let the random variables X1, X2,

X3, X4 denote the lifetime of four components, respectively,

in hours. Suppose that the joint probability density function of

these variables is

fX1X2X3X4
(x1, x2, x3, x4) = 9 × 10−12e−0.001x1−0.002x2−0.0015x3−0.003x4

for x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0

What is the probability that the device operates for

more than 1000 hours without any failures? The requested

probability is P(X1 > 1000,X2 > 1000,X3 > 1000,X4 > 1000),
which equals the multiple integral of fX1X2X3X4

(x1, x2, x3, x4)
over the region x1 > 1000, x2 > 1000, x3 > 1000, x4 > 1000.

The joint probability density function can be written as a

product of exponential functions, and each integral is the

simple integral of an exponential function. Therefore,

P(X1 > 1000,X2 > 1000,X3 > 1000,X4 > 1000)
= e−1−2−1.5−3 = 0.00055
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Suppose that the joint probability density function of several continuous random variables is

a constant c over a region R (and zero elsewhere). In this special case,

∫ ∫

R

…
∫

fX1X2…Xp
(x1, x2,… , xp)dx1 dx2 … dxp = c × (volume of region R) = 1

by property (2) of Equation 5.9. Therefore, c = 1/(volume of region R). Furthermore, by property

(3) of Equation 5.9, P[(X1,X2,… ,Xp) ∈ B]

=
∫ ∫

B

…
∫

fX1X2…Xp
(x1, x2,… , xp)dx1 dx2 … dxp = c × volume (B ∩ R) = volume (B ∩ R)

volume (R)

When the joint probability density function is constant, the probability that the random variables

assume a value in the region B is just the ratio of the volume of the region B ∩ R to the volume

of the region R for which the probability is positive.

E X A M P L E 5.13 Probability as a Ratio of Volumes

Suppose that the joint probability density function of the con-

tinuous random variables X and Y is constant over the region

x2 + y2 ≤ 4. Determine the probability that X2 + Y2 ≤ 1.

The region that receives positive probability is a circle

of radius 2. Therefore, the area of this region is 4π. The area

of the region x2 + y2 ≤ 1 is π. Consequently, the requested

probability is π∕(4π) = 1∕4.

Marginal Probability Density Function
If the joint probability density function of continuous random variables X1, X2, … , Xp is

fX1X2…Xp
(x1, x2,… , xp), the marginal probability density function of Xi is

fXi
(xi) =

∫ ∫
…

∫
fX1X2…Xp

(x1, x2,… , xp) dx1dx2 … dxi−1 dxi+1 … dxp (5.10)

where the integral is over all points in the range of X1, X2, … , Xp for which Xi = xi.

As for two random variables, a probability involving only one random variable, for example,

P(a < Xi < b), can be determined from the marginal probability distribution of Xi or from the

joint probability distribution of X1, X2, … , Xp. That is,

P(a < Xi < b) = P(−∞ < X1 < ∞,… ,−∞ < Xi−1 < ∞, a < Xi < b,
−∞ < Xi+1 < ∞,… ,−∞ < Xp < ∞)

Furthermore, E(Xi) and V(Xi) for i = 1, 2, … , p can be determined from the marginal probability

distribution of Xi or from the joint probability distribution of X1, X2, … , Xp as follows.

Mean and Variance from Joint Distribution

E(Xi) =
∞

∫
−∞

∞

∫
−∞

…
∞

∫
−∞

xi fX1X2…Xp
(x1, x2,… , xp)dx1dx2 … dxp =

∞

∫
−∞

xi fXi
(xi)dxi (5.11)

and

V(Xi) =
∞

∫
−∞

∞

∫
−∞

…
∞

∫
−∞

(xi − μXi
)2fX1X2…Xp

(x1, x2,… , xp) dx1dx2 … dxp

=
∞

∫
−∞

(xi − μXi
)2 fXi

(xi)dxi
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E X A M P L E 5.14 Marginal Probability Distribution

Points that have positive probability in the joint probability

distribution of three random variables X1, X2, X3 are shown

in Figure 5.10. Suppose the 10 points are equally likely with

probability 0.1 each. The range is the nonnegative integers

with x1 + x2 + x3 = 3. The marginal probability distribution

of X2 is found as follows.

P(X2 = 0) = fX1X2X3
(3, 0, 0) + fX1X2X3

(0, 0, 3)
+ fX1X2X3

(1, 0, 2) + fX1X2X3
(2, 0, 1) = 0.4

P(X2 = 1) = fX1X2X3
(2, 1, 0) + fX1X2X3

(0, 1, 2)
+ fX1X2X3

(1, 1, 1) = 0.3

P(X2 = 2) = fX1X2X3
(1, 2, 0) + fX1X2X3

(0, 2, 1) = 0.2

P(X2 = 3) = fX1X2X3
(0, 3, 0) = 0.1

Also,E(X2) = 0(0.4) + 1(0.3) + 2(0.2) + 3(0.1) = 1

1
0

0 2 3 x1

1

2

3

x3

x2

2

3

1

FIGURE 5.10

Joint probability distribution of X1, X2, and X3. Points
are equally likely.

With several random variables, we might be interested in the probability distribution of some

subset of the collection of variables. The probability distribution of X1, X2, … , Xk, k < p can be

obtained from the joint probability distribution of X1, X2, … , Xp as follows.

Distribution of a Subset of Random Variables
If the joint probability density function of continuous random variables X1, X2, … , Xp is

fX1X2…Xp
(x1, x2,… , xp), the probability density function of X1, X2, … , Xk, k < p, is

fX1X2…Xk
(x1, x2,… , xk) =

∫ ∫
…

∫
fX1X2…Xp

(x1, x2,… , xp) dxk+1dxk+2 … dxp (5.12)

where the integral is over all points R in the range of X1, X2, … , Xp for which X1 = x1,

X2 = x2, … , Xk = xk.

Conditional Probability Distribution Conditional probability distributions can be devel-

oped for multiple random variables by an extension of the ideas used for two random variables.

For example, the joint conditional probability distribution of X1, X2, and X3 given (X4 = x4,

X5 = x5) is

fX1X2X3 | x4x5
(x1, x2, x3) =

fX1X2X3X4X5
(x1, x2, x3, x4, x5)

fX4X5
(x4, x5)

for fX4X5
(x4, x5) > 0.

The concept of independence can be extended to multiple random variables.

Independence
Random variables X1, X2, … , Xp are independent if and only if

fX1X2…Xp
(x1, x2,… ,… , xp) = fX1

(x1) fX2
(x2)… fXp

(xp) for all x1, x2,… , xp (5.13)
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Similar to the result for only two random variables, independence implies that Equation 5.13

holds for all x1, x2, … , xp. If we find one point for which the equality fails, X1, X2, … , Xp are

not independent. It is left as an exercise to show that if X1, X2, … , Xp are independent,

P(X1 ∈ A1,X2 ∈ A2,… ,Xp ∈ Ap) = P(X1 ∈ A1) P(X2 ∈ A2)…P(Xp ∈ Ap)

for any regions A1, A2, … , Ap in the range of X1, X2, … , Xp, respectively.

E X A M P L E 5.15 Negative Binomial Distribution

In Chapter 3, we showed that a negative binomial random

variable with parameters p and r can be represented as a

sum of r geometric random variables X1, X2, … , Xr. Each

geometric random variable represents the additional trials

required to obtain the next success. Because the trials in a

binomial experiment are independent, X1, X2, … , Xr are

independent random variables.

5.4 Covariance and Correlation
When two or more random variables are defined on a probability space, it is useful to describe

how they vary together; that is, it is useful to measure the relationship between the variables.

A common measure of the relationship between two random variables is the covariance. To define

the covariance, we need to describe the expected value of a function of two random variables

h(X,Y). The definition simply extends the one for a function of a single random variable.

Expected Value of a Function of Two Random Variables

E[h(X,Y)] =
⎧
⎪
⎨
⎪
⎩

∑∑
h(x, y) fXY (x, y) X,Y discrete

∫ ∫
h(x, y) fXY (x, y) dx dy X,Y continuous

(5.14)

That is, E[h(X,Y)] can be thought of as the weighted average of h(x, y) for each point in the range

of (X,Y). The value of E[h(X,Y)] represents the average value of h(X,Y) that is expected in a

long sequence of repeated trials of the random experiment.

E X A M P L E 5.16 Expected Value of a Function

of Two Random Variables

For the joint probability distribution of the two random vari-

ables in Example 5.1, calculate E[(X − μX)(Y − μY )].
The result is obtained by multiplying x−μX times y − μY ,

times f XY (x, y) for each point in the range of (X,Y). First, μX
and μY were determined previously from the marginal distri-

butions for X and Y:

μX = 2.35

and

μY = 2.49

Therefore,

E[(X − μX)(Y − μY )] = (1 − 2.35)(1 − 2.49)(0.01)
+ (2 − 2.35)(1 − 2.49)(0.02) + (3 − 2.35)(1 − 2.49)(0.25)
+ (1 − 2.35)(2 − 2.49)(0.02) + (2 − 2.35)(2 − 2.49)(0.03)
+ (3 − 2.35)(2 − 2.49)(0.2) + (1 − 2.35)(3 − 2.49)(0.02)
+ (2 − 2.35)(3 − 2.49)(0.1) + (3 − 2.35)(3 − 2.49)(0.05)
+ (1 − 2.35)(4 − 2.49)(0.15) + (2 − 2.35)(4 − 2.49)(0.1)
+ (3 − 2.35)(4 − 2.49)(0.05) = −0.5815
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The covariance is defined for both continuous and discrete random variables by the same formula.

Covariance
The covariance between the random variables X and Y , denoted as cov(X,Y) or σXY , is

σXY = E[(X − μX)(Y − μY )] = E(XY) − μXμY (5.15)

If the points in the joint probability distribution of X and Y that receive positive probability tend

to fall along a line of positive (or negative) slope, σXY , is positive (or negative). If the points tend

to fall along a line of positive slope, X tends to be greater than μX when Y is greater than μY .

Therefore, the product of the two terms x − μX and y − μY tends to be positive. However, if the

points tend to fall along a line of negative slope, x − μX tends to be positive when y − μY is

negative, and vice versa. Therefore, the product of x − μX and y − μY tends to be negative. In this

sense, the covariance between X and Y describes the variation between the two random variables.

Figure 5.11 assumes all points are equally likely and shows examples of pairs of random variables

with positive, negative, and zero covariance.

Covariance is a measure of linear relationship between the random variables. If the rela-

tionship between the random variables is nonlinear, the covariance might not be sensitive to

the relationship. This is illustrated in Figure 5.11(d). The only points with nonzero probability

are the points on the circle. There is an identifiable relationship between the variables. Still, the

covariance is zero.

x

y

x

y

x

y

x

y

(a) Positive covariance (b) Zero covariance

(c) Negative covariance (d) Zero covariance

All points are of

equal probability

FIGURE 5.11

Joint probability distributions and the sign of covariance between X and Y.
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The equality of the two expressions for covariance in Equation 5.15 is shown for continuous

random variables as follows. By writing the expectations as integrals,

E[(Y − μY )(X − μX)] =
∞

∫
−∞

∞

∫
−∞

(x − μX)(y − μY ) fXY (x, y) dx dy

=
∞

∫
−∞

∞

∫
−∞

[xy − μXy − xμY + μXμY ] fXY (x, y) dx dy

Now
∞

∫
−∞

∞

∫
−∞

μXy fXY (x, y) dx dy = μX

⎡
⎢
⎢
⎣

∞

∫
−∞

∞

∫
−∞

yfXY (x, y) dx dy
⎤
⎥
⎥
⎦

= μXμY

Therefore,

E[(X − μX)(Y − μY )] =
∞

∫
−∞

∞

∫
−∞

xyfXY (x, y) dx dy − μXμY − μXμY + μXμY

=
∞

∫
−∞

∞

∫
−∞

xyfXY (x, y) dx dy − μXμY = E(XY) − μXμY

E X A M P L E 5.17

In Example 5.1, the random variables X and Y are the number

of signal bars and the response time (to the nearest second),

respectively. Interpret the covariance between X and Y as

positive or negative.

As the signal bars increase, the response time tends to

decrease. Therefore, X and Y have a negative covariance. The

covariance was calculated to be −0.5815 in Example 5.16.

There is another measure of the relationship between two random variables that is often easier

to interpret than the covariance.

Correlation
The correlation between random variables X and Y , denoted as ρXY , is

ρXY = cov(X,Y)
√

V(X)V(Y)
=

σXY

σXσY
(5.16)

Because σX > 0 and σY > 0, if the covariance between X and Y is positive, negative, or zero, the

correlation between X and Y is positive, negative, or zero, respectively. The following result can

be shown.

For any two random variables X and Y ,

− 1 ≤ ρXY ≤ +1 (5.17)

The correlation just scales the covariance by the product of the standard deviation of each variable.

Consequently, the correlation is a dimensionless quantity that can be used to compare the linear

relationships between pairs of variables in different units.
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If the points in the joint probability distribution of X and Y that receive positive probability

tend to fall along a line of positive (or negative) slope, ρXY is near +1 (or −1). If ρXY equals +1

or −1, it can be shown that the points in the joint probability distribution that receive positive

probability fall exactly along a straight line. Two random variables with nonzero correlation are

said to be correlated. Similar to covariance, the correlation is a measure of the linear relationship

between random variables.

E X A M P L E 5.18 Correlation

For the signal bars and response time random variables in

Example 5.1, determine the correlation between the random

variables X and Y .

The covariance was determined in an earlier example

to equal −0.5815. From the marginal distribution of X and

Y in Figure 5.6, it can be shown that V(X) = 0.6275 and

V(Y) = 1.4099.

Therefore,

ρXY =
σXY

σXσY
= −0.5815
√

0.6275
√

1.4099
= −0.62

E X A M P L E 5.19 Linear Relationship

Suppose that the random variable X has the following dis-

tribution: P(X = 1) = 0.2, P(X = 2) = 0.6, P(X = 3) = 0.2.

Let Y = 2X + 5. That is, P(Y = 7) = 0.2, P(Y = 9) = 0.6,

P(Y = 11) = 0.2 and so forth. Determine the correlation

between X and Y .

Because X and Y are linearly related, ρ = 1. This can be

verified by direct calculations. Try it.

For independent random variables, we do not expect any relationship in their joint probability

distribution. The following result is left as an exercise.

If X and Y are independent random variables,

σXY = ρXY = 0 (5.18)

However, if the correlation between two random variables is zero, we cannot conclude that the

random variables are independent. Figure 5.11(d) provides an example.

5.5 Common Joint Distributions

5.5.1 Multinomial Probability Distribution
The binomial distribution can be generalized to generate a useful joint probability distribution for

multiple discrete random variables. The random experiment consists of a series of independent

trials. However, the outcome from each trial is categorized into one of k classes. The random

variables of interest count the number of outcomes in each class.

E X A M P L E 5.20 Digital Channel

We might be interested in a probability such as the follow-

ing. Of the 20 bits received, what is the probability that 14 are

excellent, 3 are good, 2 are fair, and 1 is poor? Assume that the

classifications of individual bits are independent events and

that the probabilities of E, G, F, and P are 0.6, 0.3, 0.08, and

0.02, respectively. One sequence of 20 bits that produces the

specified numbers of bits in each class can be represented as

EEEEEEEEEEEEEEGGGFFP
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Using independence, we find that the probability of this

sequence is

P(EEEEEEEEEEEEEEGGGFFP) = 0.6140.330.0820.021

= 2.708 × 10−9

Clearly, all sequences that consist of the same numbers of E’s,

G’s, F’s, and P’s have the same probability. Consequently, the

requested probability can be found by multiplying 2.708 ×

10−9 by the number of sequences with 14 E’s, 3 G’s, 2 F’s,

and 1 P. The number of sequences is found from Chapter 2

to be
20!

14! 3! 2! 1!
= 2,325,600

Therefore, the requested probability is

P(14 E’s, 3 G’s, 2 F’s, and 1 P) = 2325600(2.708 × 10−9)
= 0.0063

This example leads to the following generalization of a binomial experiment and a binomial

distribution.

Multinomial Distribution
Suppose that a random experiment consists of a series of n trials. Assume that

(1) The result of each trial is classified into one of k classes.

(2) The probability of a trial generating a result in class 1, class 2, … , class k is p1, p2, … ,

pk, respectively, and these probabilities are constant over the trials.

(3) The trials are independent.

The random variables X1, X2, … , Xk that denote the number of trials that result in class 1,

class 2, … , class k, respectively, have a multinomial distribution and the joint probability

mass function is

P(X1 = x1,X2 = x2,… ,Xk = xk) =
n!

x1!x2!… xk!
px1

1
px2

2
… pxk

k (5.19)

for x1 + x2 + · · · + xk = n and p1 + p2 + · · · + pk = 1.

The multinomial distribution is considered a multivariable extension of the binomial distribution.

E X A M P L E 5.21 Digital Channel

In Example 5.20, let the random variables X1, X2, X3, and X4

denote the number of bits that are E, G, F, and P, respectively,

in a transmission of 20 bits. The probability that 12 of the bits

received are E, 6 are G, 2 are F, and 0 are P is

P(X1 = 12,X2 = 6,X3 = 2,X4 = 0)

= 20!
12! 6! 2! 0!

0.6120.360.0820.020 = 0.0358

Each trial in a multinomial random experiment can be regarded as either generating or not

generating a result in class i, for each i = 1, 2, … , k. Because the random variable Xi is the number

of trials that result in class i, Xi has a binomial distribution.

Mean and Variance
If X1, X2, … , Xk have a multinomial distribution, the marginal probability distribution of Xi
is binomial with

E(Xi) = npi and V(Xi) = npi(1 − pi) (5.20)
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5.5.2 Bivariate Normal Distribution
An extension of a normal distribution to two random variables is an important bivariate proba-

bility distribution. The joint probability distribution can be defined to handle positive, negative,

or zero correlation between the random variables.

E X A M P L E 5.22 Bivariate Normal Distribution

At the start of this chapter, the length of different dimensions

of an injection-molded part were presented as an example of

two random variables. If the specifications for X and Y are

2.95 to 3.05 and 7.60 to 7.80 millimeters, respectively, we

might be interested in the probability that a part satisfies both

specifications; that is, P(2.95 < X < 3.05, 7.60 < Y < 7.80).
Each length might be modeled by a normal distribution. How-

ever, because the measurements are from the same part, the

random variables are typically not independent. Therefore, a

probability distribution for two normal random variables that

are not independent is important in many applications.

Bivariate Normal Probability Density Function
The probability density function of a bivariate normal distribution is

fXY (x, y; σX , σY , μX , μY , ρ) =
1

2πσX σY
√

1 − ρ2

× exp

{

−1

2(1 − ρ2)

[
(x − μX)2

σ2
X

−
2ρ(x − μX)(y − μY )

σX σY
+

(y − μY )2

σ2
Y

]}

(5.21)

for −∞ < x <∞ and −∞ < y <∞, with parameters σX > 0, σY > 0, −∞ < μX <∞, −∞ <

μY <∞, and −1 < ρ < 1.

The result that fXY (x, y; σX , σY , μX , μY , ρ) integrates to 1 is left as an exercise. Also, the bivari-

ate normal probability density function is positive over the entire plane of real numbers.

Two examples of bivariate normal distributions along with corresponding contour plots
are illustrated in Figure 5.12. Each curve on the contour plots is a set of points for which

the probability density function is constant. As seen in the contour plots, the bivariate normal

probability density function is constant on ellipses in the (x, y) plane. We can consider a circle to

be a special case of an ellipse. The center of each ellipse is at the point (μX , μY ). If ρ > 0 (ρ < 0),
the major axis of each ellipse has positive (negative) slope, respectively. If ρ = 0, the major axis

of the ellipse is aligned with either the x or y coordinate axis.

x

y
fXY(x, y)

fXY(x, y)

y

x

0
x

y

y
x

Xμ μX

fXY(x, y)

Yμ

Yμ

Xμ
Yμ

Xμ

Yμ

FIGURE 5.12

Examples of bivariate normal distributions.
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E X A M P L E 5.23

The joint probability density function

fXY (x, y) =
1

2π
e−0.5(x2+y2)

is a special case of a bivariate normal distribution with

σX = 1, σY = 1, μX = 0, μY = 0, and ρ = 0. This probabil-

ity density function is illustrated in Figure 5.13. Notice that

the contour plot consists of concentric circles about the

origin.

0

0

x

yfXY(x, y)

x
0

y

0

FIGURE 5.13

Bivariate normal probability density function with
𝛔X = 1, 𝛔Y = 1, 𝛒 = 0, 𝛍X = 0, and 𝛍Y = 0.

The following results can be shown for a bivariate normal distribution. The details are left as

an exercise.

Marginal Distributions of Bivariate Normal Random Variables
If X and Y have a bivariate normal distribution with joint probability density f XY (x, y, σX ,

σY , μX , μY , ρ), the marginal probability distributions of X and Y are normal with means μX
and μY and standard deviations σX and σY , respectively. (5.22)

Conditional Distribution of Bivariate Normal Random Variables
If X and Y have a bivariate normal distribution with joint probability density fXY (x, y, σX , σY ,

μX , μY , ρ), the conditional probability distribution of Y given X = x is normal with mean

μY|x = μY + ρ
σY

σX
(x − μX)

and variance

σ2
Y|x = σ2

Y (1 − ρ2)

Furthermore, as the notation suggests, ρ represents the correlation between X and Y . The following

result is left as an exercise.

Correlation of Bivariate Normal Random Variables
If X and Y have a bivariate normal distribution with joint probability density function

f XY (x, y, σX , σY , μX , μY , ρ), the correlation between X and Y is ρ.
(5.23)

The contour plots in Figure 5.12 illustrate that as ρ moves from 0 (left graph) to 0.9 (right graph),

the ellipses narrow around the major axis. The probability is more concentrated about a line in

the (xy) plane and graphically displays greater correlation between the variables. If ρ = −1 or +1,

all the probability is concentrated on a line in the (x, y) plane. That is, the probability that X and Y
assume a value that is not on the line is zero. In this case, the bivariate normal probability density

is not defined.
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In general, zero correlation does not imply independence. But in the special case that X and

Y have a bivariate normal distribution, if ρ = 0, then X and Y are independent. The details are left

as an exercise.

For Bivariate Normal Random Variables Zero Correlation
Implies Independence
If X and Y have a bivariate normal distribution with ρ = 0, then X and Y are independent.

(5.24)

An important use of the bivariate normal distribution is to calculate probabilities involving two

correlated normal random variables.

E X A M P L E 5.24 Injection-Molded Part

Suppose that the X and Y dimensions of an injection-molded

part have a bivariate normal distribution with σX = 0.04,

σY = 0.08, μX = 3.00, μY = 7.70, and ρ = 0.8. Then the

probability that a part satisfies both specifications is

P(2.95 < X < 3.05, 7.60 < Y < 7.80)

This probability can be obtained by integrating

fXY (x, y; σX , σY , μX , μY , ρ) over the region 2.95 < x < 3.05 and

7.60 < y < 7.80, as shown in Figure 5.3. Unfortunately, there

is often no closed-form solution to probabilities involving

bivariate normal distributions. In this case, the integration

must be done numerically.

5.6 Linear Functions of Random Variables
A random variable is sometimes defined as a function of one or more random variables. In this

section, results for linear functions are highlighted because of their importance in the remainder

of the book. For example, if the random variables X1 and X2 denote the length and width, respec-

tively, of a manufactured part, Y = 2X1 + 2X2 is a random variable that represents the perimeter

of the part. As another example, recall that a negative binomial random variable was represented

as the sum of several geometric random variables.

In this section, we develop results for random variables that are linear functions of random

variables.

Linear Function
Given random variables X1, X2, … , Xp and constants c0, c1, c2, … cp,

Y = c0 + c1X1 + c2X2 + · · · + cpXp (5.25)

is a linear function of X1, X2, … , Xp.

Now, E(Y) can be found from the joint probability distribution of X1,X2,… ,Xp as follows.

Assume that X1, X2, Xp are continuous random variables. An analogous calculation can be used

for discrete random variables.

E(Y) =
∞

∫
−∞

∞

∫
−∞

…
∞

∫
−∞

(c0 + c1x1 + c2x2 + · · · + cpxp) fX1X2…Xp
(x1, x2,… , xp) dx1 dx2 … dxp
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= c0 + c1

∞

∫
−∞

∞

∫
−∞

…
∞

∫
−∞

x1 fX1X2…Xp
(x1, x2,… , xp) dx1 dx2 … dxp

+ c2

∞

∫
−∞

∞

∫
−∞

…
∞

∫
−∞

x2 fX1X2…Xp
(x1, x2,… , xp) dx1 dx2 … dxp

+ ,… ,

+ cp

∞

∫
−∞

∞

∫
−∞

…
∞

∫
−∞

xp fX1X2…Xp
(x1, x2,… , xp) dx1 dx2 … dxp

By using Equation 5.11 for each of the terms in this expression, we obtain the following.

Mean of a Linear Function
If Y = c0 + c1X1 + c2X2 + · · · + cpXp,

E(Y) = c0 + c1E(X1) + c2E(X2) + · · · + cpE(Xp) (5.26)

Furthermore, it is left as an exercise to show the following.

Variance of a Linear Function
If X1,X2,… ,Xp are random variables, and Y = c0 + c1X1 + c2X2 + · · · + cpXp, then in

general,

V(Y) = c2
1
V(X1) + c2

2
V(X2) + · · · + c2

pV(Xp) + 2
∑∑

i<j
cicj cov (Xi,Xj) (5.27)

If X1, X2, … , Xp are independent,

V(Y) = c2
1
V(X1) + c2

2
V(X2) + · · · + c2

pV(Xp) (5.28)

Note that the result for the variance in Equation 5.28 requires the random variables to be

independent. To see why the independence is important, consider the following simple example.

Let X1 denote any random variable and define X2 = −X1. Clearly, X1 and X2 are not independent.

In fact, ρXY = −1. Now, Y = X1 + X2 is 0 with probability 1. Therefore, V(Y) = 0 regardless of

the variances of X1 and X2.

E X A M P L E 5.25 Negative Binomial Distribution

In Chapter 3, we found that if Y is a negative binomial random

variable with parameters p and r, Y = X1 + X2 + · · · + Xr,

where each Xi is a geometric random variable with parameter

p, and they are independent. Therefore, E(Xi) = 1∕p and

V(Xi) = (1 − p)∕p2. From Equation 5.26, E(Y) = r∕p, and

from Equation 5.28, V(Y) = r(1 − p)∕p2.

An approach similar to the one applied in Example 5.25 can be used to verify the formu-

las for the mean and variance of an Erlang random variable in Chapter 4. An important use of

Equation 5.28 is in error propagation, which is presented in the following example.



�

� �

�

5.6 Linear Functions of Random Variables 119

E X A M P L E 5.26 Error Propagation

A semiconductor product consists of three layers. Suppose that

the variances in thickness of the first, second, and third layers

are 25, 40, and 30 square nanometers, respectively, and the

layer thicknesses are independent. What is the variance of the

thickness of the final product?

Let X1, X2, X3, and X be random variables that denote

the thicknesses of the respective layers and the final product.

Then,

X = X1 + X2 + X3

The variance of X is obtained from Equation 5.28:

V(X) = V(X1) + V(X2) + V(X3) = 25 + 40 + 30 = 95 nm2

Consequently, the standard deviation of thickness of the

final product is 951/2 = 9.75 nm, and this shows how the vari-

ation in each layer is propagated to the final product.

The particular linear function that represents the average of random variables with identical

means and variances is used quite often in subsequent chapters. We highlight the results for this

special case.

Mean and Variance of an Average
If X = (X1 + X2 + · · · + Xp)∕p with E(Xi) = μ for i = 1, 2,… , p,

E(X) = μ (5.29a)

If X1, X2, … , Xp are also independent with V(Xi) = σ2 for i = 1, 2,… , p,

V(X) = σ2

p
(5.29b)

The conclusion for V(X) is obtained as follows. Using Equation 5.28 with ci = 1/p and

V(Xi) = σ2 yields

V(X) = (1∕p)2σ2 + · · · + (1∕p)2σ2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

p terms

= σ2∕p

Another useful result concerning linear functions of random variables is a reproductive
property that holds for independent, normal random variables.

Reproductive Property of the Normal Distribution
If X1, X2, … , Xp are independent, normal random variables with E(Xi) = μi and V(Xi) = σ2

i ,

for i = 1, 2, … , p, then

Y = c0 + c1X1 + c2X2 + · · · + cpXp

is a normal random variable with

E(Y) = c0 + c1μ1 + c2μ2 + · · · + cpμp

and

V(Y) = c2
1
σ2

1
+ c2

2
σ2

2
+ · · · + c2

pσ
2
p (5.30)
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The mean and variance of Y follow from Equations 5.26 and 5.28. The fact that Y has a normal

distribution can be obtained from moment-generating functions in the online material.

E X A M P L E 5.27 Linear Function of Independent

Normal Random Variables

Let the random variables X1 and X2 denote the length and

width, respectively, of a manufactured part. Assume that X1

is normal with E(X1) = 2 cm and standard deviation 0.1 cm

and that X2 is normal with E(X2) = 5 cm and standard devi-

ation 0.2 cm. Also assume that X1 and X2 are independent.

Determine the probability that the perimeter exceeds 14.5 cm.

Then Y = 2X1 + 2X2 is a normal random variable that

represents the perimeter of the part. From Equation 5.30,

E(Y) = 14 cm and

V(Y) = 4 × 0.12 + 4 × 0.22 = 0.2 cm2

Now,

P(Y > 14.5) = P

(
Y − μY

σY
>

14.5 − 14
√

0.2

)

= P(Z > 1.12) = 0.13

5.7 General Functions of Random Variables
In many situations in statistics, it is necessary to derive the probability distribution of a function of

one or more random variables. In this section, we present some results that are helpful in solving

this problem.

Suppose that X is a discrete random variable with probability distribution fX(x). Let Y = h(X)
be a function of X that defines a one-to-one transformation between the values of X and Y and that

we wish to find the probability distribution of Y . By a one-to-one transformation, we mean that

each value x is related to one and only one value of y = h(x) and that each value of y is related to

one and only one value of x, say, x = u(y) where u(y) is found by solving y = h(x) for x in terms

of y.

Now the random variable Y takes on the value y when X takes on the value u(y). Therefore,

the probability distribution of Y is

fY (y) = P(Y = y) = P[X = u(y)] = fX[u(y)]

We may state this result as follows.

General Function of a Discrete Random Variable
Suppose that X is a discrete random variable with probability distribution fX(x). Let Y = h(X)
define a one-to-one transformation between the values of X and Y so that the equation

y = h(x) can be solved uniquely for x in terms of y. Let this solution be x = u(y). Then the

probability mass function of the random variable Y is

fY (y) = fX[u(y)] (5.31)

E X A M P L E 5.28 Function of a Discrete Random Variable

Let X be a geometric random variable with probability dis-

tribution

fX(x) = p (1 − p)x−1
, x = 1, 2,…

Find the probability distribution of Y = X2.

Because X ≥ 0, the transformation is one to one; that

is, y = x2 and x =
√

y. Therefore, Equation 5.31 indicates that

the distribution of the random variable Y is

fY (y) = f (
√

y) = p (1 − p)
√

y−1
, y = 1, 4, 9, 16,…
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We now consider the situation in which the random variables are continuous. Let Y = h(X)
with X continuous and the transformation one to one.

General Function of a Continuous Random Variable
Suppose that X is a continuous random variable with probability distribution fX(x). The func-

tion Y = h(X) is a one-to-one transformation between the values of Y and X, so that the

equation y = h(x) can be uniquely solved for x in terms of y. Let this solution be x = u(y).
The probability distribution of Y is

fY (y) = fX[u(y)] |J | (5.32)

where J = u′(y) is called the Jacobian of the transformation and the absolute value of J
is used.

Equation 5.32 is shown as follows. Let the function y = h(x) be an increasing function of x. Now,

P(Y ≤ a) = P[X ≤ u(a)] =
u(a)

∫
−∞

fX(x) dx

If we change the variable of integration from x to y by using x = u(y), we obtain dx = u′(y) dy
and then

P(Y ≤ a) =
a

∫
−∞

fX[u(y)] u′(y) dy

Because the integral gives the probability that Y ≤ a for all values of a contained in the feasible

set of values for y, fX[u(y)] u′(y) must be the probability density of Y . Therefore, the probability

distribution of Y is

fY (y) = fX[u(y)] u′(y) = fX[u(y)] J

If the function y = h(x) is a decreasing function of x, a similar argument holds.

E X A M P L E 5.29 Function of a Continuous

Random Variable

Let X be a continuous random variable with probability

distribution

fX(x) =
x
8
, 0 ≤ x < 4

Find the probability distribution of Y = h(X) = 2X + 4.

Note that y = h(x) = 2x + 4 is an increasing function of x.

The inverse solution is x = u(y) = (y − 4)∕2, and from this we

find the Jacobian to be J = u′(y) = dx∕dy = 1∕2. Therefore,

from Equation 5.32, the probability distribution of Y is

fY (y) =
(y − 4)∕2

8

(
1

2

)

=
y − 4

32
, 4 ≤ y ≤ 12

5.8 Moment-Generating Functions
Suppose that X is a random variable with mean μ. Throughout this book we have used the idea

of the expected value of the random variable X, and in fact E(X) = μ. Now suppose that we are

interested in the expected value of a function of X, g(X) = Xr. The expected value of this function,

or E[g(X)] = E(Xr), is called the rth moment about the origin of the random variable X, which

we denote by μ′r.
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Definition of Moments about the Origin
The rth moment about the origin of the random variable X is

μ′r = E(Xr) =
⎧
⎪
⎨
⎪
⎩

∑

x
xrf (x), X discrete

∫

∞

−∞
xrf (x)dx, X continuous

(5.33)

Notice that the first moment about the origin is just the mean, that is, E(X) = μ′
1
= μ. Further-

more, since the second moment about the origin is E(X)2 = μ′
2
, we can write the variance of a

random variable in terms of origin moments as follows:

σ2 = E(X2) − [E(X)]2 = μ′
2
− μ2

The moments of a random variable can often be determined directly from the definition in

Equation 5.33, but there is an alternative procedure that is frequently useful that makes use of a

special function.

Definition of a Moment-Generating Function
The moment-generating function of the random variable X is the expected value of etX and

is denoted by MX(t). That is,

MX(t) = E(etX) =
⎧
⎪
⎨
⎪
⎩

∑

x
etxf (x), X discrete

∫

∞

−∞
etxf (x)dx, X continuous

(5.34)

The moment-generating function MX(t)will exist only if the sum or integral in the above definition

converges. If the moment-generating function of a random variable does exist, it can be used to

obtain all the origin moments of the random variable.

Let X be a random variable with moment-generating function MX(t). Then

μ′r =
drMX(t)

dtr

|
|
|
|t=0

(5.35)

Assuming that we can differentiate inside the summation and integral signs,

drMX(t)
dtr =

⎧
⎪
⎨
⎪
⎩

∑

x
xretxf (x), X discrete

∫

∞

−∞
xretxf (x)dx, X continuous

Now if we set t = 0 in this expression, we find that

drMX(t)
dtr

|
|
|
|t=0

= E(Xr)



�

� �

�

5.8 Moment-Generating Functions 123

E X A M P L E 5.30 Moment-Generating Function

for a Binomial Random Variable

Suppose that X has a binomial distribution, that is

f (x) =
(

n
x

)

px(1 − p)n−x
, x = 0,1,… , n

Determine the moment-generating function and use it to verify

that the mean and variance of the binomial random variable are

μ = np and σ2 = np(1 − p).
From the definition of a moment-generating function, we

have

MX(t) =
n∑

x=0

etx
(

n
x

)

px(1 − p)n−x =
n∑

x=0

(
n
x

)

(pet)x(1 − p)n−x

This last summation is the binomial expansion of

[pet + (1 − p)]n, so

MX(t) = [pet + (1 − p)]n

Taking the first and second derivatives, we obtain

M′
X(t) =

dMX(t)
dt

= npet[1 + p(et − 1)]n−1

and

M′′
X (t) =

d2MX(t)
dt2

= npet(1 − p + npet)[1 + p(et − 1)]n−2

If we set t = 0 in M′
X(t), we obtain

M′
X(t)|t=0 = μ′

1
= μ = np

which is the mean of the binomial random variable X. Now if

we set t = 0 in Mn
X(t),

Mn
X(t)|t=0 = μ′

2
= np(1 − p + np)

Therefore, the variance of the binomial random vari-

able is

σ2 = μ′
2
− μ2 = np(1 − p + np) − (np)2

= np − np2 = np(1 − p)

E X A M P L E 5.31 Moment-Generating Function

for a Normal Random Variable

Find the moment-generating function of the normal random

variable and use it to show that the mean and variance of this

random variable are μ and σ2, respectively.

The moment-generating function is

MX(t) =
∫

∞

−∞
etx 1

σ
√

2π
e−(x−μ)2∕(2σ2)

=
∫

∞

−∞

1

σ
√

2π
e−[x2−2(μ+tσ2)x+μ2]∕(2σ2)dx

If we complete the square in the exponent, we have

x2 − 2(μ + tσ2)x + μ2 = [x − (μ + tσ2)]2 − 2μtσ2 − t2σ4

and then

MX(t) =
∫

∞

−∞

1

σ
√

2π
e−{[x−(μ+tσ2)]2−2μtσ2−t2σ4}∕(2σ2)dx

= eμt+σ2t2∕2

∫

∞

−∞

1

σ
√

2π
e−(1∕2)[x−(μ+tσ2)]2∕σ2dx

Let u = [x − (μ + tσ2)]∕σ. Then dx = σdu, and the last

expression above becomes

MX(t) = eμt+σ2t2∕2

∫

∞

−∞

1
√

2π
e−u2∕2du

Now, the integral is just the total area under a standard normal

density, which is 1, so the moment-generating function of a

normal random variable is

MX(t) = eμt+σ2t2∕2

Differentiating this function twice with respect to t and

setting t = 0 in the result yields

dMX(t)
dt

|
|
|
|t=0

= μ′
1
= μ and

d2MX(t)
dt2

|
|
|
|t=0

= μ′
2
= σ2 + μ2

Therefore, the variance of the normal random variable is

σ2 = μ′
2
− μ2 = σ2 + μ2 − μ2 = σ2

Moment-generating functions have many important and useful properties. One of the most

important of these is the uniqueness property. That is, the moment-generating function of a

random variable is unique when it exists, so if we have two random variables X and Y , say,

with moment-generating functions MX(t) and MY (t), then if MX(t) = MY (t) for all values of t,
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both X and Y have the same probability distribution. Some of the other useful properties of the

moment-generating function are summarized as follows.

Properties of Moment-Generating Functions
If X is a random variable and a is a constant, then

(1) MX+a(t) = eatMX(t)

(2) MaX(t) = MX(at)

If X1, X2, … , Xn are independent random variables with moment-generating func-

tions MX1
(t),MX2

(t),… ,MXn
(t), respectively, and if Y = X1 + X2 + · · · + Xn, then the

moment-generating function of Y is

(3) MY (t) = MX1
(t) • MX2

(t) • … • MXn
(t) (5.36)

Property (1) follows from MX+a(t) = E[et(X+a)] = eatE(etX) = eatMX(t). Property (2) follows

from MaX(t) = E[et(aX)] = E[e(at)X] = MX(at). Consider property (3) for the case where the X’s

are continuous random variables:

MY (t) = E(etY ) = E[et(X1+X2+···+Xn)]

=
∫

∞

−∞∫

∞

−∞
· · ·

∫

∞

−∞
et(x1+x2+···+xn)f (x1, x2,… , xn) dx1 dx2 … dxn

Because the X’s are independent,

f (x1, x2,… , xn) = fX1
(x1) • fX2

(x2) • · · · • fXn
(xn)

and one may write

MY (t) =
∫

∞

−∞
etx1 fX1

(x1) dx1
∫

∞

−∞
etx2 fX2

(x2) dx2 · · ·
∫

∞

−∞
etxn fXn

(xn) dxn

= MX1
(t) • MX2

(t) • · · · • MXn
(t)

For the case when the X’s are discrete, we would use the same approach replacing integrals with

summations.

Equation 5.36 is particularly useful. In many situations we need to find the distribution of the

sum of two or more independent random variables, and often this result makes the problem very

easy. This is illustrated in the following example.

E X A M P L E 5.32 Distribution of a Sum of Poisson

Random Variables

Suppose that X1 and X2 are two independent Poisson random

variables with parameters λ1 and λ2, respectively. Determine

the probability distribution of Y = X1 + X2.

The moment-generating function of a Poisson random

variable with parameter λ is

MX(t) = eλ(et−1)

so the moment-generating functions of X1 and X2 are

MX1
(t) = eλ1(et−1) and MX2

(t) = eλ2(et−1), respectively. Using

Equation 5.36, the moment-generating function of Y = X1 +
X2 is

MY (t) = MX1
(t)MX2

(t) = eλ1(et−1)eλ2(et−1) = e(λ1+λ2)(et−1)

which is recognized as the moment-generating function of a

Poisson random variable with parameter λ1 + λ2. Therefore,

the sum of two independent Poisson random variables with

parameters λ1 and λ2 is a Poisson random variable with param-

eter equal to the sum λ1 + λ2.
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Important Terms and Concepts

Bivariate distribution

Bivariate normal distribution

Conditional mean

Conditional probability density function

Conditional probability mass function

Conditional variance

Correlation

Covariance

Error propagation

General functions of a random variable

Independence

Joint probability density function

Joint probability distribution

Joint probability mass function

Linear functions of random variables

Marginal probability distribution

Moment-generating function

Multinomial distribution

Reproductive property of the normal

distribution
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C H A P T E R O U T L I N E

6.1 Numerical Summaries of Data

6.2 Stem-and-Leaf Diagrams

6.3 Frequency Distributions

and Histograms

6.4 Box Plots

6.5 Time Sequence Plots

6.6 Scatter Diagrams

6.7 Probability Plots

L E A R N I N G O B J E C T I V E S

After careful study of this chapter, you should be able to do the

following:

1. Compute and interpret the sample mean, sample variance,

sample standard deviation, sample median, and sample range

2. Explain the concepts of sample mean, sample variance,

population mean, and population variance

3. Construct and interpret visual data displays, including the

stem-and-leaf display, the histogram, and the box plot

4. Explain the concept of random sampling

5. Construct and interpret normal probability plots

6. Explain how to use box plots and other data displays to

visually compare two or more samples of data

7. Know how to use simple time series plots to visually display

the important features of time-oriented data

8. Know how to construct and interpret scatter diagrams of two

or more variables

126
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Statistics is the science of data. An important aspect of dealing with data is organizing and

summarizing the data in ways that facilitate its interpretation and subsequent analysis. This aspect

of statistics is called descriptive statistics, and is the subject of this chapter. For example, in

Chapter 1 we presented eight prototype units made on the pull-off force of prototype automobile

engine connectors. The observations (in pounds) were 12.6, 12.9, 13.4, 12.3, 13.6, 13.5, 12.6,

and 13.1. There is obvious variability in the pull-off force values. How should we summarize the

information in these data? This is the general question that we consider. Data summary methods

should highlight the important features of the data, such as the middle or central tendency and

the variability, because these characteristics are most often important for engineering decision

making. We will see that there are both numerical methods for summarizing data and a number

of powerful graphical techniques. The graphical techniques are particularly important. Any good

statistical analysis of data should always begin with plotting the data.

6.1 Numerical Summaries of Data
Well-constructed data summaries and displays are essential to good statistical thinking because

they can focus the engineer on important features of the data or provide insight about the type

of model that should be used in solving the problem. The computer has become an important

tool in the presentation and analysis of data. Although many statistical techniques require only a

handheld calculator, this approach may require much time and effort, and a computer will perform

the tasks much more efficiently.

Most statistical analysis is done using a prewritten library of statistical programs. The user

enters the data and then selects the types of analysis and output displays that are of interest.

Statistical software packages are available for both mainframe machines and personal computers.

We present examples of typical output from computer software throughout the book. We do not

discuss the hands-on use of specific software packages for entering and editing data or using

commands.

We often find it useful to describe data features numerically. For example, we can charac-

terize the location or central tendency in the data by the ordinary arithmetic average or mean.

Because we almost always think of our data as a sample, we refer to the arithmetic mean as the

sample mean.

Sample Mean
If the n observations in a sample are denoted by x1, x2, … , xn, the sample mean is

x =
x1 + x2 + · · · + xn

n
=

n∑

i=1

xi

n
(6.1)

E X A M P L E 6.1 Sample Mean

Let’s consider the eight observations on pull-off force col-

lected from the prototype engine connectors from Chapter 1.

The eight observations are x1 = 12.6, x2 = 12.9, x3 = 13.4,

x4 = 12.3, x5 = 13.6, x6 = 13.5, x7 = 12.6, and x8 = 13.1.

The sample mean is

x =
x1 + x2 + · · · + xn

n
=

8∑

i=1

xi

8

= 12.6 + 12.9 + · · · + 13.1

8
= 104

8
= 13.0 pounds
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A physical interpretation of the sample mean as a measure of

location is shown in the dot diagram of the pull-off force data.

See Figure 6.1. Notice that the sample mean x = 13.0 can be

thought of as a “balance point.” That is, if each observation

represents 1 pound of mass placed at the point on the x-axis,

a fulcrum located at x would balance this system of weights

exactly.

x = 13

12 14 15

Pull-off force

FIGURE 6.1

Dot diagram showing the sample mean as a balance point
for a system of weights.

The sample mean is the average value of all observations in the data set. Usually, these data

are a sample of observations that have been selected from some larger population of observa-

tions. Here the population might consist of all the connectors that will be manufactured and sold

to customers. Recall that this type of population is called a conceptual or hypothetical popula-
tion because it does not physically exist. Sometimes there is an actual physical population, such

as a lot of silicon wafers produced in a semiconductor factory.

In previous chapters, we have introduced the mean of a probability distribution, denoted μ. If

we think of a probability distribution as a model for the population, one way to think of the mean

is as the average of all the measurements in the population. For a finite population with N equally

likely values, the probability mass function is f (xi) = 1/N and the mean is

μ =
N∑

i−1

xi f (xi) =

N∑

i=1

xi

N
(6.2)

The sample mean, x, is a reasonable estimate of the population mean, μ. Therefore, the engineer

designing the connector using a 3/32-inch wall thickness would conclude on the basis of the data

that an estimate of the mean pull-off force is 13.0 pounds.

Although the sample mean is useful, it does not convey all of the information about a sample

of data. The variability or scatter in the data may be described by the sample variance or the

sample standard deviation.

Sample Variance and Standard Deviation
If x1, x2, … , xn is a sample of n observations, the sample variance is

s2 =

n∑

i=1

(xi − x)2

n − 1
(6.3)

The sample standard deviation, s, is the positive square root of the sample variance.

The units of measurement for the sample variance are the square of the original units of the

variable. Thus, if x is measured in pounds, the units for the sample variance are (pounds)2.

The standard deviation has the desirable property of measuring variability in the original units of

the variable of interest, x.

How Does the Sample Variance Measure Variability? To see how the sample vari-

ance measures dispersion or variability, refer to Figure 6.2, which shows a dot diagram with the
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deviations xi − x for the connector pull-off force data. The higher the amount of variability in the

pull-off force data, the larger in absolute magnitude some of the deviations xi − x will be. Because

the deviations xi − x always sum to zero, we must use a measure of variability that changes the

negative deviations to non-negative quantities. Squaring the deviations is the approach used in

the sample variance. Consequently, if s2 is small, there is relatively little variability in the data,

but if s2 is large, the variability is relatively large.

E X A M P L E 6.2 Sample Variance

Table 6.1 displays the quantities needed for calculating the

sample variance and sample standard deviation for the pull-off

force data. These data are plotted in Figure 6.2. The numerator

of s2 is
8∑

i=1

(xi − x)2 = 1.60

so the sample variance is

s2 = 1.60

8 − 1
= 1.60

7
= 0.2286 (pounds)2

and the sample standard deviation is

s =
√

0.2286 = 0.48 pounds

x5x4

x7

x

x6

x1 x3

x2 x8

12 13 14 15

FIGURE 6.2

How the sample variance measures variability through
the deviations xi − x.

T A B L E 6.1

Calculation of Terms for the Sample
Variance and Sample Standard
Deviation

i xi xi − x (xi − x)2

1 12.6 −0.4 0.16

2 12.9 −0.1 0.01

3 13.4 0.4 0.16

4 12.3 −0.7 0.49

5 13.6 0.6 0.36

6 13.5 0.5 0.25

7 12.6 −0.4 0.16

8 13.1 0.1 0.01

Total 104.0 0.0 1.60

Computation of s2 The computation of s2 requires calculation of x, n subtractions, and

n squaring and adding operations. If the original observations or the deviations xi − x are not

integers, the deviations xi − x may be tedious to work with, and several decimals may have to

be carried to ensure numerical accuracy. A more efficient computational formula for the sample

variance is obtained as follows:

s2 =

n∑

i=1

(
xi − x

)2

n − 1
=

n∑

i=1

(

xi
2 + x2 − 2xxi

)

n − 1
=

n∑

i=1

xi
2 + nx2 − 2x

n∑

i=1

xi

n − 1
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and because x = (1∕n)
∑n

i=1
xi, this last equation reduces to

s2 =

n∑

i=1

xi
2 −

⎛
⎜
⎜
⎜
⎝

n∑

i=1

xi

⎞
⎟
⎟
⎟
⎠

2

n

n − 1
(6.4)

Note that Equation 6.4 requires squaring each individual xi, then squaring the sum of xi,

subtracting
(∑

xi
)2∕n from

∑
xi

2, and finally dividing by n − 1. Sometimes this is called the

shortcut method for calculating s2 (or s).

E X A M P L E 6.3 Shortcut Calculation for s2

We calculate the sample variance and standard deviation using

the shortcut method in Equation 6.4. The formula gives

s2 =

n∑

i=1

xi
2 −

(
n∑

i=1

xi

)2

n

n − 1
=

1353.6 − (104)2

8

7

= 1.60

7
= 0.2286 (pounds)2

and

s =
√

0.2286 = 0.48 pounds

These results agree exactly with those obtained previously.

Analogous to the sample variance s2, the variability in the population is defined by the pop-
ulation variance (σ2). As in earlier chapters, the positive square root of σ2, or σ, denotes the

population standard deviation. When the population is finite and consists of N equally likely

values, we may define the population variance as

σ2 =

N∑

i=1

(xi − μ)2

N
(6.5)

We observed previously that the sample mean could be used as an estimate of the population

mean. Similarly, the sample variance is an estimate of the population variance. In Chapter 7, we

discuss estimation of parameters more formally.

Note that the divisor for the sample variance is the sample size minus 1 (n − 1), and for

the population variance, it is the population size N. If we knew the true value of the population
mean μ, we could find the sample variance as the average square deviation of the sample obser-

vations about μ. In practice, the value of μ is almost never known, and so the sum of the squared

deviations about the sample average x must be used instead. However, the observations xi tend to

be closer to their average, x, than to the population mean, μ. Therefore, to compensate for this, we

use n − 1 as the divisor rather than n. If we used n as the divisor in the sample variance, we would

obtain a measure of variability that is on the average consistently smaller than the true population

variance σ2.

Another way to think about this is to consider the sample variance s2 as being based on

n − 1 degrees of freedom. The term degrees of freedom results from the fact that the n deviations

x1 − x, x2 − x,… , xn − x always sum to zero, and so specifying the values of any n − 1 of these

quantities automatically determines the remaining one. This was illustrated in Table 6.1. Thus,

only n − 1 of the n deviations, xi − x, are freely determined. We may think of the number of

degrees of freedom as the number of independent pieces of information in the data.
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μ

Population

Sample (x1, x2, x3, … , xn)

Histogram

x x
s

x, sample average

s, sample standard

deviation

σ

FIGURE 6.3

Relationship between a population and
a sample.

In addition to the sample variance and sample standard deviation, the sample range, or the

difference between the largest and smallest observations, is often a useful measure of variability.

The sample range is defined as follows.

Sample Range
If the n observations in a sample are denoted by x1, x2, … , xn, the sample range is

r = max(xi) − min(xi) (6.6)

For the pull-off force data, the sample range is r = 13.6 − 12.3 = 1.3. Generally, as the variability

in sample data increases, the sample range increases.

The sample range is easy to calculate, but it ignores all of the information in the sample data

between the largest and smallest values. For example, the two samples 1, 3, 5, 8, and 9 and 1, 5,

5, 5, and 9 both have the same range (r = 8). However, the standard deviation of the first sample

is s1 = 3.35, while the standard deviation of the second sample is s2 = 2.83. The variability is

actually less in the second sample.

Sometimes when the sample size is small, say n < 8 or 10, the information loss associated

with the range is not too serious. For example, the range is used widely in statistical quality

control where sample sizes of 4 or 5 are fairly common. We discuss some of these applications

in Chapter 15.

In most statistics problems, we work with a sample of observations selected from the

population that we are interested in studying. Figure 6.3 illustrates the relationship between

the population and the sample.

6.2 Stem-and-Leaf Diagrams
The dot diagram is a useful data display for small samples up to about 20 observations. However,

when the number of observations is moderately large, other graphical displays may be more

useful.

For example, consider the data in Table 6.2. These data are the compressive strengths in

pounds per square inch (psi) of 80 specimens of a new aluminum-lithium alloy undergoing eval-

uation as a possible material for aircraft structural elements. The data were recorded in the order

of testing, and in this format they do not convey much information about compressive strength.



�

� �

�

132 CHAPTER 6 Descriptive Statistics

T A B L E 6.2 Compressive Strength (in psi) of 80 Aluminum-Lithium Alloy Specimens

105 221 183 186 121 181 180 143

97 154 153 174 120 168 167 141

245 228 174 199 181 158 176 110

163 131 154 115 160 208 158 133

207 180 190 193 194 133 156 123

134 178 76 167 184 135 229 146

218 157 101 171 165 172 158 169

199 151 142 163 145 171 148 158

160 175 149 87 160 237 150 135

196 201 200 176 150 170 118 149

Questions such as “What percent of the specimens fail below 120 psi?” are not easy to answer.

Because there are many observations, constructing a dot diagram of these data would be relatively

inefficient; more effective displays are available for large data sets.

A stem-and-leaf diagram is a good way to obtain an informative visual display of a data set

x1, x2, … , xn where each number xi consists of at least two digits. To construct a stem-and-leaf

diagram, use the following steps.

Steps to Construct a Stem-and-Leaf Diagram
(1) Divide each number xi into two parts: a stem, consisting of one or more of the leading

digits, and a leaf, consisting of the remaining digit.

(2) List the stem values in a vertical column.

(3) Record the leaf for each observation beside its stem.

(4) Write the units for stems and leaves on the display.

To illustrate, if the data consist of percent defective information between 0 and 100 on lots

of semiconductor wafers, we can divide the value 76 into the stem 7 and the leaf 6. In general, we

should choose relatively few stems in comparison with the number of observations. It is usually

best to choose between 5 and 20 stems.

E X A M P L E 6.4 Alloy Strength

To illustrate the construction of a stem-and-leaf diagram, con-

sider the alloy compressive strength data in Table 6.2. We

select as stem values the numbers 7, 8, 9, … , 24. The result-

ing stem-and-leaf diagram is presented in Figure 6.4. The last

column in the diagram is a frequency count of the number of

leaves associated with each stem. Inspection of this display

immediately reveals that most of the compressive strengths lie

between 110 and 200 psi and that a central value is somewhere

between 150 and 160 psi. Furthermore, the strengths are dis-

tributed approximately symmetrically about the central value.

The stem-and-leaf diagram enables us to determine quickly

some important features of the data that were not immediately

obvious in the original display in Table 6.2.

In some data sets, providing more classes or stems may be desirable. One way to do this

would be to modify the original stems as follows: Divide stem 5 into two new stems, 5L and 5U.
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Stem 5L has leaves 0, 1, 2, 3, and 4, and stem 5U has leaves 5, 6, 7, 8, and 9. This will double the

number of original stems. We could increase the number of original stems by four by defining five

new stems: 5z with leaves 0 and 1, 5t (for twos and three) with leaves 2 and 3, 5f (for fours and

fives) with leaves 4 and 5, 5s (for six and seven) with leaves 6 and 7, and 5e with leaves 8 and 9.

Figure 6.5 is a typical computer-generated stem-and-leaf display of the compressive strength

data in Table 6.2. The software uses the same stems as in Figure 6.4. Note also that the computer

orders the leaves from smallest to largest on each stem. This form of the plot is usually called an

ordered stem-and-leaf diagram. This is not usually used when the plot is constructed manually

because it can be time-consuming. The computer also adds a column to the left of the stems that

provides a count of the observations at and above each stem in the upper half of the display and

a count of the observations at and below each stem in the lower half of the display. At the middle

stem of 16, the column indicates the number of observations at this stem.

The ordered stem-and-leaf display makes it relatively easy to find data features such as per-

centiles, quartiles, and the median. The sample median is a measure of central tendency that

divides the data into two equal parts, half below the median and half above. If the number of

observations is even, the median is halfway between the two central values. From Figure 6.5 we

find the 40th and 41st values of strength as 160 and 163, so the median is (160 + 163)/2 = 161.5.

If the number of observations is odd, the median is the central value. The sample mode is the

most frequently occurring data value. Figure 6.5 indicates that the mode is 158; this value occurs

four times, and no other value occurs as frequently in the sample. If there were more than one

value that occurred four times, the data would have multiple modes.

Stem Leaf Frequency

7 6 1

8 7 1

9 7 1

10 5 1 2

11 5 8 0 3

12 1 0 3 3

13 4 1 3 5 3 5 6

14 2 9 5 8 3 1 6 9 8

15 4 7 1 3 4 0 8 8 6 8 0 8 12

16 3 0 7 3 0 5 0 8 7 9 10

17 8 5 4 4 1 6 2 1 0 6 10

18 0 3 6 1 4 1 0 7

19 9 6 0 9 3 4 6

20 7 1 0 8 4

21 8 1

22 1 8 9 3

23 7 1

24 5 1

Stem: Tens and hundreds digits (psi); Leaf: Ones digits (psi).

FIGURE 6.4

Stem-and-leaf diagram for the compressive strength data
in Table 6.2.

Stem-and-leaf of Strength
N = 80 Stem Unit = 1.0

1 7 6

2 8 7

3 9 7

5 10 1 5

8 11 0 5 8

11 12 0 1 3

17 13 1 3 3 4 5 5

25 14 1 2 3 5 6 8 9 9

37 15 0 0 1 3 4 4 6 7 8 8 8 8

(10) 16 0 0 0 3 3 5 7 7 8 9

33 17 0 1 1 2 4 4 5 6 6 8

23 18 0 0 1 1 3 4 6

16 19 0 3 4 6 9 9

10 20 0 1 7 8

6 21 8

5 22 1 8 9

2 23 7

1 24 5

FIGURE 6.5

A typical computer-generated stem-and-leaf
diagram.
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E X A M P L E 6.5 Chemical Yield

Figure 6.6 is the stem-and-leaf diagram for 25 observations on

batch yields from a chemical process. In Figure 6.6(a), we have

used 6, 7, 8, and 9 as the stems. This results in too few stems,

and the stem-and-leaf diagram does not provide much infor-

mation about the data. In Figure 6.6(b), we have divided each

Stem Leaf Stem Leaf Stem Leaf

6 1 3 4 5 5 6 6L 1 3 4 6z 1

7 0 1 1 3 5 7 8 8 9 6U 5 5 6 6t 3

8 1 3 4 4 7 8 8 7L 0 1 1 3 6f 4 5 5

9 2 3 5 7U 5 7 8 8 9 6s 6

(a) 8L 1 3 4 4 6e

8U 7 8 8 7z 0 1 1

9L 2 3 7t 3

9U 5 7f 5

(b) 7s 7

7e 8 8 9

8z 1

8t 3

8f 4 4

8s 7

8e 8 8

9z

9t 2 3

9f 5

9s

9e

(c)

FIGURE 6.6

Stem-and-leaf displays for Example 6.5. Stem: Tens digits; leaf: ones digits.

stem into two parts, resulting in a display that more adequately

displays the data. Figure 6.6(c) illustrates a stem-and-leaf dis-

play with each stem divided into five parts. There are too many

stems in this plot, resulting in a display that does not tell us

much about the shape of the data.

We can also divide data into more than two parts. When an ordered set of data is divided

into four equal parts, the division points are called quartiles. The first or lower quartile, q1,

is a value that has approximately 25% of the observations below it and approximately 75% of

the observations above. The second quartile, q2, has approximately 50% of the observations

below its value. The second quartile is exactly equal to the median. The third or upper quartile,

q3, has approximately 75% of the observations below its value. As in the case of the median,

the quartiles may not be unique. The compressive strength data in Figure 6.5 contain n = 80

observations. Therefore, calculate the first and third quartiles as the (n + 1)/4 and 3(n + 1)/4

ordered observations and interpolate as needed, for example, (80 + 1)/4 = 20.25 and 3(80 + 1)/4

= 60.75. Therefore, interpolating between the 20th and 21st ordered observation we obtain

q1 = 143.50 and between the 60th and 61st observation we obtain q3 = 181.00. In general, the

100kth percentile is a data value such that approximately 100k% of the observations are at or

below this value and approximately 100(1 − k)% of them are above it. Finally, we may use the
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T A B L E 6.3 Summary Statistics for the Compressive Strength Data from Software

N Mean Median StDev SE Mean Min Max Q1 Q3

80 162.66 161.50 33.77 3.78 76.00 245.00 143.50 181.00

interquartile range, defined as IQR = q3 − q1, as a measure of variability. The interquartile

range is less sensitive to the extreme values in the sample than is the ordinary sample range.

Many statistics software packages provide data summaries that include these quantities.

Typical computer output for the compressive strength data in Table 6.2 is shown in Table 6.3.

6.3 Frequency Distributions and Histograms
A frequency distribution is a more compact summary of data than a stem-and-leaf diagram.

To construct a frequency distribution, we must divide the range of the data into intervals, which

are usually called class intervals, cells, or bins. If possible, the bins should be of equal width

in order to enhance the visual information in the frequency distribution. Some judgment must be

used in selecting the number of bins so that a reasonable display can be developed. The number

of bins depends on the number of observations and the amount of scatter or dispersion in the data.

A frequency distribution that uses either too few or too many bins will not be informative. We

usually find that between 5 and 20 bins is satisfactory in most cases and that the number of bins

should increase with n. Several sets of rules can be used to determine the number of bins in a

histogram. However, choosing the number of bins approximately equal to the square root of the

number of observations often works well in practice.

A frequency distribution for the comprehensive strength data in Table 6.2 is shown in

Table 6.4. Because the data set contains 80 observations, and because
√

80 ≃ 9, we suspect

that about eight to nine bins will provide a satisfactory frequency distribution. The largest and

smallest data values are 245 and 76, respectively, so the bins must cover a range of at least

245 − 76 = 169 units on the psi scale. If we want the lower limit for the first bin to begin slightly

below the smallest data value and the upper limit for the last bin to be slightly above the largest

data value, we might start the frequency distribution at 70 and end it at 250. This is an interval or

range of 180 psi units. Nine bins, each of width 20 psi, give a reasonable frequency distribution,

so the frequency distribution in Table 6.4 is based on nine bins.

The second row of Table 6.4 contains a relative frequency distribution. The relative

frequencies are found by dividing the observed frequency in each bin by the total number of

observations. The last row of Table 6.4 expresses the relative frequencies on a cumulative basis.

T A B L E 6.4 Frequency Distribution for the Compressive Strength Data in Table 6.2

Class 70 ≤ x < 90 90 ≤ x < 110 110 ≤ x < 130 130 ≤ x < 150 150 ≤ x < 170
Frequency 2 3 6 14 22

Relative frequency 0.0250 0.0375 0.0750 0.1750 0.2750

Cumulative relative frequency 0.0250 0.0625 0.1375 0.3125 0.5875

170 ≤ x < 190 190 ≤ x < 210 210 ≤ x < 230 230 ≤ x < 250
Frequency 17 10 4 2

Relative frequency 0.2125 0.1250 0.0500 0.0250

Cumulative relative frequency 0.8000 0.9250 0.9750 1.0000
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Frequency distributions are often easier to interpret than tables of data. For example, from

Table 6.4, it is very easy to see that most of the specimens have compressive strengths between

130 and 190 psi and that 97.5 percent of the specimens fall below 230 psi.

The histogram is a visual display of the frequency distribution. The steps for constructing a

histogram follow.

Constructing a Histogram (Equal Bin Widths)
(1) Label the bin (class interval) boundaries on a horizontal scale.

(2) Mark and label the vertical scale with the frequencies or the relative frequencies.

(3) Above each bin, draw a rectangle where height is equal to the frequency (or relative

frequency) corresponding to that bin.

Figure 6.7 is the histogram for the compression strength data. The histogram, like the

stem-and-leaf diagram, provides a visual impression of the shape of the distribution of the

measurements and information about the central tendency and scatter or dispersion in the data.

Notice the symmetric, bell-shaped distribution of the strength measurements in Figure 6.7. This

display often gives insight about possible choices of probability distributions to use as a model

for the population. For example, here we would likely conclude that the normal distribution is a

reasonable model for the population of compression strength measurements.

Sometimes a histogram with unequal bin widths will be employed. For example, if the data

have several extreme observations or outliers, using a few equal-width bins will result in nearly

all observations falling in just a few of the bins. Using many equal-width bins will result in many

bins with zero frequency. A better choice is to use shorter intervals in the region where most

of the data fall and a few wide intervals near the extreme observations. When the bins are of

unequal width, the rectangle’s area (not its height) should be proportional to the bin frequency.

This implies that the rectangle height should be

Rectangle height =
Bin frequency

Bin width

In passing from either the original data or stem-and-leaf diagram to a frequency distribution

or histogram, we have lost some information because we no longer have the individual observa-

tions. However, this information loss is often small compared with the conciseness and ease of

interpretation gained in using the frequency distribution and histogram.
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FIGURE 6.7

Histogram of compressive strength for 80 aluminum-lithium alloy specimens.
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FIGURE 6.8

A histogram of the compressive strength data with
17 bins.
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FIGURE 6.9

A histogram of the compressive strength data with nine
bins.

Figure 6.8 is a histogram of the compressive strength data with 17 bins. We have noted that

histograms may be relatively sensitive to the number of bins and their width. For small data

sets, histograms may change dramatically in appearance if the number and/or width of the bins

changes. Histograms are more stable and thus reliable for larger data sets, preferably of size 75

to 100 or more. Figure 6.9 is a histogram for the compressive strength data with nine bins. This

is similar to the original histogram shown in Figure 6.7. Because the number of observations is

moderately large (n = 80), the choice of the number of bins is not especially important, and both

Figures 6.8 and 6.9 convey similar information.

Figure 6.10 is a variation of the histogram available in some software packages, the cumu-
lative frequency plot. In this plot, the height of each bar is the total number of observations

that are less than or equal to the upper limit of the bin. Cumulative distributions are also use-

ful in data interpretation; for example, we can read directly from Figure 6.10 that approximately

70 observations are less than or equal to 200 psi.

When the sample size is large, the histogram can provide a reasonably reliable indicator

of the general shape of the distribution or population of measurements from which the sam-

ple was drawn. See Figure 6.11 for three cases. The median is denoted as x̃. Generally, if the

data are symmetric, as in Figure 6.11(b), the mean and median coincide. If, in addition, the data

have only one mode (we say the data are unimodal), the mean, median, and mode all coincide.
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FIGURE 6.10

A cumulative distribution plot of the compressive strength data.
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x x

Negative or left skew

(a)
Symmetric

(b)
Positive or right skew

(c)

∼

x∼
x∼x x

FIGURE 6.11

Histograms for symmetric and skewed distributions.

If the data are skewed (asymmetric, with a long tail to one side), as in Figure 6.11(a) and (c), the

mean, median, and mode do not coincide. Usually, we find that mode < median < mean if the

distribution is skewed to the right, whereas mode > median > mean if the distribution is skewed

to the left.

Frequency distributions and histograms can also be used with qualitative or categorical data.

Some applications will have a natural ordering of the categories (such as freshman, sophomore,

junior, and senior), whereas in others, the order of the categories will be arbitrary (such as male

and female). When using categorical data, the bins should have equal width.

E X A M P L E 6.6

Figure 6.12 presents the production of transport aircraft by the

Boeing Company in 1985. Notice that the 737 was the most

popular model, followed by the 757, 747, 767, and 707.
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FIGURE 6.12

Airplane production in 1985.

A chart of occurrences by category (in which the categories are ordered by the number of

occurrences) is sometimes referred to as a Pareto chart. An exercise asks you to construct such

a chart.

In this section, we have concentrated on descriptive methods for the situation in which each

observation in a data set is a single number or belongs to one category. In many cases, we work

with data in which each observation consists of several measurements. For example, in a gasoline

mileage study, each observation might consist of a measurement of miles per gallon, the size of the

engine in the vehicle, engine horsepower, vehicle weight, and vehicle length. This is an example

of multivariate data. In Section 6.6, we illustrate one simple graphical display for multivariate

data. In later chapters, we discuss analyzing this type of data.
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6.4 Box Plots
The stem-and-leaf display and the histogram provide general visual impressions about a data set,

but numerical quantities such as x or s provide information about only one feature of the data. The

box plot is a graphical display that simultaneously describes several important features of a data

set, such as center, spread, departure from symmetry, and identification of unusual observations

or outliers.

A box plot, sometimes called box-and-whisker plots, displays the three quartiles, the mini-

mum, and the maximum of the data on a rectangular box, aligned either horizontally or vertically.

The box encloses the interquartile range with the left (or lower) edge at the first quartile, q1, and

the right (or upper) edge at the third quartile, q3. A line is drawn through the box at the second

quartile (which is the 50th percentile or the median), q2 = x. A line, or whisker, extends from

each end of the box. The lower whisker is a line from the first quartile to the smallest data point

within 1.5 interquartile ranges from the first quartile. The upper whisker is a line from the third

quartile to the largest data point within 1.5 interquartile ranges from the third quartile. Data farther

from the box than the whiskers are plotted as individual points. A point beyond a whisker, but less

than three interquartile ranges from the box edge, is called an outlier. A point more than three

interquartile ranges from the box edge is called an extreme outlier. See Figure 6.13. Occasionally,

different symbols, such as open and filled circles, are used to identify the two types of outliers.

Figure 6.14 presents a typical computer-generated box plot for the alloy compressive strength

data shown in Table 6.2. This box plot indicates that the distribution of compressive strengths is
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FIGURE 6.13

Description of a box plot.
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Box plot for compressive strength data in Table 6.2.
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Comparative box plots of a quality
index at three plants.
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fairly symmetric around the central value because the left and right whiskers and the lengths

of the left and right boxes around the median are about the same. There are also two mild

outliers at lower strength and one at higher strength. The upper whisker extends to observation

237 because it is the highest observation below the limit for upper outliers. This limit is

q3 + 1.5IQR = 181 + 1.5(181 − 143.5) = 237.25. The lower whisker extends to observation

97 because it is the smallest observation above the limit for lower outliers. This limit is

q1 − 1.5IQR = 143.5 − 1.5(181 − 143.5) = 87.25. Box plots are very useful in graphical

comparisons among data sets because they have high visual impact and are easy to understand.

For example, Figure 6.15 shows the comparative box plots for a manufacturing quality index

on semiconductor devices at three manufacturing plants. Inspection of this display reveals that

there is too much variability at plant 2 and that plants 2 and 3 need to raise their quality index

performance.

6.5 Time Sequence Plots
The graphical displays that we have considered thus far such as histograms, stem-and-leaf plots,

and box plots are very useful visual methods for showing the variability in data. However, we

noted in Chapter 1 that time is an important factor that contributes to variability in data, and

those graphical methods do not take this into account. A time series or time sequence is a data

set in which the observations are recorded in the order in which they occur. A time series plot
is a graph in which the vertical axis denotes the observed value of the variable (say, x) and the

horizontal axis denotes the time (which could be minutes, days, years, etc.). When measurements

are plotted as a time series, we often see trends, cycles, or other broad features of the data that

could not be seen otherwise.

For example, consider Figure 6.16(a), which presents a time series plot of the annual sales

of a company for the last 10 years. The general impression from this display is that sales show an

upward trend. There is some variability about this trend, with some years’ sales increasing over

those of the last year and some years’ sales decreasing. Figure 6.16(b) shows the last 3 years of

sales reported by quarter. This plot clearly shows that the annual sales in this business exhibit a

cyclic variability by quarter, with the first- and second-quarter sales being generally higher than

sales during the third and fourth quarters.

Sometimes it can be very helpful to combine a time series plot with some of the other

graphical displays that we have considered previously. J. Stuart Hunter (“The Digidot Plot,”

The American Statistician, 1988, Vol. 42, p. 54) has suggested combining the stem-and-leaf plot

with a time series plot to form a digidot plot.
Figure 6.17 is a digidot plot for the observations on compressive strength from Table 6.2,

assuming that these observations are recorded in the order in which they occurred. This plot
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FIGURE 6.16

Company sales by year (a). By quarter (b).
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Time series plotStemLeaf
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FIGURE 6.17

A digidot plot of the compressive strength data in Table 6.2.

effectively displays the overall variability in the compressive strength data and simultaneously

shows the variability in these measurements over time. The general impression is that compressive

strength varies around the mean value of 162.66, and no strong obvious pattern occurs in this

variability over time.

The digidot plot in Figure 6.18 tells a different story. This plot summarizes 30 observations

on concentration of the output product from a chemical process where the observations are

recorded at one-hour time intervals. This plot indicates that during the first 20 hours of operation,

this process produced concentrations generally above 85 grams per liter, but that following

sample 20, something may have occurred in the process that resulted in lower concentrations.

If this variability in output product concentration can be reduced, operation of this process

can be improved. Notice that this apparent change in the process output is not seen in the

stem-and-leaf portion of the digidot plot. The stem-and-leaf plot compresses the time dimension

out of the data. This illustrates why it is always important to construct a time series plot for

time-oriented data.
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FIGURE 6.18

A digidot plot of chemical process concentration readings, observed hourly.
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6.6 Scatter Diagrams
In many problems, engineers and scientists work with data that is multivariate in nature; that is,

each observation consists of measurements of several variables. We saw an example of this in the

wire bond pull strength data in Table 1.2. Each observation consisted of data on the pull strength

of a particular wire bond, the wire length, and the die height. Such data are very commonly

encountered. Table 6.5 contains a second example of multivariate data taken from an article on

the quality of different young red wines in the Journal of the Science of Food and Agriculture
(1974, Vol. 25(11), pp. 1369–1379) by T.C. Somers and M.E. Evans. The authors reported quality

along with several other descriptive variables. We show only quality, pH, total SO2 (in ppm), color

density, and wine color for a sample of their wines.

Suppose that we wanted to graphically display the potential relationship between quality and

one of the other variables, say color. The scatter diagram is a useful way to do this. Plot each

pair of observations with one measurement in the pair on the vertical axis of the graph and the

other measurement in the pair on the horizontal axis.

Figure 6.19 is the scatter diagram of quality versus the descriptive variable color. Notice that

there is an apparent relationship between the two variables, with wines of more intense color

generally having a higher quality rating.

T A B L E 6.5 Quality Data for Young Red Wines

Quality pH Total SO2 Color Density Color

19.2 3.85 66 9.35 5.65

18.3 3.75 79 11.15 6.95

17.1 3.88 73 9.40 5.75

15.2 3.66 86 6.40 4.00

14.0 3.47 178 3.60 2.25

13.8 3.75 108 5.80 3.20

12.8 3.92 96 5.00 2.70

17.3 3.97 59 10.25 6.10

16.3 3.76 22 8.20 5.00

16.0 3.98 58 10.15 6.00

15.7 3.75 120 8.80 5.50

15.3 3.77 144 5.60 3.35

14.3 3.76 100 5.55 3.25

14.0 3.76 104 8.70 5.10

13.8 3.90 67 7.41 4.40

12.5 3.80 89 5.35 3.15

11.5 3.65 192 6.35 3.90

14.2 3.60 301 4.25 2.40

17.3 3.86 99 12.85 7.70

15.8 3.93 66 4.90 2.75
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FIGURE 6.19

Scatter diagram of wine quality and
color from Table 6.5.
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Matrix of scatter diagrams for the wine quality data in
Table 6.5.

A scatter diagram is an excellent exploratory tool and can be very useful in identifying

potential relationships between two variables. Data in Figure 6.19 indicate that a linear relation-

ship between quality and color may exist. We saw an example of a three-dimensional scatter

diagram in Chapter 1 where we plotted wire bond strength versus wire length and die height for

the bond pull strength data.

When two or more variables exist, the matrix of scatter diagrams may be useful in looking

at all of the pairwise relationships between the variables in the sample. Figure 6.20 is the matrix

of scatter diagrams (upper half only shown) for the wine quality data in Table 6.5. The top row

of the graph contains individual scatter diagrams of quality versus the other four descriptive vari-

ables, and other cells contain other pairwise plots of the four descriptive variables pH, SO2, color

density, and color. This display indicates a weak potential linear relationship between quality and

pH and somewhat stronger potential relationships between quality and color density and qual-

ity and color (which was noted previously in Figure 6.19). A strong apparent linear relationship

between color density and color exists (this should be expected).

The sample correlation coefficient rxy is a quantitative measure of the strength of the lin-

ear relationship between two random variables x and y. The sample correlation coefficient is

defined as

rxy =

n∑

i=1

yi(xi − x)

[ n∑

i=1

(yi − y)2
n∑

i=1

(xi − x)2
]1∕2

(6.6)

If the two variables are perfectly linearly related with a positive slope, then rxy = 1, and if they are

perfectly linearly related with a negative slope, then rxy =−1. If no linear relationship between the

two variables exists, then rxy = 0. The simple correlation coefficient is also sometimes called the

Pearson correlation coefficient after Karl Pearson, one of the giants of the fields of statistics in

the late 19th and early 20th centuries.

The value of the sample correlation coefficient between quality and color, the two variables

plotted in the scatter diagram of Figure 6.19, is 0.712. This is a moderately strong correlation,

indicating a possible linear relationship between the two variables. Correlations below | 0.5 | are

generally considered weak and correlations above | 0.8 | are generally considered strong.
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(a) Weak positive relationship (b) Strong positive relationship (c) Weak negative relationship

(d) Strong negative relationship (e) Nonlinear quadratic relationship, rxy ≈ o (f) No relationship, rxy ≈ o

FIGURE 6.21

Potential relationship between variables.

All pairwise sample correlations between the five variables in Table 6.5 are as follows:

Quality pH Total SO2 Color Density
pH 0.349

Total SO2 −0.445 −0.679

Color density 0.702 0.482 −0.492

Color 0.712 0.430 −0.480 0.996

Moderately strong correlations exist between quality and the two variables color and color

density and between pH and total SO2 (note that this correlation is negative). The correlation

between color and color density is 0.996, indicating a nearly perfect linear relationship.

See Figure 6.21 for several examples of scatter diagrams exhibiting possible relationships

between two variables. Parts (e) and (f ) of the figure deserve special attention; in part (e), a

probable quadratic relationship exists between y and x, but the sample correlation coefficient is

close to zero because the correlation coefficient is a measure of linear association, but in part (f ),

the correlation is approximately zero because no association exists between the two variables.

6.7 Probability Plots
How do we know whether a particular probability distribution is a reasonable model for data?

Sometimes this is an important question because many of the statistical techniques presented in

subsequent chapters are based on an assumption that the population distribution is of a specific

type. Thus, we can think of determining whether data come from a specific probability distribu-

tion as verifying assumptions. In other cases, the form of the distribution can give insight into

the underlying physical mechanism generating the data. For example, in reliability engineering,

verifying that time-to-failure data come from an exponential distribution identifies the failure
mechanism in the sense that the failure rate is constant with respect to time.

Some of the visual displays we used earlier, such as the histogram, can provide insight

about the form of the underlying distribution. However, histograms are usually not really reliable

indicators of the distribution form unless the sample size is very large. A probability plot is a
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graphical method for determining whether sample data conform to a hypothesized distribution

based on a subjective visual examination of the data. The general procedure is very simple and

can be performed quickly. It is also more reliable than the histogram for small- to moderate-size

samples. Probability plotting typically uses special axes that have been scaled for the hypothe-

sized distribution. Software is widely available for the normal, lognormal, Weibull, and various

chi-square and gamma distributions. We focus primarily on normal probability plots because

many statistical techniques are appropriate only when the population is (at least approximately)

normal.

To construct a probability plot, the observations in the sample are first ranked from small-

est to largest. That is, the sample x1, x2, … , xn is arranged as x(1), x(2), … , x(n), where x(1) is the

smallest observation, x(2) is the second-smallest observation, and so forth with x(n) the largest. The

ordered observations x(j) are then plotted against their observed cumulative frequency ( j − 0.5)/n
on the appropriate probability paper. If the hypothesized distribution adequately describes the

data, the plotted points will fall approximately along a straight line; if the plotted points deviate

significantly from a straight line, the hypothesized model is not appropriate. Usually, the determi-

nation of whether or not the data plot is a straight line is subjective. The procedure is illustrated

in the following example.

E X A M P L E 6.7 Battery Life

Ten observations on the effective service life in minutes

of batteries used in a portable personal computer are as

follows: 176, 191, 214, 220, 205, 192, 201, 190, 183, 185.

We hypothesize that battery life is adequately modeled by a

normal distribution. To use probability plotting to investigate

this hypothesis, first arrange the observations in ascending

order and calculate their cumulative frequencies ( j − 0.5)/10

as shown in Table 6.6.

T A B L E 6.6
Calculation for Constructing a
Normal Probability Plot

j x(j) ( j − 0.5)/10 zj

1 176 0.05 −1.64

2 183 0.15 −1.04

3 185 0.25 −0.67

4 190 0.35 −0.39

5 191 0.45 −0.13

6 192 0.55 0.13

7 201 0.65 0.39

8 205 0.75 0.67

9 214 0.85 1.04

10 220 0.95 1.64

The pairs of values x(j) and ( j − 0.5)/10 are now plotted on

normal probability axes. This plot is shown in Figure 6.22.

Most normal probability plots have 100( j − 0.5)/n on the left

vertical scale and (sometimes) 100[1 − ( j − 0.5)/n] on the

right vertical scale, with the variable value plotted on the hor-

izontal scale. A straight line, chosen subjectively, has been

drawn through the plotted points. In drawing the straight line,

you should be influenced more by the points near the mid-

dle of the plot than by the extreme points. A good rule of

thumb is to draw the line approximately between the 25th and

75th percentile points. This is how the line in Figure 6.22 was

determined. In assessing the “closeness” of the points to the

straight line, imagine a “fat pencil” lying along the line. If all

the points are covered by this imaginary pencil, a normal dis-

tribution adequately describes the data. Because the points in

Figure 6.19 would pass the “fat pencil” test, we conclude that

the normal distribution is an appropriate model.
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FIGURE 6.22

Normal probability plot for battery life.
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FIGURE 6.23

Normal probability plot obtained from standardized
normal scores.
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A normal probability plot can also be constructed on ordinary axes by plotting the stan-

dardized normal scores zj against x(j), where the standardized normal scores satisfy

j − 0.5

n
= P(Z ≤ zj) = Φ(zj)

For example, if ( j − 0.5)/n = 0.05, Φ(zj) = 0.05 implies that zj = −1.64. To illustrate, consider

the data from Example 6.4. In the last column of Table 6.6 we show the standardized normal

scores. Figure 6.23 is the plot of zj versus x(j). This normal probability plot is equivalent to the

one in Figure 6.22.

We have constructed our probability plots with the probability scale (or the z-scale) on the

vertical axis. Some computer packages “flip” the axis and put the probability scale on the hori-

zontal axis.

The normal probability plot can be useful in identifying distributions that are symmetric

but that have tails that are “heavier” or “lighter” than the normal. They can also be useful in

identifying skewed distributions. When a sample is selected from a light-tailed distribution (such

as the uniform distribution), the smallest and largest observations will not be as extreme as would

be expected in a sample from a normal distribution. Thus, if we consider the straight line drawn

through the observations at the center of the normal probability plot, observations on the left

side will tend to fall below the line, and observations on the right side will tend to fall above

the line. This will produce an S-shaped normal probability plot such as shown in Figure 6.24(a).

A heavy-tailed distribution will result in data that also produce an S-shaped normal probability

plot, but now the observations on the left will be above the straight line and the observations on

the right will lie below the line. See Figure 6.24(b). A positively skewed distribution will tend to

produce a pattern such as shown in Figure 6.24(c), where points on both ends of the plot tend to

fall below the line, giving a curved shape to the plot. This occurs because both the smallest and

the largest observations from this type of distribution are larger than expected in a sample from a

normal distribution.

Even when the underlying population is exactly normal, the sample data will not plot exactly

on a straight line. Some judgment and experience are required to evaluate the plot. Generally, if

the sample size is n < 30, there can be significant deviation from linearity in normal plots, so in

these cases only a very severe departure from linearity should be interpreted as a strong indication

of nonnormality. As n increases, the linear pattern will tend to become stronger, and the normal

probability plot will be easier to interpret and more reliable as an indicator of the form of the

distribution.



�

� �

�

6.7 Probability Plots 147

(a)

–3.30

–1.65

0

1.65

3.30

170 180 190 200 210 220

zj

x( j )

–3.30

–1.65

0

1.65

3.30

170 180 190 200 210 220

zj

x( j )

–3.30

–1.65

0

1.65

3.30

170 180 190 200 210 220

zj

x( j )

(b) (c)

FIGURE 6.24

Normal probability plots indicating a nonnormal distribution. (a) Light-tailed distribution.
(b) Heavy-tailed distribution. (c) A distribution with positive (or right) skew.
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Point Estimation
of Parameters
and Sampling
Distributions
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C H A P T E R O U T L I N E

7.1 Point Estimation

7.2 Sampling Distributions and the

Central Limit Theorem

7.3 General Concepts of Point

Estimation

7.3.1 Unbiased Estimators

7.3.2 Variance of a Point Estimator

7.3.3 Standard Error: Reporting

a Point Estimate

7.3.4 Bootstrap Standard Error

7.3.5 Mean Squared Error

of an Estimator

7.4 Methods of Point Estimation

7.4.1 Method of Moments

7.4.2 Method of Maximum Likelihood

7.4.3 Bayesian Estimation of

Parameters

L E A R N I N G O B J E C T I V E S

After careful study of this chapter, you should be able to do the

following:

1. Explain the general concepts of estimating the parameters of

a population or a probability distribution

2. Explain the important role of the normal distribution as a

sampling distribution and the central limit theorem

3. Explain important properties of point estimators, including

bias, variance, and mean square error

4. Construct point estimators using the method of moments and

the method of maximum likelihood

5. Compute and explain the precision with which a parameter is

estimated

6. Construct a point estimator from the Bayesian approach

148
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Introduction
Statistical methods are used to make decisions and draw conclusions about populations.

This aspect of statistics is generally called statistical inference. These techniques utilize the

information in a sample for drawing conclusions. This chapter begins our study of the statistical

methods used in decision making.

Statistical inference may be divided into two major areas: parameter estimation and

hypothesis testing. As an example of a parameter estimation problem, suppose that an engineer

is analyzing the tensile strength of a component used in an air frame. This is an important part

of assessing the overall structural integrity of the airplane. Variability is naturally present in

the individual components because of differences in the batches of raw material used to make

the components, manufacturing processes, and measurement procedures (for example), so the

engineer wants to estimate the mean strength of the population of components. In practice,

the engineer will use sample data to compute a number that is in some sense a reasonable value

(a good guess) of the true population mean. This number is called a point estimate. We will

see that procedures are available for developing point estimates of parameters that have good

statistical properties. We will also be able to establish the precision of the point estimate.

Now let’s consider a different type of question. Suppose that two different reaction temper-

atures t1 and t2 can be used in a chemical process. The engineer conjectures that t1 will result

in higher yields than t2. If the engineers can demonstrate that t1 results in higher yields, then

a process change can probably be justified. Statistical hypothesis testing is the framework for

solving problems of this type. In this example, the engineer would be interested in formulating

hypotheses that allow him or her to demonstrate that the mean yield using t1 is higher than the

mean yield using t2. Notice that there is no emphasis on estimating yields; instead, the focus is

on drawing conclusions about a hypothesis that is relevant to the engineering decision.

This chapter and Chapter 8 discuss parameter estimation. Chapters 9 and 10 focus on

hypothesis testing.

7.1 Point Estimation
Statistical inference always focuses on drawing conclusions about one or more parameters of a

population. An important part of this process is obtaining estimates of the parameters. Suppose

that we want to obtain a point estimate (a reasonable value) of a population parameter. We know

that before the data are collected, the observations are considered to be random variables, say, X1,

X2, … , Xn. Therefore, any function of the observations, or any statistic, is also a random variable.

For example, the sample mean X and the sample variance S2 are statistics and random variables.

A simple way to visualize this is as follows. Suppose we take a sample of n = 10 observations

from a population and compute the sample average, getting the result x = 10.2. Now we repeat

this process, taking a second sample of n = 10 observations from the same population and the

resulting sample average is 10.4. The sample average depends on the observations in the sample,

which differ from sample to sample because they are random variables. Consequently, the sample

average (or any other function of the sample data) is a random variable.

Because a statistic is a random variable, it has a probability distribution. We call the proba-

bility distribution of a statistic a sampling distribution. The notion of a sampling distribution is

very important and is discussed and illustrated later in the chapter.

When discussing inference problems, it is convenient to have a general symbol to represent

the parameter of interest. We use the Greek symbol θ (theta) to represent the parameter. The sym-

bol θ can represent the mean μ, the variance σ2, or any parameter of interest to us. The objective

of point estimation is to select a single number based on sample data that is the most plausible

value for θ. The numerical value of a sample statistic is used as the point estimate.

In general, if X is a random variable with probability distribution f (x), characterized by the

unknown parameter θ, and if X1, X2, … , Xn is a random sample of size n from X, the statistic
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̂Θ = h(X1,X2,… ,Xn) is called a point estimator of θ. Note that ̂Θ is a random variable because

it is a function of random variables. After the sample has been selected, ̂Θ takes on a particular

numerical value ̂θ called the point estimate of θ.

Point Estimator
A point estimate of some population parameter θ is a single numerical

value ̂θ of a statistic ̂Θ. The statistic ̂Θ is called the point estimator.

As an example, suppose that the random variable X is normally distributed with an unknown

mean μ. The sample mean is a point estimator of the unknown population mean μ. That is,

μ̂ = X. After the sample has been selected, the numerical value x is the point estimate of μ. Thus,

if x1 = 25, x2 = 30, x3 = 29, and x4 = 31, the point estimate of μ is

x = 25 + 30 + 29 + 31

4
= 28.75

Similarly, if the population variance σ2 is also unknown, a point estimator for σ2 is the sample

variance S2, and the numerical value s2 = 6.9 calculated from the sample data is called the point
estimate of σ2.

Estimation problems occur frequently in engineering. We often need to estimate

• The mean μ of a single population

• The variance σ2 (or standard deviation σ) of a single population

• The proportion p of items in a population that belong to a class of interest

• The difference in means of two populations, μ1 − μ2

• The difference in two population proportions, p1 − p2

Reasonable point estimates of these parameters are as follows:

• For μ, the estimate is μ̂ = x, the sample mean.

• For σ2, the estimate is σ̂2 = s2, the sample variance.

• For p, the estimate is p̂ = x∕n, the sample proportion, where x is the number of items in a

random sample of size n that belong to the class of interest.

• For μ1 − μ2, the estimate is μ̂1 − μ̂2 = x1 − x2, the difference between the sample means of

two independent random samples.

• For p1 − p2, the estimate is p̂1 − p̂2, the difference between two sample proportions computed

from two independent random samples.

We may have several different choices for the point estimator of a parameter. For example,

if we wish to estimate the mean of a population, we might consider the sample mean, the sample

median, or perhaps the average of the smallest and largest observations in the sample as point

estimators. To decide which point estimator of a particular parameter is the best one to use, we

need to examine their statistical properties and develop some criteria for comparing estimators.

7.2 Sampling Distributions and the

Central Limit Theorem
Statistical inference is concerned with making decisions about a population based on the informa-

tion contained in a random sample from that population. For instance, we may be interested in the

mean fill volume of a container of soft drink. The mean fill volume in the population is required to
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be 300 milliliters. An engineer takes a random sample of 25 containers and computes the sample

average fill volume to be x = 298.8 milliliters. The engineer will probably decide that the pop-

ulation mean is μ = 300 milliliters even though the sample mean was 298.8 milliliters because

he or she knows that the sample mean is a reasonable estimate of μ and that a sample mean of

298.8 milliliters is very likely to occur even if the true population mean is μ = 300 milliliters.

In fact, if the true mean is 300 milliliters, tests of 25 containers made repeatedly, perhaps every

5 minutes, would produce values of x that vary both above and below μ = 300 milliliters.

The link between the probability models in the earlier chapters and the data is made as

follows. Each numerical value in the data is the observed value of a random variable. Further-

more, the random variables are usually assumed to be independent and identically distributed.

These random variables are known as a random sample.

Random Sample
The random variables X1, X2, … , Xn are a random sample of size n
if (a) the Xi’s are independent random variables and (b) every Xi has

the same probability distribution.

The observed data are also referred to as a random sample, but the use of the same phrase should

not cause any confusion.

The assumption of a random sample is extremely important. If the sample is not random and

is based on judgment or is flawed in some other way, statistical methods will not work properly

and will lead to incorrect decisions.

The primary purpose in taking a random sample is to obtain information about the unknown

population parameters. Suppose, for example, that we wish to reach a conclusion about the

proportion of people in the United States who prefer a particular brand of soft drink. Let p
represent the unknown value of this proportion. It is impractical to question every individual

in the population to determine the true value of p. To make an inference regarding the true

proportion p, a more reasonable procedure would be to select a random sample (of an appropriate

size) and use the observed proportion p̂ of people in this sample favoring the brand of soft drink.

The sample proportion, p̂, is computed by dividing the number of individuals in the sample

who prefer the brand of soft drink by the total sample size n. Thus, p̂ is a function of the observed

values in the random sample. Because many random samples are possible from a population,

the value of p̂ will vary from sample to sample. That is, p̂ is a random variable. Such a random

variable is called a statistic.

Statistic
A statistic is any function of the observations in a random sample.

We have encountered statistics before. For example, if X1, X2, … , Xn is a random sample of

size n, the sample mean X, the sample variance S2, and the sample standard deviation S are

statistics. Because a statistic is a random variable, it has a probability distribution.

Sampling Distribution
The probability distribution of a statistic is called a sampling
distribution.

For example, the probability distribution of X is called the sampling distribution of the
mean. The sampling distribution of a statistic depends on the distribution of the population,
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the size of the sample, and the method of sample selection. We now present perhaps the

most important sampling distribution. Other sampling distributions and their applications are

illustrated extensively in the following two chapters.

Consider determining the sampling distribution of the sample mean X. Suppose that a

random sample of size n is taken from a normal population with mean μ and variance σ2. Now

each observation in this sample, say, X1, X2, … , Xn, is a normally and independently distributed

random variable with mean μ and variance σ2. Then because linear functions of independent,

normally distributed random variables are also normally distributed (Chapter 5), we conclude

that the sample mean

X =
X1 + X2 + · · · + Xn

n
has a normal distribution with mean

μX =
μ + μ + · · · + μ

n
= μ

and variance

σ2

X
= σ2 + σ2 + · · · + σ2

n2
= σ2

n
If we are sampling from a population that has an unknown probability distribution, the sam-

pling distribution of the sample mean will still be approximately normal with mean μ and variance

σ2/n if the sample size n is large. This is one of the most useful theorems in statistics, called the

central limit theorem. The statement is as follows:

Central Limit Theorem
If X1, X2, … , Xn is a random sample of size n taken from a population (either finite or

infinite) with mean μ and finite variance σ2 and if X is the sample mean, the limiting form

of the distribution of

Z =
X − μ
σ∕

√
n

(7.1)

as n → ∞, is the standard normal distribution.

It is easy to demonstrate the central limit theorem with a computer simulation experiment.
Consider the lognormal distribution in Figure 7.1. This distribution has parameters θ = 2 (called

the location parameter) and ω = 0.75 (called the scale parameter), resulting in mean μ = 9.79

and standard deviation σ = 8.51. Notice that this lognormal distribution does not look very much

like the normal distribution; it is defined only for positive values of the random variable X and

is skewed considerably to the right. We used computer software to draw 20 samples at random

from this distribution, each of size n = 10. The data from this sampling experiment are shown in

Table 7.1. The last row in this table is the average of each sample x.

The first thing that we notice in looking at the values of x is that they are not all the same.

This is a clear demonstration of the point made previously that any statistic is a random variable.

If we had calculated any sample statistic (s, the sample median, the upper or lower quartile, or a

percentile), they would also have varied from sample to sample because they are random variables.

Try it and see for yourself.

According to the central limit theorem, the distribution of the sample average X is normal.

Figure 7.2 is a normal probability plot of the 20 sample averages x from Table 7.1. The obser-

vations scatter generally along a straight line, providing evidence that the distribution of the

sample mean is normal even though the distribution of the population is very nonnormal.

This type of sampling experiment can be used to investigate the sampling distribution of

any statistic.



�

� �

�

7.2 Sampling Distributions and the Central Limit Theorem 153

403020100

0.10

0.08

0.06

0.04

0.02

0.00

X

D
e
n
si

ty

FIGURE 7.1

A lognormal distribution with 𝛉 = 2 and 𝛚 = 0.75.

T A B L E 7.1 Twenty samples of size n = 10 from the lognormal distribution in Figure 7.1.

Sample

Obs 1 2 3 4 5 6 7 8 9 10
1 3.9950 8.2220 4.1893 15.0907 12.8233 15.2285 5.6319 7.5504 2.1503 3.1390

2 7.8452 13.8194 2.6186 4.5107 3.1392 16.3821 3.3469 1.4393 46.3631 1.8314

3 1.8858 4.0513 8.7829 7.1955 7.1819 12.0456 8.1139 6.0995 2.4787 3.7612

4 16.3041 7.5223 2.5766 18.9189 4.2923 13.4837 13.6444 8.0837 19.7610 15.7647

5 9.7061 6.7623 4.4940 11.1338 3.1460 13.7345 9.3532 2.1988 3.8142 3.6519

6 7.6146 5.3355 10.8979 3.6718 21.1501 1.6469 4.9919 13.6334 2.8456 14.5579

7 6.2978 6.7051 6.0570 8.5411 3.9089 11.0555 6.2107 7.9361 11.4422 9.7823

8 19.3613 15.6610 10.9201 5.9469 8.5416 19.7158 11.3562 3.9083 12.8958 2.2788

9 7.2275 3.7706 38.3312 6.0463 10.1081 2.2129 11.2097 3.7184 28.2844 26.0186

10 16.2093 3.4991 6.6584 4.2594 6.1328 9.2619 4.1761 5.2093 10.0632 17.9411

x 9.6447 7.5348 9.5526 8.5315 8.0424 11.4767 7.8035 5.9777 14.0098 9.8727

Obs 11 12 13 14 15 16 17 18 19 20
1 7.5528 8.4998 2.5299 2.3115 6.1115 3.9102 2.3593 9.6420 5.0707 6.8075

2 4.9644 3.9780 11.0097 18.8265 3.1343 11.0269 7.3140 37.4338 5.5860 8.7372

3 16.7181 6.2696 21.9326 7.9053 2.3187 12.0887 5.1996 3.6109 3.6879 19.2486

4 8.2167 8.1599 15.5126 7.4145 6.7088 8.3312 11.9890 11.0013 5.6657 5.3550

5 9.0399 15.9189 7.9941 22.9887 8.0867 2.7181 5.7980 4.4095 12.1895 16.9185

6 4.0417 2.8099 7.1098 1.4794 14.5747 8.6157 7.8752 7.5667 32.7319 8.2588

7 4.9550 40.1865 5.1538 8.1568 4.8331 14.4199 4.3802 33.0634 11.9011 4.8917

8 7.5029 10.1408 2.6880 1.5977 7.2705 5.8623 2.0234 6.4656 12.8903 3.3929

9 8.4102 6.4106 7.6495 7.2551 3.9539 16.4997 1.8237 8.1360 7.4377 15.2643

10 7.2316 11.5961 4.4851 23.0760 10.3469 9.9330 8.6515 1.6852 3.6678 2.9765

x 7.8633 11.3970 8.6065 10.1011 6.7339 9.3406 5.7415 12.3014 10.0828 9.1851
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FIGURE 7.2

Normal probability plot of the sample averages from Table 7.1.

The normal approximation for X depends on the sample size n. Figure 7.3(a) is the distribu-

tion obtained for throws of a single, six-sided true die. The probabilities are equal (1/6) for all the

values obtained: 1, 2, 3, 4, 5, or 6. Figure 7.3(b) is the distribution of the average score obtained

when tossing two dice, and Figure 7.3(c), 7.3(d), and 7.3(e) show the distributions of average

scores obtained when tossing 3, 5, and 10 dice, respectively. Notice that, although the population

(one die) is relatively far from normal, the distribution of averages is approximated reasonably

well by the normal distribution for sample sizes as small as five. (The dice throw distributions are

discrete, but the normal is continuous.)

The central limit theorem is the underlying reason why many of the random variables encoun-

tered in engineering and science are normally distributed. The observed variable results from a

series of underlying disturbances that act together to create a central limit effect.

When is the sample size large enough so that the central limit theorem can be assumed to

apply? The answer depends on how close the underlying distribution is to the normal. If the

underlying distribution is symmetric and unimodal (not too far from normal), the central limit

theorem will apply for small values of n, say 4 or 5. If the sampled population is very nonnormal,

larger samples will be required. As a general guideline, if n > 30, the central limit theorem will

almost always apply. There are exceptions to this guideline, but they are relatively rare. In most

FIGURE 7.3

Distributions of average scores from throwing dice.
Source: Adapted with permission from Box, Hunter, and Hunter (1978).

x1 2 3 4 5 6

(b) Two dice

x1 2 3 4 5 6

(d) Five dice

x1 2 3 4 5 6

(e) Ten dice

x1 2 3 4 5 6

(a) One die

x1 2 3 4 5 6

(c) Three dice
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cases encountered in practice, this guideline is very conservative, and the central limit theorem will

apply for sample sizes much smaller than 30. For example, consider the dice example in Figure 7.3.

E X A M P L E 7.1 Resistors

An electronics company manufactures resistors that have a

mean resistance of 100 ohms and a standard deviation of

10 ohms. The distribution of resistance is normal. Find the

probability that a random sample of n = 25 resistors will have

an average resistance of fewer than 95 ohms.

Note that the sampling distribution of X is normal with

mean μX = 100 ohms and a standard deviation of

σX = σ
√

n
= 10

√
25

= 2

Therefore, the desired probability corresponds to the

shaded area in Figure 7.4. Standardizing point X = 95 in

Figure 7.4, we find that

z = 95 − 100

2
= −2.5

and therefore,

P(X < 95) = P(Z < −2.5)
= 0.0062

x10095

X = 2σ

FIGURE 7.4

Probability for Example 7.1.

Practical Conclusion: This example shows that if the

distribution of resistance is normal with mean 100 ohms and

standard deviation of 10 ohms, finding a random sample of

resistors with a sample mean less than 95 ohms is a rare
event. If this actually happens, it casts doubt as to whether the

true mean is really 100 ohms or if the true standard deviation

is really 10 ohms.

The following example makes use of the central limit theorem.

E X A M P L E 7.2 Central Limit Theorem

Suppose that a random variable X has a continuous uniform

distribution

f (x) =
{

1∕2, 4 ≤ x ≤ 6

0, otherwise

Find the distribution of the sample mean of a random sample

of size n = 40.

The mean and variance of X are μ = 5 and σ2 = (6 − 4)2/

12 = 1/3. The central limit theorem indicates that the dis-

tribution of X is approximately normal with mean μX = 5

and variance σ2

X
= σ2∕n = 1∕[3(40)] = 1∕120. See the distri-

butions of X and X in Figure 7.5.

5 64

X = 1/120σ

x54 6

 

x

FIGURE 7.5

The distribution of X and X for Example 7.2.

Now consider the case in which we have two independent populations. Let the first population

have mean μ1 and variance σ2
1

and the second population have mean μ2 and variance σ2
2
. Suppose

that both populations are normally distributed. Then, using the fact that linear combinations of

independent normal random variables follow a normal distribution (see Chapter 5), we can say

that the sampling distribution of X1 − X2 is normal with mean

μX1−X2
= μX1

− μX2
= μ1 − μ2 (7.2)

and variance

σ2

X1−X2

= σ2

X1

+ σ2

X2

=
σ2

1

n1

+
σ2

2

n2

(7.3)
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If the two populations are not normally distributed and if both sample sizes n1 and n2

are more than 30, we may use the central limit theorem and assume that X1 and X2 follow

approximately independent normal distributions. Therefore, the sampling distribution of X1 − X2

is approximately normal with mean and variance given by Equations 7.2 and 7.3, respectively.

If either n1 or n2 is fewer than 30, the sampling distribution of X1 − X2 will still be approximately

normal with mean and variance given by Equations 7.2 and 7.3 provided that the population

from which the small sample is taken is not dramatically different from the normal. We may

summarize this with the following definition.

Approximate Sampling Distribution of a Difference in Sample Means
If we have two independent populations with means μ1 and μ2 and variances σ2

1
and σ2

2
and

if X1 and X2 are the sample means of two independent random samples of sizes n1 and n2

from these populations, then the sampling distribution of

Z =
X1 − X2 − (μ1 − μ2)
√

σ2
1
∕n1 + σ2

2
∕n2

(7.4)

is approximately standard normal if the conditions of the central limit theorem apply. If the

two populations are normal, the sampling distribution of Z is exactly standard normal.

7.3 General Concepts of Point Estimation

7.3.1 Unbiased Estimators
An estimator should be “close” in some sense to the true value of the unknown parameter.

Formally, we say that ̂Θ is an unbiased estimator of θ if the expected value of ̂Θ is equal to θ.

This is equivalent to saying that the mean of the probability distribution of ̂Θ (or the mean of the

sampling distribution of ̂Θ) is equal to θ.

Bias of an Estimator
The point estimator ̂Θ is an unbiased estimator for the parameter θ if

E( ̂Θ) = θ (7.5)

If the estimator is not unbiased, then the difference

E( ̂Θ) − θ (7.6)

is called the bias of the estimator ̂Θ.

When an estimator is unbiased, the bias is zero; that is, E( ̂Θ) − θ = 0.

E X A M P L E 7.3 Sample Mean and Variance

Are Unbiased

Suppose that X is a random variable with mean μ and variance

σ2. Let X1, X2, … , Xn be a random sample of size n from the

population represented by X. Show that the sample mean X

and sample variance S2 are unbiased estimators of μ and σ2,

respectively.

First consider the sample mean. In Section 5.5 in

Chapter 5, we showed that E(X) = μ. Therefore, the sample

mean X is an unbiased estimator of the population mean μ.
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Now consider the sample variance. We have

E(S2) = E

⎡
⎢
⎢
⎢
⎣

n∑

i=1

(Xi − X)2

n − 1

⎤
⎥
⎥
⎥
⎦

= 1

n − 1
E

n∑

i=1

(Xi − X)2

= 1

n − 1
E

n∑

i=1

(X2
i + X2 − 2XXi)

= 1

n − 1
E

(
n∑

i=1

X2
i − nX2

)

= 1

n − 1

[
n∑

i=1

E(X2
i ) − nE(X2)

]

The last equality follows the equation for the mean of a

linear function in Chapter 5. However, because E(X2
i ) = μ2 +

σ2 and E(X2) = μ2 + σ2∕n, we have

E(S2) = 1

n − 1

[
n∑

i=1

(μ2 + σ2) − n(μ2 + σ2∕n)

]

= 1

n − 1
(nμ2 + nσ2 − nμ2 − σ2) = σ2

Therefore, the sample variance S2 is an unbiased estima-

tor of the population variance σ2.

Although S2 is unbiased for σ2, S is a biased estimator of σ. For large samples, the bias is very

small. However, there are good reasons for using S as an estimator of σ in samples from normal

distributions as we will see in the next three chapters when we discuss confidence intervals and

hypothesis testing.

Sometimes there are several unbiased estimators of the sample population parameter.

For example, suppose that we take a random sample of size n = 10 from a normal population

and obtain the data x1 = 12.8, x2 = 9.4, x3 = 8.7, x4 = 11.6, x5 = 13.1, x6 = 9.8, x7 = 14.1,

x8 = 8.5, x9 = 12.1, x10 = 10.3. Now the sample mean is

x = 12.8 + 9.4 + 8.7 + 11.6 + 13.1 + 9.8 + 14.1 + 8.5 + 12.1 + 10.3

10
= 11.04

the sample median is

x = 10.3 + 11.6

2
= 10.95

and a 10% trimmed mean (obtained by discarding the smallest and largest 10% of the sample

before averaging) is

xtr(10) =
8.7 + 9.4 + 9.8 + 10.3 + 11.6 + 12.1 + 12.8 + 13.1

8
= 10.98

We can show that all of these are unbiased estimates of μ. Because there is not a unique unbi-

ased estimator, we cannot rely on the property of unbiasedness alone to select our estimator.

We need a method to select among unbiased estimators. We suggest a method in the following

section.

7.3.2 Variance of a Point Estimator

Suppose that ̂Θ1 and ̂Θ2 are unbiased estimators of θ. This indicates that the distribution of each

estimator is centered at the true value of zero. However, the variance of these distributions may

be different. Figure 7.6 illustrates the situation. Because ̂Θ1 has a smaller variance than ̂Θ2, the

estimator ̂Θ1 is more likely to produce an estimate close to the true value of θ. A logical principle

of estimation when selecting among several unbiased estimators is to choose the estimator that

has minimum variance.
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FIGURE 7.6

The sampling distributions of two unbiased
estimators 𝚯̂1 and 𝚯̂2. θ

Distribution of    1Θ^

Distribution of    2Θ^

Minimum Variance Unbiased Estimator
If we consider all unbiased estimators of θ, the one with the small-

est variance is called the minimum variance unbiased estimator
(MVUE).

In a sense, the MVUE is most likely among all unbiased estimators to produce an estimate ̂θ that

is close to the true value of θ. It has been possible to develop methodology to identify the MVUE

in many practical situations. Although this methodology is beyond the scope of this book, we

give one very important result concerning the normal distribution.

If X1, X2, … , Xn is a random sample of size n from a normal distribu-

tion with mean μ and variance σ2, the sample mean X is the MVUE

for μ.

When we do not know whether an MVUE exists, we could still use a minimum variance principle

to choose among competing estimators. Suppose, for example, we wish to estimate the mean of

a population (not necessarily a normal population). We have a random sample of n observations

X1, X2, … , Xn, and we wish to compare two possible estimators for μ: the sample mean X and a

single observation from the sample, say, Xi. Note that both X and Xi are unbiased estimators of μ;

for the sample mean, we have V(X) = σ2∕n from Chapter 5 and the variance of any observation

is V(Xi) = σ2. Because V(X) < V(Xi) for sample sizes n ≥ 2, we would conclude that the sample

mean is a better estimator of μ than a single observation Xi.

7.3.3 Standard Error: Reporting a Point Estimate
When the numerical value or point estimate of a parameter is reported, it is usually desirable to

give some idea of the precision of estimation. The measure of precision usually employed is the

standard error of the estimator that has been used.

Standard Error of an Estimator
The standard error of an estimator ̂Θ is its standard deviation given

by σ
̂Θ =

√

V( ̂Θ). If the standard error involves unknown parameters

that can be estimated, substitution of those values into σ
̂Θ produces an

estimated standard error, denoted by σ̂
̂Θ.

Sometimes the estimated standard error is denoted by s
̂Θ or SE( ̂Θ).
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Suppose that we are sampling from a normal distribution with mean μ and variance σ2.

Now the distribution of X is normal with mean μ and variance σ2/n, so the standard error
of X is

σX = σ
√

n

If we did not know σ but substituted the sample standard deviation S into the preceding equation,

the estimated standard error of X would be

SE(X) = σ̂X = S
√

n

When the estimator follows a normal distribution as in the preceding situation, we can be

reasonably confident that the true value of the parameter lies within two standard errors of the

estimate. Because many point estimators are normally distributed (or approximately so) for large

n, this is a very useful result. Even when the point estimator is not normally distributed, we

can state that so long as the estimator is unbiased, the estimate of the parameter will deviate

from the true value by as much as four standard errors at most 6 percent of the time. Thus, a

very conservative statement is that the true value of the parameter differs from the point esti-

mate by at most four standard errors. See Chebyshev’s inequality in the supplemental material on

the Web site.

E X A M P L E 7.4 Thermal Conductivity

An article in the Journal of Heat Transfer (Trans. ASME,

Sec. C, 96, 1974, p. 59) described a new method of measuring

the thermal conductivity of Armco iron. Using a temperature

of 100∘F and a power input of 550 watts, the following

10 measurements of thermal conductivity (in Btu/hr-ft-∘F)

were obtained:

41.60, 41.48, 42.34, 41.95, 41.86,

42.18, 41.72, 42.26, 41.81, 42.04

A point estimate of the mean thermal conductivity at 100∘F
and 550 watts is the sample mean or

x = 41.924 Btu∕hr-ft-∘F

The standard error of the sample mean is σX = σ∕
√

n, and

because σ is unknown, we may replace it by the sample stan-

dard deviation s = 0.284 to obtain the estimated standard error

of X as

SE(X) = σ̂X = s
√

n
= 0.284

√
10

= 0.0898

Practical Interpretation: Notice that the standard error is

about 0.2 percent of the sample mean, implying that we have

obtained a relatively precise point estimate of thermal conduc-

tivity. If we can assume that thermal conductivity is normally

distributed, two times the standard error is 2σ̂X = 2(0.0898) =
0.1796, and we are highly confident that the true mean thermal

conductivity is within the interval 41.924 ± 0.1796 or between

41.744 and 42.104.

7.3.4 Bootstrap Standard Error
In some situations, the form of a point estimator is complicated, and standard statistical meth-

ods to find its standard error are difficult or impossible to apply. One example of these is S,

the point estimator of the population standard deviation σ. Others occur with some of the stan-

dard probability distributions, such as the exponential and Weibull distributions. A relatively new

computer-intensive technique, the bootstrap, can be used to solve this problem.

To explain how the bootstrap works, suppose that we have a random variable X with a

known probability density function characterized by a parameter θ, say f (x; θ). Also assume

that we have a random sample of data from this distribution, x1, x2, … , xn, and that the estimate
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of θ based on this sample data is ̂θ = 4.5. The bootstrap procedure would use the computer

to generate bootstrap samples randomly from the probability distribution f (x; θ = 4.5) and

calculate a bootstrap estimate ̂θB. This process is repeated nB times, resulting in:

Bootstrap sample 1∶ x1
1
, x1

2
… , x1

n,Bootstrap estimate ̂θB
1

Bootstrap sample 2∶ x2
1
, x2

2
… , x2

n,Bootstrap estimate ̂θB
2

⋮

Bootstrap sample nB∶ xnB
1
, xnB

2
… , xnB

n ,Bootstrap estimate ̂θB
nB

Typically, the number of bootstrap samples is nB = 100 or 200. The sample mean of the bootstrap

estimates is

θB = 1

nB

nB∑

i=1

̂θB
i

The bootstrap standard error of ̂θ is just the sample standard deviation of the bootstrap

estimates ̂θB
i or

SEB(̂θ) =

√
√
√
√ 1

nB − 1

nB∑

i=1

(̂θB
i − θB)2 (7.7)

Some authors use nB in the denominator of Equation 7.7.

E X A M P L E 7.5 Bootstrap Standard Error

A team of analytics specialists has been investigating the cycle

time to process loan applications. The specialists’ experience

with the process informs them that cycle time is normally dis-

tributed with a mean of about 25 hours. A recent random sam-

ple of 10 applications gives the following (in hours):

24.1514, 27.4145, 20.4000, 22.5151, 28.5152, 28.5611,

21.2489, 20.9983, 24.9840, 22.6245

The sample standard deviation of these observations is

s = 3.11407. We want to find a bootstrap standard error for

the sample standard deviation. We use a computer program to

generate nB = 200 bootstrap samples from a normal distribu-

tion with a mean of 25 and a standard deviation of 3.11417.

The first of these samples is:

25.4274, 24.2272, 24.8565, 24.3458, 18.4343, 23.3179,

23.0699, 25.2876, 27.1541, 27.2932

from which we calculate s = 2.50635. After all 200 bootstrap

samples were generated, the average of the bootstrap estimates

of the standard deviation was 3.03972, and the bootstrap esti-

mate of the standard error was 0.5464. The standard error is

fairly large because the sample size here (n = 10) is fairly

small.

In some problem situations, the distribution of the random variable is not known. The bootstrap

can still be used in these situations. The procedure is to treat the data sample as a population

and draw bootstrap samples from it. So, for example, if we had a sample of 25 observations,

we would draw nB bootstrap samples by sampling with replacement from the original sample.

Then we would proceed as in the preceding example to calculate the bootstrap estimate of the

standard error for the statistic of interest.

7.3.5 Mean Squared Error of an Estimator
Sometimes it is necessary to use a biased estimator. In such cases, the mean squared error of the

estimator can be important. The mean squared error of an estimator ̂Θ is the expected squared

difference between ̂Θ and θ.
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FIGURE 7.7

A biased estimator 𝚯̂1 that has smaller variance
than the unbiased estimator 𝚯̂2.

Mean Squared Error of an Estimator
The mean squared error of an estimator ̂Θ of the parameter θ is defined as

MSE( ̂Θ) = E( ̂Θ − θ)2 (7.8)

The mean squared error can be rewritten as follows:

MSE( ̂Θ) = E[ ̂Θ − E( ̂Θ)]2 + [θ − E( ̂Θ)]2

= V( ̂Θ) + (bias)2

That is, the mean squared error of ̂Θ is equal to the variance of the estimator plus the squared

bias. If ̂Θ is an unbiased estimator of θ, the mean squared error of ̂Θ is equal to the variance of ̂Θ.

The mean squared error is an important criterion for comparing two estimators. Let ̂Θ1 and
̂Θ2 be two estimators of the parameter θ, and let MSE ( ̂Θ1) and MSE ( ̂Θ2) be the mean squared

errors of ̂Θ1 and ̂Θ2. Then the relative efficiency of ̂Θ2 to ̂Θ1 is defined as

MSE( ̂Θ1)
MSE( ̂Θ2)

(7.9)

If this relative efficiency is less than 1, we would conclude that ̂Θ1 is a more efficient estimator

of θ than ̂Θ2 in the sense that it has a smaller mean squared error.

Sometimes we find that biased estimators are preferable to unbiased estimators because they

have smaller mean squared error. That is, we may be able to reduce the variance of the estimator

considerably by introducing a relatively small amount of bias. As long as the reduction in vari-

ance is larger than the squared bias, an improved estimator from a mean squared error viewpoint

will result. For example, Figure 7.7 is the probability distribution of a biased estimator ̂Θ1 that

has a smaller variance than the unbiased estimator ̂Θ2. An estimate based on ̂Θ1 would more

likely be close to the true value of θ than would an estimate based on ̂Θ2. Linear regression anal-

ysis (Chapters 11 and 12) is an example of an application area in which biased estimators are

occasionally used.

An estimator ̂Θ that has a mean squared error that is less than or equal to the mean squared

error of any other estimator, for all values of the parameter θ, is called an optimal estimator of θ.

Optimal estimators rarely exist.

7.4 Methods of Point Estimation
The definitions of unbiasedness and other properties of estimators do not provide any guidance

about how to obtain good estimators. In this section, we discuss methods for obtaining point esti-

mators: the method of moments and the method of maximum likelihood. Maximum likelihood

estimates are generally preferable to moment estimators because they have better efficiency prop-

erties. However, moment estimators are sometimes easier to compute. Both methods can produce

unbiased point estimators. We also briefly discuss a Bayesian approach to parameter estimation

in the WileyPLUS online material.
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7.4.1 Method of Moments
The general idea behind the method of moments is to equate population moments, which are

defined in terms of expected values, to the corresponding sample moments. The population

moments will be functions of the unknown parameters. Then these equations are solved to yield

estimators of the unknown parameters.

Moments
Let X1, X2, … , Xn be a random sample from the probability distribution f (x) where f (x) can

be a discrete probability mass function or a continuous probability density function. The kth

population moment (or distribution moment) is E(Xk), k = 1, 2,… . The corresponding

kth sample moment is (1∕n)
∑n

i=1
Xk

i , k = 1, 2,… .

To illustrate, the first population moment is E(X) = μ, and the first sample moment is

(1∕n)
∑n

i=1
Xi = X. Thus, by equating the population and sample moments, we find that μ̂ = X.

That is, the sample mean is the moment estimator of the population mean. In the general

case, the population moments are functions of the unknown parameters of the distribution, say,

θ1, θ2, … , θm.

Moment Estimators
Let X1, X2, … , Xn be a random sample from either a probability mass function or a proba-

bility density function with m unknown parameters θ1, θ2, … , θm. The moment estimators
̂Θ1,

̂Θ2,… ,
̂Θm are found by equating the first m population moments to the first m sample

moments and solving the resulting equations for the unknown parameters.

E X A M P L E 7.6 Exponential Distribution

Moment Estimator

Suppose that X1, X2, … , Xn is a random sample from an

exponential distribution with parameter λ. Now there is only

one parameter to estimate, so we must equate E(X) to X. For

the exponential, E(X) = 1/λ. Therefore, E(X) = X results in

1∕λ = X, so λ = 1∕X, is the moment estimator of λ.

As an example, suppose that the time to failure of an electronic module used in an automo-

bile engine controller is tested at an elevated temperature to accelerate the failure mechanism.

The time to failure is exponentially distributed. Eight units are randomly selected and tested,

resulting in the following failure time (in hours): x1 = 11.96, x2 = 5.03, x3 = 67.40, x4 = 16.07,

x5 = 31.50, x6 = 7.73, x7 = 11.10, and x8 = 22.38. Because x = 21.65, the moment estimate of λ
is ̂λ = 1∕x = 1∕21.65 = 0.0462.

E X A M P L E 7.7 Normal Distribution

Moment Estimators

Suppose that X1, X2, … , Xn is a random sample from a normal

distribution with parameters μ and σ2. For the normal distri-

bution, E(X) = μ and E(X2) = μ2 + σ2. Equating E(X) to X and

E(X2) to
1

n

∑n
i=1

X2
i gives

μ = X, μ2 + σ2 = 1

n

n∑

i=1

X2
i

Solving these equations gives the moment estimators

μ̂ = X, σ̂2 =

n∑

i=1

X2
i − n

(

1

n

n∑

i=1

Xi

)2

n
=

n∑

i=1

(Xi − X)2

n

Practical Conclusion: Notice that the moment estimator

of σ2 is not an unbiased estimator.
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E X A M P L E 7.8 Gamma Distribution

Moment Estimators

Suppose that X1, X2, … , Xn is a random sample from a gamma

distribution with parameters r and λ. For the gamma distribu-

tion, E(X) = r/λ and E(X2) = r(r + 1)/λ2. The moment estima-

tors are found by solving

r∕λ = X, r(r + 1)∕λ2 = 1

n

n∑

i=1

X2
i

The resulting estimators are

r̂ = X2

(1∕n)
n∑

i=1

X2
i − X2

̂λ = X

(1∕n)
n∑

i=1

X2
i − X2

To illustrate, consider the time to failure data introduced fol-

lowing Example 7.6. For these data, x = 21.65 and
∑8

i=1
x2

i =
6639.40, so the moment estimates are

r̂ = (21.65)2

(1∕8) 6645.43 − (21.65)2
= 1.29,

̂λ = 21.65

(1∕8) 6645.43 − (21.65)2
= 0.0598

Interpretation: When r = 1, the gamma reduces to the

exponential distribution. Because r̂ slightly exceeds unity, it is

quite possible that either the gamma or the exponential distri-

bution would provide a reasonable model for the data.

7.4.2 Method of Maximum Likelihood
One of the best methods of obtaining a point estimator of a parameter is the method of max-

imum likelihood. This technique was developed in the 1920s by a famous British statistician,

Sir R. A. Fisher. As the name implies, the estimator is the value of the parameter that maximizes

the likelihood function.

Maximum Likelihood Estimator
Suppose that X is a random variable with probability distribution f (x; θ), where θ is a single

unknown parameter. Let x1, x2, … , xn be the observed values in a random sample of size n.

Then the likelihood function of the sample is

L(θ) = f (x1; θ) • f (x2; θ) • · · · • f (xn; θ) (7.10)

Note that the likelihood function is now a function of only the unknown parameter θ.

The maximum likelihood estimator (MLE) of θ is the value of θ that maximizes the

likelihood function L(θ).

In the case of a discrete random variable, the interpretation of the likelihood function is

simple. The likelihood function of the sample L(θ) is just the probability

P(X1 = x1,X2 = x2,… ,Xn = xn)

That is, L(θ) is just the probability of obtaining the sample values x1, x2, … , xn. Therefore, in the

discrete case, the maximum likelihood estimator is an estimator that maximizes the probability

of occurrence of the sample values. Maximum likelihood estimators are generally preferable to

moment estimators because they possess good efficiency properties.

E X A M P L E 7.9 Bernoulli Distribution MLE

Let X be a Bernoulli random variable. The probability mass

function is

f (x; p) =
{

px(1 − p)1−x
, x = 0, 1

0, otherwise

where p is the parameter to be estimated. The likelihood func-

tion of a random sample of size n is

L(p) = px1 (1 − p)1−x1 px2 (1 − p)1−x2 … pxn (1 − p)1−xn

=
n
Π
i=1

pxi (1 − p)1−xi = p
n∑

i=1

xi (1 − p)
n−

n∑

i=1

xi
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We observe that if p̂ maximizes L(p), p̂ also maximizes

ln L(p). Therefore,

ln L(p) =

(
n∑

i=1

xi

)

ln p +

(

n −
n∑

i=1

xi

)

ln(1 − p)

Now,

d ln L(p)
dp

=

n∑

i=1

xi

p
−

(

n −
n∑

i=1

xi

)

1 − p

Equating this to zero and solving for p yields p̂ =
(1∕n)

∑n
i=1

xi. Therefore, the maximum likelihood estimator

of p is

̂P = 1

n

n∑

i=1

Xi

Suppose that this estimator were applied to the following situation: n items are selected

at random from a production line, and each item is judged as either defective (in which case

we set xi = 1) or nondefective (in which case we set xi = 0). Then
∑n

i=1
xi is the number of

defective units in the sample, and p̂ is the sample proportion defective. The parameter p is the

population proportion defective, and it seems intuitively quite reasonable to use p̂ as an esti-

mate of p.

Although the interpretation of the likelihood function just given is confined to the discrete

random variable case, the method of maximum likelihood can easily be extended to a continu-

ous distribution. We now give two examples of maximum likelihood estimation for continuous

distributions.

E X A M P L E 7.10 Exponential Distribution MLE

Let X be exponentially distributed with parameter λ. The like-

lihood function of a random sample of size n, say, X1, X2, … ,

Xn, is

L(λ) =
n
Π
i=1

λe−λxi = λn e−λ
n∑

i=1

xi

The log likelihood is

ln L(λ) = n ln λ − λ
n∑

i=1

xi

Now
d ln L(λ)

dλ
= n

λ
−

n∑

i=1

xi

and upon equating this last result to zero, we obtain

̂λ = n∕
n∑

i=1

Xi = 1∕X

Conclusion: Thus, the maximum likelihood estimator of

λ is the reciprocal of the sample mean. Notice that this is the

same as the moment estimator.

It is easy to illustrate graphically just how the method of maximum likelihood works.

Figure 7.8(a) plots the log of the likelihood function for the exponential parameter from Example

7.10, using the n = 8 observations on failure time given following Example 7.5. It is common

for the log likelihood function to be negative. We found that the estimate of λ was ̂λ = 0.0462.

From Example 7.10, we know that this is a maximum likelihood estimate. Figure 7.8(a) shows

clearly that the log likelihood function is maximized at a value of λ that is approximately equal

to 0.0462. Notice that the log likelihood function is relatively flat in the region of the maximum.

This implies that the parameter is not estimated very precisely. If the parameter were estimated

precisely, the log likelihood function would be very peaked at the maximum value. The sample

size here is relatively small, and this has led to the imprecision in estimation. This is illustrated

in Figure 7.8(b) where we have plotted the difference in log likelihoods for the maximum
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FIGURE 7.8

Log likelihood for the exponential distribution, using the failure time data. (a) Log likelihood with
n = 8 (original data). (b) Log likelihood if n = 8, 20, and 40.

value, assuming that the sample sizes were n = 8, 20, and 40 but that the sample average

time to failure remained constant at x = 21.65. Notice how much steeper the log likelihood

is for n = 20 in comparison to n = 8, and for n = 40 in comparison to both smaller sample

sizes.

The method of maximum likelihood can be used in situations that have several unknown

parameters, say, θ1, θ2, … , θk, to estimate. In such cases, the likelihood function is a function

of the k unknown parameters θ1, θ2, … , θk, and the maximum likelihood estimators { ̂Θi} would

be found by equating the k partial derivatives ∂L(θ1, θ2,… , θk)∕∂θi, i = 1, 2,… , k to zero and

solving the resulting system of equations.

E X A M P L E 7.11 Normal Distribution MLEs for μ and σ2

Let X be normally distributed with mean μ and variance σ2

where both μ and σ2 are unknown. The likelihood function for

a random sample of size n is

L (μ, σ2) =
n
Π
i=1

1

σ
√

2π
e−(xi−μ)2∕(2σ2)

= 1

(2πσ2)n∕2
e

−1

2σ2

n∑

i=1

(xi−μ)2

and

ln L (μ, σ2) = −n
2

ln (2πσ2) − 1

2σ2

n∑

i=1

(xi − μ)2

Now
∂ ln L (μ, σ2)

∂μ
= 1

σ2

n∑

i=1

(xi − μ) = 0

∂ ln L (μ, σ2)
∂(σ2)

= − n
2σ2

+ 1

2σ4

n∑

i=1

(xi − μ)2 = 0

The solutions to these equations yield the maximum likelihood

estimators

μ̂ = X σ̂2 = 1

n

n∑

i=1

(Xi − X)2

Conclusion: Once again, the maximum likelihood esti-

mators are equal to the moment estimators.

Properties of the Maximum Likelihood Estimator As noted previously, the method of

maximum likelihood is often the estimation method that we prefer because it produces estimators

with good statistical properties. We summarize these properties as follows.
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Properties of a Maximum Likelihood Estimator
Under very general and not restrictive conditions when the sample size n is large and if ̂Θ is

the maximum likelihood estimator of the parameter θ,

(1) ̂Θ is an approximately unbiased estimator for θ (E( ̂Θ) = θ),
(2) The variance of ̂Θ is nearly as small as the variance that could be obtained with any

other estimator.

(3) ̂Θ has an approximate normal distribution.

Properties 1 and 2 essentially state that the maximum likelihood estimator is approximately

an MVUE. This is a very desirable result and, coupled with the facts that it is fairly easy to obtain

in many situations and has an asymptotic normal distribution (the “asymptotic” means “when

n is large”), explains why the maximum likelihood estimation technique is widely used. To use

maximum likelihood estimation, remember that the distribution of the population must be either

known or assumed.

To illustrate the “large-sample” or asymptotic nature of these properties, consider the max-

imum likelihood estimator for σ2, the variance of the normal distribution, in Example 7.11. It is

easy to show that

E(σ̂2) = n − 1

n
σ2

The bias is

E(σ̂2) − σ2 = n − 1

n
σ2 − σ2 = −σ2

n
Because the bias is negative, σ̂2 tends to underestimate the true variance σ2. Note that the bias

approaches zero as n increases. Therefore, σ̂2 is an asymptotically unbiased estimator for σ2.

We now give another very important and useful property of maximum likelihood estimators.

Invariance Property
Let ̂Θ1,

̂Θ2,… ,
̂Θk be the maximum likelihood estimators of the parameters θ1, θ2, … , θk.

Then the maximum likelihood estimator of any function h(θ1, θ2, … , θk) of these parameters

is the same function h( ̂Θ1,
̂Θ2,… ,

̂Θk) of the estimators ̂Θ1,
̂Θ2,… ,

̂Θk.

E X A M P L E 7.12

In the normal distribution case, the maximum likelihood esti-

mators of μ and σ2 were μ̂ = X and σ̂2 =
∑n

i=1
(Xi − X)2∕n,

respectively. To obtain the maximum likelihood estimator of

the function h(μ, σ2) =
√
σ2 = σ, substitute the estimators μ̂

and σ̂2 into the function h, which yields

σ̂ =
√
σ̂2 =

[

1

n

n∑

i=1

(Xi − X)2
]1∕2

Conclusion: The maximum likelihood estimator of the

standard deviation σ is not the sample standard deviation S.

Complications in Using Maximum Likelihood Estimation Although the method of

maximum likelihood is an excellent technique, sometimes complications arise in its use.

For example, it is not always easy to maximize the likelihood function because the equation(s)

obtained from dL(θ)/dθ = 0 may be difficult to solve. Furthermore, it may not always be possible
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to use calculus methods directly to determine the maximum of L(θ). This is illustrated in the

following example.

E X A M P L E 7.13 Uniform Distribution MLE

Let X be uniformly distributed on the interval 0 to a. Because

the density function is f (x) = 1/a for 0 ≤ x ≤ a and zero

otherwise, the likelihood function of a random sample of

size n is

L(a) =
n∏

i=1

1

a
= 1

an

for

0 ≤ x1 ≤ a, 0 ≤ x2 ≤ a,… , 0 ≤ xn ≤ a

Note that the slope of this function is not zero anywhere.

That is, as long as max(xi) ≤ a, the likelihood is 1/an, which is

positive, but when a < max(xi), the likelihood goes to zero as

illustrated in Figure 7.9. Therefore, calculus methods cannot

be used directly because the maximum value of the likelihood

function occurs at a point of discontinuity. However, because

d / da(a−n) = −n/an + 1 is less than zero for all values of

a > 0, a−n is a decreasing function of a. This implies that

the maximum of the likelihood function L(a) occurs at the

lower boundary point. The figure clearly shows that we could

maximize L(a) by setting â equal to the smallest value that

it could logically take on, which is max(xi). Clearly, a cannot

be smaller than the largest sample observation, so setting â
equal to the largest sample value is reasonable.

Max (xi )0

L(a)

a

FIGURE 7.9

The likelihood function for the uniform distribution in
Example 7.13.

7.4.3 Bayesian Estimation of Parameters
This book uses methods of statistical inference based on the information in the sample data. In

effect, these methods interpret probabilities as relative frequencies. Sometimes we call probabil-

ities that are interpreted in this manner objective probabilities. Another approach to statistical

inference, called the Bayesian approach, combines sample information with other information

that may be available prior to collecting the sample. In this section, we briefly illustrate how this

approach may be used in parameter estimation.

Suppose that the random variable X has a probability distribution that is a function of one

parameter θ. We write this probability distribution as f (x | θ). This notation implies that the exact

form of the distribution of X is conditional on the value assigned to θ. The classical approach

to estimation would consist of taking a random sample of size n from this distribution and then

substituting the sample values xi into the estimator for θ. This estimator could have been developed

using the maximum likelihood approach, for example.

Suppose that we have some additional information about θ and that we can summarize that

information in the form of a probability distribution for θ, say, f (θ). This probability distribution

is often called the prior distribution for θ, and suppose that the mean of the prior is μ0 and

the variance is σ2
0
. This is a very novel concept insofar as the rest of this book is concerned

because we are now viewing the parameter θ as a random variable. The probabilities associated

with the prior distribution are often called subjective probabilities because they usually reflect

the analyst’s degree of belief regarding the true value of θ. The Bayesian approach to estimation

uses the prior distribution for θ, f (θ), and the joint probability distribution of the sample, say,

f (x1, x2, … , xn|θ), to find a posterior distribution for θ, say, f (θ|x1, x2, … , xn). This posterior

distribution contains information from both the sample and the prior distribution for θ. In a sense,

it expresses our degree of belief regarding the true value of θ after observing the sample data. It

is easy conceptually to find the posterior distribution. The joint probability distribution of the

sample X1, X2, … , Xn and the parameter θ (remember that θ is a random variable) is

f (x1, x2,… , xn, θ) = f (x1, x2,… , xn|θ) f (θ)
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and the marginal distribution of X1, X2, … , Xn is

f (x1, x2,… , xn) =
⎧
⎪
⎨
⎪
⎩

∑

0

f (x1, x2,… , xn, θ), θ discrete

∫

∞

−∞
f (x1, x2,… , xn, θ) dθ, θ continuous

Therefore, the desired distribution is

f (θ|x1, x2,… , xn) =
f (x1, x2,… , xn, θ)
f (x1, x2,… , xn)

We define the Bayes estimator of θ as the value θ that corresponds to the mean of the posterior

distribution f (θ|x1, x2, … , xn).

Sometimes the mean of the posterior distribution of θ can be determined easily. As a function

of θ, f (θ|x1, … , xn) is a probability density function and x1, … , xn are just constants. Because

θ enters into f (θ|x1, … , xn) only through f (x1,… , xn, θ) if f (x1,… , xn, θ) is recognized as a

well-known probability function, the posterior mean of θ can be deduced from the well-known

distribution without integration or even calculation of f (x1,… , xn).

E X A M P L E 7.14 Bayes Estimator for the Mean

of a Normal Distribution

Let X1, X2, … , Xn be a random sample from the normal distri-

bution with mean μ and variance σ2 where μ is unknown and

σ2 is known. Assume that the prior distribution for μ is normal

with mean μ0 and variance σ2
0
; that is,

f (μ) = 1
√

2πσ0

e−(μ−μ0)2∕(2σ2
0
) = 1

√
2πσ2

0

e−(μ2−2μ0+μ2
0
)∕(2σ2

0
)

The joint probability distribution of the sample is

f (x1, x2,… , xn|μ) =
1

(2πσ2)n∕2
e
−(1∕2σ2)

n∑

i=1

(xi−μ)2

= 1

(2πσ2)n∕2
e−(1∕2σ2)(∑ x2

i −2μ
∑

xi+nμ2)

Thus, the joint probability distribution of the sample and μ is

f (x1, x2,… , xn, μ) =
1

(2πσ2)n∕2
√

2πσ0

× e−(1∕2)
[

(1∕σ2
0
+n∕σ2)μ2−

(

2μ0∕σ2
0
+2

∑
xi∕σ2

)

μ+
∑

x2
i ∕σ

2+μ2
0
∕σ2

0

]

= e
−(1∕2)

[(

1

σ2
0

+ 1

σ2∕n

)

μ2−2

(
μ0

σ2
0

+ x
σ2∕n

)

μ

]

h1(x1,… , xn, σ2
, μ0, σ2

0
)

Upon completing the square in the exponent,

f (x1, x2,… , xn, μ) =

e
−(1∕2)

(

1

σ2
0

+ 1

σ2∕n

)[

μ2−

(
(σ2∕n)μ0

σ2
0
+σ2∕n

+
xσ2

0

σ2
0
+σ2∕n

)]2

h2(x1,… , xn, σ2
, μ0, σ2

0
)

where hi(x1,… , xn, σ2
, μ0, σ2

0
) is a function of the observed

values and the parameters σ2, μ0, and σ2
0
.

Now, because f (x1, …, xn) does not depend on μ,

f (μ|x1,… , xn) =

e
−(1∕2)

(

1

σ2
0

+ 1

σ2∕n

)[

μ2−

(
(σ2∕n)μ0+σ2

0
x

σ2
0
+σ2∕n

)]

h3(x1,… , xn, σ2
, μ0, σ2

0
)

This is recognized as a normal probability density function

with posterior mean

(σ2∕n)μ0 + σ2
0
x

σ2
0
+ σ2∕n

and posterior variance

(

1

σ2
0

+ 1

σ2∕n

)−1

=
σ2

0
(σ2∕n)

σ2
0
+ σ2∕n

Consequently, the Bayes estimate of μ is a weighted average of

μ0 and x. For purposes of comparison, note that the maximum

likelihood estimate of μ is μ̂ = x.

To illustrate, suppose that we have a sample of size n= 10

from a normal distribution with unknown mean μ and variance

σ2 = 4. Assume that the prior distribution for μ is normal with

mean μ0 = 0 and variance σ2
0
= 1. If the sample mean is 0.75,

the Bayes estimate of μ is

(4∕10)0 + 1(0.75)
1 + (4∕10)

= 0.75

1.4
= 0.536

Conclusion: Note that the maximum likelihood estimate

of μ is x = 0.75 . The Bayes estimate is between the maximum

likelihood estimate and the prior mean.
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A relationship exists between the Bayes estimator for a parameter and the maximum likeli-

hood estimator of the same parameter. For large sample sizes, the two are nearly equivalent. In

general, the difference between the two estimators is small compared to 1∕
√

n. In practical prob-

lems, a moderate sample size will produce approximately the same estimate by either the Bayes

or maximum likelihood method if the sample results are consistent with the assumed prior infor-

mation. If the sample results are inconsistent with the prior assumptions, the Bayes estimate may

differ considerably from the maximum likelihood estimate. In these circumstances, if the sam-

ple results are accepted as being correct, the prior information must be incorrect. The maximum

likelihood estimate would then be the better estimate to use.

If the sample results are very different from the prior information, the Bayes estimator will

always tend to produce an estimate that is between the maximum likelihood estimate and the prior

assumptions. If there is more inconsistency between the prior information and the sample, there

will be more difference between the two estimates.

Important Terms and Concepts

Bayes estimator

Bias in parameter estimation

Bootstrap method

Central limit theorem

Estimator versus estimate

Likelihood function

Maximum likelihood estimator

Mean squared error of an estimator

Minimum variance unbiased estimator

Moment estimator

Normal distribution as the sampling

distribution of the difference in two

sample means

Normal distribution as the sampling

distribution of a sample mean

Parameter estimation

Point estimator

Population or distribution moments

Posterior distribution

Prior distribution

Sample moments

Sampling distribution

Standard error and estimated standard error

of an estimator

Statistic

Statistical inference

Unbiased estimator
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L E A R N I N G O B J E C T I V E S

After careful study of this chapter, you should be able to do the following:

1. Construct confidence intervals on the mean of a

normal distribution, using either the normal

distribution or the t distribution method

2. Construct confidence intervals on the variance and

standard deviation of a normal distribution

3. Construct confidence intervals on a population

proportion

4. Use a general method for constructing an

approximate confidence interval on a parameter

5. Construct a prediction interval for a future

observation

6. Construct a tolerance interval for a normal

distribution

7. Explain the three types of interval estimates:

confidence intervals, prediction intervals, and

tolerance intervals

170
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C H A P T E R O U T L I N E

8.1 Confidence Interval on the Mean of a Normal

Distribution, Variance Known

8.1.1 Development of the Confidence Interval

and Its Basic Properties

8.1.2 Choice of Sample Size

8.1.3 One-Sided Confidence Bounds

8.1.4 General Method to Derive

a Confidence Interval

8.1.5 Large-Sample Confidence Interval for μ

8.2 Confidence Interval on the Mean of a Normal

Distribution, Variance Unknown

8.2.1 t Distribution

8.2.2 t Confidence Interval on μ

8.3 Confidence Interval on the Variance and

Standard Deviation of a Normal Distribution

8.4 Large-Sample Confidence Interval

for a Population Proportion

8.5 Guidelines for Constructing

Confidence Intervals

8.6 Bootstrap Confidence Interval

8.7 Tolerance and Prediction Intervals

8.7.1 Prediction Interval for a Future Observation

8.7.2 Tolerance Interval for a Normal Distribution

Introduction
Engineers are often involved in estimating parameters. For example, there is an ASTM Standard

E23 that defines a technique called the Charpy V-notch method for notched bar impact testing of

metallic materials. The impact energy is often used to determine whether the material experiences

a ductile-to-brittle transition as the temperature decreases. Suppose that we have tested a sample

of 10 specimens of a particular material with this procedure. We know that we can use the sample

average X to estimate the true mean impact energy μ. However, we also know that the true mean

impact energy is unlikely to be exactly equal to your estimate. Reporting the results of your test

as a single number is unappealing because nothing inherent in X provides any information about

how close it is to the true value of the mean μ. Our estimate could be very close, or it could be

considerably far from the true mean. A way to avoid this is to report the estimate in terms of a

range of plausible values called a confidence interval. A confidence interval always specifies a

confidence level, usually 90%, 95%, or 99%, which is a measure of the reliability of the procedure.

So if a 95% confidence interval on the impact energy based on the data from our 10 specimens

has a lower limit of 63.84J and an upper limit of 65.08J, then we can say that at the 95% level

of confidence any value of mean impact energy between 63.84J and 65.08J is a plausible value.

By reliability, we mean that if we repeated this experiment over and over again, 95% of all samples

would produce a confidence interval that contains the true mean impact energy, and only 5% of the

time would the interval be in error. In this chapter, you learn how to construct confidence intervals

and other useful types of statistical intervals for many important types of problem situations.

In the previous chapter, we illustrated how a point estimate of a parameter can be estimated

from sample data. However, it is important to understand how good the estimate obtained is. For

example, suppose that we estimate the mean viscosity of a chemical product to be μ̂ = x = 1000.

Now because of sampling variability, it is almost never the case that the true mean μ is exactly

equal to the estimate x. The point estimate says nothing about how close μ̂ is to μ. Is the process

mean likely to be between 900 and 1100? Or is it likely to be between 990 and 1010? The answer

to these questions affects our decisions regarding this process. Bounds that represent an interval

of plausible values for a parameter are examples of an interval estimate. Surprisingly, it is easy

to determine such intervals in many cases, and the same data that provided the point estimate

are typically used.

An interval estimate for a population parameter is called a confidence interval. Information

about the precision of estimation is conveyed by the length of the interval. A short interval implies

precise estimation. We cannot be certain that the interval contains the true, unknown population
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parameter—we use only a sample from the full population to compute the point estimate and

the interval. However, the confidence interval is constructed so that we have high confidence

that it does contain the unknown population parameter. Confidence intervals are widely used in

engineering and the sciences.

A tolerance interval is another important type of interval estimate. For example, the chemi-

cal product viscosity data might be assumed to be normally distributed. We might like to calculate

limits that bound 95% of the viscosity values. For a normal distribution, we know that 95% of the

distribution is in the interval

μ − 1.96σ, μ − 19.6σ

However, this is not a useful tolerance interval because the parameters μ and σ are unknown.

Point estimates such as x and s can be used in the preceding equation for μ and σ. However, we

need to account for the potential error in each point estimate to form a tolerance interval for the

distribution. The result is an interval of the form

x − ks, x + ks

where k is an appropriate constant (that is larger than 1.96 to account for the estimation error).

As in the case of a confidence interval, it is not certain that the tolerance interval bounds 95%

of the distribution, but the interval is constructed so that we have high confidence that it does.

Tolerance intervals are widely used and, as we will subsequently see, they are easy to calculate

for normal distributions.

Confidence and tolerance intervals bound unknown elements of a distribution. In this chapter,

you learn to appreciate the value of these intervals. A prediction interval provides bounds on

one (or more) future observations from the population. For example, a prediction interval could

be used to bound a single, new measurement of viscosity—another useful interval. With a large

sample size, the prediction interval for normally distributed data tends to the tolerance interval,

but for more modest sample sizes, the prediction and tolerance intervals are different.

Keep the purpose of the three types of interval estimates clear:

• A confidence interval bounds population or distribution parameters (such as the mean

viscosity).

• A tolerance interval bounds a selected proportion of a distribution.

• A prediction interval bounds future observations from the population or distribution.

Our experience has been that it is easy to confuse the three types of intervals. For example, a

confidence interval is often reported when the problem situation calls for a prediction interval.

Confidence intervals are covered in this chapter, while tolerance and prediction intervals are pre-

sented in the online material.

8.1 Confidence Interval on the Mean

of a Normal Distribution, Variance Known
The basic ideas of a confidence interval (CI) are most easily understood by initially considering

a simple situation. Suppose that we have a normal population with unknown mean μ and known

variance σ2. This is a somewhat unrealistic scenario because typically both the mean and variance

are unknown. However, in subsequent sections, we present confidence intervals for more general

situations.

8.1.1 Development of the Confidence Interval
and Its Basic Properties
Suppose that X1, X2,… , Xn is a random sample from a normal distribution with unknown mean

μ and known variance σ2. From the results of Chapter 5, we know that the sample mean X is
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normally distributed with mean μ and variance σ2/n. We may standardize X by subtracting the

mean and dividing by the standard deviation, which results in the variable

Z =
X − μ
σ∕
√

n
(8.1)

The random variable Z has a standard normal distribution.

A confidence interval estimate for μ is an interval of the form l ≤ μ≤ u, where the end-points

l and u are computed from the sample data. Because different samples will produce different

values of l and u, these end-points are values of random variables L and U, respectively. Suppose

that we can determine values of L and U such that the following probability statement is true:

P{L ≤ μ ≤ U} = 1 − α (8.2)

where 0 ≤ α≤ 1. There is a probability of 1 − α of selecting a sample for which the CI will contain

the true value of μ. Once we have selected the sample, so that X1 = x1, X2 = x2,… , Xn = xn, and

computed l and u, the resulting confidence interval for μ is

l ≤ μ ≤ u (8.3)

The end-points or bounds l and u are called the lower- and upper-confidence limits (bounds),
respectively, and 1 − α is called the confidence coefficient.

In our problem situation, because Z =
(

X − μ
)

∕
(

σ∕
√

n
)

has a standard normal distribution,

we may write

P

{

−zα∕2 ≤
X − μ
σ∕
√

n
≤ zα∕2

}

= 1 − α

Now manipulate the quantities inside the brackets by (1) multiplying through by σ∕
√

n,

(2) subtracting X from each term, and (3) multiplying through by −1. This results in

P

{

X − zα∕2

σ
√

n
≤ μ ≤ X + zα∕2

σ
√

n

}

= 1 − α (8.4)

This is a random interval because the end-points X ± Zα∕2σ∕
√

n involve the random variable X.

From consideration of Equation 8.4, the lower and upper end-points or limits of the inequalities

in Equation 8.4 are the lower- and upper-confidence limits L and U, respectively. This leads to

the following definition.

Confidence Interval on the Mean, Variance Known
If x is the sample mean of a random sample of size n from a normal population with known

variance σ2, a 100(1 − α)% confidence interval on μ is given by

x − zα∕2σ∕
√

n ≤ μ ≤ x + zα∕2σ∕
√

n (8.5)

where zα/2 is the upper 100α/2 percentage point of the standard normal distribution.

The development of this CI assumed that we are sampling from a normal population. The CI is

quite robust to this assumption. That is, moderate departures from normality are of no serious

concern. From a practical viewpoint, this implies that an advertised 95% CI might have actual

confidence of 93% or 94%.



�

� �

�

174 CHAPTER 8 Statistical Intervals for a Single Sample

E X A M P L E 8.1 Metallic Material Transition

ASTM Standard E23 defines standard test methods for

notched bar impact testing of metallic materials. The Charpy

V-notch (CVN) technique measures impact energy and is

often used to determine whether or not a material experiences

a ductile-to-brittle transition with decreasing temperature.

Ten measurements of impact energy (J) on specimens of

A238 steel cut at 60∘C are as follows: 64.1, 64.7, 64.5, 64.6,

64.5, 64.3, 64.6, 64.8, 64.2, and 64.3. Assume that impact

energy is normally distributed with σ = 1 J. We want to

find a 95% CI for μ, the mean impact energy. The required

quantities are zα/2 = z0.025 = 1.96, n = 10, σ = 1, and x = 64.46.

The resulting 95% CI is found from Equation 8.5 as follows:

x − zα∕2

σ
√

n
≤ μ ≤ x + zα∕2

σ
√

n

64.46 − 1.96
1

√
10

≤ μ ≤ 64.46 + 1.96
1

√
10

63.84 ≤ μ ≤ 65.08

Practical Interpretation: Based on the sample data, a

range of highly plausible values for mean impact energy for

A238 steel at 60∘C is 63.84 J ≤ μ ≤ 65.08 J.

Interpreting a Confidence Interval How does one interpret a confidence interval? In the

impact energy estimation problem in Example 8.1, the 95% CI is 63.84 ≤ μ ≤ 65.08, so it is

tempting to conclude that μ is within this interval with probability 0.95. However, with a little

reflection, it is easy to see that this cannot be correct; the true value of μ is unknown, and

the statement 63.84 ≤ μ ≤ 65.08 is either correct (true with probability 1) or incorrect (false

with probability 1). The correct interpretation lies in the realization that a CI is a random inter-
val because in the probability statement defining the end-points of the interval (Equation 8.2),

L and U are random variables. Consequently, the correct interpretation of a 100(1 − α)% CI

depends on the relative frequency view of probability. Specifically, if an infinite number of random

samples are collected and a 100(1 − α)% confidence interval for μ is computed from each sample,

100(1 − α)% of these intervals will contain the true value of μ.

The situation is illustrated in Figure 8.1, which shows several 100(1 − α)% confidence inter-

vals for the mean μ of a normal distribution. The dots at the center of the intervals indicate the

point estimate of μ (that is, x). Notice that one of the intervals fails to contain the true value of

μ. If this were a 95% confidence interval, in the long run only 5% of the intervals would fail to

contain μ.

Now in practice, we obtain only one random sample and calculate one confidence interval.

Because this interval either will or will not contain the true value of μ, it is not reasonable to attach

a probability level to this specific event. The appropriate statement is that the observed interval

[l, u] brackets the true value of μ with confidence 100(1 − α). This statement has a frequency

interpretation; that is, we do not know whether the statement is true for this specific sample, but

the method used to obtain the interval [l, u] yields correct statements 100(1 − α)% of the time.

Confidence Level and Precision of Estimation Notice that in Example 8.1, our choice

of the 95% level of confidence was essentially arbitrary. What would have happened if we had

chosen a higher level of confidence, say, 99%? In fact, is it not reasonable that we would want the

FIGURE 8.1

Repeated construction of a confidence
interval for 𝛍. Interval number

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
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x

E = error = ∣ x –  ∣

u = x + z  /2 / nl = x – z  /2 / n

FIGURE 8.2

Error in estimating 𝛍 with x.

higher level of confidence? At α = 0.01, we find zα/2 = z0.01/2 = z0.005 = 2.58, while for α = 0.05,

z0.025 = 1.96. Thus, the length of the 95% confidence interval is

2
(

1.96σ
/√

n
)

= 3.92σ
/√

n

whereas the length of the 99% CI is

2
(

2.58σ
/√

n
)

= 5.16σ
/√

n

Thus, the 99% CI is longer than the 95% CI. This is why we have a higher level of confidence

in the 99% confidence interval. Generally, for a fixed sample size n and standard deviation σ, the

higher the confidence level, the longer the resulting CI.

The length of a confidence interval is a measure of the precision of estimation. Many authors

define the half-length of the CI (in our case zα∕2σ∕
√

n) as the bound on the error in estima-

tion of the parameter. From the preceeding discussion, we see that precision is inversely related

to the confidence level. It is desirable to obtain a confidence interval that is short enough for

decision-making purposes and that also has adequate confidence. One way to achieve this is by

choosing the sample size n to be large enough to give a CI of specified length or precision with

prescribed confidence.

8.1.2 Choice of Sample Size

The precision of the confidence interval in Equation 8.5 is 2zα∕2σ∕
√

n. This means that in using x
to estimate μ, the error E = |x − μ| is less than or equal to zα∕2σ∕

√
n with confidence 100(1 − α).

This is shown graphically in Figure 8.2. In situations whose sample size can be controlled, we

can choose n so that we are 100(1 − α)% confident that the error in estimating μ is less than a

specified bound on the error E. The appropriate sample size is found by choosing n such that

zα∕2σ∕
√

n = E. Solving this equation gives the following formula for n.

Sample Size for Specified Error on the Mean, Variance Known
If x is used as an estimate of μ, we can be 100(1 − α)% confident that the error |x − μ| will

not exceed a specified amount E when the sample size is

n =
( zα∕2σ

E

)2

(8.6)

If the right-hand side of Equation 8.6 is not an integer, it must be rounded up. This will ensure

that the level of confidence does not fall below 100(1 − α)%. Notice that 2E is the length of the

resulting confidence interval.

E X A M P L E 8.2 Metallic Material Transition

To illustrate the use of this procedure, consider the CVN test

described in Example 8.1 and suppose that we want to deter-

mine how many specimens must be tested to ensure that the

95% CI on μ for A238 steel cut at 60∘C has a length of at most

1.0 J. Because the bound on error in estimation E is one-half

of the length of the CI, to determine n, we use Equation 8.6

with E = 0.5, σ = 1, and zα/2 = 1.96. The required sample

size is

n =
( zα∕2 σ

E

)2

=
[
(1.96)1

0.5

]2

= 15.37

and because n must be an integer, the required sample size

is n = 16.
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Notice the general relationship between sample size, desired length of the confidence interval

2E, confidence level 100(1 − α), and standard deviation σ:

• As the desired length of the interval 2E decreases, the required sample size n increases for a

fixed value of σ and specified confidence.

• As σ increases, the required sample size n increases for a fixed desired length 2E and specified

confidence.

• As the level of confidence increases, the required sample size n increases for fixed desired

length 2E and standard deviation σ.

8.1.3 One-Sided Confidence Bounds
The confidence interval in Equation 8.5 gives both a lower confidence bound and an upper con-

fidence bound for μ. Thus, it provides a two-sided CI. It is also possible to obtain one-sided

confidence bounds for μ by setting either the lower bound l = −∞ or the upper bound u =∞ and

replacing zα/2 by zα.

One-Sided Confidence Bounds on the Mean, Variance Known
A 100(1 − α)% upper-confidence bound for μ is

μ ≤ x + zασ∕
√

n (8.7)

and a 100(1 − α)% lower-confidence bound for μ is

x − zα σ∕
√

n ≤ μ (8.8)

E X A M P L E 8.3 One-Sided Confidence Bound

The same data for impact testing from Example 8.1 are used

to construct a lower, one-sided 95% confidence interval for

the mean impact energy. Recall that x = 64.46, σ = 1J, and

n = 10. The interval is

x − zα
σ
√

n
≤ μ

64.46 − 1.64
1

√
10

≤ μ

63.94 ≤ μ

Practical Interpretation: The lower limit for the two-

sided interval in Example 8.1 was 63.84. Because zα < zα/2,

the lower limit of a one-sided interval is always greater than

the lower limit of a two-sided interval of equal confidence.

The one-sided interval does not bound μ from above so that

it still achieves 95% confidence with a slightly larger lower

limit. If our interest is only in the lower limit for μ, then

the one-sided interval is preferred because it provides equal

confidence with a greater limit. Similarly, a one-sided upper

limit is always less than a two-sided upper limit of equal

confidence.

8.1.4 General Method to Derive a Confidence Interval
It is easy to give a general method for finding a confidence interval for an unknown parameter θ.

Let X1, X2,… , Xn be a random sample of n observations. Suppose that we can find a statistic

g(X1, X2,… , Xn; θ) with the following properties:

1. g(X1, X2,… , Xn; θ) depends on both the sample and θ.

2. The probability distribution of g(X1, X2,… , Xn; θ) does not depend on θ or any other

unknown parameter.
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In the case considered in this section, the parameter was θ = μ. The random variable g(X1,X2,… ,

Xn; μ) = (X − μ)∕(σ∕
√

n) satisfies both conditions; the random variable depends on the sample

and on μ, and it has a standard normal distribution because σ is known. Now we must find con-

stants CL and CU so that

P[CL ≤ g(X1,X2,… ,Xn; θ) ≤ CU] = 1 − α (8.9)

Because of property 2, CL and CU do not depend on θ. In our example, CL = −zα/2 and CU = zα/2.

Finally, we must manipulate the inequalities in the probability statement so that

P[L(X1,X2,… ,Xn) ≤ θ ≤ U(X1,X2,… ,Xn)] = 1 − α (8.10)

This gives L(X1, X2,… , Xn) and U(X1, X2,… , Xn) as the lower and upper confidence limits

defining the 100(1 − α) confidence interval for θ. The quantity g(X1, X2,… , Xn; θ) is often called

a pivotal quantity because we pivot on this quantity in Equation 8.9 to produce Equation 8.10.

In our example, we manipulated the pivotal quantity (X − μ)∕(σ∕
√

n) to obtain L(X1,X2,… ,Xn) =
X − zα∕2σ∕

√
n and U(X1,X2,… ,Xn) = X + zα∕2σ∕

√
n.

8.1.5 Large-Sample Confidence Interval for μ
We have assumed that the population distribution is normal with unknown mean and known

standard deviation σ. We now present a large-sample CI for μ that does not require these

assumptions. Let X1, X2,… , Xn be a random sample from a population with unknown mean

μ and variance σ2. Now if the sample size n is large, the central limit theorem implies

that X has approximately a normal distribution with mean μ and variance σ2/n. Therefore,

Z = (X − μ)∕(σ∕
√

n) has approximately a standard normal distribution. This ratio could be used

as a pivotal quantity and manipulated as in Section 8.1.1 to produce an approximate CI for μ.

However, the standard deviation σ is unknown. It turns out that when n is large, replacing σ by the

sample standard deviation S has little effect on the distribution of Z. This leads to the following

useful result.

Large-Sample Confidence Interval on the Mean
When n is large, the quantity

X − μ
S∕
√

n

has an approximate standard normal distribution. Consequently,

x − zα∕2

s
√

n
≤ μ ≤ x + zα∕2

s
√

n
(8.11)

is a large-sample confidence interval for μ, with confidence level of approximately

100(1 − α)%.

Equation 8.11 holds regardless of the shape of the population distribution. Generally, n should

be at least 40 to use this result reliably. The central limit theorem generally holds for n ≥ 30, but

the larger sample size is recommended here because replacing s with S in Z results in additional

variability.
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E X A M P L E 8.4 Mercury Contamination

An article in the 1993 volume of the Transactions of the
American Fisheries Society reports the results of a study to

investigate the mercury contamination in largemouth bass.

A sample of fish was selected from 53 Florida lakes, and

mercury concentration in the muscle tissue was measured

(ppm). The mercury concentration values were

1.230 1.330 0.040 0.044 1.200 0.270

0.490 0.190 0.830 0.810 0.710 0.500

0.490 1.160 0.050 0.150 0.190 0.770

1.080 0.980 0.630 0.560 0.410 0.730

0.590 0.340 0.340 0.840 0.500 0.340

0.280 0.340 0.750 0.870 0.560 0.170

0.180 0.190 0.040 0.490 1.100 0.160

0.100 0.210 0.860 0.520 0.650 0.270

0.940 0.400 0.430 0.250 0.270

The summary statistics for these data are as follows:

Variable N Mean Median StDev
Concentration 53 0.5250 0.4900 0.3486

Minimum Maximum Q1 Q3
0.0400 1.3300 0.2300 0.7900

Figure 8.3 presents the histogram and normal probability plot

of the mercury concentration data. Both plots indicate that

the distribution of mercury concentration is not normal and

is positively skewed. We want to find an approximate 95%

CI on μ. Because n > 40, the assumption of normality is not

necessary to use in Equation 8.11. The required quantities are

n = 53, x = 0.5250, s = 0.3486, and z0.025 = 1.96. The approx-

imate 95% CI on μ is

x − z0.025

s
√

n
≤ μ ≤ x + z0.025

s
√

n

0.5250 − 1.96
0.3486
√

53
≤ μ ≤ 0.5250 + 1.96

0.3486
√

53

0.4311 ≤ μ ≤ 0.6189

Practical Interpretation: This interval is fairly wide

because there is substantial variability in the mercury con-

centration measurements. A larger sample size would have

produced a shorter interval.
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FIGURE 8.3

Mercury concentration in largemouth bass. (a) Histogram. (b) Normal probability plot.
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Large-Sample Confidence Interval for a Parameter The large-sample confidence interval

for μ in Equation 8.11 is a special case of a more general result. Suppose that θ is a parameter

of a probability distribution, and let ̂Θ be an estimator of θ. If ̂Θ (1) has an approximate normal

distribution, (2) is an approximately unbiased estimator for θ, and (3) has standard deviation σ
̂Θ

that can be estimated from the sample data, the quantity (̂Θ − 0)∕σ
̂Θ has an approximate standard

normal distribution. Then a large-sample approximate CI for θ is given by

Large-Sample Approximate Confidence Interval
̂θ − zα∕2σ̂Θ ≤ θ ≤ ̂θ + zα∕2σ̂Θ (8.12)

Maximum likelihood estimators usually satisfy the three conditions just listed, so Equation 8.12

is often used when ̂Θ is the maximum likelihood estimator of θ. Finally, note that Equation 8.12

can be used even when σ
̂Θ is a function of other unknown parameters (or of θ). Essentially, we

simply use the sample data to compute estimates of the unknown parameters and substitute those

estimates into the expression for σ
̂Θ

8.2 Confidence Interval on the Mean

of a Normal Distribution, Variance Unknown
When we are constructing confidence intervals on the mean μ of a normal population when σ2 is

known, we can use the procedure in Section 8.1.1. This CI is also approximately valid (because

of the central limit theorem) regardless of whether or not the underlying population is normal so

long as n is reasonably large (n ≥ 40, say). As noted in Section 8.1.5, we can even handle the

case of unknown variance for the large-sample-size situation. However, when the sample is small

and σ2 is unknown, we must make an assumption about the form of the underlying distribution

to obtain a valid CI procedure. A reasonable assumption in many cases is that the underlying

distribution is normal.

Many populations encountered in practice are well approximated by the normal distribu-

tion, so this assumption will lead to confidence interval procedures of wide applicability. In fact,

moderate departure from normality will have little effect on validity. When the assumption is

unreasonable, an alternative is to use nonparametric statistical procedures that are valid for any

underlying distribution.

Suppose that the population of interest has a normal distribution with unknown mean μ and

unknown variance σ2. Assume that a random sample of size n, say, X1, X2,… , Xn, is available,

and let X and S2 be the sample mean and variance, respectively.

We wish to construct a two-sided CI on μ. If the variance σ2 is known, we know that

Z = (X − μ)∕(σ∕
√

n) has a standard normal distribution. When σ2 is unknown, a logical proce-

dure is to replace σ with the sample standard deviation S. The random variable Z now becomes

T = (X − μ)∕(S∕
√

n). A logical question is what effect replacing σ with S has on the distribution

of the random variable T . If n is large, the answer to this question is “very little,” and we can

proceed to use the confidence interval based on the normal distribution from Section 8.1.5.

However, n is usually small in most engineering problems, and in this situation, a different

distribution must be employed to construct the CI.
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8.2.1 t Distribution

t Distribution
Let X1, X2,… , Xn be a random sample from a normal distribution with unknown mean μ
and unknown variance σ2. The random variable

T =
X − μ
S∕
√

n
(8.13)

has a t distribution with n − 1 degrees of freedom.

The t probability density function is

f (x) =
Γ
[
(k + 1)∕2

]

√
πkΓ(k∕2)

•
1

[
(x2∕k) + 1

](k+1)∕2
−∞ < x < ∞ (8.14)

where k is the number of degrees of freedom. The mean and variance of the t distribution are zero

and k/(k − 2) (for k > 2), respectively.

Several t distributions are shown in Figure 8.4. The general appearance of the t distribution is

similar to the standard normal distribution in that both distributions are symmetric and unimodal,

and the maximum ordinate value is reached when the mean μ = 0. However, the t distribution

has heavier tails than the normal; that is, it has more probability in the tails than does the normal

distribution. As the number of degrees of freedom k →∞, the limiting form of the t distribution is

the standard normal distribution. Generally, the number of degrees of freedom for t is the number

of degrees of freedom associated with the estimated standard deviation.

Appendix Table V provides percentage points of the t distribution. We let tα,k be the value of

the random variable T with k degrees of freedom above which we find an area (or probability) α.

Thus, tα,k is an upper-tailed 100α percentage point of the t distribution with k degrees of freedom.

This percentage point is shown in Figure 8.5. In Appendix Table V, the α values are the column

headings, and the degrees of freedom are listed in the left column. To illustrate the use of the table,

note that the t-value with 10 degrees of freedom having an area of 0.05 to the right is t0.05,10 =
1.812. That is,

P(T10 > t0.05,10) = P(T10 > 1.812) = 0.05

Because the t distribution is symmetric about zero, we have t1−α,n = −tα,n; that is, the t-value

having an area of 1 − α to the right (and therefore an area of α to the left) is equal to the negative

of the t-value that has area α in the right tail of the distribution. Therefore, t0.95,10 = −t0.05,10 =
−1.812. Finally, because tα,∞ is the standard normal distribution, the familiar zα values appear in

the last row of Appendix Table V.

0

k = ∞ [N (0, 1)]

x

k = 10

k = 1

FIGURE 8.4

Probability density functions of several t distributions.

t0

FIGURE 8.5

Percentage points of the t distribution.
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8.2.2 t Confidence Interval on μ
It is easy to find a 100(1 − α)% confidence interval on the mean of a normal distribution

with unknown variance by proceeding essentially as we did in Section 8.1.1. We know that

the distribution of T = (X − μ)∕(S∕
√

n) is t with n − 1 degrees of freedom. Letting tα/2,n−1

be the upper 100α/2 percentage point of the t distribution with n − 1 degrees of freedom, we

may write

P(−tα∕2,n−1 ≤ T ≤ tα∕2,n−1) = 1 − α

or

P

(

−tα∕2,n−1 ≤
X − μ
S∕
√

n
≤ tα∕2,n−1

)

= 1 − α

Rearranging this last equation yields

P(X − tα∕2,n−1S∕
√

n ≤ μ ≤ X + tα∕2,n−1S∕
√

n) = 1 − α (8.15)

This leads to the following definition of the 100(1 − α)% two-sided confidence interval on μ.

Confidence Interval on the Mean, Variance Unknown
If x and s are the mean and standard deviation of a random sample from a normal distribu-

tion with unknown variance σ2, a 100(1 − α)% confidence interval on μ is given by

x − tα∕2,n−1s∕
√

n ≤ μ ≤ x + tα∕2,n−1s∕
√

n (8.16)

where tα/2,n−1 is the upper 100α/2 percentage point of the t distribution with n − 1 degrees

of freedom.

The assumption underlying this CI is that we are sampling from a normal population. How-

ever, the t distribution-based CI is relatively insensitive or robust to this assumption. Checking

the normality assumption by constructing a normal probability plot of the data is a good general

practice. Small to moderate departures from normality are not a cause for concern.

One-sided confidence bounds on the mean of a normal distribution are also of interest and are

easy to find. Simply use only the appropriate lower or upper confidence limit from Equation 8.16

and replace tα/2,n−1 by tα,n−1.

E X A M P L E 8.5 Alloy Adhesion

An article in the Journal of Materials Engineering
[“Instrumented Tensile Adhesion Tests on Plasma Sprayed

Thermal Barrier Coatings” (1989, Vol. 11(4), pp. 275–282)]

describes the results of tensile adhesion tests on 22 U-700

alloy specimens. The load at specimen failure is as follows

(in megapascals):

19.8 10.1 14.9 7.5 15.4 15.4

15.4 18.5 7.9 12.7 11.9 11.4

11.4 14.1 17.6 16.7 15.8

19.5 8.8 13.6 11.9 11.4

The sample mean is x = 13.71, and the sample standard

deviation is s = 3.55. Figures 8.6 and 8.7 show a box plot

and a normal probability plot of the tensile adhesion test data,

respectively. These displays provide good support for the

assumption that the population is normally distributed. We

want to find a 95% CI on μ. Since n = 22, we have n − 1 =
21 degrees of freedom for t, so t0.025,21 = 2.080. The resulting

CI is

x − tα∕2,n−1s∕
√

n ≤ μ ≤ x + tα∕2,n−1s∕
√

n

13.71 − 2.080(3.55)∕
√

22 ≤ μ ≤ 13.71 + 2.080(3.55)∕
√

22

13.71 − 1.57 ≤ μ ≤ 13.71 + 1.57

12.14 ≤ μ ≤ 15.28
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FIGURE 8.6

Box-and-whisker plot for the load
at failure data.

Practical Interpretation: The CI is fairly wide because

there is a lot of variability in the tensile adhesion test mea-

surements. A larger sample size would have led to a shorter

interval.
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FIGURE 8.7

Normal probability plot of the load at failure data.

It is not as easy to select a sample size n to obtain a specified length (or precision of estima-

tion) for this CI as it was in the known-σ case because the length of the interval involves s (which

is unknown before the data are collected), n, and tα/2,n−1. Note that the t-percentile depends on the

sample size n. Consequently, an appropriate n can only be obtained through trial and error. The

results of this will, of course, also depend on the reliability of our prior “guess” for σ.

8.3 Confidence Interval on the Variance and

Standard Deviation of a Normal Distribution
Sometimes confidence intervals on the population variance or standard deviation are needed.

When the population is modeled by a normal distribution, the tests and intervals described in this

section are applicable. The following result provides the basis of constructing these confidence

intervals.

𝛘2 Distribution
Let X1, X2,… , Xn be a random sample from a normal distribution with mean μ and variance

σ2, and let S2 be the sample variance. Then the random variable

X2 = (n − 1)S2

σ2
(8.17)

has a chi-square (χ2) distribution with n − 1 degrees of freedom.

The probability density function of a χ2 random variable is

f (x) = 1

2k∕2 Γ(k∕2)
x(k∕2)−1e−x∕2 x > 0 (8.18)
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FIGURE 8.8

Probability density functions of several 𝛘2 distributions.

(a)

0

f (x)

f (x)

x

(b)

χ2
0.95, 100

0.05 0.05

= 3.94

χ2
0.05, 10

= 18.31

FIGURE 8.9

Percentage point of the 𝛘2 distribution. (a) The percentage
point 𝛘2

𝛂,k
. (b) The upper percentage point 𝛘2

0.05,10 = 18.31
and the lower percentage point 𝛘2

0.95,10 = 3.94.

where k is the number of degrees of freedom. The mean and variance of the χ2 distribution are

k and 2k, respectively. Several chi-square distributions are shown in Figure 8.8. Note that the

chi-square random variable is non-negative and that the probability distribution is skewed to the

right. However, as k increases, the distribution becomes more symmetric. As k →∞, the limiting

form of the chi-square distribution is the normal distribution.

The percentage points of the χ2 distribution are given in Table IV of the Appendix. Define

χ2
α,k as the percentage point or value of the chi-square random variable with k degrees of freedom

such that the probability that X2 exceeds this value is α. That is,

P(X2
> χ2

α,k) = ∫

∞

χ2
α,k

f (u) du = α

This probability is shown as the shaded area in Figure 8.9(a). To illustrate the use of Table IV,

note that the areas α are the column headings and the degrees of freedom k are given in the left

column. Therefore, the value with 10 degrees of freedom having an area (probability) of 0.05

to the right is χ2
0.05,10

= 18.31. This value is often called an upper 5% point of chi-square with

10 degrees of freedom. We may write this as a probability statement as follows:

P(X2
> χ2

0.05,10
) = P(X2

> 18.31) = 0.05

Conversely, a lower 5% point of chi-square with 10 degrees of freedom would be χ2
0.95,10

= 3.94

(from Appendix A). Both of these percentage points are shown in Figure 8.9(b).

The construction of the 100(1 − α)% CI for σ2 is straightforward. Because

X2 = (n − 1)S2

σ2

is chi-square with n − 1 degrees of freedom, we may write

P(χ2
1−α∕2,n−1

≤ X2
≤ χ2

α∕2,n−1
) = 1 − α
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so that

P
(

χ2
1−α∕2,n−1

≤
(n − 1)S2

σ2
≤ χ2

α∕2,n−1

)

= 1 − α

This last equation can be rearranged as

P

(
(n − 1)S2

χ2
α∕2,n−1

≤ σ2
≤

(n − 1)S2

χ2
1−α∕2,n−1

)

= 1 − α

This leads to the following definition of the confidence interval for σ2.

Confidence Interval on the Variance
If s2 is the sample variance from a random sample of n observations from a normal distri-

bution with unknown variance σ2, then a 100(1 − α)% confidence interval on σ2 is

(n − 1)s2

χ2
α∕2,n−1

≤ σ2
≤

(n − 1)s2

χ2
1−α∕2,n−1

(8.19)

where χ2
α∕2,n−1

and χ2
1−α∕2,n−1

are the upper and lower 100α/2 percentage points of the

chi-square distribution with n − 1 degrees of freedom, respectively. A confidence interval

for σ has lower and upper limits that are the square roots of the corresponding limits in

Equation 8.19.

It is also possible to find a 100(1 − α)% lower confidence bound or upper confidence bound

on σ2.

One-Sided Confidence Bounds on the Variance
The 100(1 − α)% lower and upper confidence bounds on σ2 are

(n − 1)s2

χ2
α,n−1

≤ σ2 and σ2
≤

(n − 1)s2

χ2
1−α,n−1

(8.20)

respectively.

The CIs given in Equations 8.19 and 8.20 are less robust to the normality assumption. The dis-

tribution of (n − 1)S2/σ2 can be very different from the chi-square if the underlying population is

not normal.

E X A M P L E 8.6 Detergent Filling

An automatic filling machine is used to fill bottles with liquid

detergent. A random sample of 20 bottles results in a sample

variance of fill volume of s2 = 0.01532 (fluid ounce). If the

variance of fill volume is too large, an unacceptable propor-

tion of bottles will be under- or overfilled. We will assume

that the fill volume is approximately normally distributed.

A 95% upper confidence bound is found from Equation 8.20

as follows:

σ2
≤

(n − 1)s2

χ2
0.95,19
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or

σ2
≤

(19)0.0153

10.117
= 0.0287 (fluid ounce)2

This last expression may be converted into a confidence inter-

val on the standard deviation σ by taking the square root of

both sides, resulting in

σ ≤ 0.17

Practical Interpretation: Therefore, at the 95% level

of confidence, the data indicate that the process standard

deviation could be as large as 0.17 fluid ounce. The process

engineer or manager now needs to determine whether a

standard deviation this large could lead to an operational

problem with under- or over-filled bottles.

8.4 Large-Sample Confidence Interval

for a Population Proportion
It is often necessary to construct confidence intervals on a population proportion. For example,

suppose that a random sample of size n has been taken from a large (possibly infinite) population

and that X(≤ n) observations in this sample belong to a class of interest. Then ̂P = X∕n is a point

estimator of the proportion of the population p that belongs to this class. Note that n and p are the

parameters of a binomial distribution. Furthermore, from Chapter 4 we know that the sampling

distribution of ̂P is approximately normal with mean p and variance p(1− p)/n, if p is not too close

to either 0 or 1 and if n is relatively large. Typically, to apply this approximation we require that

np and n(1 − p) be greater than or equal to 5. We use the normal approximation in this section.

Normal Approximation for a Binomial Proportion
If n is large, the distribution of

Z =
X − np

√
np(1 − p)

=
̂P − p

√
p(1 − p)

n
is approximately standard normal.

To construct the confidence interval on p, note that

P(−zα∕2 ≤ Z ≤ zα∕2) ≃ 1 − α

so

P

⎛
⎜
⎜
⎜
⎜
⎝

−zα∕2 ≤

̂P − p
√

p(1 − p)
n

≤ zα∕2

⎞
⎟
⎟
⎟
⎟
⎠

≃ 1 − α

This may be rearranged as

P

(

̂P − zα∕2

√
p(1 − p)

n
≤ p ≤ ̂P + zα∕2

√
p(1 − p)

n

)

≃ 1 − α (8.21)

The quantity
√

p(1 − p)∕n in Equation 8.21 is called the standard error of the point estimator
̂P. This was discussed in Chapter 7. Unfortunately, the upper and lower limits of the confidence

interval obtained from Equation 8.21 contain the unknown parameter p. However, as suggested
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at the end of Section 8.1.5, a solution that is often satisfactory is to replace p by ̂P in the standard

error, which results in

P
⎛
⎜
⎜
⎝

̂P − zα∕2

√

̂P(1 − ̂P)
n

≤ p ≤ ̂P + zα∕2

√

̂P(1 − ̂P)
n

⎞
⎟
⎟
⎠

≃ 1 − α (8.22)

This leads to the approximate 100(1 − α)% confidence interval on p.

Approximate Confidence Interval on a Binomial Proportion
If p̂ is the proportion of observations in a random sample of size n that belongs to a class of

interest, an approximate 100(1 − α)% confidence interval on the proportion p of the popu-

lation that belongs to this class is

p̂ − zα∕2

√
p̂(1 − p̂)

n
≤ p ≤ p̂ + zα∕2

√
p̂(1 − p̂)

n
(8.23)

where zα/2 is the upper α/2 percentage point of the standard normal distribution.

This procedure depends on the adequacy of the normal approximation to the binomial.

To be reasonably conservative, this requires that np and n(1 − p) be greater than or equal to 5. In

situations when this approximation is inappropriate, particularly in cases when n is small, other

methods must be used. Tables of the binomial distribution could be used to obtain a confidence

interval for p. However, we could also use numerical methods that are implemented on the

binomial probability mass function in some computer programs.

E X A M P L E 8.7 Crankshaft Bearings

In a random sample of 85 automobile engine crankshaft

bearings, 10 have a surface finish that is rougher than the

specifications allow. Therefore, a point estimate of the propor-

tion of bearings in the population that exceeds the roughness

specification is p̂ = x∕n = 10∕85 = 0.12. A 95% two-sided

confidence interval for p is computed from Equation 8.23 as

p̂ − z0.025

√
p̂(1 − p̂)

n
≤ p ≤ p̂ + z0.025

√
p̂(1 − p̂)

n

or

0.12 − 1.96

√
0.12(0.88)

85
≤ p ≤ 0.12 + 1.96

√
0.12(0.88)

85

which simplifies to

0.0509 ≤ p ≤ 0.2243

Practical Interpretation: This is a wide CI. Although the

sample size does not appear to be small (n = 85), the value

of p̂ is fairly small, which leads to a large standard error for p̂
contributing to the wide CI.

Choice of Sample Size Because ̂P is the point estimator of p, we can define the error in

estimating p by ̂P as E = |p − ̂P|. Note that we are approximately 100(1 − α)% confident that this

error is less than zα∕2

√
p(1 − p)∕n. For instance, in Example 8.7, we are 95% confident that the

sample proportion p̂ = 0.12 differs from the true proportion p by an amount not exceeding 0.07.

In situations when the sample size can be selected, we may choose n to be 100(1 − α)%

confident that the error is less than some specified value E. If we set E = zα∕2

√
p(1 − p)∕n and

solve for n, the appropriate sample size is
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Sample Size for a Specified Error on a Binomial Proportion

n =
( zα∕2

E

)2

p(1 − p) (8.24)

An estimate of p is required to use Equation 8.24. If an estimate p̂ from a previous sample

is available, it can be substituted for p in Equation 8.24, or perhaps a subjective estimate can be

made. If these alternatives are unsatisfactory, a preliminary sample can be taken, p̂ computed, and

then Equation 8.24 used to determine how many additional observations are required to estimate

p with the desired accuracy. Another approach to choosing n uses the fact that the sample size

from Equation 8.24 will always be a maximum for p = 0.5 [that is, p(1 − p) ≤ 0.25 with equality

for p = 0.5], and this can be used to obtain an upper bound on n. In other words, we are at least

100(1 − α)% confident that the error in estimating p by ̂P is less than E if the sample size is

n =
( zα∕2

E

)2

(0.25) (8.25)

E X A M P L E 8.8 Crankshaft Bearings

Consider the situation in Example 8.7. How large a sample is

required if we want to be 95% confident that the error in using

p̂ to estimate p is less than 0.05? Using p̂ = 0.12 as an initial

estimate of p, we find from Equation 8.24 that the required

sample size is

n =
( z0.025

E

)2

p̂(1 − p̂) =
(

1.96

0.05

)2

0.12(0.88) ≅ 163

If we wanted to be at least 95% confident that our estimate p̂ of

the true proportion p was within 0.05 regardless of the value

of p, we would use Equation 8.25 to find the sample size

n =
( z0.025

E

)2

(0.25) =
(

1.96

0.05

)2

(0.25) ≅ 385

Practical Interpretation: Notice that if we have informa-

tion concerning the value of p, either from a preliminary sam-

ple or from past experience, we could use a smaller sample

while maintaining both the desired precision of estimation and

the level of confidence.

One-Sided Confidence Bounds We may find approximate one-sided confidence bounds on

p by using a simple modification of Equation 8.23.

Approximate One-Sided Confidence Bounds on a Binomial Proportion
The approximate 100(1 − α)% lower and upper confidence bounds are

p̂ − zα

√
p̂(1 − p̂)

n
≤ p and p ≤ p̂ + zα

√
p̂(1 − p̂)

n
(8.26)

respectively.
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A Different Confidence Interval on the Binomial Proportion There is a different way

to construct a CI on a binomial proportion than the traditional approach in Equation 8.23. Start-

ing with Equation 8.22 and replacing the inequalities with an equality and solving the resulting

quadratic equation for p results in

p =
p̂ +

z2
α∕2

2n
± zα∕2

√

p̂(1 − p̂)
n

+
z2
α∕2

4n2

1 + z2
α∕2

∕n

This implies that a two-sided CI on a proportion p is as follows:

UCL =
p̂ +

z2
α∕2

2n
+ zα∕2

√

p̂(1 − p̂)
n

+
z2
α∕2

4n2

1 + z2
α∕2

∕n

LCL =
p̂ +

z2
α∕2

2n
− zα∕2

√

p̂(1 − p̂)
n

+
z2
α∕2

4n2

1 + z2
α∕2

∕n

(8.27)

The article by Agresti and Coull in The American Statistician (“Approximate Better Than ‘Exact’

for Interval Estimation of a Binomial Proportion,” 1998, Vol. 52, pp. 119–126) reports that the

actual confidence level for the CI in Equation 8.27 is closer to the “advertised” or nominal level

for almost all values of α and p than for the traditional CI in Equation 8.23. The authors also

report that this new interval can be used with nearly all sample sizes. So the requirements that

np̂ ≥ 5 or 10 or n(1 − p̂) ≥ 5 or 10 are not too important. If the sample size is large, the quantity

z2
α∕2

∕(2n) will be small relative to p̂, z2
α∕2

∕(4n2) will be small relative to p̂(1 − p̂)∕n, and z2
α∕2

∕n
will be small, so as a result the Agresti-Coull CI in Equation 8.27 will reduce to the traditional

CI given in Equation 8.23.

8.5 Guidelines for Constructing

Confidence Intervals
The most difficult step in constructing a confidence interval is often the match of the appropriate

calculation to the objective of the study. Common cases are listed in Table 8.1 along with the refer-

ence to the section that covers the appropriate calculation for a confidence interval test. Table 8.1

provides a simple road map to help select the appropriate analysis. Two primary comments can

help identify the analysis:

1. Determine the parameter (and the distribution of the data) that will be bounded by the

confidence interval or tested by the hypothesis.

2. Check if other parameters are known or need to be estimated.

In Chapter 9, we study a procedure closely related to confidence intervals called hypothesis
testing. Table 8.1 can be used for those procedures also. This road map is extended to more cases

in Chapter 10.
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T A B L E 8.1
The Roadmap for Constructing Confidence Intervals and Performing Hypothesis Tests,
One-Sample Case

Parameter to Be Bounded
by the Confidence
Interval or Tested
with a Hypothesis? Symbol Other Parameters?

Confidence
Interval
Section

Hypothesis
Test Section Comments

Mean of normal distribution μ Standard deviation σ
known

8.1 9.2 Large sample size is

often taken to be n ≥ 40

Mean of arbitrary distribution

with large sample size

μ Sample size large

enough that central limit

theorem applies and σ is

essentially known

8.1.5 9.2.3

Mean of normal distribution μ Standard deviation σ
unknown and estimated

8.2 9.3

Variance (or standard deviation)

of normal distribution

σ2 Mean μ unknown and

estimated

8.3 9.4

Population proportion p None 8.4 9.5

8.6 Bootstrap Confidence Interval
In Section 7.3.4, we saw how a computer-intensive technique called the bootstrap could be used

to find the estimated standard error of a statistic, say ̂θ. The bootstrap technique can also be used

to find confidence intervals. These techniques can be useful in situations in which a “standard”

CI is not readily available. To illustrate the general approach, let’s consider a case for which there

is a standard CI, the 100(1 − α)% CI on the mean of a normal distribution with known variance.

Here the parameter of interest is the population mean μ, and the statistic that estimates μ is the

sample average X. The quantity zα∕2σ∕
√

n is the 100(1 − α/2) percentile of the distribution of

̂θB
i − θB

, i = 1, 2,… , nB and by the same logic, the quantity −zα∕2σ∕
√

n is the 100(α/2) percentile

of the distribution of X − μ. Therefore, the 100(1 − α/2)% CI can be written as:

P(α∕2th percentile ≤ X − μ ≤ (1 − α∕2)th percentile) = 1 − α∕2

This can be rearranged as

P(X − (1 − α∕2th) percentile ≤ μ ≤ X + α∕2th percentile) = 1 − α∕2

So the lower confidence bound is X − (1 − α∕2)th percentile of the distribution of X − μ and

the upper confidence bound is X + α∕2th percentile of the distribution of X − μ. When these

percentiles cannot be easily determined for some arbitrary parameter θ, they can often be esti-

mated by using bootstrap samples. The procedure would consist of taking nB bootstrap samples,

calculating the bootstrap estimates ̂θB
1
,
̂θB

2
,… ,

̂θB
nB

and θB, and then computing the differences

̂θB
i − θB

, i = 1, 2,… , nB. The α/2 smallest and largest of these differences are the estimates of the

percentiles required to construct the bootstrap CI.

8.7 Tolerance and Prediction Intervals

8.7.1 Prediction Interval for a Future Observation
In some problem situations, we may be interested in predicting a future observation of a variable.

This is a different problem than estimating the mean of that variable, so a confidence interval is
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not appropriate. In this section, we show how to obtain a 100(1 − α)% prediction interval on a

future value of a normal random variable.

Suppose that X1, X2, …, Xn is a random sample from a normal population. We wish to predict

the value Xn+1, a single future observation. A point prediction of Xn+1 is X, the sample mean.

The prediction error is Xn+1 − X. The expected value of the prediction error is

E(Xn+1 − X) = μ − μ = 0

and the variance of the prediction error is

V(Xn+1 − X) = σ2 + σ2

n
= σ2

(

1 + 1

n

)

because the future observation Xn+1 is independent of the mean of the current sample X. The

prediction error Xn+1 − X is normally distributed. Therefore,

Z =
Xn+1 − X

σ
√

1 + 1

n

has a standard normal distribution. Replacing σ with S results in

T =
Xn+1 − X

S
√

1 + 1

n

which has a t distribution with n − 1 degrees of freedom. Manipulating T as we have

done previously in the development of a CI leads to a prediction interval on the future

observation Xn+1.

Prediction Interval
A 100(1 − α)% prediction interval (PI) on a single future observation from a normal dis-

tribution is given by

x − tα∕2,n−1s
√

1 + 1

n
≤ Xn+1 ≤ x + tα∕2,n−1 s

√

1 + 1

n
(8.28)

The prediction interval for Xn+1 will always be longer than the confidence interval for μ
because more variability is associated with the prediction error than with the error of estimation.

This is easy to see because the prediction error is the difference between two random vari-

ables (Xn+1 − X), and the estimation error in the CI is the difference between one random vari-

able and a constant (X − μ). As n gets larger (n → ∞), the length of the CI decreases to zero,

essentially becoming the single value μ, but the length of the PI approaches 2zα/2σ. So as n
increases, the uncertainty in estimating μ goes to zero, although there will always be uncer-

tainty about the future value Xn+1, even when estimating any of the distribution parameters is not

necessary.
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We noted in Section 8.2 that the t distribution-based CI for μ was robust to the normality

assumption when n is small. The practical implication of this is that although we have computed

a 95% CI, the actual confidence level will not be exactly 95%, but it will be very close—maybe

93% or 94%. Prediction intervals, on the other hand, are very sensitive to the normality assump-

tion, and Equation 8.28 should not be used unless we are very comfortable with the normality

assumption.

E X A M P L E 8.9 Alloy Adhesion

Reconsider the tensile adhesion tests on specimens of U-700

alloy described in Example 8.5. The load at failure for n = 22

specimens was observed, and we found that x = 13.71 and s =
3.55. The 95% confidence interval on μwas 12.14≤ μ≤ 15.28.

We plan to test a 23rd specimen. A 95% prediction interval on

the load at failure for this specimen is

x − tα∕2,n−1 s
√

1 + 1

n
≤ Xn+1 ≤ x + tα∕2,n−1 s

√

1 + 1

n

13.71 − (2.080)3.55

√

1 + 1

22
≤ X23 ≤ 13.71

+ (2.080)3.55

√

1 + 1

22

6.16 ≤ X23 ≤ 21.26

Practical Interpretation: Notice that the prediction inter-

val is considerably longer than the CI. This is because the CI

is an estimate of a parameter, but the PI is an interval estimate

of a single future observation.

8.7.2 Tolerance Interval for a Normal Distribution
Consider a population of semiconductor processors. Suppose that the speed of these processors

has a normal distribution with mean μ = 600 megahertz and standard deviation σ = 30 mega-

hertz. Then the interval from 600 − 1.96(30) = 541.2 to 600 + 1.96(30) = 658.8 megahertz

captures the speed of 95% of the processors in this population because the interval from −1.96

to 1.96 captures 95% of the area under the standard normal curve. The interval from μ − zα/2σ to

μ + zα/2σ is called a tolerance interval.
If μ and σ are unknown, we can use the data from a random sample of size n to compute x and

s and then form the interval (x − 1.96s, x + 1.96s). However, because of sampling variability in x
and s, it is likely that this interval will contain less than 95% of the values in the population. The

solution to this problem is to replace 1.96 with some value that will make the proportion of the

distribution contained in the interval 95% with some level of confidence. Fortunately, it is easy

to do this.

Tolerance Interval
A tolerance interval for capturing at least γ% of the values in a normal distribution with

confidence level 100(1 − α)% is

x − ks, x + ks

where k is a tolerance interval factor found in Appendix Table XII. Values are given for

γ = 90%, 95%, and 99%, and for 90%, 95%, and 99% confidence.

This interval is very sensitive to the normality assumption. One-sided tolerance bounds can

also be computed. The tolerance factors for these bounds are also given in Appendix Table XII.



�

� �

�

192 CHAPTER 8 Statistical Intervals for a Single Sample

E X A M P L E 8.10 Alloy Adhesion

Let’s reconsider the tensile adhesion tests originally described

in Example 8.5. The load at failure for n = 22 specimens was

observed, and we found that x = 13.71 and s = 3.55. We want

to find a tolerance interval for the load at failure that includes

90% of the values in the population with 95% confidence.

From Appendix Table XII, the tolerance factor k for n =
22, γ = 0.90, and 95% confidence is k = 2.264. The desired

tolerance interval is

(x − ks, x + ks)

or

[13.71 − (2.264)3.55, 13.71 + (2.264)3.55]

which reduces to (5.67, 21.74).

Practical Interpretation: We can be 95% confident that

at least 90% of the values of load at failure for this particular

alloy lie between 5.67 and 21.74 megapascals.

From Appendix Table XII, we note that as n→∞, the value of k goes to the z-value associated

with the desired level of containment for the normal distribution. For example, if we want 90%

of the population to fall in the two-sided tolerance interval, k approaches z0.05 = 1.645 as n →∞.

Note that as n → ∞, a 100(1 − α)% prediction interval on a future value approaches a tolerance

interval that contains 100(1 − α)% of the distribution.

Important Terms and Concepts

Agresti-Coull confidence interval on a

population proportion

Chi-square distribution

Confidence coefficient

Confidence interval

Confidence interval on a population

proportion

Confidence interval on the variance of a

normal distribution

Confidence interval on the mean of a normal

distribution

Confidence level

Error in estimation

Large-sample confidence interval

One-sided confidence bound

Prediction interval

t distribution

Tolerance interval

Two-sided confidence interval
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L E A R N I N G O B J E C T I V E S

After careful study of this chapter, you should be able to do the following:

1. Structure engineering decision-making problems

as hypothesis tests

2. Test hypotheses on the mean of a normal

distribution using either a Z-test or a t-test

procedure

3. Test hypotheses on the variance or standard

deviation of a normal distribution

4. Test hypotheses on a population proportion

5. Use the P-value approach for making decisions in

hypothesis tests

6. Compute power and type II error probability, and

make sample size selection decisions for tests on

means, variances, and proportions

7. Explain and use the relationship between

confidence intervals and hypothesis tests

8. Use the chi-square goodness-of-fit test to check

distributional assumptions

9. Apply contingency table tests

10. Apply nonparametric tests

11. Use equivalence testing

12. Combine P-values

193
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C H A P T E R O U T L I N E

9.1 Hypothesis Testing

9.1.1 Statistical Hypotheses

9.1.2 Tests of Statistical Hypotheses

9.1.3 One-Sided and Two-Sided Hypotheses

9.1.4 P-Values in Hypothesis Tests

9.1.5 Connection between Hypothesis Tests

and Confidence Intervals

9.1.6 General Procedure for Hypothesis Tests

9.2 Tests on the Mean of a Normal Distribution,

Variance Known

9.2.1 Hypothesis Tests on the Mean

9.2.2 Type II Error and Choice of Sample Size

9.2.3 Large-Sample Test

9.3 Tests on the Mean of a Normal Distribution,

Variance Unknown

9.3.1 Hypothesis Tests on the Mean

9.3.2 Type II Error and Choice

of Sample Size

9.4 Tests on the Variance and Standard Deviation

of a Normal Distribution

9.4.1 Hypothesis Tests on the Variance

9.4.2 Type II Error and Choice of Sample Size

9.5 Tests on a Population Proportion

9.5.1 Large-Sample Tests on a Proportion

9.5.2 Type II Error and Choice of Sample Size

9.6 Summary Table of Inference Procedures

for a Single Sample

9.7 Testing for Goodness of Fit

9.8 Contingency Table Tests

9.9 Nonparametric Procedures

9.9.1 The Sign Test

9.9.2 The Wilcoxon Signed-Rank Test

9.9.3 Comparison to the t-Test

9.10 Equivalence Testing

9.11 Combining P-Values

Introduction
In the previous two chapters, we showed how a parameter of a population can be estimated from

sample data, using either a point estimate (Chapter 7) or an interval of likely values called a con-
fidence interval (Chapter 8). In many situations, a different type of problem is of interest; there

are two competing claims about the value of a parameter, and the engineer must determine which

claim is correct. For example, suppose that an engineer is designing an air crew escape system that

consists of an ejection seat and a rocket motor that powers the seat. The rocket motor contains a

propellant, and for the ejection seat to function properly, the propellant should have a mean burn-

ing rate of 50 cm/sec. If the burning rate is too low, the ejection seat may not function properly,

leading to an unsafe ejection and possible injury of the pilot. Higher burning rates may imply

instability in the propellant or an ejection seat that is too powerful, again leading to possible pilot

injury. So the practical engineering question that must be answered is: Does the mean burning

rate of the propellant equal 50 cm/sec, or is it some other value (either higher or lower)? This type

of question can be answered using a statistical technique called hypothesis testing. This chapter

focuses on the basic principles of hypothesis testing and provides techniques for solving the most

common types of hypothesis testing problems involving a single sample of data.

9.1 Hypothesis Testing

9.1.1 Statistical Hypotheses
In the previous chapter, we illustrated how to construct a confidence interval estimate of a param-

eter from sample data. However, many problems in engineering require that we decide which

of two competing claims or statements about some parameter is true. The statements are called
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hypotheses, and the decision-making procedure is called hypothesis testing. This is one of the

most useful aspects of statistical inference, because many types of decision-making problems,

tests, or experiments in the engineering world can be formulated as hypothesis-testing prob-

lems. Furthermore, as we will see, a very close connection exists between hypothesis testing and

confidence intervals.

Statistical hypothesis testing and confidence interval estimation of parameters are the funda-

mental methods used at the data analysis stage of a comparative experiment in which the engineer

is interested, for example, in comparing the mean of a population to a specified value. These sim-

ple comparative experiments are frequently encountered in practice and provide a good foundation

for the more complex experimental design problems that we discuss in Chapters 13 and 14. In this

chapter, we discuss comparative experiments involving a single population, and our focus is on

testing hypotheses concerning the parameters of the population.

We now give a formal definition of a statistical hypothesis.

Statistical Hypothesis
A statistical hypothesis is a statement about the parameters of one or more populations.

Because we use probability distributions to represent populations, a statistical hypothesis

may also be thought of as a statement about the probability distribution of a random variable.

The hypothesis will usually involve one or more parameters of this distribution.

For example, consider the air crew escape system described in the introduction. Suppose that

we are interested in the burning rate of the solid propellant. Burning rate is a random variable

that can be described by a probability distribution. Suppose that our interest focuses on the mean

burning rate (a parameter of this distribution). Specifically, we are interested in deciding whether

or not the mean burning rate is 50 centimeters per second. We may express this formally as

H0∶ μ = 50 centimeters per second H1∶ μ ≠ 50 centimeters per second (9.1)

The statement H0: μ = 50 centimeters per second in Equation 9.1 is called the null
hypothesis. This is a claim that is initially assumed to be true. The statement H1: μ ≠ 50

centimeters per second is called the alternative hypothesis and it is a statement that condradicts

the null hypothesis. Because the alternative hypothesis specifies values of μ that could be either

greater or less than 50 centimeters per second, it is called a two-sided alternative hypothesis.

In some situations, we may wish to formulate a one-sided alternative hypothesis, as in

H0∶ μ = 50 centimeters per second H1∶ μ < 50 centimeters per second

or

H0∶ μ = 50 centimeters per second H1∶ μ > 50 centimeters per second

(9.2)

We will always state the null hypothesis as an equality claim. However, when the alternative

hypothesis is stated with the < sign, the implicit claim in the null hypothesis can be taken as ≥ and

when the alternative hypothesis is stated with the > sign, the implicit claim in the null hypothesis

can be taken as ≤.

It is important to remember that hypotheses are always statements about the population or

distribution under study, not statements about the sample. The value of the population parameter

specified in the null hypothesis (50 centimeters per second in the preceding example) is usually

determined in one of three ways. First, it may result from past experience or knowledge of the

process or even from previous tests or experiments. The objective of hypothesis testing, then,

is usually to determine whether the parameter value has changed. Second, this value may be

determined from some theory or model regarding the process under study. Here the objective
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of hypothesis testing is to verify the theory or model. A third situation arises when the value

of the population parameter results from external considerations, such as design or engineering

specifications, or from contractual obligations. In this situation, the usual objective of hypothesis

testing is conformance testing.

A procedure leading to a decision about the null hypothesis is called a test of a hypothesis.

Hypothesis-testing procedures rely on using the information in a random sample from the popu-

lation of interest. If this information is consistent with the null hypothesis, we will not reject it;

however, if this information is inconsistent with the null hypothesis, we will conclude that the null

hypothesis is false and reject it in favor of the alternative. We emphasize that the truth or falsity

of a particular hypothesis can never be known with certainty unless we can examine the entire

population. This is usually impossible in most practical situations. Therefore, a hypothesis-testing

procedure should be developed with the probability of reaching a wrong conclusion in mind. Test-

ing the hypothesis involves taking a random sample, computing a test statistic from the sample

data, and then using the test statistic to make a decision about the null hypothesis.

9.1.2 Tests of Statistical Hypotheses
To illustrate the general concepts, consider the propellant burning rate problem introduced earlier.

The null hypothesis is that the mean burning rate is 50 centimeters per second, and the alternate

is that it is not equal to 50 centimeters per second. That is, we wish to test

H0∶ μ = 50 centimeters per second

H1∶ μ ≠ 50 centimeters per second

Suppose that a sample of n = 10 specimens is tested and that the sample mean burning rate

x is observed. The sample mean is an estimate of the true population mean μ. A value of the

sample mean x that falls close to the hypothesized value of μ = 50 centimeters per second does

not conflict with the null hypothesis that the true mean μ is really 50 centimeters per second. On

the other hand, a sample mean that is considerably different from 50 centimeters per second is

evidence in support of the alternative hypothesis H1. Thus, the sample mean is the test statistic

in this case.

The sample mean can take on many different values. Suppose that if 48.5 ≤ x ≤ 51.5, we will

not reject the null hypothesis H0: μ = 50, and if either x < 48.5 or x > 51.5, we will reject the

null hypothesis in favor of the alternative hypothesis H1: μ ≠ 50. This is illustrated in Figure 9.1.

The values of x that are less than 48.5 and greater than 51.5 constitute the critical region for

the test; all values that are in the interval 48.5 ≤ x ≤ 51.5 form a region for which we will fail to

reject the null hypothesis. By convention, this is usually called the acceptance region. The bound-

aries between the critical regions and the acceptance region are called the critical values. In our

example, the critical values are 48.5 and 51.5. It is customary to state conclusions relative to the

null hypothesis H0. Therefore, we reject H0 in favor of H1 if the test statistic falls in the critical

region and fails to reject H0 otherwise.

This decision procedure can lead to either of two wrong conclusions. For example, the true

mean burning rate of the propellant could be equal to 50 centimeters per second. However, for

the randomly selected propellant specimens that are tested, we could observe a value of the test

statistic x that falls into the critical region. We would then reject the null hypothesis H0 in favor

of the alternate H1 when, in fact, H0 is really true. This type of wrong conclusion is called a

type I error.

FIGURE 9.1

Decision criteria for testing H0: 𝛍 = 50
centimeters per second versus H1: 𝛍 ≠ 50
centimeters per second. 50 51.548.5

Reject H0

μ ≠ 50 cm/s

Fail to Reject H0

μ = 50 cm/s

Reject H0

μ ≠ 50 cm/s

x
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Type I Error
Rejecting the null hypothesis H0 when it is true is defined as a type I error.

Now suppose that the true mean burning rate is different from 50 centimeters per second, yet the

sample mean x falls in the acceptance region. In this case, we would fail to reject H0 when it is

false, and this leads to the other type of error.

Type II Error
Failing to reject the null hypothesis when it is false is defined as a type II error.

Thus, in testing any statistical hypothesis, four different situations determine whether the final

decision is correct or in error. These situations are presented in Table 9.1.

Because our decision is based on random variables, probabilities can be associated with the

type I and type II errors in Table 9.1. The probability of making a type I error is denoted by the

Greek letter α.

Probability of Type I Error

α = P(type I error) = P(reject H0 when H0 is true) (9.3)

Sometimes the type I error probability is called the significance level, the α-error, or the size of
the test. In the propellant burning rate example, a type I error will occur when either x > 51.5

or x < 48.5 when the true mean burning rate really is μ = 50 centimeters per second. Suppose

that the standard deviation of the burning rate is σ = 2.5 centimeters per second and that the

burning rate has a distribution for which the conditions of the central limit theorem apply, so

the distribution of the sample mean is approximately normal with mean μ = 50 and standard

deviation σ
/√

n = 2.5
/√

10 = 0.79. The probability of making a type I error (or the significance

level of our test) is equal to the sum of the areas that have been shaded in the tails of the normal

distribution in Figure 9.2. We may find this probability as

α = P(X < 48.5 when μ = 50) + P(X > 51.5 when μ = 50)

The z-values that correspond to the critical values 48.5 and 51.5 are

z1 = 48.5 − 50

0.79
= −1.90 and z2 = 51.5 − 50

0.79
= 1.90

Therefore,

α = P(z < −1.90) + P(z > 1.90) = 0.0287 + 0.0287 = 0.0574

T A B L E 9.1 Decisions in Hypothesis Testing

Decision H0 Is True H0 Is False

Fail to reject H0 No error Type II error

Reject H0 Type I error No error
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FIGURE 9.2

The critical region for H0: 𝛍 = 50 versus H1: 𝛍 ≠

50 and n = 10. 48.5 51.5 X   = 50

α/2 = 0.0287α/2 = 0.0287

μ

This is the type I error probability. This implies that 5.74% of all random samples would lead to

rejection of the hypothesis H0: μ = 50 centimeters per second when the true mean burning rate

is really 50 centimeters per second.

From an inspection of Figure 9.2, notice that we can reduce α by widening the acceptance

region. For example, if we make the critical values 48 and 52, the value of α is

α = P
(

z < −48 − 50

0.79

)

+ P
(

z > 52 − 50

0.79

)

= P(z < −2.53) + P(z > 2.53)

= 0.0057 + 0.0057 = 0.0114

We could also reduce α by increasing the sample size. If n = 16, σ
/√

n = 2.5
/√

16 = 0.625 and

using the original critical region from Figure 9.1, we find

z1 = 48.5 − 50

0.625
= −2.40 and z2 = 51.5 − 50

0.625
= 2.40

Therefore,

α = P(Z < −2.40) + P(Z > 2.40) = 0.0082 + 0.0082 = 0.0164

In evaluating a hypothesis-testing procedure, it is also important to examine the probability

of a type II error, which we denote by β. That is,

Probability of Type II Error

β = P(type II error) = P(fail to reject H0 when H0 is false) (9.4)

To calculate β (sometimes called the 𝛃-error), we must have a specific alternative hypothesis;

that is, we must have a particular value of μ. For example, suppose that it is important to reject

the null hypothesis H0: μ = 50 whenever the mean burning rate μ is greater than 52 centimeters

per second or less than 48 centimeters per second. We could calculate the probability of a type

II error β for the values μ = 52 and μ = 48 and use this result to tell us something about how the

test procedure would perform. Specifically, how will the test procedure work if we wish to detect,

that is, reject H0, for a mean value of μ = 52 or μ = 48? Because of symmetry, it is necessary to

evaluate only one of the two cases—say, find the probability of failing to reject the null hypothesis

H0: μ = 50 centimeters per second when the true mean is μ = 52 centimeters per second.

Figure 9.3 helps us calculate the probability of type II error β. The normal distribution on

the left in Figure 9.3 is the distribution of the test statistic X when the null hypothesis H0: μ = 50

is true (this is what is meant by the expression “under H0: μ = 50”), and the normal distribution

on the right is the distribution of X when the alternative hypothesis is true and the value of the

mean is 52 (or “under H1: μ = 52”). A type II error will be committed if the sample mean X falls

between 48.5 and 51.5 (the critical region boundaries) when μ = 52. As seen in Figure 9.3, this is

just the probability that 48.5 ≤ X ≤ 51.5 when the true mean is μ = 52, or the shaded area under

the normal distribution centered at μ = 52. Therefore, referring to Figure 9.3, we find that

β = P(48.5 ≤ X ≤ 51.5 when μ = 52)
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FIGURE 9.3

The probability of type II error when
𝛍 = 52 and n = 10.
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The probability of type II error when
𝛍 = 50.5 and n = 10.

The z-values corresponding to 48.5 and 51.5 when μ = 52 are

z1 = 48.5 − 52

0.79
= −4.43 and z2 = 51.5 − 52

0.79
= −0.63

Therefore,

β = P(−4.43 ≤ Z ≤ −0.63) = P(Z ≤ −0.63) − P(Z ≤ −4.43)
= 0.2643 − 0.0000 = 0.2643

Thus, if we are testing H0: μ = 50 against H1: μ ≠ 50 with n = 10 and the true value of

the mean is μ = 52, the probability that we will fail to reject the false null hypothesis is 0.2643.

By symmetry, if the true value of the mean is μ = 48, the value of β will also be 0.2643.

The probability of making a type II error β increases rapidly as the true value of μ approaches

the hypothesized value. For example, see Figure 9.4, where the true value of the mean is μ = 50.5

and the hypothesized value is H0: μ = 50. The true value of μ is very close to 50, and the value

for β is

β = P(48.5 ≤ X ≤ 51.5 when μ = 50.5)

As shown in Figure 9.4, the z-values corresponding to 48.5 and 51.5 when μ = 50.5 are

z1 = 48.5 − 50.5

0.79
= −2.53 and z2 = 51.5 − 50.5

0.79
= 1.27

Therefore,

β = P(−2.53 ≤ Z ≤ 1.27) = P(Z ≤ 1.27) − P(Z ≤ −2.53)
= 0.8980 − 0.0057 = 0.8923

Thus, the type II error probability is much higher for the case in which the true mean

is 50.5 centimeters per second than for the case in which the mean is 52 centimeters per

second. Of course, in many practical situations, we would not be as concerned with making

a type II error if the mean were “close” to the hypothesized value. We would be much more

interested in detecting large differences between the true mean and the value specified in the

null hypothesis.

The type II error probability also depends on the sample size n. Suppose that the null hypoth-

esis is H0: μ = 50 centimeters per second and that the true value of the mean is μ = 52. If the

sample size is increased from n = 10 to n = 16, the situation of Figure 9.5 results. The normal

distribution on the left is the distribution of X when the mean μ = 50, and the normal distribution
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FIGURE 9.5

The probability of type II error when
𝛍 = 52 and n = 16.
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on the right is the distribution of X when μ = 52. As shown in Figure 9.5, the type II error

probability is

β = P(48.5 ≤ X ≤ 51.5 when μ = 52)

When n = 16, the standard deviation of X is σ
/√

n = 2.5
/√

16 = 0.625, and the z-values corre-

sponding to 48.5 and 51.5 when μ = 52 are

z1 = 48.5 − 52

0.625
= −5.60 and z2 = 51.5 − 52

0.625
= −0.80

Therefore,

β = P(−5.60 ≤ Z ≤ −0.80) = P(Z ≤ −0.80) − P(Z ≤ −5.60)
= 0.2119 − 0.0000 = 0.2119

Recall that when n = 10 and μ = 52, we found that β = 0.2643; therefore, increasing the sample

size results in a decrease in the probability of type II error.

The results from this section and a few other similar calculations are summarized in the

following table. The critical values are adjusted to maintain equal α for n = 10 and n = 16. This

type of calculation is discussed later in the chapter.

Acceptance Region Sample Size 𝛂 𝛃 at 𝛍 = 52 𝛃 at 𝛍 = 50.5

48.5 < x < 51.5 10 0.0576 0.2643 0.8923

48 < x < 52 10 0.0114 0.5000 0.9705

48.81 < x < 51.19 16 0.0576 0.0966 0.8606

48.42 < x < 51.58 16 0.0114 0.2515 0.9578

The results in the boxes were not calculated in the text but the reader can easily verify them.

This display and the discussion above reveal four important points:

1. The size of the critical region, and consequently the probability of a type I error α, can always

be reduced by appropriate selection of the critical values.

2. Type I and type II errors are related. A decrease in the probability of one type of error always

results in an increase in the probability of the other provided that the sample size n does not

change.

3. An increase in sample size reduces β provided that α is held constant.

4. When the null hypothesis is false, β increases as the true value of the parameter approaches

the value hypothesized in the null hypothesis. The value of β decreases as the difference

between the true mean and the hypothesized value increases.



�

� �

�

9.1 Hypothesis Testing 201

Generally, the analyst controls the type I error probability α when he or she selects the critical

values. Thus, it is usually easy for the analyst to set the type I error probability at (or near) any

desired value. Because the analyst can directly control the probability of wrongly rejecting H0,

we always think of rejection of the null hypothesis H0 as a strong conclusion.

Because we can control the probability of making a type I error (or significance level), a log-

ical question is what value should be used. The type I error probability is a measure of risk,

specifically, the risk of concluding that the null hypothesis is false when it really is not. So,

the value of α should be chosen to reflect the consequences (economic, social, etc.) of incor-

rectly rejecting the null hypothesis. Smaller values of α would reflect more serious consequences

and larger values of α would be consistent with less severe consequences. This is often hard

to do, so what has evolved in much of scientific and engineering practice is to use the value

α = 0.05 in most situations unless information is available that this is an inappropriate choice.

In the rocket propellant problem with n = 10, this would correspond to critical values of 48.45

and 51.55.

A widely used procedure in hypothesis testing is to use a type I error or significance level

of α = 0.05. This value has evolved through experience and may not be appropriate for

all situations.

On the other hand, the probability of type II error β is not a constant but depends on the true

value of the parameter. It also depends on the sample size that we have selected. Because the

type II error probability β is a function of both the sample size and the extent to which the null

hypothesis H0 is false, it is customary to think of the decision to accept H0 as a weak conclusion
unless we know that β is acceptably small. Therefore, rather than saying we “accept H0,” we prefer

the terminology “fail to reject H0.” Failing to reject H0 implies that we have not found sufficient

evidence to reject H0, that is, to make a strong statement. Failing to reject H0 does not necessarily

mean that there is a high probability that H0 is true. It may simply mean that more data are

required to reach a strong conclusion. This can have important implications for the formulation

of hypotheses.

A useful analog exists between hypothesis testing and a jury trial. In a trial, the defendant

is assumed innocent (this is like assuming the null hypothesis to be true). If strong evidence

is found to the contrary, the defendant is declared to be guilty (we reject the null hypothesis).

If evidence is insufficient, the defendant is declared to be not guilty. This is not the same

as proving the defendant innocent and so, like failing to reject the null hypothesis, it is a

weak conclusion.

An important concept that we use is the power of a statistical test.

Power
The power of a statistical test is the probability of rejecting the null hypothesis H0 when the

alternative hypothesis is true.

The power is computed as 1 − β, and power can be interpreted as the probability of correctly
rejecting a false null hypothesis. We often compare statistical tests by comparing their power

properties. For example, consider the propellant burning rate problem when we are testing

H0: μ = 50 centimeters per second against H1: μ ≠ 50 centimeters per second. Suppose that the

true value of the mean is μ = 52. When n = 10, we found that β = 0.2643, so the power of this

test is 1 − β = 1 − 0.2643 = 0.7357 when μ = 52.

Power is a very descriptive and concise measure of the sensitivity of a statistical test when by

sensitivity we mean the ability of the test to detect differences. In this case, the sensitivity of the

test for detecting the difference between a mean burning rate of 50 centimeters per second and
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52 centimeters per second is 0.7357. That is, if the true mean is really 52 centimeters per second,

this test will correctly reject H0: μ = 50 and “detect” this difference 73.57% of the time. If this

value of power is judged to be too low, the analyst can increase either α or the sample size n.

9.1.3 One-Sided and Two-Sided Hypotheses
In constructing hypotheses, we always state the null hypothesis as an equality so that the proba-

bility of type I error α can be controlled at a specific value. The alternative hypothesis might be

either one-sided or two-sided, depending on the conclusion to be drawn if H0 is rejected. If the

objective is to make a claim involving statements such as greater than, less than, superior to,

exceeds, at least, and so forth, a one-sided alternative is appropriate. If no direction is implied by

the claim, or if the claim “not equal to” is to be made, a two-sided alternative should be used.

E X A M P L E 9.1 Propellant Burning Rate

Consider the propellant burning rate problem. Suppose that

if the burning rate is less than 50 centimeters per second, we

wish to show this with a strong conclusion. The hypotheses

should be stated as

H0∶ μ = 50 centimeters per second

H1∶ μ < 50 centimeters per second

Here the critical region lies in the lower tail of the distribution

of X. Because the rejection of H0 is always a strong conclusion,

this statement of the hypotheses will produce the desired out-

come if H0 is rejected. Notice that, although the null hypoth-

esis is stated with an equals sign, it is understood to include

any value of μ not specified by the alternative hypothesis (that

is, μ ≤ 50). Therefore, failing to reject H0 does not mean that

μ = 50 centimeters per second exactly, but only that we do not

have strong evidence in support of H1.

In some real-world problems in which one-sided test procedures are indicated, selecting an

appropriate formulation of the alternative hypothesis is occasionally difficult. For example, sup-

pose that a soft-drink beverage bottler purchases 10-ounce bottles from a glass company. The

bottler wants to be sure that the bottles meet the specification on mean internal pressure or burst-

ing strength, which for 10-ounce bottles is a minimum strength of 200 psi. The bottler has decided

to formulate the decision procedure for a specific lot of bottles as a hypothesis testing problem.

There are two possible formulations for this problem, either

H0∶ μ = 200 psi H1∶ μ > 200 psi (9.5)

or

H0∶ μ = 200 psi H1∶ μ < 200 psi (9.6)

Consider the formulation in Equation 9.5. If the null hypothesis is rejected, the bottles will be

judged satisfactory; if H0 is not rejected, the implication is that the bottles do not conform to

specifications and should not be used. Because rejecting H0 is a strong conclusion, this formula-

tion forces the bottle manufacturer to “demonstrate” that the mean bursting strength of the bottles

exceeds the specification. Now consider the formulation in Equation 9.6. In this situation, the

bottles will be judged satisfactory unless H0 is rejected. That is, we conclude that the bottles are

satisfactory unless there is strong evidence to the contrary.

Which formulation is correct, the one of Equation 9.5 or Equation 9.6? The answer is that

it depends on the objective of the analysis. For Equation 9.5, there is some probability that H0

will not be rejected (i.e., we would decide that the bottles are not satisfactory) even though the

true mean is slightly greater than 200 psi. This formulation implies that we want the bottle man-

ufacturer to demonstrate that the product meets or exceeds our specifications. Such a formulation

could be appropriate if the manufacturer has experienced difficulty in meeting specifications in

the past or if product safety considerations force us to hold tightly to the 200-psi specification.

On the other hand, for the formulation of Equation 9.6, there is some probability that H0 will
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be accepted and the bottles judged satisfactory, even though the true mean is slightly less than

200 psi. We would conclude that the bottles are unsatisfactory only when there is strong evidence

that the mean does not exceed 200 psi, that is, when H0: μ = 200 psi is rejected. This formulation

assumes that we are relatively happy with the bottle manufacturer’s past performance and that

small deviations from the specification of μ ≥ 200 psi are not harmful.

In formulating one-sided alternative hypotheses, we should remember that rejecting H0 is

always a strong conclusion. Consequently, we should put the statement about which it is

important to make a strong conclusion in the alternative hypothesis. In real-world problems,

this will often depend on our point of view and experience with the situation.

9.1.4 P-Values in Hypothesis Tests
One way to report the results of a hypothesis test is to state that the null hypothesis was or was

not rejected at a specified α-value or level of significance. This is called fixed significance level
testing.

The fixed significance level approach to hypothesis testing is very nice because it leads

directly to the concepts of type II error and power, which are of considerable value in deter-

mining the appropriate sample sizes to use in hypothesis testing. But the fixed significance level

approach does have some disadvantages.

For example, in the propellant problem above, we can say that H0: μ = 50 was rejected at

the 0.05 level of significance. This statement of conclusions may be often inadequate because it

gives the decision maker no idea about whether the computed value of the test statistic was just

barely in the rejection region or whether it was very far into this region. Furthermore, stating the

results this way imposes the predefined level of significance on other users of the information.

This approach may be unsatisfactory because some decision makers might be uncomfortable with

the risks implied by α = 0.05.

To avoid these difficulties, the P-value approach has been adopted widely in practice.

The P-value is the probability that the test statistic will take on a value that is at least as extreme

as the observed value of the statistic when the null hypothesis H0 is true. Thus, a P-value

conveys much information about the weight of evidence against H0, and so a decision maker

can draw a conclusion at any specified level of significance. We now give a formal definition

of a P-value.

P-Value
The P-value is the smallest level of significance that would lead to rejection of the null

hypothesis H0 with the given data.

It is customary to consider the test statistic (and the data) significant when the null hypothesis

H0 is rejected; therefore, we may think of the P-value as the smallest level α at which the data

are significant. In other words, the P-value is the observed significance level. Once the P-value

is known, the decision maker can determine how significant the data are without the data analyst

formally imposing a preselected level of significance.

Consider the two-sided hypothesis test for burning rate

H0∶ μ = 50 H1∶ μ ≠ 50

with n = 16 and σ = 2.5. Suppose that the observed sample mean is x = 51.3 centimeters per

second. Figure 9.6 is a critical region for this test with the value of x = 51.3 and the symmetric
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FIGURE 9.6

P-value is the area of the shaded region when x = 51.3. 48
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value 48.7. The P-value of the test is the probability above 51.3 plus the probability below 48.7.

The P-value is easy to compute after the test statistic is observed. In this example,

P-value = 1 − P
(

48.7 < X < 51.3
)

= 1 − P

(

48.7 − 50

2.5
/√

16
< Z <

51.3 − 50

2.5
/√

16

)

= 1 − P(−2.08 < Z < 2.08)
= 1 − 0.962 = 0.038

The P-value tells us that if the null hypothesis H0 = 50 is true, the probability of obtaining

a random sample whose mean is at least as far from 50 as 51.3 (or 48.7) is 0.038. Therefore, an

observed sample mean of 51.3 is a fairly rare event if the null hypothesis H0 = 50 is really true.

Compared to the “standard” level of significance 0.05, our observed P-value is smaller, so if we

were using a fixed significance level of 0.05, the null hypothesis would be rejected. In fact, the null

hypothesis H0 = 50 would be rejected at any level of significance greater than or equal to 0.038.

This illustrates the previous boxed definition; the P-value is the smallest level of significance that

would lead to rejection of H0 = 50.

Operationally, once a P-value is computed, we typically compare it to a predefined signif-

icance level to make a decision. Often this predefined significance level is 0.05. However, in

presenting results and conclusions, it is standard practice to report the observed P-value along

with the decision that is made regarding the null hypothesis.

Clearly, the P-value provides a measure of the credibility of the null hypothesis. Specifi-

cally, it is the risk that we have made an incorrect decision if we reject the null hypothesis H0.

The P-value is not the probability that the null hypothesis is false, nor is 1 − P the probability

that the null hypothesis is true. The null hypothesis is either true or false (there is no probability

associated with this), so the proper interpretation of the P-value is in terms of the risk of wrongly

rejecting the null hypothesis H0.

Computing the exact P-value for a statistical test is not always easy. However, most modern

statistics software packages report the results of hypothesis testing problems in terms of P-values.

We use the P-value approach extensively here.

More About P-Values We have observed that the procedure for testing a statistical hypothesis

consists of drawing a random sample from the population, computing an appropriate statistic,

and using the information in that statistic to make a decision regarding the null hypothesis.

For example, we have used the sample average in decision making. Because the sample aver-

age is a random variable, its value will differ from sample to sample, meaning that the P-value

associated with the test procedure is also a random variable. It also will differ from sample to sam-

ple. We are going to use a computer experiment (a simulation) to show how the P-value behaves

when the null hypothesis is true and when it is false.

Consider testing the null hypothesis H0: μ = 0 against the alternative hypothesis H0: μ ≠ 0

when we are sampling from a normal population with standard deviation σ = 1. Consider first the
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case in which the null hypothesis is true and let’s suppose that we are going to test the preceding

hypotheses using a sample size of n = 10. We wrote a computer program to simulate drawing

10,000 different samples at random from a normal distribution with μ = 0 and σ = 1. Then we

calculated the P-values based on the values of the sample averages. Figure 9.7 is a histogram of

the P-values obtained from the simulation. Notice that the histogram of the P-values is relatively

uniform or flat over the interval from 0 to 1. It turns out that just slightly less than 5% of the

P-values are in the interval from 0 to 0.05. It can be shown theoretically that if the null hypothesis

is true, the probability distribution of the P-value is exactly uniform on the interval from 0 to 1.

Because the null hypothesis is true in this situation, we have demonstrated by simulation that if

a test of significance level 0.05 is used, the probability of wrongly rejecting the null hypothesis

is (approximately) 0.05.

Now let’s see what happens when the null hypothesis is false. We changed the mean of

the normal distribution to μ = 1 and repeated the previous computer simulation experiment by

drawing another 10,000 samples and computing the P-values. Figure 9.8 is the histogram of the

simulated P-values for this situation. Notice that this histogram looks very different from the one

in Figure 9.7; there is a tendency for the P-values to stack up near the origin with many more small

values between 0 and 0.05 than in the case in which the null hypothesis was true. Not all of the

P-values are less than 0.05; those that exceed 0.05 represent type II errors or cases in which the

null hypothesis is not rejected at the 0.05 level of significance even though the true mean is not 0.

Finally, Figure 9.9 shows the simulation results when the true value of the mean is even larger;

in this case, μ = 2. The simulated P-values are shifted even more toward 0 and concentrated

on the left side of the histogram. Generally, as the true mean moves farther and farther away
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A P-value simulation when H0: 𝛍 = 0 is true.
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A P-value simulation when 𝛍 = 1.
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from the hypothesized value of 0 the distribution of the P-values will become more and more

concentrated near 0 and fewer and fewer values will exceed 0.05. That is, the farther the mean is

from the value specified in the null hypothesis, the higher is the chance that the test procedure

will correctly reject the null hypothesis.

9.1.5 Connection between Hypothesis Tests
and Confidence Intervals
A close relationship exists between the test of a hypothesis about any parameter, say θ, and the

confidence interval for θ. If [l, u] is a 100(1 − α)% confidence interval for the parameter θ, the test

with level of significance α of the hypothesis

H0∶θ = θ0 H1∶θ ≠ θ0

will lead to rejection of H0 if and only if θ0 is not in the 100(1 − α%) CI [l, u]. As an illustration,

consider the escape system propellant problem with x = 51.3, σ = 2.5, and n = 16. The null

hypothesis H0: μ = 50 was rejected, using α = 0.05. The 95% two-sided CI on μ can be calculated

using Equation 8.7. This CI is 51.3 ± 1.96(2.5
/√

16) and this is 50.075 ≤ μ ≤ 52.525. Because

the value μ0 = 50 is not included in this interval, the null hypothesis H0: μ = 50 is rejected.

Although hypothesis tests and CIs are equivalent procedures insofar as decision making or

inference about μ is concerned, each provides somewhat different insights. For instance, the

confidence interval provides a range of likely values for μ at a stated confidence level whereas

hypothesis testing is an easy framework for displaying the risk levels such as the P-value associ-

ated with a specific decision. We continue to illustrate the connection between the two procedures

throughout the text.

9.1.6 General Procedure for Hypothesis Tests
This chapter develops hypothesis-testing procedures for many practical problems. Use of the fol-

lowing sequence of steps in applying hypothesis-testing methodology is recommended.

1. Parameter of interest: From the problem context, identify the parameter of interest.

2. Null hypothesis, H0: State the null hypothesis, H0.

3. Alternative hypothesis, H1: Specify an appropriate alternative hypothesis, H1.

4. Test statistic: Determine an appropriate test statistic.

5. Reject H0 if: State the rejection criteria for the null hypothesis.

6. Computations: Compute any necessary sample quantities, substitute these into the

equation for the test statistic, and compute that value.

7. Draw conclusions: Decide whether or not H0 should be rejected and report that in the

problem context.

Steps 1–4 should be completed prior to examining the sample data. This sequence of steps is

illustrated in subsequent sections.

In practice, such a formal and (seemingly) rigid procedure is not always necessary.

Generally, once the experimenter (or decision maker) has decided on the question of interest and

has determined the design of the experiment (that is, how the data are to be collected, how the

measurements are to be made, and how many observations are required), only three steps are

really required:

1. Specify the test statistic to be used (such as Z0).

2. Specify the location of the critical region (two-tailed, upper-tailed, or lower-tailed).

3. Specify the criteria for rejection (typically, the value of α or the P-value at which rejection

should occur).
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These steps are often completed almost simultaneously in solving real-world problems, although

we emphasize that it is important to think carefully about each step. That is why we present and

use the seven-step process; it seems to reinforce the essentials of the correct approach. Although

we may not use it every time in solving real problems, it is a helpful framework when we are first

learning about hypothesis testing.

Statistical Versus Practical Significance We noted previously that reporting the results of a

hypothesis test in terms of a P-value is very useful because it conveys more information than just

the simple statement “reject H0” or “fail to reject H0.” That is, rejection of H0 at the 0.05 level

of significance is much more meaningful if the value of the test statistic is well into the critical

region, greatly exceeding the 5% critical value, than if it barely exceeds that value.

Even a very small P-value can be difficult to interpret from a practical viewpoint when we are

making decisions because, although a small P-value indicates statistical significance in the sense

that H0 should be rejected in favor of H1, the actual departure from H0 that has been detected may

have little (if any) practical significance (engineers like to say “engineering significance”). This

is particularly true when the sample size n is large.

For example, consider the propellant burning rate problem in Example 9.1 in which we test

H0: μ = 50 centimeters per second versus H1: μ ≠ 50 centimeters per second with σ = 2.5. If we

suppose that the mean rate is really 50.5 centimeters per second, this is not a serious departure

from H0: μ = 50 centimeters per second in the sense that if the mean really is 50.5 centimeters per

second, there is no practical observable effect on the performance of the air crew escape system.

In other words, concluding that μ = 50 centimeters per second when it is really 50.5 centimeters

per second is an inexpensive error and has no practical significance. For a reasonably large sample

size, a true value of μ = 50.5 will lead to a sample x that is close to 50.5 centimeters per second,

and we would not want this value of x from the sample to result in rejection of H0. The following

display shows the P-value for testing H0: μ= 50 when we observe x = 50.5 centimeters per second

and the power of the test at α = 0.05 when the true mean is 50.5 for various sample sizes n:

Sample Size n P-value When x=𝟓𝟎.𝟓 Power (at 𝛂 = 0.05) When True 𝛍 = 50.5

10 0.527 0.097

25 0.317 0.170

50 0.157 0.293

100 0.046 0.516

400 6.3 × 10−5 0.979

1000 2.5 × 10−10 1.000

The P-value column in this display indicates that for large sample sizes, the observed sample

value of x = 50.5 would strongly suggest that H0: μ = 50 should be rejected, even though the

observed sample results imply that from a practical viewpoint, the true mean does not differ

much at all from the hypothesized value μ0 = 50. The power column indicates that if we test a

hypothesis at a fixed significance level α, and even if there is little practical difference between

the true mean and the hypothesized value, a large sample size will almost always lead to rejection

of H0. The moral of this demonstration is clear:

Be careful when interpreting the results from hypothesis testing when the sample size is

large because any small departure from the hypothesized value μ0 will probably be detected,

even when the difference is of little or no practical significance.
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9.2 Tests on the Mean of a Normal Distribution,

Variance Known
In this section, we consider hypothesis testing about the mean μ of a single normal population

where the variance of the population σ2 is known. We assume that a random sample X1, X2,… ,

Xn has been taken from the population. Based on our previous discussion, the sample mean X is

an unbiased point estimator of μ with variance σ2/n.

9.2.1 Hypothesis Tests on the Mean
Suppose that we wish to test the hypotheses

H0∶μ = μ0 H1∶μ ≠ μ0 (9.7)

where μ0 is a specified constant. We have a random sample X1, X2,… , Xn from a normal pop-

ulation. Because X has a normal distribution (i.e., the sampling distribution of X is normal)

with mean μ0 and standard deviation σ∕
√

n if the null hypothesis is true, we could calculate

a P-value or construct a critical region based on the computed value of the sample mean X, as in

Section 9.1.2.

It is usually more convenient to standardize the sample mean and use a test statistic based on

the standard normal distribution. That is, the test procedure for H0: μ = μ0 uses the test statistic:

Test Statistic

Z0 =
X − μ0

σ∕
√

n
(9.8)

If the null hypothesis H0: μ = μ0 is true, E(X) = μ0, and it follows that the distribution of Z0 is

the standard normal distribution [denoted N(0, 1)].

The hypothesis testing procedure is as follows. Take a random sample of size n and compute

the value of the sample mean x. To test the null hypothesis using the P-value approach, we would

find the probability of observing a value of the sample mean that is at least as extreme as x, given

that the null hypothesis is true. The standard normal z-value that corresponds to x is found from

the test statistic in Equation 9.8:

z0 =
x − μ0

σ∕
√

n

In terms of the standard normal cumulative distribution function (CDF), the probability we are

seeking is 1 − Φ(|z0|). The reason that the argument of the standard normal cdf is |z0| is that the

value of z0 could be either positive or negative, depending on the observed sample mean. Because

this is a two-tailed test, this is only one-half of the P-value. Therefore, for the two-sided alternative

hypothesis, the P-value is

P = 2
[
1 − Φ

(
|z0|

)]
(9.9)

This is illustrated in Figure 9.10(a).

Now let’s consider the one-sided alternatives. Suppose that we are testing

H0∶μ = μ0 H1∶μ > μ0 (9.10)
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(a)

0

N(0,1)

–z0 –z0z0 z0 z0

(c)

0

N(0,1)

(b)

0

N(0,1)

P-value = 2[1 – Φ(∣z0∣)]

Two-tailed test Upper-tailed test Lower-tailed test

P-value = 1 – Φ(z0) P-value = Φ(z0)

FIGURE 9.10

The P-value for a z-test. (a) The two-sided alternative H1: 𝛍 ≠ 𝛍0. (b) The one-sided alternative H1: 𝛍 > 𝛍0.
(c) The one-sided alternative H1: 𝛍 < 𝛍0.

Once again, suppose that we have a random sample of size n and that the sample mean is x.

We compute the test statistic from Equation 9.8 and obtain z0. Because the test is an upper-tailed

test, only values of x that are greater than μ0 are consistent with the alternative hypothesis. There-

fore, the P-value would be the probability that the standard normal random variable is greater

than the value of the test statistic z0. This P-value is computed as

P = 1 − Φ(z0) (9.11)

This P-value is shown in Figure 9.10(b).

The lower-tailed test involves the hypotheses

H0: μ = μ0 H1: μ < μ0 (9.12)

Suppose that we have a random sample of size n and that the sample mean is x. We compute the

test statistic from Equation 9.8 and obtain z0. Because the test is a lower-tailed test, only values

of x that are less than μ0 are consistent with the alternative hypothesis. Therefore, the P-value

would be the probability that the standard normal random variable is less than the value of the

test statistic z0. This P-value is computed as

P = Φ(z0) (9.13)

and shown in Figure 9.10(c). The reference distribution for this test is the standard normal

distribution. The test is usually called a z-test.
We can also use the fixed significance level approach with the z-test. The only thing we have

to do is determine where to place the critical regions for the two-sided and one-sided alternative

hypotheses. First, consider the two-sided alternative in Equation 9.10. Now if H0: μ = μ0 is true,

the probability is 1 − α that the test statistic Z0 falls between −zα/2 and zα/2 where zα/2 is the

100(α/2) percentage point of the standard normal distribution. The regions associated with zα/2

and−zα/2 are illustrated in Figure 9.11(a). Note that the probability is α that the test statistic Z0 will

fall in the region Z0 > zα/2 or Z0 < −zα/2, when H0: μ = μ0 is true. Clearly, a sample producing

(a)

0

N(0,1)

   z   /2α–z   /2α Z0

   /2α   /2α Acceptance

region

Critical region

(c)

0

N(0,1)

–z   α Z0

α Acceptance

region

(b)

0

N(0,1)

   z   α

α

Critical region

Acceptance

region

Critical region

Two-tailed test Upper-tailed test Lower-tailed test

FIGURE 9.11

The distribution of Z0 when H0: 𝛍 = 𝛍0 is true with critical region for (a) the two-sided alternative H1: 𝛍 ≠ 𝛍0,
(b) the one-sided alternative H1: 𝛍 > 𝛍0, and (c) the one-sided alternative H1: 𝛍 < 𝛍0.
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a value of the test statistic that falls in the tails of the distribution of Z0 would be unusual if

H0: μ = μ0 is true; therefore, it is an indication that H0 is false. Thus, we should reject H0 if either

z0 > zα∕2 (9.14)

or

z0 < −zα∕2 (9.15)

and we should fail to reject H0 if

− zα∕2 ≤ z0 ≤ zα∕2 (9.16)

Equations 9.14 and 9.15 define the critical region or rejection region for the test. The type I

error probability for this test procedure is α.

We may also develop fixed significance level testing procedures for the one-sided alternatives.

Consider the upper-tailed case in Equation 9.10.

In defining the critical region for this test, we observe that a negative value of the test statistic

Z0 would never lead us to conclude that H0: μ = μ0 is false. Therefore, we would place the critical

region in the upper tail of the standard normal distribution and reject H0 if the computed value z0

is too large. Refer to Figure 9.11(b). That is, we would reject H0 if

z0 > zα (9.17)

Similarly, to test the lower-tailed case in Equation 9.12, we would calculate the test statistic

Z0 and reject H0 if the value of Z0 is too small. That is, the critical region is in the lower tail of

the standard normal distribution as in Figure 9.11(c), and we reject H0 if

z0 < −zα (9.18)

Summary of Tests on the Mean, Variance Known

Testing Hypotheses on the Mean, Variance Known (Z-Tests)

Null hypothesis: H0: μ = μ0

Test statistic∶ Z0 =
X − μ0

σ∕
√

n

Alternative
Hypotheses P-Value

Rejection Criterion for
Fixed-Level Tests

H1: μ ≠ μ0 Probability above |z0| and probability

below −|z0|, P = 2[1 − Φ(|z0|)]

z0 > zα/2 or z0 < −zα/2

H1: μ > μ0 Probability above z0, P = 1 − Φ(z0) z0 > zα
H1: μ < μ0 Probability below z0, P = Φ(z0) z0 < −zα

The P-values and critical regions for these situations are shown in Figures 9.10 and 9.11.

In general, understanding the critical region and the test procedure is easier when the test

statistic is Z0 rather than X. However, the same critical region can always be written in terms of the

computed value of the sample mean x. A procedure identical to the preceding fixed significance

level test is as follows:

Reject H0∶ μ = μ0 if either x > α or x < b

where

a = μ0 + zα∕2σ∕
√

n and b = μ0 − zα∕2σ∕
√

n
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E X A M P L E 9.2 Propellant Burning Rate

Air crew escape systems are powered by a solid propellant.

The burning rate of this propellant is an important product

characteristic. Specifications require that the mean burning

rate must be 50 centimeters per second. We know that the

standard deviation of burning rate is σ = 2 centimeters per

second. The experimenter decides to specify a type I error

probability or significance level of α = 0.05 and selects a ran-

dom sample of n = 25 and obtains a sample average burning

rate of x = 51.3 centimeters per second. What conclusions

should be drawn?

We may solve this problem by following the seven-step

procedure outlined in Section 9.1.6. This results in

1. Parameter of interest: The parameter of interest is

μ, the mean burning rate.

2. Null hypothesis: H0: μ = 50 centimeters per second

3. Alternative hypothesis: H1: μ ≠ 50 centimeters per

second

4. Test statistic: The test statistic is

z0 =
x − μ0

σ∕
√

n

5. Reject H0 if: Reject H0 if the P-value is less than

0.05. To use a fixed significance level test, the bound-

aries of the critical region would be z0.025 = 1.96 and

−z0.025 = −1.96.

6. Computations: Because x = 51.3 and σ = 2,

z0 =
51.3 − 50

2∕
√

25
= 3.25

7. Conclusion: Because the P-value = 2[1 − Φ(3.25)]

= 0.0012 we reject H0: μ = 50 at the 0.05 level of

significance.

Practical Interpretation: We conclude that the mean

burning rate differs from 50 centimeters per second, based on

a sample of 25 measurements. In fact, there is strong evidence

that the mean burning rate exceeds 50 centimeters per second.

9.2.2 Type II Error and Choice of Sample Size
In testing hypotheses, the analyst directly selects the type I error probability. However, the prob-

ability of type II error β depends on the choice of sample size. In this section, we show how to

calculate the probability of type II error β. We also show how to select the sample size to obtain

a specified value of β.

Finding the Probability of Type II Error 𝛃 Consider the two-sided hypotheses

H0∶ μ = μ0 H1∶ μ ≠ μ0

Suppose that the null hypothesis is false and that the true value of the mean is μ = μ0 + δ, say,

where δ > 0. The expected value of the test statistic Z0 is

E(Z0) =
E(X) − μ0

σ
/√

n
=

(μ0 + δ) − μ0

σ
/√

n
=

δ
√

n
σ

Therefore, the distribution of Z0 when H1 is true is

Z0 ∼ N

(
δ
√

n
σ

, 1

)

(9.19)

The distribution of the test statistic Z0 under both the null hypothesis H0 and the alternate hypoth-

esis H1 is shown in Figure 9.9. From examining this figure, we note that if H1 is true, a type II

error will be made only if −zα/2 ≤ Z0 ≤ zα/2 where Z0 ∼ N(δ
√

n∕σ, 1). That is, the probability

of the type II error β is the probability that Z0 falls between −zα/2 and zα/2 given that H1 is true.
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FIGURE 9.12

The distribution of Z0 under H0 and H1.
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β
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This probability is shown as the shaded portion of Figure 9.12. Expressed mathematically, this

probability is

Probability of a Type II Error for a Two-Sided Test on the Mean,
Variance Known

β = Φ

(

zα∕2 −
δ
√

n
σ

)

− Φ

(

−zα∕2 −
δ
√

n
σ

)

(9.20)

where Φ(z) denotes the probability to the left of z in the standard normal distribution. Note that

Equation 9.20 was obtained by evaluating the probability that Z0 falls in the interval [−zα/2, zα/2]

when H1 is true. Furthermore, note that Equation 9.20 also holds if δ< 0 because of the symmetry

of the normal distribution. It is also possible to derive an equation similar to Equation 9.20 for a

one-sided alternative hypothesis.

Sample Size Formulas One may easily obtain formulas that determine the appropriate

sample size to obtain a particular value of β for a given Δ and α. For the two-sided alternative

hypothesis, we know from Equation 9.20 that

β = Φ

(

zα∕2 −
δ
√

n
σ

)

− Φ

(

−zα∕2 −
δ
√

n
σ

)

or, if δ > 0,

β ≃ Φ

(

zα∕2 −
δ
√

n
σ

)

(9.21)

because Φ(−zα∕2 − δ
√

n∕σ) ≃ 0 when δ is positive. Let zβ be the 100β upper percentile of the

standard normal distribution. Then, β = Φ(−zβ). From Equation 9.21,

−zβ ≃ zα∕2 −
δ
√

n
σ

or

Sample Size for a Two-Sided Test on the Mean, Variance Known

n ≃
(zα∕2 + zβ)2σ2

δ2
where δ = μ − μ0 (9.22)
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If n is not an integer, the convention is to round the sample size up to the next integer. This

approximation is good when Φ(−zα∕2 − δ
√

n∕σ) is small compared to β. For either of the

one-sided alternative hypotheses, the sample size required to produce a specified type II error

with probability β given δ and α is

Sample Size for a One-Sided Test on the Mean, Variance Known

n ≃
(zα + zβ)2σ2

δ2
where δ = μ − μ0 (9.23)

E X A M P L E 9.3 Propellant Burning Rate Type II Error

Consider the rocket propellant problem in Example 9.2.

Suppose that the true burning rate is 49 centimeters per

second. What is β for the two-sided test with α = 0.05, σ = 2,

and n = 25?

Here δ = 1 and zα/2 = 1.96. From Equation 9.20,

β = Φ

(

1.96 −
√

25

σ

)

− Φ

(

−1.96 −
√

25

σ

)

= Φ(−0.54) − Φ(−4.46) = 0.295

The probability is about 0.3 that this difference from 50 cen-

timeters per second will not be detected. That is, the probabil-

ity is about 0.3 that the test will fail to reject the null hypothesis

when the true burning rate is 49 centimeters per second.

Practical Interpretation: A sample size of n = 25 results

in reasonable, but not great, power = 1 − β = 1 − 0.3 = 0.70.

Suppose that the analyst wishes to design the test so that

if the true mean burning rate differs from 50 centimeters per

second by as much as 1 centimeter per second, the test will

detect this (i.e., reject H0: μ = 50) with a high probability, say,

0.90. Now we note that σ = 2, δ = 51 − 50 = 1, α = 0.05, and

β = 0.10. Because zα/2 = z0.025 = 1.96 and zβ = z0.10 = 1.28, the

sample size required to detect this departure from H0: μ = 50

is found by Equation 9.22 as

n ≃
(zα∕2 + zβ)2σ2

δ2
= (1.96 + 1.28)222

(12)
≃ 42

The approximation is good here because Φ(−zα∕2 −
δ
√

n∕σ) = Φ(−1.96 − (1)
√

42∕2) = Φ(−5.20) ≃ 0, which is

small relative to β.

Practical Interpretation: To achieve a much higher power

of 0.90, you will need a considerably large sample size, n = 42

instead of n = 25.

Using Operating Characteristic Curves When performing sample size or type II error cal-

culations, it is sometimes more convenient to use the operating characteristic (OC) curves
in Appendix Charts VIIa & b. These curves plot β as calculated from Equation 9.20 against a

parameter d for various sample sizes n. Curves are provided for both α = 0.05 and α = 0.01.

The parameter d is defined as

d =
|μ − μ0|

σ
= |δ|

σ
(9.24)

so one set of operating characteristic curves can be used for all problems regardless of the val-

ues of μ0 and σ. From examining the operating characteristic curves or from Equation 9.20 and

Figure 9.9, we note that

1. The farther the true value of the mean μ is from μ0, the smaller the probability of type II error

β for a given n and α. That is, we see that for a specified sample size and α, large differences

in the mean are easier to detect than small ones.

2. For a given δ and α, the probability of type II error β decreases as n increases. That is, to

detect a specified difference δ in the mean, we may make the test more powerful by increasing

the sample size.
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E X A M P L E 9.4 Propellant Burning Rate Type II Error

from OC Curve

Consider the propellant problem in Example 9.2. Suppose that

the analyst is concerned about the probability of type II error

if the true mean burning rate is μ = 51 centimeters per sec-

ond. We may use the operating characteristic curves to find β.

Note that δ = 51 − 50 = 1, n = 25, σ = 2, and α = 0.05. Then

using Equation 9.24 gives

d =
|μ − μ0|

σ
= |δ|

σ
= 1

2

and from Appendix Chart VIIa with n = 25, we find that

β = 0.30. That is, if the true mean burning rate is μ = 51

centimeters per second, there is approximately a 30% chance

that this will not be detected by the test with n = 25.

E X A M P L E 9.5 Propellant Burning Rate Sample Size

from OC Curve

Once again, consider the propellant problem in Example 9.2.

Suppose that the analyst would like to design the test so that

if the true mean burning rate differs from 50 centimeters per

second by as much as 1 centimeter per second, the test will

detect this (i.e., reject H0: μ = 50) with a high probability, say,

0.90. This is exactly the same requirement as in Example 9.3

in which we used Equation 9.22 to find the required sample

size to be n = 42. The operating characteristic curves can

also be used to find the sample size for this test. Because d =
|μ−μ0|/σ= 1/2, α= 0.05, and β= 0.10, we find from Appendix

Chart VIIa that the required sample size is approximately

n = 40. This closely agrees with the sample size calculated

from Equation 9.22.

In general, the operating characteristic curves involve three parameters: β, d, and n. Given

any two of these parameters, the value of the third can be determined. There are two typical

applications of these curves:

1. For a given n and d, find β (as illustrated in Example 9.4). Analysts often encounter this

kind of problem when they are concerned about the sensitivity of an experiment already

performed, or when sample size is restricted by economic or other factors.

2. For a given β and d, find n. This was illustrated in Example 9.5. Analysts usually encounter

this kind of problem when they have the opportunity to select the sample size at the outset

of the experiment.

Operating characteristic curves are given in Appendix Charts VIIc and VIId for the one-sided

alternatives. If the alternative hypothesis is either H1: μ > μ0 or H1: μ < μ0, the abscissa scale on

these charts is

d =
|μ − μ0|

σ
(9.25)

Using the Computer Many statistics software packages can calculate sample sizes and type

II error probabilities. To illustrate, here are some typical computer calculations for the propellant

burning rate problem:

Power and Sample Size
1-Sample Z-Test
Testing mean = null (versus not = null)
Calculating power for mean = null + difference
Alpha = 0.05 Sigma = 2

Difference
Sample
Size

Target
Power

Actual
Power

1 43 0.9000 0.9064
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Power and Sample Size
1-Sample Z-Test
Testing mean = null (versus not = null)
Calculating power for mean = null + difference
Alpha = 0.05 Sigma = 2

Difference
Sample
Size

Target
Power

Actual
Power

1 28 0.7500 0.7536

Power and Sample Size
1-Sample Z-Test
Testing mean = null (versus not = null)
Calculating power for mean = null + difference
Alpha = 0.05 Sigma = 2

Difference
Sample
Size Power

1 25 0.7054

In the first part of the boxed display, we worked Example 9.3, that is, to find the sample size n that

would allow detection of a difference from μ0 = 50 of 1 centimeter per second with power of 0.9

and α = 0.05. The answer, n = 43, agrees closely with the calculated value from Equation 9.22

in Example 9.3, which was n = 42. The difference is due to the software’s use of a value of zβ
that has more than two decimal places. The second part of the computer output relaxes the power

requirement to 0.75. Note that the effect is to reduce the required sample size to n = 28. The third

part of the output is the solution to Example 9.4 for which we wish to determine the type II error

probability of (β) or the power = 1 − β for the sample size n = 25. Note that software computes

the power to be 0.7054, which agrees closely with the answer obtained from the OC curve in

Example 9.4. Generally, however, the computer calculations will be more accurate than visually

reading values from an OC curve.

9.2.3 Large-Sample Test
We have developed the test procedure for the null hypothesis H0: μ = μ0 assuming that the popula-

tion is normally distributed and that σ2 is known. In many if not most practical situations, σ2 will

be unknown. Furthermore, we may not be certain that the population is well modeled by a normal

distribution. In these situations, if n is large (say, n > 40), the sample standard deviation s can be

substituted for σ in the test procedures with little effect. Thus, although we have given a test for

the mean of a normal distribution with known σ2, it can be easily converted into a large-sample
test procedure for unknown σ2 that is valid regardless of the form of the distribution of the popula-

tion. This large-sample test relies on the central limit theorem just as the large-sample confidence

interval on μ that was presented in the previous chapter did. Exact treatment of the case in which

the population is normal, σ2 is unknown, and n is small involves use of the t distribution and is

deferred until Section 9.3.

9.3 Tests on the Mean of a Normal Distribution,

Variance Unknown

9.3.1 Hypothesis Tests on the Mean
We now consider the case of hypothesis testing on the mean of a population with unknown
variance σ2. The situation is analogous to the one in Section 8.2 where we considered a confidence
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interval on the mean for the same situation. As in that section, the validity of the test procedure we

describe rests on the assumption that the population distribution is at least approximately normal.

The important result on which the test procedure relies is that if X1, X2,… , Xn is a random sample

from a normal distribution with mean μ and variance σ2, the random variable

T =
X − μ
S∕

√
n

has a t distribution with n − 1 degrees of freedom. Recall that we used this result in Section 8.2

to devise the t-confidence interval for μ. Now consider testing the hypotheses

H0∶μ = μ0 H1∶μ ≠ μ0

We use the test statistic:

Test Statistic

T0 =
X − μ0

S∕
√

n
(9.26)

If the null hypothesis is true, T0 has a t distribution with n − 1 degrees of freedom. When we know

the distribution of the test statistic when H0 is true (this is often called the reference distribution
or the null distribution), we can calculate the P-value from this distribution, or, if we use a fixed

significance level approach, we can locate the critical region to control the type I error probability

at the desired level.

To test H0: μ = μ0 against the two-sided alternative H1: μ ≠ μ0, the value of the test statistic

t0 in Equation 9.26 is calculated, and the P-value is found from the t distribution with n − 1

degrees of freedom (denoted by Tn−1). Because the test is two-tailed, the P-value is the sum of

the probabilities in the two tails of the t distribution. Refer to Figure 9.13(a). The P-value is the

probability above |t0| plus the probability below. Because the t distribution is symmetric around

zero, a simple way to write this is

P = 2P(Tn−1 > |t0|) (9.27)

A small P-value is evidence against H0, so if P is of sufficiently small value (typically < 0.05),

reject the null hypothesis.

For the one-sided alternative hypotheses,

H0∶μ = μ0 H1∶μ > μ0 (9.28)

(a)

0–t0 t0t0 t0

(c)

0

(b)

0

P-value =

probability in

both tails

Two-tailed test One-tailed test One-tailed test

P-value

tn – 1 tn – 1 tn – 1tn – 1 tn – 1

FIGURE 9.13

Calculating the P-value for a t-test: (a) H1: 𝛍 ≠ 𝛍0, (b) H1: 𝛍 > 𝛍0, (c) H1: 𝛍 < 𝛍0.
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we calculate the test statistic t0 from Equation 9.26 and calculate the P-value as

P = P(Tn−1 > t0) (9.29)

For the other one-sided alternative,

H0∶μ = μ0 H1∶μ < μ0 (9.30)

we calculate the P-value as

P = P(Tn−1 < t0) (9.31)

Figure 9.13(b) and (c) show how these P-values are calculated.

Statistics software packages calculate and display P-values. However, in working problems

by hand, it is useful to be able to find the P-value for a t-test. Because the t-table in Appendix A

Table V contains only 10 critical values for each t distribution, determining the exact P-value

from this table is usually impossible. Fortunately, it is easy to find lower and upper bounds on the

P-value by using this table.

To illustrate, suppose that we are conducting an upper-tailed t-test (so H1: μ > μ0) with

14 degrees of freedom. The relevant critical values from Appendix A Table II are as follows:

Critical value: 0.258 0.692 1.345 1.761 2.145 2.624 2.977 3.326 3.787 4.140

Tail area: 0.40 0.25 0.10 0.05 0.025 0.01 0.005 0.0025 0.001 0.0005

After calculating the test statistic, we find that t0 = 2.8. Now t0 = 2.8 is between two tabulated val-

ues, 2.624 and 2.977. Therefore, the P-value must be between 0.01 and 0.005. Refer to Figure 9.14.

These are effectively the upper and lower bounds on the P-value.

This illustrates the procedure for an upper-tailed test. If the test is lower-tailed, just change

the sign on the lower and upper bounds for t0 and proceed in the same way. Remember that for

a two-tailed test, the level of significance associated with a particular critical value is twice the

corresponding tail area in the column heading. This consideration must be taken into account

when we compute the bound on the P-value. For example, suppose that t0 = 2.8 for a two-tailed

alternative based on 14 degrees of freedom. The value of the test statistic t0 > 2.624 (correspond-

ing to α = 2 × 0.01 = 0.02) and t0 < 2.977 (corresponding to α = 2 × 0.005 = 0.01), so the lower

and upper bounds on the P-value would be 0.01 < P < 0.02 for this case.

Some statistics software packages can calculate P-values. For example, many software

packages have the capability to find cumulative probabilities from many standard probability

0

t distribution
with 14 degrees
of freedom

t0 = 2.8

2.624

2.977

P(T14 > 2.624) = 0.01 

P(T14 > 2.977) = 0.005 

FIGURE 9.14

P-value for t0 = 2.8; an upper-tailed test is
shown to be between 0.005 and 0.01.
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(a)

0

tn – 1

–t   /2, n – 1α –t   , n – 1α T0t   /2, n – 1α t   , n – 1α

   /2α   /2α

(c)

0

α

(b)

0

α

tn – 1 tn – 1

FIGURE 9.15

The distribution of T0 when H0: 𝛍 = 𝛍0 is true with critical region for (a) H1: 𝛍 ≠ 𝛍0, (b) H1: 𝛍 > 𝛍0,
and (c) H1: 𝛍 < 𝛍0.

distributions, including the t distribution. Simply enter the value of the test statistic t0 along with

the appropriate number of degrees of freedom. Then the software will display the probability

P(Tv ≤ to) where ν is the degrees of freedom for the test statistic t0. From the cumulative

probability, the P-value can be determined.

The single-sample t-test we have just described can also be conducted using the fixed signif-
icance level approach. Consider the two-sided alternative hypothesis. The null hypothesis would

be rejected if the value of the test statistic t0 falls in the critical region defined by the lower and

upper α/2 percentage points of the t distribution with n − 1 degrees of freedom. That is, reject

H0 if

t0 > tα∕2,n−1 or t0 < −tα∕2,n−1

For the one-tailed tests, the location of the critical region is determined by the direction to which

the inequality in the alternative hypothesis “points.” So, if the alternative is H1: μ > μ0, reject

H0 if

t0 > tα,n−1

and if the alternative is H1: μ < μ0, reject H0 if

t0 < −tα,n−1

Figure 9.15 provides the locations of these critical regions.

Summary for the One-Sample t-test

Testing Hypotheses on the Mean of a Normal Distribution, Variance Unknown

Null hypothesis: H0∶ μ = μ0

Test statistic: T0 =
X − μ0

S∕
√

n
Alternative
Hypotheses P-Value

Rejection Criterion for
Fixed-Level Tests

H1: μ ≠ μ0 Probability above |t0| and probability

below −|t0|

t0 > tα/2,n−1 or t0 < −tα/2,n−1

H1: μ > μ0 Probability above t0 t0 > tα,n−1

H1: μ < μ0 Probability below t0 t0 < −tα,n−1

The calculations of the P-values and the locations of the critical regions for these situations

are shown in Figures 9.13 and 9.15, respectively.
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E X A M P L E 9.6 Golf Club Design

The increased availability of light materials with high strength

has revolutionized the design and manufacture of golf clubs,

particularly drivers. Clubs with hollow heads and very thin

faces can result in much longer tee shots, especially for

players of modest skills. This is due partly to the “spring-like

effect” that the thin face imparts to the ball. Firing a golf

ball at the head of the club and measuring the ratio of the

ball’s outgoing velocity to the incoming velocity can quantify

this spring-like effect. The ratio of velocities is called the

coefficient of restitution of the club. An experiment was

performed in which 15 drivers produced by a particular

club maker were selected at random and their coefficients

of restitution measured. In the experiment, the golf balls

were fired from an air cannon so that the incoming velocity

and spin rate of the ball could be precisely controlled. It

is of interest to determine whether there is evidence (with

α = 0.05) to support a claim that the mean coefficient of

restitution exceeds 0.82. The observations follow:

0.8411 0.8191 0.8182 0.8125 0.8750

0.8580 0.8532 0.8483 0.8276 0.7983

0.8042 0.8730 0.8282 0.8359 0.8660

The sample mean and sample standard deviation are

x = 0.83725 and s = 0.02456. The normal probability plot

of the data in Figure 9.16 supports the assumption that the

coefficient of restitution is normally distributed. Because

the experiment’s objective is to demonstrate that the mean

coefficient of restitution exceeds 0.82, a one-sided alternative

hypothesis is appropriate.

The solution using the seven-step procedure for hypoth-

esis testing is as follows:

1. Parameter of interest: The parameter of interest is

the mean coefficient of restitution, μ.

2. Null hypothesis: H0: μ = 0.82

3. Alternative hypothesis: H1: μ > 0.82. We want to

reject H0 if the mean coefficient of restitution exceeds

0.82.

4. Test statistic: The test statistic is

t0 =
x − μ0

S∕
√

n
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FIGURE 9.16

Normal probability plot of the coefficient of restitution
data.

5. Reject H0 if: Reject H0 if the P-value is less than

0.05.

6. Computations: Because x = 0.83725, s = 0.02456,

μ0 = 0.82, and n = 15, we have

t0 =
0.83725 − 0.82

0.02456∕
√

15
= 2.72

7. Conclusions: From Appendix A Table II we find

for a t distribution with 14 degrees of freedom that

t0 = 2.72 falls between two values: 2.624, for which

α = 0.01, and 2.977, for which α = 0.005. Because

this is a one-tailed test, we know that the P-value

is between those two values, that is, 0.005 < P <

0.01. Therefore, because P < 0.05, we reject H0

and conclude that the mean coefficient of restitution

exceeds 0.82.

Practical Interpretation: There is strong evidence to con-

clude that the mean coefficient of restitution exceeds 0.82.

Normality and the t-Test The development of the t-test assumes that the population from

which the random sample is drawn is normal. This assumption is required to formally derive the

t distribution as the reference distribution for the test statistic in Equation 9.26. Because it can be

difficult to identify the form of a distribution based on a small sample, a logical question to ask is

how important this assumption is. Studies have investigated this. Fortunately, studies have found

that the t-test is relatively insensitive to the normality assumption. If the underlying population

is reasonably symmetric and unimodal, the t-test will work satisfactorily. The exact significance

level will not match the “advertised” level; for instance, the results may be significant at the 6%
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or 7% level instead of the 5% level. This is usually not a serious problem in practice. A normal

probability plot of the sample data as illustrated for the golf club data in Figure 9.16 is usually

a good way to verify the adequacy of the normality assumption. Only severe departures from

normality that are evident in the plot should be a cause for concern.

Many software packages conduct the one-sample t-test. Typical computer output for

Example 9.6 is shown in the following display:

One-Sample T

Test of mu = 0.82 vs mu > 0.82

Variable N Mean StDev SE Mean
95.0% Lower
confidence bound T P-value

COR 15 0.83725 0.02456 0.00634 0.82608 2.72 0.008

Notice that the software computes both the test statistic T0 and a 95% lower confidence bound for

the coefficient of restitution. The reported P-value is 0.008. Because the 95% lower confidence

bound exceeds 0.82, we would reject the hypothesis that H0: μ = 0.82 and conclude that the

alternative hypothesis H1: μ > 0.82 is true.

9.3.2 Type II Error and Choice of Sample Size
The type II error probability for the t-test depends on the distribution of the test statistic in

Equation 9.26 when the null hypothesis H0: μ = μ0 is false. When the true value of the mean

is μ = μ0 + δ, the distribution for T0 is called the noncentral t distribution with n − 1 degrees

of freedom and noncentrality parameter δ
√

n∕σ. Note that if δ = 0, the noncentral t distribution

reduces to the usual central t distribution. Therefore, the type II error of the two-sided alternative

(for example) would be

β = P(−tα∕2,n−1 ≤ T0 ≤ tα∕2,n−1
|
| δ ≠ 0)

= P(−tα∕2,n−1 ≤ T ′
0
≤ tα∕2,n−1)

where T ′
0

denotes the noncentral t random variable. Finding the type II error probability β for

the t-test involves finding the probability contained between two points of the noncentral t distri-

bution. Because the noncentral t-random variable has a messy density function, this integration

must be done numerically.

Fortunately, this ugly task has already been done, and the results are summarized in a series

of O.C. curves in Appendix Charts VIIe, VIIf , VIIg, and VIIh that plot β for the t-test against a

parameter d for various sample sizes n. Curves are provided for two-sided alternatives on Charts

VIIe and VIIf . The abscissa scale factor d on these charts is defined as

d =
|μ − μ0|

σ
= |δ|

σ
(9.32)

For the one-sided alternative μ > μ0 or μ < μ0, we use charts VIIg and VIIh with

d =
|μ − μ0|

σ
= |δ|

σ
(9.33)

We note that d depends on the unknown parameter σ2. We can avoid this difficulty in several

ways. In some cases, we may use the results of a previous experiment or prior information to make

a rough initial estimate of σ2. If we are interested in evaluating test performance after the data

have been collected, we could use the sample variance s2 to estimate σ2. If there is no previous

experience on which to draw in estimating σ2, we then define the difference in the mean d that we

wish to detect relative to σ. For example, if we wish to detect a small difference in the mean, we
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might use a value of d = |δ|∕σ ≤ 1 (for example), whereas if we are interested in detecting only

moderately large differences in the mean, we might select d = |δ|∕σ = 2 (for example). That is,

the value of the ratio |δ|∕σ is important in determining sample size, and if it is possible to specify

the relative size of the difference in means that we are interested in detecting, then a proper value

of d can usually be selected.

E X A M P L E 9.7 Golf Club Design Sample Size

Consider the golf club testing problem from Example 9.6.

If the mean coefficient of restitution exceeds 0.82 by as much

as 0.02, is the sample size n = 15 adequate to ensure that H0:

μ = 0.82 will be rejected with probability at least 0.8?

To solve this problem, we use the sample standard devia-

tion s = 0.02456 to estimate σ. Then d = |δ|∕σ = 0.02/0.02456

= 0.81. By referring to the operating characteristic curves in

Appendix Chart VIIg (for α = 0.05) with d = 0.81 and n = 15,

we find that β = 0.10, approximately. Thus, the probability of

rejecting H0: μ = 0.82 if the true mean exceeds this by 0.02

is approximately 1 − β = 1 − 0.10 = 0.90, and we conclude

that a sample size of n = 15 is adequate to provide the desired

sensitivity.

Some software packages can also perform power and sample size computations for the one-

sample t-test. Several calculations based on the golf club testing problem follow:

Power and Sample Size
1-Sample t-test
Testing mean = null (versus > null)
Calculating power for mean = null + difference
Alpha = 0.05 Sigma = 0.02456

Difference Sample Size Power
0.02 15 0.9117

Power and Sample Size
1-Sample t-test
Testing mean = null (versus > null)
Calculating power for mean = null + difference
Alpha = 0.05 Sigma = 0.02456

Difference Sample Size Power
0.01 15 0.4425

Power and Sample Size
1-Sample t-test
Testing mean = null (versus > null)
Calculating power for mean = null + difference
Alpha = 0.05 Sigma = 0.02456

Difference Sample Size Target Power Actual Power
0.01 39 0.8000 0.8029

In the first portion of the computer output, the software reproduces the solution to Example 9.7,

verifying that a sample size of n = 15 is adequate to give power of at least 0.8 if the mean coeffi-

cient of restitution exceeds 0.82 by at least 0.02. In the middle section of the output, we used the

software to compute the power to detect the difference between μ and μ0 = 0.82 of 0.01. Notice

that with n = 15, the power drops considerably to 0.4425. The final portion of the output is the
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sample size required for a power of at least 0.8 if the difference between μ and μ0 of interest is

actually 0.01. A much larger n is required to detect this smaller difference.

9.4 Tests on the Variance and Standard

Deviation of a Normal Distribution
Sometimes hypothesis tests on the population variance or standard deviation are needed. When

the population is modeled by a normal distribution, the tests and intervals described in this section

are applicable.

9.4.1 Hypothesis Tests on the Variance

Suppose that we wish to test the hypothesis that the variance of a normal population σ2 equals a

specified value, say σ2
0
, or equivalently, that the standard deviation σ is equal to σ0. Let X1, X2,… ,

Xn be a random sample of n observations from this population. To test

H0∶ σ2 = σ2
0

H1∶ σ2
≠ σ2

0
(9.34)

we use the test statistic:

Test Statistic

χ2
0
= (n − 1)S2

σ2
0

(9.35)

If the null hypothesis H0∶ σ2 = σ2
0

is true, the test statistic χ2
0

defined in Equation 9.35 follows

the chi-square distribution with n− 1 degrees of freedom. This is the reference distribution for this

test procedure. To perform a fixed significance level test, we would take a random sample from

the population of interest, calculate χ2
0
, the value of the test statistic χ2

0
, and the null hypothesis

H0∶ σ2 = σ2
0

would be rejected if

χ2
0
> χ2

α∕2,n−1
or if χ2

0
> χ2

1−α∕2,n−1

where χ2
α∕2,n−1

and χ2
1−α∕2,n−1

are the upper and lower 100α/2 percentage points of the chi-square

distribution with n − 1 degrees of freedom, respectively. Figure 9.17(a) shows the critical region.

(a)
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FIGURE 9.17

Reference distribution for the test of H0∶ 𝛔2 = 𝛔2
0 with critical region values for (a) H1∶ 𝛔2 ≠ 𝛔2

0,
(b) H1∶ 𝛔2

> 𝛔2
0, and (c) H1∶ 𝛔2

< 𝛔2
0.
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The same test statistic is used for one-sided alternative hypotheses. For the one-sided

hypotheses

H0∶ σ2 = σ2
0

H1∶ σ2
> σ2

0
(9.36)

we would reject H0 if χ2
0
> χ2

α,n−1
, whereas for the other one-sided hypotheses

H0∶ σ2 = σ2
0

H1∶ σ2
< σ2

0
(9.37)

we would reject H0 if χ2
0
< χ2

1−α,n−1
. The one-sided critical regions are shown in Figure 9.17(b)

and (c).

Tests on the Variance of a Normal Distribution
Null hypothesis: H0∶ σ2 = σ2

0

Test statistic: χ2
0
= (n − 1)S2

σ2
0

Alternative Hypothesis Rejection Criteria
H1∶ σ2 ≠ σ2

0
χ2

0
> χ2

α∕2,n−1
or χ2

0
< χ2

1−α∕2,n−1

H1∶ σ2
> σ2

0
χ2

0
> χ2

α,n−1

H1∶ σ2
< σ2

0
χ2

0
< χ2

1−α,n−1

E X A M P L E 9.8 Automated Filling

An automated filling machine is used to fill bottles with liquid

detergent. A random sample of 20 bottles results in a sample

variance of fill volume of s2 = 0.0153 (fluid ounces)2. If

the variance of fill volume exceeds 0.01 (fluid ounces)2, an

unacceptable proportion of bottles will be underfilled or

overfilled. Is there evidence in the sample data to suggest that

the manufacturer has a problem with underfilled or overfilled

bottles? Use α = 0.05, and assume that fill volume has a

normal distribution.

Using the seven-step procedure results in the following:

1. Parameter of interest: The parameter of interest is

the population variance σ2.

2. Null hypothesis: H0: σ2 = 0.01

3. Alternative hypothesis: H0: σ2
> 0.01

4. Test statistic: The test statistic is χ2
0
= (n − 1)s2

σ2
0

5. Reject H0 if: Use α = 0.05, and reject H0 if

χ2
0
> χ2

0.05,19
= 30.14

6. Computations: χ2
0
= 19(0.0153)

0.01
= 29.07

7. Conclusions: Because χ2
0
= 29.07 < χ2

0.05,19
= 30.14,

we conclude that there is no strong evidence that the

variance of fill volume exceeds 0.01 (fluid ounces)2.

So there is no strong evidence of a problem with incor-

rectly filled bottles.

We can also use the P-value approach. Using Appendix Table III, it is easy to place bounds

on the P-value of a chi-square test. From inspection of the table, we find that χ2
0.10,19

= 27.20

and χ2
0.05,19

= 30.14. Because 27.20 < 29.07 < 30.14, we conclude that the P-value for the test in

Example 9.8 is in the interval 0.05 < P-value < 0.10.

The P-value for a lower-tailed test would be found as the area (probability) in the lower tail

of the chi-square distribution to the left of (or below) the computed value of the test statistic χ2
0
.

For the two-sided alternative, find the tail area associated with the computed value of the test

statistic and double it to obtain the P-value.
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Some software packages perform the test on a variance of a normal distribution described in

this section. Typical computer output for Example 9.8 is as follows:

Test and CI for One Variance
Null hypothesis Sigma-squared = 0.01
Alternative hypothesis Sigma-squared > 0.01

Statistics
N StDev Variance
20 0.124 0 .0153

95% One-Sided Confidence Intervals

Lower Confidence Bound Lower Confidence Bound
for StDev for Variance
0.098 0.0096

Tests
Chi-Square DF P-Value
29.07 19 0.065

Recall that we said that the t-test is relatively robust to the assumption that we are sampling

from a normal distribution. The same is not true for the chi-square test on variance. Even moderate

departures from normality can result in the test statistic in Equation 9.35 having a distribution that

is very different from chi-square.

9.4.2 Type II Error and Choice of Sample Size
Operating characteristic curves for the chi-square tests in Section 9.4.1 are in Appendix Charts VIi
through VIn for α = 0.05 and α = 0.01. For the two-sided alternative hypothesis of Equation 9.34,

Charts VIIi and VIIj plot β against an abscissa parameter

λ = σ
σ0

(9.38)

for various sample sizes n, where σ denotes the true value of the standard deviation. Charts VIk
and VIl are for the one-sided alternative H1∶ σ2

> σ2
0
, and Charts VIIm and VIIn are for the other

one-sided alternative H1∶ σ2
< σ2

0
. In using these charts, we think of σ as the value of the standard

deviation that we want to detect.

These curves can be used to evaluate the β-error (or power) associated with a particular test.

Alternatively, they can be used to design a test—that is, to determine what sample size is necessary

to detect a particular value of σ that differs from the hypothesized value σ0.

E X A M P L E 9.9 Automated Filling Sample Size

Consider the bottle-filling problem from Example 9.8. If the

variance of the filling process exceeds 0.01 (fluid ounces)2, too

many bottles will be underfilled. Thus, the hypothesized value

of the standard deviation is σ0 = 0.10. Suppose that if the true

standard deviation of the filling process exceeds this value by

25%, we would like to detect this with probability at least 0.8.

Is the sample size of n = 20 adequate?

To solve this problem, note that we require

λ = σ
σ0

= 0.125

0.10
= 1.25

This is the abscissa parameter for Chart VIIk. From this chart,

with n = 20 and λ = 1.25, we find that β ≃ 0.6. Therefore,

there is only about a 40% chance that the null hypothesis will

be rejected if the true standard deviation is really as large as

σ = 0.125 fluid ounce.

To reduce the β-error, a larger sample size must be used.

From the operating characteristic curve with β = 0.20 and

λ = 1.25, we find that n = 75, approximately. Thus, if we want

the test to perform as required, the sample size must be at least

75 bottles.
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9.5 Tests on a Population Proportion
It is often necessary to test hypotheses on a population proportion. For example, suppose that a

random sample of size n has been taken from a large (possibly infinite) population and that X(≤ n)

observations in this sample belong to a class of interest. Then ̂P = X∕n is a point estimator of the

proportion of the population p that belongs to this class. Note that n and p are the parameters of a

binomial distribution. Furthermore, from Chapter 7, we know that the sampling distribution of ̂P
is approximately normal with mean p and variance p(1 − p)/n if p is not too close to either 0 or 1

and if n is relatively large. Typically, to apply this approximation we require that np and n(1 − p)

be greater than or equal to 5. We provide a large-sample test that uses the normal approximation

to the binomial distribution.

9.5.1 Large-Sample Tests on a Proportion
Many engineering problems concern a random variable that follows the binomial distribution.

For example, consider a production process that manufactures items that are classified as either

acceptable or defective. Modelling the occurrence of defectives with the binomial distribution

is usually reasonable when the binomial parameter p represents the proportion of defective

items produced. Consequently, many engineering decision problems involve hypothesis testing

about p.

We consider testing

H0∶ p = p0 H1∶ p ≠ p0 (9.39)

An approximate test based on the normal approximation to the binomial is given. As noted earlier,

this approximate procedure will be valid as long as p is not extremely close to 0 or 1, and if the

sample size is relatively large. Let X be the number of observations in a random sample of size n
that belongs to the class associated with p. Then if the null hypothesis H0: p = p0 is true, we have

X ∼ N[np0, np0(1 − p0)], approximately. To test H0: p = p0, calculate the test statistic

Test Statistic

Z0 =
X − np0

√
np0(1 − p0)

(9.40)

and determine the P-value. Because the test statistic follows a standard normal distribution if H0

is true, the P-value is calculated exactly like the P-value for the z-tests in Section 9.2. So for the

two-sided alternative hypothesis, the P-value is the sum of the probability in the standard normal

distribution above |z0| and the probability below the negative value −|z0|, or

P = 2
[
1 − Φ(|z0|)

]

For the one-sided alternative hypothesis H1: p > p0, the P-value is the probability above z0, or

P = 1 − Φ(z0)

and for the one-sided alternative hypothesis H1: p < p0, the P-value is the probability below z0, or

P = Φ(z0)

We can also perform a fixed-significance-level test. For the two-sided alternative hypothesis, we

would reject H0: p = p0 if

z0 > zα∕2 or z0 < −zα∕2
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Critical regions for the one-sided alternative hypotheses would be constructed in the usual

manner.

Summary of Approximate Tests on a Binomial Proportion

Testing Hypotheses on a Binomial Proportion

Null hypotheses: H0: p = p0

Test statistic∶ Z0 =
X − np0

√
np0(1 − p0)

Alternative Rejection Criterion for
Hypotheses P-Value Fixed-Level Tests
H1: p ≠ p0 Probability above |z0| and probability

below −|z0|, P = 2[1 − Φ(z0)]

z0 > zα/2 or z0 < −zα/2

H1: p > p0 Probability above z0, P = 1 − Φ(z0) z0 > zα
H1: p < p0 Probability below z0, P = Φ(z0) z0 < −zα

E X A M P L E 9.10 Automobile Engine Controller

A semiconductor manufacturer produces controllers used

in automobile engine applications. The customer requires

that the process fallout or fraction defective at a critical

manufacturing step not exceed 0.05 and that the manufacturer

demonstrate process capability at this level of quality using

α = 0.05. The semiconductor manufacturer takes a random

sample of 200 devices and finds that four of them are defec-

tive. Can the manufacturer demonstrate process capability for

the customer?

We may solve this problem using the seven-step

hypothesis-testing procedure as follows:

1. Parameter of interest: The parameter of interest is

the process fraction defective p.

2. Null hypothesis: H0: p = 0.05

3. Alternative hypothesis: H1: p < 0.05

This formulation of the problem will allow the

manufacturer to make a strong claim about process

capability if the null hypothesis H0: p = 0.05 is

rejected.

4. Test statistic: The test statistic is (from Equation 9.40):

z0 =
x − np0

√
np0(1 − p0)

where x = 4, n = 200, and p0 = 0.05.

5. Reject H0 if: Reject H0: p = 0.05 if the p-value is less

than 0.05.

6. Computation: The test statistic is

z0 =
4 − 200(0.05)

√
200(0.05)(0.95)

= −1.95

7. Conclusions: Because z0 = −1.95, the P-value is

Φ(−1.95) = 0.0256, so we reject H0 and conclude that

the process fraction defective p is less than 0.05.

Practical Interpretation: We conclude that the process

is capable.

Another form of the test statistic Z0 in Equation 9.40 is occasionally encountered. Note that

if X is the number of observations in a random sample of size n that belongs to a class of interest,

then ̂P = X∕n is the sample proportion that belongs to that class. Now divide both numerator and

denominator of Z0 in Equation 9.40 by n, giving

Z0 =
X∕n − p0

√
p0(1 − p0)∕n

or Z0 =
̂P − p0

√
p0(1 − p0)∕n

(9.41)
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This presents the test statistic in terms of the sample proportion instead of the number of items X
in the sample that belongs to the class of interest.

Computer software packages can be used to perform the test on a binomial proportion. The

following output shows typical results for Example 9.10.

Test and CI for One Proportion

Test of p = 0.05 vs p < 0.05

Sample X N Sample p 95% Upper Confidence Bound Z-Value P-Value

1 4 200 0.020000 0.036283 −1.95 0.026

This output also shows a 95% one-sided upper-confidence bound on P. In Section 8.4, we

showed how CIs on a binomial proportion are computed. This display shows the result of

using the normal approximation for tests and CIs. When the sample size is small, this may be

inappropriate.

Small Sample Tests on a Binomial Proportion Tests on a proportion when the sample

size n is small are based on the binomial distribution, not the normal approximation to the bino-

mial. To illustrate, suppose that we wish to test H0: p = p0 versus H0: p < p0. Let X be the number

of successes in the sample. The P-value for this test would be found from the lower tail of a bino-

mial distribution with parameters n and p0. Specifically, the P-value would be the probability that

a binomial random variable with parameters n and p0 is less than or equal to X. P-values for the

upper-tailed one-sided test and the two-sided alternative are computed similarly.

Many software packages calculate the exact P-value for a binomial test. The following output

contains the exact P-value results for Example 9.10.

Test of p = 0.05 vs p < 0.05

Sample X N Sample p 95% Upper Confidence Bound Exact P-Value

1 4 200 0.020000 0.045180 0.026

The P-value is the same as that reported for the normal approximation because the sample size is

fairly large. Notice that the CI is different from the one found using the normal approximation.

9.5.2 Type II Error and Choice of Sample Size
It is possible to obtain closed-form equations for the approximate β-error for the tests in

Section 9.5.1. Suppose that p is the true value of the population proportion. The approximate

β-error for the two-sided alternative H1: p ≠ p0 is

β = Φ

(
p0 − p + zα∕2

√
p0(1 − p0)∕n

√
p(1 − p)∕n

)

− Φ

(
p0 − p − zα∕2

√
p0(1 − p0)∕n

√
p(1 − p)∕n

)

(9.42)

If the alternative is H1: p < p0,

β = 1 − Φ

(
p0 − p − zα

√
p0(1 − p0)∕n

√
p(1 − p)∕n

)

(9.43)
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whereas if the alternative is H1: p > p0,

β = Φ

(
p0 − p + zα

√
p0(1 − p0)∕n

√
p(1 − p)∕n

)

(9.44)

These equations can be solved to find the approximate sample size n that gives a test of level α
that has a specified β risk. The sample size equations are

Approximate Sample Size for a Two-Sided Test on a Binomial Proportion

n =

[
zα∕2

√
p0(1 − p0) + zβ

√
p(1 − p)

p − p0

]2

(9.45)

for a two-sided alternative and for a one-sided alternative:

Approximate Sample Size for a One-Sided Test on a Binomial Proportion

n =

[
zα
√

p0(1 − p0) + zβ
√

p(1 − p)
p − p0

]2

(9.46)

E X A M P L E 9.11 Automobile Engine Controller

Type II Error

Consider the semiconductor manufacturer from Example 9.10.

Suppose that its process fallout is really p = 0.03. What is the

β-error for a test of process capability that uses n = 200 and

α = 0.05?

The β-error can be computed using Equation 9.43 as

follows:

β = 1 − Φ

[
0.05 − 0.03 − (1.645)

√
0.05(0.95)∕200

√
0.03(1 − 0.03)∕200

]

= 1 − Φ(−0.44) = 0.67

Thus, the probability is about 0.7 that the semiconductor

manufacturer will fail to conclude that the process is capable

if the true process fraction defective is p = 0.03 (3%). That is,

the power of the test against this particular alternative is only

about 0.3. This appears to be a large β-error (or small power),

but the difference between p = 0.05 and p = 0.03 is fairly

small, and the sample size n = 200 is not particularly large.

Suppose that the semiconductor manufacturer was will-

ing to accept a β-error as large as 0.10 if the true value of the

process fraction defective was p = 0.03. If the manufacturer

continues to use α= 0.05, what sample size would be required?

The required sample size can be computed from

Equation 9.46 as follows:

n =

[
1.645

√
0.05(0.95) + 1.28

√
0.03(0.97)

0.03 − 0.05

]2

≃ 832

where we have used p = 0.03 in Equation 9.46.

Conclusion: Note that n= 832 is a very large sample size.

However, we are trying to detect a fairly small deviation from

the null value p0 = 0.05.

Some software packages also perform power and sample size calculations for the one-sample

Z-test on a proportion. Typical computer output for the engine controllers tested in Example 9.10

follows.



�

� �

�

9.7 Testing for Goodness of Fit 229

Power and Sample Size
Test for One Proportion
Testing proportion = 0.05 (versus < 0.05)
Alpha = 0.05

Alternative Sample
Proportion Size Power
3.00E-02 200 0.3287

Power and Sample Size
Test for One Proportion
Testing proportion = 0.05 (versus < 0.05)
Alpha = 0.05

Alternative Sample Target Actual
Proportion Size Power Power
3.00E-02 833 0.9000 0.9001

Power and Sample Size
Test for One Proportion
Testing proportion = 0.05 (versus < 0.05)
Alpha = 0.05

Alternative Sample Target Actual
Proportion Size Power Power
3.00E-02 561 0.7500 0.75030

The first part of the output shows the power calculation based on the situation described in

Example 9.11 where the true proportion is really 0.03. The computer power calculation agrees

with the results from Equation 9.43 in Example 9.11. The second part of the output computes the

sample size necessary for a power of 0.9 (β = 0.1) if p = 0.03. Again, the results agree closely

with those obtained from Equation 9.46. The final portion of the display shows the sample size

that would be required if p = 0.03 and the power requirement is relaxed to 0.75. Notice that the

sample size of n = 561 is still quite large because the difference between p = 0.05 and p = 0.03

is fairly small.

9.6 Summary Table of Inference Procedures

for a Single Sample
The table in the end papers of this book (inside back cover) presents a summary of all the

single-sample inference procedures from Chapters 8 and 9. The table contains the null hypothesis

statement, the test statistic, the various alternative hypotheses and the criteria for rejecting H0,

and the formulas for constructing the 100(1 − α)% two-sided confidence interval. It would also

be helpful to refer to the roadmap table in Chapter 8 that provides guidance to match the problem

type to the information inside the back cover.

9.7 Testing for Goodness of Fit
The hypothesis-testing procedures that we have discussed in previous sections are designed for

problems in which the population or probability distribution is known and the hypotheses involve

the parameters of the distribution. Another kind of hypothesis is often encountered: We do not

know the underlying distribution of the population, and we wish to test the hypothesis that a
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particular distribution will be satisfactory as a population model. For example, we might wish to

test the hypothesis that the population is normal.

We have previously discussed a very useful graphical technique for this problem called prob-
ability plotting and illustrated how it was applied in the case of a normal distribution. In this

section, we describe a formal goodness-of-fit test procedure based on the chi-square distribution.

The test procedure requires a random sample of size n from the population whose probability

distribution is unknown. These n observations are arranged in a frequency histogram, having

k bins or class intervals. Let Oi be the observed frequency in the ith class interval. From the

hypothesized probability distribution, we compute the expected frequency in the ith class interval,

denoted Ei. The test statistic is

Goodness-of-Fit Test Statistic

χ2
0
=

k∑

i=1

(Oi − Ei)2

Ei
(9.47)

It can be shown that, if the population follows the hypothesized distribution, χ2
0

has, approxi-

mately, a chi-square distribution with k − p − 1 degrees of freedom, when p represents the number

of parameters of the hypothesized distribution estimated by sample statistics. This approximation

improves as n increases. We should reject the null hypothesis that the population is the hypothe-

sized distribution if the test statistic is too large. Therefore, the P-value would be the probability

under the chi-square distribution with k − p − 1 degrees of freedom above the computed value of

the test statistic χ2
0

or P = P(χ2
k−p−1

> χ2
0
). For a fixed-level test, we would reject the hypothesis

that the distribution of the population is the hypothesized distribution if the calculated value of

the test statistic χ2
0
> χ2

α,k−p−1
.

One point to be noted in the application of this test procedure concerns the magnitude of

the expected frequencies. If these expected frequencies are too small, the test statistic χ2
0

will

not reflect the departure of observed from expected but only the small magnitude of the expected

frequencies. There is no general agreement regarding the minimum value of expected frequencies,

but values of 3, 4, and 5 are widely used as minimal. Some writers suggest that an expected

frequency could be as small as 1 or 2 so long as most of them exceed 5. Should an expected

frequency be too small, it can be combined with the expected frequency in an adjacent class

interval. The corresponding observed frequencies would then also be combined, and k would be

reduced by 1. Class intervals are not required to be of equal width.

We now give two examples of the test procedure.

E X A M P L E 9.12 Printed Circuit Board Defects—

Poisson Distribution

The number of defects in printed circuit boards is hypothesized

to follow a Poisson distribution. A random sample of n = 60

printed circuit boards has been collected, and the following

number of defects observed.

Number of Defects Observed Frequency

0 32

1 15

2 9

3 4

The mean of the assumed Poisson distribution in this example

is unknown and must be estimated from the sample data. The

estimate of the mean number of defects per board is the sam-

ple average, that is, (32 • 0 + 15 • 1 + 9 • 2 + 4 • 3)/60 = 0.75.

From the Poisson distribution with parameter 0.75, we may

compute pi, the theoretical, hypothesized probability associ-

ated with the ith class interval. Because each class interval

corresponds to a particular number of defects, we may find

the pi as follows:

p1 = P(X = 0) = e−0.75(0.75)0

0!
= 0.472

p2 = P(X = 1) = e−0.75(0.75)1

1!
= 0.354

p3 = P(X = 2) = e−0.75(0.75)2

2!
= 0.133

p4 = P(X ≥ 3) = 1 − (p1 + p2 + p3) = 0.041
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The expected frequencies are computed by multiplying the

sample size n = 60 times the probabilities pi. That is, Ei = npi.

The expected frequencies follow:

Number of Defects Probability Expected Frequency

0 0.472 28.32

1 0.354 21.24

2 0.133 7.98

3 (or more) 0.041 2.46

Because the expected frequency in the last cell is less than 3,

we combine the last two cells:

Number of
Defects

Observed
Frequency

Expected
Frequency

0 32 28.32

1 15 21.24

2 (or more) 13 10.44

The seven-step hypothesis-testing procedure may now be

applied, using α = 0.05, as follows:

1. Parameter of interest: The variable of interest is the

form of the distribution of defects in printed circuit

boards.

2. Null hypothesis: H0: The form of the distribution of

defects is Poisson.

3. Alternative hypothesis: H1: The form of the distri-

bution of defects is not Poisson.

4. Test statistic: The test statistic is χ2
0
=

k∑

i=1

(Oi − Ei)2

Ei

5. Reject H0 if: Because the mean of the Poisson distri-

bution was estimated, the preceding chi-square statistic

will have k − p − 1 = 3 − 1 − 1 = 1 degree of freedom.

Consider whether the P-value is less than 0.05.

6. Computations:

χ2
0
= (32 − 28.32)2

28.32
+ (15 − 21.24)2

21.24
+ (13 − 10.44)2

10.44
= 2.94

7. Conclusions: We find from Appendix Table III that

χ2
0.10,1

= 2.71 and χ2
0.05,1

= 3.84. Because χ2
0
= 2.94 lies

between these values, we conclude that the P-value is

between 0.05 and 0.10. Therefore, because the P-value

exceeds 0.05, we are unable to reject the null hypoth-

esis that the distribution of defects in printed circuit

boards is Poisson. The exact P-value computed from

software is 0.0864.

E X A M P L E 9.13 Power Supply Distribution—

Continuous Distribution

A manufacturing engineer is testing a power supply used in a

notebook computer and, using α = 0.05, wishes to determine

whether output voltage is adequately described by a normal

distribution. Sample estimates of the mean and standard devi-

ation of x = 5.04 V and s = 0.08 V are obtained from a random

sample of n = 100 units.

A common practice in constructing the class inter-

vals for the frequency distribution used in the chi-square

goodness-of-fit test is to choose the cell boundaries so that the

expected frequencies Ei = npi are equal for all cells. To use

this method, we want to choose the cell boundaries a0, a1,… ,

ak for the k cells so that all the probabilities

pi = P(ai−1 ≤ X ≤ ai) =
∫

ai

ai−1

f (x) dx

are equal. Suppose that we decide to use k = 8 cells. For

the standard normal distribution, the intervals that divide

the scale into eight equally likely segments are (0, 0.32),

(0.32, 0.675), (0.675, 1.15), (1.15, ∞), and their four “mirror

image” intervals on the other side of zero. For each interval

pi = 1/8 = 0.125, so the expected cell frequencies are Ei =
npi = 100(0.125) = 12.5. The complete table of observed and

expected frequencies is as follows:

Class Interval
Observed

Frequency oi

Expected
Frequency Ei

x < 4.948 12 12.5

4.948 ≤ x < 4.986 14 12.5

4.986 ≤ x < 5.014 12 12.5

5.014 ≤ x < 5.040 13 12.5

5.040 ≤ x < 5.066 12 12.5

5.066 ≤ x < 5.094 11 12.5

5.094 ≤ x < 5.132 12 12.5

5.132 ≤ x 14 12.5

Totals 100 100

The boundary of the first class interval is x − 1.15s = 4.948.

The second class interval is [x − 1.15s, x − 0.675s] and

so forth. We may apply the seven-step hypothesis-testing

procedure to this problem.

1. Parameter of interest: The variable of interest is the

form of the distribution of power supply voltage.

2. Null hypothesis: H0: The form of the distribution is

normal.
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3. Alternative hypothesis: H1: The form of the distri-

bution is nonnormal.

4. Test statistic: The test statistic is

χ2
0
=

k∑

i=1

(Oi − Ei)2

Ei

5. Reject H0 if: Because two parameters in the normal

distribution have been estimated, the preceding

chi-square statistic will have k − p − 1 = 8 − 2 − 1

= 5 degrees of freedom. We use a fixed significance

level test with α = 0.05. Therefore, we will reject H0

if χ2
0
> χ2

0.05,5
= 11.07.

6. Computations:

χ2
0
=

k∑

i=1

(oi − Ei)2

Ei =(12 − 12.5)2

12.5
+ (14 − 12.5)2

12.5

+ · · · + (14 − 12.5)2

12.5
= 0.64

7. Conclusions: Because χ2
0
= 0.64 < χ2

0.05,5
= 11.07,

we are unable to reject H0, and no strong evidence indi-

cates that output voltage is not normally distributed.

The P-value for the chi-square statistic χ2
0
= 0.64 is

p = 0.9861.

9.8 Contingency Table Tests
Many times the n elements of a sample from a population may be classified according to two

different criteria. It is then of interest to know whether the two methods of classification are sta-

tistically independent; for example, we may consider the population of graduating engineers and

may wish to determine whether starting salary is independent of academic disciplines. Assume

that the first method of classification has r levels and that the second method has c levels. We will

let Oij be the observed frequency for level i of the first classification method and level j of the

second classification method. The data would, in general, appear as shown in Table 9.2. Such a

table is usually called an r × c contingency table.

We are interested in testing the hypothesis that the row-and-column methods of classification

are independent. If we reject this hypothesis, we conclude some interaction exists between the two

criteria of classification. The exact test procedures are difficult to obtain, but an approximate test

statistic is valid for large n. Let pij be the probability that a randomly selected element falls in

the ijth cell given that the two classifications are independent. Then pij = uivj, where ui is the

probability that a randomly selected element falls in row class i and vj is the probability that a

randomly selected element falls in column class j. Now by assuming independence, the estimators

of ui and vj are

ûi =
1

n

c∑

j=1

Oij v̂j =
1

n

r∑

i=1

Oij (9.48)

Therefore, the expected frequency of each cell is

Eij = nûiv̂j =
1

n

c∑

j=1

Oij

r∑

i=1

Oij (9.49)

T A B L E 9.2 An r × c Contingency Table

Columns
1 2 · · · c

1 O11 O12 · · · O1c

Rows 2 O21 O22 · · · O2c

⋮ ⋮ ⋮ ⋮ ⋮

r Or1 Or2 · · · Orc



�

� �

�

9.8 Contingency Table Tests 233

Then, for large n, the statistic

χ2
0
=

r∑

i=1

c∑

j=1

(Oij − Eij)2

Eij
(9.50)

has an approximate chi-square distribution with (r − 1)(c − 1) degrees of freedom if the null

hypothesis is true. We should reject the null hypothesis if the value of the test statistic χ2
0

is too

large. The P-value would be calculated as the probability beyond χ2
0

on the χ2
(r−1)(c−1) distribution,

or P = P(χ2
(r−1)(c−1) > χ2

0
). For a fixed-level test, we would reject the hypothesis of independence

if the observed value of the test statistic χ2
0

exceeded χ2
α,(r−1)(c−1).

E X A M P L E 9.14 Health Insurance Plan Preference

A company has to choose among three health insurance plans.

Management wishes to know whether the preference for plans

is independent of job classification and wants to use α = 0.05.

The opinions of a random sample of 500 employees are shown

in Table 9.3.

T A B L E 9.3 Observed Data for Example 9.14

Health Insurance Plan
Job Classification 1 2 3 Totals

Salaried workers 160 140 40 340

Hourly workers 40 60 60 160

Totals 200 200 100 500

To find the expected frequencies, we must first

compute û1 = (340∕500) = 0.68, û2 = (160∕500) = 0.32,

v̂1 = (200∕500) = 0.40, v̂2 = (200∕500) = 0.40, and v̂3 =
(100∕500) = 0.20. The expected frequencies may now be

computed from Equation 9.49. For example, the expected

number of salaried workers favoring health insurance plan 1

is

E11 = nû1v̂1 = 500(0.68(0.40)) = 136

The expected frequencies are shown in Table 9.4.

T A B L E 9.4
Expected Frequencies
for Example 9.14

Health Insurance Plan
Job Classification 1 2 3 Totals

Salaried workers 136 136 68 340

Hourly workers 64 64 32 160

Totals 200 200 100 500

The seven-step hypothesis-testing procedure may now be

applied to this problem.

1. Parameter of interest: The variable of interest is

employee preference among health insurance plans.

2. Null hypothesis: H0: Preference is independent of

salaried versus hourly job classification.

3. Alternative hypothesis: H1: Preference is not inde-

pendent of salaried versus hourly job classification.

4. Test statistic: The test statistic is

χ2
0
=

r∑

i=1

c∑

j=1

(Oij − Eij)2

Eij

5. Reject H0 if: We will use a fixed-significance level

test with α = 0.05. Therefore, because r = 2 and c = 3,

the degrees of freedom for chi-square are (r − 1)(c − 1)

= (1)(2) = 2, and we would reject H0 if χ2
0
= χ2

0.05,5
=

5.99.

6. Computations:

χ2
0
=

2∑

i=1

3∑

j=1

(Oij − Eij)2

Eij

= (160 − 136)2

136
+ (140 − 136)2

136
+ (40 − 68)2

68

+ (40 − 64)2

64
+ (60 − 64)2

64
+ (60 − 32)2

32
= 49.63

7. Conclusions: Because χ2
0
= 49.63 > χ2

0.05,2
= 5.99,

we reject the hypothesis of independence and conclude

that the preference for health insurance plans is not

independent of job classification. The P-value for

χ2
0
= 49.63 is P = 1.671 × 10−11. (This value was

computed by computer software.) Further analysis

would be necessary to explore the nature of the

association between these factors. It might be helpful

to examine the table of observed minus expected

frequencies.
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Using the two-way contingency table to test independence between two variables of classi-

fication in a sample from a single population of interest is only one application of contingency

table methods. Another common situation occurs when there are r populations of interest and each

population is divided into the same c categories. A sample is then taken from the ith population,

and the counts are entered in the appropriate columns of the ith row. In this situation, we want to

investigate whether or not the proportions in the c categories are the same for all populations. The

null hypothesis in this problem states that the populations are homogeneous with respect to the

categories. For example, with only two categories, such as success and failure, defective and non-

defective, and so on, the test for homogeneity is really a test of the equality of r binomial parame-

ters. Calculation of expected frequencies, determination of degrees of freedom, and computation

of the chi-square statistic for the test for homogeneity are identical to the test for independence.

9.9 Nonparametric Procedures
Most of the hypothesis-testing and confidence interval procedures discussed previously are based

on the assumption that we are working with random samples from normal populations. Tradition-

ally, we have called these procedures parametric methods because they are based on a particular

parametric family of distributions—in this case, the normal. Alternately, sometimes we say that

these procedures are not distribution free because they depend on the assumption of normal-

ity. Fortunately, most of these procedures are relatively insensitive to moderate departures from

normality. In general, the t- and F-tests and the t-confidence intervals will have actual levels of

significance or confidence levels that differ from the nominal or advertised levels chosen by the

experimenter, although the difference in the actual and advertised levels is usually fairly small

when the underlying population is not too different from the normal.

In this section, we describe procedures called nonparametric and distribution-free methods,

and we usually make no assumptions about the distribution of the underlying population other

than that it is continuous. These procedures have an accurate level of significance α or confidence

level 100(1 − α)% for many different types of distributions. These procedures have some appeal.

One of their advantages is that the data need not be quantitative but can be categorical (such

as yes or no, defective or nondefective) or rank data. Another advantage is that nonparametric

procedures are usually very quick and easy to perform.

The procedures described in this section are alternatives to the parametric t- and F-procedures

described earlier. Consequently, it is important to compare the performance of both parametric

and nonparametric methods under the assumptions of both normal and nonnormal populations.

In general, nonparametric procedures do not utilize all the information provided by the sample.

As a result, a nonparametric procedure will be less efficient than the corresponding parametric

procedure when the underlying population is normal. This loss of efficiency is reflected by a

requirement of a larger sample size for the nonparametric procedure than would be required by

the parametric procedure to achieve the same power. On the other hand, this loss of efficiency

is usually not large, and often the difference in sample size is very small. When the underlying

distributions are not close to normal, nonparametric methods may have much to offer. They often

provide improvement over the normal-theory parametric methods. Generally, if both paramet-

ric and nonparametric methods are applicable to a particular problem, we should use the more

efficient parametric procedure.

Another approach is to transform the original data, say, by taking logarithms, square roots,

or a reciprocal, and then analyze the transformed data using a parametric technique. A nor-

mal probability plot often works well to see whether the transformation has been successful.

When this approach is successful, it is usually preferable to using a nonparametric technique.

However, sometimes transformations are not satisfactory. That is, no transformation makes the

sample observations look very close to a sample from a normal distribution. One situation in

which this happens is when the data are in the form of ranks. These situations frequently occur

in practice. For instance, a panel of judges may be used to evaluate 10 different formulations

of a soft-drink beverage for overall quality with the “best” formulation assigned rank 1, the
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“next-best” formulation assigned rank 2, and so forth. It is unlikely that rank data satisfy the

normality assumption. Transformations may not prove satisfactory either. Many nonparametric

methods involve the analysis of ranks and consequently are directly suited to this type of problem.

9.9.1 The Sign Test
The sign test is used to test hypotheses about the median μ̃ of a continuous distribution. The

median of a distribution is a value of the random variable X such that the probability is 0.5 that an

observed value of X is less than or equal to the median, and the probability is 0.5 that an observed

value of X is greater than or equal to the median. That is, P(X ≤ μ̃) = P(X ≥ μ̃) = 0.5.

Because the normal distribution is symmetric, the mean of a normal distribution equals the

median. Therefore, the sign test can be used to test hypotheses about the mean of a normal distri-

bution. This is the same problem for which we previously used the t-test. We briefly discuss the

relative merits of the two procedures in Section 9.9.3. Note that, although the t-test was designed

for samples from a normal distribution, the sign test is appropriate for samples from any contin-

uous distribution. Thus, the sign test is a nonparametric procedure.

Suppose that the hypotheses are

H0: μ̃ = μ̃0 H1: μ̃ < μ̃0 (9.51)

The test procedure is easy to describe. Suppose that X1, X2, … , Xn is a random sample from the

population of interest. Form the differences

Xi − μ̃0 i = 1, 2,… , n (9.52)

Now if the null hypothesis H0: μ̃ = μ̃0 is true, any difference Xi − μ̃0 is equally likely to

be positive or negative. An appropriate test statistic is the number of these differences that are

positive, say, R+. Therefore, to test the null hypothesis, we are really testing that the number of

plus signs is a value of a binomial random variable that has the parameter p = 1/2. A P-value for

the observed number of plus signs r+ can be calculated directly from the binomial distribution.

For instance, in testing the hypotheses in Equation 9.51, we will reject H0 in favor of H1 only

if the proportion of plus signs is sufficiently less than 1/2 (or equivalently, when the observed

number of plus signs r+ is too small). Thus, if the computed P-value

P = P
(

R+
≤ r+ when p = 1

2

)

is less than or equal to some preselected significance level α, we will reject H0 and conclude that

H1 is true.

To test the other one-sided hypotheses

H0: μ̃ = μ̃0 H1: μ̃ > μ̃0 (9.53)

we will reject H0 in favor of H1 only if the observed number of plus signs, say, r+, is large or,

equivalently, when the observed fraction of plus signs is significantly greater than 1/2. Thus, if

the computed P-value

P = P
(

R+
≥ r+ when p = 1

2

)

is less than α, we will reject H0 and conclude that H1 is true.

The two-sided alternative may also be tested. If the hypotheses are

H0: μ̃ = μ̃0 H1: μ̃ ≠ μ̃0 (9.54)

we should reject H0: μ̃ = μ̃0 if the proportion of plus signs is significantly different from (either

less than or greater than) 1/2. This is equivalent to the observed number of plus signs r+ being

either sufficiently large or sufficiently small. Thus, if r+ < n/2, the P-value is

P = 2P
(

R+
≤ r+ when p = 1

2

)
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and if r+ > n/2, the P-value is

P = 2P
(

R+
≥ r+ when p = 1

2

)

If the P-value is less than some preselected level α, we will reject H0 and conclude that H1

is true.

E X A M P L E 9.15 Propellant Shear Strength Sign Test

Montgomery, Peck, and Vining (2012) reported on a study in

which a rocket motor is formed by binding an igniter propel-

lant and a sustainer propellant together inside a metal housing.

The shear strength of the bond between the two propellant

types is an important characteristic. The results of testing 20

randomly selected motors are shown in Table 9.5. We would

like to test the hypothesis that the median shear strength is

2000 psi, using α = 0.05.

T A B L E 9.5 Propellant Shear Strength Data

Observation Shear Differences
i Strength xi xi – 2000 Sign

1 2158.70 +158.70 +

2 1678.15 −321.85 –

3 2316.00 +316.00 +

4 2061.30 +61.30 +

5 2207.50 +207.50 +

6 1708.30 −291.70 –

7 1784.70 −215.30 –

8 2575.10 +575.10 +

9 2357.90 +357.90 +

10 2256.70 +256.70 +

11 2165.20 +165.20 +

12 2399.55 +399.55 +

13 1779.80 −220.20 –

14 2336.75 +336.75 +

15 1765.30 −234.70 –

16 2053.50 +53.50 +

17 2414.40 +414.40 +

18 2200.50 +200.50 +

19 2654.20 +654.20 +

20 1753.70 −246.30 –

This problem can be solved using the seven-step

hypothesis-testing procedure:

1. Parameter of interest: The parameter of interest

is the median of the distribution of propellant shear

strength.

2. Null hypothesis: H0: μ̃ = 2000 psi

3. Alternative hypothesis: H1: μ̃ ≠ 2000 psi

4. Test statistic: The test statistic is the observed num-

ber of plus differences in Table 9.5, or r+ = 14.

5. Reject H0 if: We will reject H0 if the P-value corre-

sponding to r+ = 14 is less than or equal to α = 0.05.

6. Computations: Because r+ = 14 is greater than

n/2 = 20/2 = 10, we calculate the P-value from

P = 2P
(

R+
≥ 14 when p = 1

2

)

= 2

20∑

r=14

(
20

r

)

(0.5)r (0.5)20−r = 0.1153

7. Conclusions: Because p = 0.1153 is not less than

α = 0.05, we cannot reject the null hypothesis that the

median shear strength is 2000 psi. Another way to say

this is that the observed number of plus signs r+ = 14

was not large or small enough to indicate that median

shear strength is different from 2000 psi at the α = 0.05

level of significance.

It is also possible to construct a table of critical values for the sign test. This table is shown as

Appendix Table VIII. Its use for the two-sided alternative hypothesis in Equation 9.54 is simple.

As before, let R+ denote the number of the differences (Xi − μ̃0) that are positive and let R−



�

� �

�

9.9 Nonparametric Procedures 237

denote the number of these differences that are negative. Let R = min(R+, R−). Appendix Table

VIII presents critical values rα* for the sign test that ensure that P (type I error) = P (reject H0

when H0 is true) = α for α = 0.01, α = 0.05 and α = 0.10. If the observed value of the test statistic

r ≤ rα*, the null hypothesis H0: μ̃ = μ̃0 should be rejected.

To illustrate how this table is used, refer to the data in Table 9.5 that were used in Example

9.15. Now r+ = 14 and r− = 6; therefore, r = min (14, 6) = 6. From Appendix Table VIII with

n = 20 and α = 0.05, we find that r0.05* = 5. Because r = 6 is not less than or equal to the critical

value r0.05* = 5, we cannot reject the null hypothesis that the median shear strength is 2000 psi.

We can also use Appendix Table VIII for the sign test when a one-sided alternative hypothesis

is appropriate. If the alternative is H1: μ̃ > μ̃0, reject H0: μ̃ = μ̃0 if r− ≤ rα*; if the alternative is

H1: μ̃ > μ̃0, reject H0: μ̃ = μ̃0 if r+ ≤ rα*. The level of significance of a one-sided test is one-half

the value for a two-sided test. Appendix Table VIII shows the one-sided significance levels in the

column headings immediately following the two-sided levels.

Finally, note that when a test statistic has a discrete distribution such as R does in the sign

test, it may be impossible to choose a critical value rα* that has a level of significance exactly equal

to α. The approach used in Appendix Table VIII is to choose rα* to yield an α that is as close to

the advertised significance level α as possible.

Ties in the Sign Test Because the underlying population is assumed to be continuous, there is

a zero probability that we will find a “tie”—that is, a value of Xi exactly equal to μ̃0. However, this

may sometimes happen in practice because of the way the data are collected. When ties occur,

they should be set aside and the sign test applied to the remaining data.

The Normal Approximation When p = 0.5, the binomial distribution is well approximated

by a normal distribution when n is at least 10. Thus, because the mean of the binomial is np
and the variance is np(1 − p), the distribution of R+ is approximately normal with mean 0.05n
and variance 0.25n whenever n is moderately large. Therefore, in these cases, the null hypothesis

H0: μ̃ = μ̃0 can be tested using the statistic

Normal Approximation for Sign Test Statistic

Z0 = R+ − 0.5n
0.5

√
n

(9.55)

A P-value approach could be used for decision making. The fixed significance level approach

could also be used.

The two-sided alternative would be rejected if the observed value of the test statistic |z0| >

zα/2, and the critical regions of the one-sided alternative would be chosen to reflect the sense of

the alternative. (If the alternative is H1: μ̃ > μ̃0, reject H0 if z0 > zα, for example.)

Type II Error for the Sign Test The sign test will control the probability of a type I error at

an advertised level α for testing the null hypothesis H0: μ̃ = μ̃0 for any continuous distribution.

As with any hypothesis-testing procedure, it is important to investigate the probability of a type

II error, β. The test should be able to effectively detect departures from the null hypothesis, and

a good measure of this effectiveness is the value of β for departures that are important. A small

value of β implies an effective test procedure.

In determining β, it is important to realize not only that a particular value of μ̃, say, μ̃0 + Δ,

must be used but also that the form of the underlying distribution will affect the calculations.

To illustrate, suppose that the underlying distribution is normal with σ = 1 and we are testing

the hypothesis H0: μ̃ = 2 versus H1: μ̃ > 2. (Because μ̃ = μ in the normal distribution, this is

equivalent to testing that the mean equals 2.) Suppose that it is important to detect a departure
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FIGURE 9.18

Calculation of 𝛃 for the sign test. (a) Normal distributions. (b) Exponential distributions.

from μ̃ = 2 to μ̃ = 3. The situation is illustrated graphically in Figure 9.18(a). When the alternative

hypothesis is true (H1: μ̃ = 3), the probability that the random variable X is less than or equal to

the value 2 is

P(X ≤ 2) = P(Z ≤ −1) = Φ(−1) = 0.1587

Suppose that we have taken a random sample of size 12. At the α= 0.05 level, Appendix Table

VIII indicates that we would reject H0: μ̃ = 2 if r− ≤ r0.05* = 2. Therefore, β is the probability that

we do not reject H0: μ when in fact μ̃ = 3, or

β = 1 −
2∑

x=0

(
12

x

)

(0.1587)x(0.8413)12−x = 0.2944

If the distribution of X had been exponential rather than normal, the situation would be as

shown in Figure 9.18(b), and the probability that the random variable X is less than or equal to

the value x = 2 when μ̃ = 3 (note that when the median of an exponential distribution is 3, the

mean is 4.33) is

P(X ≤ 2) =
∫

2

0

1

4.33
e−

1

4.33
xdx = 0.3699

In this case,

β = 1 −
2∑

x=0

(
12

x

)

(0.3699)x(0.6301)12−x = 0.8794

Thus, β for the sign test depends not only on the alternative value of μ̃ but also on the area to the

right of the value specified in the null hypothesis under the population probability distribution.

This area depends highly on the shape of that particular probability distribution. In this example,

β is large, so the ability of the test to detect this departure from the null hypothesis with the current

sample size is poor.
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9.9.2 The Wilcoxon Signed-Rank Test
The sign test uses only the plus and minus signs of the differences between the observations

and the median μ̃0 (or the plus and minus signs of the differences between the observations in

the paired case). It does not take into account the size or magnitude of these differences. Frank

Wilcoxon devised a test procedure that uses both direction (sign) and magnitude. This procedure,

now called the Wilcoxon signed-rank test, is discussed and illustrated in this section.

The Wilcoxon signed-rank test applies to the case of symmetric continuous distributions.

Under these assumptions, the mean equals the median, and we can use this procedure to test the

null hypothesis μ = μ0.

The Test Procedure We are interested in testing H0: μ = μ0 against the usual alternatives.

Assume that X1, X2, … , Xn is a random sample from a continuous and symmetric distribution

with mean (and median) μ. Compute the differences Xi − μ0, i = 1, 2, … , n. Rank the absolute

differences | Xi − μ0|, i = 1, 2, … , n in ascending order, and then give the ranks the signs of

their corresponding differences. Let W+ be the sum of the positive ranks and W− be the absolute

value of the sum of the negative ranks, and let W = min(W+
,W−). Appendix Table IX contains

critical values of W, say, Wα*. If the alternative hypothesis is H1: μ≠ μ0, then if the observed value

of the statistic w ≤ wα*, the null hypothesis H0: μ = μ0 is rejected. Appendix Table IX provides

significance levels of α = 0.10, α = 0.05, α = 0.02, and α = 0.01 for the two-sided test.

For one-sided tests, if the alternative is H1: μ > μ0, reject H0: μ = μ0 if w− ≤ wα*; and if the

alternative is H1: μ < μ0, reject H0: μ = μ0 if w+ ≤ wα*. The significance levels for one-sided tests

provided in Appendix Table IX are α = 0.05, 0.025, 0.01, and 0.005.

E X A M P L E 9.16 Propellant Shear Strength-Wilcoxon

Signed-Rank Test

We illustrate the Wilcoxon signed-rank test by applying it to

the propellant shear strength data from Table 9.5. Assume that

the underlying distribution is a continuous symmetric distribu-

tion. The seven-step procedure is applied as follows:

1. Parameter of interest: The parameter of interest is

the mean (or median) of the distribution of propellant

shear strength.

2. Null hypothesis: H0: μ = 2000 psi

3. Alternative hypothesis: H0: μ ≠ 2000 psi

4. Test statistic: The test statistic is w = min(w+
,w−)

5. Reject H0 if: We will reject H0 if w ≤ w0.05* = 52

from Appendix Table IX.

6. Computations: The signed ranks from Table 9.5 are

shown in the following display:

The sum of the positive ranks is w+ = (1 + 2 + 3 +
4 + 5 + 6 + 11 + 13 + 15 + 16 + 17 + 18 + 19 +
20) = 150, and the sum of the absolute values of the

negative ranks is w− = (7 + 8 + 9 + 10 + 12 + 14) =
60. Therefore,

w = min(150, 60) = 60

Observation Difference xi − 2000 Signed Rank

16 +53.50 +1

4 +61.30 +2

1 +158.70 +3

11 +165.20 +4

18 +200.50 +5

5 +207.50 +6

7 +215.30 −7

13 −220.20 −8

15 −234.70 −9

20 −246.30 −10

10 +256.70 +11

6 −291.70 −12

3 +316.00 +13

2 −321.85 −14

14 +336.75 +15

9 +357.90 +16

12 +399.55 +17

17 +414.40 +18

8 +575.10 +19

19 +654.20 +20

7. Conclusions: Because w= 60 is not less than or equal

to the critical value w0.05 = 52, we cannot reject the

null hypothesis that the mean (or median, because the

population is assumed to be symmetric) shear strength

is 2000 psi.
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Ties in the Wilcoxon Signed-Rank Test Because the underlying population is continuous,

ties are theoretically impossible, although they will sometimes occur in practice. If several obser-

vations have the same absolute magnitude, they are assigned the average of the ranks that they

would receive if they differed slightly from one another.

Large Sample Approximation If the sample size is moderately large, say, n > 20, it can be

shown that W+ (or W−) has approximately a normal distribution with mean

μw+ = n(n + 1)
4

and variance

σ2
w+ = n(n + 1)(2n + 1)

24

Therefore, a test of H0: μ = μ0 can be based on the statistic:

Normal Approximation for Wilcoxon Signed-Rank Statistic

Z0 =
W+ − n(n + 1)∕4

√
n(n + 1)(2n + 1)∕24

(9.56)

An appropriate critical region for either the two-sided or one-sided alternative hypotheses can be

chosen from a table of the standard normal distribution.

9.9.3 Comparison to the t-Test
If the underlying population is normal, either the sign test or the t-test could be used to test a

hypothesis about the population median. The t-test is known to have the smallest value of β pos-

sible among all tests that have significance level α for the one-sided alternative and for tests with

symmetric critical regions for the two-sided alternative, so it is superior to the sign test in the nor-

mal distribution case. When the population distribution is symmetric and nonnormal (but with

finite mean), the t-test will have a smaller β (or a higher power) than the sign test unless the dis-

tribution has very heavy tails compared with the normal. Thus, the sign test is usually considered

a test procedure for the median rather than as a serious competitor for the t-test. The Wilcoxon

signed-rank test is preferable to the sign test and compares well with the t-test for symmetric dis-

tributions. It can be useful for situations in which a transformation on the observations does not

produce a distribution that is reasonably close to the normal.

9.10 Equivalence Testing
Statistical hypothesis testing is one of the most useful techniques of statistical inference. However,

it works in only one direction; that is, it starts with a statement that is assumed to be true (the null

hypothesis H0) and attempts to disprove this claim in favor of the alternative hypothesis H1. The

strong statement about the alternative hypothesis is made when the null hypothesis is rejected.

This procedure works well in many but not all situations.

To illustrate, consider a situation in which we are trying to qualify a new supplier of a compo-

nent that we use in manufacturing our product. The current supplier produces these components

with a standard mean resistance of 80 ohms. If the new supplier can provide components with

the same mean resistance, we will qualify them. Having a second source for this component is

considered to be important because demand for our product is expected to grow rapidly in the
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near future, and the second supplier will be necessary to meet the anticipated increase in demand.

The traditional formulation of the hypothesis test

H0: μ = 80 H1: μ ≠ 80

really is not satisfactory. Only if we reject the null hypothesis do we have a strong conclusion. We

actually want to state the hypotheses as follows:

H0: μ ≠ 80 H1: μ = 80

This type of hypothesis statement is called an equivalence test. We assume that the new supplier

is different from the standard unless we have strong evidence to reject that claim. The way that this

equivalence test is carried out is to test the following two sets of one-sided alternative hypotheses:

H0: μ = 80 + δ H1: μ < 80 + δ

and

H0: μ = 80 − δ H1: μ > 80 − δ

where δ is called the equivalence band, which is a practical threshold or limit within which

the mean performance (here the resistance) is considered to be the same as the standard. The

interval 80 ± δ is called an equivalence interval. The first set of hypotheses is a test of the mean

that shows that the difference between the mean and the standard is significantly less than the

upper equivalence limit of the interval, and the second set of hypotheses is a test of the mean

that shows that the difference between the mean and the standard is significantly greater than the

lower equivalence limit. We are going to apply both tests to the same sample of data, leading to

a test of equivalence that is sometimes called two one-sided tests (TOST).

E X A M P L E 9.17

Suppose that we have a random sample of n = 50 components

from the new supplier. Resistance is approximately normally

distributed, and the sample mean and standard deviation (in

ohms) are x = 79.98 and s = 0.10. The sample mean is close

to the standard of 80 ohms. Suppose that our error of mea-

surement is approximately 0.01 ohm. We will decide that if

the new supplier has a mean resistance that is within 0.05

of the standard of 80, there is no practical difference in per-

formance. Therefore, δ = 0.05. Notice that we have chosen

the equivalence band to be greater than the usual or expected

measurement error for the resistance. We now want to test the

hypotheses

H0: μ = 80.05 H1: μ < 80.05

and

H0: μ = 79.95 H1: μ > 79.95

Consider testing the first set of hypotheses. It is straight-

forward to show that the value of the test statistic is t0 =−4.95,

and the P-value is less than 0.01. Therefore, we conclude that

the mean resistance is less than 80.05. For the second set of

hypotheses, the test statistic is t0 = 2.12, and the P-value is

less than 0.025, so the mean resistance is significantly greater

than 79.95 and significantly less than 80.05. Thus, we have

enough evidence to conclude that the new supplier produces

components that are equivalent to those produced by the

current supplier because the mean is within the ±0.05 ohm

interval.

Equivalence testing has many applications, including the supplier qualification problem illus-

trated here, generic drug manufacturing, and new equipment qualification. The experimenter must

decide what defines equivalence. Issues that should be considered include these:

1. Specifying the equivalence band. The parameter δ should be larger than the typical mea-

surement error. A good rule of thumb is that δ should be at least three times the typical

measurement error.
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2. The equivalence band should be much smaller than the usual process variation.

3. The equivalence band should be much smaller than the product or process specifications.

Specifications typically define fitness for use.

4. The equivalence band should be related to actual functional performance; that is, how much

of a difference can be tolerated before performance is degraded?

9.11 Combining P-Values
Testing several sets of hypotheses that relate to a problem of interest occurs fairly often in engi-

neering and many scientific disciplines. For example, suppose that we are developing a new

synthetic fiber to be used in manufacturing body armor for the military and law enforcement

agencies. This fiber needs to exhibit a high breaking strength (at least 100 lb/in2) for the new

product to work properly. The engineering development lab produced several batches or lots of

this fiber, a random sample of three fiber specimens from each lot has been taken, and the sample

specimens tested. For each lot, the hypotheses of interest are

H0: μ = 100 H1: μ > 100

The development lots are small, and the testing is destructive, so the sample sizes are also

small. After six lots have been produced, the P-values from these six independent tests of hypothe-

ses are 0.105, 0.080, 0.250, 0.026, 0.650, and 0.045. Given the size of these P-values, we suspect

that the new material is going to be satisfactory, but the sample sizes are small, and it would be

helpful if we could combine the results from all six tests to determine whether the new mate-

rial will be acceptable. Combining results from several studies or experiments is sometimes

called meta-analysis, a technique that has been used in many fields including public health

monitoring, clinical trials of new medical devices or treatments, ecology, and genetics. One

method that can be used to combine these results is to combine all of the individual P-values

into a single statistic for which one P-value can be computed. This procedure was developed by

R. A. Fisher.

Let Pi be the P-value for the ith set of hypotheses, i = 1, 2, … , m. The test statistic is

χ2
0
= −2

m∑

i=1

ln(Pi)

The test statistic χ2
0

follows a chi-square distribution with 2m degrees of freedom. A P-value can

be computed for the observed value of this statistic. A small P-value would lead to rejection of

the shared null hypotheses and a conclusion that the combined data support the alternative.

As an example, the test statistic χ2
0

for the six tests described is

χ2
0
= −2[ln(0.105) + ln(0.080) + ln(0.250) + ln(0.026) + ln(0.650) + ln(0.045)] = 26.6947

with 2m = 2(6) = 12 degrees of freedom. The P-value for this statistic is 0.005 < P < 0.01,

a very small value, which leads to rejection of the null hypothesis. In other words, the combined

information from all six tests provides evidence that the mean fiber strength exceeds 100 lb/in2.

Fisher’s method does not require all the null hypotheses be the same. Some applications

involve many sets of hypotheses that do not have the same null. In these situations, the alterna-

tive hypothesis is taken to be that at least one of the null hypotheses is false. Fisher’s method

was developed in the 1920s. Since then, a number of other techniques has been proposed. For a

good discussion of these alternative methods along with comments on their appropriateness and

power, see the article by Piegorsch and Bailer [“Combining Information,” Wiley Interdisciplinary
Reviews: Computational Statistics, 2009, Vol. 1(3), pp. 354–360].
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Important Terms and Concepts

Acceptance region

Alternative hypothesis

α and β
Chi-square tests

Combining P-values

Confidence interval

Connection between hypothesis tests and

confidence intervals

Contingency table

Critical region for a test statistic

Critical values

Equivalence testing

Fixed significance level

Goodness-of-fit test

Homogeneity test

Hypotheses

Hypothesis testing

Independence test

Inference

Nonparametric and distribution free

methods

Normal approximation to nonparametric

tests

Null distribution

Null hypothesis

Observed significance level

One- and two-sided alternative hypotheses

Operating characteristic (OC) curves

Parametric

Power of a statistical test

P-value

Ranks

Reference distribution for a test statistic

Rejection region

Sampling distribution

Sample size determination for hypothesis

tests

Sign test

Significance level of a test

Statistical hypothesis

Statistical versus practical significance

Symmetric continuous distributions

t-test

Test statistic

Type I and type II errors

Wilcoxon’s signed-rank test

z-test



�

� �

�

CHAPTER 10
Statistical
Inference for
Two Samples

©
 H

K
P

N
C

 /
 iS

to
ck

p
ho

to

L E A R N I N G O B J E C T I V E S

After careful study of this chapter, you should be able to do the following:

1. Structure comparative experiments involving two

samples as hypothesis tests

2. Test hypotheses and construct confidence

intervals on the difference in means of two normal

distributions

3. Test hypotheses and construct confidence

intervals on the ratio of the variances or standard

deviations of two normal distributions

4. Test hypotheses and construct confidence intervals

on the difference in two population proportions

5. Use the P-value approach for making decisions in

hypotheses tests

6. Compute power, and type II error probability, and

make sample size decisions for two-sample tests

on means, variances, and proportions

7. Explain and use the relationship between

confidence intervals and hypothesis tests

244
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10.3.3 Comparison to the t-Test
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10.5.1 F Distribution

10.5.2 Hypothesis Tests on the Equity
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10.5.3 Type II Error and Choice of Sample Size

10.5.4 Confidence Interval on the Ratio
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10.6.1 Large-Sample Tests on the Difference

in Population Proportions

10.6.2 Type II Error and Choice of Sample Size

10.6.3 Confidence Interval on the Difference

in Population Proportions

10.7 Summary Table and Road Map for Inference

Procedures for Two Samples

The safety of drinking water is a serious public health issue. An article in the Arizona Republic on

May 27, 2001, reported on arsenic contamination in the water sampled from 10 communities in

the metropolitan Phoenix area and 10 communities from rural Arizona. The data showed dramatic

differences in the arsenic concentration, ranging from 3 parts per billion (ppb) to 48 ppb. This

article suggested some important questions. Does real difference in the arsenic concentrations in

the Phoenix area and in the rural communities in Arizona exist? How large is this difference? Is it

large enough to require action on the part of the public health service and other state agencies to

correct the problem? Are the levels of reported arsenic concentration large enough to constitute

a public health risk?

Some of these questions can be answered by statistical methods. If we think of the metropoli-

tan Phoenix communities as one population and the rural Arizona communities as a second

population, we could determine whether a statistically significant difference in the mean arsenic

concentration exists for the two populations by testing the hypothesis that the two means, say,

μ1 and μ2, are different. This is a relatively simple extension to two samples of the one-sample

hypothesis testing procedures of Chapter 9. We could also use a confidence interval to estimate

the difference in the two means, say, μ1 − μ2.

The arsenic concentration problem is very typical of many problems in engineering and

science that involve statistics. Some of the questions can be answered by the application of appro-

priate statistical tools, and other questions require using engineering or scientific knowledge and

expertise to answer satisfactorily.

10.1 Inference on the Difference in Means of Two

Normal Distributions, Variances Known
The previous two chapters presented hypothesis tests and confidence intervals for a single

population parameter (the mean μ, the variance σ2, or a proportion p). This chapter extends those

results to the case of two independent populations.
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FIGURE 10.1

Two independent populations.

1

Population 1 Population 2

Sample 1:

x11, x12,…, x1n1
 

Sample 2:

x21, x22,…, x2n2
 

2 2

μ 2μ

1σ 2σ

The general situation is shown in Figure 10.1. Population 1 has mean μ1 and variance σ2
1
,

and population 2 has mean μ2 and variance σ2
2
. Inferences will be based on two random samples

of sizes n1 and n2, respectively. That is, X11,X12,… ,X1n1
is a random sample of n1 observations

from population 1, and X21,X22,… ,X2n2
is a random sample of n2 observations from population 2.

Most of the practical applications of the procedures in this chapter arise in the context of simple

comparative experiments in which the objective is to study the difference in the parameters of

the two populations.

Engineers and scientists are often interested in comparing two different conditions to deter-

mine whether either condition produces a significant effect on the response that is observed. These

conditions are sometimes called treatments. Example 10.1 describes such an experiment; the two

different treatments are two paint formulations, and the response is the drying time. The purpose

of the study is to determine whether the new formulation results in a significant effect—reducing

drying time. In this situation, the product developer (the experimenter) randomly assigned 10 test

specimens to one formulation and 10 test specimens to the other formulation. Then the paints

were applied to the test specimens in random order until all 20 specimens were painted. This is

an example of a completely randomized experiment.
When statistical significance is observed in a randomized experiment, the experimenter

can be confident in the conclusion that the difference in treatments resulted in the difference in

response. That is, we can be confident that a cause-and-effect relationship has been found.

Sometimes the objects to be used in the comparison are not assigned at random to the treat-

ments. For example, the September 1992 issue of Circulation (a medical journal published by the

American Heart Association) reports a study linking high iron levels in the body with increased

risk of heart attack. The study, done in Finland, tracked 1931 men for 5 years and showed a statisti-

cally significant effect of increasing iron levels on the incidence of heart attacks. In this study, the

comparison was not performed by randomly selecting a sample of men and then assigning some

to a “low iron level” treatment and the others to a “high iron level” treatment. The researchers

just tracked the subjects over time. Recall from Chapter 1 that this type of study is called an

observational study.

It is difficult to identify causality in observational studies because the observed statistically

significant difference in response for the two groups may be due to some other underlying factor

(or group of factors) that was not equalized by randomization and not due to the treatments. For

example, the difference in heart attack risk could be attributable to the difference in iron levels or

to other underlying factors that form a reasonable explanation for the observed results—such as

cholesterol levels or hypertension.

In this section, we consider statistical inferences on the difference in means μ1 − μ2 of two

normal distributions where the variances σ2
1

and σ2
2

are known. The assumptions for this section

are summarized as follows.

Assumptions for Two-Sample Inference
(1) X11,X12,… ,X1n1

is a random sample from population 1.

(2) X21,X22,… ,X2n2
is a random sample from population 2.



�

� �

�

10.1 Inference on the Difference in Means of Two Normal Distributions, Variances Known 247

(3) The two populations represented by X1 and X2 are independent.

(4) Both populations are normal.

A logical point estimator of μ1 − μ2 is the difference in sample means X1 − X2. Based on the

properties of expected values,

E(X1 − X2) = E(X1) − E(X2) = μ1 − μ2

and the variance of X1 − X2 is

V(X1 − X2) = V(X1) + V(X2) =
σ2

1

n1

+
σ2

2

n2

Based on the assumptions and the preceding results, we may state the following.

The quantity

Z =
X1 − X2 − (μ1 − μ2)

√
σ2

1

n1

+
σ2

2

n2

(10.1)

has a N(0, 1) distribution.

This result is used to develop procedures for tests of hypotheses and to construct confidence

intervals on μ1 − μ2. Essentially, we may think of μ1 − μ2 as a parameter θ where estimator is
̂Θ = X1 − X2 with variance σ2

̂Θ
= σ2

1
∕n1 + σ2

2
∕n2. If θ0 is the null hypothesis value specified for θ,

the test statistic will be (̂Θ − θ0)∕σ̂Θ. Notice how similar this is to the test statistic for a single

mean used in Equation 9.8 in Chapter 9.

10.1.1 Hypothesis Tests on the Difference in Means,

Variances Known
We now consider hypothesis testing on the difference in the means μ1− μ2 of two normal

populations. Suppose that we are interested in testing whether the difference in means μ1 −
μ2 is equal to a specified value Δ0. Thus, the null hypothesis is stated as H0: μ1− μ2 = Δ0.

Obviously, in many cases, we specify Δ0 = 0 so that we are testing the equality of two means (i.e.,

H0: μ1 = μ2). The appropriate test statistic would be found by replacing μ1 − μ2 in Equation 10.1

by Δ0: this test statistic would have a standard normal distribution under H0. That is, the standard

normal distribution is the reference distribution for the test statistic. Suppose that the alternative

hypothesis is H1: μ1− μ2 ≠ Δ0. A sample value of x1 − x2 that is considerably different from

Δ0 is evidence that H1 is true. Because Z0 has the N(0, 1) distribution when H0 is true, we

would calculate the P-value as the sum of the probabilities beyond the test statistic value z0 and

−z0 in the standard normal distribution. That is, P = 2[1 − Φ(|z0|)]. This is exactly what we

did in the one-sample z-test. If we wanted to perform a fixed-significance-level test, we would

take −zα/2 and zα/2 as the boundaries of the critical region just as we did in the single-sample

z-test. This would give a test with level of significance α. P-values or critical regions for the

one-sided alternatives would be determined similarly. Formally, we summarize these results in

the following display.
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Tests on the Difference in Means, Variances Known

Null hypothesis: H0∶ μ1 − μ2 = Δ0

Test statistic: Z0 =
X1 − X2 − Δ0
√

σ2
1

n1

+
σ2

2

n2

(10.2)

Alternative Rejection Criterion for
Hypotheses P-Value Fixed-Level Tests

H1: μ1 − μ2 ≠ Δ0 Probability above |z0| and probability

below −|z0|, P = 2[1 − Φ(|z0|)]

z0 > zα/2 or z0 < −zα/2

H1: μ1 − μ2 > Δ0 Probability above z0, P = 1 − Φ(z0) z0 > zα
H1: μ1 − μ2 < Δ0 Probability below z0, P = Φ(z0) z0 < −zα

E X A M P L E 10.1 Paint Drying Time

A product developer is interested in reducing the drying time

of a primer paint. Two formulations of the paint are tested;

formulation 1 is the standard chemistry, and formulation 2

has a new drying ingredient that should reduce the drying

time. From experience, it is known that the standard deviation

of drying time is 8 minutes, and this inherent variability

should be unaffected by the addition of the new ingredient.

Ten specimens are painted with formulation 1, and another 10

specimens are painted with formulation 2; the 20 specimens

are painted in random order. The two sample average drying

times are x1 = 121 minutes and x2 = 112 minutes, respec-

tively. What conclusions can the product developer draw

about the effectiveness of the new ingredient, using α = 0.05?

We apply the seven-step procedure to this problem as

follows:

1. Parameter of interest: The quantity of interest is the

difference in mean drying times, μ1 − μ2, and Δ0 = 0.

2. Null hypothesis: H0: μ1 − μ2 = 0, or H0: μ1 = μ2.

3. Alternative hypothesis: H1: μ1 > μ2. We want to re-

ject H0 if the new ingredient reduces mean drying time.

4. Test statistic: The test statistic is

z0 =
x1 − x2 − 0
√

σ2
1

n1

+
σ2

2

n2

where σ2
1
= σ2

2
= (8)2 = 64

and n1 = n2 = 10.

5. Reject H0 if: Reject H0: μ1 = μ2 if the P-value is less

than 0.05.

6. Computations: Because x1 = 121 minutes and x2 =
112 minutes, the test statistic is

z0 =
121 − 112

√
(8)2

10
+ (8)2

10

= 2.52

7. Conclusion: Because z0 = 2.52, the P-value is P =
1 − Φ(2.52) = 0.0059, so we reject H0 at the α = 0.05

level.

Practical Interpretation: We conclude that adding the

new ingredient to the paint significantly reduces the drying

time. This is a strong conclusion.

When the population variances are unknown, the sample variances s2
1

and s2
2

can be substituted

into the test statistic Equation 10.2 to produce a large-sample test for the difference in means.

This procedure will also work well when the populations are not necessarily normally distributed.

However, both n1 and n2 should exceed 40 for this large-sample test to be valid.
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10.1.2 Type II Error and Choice of Sample Size

Use of Operating Characteristic Curves The operating characteristic (OC) curves in

Appendix Charts VIIa, VIIb, VIIc, and VIId may be used to evaluate the type II error probability

for the hypotheses in the display (10.2). These curves are also useful in determining sample size.

Curves are provided for α = 0.05 and α = 0.01. For the two-sided alternative hypothesis, the

abscissa scale of the operating characteristic curve in charts VIIa and VIIb is d, where

d =
|μ1 − μ2 − Δ0|
√

σ2
1
+ σ2

2

=
|Δ − Δ0|
√

σ2
1
+ σ2

2

(10.3)

and one must choose equal sample sizes, say, n = n1 = n2. The one-sided alternative hypotheses

require the use of Charts VIIc and VIId. For the one-sided alternatives H1: μ1 − μ2 > Δ0 or

H1: μ1 − μ2 < Δ0, the abscissa scale is also given by

d =
|μ1 − μ2 − Δ0|
√

σ2
1
+ σ2

2

=
|Δ − Δ0|
√

σ2
1
+ σ2

2

It is not unusual to encounter problems where the costs of collecting data differ substantially

for the two populations or when the variance for one population is much greater than the other.

In those cases, we often use unequal sample sizes. If n1 ≠ n2, the operating characteristic curves

may be entered with an equivalent value of n computed from

n =
σ2

1
+ σ2

2

σ2
1
∕n1 + σ2

2
∕n2

(10.4)

If n1 ≠ n2 and their values are fixed in advance, Equation 10.4 is used directly to calculate n, and

the operating characteristic curves are entered with a specified d to obtain β. If we are given d
and it is necessary to determine n1 and n2 to obtain a specified β, say, β*, we guess at trial values

of n1 and n2, calculate n in Equation 10.4, and enter the curves with the specified value of d to

find β. If β = β*, the trial values of n1 and n2 are satisfactory. If β ≠ β*, adjustments to n1 and n2

are made and the process is repeated.

E X A M P L E 10.2 Paint Drying Time, Sample Size

from OC Curves

Consider the paint drying time experiment from Example 10.1.

If the true difference in mean drying times is as much as

10 minutes, find the sample sizes required to detect this

difference with probability at least 0.90.

The appropriate value of the abscissa parameter is

(because Δ0 = 0, and Δ = 10)

d =
|μ1 − μ2|
√

σ2
1
+ σ2

2

= 10
√

82 + 82
= 0.88

and because the detection probability or power of the test must

be at least 0.9, with α = 0.05, we find from Appendix Chart

VIIc that n = n1 = n2 ≃ 11.

Sample Size Formulas It is also possible to obtain formulas for calculating the sample sizes

directly. Suppose that the null hypothesis H0: μ1 − μ2 = Δ0 is false and that the true difference

in means is μ1 − μ2 = Δ where Δ > Δ0. One may find formulas for the sample size required to
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obtain a specific value of the type II error probability β for a given difference in means Δ and

level of significance α.

For example, we first write the expression for the β-error for the two-sided alternative,

which is

β = Φ

⎛
⎜
⎜
⎜
⎜
⎜
⎝

zα∕2 −
Δ − Δ0

√
σ2

1

n1

+
σ2

2

n2

⎞
⎟
⎟
⎟
⎟
⎟
⎠

− Φ

⎛
⎜
⎜
⎜
⎜
⎜
⎝

−zα∕2 −
Δ − Δ0

√
σ2

1

n1

+
σ2

2

n2

⎞
⎟
⎟
⎟
⎟
⎟
⎠

The derivation for sample size closely follows the single-sample case in Section 9.2.2.

Sample Size for a Two-Sided Test on the Difference in Means with n1 = n2,
Variances Known
For the two-sided alternative hypothesis with significance level α, the sample size n1 = n2

= n required to detect a true difference in means of Δ with power at least 1 − β is

n ≃
(
zα∕2 + zβ

)2(σ2
1
+ σ2

2
)

(Δ − Δ0)2
(10.5)

This approximation is valid when Φ
(

−zα∕2 − (Δ − Δ0)
√

n∕
√

σ2
1
+ σ2

2

)

is small compared to β.

Sample Size for a One-Sided Test on the Difference in Means with n1 = n2,
Variances Known
For a one-sided alternative hypothesis with significance level α, the sample size n1 = n2 = n
required to detect a true difference in means of Δ(≠ Δ0) with power at least 1 − β is

n =
(zα + zβ)2 (σ2

1
+ σ2

2
)

(Δ − Δ0)2
(10.6)

where Δ is the true difference in means of interest. Then by following a procedure similar

to that used to obtain Equation 9.17, the expression for β can be obtained for the case where

n = n1 = n2.

E X A M P L E 10.3 Paint Drying Time Sample Size

To illustrate the use of these sample size equations, consider

the situation described in Example 10.1, and suppose that if the

true difference in drying times is as much as 10 minutes, we

want to detect this with probability at least 0.90. Under the null

hypothesis,Δ0 = 0. We have a one-sided alternative hypothesis

with Δ = 10, α = 0.05 (so zα = z0.05 = 1.645), and because the

power is 0.9, β = 0.10 (so zβ = z0.10 = 1.28). Therefore, we may

find the required sample size from Equation 10.6 as follows:

n=
(zα + zβ)2 (σ2

1
+ σ2

2
)

(Δ − Δ0)2
= (1.645 + 1.28)2 [(8)2 + (8)2]

(10 − 0)2
≈11

This is exactly the same as the result obtained from using the

OC curves.
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10.1.3 Confidence Interval on the Difference in Means,
Variances Known
The 100(1 − α)% confidence interval on the difference in two means μ1 − μ2 when the variances

are known can be found directly from results given previously in this section. Recall that

X11,X12,… ,X1n1
is a random sample of n1 observations from the first population and

X21,X22,… ,X2n2
is a random sample of n2 observations from the second population. The

difference in sample means X1 − X2 is a point estimator of μ1 − μ2, and

Z =
X1 − X2 − (μ1 − μ2)

√
σ2

1

n1

+
σ2

2

n2

has a standard normal distribution if the two populations are normal or is approximately stan-

dard normal if the conditions of the central limit theorem apply, respectively. This implies that

P(−zα/2 ≤ Z ≤ zα/2) = 1 − α, or

P

⎡
⎢
⎢
⎢
⎢
⎢
⎣

−zα∕2 ≤
X1 − X2 − (μ1 − μ2)

√
σ2

1

n1

+
σ2

2

n2

≤ zα∕2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

= 1 − α

This can be rearranged as

P
⎛
⎜
⎜
⎝

X1 − X2 − zα∕2

√

σ2
1

n1

+
σ2

2

n2

≤ μ1 − μ2 ≤ X1 − X2 + zα∕2

√

σ2
1

n1

+
σ2

2

n2

⎞
⎟
⎟
⎠

= 1 − α

Therefore, the 100(1 − α)% confidence interval for μ1 − μ2 is defined as follows.

Confidence Interval on the Difference in Means, Variances Known
If x1 and x2 are the means of independent random samples of sizes n1 and n2 from two inde-

pendent normal populations with known variances σ2
1

and σ2
2
, respectively, a 100(1 − α)%

confidence interval for μ1 − μ2 is

x1 − x2 − zα∕2

√

σ2
1

n1

+
σ2

2

n2

≤ μ1 − μ2 ≤ x1 − x2 + zα∕2

√

σ2
1

n1

+
σ2

2

n2

(10.7)

where zα/2 is the upper α/2 percentage point of the standard normal distribution.

The confidence level 1 − α is exact when the populations are normal. For nonnormal populations,

the confidence level is approximately valid for large sample sizes.

Equation 10.7 can also be used as a large sample CI on the difference in mean when σ2
1

and σ2
2

are unknown by substituting s2
1

and s2
2

for the population variances. For this to be a valid

procedure, both sample sizes n1 and n2 should exceed 40.
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E X A M P L E 10.4 Aluminum Tensile Strength

Tensile strength tests were performed on two different grades

of aluminum spars used in manufacturing the wing of a com-

mercial transport aircraft. From past experience with the spar

manufacturing process and the testing procedure, the standard

deviations of tensile strengths are assumed to be known. The

data obtained are as follows: n1 = 10, x1 = 87.6, σ1 = 1, n2 =
12, x2 = 74.5, and σ2 = 1.5. If μ1 and μ2 denote the true mean

tensile strengths for the two grades of spars, we may find a

90% CI on the difference in mean strength μ1 − μ2 as follows:

x1 − x2 − zα∕2

√

σ2
1

n1

+
σ2

2

n2

≤ μ1 − μ2 ≤ x1 − x2

+ zα∕2

√

σ2
1

n1

+
σ2

2

n2

87.6−74.5−1.645

√
(1)2
10

+ (1.5)2
12

≤ μ1 − μ2 ≤ 87.6 − 74.5

+1.645

√

(12)
10

+ (1.5)2
12

Therefore, the 90% confidence interval on the difference in

mean tensile strength (in kilograms per square millimeter) is

12.22≤ μ1 −μ2 ≤ 13.98 (in kilograms per square millimeter)

Practical Interpretation: Notice that the confidence inter-

val does not include zero, implying that the mean strength of

aluminum grade 1 (μ1) exceeds the mean strength of aluminum

grade 2 (μ2). In fact, we can state that we are 90% confident that

the mean tensile strength of aluminum grade 1 exceeds that of

aluminum grade 2 by between 12.22 and 13.98 kilograms per

square millimeter.

Choice of Sample Size If the standard deviations σ1 and σ2 are known (at least approximately)

and the two sample sizes n1 and n2 are equal (n1 = n2 = n, say), we can determine the sample

size required so that the error in estimating μ1 − μ2 by x1 − x2 will be less than E at 100(1 − α)%

confidence. The required sample size from each population is

Sample Size for a Confidence Interval on the Difference in Means,
Variances Known

n =
( zα∕2

E

)2

(σ2
1
+ σ2

2
) (10.8)

Remember to round up if n is not an integer. This ensures that the level of confidence does not

drop below 100(1 − α)%.

One-Sided Confidence Bounds One-sided confidence bounds on μ1 − μ2 may also be ob-

tained. A 100(1 − α)% upper-confidence bound on μ1 − μ2 is

One-Sided Upper-Confidence Bound

μ1 − μ2 ≤ x1 − x2 + zα

√

σ2
1

n1

+
σ2

2

n2

(10.9)

and a 100(1 − α)% lower-confidence bound is

One-Sided Lower-Confidence Bound

x1 − x2 − zα

√

σ2
1

n1

+
σ2

2

n2

≤ μ1 − μ2 (10.10)
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10.2 Inference on the Difference in Means

of Two Normal Distributions,

Variances Unknown
We now extend the results of the previous section to the difference in means of the two

distributions in Figure 10.1 when the variances of both distributions σ2
1

and σ2
2

are unknown. If

the sample sizes n1 and n2 exceed 40, the normal distribution procedures in Section 10.1 could

be used. However, when small samples are taken, we assume that the populations are normally

distributed and base our hypotheses tests and confidence intervals on the t distribution. This

parallels nicely the case of inference on the mean of a single sample with unknown variance.

10.2.1 Hypotheses Tests on the Difference in Means,
Variances Unknown
We now consider tests of hypotheses on the difference in means μ1 − μ2 of two normal

distributions where the variances σ2
1

and σ2
2

are unknown. A t-statistic is used to test these

hypotheses. As noted earlier and in Section 9.3, the normality assumption is required to develop

the test procedure, but moderate departures from normality do not adversely affect the procedure.

Two different situations must be treated. In the first case, we assume that the variances of the two

normal distributions are unknown but equal; that is, σ2
1
= σ2

2
= σ2. In the second, we assume that

σ2
1

and σ2
2

are unknown and not necessarily equal.

Case 1: 𝛔2
1
= 𝛔2

2
= 𝛔2 Suppose that we have two independent normal populations with

unknown means μ1 and μ2, and unknown but equal variances, σ2
1
= σ2

2
= σ2. We wish to test

H0:μ1 − μ2 = Δ0

H1:μ1 − μ2 ≠ Δ0 (10.11)

Let X11,X12,… ,X1n1
be a random sample of n1 observations from the first population and

X21,X22,… ,X2n2
be a random sample of n2 observations from the second population. Let

X1,X2, S2
1
, and S2

2
be the sample means and sample variances, respectively. Now the expected

value of the difference in sample means X1 − X2 is E(X1 − X2) = μ1 − μ2, so X1 − X2 is an

unbiased estimator of the difference in means. The variance of X1 − X2 is

V(X1 − X2) =
σ2

n1

+ σ2

n2

= σ2

(
1

n1

+ 1

n2

)

It seems reasonable to combine the two sample variances S2
1

and S2
2

to form an estimator

of σ2. The pooled estimator of σ2 is defined as follows.

Pooled Estimator of Variance
The pooled estimator of σ2, denoted by S2

p, is defined by

S2
p =

(n1 − 1)S2
1
+ (n2 − 1)S2

2

n1 + n2 − 2
(10.12)
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It is easy to see that the pooled estimator S2
p can be written as

S2
p =

n1 − 1

n1 + n2 − 2
S2

1
+

n2 − 1

n1 + n2 − 2
S2

2
= wS2

1
+ (1 − w)S2

2

where 0 < w ≤ 1. Thus, S2
p is a weighted average of the two sample variances S2

1
and S2

2
where

the weights w and 1 − w depend on the two sample sizes n1 and n2. Obviously, if n1 = n2 = n,
w = 0.5, S2

p is just the arithmetic average of S2
1

and S2
2
. If n1 = 10 and n2 = 20 (say), w = 0.32

and 1 − w = 0.68. The first sample contributes n1 − 1 degrees of freedom to S2
p and the second

sample contributes n2 − 1 degrees of freedom. Therefore, S2
p has n1 + n2 − 2 degrees of freedom.

Now we know that

Z =
X1 − X2 − (μ1 − μ2)

σ
√

1

n1

+ 1

n2

has a N(0, 1) distribution. Replacing σ by Sp gives the following.

Given the assumptions of this section, the quantity

T =
X1 − X2 − (μ1 − μ2)

Sp

√
1

n1

+ 1

n2

(10.13)

has a t distribution with n1 + n2 − 2 degrees of freedom.

The use of this information to test the hypotheses in Equation 10.11 is now straightforward:

Simply replace μ1 − μ2 by Δ0, and the resulting test statistic has a t distribution with n1 + n2 − 2

degrees of freedom under H0: μ1 − μ2 = Δ0. Therefore, the reference distribution for the test

statistic is the t distribution with n1 + n2 − 2 degrees of freedom. The calculation of P-values and

the location of the critical region for fixed-significance-level testing for both two- and one-sided

alternatives parallels those in the one-sample case. Because a pooled estimate of variance is used,

the procedure is often called the pooled t-test.

Tests on the Difference in Means of Two Normal Distributions,
Variances Unknown and Equal*

Null hypothesis: H0: μ1 − μ2 = Δ0

Test statistic: T0 =
X1 − X2 − Δ0

Sp

√
1

n1

+ 1

n2

(10.14)

............................................................................................................................................

∗While we have given the development of this procedure for the case in which the sample sizes could be different, there

is an advantage to using equal sample sizes n1 = n2 = n. When the sample sizes are the same from both populations, the

t-test is more robust to the assumption of equal variances.
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Alternative Rejection Criterion for
Hypotheses P-Value Fixed-Level Tests

H1: μ1 − μ2 ≠ Δ0 Probability above |t0| and

probability below − |t0|

t0 > tα∕2,n1+n2−2 or

t0 < −tα∕2,n1+n2−2

H1: μ1 − μ2 > Δ0 Probability above t0 t0 > tα,n1+n2−2

H1: μ1 − μ2 < Δ0 Probability below t0 t0 < −tα,n1+n2−2

E X A M P L E 10.5 Yield from a Catalyst

Two catalysts are being analyzed to determine how they affect

the mean yield of a chemical process. Specifically, catalyst 1

is currently used; but catalyst 2 is acceptable. Because catalyst

2 is cheaper, it should be adopted, if it does not change the

process yield. A test is run in the pilot plant and results in

the data shown in Table 10.1. Figure 10.2 presents a normal

probability plot and a comparative box plot of the data from

the two samples. Is there any difference in the mean yields?

Use α = 0.05, and assume equal variances.

T A B L E 10.1 Catalyst Yield Data, Example 10.5

Observation Number Catalyst 1 Catalyst 2

1 91.50 89.19

2 94.18 90.95

3 92.18 90.46

4 95.39 93.21

5 91.79 97.19

6 89.07 97.04

7 94.72 91.07

8 89.21 92.75

x1 = 92.255 x2 = 92.733

s1 = 2.39 s2 = 2.98

The solution using the seven-step hypothesis-testing proce-

dure is as follows:

1. Parameter of interest: The parameters of interest

are μ1 and μ2, the mean process yield using cata-

lysts 1 and 2, respectively, and we want to know if

μ1 − μ2 = 0.

2. Null hypothesis: H0: μ1 − μ2 = 0, or H0: μ1 = μ2

3. Alternative hypothesis: H1: μ1 ≠ μ2

4. Test statistic: The test statistic is

t0 =
x1 − x2 − 0

sp

√
1

n1

+ 1

n2

5. Reject H0 if: Reject H0 if the P-value is less than

0.05.

6. Computations: From Table 10.1, we have x1 =
92.255, s1 = 2.39, n1 = 8, x2 = 92.733, s2 = 2.98,

and n2 = 8. Therefore

s2
p =

(n1 − 1)s2
1
+ (n2 − 1)s2

2

n1 + n2 − 2
= (7)(2.39)2 + 7(2.98)2

8 + 8 − 2

= 7.30

sp =
√

7.30 = 2.70

and

t0 =
x1 − x2

2.70

√
1

n1

+ 1

n2

= 92.255 − 92.733

2.70

√
1

8
+ 1

8

= −0.35

7. Conclusions: Because |t0| = 0.35, we find from

Appendix Table V that t0.40,14 = 0.258 and t0.25,14 =
0.692. Therefore, because 0.258 < 0.35 < 0.692, we

conclude that lower and upper bounds on the P-value

are 0.50 < P < 0.80. Therefore, because the P-value

exceeds α = 0.05, the null hypothesis cannot be

rejected.

Practical Interpretation: At the 0.05 level of significance,

we do not have strong evidence to conclude that catalyst 2

results in a mean yield that differs from the mean yield when

catalyst 1 is used.
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FIGURE 10.2

Normal probability plot and comparative box plot for the catalyst yield data in Example 10.5.
(a) Normal probability plot. (b) Box plots.

Typical computer output for the two-sample t-test and confidence interval procedure for

Example 10.5 follows:

Two-Sample T-Test and CI for Catalyst 1 vs. Catalyst 2
N Mean StDev SE Mean

Cat 1 8 92.26 2.39 0.84

Cat 2 8 92.73 2.99 1.1

Difference = mu Cat 1 − mu Cat 2
Estimate for difference: −0.48
95% CI for difference: (−3.37, 2.42)
T-test of difference = 0 (vs not=): T-value = −0.35 P-value = 0.730 DF = 14
Pooled StDev = 2.70

Notice that the numerical results are essentially the same as the manual computations in

Example 10.5. The P-value is reported as P = 0.73. The two-sided CI on μ1 − μ2 is also

reported. We give the computing formula for the CI in Section 10.2.3. Figure 10.2 shows the

normal probability plot of the two samples of yield data and comparative box plots. The normal

probability plots indicate that there is no problem with the normality assumption or with the

assumption of equal variances. Furthermore, both straight lines have similar slopes, providing

some verification of the assumption of equal variances. The comparative box plots indicate

that there is no obvious difference in the two catalysts although catalyst 2 has slightly more

sample variability.

Case 2: 𝛔2
1
≠ 𝛔2

2
In some situations, we cannot reasonably assume that the unknown variances

σ2
1

and σ2
2

are equal. There is not an exact t-statistic available for testing H0: μ1 − μ2 = Δ0 in this

case. However, an approximate result can be applied.



�

� �

�

10.2 Inference on the Difference in Means of Two Normal Distributions, Variances Unknown 257

Case 2: Test Statistic for the Difference in Means, Variances Unknown
and Not Assumed Equal
If H0: μ1 − μ2 = Δ0 is true, the statistic

T∗
0
=

X1 − X2 − Δ0
√

S2
1

n1

+
S2

2

n2

(10.15)

is distributed approximately as t with degrees of freedom given by

v =

(
s2

1

n1

+
s2

2

n2

)2

(s2
1
∕n1)2

n1 − 1
+

(s2
2
∕n2)2

n2 − 1

(10.16)

If v is not an integer, round down to the nearest integer.

Therefore, if σ2
1
≠ σ2

2
, the hypotheses on differences in the means of two normal distributions are

tested as in the equal variances case except that T∗
0

is used as the test statistic and n1 + n2 − 2 is

replaced by v in determining the degrees of freedom for the test.

The pooled t-test is very sensitive to the assumption of equal variances (so is the CI procedure

in Section 10.2.3). The two-sample t-test assuming that σ2
1
≠ σ2

2
is a safer procedure unless one

is very sure about the equal variance assumption.

E X A M P L E 10.6 Arsenic in Drinking Water

Arsenic concentration in public drinking water supplies is a

potential health risk. An article in the Arizona Republic (May

27, 2001) reported drinking water arsenic concentrations in

parts per billion (ppb) for 10 metropolitan Phoenix communi-

ties and 10 communities in rural Arizona. The data follow:

Metro Phoenix Rural Arizona
(x𝟏 = 𝟏𝟐.𝟓, s𝟏 = 𝟕.𝟔𝟑) (x𝟐 = 𝟐𝟕.𝟓, s𝟐 = 𝟏𝟓.𝟑)
Phoenix, 3 Rimrock, 48

Chandler, 7 Goodyear, 44

Gilbert, 25 New River, 40

Glendale, 10 Apache Junction, 38

Mesa, 15 Buckeye, 33

Paradise Valley, 6 Nogales, 21

Peoria, 12 Black Canyon City, 20

Scottsdale, 25 Sedona, 12

Tempe, 15 Payson, 1

Sun City, 7 Casa Grande, 18

We wish to determine whether any difference exists in mean

arsenic concentrations for metropolitan Phoenix communities

and for communities in rural Arizona. Figure 10.3 shows a

normal probability plot for the two samples of arsenic concen-

tration. The assumption of normality appears quite reasonable,

but because the slopes of the two straight lines are very differ-

ent, it is unlikely that the population variances are the same.
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FIGURE 10.3

Normal probability plot of the arsenic concentration
data.
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Applying the seven-step procedure gives the following:

1. Parameter of interest: The parameters of interest

are the mean arsenic concentrations for the two geo-

graphic regions, say, μ1 and μ2, and we are interested

in determining whether μ1 − μ2 = 0.

2. Null hypothesis: H0: μ1 − μ2 = 0, or H0: μ1 − μ2

3. Alternative hypothesis: H1: μ1 ≠ μ2

4. Test statistic: The test statistic is

t∗
0
=

x1 − x2 − 0
√

s2
1

n1

+
s2

2

n2

5. Reject H0 if: The degrees of freedom on t∗
0

are found

from Equation 10.16 as

v =

(
s2

1

n1

+
s2

2

n2

)2

(s2
1
∕n1)2

n1 − 1
+

(s2
2
∕n1)2

n2 − 1

=

[
(7.63)2

10
+ (15.3)2

10

]2

[(7.63)2∕10]2

9
+

[(15.3)2∕10]2

9

= 13.2 ≃ 13

Therefore, using α= 0.05 and a fixed-significance-level

test, we would reject H0: μ1 = μ2 if t∗
0
> t0.025,13 =

2.160 or if t∗
0
< −t0.025,13 = −2.160.

6. Computations: Using the sample data, we find

t∗
0
=

x1 − x2
√

s2
1

n1

+
s2

2

n2

= 12.5 − 27.5
√

(7.63)2

10
+ (15.3)2

10

= −2.77

7. Conclusion: Because t∗
0
=−2.77 < t0.025,13 = −2.160,

we reject the null hypothesis.

Practical Interpretation: There is strong evidence to con-

clude that mean arsenic concentration in the drinking water in

rural Arizona is different from the mean arsenic concentra-

tion in metropolitan Phoenix drinking water. Furthermore, the

mean arsenic concentration is higher in rural Arizona commu-

nities. The P-value for this test is approximately P = 0.016.

Typical computer output for this example follows:

Two-Sample T-Test and CI: PHX vs RuralAZ
N Mean StDev

PHX 10 12.50 7.63

RuralAZ 10 27.50 15.3
Difference = mu PHX − mu RuralAZ
Estimate for difference: −15.00
95% CI for difference: (−26.71, −3.29)
T-test of difference = 0 (vs. not = ): T-value = −2.77 P-value = 0.016 DF = 13

The computer-generated numerical results exactly match the calculations from Example 10.6.

Note that a two-sided 95% CI on μ1 − μ2 is also reported. We discuss its computation in

Section 10.2.3; however, note that the interval does not include zero. Indeed, the upper 95%

of confidence limit is −3.29 ppb, well below zero, and the mean observed difference is

x1 − x2 = 12.5 − 27.5 = −15 ppb.

E X A M P L E 10.7 Chocolate and Cardiovascular Health

An article in Nature (2003, Vol. 48, p. 1013) described an

experiment in which subjects consumed different types of

chocolate to determine the effect of eating chocolate on a

measure of cardiovascular health. We consider the results for

only dark chocolate and milk chocolate. In the experiment,

12 subjects consumed 100 grams of dark chocolate and

200 grams of milk chocolate, one type of chocolate per

day, and after one hour, the total antioxidant capacity of

their blood plasma was measured in an assay. The subjects

consisted of seven women and five men with an average age

range of 32.2 ± 1 years, an average weight of 65.8 ± 3.1

kg, and average body mass index of 21.9 ± 0.4 kg/m2. Data

similar to that reported in the article follows.



�

� �

�

10.2 Inference on the Difference in Means of Two Normal Distributions, Variances Unknown 259

Dark Chocolate Milk Chocolate

118.8, 122.6, 115.6, 113.6, 102.1, 105.8, 99.6, 102.7,

119.5, 115.9, 115.8, 115.1, 98.8, 100.9, 102.8, 98.7,

116.9, 115.4, 115.6, 107.9 94.7, 97.8, 99.7, 98.6

Is there evidence to support the claim that consuming dark

chocolate produces a higher mean level of total blood plasma

antioxidant capacity than consuming milk chocolate? Let

μ1 be the mean blood plasma antioxidant capacity resulting

from eating dark chocolate and μ2 be the mean blood plasma

antioxidant capacity resulting from eating milk chocolate.

The hypotheses that we wish to test are

H0∶ μ1 = μ2

H1∶ μ1 > μ2

The results of applying the pooled t-test to this experiment are

as follows:

Two-sample T for Dark vs. Milk
N Sample Mean StDev

Dark 12 116.06 3.53

Milk 12 100.19 2.89

Difference = mu (Dark) − mu (Milk) = 15.87
T-test of difference in means = 0 (vs. mu (Dark)
> mu (Milk)):
T-value = 12.05 P-Value < 0.001
DF = 22 Pooled StDev = 3.2257

Because the P-value is so small (<0.001), the null hypothe-

sis would be rejected. Strong evidence supports the claim that

consuming dark chocolate produces a higher mean level of

total blood plasma antioxidant capacity than consuming milk

chocolate.

10.2.2 Type II Error and Choice of Sample Size
The operating characteristic curves in Appendix Charts VIIe, VIIf , VIIg, and VIIh are used to

evaluate the type II error for the case in which σ2
1
= σ2

2
= σ2. Unfortunately, when σ2

1
≠ σ2

2
, the

distribution of T∗
0

is unknown if the null hypothesis is false, and no operating characteristic curves

are available for this case.

For the two-sided alternative H1: μ1 − μ2 = Δ ≠ Δ0, when σ2
1
= σ2

2
= σ2 and n1 = n2 = n,

Charts VIIe and VIIf are used with

d =
|Δ − Δ0|

2σ
(10.17)

whereΔ is the true difference in means that is of interest. To use these curves, they must be entered

with the sample size n* = 2n − 1. For the one-sided alternative hypothesis, we use Charts VIIg
and VIIh and define d and Δ as in Equation 10.17. It is noted that the parameter d is a function

of σ, which is unknown. As in the single-sample t-test, we may have to rely on a prior estimate

of σ or use a subjective estimate. Alternatively, we could define the differences in the mean that

we wish to detect relative to σ.

E X A M P L E 10.8 Yield from Catalyst Sample Size

Consider the catalyst experiment in Example 10.5. Suppose

that, if catalyst 2 produces a mean yield that differs from the

mean yield of catalyst 1 by 4.0%, we would like to reject the

null hypothesis with probability at least 0.85. What sample

size is required?

Using sp = 2.70 as a rough estimate of the common stan-

dard deviation σ, we have d = |Δ|/2σ = |4.0|/[(2)(2.70)] = 0.74.

From Appendix Chart VIIe with d = 0.74 and β = 0.15,

we find n* = 20, approximately. Therefore, because

n* = 2n − 1,

n = n∗ + 1

2
= 20 + 1

2
= 10.5 ≃ 11 (say)

and we would use sample sizes of n1 = n2 = n = 11.

Many software packages perform power and sample size calculations for the two-sample t-test

(equal variances). Typical output from Example 10.8 is as follows:
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Power and Sample Size
2-Sample T-test
Testing mean 1 = mean 2 (versus not =)
Calculating power for mean 1 = mean 2 + difference
Alpha = 0.05 Sigma = 2.7

Difference Sample
Size

Target
Power

Actual
Power

4 10 0.8500 0.8793

The results agree fairly closely with the results obtained from the OC curve.

10.2.3 Confidence Interval on the Difference in Means,
Variances Unknown

Case 1: 𝛔2
1
= 𝛔2

2
= 𝛔2 To develop the confidence interval for the difference in means

μ1 − μ2 when both variances are equal, note that the distribution of the statistic

T =
X1 − X2 − (μ1 − μ2)

Sp

√
1

n1

+ 1

n2

(10.18)

is the t distribution with n1 + n2 − 2 degrees of freedom. Therefore P
(
−tα∕2,n1+n2−2 ≤

T ≤ tα∕2,n1+n2−2

)
= 1 − α. Now substituting Equation 10.18 for T and manipulating the quantities

inside the probability statement leads to the 100(1 − α)% confidence interval on μ1 − μ2.

Case 1: Confidence Interval on the Difference in Means, Variances Unknown
and Equal
If x1, x2, s2

1
, and s2

2
are the sample means and variances of two random samples of sizes n1

and n2, respectively, from two independent normal populations with unknown but equal

variances, a 100(1 − α)% confidence interval on the difference in means μ1 − μ2 is

x1 − x2 − tα∕2,n1+n2−2sp

√
1

n1

+ 1

n2

≤ μ1 − μ2 ≤ x1 − x2 + tα∕2,n1+n2−2 sp

√
1

n1

+ 1

n2

(10.19)

where sp =
√

[(n1 − 1)s2
1
+ (n2 − 1)s2

2
]∕(n1 + n2 − 2) is the pooled estimate of the common

population standard deviation, and tα∕2,n1+n2−2 is the upper α/2 percentage point of the t
distribution with n1 + n2 − 2 degrees of freedom.

E X A M P L E 10.9 Cement Hydration

An article in the journal Hazardous Waste and Hazardous
Materials (1989, Vol. 6) reported the results of an analysis

of the weight of calcium in standard cement and cement

doped with lead. Reduced levels of calcium would indicate

that the hydration mechanism in the cement is blocked and

would allow water to attack various locations in the cement

structure. Ten samples of standard cement had an average

weight percent calcium of x1 = 90.0 with a sample standard

deviation of s1 = 5.0, and 15 samples of the lead-doped

cement had an average weight percent calcium of x2 = 87.0

with a sample standard deviation of s2 = 4.0.

We assume that weight percent calcium is normally dis-

tributed and find a 95% confidence interval on the difference in

means, μ1 − μ2, for the two types of cement. Furthermore, we

assume that both normal populations have the same standard

deviation.
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The pooled estimate of the common standard deviation is

found using Equation 10.12 as follows:

s2
p =

(n1 − 1)s2
1
+ (n2 − 1)s2

2

n1 + n2 − 2
= 9(5.0)2 + 14(4.0)2

10 + 15 − 2
= 19.52

Therefore, the pooled standard deviation estimate is

sp =
√

19.52 = 4.4. The 95% confidence interval is found

using Equation 10.19:

x1 − x2 − t0.025,23 sp

√
1

n1

+ 1

n2

≤ μ1 − μ2

≤ x1 − x2 + t0.025,23 sp

√
1

n1

+ 1

n2

or upon substituting the sample values and using t0.025,23 =
2.069,

90.0 − 87.0 − 2.069(4.4)
√

1

10
+ 1

15
≤ μ1 − μ2

≤ 90.0 − 87.0 + 2.069(4.4)
√

1

10
+ 1

15

which reduces to

−0.72 ≤ μ1 − μ2 ≤ 6.72

Practical Interpretation: Notice that the 95% confidence

interval includes zero; therefore, at this level of confidence we

cannot conclude that there is a difference in the means. Put

another way, there is no evidence that doping the cement with

lead affected the mean weight percent of calcium; therefore,

we cannot claim that the presence of lead affects this aspect of

the hydration mechanism at the 95% level of confidence.

Case 2: 𝛔2
1
≠ 𝛔2

2
In many situations, assuming that σ2

1
= σ2

2
is not reasonable. When this

assumption is unwarranted, we may still find a 100(1 − α)% confidence interval on μ1 − μ2 using

the fact that T∗ = [X1 − X2 − (μ1 − μ2)]∕
√

S2
1
∕n1 + S2

2
∕n2 is distributed approximately as t with

degrees of freedom v given by Equation 10.16. The CI expression follows.

Case 2: Approximate Confidence Interval on the Difference in Means,
Variances Unknown and Not Assumed Equal
If x1, x2, s2

1
, and s2

2
are the means and variances of two random samples of sizes n1 and n2,

respectively, from two independent normal populations with unknown and unequal vari-

ances, an approximate 100(1 − α)% confidence interval on the difference in means μ1 − μ2 is

x1 − x2 − tα∕2,𝑣

√

s2
1

n1

+
s2

2

n2

≤ μ1 − μ2 ≤ x1 − x2 + tα∕2,𝑣

√

s2
1

n1

+
s2

2

n2

(10.20)

where v is given by Equation 10.16 and tα∕2,𝑣 is the upper α/2 percentage point of the t dis-

tribution with v degrees of freedom.

10.3 A Nonparametric Test for the Difference

in Two Means
Suppose that we have two independent continuous populations X1 and X2 with means μ1 and μ2,

but we are unwilling to assume that they are (approximately) normal. However, we can assume

that the distributions of X1 and X2 are continuous and have the same shape and spread, and

differ only (possibly) in their locations. The Wilcoxon rank-sum test can be used to test the

hypothesis H0: μ1 = μ2. This procedure is sometimes called the Mann-Whitney test, although the

Mann-Whitney test statistic is usually expressed in a different form.
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10.3.1 Description of the Wilcoxon Rank-Sum Test
Let X11,X12,… ,X1n1

and X21,X22,… ,X2n2
be two independent random samples of sizes n1 ≤ n2

from the continuous populations X1 and X2 described earlier. We wish to test the hypotheses

H0: μ1 = μ2 H1: μ1 ≠ μ2

The test procedure is as follows. Arrange all n1 + n2 observations in ascending order of

magnitude and assign ranks to them. If two or more observations are tied (identical), use the

mean of the ranks that would have been assigned if the observations differed.

Let W1 be the sum of the ranks in the smaller sample (1), and define W2 to be the sum of the

ranks in the other sample. Then,

W2 =
(n1 + n2)(n1 + n2 + 1)

2
− W1 (10.21)

Now if the sample means do not differ, we expect the sum of the ranks to be nearly equal for

both samples after adjusting for the difference in sample size. Consequently, if the sums of the

ranks differ greatly, we conclude that the means are not equal.

Appendix Table X contains the critical value of the rank sums for α = 0.05 and α = 0.01

assuming the preceding two-sided alternative. Refer to Appendix Table X with the appropriate

sample sizes n1 and n2, and the critical value wα can be obtained. The null H0: μ1 = μ2 is rejected

in favor of H1: μ1 < μ2, if either of the observed values w1 or w2 is less than or equal to the

tabulated critical value wα.

The procedure can also be used for one-sided alternatives. If the alternative is H1: μ1 < μ2,

reject H0 if w1 ≤ wα; for H1: μ1 > μ2, reject H0 if w2 ≤ wα. For these one-sided tests, the tabulated

critical values wα correspond to levels of significance of α = 0.025 and α = 0.005.

E X A M P L E 10.10 Axial Stress

The mean axial stress in tensile members used in an aircraft

structure is being studied. Two alloys are being investigated.

Alloy 1 is a traditional material, and alloy 2 is a new

aluminum-lithium alloy that is much lighter than the standard

material. Ten specimens of each alloy type are tested, and

the axial stress is measured. The sample data are assembled

in Table 10.2. Using α = 0.05, we wish to test the hypothesis

that the means of the two stress distributions are identical.

T A B L E 10.2
Axial Stress for Two
Aluminum-Lithium Alloys

Alloy 1 Alloy 2

3238 psi 3254 psi 3261 psi 3248 psi

3195 3229 3187 3215

3246 3225 3209 3226

3190 3217 3212 3240

3204 3241 3258 3234

We apply the seven-step hypothesis-testing procedure to

this problem:

1. Parameter of interest: The parameters of interest are

the means of the two distributions of axial stress.

2. Null hypothesis: H0: μ1 = μ2

3. Alternative hypothesis: H1: μ1 ≠ μ2

4. Test statistic: We use the Wilcoxon rank-sum test

statistic in Equation 10.21.

w2 =
(n1 + n2)(n1 + n2 + 1)

2
− w1

5. Reject H0 if: Because α = 0.05 and n1 = n2 = 10,

Appendix Table X gives the critical value as w0.05 =
78. If either w1 or w2 is less than or equal to w0.05 = 78,

we will reject H0: μ1 = μ2.
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6. Computations: The data from Table 10.2 are

arranged in ascending order and ranked as follows:

Alloy Number Axial Stress Rank

2 3187 psi 1

1 3190 2

1 3195 3

1 3204 4

2 3209 5

2 3212 6

2 3215 7

1 3217 8

1 3225 9

2 3226 10

1 3229 11

2 3234 12

1 3238 13

2 3240 14

1 3241 15

1 3246 16

2 3248 17

1 3254 18

2 3258 19

2 3261 20

The sum of the ranks for alloy 1 is

w1 = 2 + 3 + 4 + 8 + 9 + 11 + 13 + 15 + 16 + 18 = 99

and for alloy 2

w2 =
(n1 + n2)(n1 + n2 + 1)

2
− w1

= (10 + 10)(10 + 10 + 1)
2

− 99

= 111

7. Conclusion: Because neither w1 nor w2 is less than or

equal to w0.05 = 78, we cannot reject the null hypothesis

that both alloys exhibit the same mean axial stress.

Practical Interpretation: The data do not demonstrate

that there is a superior alloy for this particular application.

10.3.2 Large-Sample Approximation
When both n1 and n2 are moderately large, say, more than eight, the distribution of w1 can be well

approximated by the normal distribution with mean

μW1
=

n1(n1 + n2 + 1)
2

and variance

σ2
W1

=
n1n2(n1 + n2 + 1)

12

Therefore, for n1 and n2 > 8, we could use

Normal Approximation for Wilcoxon Rank-Sum Test Statistic

Z0 =
W1 − μW1

σW1

(10.22)

as a statistic, and the appropriate critical region is |z0| > zα/2, z0 > zα, or z0 < −zα, depending on

whether the test is a two-tailed, upper-tailed, or lower-tailed test.
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10.3.3 Comparison to the t-Test
In Chapter 9, we discussed the comparison of the t-test with the Wilcoxon signed-rank test. The

results for the two-sample problem are similar to the one-sample case. That is, when the normality

assumption is correct, the Wilcoxon rank-sum test is approximately 95% as efficient as the t-test

in large samples. On the other hand, regardless of the form of the distributions, the Wilcoxon

rank-sum test will always be at least 86% as efficient. The efficiency of the Wilcoxon test relative to

the t-test is usually high if the underlying distribution has heavier tails than the normal because the

behavior of the t-test is very dependent on the sample mean, which is quite unstable in heavy-tailed

distributions.

10.4 Paired t-Test
A special case of the two-sample t-tests in Section 10.2 occurs when the observations on the

two populations of interest are collected in pairs. Each pair of observations, say (X1j,X2j), is

taken under homogeneous conditions, but these conditions may change from one pair to another.

For example, suppose that we are interested in comparing two different types of tips for a

hardness-testing machine. This machine presses the tip into a metal specimen with a known

force. By measuring the depth of the depression caused by the tip, the hardness of the specimen

can be determined. If several specimens were selected at random, half tested with tip 1, half

tested with tip 2, and the pooled or independent t-test in Section 10.2 was applied, the results of

the test could be erroneous. The metal specimens could have been cut from bar stock that was

produced in different heats, or they might not be homogeneous in some other way that might

affect hardness. Then the observed difference in mean hardness readings for the two tip types

also includes hardness differences in specimens.

A more powerful experimental procedure is to collect the data in pairs—that is, to make

two hardness readings on each specimen, one with each tip. The test procedure would then con-

sist of analyzing the differences in hardness readings on each specimen. If there is no difference

between tips, the mean of the differences should be zero. This test procedure is called the paired
t-test.

Let (X11,X21), (X12,X22),… , (X1n,X2n) be a set of n paired observations for which we assume

that the mean and variance of the population represented by X1 are μ1 and σ2
1
, and the mean and

variance of the population represented by X2 are μ2 and σ2
2
. Define the difference for each pair of

observations as Dj = X1j − X2j, j = 1, 2, … , n. The Dj’s are assumed to be normally distributed

with mean

μD = E(X1 − X2) = E(X1) − E(X2) = μ1 − μ2

and variance σ2
D, so testing hypotheses about the difference for μ1 and μ2 can be accomplished by

performing a one-sample t-test on μD. Specifically, testing H0 : μ1 − μ2 = Δ0 against H1: μ1 − μ2

≠ Δ0 is equivalent to testing

H0∶μD = Δ0

H1∶μD ≠ Δ0 (10.23)

The test statistic and decision procedure follow.

Paired t-Test

Null hypothesis: H0∶ μD = Δ0

Test statistic: T0 =
D − Δ0

SD∕
√

n
(10.24)
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Alternative Rejection Criterion for
Hypotheses P-Value Fixed-Level Tests

H1: μD ≠ Δ0 Probability above |t0| and

probability below −|t0|

t0 > tα∕2,n−1 or

t0 < −tα∕2,n−1

H1: μD > Δ0 Probability above t0 t0 > tα,n−1

H1: μD < Δ0 Probability below t0 t0 < −tα,n−1

In Equation 10.24, D is the sample average of the n differences D1, D2, … , Dn, and SD is the

sample standard deviation of these differences.

E X A M P L E 10.11 Shear Strength of Steel Girder

An article in the Journal of Strain Analysis for Engineering
Design [“Model Studies on Plate Girders” (1983, Vol. 18(2),

pp. 111–117)] reports a comparison of several methods for

predicting the shear strength for steel plate girders. Data for

two of these methods, the Karlsruhe and Lehigh procedures,

when applied to nine specific girders, are shown in Table 10.3.

We wish to determine whether there is any difference (on the

average) for the two methods.

T A B L E 10.3

Strength Predictions for Nine Steel
Plate Girders (Predicted Load/
Observed Load)

Girder
Karlsruhe

Method
Lehigh
Method

Difference
dj

S1/1 1.186 1.061 0.125

S2/1 1.151 0.992 0.159

S3/1 1.322 1.063 0.259

S4/1 1.339 1.062 0.277

S5/1 1.200 1.065 0.135

S2/1 1.402 1.178 0.224

S2/2 1.365 1.037 0.328

S2/3 1.537 1.086 0.451

S2/4 1.559 1.052 0.507

The seven-step procedure is applied as follows:

1. Parameter of interest: The parameter of interest

is the difference in mean shear strength for the two

methods—say, μD = μ1 − μ2 = 0.

2. Null hypothesis: H0∶ μD = 0

3. Alternative hypothesis: H1∶ μD ≠ 0

4. Test statistic: The test statistic is

t0 = d
sd∕
√

n

5. Reject H0 if: Reject H0 if the P-value <0.05.

6. Computations: The sample average and standard

deviation of the differences dj are d = 0.2739 and

sd = 0.1350, and so the test statistic is

t0 =
d

sd∕
√

n
= 0.2739

0.1350∕
√

9
= 6.08

7. Conclusion: Because t0.0005.8 = 5.041 and the value

of the test statistic t0 = 6.08 exceeds this value, the

P-value is less than 2(0.0005) = 0.001. Therefore, we

conclude that the strength prediction methods yield

different results.

Practical Interpretation: Specifically, the data indicate

that the Karlsruhe method produces, on the average, greater

strength predictions than does the Lehigh method. This is a

strong conclusion.
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Software can perform the paired t-test. Typical output for Example 10.11 follows:

Paired T for Karlsruhe–Lehigh
N Mean StDev SE Mean

Karlsruhe 9 1.34011 0.14603 0.04868

Lehigh 9 1.06322 0.05041 0.01680

Difference 9 0.276889 0.135027 0.045009
95% CI for mean difference: (0.173098, 0.380680)
T-test of mean difference = 0 (vs. not = 0): T-value = 6.15, P-value = 0.000

The results essentially agree with the manual calculations, in addition to the hypothesis test

results. Most computer software report a two-sided CI on the difference in means. This CI was

found by constructing a single-sample CI on μD. We provide the details later.

Paired Versus Unpaired Comparisons In performing a comparative experiment, the

investigator can sometimes choose between the paired experiment and the two-sample (or

unpaired) experiment. If n measurements are to be made on each population, the two-sample

t-statistic is

T0 =
X1 − X2 − Δ0

Sp

√
1

n
+ 1

n

which would be compared to t2n−2, and of course, the paired t-statistic is

T0 =
D − Δ0

SD∕
√

n

which is compared to tn−1. Notice that because

D =
n∑

j=1

Dj

n
=

n∑

j=1

(X1j − X2j)
n

=
n∑

j=1

X1j

n
−

n∑

j=1

X2j

n
= X1 − X2

the numerators of both statistics are identical. However, the denominator of the two-sample t-test

is based on the assumption that X1 and X2 are independent. In many paired experiments, a strong

positive correlation ρ exists for X1 and X2. Then it can be shown that

V(D) = V(X1 − X2 − Δ0) = V(X1) + V(X2) − 2 cov(X1,X2) =
2σ2(1 − ρ)

n

assuming that both populations X1 and X2 have identical variances σ2. Furthermore, S2
D∕n

estimates the variance of D. Whenever a positive correlation exists within the pairs, the

denominator for the paired t-test will be smaller than the denominator of the two-sample t-test.

This can cause the two-sample t-test to considerably understate the significance of the data if it

is incorrectly applied to paired samples.

Although pairing will often lead to a smaller value of the variance of X1 − X2, it does have a

disadvantage—namely, the paired t-test leads to a loss of n − 1 degrees of freedom in comparison

to the two-sample t-test. Generally, we know that increasing the degrees of freedom of a test

increases the power against any fixed alternative values of the parameter.
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So how do we decide to conduct the experiment? Should we pair the observations or not?

Although this question has no general answer, we can give some guidelines based on the preceding

discussion.

1. If the experimental units are relatively homogeneous (small σ) and the correlation within

pairs is small, the gain in precision attributable to pairing will be offset by the loss of degrees

of freedom, so an independent-sample experiment should be used.

2. If the experimental units are relatively heterogeneous (large σ) and there is large positive

correlation within pairs, the paired experiment should be used. Typically, this case occurs

when the experimental units are the same for both treatments; as in Example 10.11, the same

girders were used to test the two methods.

Implementing the rules still requires judgment because σ and ρ are never known precisely. Fur-

thermore, if the number of degrees of freedom is large (say, 40 or 50), the loss of n − 1 of them

for pairing may not be serious. However, if the number of degrees of freedom is small (say, 10 or

20), losing half of them is potentially serious if not compensated for by increased precision from

pairing.

Confidence Interval for 𝛍D To construct the confidence interval for μD = μ1 − μ2, note that

T =
D − μD

SD∕
√

n
follows a t distribution with n − 1 degrees of freedom. Then, because P(−tα/2,n−1 ≤ T ≤ tα/2,n−1) =
1 − α, we can substitute for T in the preceding expression and perform the necessary steps to

isolate μD = μ1 − μ2 for the inequalities. This leads to the following 100(1 − α)% confidence

interval on μ1 − μ2.

Confidence Interval for 𝛍D from Paired Samples
If d and sD are the sample mean and standard deviation of the difference of n random pairs

of normally distributed measurements, a 100(1 − α)% confidence interval on the difference

in means μD = μ1 − μ2 is

d − tα∕2,n−1 sD∕
√

n ≤ μD ≤ d + tα∕2,n−1 sD∕
√

n (10.25)

where ta/2,n−1 is the upper 100α/2 percentage point of the t distribution with n − 1 degrees

of freedom.

This confidence interval is also valid for the case in which σ2
1
≠ σ2

2
because s2

D estimates σ2
D =

V(X1 − X2). Also, for large samples (say, n ≥ 30 pairs), the explicit assumption of normality is

unnecessary because of the central limit theorem.

E X A M P L E 10.12 Parallel Park Cars

The journal Human Factors [“Relative Controllability of

Dissimilar Cars” (1962, Vol. 4(6), pp. 375–380)] reported a

study in which n = 14 subjects were asked to parallel-park

two cars having very different wheel bases and turning radii.

The time in seconds for each subject was recorded and is

given in Table 10.4. From the column of observed differences,

we calculate d = 1.21 and sD = 12.68. The 90% confidence
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T A B L E 10.4
Time in Seconds to Parallel-Park
Two Automobiles

Automobile Difference

Subject 1(x1j) 2(x2j) (dj)
1 37.0 17.8 19.2

2 25.8 20.2 5.6

3 16.2 16.8 −0.6

4 24.2 41.4 −17.2

5 22.0 21.4 0.6

6 33.4 38.4 −5.0

7 23.8 16.8 7.0

8 58.2 32.2 26.0

9 33.6 27.8 5.8

10 24.4 23.2 1.2

11 23.4 29.6 −6.2

12 21.2 20.6 0.6

13 36.2 32.2 4.0

14 29.8 53.8 −24.0

interval for μD = μ1 − μ2 is found from Equation 10.25 as

follows:

d − t0.05,13 sD∕
√

n ≤ μD ≤ d + t0.05,13 sD∕
√

n

1.21−1.771(12.68)∕
√

14 ≤ μD ≤ 1.21+1.771(12.68)∕
√

14

−4.79 ≤ μD ≤ 7.21

Notice that the confidence interval on μD includes zero. This

implies that, at the 90% level of confidence, the data do not

support the claim that the two cars have different mean parking

times μ1 and μ2. That is, the value μD = μ1 − μ2 = 0 is not

inconsistent with the observed data.

Nonparametric Approach to Paired Comparisons Both the sign test and the Wilcoxon

signed-rank test discussed in Section 9.9 can be applied to paired observations. In the case of

the sign test, the null hypothesis is that the median of the differences is equal to zero (that is,

H0: μ̃D = 0). The Wilcoxon signed-rank test is for the null hypothesis that the mean of the

differences is equal to zero. The procedures are applied to the observed differences as described

in Sections 9.9.1 and 9.9.2.

10.5 Inference on the Variances

of Two Normal Distributions
We now introduce tests and confidence intervals for the two population variances shown in

Figure 10.1. We assume that both populations are normal. Both the hypothesis-testing and

confidence interval procedures are relatively sensitive to the normality assumption.

10.5.1 F Distribution
Suppose that two independent normal populations are of interest when the population means and

variances, say, μ1, σ2
1
, μ2, and σ2

2
, are unknown. We wish to test hypotheses about the equality of

the two variances, say, H0∶ σ2
1
= σ2

2
. Assume that two random samples of size n1 from population

1 and of size n2 from population 2 are available, and let S2
1

and S2
2

be the sample variances. We

wish to test the hypotheses

H0∶ σ2
1
= σ2

2

H1∶ σ2
1
≠ σ2

2
(10.26)

The development of a test procedure for these hypotheses requires a new probability distribution,

the F distribution. The random variable F is defined to be the ratio of two independent chi-square

random variables, each divided by its number of degrees of freedom. That is,
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F =
W∕u
Y∕v

where W and Y are independent chi-square random variables with u and v degrees of freedom,

respectively. We now formally state the sampling distribution of F.

Let W and Y be independent chi-square random variables with u and v degrees of freedom,

respectively. Then the ratio

F =
W∕u
Y∕v

(10.27)

has the probability density function

f (x) =
Γ
(u + v

2

)(u
v

)u∕2

x(u∕2)−1

Γ
(u

2

)

Γ
( v

2

) [(u
v

)

x + 1
](u+v)∕2

, 0 < x < ∞ (10.28)

and is said to follow the F distribution with u degrees of freedom in the numerator and

v degrees of freedom in the denominator. It is usually abbreviated as Fu,v.

The mean and variance of the F distribution are μ = v/(v − 2) for v > 2, and

σ2 = 2v2(u + v − 2)
u(v − 2)2(v − 4)

, v > 4 (10.29)

Two F distributions are shown in Figure 10.4. The F random variable is nonnegative, and the dis-

tribution is skewed to the right. The F distribution looks very similar to the chi-square distribution;

however, the two parameters u and v provide extra flexibility regarding shape.

The percentage points of the F distribution are given in Table VI of the Appendix. Let

f α,u,v be the percentage point of the F distribution with numerator degrees of freedom u and

denominator degrees of freedom v such that the probability that the random variable F exceeds this

value is

P(F > fα,u,v) =
∫

∞

fα,u,v
f (x) dx = α

This is illustrated in Figure 10.5. For example, if u = 5 and v = 10, we find from Table V of the

Appendix that

P
(
F > f0.05,5,10

)
= P(F5,10 > 3.33) = 0.05

That is, the upper 5 percentage points of F5,10 is f 0.05,5,10 = 3.33.

0 2 4 6 8 10 x

u = 5, v = 15

f (x)

u = 5, v = 5

0 2 4 6 8 10 x

u = 5, v = 15

f (x)

u = 5, v = 5

FIGURE 10.4

Probability density functions of two F distributions.

x

α α

f1 – α, , f α, ,u v u v

f (x)

FIGURE 10.5

Upper and lower percentage points
of the F distribution.
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Table VI contains only upper-tailed percentage points (for selected values of f α,u,v for

α ≤ 0.25) of the F distribution. The lower-tailed percentage points f 1−α,u,v can be found as

follows.

Finding Lower-Tail Points of the F-Distribution

f1−α,u,v =
1

fα,v,u
(10.30)

For example, to find the lower-tailed percentage point f 0.95,5,10, note that

f0.95,5,10 = 1

f0.05,10,5

= 1

4.74
= 0.211

10.5.2 Hypothesis Tests on the Equity of Two Variances
A hypothesis-testing procedure for the equality of two variances is based on the following result.

Distribution of the Ratio of Sample Variances from Two Normal Distributions
Let X11,X12,… ,X1n1

be a random sample from a normal population with mean μ1 and vari-

ance σ2
1
, and let X21,X22,… ,X2n2

be a random sample from a second normal population with

mean μ2 and variance σ2
2
. Assume that both normal populations are independent. Let S2

1
and

S2
2

be the sample variances. Then the ratio

F =
S2

1
∕σ2

1

S2
2
∕σ2

2

has an F distribution with n1 − 1 numerator degrees of freedom and n2 − 1 denominator

degrees of freedom.

This result is based on the fact that (n1 − 1) S2
1
∕σ2

1
is a chi-square random variable with n1 − 1

degrees of freedom, that (n2 − 1) S2
2
∕σ2

2
is a chi-square random variable with n2 − 1 degrees of

freedom, and that the two normal populations are independent. Clearly, under the null hypothesis

H0∶ σ2
1
= σ2

2
, the ratio F0 = S2

1
∕S2

2
has an Fn1−1,n2−1 distribution. This is the basis of the following

test procedure.

Tests on the Equality of Variances from Two Normal Distributions

Null hypothesis: H0∶σ2
1
= σ2

2

Test statistic: F0 =
S2

1

S2
2

(10.31)

Alternative Hypotheses Rejection Criterion

H1∶ σ2
1
≠ σ2

2
f0 > fα∕2,n1−1,n2−1 or f0 < f1−α∕2,n1−1,n2−1

H1∶ σ2
1
> σ2

2
f0 > fα,n1−1,n2−1

H1∶ σ2
1
< σ2

2
f0 < f1−α,n1−1,n2−1
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FIGURE 10.6

The F distribution for the test of H0∶ 𝛔2
1 = 𝛔2

2 with critical region values for (a) H1∶ 𝛔2
1 ≠ 𝛔2

2,
(b) H1∶ 𝛔2

1 > 𝛔2
2, and (c) H1∶ 𝛔2

1 < 𝛔2
2.

The critical regions for these fixed-significance-level tests are shown in Figure 10.6. Remember

that this procedure is relatively sensitive to the normality assumption.

E X A M P L E 10.13 Semiconductor Etch Variability

Oxide layers on semiconductor wafers are etched in a mixture

of gases to achieve the proper thickness. The variability in the

thickness of these oxide layers is a critical characteristic of the

wafer, and low variability is desirable for subsequent process-

ing steps. Two different mixtures of gases are being studied to

determine whether one is superior in reducing the variability

of the oxide thickness. Sixteen wafers are etched in each gas.

The sample standard deviations of oxide thickness are s1 =
1.96 angstroms and s2 = 2.13 angstroms, respectively. Is there

any evidence to indicate that either gas is preferable? Use a

fixed-level test with α = 0.05.

The seven-step hypothesis-testing procedure may be

applied to this problem as follows:

1. Parameter of interest: The parameters of interest

are the variances of oxide thickness σ2
1

and σ2
2
. We

assume that oxide thickness is a normal random

variable for both gas mixtures.

2. Null hypothesis: H0∶ σ2
1
= σ2

2

3. Alternative hypothesis: H1∶ σ2
1
≠ σ2

2

4. Test statistic: The test statistic is given by

Equation 10.31:

f0 =
s2

1

s2
2

5. Reject H0 if: Because n1 = n2 = 16 and α = 0.05,

we will reject H0∶ σ2
1
= σ2

2
if f0 > f0.025,15,15 = 2.86

or if f 0 < f 0.975,15,15 = 1/f 0.025,15,15 = 1/2.86 = 0.35.

Refer to Figure 10.6(a).

6. Computations: Because s2
1
= (1.96)2 = 3.84 and

s2
2
= (2.13)2 = 4.54, the test statistic is

f0 =
s2

1

s2
2

= 3.84

4.54
= 0.85

7. Conclusion: Because f 0.975,15,15 = 0.35 < 0.85 <

f 0.025,15,15 = 2.86, we cannot reject the null hypothesis

H0∶ σ2
1
= σ2

2
at the 0.05 level of significance.

Practical Interpretation: There is no strong evidence to

indicate that either gas results in a smaller variance of oxide

thickness.

P-Values for the F-Test The P-value approach can also be used with F-tests. To show

how to do this, consider the upper-tailed test. The P-value is the area (probability) under the

F distribution with n1 − 1 and n2 − 1 degrees of freedom that lies beyond the computed

value of the test statistic f 0. Appendix A Table IV can be used to obtain upper and lower

bounds on the P-value. For example, consider an F-test with 9 numerator and 14 denominator

degrees of freedom for which f 0 = 3.05. From Appendix A Table IV, we find that f 0.05,9,14 =
2.65 and f 0.025,9,14 = 3.21, so because f 0 = 3.05 lies between these two values, the P-value is

between 0.05 and 0.025; that is, 0.025 < P < 0.05. The P-value for a lower-tailed test would

be found similarly, although Appendix A Table IV contains only upper-tailed points of the

F distribution, Equation 10.31 would have to be used to find the necessary lower-tail points.

For a two-tailed test, the bounds obtained from a one-tailed test would be doubled to obtain

the P-value.

To illustrate calculating bounds on the P-value for a two-tailed F-test, reconsider

Example 10.13. The computed value of the test statistic in this example is f 0 = 0.85. This value
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falls in the lower tail of the F15,15 distribution. The lower-tailed point that has 0.25 probability to

the left of it is f 0.75,15,15 = 1/f 0.25,15,15 = 1/1.43 = 0.70, and because 0.70 < 0.85, the probability

that lies to the left of 0.85 exceeds 0.25. Therefore, we would conclude that the P-value for f 0 =
0.85 is greater than 2(0.25) = 0.5, so there is insufficient evidence to reject the null hypothesis.

This is consistent with the original conclusions from Example 10.13. The actual P-value is

0.7570. This value was obtained from a calculator from which we found that P(F15,15 ≤ 0.85) =
0.3785 and 2(0.3785) = 0.7570. Computer software can also be used to calculate the required

probabilities.

Some computer packages will perform the F-test on the equality of two variances of inde-

pendent normal distributions. The output from the computer package follows.

Test for Equal Variances
95% Bonferroni confidence intervals for standard deviations

Sample N Lower StDev Upper

1 16 1.38928 1.95959 3.24891

2 16 1.51061 2.13073 3.53265
F-test (normal distribution)
Test statistic = 0.85, P-value = 0.750

Computer software also gives confidence intervals on the individual variances. These are the

confidence intervals originally given in Equation 8.19 except that a Bonferroni “adjustment” has

been applied to make the confidence level for both intervals simultaneously equal to at least 95%.

This consists of using α/2 = 0.05/2 = 0.025 to construct the individual intervals. That is, each

individual confidence interval is a 97.5% CI. In Section 10.5.4, we show how to construct a CI

on the ratio of the two variances.

10.5.3 Type II Error and Choice of Sample Size
Appendix Charts VIIo, VIIp, VIIq, and VIIr provide operating characteristic curves for the F-test

given in Section 10.5.1 for α = 0.05 and α = 0.01, assuming that n1 = n2 = n. Charts VIIo
and VIIp are used with the two-sided alternate hypothesis. They plot β against the abscissa

parameter

λ =
σ1

σ2

(10.32)

for various n1 = n2 = n. Charts VIIq and VIIr are used for the one-sided alternative hypotheses.

E X A M P L E 10.14 Semiconductor Etch Variability

Sample Size

For the semiconductor wafer oxide etching problem in Ex-

ample 10.13, suppose that one gas resulted in a standard devi-

ation of oxide thickness that is half the standard deviation of

oxide thickness of the other gas. If we wish to detect such

a situation with probability at least 0.80, is the sample size

n1 = n2 = 20 adequate?

Note that if one standard deviation is half the other,

λ =
σ1

σ2

= 2

By referring to Appendix Chart VIIo with n1 = n2 = 20 and

λ = 2, we find that β ≃ 0.20. Therefore, if β ≃ 0.20, the power

of the test (which is the probability that the difference in stan-

dard deviations will be detected by the test) is 0.80, and we

conclude that the sample sizes n1 = n2 = 20 are adequate.
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10.5.4 Confidence Interval on the Ratio of Two Variances

To find the confidence interval on σ2
1
∕σ2

2
, recall that the sampling distribution of

F =
S2

2
∕σ2

2

S2
1
∕σ2

1

is an F with n2 − 1 and n1 − 1 degrees of freedom. Therefore, P(f1−α∕2,n2−1,n1−1 ≤ F ≤

fα∕2,n2−1,n1−1) = 1 − α. Substitution for F and manipulation of the inequalities will lead to the

100(1 − α)% confidence interval for σ2
1
∕σ2

2
.

Confidence Interval on the Ratio of Variances from Two Normal Distributions
If s2

1
and s2

2
are the sample variances of random samples of sizes n1 and n2, respectively,

from two independent normal populations with unknown variances σ2
1

and σ2
2
, then a

100(1 − α)% confidence interval on the ratio σ2
1
∕σ2

2
is

s2
1

s2
2

f1−α∕2,n2−1,n1−1 ≤
σ2

1

σ2
2

≤
s2

1

s2
2

fα∕2,n2−1,n1−1 (10.33)

where fα∕2,n2−1,n1−1 and f1−α∕2,n2−1,n1−1 are the upper and lower α/2 percentage points of

the F distribution with n2 − 1 numerator and n1 − 1 denominator degrees of freedom,

respectively. A confidence interval on the ratio of the standard deviations can be obtained

by taking square roots in Equation 10.33.

Just as in the hypothesis testing procedure, this CI is relatively sensitive to the normality

assumption.

E X A M P L E 10.15 Surface Finish for Titanium Alloy

A company manufactures impellers for use in jet-turbine

engines. One of the operations involves grinding a particular

surface finish on a titanium alloy component. Two different

grinding processes can be used, and both processes can

produce parts at identical mean surface roughness. The

manufacturing engineer would like to select the process

having the least variability in surface roughness. A random

sample of n1 = 11 parts from the first process results in

a sample standard deviation s1 = 5.1 microinches, and a

random sample of n2 = 16 parts from the second process

results in a sample standard deviation of s2 = 4.7 microinches.

We will find a 90% confidence interval on the ratio of the two

standard deviations, σ1/σ2.

Assuming that the two processes are independent and

that surface roughness is normally distributed, we can use

Equation 10.33 as follows:

s2
1

s2
2

f0.95,15,10 ≤
σ2

1

σ2
2

≤
s2

1

s2
2

f0.05,15,10

(5.1)2

(4.7)2
0.39 ≤

σ2
1

σ2
2

≤
(5.1)2

(4.7)2
2.85

or upon completing the implied calculations and taking square

roots,

0.678 ≤
σ1

σ2

≤ 1.832

Notice that we have used Equation 10.30 to find f 0.95,15,10 =
1/f 0.05,10,15 = 1/2.54 = 0.39.

Practical Interpretation: Because this confidence inter-

val includes unity, we cannot claim that the standard devia-

tions of surface roughness for the two processes are different

at the 90% level of confidence.

10.6 Inference on Two Population Proportions
We now consider the case with two binomial parameters of interest, say, p1 and p2, and we wish

to draw inferences about these proportions. We present large-sample hypothesis testing and con-

fidence interval procedures based on the normal approximation to the binomial.
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10.6.1 Large-Sample Tests on the Difference
in Population Proportions
Suppose that two independent random samples of sizes n1 and n2 are taken from two populations,

and let X1 and X2 represent the number of observations that belong to the class of interest in sam-

ples 1 and 2, respectively. Furthermore, suppose that the normal approximation to the binomial is

applied to each population, so the estimators of the population proportions P1 = X1/n1 and P2 =
X2/n2 have approximate normal distributions. We are interested in testing the hypotheses

H0∶ p1 = p2 H1∶ p1 ≠ p2

The statistic

Test Statistic for the Difference of Two Population Proportions

Z =
̂P1 − ̂P2 − (p1 − p2)

√
p1(1 − p1)

n1

+
p2(1 − p2)

n2

(10.34)

is distributed approximately as standard normal and is the basis of a test for H0: p1 = p2.

Specifically, if the null hypothesis H0: p1 = p2 is true, by using the fact that p1 = p2 = p, the

random variable

Z =
̂P1 − ̂P2

√

p(1 − p)
(

1

n1

+ 1

n2

)

is distributed approximately N(0, 1). A pooled estimator of the common parameter p is

̂P =
X1 + X2

n1 + n2

The test statistic for H0: p1 = p2 is then

Z0 =
̂P1 − ̂P2

√

̂P(1 − ̂P)
(

1

n1

+ 1

n2

)

This leads to the test procedures described as follows.

Approximate Tests on the Difference of Two Population Proportions

Null hypothesis: H0∶ p1 = p2

Test statistic: Z0 =
̂P1 − ̂P2

√

̂P(1 − ̂P)
(

1

n1

+ 1

n2

)
(10.35)
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Alternative Rejection Criterion for
Hypotheses P-Value Fixed-Level Tests

H1: p1 ≠ p2 Probability above |z0| and

probability below −|z0|,
P = 2[1 − Φ(|z0|)]

z0 > zα/2 or z0 < −zα/2

H1: p1 > p2 Probability above z0,

P = 1 − Φ(z0)

z0 > zα

H1: p1 < p2 Probability below z0,

P = Φ(z0)

z0 < −zα

E X A M P L E 10.16 St. John’s Wort

Extracts of St. John’s Wort are widely used to treat depression.

An article in the April 18, 2001, issue of the Journal of the
American Medical Association (“Effectiveness of St. John’s

Wort on Major Depression: A Randomized Controlled

Trial”) compared the efficacy of a standard extract of St.

John’s Wort with a placebo in 200 outpatients diagnosed

with major depression. Patients were randomly assigned to

two groups; one group received the St. John’s Wort, and

the other received the placebo. After 8 weeks, 19 of the

placebo-treated patients showed improvement, and 27 of

those treated with St. John’s Wort improved. Is there any

reason to believe that St. John’s Wort is effective in treating

major depression? Use α = 0.05.

The seven-step hypothesis testing procedure leads to the

following results:

1. Parameter of interest: The parameters of interest

are p1 and p2, the proportion of patients who improve

following treatment with St. John’s Wort (p1) or the

placebo (p2).

2. Null hypothesis: H0 : p1 = p2

3. Alternative hypothesis: H1: p1 > p2

4. Test statistic: The test statistic is

z0 =
p̂1 − p̂2

√

p̂(1 − p̂)
(

1

n1

+ 1

n2

)

where p̂1 = 27∕100 = 0.27, p̂2 = 19∕100 = 0.19,

n1 = n2 = 100, and

p̂ =
x1 + x2

n1 + n2

= 19 + 27

100 + 100
= 0.23

5. Reject H0 if: Reject H0 : p1 = p2 if the P-value is less

than 0.05.

6. Computation: The value of the test statistic is

z0 =
0.27 − 0.19

√

0.23(0.77)
(

1

100
+ 1

100

)
= 1.34

7. Conclusion: Because z0 = 1.34, the P-value is

P = [1 − Φ(1.34)] = 0.09, so, we cannot reject the

null hypothesis.

Practical Interpretation: There is insufficient evidence to

support the claim that St. John’s Wort is effective in treating

major depression.

The following display shows a typical computer output for the two-sample hypothesis test

and CI procedure for proportions. Notice that the 95% CI on p1 − p2 includes zero. The equation

for constructing the CI is given in Section 10.6.3.

Test and CI for Two Proportions
Sample X N Sample p

1 27 100 0.270

2 19 100 0.190

Estimate for p(1) − p(2):0.08
95% CI for p(1) − p(2):(−0.0361186, 0.196119)
Test for p(1) − p(2) = 0 (vs not = 0): Z = 1.35 P-value = 0.177
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10.6.2 Type II Error and Choice of Sample Size
The computation of the β-error for the large-sample test of H0: p1 = p2 is somewhat more involved

than in the single-sample case. The problem is that the denominator of the test statistic Z0 is

an estimate of the standard deviation of ̂P1 − ̂P2 under the assumption that p1 = p2 = p. When

H0: p1 = p2 is false, the standard deviation of ̂P1 − ̂P2 is

σ
̂P1−̂P2

=

√

p1(1 − p1)
n1

+
p2(1 − p2)

n2

(10.36)

Approximate Type II Error for a Two-Sided Test on the Difference
of Two Population Proportions
If the alternative hypothesis is two sided, the β-error is

β = Φ

[
zα∕2

√
pq(1∕n1 + 1∕n2) − (p1 − p2)

σ
̂P1−̂P2

]

−Φ

[
−zα∕2

√
pq(1∕n1 + 1∕n2) − (p1 − p2)

σ
̂P1−̂P2

]

(10.37)

where

p =
n1p1 + n2p2

n1 + n2

and q =
n1(1 − p1) + n2(1 − p2)

n1 + n2

and σ
̂P1−̂P2

is given by Equation 10.36.

Approximate Type II Error for a One-Sided Test on the Difference
of Two Population Proportions
If the alternative hypothesis is H1: p1 > p2,

β = Φ

[
zα
√

pq(1∕n1 + 1∕n2) − (p1 − p2)
σ
̂P1−̂P2

]

(10.38)

and if the alternative hypothesis is H1: p1 < p2,

β = 1 − Φ

[
−zα

√
pq(1∕n1 + 1∕n2) − (p1 − p2)

σ
̂P1−̂P2

]

(10.39)

For a specified pair of values p1 and p2, we can find the sample sizes n1 = n2 = n required to give

the test of size α that has specified type II error β.

Approximate Sample Size for a Two-Sided Test on the Difference
in Population Proportions
For the two-sided alternative, the common sample size is

n =

[

zα∕2

√
(p1 + p2)(q1 + q2)∕2 + zβ

√
p1q1 + p2q2

]2

(p1 − p2)2
(10.40)

where q1 = 1 − p1 and q2 = 1 − p2.

For a one-sided alternative, replace zα/2 in Equation 10.40 by zα.
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10.6.3 Confidence Interval on the Difference
in Population Proportions
The traditional confidence interval for p1 − p2 can be found directly because we know that

Z =
̂P1 − ̂P2 − (p1 − p2)

√
p1(1 − p1)

n1

+
p2(1 − p2)

n2

is approximately a standard normal random variable. Thus P(−zα/2 ≤ Z ≤ zα/2) ≃ 1 − α, so we can

substitute for Z in this last expression and use an approach similar to the one employed previously

to find an approximate 100(1 − α)% two-sided confidence interval for p1 − p2.

Approximate Confidence Interval on the Difference in Population Proportions
If p̂1 and p̂2 are the sample proportions of observations in two independent random samples

of sizes n1 and n2 that belong to a class of interest, an approximate two-sided 100(1 − α)%

confidence interval on the difference in the true proportions p1 − p2 is

p̂1 − p̂2 − zα∕2

√

p̂1(1 − p̂1)
n1

+
p̂2(1 − p̂2)

n2

≤ p1 − p2 ≤ p̂1 − p̂2 + zα∕2

√

p̂1(1 − p̂1)
n1

+
p̂2(1 − p̂2)

n2

(10.41)

where Zα/2 is the upper 100α/2 percentage point of the standard normal distribution.

E X A M P L E 10.17 Defective Bearings

Consider the process of manufacturing crankshaft bearings

described in Example 8.7. Suppose that a modification is

made in the surface finishing process and that, subsequently,

a second random sample of 85 bearings is obtained. The

number of defective bearings in this second sample is 8.

Therefore, because n1 = 85, p̂1 = 10∕85 = 0.1176, n2 = 85,

and p̂2 = 8∕85 = 0.0941, we can obtain an approximate 95%

confidence interval on the difference in the proportion of

defective bearings produced under the two processes from

Equation 10.41 as follows:

p̂1 − p̂2 − z0.025

√

p̂1(1 − p̂1)
n1

+
p̂2(1 − p̂2)

n2

≤ p1 − p2

≤ p̂1 − p̂2 + z0.025

√

p̂1(1 − p̂1)
n1

+
p̂2(1 − p̂2)

n2

or

0.1176−0.0941−1.96

√
0.1176(0.8824)

85
+ 0.0941(0.9059)

85

≤ p1 − p2 ≤ 0.1176 − 0.0941

+ 1.96

√
0.1176(0.8824)

85
+ 0.0941(0.9059)

85

This simplifies to

−0.0685 ≤ p1 − p2 ≤ 0.1155

Practical Interpretation: This confidence interval

includes zero, so, based on the sample data, it seems unlikely

that the changes made in the surface finish process have

reduced the proportion of defective crankshaft bearings being

produced.

The CI in Equation 10.41 is the traditional one usually given for a difference in two binomial

proportions. However, the actual confidence level for this interval can deviate substantially from
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the nominal or advertised value. So when we want a 95% CI (for example) and use z0.025 = 1.96 in

Equation 10.41, the actual confidence level that we experience may differ from 95%. This situation

can be improved by a very simple adjustment to the procedure: Add one success and one failure

to the data from each sample and then calculate

p̃1 =
x1 + 1

n1 + 2
and ñ1 = n1 + 2

p̃2 =
x2 + 1

n2 + 2
and ñ2 = n2 + 2

Then replace p̂1, p̂2, n1, and n2 by p̃1, p̃2, ñ1, and ñ2 in Equation 10.41.

To illustrate how this works, reconsider the crankshaft bearing data from Example 10.17.

Using the preceding procedure, we find that

p̃1 =
x1 + 1

n1 + 2
= 10 + 1

85 + 2
= 0.1264 and ñ1 = n1 + 2 = 85 + 2 = 87

p̃2 =
x2 + 1

n2 + 2
= 8 + 1

85 + 2
= 0.1034 and ñ2 = n2 + 2 = 85 + 2 = 87

If we now replace p̂1, p̂2, n1, and n2 by p̃1, p̃2, ñ1, and ñ2 in Equation 10.41, we find that the

new improved CI is −0.0730 ≤ p1 − p2 ≤ 0.1190, which is similar to the traditional CI found

in Example 10.17. The length of the traditional interval is 0.1840, and the length of the new

and improved interval is 0.1920. The slightly longer interval is likely a reflection of the fact

that the coverage of the improved interval is closer to the advertised level of 95%. However,

because this CI also includes zero, the conclusions would be the same regardless of which CI

is used.

10.7 Summary Table and Road Map for Inference

Procedures for Two Samples
The table in the end pages of the book summarizes all of the two-sample parametric inference

procedures given in this chapter. The table contains the null hypothesis statements, the test

statistics, the criteria for rejection of the various alternative hypotheses, and the formulas for

constructing the 100(1 − α)% confidence intervals.

The road map to select the appropriate parametric confidence interval formula or hypothesis

test method for one-sample problems was presented in Table 8.1. In Table 10.5, we extend the road

map to two-sample problems. The primary comments stated previously also apply here (except

that we usually apply conclusions to a function of the parameters from each sample, such as the

difference in means):

1. Determine the function of the parameters (and the distribution of the data) that is to be

bounded by the confidence interval or tested by the hypothesis.

2. Check whether other parameters are known or need to be estimated (and whether any

assumptions are made).
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T A B L E 10.5 Roadmap to Construct Confidence Intervals and Hypothesis Tests, Two-Sample Case

Function of the
Parameters to be
Bounded by the Confidence Hypothesis
Confidence Interval or Other Interval Test
Tested with a Hypothesis Symbol Parameters? Section Section Comments

Difference in means from

two normal distributions

μ1 − μ2 Standard deviations σ1

and σ2 known

10.1.3 10.1.1

Difference in means from

two arbitrary distributions

with large sample sizes

μ1 − μ2 Sample sizes large enough

that σ1 and σ2 are

essentially known

10.1.3 10.1.1 Large sample size is often

taken to be n1 and

n2 ≥ 40

Difference in means from

two normal distributions

μ1 − μ2 Standard deviations σ1

and σ2 are unknown and

assumed equal

10.2.3 10.2.1 Case 1: σ1 = σ2

Difference in means from

two normal distributions

μ1 − μ2 Standard deviations σ1

and σ2 are unknown and

NOT assumed equal

10.2.3 10.2.1 Case 2: σ1 ≠ σ2

Difference in means from

two normal distributions

in a paired analysis

μD = μ1 − μ2 Standard deviation of

differences are unknown

10.4 10.4 Paired analysis calculates

differences and uses a

one-sample method for

inference on the mean

difference

Ratio of variances of two

normal distributions

σ2
1
∕σ2

2
Means μ1 and μ2 unknown

and estimated

10.5.4 10.5.2

Difference in two

population proportions

p1 − p2 None 10.6.3 10.6.1 Normal approximation to the

binomial distribution used

for the tests and confidence

intervals

Important Terms and Concepts

Comparative experiments

Completely randomized experiment

Confidence intervals on differences

and ratios

Critical region for a test statistic

Null and alternative hypothesis

Observational study

One-sided and two-sided alternative

hypotheses

Operating characteristic curves

Paired t-test

Pooled t-test

P-value

Reference distribution for a test statistic

Sample size determination for hypothesis

tests and confidence intervals

Statistical hypothesis

Test statistic

Treatments

Wilcoxon rank-sum test
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C H A P T E R O U T L I N E

11.1 Empirical Models

11.2 Simple Linear Regression

11.3 Properties of the Least Squares

Estimators

11.4 Hypothesis Tests in Simple

Linear Regression

11.4.1 Use of t-Tests

11.4.2 Analysis of Variance Approach

to Test Significance

of Regression

11.5 Confidence Intervals

11.5.1 Confidence Intervals on the

Slope and Intercept

11.5.2 Confidence Interval on the

Mean Response

11.6 Prediction of New Observations

11.7 Adequacy of the Regression Model

11.7.1 Residual Analysis

11.7.2 Coefficient of Determination (R2)

11.8 Correlation

11.9 Regression on Transformed

Variables

11.10 Logistic Regression

L E A R N I N G O B J E C T I V E S

After careful study of this chapter, you should be able to do the

following:

1. Use simple linear regression for building empirical models to

engineering and scientific data

2. Understand how the method of least squares is used to

estimate the parameters in a linear regression model

3. Analyze residuals to determine whether the regression model

is an adequate fit to the data or whether any underlying

assumptions are violated

4. Test statistical hypotheses and construct confidence intervals

on regression model parameters

5. Use the regression model to predict a future observation and

to construct an appropriate prediction interval on the future

observation

6. Apply the correlation model

7. Use simple transformations to achieve a linear regression

model

280
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The Space Shuttle Challenger accident in January 1986 was the result of the failure of O-rings

used to seal field joints in the solid rocket motor because of the extremely low ambient tempera-

tures at the time of launch. Prior to the launch, there were data on the occurrence of O-ring failure

and the corresponding temperature on 24 prior launches or static firings of the motor. A statistical

model relating the probability of O-ring failure to temperature would have provided a measure of

the risk associated with launching at the low temperature at the time of the Challenger tragedy.

11.1 Empirical Models
Many problems in engineering and the sciences involve a study or analysis of the relationship

between two or more variables. For example, the pressure of a gas in a container is related to the

temperature, the velocity of water in an open channel is related to the width of the channel, and

the displacement of a particle at a certain time is related to its velocity. In this last example, if we

let d0 be the displacement of the particle from the origin at time t = 0 and v be the velocity, the

displacement at time t is dt = d0 + vt. This is an example of a deterministic linear relationship

because (apart from measurement errors) the model predicts displacement perfectly.

However, in many situations, the relationship between variables is not deterministic. For

example, the electrical energy consumption of a house (y) is related to the size of the house (x, in

square feet), but it is unlikely to be a deterministic relationship. Similarly, the fuel usage of an

automobile (y) is related to the vehicle weight x, but the relationship is not a deterministic one. In

both of these examples, the value of the response of interest y (energy consumption, fuel usage)

cannot be predicted perfectly from knowledge of the corresponding x. It is possible for different

automobiles to have different fuel usage even if they weigh the same, and it is possible for different

houses to use different amounts of electricity even if they are the same size.

The collection of statistical tools that are used to model and explore relationships between

variables that are related in a nondeterministic manner is called regression analysis. Because

problems of this type occur so frequently in many branches of engineering and science, regression

analysis is one of the most widely used statistical tools. In this chapter, we present the situation in

which there is only one independent or predictor variable x and the relationship with the response

y is assumed to be linear. Although this seems to be a simple scenario, many practical problems

fall into this framework.

For example, in a chemical process, suppose that the yield of the product is related to the

process-operating temperature. Regression analysis can be used to build a model to predict yield

at a given temperature level. This model can also be used for process optimization, such as finding

the level of temperature that maximizes yield, or for process control purposes.

As an illustration, consider the data in Table 11.1. In this table, y is the purity of oxygen

produced in a chemical distillation process, and x is the percentage of hydrocarbons present in

the main condenser of the distillation unit. Figure 11.1 presents a scatter diagram of the data

in Table 11.1. This is just a graph on which each (xi, yi) pair is represented as a point plotted

in a two-dimensional coordinate system. This scatter diagram was produced by a computer, and

we selected an option that shows dot diagrams of the x and y variables along the top and right

margins of the graph, respectively, making it easy to see the distributions of the individual vari-

ables (box plots or histograms could also be selected). Inspection of this scatter diagram indicates

that, although no simple curve will pass exactly through all the points, there is a strong indication

that the points lie scattered randomly around a straight line. Therefore, it is probably reasonable

to assume that the mean of the random variable Y is related to x by the following straight-line

relationship:

E(Y|x) = μY|x = β0 + β1x

where the slope and intercept of the line are called regression coefficients. Although the mean of

Y is a linear function of x, the actual observed value y does not fall exactly on a straight line. The

appropriate way to generalize this to a probabilistic linear model is to assume that the expected
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T A B L E 11.1 Oxygen and Hydrocarbon Levels

Observation Hydrocarbon Purity
Number Level x(%) y(%)

1 0.99 90.01

2 1.02 89.05

3 1.15 91.43

4 1.29 93.74

5 1.46 96.73

6 1.36 94.45

7 0.87 87.59

8 1.23 91.77

9 1.55 99.42

10 1.40 93.65

11 1.19 93.54

12 1.15 92.52

13 0.98 90.56

14 1.01 89.54

15 1.11 89.85

16 1.20 90.39

17 1.26 93.25

18 1.32 93.41

19 1.43 94.98

20 0.95 87.33
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FIGURE 11.1

Scatter diagram of oxygen purity versus hydrocarbon level
from Table 11.1.

value of Y is a linear function of x but that for a fixed value of x, the actual value of Y is determined

by the mean value function (the linear model) plus a random error term, say,

Y = β0 + β1x + ϵ (11.1)

where ϵ is the random error term. We call this model the simple linear regression model because

it has only one independent variable or regressor. Sometimes a model like this arises from a

theoretical relationship. At other times, we will have no theoretical knowledge of the relationship

between x and y and will base the choice of the model on inspection of a scatter diagram, such

as we did with the oxygen purity data. We then think of the regression model as an empirical
model.

To gain more insight into this model, suppose that we can fix the value of x and observe the

value of the random variable Y . Now if x is fixed, the random component ϵ on the right-hand side

of the model in Equation 11.1 determines the properties of Y . Suppose that the mean and variance

of ϵ are 0 and σ2, respectively. Then,

E(Y|x) = E(β0 + β1x + ϵ) = β0 + β1x + E(ϵ) = β0 + β1x
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Notice that this is the same relationship that we initially wrote down empirically from inspection

of the scatter diagram in Figure 11.1. The variance of Y given x is

V(Y|x) = V(β0 + β1x + ϵ) = V(β0 + β1x) + V(ϵ) = 0 + σ2 = σ2

Thus, the true regression model μY |x = β0 + β1x is a line of mean values; that is, the height of

the regression line at any value of x is just the expected value of Y for that x. The slope, β1, can

be interpreted as the change in the mean of Y for a unit change in x. Furthermore, the variability

of Y at a particular value of x is determined by the error variance σ2. This implies that there

is a distribution of Y-values at each x and that the variance of this distribution is the same at

each x.

For example, suppose that the true regression model relating oxygen purity to hydrocar-

bon level is μY |x = 75 + 15x, and suppose that the variance is σ2 = 2. Figure 11.2 illustrates

this situation. Notice that we have used a normal distribution to describe the random variation

in σ2. Because σ2 is the sum of a constant β0 + β1x (the mean) and a normally distributed

random variable, Y is a normally distributed random variable. The variance σ2 determines the

variability in the observations Y on oxygen purity. Thus, when σ2 is small, the observed val-

ues of Y will fall close to the line, and when σ2 is large, the observed values of Y may deviate

considerably from the line. Because σ2 is constant, the variability in Y at any value of x is the

same.

The regression model describes the relationship between oxygen purity Y and hydrocarbon

level x. Thus, for any value of hydrocarbon level, oxygen purity has a normal distribution with

mean 75 + 15x and variance 2. For example, if x = 1.25, Y has mean value μY |x = 75 + 15(1.25) =
93.75 and variance 2.

In most real-world problems, the values of the intercept and slope (β0, β1) and the error

variance σ2 will not be known and must be estimated from sample data. Then this fitted

regression equation or model is typically used in prediction of future observations of Y , or for

estimating the mean response at a particular level of x. To illustrate, a chemical engineer might

be interested in estimating the mean purity of oxygen produced when the hydrocarbon level

is x = 1.25%. This chapter discusses such procedures and applications for the simple linear

regression model. Chapter 12 discusses multiple linear regression models that involve more than

one regressor.

Historical Note Sir Francis Galton first used the term regression analysis in a study of the

heights of fathers (x) and sons (y). Galton fit a least squares line and used it to predict the son’s

height from the father’s height. He found that if a father’s height was above average, the

son’s height would also be above average but not by as much as the father’s height was. A similar

effect was observed for below-average heights. That is, the son’s height “regressed” toward the

average. Consequently, Galton referred to the least squares line as a regression line.

 0 +   1 (1.25)

x = 1.25x = 1.00

ββ

  0 +   1 (1.00)ββ

 True regression line

   μY|x = β0 + β1x
            = 75 + 15x

          y
(Oxygen

  purity)

  x (Hydrocarbon level)

FIGURE 11.2

The distribution of Y for a given value of x for
the oxygen purity-hydrocarbon data.
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Abuses of Regression Regression is widely used and frequently misused; we mention several

common abuses of regression briefly here. Care should be taken in selecting variables with

which to construct regression equations and in determining the form of the model. It is possible

to develop statistically significant relationships among variables that are completely unrelated

in a causal sense. For example, we might attempt to relate the shear strength of spot welds

with the number of empty parking spaces in the visitor parking lot. A straight line may even

appear to provide a good fit to the data, but the relationship is an unreasonable one on which to

rely. We cannot increase the weld strength by blocking off parking spaces. A strong observed

association between variables does not necessarily imply that a causal relationship exists between

them. This type of effect is encountered fairly often in retrospective data analysis and even in

observational studies. Designed experiments are the only way to determine cause-and-effect

relationships.

Regression relationships are valid for values of the regressor variable only within the range

of the original data. The linear relationship that we have tentatively assumed may be valid over the

original range of x, but it may be unlikely to remain so as we extrapolate—that is, if we use values

of x beyond that range. In other words, as we move beyond the range of values of R2 for which

data were collected, we become less certain about the validity of the assumed model. Regression

models are not necessarily valid for extrapolation purposes.

Now this does not mean do not ever extrapolate. For many problem situations in science and

engineering, extrapolation of a regression model is the only way to even approach the problem.

However, there is a strong warning to be careful. A modest extrapolation may be perfectly all

right in many cases, but a large extrapolation will almost never produce acceptable results.

11.2 Simple Linear Regression
The case of simple linear regression considers a single regressor variable or predictor variable x
and a dependent or response variable Y . Suppose that the true relationship between Y and x is a

straight line and that the observation Y at each level of x is a random variable. As noted previously,

the expected value of Y for each value of x is

E(Y|x) = β0 + β1x

where the intercept β0 and the slope β1 are unknown regression coefficients. We assume that each

observation, Y , can be described by the model

Y = β0 + β1x + ϵ (11.2)

where ϵ is a random error with mean zero and (unknown) variance σ2. The random errors corre-

sponding to different observations are also assumed to be uncorrelated random variables.

Suppose that we have n pairs of observations (x1, y1), (x2, y2), … , (xn, yn). Figure 11.3

is a typical scatter plot of observed data and a candidate for the estimated regression line.

The estimates of β0 and β1 should result in a line that is (in some sense) a “best fit” to

the data. German scientist Karl Gauss (1777–1855) proposed estimating the parameters β0

and β1 in Equation 11.2 to minimize the sum of the squares of the vertical deviations in

Figure 11.3.

We call this criterion for estimating the regression coefficients the method of least squares.

Using Equation 11.2, we may express the n observations in the sample as

yi = β0 + β1xi + ϵi, i = 1, 2,… , n (11.3)

and the sum of the squares of the deviations of the observations from the true regression line is

L =
n∑

i=1

ϵ2
i =

n∑

i=1

(yi − β0 − β1xi)2 (11.4)
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x

y

Observed value

Data (y)

Estimated

regression line

FIGURE 11.3

Deviations of the data from the estimated
regression model.

The least squares estimators of β0 and β1, say, ̂β0 and ̂β1, must satisfy

∂L
∂β0

|
|
|
| ̂β0,

̂β1

= −2

n∑

i=1

(

yi − ̂β0 − ̂β1xi

)

= 0

∂L
∂β1

|
|
|
| ̂β0,

̂β1

= −2

n∑

i=1

(

yi − ̂β0 − ̂β1xi

)

xi = 0 (11.5)

Simplifying these two equations yields

n ̂β0 + ̂β1

n∑

i=1

xi =
n∑

i=1

yi

̂β0

n∑

i=1

xi + ̂β1

n∑

i=1

x2
i =

n∑

i=1

yixi (11.6)

Equations 11.6 are called the least squares normal equations. The solution to the normal

equations results in the least squares estimators ̂β0 and ̂β1.

Least Squares Estimates
The least squares estimates of the intercept and slope in the simple linear regression

model are
̂β0 = y − ̂β1x (11.7)

̂β1 =

n∑

i=1

yi xi −

⎛
⎜
⎜
⎜
⎝

n∑

i=1

yi

⎞
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎝

n∑

i=1

xi

⎞
⎟
⎟
⎟
⎠

n

n∑

i=1

x2
i −

⎛
⎜
⎜
⎜
⎝

n∑

i=1

xi

⎞
⎟
⎟
⎟
⎠

2

n

(11.8)

where y = (1∕n)
∑n

i=1
yi and x = (1∕n)

∑n
i=1

xi.

The fitted or estimated regression line is therefore

ŷ = ̂β0 + ̂β1x (11.9)

Note that each pair of observations satisfies the relationship

yi = ̂β0 + ̂β1xi + ei, i = 1, 2,… , n
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where ei = yi − ŷi is called the residual. The residual describes the error in the fit of the model

to the ith observation yi. Later in this chapter, we use the residuals to provide information about

the adequacy of the fitted model.

Notationally, it is occasionally convenient to give special symbols to the numerator and

denominator of Equation 11.8. Given data (x1, y1), (x2, y2), … , (xn, yn), let

Sxx =
n∑

i=1

(xi − x)2 =
n∑

i=1

x2
i −

( n∑

i=1

xi

)2

n
(11.10)

and

Sxy =
n∑

i=1

(yi − y)(xi − x) =
n∑

i=1

xiyi −

( n∑

i=1

xi

)( n∑

i=1

yi

)

n
(11.11)

E X A M P L E 11.1 Oxygen Purity

We now fit a simple linear regression model to the oxygen

purity data in Table 11.1. The following quantities may be

computed:

n = 20

20∑

i=1

xi = 23.92

20∑

i=1

yi = 1,843.21

x = 1.1960 y = 92.1605

20∑

i=1

y2
i = 170,044.5321

20∑

i=1

x2
i = 29.2892

20∑

i=1

xiyi = 2,214.6566

Sxx =
20∑

i=1

x2
i −

(
20∑

i=1

xi

)2

20
= 29.2892 − (23.92)2

20
= 0.68088

and

Sxy =
20∑

i=1

xiyi −

(
20∑

i=1

xi

)(
20∑

i=1

yi

)

20

= 2,214.6566 − (23.92)(1, 843.21)
20

= 10.17744

Therefore, the least squares estimates of the slope and inter-

cept are

̂β1 =
Sxy

Sxx
= 10.17744

0.68088
= 14.94748

and

̂β0 = y − ̂β1x = 92.1605 − (14.94748)1.196 = 74.28331

The fitted simple linear regression model (with the coefficients

reported to three decimal places) is

ŷ = 74.283 + 14.947x

This model is plotted in Figure 11.4, along with the

sample data.

Practical Interpretation: Using the regression model, we

would predict oxygen purity of ŷ = 89.23% when the hydro-

carbon level is x = 1.00%. The 89.23% purity may be inter-

preted as an estimate of the true population mean purity when

x = 1.00%, or as an estimate of a new observation when x =
1.00%. These estimates are, of course, subject to error; that

is, it is unlikely that a future observation on purity would be

exactly 89.23% when the hydrocarbon level is 1.00%. In sub-

sequent sections, we see how to use confidence intervals and

prediction intervals to describe the error in estimation from a

regression model.
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FIGURE 11.4

Scatter plot of oxygen purity y versus hydrocarbon level x
and regression model ŷ = 74.283 + 14.947x.
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T A B L E 11.2 Software Output for the Oxygen Purity Data in Example 11.1

Purity = 74.3 + 14.9 HC Level

Predictor Coef SE Coef T P

Constant 74.283 1.593 46.62 0.000

HC level 14.947 1.317 11.35 0.000

S = 1.087 R-Sq = 87.7% R-Sq (adj) = 87.1%

Analysis of Variance

Source DF SS MS F P

Regression 1 152.13 152.13 128.86 0.000

Residual error 18 21.25 1.18

Total 19 173.38

Predicted Values for New Observations

New obs Fit SE Fit 95.0% CI 95.0% PI

1 89.231 0.354 (88.486, 89.975) (86.830, 91.632)

Values of Predictors for New Observations

New obs HC Level

1 1.00

Computer software programs are widely used in regression modeling. These programs

typically carry more decimal places in the calculations. See Table 11.2 for a portion of typical

output from a software package for this problem. The estimates ̂β0 and ̂β1 are highlighted. In sub-

sequent sections, we provide explanations for the information provided in this computer output.

Estimating 𝛔2 There is actually another unknown parameter in our regression model, σ2 (the

variance of the error term ϵ). The residuals ei = yi − ŷi are used to obtain an estimate of σ2.

The sum of squares of the residuals, often called the error sum of squares, is

SSE =
n∑

i=1

e2
i =

n∑

i=1

(yi − ŷi)2 (11.12)

We can show that the expected value of the error sum of squares is E(SSE) = (n − 2)σ2. Therefore,

an unbiased estimator of σ2 is

Estimator of Variance
σ̂2 =

SSE

n − 2
(11.13)

Computing SSE using Equation 11.12 would be fairly tedious. A more convenient computing

formula can be obtained by substituting ŷi = ̂β0 + ̂β1xi into Equation 11.12 and simplifying. The

resulting computing formula is

SSE = SST − ̂β1Sxy (11.14)

where SST =
∑n

i=1
(yi − y)2 =

∑n
i=1

y2
i − ny2

is the total sum of squares of the response variable y.

Formulas such as this are presented in Section 11.4. The error sum of squares and the estimate of

σ2 for the oxygen purity data, σ̂2 = 1.18, are highlighted in the computer output in Table 11.2.



�

� �

�

288 CHAPTER 11 Simple Linear Regression and Correlation

11.3 Properties of the Least Squares Estimators
The statistical properties of the least squares estimators ̂β0 and ̂β1 may be easily described. Recall

that we have assumed that the error term ϵ in the model Y = β0 + β1x + ϵ is a random variable

with mean zero and variance σ2. Because the values of x are fixed, Y is a random variable with

mean μY|x = β0 + β1x and variance σ2. Therefore, the values of ̂β0 and ̂β1 depend on the observed

y’s; thus, the least squares estimators of the regression coefficients may be viewed as random

variables. We now investigate the bias and variance properties of the least squares estimators
̂β0 and ̂β1.

Consider first ̂β1. Because ̂β1 is a linear combination of the observations Yi, we can use prop-

erties of expectation to show that the expected value of ̂β1 is

E( ̂β1) = β1 (11.15)

Thus, ̂β1 is an unbiased estimator in simple linear regression of the true slope β1.

Now consider the variance of ̂β1. Because we have assumed that V(ϵi) = σ2, it follows that

V(Yi) = σ2. Because ̂β1 is a linear combination of the observations Yi, the results in Section 5.7

can be applied to show that

V( ̂β1) =
σ2

Sxx
(11.16)

For the intercept, we can show in a similar manner that

E( ̂β0) = β0 and V( ̂β0) = σ2

[
1

n
+ x2

Sxx

]

(11.17)

Thus, ̂β0 is an unbiased estimator of the intercept β0. The covariance of the random variables
̂β0 and ̂β1 is not zero. It can be shown that cov( ̂β0,

̂β1) = −σ2x∕Sxx.

The estimate of σ2 could be used in Equations 11.16 and 11.17 to provide estimates of the

variance of the slope and the intercept. We call the square roots of the resulting variance estimators

the estimated standard errors of the slope and intercept, respectively.

Estimated Standard Errors
In simple linear regression, the estimated standard error of the slope and the estimated
standard error of the intercept are

se( ̂β1) =

√

σ̂2

Sxx
and se( ̂β0) =

√

σ̂2

[
1

n
+ x2

Sxx

]

respectively, where σ̂2 is computed from Equation 11.13.

The computer output in Table 11.2 reports the estimated standard errors of the slope and intercept

under the column heading SE coeff.

11.4 Hypothesis Tests in Simple

Linear Regression
An important part of assessing the adequacy of a linear regression model is testing statistical

hypotheses about the model parameters and constructing certain confidence intervals. Hypothesis

testing in simple linear regression is discussed in this section, and Section 11.5 presents methods
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for constructing confidence intervals. To test hypotheses about the slope and intercept of the

regression model, we must make the additional assumption that the error component in the model,

ϵ, is normally distributed. Thus, the complete assumptions are that the errors are normally and

independently distributed with mean zero and variance σ2, abbreviated NID (0, σ2).

11.4.1 Use of t-Tests
Suppose that we wish to test the hypothesis that the slope equals a constant, say, β1,0. The appro-

priate hypotheses are

H0∶β1 = β1,0 H1∶β1 ≠ β1,0 (11.18)

where we have assumed a two-sided alternative. Because the errors ϵi are NID (0, σ2), it follows

directly that the observations Yi are NID(β0 +β1xi, σ2). Now ̂β1 is a linear combination of indepen-

dent normal random variables and, consequently, ̂β1 is N(β1, σ2/Sxx), using the bias and variance

properties of the slope discussed in Section 11.3. In addition, (n − 2)σ̂2∕σ2 has a chi-square distri-

bution with n − 2 degrees of freedom, and ̂β1 is independent of σ̂2. As a result of those properties,

the statistic

Test Statistic for the Slope

T0 =
̂β1 − β1,0
√
σ̂2∕Sxx

(11.19)

follows the t distribution with n − 2 degrees of freedom under H0: β1 = β1,0. We would reject

H0: β1 = β1,0 if
|t0| > tα∕2,n−2 (11.20)

where t0 is computed from Equation 11.19. The denominator of Equation 11.19 is the standard

error of the slope, so we could write the test statistic as

T0 =
̂β1 − β1,0

se( ̂β1)

A similar procedure can be used to test hypotheses about the intercept. To test

H0∶β0 = β0,0 H1∶β0 ≠ β0,0 (11.21)

we would use the statistic

T0 =
̂β0 − β0,0

√

σ̂2

[
1

n
+ x2

Sxx

]
=

̂β0 − β0,0

se( ̂β0)
(11.22)

and reject the null hypothesis if the computed value of this test statistic, t0, is such that |t0| >

tα/2,n−2. Note that the denominator of the test statistic in Equation 11.22 is just the standard error

of the intercept.

A very important special case of the hypotheses of Equation 11.18 is

H0∶β1 = 0 H1∶β1 ≠ 0 (11.23)

These hypotheses relate to the significance of regression. Failure to reject H0: β1 = 0 is equivalent

to concluding that there is no linear relationship between x and Y . This situation is illustrated in

Figure 11.5. Note that this may imply either that x is of little value in explaining the variation in
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FIGURE 11.5

The hypothesis H0: 𝛃1 = 0 is not rejected.

x

y

(a)
x

y

(b)

FIGURE 11.6

The hypothesis H0: 𝛃1 = 0 is rejected.

Y and that the best estimator of Y for any x is ŷ = Y [Figure 11.5(a)] or that the true relationship

between x and Y is not linear [Figure 11.5(b)]. Alternatively, if H0: β1 = 0 is rejected, this implies

that x is of value in explaining the variability in Y (see Figure 11.6). Rejecting H0: β1 = 0 could

mean either that the straight-line model is adequate [Figure 11.6(a)] or that, although there is a

linear effect of x, better results could be obtained with the addition of higher-order polynomial

terms in x [Figure 11.6(b)].

E X A M P L E 11.2 Oxygen Purity Tests of Coefficients

We now test for significance of regression using the model for

the oxygen purity data from Example 11.1. The hypotheses are

H0∶β1 = 0 H1∶β1 ≠ 0

and we use α = 0.01. From Example 11.1 and Table 11.2 we

have

̂β1 = 14.947, n = 20, Sxx = 0.68088, σ̂2 = 1.18

so the t-statistic in Equation 10.20 becomes

t0 =
̂β1

√
σ̂2∕Sxx

=
̂β1

se( ̂β1)
= 14.947

√
1.18∕0.68088

= 11.35

Practical Interpretation: Because the reference value of

t is t0.005,18 = 2.88, the value of the test statistic is very far into

the critical region, implying that H0: β1 = 0 should be rejected.

There is strong evidence to support this claim. The P-value for

this test is P ⋍ 1.23 × 10−9. This was obtained manually with

a calculator.

Table 11.2 presents the typical computer output for

this problem. Notice that the t-statistic value for the slope

is computed as 11.35 and that the reported P-value is P =
0.000. The computer also reports the t-statistic for testing

the hypothesis H0: β0 = 0. This statistic is computed from

Equation 11.22, with β0.0 = 0, as t0 = 46.62. Clearly, then, the

hypothesis that the intercept is zero is rejected.
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11.4.2 Analysis of Variance Approach to Test Significance
of Regression
A method called the analysis of variance can be used to test for significance of regression. The

procedure partitions the total variability in the response variable into meaningful components as

the basis for the test. The analysis of variance identity is as follows:

Analysis of Variance Identity
n∑

i=1

(yi − y)2 =
n∑

i=1

(ŷi − y)2 +
n∑

i=1

(yi − ŷi)2 (11.24)

The two components on the right-hand side of Equation 11.24 measure, respectively, the amount

of variability in yi accounted for by the regression line and the residual variation left unexplained

by the regression line. We usually call SSE =
∑n

i=1
(yi − ŷi)2 the error sum of squares and SSR =

∑n
i=1

(ŷi − y)2 the regression sum of squares. Symbolically, Equation 11.24 may be written as

SST = SSR + SSE (11.25)

where SST =
∑n

i=1
(yi − y)2 is the total corrected sum of squares of y. In Section 11.2, we noted

that SSE = SST − ̂β
1
Sxy (see Equation 11.14), so because SST = ̂β

1
Sxy + SSE, we note that the

regression sum of squares in Equation 11.25 is SSR = ̂β
1
Sxy. The total sum of squares SST has

n − 1 degrees of freedom, and SSR and SSE have 1 and n − 2 degrees of freedom, respectively.

We may show that E[SSE/(n − 2)] = σ2 and E(SSR) = σ2 + β2
1
Sxx and that SSE/σ2 and SSR/σ2

are independent chi-square random variables with n − 2 and 1 degrees of freedom, respectively.

Thus, if the null hypothesis H0: β1 = 0 is true, the statistic

Test for Significance of Regression

F0 =
SSR∕1

SSE∕(n − 2)
=

MSR

MSE
(11.26)

follows the F1,n−2 distribution, and we would reject H0 if f 0 > f α,1,n−2. The quantities MSR = SSR/1

and MSE = SSE/(n − 2) are called mean squares. In general, a mean square is always computed

by dividing a sum of squares by its number of degrees of freedom. The test procedure is usually

arranged in an analysis of variance table, such as Table 11.3.

T A B L E 11.3 Analysis of Variance for Testing Significance of Regression

Source of Variation Sum of Squares Degrees of Freedom Mean Square F0

Regression SSR = ̂β1Sxy 1 MSR MSR/MSE

Error SSE = SST − ̂β1Sxy n − 2 MSE

Total SST n − 1

Note that MSE = σ̂2.
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E X A M P L E 11.3 Oxygen Purity ANOVA

We now use the analysis of variance approach to test for

significance of regression using the oxygen purity data

model from Example 11.1. Recall that SST = 173.38,
̂β1 = 14.947, Sxy = 10.17744, and n = 20. The regression sum

of squares is

SSR = ̂β1Sxy = (14.947)10.17744 = 152.13

and the error sum of squares is

SSE = SST − SSR = 173.38 − 152.13 = 21.25

The analysis of variance for testing H0: β1 = 0 is summa-

rized in the computer output in Table 11.2. The test statistic

is f 0 = MSR/MSE = 152.13/1.18 = 128.86, for which we find

that the P-value is P ⋍ 1.23 × 10−9, so we conclude that β1 is

not zero.

Frequently computer packages have minor differences in

terminology. For example, sometimes the regression sum of

squares is called the “model” sum of squares and the error sum

of squares is called the “residual” sum of squares.

Note that the analysis of variance procedure for testing for significance of regression is

equivalent to the t-test in Section 11.4.1. That is, either procedure will lead to the same con-

clusions. This is easy to demonstrate by starting with the t-test statistic in Equation 11.19 with

β1,0 = 0, say

T0 =
̂β1

√
σ̂2∕Sxx

(11.27)

Squaring both sides of Equation 11.27 and using the fact that σ̂2 = MSE results in

T2
0
=

̂β2
1
Sxx

MSE
=

̂β1Sxy

MSE
=

MSR

MSE
(11.28)

Note that T2
0

in Equation 11.28 is identical to F0 in Equation 11.26. It is true, in general, that

the square of a t random variable with v degrees of freedom is an F random variable with 1 and

v degrees of freedom in the numerator and denominator, respectively. Thus, the test using T0 is

equivalent to the test based on F0. Note, however, that the t-test is somewhat more flexible in that

it would allow testing against a one-sided and two-sided alternative hypothesis, while the F-test

is restricted to a two-sided alternative.

11.5 Confidence Intervals

11.5.1 Confidence Intervals on the Slope and Intercept
In addition to point estimates of the slope and intercept, it is possible to obtain confidence interval
estimates of these parameters. The width of these confidence intervals is a measure of the overall

quality of the regression line. If the error terms, ϵi, in the regression model are normally and

independently distributed,

( ̂β1 − β1)
/√

σ̂2∕Sxx and ( ̂β0 − β0)
/

√

σ̂2

[
1

n
+ x2

Sxx

]

are both distributed as t random variables with n − 2 degrees of freedom. This leads to the fol-

lowing definition of 100(1 − α)% confidence intervals on the slope and intercept.
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Confidence Intervals on Parameters
Under the assumption that the observations are normally and independently distributed, a

100(1 − α)% confidence interval on the slope β1 in simple linear regression is

̂β1 − tα∕2,n−2

√

σ̂2

Sxx
≤ β1 ≤ ̂β1 + tα∕2,n−2

√

σ̂2

Sxx
(11.29)

Similarly, a 100(1 − α)% confidence interval on the intercept β0 is

̂β0 − tα∕2,n−2

√

σ̂2

[
1

n
+ x2

Sxx

]

≤ β0 ≤ ̂β0 + tα∕2,n−2

√

σ̂2

[
1

n
+ x2

Sxx

]

(11.30)

E X A M P L E 11.4 Oxygen Purity Confidence Interval

on the Slope

We find a 95% confidence interval on the slope of the regres-

sion line using the data in Example 11.1. Recall that ̂β1 =
14.947, Sxx = 0.68088, and σ̂2 = 1.18 (see Table 11.2). Then,

from Equation 11.29, we find

̂β1 − t0.025,18

√

σ̂2

Sxx
≤ β1 ≤

̂β1 + t0.025,18

√

σ̂2

Sxx

or

14.947 − 2.101

√
1.18

0.68088
≤ β1 ≤ 14.947

+ 2.101

√
1.18

0.68088

This simplifies to

12.181 ≤ β1 ≤ 17.713

Practical Interpretation: This CI does not include zero,

so there is strong evidence (at α = 0.05) that the slope is not

zero. The CI is reasonably narrow (±2.766) because the error

variance is fairly small.

11.5.2 Confidence Interval on the Mean Response
A confidence interval may be constructed on the mean response at a specified value of x, say, x0.

This is a confidence interval about E(Y|x0) = μY|x0
and is sometimes referred to as a confidence

interval about the regression line. Because E(Y|x0) = μY|x0
= β0 + β1x0, we may obtain a point

estimate of the mean of Y at x = x0 (μY|x0
) from the fitted model as

μ̂Y|x0
= ̂β0 + ̂β1x0

Now μ̂Y|x0
is an unbiased point estimator of μY|x0

because ̂β0 and ̂β1 are unbiased estimators of

β0 and β1. The variance of μ̂Y|x0
is

V(μ̂Y|x0
) = σ2

[
1

n
+

(x0 − x)2

Sxx

]

This last result follows from the fact that μ̂Y|x0
= y + ̂β1(x0 − x) and cov(Y , ̂β1) = 0. Also, μ̂Y|x0

is

normally distributed because ̂β1 and ̂β0 are normally distributed, and if we use σ̂2 as an estimate

of σ2, it is easy to show that
μ̂Y|x0

− μY|x0

√

σ̂2

[
1

n
+

(x0 − x)2

Sxx

]
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has a t distribution with n − 2 degrees of freedom. This leads to the following confidence interval

definition.

Confidence Interval on the Mean Response
A 100(1 − α)% confidence interval on the mean response at the value of x = x0, say μY|x0

,

is given by

μ̂Y|x0
− tα∕2,n−2

√

σ̂2

[
1

n
+

(x0 − x)2

Sxx

]

≤ μY|x0
≤ μ̂Y|x0

+ tα∕2,n−2

√

σ̂2

[
1

n
+

(x0 − x)2

Sxx

]

(11.31)

where μ̂Y|x0
= ̂β0 + ̂β1x0 is computed from the fitted regression model.

Note that the width of the CI for μY|x0
is a function of the value specified for x0. The interval width

is a minimum for x0 = x and widens as |x0 − x| increases.

E X A M P L E 11.5 Oxygen Purity Confidence Interval

on the Mean Response

We construct a 95% confidence interval about the mean

response for the data in Example 11.1. The fitted model is

μ̂Y|x0
= 74.283 + 14.947x0, and the 95% confidence interval

on μY|x0
is found from Equation 11.31 as

μ̂Y|x0
± 2.101

√

1.18

[
1

20
+

(x0 − 1.1960)2

0.68088

]

Suppose that we are interested in predicting mean oxygen

purity when x0 = 1.00%. Then

μ̂Y|x1.00
= 74.283 + 14.947(1.00) = 89.23

and the 95% confidence interval is

89.23 ± 2.101

√

1.18

[
1

20
+ (1.00 − 1.1960)2

0.68088

]

or

89.23 ± 0.75

Therefore, the 95% CI on μY |1.00 is

88.48 ≤ μY|1.00 ≤ 89.98

This is a reasonably narrow CI.

Most computer software will also perform these calcula-

tions. Refer to Table 11.2. The predicted value of y at x = 1.00

is shown along with the 95% CI on the mean of y at this level

of x.

By repeating these calculations for several different

values for x0, we can obtain confidence limits for each

corresponding value of μY|x0
. Figure 11.7 is a display of the

scatter diagram with the fitted model and the corresponding

95% confidence limits plotted as the upper and lower lines.

The 95% confidence level applies only to the interval obtained

at one value of x, not to the entire set of x-levels. Notice that

the width of the confidence interval on μY|x0
increases as

|x0 − x| increases.
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FIGURE 11.7

Scatter diagram of oxygen purity data from Example 11.1
with fitted regression line and 95% confidence limits on
𝛍Y|x0

.
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11.6 Prediction of New Observations
An important application of a regression model is predicting new or future observations Y corre-

sponding to a specified level of the regressor variable x. If x0 is the value of the regressor variable

of interest,

̂Y0 = ̂β0 + ̂β1x0 (11.32)

is the point estimator of the new or future value of the response Y0.

Now consider obtaining an interval estimate for this future observation Y0. This new

observation is independent of the observations used to develop the regression model. Therefore,

the confidence interval for μY|x0
in Equation 11.31 is inappropriate because it is based only on

the data used to fit the regression model. The confidence interval about μY|x0
refers to the true

mean response at x = x0 (that is, a population parameter), not to future observations.

Let Y0 be the future observation at x = x0, and let ̂Y0 given by Equation 11.32 be the estimator

of Y0. Note that the error in prediction

ep̂ = Y0 − ̂Y0

is a normally distributed random variable with mean zero and variance

V(ep̂) = V(Y0 − ̂Y0) = σ2

[

1 + 1

n
+

(x0 − x)2

Sxx

]

because Y0 is independent of ̂Y0. If we use σ̂2 to estimate σ2, we can show that

Y0 − ̂Y0
√

σ̂2

[

1 + 1

n
+

(x0 − x)2

Sxx

]

has a t distribution with n − 2 degrees of freedom. From this, we can develop the following

prediction interval definition.

Prediction Interval
A 100(1 − α)% prediction interval on a future observation Y0 at the value x0 is given by

ŷ0 − tα∕2,n−2

√

σ̂2

[

1 + 1

n
+

(x0 − x)2

Sxx

]

≤ Y0 ≤ ŷ0 + tα∕2,n−2

√

σ̂2

[

1 + 1

n
+

(x0 − x)2

Sxx

]

(11.33)

The value ŷ0 is computed from the regression model ŷ0 = ̂β0 + ̂β1x0.

Notice that the prediction interval is of minimum width at x0 = x and widens as |x0 − x| increases.

By comparing Equation 11.33 with Equation 11.31, we observe that the prediction interval at the

point x0 is always wider than the confidence interval at x0. This results because the prediction

interval depends on both the error from the fitted model and the error associated with future

observations.
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E X A M P L E 11.6 Oxygen Purity Prediction Interval

To illustrate the construction of a prediction interval, suppose

that we use the data in Example 11.1 and find a 95% predic-

tion interval on the next observation of oxygen purity at x0

= 1.00%. Using Equation 11.33 and recalling from Example

11.5 that ŷ0 = 89.23, we find that the prediction interval is

89.23 − 2.101

√

1.18

[

1 + 1

20
+ (1.00 − 1.1960)2

0.68088

]

≤ Y0 ≤ 89.23 + 2.101

√

1.18

[

1 + 1

20
+ (1.00 − 1.1960)2

0.68088

]

which simplifies to

86.83 ≤ Y0 ≤ 91.63

This is a reasonably narrow prediction interval.

Typical computer software will also calculate prediction

intervals. Refer to the output in Table 11.2. The 95% PI on the

future observation at x0 = 1.00 is shown in the display.

By repeating the foregoing calculations at different lev-

els of x0, we may obtain the 95% prediction intervals shown

graphically as the lower and upper lines about the fitted regres-

sion model in Figure 11.8. Notice that this graph also shows

the 95% confidence limits on μY|x0
calculated in Example 11.5.

It illustrates that the prediction limits are always wider than the

confidence limits.
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FIGURE 11.8

Scatter diagram of oxygen purity data from Example 11.1
with fitted regression line, 95% prediction limits (outer
lines), and 95% confidence limits on 𝛍Y|x0

.

11.7 Adequacy of the Regression Model
Fitting a regression model requires making several assumptions. Estimating the model param-

eters requires assuming that the errors are uncorrelated random variables with mean zero and

constant variance. Tests of hypotheses and interval estimation require that the errors be normally

distributed. In addition, we assume that the order of the model is correct; that is, if we fit a simple

linear regression model, we are assuming that the phenomenon actually behaves in a linear or

first-order manner.

The analyst should always consider the validity of these assumptions to be doubtful and

conduct analyses to examine the adequacy of the model that has been tentatively entertained. In

this section, we discuss methods useful in this respect.

11.7.1 Residual Analysis
The residuals from a regression model are ei = yi − ŷi, i = 1, 2, … , n where yi is an actual

observation and ŷi is the corresponding fitted value from the regression model. Analysis of the

residuals is frequently helpful in checking the assumption that the errors are approximately

normally distributed with constant variance and in determining whether additional terms in the

model would be useful.
As an approximate check of normality, the experimenter can construct a frequency histogram

of the residuals or a normal probability plot of residuals. Many computer programs will pro-

duce a normal probability plot of residuals, and because the sample sizes in regression are often

too small for a histogram to be meaningful, the normal probability plotting method is preferred.
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FIGURE 11.9

Patterns for residual plots. (a) Satisfactory.
(b) Funnel. (c) Double bow. (d) Nonlinear.
Adapted from Montgomery, Peck, and Vining (2012).

It requires judgment to assess the abnormality of such plots. (Refer to the discussion of the

“fat pencil” method in Section 6.7.)

We may also standardize the residuals by computing di = ei∕
√
σ̂2
, i = 1, 2, … , n. If the

errors are normally distributed, approximately 95% of the standardized residuals should fall in

the interval (−2, +2). Residuals that are far outside this interval may indicate the presence of

an outlier, that is, an observation that is not typical of the rest of the data. Various rules have been

proposed for discarding outliers. However, they sometimes provide important information about

unusual circumstances of interest to experimenters and should not be automatically discarded.

For further discussion of outliers, see Montgomery, Peck, and Vining (2012).

It is frequently helpful to plot the residuals (1) in time sequence (if known), (2) against the

ŷi, and (3) against the independent variable x. These graphs will usually look like one of the four

general patterns shown in Figure 11.9. Pattern (a) in Figure 11.9 represents the ideal situation,

and patterns (b), (c), and (d) represent anomalies. If the residuals appear as in (b), the variance of

the observations may be increasing with time or with the magnitude of yi or xi. Data transforma-

tion on the response y is often used to eliminate this problem. Widely used variance-stabilizing

transformations include the use of
√

y, ln y, or 1/y as the response. See Montgomery, Peck, and

Vining (2012) for more details regarding methods for selecting an appropriate transformation.

Plots of residuals against ŷi and xi that look like (c) also indicate inequality of variance. Residual

plots that look like (d) indicate model inadequacy; that is, higher-order terms should be added to

the model, a transformation on the x-variable or the y-variable (or both) should be considered, or

other regressors should be considered.

E X A M P L E 11.7 Oxygen Purity Residuals

The regression model for the oxygen purity data in Example

11.1 is ŷ = 74.283 + 14.947x. Table 11.4 presents the ob-

served and predicted values of y at each value of x from this

data set along with the corresponding residual. These values

were calculated using a computer and show the number of

decimal places typical of computer output.

A normal probability plot of the residuals is shown

in Figure 11.10. Because the residuals fall approximately

along a straight line in the figure, we conclude that there is

no severe departure from normality. The residuals are also

plotted against the predicted value ŷi in Figure 11.11 and

against the hydrocarbon levels xi in Figure 11.12. These plots

do not indicate any serious model inadequacies.
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T A B L E 11.4 Oxygen Purity Data from Example 11.1, Predicted ŷ Values, and Residuals

Hydrocarbon Oxygen Predicted Residual Hydrocarbon Oxygen Predicted Residual
Level, x Purity, y Value, ŷ e = y − ŷ Level, x Purity, y Value, ŷ e = y − ŷ

1 0.99 90.01 89.081 0.929 11 1.19 93.54 92.071 1.469

2 1.02 89.05 89.530 −0.480 12 1.15 92.52 91.473 1.047

3 1.15 91.43 91.473 −0.043 13 0.98 90.56 88.932 1.628

4 1.29 93.74 93.566 0.174 14 1.01 89.54 89.380 0.160

5 1.46 96.73 96.107 0.623 15 1.11 89.85 90.875 −1.025

6 1.36 94.45 94.612 −0.162 16 1.20 90.39 92.220 −1.830

7 0.87 87.59 87.288 0.302 17 1.26 93.25 93.117 0.133

8 1.23 91.77 92.669 −0.899 18 1.32 93.41 94.014 −0.604

9 1.55 99.42 97.452 1.968 19 1.43 94.98 95.658 −0.678

10 1.40 93.65 95.210 −1.560 20 0.95 87.33 88.483 −1.153
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Normal probability plot of residuals.
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Plot of residuals versus predicted
oxygen purity ŷ.
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Plot of residuals versus hydrocarbon
level x.

11.7.2 Coefficient of Determination (R2)
A widely used measure for a regression model is the following ratio of sum of squares.

R2

The coefficient of determination is

R2 =
SSR

SST
= 1 −

SSE

SST
(11.34)

The coefficient is often used to judge the adequacy of a regression model. Subsequently, we see

that in the case in which X and Y are jointly distributed random variables, R2 is the square of the

correlation coefficient between X and Y . From the analysis of variance identity in Equations 11.24

and 11.25, 0 ≤ R2 ≤ 1. We often refer loosely to R2 as the amount of variability in the data

explained or accounted for by the regression model. For the oxygen purity regression model,
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we have R2 = SSR/SST = 152.13/173.38 = 0.877; that is, the model accounts for 87.7% of the

variability in the data.

The statistic R2 should be used with caution because it is always possible to make R2 unity

by simply adding enough terms to the model. For example, we can obtain a “perfect” fit to n data

points with a polynomial of degree n − 1. In general, R2 will increase if we add a variable to the

model, but this does not necessarily imply that the new model is superior to the old one. Unless

the error sum of squares in the new model is reduced by an amount equal to the original error

mean square, the new model will have a larger error mean square than the old one because of

the loss of 1 error degree of freedom. Thus, the new model will actually be worse than the old

one. The magnitude of R2 is also impacted by the dispersion of the variable x. The larger the

dispersion, the larger the value of R2 will usually be.

There are several misconceptions about R2. In general, R2 does not measure the magnitude

of the slope of the regression line. A large value of R2 does not imply a steep slope. Furthermore,

R2 does not measure the appropriateness of the model because it can be artificially inflated by

adding higher-order polynomial terms in x to the model. Even if y and x are related in a nonlinear

fashion, R2 will often be large. For example, R2 for the regression equation in Figure 11.6(b)

will be relatively large even though the linear approximation is poor. Finally, even though R2 is

large, this does not necessarily imply that the regression model will provide accurate predictions

of future observations.

11.8 Correlation
Our development of regression analysis has assumed that x is a mathematical variable, measured

with negligible error, and that Y is a random variable. Many applications of regression analysis

involve situations in which both X and Y are random variables. In these situations, it is usually

assumed that the observations (Xi, Yi), i = 1, 2, … , n are jointly distributed random variables

obtained from the distribution f (x, y).

For example, suppose that we wish to develop a regression model relating the shear strength

of spot welds to the weld diameter. In this example, we cannot control weld diameter. We would

randomly select n spot welds and observe a diameter (Xi) and a shear strength (Yi) for each.

Therefore (Xi,Yi) are jointly distributed random variables.

We assume that the joint distribution of Xi and Yi is the bivariate normal distribution pre-

sented in Chapter 5, and μY and σ2
Y are the mean and variance of Y , μX , σ2

X are the mean and

variance of X, and ρ is the correlation coefficient between Y and X. Recall that the correlation

coefficient is defined as

ρ =
σXY

σXσY
(11.35)

where σXY is the covariance between Y and X.

The conditional distribution of Y for a given value of X = x is

fY|x(y) =
1

√
2πσY|x

exp

[

−1

2

(
y − β0 − β1x

σY|x

)2
]

(11.36)

where

β0 = μY − μXρ
σY

σX
(11.37)

β1 =
σY

σX
ρ (11.38)

and the variance of the conditional distribution of Y given X = x is

σ2
Y|x = σ2

Y (1 − ρ2) (11.39)
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That is, the conditional distribution of Y given X = x is normal with mean

E(Y|x) = β0 + β1x (11.40)

and variance σ2
Y|x. Thus, the mean of the conditional distribution of Y given X = x is a simple

linear regression model. Furthermore, a relationship exists between the correlation coefficient ρ
and the slope β1. From Equation 11.38, we see that if ρ = 0, then β1 = 0, which implies that there

is no regression of Y on X. That is, knowledge of X does not assist us in predicting Y .

The method of maximum likelihood may be used to estimate the parameters β0 and β1. It can

be shown that the maximum likelihood estimators of those parameters are

̂β0 = Y − ̂β1X (11.41)

and

̂β1 =

n∑

i=1

Yi(Xi − X)

n∑

i=1

(Xi − X)2
=

SXY

SXX
(11.42)

We note that the estimators of the intercept and slope in Equations 11.41 and 11.42 are

identical to those given by the method of least squares in the case in which X was assumed to be a

mathematical variable. That is, the regression model with Y and X jointly normally distributed is

equivalent to the model with X considered as a mathematical variable. This follows because the

random variables Y given X = x are independently and normally distributed with mean β0 + β1x
and constant variance σ2

Y|x. These results will also hold for any joint distribution of Y and X such

that the conditional distribution of Y given X is normal.

It is possible to draw inferences about the correlation coefficient ρ in this model. The estimator

of ρ is the sample correlation coefficient

ρ̂ =

n∑

i=1

Yi(Xi − X)

[ n∑

i=1

(

Xi − X
)2

n∑

i=1

(

Yi − Y
)2

]1∕2
=

SXY
(
SXXSST

)1∕2
(11.43)

Note that

̂β1 =
(

SST

SXX

)1∕2

ρ̂ (11.44)

so the slope ̂β1 is just the sample correlation coefficient ρ̂ multiplied by a scale factor that is

the square root of the “spread” of the Y values divided by the “spread” of the X values. Thus,
̂β1 and ρ̂ are closely related, although they provide somewhat different information. The sample

correlation coefficient ρ̂ measures the linear association between Y and X, and ̂β1 measures the

predicted change in the mean of Y for a unit change in X. In the case of a mathematical variable

x, ρ̂ has no meaning because the magnitude of ρ̂ depends on the choice of spacing of x. We may

also write, from Equation 11.44,

ρ̂2 = ̂β2
1

SXX

SST
=

̂β1SXY

SST
=

SSR

SST

which is just the coefficient of determination. That is, the coefficient of determination R2 is just

the square of the sample correlation coefficient between Y and X.

It is often useful to test the hypotheses

H0∶ρ = 0 H1∶ρ ≠ 0 (11.45)
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The appropriate test statistic for these hypotheses is

Test Statistic for Zero Correlation

T0 =
ρ̂
√

n − 2
√

1 − ρ̂2
(11.46)

which has the t distribution with n − 2 degrees of freedom if H0: ρ = 0 is true. Therefore, we

would reject the null hypothesis if |t0| > tα/2,n−2. This test is equivalent to the test of the hypothesis

H0: β1 = 0 given in Section 11.5.1. This equivalence follows directly from Equation 11.46.

The test procedure for the hypotheses

H0∶ ρ = ρ0 H1∶ ρ ≠ ρ0 (11.47)

where ρ0 ≠ 0 is somewhat more complicated. For moderately large samples (say, n ≥ 25), the

statistic

Z = arctanh ρ̂ = 1

2
ln

1 + ρ̂
1 − ρ̂

(11.48)

is approximately normally distributed with mean and variance

μZ = arctanh ρ = 1

2
ln

1 + ρ
1 − ρ

and σ2
Z = 1

n − 3

respectively. Therefore, to test the hypothesis H0: ρ = ρ0, we may use the test statistic

Z0 = (arctanh ρ̂ − arctanh ρ0)(n − 3)1∕2 (11.49)

and reject H0: ρ = ρ0 if the value of the test statistic in Equation 11.49 is such that |z0| > zα/2.

It is also possible to construct an approximate 100(1 − α)% confidence interval for ρ using

the transformation in Equation 11.48. The approximate 100(1 − α)% confidence interval is

Confidence Interval for a Correlation Coefficient

tanh

(

arctanh ρ̂ −
zα∕2

√
n − 3

)

≤ ρ ≤ tanh

(

arctanh ρ̂ +
zα∕2

√
n − 3

)

(11.50)

where tanh u = (eu − e−u)/(eu + e−u).

E X A M P L E 11.8 Wire Bond Pull Strength

Chapter 1 (Section 1.3) describes an application of regression

analysis in which an engineer at a semiconductor assembly

plant is investigating the relationship between pull strength

of a wire bond and two factors: wire length and die height.

In this example, we consider only one of the factors, the

wire length. A random sample of 25 units is selected and

tested, and the wire bond pull strength and wire length are

observed for each unit. The data are shown in Table 1.2. We

assume that pull strength and wire length are jointly normally

distributed.

Figure 11.13 shows a scatter diagram of wire bond

strength versus wire length. We have displayed box plots

of each individual variable on the scatter diagram. There is
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FIGURE 11.13

Scatter plot of wire bond strength versus wire length.

evidence of a linear relationship between the two variables.

Typical computer output for fitting a simple linear regression

model to the data is on the next page.

Now Sxx = 698.56 and Sxy = 2027.7132, and the sample

correlation coefficient is

ρ̂ =
Sxy

[SxxSST ]1∕2
= 2027.7132

[(698.560)(6105.9)]1∕2
= 0.9818

Note that ρ̂2 = (0.9818)2 = 0.9640 (which is reported in the

computer output), or that approximately 96.40% of the vari-

ability in pull strength is explained by the linear relationship

to wire length.

Now suppose that we wish to test the hypotheses

H0∶ρ = 0 H1∶ρ ≠ 0

Strength = 5.11 + 2.90 Length

Predictor Coef SE Coef T P

Constant 5.115 1.146 4.46 0.000

Length 2.9027 0.1170 24.80 0.000

S = 3.093 R-sq = 96.4% R-sq(adj) = 96.2%

PRESS = 272.144 R-sq(pred) = 95.54%

Analysis of Variance

Source DF SS MS F P

Regression 1 5885.9 5885.9 615.08 0.000

Residual 23 220.1 9.6

Error

Total 24 6105.9

with α = 0.05. We can compute the t-statistic of

Equation 11.46 as

t0 =
ρ̂
√

n − 2
√

1 − ρ̂2
=

0.9818
√

23
√

1 − 0.9640
= 24.8

This statistic is also reported in the computer output as a test

of H0: β1 = 0. Because t0.025,23 = 2.069, we reject H0 and con-

clude that the correlation coefficient ρ ≠ 0.

Finally, we may construct an approximate 95% confi-

dence interval on ρ from Equation 11.50. Because arctanh ρ̂
= arctanh 0.9818 = 2.3452, Equation 11.50 becomes

tanh

(

2.3452 − 1.96
√

22

)

≤ ρ ≤ tanh

(

2.3452 + 1.96
√

22

)

which reduces to

0.9585 ≤ ρ ≤ 0.9921



�

� �

�

11.9 Regression on Transformed Variables 303

11.9 Regression on Transformed Variables
We occasionally find that the straight-line regression model Y = β0 + β1x + ε is inappropriate

because the true regression function is nonlinear. Sometimes nonlinearity is visually determined

from the scatter diagram, and sometimes, because of prior experience or underlying theory, we

know in advance that the model is nonlinear. Occasionally, a scatter diagram will exhibit an appar-

ent nonlinear relationship between Y and x. In some of these situations, a nonlinear function can

be expressed as a straight line by using a suitable transformation. Such nonlinear models are called

intrinsically linear.

As an example of a nonlinear model that is intrinsically linear, consider the exponential

function

Y = β0eβ1xε

This function is intrinsically linear because it can be transformed to a straight line by a logarithmic

transformation

ln Y = ln β0 + β1x + ln ε

This transformation requires that the transformed error terms ln ε are normally and independently

distributed with mean 0 and variance σ2.

Another intrinsically linear function is

Y = β0 + β1

(
1

x

)

+ ε

By using the reciprocal transformation z = 1/x, the model is linearized to

Y = β0 + β1z + ε

Sometimes several transformations can be employed jointly to linearize a function. For example,

consider the function

Y = 1

exp(β0 + β1x + ε)

letting Y* = 1/Y , we have the linearized form

ln Y∗ = β0 + β1x + ε

For examples of fitting these models, refer to Montgomery, Peck, and Vining (2012) or Myers

(1990).

Transformations can be very useful in many situations in which the true relationship between

the response Y and the regressor x is not well approximated by a straight line. The utility of a

transformation is illustrated in the following example.

E X A M P L E 11.9 Windmill Power

A research engineer is investigating the use of a windmill

to generate electricity and has collected data on the DC

output from this windmill and the corresponding wind

velocity. The data are plotted in Figure 11.14 and listed in

Table 11.5.

Inspection of the scatter diagram indicates that the rela-

tionship between DC output Y and wind velocity (x) may be

nonlinear. However, we initially fit a straight-line model to the

data. The regression model is

ŷ = 0.1309 + 0.2411 x

The summary statistics for this model are R2 = 0.8745,MSE =
σ̂2 = 0.0557, and F0 = 160.26 (the P-value is <0.0001).
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Wind velocity, x

FIGURE 11.14

Plot of DC output y versus wind velocity x for the
windmill data.
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T A B L E 11.5 Observed Values and Regressor Variable

Observation Wind Velocity DC Output, Observation Wind Velocity DC Output,
Number, i (mph), xi yi Number, i (mph), xi yi

1 5.00 1.582 14 5.80 1.737

2 6.00 1.822 15 7.40 2.088

3 3.40 1.057 16 3.60 1.137

4 2.70 0.500 17 7.85 2.179

5 10.00 2.236 18 8.80 2.112

6 9.70 2.386 19 7.00 1.800

7 9.55 2.294 20 5.45 1.501

8 3.05 0.558 21 9.10 2.303

9 8.15 2.166 22 10.20 2.310

10 6.20 1.866 23 4.10 1.194

11 2.90 0.653 24 3.95 1.144

12 6.35 1.930 25 2.45 0.123

13 4.60 1.562

A plot of the residuals versus ŷi is shown in Figure 11.15.

This residual plot indicates model inadequacy and implies that

the linear relationship has not captured all of the information

in the wind speed variable. Note that the curvature that was

apparent in the scatter diagram of Figure 11.14 is greatly

amplified in the residual plots. Clearly, some other model

form must be considered.

We might initially consider using a quadratic model

such as

y = β0 + β1x + β2x2 + ε

to account for the apparent curvature. However, the scatter dia-

gram in Figure 11.14 suggests that as wind speed increases,

0.4
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y

FIGURE 11.15

Plot of residuals ei versus fitted values ŷi for the
windmill data.

DC output approaches an upper limit of approximately 2.5.

This is also consistent with the theory of windmill operation.

Because the quadratic model will eventually bend downward

as wind speed increases, it would not be appropriate for these

data. A more reasonable model for the windmill data that

incorporates an upper asymptote would be

y = β0 + β1

(
1

x

)

+ ε

Figure 11.16 is a scatter diagram with the transformed

variable x′ = 1/x. This plot appears linear, indicating that the

reciprocal transformation is appropriate. The fitted regression

model is

ŷ = 2.9789 − 6.9345 x′
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FIGURE 11.16

Plot of DC output versus x′ = 1/x for the
windmill data.
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The summary statistics for this model are R2 =
0.9800,MSE = σ̂2 = 0.0089, and F0 = 1128.43 (the P-value

is <0.0001).

A plot of the residuals from the transformed model

versus ŷ is shown in Figure 11.17. This plot does not

reveal any serious problem with inequality of variance. The

normal probability plot, shown in Figure 11.18, gives a

ei
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–0.6
10

–0.2

0

0.2

0.4

2 3

yi

FIGURE 11.17

Plot of residuals versus fitted values ŷi for the
transformed model for the windmill data.

mild indication that the errors come from a distribution with

heavier tails than the normal (notice the slight upward and

downward curve at the extremes). This normal probability plot

has the z-score value plotted on the horizontal axis. Because

there is no strong signal of model inadequacy, we conclude

that the transformed model is satisfactory.
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FIGURE 11.18

Normal probability plot of the residuals for the
transformed model for the windmill data.

11.10 Logistic Regression
Linear regression often works very well when the response variable is quantitative. We now

consider the situation in which the response variable takes on only two possible values, 0 and

1. These could be arbitrary assignments resulting from observing a qualitative response. For

example, the response could be the outcome of a functional electrical test on a semiconductor

device for which the results are either a “success,” which means that the device works properly,

or a “failure,” which could be due to a short, an open, or some other functional problem.

Suppose that the model has the form

Yi = β0 + β1xi + εi (11.51)

and the response variable Yi takes on the values either 0 or 1. We assume that the response variable

Yi is a Bernoulli random variable with probability distribution as follows:

Yi Probability

1 P(Yi = 1) = πi

0 P(Yi = 0) = 1 − πi

Now because E(εi) = 0, the expected value of the response variable is

E(Yi) = 1(πi) + 0(1 − πi) = πi

This implies that

E(Yi) = β0 + β1xi = πi
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This means that the expected response given by the response function E(Yi) = β0 + β1xi is just

the probability that the response variable takes on the value 1.

There are some substantive problems with the regression model in Equation 11.51. First, note

that if the response is binary, the error terms εi can only take on two values, namely,

εi = 1 − (β0 + β1 xi) when Yi = 1

εi = −(β0 + β1 xi) when Yi = 0

Consequently, the errors in this model cannot possibly be normal. Second, the error variance is

not constant, because

σ2
Yi
= E[Yi − (Yi)]2

= (1 − πi)2πi + (0 − πi)2(1 − πi)
= πi(1 − πi)

Notice that this last expression is just

σ2
yi
= E(Yi)[1 − E(Yi)]

because E(Yi) = β0 + β1xi = πi. This indicates that the variance of the observations (which is the

same as the variance of the errors because εi = Yi − πi, and πi is a constant) is a function of the

mean. Finally, there is a constraint on the response function because

0 ≤ E(Yi) = πi ≤ 1

This restriction can cause serious problems with the choice of a linear response function as we

have initially assumed in Equation 11.51. It would be possible to fit a model to the data for which

the predicted values of the response lie outside the 0, 1 interval.

Generally, when the response variable is binary, there is considerable empirical evidence

indicating that the shape of the response function should be nonlinear. A monotonically increasing

(or decreasing) S-shaped (or reverse S-shaped) function, such as that shown in Figure 11.19, is

usually employed. This function is called the logit response function, and has the form

E(Y) =
exp(β0 + β1x)

1 + exp(β0 + β1x)
(11.52)

or equivalently,

E(Y) = 1

1 + exp[−(β0 + β1x)]
(11.53)
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FIGURE 11.19 Examples of the logistic response function. (a) E(Y) = 1/(1 + e−6.0 − 1.0x). (b) E(Y) =
1/(1 + e−6.0 + 1.0x).
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In logistic regression, we assume that E(Y) is related to x by the logit function. It is easy to

show that
E(Y)

1 − E(Y)
= exp(β0 + β1x) (11.54)

The quantity in Equation 11.54 is called the odds. It has a straightforward interpretation: If the

odds is 2 for a particular value of x, it means that a success is twice as likely as a failure at that

value of the regressor x. Notice that the natural logarithm of the odds is a linear function of the

regressor variable. Therefore, the slope β1 is the difference in the log odds that results from a

one-unit increase in x. This means that the odds ratio equals eβ1 when x increases by one unit.

The parameters in this logistic regression model are usually estimated by the method of

maximum likelihood. For details of the procedure, see Montgomery, Peck, and Vining (2012).

Computer software will fit logistic regression models and provide useful information on the qual-

ity of the fit.

We illustrate logistic regression using the data on launch temperature and O-ring failure for

the 24 Space Shuttle launches prior to the Challenger disaster of January 1986. Six O-rings were

used to seal field joints on the rocket motor assembly. The following table presents the launch

temperatures. A “1” in the “O-Ring Failure” column indicates that at least one O-ring failure had

occurred on that launch.

Temperature O-Ring Failure Temperature O-Ring Failure Temperature O-Ring Failure

53 1 68 0 75 0

56 1 69 0 75 1

57 1 70 0 76 0

63 0 70 1 76 0

66 0 70 1 78 0

67 0 70 1 79 0

67 0 72 0 80 0

67 0 73 0 81 0

Figure 11.20 is a scatter plot of the data. Note that failures tend to occur at lower temperatures.

The logistic regression model fit to these data from a computer software package is shown in the

following boxed display. (Both Minitab and JMP have excellent capability to fit logistic regression

models.)

The fitted logistic regression model is

ŷ = 1

1 + exp[−(10.875 − 0.17132x)]
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FIGURE 11.20

Scatter plot of O-ring failures versus launch
temperature for 24 Space Shuttle flights.
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FIGURE 11.21

Probability of O-ring failure versus launch
temperature (based on a logistic regression
model).
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The standard error of the slope ̂β1 is se(̂β1) = 0.08344. For large samples, ̂β1 has an approximate

normal distribution, and so ̂β1∕se(̂β1) can be compared to the standard normal distribution to test

H0: β1 = 0. Software performs this test. The P-value is 0.04, indicating that temperature has a

significant effect on the probability of O-ring failure. The odds ratio is 0.84, so every 1-degree

increase in temperature reduces the odds of failure by 0.84. Figure 11.21 shows the fitted logistic

regression model. The sharp increase in the probability of O-ring failure is very evident in this

graph. The actual temperature at the Challenger launch was 31∘F. This is well outside the range of

other launch temperatures, so our logistic regression model is not likely to provide highly accurate

predictions at that temperature, but it is clear that a launch at 31∘F is almost certainly going to

result in O-ring failure.

Binary Logistic Regression: O-Ring Failure versus Temperature

Link Function: Logit

Response Information

Variable Value Count

O-Ring F 1 7 (Event)

0 17

Total 24

Logistic Regression Table

Odds 95% CI
Predictor Coef SE Coef Z P Ratio Lower Upper

Constant 10.875 5.703 1.91 0.057

Temperat –0.17132 0.08344 –2.05 0.040 0.84 0.72 0.99

Log-Likelihood = −11.515

Test that all slopes are zero: G = 5.944, DF = 1, P-Value = 0.015

It is interesting to note that all of these data were available prior to launch. However, engi-

neers were unable to effectively analyze the data and use them to provide a convincing argument

against launching Challenger to NASA managers. Yet a simple regression analysis of the data

would have provided a strong quantitative basis for this argument. This is one of the more dra-

matic instances that points out why engineers and scientists need a strong background in basic
statistical techniques.
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Important Terms and Concepts

Analysis of variance table

Coefficient of determination

Confidence interval on the intercept

Confidence interval on the mean response

Confidence interval on the slope

Correlation coefficient

Empirical model

Error sum of squares

Intrinsically linear model

Least squares

Logistic regression

Logit response function

Mean squares

Normal probability plot of residuals

Odds ratio

Odds

Outlier

Prediction interval on a future observation

Regression analysis

Regression coefficients

Regression line

Regression sum of squares

Regressor

Residual plots

Residuals

Response variable

Significance of regression

Simple linear regression model standard

errors

Statistical tests on model parameters

Total corrected sum of squares

Transformations
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Multiple Linear
Regression
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L E A R N I N G O B J E C T I V E S

After careful study of this chapter, you should be able to do the following:

1. Use multiple regression techniques to build

empirical models to engineering and scientific data

2. Understand how the method of least squares

extends to fitting multiple regression models

3. Assess regression model adequacy

4. Test hypotheses and construct confidence

intervals on the regression coefficients

5. Use the regression model to estimate the mean

response and to make predictions and to construct

confidence intervals and prediction intervals

6. Build regression models with polynomial terms

7. Use indicator variables to model categorical

regressors

8. Use stepwise regression and other model-building

techniques to select the appropriate set of

variables for a regression model

310
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C H A P T E R O U T L I N E

12.1 Multiple Linear Regression Model

12.1.1 Introduction

12.1.2 Least Squares Estimation of the Parameters

12.1.3 Matrix Approach to Multiple

Linear Regression

12.1.4 Properties of the Least Squares Estimators

12.2 Hypothesis Tests in Multiple Linear Regression

12.2.1 Test for Significance of Regression

12.2.2 Tests on Individual Regression Coefficients

and Subsets of Coefficients

12.3 Confidence Intervals in Multiple

Linear Regression

12.3.1 Confidence Intervals on Individual

Regression Coefficients

12.3.2 Confidence Interval on the Mean Response

12.4 Prediction of New Observations

12.5 Model Adequacy Checking

12.5.1 Residual Analysis

12.5.2 Influential Observations

12.6 Aspects of Multiple Regression Modeling

12.6.1 Polynomial Regression Models

12.6.2 Categorical Regressors and Indicator

Variables

12.6.3 Selection of Variables and Model Building

12.6.4 Multicollinearity

This chapter generalizes the simple linear regression to a situation that has more than one predictor

or regressor variable. This situation occurs frequently in science and engineering; for example, in

Chapter 1, we provided data on the pull strength of a wire bond on a semiconductor package and

illustrated its relationship to the wire length and the die height. Understanding the relationship

between strength and the other two variables may provide important insight to the engineer when

the package is designed, or to the manufacturing personnel who assemble the die into the package.

We used a multiple linear regression model to relate strength to wire length and die height. There

are many examples of such relationships: The life of a cutting tool is related to the cutting speed

and the tool angle; patient satisfaction in a hospital is related to patient age, type of procedure

performed, and length of stay; and the fuel economy of a vehicle is related to the type of vehicle

(car versus truck), engine displacement, horsepower, type of transmission, and vehicle weight.

Multiple regression models give insight into the relationships between these variables that can

have important practical implications.

In this chapter, we show how to fit multiple linear regression models, perform the statisti-

cal tests and confidence procedures that are analogous to those for simple linear regression, and

check for model adequacy. We also show how models that have polynomial terms in the regressor

variables are just multiple linear regression models. We also discuss some aspects of building a

good regression model from a collection of candidate regressors.

12.1 Multiple Linear Regression Model

12.1.1 Introduction
Many applications of regression analysis involve situations that have more than one regressor or

predictor variable. A regression model that contains more than one regressor variable is called a

multiple regression model.
As an example, suppose that the gasoline mileage performance of a vehicle depends on the

vehicle weight and the engine displacement. A multiple regression model that might describe this

relationship is

Y = β0 + β1x1 + β2x2 + ϵ (12.1)

where Y represents the mileage, x1 represents the weight, x2 represents the engine displacement,

and ϵ is a random error term. This is a multiple linear regression model with two regressors.
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FIGURE 12.1

(a) The regression plane for the model E(Y) = 50 + 10x1 + 7x2. (b) The contour plot.

The term linear is used because Equation 12.1 is a linear function of the unknown parameters β0,

β1, and β2.

The regression model in Equation 12.1 describes a plane in the three-dimensional space of

Y , x1, and x2. Figure 12.1(a) shows this plane for the regression model

E(Y) = 50 + 10x1 + 7x2

where we have assumed that the expected value of the error term is zero; that is, E(ϵ) = 0. The

parameter β0 is the intercept of the plane. We sometimes call β1 and β2 partial regression coef-
ficients because β1 measures the expected change in Y per unit change in x1 when x2 is held

constant, and β2 measures the expected change in Y per unit change in x2 when x1 is held con-

stant. Figure 12.1(b) shows a contour plot of the regression model—that is, lines of constant E(Y)

as a function of x1 and x2. Notice that the contour lines in this plot are straight lines.

In general, the dependent variable or response Y may be related to k independent or regressor

variables. The model

Y = β0 + β1x1 + β2x2 + · · · + βkxk + ϵ (12.2)

is called a multiple linear regression model with k regressor variables. The parameters βj,

j = 0, 1,… , k, are called the regression coefficients. This model describes a hyperplane in the

k+1-dimensional space of Y and the regressor variables {xj}. The parameter βj represents the

expected change in response Y per unit change in xj when all the remaining regressors xi(i ≠ j)
are held constant.

Multiple linear regression models are often used as approximating functions. That is, the true

functional relationship between Y and x1, x2,… , xk is unknown, but over certain ranges of the

independent variables, the linear regression model is an adequate approximation.

Models that are more complex in structure than Equation 12.2 may often still be analyzed by

multiple linear regression techniques. For example, consider the cubic polynomial model in one

regressor variable.

Y = β0 + β1x + β2x2 + β3x3 + ϵ (12.3)

If we let x1 = x, x2 = x2, x3 = x3, Equation 12.3 can be written as

Y = β0 + β1x1 + β2x2 + β3x3 + ϵ (12.4)

which is a multiple linear regression model with three regressor variables.

Models that include interaction effects may also be analyzed by multiple linear regression

methods. Interaction effects are very common. For example, a vehicle’s mileage may be impacted

by an interaction between vehicle weight and engine displacement. An interaction between two

variables can be represented by a cross-product term in the model, such as

Y = β0 + β1x1 + β2x2 + β12x1x2 + ϵ (12.5)
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If we let x3 = x1x2 and β3 = β12, Equation 12.5 can be written as

Y = β0 + β1x1 + β2x2 + β3x3 + ϵ

which is a linear regression model.

Figure 12.2(a) and (b) shows the three-dimensional plot of the regression model

Y = 50 + 10x1 + 7x2 + 5x1x2

and the corresponding two-dimensional contour plot. Notice that, although this model is a linear

regression model, the shape of the surface that is generated by the model is not linear. In gen-

eral, any regression model that is linear in parameters (the β’s) is a linear regression model,
regardless of the shape of the surface that it generates.

Figure 12.2 provides a nice graphical interpretation of an interaction. Generally, interaction

implies that the effect produced by changing one variable (x1, say) depends on the level of the

other variable (x2). For example, Figure 12.2 shows that changing x1 from 2 to 8 produces a much

smaller change in E(Y) when x2 = 2 than when x2 = 10. Interaction effects occur frequently in

the study and analysis of real-world systems, and regression methods are one of the techniques

that we can use to describe them.

As a final example, consider the second-order model with interaction

Y = β0 + β1x1 + β2x2 + β11x1
2 + β22x2

2 + β12x1x2 + ϵ (12.6)

If we let x3 = x2
1
, x4 = x2

2
, x5 = x1x2, β3 = β11, β4 = β22, and β5 = β12, Equation 12.6 can be written

as a multiple linear regression model as follows:

Y = β0 + β1x1 + β2x2 + β3x3 + β4x4 + β5x5 + ϵ
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(a) Three-dimensional plot of the regression model. (b) The
contour plot.
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(a) Three-dimensional plot of the regression model
E(Y) = 800 + 10x1 + 7x2 − 8.5x2

1 − 5x2
2 + 4x1x2.

(b) The contour plot.
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Figure 12.3 parts (a) and (b) show the three-dimensional plot and the corresponding contour

plot for

E(Y) = 800 + 10x1 + 7x2 − 8.5x2
1
− 5x2

2
+ 4x1x2

These plots indicate that the expected change in Y when xi is changed by one unit (say) is a

function of and x2. The quadratic and interaction terms in this model produce a mound-shaped

function. Depending on the values of the regression coefficients, the second-order model with

interaction is capable of assuming a wide variety of shapes; thus, it is a very flexible regression

model.

12.1.2 Least Squares Estimation of the Parameters
The method of least squares may be used to estimate the regression coefficients in the multiple

regression model, Equation 12.2. Suppose that n > k observations are available, and let xij denote

the ith observation or level of variable xj. The observations are

(xi1, xi2,… , xik, yi), i = 1, 2,… , n and n > k

It is customary to present the data for multiple regression in a table such as Table 12.1.

Each observation (xi1, xi2,… , xik, yi), satisfies the model in Equation 12.2, or

yi = β0 + β1xi1 + β2xi2 +…+ βkxik + ϵi

= β0 +
k∑

j=1

βjxij + ϵi i = 1, 2,… , n (12.7)

The least squares function is

L =
n∑

i=1

ϵ2
i =

n∑

i=1

(

yi − β0 −
k∑

j=1

βjxij

)2

(12.8)

We want to minimize L with respect to β0, β1,… , βk. The least squares estimates of β0, β1,… , βk
must satisfy

∂L
∂βj

|
|
|
| ̂β0,

̂β1,…,
̂βk

= −2

n∑

i=1

(

yi − ̂β0 −
k∑

j=1

̂βj xij

)

= 0 (12.9a)

and

∂L
∂βj

|
|
|
| ̂β0,

̂β1,… ,
̂βk

= −2

n∑

i=1

(

yi − ̂β0 −
k∑

j=1

̂βj xij

)

xij = 0 j = 1, 2,… , k (12.9b)

T A B L E 12.1 Data for Multiple Linear Regression

y x1 x2 · · · xk

y1 x11 x12 · · · x1k

y2 x21 x22 · · · x2k

⋮ ⋮ ⋮ ⋮

yn xn1 xn2 · · · xnk
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Simplifying Equation 12-9, we obtain the least squares normal equations

n ̂β0 + ̂β1

n∑

i=1

xi1 + ̂β2

n∑

i=1

xi2 + · · · + ̂βk

n∑

i=1

xik =
n∑

i=1

yi

̂β0

n∑

i=1

xi1 + ̂β1

n∑

i=1

x2
i1 + ̂β2

n∑

i=1

xi1xi2 + · · · + ̂βk

n∑

i=1

xi1xik =
n∑

i=1

xi1yi

⋮ ⋮ ⋮ ⋮ ⋮

̂β0

n∑

i=1

xik + ̂β1

n∑

i=1

xikxi1 + ̂β2

n∑

i=1

xikxi2 + · · · + ̂βk

n∑

i=1

x2
ik =

n∑

i=1

xikyi
(12.10)

Note that there are p = k + 1 normal equations, one for each of the unknown regression coeffi-

cients. The solution to the normal equations will be the least squares estimators of the regression

coefficients, ̂β0,
̂β1,… ,

̂βk. The normal equations can be solved by any method appropriate for

solving a system of linear equations.

E X A M P L E 12.1 Wire Bond Strength

In Chapter 1, we used data on pull strength of a wire bond

in a semiconductor manufacturing process, wire length, and

die height to illustrate building an empirical model. We

use the same data, repeated for convenience in Table 12.2,

and show the details of estimating the model parameters.

A three-dimensional scatter plot of the data is presented in

Figure 1.15. Figure 12.4 is a matrix of two-dimensional scatter

plots of the data. These displays can be helpful in visualizing

the relationships among variables in a multivariable data set.

For example, the plot indicates that there is a strong linear

relationship between strength and wire length.

T A B L E 12.2 Wire Bond Data

Observation
Number

Pull Strength
y

Wire Length
x1

Die Height
x2

1 9.95 2 50

2 24.45 8 110

3 31.75 11 120

4 35.00 10 550

5 25.02 8 295

6 16.86 4 200

7 14.38 2 375

8 9.60 2 52

9 24.35 9 100

10 27.50 8 300

11 17.08 4 412

12 37.00 11 400

13 41.95 12 500

Observation
Number

Pull Strength
y

Wire Length
x1

Die Height
x2

14 11.66 2 360

15 21.65 4 205

16 17.89 4 400

17 69.00 20 600

18 10.30 1 585

19 34.93 10 540

20 46.59 15 250

21 44.88 15 290

22 54.12 16 510

23 56.63 17 590

24 22.13 6 100

25 21.15 5 400

Specifically, we fit the multiple linear regression model

Y = β0 + β1x1 + β2x2 + ϵ

where Y= pull strength, x1 = wire length, and x2 = die height.

From the data in Table 12.2, we calculate

n = 25,

25∑

i=1

yi = 725.82,

25∑

i=1

xi1 = 206,

25∑

i=1

xi2 = 8,294

25∑

i=1

x2
i1 = 2,396,

25∑

i=1

x2
i2 = 3,531,848,

25∑

i=1

xi1xi2 = 77,177

25∑

i=1

xi1yi = 8,008.47,

25∑

i=1

xi2yi = 274,816.71



�

� �

�

316 CHAPTER 12 Multiple Linear Regression

For the model Y = β0 + β1x1 + β2x2 + ϵ, the normal Equa-

tions 12.10 are

n ̂β0 + ̂β1

n∑

i=1

xi1 + ̂β2

n∑

i=1

xi2 =
n∑

i=1

yi1

̂β0

n∑

i=1

xi1 + ̂β1

n∑

i=1

x2
i1 + ̂β2

n∑

i=1

xi1xi2 =
n∑

i=1

xi1yi1

̂β0

n∑

i=1

xi2 + ̂β1

n∑

i=1

xi1xi2 + ̂β2

n∑

i=1

x2
i2 =

n∑

i=1

xi2yi

Inserting the computed summations into the normal equations,

we obtain

25 ̂β0 + 206 ̂β1 + 8294 ̂β2 = 725.82

206 ̂β0 + 2396 ̂β1 + 77,177 ̂β2 = 8,008.47

8294 ̂β0 + 77,177 ̂β1 + 3,531,848 ̂β2 = 274,816.71
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Length

Height
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15.25

24.45

54.15

FIGURE 12.4

Matrix of computer-generated scatter plots for the wire
bond pull strength data in Table 12.2.

The solution to this set of equations is

̂β0 = 2.26379, ̂β1 = 2.74427, ̂β2 = 0.01253

Therefore, the fitted regression equation is

ŷ = 2.26379 + 2.74427x1 + 0.01253x2

Practical Interpretation: This equation can be used to

predict pull strength for pairs of values of the regressor vari-

ables wire length (x1) and die height (x2). This is essentially

the same regression model given in Section 1.3. Figure 1.16

shows a three-dimensional plot of the plane of predicted values

ŷ generated from this equation.

12.1.3 Matrix Approach to Multiple Linear Regression
In fitting a multiple regression model, it is much more convenient to express the mathematical

operations using matrix notation. Suppose that there are k regressor varibles and n observations,

(xi1, xi2,… , xik, yi), i = 1, 2,… , n and that the model relating the regressors to the response is

yi = β0 + β1xi1 + β2xi2 +…+ βkxik + ϵi i = 1, 2,… , n

This model is a system of n equations that can be expressed in matrix notation as

y=X𝛃+ 𝛜 (12.11)

where

y =
⎡
⎢
⎢
⎢
⎣

y1

y2

⋮
yn

⎤
⎥
⎥
⎥
⎦

X =
⎡
⎢
⎢
⎢
⎣

1 x11 x12 …
1 x21 x22 …
⋮ ⋮ ⋮
1 xn1 xn2 …

x1k
x2k
⋮

xnk

⎤
⎥
⎥
⎥
⎦

𝛃 =
⎡
⎢
⎢
⎢
⎣

β0

β1

⋮
βk

⎤
⎥
⎥
⎥
⎦

and 𝛜 =
⎡
⎢
⎢
⎢
⎣

ϵ1

ϵ2

⋮
ϵn

⎤
⎥
⎥
⎥
⎦
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In general, y is an (n × 1) vector of the observations, X is an (n × p) matrix of the lev-

els of the independent variables (assuming that the intercept is always multiplied by a constant

value—unity), 𝛃 is a (p × 1) vector of the regression coefficients, and 𝛜 is a (n × 1) vector of

random errors. The X matrix is often called the model matrix.

We wish to find the vector of least squares estimators, ̂𝛃, that minimizes

L =
n∑

i=1

ϵ2
i = ϵ′ϵ = (y − X𝛃)′(y − X𝛃)

The least squares estimator ̂𝛃 is the solution for 𝛃 in the equations

∂L
∂𝛃

= 0

We will not give the details of taking the preceding derivatives; however, the resulting equations

that must be solved are

Normal Equations

X′X ̂𝛃=X′y (12.12)

Equations 12.12 are the least squares normal equations in matrix form. They are identical to

the scalar form of the normal equations given earlier in Equations 12.10. To solve the normal

equations, multiply both sides of Equations 12.12 by the inverse of X′X. Therefore, the least

squares estimate of 𝛃 is

Least Squares Estimate of 𝛃
̂𝛃= (X′X)−𝟏X′y (12.13)

Note that there are p = k + 1 normal equations in p= k + 1 unknowns (the values of ̂β0,
̂β1,… ,

̂βk).

Furthermore, the matrix X′X is always nonsingular, as was assumed previously, so the methods

described in textbooks on determinants and matrices for inverting these matrices can be used to

find (X′X)−1. In practice, multiple regression calculations are almost always performed using a

computer.

It is easy to see that the matrix form of the normal equations is identical to the scalar form.

Writing out Equation 12.12 in detail, we obtain

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

n
n∑

i=1

xi1

n∑

i=1

xi2 · · ·
n∑

i=1

xik

n∑

i=1

xi1

n∑

i=1

x2
i1

n∑

i=1

xi1xi2 · · ·
n∑

i=1

xi1xik

⋮ ⋮ ⋮ ⋮
n∑

i=1

xik

n∑

i=1

xikxi1

n∑

i=1

xikxi2 · · ·
n∑

i=1

x2
ik

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

̂β0

̂β1

⋮

̂βk

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

n∑

i=1

yi

n∑

i=1

xi1yi

⋮
n∑

i=1

xikyi

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

If the indicated matrix multiplication is performed, the scalar form of the normal equations (that

is, Equation 12.10) will result. In this form, it is easy to see that X′X is a (p × p) symmet-

ric matrix and X′y is a (p × 1) column vector. Note the special structure of the X′X matrix.
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The diagonal elements of X′X are the sums of squares of the elements in the columns of X, and

the off-diagonal elements are the sums of cross-products of the elements in the columns of X. Fur-

thermore, note that the elements of X′y are the sums of cross-products of the columns of X and the

observations {yi}.

The fitted regression model is

ŷi = ̂β0 +
k∑

j=1

̂βjxij i = 1, 2,… , n (12.14)

In matrix notation, the fitted model is

ŷ=X ̂𝛃

The difference between the observation yi and the fitted value ŷi is a residual, say, ei = yi − ŷi.

The (n × 1) vector of residuals is denoted by

e= y− ŷ (12.15)

E X A M P L E 12.2 Wire Bond Strength

with Matrix Notation

In Example 12.1, we illustrated fitting the multiple regression

model

y = β0 + β1x1 + β2x2 + ϵ

where y is the observed pull strength for a wire bond, x1 is the

wire length, and x2 is the die height. The 25 observations are

in Table 12.2. We will now use the matrix approach to fit the

previous regression model to these data. The model matrix X
and y vector for this model are

X =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 2 50

1 8 110

1 11 120

1 10 550

1 8 295

1 4 200

1 2 375

1 2 52

1 9 100

1 8 300

1 4 412

1 11 400

1 12 500

1 2 360

1 4 205

1 4 400

1 20 600

1 1 585

1 10 540

1 15 250

1 15 290

1 16 510

1 17 590

1 6 100

1 5 400

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

y =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

9.95

24.45

31.75

35.00

25.02

16.86

14.38

9.60

24.35

27.50

17.08

37.00

41.95

11.66

21.65

17.89

69.00

10.30

34.93

46.59

44.88

54.12

56.63

22.13

21.15

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

The X′X matrix is

X′X =
⎡
⎢
⎢
⎣

1

2

50

1

8

110

· · ·
· · ·
· · ·

1

5

400

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

1 2 50

1 8 110

⋮ ⋮ ⋮
1 5 400

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎣

25 206 8,294

206 2,396 77,177

8,294 77,177 3,531,848

⎤
⎥
⎥
⎦

and the X′y vector is

X′y =
⎡
⎢
⎢
⎣

1 1 · · · 1

2 8 · · · 5

50 110 · · · 400

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

9.95

24.45

⋮
21.15

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎣

725.82

8,008.47

274,816.71

⎤
⎥
⎥
⎦

The least squares estimates are found from Equation 12.13 as

̂𝛃 = (X′X)−1X′y

or

⎡
⎢
⎢
⎣

̂β0

̂β1

̂β2

⎤
⎥
⎥
⎦

=
⎡
⎢
⎢
⎣

25 206 8,294

206 2,396 77,177

8,294 77,177 3,531,848

⎤
⎥
⎥
⎦

−1
⎡
⎢
⎢
⎣

725.82

8,008.37

274,11.31

⎤
⎥
⎥
⎦

=
⎡
⎢
⎢
⎣

0.214653 −0.007491 −0.000340

−0.007491 0.001671 −0.000019

−0.000340 −0.000019 +0.0000015

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

725.82

8,008.47

274,811.31

⎤
⎥
⎥
⎦

=
⎡
⎢
⎢
⎣

2.26379143

2.74426964

0.01252781

⎤
⎥
⎥
⎦
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Therefore, the fitted regression model with the regression

coefficients rounded to five decimal places is

ŷ1 = 2.26379 + 2.74427x1 + 0.01253x2

This is identical to the results obtained in Example 12.1.

This regression model can be used to predict values of

pull strength for various values of wire length (x1) and die

height (x2). We can also obtain the fitted values ŷi by substitut-

ing each observation (xi1, xi2), i = 1, 2,… , n, into the equation.

For example, the first observation has x11 = 2 and x12 = 50, and

the fitted value is

T A B L E 12.3 Observations, Fitted Values, and Residuals

Observation
Number yi ŷi ei = yi − ŷi

1 9.95 8.38 1.57

2 24.45 25.60 −1.15

3 31.75 33.95 −2.20

4 35.00 36.60 −1.60

5 25.02 27.91 −2.89

6 16.86 15.75 1.11

7 14.38 12.45 1.93

8 9.60 8.40 1.20

9 24.35 28.21 −3.86

10 27.50 27.98 −0.48

11 17.08 18.40 −1.32

12 37.00 37.46 −0.46

13 41.95 41.46 0.49

Observation
Number yi ŷi ei = yi − ŷi

14 11.66 12.26 −0.60

15 21.65 15.81 5.84

16 17.89 18.25 −0.36

17 69.00 64.67 4.33

18 10.30 12.34 −2.04

19 34.93 36.47 −1.54

20 46.59 46.56 0.03

21 44.88 47.06 −2.18

22 54.12 52.56 1.56

23 56.63 56.31 0.32

24 22.13 19.98 2.15

25 21.15 21.00 0.15

ŷ1 = 2.26379 + 2.74427x11 + 0.01253x12

= 2.26379 + 2.74427(2) + 0.01253(50) = 8.38

The corresponding observed value is y1 = 9.95. The residual
corresponding to the first observation is

e1 = y1 − ŷ1 = 9.95 − 8.38 = 1.57

Table 12.3 displays all 25 fitted values ŷi and the correspond-

ing residuals. The fitted values and residuals are calculated to

the same accuracy as the original data.

Computers are almost always used in fitting multiple regression models. See Table 12.4 for

some annotated computer output for the least squares regression model for the wire bond pull

strength data. The upper part of the table contains the numerical estimates of the regression

coefficients. The computer also calculates several other quantities that reflect important infor-

mation about the regression model. In subsequent sections, we define and explain the quantities

in this output.

Estimating 𝛔2 Just as in simple linear regression, it is important to estimate σ2, the variance

of the error term ϵ, in a multiple regression model. Recall that in simple linear regression the

estimate of σ2 was obtained by dividing the sum of the squared residuals by n − 2. Now there
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T A B L E 12.4
Multiple Regression Output from Software for the Wire Bond
Pull Strength Data

Regression Analysis: Strength versus Length, Height

Strength = 2.26 + 2.74 Length + 0.0125 Height

Predictor Coef SE Coef T P VIF

Constant 2.264 1.060 2.14 0.044

Length 2.74427 0.09352 29.34 0.000 1.2

Height 0.012528 0.002798 4.48 0.000 1.2

S = 2.288 R-Sq = 98.1% R-Sq (adj) = 97.9%

PRESS = 156.163 R-Sq (pred) = 97.44%

Analysis of Variance

Source DF SS MS F P

Regression 2 5990.8 2995.4 572.17 0.000

Residual error 22 115.2 5.2

Total 24 6105.9

Source DF Seq SS

Length 1 5885.9

Height 1 104.9

Predicted Values for New Observations

New Obs Fit SE Fit 95.0% CI 95.0% PI

1 27.663 0.482 (26.663, 28.663) (22.814, 32.512)

Values of Predictors for New Observations

New Obs Length Height

1 8.00 275

are two parameters in the simple linear regression model, so in multiple linear regression with p
parameters, a logical estimator for σ2 is

Estimator of Variance

σ̂2 =

n∑

i=1

e2
i

n − p
=

SSE

n − p
(12.16)

This is an unbiased estimator of σ2. Just as in simple linear regression, the estimate of σ2 is

usually obtained from the analysis of variance for the regression model. The numerator of

Equation 12.16 is called the error or residual sum of squares, and the denominator n − p is called

the error or residual degrees of freedom.

We can find a computing formula for SSE as follows:

SSE =
n∑

i=1

(yi − ŷ)2 =
n∑

i=1

e2
i = e′e
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Substituting e= y− ŷ= y − X ̂𝛃 into the equation, we obtain

SSE = y′y− ̂𝛃X′y = 27,178.5316 − 27,063.3581 = 115.174 (12.17)

Table 12.4 shows that the estimate of σ2 for the wire bond pull strength regression model is

σ̂2 = 115.2∕22 = 5.2364. The computer output rounds the estimate to σ̂2 = 5.2.

12.1.4 Properties of the Least Squares Estimators

The statistical properties of the least squares estimators ̂β0,
̂β1,… ,

̂βk may be easily found under

certain assumptions on the error terms ϵ1, ϵ2,… , ϵn, in the regression model. Paralleling the

assumptions made in Chapter 11, we assume that the errors ϵi are statistically independent with

mean zero and variance σ2. Under these assumptions, the least squares estimators ̂β0,
̂β1,… ,

̂βk
are unbiased estimators of the regression coefficients β0, β1,… , βk. This property may be shown

as follows:

E( ̂𝛃) = E[(X′X)−1X′Y]
= E[(X′X)−1X′(X𝛃 + 𝛜)]
= E[(X′X)−1X′X𝛃 + (X′X)−1X′𝛜]
= 𝛃

because E(𝛜) = 0 and (X′X)−1X′X = I, the identity matrix. Thus, ̂𝛃 is an unbiased estimator of 𝛃.

The variances of the ̂𝛃’s are expressed in terms of the elements of the inverse of the X′X
matrix. The inverse of X′X times the constant σ2 represents the covariance matrix of the regres-

sion coefficients ̂𝛃. The diagonal elements of σ2 (X′X)−1 are the variances of ̂β0,
̂β1,… ,

̂βk, and the

off-diagonal elements of this matrix are the covariances. For example, if we have k = 2 regressors,

such as in the pull strength problem,

C = (X′X)−1 =
⎡
⎢
⎢
⎣

C00 C01 C02

C10 C11 C12

C20 C21 C22

⎤
⎥
⎥
⎦

which is symmetric (C10 = C01, C20 = C02, and C21 = C12) because (X′X)−1 is symmetric, and

we have
V( ̂βj) = σ2Cjj, j = 0, 1, 2

cov( ̂βi,
̂βj) = σ2Cij, i ≠ j

In general, the covariance matrix of ̂𝛃 is a (p × p) symmetric matrix whose jjth element is the

variance of ̂βj and whose i, jth element is the covariance between ̂βi and ̂βj, that is,

cov( ̂𝛃) = σ2(X′X)−1 = σ2C

The estimates of the variances of these regression coefficients are obtained by replacing σ2

with an estimate. When σ2 is replaced by its estimate σ̂2, the square root of the estimated variance

of the jth regression coefficient is called the estimated standard error of ̂βj or se ( ̂βj) =
√

σ̂2Cjj.

These standard errors are a useful measure of the precision of estimation for the regression

coefficients; small standard errors imply good precision.

Multiple regression computer programs usually display these standard errors. For

example, the computer output in Table 12.4 reports se( ̂β0) = 1.060, se( ̂β1) = 0.09352, and

se ( ̂β2) = 0.002798. The intercept estimate is about twice the magnitude of its standard error,

and ̂β1 and β are considerably larger than se ( ̂β1) and se ( ̂β2). This implies reasonable precision

of estimation, although the parameters β1 and β2 are much more precisely estimated than the

intercept (this is not unusual in multiple regression).
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12.2 Hypothesis Tests in Multiple

Linear Regression
In multiple linear regression problems, certain tests of hypotheses about the model parame-

ters are useful in measuring model adequacy. In this section, we describe several important

hypothesis-testing procedures. As in the simple linear regression case, hypothesis testing requires

that the error terms ϵi in the regression model are normally and independently distributed with

mean zero and variance σ2.

12.2.1 Test for Significance of Regression
The test for significance of regression is a test to determine whether a linear relationship exists

between the response variable y and a subset of the regressor variables x1, x2,… , xk. The appro-

priate hypotheses are

Hypotheses for ANOVA Test

H0∶ β1 = β2 = · · · = βk = 0

H0∶ βj ≠ 0 for at least one j (12.18)

Rejection of H0: β1 = β2 = · · · = βk = 0 implies that at least one of the regressor variables x1,

x2,… , xk contributes significantly to the model.

The test for significance of regression is a generalization of the procedure used in simple

linear regression. The total sum of squares SST is partitioned into a sum of squares due to the

model or to regression and a sum of squares due to error, say,

SST = SSR + SSE

Now if H0: β1 = β2 = · · · = βk = 0 is true, SSR/σ2 is a chi-square random variable with k degrees

of freedom. Note that the number of degrees of freedom for this chi-square random variable is

equal to the number of regressor variables in the model. We can also show that the SSE/σ2 is a

chi-square random variable with n − p degrees of freedom, and that SSE and SSR are independent.

The test statistic for H0: β1 = β2 = · · · = βk = 0 is

Test Statistic for ANOVA

F0 =
SSR∕k

SSE∕(n − p)
=

MSR

MSE
(12.19)

We should reject H0 if the computed value of the test statistic in Equation 12.19, f 0, is greater than

f α,k,n−p. The procedure is usually summarized in an analysis of variance table such as Table 12.5.
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T A B L E 12.5
Analysis of Variance for Testing Significance of Regression
in Multiple Regression

Source of Variation Sum of Squares Degrees of Freedom Mean Square f 0

Regression SSR k MSR MSR/MSE

Error or residual SSE n − p MSE

Total SST n − 1

A computational formula for SSR may be found easily. Now because SST =
∑n

i=1
y2

i −(∑n
i=1

yi
)2∕n = y′y −

(∑n
i=1

yi
)2∕n, we may rewrite Equation 12.19 as

SSE = y′y −

( n∑

i=1

yi

)2

n
−

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

̂𝛃′X′y −

( n∑

i=1

yi

)2

n

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

or

SSE = SST − SSR (12.20)

Therefore, the regression sum of squares is

SSR = ̂𝛃′X′y −

( n∑

i=1

yi

)2

n
(12.21)

E X A M P L E 12.3 Wire Bond Strength ANOVA

We test for significance of regression (with α = 0.05) using

the wire bond pull strength data from Example 12.1. The total

sum of squares is

SST = y′y −

(
n∑

i=1

yi

)2

n

= 27,178.5316 − (725.82)2

25

= 6105.9447

The regression or model sum of squares is computed from

Equation 12.21 as follows:

SSR = ̂𝛃′X′y −

(
n∑

i=1

yi

)2

n

= 27,063.3581 − (725.82)2

25
= 5990.7712

and by subtraction

SSE = SST − SSR = y′y − ̂𝛃′X′y = 115.1716

The analysis of variance is shown in Table 12.6. To test

H0: β1 = β2 = 0, we calculate the statistic

f0 =
MSR

MSE
= 2995.3856

5.2352
= 572.17

Because f 0 > f 0.05,2,22 = 3.44 (or because the P-value is con-

siderably smaller than α = 0.05), we reject the null hypothesis

and conclude that pull strength is linearly related to either wire

length or die height, or both.

Practical Interpretation: Rejection of H0 does not neces-

sarily imply that the relationship found is an appropriate model

for predicting pull strength as a function of wire length and die

height. Further tests of model adequacy are required before we

can be comfortable using this model in practice.
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T A B L E 12.6 Test for Significance of Regression

Source of
Variation Sum of Squares

Degrees of
Freedom

Mean
Square f 0 P-value

Regression 5990.7712 2 2995.3856 572.17 1.08E-19

Error or residual 115.1735 22 5.2352

Total 6105.9447 24

Most multiple regression computer programs provide the test for significance of regression

in their output display. The middle portion of Table 12.4 is the computer output for this example.

Compare Tables 12.4 and 12.6 and note their equivalence apart from rounding. The P-value is

rounded to zero in the computer output.

R2 and Adjusted R2 We may also use the coefficient of multiple determination R2 as a global

statistic to assess the fit of the model. Computationally,

R2 =
SSR

SST
= 1 −

SSE

SST
(12.22)

For the wire bond pull strength data, we find that R2 = SSR/SST = 5990.7712/6105.9447 = 0.9811.

Thus, the model accounts for about 98% of the variability in the pull strength response (refer to the

computer software output in Table 12.4). The R2 statistic is somewhat problematic as a measure

of the quality of the fit for a multiple regression model because it never decreases when a variable

is added to a model.

To illustrate, consider the model fit to the wire bond pull strength data in Example 11.8.

This was a simple linear regression model with x1= wire length as the regressor. The value of

R2 for this model is R2 = 0.9640. Therefore, adding x2 = die height to the model increases R2 by

0.9811 − 0.9640 = 0.0171, a very small amount. Because R2 can never decrease when a regressor

is added, it can be difficult to judge whether the increase is telling us anything useful about the

new regressor. It is particularly hard to interpret a small increase, such as observed in the pull

strength data.

Many regression users prefer to use an adjusted R2 statistic:

Adjusted R2

R2
adj

= 1 −
SSE∕(n − p)
SST∕(n − 1)

(12.23)

Because SSE/(n − p) is the error or residual mean square and SST /(n − p) is a constant, R2
adj

will

only increase when a variable is added to the model if the new variable reduces the error mean

square. Note that for the multiple regression model for the pull strength data R2
adj

= 0.979 (see

the output in Table 12.4), whereas in Example 11.8, the adjusted R2 for the one-variable model is

R2
adj

= 0.962. Therefore, we would conclude that adding x2 = die height to the model does result

in a meaningful reduction in unexplained variability in the response.

The adjusted R2 statistic essentially penalizes the analyst for adding terms to the model.

It is an easy way to guard against overfitting, that is, including regressors that are not really
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useful. Consequently, it is very useful in comparing and evaluating competing regression

models.

12.2.2 Tests on Individual Regression Coefficients
and Subsets of Coefficients
We are frequently interested in testing hypotheses on the individual regression coefficients. Such

tests would be useful in determining the potential value of each of the regressor variables in

the regression model. For example, the model might be more effective with the inclusion of

additional variables or perhaps with the deletion of one or more of the regressors presently in

the model.

The hypothesis to test if an individual regression coefficient, say βj equals a value βj0 is

H0∶ βj = βj0 H1∶ βj ≠ βj0 (12.24)

The test statistic for this hypothesis is

T0 =
̂βj − βj0
√

σ2Cjj

=
̂βj − βj0

se( ̂βj)
(12.25)

where Cjj is the diagonal element of (X′X)−1 corresponding to ̂βj. Notice that the denominator of

Equation 12.24 is the standard error of the regression coefficient ̂βj. The null hypothesis H0: βj
= βj0 is rejected if |t0| > tα/2,n−p. This is called a partial or marginal test because the regression

coefficient ̂βj depends on all the other regressor variables xi(i ≠ j) that are in the model. More will

be said about this in the following example.

An important special case of the previous hypothesis occurs for βj = 0. If H0: βj = 0 is not

rejected, this indicates that the regressor xj can be deleted from the model. Adding a variable

to a regression model always causes the sum of squares for regression to increase and the error

sum of squares to decrease (this is why R2 always increases when a variable is added). We must

decide whether the increase in the regression sum of squares is large enough to justify using the

additional variable in the model. Furthermore, adding an unimportant variable to the model can

actually increase the error mean square, indicating that adding such a variable has actually made

the model a poorer fit to the data (this is why R2
adj

is a better measure of global model fit than the

ordinary R2).

E X A M P L E 12.4 Wire Bond Strength Coefficient Test

Consider the wire bond pull strength data, and suppose that

we want to test the hypothesis that the regression coefficient

for x2 (die height) is zero. The hypotheses are

H0∶ β2 = 0 H1∶ β2 ≠ 0

The main diagonal element of the (X′X)−1 matrix

corresponding to ̂β2 is C22 = 0.0000015, so the t-statistic in

Equation 12.25 is

t0 =
̂β2

√
σ̂2C22

= 0.01253
√
(5.2352)(0.0000015)

= 4.477
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Note that we have used the estimate of σ2 reported to

four decimal places in Table 12.6. Because t0.025,22 = 2.074,

we reject H0: β2 = 0 and conclude that the variable x2 (die

height) contributes significantly to the model. We could also

have used a P-value to draw conclusions. The P-value for

t0 = 4.477 is P = 0.0002, so with α = 0.05, we would reject

the null hypothesis.

Practical Interpretation: Note that this test measures the

marginal or partial contribution of x2 given that x1 is in the

model. That is, the t-test measures the contribution of adding

the variable x2 = die height to a model that already contains

x1 = wire length. Table 12.4 shows the computer-generated

value of the t-test computed. The computer software reports

the t-test statistic to two decimal places. Note that the com-

puter produces a t-test for each regression coefficient in the

model. These t-tests indicate that both regressors contribute

to the model.

E X A M P L E 12.5 Wire Bond Strength One-Sided

Coefficient Test

There is an interest in the effect of die height on strength. This

can be evaluated by the magnitude of the coefficient for die

height. To conclude that the coefficient for die height exceeds

0.01, the hypotheses become

H0∶ β2 = 0.01 H1∶ β2 > 0.01

For such a test, computer software can complete much of

the hard work. We need only to assemble the pieces. From the

output in Table 12.4, ̂β2 = 0.012528, and the standard error of
̂β2 = 0.002798. Therefore, the t-statistic is

t0 =
0.012528 − 0.01

0.002798
= 0.9035

with 22 degrees of freedom (error degrees of freedom). From

Table IV in Appendix A, t0.25,22 = 0.686 and t0.1,22 = 1.321.

Therefore, the P-value can be bounded as 0.1 < P-value

< 0.25. One cannot conclude that the coefficient exceeds 0.01

at common levels of significance.

There is another way to test the contribution of an individual regressor variable to the model.

This approach determines the increase in the regression sum of squares obtained by adding a

variable xj (say) to the model, given that other variables xi(i ≠ j) are already included in the

regression equation.

The procedure used to do this is called the general regression significance test, or the extra
sum of squares method. This procedure can also be used to investigate the contribution of a

subset of the regressor variables to the model. Consider the regression model with k regressor

variables

y = X𝛃 + 𝛜 (12.26)

where y is (n × 1), X is (n × p), β is (p × 1), 𝛜 is (n × 1), and p = k + 1. We would like to determine

whether the subset of regressor variables x1, x2,… , xr (r < k) as a whole contributes significantly

to the regression model. Let the vector of regression coefficients be partitioned as follows:

𝛃 =
[
𝛃1

𝛃2

]

(12.27)

where 𝛃1 is (r × 1) and 𝛃2 is [(p − r) × 1]. We wish to test the hypotheses

Hypotheses for General Regression Test

H0: 𝛃1 = 𝟎 H1: 𝛃1 ≠ 𝟎 (12.28)

where 0 denotes a vector of zeroes. The model may be written as

y = X𝛃 + 𝛜 = X1𝛃1 + X2𝛃2 + 𝛜 (12.29)
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where X1 represents the columns of X associated with 𝛃1 and X2 represents the columns of X
associated with 𝛃2.

For the full model (including both 𝛃1 and 𝛃2), we know that ̂𝛃 = (X′X)−1 X′y. In addition,

the regression sum of squares for all variables including the intercept is

SSR(𝛃) = ̂𝛃′X′y (p = k + 1 degrees of freedom)

and

MSE =
y′y − ̂𝛃X′y

n − p

SSR(𝛃) is called the regression sum of squares due to 𝛃. To find the contribution of the terms

in 𝛃1 to the regression, fit the model assuming that the null hypothesis H0: 𝛃1 = 0 to be true.

The reduced model is found from Equation 12.29 as

y = X2𝛃2 + 𝛜 (12.30)

The least squares estimate of 𝛃2 is ̂𝛃2 = (X′
2
X2)−1X′

2
y, and

SSR(𝛃2) = ̂𝛃2X′
2
y (p − r degrees of freedom) (12.31)

The regression sum of squares due to 𝛃1 given that 𝛃2 is already in the model is

SSR(𝛃1|𝛃2) = SSR(𝛃) − SSR(𝛃2) (12.32)

This sum of squares has r degrees of freedom. It is sometimes called the extra sum of squares

due to 𝛃1. Note that SSR(𝛃1|𝛃2) is the increase in the regression sum of squares due to including

the variables x1, x2,… , xr in the model. Now SSR(𝛃1|𝛃2) is independent of MSE, and the null

hypothesis 𝛃1 = 0 may be tested by the statistic.

F Statistic for General Regression Tests

F0 =
SSR(𝛃1|𝛃2)∕r

MSE
(12.33)

If the computed value of the test statistic f 0 > f α,r,n−p, we reject H0, concluding that at least one

of the parameters in 𝛃1 is not zero and, consequently, at least one of the variables x1, x2,… , xr in

X1 contributes significantly to the regression model. Some authors call the test in Equation 12.33

a partial F-test.
The partial F-test is very useful. We can use it to measure the contribution of each individual

regressor xj as if it were the last variable added to the model by computing

SSR(βj|β0, β1,… , βj−1, βj+1,… , βk), j = 1, 2,… , k

This is the increase in the regression sum of squares due to adding xj to a model that already

includes x1,… , xj−1, xj+1,… , xk. The partial F-test is a more general procedure in that we

can measure the effect of sets of variables. The partial F-test plays a major role in model
building—that is, in searching for the best set of regressor variables to use in the model.
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E X A M P L E 12.6 Wire Bond Strength General

Regression Test

Consider the wire bond pull-strength data in Example 12.1.

We investigate the contribution of two new variables, x3 and

x4, to the model using the partial F-test approach. The new

variables are explained at the end of this example. That is, we

wish to test

H0: β3 = β4 = 0 H1: β3 ≠ 0 or β4 ≠ 0

To test this hypothesis, we need the extra sum of squares due

to β3 and β4 or

SSR(β4, β3|β2, β1, β0) = SSR(β4, β3, β2, β1, β0) − SSR(β2, β1, β0)
= SSR(β4, β3, β2, β1, |β0) − SSR(β2, β1, |β0)

In Example 12.3, we calculated

SSR(β2, β1, |β0) = 𝛃′X′y −

(
n∑

i=1

yi

)2

n
= 5990.7712 (2 degrees of freedom)

Also, Table 12.4 shows the computer output for the model

with only x1 and x2 as predictors. In the analysis of variance

table, we can see that SSR = 5990.8, and this agrees with our

calculation. In practice, the computer output would be used to

obtain this sum of squares.

T A B L E 12.7 Regression Analysis: y versus x1, x2, x3, x4

The regression equation is y = 5.00 + 1.90 x1 + 0.0151 x2 + 0.0460 x3 − 0.000008 x4

Predictor Coef SE Coef T P

Constant 4.996 1.655 3.02 0.007

x1 1.9049 0.3126 6.09 0.000

x2 0.01513 0.01051 1.44 0.165

x3 0.04595 0.01666 2.76 0.012

x4 −0.00000766 0.00001641 −0.47 0.646

S = 2.02474 R − Sq = 98.75% R − Sq(adj) = 98.4%

Analysis of Variance

Source DF SS MS F P

Regression 4 6024.0 1506.0 367.35 0.000

Residual error 20 82.0 4.1

Total 24 6105.9

Source DF Seq SS

x1 1 5885.9

x2 1 104.9

x3 1 32.3

x4 1 0.9

If we fit the model Y = β0 + β1x1 + β2x2 + β3x3 + β4x4, we

can use the same matrix formula. Alternatively, we can look

at SSR from computer output for this model. The analysis of

variance table for this model is shown in Table 12.7 and we

see that

SSR(β4, β3, β2, β1|β0) = 6024.0 (4 degrees of freedom)

Therefore,

SSR(β4, β3|β2, β1, β0) = 6024.0 − 5990.8

= 33.2 (2 degrees of freedom)

This is the increase in the regression sum of squares due to

adding x3 and x4 to a model already containing x1 and x2.

To test H0, calculate the test statistic

f0 =
SSR(β4, β3|β2, β1, β0)∕2

MSE
=

33.2∕2

4.1
= 4.05

Note that MSE from the full model using x1, x2, x3, and x4 is

used in the denominator of the test statistic. Because f 0.05,2,20

= 3.49, we reject H0 and conclude that at least one of the new

variables contributes significantly to the model. Further anal-

ysis and tests will be needed to refine the model and determine

whether one or both of x3 and x4 are important.
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The mystery of the new variables can now be explained.

These are quadratic powers of the original predictors of wire

length and wire height. That is, x3 = x2
1

and x4 = x2
2
. A test

for quadratic terms is a common use of partial F-tests. With

this information and the original data for x1 and x2, we can

use computer software to reproduce these calculations. Multi-

ple regression allows models to be extended in such a simple

manner that the real meaning of x3 and x4 did not even enter

into the test procedure.

If a partial F-test is applied to a single variable, it is equivalent to a t-test. To see this, consider

the computer software regression output for the wire bond pull strength in Table 12.4. Just below

the analysis of variance summary in this table, the quantity labeled “‘SeqSS”’ shows the sum of

squares obtained by fitting x1 alone (5885.9) and the sum of squares obtained by fitting x2 after

x1 (104.9). In our notation, these are referred to as SSR(β1|β0) and SSR(β2, β1|β0), respectively.

Therefore, to test H0: β2 = 0, H1: β2 ≠ 0, the partial F-test is

f0 =
SSR(β2|β1, β0)∕1

MSE
= 104.92

5.24
= 20.2

where MSE is the mean square for residual in the computer output in Table 12.4. This statistic

should be compared to an F-distribution with 1 and 22 degrees of freedom in the numerator and

denominator, respectively. From Table 12.4, the t-test for the same hypothesis is t0 = 4.48. Note

that t2
0
= 4.482 = 20.07 = f0, except for round-off error. Furthermore, the square of a t-random

variable with ν degrees of freedom is an F-random variable with 1 and v degrees of freedom.

Consequently, the t-test provides an equivalent method to test a single variable for contribution

to a model. Because the t-test is typically provided by computer output, it is the preferred method

to test a single variable.

12.3 Confidence Intervals in Multiple

Linear Regression

12.3.1 Confidence Intervals on Individual

Regression Coefficients
In multiple regression models, it is often useful to construct confidence interval estimates for the

regression coefficients {βj}. The development of a procedure for obtaining these confidence inter-

vals requires that the errors {ϵi} are normally and independently distributed with mean zero and

variance σ2. This is the same assumption required in hypothesis testing. Therefore, the observa-

tions {Yi} are normally and independently distributed with mean β0 +
∑k

j=1
βjxij and variance σ2.

Because the least squares estimator ̂𝛃 is a linear combination of the observations, it follows that
̂𝛃 is normally distributed with mean vector β and covariance matrix σ2(X′X)−1. Then each of the

statistics

T =
̂βj − βj
√

σ̂2Cjj

j = 0, 1,… , k (12.34)

has a t distribution with n − p degrees of freedom where Cjj is the jjth element of the (X′X)−1

matrix, and σ̂2 is the estimate of the error variance, obtained from Equation 12.16. This leads to

the following 100(1 − α)% confidence interval for the regression coefficient βj, j = 0, 1,… , k.
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Confidence Interval on a Regression Coefficient
A 100(1 − α)% confidence interval on the regression coefficient βj, j = 0, 1,… , k in the

multiple linear regression model is given by

̂βj − tα∕2,n−p

√

σ̂2Cjj ≤ βj ≤
̂βj + tα∕2,n−p

√

σ̂2Cjj (12.35)

Because
√

σ̂2Cjj is the standard error of the regression coefficient ̂βj, we would also write the CI

formula as ̂βj − tα∕2,n−p se(βj) ≤ βj ≤
̂βj + tα∕2,n−pse(βj).

E X A M P L E 12.7 Wire Bond Strength

Confidence Interval

We construct a 95% confidence interval on the parameter β1

in the wire bond pull strength problem. The point estimate

of β1 is ̂β1 = 2.74427, and the diagonal element of (X′X)−1

corresponding to β1 is C11 = 0.001671. The estimate of σ2 is

σ̂2 = 5.2352 and t0.025,22 = 2.074. Therefore, the 95% CI on β1

is computed from Equation 12.35 as

2.74427 − (2.074)
√
(5.2352)(.001671) ≤ β1

≤ 2.74427 + (2.074)
√
(5.2352)(.001671)

which reduces to

2.55029 ≤ β1 ≤ 2.93825

Also, computer software can be used to help calculate this

confidence interval. From the regression output in Table 10.4,
̂β1 = 2.74427 and the standard error of ̂β1 = 0.0935. This

standard error is the multiplier of the t-table constant in the

confidence interval. That is, 0.0935 =
√
(5.2352)(0.001671).

Consequently, all the numbers are available from the com-

puter output to construct the interval, which is the typical

method used in practice.

12.3.2 Confidence Interval on the Mean Response
We may also obtain a confidence interval on the mean response at a particular point, say, x01,

x02,… , x0k. To estimate the mean response at this point, define the vector

x0 =

⎡
⎢
⎢
⎢
⎢
⎣

1

x01

x02

⋮
x0k

⎤
⎥
⎥
⎥
⎥
⎦

The mean response at this point is E(Y|x0) = μY|x0
= x′

0
𝛃, which is estimated by

μ̂Y|x0
= x′

0
̂𝛃 (12.36)

This estimator is unbiased because E(x′
0
̂β) = x′

0
𝛃 = E(Y|x0) = μY|x0

and the variance of μ̂Y|x0
is

V(μ̂Y|x0
) = σ2x′

0
(X′X)−1x0 (12.37)

A 100(1 − α)% CI on μY|x0
can be constructed from the statistic

μ̂Y|x0
− μY|x0

√

σ̂2x′
0
(X′X)−1x0

(12.38)
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Confidence Interval on the Mean Response
For the multiple linear regression model, a 100(1 − α)% confidence interval on the mean
response at the point x01, x02,… , x0k is

μ̂Y|x0
− tα∕2,n−p

√

σ̂2x′
0
(X′X)−1x0 ≤ μY|x0

≤ μ̂Y|x0
+ tα∕2,n−p

√

σ̂2x′
0
(X′X)−1x0 (12.39)

Equation 12.39 is a CI about the regression plane (or hyperplane). It is the multiple regression

generalization in Equation 11.32.

E X A M P L E 12.8 Wire Bond Strength Confidence

Interval on the Mean Response

The engineer in Example 12.1 would like to construct a 95%

CI on the mean pull strength for a wire bond with wire length

x1 = 8 and die height x2 = 275. Therefore,

x0 =
⎡
⎢
⎢
⎣

1

8

275

⎤
⎥
⎥
⎦

The estimated mean response at this point is found from

Equation 12.36 as

μ̂Y|x0
= x′

0
̂β =

[
1 8 275

] ⎡
⎢
⎢
⎣

2.26379

2.74427

0.01253

⎤
⎥
⎥
⎦

= 27.66

The variance of μ̂Y|x0
is estimated by

σ̂2x′
0
(X′X)−1x0 = 5.2352

[
1 8 275

]

⎡
⎢
⎢
⎣

.214653 −.007491 −.000340

−.007491 .001671 −.000019

−.000340 −.000019 .0000015

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

1

8

275

⎤
⎥
⎥
⎦

= 5.2352(0.0444) = 0.23244

Therefore, a 95% CI on the mean pull strength at this point is

found from Equation 12.39 as

27.66 − 2.074
√

0.23244 ≤ μY|x0
≤ 27.66 + 2.074

√
0.23244

which reduces to

26.66 ≤ μY|x0
≤ 28.66

Some computer software will provide estimates of the mean

for a point of interest x0 and the associated CI. Table 12.4

shows the computer output for Example 12.8. Both the esti-

mate of the mean and the 95% CI are provided.

12.4 Prediction of New Observations
A regression model can be used to predict new or future observations on the response variable

Y corresponding to particular values of the independent variables, say, x01, x02,… , x0k. If x′
0
=

[1, x01, x02,… , x0k], a point estimate of the future observation Y0 at the point x01, x02,… , x0k is

ŷ0 = x′
0
̂𝛃 (12.40)

Prediction Interval
A 100(1 − α)% prediction interval on a future observation is

ŷ0 − tα∕2,n−p

√

σ̂2(1 + x′
0
(X′X)−1x0) ≤ Y0 ≤ ŷ0 + tα∕2,n−p

√

σ̂2(1 + x′
0
(X′X)−1x0) (12.41)
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FIGURE 12.5

An example of extrapolation in multiple
regression.
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This prediction interval is a generalization of the prediction interval given in Equation 11.33

for a future observation in simple linear regression. If we compare the prediction interval

Equation 12.41 with the expression for the confidence interval on the mean, Equation 12.39,

you will observe that the prediction interval is always wider than the confidence interval.

The confidence interval expresses the error in estimating the mean of a distribution, and the

prediction interval expresses the error in predicting a future observation from the distribution

at the point x0. This must include the error in estimating the mean at that point as well as the

inherent variability in the random variable Y at the same value x = x0.

Also, we might want to predict the mean of several values of Y , say m, all at the same value

x = x0. Because the variance of a sample mean is σ2/m, Equation 12.41 is modified as follows.

Replace the constant 1 under the square root with 1/m to reflect the lower variability in the mean

of m observations. This results in a narrower interval.

In predicting new observations and in estimating the mean response at a given point x01,

x02,… , x0k, we must be careful about extrapolating beyond the region containing the original

observations. It is very possible that a model that fits well in the region of the original data will no

longer fit well outside of that region. In multiple regression, inadvertently extrapolating is often

easy because the levels of the variables (xi1, xi2,… , xik), i = 1, 2,… , n, jointly define the region

containing the data. As an example, consider Figure 12.5, which illustrates the region containing

the observations for a two-variable regression model. Note that the point (x01, x02) lies within the

ranges of both regressor variables x1 and x2, but it is outside the region that is actually spanned

by the original observations. This is sometimes called a hidden extrapolation. Either predicting

the value of a new observation or estimating the mean response at this point is an extrapolation

of the original regression model.

E X A M P L E 12.9 Wire Bond Strength

Confidence Interval

Suppose that the engineer in Example 12.1 wishes to con-

struct a 95% prediction interval on the wire bond pull strength

when the wire length is x1 = 8 and the die height is x2 = 275.

Note that x′
0
=
[
1 8 275

]
, and the point estimate of the pull

strength is ŷ0 = x′
0
̂β = 27.66. Also, in Example 12.8, we calcu-

lated x′
0
(X′X)−1x0 = 0.04444. Therefore, from Equation 12.41

we have

27.66 − 2.074
√

5.2352(1 + 0.0444)

≤ Y0 ≤ 27.66 + 2.074
√

5.2352(1 + 0.0444)

and the 95% prediction interval is

22.81 ≤ Y0 ≤ 32.51

Notice that the prediction interval is wider than the confidence

interval on the mean response at the same point, calculated in

Example 12.8. The computer output in Table 12.4 also dis-

plays this prediction interval.
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12.5 Model Adequacy Checking

12.5.1 Residual Analysis
The residuals from the multiple regression model, defined by ei = yi − ŷi, play an important role

in judging model adequacy just as they do in simple linear regression. As noted in Section 11.7.1,

several residual plots are often useful; these are illustrated in Example 12.10. It is also helpful

to plot the residuals against variables not presently in the model that are possible candidates for

inclusion. Patterns in these plots may indicate that the model may be improved by adding the

candidate variable.

E X A M P L E 12.10 Wire Bond Strength Residuals

The residuals for the model from Example 12.1 are shown

in Table 12.3. A normal probability plot of these residuals is

shown in Figure 12.6. No severe deviations from normality

are obviously apparent, although the two largest residuals

(e15 = 5.84 and e17 = 4.33) do not fall extremely close to a

straight line drawn through the remaining residuals.

The residuals are plotted against ŷ in Figure 12.7, and against x1 and x2 in Figures 12.8

and 12.9, respectively.∗ The two largest residuals, e15 and e17, are apparent. Figure 12.8 gives

some indication that the model underpredicts the pull strength for assemblies with short wire

length (x1 ≤ 6) and long wire length (x1 ≥ 15) and overpredicts the strength for assemblies with

intermediate wire length (7 ≤ x1 ≤ 14). The same impression is obtained from Figure 12.7. Either

the relationship between strength and wire length is not linear (requiring that a term involving x2
1
,

say, be added to the model) or other regressor variables not presently in the model affected the

response.
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FIGURE 12.6

Normal probability plot of residuals.
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FIGURE 12.7

Plot of residuals against ŷ.

............................................................................................................................................

∗There are other methods, such as those described in Montgomery, Peck, and Vining (2012) and Myers (1990), that

plot a modified version of the residual, called a partial residual, against each regressor. These partial residual plots are

useful in displaying the relationship between the response y and each individual regressor.
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FIGURE 12.8

Plot of residuals against x1.
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FIGURE 12.9

Plot of residuals against x2.

The standardized residuals

Standardized Residual
di =

ei
√

MSE

=
ei

√
σ̂2

(12.42)

are often more useful than the ordinary residuals when assessing residual magnitude. For the

wire bond strength example, the standardized residuals corresponding to e15 and e17 are d15 =
5.84∕

√
5.2352 = 2.55 and d17 = 4.33∕

√
5.2352 = 1.89, and they do not seem unusually large.

Inspection of the data does not reveal any error in collecting observations 15 and 17, nor does it

produce any other reason to discard or modify these two points.

In the wire bond strength example, we used the standardized residuals di = ei∕
√
σ̂2 as a

measure of residual magnitude. Some analysts prefer to plot standardized residuals instead of

ordinary residuals because the standardized residuals are scaled so that their standard deviation is

approximately unity. Consequently, large residuals (that may indicate possible outliers or unusual

observations) will be more obvious from inspection of the residual plots.

Many regression computer programs compute other types of scaled residuals. One of the

most popular are the studentized residuals.

Studentized Residual

ri =
ei

√
σ̂2(1 − hii)

i = 1, 2,… , n (12.43)

where hii is the ith diagonal element of the matrix

H = X(X′X)−1 X′

The H matrix is sometimes called the hat matrix because

ŷ = X ̂𝛃 = X(X′X)−1 X′y = Hy

Thus, H transforms the observed values of y into a vector of fitted values ŷ.
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Because each row of the matrix X corresponds to a vector, say x′i = [1, xi1, xi2,… , xik],
another way to write the diagonal elements of the hat matrix is

Diagonal Elements of Hat Matrix

hii = x′i (X
′X)−1xi (12.44)

Note that apart from σ2, hii is the variance of the fitted value ŷi. The quantities hii were used in

the computation of the confidence interval on the mean response in Section 12.3.2.

Under the usual assumptions that the model errors are independently distributed with mean

zero and variance σ2, we can show that the variance of the ith residual ei is

V(ei) = σ2(1 − hii), i = 1, 2,… , n

Furthermore, the hii elements must fall in the interval 0 < hii ≤ 1. This implies that the standard-

ized residuals understate the true residual magnitude; thus, the studentized residuals would be a

better statistic to examine in evaluating potential outliers.

To illustrate, consider the two observations identified in the wire bond strength data

(Example 12.10) as having residuals that might be unusually large, observations 15 and 17.

The standardized residuals are

d17 =
e15
√
σ̂2

= 5.84
√

5.2352
= 2.55 and d17 =

e17
√

MSE

= 4.33
√

5.2352
= 1.89

Now h15,15 = 0.0737 and h17,17 = 0.2593, so the studentized residuals are

r15 =
e15

√

σ̂2(1 − h15,15)
= 5.84

√
5.2352(1 − 0.0737)

= 2.65

and

r17 =
e17

√

σ̂2(1 − h17,17)
= 4.33

√
5.2352(1 − 0.2593)

= 2.20

Notice that the studentized residuals are larger than the corresponding standardized residuals.

However, the studentized residuals are still not so large as to cause us serious concern about

possible outliers.

12.5.2 Influential Observations
When using multiple regression, we occasionally find that some subset of the observations is

unusually influential. Sometimes these influential observations are relatively far away from the

vicinity where the rest of the data were collected. A hypothetical situation for two variables is

depicted in Figure 12.10 in which one observation in x-space is remote from the rest of the data.

The disposition of points in the x-space is important in determining the properties of the model.

For example, point (xi1, xi2) in Figure 12.10 may be very influential in determining R2, the esti-

mates of the regression coefficients, and the magnitude of the error mean square.

We would like to examine the influential points to determine whether they control many

model properties. If these influential points are “bad” points, or erroneous in any way, they should

be eliminated. On the other hand, there may be nothing wrong with these points, but at least we

would like to determine whether or not they produce results consistent with the rest of the data.

In any event, even if an influential point is a valid one, if it controls important model properties,

we would like to know this, because it could have an impact on the use of the model.
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FIGURE 12.10

A point that is remote in x-space.  x i1 x1

xi2

x2

Region containing

all observations

except the ith

Montgomery, Peck, and Vining (2012) and Myers (1990) describe several methods for

detecting influential observations. An excellent diagnostic is a measure of the squared distance

between the usual least squares estimate of 𝛃 based on all n observations and the estimate

obtained when the ith point is removed, say, ̂𝛃(i). The Cook’s distance measure is

Cook’s Distance

Di =
( ̂𝛃(i) − ̂𝛃)′X′X( ̂𝛃(i) − ̂𝛃)

pσ̂2
i = 1, 2,… , n

Clearly, if the ith point is influential, its removal will result in ̂𝛃(i) changing considerably from

the value ̂𝛃. Thus, a large value of Di implies that the ith point is influential. The statistic Di is

actually computed using

Cook’s Distance Formula

Di =
r2

i

p
hii

(1 − hii)
i = 1, 2,… , n (12.45)

From Equation 12.45, we see that Di consists of the squared studentized residual, which reflects

how well the model fits the ith observation yi [recall that ri = ei∕
√
σ̂2(1 − hii)] and a component

that measures how far that point is from the rest of the data [hii/(1 − hii) is a measure of the

distance of the ith point from the centroid of the remaining n − 1 points]. A value of Di > 1

would indicate that the point is influential. Either component of Di (or both) may contribute to a

large value.

E X A M P L E 12.11 Wire Bond Strength Cook’s Distances

Table 12.8 lists the values of the hat matrix diagonals hii and

Cook’s distance measure Di for the wire bond pull strength

data in Example 12.1. To illustrate the calculations, consider

the first observation:

D1 =
r2

1

p
•

h11

(1 − h11)
= −

[

e1∕
√

MSE(1 − h11)
]2

p
•

h11

(1 − h11)

=

[

1.57∕
√

5.2352(1 − 0.1573)
]2

3
•

0.1573

(1 − 0.1573)
= 0.035
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The Cook distance measure Di does not identify any poten-

tially influential observations in the data, for no value of Di
exceeds unity.

T A B L E 12.8 Influence Diagnostics for the Wire Bond Pull Strength Data

Observations i hii

Cook’s Distance
Measure Di

1 0.1573 0.035

2 0.1116 0.012

3 0.1419 0.060

4 0.1019 0.021

5 0.0418 0.024

6 0.0749 0.007

7 0.1181 0.036

8 0.1561 0.020

9 0.1280 0.160

10 0.0413 0.001

11 0.0925 0.013

12 0.0526 0.001

13 0.0820 0.001

Observations i hii

Cook’s Distance
Measure Di

14 0.1129 0.003

15 0.0737 0.187

16 0.0879 0.001

17 0.2593 0.565

18 0.2929 0.155

19 0.0962 0.018

20 0.1473 0.000

21 0.1296 0.052

22 0.1358 0.028

23 0.1824 0.002

24 0.1091 0.040

25 0.0729 0.000

12.6 Aspects of Multiple Regression Modeling
In this section, we briefly discuss several other aspects of building multiple regression models.

These include polynomial terms, categorical variables, model building, and correlated regressors.

12.6.1 Polynomial Regression Models
The linear model Y = X𝛃 + 𝛆 is a general model that can be used to fit any relationship that is

linear in the unknown parameters 𝛃. This includes the important class of polynomial regres-
sion models. For example, the second-degree polynomial in one variable

Y = β0 + β1x + β11x2 + ε (12.46)

and the second-degree polynomial in two variables

Y = β0 + β1x1 + β2x2 + β11x2
1
+ β22x2

2
+ β12x1x2 + ε (12.47)

are linear regression models.

Polynomial regression models are widely used when the response is curvilinear because the

general principles of multiple regression can be applied. Example 12.12 illustrates some of the

types of analyses that can be performed.
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E X A M P L E 12.12 Airplane Sidewall Panels

Sidewall panels for the interior of an airplane are formed in

a 1500-ton press. The unit manufacturing cost varies with

the production lot size. The following data give the average

cost per unit (in hundreds of dollars) for this product (y) and

the production lot size (x). The scatter diagram, shown in

Figure 12.11, indicates that a second-order polynomial may

be appropriate.

y 1.81 1.70 1.65 1.55 1.48 1.40

x 20 25 30 35 40 50

y 1.30 1.26 1.24 1.21 1.20 1.18

x 60 65 70 75 80 80

We fit the model

Y = β0 + β1x + β11x2 + ε

The y vector, the model matrix X, and the 𝛃 vector are as

follows:

y =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1.81

1.70

1.65

1.55

1.48

1.40

1.30

1.26

1.24

1.21

1.20

1.18

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

X =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 20 400

1 25 625

1 30 900

1 35 1225

1 40 1600

1 50 2500

1 60 3600

1 65 4225

1 70 4900

1 75 5625

1 80 6400

1 90 8100

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

𝛃 =
⎡
⎢
⎢
⎣

β0

β1

β2

⎤
⎥
⎥
⎦
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FIGURE 12.11 Data for Example 12.12

Solving the normal equations X′X̂𝛃 = X′y gives the fitted

model

ŷ = 2.19826629 − 0.02252236x + 0.00012507x2

Conclusions: The test for significance of regression is shown

in Table 12.9. Because f 0 = 1762.3 is significant at 1%, we

conclude that at least one of the parameters β1 and β11 is not

zero. Furthermore, the standard tests for model adequacy do

not reveal any unusual behavior, and we would conclude that

this is a reasonable model for the sidewall panel cost data.

T A B L E 12.9 Test for Significance of Regression for the Second-Order Model

Source of
Variation

Sum of
Squares

Degrees of
Freedom

Mean
Square f 0 P-value

Regression 0.52516 2 0.26258 1762.28 2.12E-12

Error 0.00134 9 0.00015

Total 0.5265 11

In fitting polynomials, we generally like to use the lowest-degree model consistent with the

data. In this example, it would seem logical to investigate the possibility of dropping the quadratic

term from the model. That is, we would like to test

H0∶β11 = 0 H1∶β11 ≠ 0
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T A B L E 12.10 Analysis of Variance for Example 12.12, Showing the Test for H0: 𝛃11 = 0

Source of
Variation

Sum of
Squares

Degrees of
Freedom

Mean
Square f 0 P-value

Regression SSR(β1, β11
|
| β0) = 0.52516 2 0.26258 1767.40 2.09E-12

Linear SSR(β1
|
| β0) = 0.49416 1 0.49416 2236.12 7.13E-13

Quadratic SSR(β11
|
| β0, β1) = 0.03100 1 0.03100 208.67 1.56E-7

Error 0.00133 9 0.00015

Total 0.5265 11

The general regression significance test can be used to test this hypothesis. We need to determine

the “extra sum of squares” due to β11, or

SSR(β11 | β1, β0) = SSR(β1, β11 | β0) − SSR(β1 | β0)

The sum of squares SSR(β1, β11|β0) = 0.52516 from Table 12.10. To find SSR(β1 | β0), we fit a

simple linear regression model to the original data, yielding

ŷ = 1.90036313 − 0.00910056x

It can be easily verified that the regression sum of squares for this model is

SSR(β1|β0) = 0.4942

Therefore, the extra sum of the squares due to β11, given that β1 and β0 are in the model, is

SSR(β11|β1, β0) = SSR(β1, β11|β0) − SSR(β1|β0)
= 0.5252 − 0.4942 = 0.031

The analysis of variance with the test of H0: β11 = 0 incorporated into the procedure is displayed

in Table 12.10. Note that the quadratic term contributes significantly to the model.

12.6.2 Categorical Regressors and Indicator Variables
The regression models presented in previous sections have been based on quantitative vari-

ables, that is, variables that are measured on a numerical scale. For example, variables such as

temperature, pressure, distance, and voltage are quantitative variables. Occasionally, we need to

incorporate categorical variables in a regression model. For example, suppose that one of the

variables in a regression model is the operator who is associated with each observation yi. Assume

that only two operators are involved. We may wish to assign different levels to the two operators

to account for the possibility that each operator may have a different effect on the response.

The usual method of accounting for the different levels of a qualitative variable is to use indi-
cator variables. For example, to introduce the effect of two different operators into a regression

model, we could define an indicator variable as follows:

x =
{

0 if the observation is from operator 1

1 if the observation is from operator 2

In general, a qualitative variable with r-levels can be modeled by r − 1 indicator variables, which

are assigned the value of either 0 or 1. Thus, if there are three operators, the different levels will

be accounted for by the indicator variables defined as follows:
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x1 x2

0 0 if the observation is from operator 1

1 0 if the observation is from operator 2

0 1 if the observation is from operator 3

Indicator variables are also referred to as dummy variables. The following example [from Mont-

gomery, Peck, and Vining (2012)] illustrates some of the uses of indicator variables.

E X A M P L E 12.13 Surface Finish

A mechanical engineer is investigating the surface finish of

metal parts produced on a lathe and its relationship to the speed

(in revolutions per minute) of the lathe. The data are shown in

Table 12.11. Note that the data have been collected using two

different types of cutting tools. Because the type of cutting tool

likely affects the surface finish, we fit the model

Y = β0 + β1x1 + β2x2 + ε

T A B L E 12.11 Surface Finish Data

Observation
Number, i

Surface
Finish yi RPM

Type of
Cutting Tool

1 45.44 225 302

2 42.03 200 302

3 50.10 250 302

4 48.75 245 302

5 47.92 235 302

6 47.79 237 302

7 52.26 265 302

8 50.52 259 302

9 45.58 221 302

10 44.78 218 302

11 33.50 224 416

12 31.23 212 416

13 37.52 248 416

14 37.13 260 416

15 34.70 243 416

16 33.92 238 416

17 32.13 224 416

18 35.47 251 416

19 33.49 232 416

20 32.29 216 416

where Y is the surface finish, x1 is the lathe speed in revolutions

per minute, and x2 is an indicator variable denoting the type

of cutting tool used; that is,

x2 =
{

0, for tool type 302

1, for tool type 416

The parameters in this model may be easily interpreted.

If x2 = 0, the model becomes

Y = β0 + β1x1 + ε

which is a straight-line model with slope β1 and intercept β0.

However, if x2 = 1, the model becomes

Y = β0 + β1x1 + β2(1) + ε = (β0 + β2) + β1x1 + ε

which is a straight-line model with slope β1 and intercept β0 +
β2. Thus, the model Y = β0 + β1x + β2x2 + ε implies that sur-

face finish is linearly related to lathe speed and that the slope

β1 does not depend on the type of cutting tool used. However,

the type of cutting tool does affect the intercept, and β2 indi-

cates the change in the intercept associated with a change in

tool type from 302 to 416.

The model matrix X and y vector for this problem are as

follows:

x =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 225 1

1 200 1

1 250 1

1 245 1

1 235 1

1 237 1

1 265 1

1 259 1

1 221 1

1 218 1

1 224 1

1 212 1

1 248 1

1 260 1

1 243 1

1 238 1

1 224 1

1 251 1

1 232 1

1 216 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

y =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

45.44

42.03

50.10

48.75

47.92

47.79

52.26

50.52

45.58

44.78

33.50

31.23

37.52

37.13

34.70

33.92

32.13

35.47

33.49

32.29

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

The fitted model is

ŷ = 14.27620 + 0.14115x1 − 13.28020x2
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Conclusions: The analysis of variance for this

model is shown in Table 12.12. Note that the hypothesis

H0: β1 = β2 = 0 (significance of regression) would be rejected

at any reasonable level of significance because the P-value is

very small. This table also contains the sums of squares

SSR = SSR(β1, β2|β0) = SSR(β1|β0| + SSR(β2)β1, β0)

so a test of the hypothesis H0: β2 = 0 can be made. Because

this hypothesis is also rejected, we conclude that tool type has

an effect on surface finish.

T A B L E 12.12 Analysis of Variance

Source of
Variation

Sum of
Squares

Degrees of
Freedom

Mean
Square f 0 P-value

Regression 1012.0595 2 506.0297 1103.69 1.02E-18

SSR(β1|β0) 130.6091 1 130.6091 284.87 4.70E-12

SSR(β2|β1, β0) 881.4504 1 881.4504 1922.52 6.24E-19

Error 7.7943 17 0.4585

Total 1019.8538 19

It is also possible to use indicator variables to investigate whether tool type affects both the

slope and intercept. Let the model be

Y = β0 + β1 x1 + β2x2 + β3 x1x2 + ε

where x2 is the indicator variable. Now if tool type 302 is used, x2 = 0 and the model is

Y = β0 + β1x1 + ε

If tool type 416 is used, x2 = 1 and the model becomes

Y = β0 + β1 x1 + β2 + β3 x1 + ε = (β0 + β2) + (β1 + β3)x1 + ε

Note that β2 is the change in the intercept and that β3 is the change in slope produced by a change

in tool type.

Another method of analyzing these data is to fit separate regression models to the data for

each tool type. However, the indicator variable approach has several advantages. First, only one

regression model must be fit. Second, by pooling the data on both tool types, more degrees of

freedom for error are obtained. Third, tests of both hypotheses on the parameters β2 and β3 are

just special cases of the extra sum of squares method.

12.6.3 Selection of Variables and Model Building
An important problem in many applications of regression analysis involves selecting the set of

regressor variables to be used in the model. Sometimes previous experience or underlying theoret-

ical considerations can help the analyst specify the set of regressor variables to use in a particular

situation. Usually, however, the problem consists of selecting an appropriate set of regressors

from a set that quite likely includes all the important variables, but we are sure that not all these

candidate regressors are necessary to adequately model the response Y .

In such a situation, we are interested in variable selection; that is, screening the candidate

variables to obtain a regression model that contains the “best” subset of regressor variables. We

would like the final model to contain enough regressor variables so that in the intended use of

the model (prediction, for example), it will perform satisfactorily. On the other hand, to keep
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model maintenance costs to a minimum and to make the model easy to use, we would like the

model to use as few regressor variables as possible. The compromise between these conflicting

objectives is often called finding the “best” regression equation. However, in most problems,

no single regression model is “best” in terms of the various evaluation criteria that have been

proposed. A great deal of judgment and experience with the system being modeled is usually

necessary to select an appropriate set of regressor variables for a regression equation.

No single algorithm will always produce a good solution to the variable selection prob-

lem. Most of the currently available procedures are search techniques, and to perform satisfacto-

rily, they require interaction with judgment by the analyst. We now briefly discuss some of the

more popular variable selection techniques. We assume that there are K candidate regressors, x1,

x2,… , xk, and a single response variable y. All models will include an intercept term β0, so the

model with all variables included would have K + 1 terms. Furthermore, the functional form of

each candidate variable (for example, x1 = 1/x, x2 = ln x, etc.) is assumed to be correct.

All Possible Regressions This approach requires that the analyst fit all the regression

equations involving one candidate variable, all regression equations involving two candidate

variables, and so on. Then these equations are evaluated according to some suitable criteria

to select the “best” regression model. If there are K candidate regressors, there are 2K total

equations to be examined. For example, if K = 4, there are 24 = 16 possible regression equations;

if K = 10, there are 210 = 1024 possible regression equations. Hence, the number of equations

to be examined increases rapidly as the number of candidate variables increases. However, there

are some very efficient computing algorithms for all possible regressions available and they are

widely implemented in statistical software, so it is a very practical procedure unless the number

of candidate regressors is fairly large. Look for a menu choice such as “Best Subsets” regression.

Several criteria may be used for evaluating and comparing the different regression models

obtained. A commonly used criterion is based on the value of R2 or the value of the adjusted

R2
,R2

adj
. Basically, the analyst continues to increase the number of variables in the model until

the increase in R2 or the adjusted R2
adj

is small. Often, we will find that the R2
adj

will stabilize and

actually begin to decrease as the number of variables in the model increases. Usually, the model

that maximizes R2
adj

is considered to be a good candidate for the best regression equation. Because

we can write R2
adj

= 1 − {MSE∕[SST∕(n − 1)]} and SST
/
(n − 1) is a constant, the model that max-

imizes the R2
adj

value also minimizes the mean square error, so this is a very attractive criterion.

Another criterion used to evaluate regression models is the Cp statistic, which is a measure

of the total mean square error for the regression model. We define the total standardized mean

square error for the regression model as

Γp =
1

σ2

n∑

i=1

E[̂Yi − E(Yi)]2

= 1

σ2

{ n∑

i=1

[E(Yi) − E(̂Yi)]2 +
n∑

i=1

V(̂Yi)

}

= 1

σ2
[(bias)2 + variance]

We use the mean square error from the full K + 1 term model as an estimate of σ2; that is,

σ̂2 = MSE(K + 1). Then an estimator of Γp is [see Montgomery, Peck, and Vining (2012) for

the details]:

Cp Statistic

Cp =
SSE(p)
σ̂2

− n + 2p (12.48)
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If the p-term model has negligible bias, it can be shown that

E(Cp|zero bias) = p

Therefore, the values of Cp for each regression model under consideration should be evaluated

relative to p. The regression equations that have negligible bias will have values of Cp that are

close to p, and those with significant bias will have values of Cp that are significantly greater than

p. We then choose as the “best” regression equation either a model with minimum Cp or a model

with a slightly larger Cp, that does not contain as much bias (i.e., Cp ≅ p).

The PRESS statistic can also be used to evaluate competing regression models. PRESS is an

acronym for prediction error sum of squares, and it is defined as the sum of the squares of the

differences between each observation yi and the corresponding predicted value based on a model

fit to the remaining n − 1 points, say ŷ(i). So PRESS provides a measure of how well the model is

likely to perform when predicting new data or data that were not used to fit the regression model.

The computing formula for PRESS is

Prediction Error Sum of Squares (PRESS)

PRESS =
n∑

i=1

(yi − ŷ(i))2 =
n∑

i=1

(
ei

1 − hii

)2

where ei = yi − ŷi is the usual residual. Thus PRESS is easy to calculate from the standard least

squares regression results. Models that have small values of PRESS are preferred.

E X A M P L E 12.14 Wine Quality

Table 12.13 presents data on taste-testing 38 brands of pinot

noir wine [the data were first reported in an article by Kwan,

Kowalski, and Skogenboe in the Journal Agricultural and
Food Chemistry (1979, Vol. 27), and it also appears as one of

the default data sets in the Minitab software package].
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FIGURE 12.12 A matrix of scatter plots from computer software for the wine quality data.

The response variable is y = quality, and we wish to find the

“best” regression equation that relates quality to the other five

parameters.

Figure 12.12 is the matrix of scatter plots for the wine

quality data. We notice that there are some indications of pos-

sible linear relationships between quality and the regressors,
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T A B L E 12.13 Wine Quality Data

x1 x2 x3 x4 x5 y
Clarity Aroma Body Flavor Oakiness Quality

1 1.0 3.3 2.8 3.1 4.1 9.8

2 1.0 4.4 4.9 3.5 3.9 12.6

3 1.0 3.9 5.3 4.8 4.7 11.9

4 1.0 3.9 2.6 3.1 3.6 11.1

5 1.0 5.6 5.1 5.5 5.1 13.3

6 1.0 4.6 4.7 5.0 4.1 12.8

7 1.0 4.8 4.8 4.8 3.3 12.8

8 1.0 5.3 4.5 4.3 5.2 12.0

9 1.0 4.3 4.3 3.9 2.9 13.6

10 1.0 4.3 3.9 4.7 3.9 13.9

11 1.0 5.1 4.3 4.5 3.6 14.4

12 0.5 3.3 5.4 4.3 3.6 12.3

13 0.8 5.9 5.7 7.0 4.1 16.1

14 0.7 7.7 6.6 6.7 3.7 16.1

15 1.0 7.1 4.4 5.8 4.1 15.5

16 0.9 5.5 5.6 5.6 4.4 15.5

17 1.0 6.3 5.4 4.8 4.6 13.8

18 1.0 5.0 5.5 5.5 4.1 13.8

19 1.0 4.6 4.1 4.3 3.1 11.3

20 .9 3.4 5.0 3.4 3.4 7.9

21 0.9 6.4 5.4 6.6 4.8 15.1

22 1.0 5.5 5.3 5.3 3.8 13.5

23 0.7 4.7 4.1 5.0 3.7 10.8

24 0.7 4.1 4.0 4.1 4.0 9.5

25 1.0 6.0 5.4 5.7 4.7 12.7

26 1.0 4.3 4.6 4.7 4.9 11.6

27 1.0 3.9 4.0 5.1 5.1 11.7

28 1.0 5.1 4.9 5.0 5.1 11.9

29 1.0 3.9 4.4 5.0 4.4 10.8

30 1.0 4.5 3.7 2.9 3.9 8.5

31 1.0 5.2 4.3 5.0 6.0 10.7

32 0.8 4.2 3.8 3.0 4.7 9.1

33 1.0 3.3 3.5 4.3 4.5 12.1

34 1.0 6.8 5.0 6.0 5.2 14.9

35 0.8 5.0 5.7 5.5 4.8 13.5

36 0.8 3.5 4.7 4.2 3.3 12.2

37 0.8 4.3 5.5 3.5 5.8 10.3

38 0.8 5.2 4.8 5.7 3.5 13.2
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but there is no obvious visual impression of which regressors

would be appropriate. Table 12.14 lists all possible regressions

output from the software. In this analysis, we asked the com-

puter software to present the best three equations for each sub-

set size. Note that the computer software reports the values of

R2
,R2

adj
,Cp, and S =

√
MSE for each model. From Table 12.14

we see that the three-variable equation with x2 = aroma, x4 =
flavor, and x5 = oakiness produces the minimum Cp equation,

whereas the four-variable model, which adds x1 = clarity to

the previous three regressors, results in maximum R2
adj

(or min-

imum MSE). The three-variable model is

ŷ = 6.47 + 0.580x2 + 1.20x4 − 0.602x5

and the four-variable model is

ŷ = 4.99 + 1.79 x1 + 0.530 x2 + 1.26 x4 − 0.659 x5

T A B L E 12.14 All Possible Regressions Computer Output for the Wine Quality Data

Best Subsets Regression: Quality versus Clarity, Aroma, …
Response is quality

O
C a
l F k
a A l i
r r B a n
i o o v e
t m d o s

Vars R-Sq R-Sq (adj) C–p S y a y r s
1 62.4 61.4 9.0 1.2712 X
1 50.0 48.6 23.2 1.4658 X
1 30.1 28.2 46.0 1.7335 X
2 66.1 64.2 6.8 1.2242 X X
2 65.9 63.9 7.1 1.2288 X X
2 63.3 61.2 10.0 1.2733 X X
3 70.4 67.8 3.9 1.1613 X X X
3 68.0 65.2 6.6 1.2068 X X X
3 66.5 63.5 8.4 1.2357 X X X
4 71.5 68.0 4.7 1.1568 X X X X
4 70.5 66.9 5.8 1.1769 X X X X
4 69.3 65.6 7.1 1.1996 X X X X
5 72.1 67.7 6.0 1.1625 X X X X X

These models should now be evaluated further using

residual plots and the other techniques discussed earlier

in the chapter to see whether either model is satisfactory

with respect to the underlying assumptions and to determine

whether one of them is preferable. It turns out that the residual

plots do not reveal any major problems with either model. The

value of PRESS for the three-variable model is 56.0524, and

for the four-variable model, it is 60.3327. Because PRESS is

smaller in the model with three regressors and because it is

the model with the smallest number of predictors, it would

likely be the preferred choice.

Stepwise Regression Stepwise regression is probably the most widely used variable selec-

tion technique. The procedure iteratively constructs a sequence of regression models by adding

or removing variables at each step. The criterion for adding or removing a variable at any step is
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usually expressed in terms of a partial F-test. Let f in be the value of the F-random variable for

adding a variable to the model, and let f out be the value of the F-random variable for removing a

variable from the model. We must have f in ≥ f out, and usually f in = f out.

Stepwise regression begins by forming a one-variable model using the regressor variable that

has the highest correlation with the response variable Y . This will also be the regressor producing

the largest F-statistic. For example, suppose that at this step, x1 is selected. At the second step,

the remaining K − 1 candidate variables are examined, and the variable for which the partial

F-statistic

Fj =
SSR(βj|β1, β0)
MSE(xj, x1)

(12.49)

is a maximum is added to the equation provided that fj > f in. In Equation 12.4, MSE(xj, x1) denotes

the mean square for error for the model containing both x1 and xj. Suppose that this procedure

indicates that x2 should be added to the model. Now the stepwise regression algorithm determines

whether the variable x1 added at the first step should be removed. This is done by calculating the

F-statistic

F1 =
SSR(β1|β2, β0)
MSE(x1, x2)

(12.50)

If the calculated value f 1 < f out, the variable x1 is removed; otherwise it is retained, and we would

attempt to add a regressor to the model containing both x1 and x2.

In general, at each step the set of remaining candidate regressors is examined, and the regres-

sor with the largest partial F-statistic is entered provided that the observed value of f exceeds f in.

Then the partial F-statistic for each regressor in the model is calculated, and the regressor with

the smallest observed value of F is deleted if the observed f < f out. The procedure continues until

no other regressors can be added to or removed from the model.

Stepwise regression is almost always performed using a computer program. The analyst

exercises control over the procedure by the choice of f in and f out. Some stepwise regression

computer programs require that numerical values be specified for f in and f out. Because the num-

ber of degrees of freedom on MSE depends on the number of variables in the model, which

changes from step to step, a fixed value of f in and f out causes the type I and type II error rates

to vary. Some computer programs allow the analyst to specify the type I error levels for f in

and f out. However, the “advertised” significance level is not the true level because the variable

selected is the one that maximizes (or minimizes) the partial F-statistic at that stage. Some-

times it is useful to experiment with different values of f in and f out (or different advertised type

I error rates) in several different runs to see whether this substantially affects the choice of the

final model.

E X A M P L E 12.15 Wine Quality Stepwise Regression

Table 12.15 gives the software stepwise regression output for

the wine quality data. The software uses fixed values of a for

entering and removing variables. The default level is α = 0.15

for both decisions. The output in Table 12.12 uses the default

value. Notice that the variables were entered in the order flavor

(step 1), oakiness (step 2), and aroma (step 3) and that no

variables were removed. No other variable could be entered,

so the algorithm terminated. This is the three-variable model

found by all possible regressions that results in a minimum

value of Cp.
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T A B L E 12.15
Stepwise Regression Output for the
Wine Quality Data

Stepwise Regression: Quality versus Clarity, Aroma, …

Alpha-to-Enter: 0.15 Alpha-to-Remove: 0.15

Response is Quality on 5 predictors, with N = 38

Step 1 2 3

Constant 4.941 6.912 6.467

Flavor 1.57 1.64 1.20

T-Value 7.73 8.25 4.36

P-Value 0.000 0.000 0.000

Oakiness −0.54 −0.60

T-Value −1.95 −2.28

P-Value 0.059 0.029

Aroma 0.58

T-Value 2.21

P-Value 0.034

S 1.27 1.22 1.16

R-Sq 62.42 66.11 70.38

R-Sq(adj) 61.37 64.17 67.76

C–p 9.0 6.8 3.9

Forward Selection The forward selection procedure is a variation of stepwise regression and

is based on the principle that regressors should be added to the model one at a time until there

are no remaining candidate regressors that produce a significant increase in the regression sum

of squares. That is, variables are added one at a time as long as their partial F-value exceeds

f in. Forward selection is a simplification of stepwise regression that omits the partial F-test for

deleting variables from the model that have been added at previous steps. This is a potential

weakness of forward selection; that is, the procedure does not explore the effect that adding a

regressor at the current step has on regressor variables added at earlier steps. Notice that if we

were to apply forward selection to the wine quality data, we would obtain exactly the same results

as we did with stepwise regression in Example 12.15 because stepwise regression terminated

without deleting a variable.

Backward Elimination The backward elimination algorithm begins with all K candidate

regressors in the model. Then the regressor with the smallest partial F-statistic is deleted if this

F-statistic is insignificant, that is, if f < f out. Next, the model with K − 1 regressors is fit, and

the next regressor for potential elimination is found. The algorithm terminates when no further

regressor can be deleted.
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T A B L E 12.16
Backward Elimination Output for the Wine
Quality Data

Stepwise Regression: Quality versus Clarity, Aroma, …

Backward elimination. Alpha-to-Remove: 0.1

Response is Quality on 5 predictors, with N = 38

Step 1 2 3

Constant 3.997 4.986 6.467

Clarity 2.3 1.8

T-Value 1.35 1.12

P-Value 0.187 0.269

Aroma 0.48 0.53 0.58

T-Value 1.77 2.00 2.21

P-Value 0.086 0.054 0.034

Body 0.27

T-Value 0.82

P-Value 0.418

Flavor 1.17 1.26 1.20

T-Value 3.84 4.52 4.36

P-Value 0.001 0.000 0.000

Oakiness −0.68 −0.66 −0.60

T-Value −2.52 −2.46 −2.28

P-Value 0.017 0.019 0.029

S 1.16 1.16 1.16

R-Sq 72.06 71.47 70.38

R-Sq(adj) 67.69 68.01 67.76

C-p 6.0 4.7 3.9

Table 12.16 shows the computer software package output for backward elimination applied to

the wine quality data. The α value for removing a variable is α = 0.10. Notice that this procedure

removes body at step 1 and then clarity at step 2, terminating with the three-variable model found

previously.

Some Comments on Final Model Selection We have illustrated several different approaches

to the selection of variables in multiple linear regression. The final model obtained from any

model-building procedure should be subjected to the usual adequacy checks, such as residual

analysis, lack-of-fit testing, and examination of the effects of influential points. The analyst may

also consider augmenting the original set of candidate variables with cross-products, polyno-

mial terms, or other transformations of the original variables that might improve the model. A

major criticism of variable selection methods such as stepwise regression is that the analyst may

conclude that there is one “best” regression equation. Generally, this is not the case because sev-

eral equally good regression models can often be used. One way to avoid this problem is to use
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several different model-building techniques and see whether different models result. For example,

we have found the same model for the wine quality data using stepwise regression, forward selec-

tion, and backward elimination. The same model was also one of the two best found from all

possible regressions. The results from variable selection methods frequently do not agree, so this

is a good indication that the three-variable model is the best regression equation.

If the number of candidate regressors is not too large, the all-possible regressions method

is recommended. We usually recommend using the minimum MSE and Cp evaluation criteria in

conjunction with this procedure. The all-possible regressions approach can find the “best” regres-

sion equation with respect to these criteria, but stepwise-type methods offer no such assurance.

Furthermore, the all-possible regressions procedure is not distorted by dependencies among the

regressors as stepwise-type methods are.

12.6.4 Multicollinearity
In multiple regression problems, we expect to find dependencies between the response variable

Y and the regressors xj. In most regression problems, however, we find that there are also depen-

dencies among the regressor variables xj. In situations in which these dependencies are strong,

we say that multicollinearity exists. Multicollinearity can have serious effects on the estimates

of the regression coefficients and on the general applicability of the estimated model.

The effects of multicollinearity may be easily demonstrated. The diagonal elements of the

matrix C = (X′X)-1 can be written as

Cjj =
1

(1 − R2
j )

j = 1,2,… , k

where R2
j is the coefficient of multiple determination resulting from regressing xj on the other

k − 1 regressor variables. We can think of R2
j as a measure of the correlation between xj and the

other regressors. Clearly, the stronger the linear dependency of xj on the remaining regressor vari-

ables and hence the stronger the multicollinearity, the greater the value of R2
j will be. Recall that

V(̂βj) = σ2Cjj. Therefore, we say that the variance of ̂βj is “inflated” by the quantity (1 − R2
j )

−1.

Consequently, we define the variance inflation factor for βj as

Variance Inflation Factor (VIF)

VIF(βj) =
1

(1 − R2
j )

j = 1,2,… , k (12.51)

These factors are important measures of the extent to which multicollinearity is present. If the

columns of the model matrix X are orthogonal, then the regressors are completely uncorrelated,

and the variance inflation factors will all be unity. So, any VIF that exceeds 1 indicates some level

of multicollinearity in the data.

Although the estimates of the regression coefficients are very imprecise when multicollinear-

ity is present, the fitted model equation may still be useful. For example, suppose that we wish

to predict new observations on the response. If these predictions are interpolations in the orig-

inal region of the x-space where the multicollinearity is in effect, satisfactory predictions will

often be obtained because while individual βj may be poorly estimated, the function
∑k

j=1
βjxij

may be estimated quite well. On the other hand, if the prediction of new observations requires

extrapolation beyond the original region of the x-space where the data were collected, gener-

ally we would expect to obtain poor results. Extrapolation usually requires good estimates of the

individual model parameters.

Multicollinearity arises for several reasons. It will occur when the analyst collects data such

that a linear constraint holds approximately among the columns of the X matrix. For example,
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if four regressor variables are the components of a mixture, such a constraint will always exist

because the sum of the components is always constant. Usually, these constraints do not hold

exactly, and the analyst might not know that they exist.

The presence of multicollinearity can be detected in several ways. Two of the more easily

understood of these are discussed briefly here.

1. The variance inflation factors, defined in Equation 12.5, are very useful measures of mul-

ticollinearity. The larger the variance inflation factor, the more severe the multicollinearity.

Some authors have suggested that if any variance inflation factor exceeds 10, multicollinear-

ity is a problem. Other authors consider this value too liberal and suggest that the variance

inflation factors should not exceed 4 or 5. Computer software will calculate the variance

inflation factors. Table 12-4 presents the computer-generated multiple regression output for

the wire bond pull strength data. Because both VIF1 and VIF2 are small, there is no problem

with multicollinearity.

2. If the F-test for significance of regression is significant but tests on the individual regression

coefficients are not significant, multicollinearity may be present.

Several remedial measures have been proposed for solving the problem of multicollinearity.

Augmenting the data with new observations specifically designed to break up the approximate

linear dependencies that currently exist is often suggested. However, this is sometimes impossible

because of economic reasons or because of the physical constraints that relate to xj. Another

possibility is to delete certain variables from the model, but this approach has the disadvantage

of discarding the information contained in the deleted variables.

Because multicollinearity primarily affects the stability of the regression coefficients, it

would seem that estimating these parameters by some method that is less sensitive to multi-

collinearity than ordinary least squares would be helpful. Several methods have been suggested.

One alternative to ordinary least squares, ridge regression, can be useful in combating mul-

ticollinearity. For more details on ridge regression, there are more extensive presentations in

Montgomery, Peck, and Vining (2012).

Important Terms and Concepts

All possible regressions

Analysis of variance test in multiple

regression

Backward elimination

Cp statistic

Categorical variables

Confidence interval on the mean response

Confidence interval on the regression

coefficient

Cook’s distance measure

Extra sum of squares method

Forward selection

Full model

Hat matrix

Hidden extrapolation

Indicator variables

Inference (tests and intervals) on individual

model parameters

Influential observations

Model parameters and their interpretation

in multiple regression

Multicollinearity

Multiple regression model

Outliers

Partial or marginal test

Polynomial regression model

Prediction interval on a future observation

PRESS statistic

R2

Residual analysis and model adequacy

checking

Significance of regression

Standardized residuals

Stepwise regression

Studentized residuals

Variable selection

Variance inflation factor (VIF)
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C H A P T E R O U T L I N E

13.1 Designing Engineering

Experiments

13.2 Completely Randomized

Single-Factor Experiment

13.2.1 Example: Tensile Strength

13.2.2 Analysis of Variance

13.2.3 Multiple Comparisons

Following the ANOVA

13.2.4 Residual Analysis and

Model Checking

13.2.5 Determining Sample Size

13.3 The Random-Effects Model

13.3.1 Fixed Versus Random Factors

13.3.2 ANOVA and Variance

Components

13.4 Randomized Complete

Block Design

13.4.1 Design and Statistical Analysis

13.4.2 Multiple Comparisons

13.4.3 Residual Analysis and

Model Checking

L E A R N I N G O B J E C T I V E S

After careful study of this chapter, you should be able to do the

following:

1. Design and conduct engineering experiments involving a

single factor with an arbitrary number of levels

2. Understand how the analysis of variance is used to analyze

the data from these experiments

3. Assess model adequacy with residual plots

4. Use multiple comparison procedures to identify specific

differences between means

5. Make decisions about sample size in single-factor experiments

6. Understand the difference between fixed and random factors

7. Estimate variance components in an experiment with

random factors

8. Understand the blocking principle and how it is used to

isolate the effect of nuisance factors

9. Design and analyze experiments involving the randomized

complete block design

351
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Experiments are a natural part of the engineering and scientific decision-making process.

Suppose, for example, that a civil engineer is investigating the effects of different curing methods

on the mean compressive strength of concrete. The experiment would consist of making up

several test specimens of concrete using each of the proposed curing methods and then testing

the compressive strength of each specimen. The data from this experiment could be used to

determine which curing method should be used to provide maximum mean compressive strength.

If there are only two curing methods of interest, this experiment could be designed and ana-

lyzed using the statistical hypothesis methods for two samples introduced in Chapter 10. That is,

the experimenter has a single factor of interest—curing methods—and there are only two levels
of the factor. If the experimenter is interested in determining which curing method produces the

maximum compressive strength, the number of specimens to test can be determined from the oper-

ating characteristic curves in Appendix Chart VII, and the t-test can be used to decide if the two

means differ.

Many single-factor experiments require that more than two levels of the factor be considered.

For example, the civil engineer may want to investigate five different curing methods. In this

chapter, we show how the analysis of variance (frequently abbreviated ANOVA) can be used

for comparing means when there are more than two levels of a single factor. We also discuss

randomization of the experimental runs and the important role this concept plays in the overall

experimentation strategy. In the next chapter, we show how to design and analyze experiments

with several factors.

13.1 Designing Engineering Experiments
Statistically based experimental design techniques are particularly useful in the engineering world

for solving many important problems: discovery of new basic phenomena that can lead to new

products and commercialization of new technology including new product development, new

process development, and improvement of existing products and processes. For example, con-

sider the development of a new process. Most processes can be described in terms of several

controllable variables, such as temperature, pressure, and feed rate. By using designed experi-

ments, engineers can determine which subset of the process variables has the greatest influence

on process performance. The results of such an experiment can lead to:

• Improved process yield

• Reduced variability in the process and closer conformance to nominal or target requirements

• Reduced design and development time

• Reduced cost of operation

Experimental design methods are also useful in engineering design activities during which new

products are developed and existing ones are improved. Some typical applications of statistically

designed experiments in engineering design include:

• Evaluation and comparison of basic design configurations

• Evaluation of different materials

• Selection of design parameters so that the product will work well under a wide variety of

field conditions (or so that the design will be robust)

• Determination of key product design parameters that affect product performance

The use of experimental design in the engineering design process can result in products that

are easier to manufacture, products that have better field performance and reliability than their

competitors, and products that can be designed, developed, and produced in less time.
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Designed experiments are usually employed sequentially. That is, the first experiment with a

complex system (perhaps a manufacturing process) that has many controllable variables is often

a screening experiment designed to determine those variables that are most important. Subse-

quent experiments are used to refine this information and determine which adjustments to these

critical variables are required to improve the process. Finally, the objective of the experimenter

is optimization, that is, to determine those levels of the critical variables that result in the best

process performance.

The statistical methods introduced in this chapter and Chapter 14 are essential to good

experimentation. All experiments are designed experiments; unfortunately, some of them are

poorly designed, and, as a result, valuable resources are used ineffectively. Statistically designed

experiments permit efficiency and economy in the experimental process, and the use of statistical

methods in examining the data results in scientific objectivity when drawing conclusions.

13.2 Completely Randomized

Single-Factor Experiment

13.2.1 Example: Tensile Strength
A manufacturer of paper is interested in improving the product’s tensile strength. Product

engineering believes that tensile strength is a function of the hardwood concentration in the

pulp and that the range of hardwood concentrations of practical interest is between 5 and 20%.

A team of engineers responsible for the study decides to investigate four levels of hardwood

concentration: 5%, 10%, 15%, and 20%. They decide to make up six test specimens at each

concentration level by using a pilot plant. All 24 specimens are tested on a laboratory tensile

tester in random order. The data from this experiment are shown in Table 13.1.

This is an example of a completely randomized single-factor experiment with four levels of

the factor. The levels of the factor are sometimes called treatments, and each treatment has six

observations or replicates. The role of randomization in this experiment is extremely important.

By randomizing the order of the 24 runs, the effect of any nuisance variable that may influence

the observed tensile strength is approximately balanced out. For example, suppose that there is a

warm-up effect on the tensile testing machine; that is, the longer the machine is on, the greater the

observed tensile strength. If all 24 runs are made in order of increasing hardwood concentration

(that is, all six 5% concentration specimens are tested first, followed by all six 10% concentration

specimens, etc.), any observed differences in tensile strength could also be due to the warm-up

effect. The role of randomization to identify causality was discussed in Section 10.1.

It is important to graphically analyze the data from a designed experiment. Figure 13.1

presents box plots of tensile strength at the four hardwood concentration levels. This figure indi-

cates that changing the hardwood concentration has an effect on tensile strength; specifically,

T A B L E 13.1 Tensile Strength of Paper (psi)

Hardwood Observations
Concentration (%) 1 2 3 4 5 6 Totals Averages

5 7 8 15 11 9 10 60 10.00

10 12 17 13 18 19 15 94 15.67

15 14 18 19 17 16 18 102 17.00

20 19 25 22 23 18 20 127 21.17

383 15.96
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Box plots of hardwood concentration data.
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FIGURE 13.2

Display of the model for the completely randomized
single-factor experiment.

higher hardwood concentrations produce higher observed tensile strength. Furthermore, the

distribution of tensile strength at a particular hardwood level is reasonably symmetric, and

the variability in tensile strength does not change dramatically as the hardwood concentration

changes.

Graphical interpretation of the data is always useful. Box plots show the variability of the

observations within a treatment (factor level) and the variability between treatments. We now

discuss how the data from a single-factor randomized experiment can be analyzed statistically.

13.2.2 Analysis of Variance
Suppose that we have a different levels of a single factor that we wish to compare. Sometimes, each

factor level is called a treatment, a very general term that can be traced to the early applications

of experimental design methodology in the agricultural sciences. The response for each of the

a treatments is a random variable. The observed data would appear as shown in Table 13.2. An

entry in Table 13.2, say yij, represents the jth observation taken under treatment i. We initially

consider the case that has an equal number of observations, n, on each of a treatments.

We may describe the observations in Table 13.2 by the linear statistical model

Yij = μ + τi + εij

{
i = 1, 2,… , a
j = 1, 2,… , n (13.1)

T A B L E 13.2 Typical Data for a Single-Factor Experiment

Treatment Observations Totals Averages

1 y11 y12 … y1n y1. y1.

2 y21 y22 … y2n y2. y2.

⋮ ⋮ ⋮ ⋮⋮⋮ ⋮ ⋮ ⋮

a ya1 ya2 … yan ya. ya.

y.. y..



�

� �

�

13.2 Completely Randomized Single-Factor Experiment 355

where Yij is a random variable denoting the (ij)th observation, μ is a parameter common to all

treatments called the overall mean, τi is a parameter associated with the ith treatment called

the ith treatment effect, and εij is a random error component. We assume that the errors εij are

normally and independently distributed with mean zero and variance σ2. Notice that the model

could have been written as

Yij = μi + εij

{
i = 1, 2,… , a
j = 1, 2,… , n

where μi = μ + τi is the mean of the ith treatment. In this form of the model, we see that each

treatment defines a population that has mean μi consisting of the overall mean μ plus an effect τi
that is due to that particular treatment. Therefore, each treatment can be thought of as a normal

population with mean μi and variance σ2. See Figure 13.2.

Furthermore, because we require that the observations are taken in random order and that the

environment (often called the experimental units) in which the treatments are used is as uniform

as possible, this experimental design is called a completely randomized design (CRD).
We assume that the experimenter specifically chose the a treatments. In this situation, we

wish to test hypotheses about the treatment means, and we may wish to estimate the treatment

effects. This is called the fixed-effects model.
In this section, we develop the analysis of variance (ANOVA) for the fixed-effects model.

The analysis of variance is not new to us; it was used previously in the presentation of regression

analysis. However, in this section, we show how it can be used to test for equality of treatment

effects. The treatment effects τi are usually defined as deviations from the overall mean μ, so that

a∑

i=1

τi = 0 (13.2)

We are interested in testing the equality of the a treatment means μ1, μ2,… , μa. Using

Equation 13.2, we find that this is equivalent to testing the hypotheses

H0∶ τ1 = τ2 = · · · = τa = 0 H1∶ τi ≠ 0 for at least one i (13.3)

Thus, if the null hypothesis is true, each observation consists of the overall mean μ plus a real-

ization of the random error component εij. This is equivalent to saying that all N observations are

taken from a normal distribution with mean μ and variance σ2. Therefore, if the null hypothesis

is true, changing the levels of the factor has no effect on the mean response.

The analysis of variance partitions the total variability in the sample data into two compo-

nent parts. Then, the test of the hypothesis in Equation 13.3 is based on a comparison of two

independent estimates of the population variance. Let yi. represent the total of the observations

under the ith treatment and yi. represent the average of the observations under the ith treatment.

Similarly, let y.. represent the grand total of all observations and y.. represent the grand mean of

all observations. Expressed mathematically,

yi. =
n∑

j=1

yij yi. = yi.∕n i = 1, 2,… , a

y.. =
a∑

i=1

n∑

j=1

yij y.. = y..∕N (13.4)

where N = an is the total number of observations. Thus, the “dot” subscript notation implies

summation over the subscript that it replaces.

The total variability in the data is described by the total sum of squares

SST =
a∑

i=1

n∑

j=1

(yij − y..)2

The partition of the total sum of squares is given in the following definition.
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ANOVA Sum of Squares Identity: Single Factor Experiment
The sum of squares identity is

a∑

i=1

n∑

j=1

(yij − y..)2 = n
a∑

i=1

(yi. − y..)2 +
a∑

i=1

n∑

j=1

(yij − yi.)2 (13.5)

or symbolically

SST = SSTreatments + SSE (13.6)

and degrees of freedom can be partitioned as

an − 1 = a − 1 + a(n − 1)

or

df Total = df Treatments + df Error

The identity in Equation 13.5 shows that the total variability in the data can be partitioned

into a sum of squares of differences between treatment means and the grand mean called the

treatment sum of squares, and denoted SSTreatments, and a sum of squares of differences of obser-

vations within a treatment from the treatment mean called the error sum of squares, and denoted

SSE. Differences between observed treatment means and the grand mean measure the differences

between treatments, and differences of observations within a treatment from the treatment mean

can be due only to random error.

There is also a partition of the number of degrees of freedom in Equation 13.6 that cor-

responds to the sum of squares identity. That is, there are an = N observations; thus, SST has

an −1 degrees of freedom. There are a levels of the factor, so SSTreaments has a − 1 degrees of

freedom. Finally, within any treatment, there are n replicates providing n − 1 degrees of freedom

with which to estimate the experimental error. Because there are a treatments, we have a(n − 1)

degrees of freedom for error.

The ratio

MSTreatments =
SSTreatments

a − 1

is called the mean square for treatments and the mean square for error is

MSError =
SSError

a(n − 1)
We can gain considerable insight into how the analysis of variance works by examining the

expected values of MSTreatments and MSE. This will lead us to an appropriate statistic for testing

the hypothesis of no differences among treatment means (or all τi = 0).

Expected Values of Mean Squares: Single Factor Experiment
The expected value of the treatment mean square is

E(MSTreatments) = σ2 +
n

a∑

i=1

τ2
i

a − 1

and the expected value of the error mean square is

E(MSE) = σ2
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We can show that MSTreatments and MSE are independent. Consequently, we can show that if the

null hypothesis H0 is true, the ratio

ANOVA F-Test

F0 =
SSTreatments∕(a − 1)

SSE∕[a(n − 1)]
=

MSTreatments

MSE
(13.7)

has an F-distribution with a − 1 and a(n − 1) degrees of freedom. Furthermore, from the expected

mean squares, we know that MSE is an unbiased estimator of σ2. Also, under the null hypothesis,

MSTreatments is an unbiased estimator of σ2. However, if the null hypothesis is false, the expected

value of MSTreatments is greater than σ2. Therefore, under the alternative hypothesis, the expected

value of the numerator of the test statistic (Equation 13.7) is greater than the expected value of

the denominator. Consequently, we reject H0 if the statistic is large. This implies an upper-tailed,

one-tailed critical region. Therefore, we reject H0 if f 0 > f α,a−1,a(n−1) where f 0 is the computed

value of F0 from Equation 13.7.

The computations for this test procedure are usually summarized in tabular form as shown

in Table 13.3. This is called an analysis of variance (or ANOVA) table.

T A B L E 13.3 Analysis of Variance for a Single-Factor Experiment, Fixed-Effects Model

Source of
Variation

Sum of
Squares

Degrees of
Freedom Mean Square F0

Treatments SSTreatments a − 1 MSTreatments =
SSTreatments

a − 1

MSTreatments

MSE

Error SSE a(n − 1) MSError =
SSError

a(n − 1)

Total SST an − 1

E X A M P L E 13.1 Tensile Strength ANOVA

Consider the paper tensile strength experiment described in

Section 13.2.1. This experiment is a completely randomized

design. We can use the analysis of variance to test the hypoth-

esis that different hardwood concentrations do not affect the

mean tensile strength of the paper. The hypotheses are

H0:τ1 = τ2 = τ3 = τ4 = 0 H1:τi ≠ 0 for at least one i

We use α = 0.01. The sums of squares for the analysis of vari-

ance are computed as follows:

SST = 512.96

SSTreatments = 382.79

SSE = SST − SSTreatments = 512.96 − 382.79 = 130.17

The ANOVA is summarized in Table 13.4. Because

f 0.01,3,20 = 4.94, we reject H0 and conclude that hardwood

concentration in the pulp significantly affects the mean

strength of the paper. We can also find a P-value for this test

statistic from computer software to be:

P(F3,20 > 19.60) ≃ 3.59 × 10−6

Computer software is used here to obtain the probability.

Because the P-value is considerably smaller than α = 0.01,

we have strong evidence to conclude that H0 is not true.

Practical Interpretation: There is strong evidence to

conclude that hardwood concentration has an effect on tensile

strength. However, the ANOVA does not tell us which levels

of hardwood concentration result in different tensile strength

means. We see how to answer this question in Section 13.2.3.
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T A B L E 13.4 ANOVA for the Tensile Strength Data

Source of Variation Sum of Squares Degrees of Freedom Mean Square f 0 P-value

Hardwood concentration 382.79 3 127.60 19.60 3.59 E-6

Error 130.17 20 6.51

Total 512.96 23

It can also be useful to construct 95% confidence intervals (CIs) on each individual treatment

mean. The mean of the ith treatment is defined as

μi = μ + τi i = 1, 2,… , a

A point estimator of μi is μ̂i = Yi. . Now if we assume that the errors are normally distributed,

each treatment average is normally distributed with mean μi and variance σ2/n. Thus, if σ2 were

known, we could use the normal distribution to construct a CI. Using MSE as an estimator of σ2,

we would base the CI on the t distribution because

T =
Yi. − μi
√

MSE∕n

has a t distribution with a(n − 1) degrees of freedom. This leads to the following definition of the

confidence interval.

Confidence Interval on a Treatment Mean
A 100(1 − α)% confidence interval on the mean of the ith treatment μi is

yi. − tα∕2,a(n−1)

√
MSE

n
≤ μi ≤ yi. + tα∕2,a(n−1)

√
MSE

n
(13.8)

For example, at 20% hardwood, the point estimate of the mean is y4. = 21.167,MSE = 6.51, and

t0.025,20 = 2.086, so the 95% CI is

y4. ± t0.025,20

√
MSE∕n = 21.167 ± (2.086)

√
6.51∕6

or

19.00 psi ≤ μ4 ≤ 23.34 psi

It can also be interesting to find confidence intervals on the difference in two treatment means,

say, μi − μj. The point estimator of μi − μj is Yi. − Yj., and the variance of this estimator is

V(Yi. − Yj.) =
σ2

n
+ σ2

n
= 2σ2

n
Now if we use MSE to estimate σ2,

T =
Yi. − Yj. − (μi − μj)

√
2MSE∕n

has a t distribution with a(n − 1) degrees of freedom. Therefore, a CI on μi − μj may be based on

the T statistic.
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Confidence Interval on a Difference in Treatment Means
A 100(1 − α) percent confidence interval on the difference in two treatment means μi − μj is

yi. − yj. − tα∕2,a(n−1)

√
2MSE

n
≤ μi − μj ≤ yi. − yj. + tα∕2,a(n−1)

√
2MSE

n
(13.9)

A 95% CI on the difference in means μ3 − μ2 is computed from Equation 13.9 as follows:

y3. − y2. ± t0.025,20

√
2MSE∕n = 17.00 − 15.67 ± (2.086)

√
2(6.51)∕6

or

−1.74 ≤ μ3 − μ2 ≤ 4.40

Because the CI includes zero, we would conclude that there is no difference in mean tensile

strength at these two particular hardwood levels.

Unbalanced Experiment In some single-factor experiments, the number of observations

taken under each treatment may be different. We then say that the design is unbalanced. In this

situation, slight modifications must be made in the sums of squares formulas. Let ni observations

be taken under treatment i (i = 1, 2, … , a), and let the total number of observations N =
∑a

i=1
ni.

Computational formulas for SST and SSTreatments are as shown in the following definition.

Computing Formulas for ANOVA: Single Factor with Unequal Sample Sizes
The sums of squares computing formulas for the ANOVA with unequal sample sizes ni in

each treatment are

SST =
a∑

i=1

ni∑

j=1

y2
ij −

y2..

N
(13.10)

SSTreatments =
a∑

i=1

y2
i.

ni
−

y2..

N

and

SSE = SST − SSTreatments

Choosing a balanced design has two important advantages. First, the ANOVA is relatively

insensitive to small departures from the assumption of equality of variances if the sample sizes are

equal. This is not the case for unequal sample sizes. Second, the power of the test is maximized

if the samples are of equal size.

13.2.3 Multiple Comparisons Following the ANOVA
When the null hypothesis H0:τ1 = τ2 = · · · = τa = 0 is rejected in the ANOVA, we know that

some of the treatment or factor-level means are different. However, the ANOVA does not identify

which means are different. Methods for investigating this issue are called multiple comparisons
methods. Many of these procedures are available. Here we describe a very simple one, Fisher’s
least significant difference (LSD) method and a graphical method. Montgomery (2017) presents

these and other methods and provides a comparative discussion.
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The Fisher LSD method compares all pairs of means with the null hypotheses H0:μi = μj
(for all i ≠ j) using the t-statistic

t0 =
yi. − yj.
√

2MSE

n
Assuming a two-sided alternative hypothesis, the pair of means μi and μj would be declared sig-

nificantly different if

|yi. − yj.| > LSD

where LSD, the least significant difference, is

Least Significant Difference for Multiple Comparisons

LSD = tα∕2,a(n−1)

√
2MSE

n
(13.11)

If the sample sizes are different in each treatment, the LSD is defined as

LSD = tα∕2,N−a

√

MSE

(
1

ni
+ 1

nj

)

E X A M P L E 13.2

We apply the Fisher LSD method to the hardwood concentra-

tion experiment. There are a = 4 means, n = 6, MSE = 6.51,

and t0.025,20 = 2.086. The treatment means are

y1. = 10.00 psi y2. = 15.67 psi

y3. = 17.00 psi y4. = 21.17 psi

The value of LSD is LSD = t0.025,20

√
2MSE∕n =

2.086
√

2(6.51)∕6 = 3.07. Therefore, any pair of treat-

ment averages that differs by more than 3.07 implies that

the corresponding pair of treatment means are different. The

comparisons among the observed treatment averages are as

follows:

4 vs. 1 = 21.17 − 10.00 = 11.17 > 3.07

4 vs. 2 = 21.17 − 15.67 = 5.50 > 3.07

4 vs. 3 = 21.17 − 17.00 = 4.17 > 3.07

3 vs. 1 = 17.00 − 10.00 = 7.00 > 3.07

3 vs. 2 = 17.00 − 15.67 = 1.33 < 3.07

2 vs. 1 = 15.67 − 10.00 = 5.67 > 3.07

Conclusions: From this analysis, we see that there are

significant differences between all pairs of means except 2

and 3. This implies that 10% and 15% hardwood concentration

produce approximately the same tensile strength and that

all other concentration levels tested produce different tensile

strengths. It is often helpful to draw a graph of the treatment

means, such as in Figure 13.3 with the means that are not
different underlined. This graph clearly reveals the results of

the experiment and shows that 20% hardwood produces the

maximum tensile strength.

0 5 10 15 20 25 psi

5% 10% 15% 20%

FIGURE 13.3

Results of Fisher’s LSD method.

Graphical Comparison of Means It is easy to compare treatment means graphically follow-

ing the analysis of variance. Suppose that the factor has a levels and that y1., y2.,… , ya. are the

observed averages for these factor levels. Each treatment average has standard deviation σ∕
√

n,

where σ is the standard deviation of an individual observation. If all treatment means are equal,
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0 5 10 15 20 25 30

σ /  n = 1.04

1 2 3 4

FIGURE 13.4

Tensile strength averages from the hardwood concentration experiment in relation to a normal
distribution with standard deviation

√
MSE∕n =

√
6.51∕6 = 1.04.

the observed means yi. would behave as if they were a set of observations drawn at random from

a normal distribution with mean μ and standard deviation σ∕
√

n.

Visualize this normal distribution capable of being slid along an axis below which the treat-

ment means y1., y2.,… , ya. are plotted. If all treatment means are equal, there should be some

position for this distribution that makes it obvious that the yi. values were drawn from the same

distribution. If this is not the case, the yi. values that do not appear to have been drawn from this

distribution are associated with treatments that produce different mean responses.

The only flaw in this logic is that σ is unknown. However, we can use
√

MSE from the analysis

of variance to estimate σ. This implies that a t distribution should be used instead of a normal

distribution in making the plot, but because the t looks so much like the normal, sketching a

normal curve that is approximately 6
√

MSE∕n units wide will usually work very well.

Figure 13.4 shows this arrangement for the hardwood concentration experiment in Exam-

ple 13.1. The standard deviation of this normal distribution is
√

MSE∕n =
√

6.51∕6 = 1.04

If we visualize sliding this distribution along the horizontal axis, we note that there is no location

for the distribution that would suggest that all four observations (the plotted means) are typical,

randomly selected values from that distribution. This, of course, should be expected because the

analysis of variance has indicated that the means differ, and the display in Figure 13.4 is just a

graphical representation of the analysis of variance results. The figure does indicate that treatment

4 (20% hardwood) produces paper with higher mean tensile strength than do the other treatments,

and treatment 1 (5% hardwood) results in lower mean tensile strength than do the other treatments.

The means of treatments 2 and 3 (10% and 15% hardwood, respectively) do not differ.

This simple procedure is a rough but very effective multiple comparison technique. It works

well in many situations.

13.2.4 Residual Analysis and Model Checking
The analysis of variance assumes that the observations are normally and independently distributed

with the same variance for each treatment or factor level. These assumptions should be checked

by examining the residuals. A residual is the difference between an observation yij and its esti-

mated (or fitted) value from the statistical model being studied, denoted as ŷij. For the completely

randomized design ŷij = yi. and each residual is

eij = yij − yi.

This is the difference between an observation and the corresponding observed treatment mean.

The residuals for the paper tensile strength experiment are shown in Table 13.5. Using yi. to

calculate each residual essentially removes the effect of hardwood concentration from the data;

consequently, the residuals contain information about unexplained variability.

The normality assumption can be checked by constructing a normal probability plot of the

residuals. To check the assumption of equal variances at each factor level, plot the residuals against
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T A B L E 13.5 Residuals for the Tensile Strength Experiment

Hardwood
Concentration (%) Residuals

5 −3.00 −2.00 5.00 1.00 −1.00 0.00

10 −3.67 1.33 −2.67 2.33 3.33 −0.67

15 −3.00 1.00 2.00 0.00 −1.00 1.00

20 −2.17 3.83 0.83 1.83 −3.17 −1.17

the factor levels and compare the spread in the residuals. It is also useful to plot the residuals

against yi. (sometimes called the fitted value); the variability in the residuals should not depend

in any way on the value of yi. Most statistical software packages can construct these plots on

request. A pattern that appears in these plots usually suggests the need for a transformation, that is,
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FIGURE 13.5(a)

Normal probability plot of residuals from the hardwood
concentration experiment.
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Plot of residuals versus factor levels
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Plot of residuals versus yi.
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analyzing the data in a different metric. For example, if the variability in the residuals increases

with yi., a transformation such as log y or
√

y should be considered. In some problems, the

dependency of residual scatter on the observed mean yi. is very important information. It may

be desirable to select the factor level that results in maximum response; however, this level may

also cause more variation in response from run to run.

The independence assumption can be checked by plotting the residuals against the time or run

order in which the experiment was performed. A pattern in this plot, such as sequences of positive

and negative residuals, may indicate that the observations are not independent. This suggests that

time or run order is important or that variables that change over time are important and have not

been included in the experimental design.

A normal probability plot of the residuals from the paper tensile strength experiment is shown

in Figure 13.5(a). Figures 13.5(b) and 13.5(c) present the residuals plotted against the factor levels

and the fitted value yi., respectively. These plots do not reveal any model inadequacy or unusual

problem with the assumptions.

13.2.5 Determining Sample Size
In any experimental design problem, the choice of the sample size or number of replicates to

use is important. Operating characteristic (OC) curves can be used to provide guidance here.

Recall that an OC curve is a plot of the probability of a type II error (β) for various sample sizes

against values of the parameters under test. The OC curves can be used to determine how many

replicates are required to achieve adequate sensitivity.

The power of the ANOVA test is

1 − β = P(Reject H0 |H0 is false)
= P(F0 > fα,a−1,a(n−1) |H0 is false) (13.12)

To evaluate this probability statement, we need to know the distribution of the test statistic F0 if

the null hypothesis is false. Because ANOVA compares several means, the null hypothesis can be

false in different ways. For example, possibly τ1 > 0, τ2 = 0, τ3 < 0, and so forth. It can be shown

that the power for ANOVA in Equation 13.12 depends on the τi’s only through the function

Φ2 =
n

a∑

i=1

τ2
i

aσ2

Therefore, an alternative hypotheses for the τi’s can be used to calculate Φ2 and this in turn can

be used to calculate the power. Specifically, it can be shown that if H0 is false, the statistic F0 =
MSTreatments/MSE has a noncentral F-distribution with a− 1 and n(a− 1) degrees of freedom and

a noncentrality parameter that depends on Φ2. Instead of tables for the noncentral F-distribution,

OC curves are used to evaluate β defined in Equation 13.12. These curves plot β against Φ.

OC curves are available for α = 0.05 and α = 0.01 and for several values of the number of

degrees of freedom for numerator (denoted v1) and denominator (denoted v2). Figure 13.6 gives

representative OC curves, one for a = 4 (v1 = 3) and one for a = 5 (v1 = 4) treatments. Notice

that for each value of a, there are curves for α = 0.05 and α = 0.01.

In using the curves, we must define the difference in means that we wish to detect in terms

of

a∑

i=1

τ2
i . Also, the error variance σ2 is usually unknown. In such cases, we must choose ratios of

a∑

i=1

τ2
i ∕σ

2 that we wish to detect. Alternatively, if an estimate of σ2 is available, one may replace

σ2 with this estimate. For example, if we were interested in the sensitivity of an experiment that

has already been performed, we might use MSE as the estimate of σ2.
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FIGURE 13.6

Operating characteristic curves for the fixed-effects model analysis of variance. Top curves for four
treatments and bottom curves for five treatments.
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E X A M P L E 13.3

Suppose that five means are being compared in a completely

randomized experiment with α = 0.01. The experimenter

would like to know how many replicates to run if it is

important to reject H0 with probability at least 0.90 if
5∑

i=1

τ2
i ∕σ

2 = 5.0. The parameter Φ2 is, in this case,

Φ2 =
n

a∑

i=1

τ2
i

aσ2
= n

5
(5) = n

and for the OC curve with v1 = a − 1 = 5 − 1 = 4 and v2 =
a(n − 1) = 5(n − 1) error degrees of freedom refer to the lower

curve in Figure 13.6. As a first guess, try n = 4 replicates.

This yields Φ2 = 4, Φ = 2, and v2 = 5(3) = 15 error degrees

of freedom. Consequently, from Figure 13.6, we find that β ≃
0.38. Therefore, the power of the test is approximately 1 − β
= 1 − 0.38 = 0.62, which is less than the required 0.90, so we

conclude that n = 4 replicates is not sufficient. Proceeding in

a similar manner, we can construct the following table:

n 𝚽2 𝚽 a(n − 1) 𝛃 Power = (1 − 𝛃)

4 4 2.00 15 0.38 0.62

5 5 2.24 20 0.18 0.82

6 6 2.45 25 0.06 0.94

Conclusions: At least n = 6 replicates must be run in

order to obtain a test with the required power.

13.3 The Random-Effects Model

13.3.1 Fixed Versus Random Factors
In many situations, the factor of interest has a large number of possible levels. The analyst is

interested in drawing conclusions about the entire population of factor levels. If the experimenter

randomly selects a of these levels from the population of factor levels, we say that the factor

is a random factor. Because the levels of the factor actually used in the experiment are cho-

sen randomly, the conclusions reached are valid for the entire population of factor levels. We

assume that the population of factor levels is either of infinite size or is large enough to be

considered infinite. Notice that this is a very different situation than the one we encountered

in the fixed-effects case in which the conclusions apply only for the factor levels used in the

experiment.

13.3.2 ANOVA and Variance Components
The linear statistical model is

Yij = μ + τi + εij

{
i = 1,2,… , a
j = 1,2,… , n

(13.13)

where the treatment effects τi and the errors εij are independent random variables. Note that the

model is identical in structure to the fixed-effects case, but the parameters have a different inter-

pretation. If the variance of the treatment effects τi is σ2
τ, by independence, the variance of the

response is

V(Yij) = σ2
τ + σ2 (13.14)

The variances σ2
τ and σ2 are called variance components, and the model, Equation 13.14, is

called the components of variance model or the random-effects model. To test hypotheses in

this model, we assume that the errors εij are normally and independently distributed with mean
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zero and variance σ2 and that the treatment effects τi are normally and independently distributed

with mean zero and variance σ2
τ.∗

For the random-effects model, testing the hypothesis that the individual treatment effects are

zero is meaningless. It is more appropriate to test hypotheses about σ2
τ. Specifically,

H0∶ σ2
τ = 0 H1∶ σ2

τ > 0

If σ2
τ = 0, all treatments are identical; but if σ2

τ > 0, there is variability between treatments.

The ANOVA decomposition of total variability is still valid; that is,

SST = SSTreatments + SSE (13.15)

However, the expected values of the mean squares for treatments and error are somewhat different

than in the fixed-effects case.

Expected Values of Mean Squares: Random Effects
In the random-effects model for a single-factor, completely randomized experiment, the

expected mean square for treatments is

E(MSTreatments) = E
(

SSTreatments

a − 1

)

= σ2 + nσ2
τ (13.16)

and the expected mean square for error is

E(MSE) = E
[

SSE

a(n − 1)

]

= σ2 (13.17)

From examining the expected mean squares, it is clear that both MSE and MSTreatments estimate

σ2 when H0∶ σ2
τ = 0 is true. Furthermore, MSE and MSTreatments are independent. Consequently,

the ratio

F0 =
MSTreatments

MSE
(13.18)

is an F random variable with a − 1 and a(n − 1) degrees of freedom when H0 is true. The null

hypothesis would be rejected at the a-level of significance if the computed value of the test statistic

f 0 > f α,a−1,a(n−1).

The computational procedure and construction of the ANOVA table for the random-effects

model are identical to the fixed-effects case. The conclusions, however, are quite different because

they apply to the entire population of treatments.

Usually, we also want to estimate the variance components (σ2 and σ2
τ) in the model. The pro-

cedure that we use to estimate σ2 and σ2
τ is called the analysis of variance method because it uses

the information in the analysis of variance table. It does not require the normality assumption on

the observations. The procedure consists of equating the expected mean squares to their observed

values in the ANOVA table and solving for the variance components. When equating observed

and expected mean squares in the one-way classification random-effects model, we obtain

MSTreatments = σ2 + nσ2
τ and MSE = σ2

............................................................................................................................................

∗The assumption that the {τi} are independent random variables implies that the usual assumption of

n∑

i=1

τi = 0 from the

fixed-effects model does not apply to the random-effects model.



�

� �

�

13.3 The Random-Effects Model 367

Therefore, the estimators of the variance components are

ANOVA Variance Components Estimates
σ̂2 = MSE (13.19)

and

σ̂2
τ =

MSTreatments − MSE

n
(13.20)

Sometimes the analysis of variance method produces a negative estimate of a variance com-

ponent. Because variance components are by definition nonnegative, a negative estimate of a

variance component is disturbing. One course of action is to accept the estimate and use it as

evidence that the true value of the variance component is zero, assuming that sampling variation

led to the negative estimate. Although this approach has intuitive appeal, it will disturb the sta-

tistical properties of other estimates. Another alternative is to reestimate the negative variance

component with a method that always yields nonnegative estimates. Still another possibility is to

consider the negative estimate as evidence that the assumed linear model is incorrect, requiring

that a study of the model and its assumptions be made to find a more appropriate model.

E X A M P L E 13.4 Textile Manufacturing

In Design and Analysis of Experiments, 8th edition (John

Wiley, 2012), D. C. Montgomery describes a single-factor

experiment involving the random-effects model in which a

textile manufacturing company weaves a fabric on a large

number of looms. The company is interested in loom-to-loom

variability in tensile strength. To investigate this variability,

a manufacturing engineer selects four looms at random and

makes four strength determinations on fabric samples chosen

at random from each loom. The data are shown in Table 13.6

and the ANOVA is summarized in Table 13.7.

T A B L E 13.6 Strength Data

Observations

Loom 1 2 3 4 Total Average
1 98 97 99 96 390 97.5

2 91 90 93 92 366 91.5

3 96 95 97 95 383 95.8

4 95 96 99 98 388 97.0

1527 95.45

T A B L E 13.7
Analysis of Variance for the
Strength Data

Source of
Variation

Sum of
Squares

Degrees of
Freedom

Mean
Square f 0 P-value

Looms 89.19 3 29.73 15.68 1.88 E-4

Error 22.75 12 1.90

Total 111.94 15

From the analysis of variance, we conclude that the looms in

the plant differ significantly in their ability to produce fabric

of uniform strength. The variance components are estimated

by σ̂2 = 1.90 and

σ̂2
τ =

29.73 − 1.90

4
= 6.96

Therefore, the variance of strength in the manufacturing pro-

cess is estimated by

̂V(Yij) = σ̂2
τ + σ̂2 = 6.96 + 1.90 = 8.86

Conclusion: Most of the variability in strength in the

output product is attributable to differences between looms.

This example illustrates an important application of the analysis of variance—the isolation

of different sources of variability in a manufacturing process. Problems of excessive variability in
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FIGURE 13.7

The distribution of fabric strength. (a) Current process, (b) Improved process.

critical functional parameters or properties frequently arise in quality-improvement programs. For

example, in the previous fabric strength example, the process mean is estimated by y = 95.45 psi,

and the process standard deviation is estimated by σ̂y =
√

̂V(Yij) =
√

8.86 = 2.98 psi. If strength

is approximately normally distributed, the distribution of strength in the outgoing product would

look like the normal distribution shown in Figure 13.7(a). If the lower specification limit (LSL)

on strength is at 90 psi, a substantial proportion of the process output is fallout—that is, scrap or

defective material that must be sold as second quality, and so on. This fallout is directly related to

the excess variability resulting from differences between looms. Variability in loom performance

could be caused by faulty setup, poor maintenance, inadequate supervision, poorly trained opera-

tors, and so forth. The engineer or manager responsible for quality improvement must identify and

remove these sources of variability from the process. If this can be done, strength variability will

be greatly reduced, perhaps as low as σ̂Y =
√
σ̂2 =

√
1.90 = 1.38 psi, as shown in Figure 13.7(b).

In this improved process, reducing the variability in strength has greatly reduced the fallout, result-

ing in lower cost, higher quality, a more satisfied customer, and an enhanced competitive position

for the company.

13.4 Randomized Complete Block Design

13.4.1 Design and Statistical Analysis
In many experimental design problems, it is necessary to design the experiment so that the vari-

ability arising from a nuisance factor can be controlled. In an earlier example with t-tests, two

different methods were used to predict the shear strength of steel plate girders. Because each

girder has different strength (potentially), and this variability in strength was not of direct inter-

est, we designed the experiment by using the two test methods on each girder and then comparing

the average difference in strength readings on each girder to zero using the paired t-test. The paired

t-test is a procedure for comparing two treatment means when all experimental runs cannot be

made under homogeneous conditions. Alternatively, we can view the paired t-test as a method for

reducing the background noise in the experiment by blocking out a nuisance factor effect. The

block is the nuisance factor, and, in this case, the nuisance factor is the steel girder specimens

used in the experiment.

The randomized block design is an extension of the paired t-test to situations where the

factor of interest has more than two levels; that is, more than two treatments must be compared.

For example, suppose that three methods could be used to evaluate the strength readings on steel

plate girders. We may think of these as three treatments, say t1, t2, and t3. If we use four girders as

the experimental units, a randomized complete block design (RCBD) would appear as shown

in Figure 13.8. The design is called a RCBD because each block is large enough to hold all the

treatments and because the actual assignment of each of the three treatments within each block is

done randomly. Once the experiment has been conducted, the data are recorded in a table, such
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Block 1

t2

t1

t3

Block 2

t1

t3

t2

Block 3

t3

t2

t1

Block 4

t2

t1

t3

FIGURE 13.8

A randomized complete block design.

T A B L E 13.8 A Randomized Complete Block Design

Block (Girder)

Treatments (Method) 1 2 3 4
1 y11 y12 y13 y14

2 y21 y22 y23 y24

3 y31 y32 y33 y34

as is shown in Table 13.8. The observations in this table, say, yij, represent the response obtained

when method i is used on block j.
The general procedure for a RCBD consists of selecting b blocks and running a complete

replicate of the experiment in each block. The data that result from running a RCBD for investi-

gating a single factor with a levels and b blocks are shown in Table 13.9. There are a observations

(one per factor level) in each block, and the order in which these observations are run is randomly

assigned within the block.

We now describe the statistical analysis for the RCBD. Suppose that a single factor with a
levels is of interest and that the experiment is run in b blocks. The observations may be represented

by the linear statistical model

Yij = μ + τi + βj + ϵij

{
i = 1, 2,… , a
j = 1, 2,… , b (13.21)

where μ is an overall mean, τi is the effect of the ith treatment, βj is the effect of the jth block, and

ϵij is the random error term, which is assumed to be normally and independently distributed with

mean zero and variance σ2. Furthermore, the treatment and block effects are defined as deviations

from the overall mean, so
∑a

i=1
τi = 0 and

∑b
j=1
βj = 0. This was the same type of definition used

for completely randomized experiments in Section 13.2. We also assume that treatments and

blocks do not interact. That is, the effect of treatment i is the same regardless of which block

(or blocks) in which it is tested. We are interested in testing the equality of the treatment effects.

That is,

H0: τ1 = τ2 = · · · = τa = 0 H1: τi ≠ 0 at least one i

The analysis of variance can be extended to the RCBD. The procedure uses a sum of squares

identity that partitions the total sum of squares into three components.

T A B L E 13.9 A Randomized Complete Block Design with a Treatments and b Blocks

Blocks

Treatments 1 2 … b Totals Averages
1 y11 y12 … y1b y1. y1.

2 y21 y22 … y2b y2. y2.

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

a ya1 ya2 … yab ya. ya.

Totals y.1 y.2 … y.b y..

Averages y.1 y.2 … y.b y..
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ANOVA Sums of Squares Identity: Randomized Complete Block Experiment
The sum of squares identity for the randomized complete block design is

a∑

i=1

b∑

j=1

(yij − y..)2 = b
a∑

i=1

(yi. − y..)2 + a
b∑

j=1

(y.j − y..)2

+
a∑

i=1

b∑

j=1

(yij − y.j − yi. + y..)2 (13.22)

or symbolically

SST = SSTreatments + SSBlocks + SSE

and degrees of freedom can be partitioned as

ab − 1 = (a − 1) + (b − 1) + (a − 1)(b − 1)

or

df Total = df Treatments + df Blocks + df Error

For the randomized block design, the relevant mean squares are

MSTreatments =
SSTreatments

a − 1

MSBlocks =
SSBlocks

b − 1

MSE =
SSE

(a − 1)(b − 1)

The expected values of these mean squares can be shown to be as follows:

Expected Mean Squares: Randomized Complete Block Experiment

E(MSTreatments) = σ2 +
b

a∑

i=1

τ2
i

a − 1

E(MSBlocks) = σ2 +

a
b∑

j=1

β2
j

b − 1

E(MSE) = σ2

Therefore, if the null hypothesis H0 is true so that all treatment effects τi = 0, MSTreatments is an

unbiased estimator of σ2, and if H0 is false, MSTreatments overestimates σ2. The mean square for

error is always an unbiased estimate of σ2. To test the null hypothesis that the treatment effects

are all zero, we use the ratio

F0 =
MSTreatments

MSE
(13.23)
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T A B L E 13.10 ANOVA for a Randomized Complete Block Design

Source of
Variation Sum of Squares

Degrees of
Freedom Mean Square F0

Treatments SSTreatments a − 1 MSTreatments =
SSTreatments

a − 1

MSTreatments

MSE

Blocks SSBlocks b − 1 MSBlocks =
SSBlocks

b − 1

Error SSE (by subtraction) (a − 1)(b − 1) MSError =
SSError

(a − 1)(b − 1)

Total SST ab − 1

which has an F-distribution with a− 1 and (a− 1)(b− 1) degrees of freedom if the null hypothesis

is true. We would reject the null hypothesis at the α-level of significance if the computed value

of the test statistic in Equation 13.23 is f 0 > f α,a−1,(a−1)(b−1).

In practice, we compute SST , SSTreatments and SSBlocks and then obtain the error sum of squares

SSE by subtraction. The appropriate computing formulas are as follows.

Computing Formulas for ANOVA: Randomized Block Experiment
The computing formulas for the sums of squares in the analysis of variance for a RCBD are

SST =
a∑

i=1

b∑

j=1

y2
ij −

y2..

ab
(13.24)

SSTreatments =
1

b

a∑

i=1

y2
i . −

y2..

ab
(13.25)

SSBlocks =
1

a

b∑

j=1

y2.j −
y2..

ab
(13.26)

and

SSE = SST − SSTreatments − SSBlocks

The computations are usually arranged in an ANOVA table, such as is shown in Table 13.10.

Generally, computer software is used to perform the analysis of variance for a RCBD.

E X A M P L E 13.5 Fabric Strength

An experiment was performed to determine the effect of

four different chemicals on the strength of a fabric. These

chemicals are used as part of the permanent press finishing

process. Five fabric samples were selected, and a RCBD was

run by testing each chemical type once in random order on

each fabric sample. The data are shown in Table 13.11. We

test for differences in means using an ANOVA with α = 0.01.

The sums of squares for the analysis of variance are com-

puted as follows:

SST = 25.69 SSTreatments = 18.04 SSBlocks = 6.69

SSE = SST − SSBlocks − SSTreatments

= 25.69 − 6.69 − 18.04 = 0.96

The ANOVA is summarized in Table 13.12. Because

f 0 = 75.13 > f 0.01,3,12 = 5.95 (the P-value is 4.79 × 10−8 from

computer software), we conclude that there is a significant

difference in the chemical types so far as their effect on

strength is concerned.
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T A B L E 13.11 Fabric Strength Data—Randomized Complete Block Design

Fabric Sample Treatment Totals Treatment Averages
Chemical Type 1 2 3 4 5 yi. yi.

1 1.3 1.6 0.5 1.2 1.1 5.7 1.14

2 2.2 2.4 0.4 2.0 1.8 8.8 1.76

3 1.8 1.7 0.6 1.5 1.3 6.9 1.38

4 3.9 4.4 2.0 4.1 3.4 17.8 3.56

Block totals y.j 9.2 10.1 3.5 8.8 7.6 39.2(y..)

Block averages y.j 2.30 2.53 0.88 2.20 1.90 1.96(y..)

T A B L E 13.12 Analysis of Variance for the Randomized Complete Block Experiment

Source of Variation Sum of Squares Degrees of Freedom Mean Square f 0 P-value
Chemical types (treatments) 18.04 3 6.01 75.13 4.79 E-8

Fabric samples (blocks) 6.69 4 1.67

Error 0.96 12 0.08

Total 25.69 19

When Is Blocking Necessary? Suppose that an experiment is conducted as a RCBD and

blocking was not really necessary. There are ab observations and (a − 1)(b − 1) degrees of free-

dom for error. If the experiment had been run as a completely randomized single-factor design

with b replicates, we would have had a(b − 1) degrees of freedom for error. Therefore, blocking

has cost a(b − 1) − (a − 1)(b − 1) = b − 1 degrees of freedom for error. This loss in degrees

of freedom increases the critical value from the F-distribution in Equation 13.23. Consequently,

to detect a treatment effect, greater differences in treatment means are needed. However, because

the loss in error degrees of freedom is usually small, if there is a reasonable chance that block

effects may be important, the experimenter should use the RCBD.

For example, consider the experiment described in Example 13.5 as a single-factor experi-

ment with no blocking. We would then have 16 degrees of freedom for error. In the RCBD, there

are 12 degrees of freedom for error. Therefore, blocking has cost only 4 degrees of freedom,

which is a very small loss considering the possible gain in information that would be achieved

if block effects are really important. The block effect in Example 13.5 is large, and if we had

not blocked, SSBlocks would have been included in the error sum of squares for the completely

randomized analysis. This would have resulted in a much larger MSE, making it more difficult

to detect treatment differences. As a general rule, when in doubt as to the importance of block

effects, the experimenter should assume that the block effect does exist. If the experimenter is

wrong, the slight loss in the degrees of freedom for error will have a negligible effect unless the

number of degrees of freedom is very small.

13.4.2 Multiple Comparisons
When the ANOVA indicates that a difference for the treatment means exists, we may need to per-

form some follow-up tests to isolate the specific differences. Any multiple comparison method

could be used for this purpose. We illustrate Fisher’s LSD method. The four chemical type aver-

ages from Example 13.5 are:

y1. = 1.14 y2. = 1.76 y3. = 1.38 y4. = 3.56
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0 1 2 3 4 6

2 41 3

5

Chemical type

FIGURE 13.9

Results of Fisher’s LSD method.

Each treatment average uses b= 5 observations (one from each block). We use α= 0.05, so t0.025,12

= 2.179. Therefore, the value of the LSD is

LSD = t0.025,12

√
2MSE

b
= 2.179

√
2(0.08)

5
= 0.39

Any pair of treatment averages that differ by 0.39 or more indicates that this pair of treatment

means is significantly different. The comparisons follow:

4 vs. 1 = y4. − y1. = 3.56 − 1.14 = 2.42 > 0.39

4 vs. 3 = y4. − y3. = 3.56 − 1.38 = 2.18 > 0.39

4 vs. 2 = y4. − y2. = 3.56 − 1.76 = 1.80 > 0.39

2 vs. 1 = y2. − y1. = 1.76 − 1.14 = 0.62 > 0.39

2 vs. 3 = y2. − y3. = 1.76 − 1.38 = 0.38 < 0.39

3 vs. 1 = y3. − y1. = 1.38 − 1.14 = 0.24 < 0.39

Figure 13.9 presents the results graphically. The underlined pairs of means are not different. The

LSD procedure indicates that chemical type 4 results in significantly different strengths than the

other three types do. Chemical types 2 and 3 do not differ, and types 1 and 3 do not differ. There

may be a small difference in strength for types 1 and 2.

13.4.3 Residual Analysis and Model Checking
In any designed experiment, it is always important to examine the residuals and to check for vio-

lation of basic assumptions that could invalidate the results. As usual, the residuals for the RCBD

are simply the differences in the observed and estimated (or fitted) values from the statistical

model, eij = yij − ŷij, and the fitted values are

ŷij = yi. + y.j − y..

The fitted value represents the estimate of the mean response when the ith treatment is run in the

jth block. The residuals from the chemical type experiment are shown in Table 13.13.

T A B L E 13.13 Residuals from the Randomized Complete Block Design

Fabric Sample
Chemical Type 1 2 3 4 5

1 −0.18 −0.10 0.44 −0.18 0.02

2 0.10 0.08 −0.28 0.00 0.10

3 0.08 −0.24 0.30 −0.12 −0.02

4 0.00 0.28 −0.48 0.30 −0.10
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FIGURE 13.10(a)

Normal probability plot of residuals from the
randomized complete block design.
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FIGURE 13.10(b)

Residuals by treatment from the randomized
complete block design.
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FIGURE 13.10(c)

Residuals by block from the randomized complete block
design.
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FIGURE 13.10(d)

Residuals versus ŷij from the randomized complete
block design.

Figures 13.10(a)–(d) present the important residual plots for the experiment. These residual

plots are usually constructed by computer software. When treated with the four chemicals,

there is some indication that fabric sample (block) 3 has greater variability in strength than the

other samples. Chemical type 4, which provides the greatest strength, also has somewhat more

variability in strength. Follow-up experiments may be necessary to confirm these findings if they

are potentially important.

Important Terms and Concepts

Analysis of variance (ANOVA)

Blocking

Completely randomized design (CRD)

Components of variance model

Error mean square

Fisher’s least significant difference

(LSD) method

Fixed-effects model

Graphical comparison of means

Least significant difference

Levels of a factor

Multiple comparisons methods

Nuisance factor

Operating characteristic (OC) curves

Random factor

Random-effects model

Randomization

Randomized complete block design (RCBD)

Residual analysis and model checking

Treatment

Treatment mean square

Variance components
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C H A P T E R O U T L I N E

14.1 Introduction

14.2 Factorial Experiments

14.3 Two-Factor Factorial Experiments

14.3.1 Statistical Analysis

14.3.2 Model Adequacy Checking

14.3.3 One Observation per Cell

14.4 General Factorial Experiments

14.5 2k Factorial Designs

14.5.1 22 Design

14.5.2 2k Design for k ≥ 3 Factors

14.6 Single Replicate of the 2k Design

14.7 Addition of Center Points

to a 2k Design

14.8 Blocking and Confounding

in the 2k Design

14.9 One-Half Fraction of the 2k Design

14.10 Smaller Fractions: The 2k−p

Fractional Factorial

14.11 Response Surface Methods

and Designs

L E A R N I N G O B J E C T I V E S

After careful study of this chapter, you should be able to do the

following:

1. Design and conduct engineering experiments involving

several factors using the factorial design approach

2. Know how to analyze and interpret main effects and

interactions

3. Understand how to use the ANOVA to analyze the data from

these experiments

4. Assess model adequacy with residual plots

5. Know how to use the two-level series of factorial designs

6. Understand how to run two-level factorial design in blocks

7. Design and conduct two-level fractional factorial designs

8. Use center points to test for curvature in two-level factorial

designs

9. Use response surface methodology for process optimization

experiments
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Carotenoids are fat-soluble pigments that occur naturally in fruits and vegetables and are

recommended for healthy diets. A well-known carotenoid is beta-carotene. Astaxanthin is

another carotenoid that is a strong antioxidant and is commercially produced. An exercise

later in this chapter describes an experiment in Biotechnology Progress to promote astaxanthin

production. Seven variables were considered important to production: photon flux density

and concentrations of nitrogen, phosphorous, magnesium, acetate, ferrous, and NaCl. It was

important to study the effects of these factors as well as the effects of combinations on the

production. Even with only a high and low setting for each variable, an experiment that uses

all possible combinations requires 27 = 128 tests. Such a large experiment has a number of

disadvantages, and a question is whether a fraction of the full set of tests can be selected to

provide the most important information in many fewer runs. The example used a surprisingly

small set of 16 runs (16/128 = 1/8 fraction). The design and analysis of experiments of this type

is the focus of this chapter. Such experiments are widely used throughout modern engineering

development and scientific studies.

14.1 Introduction
An experiment is just a test or series of tests. Experiments are performed in all engineering and

scientific disciplines and are important parts of the way we learn about how systems and processes

work. The validity of the conclusions that are drawn from an experiment depends to a large extent

on how the experiment was conducted. Therefore, the design of the experiment plays a major role

in the eventual solution to the problem that initially motivated the experiment.

In this chapter, we focus on experiments that include two or more factors that the exper-

imenter thinks may be important. A factorial experiment is a powerful technique for this

type of problem. Generally, in a factorial experimental design, experimental trials (or runs)

are performed at all combinations of factor levels. For example, if a chemical engineer is

interested in investigating the effects of reaction time and reaction temperature on the yield of

a process, and if two levels of time (1.0 and 1.5 hours) and two levels of temperature (125 and

150∘F) are considered important, a factorial experiment would consist of making experimental

runs at each of the four possible combinations of these levels of reaction time and reaction

temperature.

Experimental design is an extremely important tool for engineers and scientists who are

interested in improving the performance of a manufacturing process. It also has extensive appli-

cation in the development of new processes and in new product design. We now give some

examples.

Process Characterization Experiment In an article in IEEE Transactions [“Electronics

Packaging Manufacturing” (2001, Vol. 24(4), pp. 249–254)], the authors discussed the change

to lead-free solder in surface mount technology (SMT). SMT is a process to assemble electronic

components to a printed circuit board. Solder paste is printed through a stencil onto the printed

circuit board. The stencil-printing machine has squeegees; the paste rolls in front of the squeegee

and fills the apertures in the stencil. The squeegee shears off the paste in the apertures as it moves

over the stencil. Once the print stroke is completed, the board is separated mechanically from the

stencil. Electronic components are placed on the deposits, and the board is heated so that the paste

reflows to form the solder joints.

The process has several (perhaps many) variables, and all of them are not equally important.

The initial list of candidate variables to be included in an experiment is constructed by combining

the knowledge and information about the process from all team members. For example, engineers

would conduct a brainstorming session and invite manufacturing personnel with SMT experience

to participate. SMT has several variables that can be controlled. These include (1) squeegee speed,
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(2) squeegee pressure, (3) squeegee angle, (4) metal or polyurethane squeegee, (5) squeegee

vibration, (6) delay time before the squeegee lifts from the stencil, (7) stencil separation speed,

(8) print gap, (9) solder paste alloy, (10) paste pretreatment (11) paste particle size, (12) flux type,

(13) reflow temperature, (14) reflow time, and so forth.

In addition to these controllable factors, several other factors cannot be easily controlled

during routine manufacturing, including (1) thickness of the printed circuit board, (2) types of

components used on the board and aperture width and length, (3) layout of the components on the

board, (4) paste density variation, (5) environmental factors, (6) squeegee wear, (7) cleanliness,

and so forth. Sometimes we call the uncontrollable factors noise factors. A schematic representa-

tion of the process is shown in Figure 14.1. In this situation, the engineer wants to characterize
the SMT process, that is, to determine the factors (both controllable and uncontrollable) that affect

the occurrence of defects on the printed circuit boards. To determine these factors, an experiment

can be designed to estimate the magnitude and direction of the factor effects. Sometimes we call

such an experiment a screening experiment. The information from this characterization study,

or screening experiment, can help determine the critical process variables as well as the direction

of adjustment for these factors to reduce the number of defects.

Optimization Experiment In a characterization experiment, we are interested in determining

which factors affect the response. A logical next step is to determine the region in the important

factors that leads to an optimum response. For example, if the response is cost, we look for a

region of minimum cost. This leads to an optimization experiment.
As an illustration, suppose that the yield of a chemical process is influenced by the operating

temperature and the reaction time. We are currently operating the process at 155∘F and 1.7 hours

of reaction time, and the current process yield is around 75%. See Figure 14.2 for a view of the

time–temperature space. In this graph, we have connected points of constant yield with lines.

These lines are yield contours, and we have shown the contours at 60, 70, 80, 90, and 95% yield.

To locate the optimum, we might begin with a factorial experiment such as we describe here, with

the two factors, time and temperature, run at two levels each at 10∘F and 0.5 hours above and

below the current operating conditions. This two-factor factorial design is shown in Figure 14.2.

The average responses observed at the four points in the experiment (145∘F, 1.2 hours; 145∘F,

2.2 hours; 165∘F, 1.2 hours; and 165∘F, 2.2 hours) indicate that we should move in the general

direction of increased temperature and lower reaction time to increase yield. A few additional

runs could be performed in this direction to locate the region of maximum yield.

Product Design Example We can also use experimental design in developing new prod-

ucts. For example, suppose that a group of engineers are designing a door hinge for an auto-

mobile. The product characteristic is the check effort, or the holding ability, of the latch that

OutputInput

. . .

Controllable factors
x2x1 xp

z1 z2 zq
Uncontrollable (noise) factors

. . .

(printed circuit boards) (defects, y)
SMT Process

FIGURE 14.1

The flow solder experiment.
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FIGURE 14.2

Contour plot of yield as a function of
reaction time and reaction temperature,
illustrating an optimization experiment.
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prevents the door from swinging closed when the vehicle is parked on a hill. The check mech-

anism consists of a leaf spring and a roller. When the door is opened, the roller travels through

an arc causing the leaf spring to be compressed. To close the door, the spring must be forced

aside, creating the check effort. The engineering team thinks that check effort is a function of the

following factors: (1) roller travel distance, (2) spring height from pivot to base, (3) horizontal

distance from pivot to spring, (4) free height of the reinforcement spring, and (5) free height of the

main spring.

The engineers can build a prototype hinge mechanism in which all these factors can be

varied over certain ranges. Once appropriate levels for these five factors have been identified,

the engineers can design an experiment consisting of various combinations of the factor levels

and can test the prototype at these combinations. This produces information concerning which

factors are most influential on the latch check effort, and through analysis of this information,

the latch design can be improved.

14.2 Factorial Experiments
When several factors are of interest in an experiment, a factorial experiment should be used.

As noted previously, in these experiments factors are varied together.

Factorial Experiment
By factorial experiment, we mean that in each complete trial or replicate of the experiment,

all possible combinations of the levels of the factors are investigated.

Thus, if there are two factors A and B with a levels of factor A and b levels of factor B, each

replicate contains all ab treatment combinations.
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The effect of a factor is defined as the change in response produced by a change in the level

of the factor. It is called a main effect because it refers to the primary factors in the study. For

example, consider the data in Table 14.1. This is a factorial experiment with two factors, A and

B, each at two levels (Alow, Ahigh and Blow, Bhigh). The main effect of factor A is the difference

between the average response at the high level of A and the average response at the low level

of A, or

A = 30 + 40

2
− 10 + 20

2
= 20

That is, changing factor A from the low level to the high level causes an average response increase

of 20 units. Similarly, the main effect of B is

B = 20 + 40

2
− 10 + 30

2
= 10

In some experiments, the difference in response between the levels of one factor is not the

same at all levels of the other factors. When this occurs, there is an interaction between the

factors. For example, consider the data in Table 14.2. At the low level of factor B, the A effect is

A = 30 − 10 = 20

and at the high level of factor B, the A effect is

A = 0 − 20 = −20

Because the effect of A depends on the level chosen for factor B, there is interaction between

A and B.

When an interaction is large, the corresponding main effects have very little practical mean-

ing. For example, by using the data in Table 14.2, we find the main effect of A as

A = 30 + 0

2
− 10 + 20

2
= 0

and we would be tempted to conclude that there is no factor A effect. However, when we examined

the effects of A at different levels of factor B, we saw that this was not the case. The effect of

factor A depends on the levels of factor B. Thus, knowledge of the AB interaction is more useful

than knowledge of the main effect. A significant interaction can mask the significance of main

effects. Consequently, when interaction is present, the main effects of the factors involved in the

interaction may not have much meaning.

It is easy to estimate the interaction effect in factorial experiments such as those illustrated

in Tables 14.1 and 14.2. In this type of experiment, when both factors have two levels, the AB
interaction effect is the difference in the diagonal averages. This represents one-half the difference

T A B L E 14.1
A Factorial Experiment
with Two Factors

Factor B

Factor A Blow Bhigh

Alow 10 20

Ahigh 30 40

T A B L E 14.2
A Factorial Experiment
with Interaction

Factor B

Factor A Blow Bhigh

Alow 10 20

Ahigh 30 0
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between the A effects at the two levels of B. For example, in Table 14.1, we find the AB interaction

effect to be

AB = 20 + 30

2
− 10 + 40

2
= 0

Thus, there is no interaction between A and B. In Table 14.2, the AB interaction effect is

AB = 20 + 30

2
− 10 + 0

2
= 20

As we noted before, the interaction effect in these data is very large.

The concept of interaction can be illustrated graphically in several ways. See Figure 14.3,

which plots the data in Table 14.1 against the levels of A for both levels of B. Note that the

Blow and Bhigh lines are approximately parallel, indicating that factors A and B do not interact

significantly. Figure 14.4 presents a similar plot for the data in Table 14.2. In this graph, the Blow

and Bhigh lines are not parallel, indicating the interaction between factors A and B. Such graphical

displays are called two-factor interaction plots. They are often useful in presenting the results

of experiments, and many computer software programs used for analyzing data from designed

experiments construct these graphs automatically.

Figures 14.5 and 14.6 present two other graphical illustrations of the data from Tables 14.1

and 14.2. In Figure 14.3, we have shown a three-dimensional surface plot of the data from

Table 14.1. These data contain no interaction, and the surface plot is a plane lying above the

A-B space. The slope of the plane in the A and B directions is proportional to the main effects of

factors A and B, respectively. Figure 14.6 is a surface plot of the data from Table 14.2. Notice that

the effect of the interaction in these data is to “twist” the plane so that there is curvature in the

response function. Factorial experiments are the only way to discover interactions between
variables.

An alternative to the factorial design that is (unfortunately) used in practice is to change the

factors one at a time rather than to vary them simultaneously. To illustrate this one-factor-at-a-time

procedure, suppose that an engineer is interested in finding the values of temperature and pres-

sure that maximize yield in a chemical process. Suppose that we fix temperature at 155∘F (the

current operating level) and perform five runs at different levels of time, say, 0.5, 1.0, 1.5, 2.0,

and 2.5 hours. The results of this series of runs are shown in Figure 14.7. This figure indicates

that maximum yield is achieved at about 1.7 hours of reaction time. To optimize temperature, the

engineer then fixes time at 1.7 hours (the apparent optimum) and performs five runs at different

temperatures, say, 140, 150, 160, 170, and 180∘F. The results of this set of runs are plotted in

Figure 14.8. Maximum yield occurs at about 155∘F. Therefore, we would conclude that running
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Factorial experiment, no interaction.
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Factorial experiment, with interaction.
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Three-dimensional surface plot of the data from
Table 14.1, showing the main effects of the two factors
A and B.
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FIGURE 14.6

Three-dimensional surface plot of the data from Table 14.2,
showing the effect of the A and B interaction.

the process at 155∘F and 1.7 hours is the best set of operating conditions, resulting in yields of

around 75%.

Figure 14.9 displays the contour plot of actual process yield as a function of temperature

and time with the one-factor-at-a-time experiments superimposed on the contours. Clearly, this

one-factor-at-a-time approach has failed dramatically here because the true optimum is at least

20 yield points higher and occurs at much lower reaction times and higher temperatures. The fail-

ure to discover the importance of the shorter reaction times is particularly important because this

could have significant impact on production volume or capacity, production planning, manufac-

turing cost, and total productivity.

The one-factor-at-a-time approach has failed here because it cannot detect the interaction

between temperature and time. Factorial experiments are the only way to detect interactions. Fur-

thermore, the one-factor-at-a-time method is inefficient. It requires more experimentation than a

factorial, and, as we have just seen, there is no assurance that it will produce the correct results.
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Yield versus reaction time with
temperature constant
at 155∘F.
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Yield versus temperature with
reaction time constant at
1.7 hours.
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Optimization experiment using
the one-factor-at-a-time method.
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14.3 Two-Factor Factorial Experiments
The simplest type of factorial experiment involves only two factors, say A and B. There are a
levels of factor A and b levels of factor B. This two-factor factorial is shown in Table 14.3. The

experiment has n replicates, and each replicate contains all ab treatment combinations. The obser-

vation in the ijth cell for the kth replicate is denoted by yijk. In performing the experiment, the

abn observations would be run in random order. Thus, like the single-factor experiment studied

in Chapter 13, the two-factor factorial is a completely randomized design.

The observations may be described by the linear statistical model

Yijk = μ + τi + βj + (τβ)ij + ϵijk

⎧
⎪
⎨
⎪
⎩

i = 1, 2,… , a
j = 1, 2,… , b
k = 1, 2,… , n

(14.1)

where μ is the overall mean effect, τi is the effect of the ith level of factor A, βj is the effect of the

jth level of factor B, (τβ)ij is the effect of the interaction between A and B, and εijk is a random

error component having a normal distribution with mean 0 and variance σ2. We are interested in

testing the hypotheses of no main effect for factor A, no main effect for B, and no AB interaction

effect. As with the single-factor experiments in Chapter 13, the analysis of variance (ANOVA)

is used to test these hypotheses. Because the experiment has two factors, the test procedure is

sometimes called a two-way analysis of variance.

14.3.1 Statistical Analysis
Suppose that the a levels of factor A and the b levels of factor B are specifically chosen by

the experimenter, and inferences are confined to these levels only. In this model, it is cus-

tomary to define the effects τi, βj, and (τβ)ij as deviations from the mean, so that
∑a

i=1
τi = 0,

∑b
j=1

βj = 0,
∑a

i=1
(τβ)ij = 0, and

∑b
j=1
(τβ)ij = 0.

The analysis of variance can be used to test hypotheses about the main factor effects of A
and B and the AB interaction. To present the ANOVA, we need some symbols, some of which

are illustrated in Table 14.3. Let yi • • denote the total of the observations taken at the ith level of

factor A; y • j • denote the total of the observations taken at the jth level of factor B; yij. denote the

total of the observations in the ijth cell of Table 14.3; and y… denote the grand total of all the

T A B L E 14.3 Data Arrangement for a Two-Factor Factorial Design

Factor B

1 2 · · · b Totals Averages
1 y111, y112, … , y11n y121, y122, … , y12n y1b1, y1b2, … , y1bn y1 • • y1 • •

Factor A 2 y211, y212, … , y21n y221, y222, … , y22n y2b1, y2b2, … , y2bn y2 • • y2 • •

⋮

a ya11, ya12, … , ya1n ya21, ya22, … , ya2n yab1, yab2, … , yabn ya • • ya • •

Totals y• 1 • y• 2 • y• b • y• • •

Averages y • 1 • y •2 • y •b • y • • •
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observations. Define yi • • , y • j • , yij • , and y… as the corresponding row, column, cell, and grand

averages. That is,

Notation for Totals and Means

yi • • =
b∑

j=1

n∑

k=1

yijk yi • • =
yi • •

bn
i = 1, 2,… , a

yj • • =
a∑

i=1

n∑

k=1

yijk y • j • =
y • j •

an
j = 1, 2,… , b

yij • =
n∑

k=1

yijk yij • =
yij •

n
i = 1, 2,… , a, j = 1, 2,… , b

y… =
a∑

i=1

b∑

j=1

n∑

k=1

yijk y… =
y…
abn

i = 1, 2,… , a

The hypotheses that we test are as follows:

H0∶ τ1 = τ2 = … = τa = 0 H1∶ at least one τi ≠ 0 (no main effect of factor A)
H0∶ β1 = β2 = … = βb = 0 H1∶ at least one βj ≠ 0 (no main effect of factor B)
H0∶ (τβ)11 = (τβ)12 = … = (τβ)ab = 0 H1∶ at least one (τβ)ij ≠ 0 (no interaction)

(14.2)

As before, the ANOVA tests these hypotheses by decomposing the total variability in the data into

component parts and then comparing the various elements in this decomposition. Total variability

is measured by the total sum of squares of the observations

SST =
a∑

i=1

b∑

j=1

n∑

k=1

(yijk − y…)2

and the definition of the sum of squares decomposition follows.

ANOVA Sum of Squares Identity: Two Factors
The sum of squares identity for a two-factor ANOVA is

a∑

i=1

b∑

j=1

n∑

k=1

(
yijk − y…

)2 = bn
a∑

i=1

(
yi • • − y…

)2 + an
b∑

j=1

(
y • j • − y…

)2
(14.3)

+ n
a∑

i=1

b∑

j=1

(
yij • − yi • • − y • j • + y…

)2 +
a∑

i=1

b∑

j=1

n∑

k=1

(
yijk − yij •

)2

or symbolically,

SST = SSA + SSB + SSAB + SSE (14.4)

and degrees of freedom can be partitioned as

abn − 1 = a − 1 + b − 1 + (a − 1)(b − 1) + ab(n − 1)

or

df Total = df A + df B + df AB + df Error



�

� �

�

384 CHAPTER 14 Design of Experiments with Several Factors

Equations 14.3 and 14.4 state that the total sum of squares SST is partitioned into a sum of squares

for the row factor A (SSA), a sum of squares for the column factor B (SSB), a sum of squares for

the interaction between A and B (SSAB), and an error sum of squares (SSE). There are abn − 1

total degrees of freedom. The main effects A and B have a − 1 and b − 1 degrees of freedom,

and the interaction effect AB has (a − 1)(b − 1) degrees of freedom. Within each of the ab cells

in Table 14.3, there are n − 1 degrees of freedom between the n replicates, and observations in

the same cell can differ only because of random error. Therefore, there are ab(n − 1) degrees of

freedom for error, so the degrees of freedom are partitioned according to

abn − 1 = (a − 1) + (b − 1) + (a − 1)(b − 1) + ab(n − 1)

If we divide each of the sum of squares on the right-hand side of Equation 14.4 by the cor-

responding number of degrees of freedom, we obtain the mean squares for A, B, the interaction,

and error:

MSA =
SSA

a − 1
MSB =

SSB

b − 1
MSAB =

SSAB

(a − 1)(b − 1)
MSE =

SSE

ab(n − 1)

Assuming that factors A and B are fixed factors, it is not difficult to show that the expected values

of these mean squares are

Expected Values of Mean Squares: Two Factors

E(MSA) = E
(

SSA

a − 1

)

= σ2 +
bn

a∑

i=1

τ2
i

a − 1
E(MSB) = E

(
SSB

b − 1

)

= σ2 +

an
a∑

j=1

β2
j

b − 1

E(MSAB) = E
(

SSAB

(a − 1)(b − 1)

)

= σ2 +

n
a∑

i=1

b∑

j=1

(τβ)2ij

(a − 1)(b − 1)

E(MSE) = E
(

SSE

ab(n − 1)

)

= σ2

From examining these expected mean squares, it is clear that if the null hypotheses about main

effects H0: τi = 0, H0: βj = 0, and the interaction hypothesis H0: (τβ)ij = 0 are all true, all four

mean squares are unbiased estimates of σ2.

To test that the row factor effects are all equal to zero (H0: τi = 0), columns effects are equal

to zero (H0: βj = 0), and interaction effects are equal to zero (H0: (τβ)ij = 0), we use the ratios

F Tests for Effects

F0 =
MSA

MSE
F0 =

MSB

MSE
F0 =

MSAB

MSE

respectively. The first statistic has an F distribution with a − 1 and ab(n − 1) degrees of freedom if

H0: τi = 0 is true. This null hypothesis is rejected at the α level of significance if f 0 > f α,a−1,ab(n−1).

The second statistic has an F distribution with b − 1 and ab(n − 1) degrees of freedom if

H0: βj = 0 is true. This null hypothesis is rejected at the α level of significance if f 0 > f α,b−1,ab(n−1).
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T A B L E 14.4 ANOVA Table for a Two-Factor Factorial, Fixed-Effects Model

Source of
Variation

Sum of
Squares

Degrees of
Freedom Mean Square F0

A treatments SSA a − 1 MSA =
SSA

a − 1

MSA

MSE

B treatments SSB b − 1 MSB =
SSB

b − 1

MSB

MSE

Interaction SSAB (a − 1)(b − 1) MSAB =
SSAB

(a − 1)(b − 1)
MSAB

MSE

Error SSE ab(n − 1) MSE =
SSE

ab(n − 1)

Total SST abn − 1

The last statistic to test the interaction effects has an F distribution with (a − 1)(b − 1) and

ab(n − 1) degrees of freedom if the null hypothesis H0: (τβ)ij = 0. This hypothesis is rejected at

the α level of significance if f 0 > f α,(a−1)(b−1),ab(n−1).

It is usually best to conduct the test for interaction first and then to evaluate the main effects.

If interaction is not significant, interpretation of the tests on the main effects is straightforward.

However, as noted earlier in this section, when interaction is significant, the main effects of the

factors involved in the interaction may not have much practical interpretative value. Knowledge

of the interaction is usually more important than knowledge about the main effects.

Computational formulas for the sums of squares are easily obtained, but manual computa-

tion is tedious. We suggest relying on statistical software. The results are usually displayed in an

ANOVA table, such as Table 14.4.

E X A M P L E 14.1 Aircraft Primer Paint

Aircraft primer paints are applied to aluminum surfaces by

two methods: dipping and spraying. The purpose of using the

primer is to improve paint adhesion, and some parts can be

primed using either application method. The process engineer-

ing group responsible for this operation is interested in learn-

ing whether three different primers differ in their adhesion

properties. A factorial experiment was performed to investi-

gate the effect of paint primer type and application method

on paint adhesion. For each combination of primer type and

application method, three specimens were painted, then a

finish paint was applied and the adhesion force was measured.

The data from the experiment are shown in Table 14.5. The

circled numbers in the cells are the cell totals yij • . The sums

of squares required to perform the ANOVA are computed

as follows:

SST = 10.72

SStypes = 4.58

SSmethods = 4.91

SSinteraction = 0.24

T A B L E 14.5 Adhesion Force Data

Primer Type Dipping Spraying yi..

1 4.0, 4.5, 4.3 5.4, 4.9, 5.6 28.7

2 5.6, 4.9, 5.4 5.8, 6.1, 6.3 34.1

3 3.8, 3.7, 4.0 5.5, 5.0, 5.0 27.0

y.j. 40.2 49.6 89.8 = y…

and

SSE = SST − SStypes − SSmethods − SSinteraction

= 10.72 − 4.58 − 4.91 − 0.24 = 0.99

The ANOVA is summarized in Table 14.6. The experimenter

has decided to use α = 0.05. Because f 0.05,2,12 = 3.89

and f 0.05,1,12 = 4.75, we conclude that the main effects of
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primer type and application method affect adhesion force.

Furthermore, because 1.5 < f 0.05,2,12, there is no indication

of interaction between these factors. The last column of

Table 14.6 shows the P-value for each F-ratio. Notice that

the P-values for the two test statistics for the main effects

are considerably less than 0.05, and the P-value for the test

statistic for the interaction is more than 0.05.

Practical Interpretation: See a graph of the cell adhesion

force averages {yij • } versus levels of primer type for each

application method in Figure 14.10. The no-interaction

conclusion is obvious in this graph because the two lines

are nearly parallel. Furthermore, because a large response

indicates greater adhesion force, we conclude that spraying

is the best application method and that primer type 2 is most

effective.

T A B L E 14.6 ANOVA for Aircraft Primer Paint Experiment

Source of
Variation

Sum of
Squares

Degrees of
Freedom

Mean
Square f 0 P-Value

Primer types 4.58 2 2.29 27.86 2.7 × E-5

Application

methods 4.91 1 4.91 59.70 4.7 × E-6

Interaction 0.24 2 0.12 1.47 0.2621

Error 0.99 12 0.08

Total 10.72 17

1

3.0

4.0

5.0

6.0

7.0

2 3

Spraying

Dipping

Primer type

yij•

FIGURE 14.10

Graph of average adhesion force versus primer types
for both application methods.

Tests on Individual Means When both factors are fixed, comparisons between the individual

means of either factor may be made using any multiple comparison technique such as Fisher’s

LSD method (described in Chapter 13). When there is no interaction, these comparisons may be

made using either the row averages yi • • or the column averages y • j • . However, when interaction

is significant, comparisons between the means of one factor (say, A) may be obscured by the AB
interaction. In this case, we could apply a procedure such as Fisher’s LSD method to the means

of factor A, with factor B set at a particular level.

14.3.2 Model Adequacy Checking
Just as in the single-factor experiments discussed in Chapter 13, the residuals from a factorial

experiment play an important role in assessing model adequacy. The residuals from a two-factor

factorial are

eijk = yijk − yij.

That is, the residuals are just the difference between the observations and the corresponding cell

averages.

Refer to Table 14.7 for the residuals for the aircraft primer paint data in Example 14.1. See

Figure 14.11(a) for the normal probability plot of these residuals. This plot has tails that do not

fall exactly along a straight line passing through the center of the plot, indicating some potential
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T A B L E 14.7 Residuals for the Aircraft Primer Paint Experiment in Example 14.1

Application Method

Primer Type Dipping Spraying
1 −0.27, 0.23, 0.03 0.10, −0.40, 0.30

2 0.30, −0.40, 0.10 −0.27, 0.03, 0.23

3 −0.03, −0.13, 0.17 0.33, −0.17, −0.17

problems with the normality assumption, but the deviation from normality does not appear severe.

Figures 14.11(b) and 14.11(c) plot the residuals versus the levels of primer types and application

methods, respectively. There is some indication that primer type 3 results in slightly lower vari-

ability in adhesion force than the other two primers. The graph of residuals versus fitted values

in Figure 14.11(d) does not reveal any unusual or diagnostic pattern.

14.3.3 One Observation per Cell
In some cases involving a two-factor factorial experiment, we may have only one replicate—that

is, only one observation per cell. In this situation, there are exactly as many parameters in the

–0.5
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+0.1–0.3 –0.1 +0.3

–1.0

0.0

1.0

2.0

zj

eijk, residual

FIGURE 14.11(a)

Normal probability plot of the residuals from the aircraft
primer paint experiment in Example 14.1.
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FIGURE 14.11(b)

Plot of residuals from the aircraft primer paint experiment
versus primer type.
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FIGURE 14.11(c)

Plot of residuals from the aircraft primer paint experiment
versus application method.
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FIGURE 14.11(d)

Plot of residuals from the aircraft primer paint experiment
versus predicted values ŷijk.
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analysis of variance model as observations, and the error degrees of freedom are zero. Thus, we

cannot test hypotheses about the main effects and interactions unless we make some additional

assumptions. One possible assumption is to assume that the interaction effect is negligible and use

the interaction mean square as an error mean square. Thus, the analysis is equivalent to the analysis

used in the randomized block design. This no-interaction assumption can be dangerous, and the

experimenter should carefully examine the data and the residuals for indications of whether or

not interaction is present.

14.4 General Factorial Experiments
Many experiments involve more than two factors. In this section, we introduce the case in which

there are a levels of factor A, b levels of factor B, c levels of factor C, and so on, arranged in

a factorial experiment. In general, there are a × b × c · · · × n total observations if there are

n replicates of the complete experiment.

For example, consider the three-factor-factorial experiment, with underlying model

Yijkl = μ + τi + βj + γk + (τβ)ij + (τγ)ik + (βγ)jk + (τβγ)ijk + ϵijkl

⎧
⎪
⎨
⎪
⎩

i = 1, 2,… , a
j = 1, 2,… , b
k = 1, 2,… , c
l = 1, 2,… , n

(14.5)

Notice that the model contains three main effects, three two-factor interactions, a three-factor

interaction, and an error term. The analysis of variance is shown in Table 14.8. Note that there

T A B L E 14.8 Analysis of Variance Table for the Three-Factor Fixed Effects Model

Source of Variation Sum of Squares Degrees of Freedom Mean Square Expected Mean Square F0

A SSA a − 1 MSA σ2 +
bcn

∑
τ2

i

a − 1

MSA

MSE

B SSB b − 1 MSB σ2 +
acn

∑
β2

j

b − 1

MSB

MSE

C SSC c − 1 MSC σ2 +
abn

∑
γ2

k

c − 1

MSC

MSE

AB SSAB (a − 1)(b − 1) MSAB σ2 +
cn
∑∑

(τβ)2ij
(a − 1)(b − 1)

MSAB

MSE

AC SSAC (a − 1)(c − 1) MSAC σ2 +
bn
∑∑

(τγ)2ik
(a − 1)(c − 1)

MSAC

MSE

BC SSBC (b − 1)(c − 1) MSBC σ2 +
cn
∑∑

(βγ)2
jk

(b − 1)(c − 1)
MSBC

MSE

ABC SSABC (a − 1)(b − 1)(c − 1) MSABC σ2 +
n
∑∑∑

(τβγ)2ijk
(a − 1)(b − 1)(c − 1)

MSABC

MSE

Error SSE abc(n − 1) MSE σ2

Total SST abcn − 1
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must be at least two replicates (n ≥ 2) to compute an error sum of squares. The F-test on main

effects and interactions follows directly from the expected mean squares. These ratios follow

F-distributions under the respective null hypotheses.

E X A M P L E 14.2 Surface Roughness

A mechanical engineer is studying the surface roughness of a

part produced in a metal-cutting operation. Three factors, feed

rate (A), depth of cut (B), and tool angle (C), are of interest. All

three factors have been assigned two levels, and two replicates

of a factorial design are run. The coded data are in Table 14.9.

T A B L E 14.9 Coded Surface Roughness Data

Depth of Cut (B)
0.025 inch 0.040 inch

Tool Angle (C) Tool Angle (C)
Feed Rate (A) 15∘ 25∘ 15∘ 25∘

20 inches per minute 9 11 9 10

7 10 11 8

30 inches per minute 10 10 12 16

12 13 15 14

T A B L E 14.10 ANOVA

ANOVA

Factor Levels Values

Feed 2 20 30

Depth 2 0.025 0.040

Angle 2 15 25

Analysis of Variance for Roughness

Source DF SS MS F P

Feed 1 45.563 45.563 18.69 0.003

Depth 1 10.563 10.563 4.33 0.071

Angle 1 3.063 3.063 1.26 0.295

Feed*Depth 1 7.563 7.563 3.10 0.116

Feed*Angle 1 0.062 0.062 0.03 0.877

Depth*Angle 1 1.563 1.563 0.64 0.446

Feed*Depth*Angle 1 5.062 5.062 2.08 0.188

Error 8 19.500 2.437

Total 15 92.938

The ANOVA is summarized in Table 14.10. Because

manual ANOVA computations are tedious for three-factor

experiments, we have used computer software for the solution

of this problem. The F-ratios for all three main effects and

the interactions are formed by dividing the mean square for

the effect of interest by the error mean square. Because the

experimenter has selected α = 0.05, the critical value for each

of these F-ratios is f 0.05,1,8 = 5.32. Alternately, we could use

the P-value approach. The P-values for all the test statistics

are shown in the last column of Table 14.10. Inspection of

these P-values is revealing. There is a strong main effect of

feed rate because the F-ratio is well into the critical region.

However, there is some indication of an effect due to the

depth of cut because P = 0.0710 is not much greater than

α = 0.05. The next largest effect is the AB or feed rate × depth

of cut interaction. Most likely, both feed rate and depth of cut

are important process variables.

Practical Interpretation: Further experiments could

study the important factors in more detail to improve the

surface roughness.

Obviously, factorial experiments with three or more factors can require many runs, partic-

ularly if some of the factors have several (more than two) levels. This point of view leads us to

the class of factorial designs (considered in a later section) with all factors at two levels. These
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designs are easy to set up and analyze, and they may be used as the basis of many other useful

experimental designs.

14.5 2k Factorial Designs
Factorial designs are frequently used in experiments involving several factors where it is necessary

to study the joint effect of the factors on a response. However, several special cases of the general

factorial design are important because they are widely employed in research work and because

they form the basis of other designs of considerable practical value.

The most important of these special cases is that of k factors, each at only two levels. These

levels may be quantitative, such as two values of temperature, pressure, or time; or they may

be qualitative, such as two machines, two operators, the “high” and “low” levels of a factor, or

perhaps the presence and absence of a factor. A complete replicate of such a design requires

2 × 2 × · · · × 2 = 2k observations and is called a 2k factorial design.

The 2k design is particularly useful in the early stages of experimental work when many

factors are likely to be investigated. It provides the smallest number of runs for which k factors

can be studied in a complete factorial design. Because each factor has only two levels, we must

assume that the response is approximately linear over the range of the factor levels chosen.

14.5.1 22 Design

The simplest type of 2k design is the 22—that is, two factors A and B, each at two levels. We usually

think of these levels as the factor’s low and high levels. The 22 design is shown in Figure 14.12.

Note that the design can be represented geometrically as a square with the 22 = 4 runs, or treatment

combinations, forming the corners of the square. In the 22 design, it is customary to denote the

low and high levels of the factors A and B by the signs − and +, respectively. This is sometimes

called the geometric notation for the design.

A special notation is used to label the treatment combinations. In general, a treatment com-

bination is represented by a series of lowercase letters. If a letter is present, the corresponding

factor is run at the high level in that treatment combination; if it is absent, the factor is run at

its low level. For example, treatment combination a indicates that factor A is at the high level

and factor B is at the low level. The treatment combination with both factors at the low level

is represented by (1). This notation is used throughout the 2k design series. For example, the

treatment combination in a 24 with A and C at the high level and B and D at the low level is

denoted by ac.

The effects of interest in the 22 design are the main effects A and B and the two-factor inter-

action AB. Let the symbols (1), a, b, and ab also represent the totals of all n observations taken at

these design points. It is easy to estimate the effects of these factors. To estimate the main effect

of A, we would average the observations on the right side of the square in Figure 14.12 where

FIGURE 14.12

The 22 factorial design.
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A is at the high level, and subtract from this the average of the observations on the left side of

the square where A is at the low level. Similarly, the main effect of B is found by averaging the

observations on the top of the square, where B is at the high level, and subtracting the average of

the observations on the bottom of the square, where B is at the low level.

Main Effects of Factors: 22 Design

A = yA+ − yA− = a + ab
2n

− b + (1)
2n

= 1

2n
[a + ab − b − (1)] (14.6)

B = yB+ − yB− = b + ab
2n

− a + (1)
2n

= 1

2n
[b + ab − a − (1)] (14.7)

Finally, the AB interaction is estimated by taking the difference in the diagonal averages in

Figure 14.12, or

Interaction Effect AB: 22 Design

AB = ab + (1)
2n

− a + b
2n

= 1

2n
[ab + (1) − a − b] (14.8)

The quantities in brackets in Equations 14.6, 14.7, and 14.8 are called contrasts. For example,

the A contrast is

ContrastA = a + ab − b − (1)

In these equations, the contrast coefficients are always either +1 or −1. A table of plus and minus

signs, such as Table 14.11, can be used to determine the sign on each treatment combination for

a particular contrast. The column headings for Table 14.11 are the main effects A and B, the AB
interaction, and I, which represents the total. The row headings are the treatment combinations.

Note that the signs in the AB column are the product of signs from columns A and B. To generate

a contrast from this table, multiply the signs in the appropriate column of Table 14.11 by the

treatment combinations listed in the rows and add. For example, contrastAB = [(1)] + [−a] +
[−b] + [ab] = ab + (1) − a − b.

T A B L E 14.11 Signs for Effects in the 22 Design

Factorial Effect
Treatment

Combination I A B AB
(1) + − − +

a + + − −

b + − + −

ab + + + +
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Contrasts are used in calculating both the effect estimates and the sums of squares for A, B,

and the AB interaction. For any 2k design with n replicates, the effect estimates are computed from

Relationship Between a Contrast and an Effect

Effect = Contrast

n2k−1
(14.9)

and the sum of squares for any effect is

Sum of Squares for an Effect

SS = (Contrast)2

n2k (14.10)

One degree of freedom is associated with each effect (two levels minus one) so that the

mean square of each effect equals the sum of squares. The analysis of variance is completed by

computing the total sum of squares SST (with 4n − 1 degrees of freedom) as usual, and obtaining

the error sum of squares SSE (with 4(n − 1) degrees of freedom) by subtraction.

E X A M P L E 14.3 Epitaxial Process

An article in the AT&T Technical Journal (March/April 1986,

Vol. 65, pp. 39–50) describes the application of two-level

factorial designs to integrated circuit manufacturing. A basic

processing step in this industry is to grow an epitaxial layer

on polished silicon wafers. The wafers are mounted on a

susceptor and positioned inside a bell jar. Chemical vapors

are introduced through nozzles near the top of the jar. The

susceptor is rotated, and heat is applied. These conditions are

maintained until the epitaxial layer is thick enough.

Refer to Table 14.12 for the results of a 22 factorial design

with n = 4 replicates using the factors A = deposition time and

B = arsenic flow rate. The two levels of deposition time are

− = short and + = long, and the two levels of arsenic flow rate

are − = 55% and + = 59%. The response variable is epitaxial

T A B L E 14.12 The 22 Design for the Epitaxial Process Experiment

Design Factors Thickness (𝛍m)
Treatment

Combination A B AB Thickness (𝛍m) Total Average
(1) − − + 14.037 14.165 13.972 13.907 56.081 14.020

a + − − 14.821 14.757 14.843 14.878 59.299 14.825

b − + − 13.880 13.860 14.032 13.914 55.686 13.922

ab + + + 14.888 14.921 14.415 14.932 59.156 14.789

layer thickness (μm). We may find the estimates of the effect-

susing Equations 14.6, 14.7, and 14.8 as follows:

A = 1

2n
[a + ab − b − (1)]

= 1

2(4)
[59.299 + 59.156 − 55.686 − 56.081] = 0.836

B = 1

2n
[b + ab − a − (1)]

= 1

2(4)
[55.686 + 59.156 − 59.299 − 56.081] = −0.067

AB = 1

2n
[ab + (1) − a − b]

= 1

2(4)
[59.156 + 56.081 − 59.299 − 55.686] = 0.032
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The numerical estimates of the effects indicate that the

effect of deposition time is large and has a positive direction

(increasing deposition time increases thickness) because

changing deposition time from low to high changes the mean

epitaxial layer thickness by 0.836 μm. The effects of arsenic

flow rate (B) and the AB interaction appear small.

The importance of these effects may be confirmed with

the analysis of variance. The sums of squares for A, B, and AB
are computed as follows:

SSA = [a + ab − b − (1)]2

16
= [6.688]2

16
= 2.7956

SSB = [b + ab − a − (1)]2

16
= [−0.538]2

16
= 0.0181

SSAB = [ab + (1) − a − b]2

16
= [0.252]2

16
= 0.0040

T A B L E 14.13 Analysis for the Epitaxial Process Experiment

Term Effect Coefficient SE Coefficient t P-Value
Constant 14.3889 0.03605 399.17 0.000

A 0.8360 0.4180 0.03605 11.60 0.00

B −0.0672 −0.0336 0.03605 −0.93 0.38

AB 0.0315 0.0157 0.03605 0.44 0.67

Source of Variation Sum of Squares Degrees of Freedom Mean Square f 0 P-Value
A (deposition time) 2.7956 1 2.7956 134.40 0.00

B (arsenic flow) 0.0181 1 0.0181 0.87 0.38

AB 0.0040 1 0.0040 0.19 0.67

Error 0.2495 12 0.0208

Total 3.0672 15

SST = 14.0372 + · · · + 14.9322 − (56.081 + · · · + 59.156)2

16

= 3.0672

Practical Interpretation: The analysis of variance is

summarized in the bottom half of Table 14.13 and confirms

our conclusions obtained by examining the magnitude and

direction of the effects. Deposition time is the only factor

that significantly affects epitaxial layer thickness, and from

the direction of the effect estimates, we know that longer

deposition times lead to thicker epitaxial layers. The top half

of Table 14.13 is discussed next.

Models and Residual Analysis It is easy to obtain a model for the response and residuals

from a 2k design by fitting a regression model to the data. For the epitaxial process experiment,

the regression model is

Y = β0 + β1x1 + ϵ

because the only active variable is deposition time, which is represented by a coded variable x1.

The low and high levels of deposition time are assigned values x1 = −1 and x1 = +1, respectively.

The least squares fitted model is

ŷ = 14.389 +
(

0.836

2

)

x1

where the intercept ̂β0 is the grand average of all 16 observations (y) and the slope ̂β1 is one-half

the effect estimate for deposition time. The regression coefficient is one-half the effect estimate

because regression coefficients measure the effect of a unit change in x1 on the mean of Y , and

the effect estimate is based on a two-unit change from −1 to +1.

A coefficient relates a factor to the response and, similar to regression analysis, interest

centers on whether or not a coefficient estimate is significantly different from zero. Each effect

estimate in Equations 14.6 through 14.8 is the difference between two averages (that we denote
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in general as y+ − y−). In a 2k experiment with n replicates, half the observations appear in each

average so that there are n2k−1 observations in each. The associated coefficient estimate, say ̂β,

equals half the associated effect estimate so that

Relationship Between a Coefficient and an Effect

̂β = effect

2
=

y+ − y−
2

(14.11)

The standard error of ̂β is obtained from the standard error of the difference between two averages.

Therefore,

Standard Error of a Coefficient

Standard error ̂β = σ̂
2

√
1

n2k−1
+ 1

n2k−1
= σ̂

√
1

n2k (14.12)

where σ̂ is estimated from the square root of the error mean square. A t-test for a coefficient

can also be used to test the significance of an effect. The t-statistic to test H0: β = 0 in a 2k

experiment is

t-statistic to Test That a Coefficient Is Zero

t =
̂β

Standard error ̂β
=

(y+ − y−)∕2

σ̂
√

1

n2k

(14.13)

with degrees of freedom equal to those associated with error mean square. This statistic is similar

to a two-sample t-test, but σ is estimated from the root of the error mean square. The estimate

σ̂ accounts for the multiple treatments in an experiment and generally differs from the estimate

used in a two-sample t-test.

Some algebra can be used to show that for a 2k experiment, the square of the t-statistic

for the coefficient test equals the F-statistic used for the effect test in the analysis of variance.

Furthermore, the square of a random variable with a t distribution with d degrees of freedom has

an F distribution with 1 numerator and d denominator degrees of freedom. Thus, the test that

compares the absolute value of the t-statistic to the t distribution is equivalent to the ANOVA

F-test, with the exact same P-value, and either method may be used to test an effect.

For example, for the epitaxial process experiment in Example 14.3, the effect of A is 0.836.

Therefore, the coefficient for A is 0.836/2 = 0.418. Furthermore, σ̂2 = 0.0208 from the error mean

square in the ANOVA table. Therefore, the standard error of a coefficient is

√

0.0208∕[4(22)] =
0.03605, and the t-statistic for factor A is 0.418/0.03605 = 11.60. The square of the t-statistic is

11.5962 = 134.47, and this equals the F-statistic for factor A in the ANOVA. The upper half of

Table 14.13 shows the results for the other coefficients. Notice that the P-values obtained from the

t-tests equal those in the ANOVA table. The analysis of a 2k design through coefficient estimates

and t-tests is similar to the approach used in regression analysis. Consequently, it might be easier

to interpret results from this perspective. Computer software often generates output in this format.

The least squares fitted model can also be used to obtain the predicted values at the four

points that form the corners of the square in the design. For example, consider the point with low

deposition time (x1 = −1) and low arsenic flow rate. The predicted value is

ŷ = 14.389 +
(

0.836

2

)

(−1) = 13.971 μm
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FIGURE 14.13

Normal probability plot of residuals for the epitaxial
process experiment.

and the residuals for the four runs at that design point are

e1 = 14.037 − 13.971 = 0.066

e2 = 14.165 − 13.971 = 0.194

e3 = 13.972 − 13.971 = 0.001

e4 = 13.907 − 13.971 = −0.064

The remaining predicted values and residuals at the other three design points are calculated in a

similar manner.

A normal probability plot of these residuals is shown in Figure 14.13. This plot indicates that

one residual e15 =−0.392 is an outlier. Examining the four runs with high deposition time and high

arsenic flow rate reveals that observation y15 = 14.415 is considerably smaller than the other three

observations at that treatment combination. This adds some additional evidence to the tentative

conclusion that observation 15 is an outlier. Another possibility is that some process variables

affect the variability in epitaxial layer thickness. If we could discover which variables produce

this effect, we could perhaps adjust these variables to levels that would minimize the variability in

epitaxial layer thickness. Figures 14.14 and 14.15 are plots of residuals versus deposition time and

arsenic flow rate, respectively. Except for the unusually large residual associated with y15, there

is no strong evidence that either deposition time or arsenic flow rate influences the variability in

epitaxial layer thickness.

Figure 14.16 shows the standard deviation of epitaxial layer thickness at all four runs in the

22 design. These standard deviations were calculated using the data in Table 14.12. Notice that

the standard deviation of the four observations with A and B at the high level is considerably

larger than the standard deviations at any of the other three design points. Most of this difference

is attributable to the unusually low thickness measurement associated with y15. The standard

deviation of the four observations with A and B at the low level is also somewhat larger than the

standard deviations at the remaining two runs. This could indicate that other process variables

not included in this experiment may affect the variability in epitaxial layer thickness. Another

experiment to study this possibility, involving other process variables, could be designed and
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Low High Deposition time, A

FIGURE 14.14

Plot of residuals versus deposition time.
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FIGURE 14.15

Plot of residuals versus arsenic flow rate.
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conducted. (The original paper in the AT&T Technical Journal shows that two additional factors

not considered in this example affect process variability.)

14.5.2 2k Design for k ≥ 3 Factors
The methods presented in the previous section for factorial designs with k = 2 factors each at two

levels can be easily extended to more than two factors. For example, consider k = 3 factors, each

at two levels. This design is a 23 factorial design, and it has eight runs or treatment combinations.

Geometrically, the design is a cube as shown in Figure 14.17(a) with the eight runs forming the

corners of the cube. Figure 14.17(b) lists the eight runs in a table with each row representing

one of the runs and the − and + settings indicating the low and high levels for each of the three

factors. This table is sometimes called the design matrix. This design allows three main effects

(A, B, and C) to be estimated along with three two-factor interactions (AB, AC, and BC) and a

three-factor interaction (ABC).

The main effects can easily be estimated. Remember that the lowercase letters (1), a, b, ab,

c, ac, bc, and abc represent the total of all n replicates at each of the eight runs in the design.

As in Figure 14.18(a), the main effect of A can be estimated by averaging the four treatment

combinations on the right-hand side of the cube where A is at the high level and by subtracting

from this quantity the average of the four treatment combinations on the left-hand side of the cube

where A is at the low level. This gives

A = yA+ − yA− = a + ab + ac + abc
4n

− (1) + b + c + bc
4n

This equation can be rearranged as follows, and in a similar manner we determine the B and C
effects from differences in averages [Figure 14.18(a)]

Main Effects of Factors: 23 Design

A = yA+ − yA− = 1

4n
[a + ab + ac + abc − (1) − b − c − bc]

B = yB+ − yB− = 1

4n
[b + ab + bc + abc − (1) − a − c − ac]

C = yC+ − yC− = 1

4n
[c + ac + bc + abc − (1) − a − b − ab]

0.110 A

B

0.051

0.2500.077

(1) a

b ab

+–

–

+

FIGURE 14.16

The standard deviation of epitaxial
layer thickness at the four runs
in the 22 design.
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The 23 design.
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FIGURE 14.18

Geometric presentation of contrasts corresponding to the main effects and interaction in the
23 design. (a) Main effects. (b) Two-factor interactions. (c) Three-factor interaction.

The two-factor interaction effects may be computed easily. A measure of the AB interaction

is the difference between the average A effects at the two levels of B. Symbolically,

B Average A Effect

High (+)
[(abc − bc) + (ab − b)]

2n

Low (−)
{(ac − c) + [a − (1)]}

2n

Difference
[abc − bc + ab − b − ac + c − a + (1)]

2n

By convention, the AB interaction is one-half of this difference, and the AC and BC interaction

effects are obtained in a similar manner.

Two-Factor Interaction Effects: 23 Design

AB = 1

4n
[abc − bc + ab − b − ac + c − a + (1)]

AC = 1

4n
[(1) − a + b − ab − c + ac − bc + abc]

BC = 1

4n
[(1) + a − b − ab − c − ac + bc + abc]

We could write the AB effect as follows:

AB = abc + ab + c + (1)
4n

− bc + b + ac + a
4n
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In this form, the AB interaction can easily be seen to be the difference in averages between runs

on two diagonal planes in the cube in Figure 14.18(b).

The ABC interaction is defined as the average difference between the AB interaction for the

two different levels of C. Thus,

ABC = 1

4n
{[abc − bc] − [ac − c] − [ab − b] + [a − (1)]}

or

Three-Factor Interaction Effect: 23 Design

ABC = 1

4n
[abc − bc − ac + c − ab + b + a − (1)]

As before, we can think of the ABC interaction as the difference in two averages. If the runs in the

two averages are isolated, they define the vertices of the two tetrahedra that comprise the cube in

Figure 14.18(c).

In the equations for the effects, the quantities in brackets are contrasts in the treatment

combinations. A table of plus and minus signs can be developed from the contrasts and is

shown in Table 14.14. Signs for the main effects are determined directly from the test matrix in

Figure 14.17(b). Once the signs for the main effect columns have been established, the signs for

the remaining columns can be obtained by multiplying the appropriate main effect row by row.

For example, the signs in the AB column are the products of the A and B column signs in each

row. The contrast for any effect can easily be obtained from this table.

Table 14.14 has several interesting properties:

1. Except for the identity column I, each column has an equal number of plus and minus signs.

2. The sum of products of signs in any two columns is zero; that is, the columns in the table

are orthogonal.
3. Multiplying any column by column I leaves the column unchanged; that is, I is an identity

element.
4. The product of any two columns yields a column in the table, for example A × B = AB, and

AB × ABC = A2B2C = C because any column multiplied by itself is the identity column.

T A B L E 14.14 Algebraic Signs for Calculating Effects in the 23 Design

Factorial Effect
Treatment

Combination I A B AB C AC BC ABC
(1) + − − + − + + −

a + + − − − − + +

b + − + − − + − +

ab + + + + − − − −

c + − − + + − − +

ac + + − − + + − −

bc + − + − + − + −

abc + + + + + + + +
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The estimate of any main effect or interaction in a 2k design is determined by multiplying

the treatment combinations in the first column of the table by the signs in the corresponding main

effect or interaction column, by adding the result to produce a contrast, and then by dividing the

contrast by one-half the total number of runs in the experiment.

E X A M P L E 14.4 Surface Roughness

Consider the surface roughness experiment originally de-

scribed in Example 14.2. This is a 23 factorial design in the

factors feed rate (A), depth of cut (B), and tool angle (C), with

n = 2 replicates. Table 14.15 presents the observed surface

roughness data.

The effect of A, for example, is

A = 1

4n
[a + ab + ac + abc − (1) − b − c − bc]

= 1

4(2)
[22 + 27 + 23 + 30 − 16 − 20 − 21 − 18]

= 1

8
[27] = 3.375

and the sum of squares for A is found using Equation 14.10:

SSA =
(contrastA)2

n2k = (27)2

2(8)
= 45.5625

It is easy to verify that the other effects are

B = 1.625

C = 0.875

AB = 1.375

AC = 0.125

BC = −0.625

ABC = 1.125

T A B L E 14.15 Surface Roughness Data

Design Factors

Treatment Surface
Combinations A B C Roughness Totals

(1) −1 −1 −1 9, 7 16

a 1 −1 −1 10, 12 22

b −1 1 −1 9, 11 20

ab 1 1 −1 12, 15 27

c −1 −1 1 11, 10 21

ac 1 −1 1 10, 13 23

bc −1 1 1 10, 8 18

abc 1 1 1 16, 14 30

Examining the magnitude of the effects clearly shows that feed

rate (factor A) is dominant, followed by depth of cut (B) and

the AB interaction, although the interaction effect is relatively

small. The analysis, summarized in Table 14.16, confirms our

interpretation of the effect estimates.

The output from the computer software for this experi-

ment is shown in Table 14.17. The upper portion of the table

displays the effect estimates and regression coefficients for

each factorial effect. To illustrate, for the main effect of feed,

the computer output reports t = 4.32 (with 8 degrees of free-

dom), and t2 = (4.32)2 = 18.66, which is approximately equal

to the F-ratio for feed reported in Table 14.17 (F = 18.69).

This F-ratio has one numerator and eight denominator

degrees of freedom.

The lower panel of the computer output in Table 14.17

is an analysis of variance summary focusing on the types of

terms in the model. A regression model approach is used in

the presentation. You might find it helpful to review Section

12.2.2, particularly the material on the partial F-test. The row

entitled “main effects” under source refers to the three main

effects feed, depth, and angle, each having a single degree

of freedom, giving the total 3 in the column headed “DF.”

The column headed “Seq SS” (an abbreviation for sequential

sum of squares) reports how much the model sum of squares

increases when each group of terms is added to a model that

contains the terms listed above the groups. The first number

in the “Seq SS” column presents the model sum of squares
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T A B L E 14.16 Analysis for the Surface Roughness Experiment

Term Effect Coefficient SE Coefficient t P-Value
Constant 11.0625 0.3903 28.34 0.000

A 3.3750 1.6875 0.3903 4.32 0.003

B 1.6250 0.8125 0.3903 2.08 0.071

C 0.8750 0.4375 0.3903 1.12 0.295

AB 1.3750 0.6875 0.3903 1.76 0.116

AC 0.1250 0.0625 0.3903 0.16 0.877

BC −0.6250 −0.3125 0.3903 −0.80 0.446

ABC 1.1250 0.5625 0.3903 1.44 0.188

Source of Variation Sum of Squares Degrees of Freedom Mean Square f 0 P-Value

A 45.5625 1 45.5625 18.69 0.002

B 10.5625 1 10.5625 4.33 0.071

C 3.0625 1 3.0625 1.26 0.295

AB 7.5625 1 7.5625 3.10 0.116

AC 0.0625 1 0.0625 0.03 0.877

BC 1.5625 1 1.5625 0.64 0.446

ABC 5.0625 1 5.0625 2.08 0.188

Error 19.5000 8 2.4375

Total 92.9375 15

T A B L E 14.17 Computer Analysis for the Surface Roughness Experiment

Estimated Effects and Coefficients for Roughness

Term Effect Coef StDev Coef T P

Constant 11.0625 0.3903 28.34 0.000

Feed 3.3750 1.6875 0.3903 4.32 0.003

Depth 1.6250 0.8125 0.3903 2.08 0.071

Angle 0.8750 0.4375 0.3903 1.12 0.295

Feed*Depth 1.3750 0.6875 0.3903 1.76 0.116

Feed*Angle 0.1250 0.0625 0.3903 0.16 0.877

Depth*Angle −0.6250 −0.3125 0.3903 −0.80 0.446

Feed*Depth*Angle 1.1250 0.5625 0.3903 1.44 0.188

Analysis of Variance for Roughness

Source DF Seq SS Adj SS Adj MS F P

Main effects 3 59.188 59.188 19.729 8.09 0.008

2-Way interactions 3 9.187 9.187 3.062 1.26 0.352

3-Way interactions 1 5.062 5.062 5.062 2.08 0.188

Residual error 8 19.500 19.500 2.437

Pure error 8 19.500 19.500 2.437

Total 15 92.938



�

� �

�

14.5 2k Factorial Designs 401

for fitting a model having only the three main effects. The row

labeled “2-Way Interactions” refers to AB, AC, and BC, and the

sequential sum of squares reported here is the increase in the

model sum of squares if the interaction terms are added to a

model containing only the main effects. Similarly, the sequen-

tial sum of squares for the three-way interaction is the increase

in the model sum of squares that results from adding the term

ABC to a model containing all other effects.

The column headed “Adj SS” (an abbreviation for

adjusted sum of squares) reports how much the model sum

of squares increases when each group of terms is added to

a model that contains all the other terms. Now because any

2k design with an equal number of replicates in each cell is

an orthogonal design, the adjusted sum of squares equals

the sequential sum of squares. Therefore, the F-tests for

each row in the computer analysis of variance in Table 14.17

are testing the significance of each group of terms (main

effects, two-factor interactions, and three-factor interactions)

as if they were the last terms to be included in the model.

Clearly, only the main effect terms are significant. The t-tests

on the individual factor effects indicate that feed rate and

depth of cut have large main effects, and there may be some

mild interaction between these two factors. Therefore, the

computer output agrees with the results given previously.

Models and Residual Analysis We may obtain the residuals from a 2k design by using the

method demonstrated earlier for the 22 design. As an example, consider the surface roughness

experiment. The three largest effects are A, B, and the AB interaction. The regression model used

to obtain the predicted values is

Y = β0 + β1x1 + β2x2 + β12x1x2 + ϵ

where x1 represents factor A, x2 represents factor B, and x1x2 represents the AB interaction.

The regression coefficients β1, β2, and β12 are estimated by one-half the corresponding effect

estimates, and β0 is the grand average. Thus,

ŷ =11.0625 +
(

3.375

2

)

x1 +
(

1.625

2

)

x2 +
(

1.375

2

)

x1x2

=11.0625 + 1.6875x1 + 0.8125x2 + 0.6875x1x2

Note that the regression coefficients are presented in the upper panel of Table 14.17. The predicted

values would be obtained by substituting the low and high levels of A and B into this equation.

To illustrate this, at the treatment combination where A, B, and C are all at the low level, the

predicted value is

ŷ = 11.0625 + 1.6875(−1) + 0.8125(−1) + 0.6875(−1)(−1) = 9.25

Because the observed values at this run are 9 and 7, the residuals are 9 − 9.25 = −0.25 and

7 − 9.25 = −2.25. Residuals for the other 14 runs are obtained similarly.

See a normal probability plot of the residuals in Figure 14.19. Because the residuals lie

approximately along a straight line, we do not suspect any problem with normality in the data.

There are no indications of severe outliers. It would also be helpful to plot the residuals versus

the predicted values and against each of the factors A, B, and C.

Projection of 2k Designs Any 2k design collapses or projects into another 2k design in

fewer variables if one or more of the original factors are dropped. Sometimes this can provide

additional insight into the remaining factors. For example, consider the surface roughness exper-

iment. Because factor C and all its interactions are negligible, we could eliminate factor C from

the design. The result is to collapse the cube in Figure 14.17 into a square in the A − B plane;

therefore, each of the four runs in the new design has four replicates. In general, if we delete h
factors so that r = k − h factors remain, the original 2k design with n replicates projects into a 2r

design with n2h replicates.
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FIGURE 14.19

Normal probability plot of residuals
from the surface roughness
experiment.
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14.6 Single Replicate of the 2k Design
As the number of factors in a factorial experiment increases, the number of effects that can be esti-

mated also increases. For example, a 24 experiment has 4 main effects, 6 two-factor interactions,

4 three-factor interactions, and 1 four-factor interaction, and a 26 experiment has 6 main effects,

15 two-factor interactions, 20 three-factor interactions, 15 four-factor interactions, 6 five-factor

interactions, and 1 six-factor interaction. In most situations, the sparsity of effects principle
applies; that is, the system is usually dominated by the main effects and low-order interactions.

The three-factor and higher-order interactions are usually negligible. Therefore, when the number

of factors is moderately large, say, k ≥ 4 or 5, a common practice is to run only a single replicate

of the 2k design and then pool or combine the higher-order interactions as an estimate of error.

Sometimes a single replicate of a 2k design is called an unreplicated 2k factorial design.

When analyzing data from unreplicated factorial designs, occasionally real high-order inter-

actions occur. The use of an error mean square obtained by pooling high-order interactions is

inappropriate in these cases. A simple method of analysis can be used to overcome this problem.

Construct a plot of the estimates of the effects on a normal probability scale. The effects that

are negligible are normally distributed with mean zero and variance σ2 and tend to fall along a

straight line on this plot, whereas significant effects has nonzero means and will not lie along the

straight line. We illustrate this method in Example 14.5.

E X A M P L E 14.5 Plasma Etch

An article in Solid State Technology [“Orthogonal Design

for Process Optimization and Its Application in Plasma

Etching” (May 1987, pp. 127–132)] describes the application

of factorial designs in developing a nitride etch process on

a single-wafer plasma etcher. The process uses C2F6 as the

reactant gas. It is possible to vary the gas flow, the power

applied to the cathode, the pressure in the reactor chamber,

and the spacing between the anode and the cathode (gap).

Several response variables would usually be of interest in this

process, but in this example, we concentrate on etch rate for

silicon nitride.

We use a single replicate of a 24 design to investigate this

process. Because it is unlikely that the three- and four-factor

interactions are significant, we tentatively plan to combine

them as an estimate of error. The factor levels used in the

design follow:

Design Factor

Level
Gap
(cm)

Pressure
(mTorr)

C2F6 Flow
(SCCM)

Power
(w)

Low (−) 0.80 450 125 275

High (+) 1.20 550 200 325
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Refer to Table 14.18 for the data from the 16 runs of the 24

design. For example, the estimate of factor A is

A = 1

8
[a + ab + ac + abc + ad + abd + acd + abcd

− (1) − b − c − bc − d − bd − cd − bcd]

= 1

8
[669 + 650 + 642 + 635 + 749 + 868 + 860 + 729

− 550 − 604 − 633 − 601 − 1037 − 1052 − 1075

− 1063]
= −101.625

Thus, the effect of increasing the gap between the anode and

the cathode from 0.80 to 1.20 centimeters is to decrease the

etch rate by 101.625 angstroms per minute.

It is easy to verify (using computer software, for example)

that the complete set of effect estimates is

A = −101.625 AD = −153.625

B = −1.625 BD = −0.625

AB = −7.875 ABD = 4.125

C = 7.375 CD = −2.125

AC = −24.875 ACD = 5.625

BC = −43.875 BCD = −25.375

ABC = −15.625 ABCD = −40.125

D = 306.125

The normal probability plot of these effects from the plasma

etch experiment is shown in Figure 14.20. Clearly, the main

T A B L E 14.18
The 24 Design for the Plasma
Etch Experiment

A
(Gap)

B
(Pressure)

C
(C2F6 Flow)

D
(Power)

Etch Rate
(Å/min)

−1 −1 −1 −1 550

1 −1 −1 −1 669

−1 1 −1 −1 604

1 1 −1 −1 650

−1 −1 1 −1 633

1 −1 1 −1 642

−1 1 1 −1 601

1 1 1 −1 635

−1 −1 −1 1 1037

1 −1 −1 1 749

−1 1 −1 1 1052

1 1 −1 1 868

−1 −1 1 1 1075

1 −1 1 1 860

−1 1 1 1 1063

1 1 1 1 729
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FIGURE 14.20

Normal probability plot of effects from the
plasma etch experiment.

effects of A and D and the AD interaction are significant

because they fall far from the line passing through the other

points. The analysis, summarized in Table 14.19, confirms

these findings. Notice that in the analysis of variance we have

pooled the three- and four-factor interactions to form the error

mean square. If the normal probability plot had indicated that

any of these interactions were important, they would not have

been included in the error term.

Practical Interpretation: Because A = −101.625, the

effect of increasing the gap between the cathode and anode is

to decrease the etch rate. However, D = 306.125; thus, apply-

ing higher power levels increase the etch rate. Figure 14.21 is

a plot of the AD interaction. This plot indicates that the effect

of changing the gap width at low power settings is small but

that increasing the gap at high power settings dramatically

reduces the etch rate. High etch rates are obtained at high

power settings and narrow gap widths.
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FIGURE 14.21

AD (gap-power) interaction from the plasma etch
experiment.
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T A B L E 14.19 Analysis for the Plasma Etch Experiment

Term Effect Coefficient SE Coefficient t P-Value
Constant 776.06 11.28 68.77 0.000

A −101.62 −50.81 11.28 −4.50 0.006

B −1.62 −0.81 11.28 −0.07 0.945

C 7.37 3.69 11.28 0.33 0.757

D 306.12 153.06 11.28 13.56 0.000

AB −7.88 −3.94 11.28 −0.35 0.741

AC −24.88 −12.44 11.28 −1.10 0.321

AD −153.62 −76.81 11.28 −6.81 0.001

BC −43.87 −21.94 11.28 −1.94 0.109

BD −0.63 −0.31 11.28 −0.03 0.979

CD −2.13 −1.06 11.28 −0.09 0.929

Source of Variation Sum of Squares Degrees of Freedom Mean Square f 0 P-Value
A 41,310.563 1 41,310.563 20.28 0.0064

B 10.563 1 10.563 <1 —

C 217.563 1 217.563 <1 —

D 374,850.063 1 374,850.063 183.99 0.0000

AB 248.063 1 248.063 <1 —

AC 2,475.063 1 2,475.063 1.21 0.3206

AD 94,402.563 1 94,402.563 46.34 0.0010

BC 7,700.063 1 7,700.063 3.78 0.1095

BD 1.563 1 1.563 <1 —

CD 18.063 1 18.063 <1 —

Error 10,186.813 5 2,037.363

Total 531,420.938 15

The residuals from the experiment in Example 14.5 can be obtained from the regression model

ŷ = 776.0625 −
(

101.625

2

)

x1 +
(

306.125

2

)

x4 −
(

153.625

2

)

x1x4

For example, when both A and D are at the low level, the predicted value is

ŷ = 776.0625 −
(

101.625

2

)

(−1) +
(

306.125

2

)

(−1) −
(

153.625

2

)

(−1)(−1) = 597
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FIGURE 14.22

Normal probability plot of residuals
from the plasma etch experiment.

and the four residuals at this treatment combination are

e1 = 550 − 597 = −47 e2 = 604 − 597 = 7

e3 = 633 − 597 = 36 e4 = 601 − 597 = 4

The residuals at the other three treatment combinations (A high, D low), (A low, D high), and

(A high, D high) are obtained similarly. A normal probability plot of the residuals is shown in

Figure 14.22. The plot is satisfactory.

14.7 Addition of Center Points to a 2k Design
A potential concern in the use of two-level factorial designs is the assumption of linearity in

the factor effects. Of course, perfect linearity is unnecessary, and the 2k system works quite well

even when the linearity assumption holds only approximately. However, a method of replicating

certain points in the 2k factorial provides protection against curvature and allows an independent

estimate of error to be obtained. The method consists of adding center points to the 2k design.

These consist of nC replicates run at the point xi = 0 (i = 1, 2,… , k). One important reason for

adding the replicate runs at the design center is that center points do not affect the usual effects

estimates in a 2k design. We assume that the k factors are quantitative.

To illustrate the approach, consider a 22 design with one observation at each of the facto-

rial points (−, −), (+, −), (−, +), and (+, +) and nC observations at the center points (0, 0).

Figure 14.23 illustrates the situation. Let yF be the average of the four runs at the four factorial

points, and let yC be the average of the nC run at the center point. If the difference yF − yC is

small, the center points lie on or near the plane passing through the factorial points, and there is

no curvature. On the other hand, if yF − yC is large, curvature is present.

Similar to factorial effects, a test for curvature can be based on a F-statistic or an equivalent

t-statistic. A single degree-of-freedom sum of squares for curvature is compared to MSE to pro-

duce the F-statistic. Alternatively, a t-statistic similar to the one used to compare two means can

be computed. A coefficient for curvature is defined to be yF − yC, and σ is estimated by the square

root of MSE.
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FIGURE 14.23

A 22 design with center points.
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Curvature Sum of Squares and t-Statistic
The sum of squares for curvature is

SSCurvature =
nFnC(yF − yC)2

nF + nC
=

⎛
⎜
⎜
⎜
⎜
⎝

yF − yC
√

1

nF
+ 1

nC

⎞
⎟
⎟
⎟
⎟
⎠

2

and the t-statistic to test for curvature is

t =
yF − yC

σ̂
√

1

nF
+ 1

nC

(14.14)

where, in general, nF is the number of factorial design points. The SSCurvature may be compared to

the error mean square to produce the F-test for curvature. Notice that, similar to the test for other

effects, the square of the t-statistic equals the F-statistic.

When points are added to the center of the 2k design, the model we may entertain is

Y = β0 +
k∑

j=1

β0xj +
∑

i<j

∑
βijxixj +

k∑

j=1

βjjx2
j + ϵ

where the βjj are pure quadratic effects. The test for curvature actually tests the hypotheses

H0∶
k∑

j=1

βjj = 0 H1∶
k∑

j=1

βjj ≠ 0

Furthermore, if the factorial points in the design are unreplicated, we may use the nC center points

to construct an estimate of error with nC − 1 degrees of freedom.
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E X A M P L E 14.6 Process Yield

A chemical engineer is studying the percentage of conversion

or yield of a process. There are two variables of interest,

reaction time and reaction temperature. Because she is

uncertain about the assumption of linearity over the region

of exploration, the engineer decides to conduct a 22 design

(with a single replicate of each factorial run) augmented with

five center points. The design and the yield data are shown in

Figure 14.24.

Table 14.20 summarizes the analysis for this experiment.

The mean square error is calculated from the center points as

follows:

MSE =
SSE

nC − 1
=

∑

Center points

(yi − yC)2

nC − 1
=

5∑

i=1

(yi − 40.46)2

4

= 0.1720

4
= 0.0430

The average of the points in the factorial portion of the

design is yF = 40.425, and the average of the points at the

center is yC = 40.46. The difference yF − yC = 40.425 −
40.46 = −0.035 appears to be small. The curvature sum of

squares in the analysis of variance table is computed from

Equation 14.14 as follows:

SSCurvature =
nFnC(yF − yC)2

nF + nC
= (4)(5)(−0.035)2

4 + 5
= 0.0027

The coefficient for curvature is yF − yC = −0.035, and the

t-statistic to test for curvature is

T A B L E 14.20 Analysis for the Process Yield Experiment with Center Points

Term Effect Coefficient SE Coefficient t P-Value

Constant 40.4250 0.1037 389.89 0.000

A 1.5500 0.7750 0.1037 7.47 0.002

B 0.6500 0.3250 0.1037 3.13 0.035

AB −0.0500 −0.0250 0.1037 −0.24 0.821

Ct Pt −0.0350 0.1391 −0.25 0.814

Source of Variation Sum of Squares Degrees of Freedom Mean Square f 0 P-Value
A (Time) 2.4025 1 2.4025 55.87 0.0017

B (Temperature) 0.4225 1 0.4225 9.83 0.0350

AB 0.0025 1 0.0025 0.06 0.8237

Curvature 0.0027 1 0.0027 0.06 0.8163

Error 0.1720 4 0.0430

Total 3.0022 8
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FIGURE 14.24

The 22 design with five center points for the process
yield experiment.

t = −0.035
√

0.043
(

1

4
+ 1

5

)
= −0.25

Practical Interpretation: The analysis of variance

indicates that both factors exhibit significant main effects,

that there is no interaction, and that there is no evidence of

curvature in the response over the region of exploration. That

is, the null hypothesis H0∶
∑k

j=1
βjj = 0 cannot be rejected.
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14.8 Blocking and Confounding in the 2k Design
Running all the observations in a 2k factorial design under homogeneous conditions is often

impossible. Blocking is the appropriate design technique for this general situation. However,

in many situations, the block size is smaller than the number of runs in the complete replicate.

In these cases, confounding is a useful procedure for running the 2k design in 2p blocks where

the number of runs in a block is less than the number of treatment combinations in one complete

replicate. The technique causes certain interaction effects to be indistinguishable from blocks

or confounded with blocks. We illustrate confounding in the 2k factorial design in 2p blocks

where p < k.

Consider a 22 design. Suppose that each of the 22 = 4 treatment combinations requires 4 hours

of laboratory analysis. Thus, 2 days are required to perform the experiment. If days are considered

as blocks, we must assign two of the four treatment combinations to each day.

See this design in Figure 14.25. Notice that block 1 contains the treatment combinations (1)

and ab and that block 2 contains a and b. The contrasts for estimating the main effects of factors

A and B are

ContrastA = ab + a − b − (1) ContrastB = ab + b − a − (1)

Note that these contrasts are unaffected by blocking because in each contrast there is one plus and

one minus treatment combination from each block. That is, any difference between block 1 and

block 2 that increases the readings in one block by an additive constant cancels out. The contrast

for the AB interaction is

ContrastAB = ab + (1)b − a − b

Because the two treatment combinations with the plus signs, ab and (1), are in block 1 and the

two with the minus signs, a and b, are in block 2, the block effect and the AB interaction are

identical. That is, the AB interaction is confounded with blocks. The reason for this is apparent

from the table of plus and minus signs for the 22 design in Table 14.11. From the table, we see that

all treatment combinations that have a plus on AB are assigned to block 1 whereas all treatment

combinations that have a minus sign on AB are assigned to block 2.

This scheme can be used to confound any 2k design in two blocks. As a second example,

consider a 23 design, run in two blocks. From the table of plus and minus signs in Table 14.14,

we assign the treatment combinations that are minus in the ABC column to block 1 and those that

are plus in the ABC column to block 2. The resulting design is shown in Figure 14.26.

b
+

(1)
–

– +
a

ab

A
Geometric view

(a)

Assignment of the four

runs to two blocks

(b)

(1)

Block 1

ab

a

Block 2

b

= Run in block 1

= Run in block 2

FIGURE 14.25

A 22 design in two blocks. (a) Geometric view. (b) Assignment of the
four runs to two blocks.
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FIGURE 14.26

The 23 design in two blocks with ABC confounded. (a) Geometric view.
(b) Assignment of the eight runs to two blocks.

There is a more general method of constructing the blocks. The method employs a defining
contrast, say,

L = α1x1 + α2x2 + · · · + αnxn (14.15)

where xi is the level of the ith factor appearing in a treatment combination and αi is the exponent

appearing on the ith factor in the effect that is to be confounded with blocks. For the 2k system, we

have either αi = 0 or 1 and either xi = 0 (low level) or xi = 1 (high level). Treatment combinations

that produce the same value of L (modulus 2) are placed in the same block. Because the only

possible values of L (mod 2) are 0 and 1, this assigns the 2k treatment combinations to exactly

two blocks.

As an example, consider the 23 design with ABC confounded with blocks. Here x1 corre-

sponds to A, x2 to B, x3 to C, and α1 = α2 = α3 = 1. Thus, the defining contrast that would be used

to confound ABC with blocks is

L = x1 + x2 + x3

To assign the treatment combinations to the two blocks, we substitute the treatment combinations

into the defining contrast as follows:

(1)∶ L = 1(0) + 1(0) + 1(0) = 0 = 0 (mod 2) c∶ L = 1(0) + 1(0) + 1(1) = 1 = 1 (mod 2)
a∶ L = 1(1) + 1(0) + 1(0) = 1 = 1 (mod 2) ac∶ L = 1(1) + 1(0) + 1(1) = 2 = 0 (mod 2)
b∶ L = 1(0) + 1(1) + 1(0) = 1 = 1 (mod 2) bc∶ L = 1(0) + 1(1) + 1(1) = 2 = 0 (mod 2)

ab∶ L = 1(1) + 1(1) + 1(0) = 2 = 0 (mod 2) abc∶ L = 1(1) + 1(1) + 1(1) = 3 = 1 (mod 2)

Thus (1), ab, ac, and bc are run in block 1, and a, b, c, and abc are run in block 2. This same

design is shown in Figure 14.26.

A shortcut method is useful in constructing these designs. The block containing the treatment

combination (1) is called the principal block. Any element [except (1)] in the principal block

may be generated by multiplying two other elements in the principal block modulus 2 on the

exponents. For example, consider the principal block of the 23 design with ABC confounded,

shown in Figure 14.26. Note that

ab • ac = a2bc = bc
ab • bc = ab2c = ac
ac • bc = abc2 = ab
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Treatment combinations in the other block (or blocks) may be generated by multiplying one

element in the new block by each element in the principal block modulus 2 on the exponents.

For the 23 with ABC confounded, because the principal block is (1), ab, ac, and bc, we

know that the treatment combination b is in the other block. Thus, elements of this second

block are

b • (1) = b
b • ab = ab2 = a
b • ac = abc
b • bc = b2c = c

E X A M P L E 14.7 Missile Miss Distance

An experiment is performed to investigate the effect of four

factors on the terminal miss distance of a shoulder-fired

ground-to-air missile. The four factors are target type (A),

seeker type (B), target altitude (C), and target range (D).

Each factor may be conveniently run at two levels, and the

optical tracking system allows terminal miss distance to

be measured to the nearest foot. Two different operators or

gunners are used in the flight test and, because there may be

differences between operators, the test engineers decided to

conduct the 24 design in two blocks with ABCD confounded.

Thus, the defining contrast is

L = x1 + x2 + x3 + x4

= Run in block 1

= Run in block 2

A
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B

abcbc
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a

ab
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FIGURE 14.27

The 24 design in two blocks for Example 14.7. (a) Geometric view. (b) Assignment of the 16 runs to
two blocks.

The experimental design and the resulting data are

shown in Figure 14.27. The effect estimates obtained from

computer software are shown in Table 14.21. A normal

probability plot of the effects in Figure 14.28 reveals that A
(target type), D (target range), AD, and AC have large effects.

A confirming analysis, pooling the three-factor interactions

as error, is shown in Table 14.22.

Practical Interpretation: Because the AC and AD
interactions are significant, it is logical to conclude that A
(target type), C (target altitude), and D (target range) all have

important effects on the miss distance and that there are

interactions between target type and altitude and target type

and range. Notice that the ABCD effect is treated as blocks in

this analysis.



�

� �

�

14.8 Blocking and Confounding in the 2k Design 411

T A B L E 14.21

Effect Estimates from Computer
Output for the Missile Miss
Distance Experiment

Estimated Effects and Coefficients for Distance

Term Effect Coefficient

Constant 6.938

Block (ABCD) 0.063

A 2.625 1.312

B 0.625 0.313

C 0.875 0.438

D 1.875 0.938

AB −0.125 −0.063

AC −2.375 −1.187

AD 1.625 0.813

BC −0.375 −0.188

BD −0.375 −0.187

CD −0.125 −0.062

ABC −0.125 −0.063

ABD 0.875 0.438

ACD −0.375 −0.187

BCD −0.375 −0.187

_2

_1
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1

0 2
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D
AD
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FIGURE 14.28

Normal probability plot of the effects for the
Missile Miss Distance Experiment.

T A B L E 14.22 Analysis for the Missile Miss Distance Experiment

Term Effect Coefficient SE Coefficient t P-Value

Constant 6.938 0.2577 26.92 0.000

Blocks (ABCD) 0.063 0.2577 0.24 0.820

A 2.625 1.312 0.2577 5.09 0.007

B 0.625 0.313 0.2577 1.21 0.292

C 0.875 0.437 0.2577 1.70 0.165

D 1.875 0.938 0.2577 3.64 0.022

AB −0.125 −0.062 0.2577 −0.24 0.820

AC −2.375 −1.188 0.2577 −4.61 0.010

AD 1.625 0.813 0.2577 3.15 0.034

BC −0.375 −0.187 0.2577 −0.73 0.507

BD −0.375 −0.188 0.2577 −0.73 0.507

CD −0.125 −0.063 0.2577 −0.24 0.820
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T A B L E 14.22 Analysis for the Missile Miss Distance Experiment (Continued)

Source of
Variation

Sum of
Squares

Degrees of
Freedom

Mean
Square f 0 P-Value

Blocks (ABCD) 0.0625 1 0.0625 0.06 —

A 27.5625 1 27.5625 25.94 0.0070

B 1.5625 1 1.5625 1.47 0.2920

C 3.0625 1 3.0625 2.88 0.1648

D 14.0625 1 14.0625 13.24 0.0220

AB 0.0625 1 0.0625 0.06 —

AC 22.5625 1 22.5625 21.24 0.0100

AD 10.5625 1 10.5625 9.94 0.0344

BC 0.5625 1 0.5625 0.53 —

BD 0.5625 1 0.5625 0.53 —

CD 0.0625 1 0.0625 0.06 —

Error (ABC + ABD + ACD + BCD) 4.2500 4 1.0625

Total 84.9375 15

It is possible to confound the 2k design in four blocks of 2k−2 observations each. To construct

the design, two effects are chosen to confound with blocks, and their defining contrasts are

obtained. A third effect, the generalized interaction of the two effects initially chosen, is also

confounded with blocks. The generalized interaction of two effects is found by multiplying their

respective letters and reducing the exponents modulus 2.

For example, consider the 24 design in four blocks. If AC and BD are confounded with blocks,

their generalized interaction is (AC)(BD)=ABCD. The design is constructed by using the defining

contrasts for AC and BD:

L1 = x1 + x3 L2 = x2 + x4

It is easy to verify that the four blocks are

Block 1

L1 = 0, L2 = 0

Block 2

L1 = 1, L2 = 0

Block 3

L1 = 0, L2 = 1

(1)

ac
bd

abcd

Block 4

L1 = 1, L2 = 1

c
abd
bcd

a
abc
d

acd

b
bc
ad
cd

ab

This general procedure can be extended to confounding the 2k design in 2p blocks where p< k.

Start by selecting p effects to be confounded such that no effect chosen is a generalized interaction

of the others. Then the blocks can be constructed from the p defining contrasts L1, L2, … , Lp that

are associated with these effects. In addition to the p effects chosen to be confounded, exactly

2p − p − 1 additional effects are confounded with blocks; these are the generalized interactions

of the original p effects chosen. Care should be taken so as not to confound effects of potential

interest.
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For more information on confounding in the 2k factorial design, refer to Montgomery (2017)

for guidelines on selecting factors to confound with blocks so that main effects and low-order

interactions are not confounded. In particular, that book has a table of suggested confounding

schemes for designs with up to seven factors and a range of block sizes, some of which are as

small as two runs.

14.9 One-Half Fraction of the 2k Design
As the number of factors in a 2k factorial design increases, the number of runs required increases

rapidly. For example, a 25 requires 32 runs. In this design, only 5 degrees of freedom corre-

spond to main effects, and 10 degrees of freedom correspond to two-factor interactions. Sixteen

of the 31 degrees of freedom are used to estimate high-order interactions—that is, three-factor

and higher-order interactions. Often there is little interest in these high-order interactions, partic-

ularly when we first begin to study a process or system. If we can assume that certain high-order

interactions are negligible, a fractional factorial design involving fewer than the complete set of

2k runs can be used to obtain information on the main effects and low-order interactions. In this

section, we introduce fractional replications of the 2k design.

A major use of fractional factorials is in screening experiments. These are experiments in

which many factors are considered with the purpose of identifying those factors (if any) that have

large effects. Screening experiments are usually performed in the early stages of a project when

it is likely that many of the factors initially considered have little or no effect on the response.

The factors that are identified as important are then investigated more thoroughly in subsequent

experiments.

A one-half fraction of the 2k design contains 2k−1 runs and is often called a 2k−1 fractional

factorial design. As an example, consider the 23−1 design—that is, a one-half fraction of the 23.

This design has only four runs, in contrast to the full factorial that would require eight runs.

The table of plus and minus signs for the 23 design is shown in Table 14.23. Suppose that we

select the four treatment combinations a, b, c, and abc as our one-half fraction. These treatment

combinations are shown in the top half of Table 14.23 and in Figure 14.29(a).

Notice that the 23−1 design is formed by selecting only those treatment combinations that

yield a plus on the ABC effect. Thus, ABC is called the generator of this particular fraction.

Furthermore, the identity element I is also a plus for the four runs, so we call

I = ABC
the defining relation for the design.

T A B L E 14.23 Plus and Minus Signs for the 23 Factorial Design

Factorial Effect

Treatment
Combination I A B C AB AC BC ABC

a + + − − − − + +

b + − + − − + − +

c + − − + + − − +

abc + + + + + + + +

ab + + + − + − − −

ac + + − + − + − −

bc + − + + − − + −

(1) + − − − + + + −
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A

C

B

abc

c

b

a

(a)

The principal fraction, I = +ABC

bc

ac

ab

(1)

(b)

The alternate fraction, I = –ABC

FIGURE 14.29

The one-half fractions of the 23 design. (a) The principal fraction, I = +ABC.
(b) The alternate fraction, I = −ABC.

The treatment combinations in the 23−1 design yields three degrees of freedom associated

with the main effects. From the upper half of Table 14.23, we obtain the estimates of the main

effects as linear combinations of the observations, say,

A = 1∕2[a − b − c + abc] B = 1∕2[−a + b − c + abc] C = 1∕2[−a − b + c + abc]

It is also easy to verify that the estimates of the two-factor interactions should be the following

linear combinations of the observations:

BC = 1∕2[a − b − c + abc] AC = 1∕2[−a + b − c + abc] AB = 1∕2[−a − b + c + abc]

Thus, the linear combination of observations in column A, called 𝓁A, estimates both the main

effect of A and the BC interaction. That is, the linear combination 𝓁A estimates the sum of these

two effects A+BC. Similarly, 𝓁B estimates B+AC, and 𝓁C estimates C +AB. Two or more effects

that have this property are called aliases. In our 23−1 design, A and BC are aliases, B and AC are

aliases, and C and AB are aliases. Aliasing is the direct result of fractional replication. In many

practical situations, it is possible to select the fraction so that the main effects and low-order

interactions that are of interest are aliased only with high-order interactions (which are probably

negligible).

The alias structure for this design is found by using the defining relation I = ABC. Multiply-

ing any effect by the defining relation yields the aliases for that effect. In our example, the alias

of A is

A = A • ABC = A2BC = BC

because A • I = A and A2 = I. The aliases of B and C are

B = B • ABC = AB2C = AC and C = C • ABC = ABC2 = AB

Now suppose that we had chosen the other one-half fraction, that is, the treatment combi-

nations in Table 14.23 associated with minus on ABC. See these four runs in the lower half of

Table 14.23 and in Figure 14.29(b). The defining relation for this design is I = −ABC. The aliases

are A = −BC, B = −AC, and C = −AB. Thus, estimates of A, B, and C that result from this frac-

tion really estimate A − BC, B − AC, and C − AB. In practice, it usually does not matter which

one-half fraction we select. The fraction with the plus sign in the defining relation is usually called

the principal fraction, and the other fraction is usually called the alternate fraction.

Note that if we had chosen AB as the generator for the fractional factorial A = A • AB = B
and the two main effects of A and B would be aliased. This typically loses important information.



�

� �

�

14.9 One-Half Fraction of the 2k Design 415

Sometimes we use sequences of fractional factorial designs to estimate effects. For example,

suppose that we had run the principal fraction of the 23−1 design with generator ABC. From this

design, we have the following effect estimates:

𝓁A = A + BC 𝓁B = B + AC 𝓁C = C + AB

Suppose that we are willing at this point to assume that the two-factor interactions are negligible.

If they are, the 23−1 design has produced estimates of the three main effects A, B, and C. However,

if after running the principal fraction, we are uncertain about the interactions, it is possible to

estimate them by running the alternate fraction. The alternate fraction produces the following

effect estimates:

𝓁′
A = A − BC 𝓁′

B = B − AC 𝓁′
C = C − AB

We may now obtain de-aliased estimates of the main effects and two-factor interactions by

adding and subtracting the linear combinations of effects estimated in the two individual fractions.

For example, suppose that we want to de-alias A from the two-factor interaction BC. Because 𝓁A =
A + BC and 𝓁′

A = A − BC, we can combine these effect estimates as follows:

1

2
(𝓁A − 𝓁′

A) =
1

2
(A + BC + A − BC) = A

and

1

2
(𝓁A − 𝓁′

A) =
1

2
(A + BC − A + BC) = BC

For all three pairs of effect estimates, we would obtain the following results:

Effect, i from 1∕2(li + l′i) from 1∕2(li − l′i)
i = A 1∕2 (A + BC + A − BC) = A 1∕2 [A + BC − (A − BC)] = BC
i = B 1∕2 (B + AC + B − AC) = B 1∕2 [B + AC − (B − AC)] = AC
i = C 1∕2 (C + AB + C − AB) = C 1∕2 [C + AB − (C − AB)] = AB

Thus, by combining a sequence of two fractional factorial designs, we can isolate both the main

effects and the two-factor interactions. This property makes the fractional factorial design highly

useful in experimental problems because we can run sequences of small, efficient experiments,

combine information across several experiments, and take advantage of learning about the process

we are experimenting with as we go along. This is an illustration of the concept of sequential

experimentation.

A 2k−1 design may be constructed by writing down the treatment combinations for a full

factorial with k − 1 factors, called the basic design, and then adding the kth factor by identifying

its plus and minus levels with the plus and minus signs of the highest-order interaction. Therefore,

a 23−1 fractional factorial is constructed by writing down the basic design as a full 22 factorial

and then equating factor C with the ±AB interaction. Thus, to construct the principal fraction, we

would use C = +AB as follows:

Basic Design Fractional Design
Full 22 23−1, I = +ABC

A B A B C = AB
− − − − +
+ − + − −
− + − + −
+ + + + +

To obtain the alternate fraction, we would equate the last column to C = −AB.



�

� �

�

416 CHAPTER 14 Design of Experiments with Several Factors

E X A M P L E 14.8 Plasma Etch

To illustrate the use of a one-half fraction, consider the plasma

etch experiment described in Example 14.5. Suppose that we

decide to use a 24−1 design with I = ABCD to investigate

the four factors gap (A), pressure (B), C2F6 flow rate (C),

and power setting (D). This design would be constructed by

writing as the basic design a 23 in the factors A, B, and C
and then setting the levels of the fourth factor D = ABC. The

design and the resulting etch rates are shown in Table 14.24.

The design is shown graphically in Figure 14.30.

In this design, the main effects are aliased with the three-

factor interactions; note that the alias of A is

A • I = A • ABCD or A = A2BCD = BCD

and similarly, B = ACD, C = ABD, and D = ABC. The

two-factor interactions are aliased with each other. For

example, the alias of AB is CD:

AB • I = A • ABCD or AB = A2B2CD = CD

The other aliases are AC = BD and AD = BC.

The estimates of the main effects and their aliases are

found using the four columns of signs in Table 14.24. For

example, from column A, we obtain the estimated effect

𝓁A = A + BCD = 1

4
(−550 + 749 − 1052 + 650 − 1075

+ 642 − 601 + 729) = −127.0

The other columns produce

𝓁B = B + ACD = 4.0 𝓁C = C + ABD = 11.5

and

𝓁D = D + ABC = 290.5

Clearly, 𝓁A and 𝓁D are large, and if we believe that the

three-factor interactions are negligible, the main effects A
(gap) and D (power setting) significantly affect etch rate.

abcd = 729

cd = 1075

bd = 1052

ad = 749

bc = 601

ac = 642

ab = 650

(1) = 550

A

C

B

D– +

FIGURE 14.30

The 24−1 design for the plasma etch experiment.

T A B L E 14.24
The 24−1 Design with Defining
Relation I = ABCD

Treatment Etch
A B C D = ABC Combination Rate

− − − − (1) 550

+ − − + ad 749

− + − + bd 1052

+ + − − ab 650

− − + + cd 1075

+ − + − ac 642

− + + − bc 601

+ + + + abcd 729

The interactions are estimated by forming the AB, AC,

and AD columns and adding them to the table. For example,

the signs in the AB column are +, −, −, +, +, −, −, +, and this

column produces the estimate

𝓁AB = AB + CD = 1

4
(550 − 749 − 1052 + 650 + 1075

− 642 − 601 + 729) = −10

From the AC and AD columns we find

𝓁AC = AC + BD = −25.50 𝓁AD = AD + BC = −197.50

The 𝓁AD estimate is large; the most straightforward interpre-

tation of the results is that because A and D are large, this is

the AD interaction. Thus, the results obtained from the 24−1

design agree with the full factorial results in Example 14.5.

Practical Interpretation: Often a fraction of a 2k

design is satisfactory when an experiment uses four or more

factors.
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Normal Probability Plot of Effects The normal probability plot is very useful in assess-

ing the significance of effects from a fractional factorial design, particularly when many effects

are to be estimated. We strongly recommend examining this plot. Figure 14.31 presents the nor-

mal probability plot of the effects from computer software for the plasma etch experiment in

Example 14.8. Notice that the A, D, and AD interaction effects stand out clearly in this graph.

Residual Analysis The residuals can be obtained from a fractional factorial by the regres-

sion model method shown previously. The residuals should be graphically analyzed as we have

discussed before, both to assess the validity of the underlying model assumptions and to gain

additional insight into the experimental situation.

Center Points Center points can be added to fractional factorial designs for the same reasons as

before; that is, to assess curvature and provide an error estimate. The curvature analysis compares

yF − yC to its standard error with the same calculation as for full factorial experiments. The error

estimate can be based on the replicated center points and supplemented with sums of squares

from effects determined to be unimportant from the normal probability plot.

Projection of the 2k−1 Design If one or more factors from a one-half fraction of a 2k can

be dropped, the design projects into a full factorial design. For example, Figure 14.32 presents a

23−1 design. Notice that this design projects into a full factorial in any two of the three original

factors. Thus, if we think that at most two of the three factors are important, the 23−1 design is an

excellent design for identifying the significant factors. This projection property is highly useful

in factor screening because it allows negligible factors to be eliminated, resulting in a stronger

experiment in the active factors that remain.

In the 24−1 design used in the plasma etch experiment in Example 14.8, we found that two

of the four factors (B and C) could be dropped. If we eliminate these two factors, the remaining

columns in Table 14.24 form a 22 design in the factors A and D with two replicates. This design

is shown in Figure 14.33. The main effects of A and D and the strong two-factor AD interaction

are clearly evident from this graph.

Design Resolution The concept of design resolution is a useful way to catalog frac-

tional factorial designs according to the alias patterns they produce. Designs of resolution

III, IV, and V are particularly important. The definitions of these terms and an example of

each follow.
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FIGURE 14.31

Normal probability plot of the effects for the plasma
etch experiment in Example 14.8.
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A

B

C

a

abc

b

c

FIGURE 14.32

Projection of a 23−1 design into three 22 designs.

+1

–1
–1 +1

(1052, 1075) (749, 729)

(650, 642)

(550, 601)

A (Gap)

D (Power)

FIGURE 14.33

The 22 design obtained by dropping factors B and C
from the plasma etch experiment in Example 14.8.

1. Resolution III Designs. These are designs in which no main effects are aliased with any

other main effect, but main effects are aliased with two-factor interactions, and some

two-factor interactions may be aliased with each other. The 23−1 design with I = ABC is

a resolution III design. We usually employ a Roman numeral subscript to indicate design

resolution; thus, this one-half fraction is a 23−1
III

design.

2. Resolution IV Designs. These are designs in which no main effect is aliased with any other

main effect or two-factor interactions, but two-factor interactions are aliased with each other.

The 24−1 design with I = ABCD used in Example 14.8 is a resolution IV design (24−1
III

).

3. Resolution V Designs. These are designs in which no main effect or two-factor interaction

is aliased with any other main effect or two-factor interaction, but two-factor interactions

are aliased with three-factor interactions. The 25−1 design with I = ABCDE is a resolution

V design (25−1
III

).

Resolution III and IV designs are particularly useful in factor screening experiments. A resolution

IV design provides good information about main effects and some information about all two-factor

interactions.

14.10 Smaller Fractions: The 2k−p

Fractional Factorial
Although the 2k−1 design is valuable in reducing the number of runs required for an experiment,

we frequently find that smaller fractions provide almost as much useful information at even greater

economy. In general, a 2k design may be run in a 1/2p fraction called a 2k−p fractional factorial

design. Thus, a 1/4 fraction is called a 2k−2 design, a 1/8 fraction is called a 2k−3 design, a 1/16

fraction a 2k−4 design, and so on.

To illustrate the 1/4 fraction, consider an experiment with six factors and suppose that the

engineer is primarily interested in main effects but would also like to get some information about

the two-factor interactions. A 26−1 design would require 32 runs and would have 31 degrees of



�

� �

�

14.10 Smaller Fractions: The 2k−p Fractional Factorial 419

T A B L E 14.25
Alias Structure for the 26–2

IV Design
with I = ABCE = BCDF = ADEF

A = BCE = DEF = ABCDF AB = CE = ACDF = BDEF
B = ACE = CDF = ABDEF AC = BE = ABDF = CDEF
C = ABE = BDF = ACDEF AD = EF = BCDE = ABCF
D = BCF = AEF = ABCDE AE = BC = DF = ABCDEF
E = ABC = ADF = BCDEF AF = DE = BCEF = ABCD
F = BCD = ADE = ABCEF BD = CF = ACDE = ABEF
ABD = CDE = ACF = BEF BF = CD = ACEF = ABDE
ACD = BDE = ABF = CEF

freedom for estimating effects. Because there are only six main effects and 15 two-factor inter-

actions, the one-half fraction is inefficient—it requires too many runs. Suppose that we consider

a 1/4 fraction, or a 26−2 design. This design contains 16 runs and, with 15 degrees of freedom,

allows all six main effects to be estimated with some capability for examining the two-factor

interactions.

To generate this design, we would write down a 24 design in the factors A, B, C, and D as the

basic design and then add two columns, for E and F. To find the new columns, we could select

the two design generators I = ABCE and I = BCDF. Thus, column E would be found from

E = ABC, and column F would be F = BCD. That is, columns ABCE and BCDF are equal to the

identity column. However, we know that the product of any two columns in the table of plus and

minus signs for a 2k design is just another column in the table; therefore, the product of ABCE
and BCDF or ABCE(BCDF) = AB2C2DEF = ADEF is also an identity column. Consequently,

the complete defining relation for the 26−2 design is

I = ABCE = BCDF = ADEF

We refer to each term in a defining relation (such as ABCE above) as a word. To find the alias of

any effect, simply multiply the effect by each word in the foregoing defining relation. For example,

the alias of A is

A = BCE = ABCDF = DEF

The complete alias relationships for this design are in Table 14.25. In general, the resolution of a

2k−p design is equal to the number of letters in the shortest word in the complete defining relation.

Therefore, this is a resolution IV design; main effects are aliased with three-factor and higher inter-

actions, and two-factor interactions are aliased with each other. This design would provide good

information on the main effects and would give some idea about the strength of the two-factor

interactions. The construction and analysis of the design are illustrated in Example 14.9.

E X A M P L E 14.9 Injection Molding

Parts manufactured in an injection-molding process are

showing excessive shrinkage, which is causing problems

in assembly operations upstream from the injection-

molding area. In an effort to reduce the shrinkage, a quality-

improvement team has decided to use a designed experiment

to study the injection-molding process. The team investigates

each of six factors—mold temperature (A), screw speed (B),

holding time (C), cycle time (D), gate size (E), and holding

pressure (F)—at two levels with the objective of learning

how each factor affects shrinkage and obtaining preliminary

information about how the factors interact.

The team decides to use a 16-run two-level fractional fac-

torial design for these six factors. The design is constructed by

writing a 24 as the basic design in the factors A, B, C, and D
and then setting E = ABC and F = BCD as discussed previ-

ously. Table 14.26 shows the design along with the observed

shrinkage (×10) for the test part produced at each of the 16

runs in the design.
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T A B L E 14.26 A 26–2
IV Design for the Injection-Molding Experiment

Observed Shrinkage
Run A B C D E = ABC F = BCD (×10)

1 − − − − − − 6

2 + − − − + − 10

3 − + − − + + 32

4 + + − − − + 60

5 − − + − + + 4

6 + − + − − + 15

7 − + + − − − 26

8 + + + − + − 60

9 − − − + − + 8

10 + − − + + + 12

11 − + − + + − 34

12 + + − + − − 60

13 − − + + + − 16

14 + − + + − − 5

15 − + + + − + 37

16 + + + + + + 52

A normal probability plot of the effect estimates from this

experiment is shown in Figure 14.34. The only large effects

are A (mold temperature), B (screw speed), and the AB inter-

action. In light of the alias relationship in Table 14.25, it seems

reasonable to tentatively adopt these conclusions. The plot of

the AB interaction in Figure 14.35 shows that the process is

insensitive to temperature if the screw speed is at the low level

but sensitive to temperature if the screw speed is at the high

level. With the screw speed at a low level, the process should

produce an average shrinkage of around 10% regardless of the

temperature level chosen.

Based on this initial analysis, the team decides to set

both the mold temperature and the screw speed at the low

level. This set of conditions should reduce the mean shrinkage

of parts to around 10%. However, the variability in shrinkage

from part to part is still a potential problem. In effect, the

mean shrinkage can be adequately reduced by the preced-

ing modifications; however, the part-to-part variability in

shrinkage over a production run could still cause problems in

assembly. One way to address this issue is to see whether any

of the process factors affect the variability in parts shrinkage.

Figure 14.36 presents the normal probability plot of the

residuals. This plot appears satisfactory. The plots of residuals

versus each factor were then constructed. One of these plots,

that for residuals versus factor C (holding time), is shown in

Figure 14.37. The plot reveals much less scatter in the resid-

uals at the low holding time than at the high holding time.

These residuals were obtained in the usual way from a model

for predicted shrinkage

ŷ = ̂β0 + ̂β1x1 + ̂β2x2 + ̂β12x1x2 = 27.3125 + 6.9375x1

+17.8125x2 + 5.9375x1x2

where x1, x2, and x1x2 are coded variables that correspond to

the factors A and B and the AB interaction. The regression

model used to produce the residuals essentially removes the

location effects of A, B, and AB from the data; the residuals

therefore contain information about unexplained variability.

Figure 14.37 indicates that there is a pattern in the variabil-

ity and that the variability in the shrinkage of parts may be

smaller when the holding time is at the low level.
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Practical Interpretation: Figure 14.38 shows the data

from this experiment projected onto a cube in the factors A,

B, and C. The average observed shrinkage and the range of

observed shrinkage are shown at each corner of the cube.

From inspection of this figure, we see that running the

process with the screw speed (B) at the low level is the key

to reducing average parts shrinkage. If B is low, virtually
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Normal probability plot of effects for the injection-
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Residuals versus holding time (C) for the injection-
molding experiment.

any combination of temperature (A) and holding time (C)

results in low values of average parts shrinkage. However,

from examining the ranges of the shrinkage values at each

corner of the cube, it is immediately clear that setting the

holding time (C) at the low level is the most appropriate

choice if we wish to keep the part-to-part variability in

shrinkage low during a production run.



�

� �

�

422 CHAPTER 14 Design of Experiments with Several Factors

R = 11

–

+

y = 31.5

R = 8

y = 56.0

R = 10

y = 10.0

R = 2

y = 11.0

R = 2

y = 33.0

R = 2

y = 7.0

B, screw speed

R = 0

y = 60.0

R = 12

y = 10.0

– +

A, mold temperature 

C, holding time

+

–

FIGURE 14.38

Average shrinkage and range of shrinkage in factors A, B, and C.

The concepts used in constructing the 26−2 fractional factorial design in Example 14.9 can be

extended to the construction of any 2k−p fractional factorial design. In general, a 2k fractional fac-

torial design containing 2k−p runs is called a 1/2p fraction of the 2k design or, more simply, a 2k−p

fractional factorial design. These designs require the selection of p independent generators. The

defining relation for the design consists of the p generators initially chosen and their 2p − p − 1

generalized interactions.

The alias structure may be found by multiplying each effect column by the defining relation.

Care should be exercised in choosing the generators so that effects of potential interest are not

aliased with each other. Each effect has 2p − 1 aliases. For moderately large values of k, we usually

assume that higher-order interactions (say, third- or fourth-order or higher) to be negligible, and

this greatly simplifies the alias structure.

It is important to select the p generators for the 2k−p fractional factorial design in such a way

that we obtain the best possible alias relationships. A reasonable criterion is to select the gen-

erators so that the resulting 2k−p design has the highest possible design resolution. Montgomery

(2017) presented a table of recommended generators (and alias relationships) for 2k−p fractional

factorial designs for k ≤ 15 factors and up to as many as n ≤ 128 runs. A portion of his table is

reproduced here as Table 14.27. In this table, the generators are shown with either + or − choices;

selection of all generators as + provides a principal fraction, and if any generators are − choices,

the design is one of the alternate fractions for the same family. The suggested generators in this

table produce a design of the highest possible resolution.

For example, the 27−4 design is an eight-run experiment accommodating seven variables.

This is a 1/16th fraction that is obtained by first writing a 23 design as the basic design in the

factors A, B, and C, and then forming the four new columns from I = ABD, I = ACE, I = BCF,

and I = ABCG, as suggested in Table 14.27. The design is shown in Table 14.28.

The complete defining relation is found by multiplying the generators together two, three,

and finally four at a time, producing

I = ABD = ACE = BCF = ABCG = BCDE = ACDF = CDG = ABEF
= BEG = AFG = DEF = ADEG = CEFG = BDFG = ABCDEFG

The alias of any main effect is found by multiplying that effect through each term in the defining

relation. For example, the alias of A is

A = BD = CE = ABCF = BCG = ABCDE = CDF = ACDG
= BEF = ABEG = FG = ADEF = DEG = ACEFG = ABDFG = BCDEFG
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T A B L E 14.27 Selected 2k−p Fractional Factorial Designs

Number of
Factors k Fraction

Number
of Runs

Design
Generators

3 23−1

III
4 C = ±AB

4 24−1

IV
8 D = ±ABC

5 25−1

V
16 E = ±ABCD

25−2

III
8 D = ±AB

E = ±AC

6 26−1

VI
32 F = ±ABCDE

26−2

IV
16 E = ±ABC

F = ±BCD

26−3

III
8 D = ±AB

E = ±AC

F = ±BC

7 27−1

VII
64 G = ±ABCDEF

27−2

IV
32 F = ±ABCD

G = ±ABDE

27−3

IV
16 E = ±ABC

F = ±BCD

G = ±ACD

27−4

III
8 D = ±AB

E = ±AC

F = ±BC

G = ±ABC

8 28−2

V
64 G = ±ABCD

H = ±ABEF

28−3

IV
32 F = ±ABC

G = ±ABD

H = ±BCDE

28−4

IV
16 E = ±BCD

F = ±ACD

G = ±ABC

H = ±ABD

Number of
Factors k Fraction

Number
of Runs

Design
Generators

9 29−2

IV
128 H = ±ACDFG

J = ±BCEFG

29−3

IV
64 G = ±ABCD

H = ±ACEF

J = ±CDEF

29−4

IV
32 F = ±BCDE

G = ±ACDE

H = ±ABDE

J = ±ABCE

29−5

III
16 E = ±ABC

F = ±BCD

G = ±ACD

H = ±ABD

J = ±ABCD

10 H = ±ABCG

J = ±ACDE

210−3

V
128 K = ±ACDF

G = ±BCDF

H = ±ACDF

J = ±ABDE

210−4

IV
64 K = ±ABCE

F = ±ABCD

G = ±ABCE

H = ±ABDE

J = ±ACDE

210−5

IV
32 K = ±BCDE

E = ±ABC

F = ±BCD

G = ±ACD

H = ±ABD

J = ±ABCD

210−6

III
16 K = ±AB
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T A B L E 14.27 (Continued)

Number of
Factors k Fraction

Number
of Runs

Design
Generators

11 G = ±CDE

H = ±ABCD

J = ±ABF

K = ±BDEF

211−5

IV
64 L = ±ADEF

F = ±ABC

G = ±BCD

H = ±CDE

J = ±ACD

Number of
Factors k Fraction

Number
of Runs

Design
Generators

K = ±ADE

211−6

IV
32 L = ±BDE

E = ±ABC

F = ±BCD

G = ±ACD

H = ±ABD

J = ±ABCD

K = ±AB

211−7

III
16 L = ±AC

Source: Montgomery (2012).

This design is of resolution III because the main effect is aliased with two-factor interactions.

If we assume that all three-factor and higher interactions are negligible, the aliases of the seven

main effects are

𝓁A = A + BD + CE + FG
𝓁B = B + AD + CF + EG
𝓁C = C + AE + BF + DG
𝓁D = D + AB + CG + EF
𝓁E = E + AC + BG + DF
𝓁F = F + BC + AG + DE
𝓁G = G + CD + BE + AF

This 27−4
III

design is called a saturated fractional factorial because all the available degrees

of freedom are used to estimate main effects. It is possible to combine sequences of these

T A B L E 14.28 A 27−3
III Fractional Factorial Design

A B C D = AB E = AC F = BC G = ABC
− − − + + + −

+ − − − − + +

− + − − + − +

+ + − + − − −

− − + + − − +

+ − + − + − −

− + + − − + −

+ + + + + + +
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resolution III fractional factorials to separate the main effects from the two-factor interactions.

The procedure is illustrated in Montgomery (2012).

14.11 Response Surface Methods and Designs
Response surface methodology, or RSM, is a collection of mathematical and statistical techniques

that are useful for modeling and analysis in applications in which a response of interest is influ-

enced by several variables and the objective is to optimize this response. For example, suppose

that a chemical engineer wishes to find the levels of temperature (x1) and feed concentration (x2)

that maximize the yield (y) of a process. The process yield is a function of the levels of temperature

and feed concentration, say,

Y = f (x1, x2) + ϵ

where ϵ represents the noise or error observed in the response Y . If we denote the expected

response by E(Y) = f (x1, x2) = η, then the surface represented by

η = f (x1, x2)

is called a response surface.

We may represent the response surface graphically as shown in Figure 14.39, where η is

plotted versus the levels of x1 and x2. Notice that the response is represented as a surface plot in

a three-dimensional space. To help visualize the shape of a response surface, we often plot the

contours of the response surface as shown in Figure 14.40. In the contour plot, lines of constant

response are drawn in the x1, x2 plane. Each contour corresponds to a particular height of the

response surface. The contour plot is helpful in studying the levels of x1 and x2 that result in

changes in the shape or height of the response surface.

In most RSM problems, the form of the relationship between the response and the indepen-

dent variables is unknown. Thus, the first step in RSM is to find a suitable approximation for the

true relationship between Y and the independent variables. Usually, a low-order polynomial in

some region of the independent variables is employed. If the response is well modeled by a linear

function of the independent variables, the approximating function is the first-order model

Y = β0 + β1x1 + β2x2 + · · · + βkxk + ϵ (14.16)
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FIGURE 14.39

A three-dimensional response surface showing the expected
yield as a function of temperature and feed concentration.
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A contour plot of the yield response surface in
Figure 14.39.
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If there is curvature in the system, then a polynomial of higher degree must be used, such as the

second-order model

Y = β0 +
k∑

i=1

βixi +
k∑

i=1

βiix2
i +

∑∑

i<j
βijxixj + ϵ (14.17)

Many RSM problems use one or both of these approximating polynomials. Of course, it is unlikely

that a polynomial model will be a reasonable approximation of the true functional relationship

over the entire space of the independent variables, but for a relatively small region, they usually

work quite well.

The method of least squares, discussed in Chapters 11 and 12, is used to estimate the param-

eters in the approximating polynomials. The response surface analysis is then based on the fitted

surface. If the fitted surface is an adequate approximation of the true response function, analysis

of the fitted surface will be approximately equivalent to analysis of the actual system.

RSM is a sequential procedure. Often, when we are at a point on the response surface that

is remote from the optimum, such as the current operating conditions in Figure 14.40, there is

little curvature in the system and the first-order model is appropriate. Our objective here is to lead

the experimenter rapidly and efficiently to the general vicinity of the optimum. Once the region

of the optimum has been found, a more elaborate model such as the second-order model may be

employed, and an analysis may be performed to locate the optimum. From Figure 14.40, we see

that the analysis of a response surface can be thought of as “climbing a hill,” where the top of

the hill represents the point of maximum response. If the true optimum is a point of minimum

response, we may think of “descending into a valley.”

The eventual objective of RSM is to determine the optimum operating conditions for the

system or to determine a region of the factor space in which operating specifications are satisfied.

Also note that the word optimum in RSM is used in a special sense. The “hill-climbing” procedures

of RSM guarantee convergence to a local optimum only.

Method of Steepest Ascent Frequently, the initial estimate of the optimum operating condi-

tions for the system is far from the actual optimum. In such circumstances, the objective of the

experimenter is to move rapidly to the general vicinity of the optimum. We wish to use a simple

and economically efficient experimental procedure. When we are remote from the optimum, we

usually assume that a first-order model is an adequate approximation to the true surface in a small

region of the x’s.

The method of steepest ascent is a procedure for moving sequentially along the path of

steepest ascent, that is, in the direction of the maximum increase in the response. Of course, if min-
imization is desired, we are talking about the method of steepest descent. The fitted first-order

model is

ŷ = ̂β0 +
k∑

i=1

̂βi xi (14.18)

and the first-order response surface, that is, the contours of ŷ, is a series of parallel lines such as

that shown in Figure 14.41. The direction of steepest ascent is the direction in which ŷ increases

most rapidly. This direction is normal to the fitted response surface contours. We usually take

as the path of steepest ascent the line through the center of the region of interest and normal

to the fitted surface contours. Thus, the steps along the path are proportional to the regression

coefficients {̂βi}. The experimenter determines the actual step size based on process knowledge

or other practical considerations.

Experiments are conducted along the path of steepest ascent until no further increase in

response is observed. Then a new first-order model may be fit, a new direction of steepest ascent

determined, and further experiments conducted in that direction until the experimenter believes

that the process is near the optimum.



�

� �

�

14.11 Response Surface Methods and Designs 427

x1

x2

Region of fitted

first-order response

surface

Path of

steepest

ascent

y = 10 y = 20
y = 30

y = 40

y = 50

FIGURE 14.41

First-order response surface and path of
steepest ascent.

E X A M P L E 14.10 Process Yield Steepest Ascent

In Example 14.6, we described an experiment on a chemical

process in which two factors, reaction time (x1) and reaction

temperature (x2), affect the percent conversion or yield (Y).

Figure 14.24 shows the 22 design plus five center points used

in this study. The engineer found that both factors were impor-

tant, there was no interaction, and there was no curvature in the

response surface. Therefore, the first-order model

Y = β0 + β1x1 + β2x2 + ϵ
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FIGURE 14.42

Response surface plots for the first-order model.

should be appropriate. Now the effect estimate of time is 1.55

hours and the effect estimate of temperature is 0.65∘F, and

because the regression coefficients ̂β1 and ̂β2 are one-half

of the corresponding effect estimates, the fitted first-order

model is

ŷ = 40.44 + 0.775x1 + 0.325x2

Figure 14.42(a) and (b) show the contour plot and three-

dimensional surface plot of this model. Figure 14.42 also

shows the relationship between the coded variables x1
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and x2 (that defined the high and low levels of the factors)

and the original variables, time (in minutes) and temperature

(in ∘F).

From examining these plots (or the fitted model), we see

that to move away from the design center—the point (x1 = 0,

x2 = 0)—along the path of steepest ascent, we would move

0.775 unit in the x1 direction for every 0.325 unit in the x2

direction. Thus, the path of steepest ascent passes through the

point (x1 = 0, x2 = 0) and has a slope 0.325/0.775. The engi-

neer decides to use 5 minutes of reaction time as the basic

step size. Now, 5 minutes of reaction time is equivalent to

a step in the coded variable x1 of Δx1 = 1. Therefore, the

steps along the path of steepest ascent are Δx1 = 1.0000 and
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FIGURE 14.43

Steepest ascent experiment.

Δx2 = (0.325/0.775)Δx1 = 0.42. A change of Δx2 = 0.42 in

the coded variable x2 is equivalent to about 2∘F in the original

variable temperature. Therefore, the engineer moves along the

path of steepest ascent by increasing reaction time by 5 min-

utes and temperature by 2∘F. An actual observation on yield is

determined at each point.

Next Steps: Figure 14.43 shows several points along this

path of steepest ascent and the yields actually observed from

the process at those points. At points A−D, the observed yield

increases steadily, but beyond point D, the yield decreases.

Therefore, steepest ascent terminates in the vicinity of 55 min-

utes of reaction time and 163∘F with an observed percent con-

version of 67%.

Analysis of a Second-Order Response Surface When the experimenter is relatively close

to the optimum, a second-order model is usually required to approximate the response because of

curvature in the true response surface. The fitted second-order model is

ŷ = ̂β0 +
k∑

i=1

̂βixi +
k∑

i=1

̂βiix2
i +

∑

i<j

∑
̂βijxixj

where ̂β denotes the least squares estimate of b. In this section, we show how to use this fitted

model to find the optimum set of operating conditions for the x’s and to characterize the nature

of the response surface.

E X A M P L E 14.11 Process Yield Central

Composite Design

Continuation of Example 14.10

Consider the chemical process from Example 14.10, where

the method of steepest ascent terminated at a reaction

time of 55 minutes and a temperature of 163∘F. The

experimenter decides to fit a second-order model in this

region. Table 14.29 and Figure 14.44 show the experi-

mental design, which consists of a 22 design centered

at 55 minutes and 165∘F, five center points, and four

runs along the coordinate axes called axial runs. This

type of design, called a central composite design, is a

very popular design for fitting second-order response

surfaces.
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T A B L E 14.29 Central Composite Design

Coded Variables Conversion
(percent)

Viscosity
(mPa-sec)Observation

Number
Time

(minutes)
Temperature

(∘F) x1 x2 Response 1 Response 2

1 50 160 −1 −1 65.3 35

2 60 160 1 −1 68.2 39

3 50 170 −1 1 66.0 36

4 60 170 1 1 69.8 43

5 48 165 −1.414 0 64.5 30

6 62 165 1.414 0 69.0 44

7 55 158 0 −1.414 64.0 31

8 55 172 0 1.414 68.5 45

9 55 165 0 0 68.9 37

10 55 165 0 0 69.7 34

11 55 165 0 0 68.5 35

12 55 165 0 0 69.4 36

13 55 165 0 0 69.0 37

(0, 0)

+2

+2–2

–2

(0, –1.414)

(–1.414, 0) (1.414, 0)

(0, 1.414)

(–1, –1)

(–1, 1)

x2

x1

(1, –1)

(1, 1)

FIGURE 14.44

Central composite design.

Two response variables were measured during this phase

of the experiment: percentage conversion (yield) and viscosity.

The least-squares quadratic model for the yield response is

ŷ = 69.1 + 1.633x1 + 1.083x2 − 0.969x2
1
− 1.219x2

2

+ 0.225x1x2

The analysis of variance for this model is shown in

Table 14.30.

Figure 14.45 shows the response surface contour plot

and the three-dimensional surface plot for this model. From

examination of these plots, the maximum yield is about 70%,

obtained at approximately 60 minutes of reaction time and

167∘F.

The viscosity response is adequately described by the

first-order model

ŷ2 = 37.08 + 3.85x1 + 3.10x2

Table 14.31 summarizes the analysis of variance for this

model. The response surface is shown graphically in

Figure 14.46. Notice that viscosity increases as both time and

temperature increase.
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T A B L E 14.30 Analysis of Variance for the Quadratic Model, Yield Response

Source of
Variation

Sum of
Squares

Degrees of
Freedom

Mean
Square f 0 P-Value

Model 45.89 5 9.178 14.93 0.0013

Residual 4.30 7 0.615

Total 50.19 12

Independent Variable Coefficient SE Coefficient t P-Value
Intercept 69.100 0.351 197.1

x1 1.633 0.277 5.891 0.0006

x2 1.083 0.277 3.907 0.0058

x2
1

−0.969 0.297 −3.259 0.0139

x2
2

−1.219 0.297 −4.100 0.0046

x1x2 0.225 0.392 0.574 0.5839
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FIGURE 14.45

Response surface plots for the yield response.

T A B L E 14.31 Analysis of Variance for the First-Order Model, Viscosity Response

Source of
Variation

Sum of
Squares

Degrees of
Freedom Mean Square f 0 P-Value

Model 195.4 2 97.72 15.89 0.0008

Residual 61.5 10 6.15

Total 256.9 12

Independent Variable Coefficient SE Coefficient t P-Value
Intercept 37.08 0.69 53.910

x1 3.85 0.88 4.391 0.0014

x2 3.10 0.88 3.536 0.0054
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FIGURE 14.46

Response surface plots for the viscosity response.

Practical Interpretation: As in most response surface

problems, the experimenter in this example had conflicting

objectives regarding the two responses. The objective was

to maximize yield, but the acceptable range for viscosity

was 38 ≤ y2 ≤ 42. When there are only a few independent

variables, an easy way to solve this problem is to overlay the

response surfaces to find the optimum. Figure 14.47 shows

the overlay plot of both responses with the contours y1 = 69%

conversion, y2 = 38, and y2 = 42 highlighted. The shaded

areas on this plot identify unfeasible combinations of time

and temperature. This graph shows that several combinations

of time and temperature are satisfactory.
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FIGURE 14.47

Overlay of yield and viscosity response surfaces.

Example 14.11 illustrates the use of a central composite design (CCD) for fitting a

second-order response surface model. These designs are widely used in practice because they

are relatively efficient with respect to the number of runs required. In general, a CCD in k factors

requires 2k factorial runs, 2k axial runs, and at least one center point (three to five center points

are typically used). Designs for k = 2 and k = 3 factors are shown in Figure 14.48.
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FIGURE 14.48

Central composite designs for k = 2 and k = 3.

The central composite design may be made rotatable by proper choice of the axial spacing α
in Figure 14.48. If the design is rotatable, the standard deviation of predicted response ŷ is constant

at all points that are the same distance from the center of the design. For rotatability, choose

a = (F)1/4 where F is the number of points in the factorial part of the design (usually F = 2k).

For the case of k = 2 factors, α = (22)1∕4 = 1.414, as was used in the design in Example 14.11.

Figure 14.49 presents a contour plot and a surface plot of the standard deviation of prediction for

the quadratic model used for the yield response. Notice that the contours are concentric circles,

implying that yield is predicted with equal precision for all points that are the same distance

from the center of the design. Also, as one would expect, the precision decreases with increasing

distance from the design center.
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Plots of constant
√

V(̂y) for a rotatable central composite design.
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Important Terms and Concepts

Aliases

Analysis of variance (ANOVA)

Blocking and nuisance factors

Center points

Central composite design

Complete defining relation

Confounding

Contrast

Defining relation

Design matrix

Factorial experiment

Fractional factorial design

Generator

Interaction

Main effect

Normal probability plot of factor effects

Optimization experiment

Orthogonal design

Projection property

Regression model

Residual analysis

Resolution

Response surface

Screening experiment

Steepest ascent (or descent)

2k factorial design (Two-level factorial

design)
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L E A R N I N G O B J E C T I V E S

After careful study of this chapter, you should be able to do the following:

1. Understand the role of statistical tools in quality

improvement

2. Understand the different types of variability,

rational subgroups, and use of a control chart to

detect assignable causes

3. Understand the general form of a Shewhart control

chart and how to apply zone rules (such as the

Western Electric rules) and pattern analysis to

detect assignable causes

4. Construct and interpret control charts for variables

such as X, R, S, and individuals charts

5. Construct and interpret control charts for

attributes such as P and U charts

6. Calculate and interpret process capability ratios

7. Calculate the ARL performance for a Shewhart

control chart

8. Construct and interpret cumulative sum and

exponentially weighted moving-average

control charts

9. Use other statistical process control

problem-solving tools

434
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C H A P T E R O U T L I N E

15.1 Quality Improvement and Statistics

15.1.1 Statistical Quality Control

15.1.2 Statistical Process Control

15.2 Introduction to Control Charts

15.2.1 Basic Principles

15.2.2 Design of a Control Chart

15.2.3 Rational Subgroups

15.2.4 Analysis of Patterns on Control

Charts

15.3 X and R or S Control Charts

15.4 Control Charts for Individual

Measurements

15.5 Process Capability

15.6 Attribute Control Charts

15.6.1 P Chart (Control Chart for Proportions)

15.6.2 U Chart (Control Chart for Defects per Unit)

15.7 Control Chart Performance

15.8 Time-Weighted Charts

15.8.1 Exponentially Weighted Moving-Average

Control Chart

15.8.2 Cumulative Sum Control Chart

15.9 Other SPC Problem-Solving Tools

15.10 Decision Theory

15.10.1 Decision Models

15.10.2 Decision Criteria

15.11 Implementing SPC

Bowl of Beads
Quality guru W. Edwards Deming conducted a simple experiment in his seminars with a bowl of

beads. Many were colored white but a percentage of red beads was randomly mixed in the bowl.

A participant from the seminar was provided a paddle made with indentations so that 50 beads at

a time could be scooped from the bowl. The participant was allowed to use only the paddle and

instructed to scoop only white beads (repeated multiple times with beads replaced). The red beads

were considered to be defectives. Of course, this was difficult to do, and each scoop resulted in a

count of red beads. Deming plotted the fraction of red beads from each scoop and used the results

to make several points. As was clear from the scenario, this process was beyond the participant’s

ability to make simple improvements. The process needed to be changed (reduce the number

of red beads), which is the responsibility of management. Furthermore, many business processes

have this type of characteristic, and it is important to learn from the data whether the variability is

common, intrinsic to the process, or is the result of some special cause. This distinction is impor-

tant for the type of process control or improvements to be applied. Refer to the example of control

adjustments in Chapter 1. Control charts are primary tools to understand process variability, and

that is the main topic of this chapter.

15.1 Quality Improvement and Statistics
The quality of products and services is a major decision factor in most businesses. Regardless of

whether the consumer is an individual, a corporation, a military defense program, or a retail store,

a consumer making purchase decisions is likely to consider quality of equal importance to cost

and schedule. Consequently, quality improvement is a major concern to many U.S. corporations.

Quality means fitness for use. For example, we purchase automobiles that we expect to be

free of manufacturing defects and that should provide reliable and economical transportation or

a retailer buys finished goods with the expectation that they are properly packaged and arranged

for easy storage and display. In other words, all customers expect that the products and services

they buy meet their requirements. Those requirements define fitness for use.

Quality or fitness for use is determined through the interaction of quality of design and qual-
ity of conformance. By quality of design, we mean the different grades or levels of performance,

reliability, serviceability, and function that are the result of deliberate engineering and manage-

ment decisions. By quality of conformance, we mean the systematic reduction of variability and

elimination of defects until every unit produced is identical and defect free.

Quality improvement means better quality of design through improved knowledge of cus-

tomers’ requirements and the systematic elimination of waste. Examples of waste include scrap

and rework in manufacturing, inspection and testing, errors on documents (such as engineering
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drawings, checks, purchase orders, and plans), customer complaint hotlines, warranty costs, and

the time required to do things over again that could have been done right the first time. A success-

ful quality-improvement effort can eliminate much of this waste and lead to lower costs, higher

productivity, increased customer satisfaction, increased business reputation, higher market share,

and ultimately higher profits for the company.

Statistical methods play a vital role in quality improvement. In product design and devel-

opment, statistical methods, including designed experiments, can be used to compare different

materials, components, or ingredients, and to help determine both system and component tol-

erances. Statistical methods can be used to determine the capability of a manufacturing process.

Statistical process control can be used to systematically improve a process by reducing variability.

Life testing provides reliability and other performance data about the product. This can lead to new

and improved designs and products that have longer useful lives and lower operating and mainte-

nance costs. Regression methods are often used to determine key process indicators that link with

customer satisfaction. This enables organizations to focus on the most important process measure-

ments. In this chapter, we provide an introduction to the basic methods of statistical quality control

that, along with experimental design, form the basis of a successful quality-improvement effort.

15.1.1 Statistical Quality Control
This chapter is about statistical quality control, a collection of tools that are essential in

quality-improvement activities. The field of statistical quality control can be broadly defined as

the use of those statistical and engineering methods in measuring, monitoring, controlling, and

improving quality. Statistical quality control is a field that dates back to the 1920s. Dr. Walter A.

Shewhart of Bell Telephone Laboratories was one of the early pioneers of the field. In 1924, he

wrote a memorandum showing a modern control chart, one of the basic tools of statistical process

control. Harold F. Dodge and Harry G. Romig, two other Bell System employees, provided much

of the leadership in the development of statistically based sampling and inspection methods. The

work of these three men forms much of the basis of the modern field of statistical quality control.

The widespread introduction of these methods to U.S. industry occurred during World War II.

Dr. W. Edwards Deming and Dr. Joseph M. Juran were instrumental in spreading statistical

quality-control methods since World War II.

The Japanese have been particularly successful in deploying statistical quality-control meth-

ods and have used such methods to gain significant advantage over their competitors. In the 1970s,

U.S. industry suffered extensively from Japanese (and other foreign) competition; that has led,

in turn, to renewed interest in statistical quality-control methods in the United States. Much of

this interest focuses on statistical process control and experimental design. Many U.S. compa-

nies have implemented these methods in their manufacturing, engineering, and other business

organizations.

15.1.2 Statistical Process Control
It is impractical to inspect quality into a product; the product must be built right the first time. The

manufacturing process must therefore be stable or repeatable and capable of operating with little

variability around the target or nominal dimension. Online statistical process control is a powerful

tool for achieving process stability and improving capability through the reduction of variability.

It is customary to think of statistical process control (SPC) as a set of problem-solving
tools that may be applied to any process. The major tools of SPC are histogram, Pareto chart,

cause-and-effect diagram, defect-concentration diagram, control chart, scatter diagram, and check

sheet. The control chart is the most powerful of the SPC tools.

15.2 Introduction to Control Charts

15.2.1 Basic Principles
In any production process, regardless of how well designed or carefully maintained it is, a certain

amount of inherent or natural variability always exists. This natural variability or “background
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noise” is the cumulative effect of many small, essentially unavoidable causes. When the back-

ground noise in a process is relatively small, we usually consider it an acceptable level of process

performance. In the framework of statistical quality control, this natural variability is often called

a “stable system of chance causes.” A process that is operating with only chance causes of vari-

ation present is said to be in statistical control. In other words, the chance causes are an inherent

part of the process.

Other kinds of variability may occasionally be present in the output of a process. This

variability in key quality characteristics usually arises from three sources: improperly adjusted

machines, operator errors, or defective raw materials. Such variability is generally large when

compared to the background noise, and it usually represents an unacceptable level of process

performance. We refer to these sources of variability that are not part of the chance cause pattern

as assignable causes. A process that is operating in the presence of assignable causes is said to

be out of control.∗
Production processes often operate in the in-control state, producing acceptable product for

relatively long periods of time. Occasionally, however, assignable causes occur, seemingly at ran-

dom, resulting in a “shift” to an out-of-control state in which a large proportion of the process

output does not conform to requirements. A major objective of statistical process control is to

quickly detect the occurrence of assignable causes or process shifts so that investigation of the

process and corrective action can be undertaken before many nonconforming units are manufac-

tured. The control chart is an online process-monitoring technique widely used for this purpose.

Recall the following from Chapter 1. Adjustments to common causes of variation increase

the variation of a process whereas actions should be taken in response to assignable causes of

variation. Control charts may also be used to estimate the parameters of a production process and,

through this information, to determine the capability of a process to meet specifications. The con-

trol chart can also provide information that is useful in improving the process. Finally, remember

that the eventual goal of statistical process control is the elimination of variability in the process.

Although it may not be possible to eliminate variability completely, the control chart helps

reduce it as much as possible.

A typical control chart is shown in Figure 15.1, which is a graphical display of a quality

characteristic that has been measured or computed from a sample versus the sample number or

time. Often, the samples are selected at periodic intervals such as every few minutes or every hour.

• The chart contains a center line (CL) that represents the average value of the quality char-

acteristic corresponding to the in-control state. (That is, only chance causes are present.)

• Two other horizontal lines, called the upper control limit (UCL) and the lower control limit
(LCL), are also shown on the chart. These control limits are chosen so that if the process is

in control, nearly all of the sample points fall between them.

Sample number or time

Lower control limit

Center line

Upper control limit
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FIGURE 15.1

A typical control chart.

............................................................................................................................................

∗Dr. Walter A. Shewhart developed the terminology chance and assignable causes. Today some writers use common
cause instead of chance cause and special cause instead of assignable cause.
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In general, as long as the points plot within the control limits, the process is assumed to be

in control, and no action is necessary. However, a point that plots outside of the control limits is

interpreted as evidence that the process is out of control, and investigation and corrective action

are required to find and eliminate the assignable cause or causes responsible for this behavior.

The sample points on the control chart are usually connected with straight-line segments so that

it is easier to visualize how the sequence of points has evolved over time.

Even if all the points plot inside the control limits, if they behave in a systematic or nonrandom

manner, this is an indication that the process is out of control. For example, if 18 of the last

20 points plotted above the center line but below the upper control limit, and only two of these

points plotted below the center line but above the lower control limit, we would be very suspicious

that something was wrong. If the process is in control, all plotted points should have an essentially

random pattern. Methods designed to find sequences or nonrandom patterns can be applied to

control charts as an aid in detecting out-of-control conditions. A particular nonrandom pattern

usually appears on a control chart for a reason, and if that reason can be found and eliminated,

process performance can be improved.

A close connection exists between control charts and hypothesis testing. Essentially, the con-

trol chart is a series of tests of the hypothesis that the process is in a state of statistical control.

A point plotting within the control limits is equivalent to failing to reject the hypothesis of statisti-

cal control, and a point plotting outside the control limits is equivalent to rejecting the hypothesis

of statistical control.

We give a general model for a control chart. Let W be a sample statistic that measures some

quality characteristic of interest, and suppose that the mean of W is μW and the standard deviation

of W is σW .† Then the center line, the upper control limit, and the lower control limit become

Control Chart Model
UCL = μW + kσW

CL = μW (15.1)

LCL = μW − kσW

where k is the “distance” of the control limits from the center line expressed in standard deviation

units. A common choice is k = 3. Dr. Walter A. Shewhart first proposed this general theory

of control charts, and those developed according to these principles are often called Shewhart
control charts.

The control chart is a device for describing exactly what statistical control means; as such,

it may be used in a variety of ways. In many applications, the control chart is used for online

process monitoring. That is, sample data are collected and used to construct the control chart,

and if the sample values of x (say) fall within the control limits and do not exhibit any systematic

pattern, we say the process is in control at the level indicated by the chart. Note that we may be

interested here in determining both whether the past data came from a process that was in control

and whether future samples from this process indicate statistical control.

The most important use of a control chart is to improve the process. Most processes do

not operate in a state of statistical control. Consequently, the routine and attentive use of

control charts identifies assignable causes. If these causes can be eliminated from the process,

variability is reduced and the process is improved. This process-improvement activity using the

control chart is illustrated in Figure 15.2. Notice that the control chart only detects assignable

causes. Management, operator, and engineering action usually are necessary to eliminate the

assignable cause. An action plan for responding to control chart signals is vital. In identifying and

............................................................................................................................................

†Note that “sigma” refers to the standard deviation of the statistic plotted on the chart (i.e., σW ), not the standard

deviation of the quality characteristic.
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FIGURE 15.2

Process improvement using the control chart.

eliminating assignable causes, it is important to find the underlying root cause of the problem

and to attack it. A cosmetic solution does not result in any real, long-term process improvement.

Developing an effective system for corrective action is an essential component of an effective

SPC implementation.

We may also use the control chart as an estimating device. That is, from a control chart

that exhibits statistical control, we may estimate certain process parameters, such as the mean,

standard deviation, and fraction nonconforming or fallout. These estimates may then be used to

determine the capability of the process to produce acceptable products. Such process capability
studies have considerable impact on many management decision problems that occur over the

product cycle, including make-or-buy decisions, plant and process improvements that reduce

process variability, and contractual agreements with customers or suppliers regarding product

quality. Such estimates are discussed in a later section.

Control charts may be classified into two general types.

• Many quality characteristics can be measured and expressed as numbers on some continuous

scale of measurement. In such cases, it is convenient to describe the quality characteristic

with a measure of central tendency and a measure of variability. Control charts for central

tendency and variability are collectively called variables control charts. The X chart is the

most widely used chart for monitoring central tendency, and charts based on either the sample

range or the sample standard deviation are used to control process variability.

• Many quality characteristics are not measured on a continuous scale or even a quantitative

scale. In these cases, we may judge each unit of product as either conforming or noncon-

forming on the basis of whether or not it possesses certain attributes, or we may count the

number of nonconformities (defects) appearing on a unit of product. Control charts for such

quality characteristics are called attributes control charts.

Control charts have had a long history of use in industry. There are at least five reasons for

their popularity:

1. Control charts are a proven technique for improving productivity. A successful con-

trol chart program reduces scrap and rework, which are the primary productivity killers in

any operation. If you reduce scrap and rework, productivity increases, cost decreases, and

production capacity (measured in the number of good parts per hour) increases.

2. Control charts are effective in defect prevention. The control chart helps keep the process

in control, which is consistent with the “do it right the first time” philosophy. It is never

cheaper to sort out the “good” units from the “bad” later on than it is to build them correctly

initially. If you do not have effective process control, you are paying someone to make a

nonconforming product.
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3. Control charts prevent unnecessary process adjustments. A control chart can distin-

guish between background noise and abnormal variation; no other device, including a human

operator, is as effective in making this distinction. If process operators adjust the process

based on periodic tests unrelated to a control chart program, they often overreact to the back-

ground noise and make unneeded adjustments. These unnecessary adjustments can result in

a deterioration of process performance. In other words, the control chart is consistent with

the “if it isn’t broken, don’t fix it” philosophy.

4. Control charts provide diagnostic information. Frequently, the pattern of points on the

control chart contains information that is of diagnostic value to an experienced operator or

engineer. This information allows the operator to implement a change in the process that

improve its performance.

5. Control charts provide information about process capability. The control chart provides

information about the value of important process parameters and their stability over time.

This allows an estimate of process capability to be made. This information is of tremendous

use to product and process designers.

Control charts are among the most effective management control tools, and they are as impor-

tant as cost controls and material controls. Modern computer technology has made it easy to

implement control charts in any type of process because data collection and analysis can be per-

formed in real time, online at the work center.

15.2.2 Design of a Control Chart
To illustrate these ideas, we give a simplified example of a control chart. In manufacturing auto-

mobile engine piston rings, the inside diameter of the rings is a critical quality characteristic.

The process mean inside ring diameter is 74 millimeters, and it is known that the standard devi-

ation of ring diameter is 0.01 millimeters. A control chart for average ring diameter is shown in

Figure 15.3. Every few minutes a random sample of five rings is taken, the average ring diameter of

the sample (say, x) is computed, and x is plotted on the chart. Because this control chart utilizes the

sample mean X to monitor the process mean, it is usually called an X control chart. Note that all the

points fall within the control limits, so the chart indicates that the process is in statistical control.

Consider how the control limits were determined. The process average is 74 millimeters, and

the process standard deviation is σ = 0.01 millimeters. Now if samples of size n = 5 are taken,

the standard deviation of the sample average X is

σX = σ
√

n
= 0.01

√
5

= 0.0045

Therefore, if the process is in control with a mean diameter of 74 millimeters, by using the central

limit theorem to assume that X is approximately normally distributed, we would expect approx-

imately 100(1 − α)% of the sample mean diameters X to fall between 74 + zα/2(0.0045) and

FIGURE 15.3

X control chart for piston ring
diameter.
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74 − zα/2(0.0045). As discussed previously, we customarily choose the constant zα/2 to be 3, so

the upper and lower control limits become

UCL = 74 + 3(0.0045) = 74.0135

and

LCL = 74 − 3(0.0045) = 73.9865

as shown on the control chart. These are the 3-sigma control limits referred to earlier. Note that

the use of 3-sigma limits implies that α = 0.0027; that is, the probability that the point plots

outside the control limits when the process is in control is 0.0027. The width of the control limits

is inversely related to the sample size n for a given multiple of sigma. Choosing the control limits

is equivalent to setting up the critical region for testing the hypotheses

H0∶μ = 74 H1∶μ ≠ 74

where σ = 0.01 is known. Essentially, the control chart tests this hypothesis repeatedly at different

points in time.

In designing a control chart, we must specify both the sample size to use and the frequency

of sampling. In general, larger samples make it easier to detect small shifts in the process.

We must also determine the frequency of sampling. The most desirable situation from the

view of detecting shifts would be to take large samples very frequently; however, this is usually

not economically feasible. The general problem is one of allocating sampling effort. That is, either

we take small samples at short intervals or larger samples at longer intervals. Current industry

practice tends to favor smaller, more frequent samples, particularly in high-volume manufacturing

processes or when a great many types of assignable causes can occur.

Furthermore, as automatic sensing and measurement technology develops, it is becoming

possible to greatly increase frequencies. Ultimately, every unit can be tested as it is manufactured.

This capability does not eliminate the need for control charts because the test system cannot pre-

vent defects. The increased data expand the effectiveness of process control and improve quality.

When preliminary samples are used to construct limits for control charts, these limits are

customarily treated as trial values. Therefore, the sample statistics should be plotted on the appro-

priate charts, and any points that exceed the control limits should be investigated. If assignable

causes for these points are discovered, they should be eliminated and new limits for the control

charts determined. In this way, the process may be eventually brought into statistical control and

its inherent capabilities assessed. Other changes in process centering and dispersion may then

be contemplated.

15.2.3 Rational Subgroups
A fundamental idea in the use of control charts is to collect sample data according to what

Shewhart called the rational subgroup concept. Generally, this means that subgroups or sam-

ples should be selected so that to the extent possible, the variability of the observations within

a subgroup should include all the chance or natural variability and exclude the assignable vari-

ability. Then, the control limits represent bounds for all the chance variability, not the assignable

variability. Consequently, assignable causes tend to generate points that are outside of the control

limits, and chance variability tends to generate points that are within the control limits.

When control charts are applied to production processes, the time order of production is a

logical basis for rational subgrouping. Even though time order is preserved, it is still possible to

form subgroups erroneously. If some of the observations in the subgroup are taken at the end of

one 8-hour shift and the remaining observations are taken at the start of the next 8-hour shift, any

differences between shifts are handled as chance variability when, instead, it should be considered

as assignable variability. This makes detecting differences between shifts more difficult. Still, in

general, time order is frequently a good basis for forming subgroups because it allows us to detect

assignable causes that occur over time.
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In the most common approach to rational subgroups, each subgroup consists of units that

were produced at the same time (or as closely together as possible). This approach is used when

the primary purpose of the control chart is to detect process shifts. It minimizes variability due

to assignable causes within a sample, and it maximizes variability between samples if assignable

causes are present. It also provides estimates of the standard deviation of the process in the case

of variables control charts. This approach to rational subgrouping essentially gives a “snapshot”

of the process at each point in time when a sample is collected.

Other bases for forming rational subgroups can be used. For example, suppose that a process

consists of several machines that pool their output into a common stream. If we sample from this

common stream of output, it is very difficult to detect whether or not some of the machines are out

of control. A logical approach to rational subgrouping here is to apply control chart techniques to

the output for each individual machine. Sometimes this concept needs to be applied to different

heads on the same machine, different workstations, different operators, and so forth.

The rational subgroup concept is very important. The proper selection of samples requires

careful consideration of the process with the objective of obtaining as much useful information

as possible from the control chart analysis.

15.2.4 Analysis of Patterns on Control Charts
A control chart may indicate an out-of-control condition either when one or more points fall

beyond the control limits, or when the plotted points exhibit some nonrandom pattern of behavior.

For example, consider the X chart shown in Figure 15.4. Although all 25 points fall within the

control limits, the points do not indicate statistical control because their pattern is very nonrandom

in appearance. Specifically, we note that 19 of the 25 points plot below the center line, but only

6 of them plot above. If the points are truly random, we should expect a more even distribution

of points above and below the center line. We also observe that following the fourth point, five

points in a row increase in magnitude. This arrangement of points is called a run. Because the

observations are increasing, we could call it a run up; similarly, a sequence of decreasing points

is called a run down. This control chart has an unusually long run up (beginning with the fourth

point) and an unusually long run down (beginning with the 18th point).

In general, we define a run as a sequence of observations of the same type. In addition to

runs up and runs down, we could define the types of observations as those above and below the

center line, respectively, so two points in a row above the center line would be a run of length 2.

A run of length 8 or more points has a very low probability of occurrence in a random sample

of points. Consequently, any type of run of length 8 or more is often taken as a signal of an

out-of-control condition. For example, 8 consecutive points on one side of the center line indicate

that the process is out of control.

Although runs are an important measure of nonrandom behavior on a control chart, other

types of patterns may also indicate an out-of-control condition. For example, consider the X chart

in Figure 15.5. Note that the plotted sample averages exhibit a cyclic behavior, yet they all fall

1

LCL

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Sample number

UCL

Center

line

x

FIGURE 15.4

An X control chart.

1

LCL

2 3 4 5 6 7 8 9 10 11 12 13 14 15

Center

line

UCL

x

Sample number

FIGURE 15.5

An X chart with a cyclic pattern.
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within the control limits. Such a pattern may indicate a problem with the process, such as oper-

ator fatigue, raw material deliveries, and heat or stress buildup. The yield may be improved by

eliminating or reducing the sources of variability causing this cyclic behavior (Figure 15.6). In

Figure 15.6, LSL and USL denote the lower and upper specification limits of the process, respec-

tively. These limits represent bounds within which acceptable product must fall, and they are often

based on customer requirements.

The problem is one of pattern recognition, that is, recognizing systematic or nonrandom

patterns on the control chart and identifying the reason for this behavior. The ability to interpret a

particular pattern in terms of assignable causes requires experience and knowledge of the process.

That is, we must not only know the statistical principles of control charts, but we must also have

a good understanding of the process.

The Western Electric Handbook (1956) suggests a set of decision rules for detecting nonran-

dom patterns on control charts. Specifically, the widely adopted Western Electric rules conclude

that the process is out of control if either

1. One point plots outside 3-sigma control limits.

2. Two of three consecutive points plot beyond a 2-sigma limit.

3. Four of five consecutive points plot at a distance of 1 sigma or beyond from the center line.

4. Eight consecutive points plot on one side of the center line.

We have found these rules very effective in practice for enhancing the sensitivity of control charts.

Rules 2 and 3 apply to one side of the center line at a time. That is, a point above the upper
2-sigma limit followed immediately by a point below the lower 2-sigma limit would not signal

an out-of-control alarm.

Figure 15.7 shows an X control chart for the piston ring process with the 1-sigma, 2-sigma,

and 3-sigma limits used in the Western Electric procedure. Notice that these inner limits (some-

times called warning limits) partition the control chart into three zones A, B, and C on each side

of the center line. Consequently, the Western Electric rules are sometimes called the run rules
for control charts. Notice that the last four points fall in zone B or beyond. Thus, because four of

five consecutive points exceed the 1-sigma limit, the Western Electric procedure concludes that

the pattern is nonrandom and the process is out of control.

USLLSL
(a)

USLLSL
(b)

μ

μ

FIGURE 15.6

(a) Variability with the cyclic pattern. (b) Variability with
the cyclic pattern eliminated.
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FIGURE 15.7

The Western Electric zone rules.
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15.3 X and R or S Control Charts
When dealing with a quality characteristic that can be expressed as a measurement, monitor-

ing both the mean value of the quality characteristic and its variability is customary. Control

over the average quality is exercised by the control chart for averages, usually called the X chart.

Process variability can be controlled by either a range chart (R chart) or a standard deviation

chart (S chart), depending on how the population standard deviation is estimated.

We usually estimate parameters on the basis of preliminary samples taken when the process is

thought to be in control. We recommend the use of at least 20 to 25 preliminary samples. Suppose

that m preliminary samples are available, each of size n. Typically, n is 4, 5, or 6; these relatively

small sample sizes are widely used and often arise from the construction of rational subgroups.

Let the sample mean for the ith sample be Xi. Then we estimate the mean of the population, μ,

by the grand mean

μ̂ =
=
X = 1

m

m∑

i=1

Xi (15.2)

Thus, we may take
=
X as the center line on the X control chart.

We may estimate σ from either the standard deviation or the range of the observations within

each sample. The sample size is usually relatively small, so there is little loss in efficiency in

estimating σ from the sample ranges.

X and R Charts The relationship between the range R of a sample from a normal population

with known parameters and the standard deviation of that population is needed. Because R is

a random variable, the quantity W = R/σ, called the relative range, is also a random variable.

The mean and standard deviation of the distribution of W are called d2 and d3, respectively. The

values for d2 and d3 depend on the subgroup size n. They are computed numerically and available

in tables or computer software. Because R = σW,

μR = d2σ σR = d3σ (15.3)

Let Ri be the range of the ith sample, and let

R = 1

m

m∑

i=1

Ri (15.4)

be the average range. Then R is an estimator of μR and from Equation 15.3 we obtain the following.

Estimator of 𝛔 from R Chart
An unbiased estimator of σ is

σ̂ = R
d2

(15.5)

where the constant d2 is tabulated for various sample sizes in Appendix Table XI.

Therefore, once we have computed the sample values
=x and r, we may use as our upper and lower

control limits for the X chart

UCL = μ̂X + 3σ̂X = μ̂ + 3σ̂
√

n
= =x + 3

d2

√
n

r

LCL = μ̂X − 3σ̂X = μ̂ − 3σ̂
√

n
= =x − 3

d2

√
n

r
(15.6)
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Define the constant

A2 = 3

d2

√
n

(15.7)

Now, the X control chart may be defined as follows.

X Control Chart (from R)
The center line and upper and lower control limits for an X control chart are

UCL = =x + A2 r CL = =x LCL = =x − A2 r (15.8)

where the constant A2 is tabulated for various sample sizes in Appendix Table XI.

The parameters of the R chart may also be determined easily. The center line is R. To deter-

mine the control limits, we need an estimate of σR, the standard deviation of R. Once again,

assuming that the process is in control, the distribution of the relative range, W, is useful. We

may estimate σR from Equation 15.3 as

σ̂R = d3σ̂ = d3

R
d2

(15.9)

and the upper and lower control limits on the R chart are

UCL = r +
3d3

d2

r =
(

1 +
3d3

d2

)

r

LCL = r −
3d3

d2

r =
(

1 −
3d3

d2

)

r (15.10)

Setting D3 = 1 − 3d3/d2 and D4 = 1 + 3d3/d2 leads to the following definition.

R Chart
The center line and upper and lower control limits for an R chart are

UCL = D4r CL = r LCL = D3r (15.11)

where r is the sample average range, and the constants D3 and D4 are tabulated for various

sample sizes in Appendix Table XI.

The LCL for an R chart can be a negative number. In that case, it is customary to set LCL to

zero. Because the points plotted on an R chart are non-negative, no points can fall below an LCL
of zero. Also, we often study the R chart first because if the process variability is not constant

over time, the control limits calculated for the X chart can be misleading.

X and S Charts Rather than base control charts on ranges, a more modern approach is to calcu-

late and plot the standard deviation of each subgroup to monitor the process standard deviation σ.

This is called an S chart. When an S chart is used, it is common to use these standard deviations

to develop control limits for the X chart. Typically, the sample size used for subgroups is small

(fewer than 10) and in that case there is usually little difference in the X chart generated from

ranges or standard deviations. However, because computer software is often used to implement

control charts, S charts are quite common. Details to construct these charts follow.
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Section 7.3 stated that S is a biased estimator of σ. That is, E(S) = c4σ where c4 is a constant

that is near, but not equal to, 1. Furthermore, a calculation similar to the one used for E(S) can

derive the standard deviation of the statistic S with the result σ
√

1 − c2
4
. Therefore, the center line

and 3-sigma control limits for S are

LCL = c4σ − 3σ
√

1 − c2
4

CL = c4σ UCL = c4σ + 3σ
√

1 − c2
4

(15.12)

Assume that there are m preliminary samples available, each of size n, and let Si denote the

standard deviation of the ith sample. Define

S = 1

m

m∑

i=1

Si (15.13)

Because E(S) = c4σ, we obtain the following.

Estimator of 𝛔 from S Chart
An unbiased estimator of σ

σ̂ = S∕c4 (15.14)

where the constant c4 is tabulated for various sample sizes in Appendix Table XI.

When an S chart is used, the estimate for σ in Equation 15.14 is commonly used to calculate the

control limits for an X chart. This produces the following control limits for an X chart.

X Control Chart (from S)

UCL = =x + 3
s

c4

√
n

CL = =x LCL = x − 3
s

c4

√
n

(15.15)

A control chart for standard deviations follows.

S Chart

UCL = s + 3
s
c4

√

1 − c2
4

CL = s LCL = s − 3
s
c4

√

1 − c2
4

(15.16)

The LCL for an S chart can be a negative number; in that case, it is customary to set LCL
to zero.

E X A M P L E 15.1 Vane Opening

A component part for a jet aircraft engine is manufactured

by an investment casting process. The vane opening on this

casting is an important functional parameter of the part. We

illustrate the use of X,R, and S control charts to assess the

statistical stability of this process. See Table 15.1 for 20 sam-

ples of five parts each. The values given in the table have been

coded by using the last three digits of the dimension; that is,

31.6 indicates 0.50316 inch.

The quantities
=x = 33.3 and r = 5.8 appear at the foot of

Table 15.1. The value of A2 for samples of size 5 is A2 = 0.577

from Appendix Table XI. Then the trial control limits for the

X chart are

x ± A2 r = 33.32 ± (0.577)(5.8) = 33.32 ± 3.35

or

UCL = 36.67 LCL = 29.97
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T A B L E 15.1 Vane-Opening Measurements

Sample Number x1 x2 x3 x4 x5 x r s

1 33 29 31 32 33 31.6 4 1.67332

2 33 31 35 37 31 33.4 6 2.60768

3 35 37 33 34 36 35.0 4 1.58114

4 30 31 33 34 33 32.2 4 1.64317

5 33 34 35 33 34 33.8 2 0.83666

6 38 37 39 40 38 38.4 3 1.14018

7 30 31 32 34 31 31.6 4 1.51658

8 29 39 38 39 39 36.8 10 4.38178

9 28 33 35 36 43 35.0 15 5.43139

10 38 33 32 35 32 34.0 6 2.54951

11 28 30 28 32 31 29.8 4 1.78885

12 31 35 35 35 34 34.0 4 1.73205

13 27 32 34 35 37 33.0 10 3.80789

14 33 33 35 37 36 34.8 4 1.78885

15 35 37 32 35 39 35.6 7 2.60768

16 33 33 27 31 30 30.8 6 2.48998

17 35 34 34 30 32 33.0 5 2.00000

18 32 33 30 30 33 31.6 3 1.51658

19 25 27 34 27 28 28.2 9 3.42053

20 35 35 36 33 30 33.8 6 2.38747

=x = 33.32 r = 5.8 s = 2.345

For the R chart, the trial control limits are

UCL = D4r = (2.115)(5.8) = 12.27

LCL = D3r = (0)(5.8) = 0

The X and R control charts with these trial control limits are

shown in Figure 15.8. Notice that samples 6, 8, 11, and 19 are

out of control on the X chart and that sample 9 is out of control

on the R chart. (These points are labeled with a “1” because

they violate the first Western Electric rule.)

For the S chart, the value of c4 = 0.94. Therefore,

3s
c4

√

1 − c2
4
= 3(2.345)

0.94

√

1 − 0.942 = 2.553

and the trial control limits are

UCL = 2.345 + 2.553 = 4.898

LCL = 2.345 − 2.553 = −0.208

The LCL is set to zero. If s is used to determine the control

limits for the X chart,

=x ± 3s
c4

√
n
= 33.32 ± 3(2.345)

0.94
√

5
= 33.32 ± 3.35

and this result is nearly the same as from r. The S chart is

shown in Figure 15.9. Because the control limits for the X chart

calculated from s are nearly the same as from r, the chart is

not shown.

Suppose that all of these assignable causes can be traced

to a defective tool in the wax-molding area. We should discard

these five samples and recompute the limits for the X and R
charts. These new revised limits for the X chart are

UCL = =x + A2 r = 33.21 + (0.577)(5.0) = 36.10

LCL = =x − A2 r = 33.21 − (0.577)(5.0) = 30.33
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The X and R control charts for vane opening.
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The S control chart for vane opening.

and for the R chart,

UCL = D4r = (2.115)(5.0) = 10.57

LCL = D3r = (0)(5.0) = 0

The revised control charts are shown in Figure 15.10.

Practical Interpretation: Notice that we have treated

the first 20 preliminary samples as estimation data with

which to establish control limits. These limits can now be

used to judge the statistical control of future production.

As each new sample becomes available, the values of x and

r should be computed and plotted on the control charts. It

may be desirable to revise the limits periodically even if the

process remains stable. The limits should always be revised

when process improvements are made.
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FIGURE 15.10

The X and R control charts for vane opening, revised limits.

Computer Construction of X and R Control Charts Many computer programs construct X
and R control charts. Figures 15.8 and 15.10 show charts similar to those produced by computer

software for the vane-opening data. Software usually allows the user to select any multiple of

sigma as the width of the control limits and use the Western Electric rules to detect out-of-control

points. The software also prepares a summary report as in Table 15.2 and excludes subgroups

from the calculation of the control limits.

T A B L E 15.2 Summary Report from Computer Software for the Vane-Opening Data

Test Results for Xbar Chart

TEST 1. One point more than 3.00 sigmas from center line.

Test Failed at points: 6 8 11 19

Test Results for R Chart

TEST 1. One point more than 3.00 sigmas from center line.

Test Failed at points: 9
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15.4 Control Charts for Individual Measurements
In many situations, the sample size used for process control is n = 1; that is, the sample consists

of an individual unit. Some examples of these situations follow:

1. Automated inspection and measurement technology is used, and every unit manufactured is

analyzed.

2. The production rate is very slow, and it is inconvenient to allow sample sizes of n > 1 to

accumulate before being analyzed.

3. Repeat measurements on the process differ only because of laboratory or analysis error as

in many chemical processes.

4. In process plants, such as papermaking, measurements on some parameters such as coating

thickness across the roll differ very little and produce a standard deviation that is much too

small if the objective is to control coating thickness along the roll.

In such situations, the individuals control chart (also called an X chart) is useful. The

control chart for individuals uses the moving range of two successive observations to estimate

the process variability. The moving range is defined as MRi = |Xi − Xi−1| and for m observations

the average moving range is

MR = 1

m − 1

m∑

i=2

|Xi − Xi−1|

An estimator of σ is

σ̂ = MR
d2

= MR
1.128

(15.17)

where the value for d2 corresponds to n = 2 because each moving range is the range between

two consecutive observations. Note that there are only m − 1 moving ranges. It is also possible

to establish a control chart on the moving range using D3 and D4 for n = 2. The parameters for

these charts are defined as follows.

Individuals Control Chart
The center line and upper and lower control limits for a control chart for individuals are

UCL = x + 3
mr
d2

= x + 3
mr

1.128

CL = x (15.18)

LCL = x − 3
mr
d2

= x − 3
mr

1.128

and for a control chart for moving ranges

UCL = D4mr = 3.267mr
CL = mr

LCL = D3mr = 0

Note that LCL for this moving range chart is always zero because D3 = 0 for n = 2. The procedure

is illustrated in the following example.
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E X A M P L E 15.2 Chemical Process Concentration

Table 15.3 has 20 observations on concentration for the output

of a chemical process. The observations are taken at one-hour

intervals. If several observations are taken at the same time, the

observed concentration readings differ only because of mea-

surement error. Because the measurement error is small, only

one observation is taken each hour.
To set up the control chart for individuals, note that

the sample average of the 20 concentration readings is

x = 99.1 and that the average of the moving ranges of

two observations shown in the last column of Table 15.3

is mr = 2.59. To set up the moving-range chart, we note

that D3 = 0 and D4 = 3.267 for n = 2. Therefore, the

moving-range chart has center line mr = 2.59,LCL = 0, and

UCL = D4mr = (3.267)(2.59) = 8.46. The control chart is

shown in Figure 15.11, which was constructed by computer

T A B L E 15.3 Chemical Process Concentration Measurements

Observation
Concentration

x
Moving Range

mr

1 102.0

2 94.8 7.2

3 98.3 3.5

4 98.4 0.1

5 102.0 3.6

6 98.5 3.5

7 99.0 0.5

8 97.7 1.3

9 100.0 2.3

10 98.1 1.9

11 101.3 3.2

Observation
Concentration

x
Moving Range

mr

12 98.7 2.6

13 101.1 2.4

14 98.4 2.7

15 97.0 1.4

16 96.7 0.3

17 100.3 3.6

18 101.4 1.1

19 97.2 4.2

20 101.0 3.8

x = 99.1 mr = 2.59
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FIGURE 15.11

Control charts for individuals and the moving range from computer software for the chemical process
concentration data.

software. Because no points exceed the upper control limit, we

may now set up the control chart for individual concentration

measurements. If a moving range of n= 2 observations is used,

d2 = 1.128. For the data in Table 15.3, we have

UCL = x + 3
mr
d2

= 99.1 + 3
2.59

1.128
= 105.99

CL = x = 99.1

LCL = x − 3
mr
d2

= 99.1 − 3
2.59

1.128
= 92.21

The control charts for individual concentration measurements

and moving ranges are shown in Figure 15.11. There is no indi-

cation of an out-of-control condition.

Practical Interpretation: These calculated control limits

are used to monitor future production.
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The chart for individuals can be interpreted much like an ordinary X control chart. A shift

in the process average results in either a point (or points) outside the control limits or a pattern

consisting of a run on one side of the center line.

Some care should be exercised in interpreting patterns on the moving-range chart. The mov-

ing ranges are correlated, and this correlation may often induce a pattern of runs or cycles on the

chart. The individual measurements are assumed to be uncorrelated, however, and any apparent

pattern on the individuals’ control chart should be carefully investigated.

The control chart for individuals is not very sensitive to small shifts in the process mean. For

example, if the size of the shift in the mean is 1 standard deviation, the average number of points to

detect this shift is 43.9. This result is shown later in the chapter. Although the performance of the

control chart for individuals is much better for large shifts, in many situations the shift of interest is

not large and more rapid shift detection is desirable. In these cases, we recommend time-weighted

charts such as the cumulative sum control chart or an exponentially weighted moving-average
chart (discussed in Section 15.8).

Some individuals have suggested that limits narrower than 3-sigma be used on the chart for

individuals to enhance its ability to detect small process shifts. This is a dangerous suggestion,

for narrower limits dramatically increase false alarms and the charts may be ignored and become

useless. If you are interested in detecting small shifts, consider the time-weighted charts in

Section 15.8.

15.5 Process Capability
It is usually necessary to obtain some information about the process capability, that is, the perfor-

mance of the process when it is operating in control. Two graphical tools, the tolerance chart (or

tier chart) and the histogram, are helpful in assessing process capability. The tolerance chart for

all 20 samples from the vane-manufacturing process is shown in Figure 15.12. The specifications

on vane opening are 0.5030 ± 0.0010 in. In terms of the coded data, the upper specification limit

is USL = 40 and the lower specification limit is LSL = 20, and these limits are shown on the chart

in Figure 15.12. Each measurement is plotted on the tolerance chart. Measurements from the same

subgroup are connected with lines. The tolerance chart is useful in revealing patterns over time

in the individual measurements, or it may show that a particular value of x or r was produced by

one or two unusual observations in the sample. For example, note the two unusual observations

in sample 9 and the single unusual observation in sample 8. Note also that it is appropriate to plot

the specification limits on the tolerance chart because it is a chart of individual measurements.

It is never appropriate to plot specification limits on a control chart or to use the specifi-
cations in determining the control limits. Specification limits and control limits are unrelated.

Finally, note from Figure 15.12 that the process is running off-center from the nominal dimension

of 30 (or 0.5030 inches).

The histogram for the vane-opening measurements is shown in Figure 15.13. The observa-

tions from samples 6, 8, 9, 11, and 19 (corresponding to out-of-control points on either the X
or R chart) have been deleted from this histogram. The general impression from examining this

histogram is that the process is capable of meeting the specification but that it is running off-center.

Another way to express process capability is in terms of an index that is defined as follows.

Process Capability Ratio
The process capability ratio (PCR) is

PCR = USL − LSL
6σ

(15.19)



�

� �

�

15.5 Process Capability 453

15
5 10 15 20

20

25

30

35

40

45

Nominal

dimension = 30

Sample number

LSL = 20

USL = 40

V
a
n
e
 o

p
e
n
in

g

FIGURE 15.12

Tolerance diagram of vane openings.
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Histogram for vane opening.

The numerator of PCR is the width of the specifications. The limits 3σ on either side of the

process mean are sometimes called natural tolerance limits, for these represent limits that

an in-control process should meet with most of the units produced. Consequently, 6σ is often

referred to as the width of the process. For the vane opening, where our sample size is 5, we

could estimate σ as

σ̂ = r
d2

= 5.0

2.326
= 2.15

Therefore, the PCR is estimated to be

PCR = USL − LSL
6σ̂

= 40 − 20

6(2.15)
= 1.55

The PCR has a natural interpretation: (1/PCR)100% is just the percentage of the spec-

ifications’ width used by the process. Thus, the vane-opening process uses approximately

(1/1.55)100% = 64.5% of the specifications’ width.

Figure 15.14(a) shows a process for which the PCR exceeds unity. Because the process natural

tolerance limits lie inside the specifications, few defective or nonconforming units are produced.

If PCR = 1, as shown in Figure 15.14(b), more nonconforming units result. In fact, for a normally

distributed process, if PCR = 1, the fraction nonconforming is 0.27%, or 2700 parts per million.

Finally, when the PCR is less than unity, as in Figure 15.14(c), the process is very yield-sensitive

and a large number of nonconforming units is being produced.

USLLSL

Nonconforming

units

Nonconforming

units

33

(c)

PCR < 1

USLLSL

Nonconforming

units

Nonconforming

units

33

(b)

PCR = 1
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33
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PCR > 1

μ μ μ
σ σ σσ σ σ

FIGURE 15.14

Process fallout and the process capability ratio (PCR).
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The definition of the PCR given in Equation 15.19 implicitly assumes that the process is

centered at the nominal dimension. If the process is running off-center, its actual capability
is less than indicated by the PCR. It is convenient to think of PCR as a measure of potential
capability, that is, capability with a centered process. If the process is not centered, a measure of

actual capability is often used. This ratio, called PCRk, is defined next.

PCRk

PCRk = min

[
USL − μ

3σ
,

μ − LSL
3σ

]

(15.20)

In effect, PCRk is a one-sided process capability ratio that is calculated relative to the specifica-

tion limit nearest to the process mean. For the vane-opening process, we find that the estimate

of the process capability ratio PCRk (after deleting the samples corresponding to out-of-control

points) is

PCRk = min

[
USL − =x

3σ̂
,

=x − LSL
3σ̂

]

= min

[
40 − 33.21

3(2.15)
= 1.06,

33.21 − 20

3(2.15)
= 2.04

]

= 1.05

Note that if PCR = PCRk, the process is centered at the nominal dimension. Because

PCRk = 1.05 for the vane-opening process and PCR = 1.55, the process is obviously running

off-center, as was first noted in Figures 15.10 and 15.13. This off-center operation was ultimately

traced to an oversized wax tool. Changing the tooling resulted in a substantial improvement in

the process.

The fractions of nonconforming output (or fallout) below the lower specification limit

and above the upper specification limit are often of interest. Suppose that the output from

a normally distributed process in statistical control is denoted as X. The fractions are

determined from

P(X < LSL) = P
(

Z <

LSL − μ
σ

)

P(X > USL) = P
(

Z >

USL − μ
σ

)

E X A M P L E 15.3 Electrical Current

For an electronic manufacturing process a current has

specifications of 100 ± 10 milliamperes. The process mean μ
and standard deviation σ are 107.0 and 1.5, respectively. The

process mean is nearer to the USL. Consequently,

PCR = 110 − 90

6(1.5)
= 2.22

and

PCRk =
110 − 107

3(1.5)
= 0.67

The small PCRk indicates that the process is likely to produce

currents outside the specification limits. From the normal dis-

tribution in Appendix Table II,

P(X < LSL) = P
(

Z <

90 − 107

1.5

)

= P(Z < −11.33) ≅ 0

P(X > USL) = P
(

Z >

110 − 107

1.5

)

= P(Z > 2) = 0.023

Practical Interpretation: The probability a current is less

than the LSL is nearly zero. However, the relatively large prob-

ability of exceeding the USL is a warning of potential problems

with this criterion even if none of the measured observations

in a preliminary sample exceeds this limit. The PCRk would

improve if the process mean were centered in the specifica-

tions at 100 milliamperes.
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T A B L E 15.4 PCR Related to PPM for a Normally Distributed Process

PPM

PCR Mean Centered Mean Shifted 1.5𝛔
0.5 133,614.4 501,349.9

0.67 44,431.2 305,249.8

0.75 24,448.9 226,715.8

1 2,699.8 66,810.6

1.25 176.8 12,224.5

1.33 66.1 6,387.2

1.5 6.8 1,349.9

1.67 0.5 224.1

1.75 0.2 88.4

2 0.0 3.4

We emphasize that the fraction-nonconforming calculation assumes that the observations

are normally distributed and the process is in control. Departures from normality can seriously

affect the results. The calculation should be interpreted as an approximate guideline for process

performance. To make matters worse, μ and σ need to be estimated from the data available, and

a small sample size can result in poor estimates that further degrade the calculation.

Table 15.4 relates fallout in parts per million (PPM) for a normally distributed process

in statistical control to the value of PCR. The table shows PPM for a centered process and for

one with a 1.5σ shift in the process mean. Many U.S. companies use PCR = 1.33 as a mini-

mum acceptable target and PCR = 1.66 as a minimum target for strength, safety, or critical

characteristics.

Some companies require that internal processes and those at suppliers achieve a PCRk =
2.0. Figure 15.15 illustrates a process with PCR = PCRk = 2.0. Assuming a normal distribution,

the calculated fallout for this process is 0.0018 parts per million. A process with PCRk = 2.0

is referred to as a 6-sigma process because the distance from the process mean to the nearest

specification is 6 standard deviations. The reason that such a large process capability is often

required is that maintaining a process mean at the center of the specifications for long periods

of time is difficult. A common model that is used to justify the importance of a 6-sigma process

is illustrated by referring to Figure 15.15. If the process mean shifts off-center by 1.5 standard

deviations, the PCRk decreases to

PCRk =
USL − μ

3σ
= 6σ − 1.5σ

3σ
= 4.5σ

3σ
= 1.5

Assuming a normally distributed process, the fallout of the shifted process is 3.4 parts per mil-
lion. Consequently, the mean of a 6-sigma process can shift 1.5 standard deviations from the

center of the specifications and still maintain a minimal fallout.

In addition, some U.S. companies, particularly the automobile industry, have adopted the

terminology Cp =PCR and Cpk =PCRk. Because Cp has another meaning in statistics (in multiple

regression), we prefer the traditional notation PCR and PCRk.

We repeat that process capability calculations are meaningful only for stable processes; that

is, processes that are in control. A process capability ratio indicates whether or not the natural or

chance variability in a process is acceptable relative to the specifications.
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USLLSL
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FIGURE 15.15

Mean of a 6-sigma process shifts by 1.5 standard deviations.

15.6 Attribute Control Charts

15.6.1 P Chart (Control Chart for Proportions)
Often it is desirable to classify a product as either defective or nondefective on the basis of

comparison with a standard. For example, the diameter of a ball bearing may be checked by

determining whether it passes through a gauge consisting of circular holes cut in a template. This

kind of measurement would be much simpler than directly measuring the diameter with a device

such as a micrometer. Control charts for attributes are used in these situations. Attribute control

charts often require a considerably larger sample size than do their variable measurements

counterparts. In this section, we discuss the fraction-defective control chart, or P chart.
Sometimes the P chart is called the control chart for fraction nonconforming.

At each sample time, a random sample of n units is selected. Suppose that D is the number

of defective units in the sample. We assume that D is a binomial random variable with unknown

parameter p. The fraction defective

P = D
n

of each sample is plotted on the chart. Furthermore, from the binomial distribution, the variance

of the statistic P is

σ2
P =

p(1 − p)
n

Therefore, a P chart for fraction defective could be constructed using p as the center line and

control limits at

UCL = p + 3

√
p(1 − p)

n
LCL = p − 3

√
p(1 − p)

n
(15.21)

However, the true process fraction defective is almost always unknown and must be estimated

using the data from preliminary samples.

Suppose that m preliminary samples each of size n are available, and let Di be the number

of defectives in the ith sample. Then Pi = Di/n is the sample fraction defective in the ith sample.

The average fraction defective is

P = 1

m

m∑

i=1

Pi =
1

mn

m∑

i=1

Di (15.22)

Now P may be used as an estimator of p in the center line and control limit formulas.
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P Chart
The center line and upper and lower control limits for the P chart are

UCL = p + 3

√
p(1 − p)

n
CL = p LCL = p − 3

√
p(1 − p)

n
(15.23)

where p is the observed value of the average fraction defective.

These control limits are based on the normal approximation to the binomial distribution.

When p is small, the normal approximation may not always be adequate. In such cases, we may

use control limits obtained directly from a table of binomial probabilities. If p is small, the lower

control limit obtained from the normal approximation may be a negative number. If this should

occur, it is customary to consider zero as the lower control limit.

E X A M P L E 15.4 Ceramic Substrate

We wish to construct a fraction-defective control chart for a

ceramic substrate production line. We have 20 preliminary

samples, each of size 100; the number of defectives in each

sample is shown in Table 15.5. Assume that the samples

are numbered in the sequence of production. Note that

p = (800∕2000) = 0.40; therefore, the trial parameters for the

control chart are

UCL = 0.40 + 3

√
(0.40)(0.60)

100
= 0.55 CL = 0.40

LCL = 0.40 − 3

√
(0.40)(0.60)

100
= 0.25

The control chart is shown in Figure 15.16. All samples

are in control. If they were not, we would search for assignable

causes of variation and revise the limits accordingly. This chart

can be used for controlling future production.

Practical Interpretation: Although this process exhibits

statistical control, its defective rate (p = 0.40) is very poor.

We should take appropriate steps to investigate the process to

determine why such a large number of defective units is being

produced. Defective units should be analyzed to determine the
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FIGURE 15.16

P chart for a ceramic substrate.

T A B L E 15.5
Number of Defectives in Samples
of 100 Ceramic Substrates

Sample
No. of

Defectives Sample
No. of

Defectives
1 44 11 36

2 48 12 52

3 32 13 35

4 50 14 41

5 29 15 42

6 31 16 30

7 46 17 46

8 52 18 38

9 44 19 26

10 48 20 30

specific types of defects present. Once the defect types are

known, process changes should be investigated to determine

their impact on defect levels. Designed experiments may be

useful in this regard.
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Computer software also produces an NP chart. This is just a control chart of nP = D, the

number of defectives in a sample. The points, center line, and control limits for this chart are

simply multiples (times n) of the corresponding elements of a P chart. The use of an NP chart

avoids the fractions in a P chart, but it is otherwise equivalent.

15.6.2 U Chart (Control Chart for Defects per Unit)
It is sometimes necessary to monitor the number of defects in a unit of product rather than the

fraction defective. For example, a hospital might record the number of cases of infection per

month, or a semiconductor manufacturer might record the number of large contamination particles

per wafer. In these situations, we may use the defects-per-unit chart or U chart. If each subgroup

consists of n units and there are C total defects in the subgroup, then,

U = C
n

is the average number of defects per unit. A U chart may be constructed for such data.

Many defects-per-unit situations can be modeled by the Poisson distribution. Suppose that

the number of defects in a unit is a Poisson random variable with mean λ. The variance also equals

λ. Each point on the chart is an observed value of U, the average number of defects per unit from

a sample of n units. The mean of U is λ, and the variance of U is λ/n. Therefore, the control limits

for the U chart with known λ are:

UCL = λ + 3

√
λ
n

LCL = λ − 3

√
λ
n

(15.24)

Suppose that m preliminary samples each of size n are available, and let Ci be the number of

defectives in the ith sample. Then Ui = Ci/n is the average number of defects per unit in the ith
sample. The estimator of the average number of defects per unit is

U = 1

m

m∑

i=1

Ui =
1

mn

m∑

i=1

Ci (15.25)

Now U is used as an estimator of λ in the center line and control limit formulas.

U Chart
The center line and upper and lower control limits on the U chart are

UCL = u + 3

√
u
n

CL = u LCL = u − 3

√
u
n

(15.26)

where u is the average number of defects per unit.

These control limits are based on the normal approximation to the Poisson distribution. When

λ is small, the normal approximation may not always be adequate. In such cases, we may use

control limits obtained directly from a table of Poisson probabilities. If u is small, the lower

control limit obtained from the normal approximation may be a negative number. If this should

occur, it is customary to use zero as the lower control limit.
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E X A M P L E 15.5 Printed Circuit Boards

Printed circuit boards are assembled by a combination of

manual assembly and automation. Surface mount technology

(SMT) is used to make the mechanical and electrical connec-

tions of the components to the board. Every hour, five boards

are selected and inspected for process-control purposes. The

number of defects in each sample of five boards is noted.

Results for 20 samples are shown in Table 15.6.

The center line for the U chart is

u = 1

20

20∑

i=1

ui =
32.0

20
= 1.6

and the upper and lower control limits are

UCL = u + 3

√
u
n
= 1.6 + 3

√
1.6

5
= 3.3

T A B L E 15.6 Number of Defects in Samples of Five Printed Circuit Boards

Sample
Number of

Defects
Defects per

Unit ui Sample
Number of

Defects
Defects per

Unit ui

1 6 1.2 11 9 1.8

2 4 0.8 12 15 3.0

3 8 1.6 13 8 1.6

4 10 2.0 14 10 2.0

5 9 1.8 15 8 1.6

6 12 2.4 16 2 0.4

7 16 3.2 17 7 1.4

8 2 0.4 18 1 0.2

9 3 0.6 19 7 1.4

10 10 2.0 20 13 2.6
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FIGURE 15.17

U chart of defects per unit on printed circuit boards.

LCL = u − 3

√
u
n
= 1.6 − 3

√
1.6

5
< 0

The control chart is plotted in Figure 15.17. Because LCL is

negative, it is set to 0. From the control chart in Figure 15.17,

we see that the process is in control.

Practical Interpretation: Eight defects per group of five

circuit boards are too many (about 8/5 = 1.6 defects/board),

and the process needs improvement. An investigation of the

specific types of defects found on the printed circuit board

needs to be made. This usually suggests potential avenues for

process improvement.
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Computer software also produces a C chart. This is just a control chart of C, the total of

defects in a sample. The points, center line, and control limits for this chart are simply multiples

(times n) of the corresponding elements of a U chart. The use of a C chart avoids the fractions

that can occur in a U chart, but it is otherwise equivalent.

15.7 Control Chart Performance
Specifying the control limits is one of the critical decisions that must be made in designing a

control chart. By moving the control limits farther from the center line, we decrease the risk

of a type I error—that is, the risk of a point falling beyond the control limits, indicating an

out-of-control condition when no assignable cause is present. However, widening the control

limits also increases the risk of a type II error—that is, the risk of a point falling between the

control limits when the process is really out of control. If we move the control limits closer to the

center line, the opposite effect is obtained: The risk of type I error increases, and the risk of type II

error decreases.

The control limits on a Shewhart control chart are customarily located a distance of plus or

minus 3 standard deviations of the statistic plotted on the chart from the center line. That is, the

constant k in Equation 15.1 should be set equal to 3. These limits are called 3-sigma control
limits.

A way to evaluate decisions regarding sample size and sampling frequency is through the

average run length (ARL) of the control chart. Essentially, the ARL is the average number of

points plotted to signal an out-of-control condition. For any Shewhart control chart, the ARL can

be calculated from the mean of a geometric random variable. Suppose that p is the probability

that any point exceeds the control limits. Then

Average Run Length
ARL = 1

p
(15.27)

Thus, for an X chart with 3-sigma limits, p = 0.0027 is the probability that a normally distributed

point falls outside the limits when the process is in control, so

ARL = 1

p
= 1

0.0027
≅ 370

is the average run length of the X chart when the process is in control. That is, even if the process

remains in control, an out-of-control signal is generated every 370 points on average.

Consider the piston ring process discussed in Section 15.2.2, and suppose that we are sam-

pling every hour. Thus, we have a false alarm about every 370 hours on average. Suppose that we

are using a sample size of n = 5 and that when the process goes out of control, the mean shifts to

74.0135 millimeters. Then, the probability that X falls between the control limits of Figure 15.3

is equal to

P [73.9865 ≤ X ≤ 74.0135 when μ = 74.0135]

= P
[

73.9865 − 74.0135

0.0045
≤ Z ≤

74.0135 − 74.0135

0.0045

]

= P[−6 ≤ Z ≤ 0] = 0.5

Therefore, p in Equation 15.27 is 0.50, and the out-of-control ARL is

ARL = 1

p
= 1

0.5
= 2
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T A B L E 15.7
Average Run Length (ARL) for an X Chart
with 3-Sigma Control Limits

Magnitude of ARL ARL
Process Shift n = 1 n = 4

0 370.4 370.4

0.5σ 155.2 43.9

1.0σ 43.9 6.3

1.5σ 15.0 2.0

2.0σ 6.3 1.2

3.0σ 2.0 1.0

That is, the control chart requires two samples to detect the process shift, on the average, so

2 hours is expected to elapse between the shift and its detection (again, on the average). Suppose

that this approach is unacceptable because production of piston rings with a mean diameter of

74.0135 millimeters results in excessive scrap costs and delays final engine assembly. How can

we reduce the time needed to detect the out-of-control condition? One method is to sample more

frequently. For example, if we sample every half hour, only one hour elapses (on the average)

between the shift and its detection. The second possibility is to increase the sample size. For

example, if we use n = 10, the control limits in Figure 15.3 narrow to 73.9905 and 74.0095. The

probability of X falling between the control limits when the process mean is 74.0135 millimeters

is approximately 0.1, so p = 0.9, and the out-of-control ARL is

ARL = 1

p
= 1

0.9
= 1.11

Thus, the larger sample size would allow the shift to be detected about twice as quickly as the

smaller one. If it became important to detect the shift in approximately the first hour after it

occurred, two control chart designs would work:

Design 1 Design 2
Sample size: n = 5 Sample size: n = 10

Sampling frequency: every half hour Sampling frequency: every hour

Table 15.7 provides average run lengths for an X chart with 3-sigma control limits. The average

run lengths are calculated for shifts in the process mean from 0 to 3.0σ and for sample sizes of

n = 1 and n = 4 by using 1/p, where p is the probability that a point plots outside of the control

limits (based on a normal distribution). Figure 15.18 illustrates a shift in the process mean of 2σ.

μ μ σ+ 2

FIGURE 15.18

Process mean shift of 2𝛔.
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15.8 Time-Weighted Charts
In Sections 15.3 and 15.4 we presented basic types of Shewhart control charts. A major dis-

advantage of any Shewhart control chart is that it is relatively insensitive to small shifts in the

process, say, on the order of about 1.5σ or less. One reason is that a Shewhart chart uses only the

information in the last plotted point and ignores the information in the sequence of points. This

problem can be addressed to some extent by adding criteria such as the Western Electric rules to a

Shewhart chart, but the use of these rules reduces the simplicity and ease of interpretation of the

chart. These rules would also cause the in-control average run length of a Shewhart chart to drop

below 370. This increase in the false alarm rate can have serious practical consequences.

An effective alternative to the Shewhart control chart is a time-weighted chart, which inte-

grates data over several time periods. Such a chart has much better performance (in terms of ARL)

to detect small shifts than the Shewhart chart, but it does not cause the in-control ARL to drop

substantially.

15.8.1 Exponentially Weighted Moving-Average
Control Chart
Data collected in time order are often averaged over several time periods. For example, economic

data are often presented as an average over the last four quarters. That is, at time t, the average of

the last four measurements can be written as

xt =
1

4
xt +

1

4
xt−1 +

1

4
xt−2 +

1

4
xt−3

This average places weight of 1/4 on each of the most recent observations and zero weight

on older observations. It is called a moving average and in this case, a window of size 4 is used.

An average of the recent data is used to smooth the noise in the data to generate a better estimate

of the process mean than only the most recent observation.

For statistical process control, rather than use a fixed window size, it is useful to place the

most weight on the most recent observation or subgroup average and then gradually decrease the

weights on older observations. An average of this type can be constructed by a multiplicative

decrease in the weights. Let 0 < λ ≤ 1 denote a constant and μ0 denote the process target or

historical mean. Suppose that samples of size n ≥ 1 are collected and xt is the average of the

sample at time t. The exponentially weighted moving-average (EWMA) is

zt = λxt + λ(1 − λ)xt−1 + λ(1 − λ)2 xt−2 + · · · + λ(1 − λ)t−1 x1 + (1 − λ)tμ0

=
t−1∑

k=0

λ(1 − λ)k xt−k + (1 − λ)tμ0

Each older observation has its weight decreased by the factor (1 − λ). The weight on the starting

value μ0 is selected so that the weights sum to 1. An EWMA is also sometimes called a geometric
average.

The value of λ determines the compromise between noise reduction and inertia to a change.

For example, the series of weights when λ = 0.8 are

0.8, 0.16, 0.032, 0.0064, 0.00128,…

and when λ = 0.2, the weights are

0.2, 0.16, 0.128, 0.1024, 0.0819,…

When λ = 0.8, the weights decrease rapidly. Most of the weight is placed on the most recent

observation with modest contributions to the EWMA from older measurements. In this case, the

EWMA does not average noise much (so control limits are wider), but it has small inertia. The

result is a chart that is more sensitive to a larger change (similar to a Shewhart chart). However,
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FIGURE 15.19

EWMAs with 𝛌 = 0.8 and 𝛌 = 0.2 show a compromise between a smoother curve and inertia
to a shift.

when λ = 0.2, the weights decrease much more slowly and the EWMA has substantial contribu-

tions from the more recent observations. In this case, the EWMA averages noise more (so control

limits are narrower), but it has greater inertia. The result is a chart that is more sensitive to a

smaller change. Figure 15.19 displays a series of observations with a mean shift in the middle on

the series. Notice that the EWMA with λ = 0.2 smooths the data more but that the EWMA with

λ = 0.8 adjusts the estimate to the mean shift more quickly.

It appears that it is difficult to calculate an EWMA because at every time t a new weighted

average of all previous data is required. However, there is an easy method to calculate zt based on

a simple recursive equation. Let z0 = μ0. Then it can be shown that

EWMA Update Equation
zt = λxt + (1 − λ)zt−1 (15.28)

Consequently, only a brief computation is needed at each time t.
To develop a control chart from an EWMA, control limits are needed for Zt. The control limits

are defined in a straightforward manner. They are placed at 3 standard deviations around the mean

of the plotted statistic Zt. This follows the general approach for a control chart in Equation 15.1.

An EWMA control chart may be applied to individual measurements or to subgroup averages.

Formulas here are developed for the more general case with an average from a subgroup of size

n. For individual measurements, n = 1.

Because Zt is a linear function of the independent observations X1, X2, … , Xt (and μ0), the

results from Chapter 5 can be used to show that

E(Zt) = μ0 and V(Zt) =
σ2

n
λ

2 − λ
[
1 − (1 − λ)2t]

where n is the subgroup size. Therefore, an EWMA control chart uses estimates of μ0 and σ in

the following formulas:

EWMA Control Chart

LCL = μ0 − 3
σ
√

n

√
λ

2 − λ
[
1 − (1 − λ)2t

]

CL = μ0 (15.29)

UCL = μ0 + 3
σ
√

n

√
λ

2 − λ
[
1 − (1 − λ)2t

]
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Note that the control limits are not of equal width about the center line. The control limits are

calculated from the variance of Zt and that changes with time. However, for large t, the variance

of Zt converges to

lim
t→∞

V(Zt) =
σ2

n

( λ
2 − λ

)

so that the control limits tend to be parallel lines about the center line as t increases.

The parameters μ0 and σ are estimated by the same statistics used in X or X charts. That is,

for subgroups

μ̂0 =
=
X and σ̂ = R∕d2 or σ̂ = S∕c4

and for n = 1

μ̂0 = X and σ̂ = MR∕1.128

E X A M P L E 15.6 Chemical Process

Concentration EWMA

Consider the concentration data shown in Table 15.3. Con-

struct an EWMA control chart with λ = 0.2 with n = 1. It was

determined that x = 99.1 and mr = 2.59. Therefore, μ̂0 = 99.1

and σ̂ = 2.59∕1.128 = 2.30. The control limits for z1 are

LCL = 99.1 − 3(2.30)
√

0.2

2 − 0.2

[
1 − (1 − 0.2)2

]
= 98.19

UCL = 99.1 + 3(2.30)
√

0.2

2 − 0.2

[
1 − (1 − 0.2)2

]
= 100.01

The first few values of zt along with the corresponding control

limits are

10

Sample

UCL = 101.390

X = 99.095

LCL = 96.800

EWMA Chart of X

E
W

M
A

98

2 4 6 8 12 14 16 18 20

99

100

101

102

97

=

FIGURE 15.20

EWMA control chart for the chemical process concentration data from
computer software.

t 1 2 3 4 5
xt 102 94.8 98.3 98.4 102

zt 99.68 98.7 98.62 98.58 99.26

LCL 97.72 97.33 97.12 97 96.93

UCL 100.48 100.87 101.08 101.2 101.27

The chart generated by computer software is shown in

Figure 15.20. Notice that the control limits widen as time

increases but quickly stabilize. Each point is within its set of

corresponding control limits so there are no signals from the

chart.

The points plotted on an EWMA control chart are not independent. Therefore, run rules

should not be applied to an EWMA control chart. Information in the history of the data that is

considered by run rules is to a large extent incorporated into the EWMA that is calculated at

each time t.
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T A B L E 15.8
Average Run Lengths for an
EWMA Control Chart

Shift in Mean
(multiple of 𝛔X)

𝛌 = 0.5
L = 3.07

𝛌 = 0.1
L = 2.81

0 500 500

0.25 255 106

0.5 88.8 31.3

0.75 35.9 15.9

1 17.5 10.3

1.5 6.53 6.09

2 3.63 4.36

3 1.93 2.87

The value of λ is usually chosen from the range 0.1 < λ < 0.5. A common choice is λ =
0.2. Smaller values for λ provide more sensitivity for small shifts and larger values better tune

the chart for larger shifts. This performance can be seen in the ARLs in Table 15.8. These cal-

culations are more difficult than those used for Shewhart charts, and details are omitted. Here,

λ = 0.1 and 0.5 are compared. The multiplier of the standard deviation, denoted L in the table,

is adjusted so that the ARL equals 500 for both choices for λ. That is, the control limits are

placed at E(Zt) ± L
√

V(Zt), and L is selected such that the ARL without a mean shift is 500 in

both cases.

The EWMA ARLs in the table indicate that a smaller value for λ is preferred when the

magnitude of the shift is small. Also, the EWMA performance is in general much better than

results for a Shewhart control chart (in Table 15.7). However, these are average results. At the time

of an increase in the process mean, zt might be negative, and there would be some performance

penalty to first increase zt to near zero and then further increase it to a signal above the UCL. A

more refined analysis can be used to quantify this penalty, but the conclusion is that the EWMA

penalty is moderate to small in most applications.

15.8.2 Cumulative Sum Control Chart
Another alternative to the Shewhart control chart is the cumulative sum control chart
(CUSUM). This section illustrates the use of the CUSUM for sample averages and individual

measurements. CUSUM charts for other sample statistics are also available.

The CUSUM chart plots the cumulative sums of the deviations of the sample values from a

target value. For example, suppose that samples of size n ≥ 1 are collected, and Xj is the average

of the jth sample. Then if μ0 is the target for the process mean, the cumulative sum control chart

is formed by plotting the quantity

Si =
i∑

j=1

(Xj − μ0) (15.30)

against the sample number i. Now Si is called the cumulative sum up to and including the ith sam-

ple. Because they combine information from several samples, cumulative sum charts are more

effective than Shewhart charts for detecting small process shifts. Furthermore, they are partic-

ularly effective with samples of n = 1. This makes the cumulative sum control chart a good
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candidate for use in the chemical and process industries in which rational subgroups are fre-

quently of size 1, as well as in discrete parts manufacturing with automatic measurement of each

part and online control using a computer directly at the work center.

If the process remains in control at the target value μ0, the cumulative sum defined in Equation

15.28 should fluctuate around zero. However, if the mean shifts upward to some value μ1 > μ0, for

example, an upward or positive drift develops in the cumulative sum Si. Conversely, if the mean

shifts downward to some μ1 < μ0, a downward or negative drift in Si develops. Therefore, if a trend

develops in the plotted points either upward or downward, we should consider this as evidence

that the process mean has shifted, and a search for the assignable cause should be performed.

This theory can easily be demonstrated by applying the CUSUM to the chemical process

concentration data in Table 15.3. Because the concentration readings are individual measure-

ments, we would take Xj = Xj in computing the CUSUM. Suppose that the target value for the

concentration is μ0 = 99. Then the CUSUM is

Si =
i∑

j=1

(Xj − 99) = (Xi − 99) +
i−1∑

j=1

(Xj − 99)

= (Xi − 99) + Si−1

Table 15.9 shows the computing values, si’s for this CUSUM, for which the starting value

of the CUSUM, s0, is taken to be zero. Figure 15.21 plots the CUSUM from the last column of

Table 15.9. Notice that the CUSUM fluctuates around the value of 0.

T A B L E 15.9
CUSUM Computations for the Chemical Process
Concentration Data in Table 15-3

Observation, i xi xi − 99 si = (xi − 99) + si−1

1 102.0 3.0 3.0

2 94.8 −4.2 −1.2

3 98.3 −0.7 −1.9

4 98.4 −0.6 −2.5

5 102.0 3.0 0.5

6 98.5 −0.5 0.0

7 99.0 0.0 0.0

8 97.7 −1.3 −1.3

9 100.0 1.0 −0.3

10 98.1 −0.9 −1.2

11 101.3 2.3 1.1

12 98.7 −0.3 0.8

13 101.1 2.1 2.9

14 98.4 −0.6 2.3

15 97.0 −2.0 0.3

16 96.7 −2.3 −2.0

17 100.3 1.3 −0.7

18 101.4 2.4 1.7

19 97.2 −1.8 −0.1

20 101.0 2.0 1.9
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FIGURE 15.21

Plot of the cumulative sums for the concentration data.

The graph in Figure 15.21 is not a control chart because it lacks control limits. There are two

general approaches to devising control limits for CUSUMs. The older of these two methods is

the V-mask procedure. A typical V mask is shown in Figure 15.22(a). It is a V-shaped notch in

a plane that can be placed at different locations on the CUSUM chart. The decision procedure

consists of placing the V mask on the cumulative sum control chart with the point O on the last

value of si and the line OP parallel to the horizontal axis. If all the previous cumulative sums, s1,

s2, … , si−1, lie within the two arms of the V mask, the process is in control. The arms are the

lines that make angles θ with segment OP in Figure 15.22(a) and are assumed to extend infinitely

in length. However, if any si lies outside the arms of the mask, the process is considered to be out

of control. In actual use, the V mask would be applied to each new point on the CUSUM chart

1

3A

2 3 4
... i

(a)

2A

A

si

θ
O

L

U

Pd

1
–4

si

5 10 15 20 25 30

–2

0

+2

+4

+6

(b)

Observation, i

K

FIGURE 15.22

The cumulative sum control chart. (a) The V-mask and scaling. (b) The cumulative sum control
chart in operation.
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as soon as it was plotted. The example in Figure 15.22(b) indicates an upward shift in the mean

because at least one of the points that occurred earlier than sample 22 now lies below the lower

arm of the mask when the V mask is centered on sample 30. If the point lies above the upper arm,

a downward shift in the mean is indicated. Thus, the V mask forms a visual frame of reference

similar to the control limits on an ordinary Shewhart control chart. For the technical details of

designing the V mask, see Montgomery (2013).

Although some computer programs plot CUSUMs with the V-mask control scheme, we

believe that the other approach to CUSUM control, the tabular CUSUM, is superior. The tabular

procedure is particularly attractive when the CUSUM is implemented on a computer.

Let SH(i) be an upper one-sided CUSUM for period i and SL(i) be a lower one-sided CUSUM

for period i. These quantities are calculated from

CUSUM Control Chart
sH(i) = max[0, xi − (μ0 + K) + sH(i − 1)] (15.31)

and

sL(i) = max[0, (μ0 − K) − xi + sL(i − 1)] (15.32)

where the starting values sH(0) = sL(0) = 0.

In Equations 15.31 and 15.32, K is called the reference value, which is usually chosen about

halfway between the target μ0 and the value of the mean corresponding to the out-of-control state,

μ1 = μ0 + Δ. That is, K is about one-half the magnitude of the shift we are interested in, or

K = Δ
2

Notice that SH(i) and SL(i) accumulate deviations from the target value that are greater

than K, with both quantities reset to zero upon becoming negative. If either SH(i) or SL(i)
exceeds a constant H, the process is out of control. This constant H is usually called the

decision interval.

E X A M P L E 15.7 Chemical Process Concentration

Tabular CUSUM

We illustrate the tabular CUSUM with the chemical process

concentration data in Table 15.9. The process target is μ0 =
99, and we use K = 1 as the reference value and H = 10 as the

decision interval. The reasons for these choices are explained

later.

Table 15.10 shows the tabular CUSUM scheme for the

chemical process concentration data. To illustrate the calcula-

tions, note that

SH(i) = max[0, xi − (μ0 + K) + SH(i − 1)]
= max[0, xi − (99 + 1) + SH(i − 1)]
= max[0, xi − (100) + SH(i − 1)]

SL(i) = max[0, (μ0 − K) − xi + SL(i − 1)]
= max[0, (99 − 1) − xi + SL(i − 1)]
= max[0, 98 − xi + SL(i − 1)]

Therefore, for observation 1, the CUSUMs are

sH(1) = max[0, x1 − 100 + sH(0)]
= max[0, 102.0 − 100 + 0] = 2.0

and

sL(1) = max[0,98 − x1 + sL(0)]
= max[0,98 − 102.0 + 0] = 0

as shown in Table 15.10. The quantities nH and nL in

Table 15.10 indicate the number of periods in which the

CUSUM sH(i) or sL(i) have been nonzero. Notice that the

CUSUMs in this example never exceed the decision interval

H = 10. We would therefore conclude that the process is in

control.

Next Steps: The limits for the CUSUM charts may be

used to continue to operate the chart in order to monitor future

productions.
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T A B L E 15.10 Tabular CUSUM for the Chemical Process Concentration Data

Upper CUSUM Lower CUSUM
Observation i xi xi − 100 sH (i) nH 98 – xi sL(i) nL

1 102.0 2.0 2.0 1 −4.0 0.0 0

2 94.8 −5.2 0.0 0 3.2 3.2 1

3 98.3 −1.7 0.0 0 −0.3 2.9 2

4 98.4 −1.6 0.0 0 −0.4 2.5 3

5 102.0 2.0 2.0 1 −4.0 0.0 0

6 98.5 −1.5 0.5 2 −0.5 0.0 0

7 99.0 −1.0 0.0 0 −1.0 0.0 0

8 97.7 −2.3 0.0 0 0.3 0.3 1

9 100.0 0.0 0.0 0 −2.0 0.0 0

10 98.1 −1.9 0.0 0 −0.1 0.0 0

11 101.3 1.3 1.3 1 −3.3 0.0 0

12 98.7 −1.3 0.0 0 −0.7 0.0 0

13 101.1 1.1 1.1 1 −3.1 0.0 0

14 98.4 −1.6 0.0 0 −0.4 0.0 0

15 97.0 −3.0 0.0 0 1.0 1.0 1

16 96.7 −3.3 0.0 0 1.3 2.3 2

17 100.3 0.3 0.3 1 −2.3 0.0 0

18 101.4 1.4 1.7 2 −3.4 0.0 0

19 97.2 −2.8 0.0 0 0.8 0.8 1

20 101.0 1.0 1.0 1 −3.0 0.0 0

When the tabular CUSUM indicates that the process is out of control, we should search for

the assignable cause, take any corrective actions indicated, and restart the CUSUMs at zero. It

may be helpful to have an estimate of the new process mean following the shift. This can be

computed from

μ̂ =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

μ0 + K +
sH(i)
nH

, if sH(i) > H

μ0 − K −
sL(i)
nL

, if sL(i) > H
(15.33)

Also, an estimate of the time at which the assignable cause occurred is often taken as the sample

time at which the upper or lower CUSUM (whichever one signaled) was last equal to zero.

It is also useful to present a graphical display of the tabular CUSUMs, which are sometimes

called CUSUM status charts. They are constructed by plotting sH(i) and sL(i) versus the sample

number. Figure 15.23 shows the CUSUM status chart for the data in Example 15.7. Each vertical

bar represents the value of sH(i) and sL(i) in period i. With the decision interval plotted on the

chart, the CUSUM status chart resembles a Shewhart control chart. We have also plotted the

sample statistics xi for each period on the CUSUM status chart as the solid dots. This frequently

helps the user of the control chart to visualize the actual process performance that has led to a

particular value of the CUSUM.
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FIGURE 15.23

The CUSUM status chart for Example 15.7.

The tabular CUSUM is designed by choosing values for the reference value K and the

decision interval H. We recommend that these parameters be selected to provide good average

run-length values. There have been many analytical studies of CUSUM ARL performance.

Based on them, we may give some general recommendations for selecting H and K. Define

H = hσX and K = kσX where σX is the standard deviation of the sample variable used in forming

the CUSUM (if n = 1, σX = σX). Using h = 4 or h = 5 and k = 1/2 generally provide a CUSUM

that has good ARL properties against a shift of about 1σX (or 1σX) in the process mean. If much

larger or smaller shifts are of interest, set k = δ/2 where δ is the size of the shift in standard

deviation units.

To illustrate how well the recommendations of h = 4 or h = 5 with k = 1/2 work, consider

these average run lengths in Table 15.11. Notice that a shift of 1σx would be detected in either

8.38 samples (with k = 1/2 and h = 4) or 10.4 samples (with k = 1/2 and h = 5). By comparison,

T A B L E 15.11
Average Run Lengths for a CUSUM
Control Chart with k = 1/2

Shift in Mean (multiple of 𝛔X) h = 4 h = 5
0 168 465

0.25 74.2 139

0.50 26.6 38

0.75 13.3 17

1.00 8.38 10.4

1.50 4.75 5.75

2.00 3.34 4.01

2.50 2.62 3.11

3.00 2.19 2.57

4.00 1.71 2.01
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Table 15.8 shows that an X chart would require approximately 43.9 samples, on the average, to

detect this shift.

These design rules were used for the CUSUM in Example 15.7. We assumed that the process

standard deviation σ = 2. (This is a reasonable value; see Example 15.2.) Then with k = 1/2 and

h = 5, we would use

K = kσ = 1

2
(2) = 1 and H = hσ = 5(2) = 10

in the tabular CUSUM procedure.

Finally, we should note that supplemental procedures such as the Western Electric rules

cannot be safely applied to the CUSUM because successive values of SH(i) and SL(i) are not

independent. In fact, the CUSUM can be thought of as a weighted average, where the weights

are stochastic or random. In effect, all CUSUM values are highly correlated, thereby causing the

Western Electric rules to produce too many false alarms.

15.9 Other SPC Problem-Solving Tools
Although the control chart is a very powerful tool for investigating the causes of variation in a

process, it is most effective when used with other SPC problem-solving tools. In this section, we

illustrate some of these tools, using the printed circuit board defect data in Example 15.5.

Figure 15.17 shows a U chart for the number of defects in samples of five printed circuit

boards. The chart exhibits statistical control, but the number of defects must be reduced. The

average number of defects per board is 8/5 = 1.6, and this level of defects would require extensive

rework.

The first step in solving this problem is to construct a Pareto diagram of the individual defect

types. The Pareto diagram shown in Figure 15.24, indicates that insufficient solder and solder balls

are the most frequently occurring defects, accounting for (109/160)100 = 68% of the observed

defects. Furthermore, the first five defect categories on the Pareto chart are all solder-related

defects. This points to the flow solder process as a potential opportunity for improvement.

To improve the surface mount process, a team consisting of the operator, the shop super-

visor, the manufacturing engineer responsible for the process, and a quality engineer meets to

0

25

50

75

64

45

18

8
6

5 4 4 3 2 1

N
u
m

b
e
r 

o
f 

d
e
fe

c
ts

In
su

ffi
ci

en
t 
so

ld
er

S
ol

d
er

 b
al

ls
D
ew

et
ti
n
g

P
in

h
ol

es

B
lo

w
h
ol

es
S
h
or

ts

M
is

si
n
g 

co
m

p
on

en
ts

M
is

al
ig

n
ed

 c
om

p
on

en
ts

C
om

p
on

en
t 
fa

il
u
re

W
ro

n
g 

co
m

p
on

en
t

U
n
so

ld
er

ed FIGURE 15.24

Pareto diagram for printed
circuit board defects.
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FIGURE 15.25

Cause-and-effect diagram for the printed circuit board flow solder process.

study potential causes of solder defects. They conduct a brainstorming session and produce the

cause-and-effect diagram in Figure 15.25. The cause-and-effect diagram is widely used to dis-

play the various potential causes of defects in products and their interrelationships. They are useful

in summarizing knowledge about the process.

As a result of the brainstorming session, the team tentatively identifies the following vari-

ables as potentially influential in creating solder defects: flux specific gravity, reflow temperature,

squeegee speed, squeegee angle, paste height, reflow temperature, and board loading method.

A statistically designed experiment could be used to investigate the effect of these seven variables

on solder defects.

In addition, the team constructed a defect concentration diagram for the product; it is just

a sketch or drawing of the product with the most frequently occurring defects shown on the part.

This diagram is used to determine whether defects occur in the same location on the part. The

defect concentration diagram for the printed circuit board is shown in Figure 15.26. This diagram

indicates that most of the insufficient solder defects are near the front edge of the board. Further

investigation showed that one of the pallets used to carry the boards was bent, causing the front

edge of the board to make poor contact with the squeegee.

When the defective pallet was replaced, a designed experiment was used to investigate the

seven variables discussed earlier. The results of this experiment indicated that several of these

factors were influential and could be adjusted to reduce solder defects. After the results of the

experiment were implemented, the percentage of solder joints requiring rework was reduced from

1% to under 100 parts per million (0.01%).

FIGURE 15.26

Defect concentration diagram for a printed circuit board.

Front

Region of insufficient solder

Back
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15.10 Decision Theory
Quality improvement requires decision making in the presence of uncertainty as do many other

management and engineering decisions. Consequently, a framework to characterize the decision

problem in terms of actions, possible states, and associated probabilities is useful to quantitatively

compare alternatives. Decision theory is the study of mathematical models for decision making.

Actions are evaluated and selected based on the model and quantitative criteria.

15.10.1 Decision Models
A simple way to characterize decisions is in terms of actions, states with probabilities, and out-

comes as costs (or profits). A decision usually involves a set of possible actions

A = {a1, a2,… , aK}

For example, one might purchase an extended warranty with the purchase of a vehicle (action a1)

or not (action a2).

The possible future situations are represented with a collection of states

S = {s1, s2,… , sM}

One state occurs, but we are not certain of the future state at the time of our decision. For example,

a possible state is that a major repair is required during the extended warranty; another is that no

repair is required.

We often associate a probability, for example, pm with each state sm, so that p1 + p2 + …
+ pM = 1. The probabilities are important and can be difficult to estimate. Sometimes we have

historical data from past performance and can derive estimates. In other cases, we might have to

rely on the subjective belief of a collection of experts.

The outcome is often expressed in terms of economic cost (or profit) that depends on the

actions and the state that occurs. That is, let

Ckm = cost when action ak is selected and state sm occurs

For example, if we purchases an extended warranty and no repair is required, our loss is only the

cost of the warranty. Clearly, if we do not purchase the warranty and a major repair is required,

our loss is the cost of the repair.

E X A M P L E 15.8 Extended Warranty Decision Problem

For deciding whether to purchase an extended warranty on a

vehicle, we use the following model. The actions are

a1 = purchase extended warranty

a2 = do not purchase extended warranty

Assume that one of three states corresponding to a major,

minor, or no repair can occur during the warranty period. We

obtain probability estimates for each state. The states and

associated probabilities are

s1 = major repair, probability 0.1

s2 = minor repair, probability 0.5

s3 = no repair, probability 0.4

Finally, the costs Ckm can be presented in a decision evalua-

tion table in which each row is an action and each column is

a state. We assume that the extended warranty coverage costs

$200. Table 15.12 formally relates the cost of each action and

possible future state.

T A B L E 15.12 Decision Evaluation Table

Probabilities 0.1 0.5 0.4

States s1 s2 s3

Actions a1 $200 $200 $200

a2 $1,200 $300 $0
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15.10.2 Decision Criteria
The numerical summary of the decision problem is presented with actions, states, and probabili-

ties as illustrated in Example 15.8. However, the question regarding the “best” action still needs

to be answered. Because the state is not known at the time of the decision, different costs are

possible. Different criteria based on these costs (and the associated probabilities) can be used to

select an action, but, as we show, these criteria do not always lead to the same action.

We might be pessimistic and focus on the worst possible state for each action. In this

approach, we compares actions based on the maximum cost that can occur. For example, from

Table 15.12, the maximum cost that occurs for action a1 is maxmC1m = $200 (regardless of the

state). For action a2, we have maxmC2m = max{1200, 300, 0} = $1200. A reasonable criterion

is to select the action that minimizes this maximum cost and, in this case, the choice is a1. In

general, this approach selects the action ak to minimize maxmCkm.

Minimax Criterion
The minimax criterion selects the action ak that corresponds to

mink maxm Ckm (15.34)

The name clearly follows from the minimum and maximum that are computed.

The minimax criterion focuses on the worst-case (pessimistic) scenario and ignores the probabil-

ities associated with the states. A state with a high cost for a specific action, even if the state is

very unlikely, can penalize and eliminate the action.

An alternative criterion is to focus on the best-case (optimistic) scenario among the states

and order the actions based on minimum cost minmCkm.

Minimin Criterion
The minimin criterion selects the action ak that corresponds to

minkminmCkm (15.35)

For the warranty example, minmC1m = 200 and minmC2m = 0 so that a2 is selected with this

criterion.

The previous criteria ignore the probabilities associated with the states. The most probable

criterion evaluates an action based on the cost of the state with the most likely probability.

Most Probable Criterion
The most probable criterion selects the action to minimize the cost of the most probable

state. (15.36)

For the warranty example, the most probable state is a minor repair. Based on this state alone,

the cost associated with a1 is $200, and the cost associated with a2 is $300. Consequently, a1 is

chosen with this criterion.
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An obvious criterion is the expected cost. Here we associate a random variable Xk with each

action ak. The distribution of the discrete random variable Xk consists of the costs and the asso-

ciated probabilities for action ak. The expected cost of ak is defined simply as the expected value

E(Xk).

Expected Cost Criterion
The expected cost criterion selects that state to minimize the expected cost. (15.37)

For the warranty example, E(X1) = 200 and E(X2) = 1200(0.1) + 300(0.5) + 0(0.4) = 270.

Consequently, the minimum expected cost is produced by action a1.

A decision problem is often represented with a graph known as a decision tree. See

Figure 15.27 for a decision tree of the warranty example. A square denotes a decision node

where an action is selected. Each arc from a decision node represents an action. Each action arc

terminates with a circular node to indicate that a state has been chosen (outside the control of

the decision maker), and the states are represented by the arcs from the circular nodes. Each arc

is labeled with the probability of the state. The cost is shown at the end of these arcs. This is the

basic structure of the decision problem. Figure 15.27 computed from Equation 15.37 also shows

the expected cost above each circle. Based on the expected costs, action a1 is clearly preferred.

We could replace the expected cost with other criterion discussed in this section to summarize

the alternative actions.

In more complex problems, there is a series of actions and states (represented as rectangles

and circles, respectively, in the decision tree). Probabilities are associated with each state, and a

cost is associated with each path through the tree. Figure 15.28 provides an illustration. Given

a criterion, we start at the end of a path and apply the criterion to determine the action. We

continue the analysis from the end of a path until we reach the initial action node of the tree. This

is illustrated in the following example.

$200Major

Minor
$200

$200

Yes

Purchase

extended

warranty No
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$300

$0

$1,200

0.1

0.5

0.4
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0.5

0.4

No

Repair

FIGURE 15.27

Decision tree for extended warranty example, expected
cost of each action shown above circular modes.
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FIGURE 15.28

Decision tree for the develop or contract example.
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E X A M P L E 15.9 Develop or Contract Decision Problem

In this example, the basic decision task is extended to several

decisions. The decision tree is shown in Figure 15.28. The first

decision is whether to develop a new product or contract with

a supplier. This is indicated by the box labeled Develop? If a

new product is developed, it may be unique, but it may be more

typical of what is currently available on the market. This is

indicated by the circle labeled Unique? For either a new prod-

uct or a contracted one, the price needs to be set. Here the

decision is indicated by Price? boxes. The choices are either

high or low. Finally, the market conditions when the product is

available may be favorable or unfavorable to sales as indicated

by the circle labeled Sales. Favorable and unfavorable markets

are indicated by the arcs labeled + and −, respectively.

The probability of an arc is denoted by the number below

it. For example, the probability that a unique product is devel-

oped is 0.7. Similarly, the probabilities of favorable or unfavor-

able markets are shown with the corresponding probabilities.

Note that a lower price decision leads to the higher proba-

bility of a favorable market. Furthermore, the dollar amount

shown in the figure indicates the profit to the corporation for

the corresponding path through the decision tree. As men-

tioned previously, one might base a decision on profits (more

generally, gains) rather than costs. In such a case, the objective

is to maximize profits.

We can extend the procedure for a single decision node

as follows. Start with the dollar amounts at the terminal nodes

and work backward through the tree to evaluate a decision

based on one of the criteria. Because we work with profits in

this example, the pessimistic approach is to select the deci-

sion to maximize the minimum profit. For example, suppose

that a new product is developed, the result is unique, and the

price is set high. The two possible dollar values are $6M and

$2M. The pessimistic approach is to value the decision to set

the price high in this path as $2M. Similarly, the decision to

set the price low is valued at $3M. Consequently, the decision

along this path is to set the price low with a worst-case profit

of $3M.

Similarly, suppose that a new product is developed, the

result is not unique, and the price is set high. The two possible

dollar values are $3M and $1M. The pessimistic approach is

to value the decision to set the price high in this path as $1M.

The decision to set the price low is pessimistically valued at

$2M. Consequently, the decision to develop a new product can

result in a unique product (which is pessimistically evaluated

as $2M with probability 0.7) or a nonunique product (which

is pessimistically evaluated at $1M). The pessimistic view is

that the decision to develop a new product generates a profit

of $1M.

Furthermore, suppose that the product is not developed

(but contracted) and the price is set high with the pessimistic

profit of $1M. If the price is set low, the pessimistic profit

is $1.5M. Consequently, the price decision based on this

criterion is to set the price low with a pessimistic profit of

$1.5M. Finally, the pessimistic profit from the decision to

develop or not develop a new product is $1M and $1.5M,

respectively. Therefore, based on this criterion, a new product

is not developed.

Note that the probabilities do not enter into this deci-

sion. This was mentioned previously as one of the disadvan-

tages of the pessimistic criterion. Alternative criteria are left

as exercises.

15.11 Implementing SPC
The methods of statistical process control can provide significant payback to those companies

that can successfully implement them. Although SPC seems to be a collection of statistically

based problem-solving tools, there is more to its successful use than simply learning and using

these tools. Management involvement and commitment to the quality-improvement process is

the most vital component of SPC’s potential success. Management is a role model, and others

in the organization look to management for guidance and as an example. A team approach is

also important, for it is usually difficult for one person alone to introduce process improvements.

Many of the “magnificent seven” problem-solving tools are helpful in building an improvement

team, including cause-and-effect diagrams, Pareto charts, and defect concentration diagrams. The

basic SPC problem-solving tools must become widely known and widely used throughout the

organization. Continuous training in SPC and quality improvement is necessary to achieve this

widespread knowledge of the tools.

The objective of an SPC-based quality-improvement program is continuous improvement

on a weekly, quarterly, and annual basis. SPC is not a one-time program to be applied when



�

� �

�

15.11 Implementing SPC 477

the business is in trouble and later abandoned. Quality improvement must become part of the

organizations culture.

The control chart is an important tool for process improvement. Processes do not naturally

operate in an in-control state, and the use of control charts is an important step that must be

taken early in an SPC program to eliminate assignable causes, reduce process variability, and

stabilize process performance. To improve quality and productivity, we must begin to manage

with facts and data, not just rely on judgment. Control charts are an important part of this change

in management approach.

In implementing a companywide SPC program, we have found that the following elements

are usually present in all successful efforts:

1. Management leadership

2. Team approach

3. Education of employees at all levels

4. Emphasis on continuous improvement

5. Mechanism for recognizing success

We cannot overemphasize the importance of management leadership and the team approach.

Successful quality improvement is a “top-down” management-driven activity. It is also important

to measure progress and success and to spread knowledge of this success throughout the organiza-

tion. Communicating successful improvements throughout the company can provide motivation

and incentive to improve other processes and to make continuous improvement a normal part of

the way of doing business.

The philosophy of W. Edwards Deming provides an important framework for implementing

quality and productivity improvement. Deming’s philosophy is summarized in his 14 points

for management. The adherence to these management principles has been an important factor

in Japan’s industrial success and continues to be the catalyst in that nation’s quality- and

productivity-improvement efforts. This philosophy has also now spread rapidly in the West.

Deming’s 14 points are as follows.

1. Create a constancy of purpose focused on the improvement of products and
services. Constantly try to improve product design and performance. Investment in

research, development, and innovation will have a long-term payback to the organization.

2. Adopt a new philosophy of rejecting poor workmanship, defective products, or bad
service. It costs as much to produce a defective unit as it does to produce a good one

(and sometimes more). The cost of dealing with scrap, rework, and other losses created by

defectives is an enormous drain on company resources.

3. Do not rely on mass inspection to “control quality.” All inspection can do is sort out

defectives, and at this point, it is too late because we have already paid to produce these

defectives. Inspection occurs too late in the process, is expensive, and is often ineffec-

tive. Quality results from the prevention of defectives through process improvement, not

inspection.

4. Do not award business to suppliers on the basis of price alone, but also consider
quality. Price is a meaningful measure of a supplier’s product only if it is considered

in relation to a measure of quality. In other words, the total cost of the item, not just the

purchase price, must be considered. When quality is considered, the lowest bidder is fre-

quently not the low-cost supplier. Preference should be given to suppliers who use modern

methods of quality improvement in their business and who can demonstrate process control

and capability.
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5. Focus on continuous improvement. Constantly try to improve the production and service

system. Involve the workforce in these activities and use statistical methods, particularly

the SPC problem-solving tools discussed previously.

6. Practice modern training methods and invest in training for all employees. All

employees should be trained in the technical aspects of their job, as well as in modern

quality- and productivity-improvement methods. The training should encourage all

employees to practice these methods every day.

7. Practice modern supervision methods. Supervision should not consist merely of passive

surveillance of workers but also should be focused on helping the employees improve the

system in which they work. The first goal of supervision should be to improve the work

system and the product.

8. Drive out fear. Many workers are afraid to ask questions, report problems, or point out

conditions that are barriers to quality and effective production. In many organizations, the

economic loss associated with fear is large; only management can eliminate fear.

9. Break down the barriers between functional areas of the business. Teamwork among

different organizational units is essential for effective quality and productivity improvement

to take place.

10. Eliminate targets, slogans, and numerical goals for the workforce. A target such as

“zero defects” is useless without a plan as to how to achieve it. In fact, these slogans and

“programs” are usually counterproductive. Work to improve the system and provide infor-

mation on that.

11. Eliminate numerical quotas and work standards. These standards have historically

been set without regard to quality. Work standards are often symptoms of management’s

inability to understand the work process and to provide an effective management system

focused on improving this process.

12. Remove the barriers that discourage employees from doing their jobs. Management

must listen to employee suggestions, comments, and complaints. The person who is doing

the job is the one who knows the most about it, and usually has valuable ideas about how to

make the process work more effectively. The workforce is an important participant in the

business, not just an opponent in collective bargaining.

13. Institute an ongoing program of training and education for all employees. Education

in simple, powerful statistical techniques should be mandatory for all employees. Use of the

basic SPC problem-solving tools, particularly the control chart, should become widespread

in the business. As these charts become widespread, and as employees understand their

uses, they are more likely to look for the causes of poor quality and to identify process

improvements. Education is a way of making everyone partners in the quality-improvement

process.

14. Create a structure in top management that vigorously advocates the first 13 points.

As we read Deming’s 14 points, we notice two things. First, there is a strong emphasis

on change. Second, the role of management in guiding this change process is of dominating

importance. But what should be changed, and how should this change process be started? For

example, if we want to improve the yield of a semiconductor manufacturing process, what should

we do? It is in this area that statistical methods most frequently come into play. To improve

the semiconductor process, we must determine which controllable factors in the process influ-

ence the number of defective units produced. To answer this question, we must collect data on

the process and see how the system reacts to changes in the process variables. Statistical meth-

ods, including the SPC and experimental design techniques in this book, can contribute to this

knowledge.
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Important Terms and Concepts

Assignable causes

Attributes control charts

Average run length (ARL)

C chart

Cause-and-effect diagram

Center line

Chance causes

Control chart

Control limits

Cumulative sum control chart

(CUSUM)

Decision theory

Decision tree

Defect concentration diagram

Deming’s 14 points

Expected cost criterion

Exponentially weighted moving-average

control chart (EWMA)

False alarm

Fraction-defective control chart

Individuals control chart (X chart)

Minimax criterion

Minimin criterion

Most probable criterion

Moving range

Natural tolerance limits

NP chart

P chart

Pareto diagram

Problem-solving tools

Process capability

Process capability ratio (PCR, PCRk)

Quality improvement

R chart

Rational subgroup

Run rules

S chart

Shewhart control chart

6-sigma process

Specification limits

Statistical process control

(SPC)

Statistical quality control

U chart

Variables control charts

Warning limits

Western Electric rules

X chart
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A-4 APPENDIX A Statistical Tables and Charts

T A B L E I Summary of Common Probability Distributions

Name
Probability
Distribution Mean Variance

Section
in Book

Discrete

Uniform
1

n
, a ≤ b (b + a)

2

(b − a + 1)2 − 1

12
3-5

Binomial

⎛
⎜
⎜
⎝

n

x

⎞
⎟
⎟
⎠

px(1 − p)n−x np np(1 − p) 3-6

x = 0, 1,… , n, 0 ≤ p ≤ 1

Geometric
(1 − p)x−1p

x = 1, 2,… , 0 ≤ p ≤ 1
1∕p (1 − p)∕p2 3-7

Negative binomial

⎛
⎜
⎜
⎝

x − 1

r − 1

⎞
⎟
⎟
⎠

(1 − p)x−rpr

x = r, r + 1, r + 2,… , 0 ≤ p ≤ 1

r∕p r(1 − p)∕p2 3-7

Hypergeometric

⎛
⎜
⎜
⎜
⎝

K

x

⎞
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎝

N − K

n − x

⎞
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎝

N

n

⎞
⎟
⎟
⎟
⎠

x = max(0, n − N + K), 1,…

min(K, n),K ≤ N, n ≤ N

np

where p = K
N

np(1 − p)
(N − n

N − 1

)

3-8

Poisson
e−λλx

x!
, x = 0, 1, 2,…, 0 < λ λ λ 3-9

Continuous

Uniform
1

b − a
, a ≤ x ≤ b (b + a)

2

(b − a)2

12
4-5

Normal

1

σ
√

2π
e−

1∕2

(
x−μ
σ

)2

−∞ < x < ∞,−∞ < μ < ∞, 0 < σ

μ σ2 4-6

Exponential λe−λx
, 0 ≤ x, 0 < λ 1∕λ 1∕λ2 4-8

Erlang
λrxr−1e−λx

(r − 1)!
, 0 < x, r = 1, 2,… r∕λ r∕λ2 4-9.1

Gamma
λxr−1e−λx

Γ(r)
, 0 < x, 0 < r, 0 < λ r∕λ r∕λ2 4-9.2

Weibull

β
δ

( x
δ

)β−1

e−(x∕δ)β

0 < x, 0 < β, 0 < δ
δΓ

(

1 + 1

β

)

δ2Γ
(

1 + 2

β

)

−δ2

[

Γ
(

1 + 1

β

)]2

4-10

Lognormal
1

xω
√

2π
exp

(
−[ln(x) − θ]2

2ω2

)

eθ+ω2∕2 e2θ+ω2 (eω2 − 1) 4-11

Beta

Γ(α + β)
Γ(α)Γ(β)

xα−1(1 − x)β−1

0 ≤ x ≤ 1, 0 < α, 0 < β

α
α + β

αβ
(α + β)2(α + β + 1)

4-12
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T A B L E II Cumulative Binomial Probabilities P(X ≤ x)

P

n x 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.99

1 0 0.9000 0.8000 0.7000 0.6000 0.5000 0.4000 0.3000 0.2000 0.1000 0.0500 0.0100

2 0 0.8100 0.6400 0.4900 0.3600 0.2500 0.1600 0.0900 0.0400 0.0100 0.0025 0.0001

1 0.9900 0.9600 0.9100 0.8400 0.7500 0.6400 0.5100 0.3600 0.1900 0.0975 0.0199

3 0 0.7290 0.5120 0.3430 0.2160 0.1250 0.0640 0.0270 0.0080 0.0010 0.0001 0.0000

1 0.9720 0.8960 0.7840 0.6480 0.5000 0.3520 0.2160 0.1040 0.0280 0.0073 0.0003

2 0.9990 0.9920 0.9730 0.9360 0.8750 0.7840 0.6570 0.4880 0.2710 0.1426 0.0297

4 0 0.6561 0.4096 0.2401 0.1296 0.0625 0.0256 0.0081 0.0016 0.0001 0.0000 0.0000

1 0.9477 0.8192 0.6517 0.4752 0.3125 0.1792 0.0837 0.0272 0.0037 0.0005 0.0000

2 0.9963 0.9728 0.9163 0.8208 0.6875 0.5248 0.3483 0.1808 0.0523 0.0140 0.0006

3 0.9999 0.9984 0.9919 0.9744 0.9375 0.8704 0.7599 0.5904 0.3439 0.1855 0.0394

5 0 0.5905 0.3277 0.1681 0.0778 0.0313 0.0102 0.0024 0.0003 0.0000 0.0000 0.0000

1 0.9185 0.7373 0.5282 0.3370 0.1875 0.0870 0.0308 0.0067 0.0005 0.0000 0.0000

2 0.9914 0.9421 0.8369 0.6826 0.5000 0.3174 0.1631 0.0579 0.0086 0.0012 0.0000

3 0.9995 0.9933 0.9692 0.9130 0.8125 0.6630 0.4718 0.2627 0.0815 0.0226 0.0010

4 1.0000 0.9997 0.9976 0.9898 0.6988 0.9222 0.8319 0.6723 0.4095 0.2262 0.0490

6 0 0.5314 0.2621 0.1176 0.0467 0.0156 0.0041 0.0007 0.0001 0.0000 0.0000 0.0000

1 0.8857 0.6554 0.4202 0.2333 0.1094 0.0410 0.0109 0.0016 0.0001 0.0000 0.0000

2 0.9842 0.9011 0.7443 0.5443 0.3438 0.1792 0.0705 0.0170 0.0013 0.0001 0.0000

3 0.9987 0.9830 0.9295 0.8208 0.6563 0.4557 0.2557 0.0989 0.0159 0.0022 0.0000

4 0.9999 0.9984 0.9891 0.9590 0.9806 0.7667 0.5798 0.3446 0.1143 0.0328 0.0015

5 1.0000 0.9999 0.9993 0.9959 0.9844 0.9533 0.8824 0.7379 0.4686 0.2649 0.0585

7 0 0.4783 0.2097 0.0824 0.0280 0.0078 0.0016 0.0002 0.0000 0.0000 0.0000 0.0000

1 0.8503 0.5767 0.3294 0.1586 0.0625 0.0188 0.0038 0.0004 0.0000 0.0000 0.0000

2 0.9743 0.8520 0.6471 0.4199 0.2266 0.0963 0.0288 0.0047 0.0002 0.0000 0.0000

3 0.9973 0.9667 0.8740 0.7102 0.5000 0.2898 0.1260 0.0333 0.0027 0.0002 0.0000

4 0.9998 0.9953 0.9712 0.9037 0.7734 0.5801 0.3529 0.1480 0.0257 0.0038 0.0000

5 1.0000 0.9996 0.9962 0.9812 0.9375 0.8414 0.6706 0.4233 0.1497 0.0444 0.0020

6 1.0000 1.0000 0.9998 0.9984 0.9922 0.9720 0.9176 0.7903 0.5217 0.3017 0.0679

8 0 0.4305 0.1678 0.0576 0.0168 0.0039 0.0007 0.0001 0.0000 0.0000 0.0000 0.0000

1 0.8131 0.5033 0.2553 0.1064 0.0352 0.0085 0.0013 0.0001 0.0000 0.0000 0.0000

2 0.9619 0.7969 0.5518 0.3154 0.1445 0.0498 0.0113 0.0012 0.0000 0.0000 0.0000

3 0.9950 0.9437 0.8059 0.5941 0.3633 0.1737 0.0580 0.0104 0.0004 0.0000 0.0000

4 0.9996 0.9896 0.9420 0.8263 0.6367 0.4059 0.1941 0.0563 0.0050 0.0004 0.0000

5 1.0000 0.9988 0.9887 0.9502 0.8555 0.6846 0.4482 0.2031 0.0381 0.0058 0.0001

6 1.0000 0.9999 0.9987 0.9915 0.9648 0.8936 0.7447 0.4967 0.1869 0.0572 0.0027

7 1.0000 1.0000 0.9999 0.9993 0.9961 0.9832 0.9424 0.8322 0.5695 0.3366 0.0773

9 0 0.3874 0.1342 0.0404 0.0101 0.0020 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000

1 0.7748 0.4362 0.1960 0.0705 0.0195 0.0038 0.0004 0.0000 0.0000 0.0000 0.0000

2 0.9470 0.7382 0.4628 0.2318 0.0889 0.0250 0.0043 0.0003 0.0000 0.0000 0.0000

3 0.9917 0.9144 0.7297 0.4826 0.2539 0.0994 0.0253 0.0031 0.0001 0.0000 0.0000

4 0.9991 0.9804 0.9012 0.7334 0.5000 0.2666 0.0988 0.0196 0.0009 0.0000 0.0000

5 0.9999 0.9969 0.9747 0.9006 0.7461 0.5174 0.2703 0.0856 0.0083 0.0006 0.0000

6 1.0000 0.9997 0.9957 0.9750 0.9102 0.7682 0.5372 0.2618 0.0530 0.0084 0.0001

7 1.0000 1.0000 0.9996 0.9962 0.9805 0.9295 0.8040 0.5638 0.2252 0.0712 0.0034

8 1.0000 1.0000 1.0000 0.9997 0.9980 0.9899 0.9596 0.8658 0.6126 0.3698 0.0865
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T A B L E II Cumulative Binomial Probabilities P(X ≤ x) (continued)

P

n x 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.99

10 0 0.3487 0.1074 0.0282 0.0060 0.0010 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000

1 0.7361 0.3758 0.1493 0.0464 0.0107 0.0017 0.0001 0.0000 0.0000 0.0000 0.0000

2 0.9298 0.6778 0.3828 0.1673 0.0547 0.0123 0.0016 0.0001 0.0000 0.0000 0.0000

3 0.9872 0.8791 0.6496 0.3823 0.1719 0.0548 0.0106 0.0009 0.0000 0.0000 0.0000

4 0.9984 0.9672 0.8497 0.6331 0.3770 0.1662 0.0473 0.0064 0.0001 0.0000 0.0000

5 0.9999 0.9936 0.9527 0.8338 0.6230 0.3669 0.1503 0.0328 0.0016 0.0001 0.0000

6 1.0000 0.9991 0.9894 0.9452 0.8281 0.6177 0.3504 0.1209 0.0128 0.0010 0.0000

7 1.0000 0.9999 0.9984 0.9877 0.9453 0.8327 0.6172 0.3222 0.0702 0.0115 0.0001

8 1.0000 1.0000 0.9999 0.9983 0.9893 0.9536 0.8507 0.6242 0.2639 0.0861 0.0043

9 1.0000 1.0000 1.0000 0.9999 0.9990 0.9940 0.9718 0.8926 0.6513 0.4013 0.0956

11 0 0.3138 0.0859 0.0198 0.0036 0.0005 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

1 0.6974 0.3221 0.1130 0.0302 0.0059 0.0007 0.0000 0.0000 0.0000 0.0000 0.0000

2 0.9104 0.6174 0.3127 0.1189 0.0327 0.0059 0.0006 0.0000 0.0000 0.0000 0.0000

3 0.9815 0.8389 0.5696 0.2963 0.1133 0.0293 0.0043 0.0002 0.0000 0.0000 0.0000

4 0.9972 0.9496 0.7897 0.5328 0.2744 0.0994 0.0216 0.0020 0.0000 0.0000 0.0000

5 0.9997 0.9883 0.9218 0.7535 0.5000 0.2465 0.0782 0.0117 0.0003 0.0000 0.0000

6 1.0000 0.9980 0.9784 0.9006 0.7256 0.4672 0.2103 0.0504 0.0028 0.0001 0.0000

7 1.0000 0.9998 0.9957 0.9707 0.8867 0.7037 0.4304 0.1611 0.0185 0.0016 0.0000

8 1.0000 1.0000 0.9994 0.9941 0.9673 0.8811 0.6873 0.3826 0.0896 0.0152 0.0002

9 1.0000 1.0000 1.0000 0.9993 0.9941 0.9698 0.8870 0.6779 0.3026 0.1019 0.0052

10 1.0000 1.0000 1.0000 1.0000 0.9995 0.9964 0.9802 0.9141 0.6862 0.4312 0.1047

12 0 0.2824 0.0687 0.0138 0.0022 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

1 0.6590 0.2749 0.0850 0.0196 0.0032 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000

2 0.8891 0.5583 0.2528 0.0834 0.0193 0.0028 0.0002 0.0000 0.0000 0.0000 0.0000

3 0.9744 0.7946 0.4925 0.2253 0.0730 0.0153 0.0017 0.0001 0.0000 0.0000 0.0000

4 0.9957 0.9274 0.7237 0.4382 0.1938 0.0573 0.0095 0.0006 0.0000 0.0000 0.0000

5 0.9995 0.9806 0.8822 0.6652 0.3872 0.1582 0.0386 0.0039 0.0001 0.0000 0.0000

6 0.9999 0.9961 0.9614 0.8418 0.6128 0.3348 0.1178 0.0194 0.0005 0.0000 0.0000

7 1.0000 0.9994 0.9905 0.9427 0.8062 0.5618 0.2763 0.0726 0.0043 0.0002 0.0000

8 1.0000 0.9999 0.9983 0.9847 0.9270 0.7747 0.5075 0.2054 0.0256 0.0022 0.0000

9 1.0000 1.0000 0.9998 0.9972 0.9807 0.9166 0.7472 0.4417 0.1109 0.0196 0.0002

10 1.0000 1.0000 1.0000 0.9997 0.9968 0.9804 0.9150 0.7251 0.3410 0.1184 0.0062

11 1.0000 1.0000 1.0000 1.0000 0.9998 0.9978 0.9862 0.9313 0.7176 0.4596 0.1136

13 0 0.2542 0.0550 0.0097 0.0013 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

1 0.6213 0.2336 0.0637 0.0126 0.0017 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000

2 0.8661 0.5017 0.2025 0.0579 0.0112 0.0013 0.0001 0.0000 0.0000 0.0000 0.0000

3 0.9658 0.7473 0.4206 0.1686 0.0461 0.0078 0.0007 0.0000 0.0000 0.0000 0.0000

4 0.9935 0.9009 0.6543 0.3530 0.1334 0.0321 0.0040 0.0002 0.0000 0.0000 0.0000

5 0.9991 0.9700 0.8346 0.5744 0.2905 0.0977 0.0182 0.0012 0.0000 0.0000 0.0000

6 0.9999 0.9930 0.9376 0.7712 0.5000 0.2288 0.0624 0.0070 0.0001 0.0000 0.0000

7 1.0000 0.9988 0.9818 0.9023 0.7095 0.4256 0.1654 0.0300 0.0009 0.0000 0.0000

8 1.0000 0.9988 0.9960 0.9679 0.8666 0.6470 0.3457 0.0991 0.0065 0.0003 0.0000

9 1.0000 1.0000 0.9993 0.9922 0.9539 0.8314 0.5794 0.2527 0.0342 0.0031 0.0000

10 1.0000 1.0000 0.9999 0.9987 0.9888 0.9421 0.7975 0.4983 0.1339 0.0245 0.0003

11 1.0000 1.0000 1.0000 0.9999 0.9983 0.9874 0.9363 0.7664 0.3787 0.1354 0.0072

12 1.0000 1.0000 1.0000 1.0000 0.9999 0.9987 0.9903 0.9450 0.7458 0.4867 0.1225
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T A B L E II Cumulative Binomial Probabilities P(X ≤ x) (continued)

P

n x 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.99

14 0 0.2288 0.0440 0.0068 0.0008 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

1 0.5846 0.1979 0.0475 0.0081 0.0009 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000

2 0.8416 0.4481 0.1608 0.0398 0.0065 0.0006 0.0000 0.0000 0.0000 0.0000 0.0000

3 0.9559 0.6982 0.3552 0.1243 0.0287 0.0039 0.0002 0.0000 0.0000 0.0000 0.0000

4 0.9908 0.8702 0.5842 0.2793 0.0898 0.0175 0.0017 0.0000 0.0000 0.0000 0.0000

5 0.9985 0.9561 0.7805 0.4859 0.2120 0.0583 0.0083 0.0004 0.0000 0.0000 0.0000

6 0.9998 0.9884 0.9067 0.6925 0.3953 0.1501 0.0315 0.0024 0.0000 0.0000 0.0000

7 1.0000 0.9976 0.9685 0.8499 0.6047 0.3075 0.0933 0.0116 0.0002 0.0000 0.0000

8 1.0000 0.9996 0.9917 0.9417 0.7880 0.5141 0.2195 0.0439 0.0015 0.0000 0.0000

9 1.0000 1.0000 0.9983 0.9825 0.9102 0.7207 0.4158 0.1298 0.0092 0.0004 0.0000

10 1.0000 1.0000 0.9998 0.9961 0.9713 0.8757 0.6448 0.3018 0.0441 0.0042 0.0000

11 1.0000 1.0000 1.0000 0.9994 0.9935 0.9602 0.8392 0.5519 0.1584 0.0301 0.0003

12 1.0000 1.0000 1.0000 0.9999 0.9991 0.9919 0.9525 0.8021 0.4154 0.1530 0.0084

13 1.0000 1.0000 1.0000 1.0000 0.9999 0.9992 0.9932 0.9560 0.7712 0.5123 0.1313

15 0 0.2059 0.0352 0.0047 0.0005 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

1 0.5490 0.1671 0.0353 0.0052 0.0005 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

2 0.8159 0.3980 0.1268 0.0271 0.0037 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000

3 0.9444 0.6482 0.2969 0.0905 0.0176 0.0019 0.0001 0.0000 0.0000 0.0000 0.0000

4 0.9873 0.8358 0.5155 0.2173 0.0592 0.0093 0.0007 0.0000 0.0000 0.0000 0.0000

5 0.9978 0.9389 0.7216 0.4032 0.1509 0.0338 0.0037 0.0001 0.0000 0.0000 0.0000

6 0.9997 0.9819 0.8689 0.6098 0.3036 0.0950 0.0152 0.0008 0.0000 0.0000 0.0000

7 1.0000 0.9958 0.9500 0.7869 0.5000 0.2131 0.0500 0.0042 0.0000 0.0000 0.0000

8 1.0000 0.9992 0.9848 0.9050 0.6964 0.3902 0.1311 0.0181 0.0003 0.0000 0.0000

9 1.0000 0.9999 0.9963 0.9662 0.8491 0.5968 0.2784 0.0611 0.0022 0.0001 0.0000

10 1.0000 1.0000 0.9993 0.9907 0.9408 0.7827 0.4845 0.1642 0.0127 0.0006 0.0000

11 1.0000 1.0000 0.9999 0.9981 0.9824 0.9095 0.7031 0.3518 0.0556 0.0055 0.0000

12 1.0000 1.0000 1.0000 0.9997 0.9963 0.9729 0.8732 0.6020 01841 0.0362 0.0004

13 1.0000 1.0000 1.0000 1.0000 0.9995 0.9948 0.9647 0.8329 0.4510 0.1710 0.0096

14 1.0000 1.0000 1.0000 1.0000 1.0000 0.9995 0.9953 0.9648 0.7941 0.5367 0.1399

20 0 0.1216 0.0115 0.0008 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

1 0.3917 0.0692 0.0076 0.0005 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

2 0.6769 0.2061 0.0355 0.0036 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

3 0.8670 0.4114 0.1071 0.0160 0.0013 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

4 0.9568 0.6296 0.2375 0.0510 0.0059 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000

5 0.9887 0.8042 0.4164 0.1256 0.0207 0.0016 0.0000 0.0000 0.0000 0.0000 0.0000

6 0.9976 0.9133 0.6080 0.2500 0.0577 0.0065 0.0003 0.0000 0.0000 0.0000 0.0000

7 0.9996 0.9679 0.7723 0.4159 0.1316 0.0210 0.0013 0.0000 0.0000 0.0000 0.0000

8 0.9999 0.9900 0.8867 0.5956 0.2517 0.0565 0.0051 0.0001 0.0000 0.0000 0.0000

9 1.0000 0.9974 0.9520 0.7553 0.4119 0.1275 0.0171 0.0006 0.0000 0.0000 0.0000

10 1.0000 0.9994 0.9829 0.8725 0.5881 0.2447 0.0480 0.0026 0.0000 0.0000 0.0000

11 1.0000 0.9999 0.9949 0.9435 0.7483 0.4044 0.1133 0.0100 0.0001 0.0000 0.0000

12 1.0000 1.0000 0.9987 0.9790 0.8684 0.5841 0.2277 0.0321 0.0004 0.0000 0.0000

13 1.0000 1.0000 0.9997 0.9935 0.9423 0.7500 0.3920 0.0867 0.0024 0.0000 0.0000

14 1.0000 1.0000 1.0000 0.9984 0.9793 0.8744 0.5836 0.1958 0.0113 0.0003 0.0000

15 1.0000 1.0000 1.0000 0.9997 0.9941 0.9490 0.7625 0.3704 0.0432 0.0026 0.0000

16 1.0000 1.0000 1.0000 1.0000 0.9987 0.9840 0.8929 0.5886 0.1330 0.0159 0.0000

17 1.0000 1.0000 1.0000 1.0000 0.9998 0.9964 0.9645 0.7939 0.3231 0.0755 0.0010

18 1.0000 1.0000 1.0000 1.0000 1.0000 0.9995 0.9924 0.9308 0.6083 0.2642 0.0169

19 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9992 0.9885 0.8784 0.6415 0.1821
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Φ(z) = P(Z ≤ z) =
∫

z

−∞

1
√

2π
e−

1

2
u2

du

z 0

Φ (z)

T A B L E III Cumulative Standard Normal Distribution

z – 0.09 – 0.08 – 0.07 – 0.06 – 0.05 – 0.04 – 0.03 – 0.02 – 0.01 – 0.00
−3.9 0.000033 0.000034 0.000036 0.000037 0.000039 0.000041 0.000042 0.000044 0.000046 0.000048

−3.8 0.000050 0.000052 0.000054 0.000057 0.000059 0.000062 0.000064 0.000067 0.000069 0.000072

−3.7 0.000075 0.000078 0.000082 0.000085 0.000088 0.000092 0.000096 0.000100 0.000104 0.000108

−3.6 0.000112 0.000117 0.000121 0.000126 0.000131 0.000136 0.000142 0.000147 0.000153 0.000159

−3.5 0.000165 0.000172 0.000179 0.000185 0.000193 0.000200 0.000208 0.000216 0.000224 0.000233

−3.4 0.000242 0.000251 0.000260 0.000270 0.000280 0.000291 0.000302 0.000313 0.000325 0.000337

−3.3 0.000350 0.000362 0.000376 0.000390 0.000404 0.000419 0.000434 0.000450 0.000467 0.000483

−3.2 0.000501 0.000519 0.000538 0.000557 0.000577 0.000598 0.000619 0.000641 0.000664 0.000687

−3.1 0.000711 0.000736 0.000762 0.000789 0.000816 0.000845 0.000874 0.000904 0.000935 0.000968

−3.0 0.001001 0.001035 0.001070 0.001107 0.001144 0.001183 0.001223 0.001264 0.001306 0.001350

−2.9 0.001395 0.001441 0.001489 0.001538 0.001589 0.001641 0.001695 0.001750 0.001807 0.001866

−2.8 0.001926 0.001988 0.002052 0.002118 0.002186 0.002256 0.002327 0.002401 0.002477 0.002555

−2.7 0.002635 0.002718 0.002803 0.002890 0.002980 0.003072 0.003167 0.003264 0.003364 0.003467

−2.6 0.003573 0.003681 0.003793 0.003907 0.004025 0.004145 0.004269 0.004396 0.004527 0.004661

−2.5 0.004799 0.004940 0.005085 0.005234 0.005386 0.005543 0.005703 0.005868 0.006037 0.006210

−2.4 0.006387 0.006569 0.006756 0.006947 0.007143 0.007344 0.007549 0.007760 0.007976 0.008198

−2.3 0.008424 0.008656 0.008894 0.009137 0.009387 0.009642 0.009903 0.010170 0.010444 0.010724

−2.2 0.011011 0.011304 0.011604 0.011911 0.012224 0.012545 0.012874 0.013209 0.013553 0.013903

−2.1 0.014262 0.014629 0.015003 0.015386 0.015778 0.016177 0.016586 0.017003 0.017429 0.017864

−2.0 0.018309 0.018763 0.019226 0.019699 0.020182 0.020675 0.021178 0.021692 0.022216 0.022750

−1.9 0.023295 0.023852 0.024419 0.024998 0.025588 0.026190 0.026803 0.027429 0.028067 0.028717

−1.8 0.029379 0.030054 0.030742 0.031443 0.032157 0.032884 0.033625 0.034379 0.035148 0.035930

−1.7 0.036727 0.037538 0.038364 0.039204 0.040059 0.040929 0.041815 0.042716 0.043633 0.044565

−1.6 0.045514 0.046479 0.047460 0.048457 0.049471 0.050503 0.051551 0.052616 0.053699 0.054799

−1.5 0.055917 0.057053 0.058208 0.059380 0.060571 0.061780 0.063008 0.064256 0.065522 0.066807

−1.4 0.068112 0.069437 0.070781 0.072145 0.073529 0.074934 0.076359 0.077804 0.079270 0.080757

−1.3 0.082264 0.083793 0.085343 0.086915 0.088508 0.090123 0.091759 0.093418 0.095098 0.096801

−1.2 0.098525 0.100273 0.102042 0.103835 0.105650 0.107488 0.109349 0.111233 0.113140 0.115070

−1.1 0.117023 0.119000 0.121001 0.123024 0.125072 0.127143 0.129238 0.131357 0.133500 0.135666

−1.0 0.137857 0.140071 0.142310 0.144572 0.146859 0.149170 0.151505 0.153864 0.156248 0.158655

−0.9 0.161087 0.163543 0.166023 0.168528 0.171056 0.173609 0.176185 0.178786 0.181411 0.184060

−0.8 0.186733 0.189430 0.192150 0.194894 0.197662 0.200454 0.203269 0.206108 0.208970 0.211855

−0.7 0.214764 0.217695 0.220650 0.223627 0.226627 0.229650 0.232695 0.235762 0.238852 0.241964

−0.6 0.245097 0.248252 0.251429 0.254627 0.257846 0.261086 0.264347 0.267629 0.270931 0.274253

−0.5 0.277595 0.280957 0.284339 0.287740 0.291160 0.294599 0.298056 0.301532 0.305026 0.308538

−0.4 0.312067 0.315614 0.319178 0.322758 0.326355 0.329969 0.333598 0.337243 0.340903 0.344578

−0.3 0.348268 0.351973 0.355691 0.359424 0.363169 0.366928 0.370700 0.374484 0.378281 0.382089

−0.2 0.385908 0.389739 0.393580 0.397432 0.401294 0.405165 0.409046 0.412936 0.416834 0.420740

−0.1 0.424655 0.428576 0.432505 0.436441 0.440382 0.444330 0.448283 0.452242 0.456205 0.460172

0.0 0.464144 0.468119 0.472097 0.476078 0.480061 0.484047 0.488033 0.492022 0.496011 0.500000
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Φ(z) = P(Z ≤ z) =
∫

z

−∞

1
√

2π
e−

1

2
u2

du

z0

Φ (z)

T A B L E III Cumulative Standard Normal Distribution (continued)

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0.0 0.500000 0.503989 0.507978 0.511967 0.515953 0.519939 0.532922 0.527903 0.531881 0.535856

0.1 0.539828 0.543795 0.547758 0.551717 0.555760 0.559618 0.563559 0.567495 0.571424 0.575345

0.2 0.579260 0.583166 0.587064 0.590954 0.594835 0.598706 0.602568 0.606420 0.610261 0.614092

0.3 0.617911 0.621719 0.625516 0.629300 0.633072 0.636831 0.640576 0.644309 0.648027 0.651732

0.4 0.655422 0.659097 0.662757 0.666402 0.670031 0.673645 0.677242 0.680822 0.684386 0.687933

0.5 0.691462 0.694974 0.698468 0.701944 0.705401 0.708840 0.712260 0.715661 0.719043 0.722405

0.6 0.725747 0.729069 0.732371 0.735653 0.738914 0.742154 0.745373 0.748571 0.751748 0.754903

0.7 0.758036 0.761148 0.764238 0.767305 0.770350 0.773373 0.776373 0.779350 0.782305 0.785236

0.8 0.788145 0.791030 0.793892 0.796731 0.799546 0.802338 0.805106 0.807850 0.810570 0.813267

0.9 0.815940 0.818589 0.821214 0.823815 0.826391 0.828944 0.831472 0.833977 0.836457 0.838913

1.0 0.841345 0.843752 0.846136 0.848495 0.850830 0.853141 0.855428 0.857690 0.859929 0.862143

1.1 0.864334 0.866500 0.868643 0.870762 0.872857 0.874928 0.876976 0.878999 0.881000 0.882977

1.2 0.884930 0.886860 0.888767 0.890651 0.892512 0.894350 0.896165 0.897958 0.899727 0.901475

1.3 0.903199 0.904902 0.906582 0.908241 0.909877 0.911492 0.913085 0.914657 0.916207 0.917736

1.4 0.919243 0.920730 0.922196 0.923641 0.925066 0.926471 0.927855 0.929219 0.930563 0.931888

1.5 0.933193 0.934478 0.935744 0.936992 0.938220 0.939429 0.940620 0.941792 0.942947 0.944083

1.6 0.945201 0.946301 0.947384 0.948449 0.949497 0.950529 0.951543 0.952540 0.953521 0.954486

1.7 0.955435 0.956367 0.957284 0.958185 0.959071 0.959941 0.960796 0.961636 0.962462 0.963273

1.8 0.964070 0.964852 0.965621 0.966375 0.967116 0.967843 0.968557 0.969258 0.969946 0.970621

1.9 0.971283 0.971933 0.972571 0.973197 0.973810 0.974412 0.975002 0.975581 0.976148 0.976705

2.0 0.977250 0.977784 0.978308 0.978822 0.979325 0.979818 0.980301 0.980774 0.981237 0.981691

2.1 0.982136 0.982571 0.982997 0.983414 0.983823 0.984222 0.984614 0.984997 0.985371 0.985738

2.2 0.986097 0.986447 0.986791 0.987126 0.987455 0.987776 0.988089 0.988396 0.988696 0.988989

2.3 0.989276 0.989556 0.989830 0.990097 0.990358 0.990613 0.990863 0.991106 0.991344 0.991576

2.4 0.991802 0.992024 0.992240 0.992451 0.992656 0.992857 0.993053 0.993244 0.993431 0.993613

2.5 0.993790 0.993963 0.994132 0.994297 0.994457 0.994614 0.994766 0.994915 0.995060 0.995201

2.6 0.995339 0.995473 0.995604 0.995731 0.995855 0.995975 0.996093 0.996207 0.996319 0.996427

2.7 0.996533 0.996636 0.996736 0.996833 0.996928 0.997020 0.997110 0.997197 0.997282 0.997365

2.8 0.997445 0.997523 0.997599 0.997673 0.997744 0.997814 0.997882 0.997948 0.998012 0.998074

2.9 0.998134 0.998193 0.998250 0.998305 0.998359 0.998411 0.998462 0.998511 0.998559 0.998605

3.0 0.998650 0.998694 0.998736 0.998777 0.998817 0.998856 0.998893 0.998930 0.998965 0.998999

3.1 0.999032 0.999065 0.999096 0.999126 0.999155 0.999184 0.999211 0.999238 0.999264 0.999289

3.2 0.999313 0.999336 0.999359 0.999381 0.999402 0.999423 0.999443 0.999462 0.999481 0.999499

3.3 0.999517 0.999533 0.999550 0.999566 0.999581 0.999596 0.999610 0.999624 0.999638 0.999650

3.4 0.999663 0.999675 0.999687 0.999698 0.999709 0.999720 0.999730 0.999740 0.999749 0.999758

3.5 0.999767 0.999776 0.999784 0.999792 0.999800 0.999807 0.999815 0.999821 0.999828 0.999835

3.6 0.999841 0.999847 0.999853 0.999858 0.999864 0.999869 0.999874 0.999879 0.999883 0.999888

3.7 0.999892 0.999896 0.999900 0.999904 0.999908 0.999912 0.999915 0.999918 0.999922 0.999925

3.8 0.999928 0.999931 0.999933 0.999936 0.999938 0.999941 0.999943 0.999946 0.999948 0.999950

3.9 0.999952 0.999954 0.999956 0.999958 0.999959 0.999961 0.999963 0.999964 0.999966 0.999967
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χα, ν
2

α

T A B L E IV Percentage Points 𝛘2
𝛂,v of the Chi-Squared Distribution

v = degrees of freedom.
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0

α

α,νt

T A B L E V Percentage Points t𝛂,v of the t Distribution

v = degrees of freedom.
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α

f
0.25, ν1, ν2

= 0.25

T A B L E VI Percentage Points f𝛂, v1, v2
of the F Distribution
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α

f
0.10, ν1, ν2

= 0.10

T A B L E VI Percentage Points f𝛂, v1, v2
of the F Distribution (continued)
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α

f
0.05, ν1, ν2

= 0.05

T A B L E VI Percentage Points f𝛂, v1, v2
of the F Distribution (continued)
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α

f
0.025, ν1, ν2

= 0.025

T A B L E VI Percentage Points f𝛂, v1, v2
of the F Distribution (continued)
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α

f
0.01, ν1, ν2

= 0.01

T A B L E VI Percentage Points f𝛂, v1, v2
of the F Distribution (continued)
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(a) O.C. curves for different values of n for the two-sided normal test for a level of significance

α = 0.05.
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(b) O.C. curves for different values of n for the two-sided normal test for a level of significance

α = 0.01.

Source: Charts VIa, e, f , k, m, and q are reproduced with permission from “Operating Character-

istics for the Common Statistical Tests of Significance,” by C. L. Ferris, F. E. Grubbs, and C. L.

Weaver, Annals of Mathematical Statistics, June 1946.

Charts VIb, c, d, g, h, i, j, l, n, o, p, and r are reproduced with permission from Engineering
Statistics, 2nd Edition, by A. H. Bowker and G. J. Lieberman, Prentice-Hall, 1972.

CHART VII Operating Characteristic Curves
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(c) O.C. curves for different values of n for the one-sided normal test for a level of significance

α = 0.05.

–1.00
0

–0.50 0.0 0.50 1.00 1.50 2.00 2.50 3.00

0.20

0.40

0.60

0.80

1.00

n = 1

4

1
0
0

5

6
7

10

1
5

2
0

3
0

4
0

5
0

75

89

P
ro

b
a
b
il
it

y 
o
f 

a
c
c
e
p
ti

n
g
 H

0

d

3

2

(d) O.C. curves for different values of n for the one-sided normal test for a level of significance

α = 0.01.

CHART VII Operating Characteristic Curves (continued)
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(e) O.C. curves for different values of n for the two-sided t-test for a level of significance α = 0.05.
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(f ) O.C. curves for different values of n for the two-sided t-test for a level of significance α = 0.01.

CHART VII Operating Characteristic Curves (continued)
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(g) O.C. curves for different values of n for the one-sided t-test for a level of significance α = 0.05.
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(h) O.C. curves for different values of n for the one-sided t-test for a level of significance α = 0.01.

CHART VII Operating Characteristic Curves (continued)
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(i) O.C. curves for different values of n for the two-sided chi-square test for a level of significance

α = 0.05.
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(j) O.C. curves for different values of n for the two-sided chi-square test for a level of significance

α = 0.01.

CHART VII Operating Characteristic Curves (continued)
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(k) O.C. curves for different values of n for the one-sided (upper-tail) chi-square test for a level

of significance α = 0.05.
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(l) O.C. curves for different values of n for the one-sided (upper-tail) chi-square test for a level of

significance α = 0.01.

CHART VII Operating Characteristic Curves (continued)



�

� �

�

APPENDIX A Statistical Tables and Charts A-23

0
0

n 
=
 2

3

4

5

1
0
0

0.5 1.0 1.5 2.0

0.2

0.4

0.6

0.8

1.0

P
ro

b
a
b
il
it

y 
o
f 

a
c
c
e
p
ti

n
g
 H

0

1
0

1
5

2
0 3
0

4
0

5
0

7
5

7
8

λ

6

(m) O.C. curves for different values of n for the one-sided (lower-tail) chi-square test for a level

of significance α = 0.05.
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(n) O.C. curves for different values of n for the one-sided (lower-tail) chi-square test for a level

of significance α = 0.01.

CHART VII Operating Characteristic Curves (continued)
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(o) O.C. curves for different values of n for the two-sided F-test for a level of significance α = 0.05.
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(p) O.C. curves for different values of n for the two-sided F-test for a level of significance α = 0.01.

CHART VII Operating Characteristic Curves (continued)
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(q) O.C. curves for different values of n for the one-sided F-test for a level of significance α = 0.05.
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(r) O.C. curves for different values of n for the one-sided F-test for a level of significance α = 0.01.

CHART VII Operating Characteristic Curves (continued)
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T A B L E VIII Critical Values for the Sign Test

T A B L E IX Critical Values for the Wilcoxon Signed-Rank Test

*If n > 25, W− (or W−) is approximately normally distributed with mean n(n + 1)/4

and variance n(n + 1)(2n + 1)/24.
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T A B L E X Critical Values for the Wilcoxon Rank-Sum Test

*For n1 and n2 > 8, W1 is approximately normally distributed with mean
1

2
n1 (n1 + n2 + 1) and variance

n1n2 (n1 + n2 + 1)/12.

T A B L E X Critical Values for the Wilcoxon Rank-Sum Test (continued)
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T A B L E XI Factors for Constructing Variables Control Charts

Factor for Control Limits

X Chart R Chart S Chart
n∗ A𝟏 A𝟐 d𝟐 D𝟑 D𝟒 C𝟒 n
2 3.760 1.880 1.128 0 3.267 0.7979 2

3 2.394 1.023 1.693 0 2.575 0.8862 3

4 1.880 .729 2.059 0 2.282 0.9213 4

5 1.596 .577 2.326 0 2.115 0.9400 5

6 1.410 .483 2.534 0 2.004 0.9515 6

7 1.277 .419 2.704 .076 1.924 0.9594 7

8 1.175 .373 2.847 .136 1.864 0.9650 8

9 1.094 .337 2.970 .184 1.816 0.9693 9

10 1.028 .308 3.078 .223 1.777 0.9727 10

11 .973 .285 3.173 .256 1.744 0.9754 11

12 .925 .266 3.258 .284 1.716 0.9776 12

13 .884 .249 3.336 .308 1.692 0.9794 13

14 .848 .235 3.407 .329 1.671 0.9810 14

15 .816 .223 3.472 .348 1.652 0.9823 15

16 .788 .212 3.532 .364 1.636 0.9835 16

17 .762 .203 3.588 .379 1.621 0.9845 17

18 .738 .194 3.640 .392 1.608 0.9854 18

19 .717 .187 3.689 .404 1.596 0.9862 19

20 .697 .180 3.735 .414 1.586 0.9869 20

21 .679 .173 3.778 .425 1.575 0.9876 21

22 .662 .167 3.819 .434 1.566 0.9882 22

23 .647 .162 3.858 .443 1.557 0.9887 23

24 .632 .157 3.895 .452 1.548 0.9892 24

25 .619 .153 3.931 .459 1.541 0.9896 25

∗n > 25∶A1 = 3∕
√

n where n = number of observations in sample.
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T A B L E XII Factors for Tolerance Intervals

Values of k for Two-Sided Intervals
Confidence Level

0.90 0.95 0.99

Probability of Coverage
Sample Size 0.90 0.95 0.99 0.90 0.95 0.99 0.90 0.95 0.99

2 15.978 18.800 24.167 32.019 37.674 48.430 160.193 188.491 242.300

3 5.847 6.919 8.974 8.380 9.916 12.861 18.930 22.401 29.055

4 4.166 4.943 6.440 5.369 6.370 8.299 9.398 11.150 14.527

5 3.949 4.152 5.423 4.275 5.079 6.634 6.612 7.855 10.260

6 3.131 3.723 4.870 3.712 4.414 5.775 5.337 6.345 8.301

7 2.902 3.452 4.521 3.369 4.007 5.248 4.613 5.488 7.187

8 2.743 3.264 4.278 3.136 3.732 4.891 4.147 4.936 6.468

9 2.626 3.125 4.098 2.967 3.532 4.631 3.822 4.550 5.966

10 2.535 3.018 3.959 2.839 3.379 4.433 3.582 4.265 5.594

11 2.463 2.933 3.849 2.737 3.259 4.277 3.397 4.045 5.308

12 2.404 2.863 3.758 2.655 3.162 4.150 3.250 3.870 5.079

13 2.355 2.805 3.682 2.587 3.081 4.044 3.130 3.727 4.893

14 2.314 2.756 3.618 2.529 3.012 3.955 3.029 3.608 4.737

15 2.278 2.713 3.562 2.480 2.954 3.878 2.945 3.507 4.605

16 2.246 2.676 3.514 2.437 2.903 3.812 2.872 3.421 4.492

17 2.219 2.643 3.471 2.400 2.858 3.754 2.808 3.345 4.393

18 2.194 2.614 3.433 2.366 2.819 3.702 2.753 3.279 4.307

19 2.172 2.588 3.399 2.337 2.784 3.656 2.703 3.221 4.230

20 2.152 2.564 3.368 2.310 2.752 3.615 2.659 3.168 4.161

21 2.135 2.543 3.340 2.286 2.723 3.577 2.620 3.121 4.100

22 2.118 2.524 3.315 2.264 2.697 3.543 2.584 3.078 4.044

23 2.103 2.506 3.292 2.244 2.673 3.512 2.551 3.040 3.993

24 2.089 2.489 3.270 2.225 2.651 3.483 2.522 3.004 3.947

25 2.077 2.474 3.251 2.208 2.631 3.457 2.494 2.972 3.904

30 2.025 2.413 3.170 2.140 2.529 3.350 2.385 2.841 3.733

40 1.959 2.334 3.066 2.052 2.445 3.213 2.247 2.677 3.518

50 1.916 2.284 3.001 1.996 2.379 3.126 2.162 2.576 3.385

60 1.887 2.248 2.955 1.958 2.333 3.066 2.103 2.506 3.293

70 1.865 2.222 2.920 1.929 2.299 3.021 2.060 2.454 3.225

80 1.848 2.202 2.894 1.907 2.272 2.986 2.026 2.414 3.173

90 1.834 2.185 2.872 1.889 2.251 2.958 1.999 2.382 3.130

100 1.822 2.172 2.854 1.874 2.233 2.934 1.977 2.355 3.096
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T A B L E XII Factors for Tolerance Intervals (continued)

Values of k for Two-Sided Intervals
Confidence Level

0.90 0.95 0.99
Probability of Coverage

Sample Size 0.90 0.95 0.99 0.90 0.95 0.99 0.90 0.95 0.99
2 10.253 13.090 18.500 20.581 26.260 37.094 103.029 131.426 185.617

3 4.258 5.311 7.340 6.155 7.656 10.553 13.995 17.370 23.896

4 3.188 3.957 5.438 4.162 5.144 7.042 7.380 9.083 12.387

5 2.742 3.400 4.666 3.407 4.203 5.741 5.362 6.578 8.939

6 2.494 3.092 4.243 3.006 3.708 5.062 4.411 5.406 7.335

7 2.333 2.894 3.972 2.755 3.399 4.642 3.859 4.728 6.412

8 2.219 2.754 3.783 2.582 3.187 4.354 3.497 4.285 5.812

9 2.133 2.650 3.641 2.454 3.031 4.143 3.240 3.972 5.389

10 2.066 2.568 3.532 2.355 2.911 3.981 3.048 3.738 5.074

11 2.011 2.503 3.443 2.275 2.815 3.852 2.898 3.556 4.829

12 1.966 2.448 3.371 2.210 2.736 3.747 2.777 3.410 4.633

13 1.928 2.402 3.309 2.155 2.671 3.659 2.677 3.290 4.472

14 1.895 2.363 3.257 2.109 2.614 3.585 2.593 3.189 4.337

15 1.867 2.329 3.212 2.068 2.566 3.520 2.521 3.102 4.222

16 1.842 2.299 3.172 2.033 2.524 3.464 2.459 3.028 4.123

17 1.819 2.272 3.137 2.002 2.486 3.414 2.405 2.963 4.037

18 1.800 2.249 3.105 1.974 2.453 3.370 2.357 2.905 3.960

19 1.782 2.227 3.077 1.949 2.423 3.331 2.314 2.854 3.892

20 1.765 2.028 3.052 1.926 2.396 3.295 2.276 2.808 3.832

21 1.750 2.190 3.028 1.905 2.371 3.263 2.241 2.766 3.777

22 1.737 2.174 3.007 1.886 2.349 3.233 2.209 2.729 3.727

23 1.724 2.159 2.987 1.869 2.328 3.206 2.180 2.694 3.681

24 1.712 2.145 2.969 1.853 2.309 3.181 2.154 2.662 3.640

25 1.702 2.132 2.952 1.838 2.292 3.158 2.129 2.633 3.601

30 1.657 2.080 2.884 1.777 2.220 3.064 2.030 2.515 3.447

40 1.598 2.010 2.793 1.697 2.125 2.941 1.902 2.364 3.249

50 1.559 1.965 2.735 1.646 2.065 2.862 1.821 2.269 3.125

60 1.532 1.933 2.694 1.609 2.022 2.807 1.764 2.202 3.038

70 1.511 1.909 2.662 1.581 1.990 2.765 1.722 2.153 2.974

80 1.495 1.890 2.638 1.559 1.964 2.733 1.688 2.114 2.924

90 1.481 1.874 2.618 1.542 1.944 2.706 1.661 2.082 2.883

100 1.470 1.861 2.601 1.527 1.927 2.684 1.639 2.056 2.850
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100(1 − 𝛂)% confidence interval on 𝛍 A

statement that contains μ that will be true

100(1 − α)% of the time that the statement is

made.

100(1 − 𝛂)% confidence interval on 𝛔2 A

statement that contains σ2 that will be true

100(1 − α)% of the time that the statement is

made.

3-sigma control limit Control limits on a

Shewhart control chart located a distance of

plus or minus 3 standard deviations of the

statistic.

Acceptance region In hypothesis testing, a

region in the sample space of the test statistic

such that if the test statistic falls within it, the

null hypothesis cannot be rejected. This ter-

minology is used because rejection of H0 is

always a strong conclusion and acceptance of

H0 is generally a weak conclusion.

Addition rule A formula used to determine

the probability of the union of two (or more)

events from the probabilities of the events and

their intersection(s).

Adjusted R2 A variation of the R2 statistic

that compensates for the number of parameters

in a regression model. Essentially, the adjust-

ment is a penalty for increasing the number of

parameters in the model.

Agresti-Coull CI Alternate way to con-

struct a confidence interval on a binomial

proportion from the traditional approach,

proposed by Agresti and Coull in 1998.

Alias In a fractional factorial experiment

when certain factor effects cannot be estimated

uniquely, they are said to be aliased.

All possible (subsets) regressions A

method of variable selection in regression

that examines all possible subsets of the

candidate regressor variables. Efficient com-

puter algorithms have been developed for

implementing all possible regressions.

Alternate fraction The fraction with the

minus sign in a defining relation.

Alternative hypothesis In statistical

hypothesis testing, this is a hypothesis

other than the one that is being tested. The

alternative hypothesis contains feasible

conditions, whereas the null hypothesis

specifies conditions that are under test.

Analysis of variance (ANOVA) A method

of decomposing the total variability in a set

of observations, as measured by the sum of

the squares of these observations from their

average, into component sums of squares that

are associated with specific defined sources of

variation.

Analytic study A study in which a sample

from a population is used to make inference

to a future population. Stability needs to be

assumed. See Enumerative study.

Assignable cause The portion of the

variability in a set of observations that can be

traced to specific causes, such as operators,

materials, or equipment. Also called a special

cause.

Attribute control chart Any control chart

for a discrete random variable. See Variables

control chart.

Average run length, or ARL The average

number of samples taken in a process moni-

toring or inspection scheme until the scheme

signals that the process is operating at a level

different from the level in which it began.

Axioms of probability A set of rules that

probabilities defined on a sample space must

follow. See Probability.

Backward elimination A method of

variable selection in regression that begins

with all of the candidate regressor variables

in the model and eliminates the insignificant

regressors one at a time until only significant

regressors remain.

Bayes’ estimator An estimator for a param-

eter obtained from a Bayesian method that

uses a prior distribution for the parameter

along with the conditional distribution of the

data given the parameter to obtain the poste-

rior distribution of the parameter. The estima-

tor is obtained from the posterior distribution.

Bayes’ theorem An equation for a condi-

tional probability such as P(A|B) in terms of

the reverse conditional probability P(B|A).

Bernoulli trials Sequences of independent

trials with only two outcomes, generally called

“success” and “failure,” in which the probabil-

ity of success remains constant.

Beta random variable The random

variable X with a probability density function

with parameters α > 0 and β > 0.

Bias An effect that systematically distorts a

statistical result or estimate, preventing it from

representing the true quantity of interest.

Biased estimator See Unbiased estimator.

Binomial distribution A random experi-

ment that consists of n Bernoulli trials such

that the trials are independent, each trial

results in only two possible outcomes, labeled

as “success” and “failure”; the probability of

a success in each trial, denoed as p, remains

constant.

Binomial random variable A discrete ran-

dom variable that equals the number of suc-

cesses in a fixed number of Bernoulli trials.

Bivariate distribution The joint probability

distribution of two random variables.

Bivariate normal distribution The joint

distribution of two normal random variables.

Block In experimental design, a group

of experimental units or material that is

relatively homogeneous. The purpose of

dividing experimental units into blocks is

to produce an experimental design wherein

variability within blocks is smaller than

variability between blocks. This allows the

factors of interest to be compared in an

environment that has less variability than in

an unblocked experiment.

Bootstrap Computer-intensive technique

that treats data samples as a population.

Bootstrap estimate Estimate calculated

from bootstrap samples.

Bootstrap samples Samples generated

randomly from the probability distribution by

computer.

Bootstrap standard error Sample standard

deviation of the bootstrap estimate.

Box plot (or box and whisker plot) A

graphical display of data in which the box

contains the middle 50% of the data (the

interquartile range) with the median dividing

it, and the whiskers extend to the smallest

and largest values (or some defined lower and

upper limits).

C chart An attribute control chart that

plots the total number of defects per unit in a

subgroup. Similar to a defects-per-unit or

U chart.

Categorical data Data consisting of counts

or observations that can be classified into cat-

egories. The categories may be descriptive.

Cause-and-effect Relationship with a clear

causal link between an event and a result.
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Cause-and-effect diagram A chart used to

organize the various potential causes of a prob-

lem. Also called a fishbone diagram.

Center line A horizontal line on a control

chart at the value that estimates the mean of

the statistic plotted on the chart. See Control

chart.

Center points Runs at the geometric center

of a design.

Central composite design (CCD) A

second-order response surface design in

k variables consisting of a two-level factorial,

2k axial runs, and one or more center points.

The two-level factorial portion of a CCD can

be a fractional factorial design when k is large.

The CCD is the most widely used design for

fitting a second-order model.

Central limit theorem The simplest form

of the central limit theorem states that the

sum of n independently distributed random

variables will tend to be normally distributed

as n becomes large. It is a necessary and

sufficient condition that none of the variances

of the individual random variables are large

in comparison to their sum. There are more

general forms of the central theorem that

allow infinite variances and correlated random

variables, and there is a multivariate version

of the theorem.

Chance cause The portion of the variabil-

ity in a set of observations that is due to only

random forces and which cannot be traced to

specific sources, such as operators, materials,

or equipment. Also called a common cause.

Chance causes Inherent or natural vari-

ability.

Chi-square test Any test of significance

based on the chi-square distribution. The

most common chi-square tests are (1) testing

hypotheses about the variance or standard

deviation of a normal distribution and

(2) testing goodness of fit of a theoretical

distribution to sample data.

Chi-squared distribution A special case of

the gamma distribution in which λ = 1/2 and r
equals one of the values 1/2, 1. 3/2, 2 …
Coefficient of determination See R2.

Coefficient of multiple determination See
Coefficient of determination.

Combination A subset selected without

replacement from a set used to determine the

number of outcomes in events and sample

spaces.

Comparative experiment An experiment

in which the treatments (experimental condi-

tions) that are to be studied are included in the

experiment. The data from the experiment are

used to evaluate the treatments.

Completely randomized design (or exper-
iment) A type of experimental design

in which the treatments or design factors

are assigned to the experimental units in a

random manner. In designed experiments, a

completely randomized design results from

running all of the treatment combinations in

random order.

Components of variance The individual

components of the total variance that are

attributable to specific sources. This usually

refers to the individual variance components

arising from a random or mixed model

analysis of variance.

Conditional mean The mean of the con-

ditional probability distribution of a random

variable.

Conditional probability The probability of

an event given that the random experiment

produces an outcome in another event.

Conditional probability density function
The probability density function of the

conditional probability distribution of a

continuous random variable.

Conditional probability mass function
The probability mass function of the condi-

tional probability distribution of a discrete

random variable.

Conditional variance The variance of the

conditional probability distribution of a ran-

dom variable.

Confidence See Confidence level.

Confidence coefficient The probability

1 − α associated with a confidence interval

expressing the probability that the stated

interval will contain the true parameter value.

Confidence interval If it is possible to write

a probability statement of the form P(L ≤ θ ≤

U) = 1 − α where L and U are functions of

only the sample data and θ is a parameter, then

the interval between L and U is called a con-

fidence interval (or a 100(1 − α)% confidence

interval). The interpretation is that a statement

that the parameter θ lies in this interval will

be true 100(1 − α)% of the times that such a

statement is made.

Confidence limits (bounds), lower and
upper End-points of a confidence interval.

Confounded with blocks See Confounding.

Confounding When a factorial experiment

is run in blocks and the blocks are too small

to contain a complete replicate of the experi-

ment, one can run a fraction of the replicate

in each block, but this results in losing

information on some effects. These effects are

linked with or confounded with the blocks.

In general, when two factors are varied such

that their individual effects cannot be deter-

mined separately, their effects are said to be

confounded.

Contingency table A tabular arrangement

expressing the assignment of members of a

data set according to two or more categories

or classification criteria.

Continuity correction A correction factor

used to improve the approximation to

binomial probabilities from a normal distri-

bution.

Continuous random variable A random

variable with an interval (either finite or

infinite) of real numbers for its range.

Continuous uniform random variable A

continuous random variable with range of

a finite interval and a constant probability

density function.

Contrast A linear function of treatment

means with coefficients that total zero. A

contrast is a summary of treatment means that

is of interest in an experiment.

Control chart A graphical display used

to monitor a process. It usually consists of

a horizontal center line corresponding to

the in-control value of the parameter that is

being monitored and lower and upper control

limits. The control limits are determined by

statistical criteria and are not arbitrary, nor are

they related to specification limits. If sample

points fall within the control limits, the

process is said to be in-control, or free from

assignable causes. Points beyond the control

limits indicate an out-of-control process;

that is, assignable causes are likely present.

This signals the need to find and remove the

assignable causes.

Control limits See Control chart.

Controllable variables Variables in a

process or experiment that can be controlled.

Cook’s distance In regression, Cook’s

distance is a measure of the influence of each

individual observation on the estimates of the

regression model parameters. It expresses the

distance that the vector of model parameter

estimates with the ith observation removed

lies from the vector of model parameter

estimates based on all observations. Large

values of Cook’s distance indicate that the

observation is influential.

Correlation In the most general usage, a

measure of the interdependence among data.

The concept may include more than two

variables. The term is most commonly used

in a narrow sense to express the relationship

between quantitative variables or ranks.

Correlation coefficient A dimensionless

measure of the linear association between

two variables, usually lying in the interval

from −1 to +1, with zero indicating the

absence of correlation (but not necessarily the

independence of the two variables).

Counting techniques Formulas used to

determine the number of elements in sample

spaces and events.
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Covariance A measure of association

between two random variables obtained as

the expected value of the product of the two

random variables around their means; that is,

Cov(X,Y) = E[(X − μX)(Y − μY )].
Cp statistic A measure of the total mean

square error for the regression model.

Critical region In hypothesis testing, this

is the portion of the sample space of a test

statistic that will lead to rejection of the null

hypothesis.

Critical value(s) The value of a statistic

corresponding to a stated significance level

as determined from the sampling distribution.

For example, if P(Z ≥ z0.05) = P(Z ≥ 1.96) =
0.05, then z0.05 = 1.96 is the critical value of

z at the 0.025 level of significance.

Cumulative distribution function For

a random variable X, the function of X
defined as P(X ≤ x) that is used to specify the

probability distribution.

Cumulative sum control chart (CUSUM)
A control chart in which the point plotted at

time t is the sum of the measured deviations

from target for all statistics up to time t.

Decision theory Study of mathematical

models for decision making.

Defect concentration diagram A quality

tool that graphically shows the location of

defects on a part or in a process.

Defects-per-unit control chart See U chart.

Defining contrast See Contrast.

Defining relation A subset of effects in

a fractional factorial design that define the

aliases in the design.

Degrees of freedom The number of

independent comparisons that can be made

among the elements of a sample. The term

is analogous to the number of degrees of

freedom for an object in a dynamic system,

which is the number of independent coordi-

nates required to determine the motion of the

object.

Deming’s 14 points A management

philosophy promoted by W. Edwards Deming

that emphasizes the importance of change and

quality.

Design matrix A matrix that provides the

tests that are to be conducted in an experiment.

Designed experiment An experiment in

which the tests are planned in advance and the

plans usually incorporate statistical models.

See Experiment.

Discrete random variable A random vari-

able with a finite (or countably infinite) range.

Discrete uniform distribution Where a

random variable X, if each of the n values in

its range, x1, x2, … xn, has equal probability.

Distance measure, Cook’s distance mea-
sure Diagnostic equation for detecting

influential observations.

Empirical model A model to relate a

response to one or more regressors or factors

that is developed from data obtained from the

system.

Enumerative study A study in which a sam-

ple from a population is used to make inference

to the population. See Analytic study.

Equivalence band Practical threshold or

limit within which the mean performance is

considered to be the same as the standard.

Equivalence interval Interval plus or

minus δ.

Equivalence test Hypothesis test using two

sets of one-sided alternative hypotheses to test

equivalence.

Erlang random variable A continuous ran-

dom variable that is the sum of a fixed number

of independent, exponential random variables.

Error propagation An analysis of how the

variance of the random variable that represents

that output of a system depends on the vari-

ances of the inputs. A formula exists when the

output is a linear function of the inputs and the

formula is simplified if the inputs are assumed

to be independent.

Error sum of squares In analysis of vari-

ance, this is the portion of total variability that

is due to the random component in the data.

It is usually based on replication of observa-

tions at certain treatment combinations in the

experiment. It is sometimes called the residual

sum of squares, although this is really a better

term to use only when the sum of squares

is based on the remnants of a model-fitting

process and not on replication.

Estimated standard error Standard error

involvng unknown parameters.

Event A subset of a sample space.

Expected cost criterion Criterion selects

the action to minimize the expected cost.

Expected value The expected value of a

random variable X is its long-term average

or mean value. In the continuous case, the

expected value of X is E(X) =
∞
∫

−∞
xf (x)dx

where f (x) is the density function of the

random variable X.

Exponential random variable A continu-

ous random variable that is the time between

events in a Poisson process.

Exponentially-weighted moving average
(EWMA) Equation to calculate weighting

factors which decrease exponentially.

Extra sum of squares method A method

used in regression analysis to conduct a

hypothesis test for the additional contribution

of one or more variables to a model.

Factorial experiment A type of experimen-

tal design in which every level of one factor

is tested in combination with every level

of another factor. In general, in a factorial

experiment, all possible combinations of

factor levels are tested.

False alarm A signal from a control chart

when no assignable causes are present.

Finite population correction factor A term

in the formula for the variance of a hypergeo-

metric random variable.

Fisher’s least significant difference (LSD)
method A series of pair-wise hypothesis

tests of treatment means in an experiment to

determine which means differ.

Fixed significance level Approach to con-

ducting a single-sample t-test where the value

of the test statistic falls in a critical region.

Fixed-effects model See Fixed factor.

Fixed-significance-level test Hypothesis

test with a set criterion for an alternative

hypothesis.

Forward selection A method of variable

selection in regression, where variables are

inserted one at a time into the model until no

other variables that contribute significantly to

the model can be found.

Fraction defective control chart See P
chart.

Fractional factorial design See Fractional

factorial experiment.

Fractional factorial experiment A type of

factorial experiment in which not all possible

treatment combinations are run. This is usually

done to reduce the size of an experiment with

several factors.

Frequency distribution An arrangement

of the frequencies of observations in a sample

or population according to the values that the

observations take on.

Gamma function A function used in the

probability density function of a gamma ran-

dom variable that can be considered to extend

factorials.

Gamma random variable A random vari-

able that generalizes an Erlang random vari-

able to noninteger values of the parameter r.

Gaussian distribution Another name

for the normal distribution, based on the

strong connection of Karl F. Gauss to the

normal distribution; often used in physics and

electrical engineering applications.

General regression significance test See
Extra sum of squares method.

Generator Effects in a fractional factorial

experiment that are used to construct the
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experimental tests used in the experiment.

The generators also define the aliases.

Geometric distribution In a series of

Bernoulli trials (independent trials with con-

stant probability p of a success), the random

variable X that equals the number of trials

until the first success is a geometric random

variable.

Geometric random variable A discrete

random variable that is the number of

Bernoulli trials until a success occurs.

Goodness of fit In general, the agreement of

a set of observed values and a set of theoret-

ical values that depend on some hypothesis.

The term is often used in fitting a theoretical

distribution to a set of observations.

Grand mean Equation to estimate the mean

of the population.

Hat matrix In multiple regression, the

matrix H = X(X′X)−1X′. This a projection

matrix that maps the vector of observed

response values into a vector of fitted values

by ŷ = X(X′X)−1X′y = Hy.

Hidden extrapolation An extrapolation is

a prediction in a regression analysis that is

made at point (x1, x2, … , xk) that is remote

from the data used to generate the model.

Hidden extrapolation occurs when it is not

obvious that the point is remote. This can

occur when multicollinearity is present in the

data used to construct the model.

Histogram A univariate data display

that uses rectangles proportional in area to

class frequencies to visually exhibit features

of data such as location, variability, and

shape.

Homogeneity test In a two-way (r by c) con-

tingency table, this tests if the proportions in

the c categories are the same for all r popula-

tions.

Homogenous Proportions in c categories

are the same for all r populations.

Hypergeometric distribution Distribution

where a set of N objects contains K objects

classified as successes, N − K objects

classfied as failures, and a sample of size n
objects is selected randomly (without replace-

ment) from the N objects where K ≤ N and

n ≤ N.

Hypergeometric random variable A

discrete random variable that is the number

of success obtained from a sample drawn

without replacement from a finite populations.

Hypothesis (as in statistical hypothesis) A

statement about the parameters of a proba-

bility distribution or a model, or a statement

about the form of a probability distribution.

Hypothesis testing Any procedure used to

test a statistical hypothesis.

Identity element A special type of element

of a set that leaves other elements unchanged

when combined with them.

Independence A property of a probability

model and two (or more) events that allows the

probability of the intersection to be calculated

as the product of the probabilities.

Independence test In a two-way (r by c)

contingency table, this tests if the row and

column categories are independent.

Indicator variable(s) Variables that are

assigned numerical values to identify the

levels of a qualitative or categorical response.

For example, a response with two categorical

levels (yes and no) could be represented with

an indicator variable taking on the values 0

and 1.

Individuals control chart A Shewhart con-

trol chart in which each plotted point is an indi-

vidual measurement, rather than a summary

statistic. See Control chart, Shewhart control

chart.

Inference Conclusion from a statistical

analysis. It usually refers to the conclusion

from a hypothesis test or an interval estimate.

Influential observation An observation in

a regression analysis that has a large effect on

estimated parameters in the model. Influence

is measured by the change in parameters when

the influential observation is included and

excluded in the analysis.

Interaction In factorial experiments, two

factors are said to interact if the effect of one

variable is different at different levels of the

other variables. In general, when variables

operate independently of each other, they do

not exhibit interaction.

Interquartile range The difference

between the third and first quartiles in a

sample of data. The interquartile range is less

sensitive to extreme data values than the usual

sample range.

Intrinsically linear model In regression

analysis, a nonlinear function that can

be expressed as a linear function after a

suitable transformation is called intrinsically

linear.

Joint probability density function A func-

tion used to calculate probabilities for two or

more continuous random variables.

Joint probability distribution The prob-

ability distribution for two or more random

variables in a random experiment. See Joint

probability mass function and Joint probability

density function.

Joint probability mass function A function

used to calculate probabilities for two or more

discrete random variables.

Lack of memory property A property of a

Poisson process. The probability of a count in

an interval depends only on the length of the

interval (and not on the starting point of the

interval). A similar property holds for a series

of Bernoulli trials. The probability of a success

in a specified number of trials depends only on

the number of trials (and not on the starting

trial).

Large sample CI Confidence interval on the

difference in mean where the population vari-

ances are unknown.

Large-sample test Sample variances are

substituted into the test statistic where the

population variances are unknown.

Least squares (method of) A method of

parameter estimation in which the parameters

of a system are estimated by minimizing the

sum of the squares of the differences between

the observed values and the fitted or predicted

values from the system.

Least squares estimator Any estimator

obtained by the method of least squares.

Least squares normal equation Normal

equation derived by the method of least

squares.

Levels of a factor The settings (or con-

ditions) used for a factor in an experi-

ment.

Leverage, leverage point A point unusual

in its location in the x-space that may be

influential.

Likelihood function Suppose that the

random variables X1, X2, … , Xn have a

joint distribution given by f (x1, x2, … , xn;

θ1, θ2, … , θp) where the θs are unknown

parameters. This joint distribution, considered

as a function of the θs for fixed x’s, is called

the likelihood function.

Linear combination An expression con-

structed from a set of terms by multiplying

each term by a constant and adding the

results.

Linear function of random variables A

random variable that is defined as a linear

function of several random variables.

Linear relationship Correlation between

2 variables or 2 sets of data.

Log likelihood surface Surface of graph

generated by log likelihood.

Logistic regression A regression model that

is used to model a categorical response. For a

binary (0, 1) response, the model assumes that

the logarithm of the ratio of probabilities (for

zero and one) is linearly related to the regres-

sor variables.

Lognormal distribution The distibution of

X when the expoent is a random variable W,

and W has a normal distribution.
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Lognormal random variable A continuous

random variable with probability distribution

equal to that of exp(W) for a normal random

variable W.

Main effect An estimate of the effect of

a factor (or variable) that independently

expresses the change in response due to a

change in that factor, regardless of other

factors that may be present in the system.

Marginal probability density function
The probability density function of a con-

tinuous random variable obtained from the

joint probability distribution of two or more

random variables.

Marginal probability distribution The

probability distribution of a random variable

obtained from the joint probability distribution

of two or more random variables.

Maximum likelihood estimator A method

of parameter estimation that maximizes the

likelihood function of a sample.

Mean The mean usually refers either to the

expected value of a random variable or to the

arithmetic average of a set of data.

Mean square In general, a mean square is

determined by dividing a sum of squares by

the number of degrees of freedom associated

with the sum of squares.

Mean square(d) error The expected

squared deviation of an estimator from the true

value of the parameter it estimates. The mean

square error can be decomposed into the vari-

ance of the estimator plus the square of the

bias; that is, MSE(̂𝚯)=E(̂𝚯−𝛉)𝟐 =V(̂𝚯)+
[E(̂𝚯)−𝛉]𝟐.

Mean—continuous random variable
μ = E(X) =

∞
∫

−∞
xf (x)dx

Mean—function of a continuous random
variable E[h(X)] =

∞
∫

−∞
h(x)f (x)dx

Mechanistic model A model developed

from theoretical knowledge or experience in

contrast to a model developed from data. See
Empirical model.

Median The median of a set of data is that

value that divides the data into two equal

halves. When the number of observations is

even, say 2n, it is customary to define the

median as the average of the nth and (n +
1)st rank-ordered values. The median can

also be defined for a random variable. For

example, in the case of a continuous random

variable X, the median M can be defined as
M
∫

−∞
f (x)dx =

∞
∫

M
f (x)dx = 1∕2.

Meta-analysis Combining results from sev-

eral studies or experimens for analysis.

Minimax criterion Criterion selectes the

action from the minimum and maximum,

focusing on the worst-case scenario.

Minimin criterion Criterion selectes the

action from the minimum, focusing on the

best-case scenario.

Minimum variance unbiased estimator
(MVUE) The unbiased estimator with the

smalled variance.

Model adequacy Suitability of a model for

use in an experiment.

Model matrix The X matrix; an (n × p) ma-

trix of the levels of the independent variables.

Moment about the origin The expected

value of a function of a random variable such as

E(X − c)r for constants c and r, when c = 0.

Moment estimator A method of estimating

parameters by equating sample moments to

population moments. Since the population

moments will be functions of the unknown

parameters, this results in equations that may

be solved for estimates of the parameters.

Moment-generating function A function

that is used to determine properties (such as

moments) of the probability distribution of

a random variable. It is the expected value

of exp (tX). See Generating function and

Moment.

Most probable criterion Criterion selects

the action to minimize the cost of the most

probable state.

Moving range The absolute value of the

difference between successive observations in

time-ordered data. Used to estimate chance

variation in an individual control chart.

Multicollinearity A condition occurring in

multiple regression where some of the predic-

tor or regressor variables are nearly linearly

dependent. This condition can lead to insta-

bility in the estimates of the regression model

parameters.

Multinomial distribution The joint prob-

ability distribution of the random variables

that count the number of results in each of k
classes in a random experiment with a series

of independent trials with constant probability

of each class on each trial. It generalizes a

binomial distribution.

Multiple comparisons methods Methods

for investigating which means are different.

Multiple regression model A regression

model that contains more than one regressor

variable.

Multiplication rule For probability, a

formula used to determine the probability

of the intersection of two (or more) events.

For counting techniques, a formula used to

determine the number of ways to complete

an operation from the number of ways to

complete successive steps.

Mutually exclusive events A collection of

events whose intersections are empty.

Natural tolerance limits A set of symmet-

ric limits that are three times the process stan-

dard deviation from the process mean.

Negative binomial distribution A general-

ization of a geometric distribution in which

the random variable is the numberof Bernoulli

trials required to obtain r successes.

Normal approximation A method to

approximate probabilities for binomial and

Poisson random variables.

Normal equations The set of simultaneous

linear equations arrived at in parameter esti-

mation using the method of least squares.

Normal probability plot A specially con-

structed plot for a variable x (usually on the

abscissa) in which y (usually on the ordinate)

is scaled so that the graph of the normal cumu-

lative distribution is a straight line.

Normal random variable A continuous

random variable that is the most important one

in statistics because it results from the central

limit theorem. See Central limit theorem.

NP chart An attribute control chart that

plots the total of defective units in a subgroup.

Similar to a fraction-defective chart or

P chart.

Nuisance factor A factor that probably

influences the response variable, but which is

of no interest in the current study. When the

levels of the nuisance factor can be controlled,

blocking is the design technique that is

customarily used to remove its effect.

Null distribution In a hypothesis test, the

distribution of the test statistic when the null

hypothesized is assumed to be true.

Null hypothesis This term generally relates

to a particular hypothesis that is under test, as

distinct from the alternative hypothesis (which

defines other conditions that are feasible but

not being tested). The null hypothesis deter-

mines the probability of type I error for the test

procedure.

Observational study A system is observed

and data might be collected, but changes are

not made to the system. See Experiment.

Observed significance level See P-value.

Odds ratio The odds equals the ratio of

two probabilities. In logistic regression, the

logarithm of the odds is modeled as a linear

function of the regressors. Given values for

the regressors at a point, the odds can be

calculated. The odds ratio is the odds at one

point divided by the odds at another.

One-sided alternative hypothesis A

hypothesis other than the one that is being

tested where the outcome is fixed in advance.
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One-sided confidence bounds Only the

lower or upper confidence limits are used for

a confidence interval.

Operating characteristic curves (OC
curves) A plot of the probability of type II

error versus some measure of the extent to

which the null hypothesis is false. Typically,

one OC curve is used to represent each sample

size of interest.

Optimization experiment A experiment

conducted to improve (or optimize) a system

or process. It is assumed that the important

factors are known.

Orthogonal There are several related

meanings, including the mathematical sense

of perpendicular, two variables being said

to be orthogonal if they are statistically

independent, or in experimental design where

a design is orthogonal if it admits statistically

independent estimates of effects.

Orthogonal design See Orthogonal.

Outcome An element of a sample space.

Outlier(s) One or more observations in a

sample that are so far from the main body of

data that they give rise to the question that

they may be from another population.

Overall mean Parameter common to all

treatments.

Overcontrol Unnecessary adjustments

made to processes that increase the deviations

from target.

P chart An attribute control chart that plots

the proportion of defective units in a subgroup.

Also called a fraction-defective control chart.

Similar to an NP chart.

P-value The exact significance level of

a statistical test; that is, the probability of

obtaining a value of the test statistic that is at

least as extreme as that observed when the

null hypothesis is true.

Paired t-test Data collected in pairs is

analyzed during a test procedure to test the

differences.

Parameter estimation The process of

estimating the parameters of a population or

probability distribution. Parameter estimation,

along with hypothesis testing, is one of the

two major techniques of statistical inference.

Parametric methods Based on a particular

parametric family of distributions.

Pareto chart A bar chart used to rank the

causes of a problem.

Pareto diagram A bar chart used to rank the

causes of a problem.

Partial regression coefficients Parameters

that measure expected change in a regression

model.

Partial test; also marginal test Regression

coefficent depends on all other regressor vari-

ables in a model.

Pattern recognition Recognizing system-

atic or nonrandom patterns on control charts.

Percentile The set of values that divide the

sample into 100 equal parts.

Permutation An ordered sequence of the

elements in a set used to determine the number

of outcomes in events and sample spaces.

Point estimate A reasonable value of a

parameter; a single numerical value θ of a

statistic θ.

Point estimator See Estimator.

Poisson distribution The random variable

X that equals the number of events in a

Poisson process is a Poisson random variable

with parameter 0 < λ.

Poisson process A random experiment with

events that occur in an interval and satisfy

the following assumptions. The interval can

be partitioned into subintervals such that the

probability of more than one event in a subin-

terval is zero, the probability of an event in

a subinterval is proportional to the length of

the subinterval, and the event in each subin-

terval is independent of other subintervals.

Poisson random variable A discrete

random variable that is the number of events

that occur in a Poisson process.

Polynomial regression model Linear

regression models that are equations using

polynomials.

Pooled estimator Combining samples

generated from the same model to estimate a

variance.

Pooled t-test A hypothesis to compare the

means of two populations with the variances

assumed to be equal.

Population Any finite or infinite collection

of individual units or objects.

Population or distribution moments The

expected value of a function of a random

variable such as E(X − c)r for constants c
and r. When c = 0, it is said that the moment

is about the origin. See Moment generating

function.

Population standard deviation See
Standard deviation.

Population variance See Variance.

Posterior distribution The probability dis-

tribution for a parameter in a Bayesian analysis

calculated from the prior distribution and the

conditional distribution of the data given the

parameter.

Power The power of a statistical test is the

probability that the test rejects the null hypoth-

esis when the null hypothesis is indeed false.

Thus, the power is equal to one minus the prob-

ability of type II error.

Power function A function that describes

the relationships among the power of a

statistical test, the sample size, and the value

of the parameter of interest.

Practical significance Little to no sig-

nificance on real events; also engineering

significance.

Predicted residual sum of squares See
PRESS statistic.

Prediction interval The interval between a

set of upper and lower limits associated with a

predicted value designed to show on a proba-

bility basis the range of error associated with

the prediction.

PRESS statistic In regression analysis, the

predicted residual sum of squares. Delete each

point and estimate the parameters of the model

from the data that remain. Estimate the deleted

point from this model. Restore the point and

then delete the next point. Each point is esti-

mated once and the sum of squares of these

errors is calculated.

Principal block The block containing the

treatment combination.

Principal fraction The fraction with the

plus sign in a defining relation.

Prior distribution The initial probability

distribution assumed for a parameter in a

Bayesian analysis.

Probabiiity distribution—continuous ran-
dom variable A function that provides

probabilities in the range of a continuous

random variable.

Probability A numerical measure between

0 and 1 assigned to events in a sample space.

Higher numbers indicate the event is more

likely to occur. See Axioms of probability.

Probability density function A function

used to calculate probabilities and to specify

the probability distribution of a continuous

random variable.

Probability distribution For a sample

space, a description of the set of possible

outcomes along with a method to determine

probabilities. For a random variable, a

probability distribution is a description of

the range along with a method to determine

probabilities.

Probability mass function A function that

provides probabilities for the values in the

range of a discrete random variable.

Process capability The capability of a

process to produce product within specifi-

cation limits. See Process capability ratio,

Process capability study, PCR, and PCRk .

Process capability ratio A ratio that relates

the width of the product specification limits
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to measures of process performance. Used

to quantify the capability of the process to

produce product within specifications. See
Process capability, Process capability study,

PCR, and PCRk.

Projection property A design that projects

into a full factorial in any two of the three orig-

inal factors.

Quality improvement One aspect of

quality management, a set of guidelines

to ensure that an organization, product, or

service is consistent.

Quartiles The three values of a variable

that partition it into four equal parts. The

central value is usually called the median and

the lower and upper values are usually called

the lower and upper quartiles, respectively.

See Quantiles.

R chart A control chart that plots the range

of the measurements in a subgroup that is used

to monitor the variance of the process.

R2 A quantity used in regression models

to measure the proportion of total variability

in the response accounted for by the model.

Computationally, R2 = SSRegression/SSTotal,

and large values of R2 (near unity) are con-

sidered good. However, it is possible to have

large values of R2 and find that the model is

unsatisfactory. R2 is also called the coefficient

of determination (or the coefficient of multiple

determination in multiple regression).

Raleigh distribution A special case of the

Weibull distribution when the shape parameter

is 2.

Random experiment An experiment that

can result in different outcomes, even though

it is repeated in the same manner each time.

Random factor In analysis of variance,

a factor whose levels are chosen at random

from some population of factor levels.

Random interval End-points involve a ran-

dom variable.

Random sample A sample is said to be ran-

dom if it is selected in such a way so that every

possible sample has the same probability of

being selected.

Random variable A function that assigns

a real number to each outcome in the sample

space of a random experiment.

Randomization Randomly assign treat-

ments to experimental units or conditions in

an experiment. This is done to reduce the

opportunity for a treatment to be favored or

disfavored (biased) by test conditions.

Randomized complete block design A

type of experimental design in which treat-

ment or factor levels are assigned to blocks in

a random manner.

Rank In the context of data, the rank of a

single observation is its ordinal number when

all data values are ordered according to some

criterion, such as their magnitude.

Rational subgroup A sample of data

selected in a manner to include chance

sources of variation and to exclude assignable

sources of variation to the extent possible.

Reference distribution The distribution

of a test statistic when the null hypothesis

is true. Sometimes a reference distribution

is called the null distribution of the test

statistic.

Regression coefficient(s) The parameter(s)

in a regression model.

Regression line (or curve) A graphical dis-

play of a regression model, usually with the

response y on the ordinate and the regressor x
on the abscissa.

Regression sum of squares The portion of

the total sum of squares attributable to the

model that has been fit to the data.

Rejection region In hypothesis testing, this

is the region in the sample space of the test

statistic that leads to rejection of the null

hypothesis when the test statistic falls in this

region.

Relative efficiency Comparison of 2

estimators derived by dividing the mean

squared errors by each other.

Relative frequency distribution The rela-

tive frequency of an event is the proportion of

times the event occurred in a series of trials of

a random experiment.

Replicates One of the independent repeti-

tions of one or more treatment combinations

in an experiment.

Reproductive property of the normal
distribution A linear combination of

independent, normal random variables is a

normal random variable.

Residual Generally this is the difference

between the observed and the predicted

value of some variable. For example, in

regression a residual is the difference between

the observed value of the response and the

corresponding predicted value obtained from

the regression model.

Residual analysis (and plots) Any tech-

nique that uses the residuals, usually to

investigate the adequacy of the model that

was used to generate the residuals.

Resolution A measure of severity of

aliasing in a fractional factorial design. We

commonly consider resolution III, IV, and V

designs.

Response (variable) The dependent

variable in a regression model or the observed

output variable in a designed experiment.

Response surface When a response y
depends on a function of k quantitative

variables x1, x2, … , xk, the values of the

response may be viewed as a surface in k + 1

dimensions. This surface is called a response

surface. Response surface methodology is

a subset of experimental design concerned

with approximating this surface with a model

and using the resulting model to optimize the

system or process.

Ridge regression Alternative to ordi-

nary least squares useful in combatting

multicollinearity.

Run Arrangement of points in a distinct

pattern.

Run rules A set of rules applied to the

points plotted on a Shewhart control chart that

are used to make the chart more sensitized

to assignable causes. See Control chart,

Shewhart control chart.

S chart A control chart that plots the stan-

dard deviation of the measurements in a sub-

group that is used to monitor the variance of

the process.

Sample Any subset of the elements of a

population.

Sample Mean The arithmetic average or

mean of the observations in a sample. If the

observations are x1, x2, … , xn, then the

sample mean is (1∕n)gn
i=1

xi. The sample mean

is usually denoted by x.

Sample median The median of a set of

data is that value that divides the data into

two equal halves. When the number of

observations is even, say 2n, it is customary

to define the median as the average of the nth

and (n + 1)st rank-ordered values. The median

can also be defined for a random variable. For

example, in the case of a continuous random

variable X, the median M can be defined as
M
∫

−∞
f (x)dx =

∞
∫

M
f (x)dx = 1∕2.

Sample moment The quantity (1∕n) g n
i=1

xk
i

is called the kth sample moment.

Sample range See Range.

Sample space The set of all possible

outcomes of a random experiment.

Sample standard deviation The positive

square root of the sample variance. The

sample standard deviation is the most widely

used measure of variability of sample data.

Sample variance A measure of vari-

ability of sample data, defined as

s2 = [1∕(n − 1)]gn
i=1

(xi − x)2, where x is

the sample mean.

Sampling distribution The probability dis-

tribution of a statistic. For example, the sam-

pling distribution of the sample mean X is the

normal distribution.
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Saturated fractional factorial Design

where all available degrees of freedom are

used to estimate main effects.

Scale parameter A parameter that defines

the dispersion of a sample or a probability

distribution.

Scatter diagram A diagram displaying

observations on two variables, x and y. Each

observation is represented by a point showing

its x-y coordinates. The scatter diagram can be

very effective in revealing the joint variability

of x and y or the nature of the relationship

between them.

Screening experiment An experiment

designed and conducted for the purpose of

screening out or isolating a promising set

of factors for future experimentation. Many

screening experiments are fractional facto-

rials, such as two-level fractional factorial

designs.

Shewhart control chart A specific type

of control chart developed by Walter A.

Shewhart. Typically, each plotted point is a

summary statistic calculated from the data in

a rational subgroup. See Control chart.

Sign test A statistical test based on the signs

of certain functions of the observations and not

their magnitudes.

Significance level See Level of significance.

Six-sigma process Originally used to

describe a process with the mean at least

six standard deviations from the nearest

specification limits. It has now been used to

describe any process with a defect rate of

3.4 parts per million.

Sparsity of effects principle The system

is usually dominated by the main effects and

low-order interactions.

Specification limits Numbers that define

the region of measurement for acceptable

product. Usually there is an upper and

lower limit, but one-sided limits can also be

used.

Standard deviation The positive square

root of the variance. The standard deviation is

the most widely used measure of variability.

Standard deviation—continuous random
variable σ =

√
σ2.

Standard error The standard deviation of

the estimator of a parameter. The standard

error is also the standard deviation of the

sampling distribution of the estimator of a

parameter.

Standard normal random variable A nor-

mal random variable with mean zero and vari-

ance one that has its cumulative distribution

function tabulated in Appendix Table II.

Standardize The transformation of a

normal random variable that subtracts its

mean and divides by its standard deviation to

generate a standard normal random variable.

Standardized residual In regression, the

standardized residual is computed by dividing

the ordinary residual by the square root of the

residual mean square. This produces scaled

residuals that have, approximately, a unit

variance.

Statistic A summary value calculated from

a sample of observations. Usually, a statistic is

an estimator of some population parameter.

Statistical hypothesis A statement about

the parameters of one or more populations.

Statistical inference See Inference.

Statistical Process Control (SPC) A set of

problem-solving tools based on data that are

used to improve a process.

Statistical quality control Statistical

and engineering methods used to measure,

monitor, control, and improve quality.

Statistical significance See Significance.

Statistics The science of collecting, ana-

lyzing, interpreting, and drawing conclusions

from data.

Steepest ascent (or descent) A strategy for

a series of tests to optimize a response used

along with response surface models.

Stem-and-leaf diagram A method of

displaying data in which the stem corresponds

to a range of data values and the leaf

represents the next digit. It is an alternative

to the histogram but displays the individ-

ual observations rather than sorting them

into bins.

Stepwise regression and related methods
A method of selecting variables for inclusion

in a regression model. It operates by introduc-

ing the candidate variables one at a time (as

in forward selection) and then attempting to

remove variables following each forward step.

Studentized residual In regression, the stu-

dentized residual is calculated by dividing the

ordinary residual by its exact standard devia-

tion, producing a set of scaled residuals that

have, exactly, unit standard deviation.

Sum of squares identity Partition of the

total sum of squares.

t distribution The distribution of the

random variable defined as the ratio of two

independent random variables. The numerator

is a standard normal random variable and the

denominator is the square root of a chi-square

random variable divided by its number of

degrees of freedom.

t-test Any test of significance based on the

t distribution. The most common t-tests are

(1) testing hypotheses about the mean of a

normal distribution with unknown variance,

(2) testing hypotheses about the means of

two normal distributions, and (3) testing

hypotheses about individual regression

coefficients.

Tampering Another name for overcontrol.

Test Statistic A function of a sample of

observations that provides the basis for testing

a statistical hypothesis.

Three-dimensional surface plot Displays

showing results of experiments in three

dimensions.

Time series A set of ordered observations

taken at points in time.

Tolerance chart A grapical tool displaying

all tolerance data.

Tolerance interval An interval that contains

a specified proportion of a population with a

stated level of confidence.

Total probability rule Given a collection of

mutually exclusive events whose union is the

sample space, the probability of an event can

be written as the sum of the probabilities of the

intersections of the event with the members of

this collection.

Total sum of squares Equation that

describes total variability in data.

Treatment In experimental design, a

treatment is a specific level of a factor of

interest. Thus, if the factor is temperature, the

treatments are the specific temperature levels

used in the experiment.

Treatment sum of squares In analysis

of variance, this is the sum of squares that

accounts for the variability in the response

variable due to the different treatments that

have been applied.

Two one-sided tests (TOST) Apply two

tests to the same sample of data.

Two-factor interaction plots Displays

showing interactions in results of experiments

with two factors.

Two-sided alternative hypothesis A

hypothesis other than the one that is being

tested, where there is some effect.

Type I Error In hypothesis testing, an error

incurred by rejecting a null hypothesis when it

is actually true (also called an 𝛂-error).

Type II Error In hypothesis testing, an error

incurred by failing to reject a null hypothesis

when it is actually false (also called a

𝛃-error).

U chart An attribute control chart that plots

the average number of defects per unit in a sub-

group. Also called a defects-per-unit control

chart. Similar to a C chart.

Unbiased estimator An estimator that has

its expected value equal to the parameter that

is being estimated is said to be unbiased.
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Unbiased point estimator See Unbiased

estimator.

Unreplicated design A single replicate of a

statistical design.

Variable selection The problem of select-

ing a subset of variables for a model from a

candidate list that contains all or most of the

useful information about the response in the

data.

Variables control chart Any control

chart for a continuous random variable. See
Attribute control chart.

Variance A measure of variability defined

as the expected value of the square of the ran-

dom variable around its mean.

Variance—continuous random variable

σ2 = V(X) =
∞

∫
−∞

(x − μ)2f (x)dx

=
∞

∫
−∞

x2f (x)dx − μ2

Variance component In analysis of vari-

ance models involving random effects, one

of the objectives is to determine how much

variability can be associated with each of the

potential sources of variability defined by

the experimenters. It is customary to define

a variance associated with each of these

sources. These variances in some sense sum

to the total variance of the response, and are

usually called variance components.

Variance inflation factors Quantities

used in multiple regression to assess the

extent of multicollinearity (or near linear

dependence) in the regressors. The variance

inflation factor for the ith regressor VIFi can

be defined as VIFi = [1∕(1 − R2
i )], where R2

i
is the coefficient of determination obtained

when xi is regressed on the other regressor

variables. Thus, when xi is nearly linearly

dependent on a subset of the other regressors,

R2
i will be close to unity and the value of

the corresponding variance inflation factor

will be large. Values of the variance inflation

factors that exceed 10 are usually taken as a

signal that multicollinearity is present.

Warning limits Horizontal lines added to a

control chart (in addition to the control limits)

that are used to make the chart more sensitive

to assignable causes.

Weibull random variable A continuous

random variable that is often used to model

the time until failure of a physical system.

The parameters of the distribution are flexible

enough that the probability density function

can assume many different shapes.

Weighted average Average of two sample

variances where the weights depend on two

sample sizes.

Western Electric rules A specific set of run

rules that were developed at Western Electric

Corporation. See Run rules.

Wilcoxon rank-sum test A nonparametric

test for the equality of means in two popu-

lations. This is sometimes called the Mann-

Whitney test.

Wilcoxon signed-rank test A distribution-

free test of the equality of the location

parameters of two otherwise identical distri-

butions. It is an alternative to the two-sample

t-test for nonnormal populations.

With replacement A method to select

samples in which items are replaced between

successive selections.

Without replacement A method to select

samples in which items are not replaced

between successive selections.

X chart A control chart that plots the aver-

age of the measurements in a subgroup that is

used to monitor the process mean.

z-test Test for the standard normal distribu-

tion.

z-value Value associated with a probability,

obtained by standardizing X.
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Chapter 2 Exercises

Exercises for Section 2.1

WP Problem available in WileyPLUS at instructor’s discretion.
WP GO Tutorial Tutoring problem available in WileyPLUS at

instructor’s discretion
SS Student solution available in WileyPLUS.

VS Student video solution available in WileyPLUS.

Provide a reasonable description of the sample space for each of
the random experiments in Exercises 2.1.1 to 2.1.11. There can
be more than one acceptable interpretation of each experiment.
Describe any assumptions you make.

2.1.1 Each of four transmitted bits is classified as either in error

or not in error.

2.1.2 The number of hits (views) is recorded at a high-volume

Web site in a day.

2.1.3 In the final inspection of electronic power supplies, either

units pass or three types of nonconformities might occur: func-

tional, minor, or cosmetic. Three units are inspected.

2.1.4 An ammeter that displays three digits is used to measure

current in milliamperes.

2.1.5 . WP The following two questions appear on an employee

survey questionnaire. Each answer is chosen from the five-point

scale 1 (never), 2, 3, 4, 5 (always).

Is the corporation willing to listen to and fairly evaluate

new ideas?

How often are my coworkers important in my overall job

performance?

2.1.6 The time until a service transaction is requested of a com-

puter to the nearest millisecond.

2.1.7 . SS The pH reading of a water sample to the nearest tenth

of a unit.

2.1.8 The voids in a ferrite slab are classified as small, medium,

or large. The number of voids in each category is measured by an

optical inspection of a sample.

2.1.9 A sampled injection-molded part could have been produced

in either one of two presses and in any one of the eight cavities in

each press.

2.1.10 An order for an automobile can specify either an automatic

or a standard transmission, either with or without air condition-

ing, and with any one of the four colors red, blue, black, or white.

Describe the set of possible orders for this experiment.

2.1.11 . WP Calls are repeatedly placed to a busy phone line until

a connection is achieved.

2.1.12 Three attempts are made to read data in a magnetic stor-

age device before an error recovery procedure is used. The error

recovery procedure attempts three corrections before an “abort”

message is sent to the operator. Let

s denote the success of a read operation

f denote the failure of a read operation

S denote the success of an error recovery procedure

F denote the failure of an error recovery procedure

A denote an abort message sent to the operator

Describe the sample space of this experiment with a tree diagram.

2.1.13 . SS VS Three events are shown on the Venn diagram

in the following figure:

A B

C

Reproduce the figure and shade the region that corresponds to

each of the following events.

a. A′ b. A ∩ B c. (A ∩ B) ∪ C
d. (B ∪ C)′ e. (A ∩ B)′ ∪ C

2.1.14 In an injection-molding operation, the length and width,

denoted as X and Y , respectively, of each molded part are evalu-

ated. Let

A denote the event of 48 < X < 52 centimeters

B denote the event of 9 < Y < 11 centimeters

Construct a Venn diagram that includes these events. Shade the

areas that represent the following:

a. A b. A ∩ B
c. A′ ∪ B d. A ∩ B
e. If these events were mutually exclusive, how success-

ful would this production operation be? Would the process

produce parts with X = 50 centimeters and Y = 10 centi-

meters?

2.1.15 . WP A digital scale that provides weights to the nearest

gram is used.

a. What is the sample space for this experiment?

Let A denote the event that a weight exceeds 11 grams, let B
denote the event that a weight is less than or equal to 15 grams,
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and let C denote the event that a weight is greater than or equal

to 8 grams and less than 12 grams.

Describe the following events.

b. A ∪ B c. A ∩ B
d. A′ e. A ∪ B ∪ C
f. (A ∪ C)′ g. A ∩ B ∩ C
h. B′ ∩ C i. A ∪ (B ∩ C)

2.1.16 In light-dependent photosynthesis, light quality refers to

the wavelengths of light that are important. The wavelength of a

sample of photosynthetically active radiations (PAR) is measured

to the nearest nanometer. The red range is 675–700 nm and the

blue range is 450–500 nm. Let A denote the event that PAR occurs

in the red range, and let B denote the event that PAR occurs in the

blue range. Describe the sample space and indicate each of the

following events:

a. A b. B c. A ∩ B d. A ∪ B

2.1.17 .WP GO Tutorial Four bits are transmitted over a digital

communications channel. Each bit is either distorted or received

without distortion. Let Ai denote the event that the ith bit is

distorted, i = 1, … , 4.

a. Describe the sample space for this experiment.

b. Are the Ai’s mutually exclusive?

Describe the outcomes in each of the following events:

c. A1 d. A′
1

e. A1 ∩ A2 ∩ A3 ∩ A4 f. (A1 ∩ A2) ∪ (A3 ∩ A4)

2.1.18 . WP Disks of polycarbonate plastic from a supplier are

analyzed for scratch and shock resistance. The results from

100 disks are summarized here:

Shock Resistance

High Low

Scratch

Resistance

High 70 9

Low 16 5

Let A denote the event that a disk has high shock resistance, and

let B denote the event that a disk has high scratch resistance.

Determine the number of disks in A ∩ B, A′, and A ∪ B.

2.1.19 . SS In control replication, cells are replicated over

a period of two days. Two control mechanisms have been

identified—one positive and one negative. Suppose that a replica-

tion is observed in three cells. Let A denote the event that all cells

are identified as positive, and let B denote the event that all cells

are negative. Describe the sample space graphically and display

each of the following events:

a. A b. B c. A ∩ B d. A ∪ B

2.1.20 . WP Samples of emissions from three suppliers are clas-

sified for conformance to air-quality specifications. The results

from 100 samples are summarized as follows:

Conforms

Yes No

1 22 8

Supplier 2 25 5

3 30 10

Let A denote the event that a sample is from supplier 1, and let B
denote the event that a sample conforms to specifications. Deter-

mine the number of samples in A′ ∩ B, B′, and A ∪ B.

2.1.21 . WP The rise time of a reactor is measured in minutes

(and fractions of minutes). Let the sample space be positive, real

numbers. Define the events A and B as follows: A = {x | x < 72.5}

and B = {x | x > 52.5}.

Describe each of the following events:

a. A′ b. B′

c. A ∩ B d. A ∪ B

2.1.22 The following table summarizes 204 endothermic reac-

tions involving sodium bicarbonate.

Final Temperature Heat Absorbed (cal)
Conditions Below Target Above Target

266 K 12 40

271 K 44 16

274 K 56 36

Let A denote the event that a reaction’s final temperature is 271 K

or less. Let B denote the event that the heat absorbed is below tar-

get. Determine the number of reactions in each of the following

events.
a. A ∩ B b. A′ c. A ∪ B
d. A ∪ B′ e. A′ ∩ B′

2.1.23 . SS A Web ad can be designed from four different col-

ors, three font types, five font sizes, three images, and five text

phrases. How many different designs are possible?

2.1.24 Consider the hospital emergency department data in

Example 2.6. Let A denote the event that a visit is to hospital 1,

and let B denote the event that a visit results in admittance to any

hospital. Determine the number of persons in each of the follow-

ing events.

a. A ∩ B b. A′ c. A ∪ B
d. A ∪ B′ e. A′ ∩ B′

2.1.25 The article “Term Efficacy of Ribavirin Plus Interferon

Alfa in the Treatment of Chronic Hepatitis C” [Gastroenterol-
ogy (1996, Vol. 111(5), pp. 1307–1312)], considered the effect

of two treatments and a control for treatment of hepatitis C. The

following table provides the total patients in each group and the

number that showed a complete (positive) response after 24 weeks

of treatment.

Complete
Response Total

Ribavirin plus interferon alfa 16 21

Interferon alfa 6 19

Untreated controls 0 20

Let A denote the event that the patient was treated with ribavirin

plus interferon alfa, and let B denote the event that the response

was complete. Determine the number of patients in each of the

following events.

a. A b. A ∩ B c. A ∪ B d. A′ ∩ B′
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2.1.26 A computer system uses passwords that contain exactly

eight characters, and each character is 1 of the 26 lowercase let-

ters (a–z) or 26 uppercase letters (A–Z) or 10 integers (0–9). Let

Ω denote the set of all possible passwords, and let A and B denote

the events that consist of passwords with only letters or only

integers, respectively. Determine the number of passwords in each

of the following events.

a. Ω b. A c. A′ ∩ B′

d. Passwords that contain at least 1 integer

e. Passwords that contain exactly 1 integer

Exercises for Section 2.2

WP Problem available in WileyPLUS at instructor’s discretion.
WP GO Tutorial Tutoring problem available in WileyPLUS at

instructor’s discretion
SS Student solution available in WileyPLUS.

VS Student video solution available in WileyPLUS.

2.2.1 . WP A sample of two printed circuit boards is selected

without replacement from a batch. Describe the (ordered) sample

space for each of the following batches:

a. The batch contains 90 boards that are not defective, 8

boards with minor defects, and 2 boards with major defects.

b. The batch contains 90 boards that are not defective, 8

boards with minor defects, and 1 board with major defects.

2.2.2 A sample of two items is selected without replacement

from a batch. Describe the (ordered) sample space for each of

the following batches:

a. The batch contains the items {a, b, c, d}.

b. The batch contains the items {a, b, c, d, e, f , g}.

c. The batch contains 4 defective items and 20 good items.

d. The batch contains 1 defective item and 20 good items.

2.2.3 . WP . SS A wireless garage door opener has a code deter-

mined by the up or down setting of 12 switches. How many out-

comes are in the sample space of possible codes?

2.2.4 . WP In a manufacturing operation, a part is produced by

machining, polishing, and painting. If there are three machine

tools, four polishing tools, and three painting tools, how many

different routings (consisting of machining, followed by polish-

ing, and followed by painting) for a part are possible?

2.2.5 . WP New designs for a wastewater treatment tank have

proposed three possible shapes, four possible sizes, three loca-

tions for input valves, and four locations for output valves. How

many different product designs are possible?

2.2.6 . WP A manufacturing process consists of 10 operations

that can be completed in any order. How many different produc-

tion sequences are possible?

2.2.7 . WP VS A batch of 140 semiconductor chips is inspected

by choosing a sample of 5 chips without replacement. Assume 10

of the chips do not conform to customer requirements.

a. How many different samples are possible?

b. How many samples contain exactly one nonconforming

chip?

c. How many samples contain at least one nonconforming

chip?

2.2.8 . WP In a sheet metal operation, three notches and four

bends are required. If the operations can be done in any order,

how many different ways of completing the manufacturing are

possible?

2.2.9 In the laboratory analysis of samples from a chemical

process, five samples from the process are analyzed daily. In addi-

tion, a control sample is analyzed twice each day to check the

calibration of the laboratory instruments.

a. How many different sequences of process and control

samples are possible each day? Assume that the five pro-

cess samples are considered identical and that the two control

samples are considered identical.

b. How many different sequences of process and control

samples are possible if we consider the five process samples

to be different and the two control samples to be identical?

c. For the same situation as part (b), how many sequences

are possible if the first test of each day must be a control

sample?

2.2.10 In the layout of a printed circuit board for an electronic

product, 12 different locations can accommodate chips.

a. If five different types of chips are to be placed on the

board, how many different layouts are possible?

b. If the five chips that are placed on the board are of the

same type, how many different layouts are possible?

2.2.11 . SS Consider the design of a communication system.

a. How many three-digit phone prefixes that are used to rep-

resent a particular geographic area (such as an area code) can

be created from the digits 0 through 9?

b. As in part (a), how many three-digit phone prefixes are

possible that do not start with 0 or 1, but contain 0 or 1 as the

middle digit?

c. How many three-digit phone prefixes are possible in

which no digit appears more than once in each prefix?

2.2.12 In the design of an electromechanical product, 12 com-

ponents are to be stacked into a cylindrical casing in a manner

that minimizes the impact of shocks. One end of the casing is

designated as the bottom and the other end is the top.

a. If all components are different, how many different

designs are possible?

b. If 7 components are identical to one another, but the oth-

ers are different, how many different designs are possible?

c. If 3 components are of one type and identical to one

another, and 4 components are of another type and identi-

cal to one another, but the others are different, how many

different designs are possible?

2.2.13 A bin of 50 parts contains 5 that are defective. A sample

of 10 parts is selected without replacement. How many samples

contain at least 4 defective parts?

2.2.14 . WP Plastic parts produced by an injection-molding oper-

ation are checked for conformance to specifications. Each tool

contains 12 cavities in which parts are produced, and these parts
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fall into a conveyor when the press opens. An inspector selects

3 parts without replacement from among the 12 at random. Two

cavities are affected by a temperature malfunction that results in

parts that do not conform to specifications.

a. How many samples contain exactly one nonconforming

part?

b. How many samples contain at least one nonconforming

part?

2.2.15 Similar to the hospital schedule in Example 2.9, suppose

that an operating room needs to handle three knee, four hip, and

five shoulder surgeries.

a. How many different sequences are possible?

b. How many different sequences have all hip, knee, and

shoulder surgeries scheduled consecutively?

c. How many different schedules begin and end with a knee

surgery?

Exercises for Section 2.3

WP Problem available in WileyPLUS at instructor’s discretion.
WP GO Tutorial Tutoring problem available in WileyPLUS at

instructor’s discretion
SS Student solution available in WileyPLUS.

VS Student video solution available in WileyPLUS.

2.3.1 . WP The sample space of a random experiment is {a, b, c,

d, e} with probabilities 0.1, 0.1, 0.2, 0.4, and 0.2, respectively.

Let A denote the event {a, b, c}, and let B denote the event

{c, d, e}. Determine the following:

a. P(A) b. P(B) c. P(A′)

d. P(A ∪ B) e. P(A ∩ B)

2.3.2 A part selected for testing is equally likely to have been

produced on any one of six cutting tools.

a. What is the sample space?

b. What is the probability that the part is from tool 1?

c. What is the probability that the part is from tool 3 or

tool 5?

d. What is the probability that the part is not from tool 4?

2.3.3 . WP . SS An injection-molded part is equally likely to be

obtained from any one of the eight cavities on a mold.

a. What is the sample space?

b. What is the probability that a part is from cavity 1 or 2?

c. What is the probability that a part is from neither cavity

3 nor 4?

2.3.4 . WP A credit card contains 16 digits between 0 and 9.

However, only 100 million numbers are valid. If a number is

entered randomly, what is the probability that it is a valid number?

2.3.5 . WP In a NiCd battery, a fully charged cell is composed of

nickelic hydroxide. Nickel is an element that has multiple oxida-

tion states and that is usually found in the following states:

Nickel Charge Proportions Found

0 0.17

+2 0.35

+3 0.33

+4 0.15

a. What is the probability that a cell has at least one of the

positive nickel-charged options?

b. What is the probability that a cell is not composed of a

positive nickel charge greater than +3?

2.3.6 A message can follow different paths through servers on a

network. The sender’s message can go to one of five servers for

the first step; each of them can send to five servers at the second

step; each of those can send to four servers at the third step; and

then the message goes to the recipient’s server.

a. How many paths are possible?

b. If all paths are equally likely, what is the probability

that a message passes through the first of four servers at the

third step?

2.3.7 . WP . SS Suppose your vehicle is licensed in a state that

issues license plates that consist of three digits (between 0 and 9)

followed by three letters (between A and Z). If a license number

is selected randomly, what is the probability that yours is the one

selected?

2.3.8 . WP Disks of polycarbonate plastic from a supplier are

analyzed for scratch and shock resistance. The results from

100 disks are summarized as follows:

Shock Resistance

High Low

Scratch

Resistance

High 70 9

Low 16 5

Let A denote the event that a disk has high shock resistance,

and let B denote the event that a disk has high scratch resis-

tance. If a disk is selected at random, determine the following

probabilities:

a. P(A) b. P(B) c. P(A′)

d. P(A ∩ B) e. P(A ∪ B) f. P(A′ ∪ B)

2.3.9 Magnesium alkyls are used as homogenous catalysts in the

production of linear low-density polyethylene (LLDPE), which

requires a finer magnesium powder to sustain a reaction. Redox

reaction experiments using four different amounts of magnesium

powder are performed. Each result may or may not be further

reduced in a second step using three different magnesium pow-

der amounts. Each of these results may or may not be further

reduced in a third step using three different amounts of magne-

sium powder.

a. How many experiments are possible?

b. If all outcomes are equally likely, what is the probability

that the best result is obtained from an experiment that uses

all three steps?
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c. Does the result in part (b) change if five or six or seven

different amounts are used in the first step? Explain.

2.3.10 . WP An article in the Journal of Database Management
[“Experimental Study of a Self-Tuning Algorithm for DBMS

Buffer Pools” (2005, Vol. 16, pp. 1–20)] provided the workload

used in the TPC-C OLTP (Transaction Processing Performance

Council’s Version C On-Line Transaction Processing) benchmark,

which simulates a typical order entry application.

Average Frequencies and Operations in TPC-C

Transaction Frequency Selects Updates
New order 43 23 11

Payment 44 4.2 3

Order status 4 11.4 0

Delivery 5 130 120

Stock level 4 0 0

The frequency of each type of transaction (in the second

column) can be used as the percentage of each type of transac-

tion. The average number of selects operations required for each

type of transaction is shown. Let A denote the event of trans-

actions with an average number of selects operations of 12 or

fewer. Let B denote the event of transactions with an average num-

ber of updates operations of 12 or fewer. Calculate the following

probabilities.

a. P(A) b. P(B) c. P(A ∩ B)

d. P(A ∩ B′) e. P(A ∪ B)

2.3.11 . VS Samples of emissions from three suppliers are clas-

sified for conformance to air-quality specifications. The results

from 100 samples are summarized as follows:

Conforms
Yes No

1 22 8

Supplier 2 25 5

3 30 10

Let A denote the event that a sample is from supplier 1, and let B
denote the event that a sample conforms to specifications. If a sam-

ple is selected at random, determine the following probabilities:

a. P(A) b. P(B) c. P(A′)

d. P(A ∩ B) e. P(A ∪ B) f. P(A′ ∩ B)

2.3.12 . VS Consider the hospital emergency room data in Ex-

ample 2.6. Let A denote the event that a visit is to hospital 4, and

let B denote the event that a visit results in LWBS (at any hospital).

Determine the following probabilities.

a. P(A ∩ B) b. P(A′) c. P(A ∪ B)

d. P(A ∪ B′) e. P(A′ ∩ B′)

2.3.13 Use the axioms of probability to show the following:

a. For any event E, P(E′) = 1 − P(E).

b. P(Ø) = 0

c. If A is contained in B, then P(A) ≤ P(B).

2.3.14 Suppose that a patient is selected randomly from those

described in Exercise 2.1.25. Let A denote the event that the

patient is in the group treated with interferon alfa, and let B denote

the event that the patient has a complete response. Determine the

following probabilities.

a. P(A) b. P(B) c. P(A ∩ B)

d. P(A ∪ B) e. P(A′ ∪ B)

2.3.15 . SS A Web ad can be designed from four different colors,

three font types, five font sizes, three images, and five text phrases.

A specific design is randomly generated by the Web server when

you visit the site. If you visit the site five times, what is the prob-

ability that you will not see the same design?

2.3.16 Similar to the hospital schedule in Example 2.9, suppose

that an operating room needs to schedule three knee, four hip,

and five shoulder surgeries. Assume that all schedules are equally

likely. Determine the probability for each of the following:

a. All hip surgeries are completed before another type of

surgery.

b. The schedule begins with a hip surgery.

c. The first and last surgeries are hip surgeries.

d. The first two surgeries are hip surgeries.

2.3.17 A computer system uses passwords that contain exactly

eight characters, and each character is one of 26 lowercase letters

(a–z) or 26 uppercase letters (A–Z) or 10 integers (0–9). Let Ω
denote the set of all possible passwords, and let A and B denote

the events that consist of passwords with only letters or only inte-

gers, respectively. Suppose that all passwords in Ω are equally

likely. Determine the probability of each of the following:

a. A b. B
c. A password contains at least 1 integer.

d. A password contains exactly 2 integers.

Exercises for Section 2.4

WP Problem available in WileyPLUS at instructor’s discretion.
WP GO Tutorial Tutoring problem available in WileyPLUS at

instructor’s discretion
SS Student solution available in WileyPLUS.

VS Student video solution available in WileyPLUS.

2.4.1 . WP If A, B, and C are mutually exclusive events with

P(A) = 0.2, P(B) = 0.3, and P(C) = 0.4, determine the following

probabilities:

a. P(A ∪ B ∪ C) b. P(A ∩ B ∩ C)

c. P(A ∩ B) d. P[(A ∪ B) ∩ C]

e. P(A′ ∩ B′ ∩ C′)

2.4.2 . WP If P(A) = 0.3, P(B) = 0.2, and P(A ∩ B) = 0.1, deter-

mine the following probabilities:

a. P(A′) b. P(A ∪ B) c. P(A′ ∩ B)

d. P(A ∩ B′) e. P[(A ∪ B)′] f. P(A′ ∪ B)
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2.4.3 . WP A manufacturer of front lights for automobiles tests

lamps under a high-humidity, high-temperature environment

using intensity and useful life as the responses of interest. The

following table shows the performance of 130 lamps:

Useful life
Satisfactory Unsatisfactory

Intensity Satisfactory 117 3

Unsatisfactory 8 2

a. Find the probability that a randomly selected lamp will

yield unsatisfactory results under any criteria.

b. The customers for these lamps demand 95% satisfactory

results. Can the lamp manufacturer meet this demand?

2.4.4 . WP In the article “ACL Reconstruction Using

Bone-Patellar Tendon-Bone Press-Fit Fixation: 10-Year Clini-

cal Results” in Knee Surgery, Sports Traumatology, Arthroscopy
(2005, Vol. 13, pp. 248–255), the following causes for knee

injuries were considered:

Percentage of
Activity Knee Injuries

Contact sport 46%

Noncontact sport 44%

Activity of daily living 9%

Riding motorcycle 1%

a. What is the probability that a knee injury resulted from a

sport (contact or noncontact)?

b. What is the probability that a knee injury resulted from

an activity other than a sport?

2.4.5 Consider the hospital emergency room data in Example 2.6.

Let A denote the event that a visit is to hospital 4, and let B denote

the event that a visit results in LWBS (at any hospital). Use the

addition rules to calculate the following probabilities.

a. P(A ∪ B) b. P(A ∪ B′) c. P(A′ ∪ B′)

2.4.6 . WP Strands of copper wire from a manufacturer are ana-

lyzed for strength and conductivity. The results from 100 strands

are as follows:

Strength
High Low

High conductivity 74 8

Low conductivity 15 3

a. If a strand is randomly selected, what is the probability

that its conductivity is high and its strength is high?

b. If a strand is randomly selected, what is the probability

that its conductivity is low or its strength is low?

c. Consider the event that a strand has low conductivity and

the event that the strand has low strength. Are these two

events mutually exclusive?

2.4.7 . WP . SS A computer system uses passwords that are six

characters, and each character is one of the 26 letters (a–z) or 10

integers (0–9). Uppercase letters are not used. Let A denote the

event that a password begins with a vowel (either a, e, i, o, or u),

and let B denote the event that a password ends with an even num-

ber (either 0, 2, 4, 6, or 8). Suppose a hacker selects a password

at random. Determine the following probabilities:

a. P(A) b. P(B)

c. P(A ∩ B) d. P(A ∪ B)

2.4.8 A Web ad can be designed from four different colors, three

font types, five font sizes, three images, and five text phrases. A

specific design is randomly generated by the Web server when

you visit the site. Let A denote the event that the design color

is red, and let B denote the event that the font size is not the

smallest one. Use the addition rules to calculate the following

probabilities.

a. P(A ∪ B) b. P(A ∪ B′) c. P(A′ ∪ B′)

2.4.9 A computer system uses passwords that contain exactly

eight characters, and each character is one of the 26 lowercase

letters (a–z) or 26 uppercase letters (A–Z) or 10 integers (0–9).

Assume all passwords are equally likely. Let A and B denote the

events that consist of passwords with only letters or only integers,

respectively. Determine the following probabilities:

a. P(A ∪ B) b. P(A′ ∪ B)

c. P (Password contains exactly 1 or 2 integers)

2.4.10 Consider the three patient groups in Exercise 2.1.25. Let

A denote the event that the patient was treated with ribavirin plus

interferon alfa, and let B denote the event that the response was

complete. Determine the following probabilities:

a. P(A ∪ B) b. P(A′ ∪ B) c. P(A ∪ B′)

2.4.11 The article “Clinical and Radiographic Outcomes of Four

Different Treatment Strategies in Patients with Early Rheuma-

toid Arthritis” [Arthritis & Rheumatism (2005, Vol. 52, pp.

3381–3390)] considered four treatment groups. The groups con-

sisted of patients with different drug therapies (such as prednisone

and infliximab): sequential monotherapy (group 1), step-up com-

bination therapy (group 2), initial combination therapy (group 3),

or initial combination therapy with infliximab (group 4). Radio-

graphs of hands and feet were used to evaluate disease progres-

sion. The number of patients without progression of joint damage

was 76 of 114 patients (67%), 82 of 112 patients (73%), 104 of

120 patients (87%), and 113 of 121 patients (93%) in groups 1–4,

respectively. Suppose that a patient is selected randomly. Let A
denote the event that the patient is in group 1, and let B denote

the event that there is no progression. Determine the following

probabilities:

a. P(A ∪ B) b. P(A′ ∪ B′) c. P(A ∪ B′)
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Exercises for Section 2.5

WP Problem available in WileyPLUS at instructor’s discretion.
WP GO Tutorial Tutoring problem available in WileyPLUS at

instructor’s discretion
SS Student solution available in WileyPLUS.

VS Student video solution available in WileyPLUS.

2.5.1 . WP . SS VS The analysis of results from a leaf trans-

mutation experiment (turning a leaf into a petal) is summarized

by type of transformation completed:

Total Textural
Transformation

Yes No

Total color

transformation

Yes 243 26

No 13 18

a. If a leaf completes the color transformation, what is the

probability that it will complete the textural transformation?

b. If a leaf does not complete the textural transforma-

tion, what is the probability it will complete the color

transformation?

2.5.2 . WP Samples of skin experiencing desquamation are ana-

lyzed for both moisture and melanin content. The results from

100 skin samples are as follows:

Melanin Content
High Low

Moisture

content

High 13 7

Low 48 32

Let A denote the event that a sample has low melanin content, and

let B denote the event that a sample has high moisture content.

Determine the following probabilities:

a. P(A) b. P(B) c. P(A | B) d. P(B | A)

2.5.3 . WP The following table summarizes the number of

deceased beetles under autolysis (the destruction of a cell after its

death by the action of its own enzymes) and putrefaction (decom-

position of organic matter, especially protein, by microorganisms,

resulting in production of foul-smelling matter):

Autolysis

High Low

Putrefaction High 14 59

Low 18 9

a. If the autolysis of a sample is high, what is the probability

that the putrefaction is low?

b. If the putrefaction of a sample is high, what is the proba-

bility that the autolysis is high?

c. If the putrefaction of a sample is low, what is the proba-

bility that the autolysis is low?

2.5.4 . WP A maintenance firm has gathered the following

information regarding the failure mechanisms for air conditioning

systems:

Evidence of Gas Leaks

Yes No

Evidence of

electrical failure

Yes 55 17

No 32 3

The units without evidence of gas leaks or electrical failure

showed other types of failure. If this is a representative sample

of AC failure, find the probability

a. That failure involves a gas leak

b. That there is evidence of electrical failure given that there

was a gas leak

c. That there is evidence of a gas leak given that there is

evidence of electrical failure

2.5.5 Consider the endothermic reactions in Exercise 2.1.22. Let

A denote the event that a reaction’s final temperature is 271 K or

less. Let B denote the event that the heat absorbed is above target.

Determine the following probabilities.

a. P(A | B) b. P(A′ | B)

c. P(A | B′) d. P(B | A)

2.5.6 . WP A batch of 500 containers for frozen orange juice con-

tains 5 that are defective. Three are selected, at random, without

replacement from the batch.

a. What is the probability that the second one selected is

defective given that the first one was defective?

b. What is the probability that the first two selected are

defective?

c. What is the probability that the first two selected are both

acceptable?

d. What is the probability that the third one selected is

defective given that the first and second ones selected were

defective?

e. What is the probability that the third one selected is defec-

tive given that the first one selected was defective and the

second one selected was okay?

f. What is the probability that all three selected ones are

defective?

2.5.7 Suppose A and B are mutually exclusive events. Construct

a Venn diagram that contains the three events A, B, and C such

that P(A | C) = 1 and P(B | C) = 0.

2.5.8 An article in The Canadian Entomologist (Harcourt et al.,

1977, Vol. 109, pp. 1521–1534) reported on the life of the alfalfa

weevil from eggs to adulthood. The following table shows the

number of larvae that survived at each stage of development from

eggs to adults.
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Early Late Pre- Late
Eggs Larvae Larvae pupae Pupae Adults

421 412 306 45 35 31

a. What is the probability an egg survives to adulthood?

b. What is the probability of survival to adulthood given sur-

vival to the late larvae stage?

c. What stage has the lowest probability of survival to the

next stage?

2.5.9 . SS VS Consider the hospital emergency room data in

Example 2.6. Let A denote the event that a visit is to hospital 4,

and let B denote the event that a visit results in LWBS (at any

hospital). Determine the following probabilities.

a. P(A | B) b. P(A′ | B)

c. P(A | B′) d. P(B | A)

2.5.10 A computer system uses passwords that contain exactly

eight characters, and each character is one of the 26 lowercase

letters (a–z) or 26 uppercase letters (A–Z) or 10 integers (0–9).

Let Ω denote the set of all possible passwords. Suppose that all

passwords in Ω are equally likely. Determine the probability for

each of the following:

a. Password contains all lowercase letters given that it con-

tains only letters

b. Password contains at least 1 uppercase letter given that it

contains only letters

c. Password contains only even numbers given that it con-

tains all numbers

2.5.11 Suppose that a patient is selected randomly from those

described in Exercise 2.4.11. Let A denote the event that the

patient is in group 1, and let B denote the event that there is no

progression. Determine the following probabilities:

a. P(B | A) b. P(A | B)

c. P(A | B′) d. P(A′ | B)

Exercises for Section 2.6

WP Problem available in WileyPLUS at instructor’s discretion.
WP GO Tutorial Tutoring problem available in WileyPLUS at

instructor’s discretion
SS Student solution available in WileyPLUS.

VS Student video solution available in WileyPLUS.

2.6.1 . WP Suppose that P(A | B) = 0.4 and P(B) = 0.5. Deter-

mine the following:

a. P(A ∩ B)

b. P(A′ ∩ B)

2.6.2 . WP Suppose that P(A | B) = 0.2, P(A | B′) = 0.3, and

P(B) = 0.8. What is P(A)?

2.6.3 . WP The probability is 1% that an electrical connector that

is kept dry fails during the warranty period. If the connector is

ever wet, the probability of a failure during the warranty period is

5%. If 90% of the connectors are kept dry and 10% are wet, what

proportion of connectors fail during the warranty period?

2.6.4 . WP Heart failures are due to either natural occurrences

(87%) or outside factors (13%). Outside factors are related to

induced substances (73%) or foreign objects (27%). Natural

occurrences are caused by arterial blockage (56%), disease (27%),

and infection (e.g., staph infection) (17%).

a. Determine the probability that a failure is due to an

induced substance.

b. Determine the probability that a failure is due to disease

or infection.

2.6.5 . WP . SS The edge roughness of slit paper products

increases as knife blades wear. Only 1% of products slit with

new blades have rough edges, 3% of products slit with blades

of average sharpness exhibit roughness, and 5% of products slit

with worn blades exhibit roughness. If 25% of the blades in

manufacturing are new, 60% are of average sharpness, and 15%

are worn, what is the proportion of products that exhibit edge

roughness?

2.6.6 . WP A lot of 100 semiconductor chips contains 20 that are

defective.

a. Two are selected, at random, without replacement, from

the lot. Determine the probability that the second chip

selected is defective.

b. Three are selected, at random, without replacement, from

the lot. Determine the probability that all are defective.

2.6.7 . WP Computer keyboard failures are due to faulty electrical

connects (12%) or mechanical defects (88%). Mechanical defects

are related to loose keys (27%) or improper assembly (73%).

Electrical connect defects are caused by defective wires (35%),

improper connections (13%), or poorly welded wires (52%).

a. Find the probability that a failure is due to loose keys.

b. Find the probability that a failure is due to improperly

connected or poorly welded wires.

2.6.8 An article in the British Medical Journal [“Comparison of

Treatment of Renal Calculi by Operative Surgery, Percutaneous

Nephrolithotomy, and Extracorporeal Shock Wave Lithotripsy”

(1986, Vol. 82, pp. 879–892)] provided the following discus-

sion of success rates in kidney stone removals. Open surgery had

a success rate of 78% (273/350) and a newer method, percuta-

neous nephrolithotomy (PN), had a success rate of 83% (289/350).

This newer method looked better, but the results changed when

stone diameter was considered. For stones with diameters less

than 2 centimeters, 93% (81/87) of cases of open surgery were

successful compared with only 83% (234/270) of cases of PN.

For stones greater than or equal to 2 centimeters, the success rates

were 73% (192/263) and 69% (55/80) for open surgery and PN,

respectively. Open surgery is better for both stone sizes, but less

successful in total. In 1951, E. H. Simpson pointed out this appar-

ent contradiction (known as Simpson’s paradox), and the hazard

still persists today. Explain how open surgery can be better for

both stone sizes but worse in total.
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2.6.9 . SS Consider the hospital emergency room data in

Example 2.6. Let A denote the event that a visit is to hospital 4

and let B denote the event that a visit results in LWBS (at any

hospital). Determine the following probabilities.

a. P(A ∩ B) b. P(A ∪ B) c. P′(A′ ∪ B′)

d. Use the total probability rule to determine P(A)

2.6.10 Suppose that a patient is selected randomly from those

described in Exercise 2.4.11. Let A denote the event that the

patient is in group 1, and let B denote the event for which there is

no progression. Determine the following probabilities:

a. P(A ∩ B) b. P(B) c. P(A′ ∩ B)

d. P(A ∪ B) e. P(A′ ∪ B)

2.6.11 A Web ad can be designed from four different colors, three

font types, five font sizes, three images, and five text phrases.

A specific design is randomly generated by the Web server when

you visit the site. Determine the probability that the ad color is

red and the font size is not the smallest one.

2.6.12 Similar to the hospital schedule in Example 2.9, suppose

that an operating room needs to schedule three knee, four hip,

and five shoulder surgeries. Assume that all schedules are equally

likely. Determine the following probabilities:

a. All hip surgeries are completed first given that all knee

surgeries are last.

b. The schedule begins with a hip surgery given that all knee

surgeries are last.

c. The first and last surgeries are hip surgeries given that

knee surgeries are scheduled in time periods 2 through 4.

d. The first two surgeries are hip surgeries given that all knee

surgeries are last.

Exercises for Section 2.7

WP Problem available in WileyPLUS at instructor’s discretion.
WP GO Tutorial Tutoring problem available in WileyPLUS at

instructor’s discretion
SS Student solution available in WileyPLUS.

VS Student video solution available in WileyPLUS.

2.7.1 . WP If P(A | B) = 0.3, P(B) = 0.8, and P(A) = 0.3, are the

events B and the complement of A independent?

2.7.2 . WP If P(A) = 0.2, P(B) = 0.2, and A and B are mutually

exclusive, are they independent?

2.7.3 . WP A batch of 500 containers of frozen orange juice con-

tains 5 that are defective. Two are selected, at random, without

replacement, from the batch. Let A and B denote the events that

the first and second containers selected are defective, respectively.

a. Are A and B independent events?

b. If the sampling were done with replacement, would A and

B be independent?

2.7.4 . WP Disks of polycarbonate plastic from a supplier are

analyzed for scratch and shock resistance. The results from 100

disks are summarized as follows:

Shock Resistance
High Low

Scratch

Resistance

High 70 9

Low 16 5

Let A denote the event that a disk has high shock resistance, and

let B denote the event that a disk has high scratch resistance. Are

events A and B independent?

2.7.5 . WP . SS Redundant array of inexpensive disks (RAID) is

a technology that uses multiple hard drives to increase the speed

of data transfer and provide instant data backup. Suppose that the

probability of any hard drive failing in a day is 0.001 and the drive

failures are independent.

a. A RAID 0 scheme uses two hard drives, each containing

a mirror image of the other. What is the probability of data

loss? Assume that data loss occurs if both drives fail within

the same day.

b. A RAID 1 scheme splits the data over two hard drives.

What is the probability of data loss? Assume that data loss

occurs if at least one drive fails within the same day.

2.7.6 . WP A test of a printed circuit board uses a random test

pattern with an array of 10 bits and each is equally likely to be 0

or 1. Assume the bits are independent.

a. What is the probability that all bits are 1s?

b. What is the probability that all bits are 0s?

c. What is the probability that exactly 5 bits are 1s and 5 bits

are 0s?

2.7.7 . WP The probability that a lab specimen contains high lev-

els of contamination is 0.10. Five samples are checked, and the

samples are independent.

a. What is the probability that none contain high levels of

contamination?

b. What is the probability that exactly one contains high

levels of contamination?

c. What is the probability that at least one contains high

levels of contamination?

2.7.8 . WP A player of a video game is confronted with a series

of four opponents and an 80% probability of defeating each oppo-

nent. Assume that the results from opponents are independent

(and that when the player is defeated by an opponent the game

ends).

a. What is the probability that a player defeats all four oppo-

nents in a game?

b. What is the probability that a player defeats at least two

opponents in a game?

c. If the game is played three times, what is the prob-

ability that the player defeats all four opponents at least

once?

2.7.9 . WP Eight cavities in an injection-molding tool produce

plastic connectors that fall into a common stream. A sample

is chosen every several minutes. Assume that the samples are

independent.

a. What is the probability that five successive samples were

all produced in cavity 1 of the mold?
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b. What is the probability that five successive samples were

all produced in the same cavity of the mold?

c. What is the probability that four out of five successive

samples were produced in cavity 1 of the mold?

2.7.10 A credit card contains 16 digits. It also contains the month

and year of expiration. Suppose there are 1 million credit card

holders with unique card numbers. A hacker randomly selects a

16-digit credit card number.

a. What is the probability that it belongs to a user?

b. Suppose a hacker has a 25% chance of correctly guess-

ing the year your card expires and randomly selects 1 of the

12 months. What is the probability that the hacker correctly

selects the month and year of expiration?

2.7.11 . SS The following circuit operates if and only if there is

a path of functional devices from left to right. The probability

that each device functions is as shown. Assume that the proba-

bility that a device is functional does not depend on whether or

not other devices are functional. What is the probability that the

circuit operates?

0.95

0.9

0.95

0.9

0.9

0.8

2.7.12 . VS The following circuit operates if and only if there is

a path of functional devices from left to right. The probability

that each device functions is as shown. Assume that the proba-

bility that a device is functional does not depend on whether or

not other devices are functional. What is the probability that the

circuit operates?

0.95

0.9

0.95

0.8

0.95

0.7

2.7.13 Consider the hospital emergency room data in Example

2.6. Let A denote the event that a visit is to hospital 4, and let B
denote the event that a visit results in LWBS (at any hospital). Are

these events independent?

2.7.14 A Web ad can be designed from four different colors, three

font types, five font sizes, three images, and five text phrases. A

specific design is randomly generated by the Web server when

you visit the site. Let A denote the event that the design color is

red, and let B denote the event that the font size is not the smallest

one. Are A and B independent events? Explain why or why not.

2.7.15 An integrated circuit contains 10 million logic gates (each

can be a logical AND or OR circuit). Assume the probability of a

gate failure is p and that the failures are independent. The inte-

grated circuit fails to function if any gate fails. Determine the

value for p so that the probability that the integrated circuit func-

tions is 0.95.

2.7.16 Table 2.1 provides data on wafers categorized by location

and contamination levels. Let A denote the event that contamina-

tion is low, and let B denote the event that the location is center.

Are A and B independent? Why or why not?

Exercises for Section 2.8

WP Problem available in WileyPLUS at instructor’s discretion.
WP GO Tutorial Tutoring problem available in WileyPLUS at

instructor’s discretion
SS Student solution available in WileyPLUS.

VS Student video solution available in WileyPLUS.

2.8.1 . WP . SS VS Customers are used to evaluate prelim-

inary product designs. In the past, 95% of highly successful

products received good reviews, 60% of moderately success-

ful products received good reviews, and 10% of poor products

received good reviews. In addition, 40% of products have been

highly successful, 35% have been moderately successful, and

25% have been poor products.

a. What is the probability that a product attains a good

review?

b. If a new design attains a good review, what is the proba-

bility that it will be a highly successful product?

c. If a product does not attain a good review, what is the

probability that it will be a highly successful product?

2.8.2 . WP Suppose that P(A | B) = 0.7, P(A) = 0.5, and P(B) =
0.2. Determine P(B | A).

2.8.3 . WP A new analytical method to detect pollutants in

water is being tested. This new method of chemical analysis is

important because, if adopted, it could be used to detect three

different contaminants—organic pollutants, volatile solvents, and

chlorinated compounds—instead of having to use a single test for

each pollutant. The makers of the test claim that it can detect high

levels of organic pollutants with 99.7% accuracy, volatile solvents

with 99.95% accuracy, and chlorinated compounds with 89.7%

accuracy. If a pollutant is not present, the test does not signal.

Samples are prepared for the calibration of the test and 60% of

them are contaminated with organic pollutants, 27% with volatile

solvents, and 13% with traces of chlorinated compounds. A test

sample is selected randomly.

a. What is the probability that the test will signal?

b. If the test signals, what is the probability that chlorinated

compounds are present?

2.8.4 . WP Software to detect fraud in consumer phone cards

tracks the number of metropolitan areas where calls originate

each day. It is found that 1% of the legitimate users originate

calls from two or more metropolitan areas in a single day. How-

ever, 30% of fraudulent users originate calls from two or more

metropolitan areas in a single day. The proportion of fraudulent

users is 0.01%. If the same user originates calls from two or more

metropolitan areas in a single day, what is the probability that the

user is fraudulent?
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2.8.5 Consider the hospital emergency room data in Example 2.6.

Use Bayes’ theorem to calculate the probability that a person vis-

its hospital 4 given they are LWBS.

2.8.6 Suppose that a patient is selected randomly from those

described in Exercise 2.4.11. Let A denote the event that the

patient is in group 1, and let B denote the event that there is no

progression. Determine the following probabilities:

a. P(B) b. P(B | A) c. P(A | B)

2.8.7 . SS Two Web colors are used for a site advertisement.

If a site visitor arrives from an affiliate, the probabilities of the

blue or green colors being used in the advertisement are 0.8 and

0.2, respectively. If the site visitor arrives from a search site, the

probabilities of blue and green colors in the advertisement are

0.4 and 0.6, respectively. The proportions of visitors from affil-

iates and search sites are 0.3 and 0.7, respectively. What is the

probability that a visitor is from a search site given that the blue

ad was viewed?

2.8.8 A recreational equipment supplier finds that among orders

that include tents, 40% also include sleeping mats. Only 5%

of orders that do not include tents do include sleeping mats.

Also, 20% of orders include tents. Determine the following

probabilities:

a. The order includes sleeping mats.

b. The order includes a tent given it includes sleeping mats.

2.8.9 An e-mail filter is planned to separate valid e-mails from

spam. The word free occurs in 60% of the spam messages and

only 4% of the valid messages. Also, 20% of the messages are

spam. Determine the following probabilities:

a. The message contains free.

b. The message is spam given that it contains free.

c. The message is valid given that it does not contain free.

Exercises for Section 2.9

WP Problem available in WileyPLUS at instructor’s discretion.
WP GO Tutorial Tutoring problem available in WileyPLUS at

instructor’s discretion
SS Student solution available in WileyPLUS.

VS Student video solution available in WileyPLUS.

2.9.1 . SS Decide whether a discrete or continuous random vari-

able is the best model for each of the following variables:

a. The number of cracks exceeding one-half inch in 10 miles

of an interstate highway.

b. The weight of an injection-molded plastic part.

c. The number of molecules in a sample of gas.

d. The concentration of output from a reactor.

e. The current in an electronic circuit.

2.9.2 Decide whether a discrete or continuous random variable is

the best model for each of the following variables:

a. The time until a projectile returns to earth.

b. The number of times a transistor in a computer memory

changes state in one operation.

c. The volume of gasoline that is lost to evaporation during

the filling of a gas tank.

d. The outside diameter of a machined shaft.

2.9.3 Decide whether a discrete or continuous random variable is

the best model for each of the following variables:

a. The time for a computer algorithm to assign an image to

a category.

b. The number of bytes used to store a file in a computer.

c. The ozone concentration in micrograms per cubic meter.

d. The ejection fraction (volumetric fraction of blood

pumped from a heart ventricle with each beat).

e. The fluid flow rate in liters per minute.

Supplemental Exercises for Chapter 2

WP Problem available in WileyPLUS at instructor’s discretion.
WP GO Tutorial Tutoring problem available in WileyPLUS at

instructor’s discretion
SS Student solution available in WileyPLUS.

VS Student video solution available in WileyPLUS.

2.S4 . WP Samples of laboratory glass are in small, light

packaging or heavy, large packaging. Suppose that 2% and 1%,

respectively, of the sample shipped in small and large pack-

ages, respectively, break during transit. If 60% of the samples are

shipped in large packages and 40% are shipped in small packages,

what proportion of samples break during shipment?

2.S5 . WP . SS Samples of a cast aluminum part are classified on

the basis of surface finish (in microinches) and edge finish. The

results of 100 parts are summarized as follows:

Edge Finish

Excellent Good

Surface

finish

Excellent 80 2

Good 10 8

Let A denote the event that a sample has excellent surface fin-

ish, and let B denote the event that a sample has excellent edge

finish. If a part is selected at random, determine the following

probabilities:

a. P(A) b. P(B) c. P(A′)

d. P(A ∩ B) e. P(A ∪ B) f. P(A′ ∪ B)

2.S6 . WP A lot contains 15 castings from a local supplier and

25 castings from a supplier in the next state. Two castings are
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selected randomly, without replacement, from the lot of 40. Let

A be the event that the first casting selected is from the local

supplier, and let B denote the event that the second casting is

selected from the local supplier. Determine:

a. P(A) b. P(B | A) c. P(A ∩ B) d. P(A ∪ B)

Suppose that 3 castings are selected at random, without replace-

ment, from the lot of 40. In addition to the definitions of events

A and B, let C denote the event that the third casting selected is

from the local supplier. Determine:

e. P(A ∩ B ∩ C) f. P(A ∩ B ∩ C′)

2.S7 If A, B, and C are mutually exclusive events, is it pos-

sible for P(A) = 0.3, P(B) = 0.4, and P(C) = 0.5? Why or

why not?

2.S8 . WP Incoming calls to a customer service center are classi-

fied as complaints (75% of calls) or requests for information (25%

of calls). Of the complaints, 40% deal with computer equipment

that does not respond and 57% deal with incomplete software

installation; in the remaining 3% of complaints, the user has

improperly followed the installation instructions. The requests for

information are evenly divided on technical questions (50%) and

requests to purchase more products (50%).

a. What is the probability that an incoming call to the cus-

tomer service center will be from a customer who has not

followed installation instructions properly?

b. Find the probability that an incoming call is a request for

purchasing more products.

2.S9 . WP In the manufacturing of a chemical adhesive, 3% of all

batches have raw materials from two different lots. This occurs

when holding tanks are replenished and the remaining portion of

a lot is insufficient to fill the tanks.

Only 5% of batches with material from a single lot require

reprocessing. However, the viscosity of batches consisting of two

or more lots of material is more difficult to control, and 40% of

such batches require additional processing to achieve the required

viscosity.

Let A denote the event that a batch is formed from two dif-

ferent lots, and let B denote the event that a lot requires additional

processing. Determine the following probabilities:

a. P(A) b. P(A′) c. P(B | A)

d. P(B | A′) e. P(A ∩ B) f. P(A ∩ B′) g. P(B)

2.S10 Semiconductor lasers used in optical storage products

require higher power levels for write operations than for read oper-

ations. High-power-level operations lower the useful life of the

laser.

Lasers in products used for backup of higher-speed mag-

netic disks primarily write, and the probability that the useful

life exceeds five years is 0.95. Lasers that are in products that

are used for main storage spend approximately an equal amount

of time reading and writing, and the probability that the useful

life exceeds five years is 0.995. Now, 25% of the products from

a manufacturer are used for backup and 75% of the products are

used for main storage.

Let A denote the event that a laser’s useful life exceeds five

years, and let B denote the event that a laser is in a product that is

used for backup.

Use a tree diagram to determine the following:

a. P(B) b. P(A | B) c. P(A | B′)

d. P(A ∩ B) e. P(A ∩ B′) f. P(A)

g. What is the probability that the useful life of a laser

exceeds five years?

h. What is the probability that a laser that failed before five

years came from a product used for backup?

2.S11 . WP . SS A congested computer network has a 0.002

probability of losing a data packet, and packet losses are inde-

pendent events. A lost packet must be resent.

a. What is the probability that an e-mail message with

100 packets will need to be resent?

b. What is the probability that an e-mail message with

3 packets will need exactly 1 to be resent?

c. If 10 e-mail messages are sent, each with 100 packets,

what is the probability that at least 1 message will need some

packets to be resent?

2.S12 .WP GO Tutorial An electronic storage device uses an error

recovery procedure that requires an immediate satisfactory read-

back of any written data. If the readback is not successful after

three writing operations, that sector of the device is eliminated

as unacceptable for data storage. On an acceptable portion of the

device, the probability of a satisfactory readback is 0.98. Assume

the readbacks are independent. What is the probability that an

acceptable portion of the device is eliminated as unacceptable for

data storage?

2.S13 Energy released from cells breaks the molecular bond

and converts ATP (adenosine triphosphate) into ADP (adeno-

sine diphosphate). Storage of ATP in muscle cells (even for

an athlete) can sustain maximal muscle power only for less

than five seconds (a short dash). Three systems are used to

replenish ATP—phosphagen system, glycogen-lactic acid system

(anaerobic), and aerobic respiration—but the first is useful only

for less than 10 seconds, and even the second system provides less

than two minutes of ATP. An endurance athlete needs to perform

below the anaerobic threshold to sustain energy for extended peri-

ods. A sample of 100 individuals is described by the energy sys-

tem used in exercise at different intensity levels.

Primarily Aerobic
Period Yes No

1 50 7

2 13 30

Let A denote the event that an individual is in period 2, and let B
denote the event that the energy is primarily aerobic. Determine

the number of individuals in

a. A′ ∩ B b. B′ c. A ∪ B

2.S14 . WP The probability that a customer’s order is not shipped

on time is 0.05. A particular customer places three orders, and

the orders are placed far enough apart in time that they can be

considered to be independent events.

a. What is the probability that all are shipped on time?

b. What is the probability that exactly one is not shipped on

time?

c. What is the probability that two or more orders are not

shipped on time?
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2.S15 In circuit testing of printed circuit boards, each board either

fails or does not fail the test. A board that fails the test is then

checked further to determine which one of five defect types is

the primary failure mode. Represent the sample space for this

experiment.

2.S16 . WP Transactions to a computer database are either new

items or changes to previous items. The addition of an item can

be completed in less than 100 milliseconds 90% of the time, but

only 20% of changes to a previous item can be completed in

less than this time. If 30% of transactions are changes, what is

the probability that a transaction can be completed in less than

100 milliseconds?

2.S17 Let E1, E2, and E3 denote the samples that conform to a

percentage of solids specification, a molecular weight specifica-

tion, and a color specification, respectively. A total of 240 samples

are classified by the E1, E2, and E3 specifications, where yes indi-

cates that the sample conforms.

E3 yes
E2

Yes No Total

E1 Yes 200 1 201

No 5 4 9

Total 205 5 210

E3 no
E2

Yes No Total

E1 Yes 20 4 24

No 6 0 6

Total 26 4 30

a. Are E1, E2, and E3 mutually exclusive events?

b. Are E′
1
, E′

2
, and E′

3
mutually exclusive events?

c. What is P(E′
1

or E′
2

or E′
3
)?

d. What is the probability that a sample conforms to all three

specifications?

e. What is the probability that a sample conforms to the E1

or E3 specification?

f. What is the probability that a sample conforms to the E1

or E2 or E3 specification?

2.S18 The following circuit operates if and only if there is a path

of functional devices from left to right. Assume devices fail inde-

pendently and that the probability of failure of each device is as

shown. What is the probability that the circuit operates?

0.1

0.1

0.1

0.010.01

2.S19 . WP A steel plate contains 20 bolts. Assume that 5 bolts

are not torqued to the proper limit. Four bolts are selected at ran-

dom, without replacement, to be checked for torque.

a. What is the probability that all 4 of the selected bolts are

torqued to the proper limit?

b. What is the probability that at least 1 of the selected bolts

is not torqued to the proper limit?

2.S20 The British government has stepped up its information

campaign regarding foot-and-mouth disease by mailing brochures

to farmers around the country. It is estimated that 99% of Scottish

farmers who receive the brochure possess enough information

to deal with an outbreak of the disease, but only 90% of those

without the brochure can deal with an outbreak. After the first

three months of mailing, 95% of the farmers in Scotland had

received the informative brochure. Compute the probability that

a randomly selected farmer will have enough information to deal

effectively with an outbreak of the disease.

2.S21 . WP . SS It is known that two defective cellular phones

were erroneously sent to a shipping lot that now has a total of

75 phones. A sample of phones will be selected from the lot with-

out replacement.

a. If three phones are inspected, determine the probability

that exactly one of the defective phones will be found.

b. If three phones are inspected, determine the probability

that both defective phones will be found.

c. If 73 phones are inspected, determine the probability that

both defective phones will be found. (Hint: Work with the

phones that remain in the lot.)

2.S22 . WP An encryption–decryption system consists of three

elements: encode, transmit, and decode. A faulty encode occurs

in 0.5% of the messages processed, transmission errors occur in

1% of the messages, and a decode error occurs in 0.1% of the

messages. Assume the errors are independent.

a. What is the probability of a completely defect-free

message?

b. What is the probability of a message that has either an

encode or a decode error?

2.S23 The following circuit operates if and only if there is a path

of functional devices from left to right. Assume that devices fail

independently and that the probability of failure of each device

is as shown. What is the probability that the circuit does not

operate?

0.02

0.02

0.010.01

0.010.01

2.S24 . WP A robotic insertion tool contains 10 primary com-

ponents. The probability that any component fails during the

warranty period is 0.01. Assume that the components fail inde-

pendently and that the tool fails if any component fails. What is

the probability that the tool fails during the warranty period?
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2.S25 A machine tool is idle 15% of the time. You request imme-

diate use of the tool on five different occasions during the year.

Assume that your requests represent independent events.

a. What is the probability that the tool is idle at the time of

all of your requests?

b. What is the probability that the machine is idle at the time

of exactly four of your requests?

c. What is the probability that the tool is idle at the time of

at least three of your requests?

2.S26 A company that tracks the use of its Web site determined

that the more pages a visitor views, the more likely the visitor

is to request more information (RMI). Use the following table to

answer the questions:

Number of pages viewed: 1 2 3 4 or more

Percentage of visitors: 40 30 20 10

Percentage who RMI 10 10 20 40

a. What is the probability that a visitor to the Web

site RMIs?

b. If a visitor RMIs, what is the probability that the visitor

viewed four or more pages?

2.S27 . SS An article in Genome Research [“An Assessment of

Gene Prediction Accuracy in Large DNA Sequences” (2000, Vol.

10, pp. 1631–1642)] considered the accuracy of commercial soft-

ware to predict nucleotides in gene sequences. The following table

shows the number of sequences for which the programs produced

predictions and the number of nucleotides correctly predicted

(computed globally from the total number of prediction successes

and failures on all sequences).

Number of Sequences Proportion
GenScan 177 0.93

Blastx default 175 0.91

Blastx topcomboN 174 0.97

Blastx 2 stages 175 0.90

GeneWise 177 0.98

Procrustes 177 0.93

Assume the prediction successes and failures are independent

among the programs.

a. What is the probability that all programs predict a

nucleotide correctly?

b. What is the probability that all programs predict a

nucleotide incorrectly?

c. What is the probability that at least one Blastx program

predicts a nucleotide correctly?

2.S28 . WP A batch contains 36 bacteria cells. Assume that 12

of the cells are not capable of cellular replication. Of the cells,

6 are selected at random, without replacement, to be checked for

replication.

a. What is the probability that all 6 of the selected cells are

able to replicate?

b. What is the probability that at least 1 of the selected cells

is not capable of replication?

2.S29 A computer system uses passwords that are exactly seven

characters, and each character is one of the 26 letters (a–z) or

10 integers (0–9). Uppercase letters are not used.

a. How many passwords are possible?

b. If a password consists of exactly 6 letters and 1 number,

how many passwords are possible?

c. If a password consists of 5 letters followed by 2 numbers,

how many passwords are possible?

2.S30 Consider the treatments in Exercise 2.1.25. Suppose a

patient is selected randomly. Let A denote the event that the

patient is treated with ribavirin plus interferon alfa or interferon

alfa, and let B denote the event that the response is complete.

Determine the following probabilities.

a. P(A | B) b. P(B | A) c. P(A ∩ B) d. P(A ∪ B)

2.S31 Consider the patient groups in Exercise 2.4.11. Suppose

a patient is selected randomly. Let A denote the event that the

patient is in group 1 or 2, and let B denote the event that there is

no progression. Determine the following probabilities:

a. P(A | B) b. P(B | A) c. P(A ∩ B) d. P(A ∪ B)

Chapter 3 Exercises

Exercises for Section 3.1

WP Problem available in WileyPLUS at instructor’s discretion.
WP GO Tutorial Tutoring problem available in WileyPLUS at

instructor’s discretion
SS Student solution available in WileyPLUS.

VS Student video solution available in WileyPLUS.

For each of the following exercises, determine the range (possible
values) of the random variable.

3.1.1 . WP The random variable is the number of noncon-

forming solder connections on a printed circuit board with

1000 connections.

3.1.2 . WP A batch of 500 machined parts contains 10 that do

not conform to customer requirements. The random variable is

the number of parts in a sample of five parts that do not conform

to customer requirements.

3.1.3 . WP A batch of 500 machined parts contains 10 that

do not conform to customer requirements. Parts are selected

successively, without replacement, until a nonconforming

part is obtained. The random variable is the number of parts

selected.

3.1.4 The random variable is the number of computer clock

cycles required to complete a selected arithmetic calculation.
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3.1.5 The random variable is the number of surface flaws in a

large coil of galvanized steel.

3.1.6 . WP A group of 10,000 people are tested for a gene

called Ifi202 that has been found to increase the risk for lupus.

The random variable is the number of people who carry the gene.

3.1.7 . WP . SS The number of mutations in a nucleotide

sequence of length 40,000 in a DNA strand after exposure to radi-

ation is measured. Each nucleotide may be mutated.

3.1.8 A healthcare provider schedules 30 minutes for each

patient’s visit, but some visits require extra time. The random

variable is the number of patients treated in an eight-hour day.

3.1.9 The sample space of a random experiment is {a, b, c, d,

e, f }, and each outcome is equally likely. A random variable is

defined as follows:

outcome a b c d e f
x 0 0 1.5 1.5 2 3

Determine the probability mass function of X. Use the probability

mass function to determine the following probabilities:

a. P(X = 1.5) b. P(0.5 < X < 2.7)

c. P(X > 3) d. P(0 ≤ X < 2)

e. P(X = 0 or X = 2)

For Exercises 3.1.10 to 3.1.12, verify that the following func-
tions are probability mass functions, and determine the requested
probabilities.

3.1.10 . WP f (x) = (8∕7)(1∕2)x, x = 1, 2, 3

a. P(X ≤ 1) b. P(X > 1)

c. P(2 < X < 6) d. P(X ≤ 1 or X > 1)

3.1.11 . WP . SS VS f (x) = 2x + 1

25
, x = 0, 1, 2, 3, 4

a. P(X = 4) b. P(X ≤ 1)

c. P(2 ≤ X < 4) d. P(X > −10)

3.1.12 Consider the hospital patients in Example 2.6. Two

patients are selected randomly, with replacement, from the total

patients at Hospital 1. What is the probability mass function of

the number of patients in the sample who are admitted?

3.1.13 x 1.25 1.5 1.75 2 2.25

f (x) 0.2 0.4 0.1 0.2 0.1

a. P(X ≥ 2) b. P(X < 1.65)

c. P(X = 1.5) d. P(X < 1.3 or X > 2.1)

3.1.14 . WP An article in Knee Surgery, Sports Traumatol-
ogy, Arthroscopy [“Arthroscopic Meniscal Repair with an

Absorbable Screw: Results and Surgical Technique” (2005,

Vol. 13, pp. 273–279)] cited a success rate of more than 90%

for meniscal tears with a rim width under 3 mm, but only a 67%

success rate for tears of 3–6 mm. If you are unlucky enough to

suffer a meniscal tear of under 3 mm on your left knee and one of

width 3–6 mm on your right knee, what is the probability mass

function of the number of successful surgeries? Assume that the

surgeries are independent.

3.1.15 . WP In a semiconductor manufacturing process, three

wafers from a lot are tested. Each wafer is classified as pass or

fail. Assume that the probability that a wafer passes the test is 0.8

and that wafers are independent. Determine the probability mass

function of the number of wafers from a lot that pass the test.

3.1.16 . WP Marketing estimates that a new instrument for the

analysis of soil samples will be very successful, moderately

successful, or unsuccessful with probabilities 0.3, 0.6, and 0.1,

respectively. The yearly revenue associated with a very success-

ful, moderately successful, or unsuccessful product is $10 million,

$5 million, and $1 million, respectively. Let the random variable

X denote the yearly revenue of the product. Determine the proba-

bility mass function of X.

3.1.17 . WP . SS An assembly consists of three mechanical com-

ponents. Suppose that the probabilities that the first, second,

and third components meet specifications are 0.95, 0.98, and

0.99, respectively. Assume that the components are independent.

Determine the probability mass function of the number of com-

ponents in the assembly that meet specifications.

3.1.18 The distribution of the time until a Web site changes

is important to Web crawlers that search engines use to main-

tain current information about Web sites. The distribution of the

time until change (in days) of a Web site is approximated in

the following table.

Days until Changes Probability
1.5 0.05

3.0 0.25

4.5 0.35

5.0 0.20

7.0 0.15

Calculate the probability mass function of the days until change.

3.1.19 . WP Actual lengths of stay at a hospital’s emergency

department in 2009 are shown in the following table (rounded

to the nearest hour). Length of stay is the total of wait and ser-

vice times. Some longer stays are also approximated as 15 hours

in this table.

Hours Count Percent
1 19 3.80

2 51 10.20

3 86 17.20

4 102 20.40

5 87 17.40

6 62 12.40

7 40 8.00

8 18 3.60

9 14 2.80

10 11 2.20

15 10 2.00

Calculate the probability mass function of the wait time for

service.
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Exercises for Section 3.2

WP Problem available in WileyPLUS at instructor’s discretion.
WP GO Tutorial Tutoring problem available in WileyPLUS at

instructor’s discretion
SS Student solution available in WileyPLUS.

VS Student video solution available in WileyPLUS.

3.2.1 Determine the cumulative distribution function for the

random variable in Exercise 3.1.9.

3.2.2 . WP Determine the cumulative distribution function of the

random variable in Exercise 3.1.10.

3.2.3 Determine the cumulative distribution function for the

random variable in Exercise 3.1.11.

3.2.4 . WP Determine the cumulative distribution function for

the random variable in Exercise 3.1.12; also determine the

following probabilities:

a. P(X < 1.5) b. P(X ≤ 3)

c. P(X > 2) d. P(1 < X ≤ 2)

3.2.5 . WP . SS Determine the cumulative distribution function

for the random variable in Exercise 3.1.13.

3.2.6 Determine the cumulative distribution function for the

random variable in Exercise 3.1.16.

Verify that the following functions are cumulative distribution
functions, and determine the probability mass function and the
requested probabilities.

3.2.7 . WP F(x) =

{
0 x < 1
0.5 1 ≤ x < 3
1 3 ≤ x

a. P(X ≤ 3) b. P(X ≤ 2)

c. P(1 ≤ X ≤ 2) d. P(X > 2)

3.2.8 . WP F(x) =
⎧
⎪
⎨
⎪
⎩

0 x < −10

0.25 −10 ≤ x < 30

0.75 30 ≤ x < 50

1 50 ≤ x

a. P(X ≤ 50) b. P(X ≤ 40)

c. P(40 ≤ X ≤ 60) d. P(X < 0)

e. P(0 ≤ X < 10) f. P(−10 < X < 10)

Exercises for Section 3.3

WP Problem available in WileyPLUS at instructor’s discretion.
WP GO Tutorial Tutoring problem available in WileyPLUS at

instructor’s discretion
SS Student solution available in WileyPLUS.

VS Student video solution available in WileyPLUS.

3.3.1 . WP If the range of X is the set {0, 1, 2, 3, 4} and

P(X = x) = 0.2, determine the mean and variance of the random

variable.

3.3.2 . WP Determine the mean and variance of the random

variable in Exercise 3.1.10.

3.3.3 . WP VS Determine the mean and variance of the random

variable in Exercise 3.1.11.

3.3.4 . WP Determine the mean and variance of the random

variable in Exercise 3.1.12.

3.3.5 . WP Determine the mean and variance of the random

variable in Exercise 3.1.13.

3.3.6 In a NiCd battery, a fully charged cell is composed of nick-

elic hydroxide. Nickel is an element that has multiple oxidation

states. Assume the following proportions of the states:

Nickel Charge Proportions Found
0 0.17

+2 0.35

+3 0.33

+4 0.15

a. Determine the cumulative distribution function of the

nickel charge.

b. Determine the mean and variance of the nickel charge.

3.3.7 . WP . SS The range of the random variable X is [0, 1, 2,

3, x] where x is unknown. If each value is equally likely and the

mean of X is 6, determine x.

3.3.8 . WP Trees are subjected to different levels of carbon diox-

ide atmosphere with 6% of them in a minimal growth condition

at 350 parts per million (ppm), 10% at 450 ppm (slow growth),

47% at 550 ppm (moderate growth), and 37% at 650 ppm (rapid

growth). What are the mean and standard deviation of the carbon

dioxide atmosphere (in ppm) for these trees in ppm?
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Exercises for Section 3.4

WP Problem available in WileyPLUS at instructor’s discretion.
WP GO Tutorial Tutoring problem available in WileyPLUS at

instructor’s discretion
SS Student solution available in WileyPLUS.

VS Student video solution available in WileyPLUS.

3.4.1 . WP Assume that the wavelengths of photosynthetically

active radiations (PAR) are uniformly distributed at integer

nanometers in the red spectrum from 675 to 700 nm.

a. What are the mean and variance of the wavelength distri-

bution for this radiation?

b. If the wavelengths are uniformly distributed at integer

nanometers from 75 to 100 nanometers, how do the mean

and variance of the wavelength distribution compare to the

previous part? Explain.

3.4.2 Let the random variable X have a discrete uniform distribu-

tion on the integers 0 ≤ x ≤ 99. Determine the mean and variance

of X.

3.4.3 . WP . SS Suppose that X has a discrete uniform distribu-

tion on the integers 0 through 9. Determine the mean, variance,

and standard deviation of the random variable Y = 5X and com-

pare to the corresponding results for X.

3.4.4 . WP Thickness measurements of a coating process are

made to the nearest hundredth of a millimeter. The thickness mea-

surements are uniformly distributed with values 0.15, 0.16, 0.17,

0.18, and 0.19. Determine the mean and variance of the coating

thickness for this process.

3.4.5 Suppose that 1000 seven-digit telephone numbers within

your area code are dialed randomly. What is the probability that

your number is called?

3.4.6 Each multiple-choice question on an exam has four choices.

Suppose that there are 10 questions and the choice is selected

randomly and independently for each question. Let X denote the

number of questions answered correctly. Does X have a discrete

uniform distribution? Why or why not?

Exercises for Section 3.5

WP Problem available in WileyPLUS at instructor’s discretion.
WP GO Tutorial Tutoring problem available in WileyPLUS at

instructor’s discretion
SS Student solution available in WileyPLUS.

VS Student video solution available in WileyPLUS.

3.5.1 For each scenario (a)–(j), state whether or not the binomial

distribution is a reasonable model for the random variable and

why. State any assumptions you make.

a. A production process produces thousands of tempera-

ture transducers. Let X denote the number of nonconforming

transducers in a sample of size 30 selected at random from

the process.

b. From a batch of 50 temperature transducers, a sample

of size 30 is selected without replacement. Let X denote the

number of nonconforming transducers in the sample.

c. Four identical electronic components are wired to a con-

troller that can switch from a failed component to one of the

remaining spares. Let X denote the number of components

that have failed after a specified period of operation.

d. Let X denote the number of accidents that occur along the

federal highways in Arizona during a one-month period.

e. Let X denote the number of correct answers by a student

taking a multiple-choice exam in which a student can elimi-

nate some of the choices as being incorrect in some questions

and all of the incorrect choices in other questions.

f. Defects occur randomly over the surface of a semicon-

ductor chip. However, only 80% of defects can be found by

testing. A sample of 40 chips with one defect each is tested.

Let X denote the number of chips in which the test finds a

defect.

g. Errors in a digital communication channel occur in bursts

that affect several consecutive bits. Let X denote the number

of bits in error in a transmission of 100,000 bits.

h. Let X denote the number of surface flaws in a large coil

of galvanized steel.

3.5.2 . WP Let X be a binomial random variable with p = 0.1 and

n = 10. Calculate the following probabilities.

a. P(X ≤ 2) b. P(X > 8)

c. P(X = 4) d. P(5 ≤ X ≤ 7)

3.5.3 . WP . SS The random variable X has a binomial distri-

bution with n = 10 and p = 0.01. Determine the following

probabilities.

a. P(X = 5) b. P(X ≤ 2)

c. P(X ≥ 9) d. P(3 ≤ X < 5)

3.5.4 The random variable X has a binomial distribution with

n = 10 and p = 0.5. Sketch the probability mass function of X.

a. What value of X is most likely?

b. What value(s) of X is(are) least likely?

c. Repeat the previous parts with p = 0.01.
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3.5.5 Determine the cumulative distribution function of a bino-

mial random variable with n = 3 and p = 1/4.

3.5.6 . WP An electronic product contains 40 integrated circuits.

The probability that any integrated circuit is defective is 0.01, and

the integrated circuits are independent. The product operates only

if there are no defective integrated circuits. What is the probability

that the product operates?

3.5.7 . SS VS The phone lines to an airline reservation system

are occupied 40% of the time. Assume that the events that the

lines are occupied on successive calls are independent. Assume

that 10 calls are placed to the airline.

a. What is the probability that for exactly three calls, the

lines are occupied?

b. What is the probability that for at least one call, the lines

are not occupied?

c. What is the expected number of calls in which the lines

are all occupied?

3.5.8 A multiple-choice test contains 25 questions, each with four

answers. Assume that a student just guesses on each question.

a. What is the probability that the student answers more than

20 questions correctly?

b. What is the probability that the student answers fewer

than 5 questions correctly?

3.5.9 . WP Samples of rejuvenated mitochondria are mutated

(defective) in 1% of cases. Suppose that 15 samples are studied

and can be considered to be independent for mutation. Determine

the following probabilities.

a. No samples are mutated.

b. At most one sample is mutated.

c. More than half the samples are mutated.

3.5.10 . WP Heart failure is due to either natural occurrences

(87%) or outside factors (13%). Outside factors are related to

induced substances or foreign objects. Natural occurrences are

caused by arterial blockage, disease, and infection. Suppose

that 20 patients will visit an emergency room with heart fail-

ure. Assume that causes of heart failure for the individuals are

independent.

a. What is the probability that three individuals have condi-

tions caused by outside factors?

b. What is the probability that three or more individuals

have conditions caused by outside factors?

c. What are the mean and standard deviation of the

number of individuals with conditions caused by outside

factors?

3.5.11 A computer system uses passwords that are exactly six

characters and each character is one of the 26 letters (a–z) or

10 integers (0–9). Suppose that 10,000 users of the system have

unique passwords. A hacker randomly selects (with replacement)

100,000 passwords from the potential set, and a match to a user’s

password is called a hit.
a. What is the distribution of the number of hits?

b. What is the probability of no hits?

c. What are the mean and variance of the number of

hits?

3.5.12 . WP Samples of 20 parts from a metal punching process

are selected every hour. Typically, 1% of the parts require rework.

Let X denote the number of parts in the sample of 20 that require

rework. A process problem is suspected if X exceeds its mean by

more than 3 standard deviations.

a. If the percentage of parts that require rework remains at

1%, what is the probability that X exceeds its mean by more

than 3 standard deviations?

b. If the rework percentage increases to 4%, what is the

probability that X exceeds 1?

c. If the rework percentage increases to 4%, what is the

probability that X exceeds 1 in at least one of the next five

hours of samples?

3.5.13 . WP Because all airline passengers do not show up for

their reserved seat, an airline sells 125 tickets for a flight that holds

only 120 passengers. The probability that a passenger does not

show up is 0.10, and the passengers behave independently.

a. What is the probability that every passenger who shows

up can take the flight?

b. What is the probability that the flight departs with empty

seats?

3.5.14 . WP This exercise illustrates that poor quality can affect

schedules and costs. A manufacturing process has 100 customer

orders to fill. Each order requires one component part that is pur-

chased from a supplier. However, typically, 2% of the components

are identified as defective, and the components can be assumed to

be independent.

a. If the manufacturer stocks 100 components, what is the

probability that the 100 orders can be filled without reorder-

ing components?

b. If the manufacturer stocks 102 components, what is the

probability that the 100 orders can be filled without reorder-

ing components?

c. If the manufacturer stocks 105 components, what is the

probability that the 100 orders can be filled without reorder-

ing components?

3.5.15 . WP Consider the lengths of stay at a hospital’s emer-

gency department in Exercise 3.1.19. Assume that five persons

independently arrive for service.

a. What is the probability that the length of stay of exactly

one person is less than or equal to 4 hours?

b. What is the probability that exactly two people wait more

than 4 hours?

c. What is the probability that at least one person waits more

than 4 hours?

3.5.16 The probability that a visitor to a Web site provides contact

data for additional information is 0.01. Assume that 1000 vis-

itors to the site behave independently. Determine the following

probabilities:

a. No visitor provides contact data.

b. Exactly 10 visitors provide contact data.

c. More than 3 visitors provide contact data.

3.5.17 Consider the time to recharge the flash in cell-phone cam-

eras as in Example 3.1. Assume that the probability that a camera

passes the test is 0.8 and the cameras perform independently.

What is the smallest sample size needed so that the probability

of at least one camera failing is at least 95%?
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Exercises for Section 3.6

WP Problem available in WileyPLUS at instructor’s discretion.
WP GO Tutorial Tutoring problem available in WileyPLUS at

instructor’s discretion
SS Student solution available in WileyPLUS.

VS Student video solution available in WileyPLUS.

3.6.1 . WP . SS Suppose that the random variable X has a geo-

metric distribution with p = 0.5. Determine the following

probabilities:

a. P(X = 1) b. P(X = 4) c. P(X = 8)

d. P(X ≤ 2) e. P(X > 2)

3.6.2 . WP Suppose that X is a negative binomial random vari-

able with p = 0.2 and r = 4. Determine the following:

a. E(X) b. P(X = 20)

c. P(X = 19) d. P(X = 21)

e. The most likely value for X
3.6.3 . WP Consider a sequence of independent Bernoulli trials

with p = 0.2.

a. What is the expected number of trials to obtain the first

success?

b. After the eighth success occurs, what is the expected

number of trials to obtain the ninth success?

3.6.4 . WP In a clinical study, volunteers are tested for a gene that

has been found to increase the risk for a disease. The probability

that a person carries the gene is 0.1. People are assumed to be

independent with respect to the gene.

a. What is the probability that exactly four people need to

be tested to detect two with the gene?

b. What is the probability that four or more people need to

be tested to detect two with the gene?

c. What is the expected number of people to test to detect

two with the gene?

3.6.5 . WP Assume that each of your calls to a popular radio sta-

tion has a probability of 0.02 of connecting, that is, of not obtain-

ing a busy signal. Assume that your calls are independent.

a. What is the probability that your first call that connects is

your 10th call?

b. What is the probability that it requires more than five calls

for you to connect?

c. What is the mean number of calls needed to connect?

3.6.6 . WP A player of a video game is confronted with a series

of opponents and has an 80% probability of defeating each one.

Success with any opponent is independent of previous encounters.

Until defeated, the player continues to contest opponents.

a. What is the probability mass function of the number of

opponents contested in a game?

b. What is the probability that a player defeats at least two

opponents in a game?

c. What is the expected number of opponents contested in a

game?

d. What is the probability that a player contests four or more

opponents in a game?

e. What is the expected number of game plays until a player

contests four or more opponents?

3.6.7 . WP Heart failure is due to either natural occurrences

(87%) or outside factors (13%). Outside factors are related

to induced substances or foreign objects. Natural occur-

rences are caused by arterial blockage, disease, and infection.

Assume that causes of heart failure for the individuals are

independent.

a. What is the probability that the first patient with heart

failure who enters the emergency room has the condition due

to outside factors?

b. What is the probability that the third patient with heart

failure who enters the emergency room is the first one due to

outside factors?

c. What is the mean number of heart failure patients with

the condition due to natural causes who enter the emergency

room before the first patient with heart failure from outside

factors?

3.6.8 Assume that 20 parts are checked each hour and that X
denotes the number of parts in the sample of 20 that require

rework. Parts are assumed to be independent with respect to

rework.

a. If the percentage of parts that require rework remains at

1%, what is the probability that hour 10 is the first sample at

which X exceeds 1?

b. If the rework percentage increases to 4%, what is the

probability that hour 10 is the first sample at which X
exceeds 1?

c. If the rework percentage increases to 4%, what is the

expected number of hours until X exceeds 1?

3.6.9 . SS VS A trading company uses eight computers to

trade on the New York Stock Exchange (NYSE). The probabil-

ity of a computer failing in a day is 0.005, and the computers fail

independently. Computers are repaired in the evening, and each

day is an independent trial.

a. What is the probability that all eight computers fail in a

day?

b. What is the mean number of days until a specific com-

puter fails?

c. What is the mean number of days until all eight computers

fail on the same day?

3.6.10 . WP In the process of meiosis, a single parent diploid

cell goes through eight different phases. However, only 60%

of the processes pass the first six phases and only 40%

pass all eight. Assume that the results from each phase are

independent.

a. If the probability of a successful pass of each one of the

first six phases is constant, what is the probability of a suc-

cessful pass of a single one of these phases?

b. If the probability of a successful pass of each one of the

last two phases is constant, what is the probability of a suc-

cessful pass of a single one of these phases?
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3.6.11 A Web site randomly selects among 10 products to dis-

count each day. The color printer of interest to you is discounted

today.

a. What is the expected number of days until this product is

again discounted?

b. What is the probability that this product is first discounted

again exactly 10 days from now?

c. If the product is not discounted for the next five days, what

is the probability that it is first discounted again 15 days from

now?

d. What is the probability that this product is first discounted

again within three or fewer days?

3.6.12 Consider the visits that result in leave without being seen

(LWBS) at an emergency department in Example 2.6. Assume

that people independently arrive for service at hospital l.

a. What is the probability that the fifth visit is the first one

to LWBS?

b. What is the probability that either the fifth or sixth visit

is the first one to LWBS?

c. What is the probability that the first visit to LWBS is

among the first four visits?

d. What is the expected number of visits until the third

LWBS occurs?

3.6.13 Consider the time to recharge the flash in cell-phone

cameras as in Example 3.1. Assume that the probability that a

camera passes the test is 0.8 and the cameras perform indepen-

dently. Determine the following:

a. Probability that the second failure occurs on the 10th

camera tested.

b. Probability that the second failure occurs in tests of four

or fewer cameras.

c. Expected number of cameras tested to obtain the third

failure.

3.6.14 Customers visit a Web site, and the probability of an order

if a customer views five or fewer pages is 0.01. However, if a cus-

tomer views more than five pages, the probability of an order is

0.1. The probability a customer views five or more pages is 0.25.

The customers behave independently.

a. Is the number of customers who visit the site until an

order is obtained a geometric random variable? Why or why

not?

b. What is the probability that the first order is obtained from

the 10th customer to visit the site?

3.6.15 An array of 30 LED bulbs is used in an automotive light.

The probability that a bulb is defective is 0.001 and defective

bulbs occur independently. Determine the following:

a. Probability that an automotive light has two or more

defective bulbs.

b. Expected number of automotive lights to check to obtain

one with two or more defective bulbs.

Exercises for Section 3.7

WP Problem available in WileyPLUS at instructor’s discretion.
WP GO Tutorial Tutoring problem available in WileyPLUS at

instructor’s discretion
SS Student solution available in WileyPLUS.

VS Student video solution available in WileyPLUS.

3.7.1 . WP Suppose that X has a hypergeometric distribution

with N = 100, n = 4, and K = 20. Determine the following:

a. P(X = 1) b. P(X = 6)

c. P(X = 4) d. Mean and variance of X
3.7.2 . WP Suppose that X has a hypergeometric distribution

with N = 10, n = 3, and K = 4. Sketch the probability mass func-

tion of X. Determine the cumulative distribution function for X.

3.7.3 . WP . SS A research study uses 800 men under the age of

55. Suppose that 30% carry a marker on the male chromosome

that indicates an increased risk for high blood pressure.

a. If 10 men are selected randomly and tested for the marker,

what is the probability that exactly 1 man has the marker?

b. If 10 men are selected randomly and tested for the marker,

what is the probability that more than 1 has the marker?

3.7.4 . WP Printed circuit cards are placed in a functional test

after being populated with semiconductor chips. A lot contains

140 cards, and 20 are selected without replacement for functional

testing.

a. If 20 cards are defective, what is the probability that at

least 1 defective card is in the sample?

b. If 5 cards are defective, what is the probability that at least

1 defective card appears in the sample?

3.7.5 . WP The analysis of results from a leaf transmutation

experiment (turning a leaf into a petal) is summarized by the type

of transformation completed:

Total Textural
Transformation

Yes No

Total Color Yes 243 26

Transformation No 13 18

A naturalist randomly selects three leaves from this set without

replacement. Determine the following probabilities.

a. Exactly one has undergone both types of transformations.

b. At least one has undergone both transformations.

c. Exactly one has undergone one but not both trans-

formations.

d. At least one has undergone at least one transformation.

3.7.6 . WP A state runs a lottery in which six numbers are ran-

domly selected from 40 without replacement. A player chooses

six numbers before the state’s sample is selected.

a. What is the probability that the six numbers chosen by a

player match all six numbers in the state’s sample?

b. What is the probability that five of the six numbers chosen

by a player appear in the state’s sample?

c. What is the probability that four of the six numbers cho-

sen by a player appear in the state’s sample?
d. If a player enters one lottery each week, what is the

expected number of weeks until a player matches all six num-

bers in the state’s sample?
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3.7.7 . WP A slitter assembly contains 48 blades. Five blades are

selected at random and evaluated each day for sharpness. If any

dull blade is found, the assembly is replaced with a newly sharp-

ened set of blades.

a. If 10 of the blades in an assembly are dull, what is the

probability that the assembly is replaced the first day it is

evaluated?

b. If 10 of the blades in an assembly are dull, what is the

probability that the assembly is not replaced until the third

day of evaluation? [Hint: Assume that the daily decisions are

independent, and use the geometric distribution.]

c. Suppose that on the first day of evaluation, 2 of the blades

are dull; on the second day of evaluation, 6 are dull; and on

the third day of evaluation, 10 are dull. What is the proba-

bility that the assembly is not replaced until the third day of

evaluation? [Hint: Assume that the daily decisions are inde-

pendent. However, the probability of replacement changes

every day.]

3.7.8 .a. For Exercise 3.7.1, calculate P(X = 1) and P(X = 4),

assuming that X has a binomial distribution, and com-

pare these results to results derived from the hyper-

geometric distribution.

b. Use the binomial approximation to the hypergeo-

metric distribution to approximate the probabilities in

Exercise 3.7.4. What is the finite population correction in

this exercise?

3.7.9 . SS Suppose that a healthcare provider selects 20 patients

randomly (without replacement) from among 500 to evaluate

adherence to a medication schedule. Suppose that 10% of the

500 patients fail to adhere with the schedule. Determine the

following:

a. Probability that exactly 10% of the patients in the sample

fail to adhere.

b. Probability that fewer than 10% of the patients in the sam-

ple fail to adhere.

c. Probability that more than 10% of the patients in the sam-

ple fail to adhere.

d. Mean and variance of the number of patients in the sam-

ple who fail to adhere.

3.7.10 A utility company might offer electrical rates based on

time-of-day consumption to decrease the peak demand in a day.

Enough customers need to accept the plan for it to be successful.

Suppose that among 50 major customers, 15 would accept the

plan. The utility selects 10 major customers randomly (without

replacement) to contact and promote the plan.

a. What is the probability that exactly two of the selected

major customers accept the plan?

b. What is the probability that at least one of the selected

major customers accepts the plan?

c. Instead of 15 customers, what is the minimum number

of major customers that would need to accept the plan to

meet the following objective? The probability that at least

one selected major customer accepts the plan is greater than

or equal to 0.95.

3.7.11 Suppose that lesions are present at 5 sites among

50 in a patient. A biopsy selects 8 sites randomly (without

replacement).

a. What is the probability that lesions are present in at least

one selected site?

b. What is the probability that lesions are present in two or

more selected sites?

c. Instead of eight sites, what is the minimum number of

sites that need to be selected to meet the following objec-

tive? The probability that at least one site has lesions present

is greater than or equal to 0.9.

Exercises for Section 3.8

WP Problem available in WileyPLUS at instructor’s discretion.
WP GO Tutorial Tutoring problem available in WileyPLUS at

instructor’s discretion
SS Student solution available in WileyPLUS.

VS Student video solution available in WileyPLUS.

3.8.1 . WP Suppose that X has a Poisson distribution. Determine

the following probabilities when the mean of X is 4 and repeat for

a mean of 0.4:

a. P(X = 0) b. P(X ≤ 2)

c. P(X = 4) d. P(X = 8)

3.8.2 The number of telephone calls that arrive at a phone

exchange is often modeled as a Poisson random variable. Assume

that on the average there are 10 calls per hour. Determine the fol-

lowing probabilities:

a. exactly 5 calls in one hour

b. 3 or fewer calls in one hour

c. exactly 15 calls in two hours

d. exactly 5 calls in 30 minutes

3.8.3 . WP Suppose that the number of customers who enter a

store in an hour is a Poisson random variable, and suppose that

P(X = 0) = 0.05. Determine the mean and variance of X.

3.8.4 Data from www.centralhudsonlabs.com determined the

mean number of insect fragments in 225-gram chocolate bars was

14.4, but three brands had insect contamination more than twice

the average. See the U.S. Food and Drug Administration–Center

for Food Safety and Applied Nutrition for Defect Action Levels

for food products. Assume that the number of fragments (contam-

inants) follows a Poisson distribution.

a. If you consume a 225-gram bar from a brand at the

mean contamination level, what is the probability of no insect

contaminants?

b. Suppose that you consume a bar that is one-fifth the

size tested (45 grams) from a brand at the mean con-

tamination level. What is the probability of no insect

contaminants?

c. If you consume seven 28.35-gram (one-ounce) bars this

week from a brand at the mean contamination level, what is
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the probability that you consume one or more insect frag-

ments in more than one bar?

d. Is the probability of contamination more than twice the

mean of 14.4 unusual, or can it be considered typical varia-

tion? Explain.

3.8.5 . WP . SS VS Astronomers treat the number of stars in a

given volume of space as a Poisson random variable. The density

in the Milky Way Galaxy in the vicinity of our solar system is one

star per 16 cubic light-years.

a. What is the probability of two or more stars in 16 cubic

light-years?

b. How many cubic light-years of space must be studied so

that the probability of one or more stars exceeds 0.95?

3.8.6 The number of cracks in a section of interstate highway that

are significant enough to require repair is assumed to follow a

Poisson distribution with a mean of two cracks per mile.

a. What is the probability that there are no cracks that

require repair in 5 miles of highway?

b. What is the probability that at least one crack requires

repair in 1/2 mile of highway?

c. If the number of cracks is related to the vehicle load on the

highway and some sections of the highway have a heavy load

of vehicles whereas other sections carry a light load, what do

you think about the assumption of a Poisson distribution for

the number of cracks that require repair?

3.8.7 . WP In 1898, L. J. Bortkiewicz published a book titled

The Law of Small Numbers. He used data collected over 20 years

to show that the number of soldiers killed by horse kicks each year

in each corps in the Prussian cavalry followed a Poisson distribu-

tion with a mean of 0.61.

a. What is the probability of more than one death in a corps

in a year?

b. What is the probability of no deaths in a corps over five

years?

3.8.8 The number of views of a page on a Web site follows a

Poisson distribution with a mean of 1.5 per minute.

a. What is the probability of no views in a minute?

b. What is the probability of two or fewer views in

10 minutes?

c. Does the answer to the previous part depend on whether

the 10-minute period is an uninterrupted interval? Explain.

d. Determine the length of a time interval such that the prob-

ability of no views in an interval of this length is 0.001.

3.8.9 . WP The number of surface flaws in plastic panels used

in the interior of automobiles has a Poisson distribution with a

mean of 0.05 flaw per square foot of plastic panel. Assume that

an automobile interior contains 10 square feet of plastic panel.

a. What is the probability that there are no surface flaws in

an auto’s interior?

b. If 10 cars are sold to a rental company, what is the prob-

ability that none of the 10 cars has any surface flaws?

c. If 10 cars are sold to a rental company, what is the prob-

ability that at most 1 car has any surface flaws?

3.8.10 Inclusions are defects in poured metal caused by contam-

inants. The number of (large) inclusions in cast iron follows a

Poisson distribution with a mean of 2.5 per cubic millimeter.

Determine the following:

a. Probability of at least one inclusion in a cubic millimeter.

b. Probability of at least five inclusions in 5.0 cubic milli-

meters.

c. Volume of material to inspect such that the probability of

at least one inclusion is 0.99.

d. Instead of a mean of 2.5 per cubic millimeters, the mean

inclusions per cubic millimeter such that the probability of at

least one inclusion is 0.95.

3.8.11 Cabs pass your workplace according to a Poisson process

with a mean of five cabs per hour. Suppose that you exit the work-

place at 6:00 P.M. Determine the following:

a. Probability that you wait more than 10 minutes for a cab.

b. Probability that you wait less than 20 minutes for a cab.

c. Mean number of cabs per hour so that the probability that

you wait more than 10 minutes is 0.1.

3.8.12 The article “An Association Between Fine Particles and

Asthma Emergency Department Visits for Children in Seattle”

[Environmental Health Perspectives June 1999, Vol. 107(6)]

used Poisson models for the number of asthma emergency depart-

ment (ED) visits per day. For the zip codes studied, the mean ED

visits were 1.8 per day. Determine the following:

a. Probability of more than five visits in a day.

b. Probability of fewer than five visits in a week.

c. Number of days such that the probability of at least one

visit is 0.99.

d. Instead of a mean of 1.8 per day, determine the mean vis-

its per day such that the probability of more than five visits

in a day is 0.1.

Supplemental Exercises for Chapter 3

WP Problem available in WileyPLUS at instructor’s discretion.
WP GO Tutorial Tutoring problem available in WileyPLUS at

instructor’s discretion
SS Student solution available in WileyPLUS.

VS Student video solution available in WileyPLUS.

3.S13 . WP Let the random variable X be equally likely to assume

any of the values 1/8, 1/4, or 3/8. Determine the mean and vari-

ance of X.

3.S14 . WP Let X denote the number of bits received in error in

a digital communication channel, and assume that X is a bino-

mial random variable with p = 0.001. If 1000 bits are transmitted,

determine the following:

a. P(X = 1) b. P(X ≥ 1)

c. P(X ≤ 2) d. mean and variance of X
3.S15 An automated egg carton loader has a 1% probability of

cracking an egg, and a customer will complain if more than one
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egg per dozen is cracked. Assume that each egg load is an inde-

pendent event.

a. What is the distribution of cracked eggs per dozen?

Include parameter values.

b. What is the probability that a carton of a dozen eggs

results in a complaint?

c. What are the mean and standard deviation of the number

of cracked eggs in a carton of a dozen eggs?

3.S16 A congested computer network has a 1% chance of losing a

data packet that must be resent, and packet losses are independent

events. An e-mail message requires 100 packets.

a. What is the distribution of the number of packets in an

e-mail message that must be resent? Include the parameter

values.

b. What is the probability that at least one packet is resent?

c. What is the probability that two or more packets are

resent?

d. What are the mean and standard deviation of the number

of packets that are resent?

e. If there are 10 messages and each contains 100 packets,

what is the probability that at least one message requires that

two or more packets be resent?

3.S17 . WP . SS A particularly long traffic light on your morn-

ing commute is green on 20% of the mornings. Assume that each

morning represents an independent trial.

a. What is the probability that the first morning that the light

is green is the fourth morning?

b. What is the probability that the light is not green for

10 consecutive mornings?

3.S18 The probability that an eagle kills a rabbit in a day of hunt-

ing is 10%. Assume that results are independent for each day.

a. What is the distribution of the number of days until a suc-

cessful hunt?

b. What is the probability that the first successful hunt

occurs on day five?

c. What is the expected number of days until a successful

hunt?

d. If the eagle can survive up to 10 days without food (it

requires a successful hunt on the 10th day), what is the prob-

ability that the eagle is still alive 10 days from now?

3.S19 . WP An electronic scale in an automated filling operation

stops the manufacturing line after three underweight packages are

detected. Suppose that the probability of an underweight package

is 0.001 and each fill is independent.

a. What is the mean number of fills before the line is

stopped?

b. What is the standard deviation of the number of fills

before the line is stopped?

3.S20 . WP A shipment of chemicals arrives in 15 totes. Three

of the totes are selected at random without replacement for an

inspection of purity. If two of the totes do not conform to purity

requirements, what is the probability that at least one of the non-

conforming totes is selected in the sample?

3.S21 Traffic flow is traditionally modeled as a Poisson distri-

bution. A traffic engineer monitors the traffic flowing through an

intersection with an average of six cars per minute. To set the

timing of a traffic signal, the following probabilities are used.

a. What is the probability that no cars pass through the inter-

section within 30 seconds?

b. What is the probability that three or more cars pass

through the intersection within 30 seconds?

c. Calculate the minimum number of cars through the inter-

section so that the probability of this number or fewer cars in

30 seconds is at least 90%.

d. If the variance of the number of cars through the intersec-

tion per minute is 20, is the Poisson distribution appropriate?

Explain.

3.S22 . WP The number of messages that arrive at a Web site is a

Poisson random variable with a mean of five messages per hour.

a. What is the probability that five messages are received in

1.0 hour?

b. What is the probability that 10 messages are received in

1.5 hours?

c. What is the probability that fewer than two messages are

received in 0.5 hour?

d. Determine the length of an interval of time such that the

probability that no messages arrive during this interval is

0.90.

3.S23 . WP The probability that your call to a service line is

answered in less than 30 seconds is 0.75. Assume that your calls

are independent.

a. If you call 10 times, what is the probability that exactly

nine of your calls are answered within 30 seconds?

b. If you call 20 times, what is the probability that at least

16 calls are answered in less than 30 seconds?

c. If you call 20 times, what is the mean number of calls that

are answered in less than 30 seconds?

d. What is the probability that you must call four times to

obtain the first answer in less than 30 seconds?

e. What is the mean number of calls until you are answered

in less than 30 seconds?

3.S24 . WP The number of errors in a textbook follows a Pois-

son distribution with a mean of 0.01 error per page. What is the

probability that there are three or fewer errors in 100 pages?

3.S25 The probability that an individual recovers from an illness

in a one-week time period without treatment is 0.1. Suppose that

20 independent individuals suffering from this illness are treated

with a drug and 4 recover in a one-week time period. If the drug

has no effect, what is the probability that 4 or more people recover

in a one-week time period?

3.S26 Patient response to a generic drug to control pain is scored

on a 5-point scale where a 5 indicates complete relief. Histori-

cally, the distribution of scores is

1 2 3 4 5

0.05 0.1 0.2 0.25 0.4

Two patients, assumed to be independent, are each scored.

a. What is the probability mass function of the total score?

b. What is the probability mass function of the average

score?

3.S27 . WP In a manufacturing process that laminates several

ceramic layers, 1% of the assemblies are defective. Assume that

the assemblies are independent.
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a. What is the mean number of assemblies that need to be

checked to obtain five defective assemblies?

b. What is the standard deviation of the number of as-

semblies that need to be checked to obtain five defective

assemblies?

c. Determine the minimum number of assemblies that need

to be checked so that the probability that at least one defective

assembly is obtained exceeds 0.95.

3.S28 . WP A manufacturer of a consumer electronics product

expects 2% of units to fail during the warranty period. A sample

of 500 independent units is tracked for warranty performance.

a. What is the probability that none fails during the warranty

period?

b. What is the expected number of failures during the

warranty period?

c. What is the probability that more than two units fail

during the warranty period?

3.S29 Determine the probability mass function for the random

variable with the following cumulative distribution function:

F(x) =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

0 x < 2

0.2 2 ≤ x < 5.7

0.5 5.7 ≤ x < 6.5

0.8 6.5 ≤ x < 8.5

1 8.5 ≤ x
3.S30 . WP VS The random variable X has the following prob-

ability distribution:

x 2 3 5 8

Probability 0.2 0.4 0.3 0.1

Determine the following:

a. P(X ≤ 3) b. P(X > 2.5)

c. P(2.7 < X < 5.1) d. E(X) e. V(X)

3.S31 . SS Assume that the number of errors along a magnetic

recording surface is a Poisson random variable with a mean of one

error every 105 bits. A sector of data consists of 4096 eight-bit

bytes.

a. What is the probability of more than one error in a sector?

b. What is the mean number of sectors until an error occurs?

3.S32 . WP Each main bearing cap in an engine contains 4 bolts.

The bolts are selected at random without replacement from a parts

bin that contains 30 bolts from one supplier and 70 bolts from

another.

a. What is the probability that a main bearing cap contains

all bolts from the same supplier?

b. What is the probability that exactly 3 bolts are from the

same supplier?

3.S33 From 500 customers, a major appliance manufacturer ran-

domly selects a sample without replacement. The company esti-

mates that 25% of the customers will reply to the survey. If this

estimate is correct, what is the probability mass function of the

number of customers that will reply?

a. Assume that the company samples 5 customers.

b. Assume that the company samples 10 customers.

3.S34 . WP . SS An installation technician for a specialized

communication system is dispatched to a city only when three

or more orders have been placed. Suppose that orders follow a

Poisson distribution with a mean of 0.25 per week for a city with

a population of 100,000, and suppose that your city contains a

population of 800,000.

a. What is the probability that a technician is required after

a one-week period?

b. If you are the first one in the city to place an order,

what is the probability that you have to wait more than two

weeks from the time you place your order until a technician

is dispatched?

3.S35 Saguaro cacti are large cacti indigenous to the southwest-

ern United States and Mexico. Assume that the number of saguaro

cacti in a region follows a Poisson distribution with a mean of 280

per square kilometer. Determine the following:

a. Mean number of cacti per 10,000 square meters.

b. Probability of no cacti in 10,000 square meters.

c. Area of a region such that the probability of at least two

cacti in the region is 0.9.

3.S36 . WP It is suspected that some of the totes containing

chemicals purchased from a supplier exceed the moisture con-

tent target. Assume that the totes are independent with respect

to moisture content. Determine the proportion of totes from the

supplier that must exceed the moisture content target so that the

probability is 0.90 that at least 1 tote in a sample of 30 fails

the test.

Chapter 4 Exercises

Exercises for Section 4.1

WP Problem available in WileyPLUS at instructor’s discretion.
WP GO Tutorial Tutoring problem available in WileyPLUS at

instructor’s discretion
SS Student solution available in WileyPLUS.

VS Student video solution available in WileyPLUS.

4.1.1 . WP Suppose that f (x) = e−x for 0 < x. Determine the

following:

a. P(1 < X) b. P(1 < X < 2.5) c. P(X = 3)

d. P(X < 4) e. P(3 ≤ X)

f. x such that P(x < X) = 0.10

g. x such that P(X ≤ x) = 0.10
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4.1.2 . WP The diameter of a particle of contamination (in

micrometers) is modeled with the probability density function

f (x) = 2∕x3 for x > 1. Determine the following:

a. P(X < 2) b. P(X > 5)

c. P(4 < X < 8) d. P(X < 4 or X > 8)

e. x such that P(X < x) = 0.95

4.1.3 . SS Suppose that f (x) = 0.5 cos x for −π∕2 < x < π∕2.

Determine the following:

a. P(X < 0) b. P(X < −π∕4)
c. P(−π∕4 < X < π∕4) d. P(X > −π∕4)
e. x such that P(X < x) = 0.95

4.1.4 .WP GO Tutorial Suppose that f (x) = x∕8 for 3 < x < 5.

Determine the following probabilities:

a. P(X < 4) b. P(X > 3.5)

c. P(4 < X < 5) d. P(X < 4.5)

e. P(X < 3.5 or X > 4.5)

4.1.5 . WP Suppose that f (x) = 1.5x2 for −1 < x < 1. Determine

the following:

a. P(0 < X) b. P(0.5 < X)

c. P(−0.5 ≤ X ≤ 0.5) d. P(X < −2)

e. P(X < 0 or X > −0.5)

f. x such that P(x < X) = 0.05.

4.1.6 . WP The probability density function of the net weight in

pounds of a packaged chemical herbicide is f (x) = 2.0 for 49.75

< x < 50.25 pounds.

a. Determine the probability that a package weighs more

than 50 pounds.

b. How much chemical is contained in 90% of all

packages?

4.1.7 . WP . SS The probability density function of the length of

a metal rod is f (x) = 2 for 2.3 < x < 2.8 meters.

a. If the specifications for this process are from 2.25

to 2.75 meters, what proportion of rods fail to meet the

specifications?

b. Assume that the probability density function is f (x) = 2

for an interval of length 0.5 meters. Over what value should

the density be centered to achieve the greatest proportion of

rods within specifications?

4.1.8 An article in Electric Power Systems Research [“Model-

ing Real-Time Balancing Power Demands in Wind Power Sys-

tems Using Stochastic Differential Equations” (2010, Vol. 80(8),

pp. 966–974)] considered a new probabilistic model to balance

power demand with large amounts of wind power. In this model,

the power loss from shutdowns is assumed to have a triangular

distribution with probability density function

f (x) =

{−5.56 × 10−4 + 5.56 × 10−6x, x ∈ [100, 500]
4.44 × 10−3 − 4.44 × 10−6x, x ∈ [500, 1000]
0, otherwise

Determine the following:

a. P(X < 90) b. P(100 < X ≤ 200)

c. P(X > 800) d. Value exceeded with probability 0.1.

4.1.9 The waiting time for service at a hospital emergency depart-

ment (in hours) follows a distribution with probability density

function f (x)= 0.5 exp(−0.5x) for 0< x. Determine the following:

a. P(X < 0.5) b. P(X > 2)

c. Value x (in hours) exceeded with probability 0.05.

4.1.10 The distribution of X is approximated with a triangular

probability density function f (x) = 0.0025x − 0.075 for 30 < x
< 50 and f (x) = −0.0025x + 0.175 for 50 < x < 70. Determine

the following:

a. P(X ≤ 40) b. P(40 < X ≤ 60)

c. Value x exceeded with probability 0.99.

Exercises for Section 4.2

WP Problem available in WileyPLUS at instructor’s discretion.
WP GO Tutorial Tutoring problem available in WileyPLUS at

instructor’s discretion
SS Student solution available in WileyPLUS.

VS Student video solution available in WileyPLUS.

4.2.1 . WP Suppose that the cumulative distribution function of

the random variable X is

F(x) =

{
0 x < 0
0.25x 0 ≤ x < 5
1 5 ≤ x

Determine the following:

a. P(X < 2.8) b. P(X > 1.5)

c. P(X < −2) d. P(X > 6)

4.2.2 . WP Determine the cumulative distribution function for

the distribution in Exercise 4.1.1.

4.2.3 Determine the cumulative distribution function for the

distribution in Exercise 4.1.3.

4.2.4 Determine the cumulative distribution function for the

distribution in Exercise 4.1.2.

4.2.5 . SS Determine the cumulative distribution function for

the distribution in Exercise 4.1.4.

4.2.6 . WP The probability density function of the time you

arrive at a terminal (in minutes after 8:00 A.M.) is f (x) =
0.1 exp(−0.1x) for 0 < x. Determine the probability that

a. You arrive by 9:00 A.M.

b. You arrive between 8:15 A.M. and 8:30 A.M.

c. You arrive before 8:40 A.M. on two or more days of five

days. Assume that your arrival times on different days are

independent.

d. Determine the cumulative distribution function and use

the cumulative distribution function to determine the proba-

bility that you arrive between 8:15 A.M. and 8:30 A.M.

4.2.7 Determine the cumulative distribution function for the

distribution in Exercise 4.1.7. Use the cumulative distribution

function to determine the probability that a length exceeds

2.7 meters.
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Determine the probability density function for each of the follow-
ing cumulative distribution functions.

4.2.8 . WP F(x) = 1 − e−2x x > 0

4.2.9 . WP . SS

F(x) =
⎧
⎪
⎨
⎪
⎩

0 x < 0

0.2x 0 ≤ x < 4

0.04x + 0.64 4 ≤ x < 9

1 9 ≤ x

4.2.10 Determine the cumulative distribution function for the

random variable in Exercise 4.1.10. Use the cumulative

distribution function to determine the probability that the random

variable is less than 55.

4.2.11 Determine the cumulative distribution function for the

random variable in Exercise 4.1.9. Use the cumulative distribu-

tion function to determine the probability that the waiting time is

less than 1 hour.

4.2.12 Determine the cumulative distribution function for the

random variable in Exercise 4.1.8. Use the cumulative distribu-

tion function to determine the probability that 400 < X < 500.

Exercises for Section 4.3

WP Problem available in WileyPLUS at instructor’s discretion.
WP GO Tutorial Tutoring problem available in WileyPLUS at

instructor’s discretion
SS Student solution available in WileyPLUS.

VS Student video solution available in WileyPLUS.

4.3.1 . WP . SS VS Suppose that f (x) = 1.5x2 for −1 < x < 1.

Determine the mean and variance of X.

4.3.2 . WP Suppose that f (x) = 0.125x for 0 < x < 4. Determine

the mean and variance of X.

4.3.3 Determine the mean and variance of the random variable in

Exercise 4.1.1.

4.3.4 Determine the mean and variance of the random variable in

Exercise 4.1.8.

4.3.5 Determine the mean and variance of the random variable in

Exercise 4.1.10.

4.3.6 . WP Suppose that the probability density function of

the length of computer cables is f (x) = 0.1 from 1200 to

1210 millimeters.

a. Determine the mean and standard deviation of the cable

length.

b. If the length specifications are 1195 < x < 1205 millime-

ters, what proportion of cables is within specifications?

4.3.7 . WP . SS The thickness of a conductive coating in micro-

meters has a density function of 600x−2 for 100 μm < x < 120 μm.

a. Determine the mean and variance of the coating

thickness.

b. If the coating costs $0.50 per micrometer of thickness on

each part, what is the average cost of the coating per part?

Exercises for Section 4.4

WP Problem available in WileyPLUS at instructor’s discretion.
WP GO Tutorial Tutoring problem available in WileyPLUS at

instructor’s discretion
SS Student solution available in WileyPLUS.

VS Student video solution available in WileyPLUS.

4.4.1 . WP Suppose X has a continuous uniform distribution over

the interval [−1, 1]. Determine the following:

a. Mean, variance, and standard deviation of X
b. Value for x such that P(−x < X < x) = 0.90

c. Cumulative distribution function

4.4.2 . WP VS The thickness of a flange on an aircraft compo-

nent is uniformly distributed between 0.95 and 1.05 millimeters.

Determine the following:

a. Cumulative distribution function of flange thickness

b. Proportion of flanges that exceeds 1.02 millimeters

c. Thickness exceeded by 90% of the flanges

d. Mean and variance of flange thickness

4.4.3 . WP The thickness of photoresist applied to wafers in semi-

conductor manufacturing at a particular location on the wafer is

uniformly distributed between 0.2050 and 0.2150 micrometers.

Determine the following:

a. Cumulative distribution function of photoresist thick-

ness

b. Proportion of wafers that exceeds 0.2125 micrometers in

photoresist thickness

c. Thickness exceeded by 10% of the wafers

d. Mean and variance of photoresist thickness

4.4.4 An adult can lose or gain two pounds of water in the course

of a day. Assume that the changes in water weight are uniformly

distributed between minus two and plus two pounds in a day. What

is the standard deviation of a person’s weight over a day?

4.4.5 . WP . SS A show is scheduled to start at 9:00 A.M., 9:30

A.M., and 10:00 A.M. Once the show starts, the gate will be closed.

A visitor will arrive at the gate at a time uniformly distributed

between 8:30 A.M. and 10:00 A.M. Determine the following:

a. Cumulative distribution function of the time (in minutes)

between arrival and 8:30 A.M.

b. Mean and variance of the distribution in the previous

part
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c. Probability that a visitor waits less than 10 minutes for

a show
d. Probability that a visitor waits more than 20 minutes for

a show

4.4.6 The volume of a shampoo filled into a container is uni-

formly distributed between 374 and 380 milliliters.

a. What are the mean and standard deviation of the volume

of shampoo?

b. What is the probability that the container is filled with

less than the advertised target of 375 milliliters?

c. What is the volume of shampoo that is exceeded by 95%

of the containers?

d. Every milliliter of shampoo costs the producer $0.002.

Any shampoo more than 375 milliliters in the container is an

extra cost to the producer. What is the mean extra cost?

4.4.7 An e-mail message will arrive at a time uniformly dis-

tributed between 9:00 A.M. and 11:00 A.M. You check e-mail at

9:15 A.M. and every 30 minutes afterward.

a. What is the standard deviation of arrival time (in

minutes)?

b. What is the probability that the message arrives less than

10 minutes before you view it?

c. What is the probability that the message arrives more than

15 minutes before you view it?

4.4.8 An electron emitter produces electron beams with chang-

ing kinetic energy that is uniformly distributed between 3 and

7 joules. Suppose that it is possible to adjust the upper limit of

the kinetic energy (currently set to 7 joules).

a. What is the mean kinetic energy?

b. What is the variance of the kinetic energy?

c. What is the probability that an electron beam has a kinetic

energy of exactly 3.2 joules?

d. What should be the upper limit so that the mean kinetic

energy increases to 8 joules?

e. What should be the upper limit so that the variance of

kinetic energy decreases to 0.75 joules?

Exercises for Section 4.5

WP Problem available in WileyPLUS at instructor’s discretion.
WP GO Tutorial Tutoring problem available in WileyPLUS at

instructor’s discretion
SS Student solution available in WileyPLUS.

VS Student video solution available in WileyPLUS.

4.5.1 . WP Use Appendix Table III to determine the following

probabilities for the standard normal random variable Z:

a. P(Z < 1.32) b. P(Z < 3.0)

c. P(Z > 1.45) d. P(Z > −2.15)

e. P(−2.34 < Z < 1.76)

4.5.2 . WP Assume that Z has a standard normal distribution. Use

Appendix Table III to determine the value for z that solves each

of the following:

a. P(−z < Z < z) = 0.95 b. P(−z < Z < z) = 0.99

c. P(−z < Z < z) = 0.68 d. P(−z < Z < z) = 0.9973

4.5.3 . WP . SS Assume that X is normally distributed with a

mean of 10 and a standard deviation of 2. Determine the follow-

ing:

a. P(Z < 13) b. P(Z > 9)

c. P(6 < X < 14) d. P(2 < X < 4)

e. P(−2 < X < 8)

4.5.4 . WP Assume that X is normally distributed with a mean of

10 and a standard deviation of 2. Determine the value for x that

solves each of the following:

a. P(X > x) = 0.5 b. P(X > x) = 0.95

c. P(x < X < 10) = 0 d. P(−x < X − 10 < x) = 0.95

e. P(−x < X − 10 < x) = 0.99

4.5.5 An article in Knee Surgery Sports Traumatology
Arthroscopy [“Effect of Provider Volume on Resource Utilization

for Surgical Procedures” (2005, Vol. 13, pp. 273–279)] showed a

mean time of 129 minutes and a standard deviation of 14 minutes

for anterior cruciate ligament (ACL) reconstruction surgery

at high-volume hospitals (with more than 300 such surgeries

per year).

a. What is the probability that your ACL surgery at a

high-volume hospital requires a time more than 2 standard

deviations above the mean?

b. What is the probability that your ACL surgery at a

high-volume hospital is completed in less than 100 minutes?

c. The probability of a completed ACL surgery at a high-

volume hospital is equal to 95% at what time?

d. If your surgery requires 199 minutes, what do you con-

clude about the volume of such surgeries at your hospital?

Explain.

4.5.6 . WP The time until recharge for a battery in a laptop com-

puter under common conditions is normally distributed with a

mean of 260 minutes and a standard deviation of 50 minutes.

a. What is the probability that a battery lasts more than four

hours?

b. What are the quartiles (the 25% and 75% values) of bat-

tery life?

c. What value of life in minutes is exceeded with 95%

probability?

4.5.7 . WP . SS VS A driver’s reaction time to visual stimulus

is normally distributed with a mean of 0.4 seconds and a standard

deviation of 0.05 seconds.

a. What is the probability that a reaction requires more than

0.5 seconds?

b. What is the probability that a reaction requires between

0.4 and 0.5 seconds?

c. What reaction time is exceeded 90% of the time?

4.5.8 Cholesterol is a fatty substance that is an important part

of the outer lining (membrane) of cells in the body of animals.

Its normal range for an adult is 120–240 mg/dl. The Food and

Nutrition Institute of the Philippines found that the total choles-

terol level for Filipino adults has a mean of 159.2 mg/dl and
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84.1% of adults have a cholesterol level less than 200 mg/dl

(www.fnri.dost.gov.ph/ ). Suppose that the total cholesterol level

is normally distributed.

a. Determine the standard deviation of this distribution.

b. What are the quartiles (the 25% and 75% percentiles) of

this distribution?

c. What is the value of the cholesterol level that exceeds 90%

of the population?

d. An adult is at moderate risk if cholesterol level is more

than 1 but less than 2 standard deviations above the mean.

What percentage of the population is at moderate risk accord-

ing to this criterion?

e. An adult whose cholesterol level is more than 2 standard

deviations above the mean is thought to be at high risk. What

percentage of the population is at high risk?

f. An adult whose cholesterol level is less than 1 standard

deviation below the mean is thought to be at low risk. What

percentage of the population is at low risk?

4.5.9 In an accelerator center, an experiment needs a 1.41-cm-

thick aluminum cylinder (http://puhep1.princeton.edu/mumu/
target/Solenoid_Coil.pdf ). Suppose that the thickness of a cylin-

der has a normal distribution with a mean of 1.41 cm and a

standard deviation of 0.01 cm.

a. What is the probability that a thickness is greater than

1.42 cm?

b. What thickness is exceeded by 95% of the samples?

c. If the specifications require that the thickness is between

1.39 cm and 1.43 cm, what proportion of the samples meets

specifications?

4.5.10 In 2002, the average height of a woman aged 20–74

years was 64 inches, with an increase of approximately 1 inch

from 1960 (http://usgovinfo.about.com/od/healthcare). Suppose

the height of a woman is normally distributed with a standard

deviation of 2 inches.

a. What is the probability that a randomly selected woman

in this population is between 58 inches and 70 inches?

b. What are the quartiles of this distribution?

c. Determine the height that is symmetric about the mean

that includes 90% of this population.

d. What is the probability that five women selected at ran-

dom from this population all exceed 68 inches?

4.5.11 The life of a semiconductor laser at a constant power is

normally distributed with a mean of 7000 hours and a standard

deviation of 600 hours.

a. What is the probability that a laser fails before 5000

hours?

b. What is the life in hours that 95% of the lasers exceed?

c. If three lasers are used in a product and they are assumed

to fail independently, what is the probability that all three are

still operating after 7000 hours?

4.5.12 .WP GO Tutorial The demand for water use in Phoenix in

2003 hit a high of about 442 million gallons per day on June 27

(http://phoenix.gov/WATER/wtrfacts.html). Water use in the sum-

mer is normally distributed with a mean of 310 million gallons per

day and a standard deviation of 45 million gallons per day. City

reservoirs have a combined storage capacity of nearly 350 million

gallons.

a. What is the probability that a day requires more water

than is stored in city reservoirs?

b. What reservoir capacity is needed so that the probability

that it is exceeded is 1%?

c. What amount of water use is exceeded with 95%

probability?

d. Water is provided to approximately 1.4 million people.

What is the mean daily consumption per person at which

the probability that the demand exceeds the current reser-

voir capacity is 1%? Assume that the standard deviation of

demand remains the same.

4.5.13 . SS The weight of a running shoe is normally dis-

tributed with a mean of 12 ounces and a standard deviation of

0.5 ounce.

a. What is the probability that a shoe weighs more than

13 ounces?

b. What must the standard deviation of weight be in order

for the company to state that 99.9% of its shoes weighs less

than 13 ounces?

c. If the standard deviation remains at 0.5 ounce, what must

the mean weight be for the company to state that 99.9% of its

shoes weighs less than 13 ounces?

4.5.14 The diameter of the dot produced by a printer is normally

distributed with a mean diameter of 0.002 inch and a standard

deviation of 0.0004 inch.

a. What is the probability that the diameter of a dot exceeds

0.0026?

b. What is the probability that a diameter is between 0.0014

and 0.0026?

c. What standard deviation of diameters is needed so that

the probability in part (b) is 0.995?

4.5.15 Assume that a random variable is normally distributed

with a mean of 24 and a standard deviation of 2. Consider an

interval of length one unit that starts at the value a so that the

interval is [a, a + 1]. For what value of a is the probability

of the interval greatest? Does the standard deviation affect that

choice of interval?

4.5.16 The length of stay at a specific emergency department in

Phoenix, Arizona, in 2009 had a mean of 4.6 hours with a stan-

dard deviation of 2.9. Assume that the length of stay is normally

distributed.

a. What is the probability of a length of stay greater than

10 hours?

b. What length of stay is exceeded by 25% of the

visits?

c. From the normally distributed model, what is the proba-

bility of a length of stay less than 0 hours? Comment on the

normally distributed assumption in this example.

4.5.17 An article in Atmospheric Chemistry and Physics
[“Relationship Between Particulate Matter and Childhood

Asthma—Basis of a Future Warning System for Central Phoenix”

(2012, Vol. 12, pp. 2479–2490)] reported the use of PM10

(particulate matter <10 μm diameter) air quality data measured

hourly from sensors in Phoenix, Arizona. The 24-hour (daily)

mean PM10 for a centrally located sensor was 50.9 μg/m3 with a

standard deviation of 25.0. Assume that the daily mean of PM10

is normally distributed.

a. What is the probability of a daily mean of PM10 greater

than 100 μg/m3?

b. What is the probability of a daily mean of PM10 less than

25 μg/m3?
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c. What daily mean of PM10 value is exceeded with proba-

bility 5%?

4.5.18 An article in Microelectronics Reliability [“Advanced

Electronic Prognostics through System Telemetry and Pattern

Recognition Methods” (2007, Vol. 47(12), pp. 1865–1873)] pre-

sented an example of electronic prognosis. The objective was to

detect faults to decrease the system downtime and the number of

unplanned repairs in high-reliability systems. Previous measure-

ments of the power supply indicated that the signal is normally

distributed with a mean of 1.5 V and a standard deviation of

0.02 V.

a. Suppose that lower and upper limits of the predetermined

specifications are 1.45 V and 1.55 V, respectively. What is the

probability that a signal is within these specifications?

b. What is the signal value that is exceeded with 95%

probability?

c. What is the probability that a signal value exceeds the

mean by two or more standard deviations?

4.5.19 A signal in a communication channel is detected when the

voltage is higher than 1.5 volts in absolute value. Assume that the

voltage is normally distributed with a mean of 0. What is the stan-

dard deviation of voltage such that the probability of a false signal

is 0.005?

4.5.20 An article in the Journal of Cardiovascular Magnetic Res-
onance [“Right Ventricular Ejection Fraction Is Better Reflected

by Transverse Rather Than Longitudinal Wall Motion in Pul-

monary Hypertension” (2010, Vol. 12(35)] discussed a study of

the regional right-ventricle transverse wall motion in patients

with pulmonary hypertension (PH). The right-ventricle ejec-

tion fraction (EF) was approximately normally distributed with

a mean and a standard deviation of 36 and 12, respectively, for

PH subjects, and with mean and standard deviation of 56 and 8,

respectively, for control subjects.

a. What is the EF for PH subjects exceeded with 5%

probability?

b. What is the probability that the EF of a control subject is

less than the value in part (a)?

c. Comment on how well the control and PH subjects can

be distinguished by EF measurements.

Exercises for Section 4.6

WP Problem available in WileyPLUS at instructor’s discretion.
WP GO Tutorial Tutoring problem available in WileyPLUS at

instructor’s discretion
SS Student solution available in WileyPLUS.

VS Student video solution available in WileyPLUS.

4.6.1 . WP . SS Suppose that X is a binomial random variable

with n = 200 and p = 0.4. Approximate the following probabili-

ties:

a. P(X ≤ 70) b. P(70 < X < 90) c. P(X = 80)

4.6.2 . WP Suppose that X is a Poisson random variable with

λ = 6.

a. Compute the exact probability that X is less than four.

b. Approximate the probability that X is less than four and

compare to the result in part (a).

c. Approximate the probability that 8 < X < 12.

4.6.3 . WP There were 49.7 million people with some type of

long-lasting condition or disability living in the United States

in 2000. This represented 19.3 percent of the majority of civil-

ians aged five and over (http://factfinder.census.gov). A sample

of 1000 persons is selected at random.

a. Approximate the probability that more than 200 persons

in the sample have a disability.

b. Approximate the probability that between 180 and

300 people in the sample have a disability.

4.6.4 . WP The manufacturing of semiconductor chips produces

2% defective chips. Assume that the chips are independent

and that a lot contains 1000 chips. Approximate the following

probabilities:

a. More than 25 chips are defective.

b. Between 20 and 30 chips are defective.

4.6.5 . VS Hits to a high-volume Web site are assumed to follow

a Poisson distribution with a mean of 10,000 per day. Approxi-

mate each of the following:

a. Probability of more than 20,000 hits in a day.

b. Probability of less than 9900 hits in a day.

c. Value such that the probability that the number of hits in

a day exceeds the value is 0.01.

d. Expected number of days in a year (365 days) that exceed

10,200 hits.

e. Probability that over a year (365 days), each of the more

than 15 days has more than 10,200 hits.

4.6.6 Phoenix water is provided to approximately 1.4 million

people who are served through more than 362,000 accounts

(http://phoenix.gov/WATER/wtrfacts.html). All accounts are

metered and billed monthly. The probability that an account has

an error in a month is 0.001, and accounts can be assumed to be

independent.

a. What are the mean and standard deviation of the number

of account errors each month?

b. Approximate the probability of fewer than 350 errors in

a month.

c. Approximate a value so that the probability that the num-

ber of errors exceeds this value is 0.05.

d. Approximate the probability of more than 400 errors per

month in the next two months. Assume that results between

months are independent.

4.6.7 . SS An article in Atmospheric Chemistry and Physics
[“Relationship Between Particulate Matter and Childhood

Asthma—Basis of a Future Warning System for Central Phoenix”

(2012, Vol. 12, pp. 2479–2490)] linked air quality to childhood

asthma incidents. The study region in central Phoenix, Arizona,
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recorded 10,500 asthma incidents in children in a 21-month

period. Assume that the number of asthma incidents follows a

Poisson distribution.

a. Approximate the probability of more than 550 asthma

incidents in a month.

b. Approximate the probability of 450 to 550 asthma inci-

dents in a month.

c. Approximate the number of asthma incidents exceeded

with probability 5%.

d. If the number of asthma incidents was greater during the

winter than the summer, what would this imply about the

Poisson distribution assumption?

4.6.8 An acticle in Biometrics [“Integrative Analysis of

Transcriptomic and Proteomic Data of Desulfovibrio Vulgaris:
A Nonlinear Model to Predict Abundance of Undetected Pro-

teins” (2009, Vol. 25(15), pp. 1905–1914)] reported that protein

abundance from an operon (a set of biologically related genes)

was less dispersed than from randomly selected genes. In the

research, 1000 sets of genes were randomly constructed, and of

these sets, 75% were more disperse than a specific opteron. If the

probability that a random set is more disperse than this opteron

is truly 0.5, approximate the probability that 750 or more random

sets exceed the opteron. From this result, what do you conclude

about the dispersion in the opteron versus random genes?

4.6.9 A set of 200 independent patients take antiacid medica-

tion at the start of symptoms, and 80 experience moderate to

substantial relief within 90 minutes. Historically, 30% of patients

experience relief within 90 minutes with no medication. If the

medication has no effect, approximate the probability that 80 or

more patients experience relief of symptoms. What can you con-

clude about the effectiveness of this medication?

4.6.10 Cabs pass your workplace according to a Poisson process

with a mean of five cabs per hour.

a. Determine the mean and standard deviation of the num-

ber of cabs per 10-hour day.

b. Approximate the probability that more than 65 cabs pass

within a 10-hour day.

c. Approximate the probability that between 50 and 65 cabs

pass in a 10-hour day.

d. Determine the mean hourly rate so that the probabil-

ity is approximately 0.95 that 100 or more cabs pass in a

10-hour day.

4.6.11 The number of (large) inclusions in cast iron follows a

Poisson distribution with a mean of 2.5 per cubic millimeter.

Approximate the following probabilities:

a. Determine the mean and standard deviation of the num-

ber of inclusions in a cubic centimeter (cc).

b. Approximate the probability that fewer than 2600 in-

clusions occur in a cc.

c. Approximate the probability that more than 2400 in-

clusions occur in a cc.

d. Determine the mean number of inclusions per cubic

millimeter such that the probability is approximately 0.9 that

500 or fewer inclusions occur in a cc.

Exercises for Section 4.7

WP Problem available in WileyPLUS at instructor’s discretion.
WP GO Tutorial Tutoring problem available in WileyPLUS at

instructor’s discretion
SS Student solution available in WileyPLUS.

VS Student video solution available in WileyPLUS.

4.7.1 . WP . SS Suppose that X has an exponential distribution

with mean equal to 10. Determine the following:

a. P(X > 10) b. P(X > 20) c. P(X < 30)

d. Find the value of x such that P(X < x) = 0.95.

4.7.2 . WP Suppose that X has an exponential distribution with a

mean of 10. Determine the following:

a. P(X < 5) b. P(X < 15 | X > 10)

c. Compare the results in parts (a) and (b) and comment on

the role of the lack of memory property.

4.7.3 . WP Suppose that the log-ons to a computer network fol-

low a Poisson process with an average of three counts per minute.

a. What is the mean time between counts?

b. What is the standard deviation of the time between

counts?

c. Determine x such that the probability that at least one

count occurs before time x minutes is 0.95.

4.7.4 . WP The life of automobile voltage regulators has an expo-

nential distribution with a mean life of 6 years. You purchase a

6-year-old automobile with a working voltage regulator and plan

to own it for 6 years.

a. What is the probability that the voltage regulator fails dur-

ing your ownership?

b. If your regulator fails after you own the automobile

3 years and it is replaced, what is the mean time until the

next failure?

4.7.5 . WP . SS VS The time between calls to a plumbing

supply business is exponentially distributed with a mean time

between calls of 15 minutes.

a. What is the probability that there are no calls within a

30-minute interval?

b. What is the probability that at least one call arrives within

a 10-minute interval?

c. What is the probability that the first call arrives within

5 to 10 minutes after opening?

d. Determine the length of an interval of time such that the

probability of at least one call in the interval is 0.90.

4.7.6 The number of stork sightings on a route in South Carolina

follows a Poisson process with a mean of 2.3 per year.

a. What is the mean time between sightings?

b. What is the probability that there are no sightings within

three months (0.25 years)?

c. What is the probability that the time until the first sighting

exceeds six months?

d. What is the probability of no sighting within 3 years?

4.7.7 . WP VS The time between arrivals of taxis at a busy in-

tersection is exponentially distributed with a mean of 10 minutes.
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a. What is the probability that you wait longer than 1 hour

for a taxi?

b. Suppose that you have already been waiting for 1 hour for

a taxi. What is the probability that one arrives within the next

10 minutes?

c. Determine x such that the probability that you wait more

than x minutes is 0.10.

d. Determine x such that the probability that you wait less

than x minutes is 0.90.

e. Determine x such that the probability that you wait less

than x minutes is 0.50.

4.7.8 . WP The distance between major cracks in a highway fol-

lows an exponential distribution with a mean of 5 miles.

a. What is the probability that there are no major cracks in

a 10-mile stretch of the highway?

b. What is the probability that there are two major cracks in

a 10-mile stretch of the highway?

c. What is the standard deviation of the distance between

major cracks?

d. What is the probability that the first major crack occurs

between 12 and 15 miles of the start of inspection?

e. What is the probability that there are no major cracks in

two separate 5-mile stretches of the highway?

f. Given that there are no cracks in the first 5 miles

inspected, what is the probability that there are no major

cracks in the next 10 miles inspected?

4.7.9 According to results from the analysis of chocolate bars

in Chapter 3, the mean number of insect fragments was 14.4 in

225 grams. Assume that the number of fragments follows a Pois-

son distribution.

a. What is the mean number of grams of chocolate until a

fragment is detected?

b. What is the probability that there are no fragments in a

28.35-gram (one-ounce) chocolate bar?

c. Suppose you consume seven one-ounce (28.35-gram)

bars this week. What is the probability of no insect

fragments?

4.7.10 . WP The time between arrivals of small aircraft at a

county airport is exponentially distributed with a mean of

one hour.

a. What is the probability that more than three aircraft arrive

within an hour?

b. If 30 separate one-hour intervals are chosen, what is

the probability that no interval contains more than three

arrivals?

c. Determine the length of an interval of time (in hours) such

that the probability that no arrivals occur during the interval

is 0.10.

d. What is the probability that the first occurrence in which

the time between two arrivals exceeds 1.5 hours is at the third

arrival?

4.7.11 The time between calls to a corporate office is exponen-

tially distributed with a mean of 10 minutes.

a. What is the probability that there are more than three calls

in one-half hour?

b. What is the probability that there are no calls within

one-half hour?

c. Determine x such that the probability that there are no

calls within x hours is 0.01.

d. What is the probability that there are no calls within a

two-hour interval?

e. If four nonoverlapping one-half-hour intervals are

selected, what is the probability that none of these intervals

contains any call?

f. What is the probability that the first occurrence in which

the time between two calls exceeds 10 minutes is at the fifth

call?

4.7.12 . WP Derive the formula for the mean and variance of an

exponential random variable.

4.7.13 . SS If the random variable X has an exponential distri-

bution with mean θ, determine the following:

a. P(X > θ) b. P(X > 2θ) c. P(X > 3θ)

d. How do the results depend on θ?

4.7.14 The length of stay at a specific emergency department in

a hospital in Phoenix, Arizona, had a mean of 4.6 hours. Assume

that the length of stay is exponentially distributed.

a. What is the standard deviation of the length of stay?

b. What is the probability of a length of stay of more than

10 hours?

c. What length of stay is exceeded by 25% of the visits?

4.7.15 An article in the Journal of the National Cancer Institute
[“Breast Cancer Screening Policies in Developing Countries: A

Cost-Effectiveness Analysis for India” (2008, Vol. 100(18), pp.

1290–1300)] presented a screening analysis model of breast can-

cer based on data from India. In this analysis, the time that a

breast cancer case stays in a preclinical state is modeled to be

exponentially distributed with a mean depending on the state. For

example, the time that a cancer case stays in the state of T1C

(tumor size of 11–20 mm) is exponentially distributed with a

mean of 1.48 years.

a. What is the probability that a breast cancer case in India

stays in the state of T1C for more than 2.0 years?

b. What is the proportion of breast cancer cases in India that

spend at least 1.0 year in the state of T1C?

c. Assume that a person in India is diagnosed to be in the

state of T1C. What is the probability that the patient is in the

same state six months later?

4.7.16 An article in Ad Hoc Networks [“Underwater Acous-

tic Sensor Networks: Target Size Detection and Performance

Analysis” (2009, Vol. 7(4), pp. 803–808)] discussed an underwa-

ter acoustic sensor network to monitor a given area in an ocean.

The network does not use cables and does not interfere with ship-

ping activities. The arrival of clusters of signals generated by the

same pulse is taken as a Poisson arrival process with a mean of

λ per unit time. Suppose that for a specific underwater acoustic

sensor network, this Poisson process has a rate of 2.5 arrivals per

unit time.

a. What is the mean time between 2.0 consecutive arrivals?

b. What is the probability that there are no arrivals within

0.3 time units?

c. What is the probability that the time until the first arrival

exceeds 1.0 unit of time?

d. Determine the mean arrival rate such that the probability

is 0.9 that there are no arrivals in 0.3 time units.

4.7.17 An article in Vaccine [“Modeling the Effects of Influenza

Vaccination of Health Care Workers in Hospital Departments”

(2009, Vol. 27(44), pp. 6261–6267)] considered the immuniza-

tion of healthcare workers to reduce the hazard rate of influenza
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virus infection for patients in regular hospital departments. In this

analysis, each patient’s length of stay in the department is taken

as exponentially distributed with a mean of 7.0 days.

a. What is the probability that a patient stays in a hospital

for less than 5.5 days?

b. What is the probability that a patient stays in a hospital

for more than 10.0 days if the patient has currently stayed for

7.0 days?

c. Determine the mean length of stay such that the probabil-

ity is 0.9 that a patient stays in a hospital less than 6.0 days.

Exercises for Section 4.8

WP Problem available in WileyPLUS at instructor’s discretion.
WP GO Tutorial Tutoring problem available in WileyPLUS at

instructor’s discretion
SS Student solution available in WileyPLUS.

VS Student video solution available in WileyPLUS.

4.8.1 . WP . SS Use the properties of the gamma function to

evaluate the following:

a. Γ(6) b. Γ(5/2) c. Γ(9/2)

4.8.2 . WP Given the probability density function f (x) =
0.013x2e−0.01x/Γ(3), determine the mean and variance of the

distribution.

4.8.3 . WP Calls to a telephone system follow a Poisson process

with a mean of five calls per minute.

a. What is the name applied to the distribution and param-

eter values of the time until the 10th call?

b. What is the mean time until the 10th call?

c. What is the mean time between the 9th and 10th calls?

d. What is the probability that exactly four calls occur within

1 minute?

e. If 10 separate 1-minute intervals are chosen, what is the

probability that all intervals contain more than two calls?

4.8.4 . WP Raw materials are studied for contamination. Suppose

that the number of particles of contamination per pound of mate-

rial is a Poisson random variable with a mean of 0.01 particle per

pound.

a. What is the expected number of pounds of material

required to obtain 15 particles of contamination?

b. What is the standard deviation of the pounds of materials

required to obtain 15 particles of contamination?

4.8.5 . WP The time between arrivals of customers at an auto-

matic teller machine is an exponential random variable with a

mean of 5 minutes.

a. What is the probability that more than three customers

arrive in 10 minutes?

b. What is the probability that the time until the fifth cus-

tomer arrives is less than 15 minutes?

4.8.6 . WP In a data communication system, several messages

that arrive at a node are bundled into a packet before they are

transmitted over the network. Assume that the messages arrive at

the node according to a Poisson process with λ = 30 messages per

minute. Five messages are used to form a packet.

a. What is the mean time until a packet is formed, that is,

until five messages have arrived at the node?

b. What is the standard deviation of the time until a packet

is formed?

c. What is the probability that a packet is formed in less than

10 seconds?

d. What is the probability that a packet is formed in less than

5 seconds?

4.8.7 Patients arrive at a hospital emergency department accord-

ing to a Poisson process with a mean of 6.5 per hour.

a. What is the mean time until the 10th arrival?

b. What is the probability that more than 20 minutes is

required for the third arrival?

4.8.8 Use integration by parts to show that Γ(r) = (r − 1)

Γ(r − 1).

4.8.9 . SS An article in Sensors and Actuators A: Physical
[“Characterization and Simulation of Avalanche PhotoDiodes for

Next-Generation Colliders” (2011, Vol. 172(1), pp. 181–188)]

considered an avalanche photodiode (APD) to detect charged

particles in a photo. The number of arrivals in each detection

window was modeled with a Poisson distribution with a mean

depending on the intensity of beam. For one beam intensity, the

number of electrons arriving at an APD follows a Poisson dis-

tribution with a mean of 1.74 particles per detection window of

200 nanoseconds.

a. What is the mean and variance of the time for 100

arrivals?

b. What is the probability that the time until the fifth particle

arrives is greater than 1.0 nanosecond?

4.8.10 The total service time of a multistep manufacturing opera-

tion has a gamma distribution with mean 18 minutes and standard

deviation 6.

a. Determine the parameters λ and r of the distribution.

b. Assume that each step has the same distribution for ser-

vice time. What distribution for each step and how many steps

produce this gamma distribution of total service time?

4.8.11 An article in Mathematical Biosciences [“Influence of

Delayed Viral Production on Viral Dynamics in HIV-1 Infected

Patients” (1998, Vol. 152(2), pp. 143–163)] considered the time

delay between the initial infection by immunodeficiency virus

type 1 (HIV-1) and the formation of productively infected cells. In

the simulation model, the time delay is approximated by a gamma

distribution with parameters r = 4 and 1/λ = 0.25 days. Determine

the following:

a. Mean and variance of time delay

b. Probability that a time delay is more than half a day

c. Probability that a time delay is between one-half and

one day
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Exercises for Section 4.9

WP Problem available in WileyPLUS at instructor’s discretion.
WP GO Tutorial Tutoring problem available in WileyPLUS at

instructor’s discretion
SS Student solution available in WileyPLUS.

VS Student video solution available in WileyPLUS.

4.9.1 . WP If X is a Weibull random variable with β = 1 and

δ = 1000, what is another name for the distribution of X, and

what is the mean of X?

4.9.2 . WP Suppose that X has a Weibull distribution with

β = 0.2 and δ = 100 hours. Determine the following:

a. P(X < 10,000) b. P(X > 5000)

c. E(X) and V(X)

4.9.3 . WP . SS The life (in hours) of a magnetic resonance

imaging machine (MRI) is modeled by a Weibull distribution

with parameters β = 2 and δ = 500 hours. Determine the

following:

a. Mean life of the MRI

b. Variance of the life of the MRI

c. Probability that the MRI fails before 250 hours.

4.9.4 . WP VS Assume that the life of a roller bearing follows a

Weibull distribution with parameters β = 2 and δ = 10,000 hours.

a. Determine the probability that a bearing lasts at least

8000 hours.

b. Determine the mean time until failure of a bearing.

c. If 10 bearings are in use and failures occur independently,

what is the probability that all 10 bearings last at least 8000

hours?

4.9.5 An article in the Journal of Geophysical Research
[“Spatial and Temporal Distributions of U.S. Winds and Wind

Power at 80 m Derived from Measurements” (2003, Vol. 108)]

considered wind speed at stations throughout the United States.

For a station at Amarillo, Texas, the mean wind speed at 80 m (the

hub height of large wind turbines) was 10.3 m/s with a standard

deviation of 4.9 m/s. Determine the shape and scale parameters

of a Weibull distribution with these properties.

4.9.6 . WP An article in the Journal of the Indian Geophysi-
cal Union titled “Weibull and Gamma Distributions for Wave

Parameter Predictions” (2005, Vol. 9, pp. 55–64) described the

use of the Weibull distribution to model ocean wave heights.

Assume that the mean wave height at the observation station is

2.5 m and the shape parameter equals 2. Determine the standard

deviation of wave height.

4.9.7 Suppose that the lifetime of a component (in hours) is

modeled with a Weibull distribution with β = 2 and δ = 4000.

Determine the following in parts (a) and (b):

a. P(X > 5000)

b. P(X > 8000 | X > 3000)

c. Comment on the probabilities in the previous parts com-

pared to the results for an exponential distribution.

4.9.8 Suppose that X has a Weibull distribution with β = 2 and

δ = 8.6. Determine the following:

a. P(X < 10) b. P(X > 9) c. P(8 < X < 11)

d. Value for x such that P(X > x) = 0.9

4.9.9 . SS An article in Proceedings of the 33rd International
ACM SIGIR Conference on Research and Development in Infor-
mation Retrieval [“Understanding Web Browsing Behaviors

Through Weibull Analysis of Dwell Time” (2010, pp. 379–386)]

proposed that a Weibull distribution can be used to model Web

page dwell time (the length of time a Web visitor spends on a Web

page). For a specific Web page, the shape and scale parameters are

1 and 300 seconds, respectively. Determine the following:

a. Mean and variance of dwell time

b. Probability that a Web user spends more than 4 minutes

on this Web page

c. Dwell time exceeded with probability 0.25

4.9.10 An article in Electronic Journal of Applied Statisti-
cal Analysis [“Survival Analysis of Dialysis Patients Under

Parametric and Non-Parametric Approaches” (2012, Vol. 5(2),

pp. 271–288)] modeled the survival time of dialysis patients with

chronic kidney disease with a Weibull distribution. The mean and

standard deviation of survival time were 16.01 and 11.66 months,

respectively. Determine the following:

a. Shape and scale parameters of this Weibull distribution

b. Probability that survival time is more than 48 months

c. Survival time exceeded with 90% probability

4.9.11 An article in IEEE Transactions on Dielectrics and
Electrical Insulation [“Statistical Analysis of the AC Breakdown

Voltages of Ester Based Transformer Oils” (2008, Vol. 15(4),

pp. 1044–1050)] used Weibull distributions to model the break-

down voltage of insulators. The breakdown voltage is the

minimum voltage at which the insulator conducts. For 1 mm of

natural ester, the 1% probability of breakdown voltage is approx-

imately 26 kV, and the 7% probability is approximately 31.6 kV.

Determine the parameters δ and β of the Weibull distribution.

4.9.12 An article in Financial Markets Institutions and Instru-
ments [“Pricing Reinsurance Contracts on FDIC Losses” (2008,

Vol. 17(3), pp. 225–247)] modeled average annual losses (in

billions of dollars) of the Federal Deposit Insurance Corporation

(FDIC) with a Weibull distribution with parameters δ = 1.9317

and β = 0.8472. Determine the following:

a. Probability of a loss greater than $2 billion

b. Probability of a loss between $2 and $4 billion

c. Value exceeded with probability 0.05

d. Mean and standard deviation of loss
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Exercises for Section 4.10

WP Problem available in WileyPLUS at instructor’s discretion.
WP GO Tutorial Tutoring problem available in WileyPLUS at

instructor’s discretion
SS Student solution available in WileyPLUS.

VS Student video solution available in WileyPLUS.

4.10.1 . WP Suppose that X has a lognormal distribution with

parameters θ = 5 and ω2 = 9. Determine the following:

a. P(X < 13,300)

b. Value for x such that P(X ≤ x) = 0.95

c. Mean and variance of X
4.10.2 . WP Suppose that X has a lognormal distribution with

parameters θ = 2 and ω2 = 4. Determine the following in parts

(a) and (b):

a. P(X < 500)

b. Conditional probability that X < 1500 given that

X > 1000

c. What does the difference between the probabilities in

parts (a) and (b) imply about lifetimes of lognormal random

variables?

4.10.3 . WP . SS VS The length of time (in seconds) that a user

views a page on a Web site before moving to another page is a

lognormal random variable with parameters θ = 0.5 and ω2 = 1.

a. What is the probability that a page is viewed for more

than 10 seconds?

b. By what length of time have 50% of the users moved to

another page?

c. What are the mean and standard deviation of the time

until a user moves from the page?

4.10.4 . WP Suppose that X has a lognormal distribution and that

the mean and variance of X are 100 and 85,000, respectively.

Determine the parameters θ and ω2 of the lognormal distribution.

[Hint: Define u = exp(θ) and v = exp(ω2) and write two equations

in terms of u and v.]

4.10.5 . WP The lifetime of a semiconductor laser has a lognor-

mal distribution, and it is known that the mean and standard devi-

ation of lifetime are 10,000 and 20,000, respectively.

a. Calculate the parameters of the lognormal distribution.

b. Determine the probability that a lifetime exceeds 10,000

hours.

c. Determine the lifetime that is exceeded by 90% of lasers.

4.10.6 . WP An article in Health and Population: Perspectives
and Issues (2000, Vol. 23, pp. 28–36) used the lognormal

distribution to model blood pressure in humans. The mean sys-

tolic blood pressure (SBP) in males age 17 was 120.87 mm Hg. If

the coefficient of variation (100% × Standard deviation/mean) is

9%, what are the parameter values of the lognormal distribution?

4.10.7 Suppose that the length of stay (in hours) at a hospital

emergency department is modeled with a lognormal random vari-

able X with θ = 1.5 and ω = 0.4. Determine the following in

parts (a) and (b):

a. Mean and variance

b. P(X < 8)

c. Comment on the difference between the probability

P(X < 0) calculated from this lognormal distribution and a

normal distribution with the same mean and variance.

4.10.8 An article in Journal of Hydrology [“Use of a Lognor-

mal Distribution Model for Estimating Soil Water Retention

Curves from Particle-Size Distribution Data” (2006, Vol. 323(1),

pp. 325–334)] considered a lognormal distribution model to esti-

mate water retention curves for a range of soil textures. The

particle-size distribution (in centimeters) was modeled as a log-

normal random variable X with θ = −3.8 and ω = 0.7. Determine

the following:

a. P(X < 0.02)

b. Value for x such that P(X ≤ x) = 0.95

c. Mean and variance of X
4.10.9 . SS An article in Applied Mathematics and Computation
[“Confidence Intervals for Steady State Availability of a System

with Exponential Operating Time and Lognormal Repair Time”

(2003, Vol. 137(2), pp. 499–509)] considered the long-run avail-

ability of a system with an assumed lognormal distribution for

repair time. In a given example, repair time follows a lognormal

distribution with θ = ω = 1. Determine the following:

a. Probability that repair time is greater than five time

units

b. Conditional probability that a repair time is less than eight

time units given that it is more than five time units

c. Mean and variance of repair time

4.10.10 An article in Chemosphere [“Statistical Evaluations

Reflecting the Skewness in the Distribution of TCDD Levels

in Human Adipose Tissue” (1987, Vol. 16(8), pp. 2135–2140)]

concluded that the levels of 2,3,7,8-TCDD (colorless persis-

tent environmental contaminants with no distinguishable odor

at room temperature) in human adipose tissue has a lognormal

distribution. The mean and variance of this lognormal distribu-

tion in the United States are 8 and 21, respectively. Let X denote

this lognormal random variable. Determine the following:

a. P(2000 < X < 2500)

b. Value exceeded with probability 10%

c. Mean and variance of X
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Exercises for Section 4.11

WP Problem available in WileyPLUS at instructor’s discretion.
WP GO Tutorial Tutoring problem available in WileyPLUS at

instructor’s discretion
SS Student solution available in WileyPLUS.

VS Student video solution available in WileyPLUS.

4.11.1 Suppose that x has a beta distribution with parameters

α = 2.5 and β = 1. Determine the following:

a. P(X < 0.25) b. P(0.25 < X < 0.75)

c. Mean and variance

4.11.2 Suppose that X has a beta distribution with parameters

α = 2.5 and β = 2.5. Sketch an approximate graph of the prob-

ability density function. Is the density symmetric?

4.11.3 A European standard value for a low-emission window

glazing uses 0.59 as the proportion of solar energy that enters

a room. Suppose that the distribution of the proportion of solar

energy that enters a room is a beta random variable.

a. Calculate the mode, mean, and variance of the distribu-

tion for α = 3 and β = 1.4.

b. Calculate the mode, mean, and variance of the distribu-

tion for α = 10 and β = 6.25.

c. Comment on the difference in dispersion in the distribu-

tion from parts (a) and (b).

4.11.4 The length of stay at a hospital emergency department is

the sum of the waiting and service times. Let X denote the pro-

portion of time spent waiting and assume a beta distribution with

α = 10 and β = 1. Determine the following:

a. P(X > 0.9) b. P(X < 0.5)

c. Mean and variance

4.11.5 . SS The maximum time to complete a task in a project

is 2.5 days. Suppose that the completion time as a proportion of

this maximum is a beta random variable with α = 2 and β = 3.

What is the probability that the task requires more than two days

to complete?

4.11.6 An allele is an alternate form of a gene, and the pro-

portion of alleles in a population is of interest in genetics. An

article in BMC Genetics [“Calculating Expected DNA Remnants

from Ancient Founding Events in Human Population Genetics”

(2008, Vol. 9, p. 66)] used a beta distribution with mean 0.3 and

standard deviation 0.17 to model initial allele proportions in a

genetic simulation. Determine the parameters α and β for this beta

distribution.

4.11.7 Suppose that the construction of a solar power station is

initiated. The project’s completion time has not been set due to

uncertainties in financial resources. The completion time for the

first phase is modeled with a beta distribution and the minimum,

most likely (mode), and maximum completion times for the

first phase are 1.0, 1.25, and 2.0 years, respectively. Also, the

mean time is assumed to equal μ = 1 + 4(1.25) + 2/6 = 1.333.

Determine the following in parts (a) and (b):

a. Parameters α and β of the beta distribution.

b. Standard deviation of the distribution.

c. Sketch the probability density function.

Supplemental Exercises for Chapter 4

WP Problem available in WileyPLUS at instructor’s discretion.
WP GO Tutorial Tutoring problem available in WileyPLUS at

instructor’s discretion
SS Student solution available in WileyPLUS.

VS Student video solution available in WileyPLUS.

4.S8 . WP The probability density function of the time it takes a

hematology cell counter to complete a test on a blood sample is

f (x) = 0.04 for 50 < x < 75 seconds.

a. What percentage of tests requires more than 70 seconds

to complete?

b. What percentage of tests requires less than one minute to

complete?

c. Determine the mean and variance of the time to complete

a test on a sample.

4.S9 . WP The time it takes a cell to divide (called mitosis) is nor-

mally distributed with an average time of 1 hour and a standard

deviation of 5 minutes.

a. What is the probability that a cell divides in less than

45 minutes?

b. What is the probability that it takes a cell more than

65 minutes to divide?

c. By what time have approximately 99% of all cells com-

pleted mitosis?

4.S10 . WP The sick-leave time of employees in a firm in a month

is normally distributed with a mean of 100 hours and a standard

deviation of 20 hours.

a. What is the probability that the sick-leave time for next

month will be between 50 and 80 hours?

b. How much time should be budgeted for sick leave if the

budgeted amount should be exceeded with a probability of

only 10%?

4.S11 . SS The percentage of people exposed to a bacteria who

become ill is 20%. Assume that people are independent. Assume

that 1000 people are exposed to the bacteria. Approximate each

of the following:

a. Probability that more than 225 become ill

b. Probability that between 175 and 225 become ill
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c. Value such that the probability that the number of people

who become ill exceeds the value is 0.01

4.S12 . WP The time to failure (in hours) for a laser in a cytom-

etry machine is modeled by an exponential distribution with

λ = 0.00004. What is the probability that the time until failure is

a. At least 20,000 hours?

b. At most 30,000 hours?

c. Between 20,000 and 30,000 hours?

4.S13 . WP When a bus service reduces fares, a particular trip

from New York City to Albany, New York, is very popular.

A small bus can carry four passengers. The time between calls

for tickets is exponentially distributed with a mean of 30 minutes.

Assume that each caller orders one ticket. What is the probability

that the bus is filled in less than three hours from the time of the

fare reduction?

4.S14 The size of silver particles in a photographic emulsion is

known to have a log normal distribution with a mean of 0.001 mm

and a standard deviation of 0.002 mm.

a. Determine the parameter values for the lognormal

distribution.

b. What is the probability of a particle size greater than

0.005 mm?

4.S15 The life of a recirculating pump follows a Weibull distri-

bution with parameters β = 2 and δ = 700 hours. Determine for

parts (a) and (b):

a. Mean life of a pump

b. Variance of the life of a pump

c. What is the probability that a pump will last longer than

its mean?

4.S16 . WP The time between calls is exponentially distributed

with a mean time between calls of 10 minutes.

a. What is the probability that the time until the first call is

less than five minutes?

b. What is the probability that the time until the first call is

between 5 and 15 minutes?

c. Determine the length of an interval of time such that the

probability of at least one call in the interval is 0.90.

d. If there has not been a call in 10 minutes, what is the

probability that the time until the next call is less than

5 minutes?

e. What is the probability that there are no calls in the inter-

vals from 10:00 to 10:05, from 11:30 to 11:35, and from 2:00

to 2:05?

f. What is the probability that the time until the third call is

greater than 30 minutes?

g. What is the mean time until the fifth call?

4.S17 Suppose that f (x) = 0.5x − 1 for 2 < x < 4. Determine the

following:

a. P(X < 2.5) b. P(X > 3) c. P(2.5 < X < 3.5)

d. Determine the cumulative distribution function of the

random variable.

e. Determine the mean and variance of the random variable.

4.S18 . WP Suppose that X has a lognormal distribution with

parameters θ = 0 and ω2 = 4. Determine the following:

a. P(10 < X < 50)

b. Value for x such that P(X < x) = 0.05

c. Mean and variance of X

4.S19 . WP . SS Suppose that X has a lognormal distribution and

that the mean and variance of X are 50 and 4000, respectively.

Determine the following:

a. Parameters θ and ω2 of the lognormal distribution

b. Probability that X is less than 150

4.S20 Asbestos fibers in a dust sample are identified by an

electron microscope after sample preparation. Suppose that the

number of fibers is a Poisson random variable and the mean

number of fibers per square centimeter of surface dust is 100.

A sample of 800 square centimeters of dust is analyzed. Assume

that a particular grid cell under the microscope represents

1/160,000 of the sample.

a. What is the probability that at least one fiber is visible in

the grid cell?

b. What is the mean of the number of grid cells that need to

be viewed to observe 10 that contain fibers?

c. What is the standard deviation of the number of grid cells

that need to be viewed to observe 10 that contain fibers?

4.S21 The waiting time for service at a hospital emergency

department follows an exponential distribution with a mean of

three hours. Determine the following:

a. Waiting time is greater than four hours

b. Waiting time is greater than six hours given that you have

already waited two hours

c. Value x (in hours) exceeded with probability 0.25

4.S22 . WP The diameter of the dot produced by a printer is nor-

mally distributed with a mean diameter of 0.002 inch.

a. Suppose that the specifications require the dot diameter

to be between 0.0014 and 0.0026 inch. If the probability that

a dot meets specifications is to be 0.9973, what standard devi-

ation is needed?

b. Assume that the standard deviation of the size of a dot is

0.0004 inch. If the probability that a dot meets specifications

is to be 0.9973, what specifications are needed? Assume that

the specifications are to be chosen symmetrically around the

mean of 0.002.

4.S23 . WP A square inch of carpeting contains 50 carpet fibers.

The probability of a damaged fiber is 0.0001. Assume that the

damaged fibers occur independently.

a. Approximate the probability of one or more damaged

fibers in one square yard of carpeting.

b. Approximate the probability of four or more damaged

fibers in one square yard of carpeting.

4.S24 An airline makes 200 reservations for a flight that holds

185 passengers. The probability that a passenger arrives for the

flight is 0.9, and the passengers are assumed to be independent.

a. Approximate the probability that all the passengers who

arrive can be seated.

b. Approximate the probability that the flight has empty

seats.

c. Approximate the number of reservations that the airline

should allow so that the probability that everyone who arrives

can be seated is 0.95. [Hint: Successively try values for the

number of reservations.]

4.S25 Suppose that the construction of a solar power station

is initiated. The project’s completion time has not been set

due to uncertainties in financial resources. The proportion of
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completion within one year has a beta distribution with param-

eters α = 1 and β = 5. Determine the following:

a. Mean and variance of the proportion completed within

one year

b. Probability that more than half of the project is completed

within one year

c. Proportion of the project that is completed within one

year with probability 0.9

4.S26 An article in IEEE Journal on Selected Areas in Commu-
nications [“Impulse Response Modeling of Indoor Radio Propa-

gation Channels” (1993, Vol. 11(7), pp. 967–978)] indicated that

the successful design of indoor communication systems requires

characterization of radio propagation. The distribution of the

amplitude of individual multipath components was well mod-

eled with a lognormal distribution. For one test configuration

(with 100 ns delays), the mean amplitude was −24 dB (from

the peak) with a standard deviation of 4.1 dB. The amplitude

decreased nearly linearly with increased excess delay. Determine

the following:

a. Probability the amplitude exceeds −20 dB

b. Amplitude exceeded with probability 0.05

4.S27 . SS Consider the regional right ventricle transverse wall

motion in patients with pulmonary hypertension (PH). The

right-ventricle ejection fraction (EF) is approximately normally

distributed with a standard deviation of 12 for PH subjects, and

with mean and standard deviation of 56 and 8, respectively, for

control subjects.

a. What is the EF for control subjects exceeded with 99%

probability?

b. What is the mean for PH subjects such that the probabil-

ity is 1% that the EF of a PH subject is greater than the value

in part (a)?

c. Comment on how well the control and PH subjects [with

the mean determined in part (b)] can be distinguished by EF

measurements.

4.S28 Provide approximate sketches for beta probability density

functions with the following parameters. Comment on any sym-

metries and show any peaks in the probability density functions

in the sketches.

a. α = β < 1 b. α = β = 1 c. α = β > 1

4.S29 Among homeowners in a metropolitan area, 25% recycle

paper each week. A waste management company services 10,000

homeowners (assumed independent). Approximate the following

probabilities:

a. More than 2600 recycle paper in a week

b. Between 2400 and 2600 recycle paper in a week

c. Number of customers who recycle paper in a week that is

exceeded with probability approximately 0.05

4.S30 An article in Journal of Theoretical Biology [“Computer

Model of Growth Cone Behavior and Neuronal Morphogene-

sis” (1995, Vol. 174(4), pp. 381–389)] developed a model for

neuronal morphogenesis in which neuronal growth cones have a

significant function in the development of the nervous system.

This model assumes that the time interval between filopodium

formation (a process in growth cone behavior) is exponentially

distributed with a mean of 6 time units. Determine the following:

a. Probability formation requires more than nine time units

b. Probability formation occurs within six to seven time

units

c. Formation time exceeded with probability 0.9

4.S31 An article in Electric Power Systems Research [“On

the Self-Scheduling of a Power Producer in Uncertain Trading

Environments” (2008, Vol. 78(3), pp. 311–317)] considered a

self-scheduling approach for a power producer. In addition to

price and forced outages, another uncertainty was due to genera-

tion reallocations to manage congestions. Generation reallocation

was modeled as 110X − 60 (with range [−60,50] MW/h) where

X has a beta distribution with parameters α = 3.2 and β = 2.8.

Determine the mean and variance of generation reallocation.

4.S32 An article in Electronic Journal of Applied Statistical
Analysis [“Survival Analysis of Acute Myocardial Infarction

Patients Using Non-Parametric and Parametric Approaches”

(2009, Vol. 2(1), pp. 22–36)] described the use of a Weibull distri-

bution to model the survival time of acute myocardial infarction

(AMI) patients in a hospital-based retrospective study. The shape

and scale parameters for the Weibull distribution in the model

were 1.16 and 0.25 years, respectively. Determine the following:

a. Mean and standard deviation of survival time

b. Probability that a patient survives more than a year

c. Survival time exceeded with probability 0.9

Chapter 5 Exercises

Exercises for Section 5.1

WP Problem available in WileyPLUS at instructor’s discretion.
WP GO Tutorial Tutoring problem available in WileyPLUS at

instructor’s discretion
SS Student solution available in WileyPLUS.

VS Student video solution available in WileyPLUS.

5.1.1 . WP Show that the following function satisfies the

properties of a joint probability mass function.

x y f XY(x, y)
1.0 1 1/4

1.5 2 1/8

1.5 3 1/4

2.5 4 1/4

3.0 5 1/8
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Determine the following:

a. P(X < 2.5,Y < 3) b. P(X < 2.5)
c. P(Y < 3) d. P(X > 1.8,Y > 4.7)
e. E(X),E(Y),V(X),V(Y)
f. Marginal probability distribution of X

5.1.2 . WP Show that the following function satisfies the proper-

ties of a joint probability mass function.

x y fXY(x, y)
−1.0 −2 1/8

−0.5 −1 1/4

0.5 1 1/2

1.0 2 1/8

Determine the following:

a. P(X < 0.5,Y < 1.5) b. P(X < 0.5)
c. P(Y < 1.5) d. P(X > 0.25,Y < 4.5)
e. E(X), E(Y), V(X), V(Y)
f. Marginal probability distribution of X

5.1.3 . WP . SS VS In the transmission of digital information,

the probability that a bit has high, moderate, and low distor-

tion is 0.01, 0.04, and 0.95, respectively. Suppose that three bits

are transmitted and that the amount of distortion of each bit is

assumed to be independent. Let X and Y denote the number of bits

with high and moderate distortion out of the three, respectively.

Determine:

a. fXY (x, y) b. fX(x) c. E(X)
5.1.4 . WP A small-business Web site contains 100 pages and

60%, 30%, and 10% of the pages contain low, moderate, and high

graphic content, respectively. A sample of four pages is selected

randomly without replacement, and X and Y denote the number

of pages in the sample with moderate and high graphics output.

Determine:

a. fXY (x, y) b. fX(x) c. E(X)

5.1.5 . WP A manufacturing company employs two devices to

inspect output for quality control purposes. The first device is

able to accurately detect 99.3% of the defective items it receives,

whereas the second is able to do so in 99.7% of the cases. Assume

that four defective items are produced and sent out for inspection.

Let X and Y denote the number of items that will be identified as

defective by inspecting devices 1 and 2, respectively. Assume that

the devices are independent. Determine:

a. fXY (x, y) b. fX(x) c. E(X)

5.1.6 . WP An article in the Journal of Database Management
[“Experimental Study of a Self-Tuning Algorithm for DBMS

Buffer Pools” (2005, Vol. 16, pp. 1–20)] provided the workload

used in the TPC-C OLTP (Transaction Processing Performance

Council’s Version C On-Line Transaction Processing) bench-

mark, which simulates a typical order entry application. See the

table at the bottom of the page. The frequency of each type of

transaction (in the second column) can be used as the percentage

of each type of transaction. Let X and Y denote the average num-

ber of selects and updates operations, respectively, required for

each type transaction. Determine the following:

a. P(X < 5) b. E(X)
5.1.7 An engineering statistics class has 40 students; 60% are

electrical engineering majors, 10% are industrial engineering

majors, and 30% are mechanical engineering majors. A sample

of four students is selected randomly without replacement for

a project team. Let X and Y denote the number of industrial

and mechanical engineering majors in the sample, respectively.

Determine the following:

a. fXY (x, y) b. fX(x) c. E(X)
5.1.8 . WP Determine the value of c that makes the function

f (x, y) = c(x + y) a joint probability density function over the

range 0 < x < 3 and x < y < x + 2. Determine the following:

a. P(X < 1,Y < 2) b. P(1 < X < 2) c. P(Y > 1)
d. P(X < 2,Y < 2) e. E(X) f. V(X)
g. Marginal probability distribution of X

5.1.9 . WP . SS VS Determine the value of c such that the

function f (x, y) = cxy for 0 < x < 3 and 0 < y < 3 satisfies the

properties of a joint probability density function. Determine the

following:

a. P(X < 2,Y < 3) b. P(X < 2.5)
c. P(1 < Y < 2.5) d. P(X > 1.8, 1 < Y < 2.5)
e. E(X) f. P(X < 0,Y < 4)
g. Marginal probability distribution of X

5.1.10 . VS Determine the value of c that makes the function

f (x, y) = ce−2x−3y a joint probability density function over the

range 0 < x and x < y. Determine the following:

a. P(X < 1,Y < 2) b. P(1 < X < 2)
c. P(Y > 3) d. P(X < 2,Y < 2)
e. E(X) f. E(Y)
g. Marginal probability distribution of X

Average Frequencies and Operations in TPC-C

Transaction Frequency Selects Updates Inserts Deletes Non-unique Selects Joins
New order 43 23.0 11 12 0 0 0

Payment 44 4.2 3 1 0 0.6 0

Order status 4 11.4 0 0 0 0.6 0

Delivery 5 130.0 120 0 10 0 0

Stock level 4 0 0 0 0 0 1
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Exercises for Section 5.2

WP Problem available in WileyPLUS at instructor’s discretion.
WP GO Tutorial Tutoring problem available in WileyPLUS at

instructor’s discretion
SS Student solution available in WileyPLUS.

VS Student video solution available in WileyPLUS.

5.2.1 The conditional probability distribution of Y given X = x is

fY|x(y) = xe−xy for y > 0, and the marginal probability distribution

of X is a continuous uniform distribution over 0 to 10.

a. Graph fY|x(y) = xe−xy for y > 0 for several values of x.

Determine:

b. P(Y < 2 | X = 2) c. E(Y | X = 2)
d. E(Y | X = x) e. fXY (x, y)
f. fY (y)

5.2.2 . WP Consider the joint distribution in Exercise 5.1.1.

Determine the following:

a. Conditional probability distribution of Y given that

X = 1.5

b. Conditional probability distribution of X that Y = 2

c. E(Y | X = 1.5)
d. Are X and Y independent?

5.2.3 . WP Consider the joint distribution in Exercise 5.1.4.

Determine the following:

a. fY | 3(y) b. E(Y | X = 3) c. V(Y | X = 3)
5.2.4 . WP A manufacturer of electroluminescent lamps knows

that the amount of luminescent ink deposited on one of its prod-

ucts is normally distributed with a mean of 1.2 grams and a stan-

dard deviation of 0.03 gram. Any lamp with less than 1.14 grams

of luminescent ink fails to meet customers’ specifications. A ran-

dom sample of 25 lamps is collected and the mass of luminescent

ink on each is measured.

a. What is the probability that at least one lamp fails to meet

specifications?

b. What is the probability that five or fewer lamps fail to

meet specifications?

c. What is the probability that all lamps conform to

specifications?

d. Why is the joint probability distribution of the 25 lamps

not needed to answer the previous questions?

5.2.5 . SS The lengths of the minor and major axes are used

to summarize dust particles that are approximately elliptical in

shape. Let X and Y denote the lengths of the minor and major axes

(in micrometers), respectively. Suppose that fX(x) = exp (−x), 0 <

x and the conditional distribution fY|x(y) = exp[−(y − x)], x < y.

Answer or determine the following:

a. Show that fY|x(y) is a probability density function for any

value of x
b. P(X < Y)
c. Joint probability density function fXY (x, y)
d. Conditional probability density function of X given Y = y
e. P(Y < 2 | X = 1) f. E(Y | X = 1)
g. P(X < 1,Y < 1) h. P(Y < 2)
i. c such that P(Y < c) = 0.9

j. Are X and Y independent?

5.2.6 An article in Health Economics [“Estimation of the Transi-

tion Matrix of a Discrete-Time Markov Chain” (2002, Vol. 11, pp.

33–42)] considered the changes in CD4 white blood cell counts

from one month to the next. The CD4 count is an important clini-

cal measure to determine the severity of HIV infections. The CD4

count was grouped into three distinct categories: 0–49, 50–74, and

≥ 75. Let X and Y denote the (category minimum) CD4 count at

a month and the following month, respectively. The conditional

probabilities for Y given values for X were provided by a transition

probability matrix shown in the following table.

X Y

0 50 75

0 0.9819 0.0122 0.0059

50 0.1766 0.7517 0.0717

75 0.0237 0.0933 0.8830

This table is interpreted as follows. For example, P(Y = 50 |

X = 75) = 0.0933. Suppose also that the probability distribution

for X is P(X = 75) = 0.9,P(X = 50) = 0.08,P(X = 0) = 0.02.

Determine the following:

a. P(Y ≤ 50 | X = 50)
b. P(X = 0,Y = 75)
c. E(Y | X = 50) d. fY (y)
e. fXY (x, y) f. Are X and Y independent?

5.2.7 An article in Clinical Infectious Diseases [“Strengthening

the Supply of Routinely Administered Vaccines in the United

States: Problems and Proposed Solutions” (2006, Vol. 42(3),

pp. S97–S103)] reported that recommended vaccines for infants

and children were periodically unavailable or in short supply in

the United States. Although the number of doses demanded each

month is a discrete random variable, the large demands can be

approximated with a continuous probability distribution. Sup-

pose that the monthly demands for two of those vaccines, namely

measles–mumps–rubella (MMR) and varicella (for chickenpox),

are independently, normally distributed with means of 1.1 and

0.55 million doses and standard deviations of 0.3 and 0.1 million

doses, respectively. Also suppose that the inventory levels at the

beginning of a given month for MMR and varicella vaccines are

1.2 and 0.6 million doses, respectively.

a. What is the probability that there is no shortage of either

vaccine in a month without any vaccine production?

b. To what should inventory levels be set so that the prob-

ability is 90% that there is no shortage of either vaccine in

a month without production? Can there be more than one

answer? Explain.

5.2.8 The systolic and diastolic blood pressure values (mm Hg)

are the pressures when the heart muscle contracts and relaxes

(denoted as Y and X, respectively). Over a collection of individu-

als, the distribution of diastolic pressure is normal with mean 73

and standard deviation 8. The systolic pressure is conditionally
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normally distributed with mean 1.6x when X = x and standard

deviation of 10. Determine the following:

a. Conditional probability density function of Y given

X = 73

b. P(Y < 115 | X = 73)
c. E(Y | X = 73)

d. Recognize the distribution fXY (x, y) and identify the mean

and variance of Y
5.2.9 . WP . SS VS Consider the joint distribution in Exercise

5.1.10. Determine the following:

a. fY | 2(y) b. E(Y | X = 2)
c. V(Y | X = 2) d. Are X and Y independent?

Exercises for Section 5.3

WP Problem available in WileyPLUS at instructor’s discretion.
WP GO Tutorial Tutoring problem available in WileyPLUS at

instructor’s discretion
SS Student solution available in WileyPLUS.

VS Student video solution available in WileyPLUS.

5.3.1 . WP . SS For the Transaction Processing Performance

Council’s benchmark in Exercise 5.1.6, let X, Y , and Z denote

the average number of selects, updates, and inserts operations

required for each type of transaction, respectively. Calculate the

following:

a. fXYZ(x, y, z)
b. Conditional probability mass function for X and Y given

Z = 0

c. P(X < 6,Y < 6 | Z = 0) d. E(X | Y = 0,Z = 0)
5.3.2 . WP Suppose that the random variables X, Y , and Z have

the following joint probability distribution.

x y z f (x, y, z)
1 1 1 0.05

1 1 2 0.10

1 2 1 0.15

1 2 2 0.20

2 1 1 0.20

2 1 2 0.15

2 2 1 0.10

2 2 2 0.05

Determine the following:

a. P(X = 2) b. P(X = 1,Y = 2)
c. P(Z < 1.5) d. P(X = 1 or Z = 2)
e. E(X) f. P(X = 1 | Y = 1)
g. P(X = 1,Y = 1 | Z = 2) h. P(X = 1 | Y = 1,Z = 2)
i. Conditional probability distribution of X given that

Y = 1 and Z = 2

5.3.3 . WP Suppose that the random variables X, Y , and Z have

the joint probability density function f (x, y, z) = 8xyz for 0 < x
< 1, 0 < y < 1, and 0 < z < 1. Determine the following:

a. P(X < 0.5) b. P(X < 0.5,Y < 0.5)
c. P(Z < 2) d. P(X < 0.5 or Z < 2)
e. E(X) f. P(X < 0.5 | Y = 0.5)
g. P(X < 0.5,Y < 0.5 | Z = 0.8)
h. Conditional probability distribution of X given that

Y = 0.5 and Z = 0.8

i. P(X < 0.5 | Y = 0.5,Z = 0.8)
5.3.4 Suppose that the random variables X, Y , and Z have the

joint probability density function fXYZ(x, y, z) = c over the cylin-

der x2 + y2
< 4 and 0 < z < 4. Determine the constant c so that

fXYZ(x, y, z) is a probability density function.

Determine the following:

a. P(X2 + Y2
< 2) b. P(Z < 2)

c. E(X) d. P(X < 1 | Y = 1)
e. P(X2 + Y2

< 1 | Z = 1)
f. Conditional probability distribution of Z given that

X = 1 and Y = 1.

Exercises for Section 5.4

WP Problem available in WileyPLUS at instructor’s discretion.
WP GO Tutorial Tutoring problem available in WileyPLUS at

instructor’s discretion
SS Student solution available in WileyPLUS.

VS Student video solution available in WileyPLUS.

5.4.1 . WP . SS VS Determine the covariance and correlation

for the following joint probability distribution:

x 1 1 2 4

y 3 4 5 6

fXY (x, y) 1/8 1/4 1/2 1/8

5.4.2 . WP Determine the value for c and the covariance and cor-

relation for the joint probability mass function fXY (x, y) = c(x + y)
for x = 1, 2, 3 and y = 1, 2, 3.

5.4.3 . WP Patients are given a drug treatment and then eval-

uated. Symptoms either improve, degrade, or remain the same

with probabilities 0.4, 0.1, 0.5, respectively. Assume that four

independent patients are treated and let X and Y denote the num-

ber of patients who improve and degrade, respectively. Are X and

Y independent? Calculate the covariance and correlation between

X and Y .
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5.4.4 For the Transaction Processing Performance Council’s

benchmark in Exercise 5.1.6, let X, Y , and Z denote the average

number of selects, updates, and inserts operations required for

each type of transaction, respectively. Calculate the following:

a. Correlation between X and Y
b. Correlation between X and Z

5.4.5 . WP Determine the value for c and the covariance and cor-

relation for the joint probability density function fXY (x, y) = cxy
over the range 0 < x < 3 and 0 < y < x.

5.4.6 . WP Determine the covariance and correlation for the

joint probability density function fXY (x, y) = e−x−y over the range

0 < x and 0 < y.

5.4.7 . SS The joint probability distribution is

x −1 0 0 1

y 0 −1 1 0

fXY (x, y) 1/4 1/4 1/4 1/4

Show that the correlation between X and Y is zero but X and Y
are not independent.

5.4.8 Determine the covariance and correlation for the CD4

counts in a month and the following month in Exercise 5.2.6.

5.4.9 Determine the covariance and correlation for the lengths of

the minor and major axes in Exercise 5.2.5.

5.4.10 . WP Suppose that the correlation between X and Y is ρ.

For constants a, b, c, and d, what is the correlation between the

random variables U = aX + b and V = cY + d?

Exercises for Section 5.5

WP Problem available in WileyPLUS at instructor’s discretion.
WP GO Tutorial Tutoring problem available in WileyPLUS at

instructor’s discretion
SS Student solution available in WileyPLUS.

VS Student video solution available in WileyPLUS.

5.5.1 . WP Based on the number of voids, a ferrite slab is classi-

fied as either high, medium, or low. Historically, 5% of the slabs

are classified as high, 85% as medium, and 10% as low. A group of

20 slabs that are independent regarding voids is selected for test-

ing. Let X, Y , and Z denote the number of slabs that are classified

as high, medium, and low, respectively.

a. What are the name and the values of the parameters of

the joint probability distribution of X, Y , and Z?

b. What is the range of the joint probability distribution of

X, Y , and Z?

c. What are the name and the values of the parameters of

the marginal probability distribution of X?

d. Determine E(X) and V(X).
Determine the following:

e. P(X = 1,Y = 17,Z = 3)
f. P(X ≤ 1,Y = 17,Z = 3)
g. P(X ≤ 1) h. E(Y)
i. P(X = 2,Z = 3 | Y = 17) j. P(X = 2 | Y = 17)
k. E(X | Y = 17)

5.5.2 A Web site uses ads to route visitors to one of four landing

pages. The probabilities for each landing page are equal. Consider

20 independent visitors and let the random variables W, X, Y , and

Z denote the number of visitors routed to each page.

Calculate the following:

a. P(W = 5,X = 5,Y = 5,Z = 5)
b. P(W = 5,X = 5,Y = 5,Z = 5)
c. P(W = 7,X = 7,Y = 6 | Z = 3)

d. P(W = 7,X = 7,Y = 3 | Z = 3)
e. P(W ≤ 2) f. E(W)
g. P(W = 5,X = 5) h. P(W = 5 | X = 5)

5.5.3 . WP Suppose that X and Y have a bivariate normal dis-

tribution with σX = 0.04, σY = 0.08, μX = 3.00, μY = 7.70,

and ρ = 0.

Determine the following:

a. P(2.95 < X < 3.05) b. P(7.60 < Y < 7.80)
c. P(2.95 < X < 3.05, 7.60 < Y < 7.80)

5.5.4 Let X and Y represent the concentration and viscosity of a

chemical product. Suppose that X and Y have a bivariate normal

distribution with σX = 4, σY = 1, μX = 2, and μY = 1. Draw a rough

contour plot of the joint probability density function for each of

the following values of ρ:

a. ρ = 0 b. ρ = 0.8 c. ρ = −0.8

5.5.5 . WP . SS VS In the manufacture of electroluminescent

lamps, several different layers of ink are deposited onto a plastic

substrate. The thickness of these layers is critical if specifica-

tions regarding the final color and intensity of light are to be met.

Let X and Y denote the thickness of two different layers of ink.

It is known that X is normally distributed with a mean of 0.1

millimeter and a standard deviation of 0.00031 millimeter, and

Y is normally distributed with a mean of 0.23 millimeter and a

standard deviation of 0.00017 millimeter. The value of ρ for these

variables is equal to 0. Specifications call for a lamp to have a

thickness of the ink corresponding to X in the range of 0.099535

to 0.100465 millimeter and Y in the range of 0.22966 to 0.23034

millimeter. What is the probability that a randomly selected lamp

will conform to specifications?

5.5.6 . WP In an acid-base titration, a base or acid is gradu-

ally added to the other until they have completely neutralized

each other. Let X and Y denote the milliliters of acid and base

needed for equivalence, respectively. Assume that X and Y have
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a bivariate normal distribution with σX = 5 mL, σY = 2 mL, μX =
120 mL, μY = 100 mL, and ρ = 0.6.

Determine the following:

a. Covariance between X and Y
b. Marginal probability distribution of X
c. P(X < 116)
d. Conditional probability distribution of X given that

Y = 102

e. P(X < 116 | Y = 102)
5.5.7 If X and Y have a bivariate normal distribution with ρ = 0,

show that X and Y are independent.

5.5.8 Patients given drug therapy either improve, remain the

same, or degrade with probabilities 0.5, 0.4, and 0.1, respectively.

Suppose that 20 patients (assumed to be independent) are given

the therapy. Let X1, X2, and X3 denote the number of patients who

improved, stayed the same, or became degraded, respectively.

Determine the following:

a. Are X1, X2, X3 independent? b. P(X1 = 10)
c. P(X1 = 10,X2 = 8,X3 = 2) d. P(X1 = 5 |X2 = 12)
e. E(X1)

Exercises for Section 5.6

WP Problem available in WileyPLUS at instructor’s discretion.
WP GO Tutorial Tutoring problem available in WileyPLUS at

instructor’s discretion
SS Student solution available in WileyPLUS.

VS Student video solution available in WileyPLUS.

5.6.1 X and Y are independent, normal random variables with

E(X) = 2,V(X) = 5,E(Y) = 6, and V(Y) = 8.

Determine the following:

a. E(3X + 2Y) b. V(3X + 2Y)
c. P(3X + 2Y < 18) d. P(3X + 2Y < 28)

5.6.2 . WP Suppose that the random variable X represents the

length of a punched part in centimeters. Let Y be the length of

the part in millimeters. If E(X) = 5 and V(X) = 0.25, what are the

mean and variance of Y?

5.6.3 . WP . SS In the manufacture of electroluminescent lamps,

several different layers of ink are deposited onto a plastic sub-

strate. The thickness of these layers is critical if specifications

regarding the final color and intensity of light are to be met. Let

X and Y denote the thickness of two different layers of ink. It

is known that X is normally distributed with a mean of 0.1 mm

and a standard deviation of 0.00031 mm, and Y is also normally

distributed with a mean of 0.23 mm and a standard deviation of

0.00017 mm. Assume that these variables are independent.

a. If a particular lamp is made up of these two inks only,

what is the probability that the total ink thickness is less than

0.2337 mm?

b. A lamp with a total ink thickness exceeding 0.2405 mm

lacks the uniformity of color that the customer demands. Find

the probability that a randomly selected lamp fails to meet

customer specifications.

5.6.4 . WP Making handcrafted pottery generally takes two

major steps: wheel throwing and firing. The time of wheel throw-

ing and the time of firing are normally distributed random vari-

ables with means of 40 minutes and 60 minutes and standard

deviations of 2 minutes and 3 minutes, respectively.

a. What is the probability that a piece of pottery will be fin-

ished within 95 minutes?

b. What is the probability that it will take longer than

110 minutes?

5.6.5 . WP An article in Knee Surgery Sports Traumatology,
Arthroscopy [“Effect of Provider Volume on Resource Utilization

for Surgical Procedures” (2005, Vol. 13, pp. 273–279)] showed a

mean time of 129 minutes and a standard deviation of 14 min-

utes for ACL reconstruction surgery for high-volume hospitals

(with more than 300 such surgeries per year). If a high-volume

hospital needs to schedule 10 surgeries, what are the mean and

variance of the total time to complete these surgeries? Assume

that the times of the surgeries are independent and normally

distributed.

5.6.6 . WP An automated filling machine fills soft-drink cans,

and the standard deviation is 0.5 fluid ounce. Assume that the fill

volumes of the cans are independent, normal random variables.

a. What is the standard deviation of the average fill volume

of 100 cans?

b. If the mean fill volume is 12.1 oz, what is the probability

that the average fill volume of 100 cans is less than 12 oz?

c. What should the mean fill volume equal so that the

probability that the average of 100 cans is less than 12 oz

is 0.005?

d. If the mean fill volume is 12.1 oz, what should the stan-

dard deviation of fill volume equal so that the probability that

the average of 100 cans is less than 12 oz is 0.005?

e. Determine the number of cans that need to be measured

such that the probability that the average fill volume is less

than 12 oz is 0.01.

5.6.7 . WP . SS VS Assume that the weights of individuals are

independent and normally distributed with a mean of 160 pounds

and a standard deviation of 30 pounds. Suppose that 25 people

squeeze into an elevator that is designed to hold 4300 pounds.

a. What is the probability that the load (total weight)

exceeds the design limit?

b. What design limit is exceeded by 25 occupants with prob-

ability 0.0001?

5.6.8 A U-shaped component is to be formed from the three

parts A, B, and C. See Figure 5.14. The length of A is normally

distributed with a mean of 10 mm and a standard deviation of

0.1 mm. The thicknesses of parts B and C are each normally

distributed with a mean of 2 mm and a standard deviation of

0.05 mm. Assume that all dimensions are independent.
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CB

B C

A

A

D

FIGURE 5.14

Illustration for the U-shaped
component.

a. Determine the mean and standard deviation of gap D.

b. What is the probability that gap D is less than

5.9 mm?

5.6.9 Consider the perimeter of a part in Example 5.27. Let X1

and X2 denote the length and width of a part with standard devi-

ations 0.1 and 0.2 centimeters, respectively. Suppose that the

covariance between X1 and X2 is 0.02. Determine the variance

of the perimeter Y = 2X1 + 2X2 of a part. Compare and comment

on the result here and in the example.

5.6.10 The rate of return of an asset is the change in price divided

by the initial price (denoted as r). Suppose that $10,000 is used

to purchase shares in three stocks with rates of returns X1, X2,

X3. Initially, $2500, $3000, and $4500 are allocated to each one,

respectively. After one year, the distribution of the rate of return

for each is normally distributed with the following parameters:

μ1 = 0.12, σ1 = 0.14, μ2 = 0.04, σ2 = 0.02, μ3 = 0.07,

σ3 = 0.08.

a. Assume that these rates of return are independent. Deter-

mine the mean and variance of the rate of return after one

year for the entire investment of $10,000.

b. Assume that X1 is independent of X2 and X3 but that the

covariance between X2 and X3 is −0.005. Repeat part (a).

c. Compare the means and variances obtained in parts (a)

and (b) and comment on any benefits from negative covari-

ances between the assets.

5.6.11 In Exercise 5.2.7, the monthly demand for MMR vaccine

was assumed to be approximately normally distributed with a

mean and standard deviation of 1.1 and 0.3 million doses, respec-

tively. Suppose that the demands for different months are inde-

pendent, and let Z denote the demand for a year (in millions of

doses). Determine the following:

a. Mean, variance, and distribution of Z
b. P(Z < 13.2)
c. P(11 < Z < 15)
d. Value for c such that P(Z < c) = 0.99

Exercises for Section 5.7

WP Problem available in WileyPLUS at instructor’s discretion.
WP GO Tutorial Tutoring problem available in WileyPLUS at

instructor’s discretion
SS Student solution available in WileyPLUS.

VS Student video solution available in WileyPLUS.

5.7.1 . WP Suppose that X is a random variable with probability

distribution

fX(x) = 1∕4, x = 1, 2, 3, 4

Determine the probability distribution of Y = 2X + 1.

5.7.2 . WP Suppose that X is a continuous random variable with

probability distribution

fX(x) =
x

18
, 0 ≤ x ≤ 6

a. Determine the probability distribution of the random

variable Y = 2X + 10.

b. Determine the expected value of Y .

5.7.3 . WP A random variable X has the probability distribution

fX(x) = e−x
, x ≥ 0

Determine the probability distribution for the following:

a. Y = X2 b. Y = X1/2 c. Y = ln X

5.7.4 . WP The velocity of a particle in a gas is a random variable

V with probability distribution

fV (v) = av2e−bv
, v > 0

where b is a constant that depends on the temperature of the gas

and the mass of the particle.

a. Determine the value of the constant a.

b. The kinetic energy of the particle is W = mV2/2. Deter-

mine the probability distribution of W.

5.7.5 . WP Suppose that X has the probability distribution

fX(x) = 1, 1 ≤ x ≤ 2

Determine the probability distribution of the random variable

Y = eX .

5.7.6 Derive the probability density function for a lognormal

random variable Y from the relationship that Y = exp(W) for a

normal random variable W with mean θ and variance ω2.

5.7.7 . SS An aircraft is flying at a constant altitude with veloc-

ity magnitude r1 (relative to the air) and angle θ1 (in a two-

dimensional coordinate system). The magnitude and direction

of the wind are r2 and θ2, respectively. Suppose that the

wind angle is uniformly distributed between 10 and 20 degrees

and all other parameters are constant. Determine the probabil-

ity density function of the magnitude of the resultant vector

r = [r2
1
+ r2

2
+ r1r2 (cos θ1 − cos θ2)]0.5.

5.7.8 Power meters enable cyclists to obtain power measurements

nearly continuously. The meters also calculate the average power

generated over a time interval. Professional riders can generate

6.6 watts per kilogram of body weight for extended periods of

time. Some meters calculate a normalized power measurement to
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adjust for the physiological effort required when the power output

changes frequently. Let the random variable X denote the power

output at a measurement time and assume that X has a lognormal

distribution with parameters θ = 5.2933 and ω2 = 0.00995. The

normalized power is computed as the fourth root of the mean of

Y = X4. Determine the following:

a. Mean and standard deviation of X
b. fY (y)
c. Mean and variance of Y
d. Fourth root of the mean of Y
e. Compare [E(X4)]1∕4 to E(X) and comment.

Exercises for Section 5.8

WP Problem available in WileyPLUS at instructor’s discretion.
WP GO Tutorial Tutoring problem available in WileyPLUS at

instructor’s discretion
SS Student solution available in WileyPLUS.

VS Student video solution available in WileyPLUS.

5.8.1 A random variable X has the discrete uniform distribution

f (x) = 1

m
, x = 1, 2,… ,m

a. Show that the moment-generating function is

MX(t) =
et(1 − etm)
m(1 − et)

b. Use MX(t) to find the mean and variance of X.

5.8.2 A random variable X has the Poisson distribution

f (x) = e−λλx

x!
, x = 0, 1,…

a. Show that the moment-generating function is

MX(t) = eλ(et−1)

b. Use MX(t) to find the mean and variance of the Poisson

random variable.

5.8.3 The geometric random variable X has probability distribu-

tion

f (x) = (1 − p)x−1p, x = 1, 2,…

a. Show that the moment-generating function is

MX(t) =
pet

1 − (1 − p)et

b. Use MX(t) to find the mean and variance of X.

5.8.4 The chi-squared random variable with k degrees of freedom

has moment-generating function MX(t) = (1 − 2t)−k∕2. Suppose

that X1 and X2 are independent chi-squared random variables with

k1 and k2 degrees of freedom, respectively. What is the distribu-

tion of Y = X1 + X2?

5.8.5 . SS A continuous random variable X has the following

probability distribution:

f (x) = 4xe−2x
, x > 0

a. Find the moment-generating function for X.

b. Find the mean and variance of X.

5.8.6 The continuous uniform random variable X has density

function

f (x) = 1

β − α
, α ≤ x ≤ β

a. Show that the moment-generating function is

MX(t) =
etβ − etα

t(β − α)

b. Use MX(t) to find the mean and variance of X.

5.8.7 A random variable X has the exponential distribution

f (x) = λe−λx
, x > 0

a. Show that the moment-generating function for t < λ
of X is

MX(t) =
(

1 − t
λ

)

b. Find the mean and variance of X.

5.8.8 A random variable X has the gamma distribution

f (x) = λ
Γ(r)

(λx)r−1e−λx
, x > 0

a. Show that the moment-generating function for t < λ of

X is

MX(t) =
(

1 − t
λ

)−r

b. Find the mean and variance of X.

5.8.9 Let X1, X2,… , Xr be independent exponential random vari-

ables with parameter λ.

a. Find the moment-generating function of Y = X1 + X2 +
… + Xr.

b. What is the distribution of the random variable Y?

5.8.10 Suppose that Xi has a normal distribution with mean μi
and variance σ2

i , i = 1, 2. Let X1 and X2 be independent.

a. Find the moment-generating function of Y = X1 + X2.

b. What is the distribution of the random variable Y?
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Supplemental Exercises for Chapter 5

WP Problem available in WileyPLUS at instructor’s discretion.
WP GO Tutorial Tutoring problem available in WileyPLUS at

instructor’s discretion
SS Student solution available in WileyPLUS.

VS Student video solution available in WileyPLUS.

5.S11 . WP Show that the following function satisfies the prop-

erties of a joint probability mass function:

x y f (x, y)
0 0 1/4

0 1 1/8

1 0 1/8

1 1 1/4

2 2 1/4

Determine the following:

a. P(X < 0.5,Y < 1.5) b. P(X ≤ 1)
c. P(X < 1.5) d. P(X > 0.5, Y < 1.5)
e. E(X),E(Y),V(X),V(Y)
f. Marginal probability distribution of the random

variable X
g. Conditional probability distribution of Y given that

X = 1

h. E(Y | X = 1)
i. Are X and Y independent? Why or why not?

j. Correlation between X and Y
5.S12 . WP The percentage of people given an antirheumatoid

medication who suffer severe, moderate, or minor side effects are

10, 20, and 70%, respectively. Assume that people react indepen-

dently and that 20 people are given the medication.

Determine the following:

a. Probability that 2, 4, and 14 people will suffer severe,

moderate, or minor side effects, respectively

b. Probability that no one will suffer severe side effects

c. Mean and variance of the number of people who will suf-

fer severe side effects

d. Conditional probability distribution of the number of

people who suffer severe side effects given that 19 suffer

minor side effects

e. Conditional mean of the number of people who suffer

severe side effects given that 19 suffer minor side effects

5.S13 . WP . SS Determine the value of c such that the function

f (x, y) = cx2y for 0 < x < 3 and 0 < y < 2 satisfies the properties

of a joint probability density function.

Determine the following:

a. P(X < 1,Y < 1) b. P(X < 2.5)
c. P(1 < Y < 2.5) d. P(X > 2.1 < Y < 1.5)
e. E(X) f. E(Y)
g. Marginal probability distribution of the random

variable X
h. Conditional probability distribution of Y given that X = 1

i. Conditional probability distribution of X given that Y = 1

5.S14 The joint distribution of the continuous random variables

X, Y , and Z is constant over the region x2 + y2 ≤ 1, 0 < z < 4.

Determine the following:

a. P(X2 + Y2
≤ 0.5) b. P(X2 + Y2

≤ 0.5,Z < 2)
c. Joint conditional probability density function of X and

Y given that Z = 1

d. Marginal probability density function of X
e. Conditional mean of Z given that X = 0 and Y = 0

f. Conditional mean of Z given that X = x and Y = y
5.S15 . WP Contamination problems in semiconductor manufac-

turing can result in a functional defect, a minor defect, or no defect

in the final product. Suppose that 20%, 50%, and 30% of the con-

tamination problems result in functional, minor, and no defects,

respectively. Assume that the defects of 10 contamination prob-

lems are independent.

a. What is the probability that the 10 contamination

problems result in two functional defects and five minor

defects?

b. What is the distribution of the number of contamination

problems that result in no defects?

c. What is the expected number of contamination problems

that result in no defects?

5.S16 . WP The weight of adobe bricks for construction is nor-

mally distributed with a mean of 3 pounds and a standard devi-

ation of 0.25 pound. Assume that the weights of the bricks are

independent and that a random sample of 25 bricks is chosen.

a. What is the probability that the mean weight of the sam-

ple is less than 2.95 pounds?

b. What value will the mean weight exceed with probability

0.99?

5.S17 . WP The time for an automated system in a warehouse to

locate a part is normally distributed with a mean of 45 seconds

and a standard deviation of 30 seconds. Suppose that independent

requests are made for 10 parts.

a. What is the probability that the average time to locate

10 parts exceeds 60 seconds?

b. What is the probability that the total time to locate

10 parts exceeds 600 seconds?

5.S18 . WP The weight of a small candy is normally distributed

with a mean of 0.1 ounce and a standard deviation of 0.01 ounce.

Suppose that 16 candies are placed in a package and that the

weights are independent.

a. What are the mean and variance of the package’s net

weight?

b. What is the probability that the net weight of a package

is less than 1.6 ounces?

c. What value will the mean weight exceed with probability

0.99?

5.S19 Suppose that X and Y have a bivariate normal distribution

with σX = 4, σY = 1, μX = 2, μY = 4, and ρ = −0.2. Draw a rough

contour plot of the joint probability density function.

5.S20 . WP A mechanical assembly used in an automobile

engine contains four major components. The weights of the
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components are independent and normally distributed with the

following means and standard deviations (in ounces):

Component Mean Standard Deviation

Left case 4.0 0.4

Right case 5.5 0.5

Bearing assembly 10.0 0.2

Bolt assembly 8.0 0.5

a. What is the probability that the weight of an assembly

exceeds 29.5 ounces?

b. What is the probability that the mean weight of eight

independent assemblies exceeds 29 ounces?

5.S21 . WP The permeability of a membrane used as a moisture

barrier in a biological application depends on the thickness of two

integrated layers. The layers are normally distributed with means

of 0.5 and 1 millimeters, respectively. The standard deviations of

layer thickness are 0.1 and 0.2 millimeters, respectively. The cor-

relation between layers is 0.7.

a. Determine the mean and variance of the total thickness

of the two layers.

b. What is the probability that the total thickness is less than

1 millimeter?

c. Let X1 and X2 denote the thickness of layers 1 and 2,

respectively. A measure of performance of the membrane is a

function of 2X1 + 3X2 of the thickness. Determine the mean

and variance of this performance measure.

5.S22 A small company is to decide what investments to use for

cash generated from operations. Each investment has a mean and

standard deviation associated with a percentage return. The first

security has a mean return of 5% with a standard deviation of

2%, and the second security provides the same mean of 5% with

a standard deviation of 4%. The securities have a correlation of

–0.5. If the company invests $2 million with half in each secu-

rity, what are the mean and standard deviation of the percentage

return? Compare the standard deviation of this strategy to one that

invests the $2 million into the first security only.

5.S23 . WP A marketing company performed a risk analysis for a

manufacturer of synthetic fibers and concluded that new competi-

tors present no risk 13% of the time (due mostly to the diversity of

fibers manufactured), moderate risk 72% of the time (some over-

lapping of products), and very high risk (competitor manufactures

the exact same products) 15% of the time. It is known that 12

international companies are planning to open new facilities for the

manufacture of synthetic fibers within the next 3 years. Assume

that the companies are independent. Let X, Y , and Z denote the

number of new competitors that will pose no, moderate, and very

high risk for the interested company, respectively.

Determine the following:

a. Range of the joint probability distribution of X, Y ,

and Z
b. P(X = 1,Y = 3,Z = 1) c. P(Z ≤ 2)
d. P(Z = 2 | Y = 1,X = 10) e. P(Z ≤ 1 | X = 10)
f. P(Y ≤ 1,Z ≤ 1 | X = 10) g. E(Z | X = 10)

5.S24 Suppose X has a lognormal distribution with parameters

θ and ω. Determine the probability density function and the

parameters values for Y = Xγ for a constant γ > 0. What is the

name of this distribution?

5.S25 The power in a DC circuit is P = I2/R where I and R denote

the current and resistance, respectively. Suppose that I is approx-

imately normally distributed with mean of 200 mA and standard

deviation 0.2 mA and R is a constant. Determine the probability

density function of power.

5.S26 The intensity (mW/mm2) of a laser beam on a surface the-

oretically follows a bivariate normal distribution with maximum

intensity at the center, equal variance σ in the x and y directions,

and zero covariance. There are several definitions for the width of

the beam. One definition is the diameter at which the intensity is

50% of its peak. Suppose that the beam width is 1.6 mm under this

definition. Determine σ. Also determine the beam width when it is

defined as the diameter where the intensity equals 1/e2 of the peak.

Chapter 6 Exercises

Exercises for Section 6.1

WP Problem available in WileyPLUS at instructor’s discretion.
WP GO Tutorial Tutoring problem available in WileyPLUS at

instructor’s discretion
SS Student solution available in WileyPLUS.

VS Student video solution available in WileyPLUS.

6.1.1 Will the sample mean always correspond to one of the

observations in the sample?

6.1.2 Will exactly half of the observations in a sample fall below

the mean?

6.1.3 Will the sample mean always be the most frequently occur-

ring data value in the sample?

6.1.4 For any set of data values, is it possible for the sample stan-

dard deviation to be larger than the sample mean? If so, give an

example.

6.1.5 Can the sample standard deviation be equal to zero? If so,

give an example.

6.1.6 .WP GO Tutorial In Applied Life Data Analysis (Wiley,

1982), Wayne Nelson presents the breakdown time of an insulat-

ing fluid between electrodes at 34 kV. The times, in minutes, are as
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follows: 0.19, 0.78, 0.96, 1.31, 2.78, 3.16, 4.15, 4.67, 4.85, 6.50,

7.35, 8.01, 8.27, 12.06, 31.75, 32.52, 33.91, 36.71, and 72.89.

Calculate the sample mean and sample standard deviation.

6.1.7 . WP . SS VS An article in Human Factors [“Visual Per-

formance on CRT Screens and Hard-Copy Displays” (1989, Vol.

31(3), pp. 247–257)] presented data on visual accommodation (a

function of eye movement) when recognizing a speckle pattern

on a high-resolution CRT screen. The data are as follows: 36.45,

67.90, 38.77, 42.18, 26.72, 50.77, 39.30, and 49.71. Calculate the

sample mean and sample standard deviation. Construct a dot dia-

gram of the data.

6.1.8 Preventing fatigue crack propagation in aircraft structures

is an important element of aircraft safety. An engineering study

to investigate fatigue crack in n = 9 cyclically loaded wing boxes

reported the following crack lengths (in mm): 2.13, 2.96, 3.02,

1.82, 1.15, 1.37, 2.04, 2.47, 2.60. Calculate the sample mean and

sample standard deviation. Prepare a dot diagram of the data.

6.1.9 An article in the Journal of Physiology [“Response of Rat

Muscle to Acute Resistance Exercise Defined by Transcriptional

and Translational Profiling” (2002, Vol. 545, pp. 27–41)] studied

gene expression as a function of resistance exercise. Expression

data (measures of gene activity) from one gene are shown in the

following table. One group of rats was exercised for 6 hours while

the other received no exercise. Compute the sample mean and

standard deviation of the exercise and no-exercise groups sepa-

rately. Construct a dot diagram for the exercise and no-exercise

groups separately. Comment on any differences for the groups.

6 Hours of 6 Hours of No No
Exercise Exercise Exercise Exercise

425.313 208.475 485.396 406.921

223.306 286.484 159.471 335.209

388.793 244.242 478.314

139.262 408.099 245.782

212.565 157.743 236.212

324.024 436.37 252.773

6.1.10 . WP Exercise 6.1.7 describes data from an article in

Human Factors on visual accommodation from an experiment

involving a high-resolution CRT screen.

Data from a second experiment using a low-resolution

screen were also reported in the article. They are 8.85, 35.80,

26.53, 64.63, 9.00, 15.38, 8.14, and 8.24. Prepare a dot diagram

for this second sample and compare it to the one for the first

sample. What can you conclude about CRT resolution in this

situation?

6.1.11 . WP . SS The following data are the joint temperatures of

the O-rings (∘F) for each test firing or actual launch of the Space

Shuttle rocket motor (from Presidential Commission on the Space
Shuttle Challenger Accident, Vol. 1, pp. 129–131): 84, 49, 61, 40,

83, 67, 45, 66, 70, 69, 80, 58, 68, 60, 67, 72, 73, 70, 57, 63, 70,

78, 52, 67, 53, 67, 75, 61, 70, 81, 76, 79, 75, 76, 58, 31.

a. Compute the sample mean and sample standard deviation

and construct a dot diagram of the temperature data.

b. Set aside the smallest observation (31∘F) and recompute

the quantities in part (a). Comment on your findings. How

“different” are the other temperatures from this last value?

6.1.12 Cloud seeding, a process in which chemicals such as sil-

ver iodide and frozen carbon dioxide are introduced by aircraft

into clouds to promote rainfall, was widely used in the 20th

century. Recent research has questioned its effectiveness [“Re-

assessment of Rain Enhancement Experiments and Operations

in Israel Including Synoptic Considerations,” Journal of Atmo-
spheric Research (2010, Vol. 97(4), pp. 513–525)]. An exper-

iment was performed by randomly assigning 52 clouds to be

seeded or not. The amount of rain generated was then measured

in acre-feet. Here are the data for the unseeded and seeded clouds:

Unseeded:

81.2 26.1 95.0 41.1 28.6 21.7 11.5 68.5 345.5 321.2

1202.6 1.0 4.9 163.0 372.4 244.3 47.3 87.0 26.3 24.4

830.1 4.9 36.6 147.8 17.3 29.0

Seeded:

274.7 302.8 242.5 255.0 17.5 115.3 31.4 703.4 334.1

1697.8 118.3 198.6 129.6 274.7 119.0 1656.0 7.7 430.0

40.6 92.4 200.7 32.7 4.1 978.0 489.1 2745.6

Find the sample mean, sample standard deviation, and range of

rainfall for

a. All 52 clouds

b. The unseeded clouds

c. The seeded clouds

6.1.13 Construct dot diagrams of the seeded and unseeded clouds

and compare their distributions in a couple of sentences.

6.1.14 In the 2000 Sydney Olympics, a special program initi-

ated by the IOC president allowed developing countries to send

athletes to the Olympics without the usual qualifying procedure.

Here are the 71 times for the first round of the 100-meter men’s

swim (in seconds).

60.39 49.93 53.40 51.82 50.46 51.34 50.28 50.19 52.14

50.56 52.72 50.95 49.74 49.16 52.57 52.53 52.09 52.40

49.75 54.06 53.50 50.63 51.93 51.62 52.58 53.55 51.07

49.76 49.73 50.90 59.26 49.29 52.78 112.72 49.79 49.83

52.43 51.28 52.22 49.76 49.70 52.90 50.19 54.33 62.45

51.93 52.24 52.82 50.96 48.64 51.11 50.87 52.18 54.12

50.49 49.84 52.91 52.52 50.32 51.52 52.0 52.85 52.24

49.45 51.28 49.09 58.79 49.74 49.32 50.62 49.45

a. Find the sample mean and sample standard deviation

of these 100-meter swim times.

b. Construct a dot diagram of the data.

c. Comment on anything unusual that you see.



�

� �

�

P-48 Exercises

Exercises for Section 6.2

WP Problem available in WileyPLUS at instructor’s discretion.
WP GO Tutorial Tutoring problem available in WileyPLUS at

instructor’s discretion
SS Student solution available in WileyPLUS.

VS Student video solution available in WileyPLUS.

6.2.1 A back-to-back stem-and-leaf display on two data sets is

conducted by hanging the data on both sides of the same stems.

Here is a back-to-back stem-and-leaf display for the cloud seed-

ing data in Exercise 6.1.12 showing the unseeded clouds on the

left and the seeded clouds on the right.

65098754433332221000 | 0 | 01233492223

| 2 | 00467703

| 4 | 39

| 6 | 0

3 | 8 | 8

| 10 |

0 | 12 |

| 14 |

| 16 | 60

| 18 |

| 20 |

| 22 |

| 24 |

| 26 | 5

How does the back-to-back stem-and-leaf display show the dif-

ferences in the data set in a way that the dotplot cannot?

6.2.2 When will the median of a sample be equal to the sample

mean?

6.2.3 When will the median of a sample be equal to the mode?

6.2.4 . WP An article in Technometrics [“Validation of Regres-

sion Models: Methods and Examples” (1977, Vol. 19(4), p. 425)]

presented the following data on the motor fuel octane ratings of

several blends of gasoline:

88.5 98.8 89.6 92.2 92.7 88.4 87.5 90.9

94.7 88.3 90.4 83.4 87.9 92.6 87.8 89.9

84.3 90.4 91.6 91.0 93.0 93.7 88.3 91.8

90.1 91.2 90.7 88.2 94.4 96.5 89.2 89.7

89.0 90.6 88.6 88.5 90.4 84.3 92.3 92.2

89.8 92.2 88.3 93.3 91.2 93.2 88.9

91.6 87.7 94.2 87.4 86.7 88.6 89.8

90.3 91.1 85.3 91.1 94.2 88.7 92.7

90.0 86.7 90.1 90.5 90.8 92.7 93.3

91.5 93.4 89.3 100.3 90.1 89.3 86.7

89.9 96.1 91.1 87.6 91.8 91.0 91.0

Construct a stem-and-leaf display for these data. Calculate the

median and quartiles of these data.

6.2.5 .WP GO Tutorial . SS The following data are the numbers

of cycles to failure of aluminum test coupons subjected to

repeated alternating stress at 21,000 psi, 18 cycles per second.

1115 865 1015 885 1594 1000 1416 1501

1310 2130 845 1223 2023 1820 1560 1238

1540 1421 1674 375 1315 1940 1055 990

1502 1109 1016 2265 1269 1120 1764 1468

1258 1481 1102 1910 1260 910 1330 1512

1315 1567 1605 1018 1888 1730 1608 1750

1085 1883 706 1452 1782 1102 1535 1642

798 1203 2215 1890 1522 1578 1781

1020 1270 785 2100 1792 758 1750

Construct a stem-and-leaf display for these data. Calculate the

median and quartiles of these data. Does it appear likely that a

coupon will “survive” beyond 2000 cycles? Justify your answer.

6.2.6 . WP Calculate the sample median, mode, and mean of the

data in Exercise 6.2.4. Explain how these three measures of loca-

tion describe different features of the data.

6.2.7 Calculate the sample median, mode, and mean of the data

in Exercise 6.2.5. Explain how these three measures of location

describe different features in the data.

6.2.8 . WP The female students in an undergraduate engineering

core course at ASU self-reported their heights to the nearest inch.

The data follow. Construct a stem-and-leaf diagram for the height

data and comment on any important features that you notice. Cal-

culate the sample mean, the sample standard deviation, and the

sample median of height.

62 64 61 67 65 68 61 65 60 65 64 63 59

68 64 66 68 69 65 67 62 66 68 67 66 65

69 65 69 65 67 67 65 63 64 67 65

6.2.9 The shear strengths of 100 spot welds in a titanium alloy

follow. Construct a stem-and-leaf diagram for the weld strength

data and comment on any important features that you notice. What

is the 95th percentile of strength?

5408 5431 5475 5442 5376 5388 5459 5422 5416 5435

5420 5429 5401 5446 5487 5416 5382 5357 5388 5457

5407 5469 5416 5377 5454 5375 5409 5459 5445 5429

5463 5408 5481 5453 5422 5354 5421 5406 5444 5466

5399 5391 5477 5447 5329 5473 5423 5441 5412 5384

5445 5436 5454 5453 5428 5418 5465 5427 5421 5396

5381 5425 5388 5388 5378 5481 5387 5440 5482 5406

5401 5411 5399 5431 5440 5413 5406 5342 5452 5420

5458 5485 5431 5416 5431 5390 5399 5435 5387 5462

5383 5401 5407 5385 5440 5422 5448 5366 5430 5418

6.2.10 An important quality characteristic of water is the

concentration of suspended solid material. Following are
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60 measurements on suspended solids from a certain lake.

Construct a stem-and-leaf diagram for these data and comment on

any important features that you notice. Compute the sample mean,

the sample standard deviation, and the sample median. What is

the 90th percentile of concentration?

42.4 65.7 29.8 58.7 52.1 55.8 57.0 68.7 67.3 67.3

54.3 54.0 73.1 81.3 59.9 56.9 62.2 69.9 66.9 59.0

56.3 43.3 57.4 45.3 80.1 49.7 42.8 42.4 59.6 65.8

61.4 64.0 64.2 72.6 72.5 46.1 53.1 56.1 67.2 70.7

42.6 77.4 54.7 57.1 77.3 39.3 76.4 59.3 51.1 73.8

61.4 73.1 77.3 48.5 89.8 50.7 52.0 59.6 66.1 31.6

6.2.11 . WP A group of wine enthusiasts taste-tested a pinot noir

wine from Oregon. The evaluation was to grade the wine on

a 0-to-100-point scale. The results follow. Construct a stem-

and-leaf diagram for these data and comment on any important

features that you notice. Compute the sample mean, the sam-

ple standard deviation, and the sample median. A wine rated

above 90 is considered truly exceptional. What proportion

of the taste-tasters considered this particular pinot noir truly

exceptional?

94 90 92 91 91 86 89 91 91 90

90 93 87 90 91 92 89 86 89 90

88 95 91 88 89 92 87 89 95 92

85 91 85 89 88 84 85 90 90 83

6.2.12 . WP In their book Introduction to Linear Regression
Analysis (5th edition, Wiley, 2012), Montgomery, Peck, and

Vining presented measurements on NbOCl3 concentration from

a tube-flow reactor experiment. The data, in gram-mole per liter

× 10−3, are as follows. Construct a stem-and-leaf diagram for

these data and comment on any important features that you notice.

Compute the sample mean, the sample standard deviation, and the

sample median.

450 450 473 507 457 452 453 1215 1256

1145 1085 1066 1111 1364 1254 1396 1575 1617

1733 2753 3186 3227 3469 1911 2588 2635 2725

6.2.13 In Exercise 6.2.8, we presented height data that were

self-reported by female undergraduate engineering students in

a core course at ASU. In the same class, the male students

self-reported their heights as follows. Construct a comparative

stem-and-leaf diagram by listing the stems in the center of the dis-

play and then placing the female leaves on the left and the male

leaves on the right. Comment on any important features that you

notice in this display.

69 67 69 70 65 68 69 70 71 69 66 67 69 75 68 67 68

69 70 71 72 68 69 69 70 71 68 72 69 69 68 69 73 70

73 68 69 71 67 68 65 68 68 69 70 74 71 69 70 69

Exercises for Section 6.3

WP Problem available in WileyPLUS at instructor’s discretion.
WP GO Tutorial Tutoring problem available in WileyPLUS at

instructor’s discretion
SS Student solution available in WileyPLUS.

VS Student video solution available in WileyPLUS.

6.3.1 . VS Construct a frequency distribution and histogram

using the failure data from Exercise 6.2.5.

6.3.2 . WP Construct a frequency distribution and histogram for

the motor fuel octane data from Exercise 6.2.4. Use eight bins.

6.3.3 . SS Construct histograms with 8 and 16 bins for the data

in Exercise 6.2.5. Compare the histograms. Do both histograms

display similar information?

6.3.4 . WP VS Construct frequency distributions and his-

tograms with 8 bins and 16 bins for the motor fuel octane data

in Exercise 6.2.4. Compare the histograms. Do both histograms

display similar information?

6.3.5 Construct a histogram for the spot weld shear strength data

in Exercise 6.2.9. Comment on the shape of the histogram. Does

it convey the same information as the stem-and-leaf display?

6.3.6 . WP Construct a histogram for the female student height

data in Exercise 6.2.8.

6.3.7 Construct a histogram for the pinot noir wine rating data

in Exercise 6.2.11. Comment on the shape of the histogram.

Does it convey the same information as the stem-and-leaf display?

6.3.8 . WP Construct a histogram for the water quality data in

Exercise 6.2.10. Comment on the shape of the histogram. Does

it convey the same information as the stem-and-leaf display?

6.3.9 . WP . SS VS The Pareto Chart. An important varia-

tion of a histogram for categorical data is the Pareto chart. This

chart is widely used in quality improvement efforts, and the cate-

gories usually represent different types of defects, failure modes,

or product/process problems. The categories are ordered so that

the category with the largest frequency is on the left, followed

by the category with the second largest frequency, and so forth.

These charts are named after Italian economist Vilfredo Pareto,

and they usually exhibit “Pareto’s law”; that is, most of the defects

can be accounted for by only a few categories. Suppose that the

following information on structural defects in automobile doors

is obtained: dents, 4; pits, 4; parts assembled out of sequence, 6;

parts undertrimmed, 21; missing holes/slots, 8; parts not lubri-

cated, 5; parts out of contour, 30; and parts not deburred, 3. Con-

struct and interpret a Pareto chart.
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Exercises for Section 6.4

WP Problem available in WileyPLUS at instructor’s discretion.
WP GO Tutorial Tutoring problem available in WileyPLUS at

instructor’s discretion
SS Student solution available in WileyPLUS.

VS Student video solution available in WileyPLUS.

6.4.1 Using the data from Exercise 6.1.12 on cloud seeding,

a. Find the median and quartiles for the unseeded cloud

data.

b. Find the median and quartiles for the seeded cloud data.

c. Make two side-by-side box plots, one for each group on

the same plot.

d. Compare the distributions from what you can see in the

side-by-side box plots.

6.4.2 Using the data from Exercise 6.1.14 on swim times,

a. Find the median and quartiles for the data.

b. Make a box plot of the data.

c. Repeat (a) and (b) for the data without the extreme outlier

and comment.

d. Compare the distribution of the data with and without the

extreme outlier.

6.4.3 .WP GO Tutorial . SS VS The “cold start ignition time”

of an automobile engine is being investigated by a gasoline man-

ufacturer. The following times (in seconds) were obtained for a

test vehicle: 1.75, 1.92, 2.62, 2.35, 3.09, 3.15, 2.53, 1.91.

a. Calculate the sample mean, sample variance, and sample

standard deviation.

b. Construct a box plot of the data.

6.4.4 An article in Transactions of the Institution of Chemical
Engineers (1956, Vol. 34, pp. 280–293) reported data from an

experiment investigating the effect of several process variables

on the vapor phase oxidation of naphthalene. A sample of the

percentage mole conversion of naphthalene to maleic anhydride

follows: 4.2, 4.7, 4.7, 5.0, 3.8, 3.6, 3.0, 5.1, 3.1, 3.8, 4.8, 4.0, 5.2,

4.3, 2.8, 2.0, 2.8, 3.3, 4.8, 5.0.

a. Calculate the sample mean, sample variance, and sample

standard deviation.

b. Construct a box plot of the data.

6.4.5 Exercise 6.1.11 presented the joint temperatures of the

O-rings (∘F) for each test firing or actual launch of the Space

Shuttle rocket motor. In that exercise, you were asked to find the

sample mean and sample standard deviation of temperature.

a. Find the median and the upper and lower quartiles of

temperature.

b. Set aside the lowest observation (31∘F) and recompute

the quantities in part (a). Comment on your findings. How

“different” are the other temperatures from this lowest value?

c. Construct a box plot of the data and comment on the pos-

sible presence of outliers.

6.4.6 . WP Reconsider the water quality data in Exercise 6.2.10.

Construct a box plot of the concentrations and write an interpre-

tation of the plot. How does the box plot compare in interpretive

value to the original stem-and-leaf diagram?

6.4.7 Reconsider the weld strength data in Exercise 6.2.9. Con-

struct a box plot of the data and write an interpretation of the

plot. How does the box plot compare in interpretive value to the

original stem-and-leaf diagram?

6.4.8 . WP In Exercise 6.4.3, data were presented on the cold start

ignition time of a particular gasoline used in a test vehicle. A sec-

ond formulation of the gasoline was tested in the same vehicle

with the following times (in seconds): 1.83, 1.99, 3.13, 3.29, 2.65,

2.87, 3.40, 2.46, 1.89, and 3.35. Use these new data along with

the cold start times reported in Exercise 6.4.3 to construct com-

parative box plots. Write an interpretation of the information that

you see in these plots.

6.4.9 An article in Nature Genetics [“Treatment-specific

Changes in Gene Expression Discriminate In Vivo Drug

Response in Human Leukemia Cells” (2003, Vol. 34(1), pp.

85–90)] studied gene expression as a function of treatments for

leukemia. One group received a high dose of the drug, while the

control group received no treatment. Expression data (measures

of gene activity) from one gene are shown in the table on the next

page. Construct a box plot for each group of patients. Write an

interpretation to compare the information in these plots.

High Dose Control Control Control

16.1 297.1 25.1 131.1

134.9 491.8 820.1 166.5

52.7 1332.9 82.5 2258.4

14.4 1172 713.9 497.5

124.3 1482.7 785.6 263.4

99 335.4 114 252.3

24.3 528.9 31.9 351.4

16.3 24.1 86.3 678.9

15.2 545.2 646.6 3010.2

47.7 92.9 169.9 67.1

12.9 337.1 20.2 318.2

72.7 102.3 280.2 2476.4

126.7 255.1 194.2 181.4

46.4 100.5 408.4 2081.5

60.3 159.9 155.5 424.3

23.5 168 864.6 188.1

43.6 95.2 355.4 563

79.4 132.5 634 149.1

38 442.6 2029.9 2122.9

58.2 15.8 362.1 1295.9

26.5 175.6
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Exercises for Section 6.5

WP Problem available in WileyPLUS at instructor’s discretion.
WP GO Tutorial Tutoring problem available in WileyPLUS at

instructor’s discretion
SS Student solution available in WileyPLUS.

VS Student video solution available in WileyPLUS.

6.5.1 . WP In their book Time Series Analysis, Forecasting, and
Control (Prentice Hall, 1994), G. E. P. Box, G. M. Jenkins,

and G. C. Reinsel present chemical concentration readings made

every 2 hours. Some of these data follow (read down the column,

then left to right).

17.0 16.7 17.1 17.5 17.6

16.6 17.4 17.4 18.1 17.5

16.3 17.2 17.4 17.5 16.5

16.1 17.4 17.5 17.4 17.8

17.1 17.4 17.4 17.4 17.3

16.9 17.0 17.6 17.1 17.3

16.8 17.3 17.4 17.6 17.1

17.4 17.2 17.3 17.7 17.4

17.1 17.4 17.0 17.4 16.9

17.0 16.8 17.8 17.8 17.3

Construct and interpret either a digidot plot or a separate

stem-and-leaf and time series plot of these data.

6.5.2 The following table shows U.S. petroleum imports as a

percentage of the totals, and Persian Gulf imports as a percent-

age of all imports by year since 1973 (Source: U.S. Department

of Energy Web site, www.eia.doe.gov). Construct and interpret

either a digidot plot or a separate stem-and-leaf and time series

plot for each column of data.

Petroleum Imports Total Petroleum Imports Petroleum Imports from Persian
(thousand barrels as Percent of Petroleum Gulf as Percent of Total

Year per day) Products Supplied Petroleum Imports

1973 6256 36.1 13.5

1974 6112 36.7 17.0

1975 6055 37.1 19.2

1976 7313 41.8 25.1

1977 8807 47.7 27.8

1978 8363 44.3 26.5

1979 8456 45.6 24.4

1980 6909 40.5 21.9

1981 5996 37.3 20.3

1982 5113 33.4 13.6

1983 5051 33.1 8.7

1984 5437 34.5 9.3

1985 5067 32.2 6.1

1986 6224 38.2 14.6

1987 6678 40.0 16.1

1988 7402 42.8 20.8

1989 8061 46.5 23.0

1990 8018 47.1 24.5

1991 7627 45.6 24.1

1992 7888 46.3 22.5

1993 8620 50.0 20.6

1994 8996 50.7 19.2
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Petroleum Imports Total Petroleum Imports Petroleum Imports from Persian
(thousand barrels as Percent of Petroleum Gulf as Percent of Total

Year per day) Products Supplied Petroleum Imports

1995 8835 49.8 17.8

1996 9478 51.7 16.9

1997 10,162 54.5 17.2

1998 10,708 56.6 19.9

1999 10,852 55.5 22.7

2000 11,459 58.1 21.7

2001 11,871 60.4 23.2

2002 11,530 58.3 19.6

2003 12,264 61.2 20.3

2004 13,145 63.4 18.9

2005 13,714 65.9 17.0

2006 13,707 66.3 16.1

2007 13,468 65.1 16.1

2008 12,915 66.2 18.4

2009 11,691 62.3 14.4

2010 11,793 61.5 14.5

2011 11,436 60.6 16.3

2012 10,627 57.3 20.3

2013 9859 52.0 20.4

2014 9241 48.4 20.3

2015 9449 48.4 15.9

6.5.3 . WP . SS The 100 annual Wolfer sunspot numbers from

1770 to 1869 follow. (For an interesting analysis and interpreta-

tion of these numbers, see the book by Box, Jenkins, and Rein-

sel referenced in Exercise 6.5.1. Their analysis requires some

advanced knowledge of statistics and statistical model building.)

Read down, then left to right. The 1869 result is 74. Construct and

interpret either a digidot plot or a stem-and-leaf and time series

plot of these data.

101 31 154 38 83 90

82 7 125 23 132 67

66 20 85 10 131 60

35 92 68 24 118 47

41 10 16 8 62 94

21 8 7 13 98 96

16 2 4 57 124 77

6 0 2 122 96 59

4 1 8 138 66 44

7 5 17 103 64 47

14 12 36 86 54 30

34 14 50 63 39 16

45 35 62 37 21 7

43 46 67 24 7 37

48 41 71 11 4 74

42 30 48 15 23

28 24 28 40 55

6.5.4 The table on the next page contains the global mean surface

air temperature anomaly and the global CO2 concentration for

the years 1880–2004 (Source: http://data.giss.nasa.gov/gistemp/).

The temperature is measured at a number of locations around

the world and averaged annually, and then subtracted from a

base period average (1951–1980) and the result reported as an

anomaly.

a. Construct a time series plot of the global mean surface air

temperature anomaly data and comment on any features that

you observe.

b. Construct a time series plot of the global CO2 concentra-

tion data and comment on any features that you observe.

c. Overlay the two plots on the same set of axes and

comment on the plot.
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Year Anomaly, ∘C CO2, ppmv Year Anomaly, ∘C CO2, ppmv Year Anomaly, ∘C CO2, ppmv

1880 −0.11 290.7 1922 −0.09 303.8 1964 −0.25 319.2

1881 −0.13 291.2 1923 −0.16 304.1 1965 −0.15 320.0

1882 −0.01 291.7 1924 −0.11 304.5 1966 −0.07 321.1

1883 −0.04 292.1 1925 −0.15 305.0 1967 −0.02 322.0

1884 −0.42 292.6 1926 0.04 305.4 1968 −0.09 322.9

1885 −0.23 293.0 1927 −0.05 305.8 1969 0.00 324.2

1886 −0.25 293.3 1928 0.01 306.3 1970 0.04 325.2

1887 −0.45 293.6 1929 −0.22 306.8 1971 −0.10 326.1

1888 −0.23 293.8 1930 −0.03 307.2 1972 −0.05 327.2

1889 0.04 294.0 1931 0.03 307.7 1973 0.18 328.8

1890 −0.22 294.2 1932 0.04 308.2 1974 −0.06 329.7

1891 −0.55 294.3 1933 −0.11 308.6 1975 −0.02 330.7

1892 −0.40 294.5 1934 0.05 309.0 1976 −0.21 331.8

1893 −0.39 294.6 1935 −0.08 309.4 1977 0.16 333.3

1894 −0.32 294.7 1936 0.01 309.8 1978 0.07 334.6

1895 −0.32 294.8 1937 0.12 310.0 1979 0.13 336.9

1896 −0.27 294.9 1938 0.15 310.2 1980 0.27 338.7

1897 −0.15 295.0 1939 −0.02 310.3 1981 0.40 339.9

1898 −0.21 295.2 1940 0.14 310.4 1982 0.10 341.1

1899 −0.25 295.5 1941 0.11 310.4 1983 0.34 342.8

1900 −0.05 295.8 1942 0.10 310.3 1984 0.16 344.4

1901 −0.05 296.1 1943 0.06 310.2 1985 0.13 345.9

1902 −0.30 296.5 1944 0.10 310.1 1986 0.19 347.2

1903 −0.35 296.8 1945 −0.01 310.1 1987 0.35 348.9

1904 −0.42 297.2 1946 0.01 310.1 1988 0.42 351.5

1905 −0.25 297.6 1947 0.12 310.2 1989 0.28 352.9

1906 −0.15 298.1 1948 −0.03 310.3 1990 0.49 354.2

1907 −0.41 298.5 1949 −0.09 310.5 1991 0.44 355.6

1908 −0.30 298.9 1950 −0.17 310.7 1992 0.16 356.4

1909 −0.31 299.3 1951 −0.02 311.1 1993 0.18 357.0

1910 −0.21 299.7 1952 0.03 311.5 1994 0.31 358.9

1911 −0.25 300.1 1953 0.12 311.9 1995 0.47 360.9

1912 −0.33 300.4 1954 −0.09 312.4 1996 0.36 362.6

1913 −0.28 300.8 1955 −0.09 313.0 1997 0.40 363.8

1914 −0.02 301.1 1956 −0.18 313.6 1998 0.71 366.6

1915 0.06 301.4 1957 0.08 314.2 1999 0.43 368.3

1916 −0.20 301.7 1958 0.10 314.9 2000 0.41 369.5

1917 −0.46 302.1 1959 0.05 315.8 2001 0.56 371.0

1918 −0.33 302.4 1960 −0.02 316.6 2002 0.70 373.1

1919 −0.09 302.7 1961 0.10 317.3 2003 0.66 375.6

1920 −0.15 303.0 1962 0.05 318.1 2004 0.60 377.4

1921 −0.04 303.4 1963 0.03 318.7
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Exercises for Section 6.6

WP Problem available in WileyPLUS at instructor’s discretion.
WP GO Tutorial Tutoring problem available in WileyPLUS at

instructor’s discretion
SS Student solution available in WileyPLUS.

VS Student video solution available in WileyPLUS.

6.6.1 . SS VS An article in the Journal of Pharmaceuticals
Sciences [“Statistical Analysis of the Extended Hansen Method

Using the Bootstrap Technique” (1991, Vol. 80, pp. 971–977)]

presented data on the observed mole fraction solubility of a

solute at a constant temperature and the dispersion, dipolar, and

hydrogen-bonding Hansen partial solubility parameters. The data

are as shown in the table below, where y is the negative logarithm

of the mole fraction solubility, x1 is the dispersion partial solu-

bility, x2 is the dipolar partial solubility, and x3 is the hydrogen

bonding partial solubility.

a. Construct a matrix of scatter plots for these variables.

b. Comment on the apparent relationships among y and the

other three variables.

6.6.2 Consider the petroleum imports in Exercise 6.5.2.

a. Construct a matrix of scatter plots for the three variables

and compute the correlation coefficients.

b. Comment on the apparent relationships among the

variables.

Observation Number y x1 x2 x3

1 0.22200 7.3 0.0 0.0

2 0.39500 8.7 0.0 0.3

3 0.42200 8.8 0.7 1.0

4 0.43700 8.1 4.0 0.2

Observation Number y x1 x2 x3

5 0.42800 9.0 0.5 1.0

6 0.46700 8.7 1.5 2.8

7 0.44400 9.3 2.1 1.0

8 0.37800 7.6 5.1 3.4

9 0.49400 10.0 0.0 0.3

10 0.45600 8.4 3.7 4.1

11 0.45200 9.3 3.6 2.0

12 0.11200 7.7 2.8 7.1

13 0.43200 9.8 4.2 2.0

14 0.10100 7.3 2.5 6.8

15 0.23200 8.5 2.0 6.6

16 0.30600 9.5 2.5 5.0

17 0.09230 7.4 2.8 7.8

18 0.11600 7.8 2.8 7.7

19 0.07640 7.7 3.0 8.0

20 0.43900 10.3 1.7 4.2

21 0.09440 7.8 3.3 8.5

22 0.11700 7.1 3.9 6.6

23 0.07260 7.7 4.3 9.5

24 0.04120 7.4 6.0 10.9

25 0.25100 7.3 2.0 5.2

26 0.00002 7.6 7.8 20.7

Exercises for Section 6.7

WP Problem available in WileyPLUS at instructor’s discretion.
WP GO Tutorial Tutoring problem available in WileyPLUS at

instructor’s discretion
SS Student solution available in WileyPLUS.

VS Student video solution available in WileyPLUS.

6.7.1 . WP Construct a normal probability plot of the visual

accommodation data in Exercise 6.1.7. Does it seem reasonable

to assume that visual accommodation is normally distributed?

6.7.2 . WP Construct a normal probability plot of the octane rat-

ing data in Exercise 6.2.4. Does it seem reasonable to assume that

octane rating is normally distributed?

6.7.3 . WP . SS VS Construct a normal probability plot of the

cycles to failure data in Exercise 6.2.5. Does it seem reasonable

to assume that cycles to failure are normally distributed?

6.7.4 Construct a normal probability plot of the suspended solids

concentration data in Exercise 6.2.10. Does it seem reasonable to

assume that the concentration of suspended solids in water from

this particular lake is normally distributed?

6.7.5 Construct two normal probability plots for the height data

in Exercises 6.2.8 and 6.2.13. Plot the data for female and male

students on the same axes. Does height seem to be normally dis-

tributed for either group of students? If both populations have the

same variance, the two normal probability plots should have iden-

tical slopes. What conclusions would you draw about the heights

of the two groups of students from visual examination of the nor-

mal probability plots?

6.7.6 It is possible to obtain a “quick-and-dirty” estimate of the

mean of a normal distribution from the 50th percentile value on a

normal probability plot. Provide an argument why this is so. It is

also possible to obtain an estimate of the standard deviation of a

normal distribution by subtracting the 84th percentile value from

the 50th percentile value. Provide an argument explaining why

this is so.
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Supplemental Exercises for Chapter 6

WP Problem available in WileyPLUS at instructor’s discretion.
WP GO Tutorial Tutoring problem available in WileyPLUS at

instructor’s discretion
SS Student solution available in WileyPLUS.

VS Student video solution available in WileyPLUS.

6.S7 . WP . SS The table below shows unemployment data for

the United States that are seasonally adjusted. Construct a time

series plot of these data and comment on any features (Source:
U.S. Bureau of Labor Web site, http://data.bls.gov).

6.S8 A sample of six resistors yielded the following resis-

tances (ohms): x1 = 45, x2 = 38, x3 = 47, x4 = 41, x5 = 35, and

x6 = 43.

a. Compute the sample variance and sample standard

deviation.

b. Subtract 35 from each of the original resistance measure-

ments and compute s2 and s. Compare your results with those

obtained in part (a) and explain your findings.

c. If the resistances were 450, 380, 470, 410, 350, and

430 ohms, could you use the results of previous parts of this

problem to find s2 and s?

6.S9 . WP Consider the following two samples:

Sample 1: 10, 9, 8, 7, 8, 6, 10, 6

Sample 2: 10, 6, 10, 6, 8, 10, 8, 6

a. Calculate the sample range for both samples. Would you

conclude that both samples exhibit the same variability?

Explain.

b. Calculate the sample standard deviations for both sam-

ples. Do these quantities indicate that both samples have the

same variability? Explain.

c. Write a short statement contrasting the sample range ver-

sus the sample standard deviation as a measure of variability.

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

1999 4.3 4.4 4.2 4.3 4.2 4.3 4.3 4.2 4.2 4.1 4.1 4.0

2000 4.0 4.1 4.0 3.8 4.0 4.0 4.0 4.1 3.9 3.9 3.9 3.9

2001 4.2 4.2 4.3 4.4 4.3 4.5 4.6 4.9 5.0 5.3 5.5 5.7

2002 5.7 5.7 5.7 5.9 5.8 5.8 5.8 5.7 5.7 5.7 5.9 6.0

2003 5.8 5.9 5.9 6.0 6.1 6.3 6.2 6.1 6.1 6.0 5.8 5.7

2004 5.7 5.6 5.8 5.6 5.6 5.6 5.5 5.4 5.4 5.5 5.4 5.4

2005 5.2 5.4 5.2 5.2 5.1 5.1 5.0 4.9 5.0 5.0 5.0 4.8

2006 4.7 4.8 4.7 4.7 4.7 4.6 4.7 4.7 4.5 4.4 4.5 4.4

2007 4.6 4.5 4.4 4.5 4.5 4.6 4.7 4.7 4.7 4.8 4.7 4.9

2008 4.9 4.8 5.1 5.0 5.5 5.6 5.8 6.2 6.2 6.6 6.8 7.2

2009 7.6 8.1 8.5 8.9 9.4 9.5 9.4 9.7 9.8

6.S10 . WP The following data are the temperatures of effluent at

discharge from a sewage treatment facility on consecutive days:

43 47 51 48 52 50 46 49

45 52 46 51 44 49 46 51

49 45 44 50 48 50 49 50

a. Calculate the sample mean, sample median, sample vari-

ance, and sample standard deviation.

b. Construct a box plot of the data and comment on the infor-

mation in this display.

6.S11 . WP . SS VS The total net electricity consumption of

the United States by year from 1980 to 2007 (in billion

kilowatt-hours) is in the table below (Source: U.S. Department of

Energy Web site, www.eia.doe.gov/emeu/international/contents

.html#InternationalElectricity). Net consumption excludes the

energy consumed by the generating units.

1980 2094.4 1981 2147.1 1982 2086.4 1983 2151.0

1984 2285.8 1985 2324.0 1986 2368.8 1987 2457.3

1988 2578.1 1989 2755.6 1990 2837.1 1991 2886.1

1992 2897.2 1993 3000.7 1994 3080.9 1995 3164.0

1996 3253.8 1997 3301.8 1998 3425.1 1999 3483.7

2000 3592.4 2001 3557.1 2002 3631.7 2003 3662.0

2004 3715.9 2005 3811.0 2006 3816.8 2007 3891.7

Construct a time series plot of these data. Construct and

interpret a stem-and-leaf display of these data.

http://www.eia.doe.gov/emeu/international/contents.html#InternationalElectricity
http://www.eia.doe.gov/emeu/international/contents.html#InternationalElectricity
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6.S12 Transformations. In some data sets, a transformation by

some mathematical function applied to the original data, such as
√

y or log y, can result in data that are simpler to work with statisti-

cally than the original data. To illustrate the effect of a transforma-

tion, consider the following data, which represent cycles to failure

for a yarn product: 675, 3650, 175, 1150, 290, 2000, 100, 375.

a. Construct a normal probability plot and comment on the

shape of the data distribution.

b. Transform the data using logarithms; that is, let y*(new

value) = log y(old value). Construct a normal probability

plot of the transformed data and comment on the effect of

the transformation.

6.S13 In 1879, A. A. Michelson made 100 determinations of the

velocity of light in air using a modification of a method proposed

by French physicist Léon Foucault. Michelson made the measure-

ments in five trials of 20 measurements each. The observations

(in kilometers per second) are in the table below. Each value has

299,000 subtracted from it.

The currently accepted true velocity of light in a vacuum

is 299,792.5 kilometers per second. Stigler [“Do Robust Estima-

tors Work with Real Data?” Annals of Statistics (1977, Vol. 5(6),

pp. 1055–1098)] reported that the “true” value for comparison

to these measurements is 734.5 because of air effects. Construct

comparative box plots of these measurements. Does it seem that

all five trials are consistent with respect to the variability of the

measurements? Are all five trials centered on the same value?

How does each group of trials compare to the true value? Could

there have been “startup” effects in the experiment that Michel-

son performed? Could there have been bias in the measuring

instrument?

Trial 1
850 900 930 950 980

1000 930 760 1000 960

740 1070 850 980 880

980 650 810 1000 960

Trial 2
960 960 880 850 900

830 810 880 800 760

940 940 800 880 840

790 880 830 790 800

Trial 3
880 880 720 620 970

880 850 840 850 840

880 860 720 860 950

910 870 840 840 840

Trial 4
890 810 800 760 750

910 890 880 840 850

810 820 770 740 760

920 860 720 850 780

Trial 5

890 780 760 790 820

870 810 810 950 810

840 810 810 810 850

870 740 940 800 870

6.S14 . WP In 1789, Henry Cavendish estimated the density of

the Earth by using a torsion balance. His 29 measurements follow,

expressed as a multiple of the density of water.

5.50 5.30 5.47 5.10 5.29 5.65

5.55 5.61 5.75 5.63 5.27 5.44

5.57 5.36 4.88 5.86 5.34 5.39

5.34 5.53 5.29 4.07 5.85 5.46

5.42 5.79 5.62 5.58 5.26

a. Calculate the sample mean, sample standard deviation,

and median of the Cavendish density data.

b. Construct a normal probability plot of the data. Comment

on the plot. Does there seem to be a “low” outlier in the

data?

c. Would the sample median be a better estimate of the den-

sity of the earth than the sample mean? Why?

6.S15 In their book Introduction to Time Series Analysis and
Forecasting (Wiley, 2008), Montgomery, Jennings, and Kulahci

presented the data on the drowning rate for children between one

and four years old per 100,000 of population in Arizona from

1970 to 2004. The data are: 19.9, 16.1, 19.5, 19.8, 21.3, 15.0,

15.5, 16.4, 18.2, 15.3, 15.6, 19.5, 14.0, 13.1, 10.5, 11.5, 12.9, 8.4,

9.2, 11.9, 5.8, 8.5, 7.1, 7.9, 8.0, 9.9, 8.5, 9.1, 9.7, 6.2, 7.2, 8.7, 5.8,

5.7, and 5.2.

a. Perform an appropriate graphical analysis of the data.

b. Calculate and interpret the appropriate numerical

summaries.

c. Notice that the rate appears to decrease dramatically start-

ing about 1990. Discuss some potential reasons explaining

why this could have happened.

d. If there has been a real change in the drowning rate begin-

ning about 1990, what impact does this have on the summary

statistics that you calculated in part (b)?

6.S16 The energy consumption for 90 gas-heated homes during

a winter heating season is given in the table below. The variable

reported is BTU/number of heating degree days.

a. Calculate the sample mean and standard deviation of

energy usage.

b. Construct a histogram of the energy usage data and com-

ment on the shape of the data distribution.

c. Construct a stem-and-leaf diagram of energy usage.

d. What proportion of the energy usage data is above the

average usage plus 2 standard deviations?
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7.87 9.43 7.16 8.67 12.31 9.84 16.90 10.04 12.62 7.62

11.12 13.43 9.07 6.94 10.28 9.37 7.93 13.96 6.80 4.00

8.58 8.00 5.98 15.24 8.54 11.09 11.70 12.71 6.78 9.82

12.91 10.35 9.60 9.58 9.83 9.52 18.26 10.64 6.62 5.20

12.28 7.23 2.97 8.81 9.27 11.29 8.29 9.96 10.30 16.06

14.24 11.43 10.28 13.60 5.94 10.36 6.85 6.72 10.21 8.61

11.62 11.21 10.95 7.62 10.40 12.92 15.12 13.47 8.47 11.70

7.73 8.37 7.29 10.49 8.69 8.26 7.69 12.19 5.56 9.76

7.15 12.69 13.38 13.11 10.50 14.35 13.42 6.35 9.83 12.16

6.S17 One of the authors (DCM) has a Mercedes-Benz 500 SL

Roadster. It is a 2003 model and has fairly low mileage (currently

60,112 miles on the odometer). He is interested in learning how

his car’s mileage compares with the mileage on similar SLs.

The table below contains the mileage on 100 Mercedes-Benz

SLs from the model years 2003–2009 taken from the Cars.com

website.

a. Calculate the sample mean and standard deviation of the

odometer readings.

b. Construct a histogram of the odometer readings and com-

ment on the shape of the data distribution.

2020 8905 1698 17,971 6207 22,643 4977 17,656 8940 11,508

7893 10,327 37,687 15,000 4166 9056 19,842 15,598 33,745 22,168

19,000 31,668 33,512 28,522 5824 18,327 31,845 30,015 2171 36,161

15,984 16,903 37,789 28,958 40,944 18,498 40,057 15,272 28,968 30,487

32,271 36,889 21,564 31,000 42,915 19,377 19,634 26,313 43,049 30,396

38,277 72,272 3800 21,218 29,250 48,648 29,216 44,944 49,125 33,065

32,524 38,139 62,940 51,326 54,126 4100 45,540 26,235 46,505 34,420

15,972 41,218 43,382 15,879 13,500 77,809 25,708 29,000 58,006 51,071

63,249 58,526 66,325 49,489 32,800 67,000 60,499 63,260 60,449 27,422

60,583 83,500 56,314 67,072 62,500 47,603 51,936 65,195 64,473 85,475

c. Construct a stem-and-leaf diagram of the odometer

readings.

d. What is the percentile of DCM’s mileage?

6.S18 Consider the global mean surface air temperature anomaly

and the global CO2 concentration data originally shown in

Exercise 6.5.4.

a. Construct a scatter plot of the global mean surface air

temperature anomaly versus the global CO2 concentration.

Comment on the plot.

b. What is the simple correlation coefficient between these

two variables?

Chapter 7 Exercises

Exercises for Section 7.2

WP Problem available in WileyPLUS at instructor’s discretion.
WP GO Tutorial Tutoring problem available in WileyPLUS at

instructor’s discretion
SS Student solution available in WileyPLUS.

VS Student video solution available in WileyPLUS.

7.2.1 . WP Consider the compressive strength data in Table 6.2.

What proportion of the specimens exhibit compressive strength

of at least 200 psi? What is the population parameter estimated

here?

7.2.2 . WP Consider the synthetic fiber in the previous exercise.

How is the standard deviation of the sample mean changed when

the sample size is increased from n = 6 to n = 49?

7.2.3 . WP VS A synthetic fiber used in manufacturing carpet

has tensile strength that is normally distributed with mean 75.5 psi

and standard deviation 3.5 psi. Find the probability that a random

sample of n = 6 fiber specimens will have sample mean tensile

strength that exceeds 75.75 psi.

http://Cars.com
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7.2.4 . WP Suppose that the random variable X has the continu-

ous uniform distribution

f (x) =
{

1, 0 ≤ x ≤ 1

0, otherwise

Suppose that a random sample of n = 12 observations is selected

from this distribution. What is the approximate probability distri-

bution of X − 6? Find the mean and variance of this quantity.

7.2.5 . WP A normal population has mean 100 and variance 25.

How large must the random sample be if you want the standard

error of the sample average to be 1.5?

7.2.6 . WP VS The amount of time that a customer spends wait-

ing at an airport check-in counter is a random variable with

mean 8.2 minutes and standard deviation 1.5 minutes. Suppose

that a random sample of n = 49 customers is observed. Find

the probability that the average time waiting in line for these

customers is
a. Less than 10 minutes b. Between 5 and 10 minutes

c. Less than 6 minutes

7.2.7 . WP . SS VS A random sample of size n1 = 16 is

selected from a normal population with a mean of 75 and a stan-

dard deviation of 8. A second random sample of size n2 = 9 is

taken from another normal population with mean 70 and standard

deviation 12. Let X1 and X2 be the two sample means. Find:

a. The probability that X1 − X2 exceeds 4

b. The probability that 3.5 ≤ X1 − X2 ≤ 5.5

7.2.8 Scientists at the Hopkins Memorial Forest in western Mas-

sachusetts have been collecting meteorological and environmen-

tal data in the forest data for more than 100 years. In the past

few years, sulfate content in water samples from Birch Brook has

averaged 7.48 mg/L with a standard deviation of 1.60 mg/L.

a. What is the standard error of the sulfate in a collection of

10 water samples?

b. If 10 students measure the sulfate in their samples, what

is the probability that their average sulfate will be between

6.49 and 8.47 mg/L?

c. What do you need to assume for the probability calculated

in (b) to be accurate?

7.2.9 Data on the pH of rain in Ingham County, Michigan, are as

follows:

5.47 5.37 5.38 4.63 5.37 3.74 3.71 4.96 4.64 5.11 5.65 5.39

4.16 5.62 4.57 4.64 5.48 4.57 4.57 4.51 4.86 4.56 4.61 4.32

3.98 5.70 4.15 3.98 5.65 3.10 5.04 4.62 4.51 4.34 4.16 4.64

5.12 3.71 4.64

What proportion of the samples has pH below 5.0?

7.2.10 Researchers in the Hopkins Forest (see Exercise 7.2.8)

also count the number of maple trees (genus acer) in plots

throughout the forest. The following is a histogram of the number

of live maples in 1002 plots sampled over the past 20 years. The

average number of maples per plot was 19.86 trees with a standard

deviation of 23.65 trees.

a. If we took the mean of a sample of eight plots, what would

be the standard error of the mean?
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b. Using the central limit theorem, what is the probability

that the mean of the eight would be within 1 standard error

of the mean?

c. Why might you think that the probability that you calcu-

lated in (b) might not be very accurate?

7.2.11 Like hurricanes and earthquakes, geomagnetic storms are

natural hazards with possible severe impact on the earth. Severe

storms can cause communication and utility breakdowns, lead-

ing to possible blackouts. The National Oceanic and Atmospheric

Administration beams electron and proton flux data in various

energy ranges to various stations on the earth to help forecast pos-

sible disturbances. The following are 25 readings of proton flux

in the 47-68 kEV range (units are in p/(cm2-sec-ster-MeV)) on

the evening of December 28, 2011:

2310 2320 2010 10800 2190 3360 5640 2540 3360 11800 2010

3430 10600 7370 2160 3200 2020 2850 3500 10200 8550 9500

2260 7730 2250

a. Find a point estimate of the mean proton flux in this time

period.

b. Find a point estimate of the standard deviation of the pro-

ton flux in this time period.

c. Find an estimate of the standard error of the estimate in

part (a).

d. Find a point estimate for the median proton flux in this

time period.

e. Find a point estimate for the proportion of readings that

are less than 5000 p/(cm2-sec-ster-MeV).

7.2.12 Wayne Collier designed an experiment to measure the fuel

efficiency of his family car under different tire pressures. For each

run, he set the tire pressure and then measured the miles he drove

on a highway (I-95 between Mills River and Pisgah Forest, NC)

until he ran out of fuel using 2 liters of fuel each time. To do

this, he made some alterations to the normal flow of gasoline to

the engine. In Wayne’s words, “I inserted a T-junction into the

fuel line just before the fuel filter, and a line into the passenger

compartment of my car, where it joined with a graduated 2-liter

Rubbermaid© bottle that I mounted in a box where the passenger

seat is normally fastened. Then I sealed off the fuel-return line,

which under normal operation sends excess fuel from the fuel

pump back to the fuel tank.”
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Suppose that you call the mean miles that he can drive with

normal pressure in the tires μ. An unbiased estimate for μ is the

mean of the sample runs, x. But Wayne has a different idea. He

decides to use the following estimator: He flips a fair coin. If the

coin comes up heads, he will add 5 miles to each observation.

If tails come up, he will subtract 5 miles from each observation.

a. Show that Wayne’s estimate is, in fact, unbiased.

b. Compare the standard deviation of Wayne’s estimate with

the standard deviation of the sample mean.

c. Given your answer to (b), why does Wayne’s estimate not

make good sense scientifically?

Exercises for Section 7.3

WP Problem available in WileyPLUS at instructor’s discretion.
WP GO Tutorial Tutoring problem available in WileyPLUS at

instructor’s discretion
SS Student solution available in WileyPLUS.

VS Student video solution available in WileyPLUS.

7.3.1 A computer software package calculated some numerical

summaries of a sample of data. The results are displayed here:

SE Sum of

Variable N Mean Mean StDev Variance Sum Squares

x ? ? 2.05 10.25 ? 3761.70 ?

a. Fill in the missing quantities.

b. What is the estimate of the mean of the population from

which this sample was drawn?

7.3.2 Suppose we have a random sample of size 2n from a popu-

lation denoted by X, and E(X) = μ and V(X) = σ2. Let

X1 =
1

2n

2n∑

i=1

Xi and X2 =
1

n

n∑

i=1

Xi

be two estimators of μ. Which is the better estimator of μ? Explain

your choice.

7.3.3 . SS Suppose that we have a random sample X1, X2, … ,

Xn from a population that is N(μ, σ2). We plan to use ̂Θ =
∑n

i=1
(Xi − X)2∕c to estimate σ2. Compute the bias in ̂Θ as an esti-

mator of σ2 as a function of the constant c.

7.3.4 . WP VS Suppose that ̂Θ1 and ̂Θ2 are unbiased estima-

tors of the parameter θ. We know that V( ̂Θ1) = 10 and V( ̂Θ2) = 4.

Which estimator is better and in what sense is it better? Calculate

the relative efficiency of the two estimators.

7.3.5 Suppose that ̂Θ1,
̂Θ2, and ̂Θ3 are estimators of θ. We

know that E( ̂Θ1) = E( ̂Θ2) = θ, E( ̂Θ3) ≠ θ,V( ̂Θ1) = 12,V( ̂Θ2) =
10, and E( ̂Θ3 − θ)2 = 6. Compare these three estimators. Which

do you prefer? Why?

7.3.6 . WP Data on pull-off force (pounds) for connectors used

in an automobile engine application are as follows: 79.3, 75.1,

78.2, 74.1, 73.9, 75.0, 77.6, 77.3, 73.8, 74.6, 75.5, 74.0, 74.7,

75.9, 72.9, 73.8, 74.2, 78.1, 75.4, 76.3, 75.3, 76.2, 74.9, 78.0,

75.1, 76.8.

a. Calculate a point estimate of the mean pull-off force of

all connectors in the population. State which estimator you

used and why.

b. Calculate a point estimate of the pull-off force value that

separates the weakest 50% of the connectors in the population

from the strongest 50%.

c. Calculate point estimates of the population variance and

the population standard deviation.

d. Calculate the standard error of the point estimate found

in part (a). Interpret the standard error.

e. Calculate a point estimate of the proportion of all con-

nectors in the population whose pull-off force is less than

73 pounds.

7.3.7 . WP . SS VS Data on the oxide thickness of semicon-

ductor wafers are as follows: 425, 431, 416, 419, 421, 436, 418,

410, 431, 433, 423, 426, 410, 435, 436, 428, 411, 426, 409, 437,

422, 428, 413, 416.

a. Calculate a point estimate of the mean oxide thickness for

all wafers in the population.

b. Calculate a point estimate of the standard deviation of

oxide thickness for all wafers in the population.

c. Calculate the standard error of the point estimate from

part (a).

d. Calculate a point estimate of the median oxide thickness

for all wafers in the population.

e. Calculate a point estimate of the proportion of wafers

in the population that have oxide thickness of more than

430 angstroms.

7.3.8 Suppose that X is the number of observed “successes” in a

sample of n observations where p is the probability of success on

each observation.

a. Show that ̂P = X∕n is an unbiased estimator of p.

b. Show that the standard error of ̂P is
√

p(1 − p)∕n.

How would you estimate the standard error?

7.3.9 . VS X1 and S2
1

are the sample mean and sample variance

from a population with mean μ1 and variance σ2
1
. Similarly, X2 and

S2
2

are the sample mean and sample variance from a second inde-

pendent population with mean μ2 and variance σ2
2
. The sample

sizes are n1 and n2, respectively.

a. Show that X1 − X2 is an unbiased estimator of μ1 − μ2.

b. Find the standard error of X1 − X2. How could you

estimate the standard error?

c. Suppose that both populations have the same variance;

that is, σ2
1
= σ2

2
= σ2. Show that

S2
p =

(n1 − 1) S2
1
+ (n2 − 1) S2

2

n1 + n2 − 2

is an unbiased estimator of σ2.

7.3.10 Consider a normal random variable with mean 10 and

standard deviation 4. Suppose that a random sample of size 16 is

drawn from this distribution and the sample mean is computed.
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We know that the standard error of the sample mean in this

case is σ∕
√

n = σ∕
√

16 = 1. Use the bootstrap method with

nB = 200 bootstrap samples to find the standard error of the sam-

ple mean. Compare the bootstrap standard error to the actual

standard error.

7.3.11 Of n1 randomly selected engineering students at Ari-

zona State University, X1 owned an Apple computer, and of n2

randomly selected engineering students at Virginia Tech, X2

owned an Apple computer. Let p1 and p2 be the probability that

randomly selected ASU and Virginia Tech engineering students,

respectively, own Apple computers.

a. Show that an unbiased estimate for p1 − p2 is (X1/n1) −
(X2/n2).

b. What is the standard error of the point estimate in

part (a)?

c. How would you compute an estimate of the standard error

found in part (b)?

d. Suppose that n1 = 200, X1 = 150, n2 = 250, and X2 = 185.

Use the results of part (a) to compute an estimate of p1 − p2.

e. Use the results in parts (b) through (d) to compute an esti-

mate of the standard error of the estimate.

7.3.12 Suppose that two independent random samples (of size n1

and n2) from two normal distributions are available. Explain how

you would estimate the standard error of the difference in sample

means X1 − X2 with the bootstrap method.

Exercises for Section 7.4

WP Problem available in WileyPLUS at instructor’s discretion.
WP GO Tutorial Tutoring problem available in WileyPLUS at

instructor’s discretion
SS Student solution available in WileyPLUS.

VS Student video solution available in WileyPLUS.

7.4.1 . WP . SS VS Let X be a geometric random variable with

parameter p. Find the maximum likelihood estimator of p based

on a random sample of size n.

7.4.2 . WP VS Consider the probability density function

f (x) = 1

θ2
xe−x∕θ

, 0 ≤ x < ∞, 0 < θ < ∞

Find the maximum likelihood estimator for θ.

7.4.3 Let X1, X2, … , Xn be uniformly distributed on the

interval 0 to a. Show that the moment estimator of a is â = 2X.

Is this an unbiased estimator? Discuss the reasonableness of this

estimator.

7.4.4 Consider the probability density function

f (x) = c(1 + θx), −1 ≤ x ≤ 1

a. Find the value of the constant c.

b. What is the moment estimator for θ?

c. Show that ̂θ = 3X is an unbiased estimator for θ.

d. Find the maximum likelihood estimator for θ.

7.4.5 Consider the Weibull distribution

f (x) =
⎧
⎪
⎨
⎪
⎩

β
δ

( x
δ

)β−1

e−
(

x
δ

)β

, 0 < x

0, otherwise

a. Find the likelihood function based on a random sample

of size n. Find the log likelihood.

b. Show that the log likelihood is maximized by solving the

following equations

β =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

n∑

i=1

xβi ln(xi)

n∑

i=1

xβi

−

n∑

i=1

ln(xi)

n

⎤
⎥
⎥
⎥
⎥
⎥
⎦

−1

δ =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

n∑

i=1

xβi

n

⎤
⎥
⎥
⎥
⎥
⎥
⎦

1∕β

c. What complications are involved in solving the two

equations in part (b)?

7.4.6 Let X1, X2, … , Xn be uniformly distributed on the inter-

val 0 to a. Recall that the maximum likelihood estimator of a is

â = max(Xi).
a. Argue intuitively why â cannot be an unbiased estimator

for a.

b. Suppose that E(â) = na∕(n + 1). Is it reasonable that â
consistently underestimates a? Show that the bias in the esti-

mator approaches zero as n gets large.

c. Propose an unbiased estimator for a.

d. Let Y = max(Xi). Use the fact that Y ≤ y if and only if

each Xi ≤ y to derive the cumulative distribution function of

Y . Then show that the probability density function of Y is

f (y) =
⎧
⎪
⎨
⎪
⎩

ny n−1

an , 0 ≤ y ≤ a

0, otherwise

Use this result to show that the maximum likelihood estima-

tor for a is biased.

e. We have two unbiased estimators for a: the moment esti-

mator â1 = 2X and â2 = [(n + 1)∕n] max(Xi), where max(Xi)

is the largest observation in a random sample of size n.

It can be shown that V(â1) = a2∕(3n) and that V(â2) =
a2∕[n(n + 2)]. Show that if n > 1, â2 is a better estimator than

â. In what sense is it a better estimator of a?
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7.4.7 . SS Reconsider the oxide thickness data in Exercise 7.3.7

and suppose that it is reasonable to assume that oxide thickness

is normally distributed.

a. Compute the maximum likelihood estimates of μ and σ2.

b. Graph the likelihood function in the vicinity of μ̂ and

σ̂2, the maximum likelihood estimates, and comment on its

shape.

c. Suppose that the sample size was larger (n = 40) but the

maximum likelihood estimates were numerically equal to the

values obtained in part (a). Graph the likelihood function for

n = 40, compare it to the one from part (b), and comment on

the effect of the larger sample size.

Supplemental Exercises for Chapter 7

WP Problem available in WileyPLUS at instructor’s discretion.
WP GO Tutorial Tutoring problem available in WileyPLUS at

instructor’s discretion
SS Student solution available in WileyPLUS.

VS Student video solution available in WileyPLUS.

7.S8 Suppose that a random variable is normally distributed with

mean μ and variance σ2, and we draw a random sample of five

observations from this distribution. What is the joint probability

density function of the sample?

7.S9 . WP Transistors have a life that is exponentially distributed

with parameter λ. A random sample of n transistors is taken. What

is the joint probability density function of the sample?

7.S10 . WP VS A procurement specialist has purchased 25

resistors from vendor 1 and 30 resistors from vendor 2. Let X1,1,

X1,2, … , X1,25 represent the vendor 1 observed resistances, which

are assumed to be normally and independently distributed with

mean 100 ohms and standard deviation 1.5 ohms. Similarly, let

X2,1, X2,2, … , X2,30 represent the vendor 2 observed resistances,

which are assumed to be normally and independently distributed

with mean 105 ohms and standard deviation of 2.0 ohms. What is

the sampling distribution of X1 − X2? What is the standard error

of X1 − X2?

7.S11 . WP . SS VS A random sample of 36 observations has

been drawn from a normal distribution with mean 50 and standard

deviation 12. Find the probability that the sample mean is in the

interval 47 ≤ X ≤ 53. Is the assumption of normality important?

Why?

7.S12 A manufacturer of semiconductor devices takes a ran-

dom sample of 100 chips and tests them, classifying each

chip as defective or nondefective. Let Xi = 0 if the chip is

nondefective and Xi = 1 if the chip is defective. The sample frac-

tion defective is

̂P =
X1 + X2 + • • • + X100

100

What is the sampling distribution of the random variable ̂P?

7.S13 . WP A random variable x has probability density function

f (x) = 1

2θ3
x2e−x∕θ

, 0 < x < ∞, 0 < θ < ∞

Find the maximum likelihood estimator for θ.

7.S14 Let f (x)= (1/θ)x(1−θ)/θ, 0< x< 1, and 0< θ<∞. Show that
̂Θ = −(1∕n)

∑n
i=1

ln(Xi) is the maximum likelihood estimator for

θ and that ̂Θ is an unbiased estimator for q.

7.S15 An electric utility has placed special meters on 10 houses

in a subdivision that measures the energy consumed (demand)

at each hour of the day. The company is interested in the energy

demand at one specific hour—the hour at which the system expe-

riences peak consumption. The data from these 10 meters are as

follows (in KW): 23.1, 15.6, 17.4, 20.1, 19.8, 26.4, 25.1, 20.5,

21.9, and 28.7. If μ is the true mean peak demand for the 10 houses

in this group of houses having the special meters, estimate μ.

Now suppose that the utility wants to estimate the demand at the

peak hour for all 5000 houses in this subdivision. Let θ be this

quantity. Estimate θ using the data given. Estimate the proportion

of houses in the subdivision that demand at least 20 KW at the

hour of system peak.

Chapter 8 Exercises

Exercises for Section 8.1

WP Problem available in WileyPLUS at instructor’s discretion.
WP GO Tutorial Tutoring problem available in WileyPLUS at

instructor’s discretion
SS Student solution available in WileyPLUS.

VS Student video solution available in WileyPLUS.

8.1.1 . WP For a normal population with known variance σ2,

answer the following questions:

a. What is the confidence level for the interval x − 2.14σ∕√
n ≤ μ ≤ x + 2.14σ∕

√
n?
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b. What is the confidence level for the interval x − 2.49σ∕√
nx − 2.49σ∕

√
n ≤ μ ≤ x + 2.49σ∕

√
n?

c. What is the confidence level for the interval x − 1.85σ∕√
n ≤ μ ≤ x + 1.85σ∕

√
n?

d. What is the confidence level for the interval μ ≤ x +
2.00σ∕

√
n?

e. What is the confidence level for the interval x − 1.96σ∕√
n ≤ μ?

8.1.2 . WP Consider the one-sided confidence interval expres-

sions for a mean of a normal population.

a. What value of zα would result in a 90% CI?

b. What value of zα would result in a 95% CI?

c. What value of zα would result in a 99% CI?

8.1.3 A random sample has been taken from a normal distribu-

tion and the following confidence intervals constructed using the

same data: (38.02, 61.98) and (39.95, 60.05)

a. What is the value of the sample mean?

b. One of these intervals is a 95% CI and the other is a

90% CI. Which one is the 95% CI and why?

8.1.4 . WP A confidence interval estimate is desired for the gain

in a circuit on a semiconductor device. Assume that gain is nor-

mally distributed with standard deviation σ = 20.

a. How large must n be if the length of the 95% CI is to

be 40?

b. How large must n be if the length of the 99% CI is to

be 40?

8.1.5 Suppose that n = 100 random samples of water from

a freshwater lake were taken and the calcium concentration

(milligrams per liter) measured. A 95% CI on the mean calcium

concentration is 0.49 ≤ μ ≤ 0.82.

a. Would a 99% CI calculated from the same sample data be

longer or shorter?

b. Consider the following statement: There is a 95% chance

that μ is between 0.49 and 0.82. Is this statement correct?

Explain your answer.

c. Consider the following statement: If n = 100 random

samples of water from the lake were taken and the 95% CI on

μ computed, and this process were repeated 1000 times, 950

of the CIs would contain the true value of μ. Is this statement

correct? Explain your answer.

8.1.6 . WP . SS The yield of a chemical process is being stud-

ied. From previous experience, yield is known to be normally

distributed and σ = 3. The past 5 days of plant operation have

resulted in the following percent yields: 91.6, 88.75, 90.8, 89.95,

and 91.3. Find a 95% two-sided confidence interval on the true

mean yield.

8.1.7 . WP A manufacturer produces piston rings for an automo-

bile engine. It is known that ring diameter is normally distributed

with σ = 0.001 millimeters. A random sample of 15 rings has a

mean diameter of x = 74.036 millimeters.

a. Construct a 99% two-sided confidence interval on the

mean piston ring diameter.

b. Construct a 99% lower-confidence bound on the mean

piston ring diameter. Compare the lower bound of this confi-

dence interval with the one in part (a).

8.1.8 . WP VS A civil engineer is analyzing the compressive

strength of concrete. Compressive strength is normally distributed

with σ2 = 1000(psi)2. A random sample of 12 specimens has a

mean compressive strength of x = 3250 psi.

a. Construct a 95% two-sided confidence interval on mean

compressive strength.

b. Construct a 99% two-sided confidence interval on mean

compressive strength. Compare the width of this confidence

interval with the width of the one found in part (a).

8.1.9 . WP Suppose that in Exercise 8.1.8 it is desired to estimate

the compressive strength with an error that is less than 15 psi at

99% confidence. What sample size is required?

8.1.10 If the sample size n is doubled, by how much is the length

of the CI on μ in Equation 8.5 reduced? What happens to the

length of the interval if the sample size is increased by a factor

of four?

8.1.11 . WP . SS By how much must the sample size n be

increased if the length of the CI on μ in Equation 8.5 is to be

halved?

8.1.12 Ishikawa et al. [“Evaluation of Adhesiveness of Acineto-
bacter sp. Tol 5 to Abiotic Surfaces,” Journal of Bioscience and
Bioengineering (Vol. 113(6), pp. 719–725)] studied the adhesion

of various biofilms to solid surfaces for possible use in environ-

mental technologies. Adhesion assay is conducted by measuring

absorbance at A590. Suppose that for the bacterial strain Acineto-
bacter, five measurements gave readings of 2.69, 5.76, 2.67, 1.62,

and 4.12 dyne-cm2. Assume that the standard deviation is known

to be 0.66 dyne-cm2.

a. Find a 95% confidence interval for the mean adhesion.

b. If the scientists want the confidence interval to be no

wider than 0.55 dyne-cm2, how many observations should

they take?

8.1.13 .WP GO Tutorial An article in the Journal of Agricultural
Science [“The Use of Residual Maximum Likelihood to Model

Grain Quality Characteristics of Wheat with Variety, Climatic

and Nitrogen Fertilizer Effects” (1997, Vol. 128, pp. 135–142)]

investigated means of wheat grain crude protein content (CP) and

Hagberg falling number (HFN) surveyed in the United Kingdom.

The analysis used a variety of nitrogen fertilizer applications (kg

N/ha), temperature (∘C), and total monthly rainfall (mm). The

following data below describe temperatures for wheat grown at

Harper Adams Agricultural College between 1982 and 1993. The

temperatures measured in June were obtained as follows:

15.2 14.2 14.0 12.2 14.4 12.5

14.3 14.2 13.5 11.8 15.2

Assume that the standard deviation is known to be σ = 0.5.

a. Construct a 99% two-sided confidence interval on the

mean temperature.

b. Construct a 95% lower-confidence bound on the mean

temperature.

c. Suppose that you wanted to be 95% confident that

the error in estimating the mean temperature is less than

2 degrees Celsius. What sample size should be used?

d. Suppose that you wanted the total width of the two-sided

confidence interval on mean temperature to be 1.5 degrees

Celsius at 95% confidence. What sample size should be used?



�

� �

�

Exercises P-63

Exercises for Section 8.2

WP Problem available in WileyPLUS at instructor’s discretion.
WP GO Tutorial Tutoring problem available in WileyPLUS at

instructor’s discretion
SS Student solution available in WileyPLUS.

VS Student video solution available in WileyPLUS.

8.2.1 A random sample has been taken from a normal distribu-

tion. Output from a software package follows:

Variable N Mean SE Mean StDev Variance Sum

x 10 ? 0.507 1.605 ? 251.848

a. Fill in the missing quantities.

b. Find a 95% CI on the population mean.

8.2.2 . WP . SS Find the values of the following percentiles:

t0.025,15, t0.05,10, t0.10,20, t0.005,25, and t0.001,30.

8.2.3 A research engineer for a tire manufacturer is investigating

tire life for a new rubber compound and has built 16 tires and

tested them to end-of-life in a road test. The sample mean and

standard deviation are 60,139.7 and 3645.94 kilometers. Find a

95% confidence interval on mean tire life.

8.2.4 . WP Determine the t-percentile that is required to con-

struct each of the following one-sided confidence intervals:

a. Confidence level = 95%, degrees of freedom = 14

b. Confidence level = 99%, degrees of freedom = 19

c. Confidence level = 99.9%, degrees of freedom = 24

8.2.5 . WP An article in Obesity Research [“Impaired Pressure

Natriuresis in Obese Youths” (2003, Vol. 11, pp. 745–751)]

described a study in which all meals were provided for 14 lean

boys for three days followed by one stress test (with a video-game

task). The average systolic blood pressure (SBP) during the

test was 118.3 mm HG with a standard deviation of 9.9 mm

HG. Construct a 99% one-sided upper confidence interval for

mean SBP.

8.2.6 . WP An article in Medicine and Science in Sports and
Exercise [“Maximal Leg-Strength Training Improves Cycling

Economy in Previously Untrained Men” (2005, Vol. 37, pp.

131–136)] studied cycling performance before and after 8 weeks

of leg-strength training. Seven previously untrained males per-

formed leg-strength training 3 days per week for 8 weeks (with

four sets of five replications at 85% of one repetition maximum).

Peak power during incremental cycling increased to a mean of

315 watts with a standard deviation of 16 watts. Construct a 95%

confidence interval for the mean peak power after training.

8.2.7 The brightness of a television picture tube can be evaluated

by measuring the amount of current required to achieve a partic-

ular brightness level. A sample of 10 tubes results in x = 317.2

and s = 15.7. Find (in microamps) a 99% confidence interval on

mean current required. State any necessary assumptions about the

underlying distribution of the data.

8.2.8 An article in the Journal of Composite Materials (Decem-

ber 1989, Vol. 23(12), pp. 1200–1215) describes the effect

of delamination on the natural frequency of beams made

from composite laminates. Five such delaminated beams were

subjected to loads, and the resulting frequencies (in hertz) were

as follows:

230.66, 233.05, 232.58, 229.48, 232.58

Check the assumption of normality in the population. Calculate a

90% two-sided confidence interval on mean natural frequency.

8.2.9 The compressive strength of concrete is being tested by a

civil engineer who tests 12 specimens and obtains the following

data:

2216 2237 2249 2204

2225 2301 2281 2263

2318 2255 2275 2295

a. Check the assumption that compressive strength is nor-

mally distributed. Include a graphical display in your answer.

b. Construct a 95% two-sided confidence interval on the

mean strength.

c. Construct a 95% lower confidence bound on the mean

strength. Compare this bound with the lower bound of the

two-sided confidence interval and discuss why they are

different.

8.2.10 . WP . SS An article in Computers & Electrical Engineer-
ing [“Parallel Simulation of Cellular Neural Networks” (1996,

Vol. 22, pp. 61–84)] considered the speedup of cellular neu-

ral networks (CNNs) for a parallel general-purpose computing

architecture based on six transputers in different areas. The data

follow:

3.775302 3.350679 4.217981 4.030324 4.639692

4.139665 4.395575 4.824257 4.268119 4.584193

4.930027 4.315973 4.600101

a. Is there evidence to support the assumption that speedup

of CNN is normally distributed? Include a graphical display

in your answer.

b. Construct a 95% two-sided confidence interval on the

mean speedup.

c. Construct a 95% lower confidence bound on the mean

speedup.

8.2.11 An article in Nuclear Engineering International (Feb-

ruary 1988, p. 33) describes several characteristics of fuel rods

used in a reactor owned by an electric utility in Norway. Measure-

ments on the percentage of enrichment of 12 rods were reported

as follows:

2.94 3.00 2.90 2.75 3.00 2.95

2.90 2.75 2.95 2.82 2.81 3.05

a. Use a normal probability plot to check the normality

assumption.

b. Find a 99% two-sided confidence interval on the mean

percentage of enrichment. Are you comfortable with the

statement that the mean percentage of enrichment is 2.95%?

Why?
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8.2.12 A healthcare provider monitors the number of CAT scans

performed each month in each of its clinics. The most recent year

of data for a particular clinic follows (the reported variable is the

number of CAT scans each month expressed as the number of

CAT scans per thousand members of the health plan):

2.31, 2.09, 2.36, 1.95, 1.98, 2.25, 2.16, 2.07, 1.88, 1.94, 1.97,

2.02

a. Find a 95% two-sided CI on the mean number of CAT

scans performed each month at this clinic.

b. Historically, the mean number of scans performed by all

clinics in the system has been 1.95. Is there any evidence that

this particular clinic performs more CAT scans on average

than the overall system average?

Exercises for Section 8.3

WP Problem available in WileyPLUS at instructor’s discretion.
WP GO Tutorial Tutoring problem available in WileyPLUS at

instructor’s discretion
SS Student solution available in WileyPLUS.

VS Student video solution available in WileyPLUS.

8.3.1 . WP The percentage of titanium in an alloy used in

aerospace castings is measured in 51 randomly selected parts. The

sample standard deviation is s = 0.37. Construct a 95% two-sided

confidence interval for σ.

8.3.2 . WP VS Determine the values of the following per-

centiles:

χ2
0.05,10

, χ2
0.025,15

, χ2
0.01,12

, χ2
0.95,20

, χ2
0.99,18

, χ2
0.995,16

, and χ2
0.005,25

8.3.3 .WP GO Tutorial VS SS An article in Urban Ecosys-
tems [“Urbanization and Warming of Phoenix (Arizona, USA):

Impacts, Feedbacks and Mitigation” (2002, Vol. 6, pp. 183–203)]

mentions that Phoenix is ideal to study the effects of an urban

heat island because it has grown from a population of 300,000 to

approximately 3 million over the last 50 years, which is a period

with a continuous, detailed climate record. The 50-year averages

of the mean annual temperatures at eight sites in Phoenix follow.

Check the assumption of normality in the population with a prob-

ability plot. Construct a 95% confidence interval for the standard

deviation over the sites of the mean annual temperatures.

Average Mean
Site Temperature (∘C)
Sky Harbor Airport 23.3

Phoenix Greenway 21.7

Phoenix Encanto 21.6

Waddell 21.7

Litchfield 21.3

Laveen 20.7

Maricopa 20.9

Harlquahala 20.1

8.3.4 . WP An article in Medicine and Science in Sports and
Exercise [“Electrostimulation Training Effects on the Physi-

cal Performance of Ice Hockey Players” (2005, Vol. 37, pp.

455–460)] considered the use of electromyostimulation (EMS) as

a method to train healthy skeletal muscle. EMS sessions consisted

of 30 contractions (4-second duration, 85 Hz) and were carried

out three times per week for 3 weeks on 17 ice hockey players.

The 10-meter skating performance test showed a standard devia-

tion of 0.09 seconds. Construct a 95% confidence interval of the

standard deviation of the skating performance test.

8.3.5 . WP An article in Technometrics [“Two-Way Random

Effects Analyses and Gauge R&R Studies” (1999, Vol. 41(3),

pp. 202–211)] studied the capability of a gauge by measuring the

weight of paper. The data for repeated measurements of one sheet

of paper are in the following table. Construct a 95% one-sided

upper confidence interval for the standard deviation of these mea-

surements. Check the assumption of normality of the data and

comment on the assumptions for the confidence interval.

Observations

3.481 3.448 3.485 3.475 3.472

3.477 3.472 3.464 3.472 3.470

3.470 3.470 3.477 3.473 3.474

8.3.6 . WP An article in Cancer Research [“Analyses of

Litter-Matched Time-to-Response Data, with Modifications

for Recovery of Interlitter Information” (1977, Vol. 37, pp.

3863–3868)] tested the tumorigenesis of a drug. Rats were ran-

domly selected from litters and given the drug. The times of

tumor appearance were recorded as follows:

101, 104, 104, 77, 89, 88, 104, 96, 82, 70, 89, 91, 39, 103, 93, 85,

104, 104, 81, 67, 104, 104, 104, 87, 104, 89, 78, 104, 86, 76, 103,

102, 80, 45, 94, 104, 104, 76, 80, 72, 73

Calculate a 95% confidence interval on the standard deviation of

time until a tumor appearance. Check the assumption of normal-

ity of the population and comment on the assumptions for the

confidence interval.

8.3.7 From the data on the pH of rain in Ingham County,

Michigan:

5.47 5.37 5.38 4.63 5.37 3.74 3.71 4.96 4.64 5.11 5.65 5.39

4.16 5.62 4.57 4.64 5.48 4.57 4.57 4.51 4.86 4.56 4.61 4.32 3.98

5.70 4.15 3.98 5.65 3.10 5.04 4.62 4.51 4.34 4.16 4.64 5.12

3.71 4.64

Find a two-sided 95% confidence interval for the standard devia-

tion of pH.
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Exercises for Section 8.4

WP Problem available in WileyPLUS at instructor’s discretion.
WP GO Tutorial Tutoring problem available in WileyPLUS at

instructor’s discretion
SS Student solution available in WileyPLUS.

VS Student video solution available in WileyPLUS.

8.4.1 . WP The 2004 presidential election exit polls from the crit-

ical state of Ohio provided the following results. The exit polls

had 2020 respondents, 768 of whom were college graduates. Of

the college graduates, 412 voted for George Bush.

a. Calculate a 95% confidence interval for the proportion of

college graduates in Ohio who voted for George Bush.

b. Calculate a 95% lower confidence bound for the pro-

portion of college graduates in Ohio who voted for George

Bush.

8.4.2 . WP VS An article in Knee Surgery, Sports Trauma-
tology, Arthroscopy [“Arthroscopic Meniscal Repair with an

Absorbable Screw: Results and Surgical Technique” (2005, Vol.

13, pp. 273–279)] showed that only 25 out of 37 tears (67.6%)

located between 3 and 6 mm from the meniscus rim were healed.

a. Calculate a two-sided 95% confidence interval on the pro-

portion of such tears that will heal.

b. Calculate a 95% lower confidence bound on the propor-

tion of such tears that will heal.

8.4.3 . WP An article in the Journal of the American Statis-
tical Association [“Illustration of Bayesian Inference in Nor-

mal Data Models Using Gibbs Sampling” (1990, Vol. 85, pp.

972–985)] measured the weight of 30 rats under experiment con-

trols. Suppose that 12 were underweight rats.

a. Calculate a 95% two-sided confidence interval on the true

proportion of rats that would show underweight from the

experiment.

b. Using the point estimate of p obtained from the prelimi-

nary sample, what sample size is needed to be 95% confident

that the error in estimating the true value of p is less than

0.02?

c. How large must the sample be if you wish to be at least

95% confident that the error in estimating p is less than 0.02,

regardless of the true value of p?

8.4.4 . WP . SS The Arizona Department of Transportation

wishes to survey state residents to determine what proportion of

the population would like to increase statewide highway speed

limits from 65 mph to 75 mph. How many residents does the

department need to survey if it wants to be at least 99% confident

that the sample proportion is within 0.05 of the true proportion?

8.4.5 The U.S. Postal Service (USPS) has used optical character

recognition (OCR) since the mid-1960s. In 1983, USPS began

deploying the technology to major post offices throughout the

country (www.britannica.com). Suppose that in a random sample

of 500 handwritten zip code digits, 466 were read correctly.

a. Construct a 95% confidence interval for the true propor-

tion of correct digits that can be automatically read.

b. What sample size is needed to reduce the margin of error

to 1%?

c. How would the answer to part (b) change if you had

to assume that the machine read only one-half of the digits

correctly?

8.4.6 Information on a packet of seeds claims that 93% of

them will germinate. Of the 200 seeds that were planted, only

180 germinated.

a. Find a 95% confidence interval for the true proportion of

seeds that germinate based on this sample.

b. Does this seem to provide evidence that the claim is

wrong?

8.4.7 Use the data from Exercise 8.4.5 to compute the two-sided

Agresti-Coull CI on the proportion of digits read correctly.

Compare and discuss the relationship of this interval to the one

computed in Exercise 8.4.5.

8.4.8 Use the data from Exercise 8.4.2 to compute the two-sided

Agresti-Coull CI on the proportion of tears that heal. Compare

and discuss the relationship of this interval to the one computed

in Exercise 8.4.2.

Exercises for Section 8.6

WP Problem available in WileyPLUS at instructor’s discretion.
WP GO Tutorial Tutoring problem available in WileyPLUS at

instructor’s discretion
SS Student solution available in WileyPLUS.

VS Student video solution available in WileyPLUS.

8.6.1 Consider the tire-testing data described in Exercise 8.2.3.

Compute a 95% prediction interval on the life of the next tire of

this type tested under conditions that are similar to those

employed in the original test. Compare the length of the prediction

interval with the length of the 95% CI on the population mean.

8.6.2 Consider the natural frequency of beams described in

Exercise 8.2.8. Compute a 90% prediction interval on the

diameter of the natural frequency of the next beam of this type

that will be tested. Compare the length of the prediction interval

with the length of the 90% CI on the population mean.

8.6.3 Consider the television tube brightness test described in

Exercise 8.2.7. Compute a 99% prediction interval on the bright-

ness of the next tube tested. Compare the length of the prediction

interval with the length of the 99% CI on the population mean.
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8.6.4 Consider the test on the compressive strength of concrete

described in Exercise 8.2.9. Compute a 90% prediction interval

on the next specimen of concrete tested.

8.6.5 . SS Consider the fuel rod enrichment data described in

Exercise 8.2.11. Compute a 90% prediction interval on the enrich-

ment of the next rod tested. Compare the length of the prediction

interval with the length of the 99% CI on the population mean.

8.6.6 How would you obtain a one-sided prediction bound on

a future observation? Apply this procedure to obtain a 95%

one-sided prediction bound on the wall thickness of the next bottle

for the situation described in Exercise 8.2.11.

8.6.7 Consider the tire-testing data in Exercise 8.2.3. Compute a

95% tolerance interval on the life of the tires that has confidence

level 95%. Compare the length of the tolerance interval with the

length of the 95% CI on the population mean. Which interval

is shorter? Discuss the difference in interpretation of these two

intervals.

8.6.8 Consider the television tube brightness data in Exercise

8.2.7. Compute a 99% tolerance interval on the brightness of

the television tubes that has confidence level 95%. Compare the

length of the tolerance interval with the length of the 99% CI on

the population mean. Which interval is shorter? Discuss the dif-

ference in interpretation of these two intervals.

8.6.9 Consider the fuel rod enrichment data described in Exercise

8.2.11. Compute a 99% tolerance interval on rod enrichment that

has confidence level 95%. Compare the length of the tolerance

interval with the length of the 95% CI on the population mean.

8.6.10 Consider the strength-of-concrete data in Exercise 8.2.9.

Compute a 90% tolerance interval on the compressive strength of

the concrete that has 90% confidence.

Supplemental Exercises for Chapter 8

WP Problem available in WileyPLUS at instructor’s discretion.
WP GO Tutorial Tutoring problem available in WileyPLUS at

instructor’s discretion
SS Student solution available in WileyPLUS.

VS Student video solution available in WileyPLUS.

8.S7 Consider the confidence interval for μ with known standard

deviation σ:

x − zα1
σ∕
√

n ≤ μ ≤ x + zα2
σ∕
√

n

where α1 + α2 = α. Let α = 0.05 and find the interval for α1 = α2

= α/2 = 0.025. Now find the interval for the case α1 = 0.01 and

α2 = 0.04. Which interval is shorter? Is there any advantage to a

“symmetric” confidence interval?

8.S8 . WP . SS An article in the Journal of Sports Sciences
[“Iron Status in Winter Olympic Sports” (1987, Vol. 5(3),

pp. 261–271)] presents the results of an investigation of the

hemoglobin level of Canadian Olympic ice hockey players. The

data reported are as follows (in g/dl):

15.3 16.0 14.4 16.2 16.2

14.9 15.7 15.3 14.6 15.7

16.0 15.0 15.7 16.2 14.7

14.8 14.6 15.6 14.5 15.2

a. Given the following probability plot of the data, what is

a logical assumption about the underlying distribution of the

data?

b. Explain why this check of the distribution underlying the

sample data is important if you want to construct a confidence

interval on the mean.

c. Based on this sample data, a 95% confidence interval for

the mean is (15.04, 15.62). Is it reasonable to infer that the

true mean could be 14.5? Explain your answer.
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d. Explain why this check of the distribution underlying the

sample data is important if we want to construct a confidence

interval on the variance.

e. Based on these sample data, a 95% confidence interval

for the variance is (0.22, 0.82). Is it reasonable to infer that

the true variance could be 0.35? Explain your answer.

f. Is it reasonable to use these confidence intervals to draw

an inference about the mean and variance of hemoglobin

levels

(i) of Canadian doctors? Explain your answer.

(ii) of Canadian children ages 6–12? Explain your answer.

8.S9 A normal population has known mean μ = 50 and vari-

ance σ2 = 5. What is the approximate probability that the sample
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variance is greater than or equal to 7.44? less than or equal to

2.56? For a random sample of size

a. n = 16 b. n = 30 c. n = 71

d. Compare your answers to parts (a)–(c) for the approxi-

mate probability that the sample variance is greater than or

equal to 7.44. Explain why this tail probability is increasing

or decreasing with increased sample size.

e. Compare your answers to parts (a)–(c) for the approx-

imate probability that the sample variance is less than or

equal to 2.56. Explain why this tail probability is increasing

or decreasing with increased sample size.

8.S10 During the 1999 and 2000 baseball seasons, there was

much speculation that the unusually large number of home runs

hit was due at least in part to a livelier ball. One way to test

the “liveliness” of a baseball is to launch the ball at a vertical

surface with a known velocity VL and measure the ratio of the

outgoing velocity VO of the ball to VL. The ratio R = VO/VL is

called the coefficient of restitution. Following are measurements

of the coefficient of restitution for 40 randomly selected base-

balls. The balls were thrown from a pitching machine at an oak

surface.

0.6248 0.6237 0.6118 0.6159 0.6298 0.6192

0.6520 0.6368 0.6220 0.6151 0.6121 0.6548

0.6226 0.6280 0.6096 0.6300 0.6107 0.6392

0.6230 0.6131 0.6223 0.6297 0.6435 0.5978

0.6351 0.6275 0.6261 0.6262 0.6262 0.6314

0.6128 0.6403 0.6521 0.6049 0.6170

0.6134 0.6310 0.6065 0.6214 0.6141

a. Is there evidence to support the assumption that the

coefficient of restitution is normally distributed?

b. Find a 99% CI on the mean coefficient of restitution.

c. Find a 99% prediction interval on the coefficient of

restitution for the next baseball that will be tested.

d. Find an interval that will contain 99% of the values of the

coefficient of restitution with 95% confidence.

e. Explain the difference in the three intervals computed in

parts (b), (c), and (d).

8.S11 . WP Consider the baseball coefficient of restitution data in

Exercise 8.S10. Suppose that any baseball that has a coefficient of

restitution that exceeds 0.635 is considered too lively. Based on

the available data, what proportion of the baseballs in the sampled

population are too lively? Find a 95% lower confidence bound on

this proportion.

8.S12 . WP An article in the ASCE Journal of Energy Engi-
neering [“Overview of Reservoir Release Improvements at 20

TVA Dams” (Vol. 125, April 1999, pp.s 1–17)] presents data on

dissolved oxygen concentrations in streams below 20 dams in

the Tennessee Valley Authority system. The observations are (in

milligrams per liter): 5.0, 3.4, 3.9, 1.3, 0.2, 0.9, 2.7, 3.7, 3.8, 4.1,

1.0, 1.0, 0.8, 0.4, 3.8, 4.5, 5.3, 6.1, 6.9, and 6.5.

a. Is there evidence to support the assumption that the dis-

solved oxygen concentration is normally distributed?

b. Find a 95% CI on the mean dissolved oxygen

concentration.

c. Find a 95% prediction interval on the dissolved oxygen

concentration for the next stream in the system that will be

tested.

d. Find an interval that will contain 95% of the values of the

dissolved oxygen concentration with 99% confidence.

e. Explain the difference in the three intervals computed in

parts (b), (c), and (d).

8.S13 . WP An article in The Engineer (“Redesign for Suspect

Wiring,” June 1990) reported the results of an investigation into

wiring errors on commercial transport aircraft that may display

faulty information to the flight crew. Such a wiring error may

have been responsible for the crash of a British Midland Airways

aircraft in January 1989 by causing the pilot to shut down the

wrong engine. Of 1600 randomly selected aircraft, 8 were found

to have wiring errors that could display incorrect information to

the flight crew.

a. Find a 99% confidence interval on the proportion of air-

craft that have such wiring errors.

b. Suppose that you use the information in this example

to provide a preliminary estimate of p. How large a sample

would be required to produce an estimate of p that we are

99% confident differs from the true value by at most 0.008?

c. Suppose that you did not have a preliminary estimate of

p. How large a sample would be required if you wanted to

be at least 99% confident that the sample proportion differs

from the true proportion by at most 0.008 regardless of the

true value of p?

d. Comment on the usefulness of preliminary information

in computing the needed sample size.

8.S14 An article in the Journal of Human Nutrition and Dietetics
[“The Validation of Energy and Protein Intakes by Doubly

Labeled Water and 24-Hour Urinary Nitrogen Excretion in

Post-Obese Subjects” (1995, Vol. 8, pp. 51–64)] showed the

energy intake expressed as a basal metabolic rate, BMR (MJ).

5.40 5.67 5.79 6.85 6.92

5.70 6.08 5.48 5.44 5.51

a. Use a normal probability plot to check the normality

assumption.

b. Find a 99% two-sided confidence interval on the

mean BMR.
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Chapter 9 Exercises

Exercises for Section 9.1

WP Problem available in WileyPLUS at instructor’s discretion.
WP GO Tutorial Tutoring problem available in WileyPLUS at

instructor’s discretion
SS Student solution available in WileyPLUS.

VS Student video solution available in WileyPLUS.

9.1.1 . WP State whether each of the following situations is a cor-

rectly stated hypothesis testing problem and why.

a. H0: μ = 25, H1: μ ≠ 25 b. H0: σ > 10, H1: σ = 10

c. H0∶ x = 50, H1∶ x ≠ 50 d. H0: p = 0.1, H1: p = 0.5

e. H0: s = 30, H1: s > 30

9.1.2 A semiconductor manufacturer collects data from a new

tool and conducts a hypothesis test with the null hypothesis that

a critical dimension mean width equals 100 nm. The conclu-

sion is to not reject the null hypothesis. Does this result provide

strong evidence that the critical dimension mean equals 100 nm?

Explain.

9.1.3 . WP . SS A textile fiber manufacturer is investigating a

new drapery yarn, which the company claims has a mean thread

elongation of 12 kilograms with a standard deviation of 0.5 kilo-

grams. The company wishes to test the hypothesis H0: μ = 12

against H1: μ < 12, using a random sample of four specimens.

a. What is the type I error probability if the critical region

is defined as x < 11.5 kilograms?

b. Find β for the case in which the true mean elongation is

11.25 kilograms.

c. Find β for the case in which the true mean is 11.5 kilo-

grams.

9.1.4 Repeat Exercise 9.1.3 using a sample size of n = 16 and the

same critical region.

9.1.5 . WP In Exercise 9.1.3, calculate the P-value if the

observed statistic is

a. x = 11.25 b. x = 11.0 c. x = 11.75

9.1.6 In Exercise 9.1.3, calculate the probability of a type II error

if the true mean elongation is 11.5 kilograms and

a. α = 0.05 and n = 4 b. α = 0.05 and n = 16

c. Compare the values of β calculated in the previous parts.

What conclusion can you draw?

9.1.7 . WP VS SS A consumer products company is formu-

lating a new shampoo and is interested in foam height (in millime-

ters). Foam height is approximately normally distributed and has a

standard deviation of 20 millimeters. The company wishes to test

H0: μ = 175 millimeters versus H1: μ > 175 millimeters, using

the results of n = 10 samples.

a. Find the type I error probability α if the critical region is

x > 185.

b. What is the probability of type II error if the true mean

foam height is 185 millimeters?

c. Find β for the true mean of 195 millimeters.

9.1.8 In Exercise 9.1.7, calculate the probability of a type II error

if the true mean foam height is 185 millimeters and

a. α = 0.05 and n = 10 b. α = 0.05 and n = 16

c. Compare the values of β calculated in the previous parts.

What conclusion can you draw?

9.1.9 . WP In Exercise 9.1.7, find the boundary of the critical

region if the type I error probability is

a. α = 0.01 and n = 10 b. α = 0.05 and n = 10

c. α = 0.01 and n = 16 d. α = 0.05 and n = 16

9.1.10 . WP A manufacturer is interested in the output voltage of

a power supply used in a PC. Output voltage is assumed to be

normally distributed with standard deviation 0.25 volt, and the

manufacturer wishes to test H0: μ = 5 volts against H1: μ ≠ 5

volts, using n = 8 units.

a. The acceptance region is 4.85 ≤ x ≤ 5.15. Find the value

of α.

b. Find the power of the test for detecting a true mean output

voltage of 5.1 volts.

9.1.11 The proportion of adults living in Tempe, Arizona, who

are college graduates is estimated to be p = 0.4. To test this

hypothesis, a random sample of 15 Tempe adults is selected. If the

number of college graduates is between 4 and 8, the hypothesis

will be accepted; otherwise, you will conclude that p ≠ 0.4.

a. Find the type I error probability for this procedure,

assuming that p = 0.4.

b. Find the probability of committing a type II error if the

true proportion is really p = 0.2.

9.1.12 The proportion of residents in Phoenix favoring the build-

ing of toll roads to complete the freeway system is believed to be

p = 0.3. If a random sample of 10 residents shows that one or

fewer favor this proposal, we will conclude that p < 0.3.

a. Find the probability of type I error if the true propor-

tion is p = 0.3.

b. Find the probability of committing a type II error with

this procedure if p = 0.2.

c. What is the power of this procedure if the true proportion

is p = 0.2?

9.1.13 If we plot the probability of accepting H0: μ = μ0 versus

various values of μ and connect the points with a smooth curve,

we obtain the operating characteristic curve (or the OC curve)

of the test procedure. These curves are used extensively in indus-

trial applications of hypothesis testing to display the sensitivity

and relative performance of the test. When the true mean is really

equal to μ0, the probability of accepting H0 is 1 − α.

a. Construct an OC curve for Exercise 9.1.7, using values

of the true mean μ of 178, 181, 184, 187, 190, 193, 196,

and 199.

b. Convert the OC curve into a plot of the power function
of the test.
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Exercises for Section 9.2

WP Problem available in WileyPLUS at instructor’s discretion.
WP GO Tutorial Tutoring problem available in WileyPLUS at

instructor’s discretion
SS Student solution available in WileyPLUS.

VS Student video solution available in WileyPLUS.

9.2.1 State the null and alternative hypothesis in each case.

a. A hypothesis test will be used to potentially provide evi-

dence that the population mean is more than 10.

b. A hypothesis test will be used to potentially provide

evidence that the population mean is not equal to 7.

c. A hypothesis test will be used to potentially provide

evidence that the population mean is less than 5.

9.2.2 . WP A hypothesis will be used to test that a population

mean equals 5 against the alternative that the population mean

is less than 5 with known variance σ. What is the critical value

for the test statistic Z0 for the following significance levels?

a. 0.01 b. 0.05 c. 0.10

9.2.3 Output from a software package follows:

One-Sample Z:
Test of mu = 20 vs > 20
The assumed standard deviation = 0.75
Variable N Mean StDev SE Mean Z P

x 10 19.889 ? 0.237 ? ?

a. Fill in the missing items. What conclusions would you

draw?

b. Is this a one-sided or a two-sided test?

c. Use the normal table and the preceding data to construct

a 95% two-sided CI on the mean.

d. What would the P-value be if the alternative hypothesis

is H1: μ ≠ 20?

9.2.4 . WP For the hypothesis test H0: μ = 10 against H1: μ >

10 and variance known, calculate the P-value for each of the

following test statistics.

a. z0 = 2.05 b. z0 = −1.84 c. z0 = 0.4

9.2.5 . SS Output from a software package follows:

One-Sample Z:
Test of mu = 99 vs > 99
The assumed standard deviation = 2.5
Variable N Mean StDev SE Mean Z P

x 12 100.039 2.365 ? 1.44 0.075

a. Fill in the missing items. What conclusions would you

draw?

b. Is this a one-sided or a two-sided test?

c. If the hypothesis had been H0: μ = 98 versus H0: μ >

98, would you reject the null hypothesis at the 0.05 level of

significance? Can you answer this without referring to the

normal table?

d. Use the normal table and the preceding data to construct

a 95% lower bound on the mean.

e. What would the P-value be if the alternative hypothesis

is H1: μ ≠ 99?

9.2.6 A manufacturer produces crankshafts for an automobile

engine. The crankshafts wear after 100,000 miles (0.0001 inch)

is of interest because it is likely to have an impact on warranty

claims. A random sample of n = 15 shafts is tested and x = 2.78.

It is known that σ = 0.9 and that wear is normally distributed.

a. Test H0: μ = 3 versus H1: μ ≠ 3 using α = 0.05.

b. What is the power of this test if μ = 3.25?

c. What sample size would be required to detect a true mean

of 3.75 if we wanted the power to be at least 0.9?

9.2.7 . WP The life in hours of a battery is known to be approx-

imately normally distributed with standard deviation σ = 1.25

hours. A random sample of 10 batteries has a mean life of x =
40.5 hours.

a. Is there evidence to support the claim that battery life

exceeds 40 hours? Use α = 0.5.

b. What is the P-value for the test in part (a)?

c. What is the β-error for the test in part (a) if the true mean

life is 42 hours?

d. What sample size would be required to ensure that β does

not exceed 0.10 if the true mean life is 44 hours?

e. Explain how you could answer the question in part (a)

by calculating an appropriate confidence bound on battery

life.

9.2.8 . WP Supercavitation is a propulsion technology for under-

sea vehicles that can greatly increase their speed. It occurs above

approximately 50 meters per second when pressure drops suffi-

ciently to allow the water to dissociate into water vapor, forming

a gas bubble behind the vehicle. When the gas bubble com-

pletely encloses the vehicle, supercavitation is said to occur.

Eight tests were conducted on a scale model of an undersea

vehicle in a towing basin with the average observed speed

x = 102.2 meters per second. Assume that speed is normally

distributed with known standard deviation σ = 4 meters per

second.

a. Test the hypothesis H0: μ = 100 versus H1: μ< 100 using

α = 0.05.

b. What is the P-value for the test in part (a)?

c. Compute the power of the test if the true mean speed is

as low as 95 meters per second.

d. What sample size would be required to detect a true mean

speed as low as 95 meters per second if you wanted the power

of the test to be at least 0.85?

e. Explain how the question in part (a) could be answered

by constructing a one-sided confidence bound on the mean

speed.

9.2.9 . WP VS SS Medical researchers have developed a new

artificial heart constructed primarily of titanium and plastic. The

heart will last and operate almost indefinitely once it is implanted

in the patient’s body, but the battery pack needs to be recharged
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about every 4 hours. A random sample of 50 battery packs is

selected and subjected to a life test. The average life of these

batteries is 4.05 hours. Assume that battery life is normally dis-

tributed with standard deviation σ = 0.2 hour.

a. Is there evidence to support the claim that mean battery

life exceeds 4 hours? Use α = 0.05.

b. What is the P-value for the test in part (a)?

c. Compute the power of the test if the true mean battery life

is 4.5 hours.

d. What sample size would be required to detect a true mean

battery life of 4.5 hours if you wanted the power of the test

to be at least 0.9?

e. Explain how the question in part (a) could be answered by

constructing a one-sided confidence bound on the mean life.

9.2.10 The bacterial strain Acinetobacter has been tested for its

adhesion properties. A sample of five measurements gave read-

ings of 2.69, 5.76, 2.67, 1.62 and 4.12 dyne-cm2. Assume that

the standard deviation is known to be 0.66 dyne-cm2 and that the

scientists are interested in high adhesion (at least 2.5 dyne-cm2).

a. Should the alternative hypothesis be one-sided or

two-sided?

b. Test the hypothesis that the mean adhesion is 2.5

dyne-cm2.

c. What is the P-value of the test statistic?

Exercises for Section 9.3

WP Problem available in WileyPLUS at instructor’s discretion.
WP GO Tutorial Tutoring problem available in WileyPLUS at

instructor’s discretion
SS Student solution available in WileyPLUS.

VS Student video solution available in WileyPLUS.

9.3.1 A hypothesis will be used to test that a population mean

equals 10 against the alternative that the population mean is

greater than 10 with unknown variance. What is the critical value

for the test statistic T0 for the following significance levels?

a. α = 0.01 and n = 20 b. α = 0.05 and n = 12

c. α = 0.10 and n = 15

9.3.2 Consider the following computer output.

One-Sample T:

Test of mu = 91 vs > 91

95%
Lower

Variable N Mean StDev SE Mean Bound T P

x 20 92.379 0.717 ? ? ? ?

a. Fill in the missing values. You may calculate bounds on

the P-value. What conclusions would you draw?

b. Is this a one-sided or a two-sided test?

c. If the hypothesis had been H0: μ = 90 versus H1: μ > 90,

would your conclusions change?

9.3.3 . SS For the hypothesis test H0: μ = 7 against H1: μ ≠ 7

with variance unknown and n = 20, approximate the P-value for

each of the following test statistics.

a. t0 = 2.05 b. t0 = −1.84 c. t0 = 0.4

9.3.4 Consider the following computer output.

One-Sample T:

Test of mu = 34 vs not = 34

Variable N Mean StDev SE Mean 95% CI T P

x 16 35.274 1.783 ? (34.324, 36.224) ? 0.012

a. How many degrees of freedom are there on the t-test

statistic?

b. Fill in the missing quantities.

c. At what level of significance can the null hypothesis be

rejected?

d. If the hypothesis had been H0: μ = 34 versus H1: μ > 34,

would the P-value have been larger or smaller?

e. If the hypothesis had been H0: μ = 34.5 versus H1: μ
≠ 34.5, would you have rejected the null hypothesis at the

0.05 level?

9.3.5 . WP For the hypothesis test H0: μ = 5 against H1: μ < 5

with variance unknown and n = 12, approximate the P-value for

each of the following test statistics.

a. t0 = 2.05 b. t0 = −1.84 c. t0 = 0.4

9.3.6 An article in the ASCE Journal of Energy Engineering
(1999, Vol. 125, pp. 59–75) describes a study of the thermal

inertia properties of autoclaved aerated concrete used as a build-

ing material. Five samples of the material were tested in a

structure, and the average interior temperatures (∘C) reported

were as follows: 23.01, 22.22, 22.04, 22.62, and 22.59.

a. Test the hypotheses H0: μ = 22.5 versus H1: μ ≠ 22.5,

using α = 0.05. Find the P-value.

b. Check the assumption that interior temperature is nor-

mally distributed.

c. Compute the power of the test if the true mean interior

temperature is as high as 22.75.

d. What sample size would be required to detect a true mean

interior temperature as high as 22.75 if you wanted the power

of the test to be at least 0.9?

e. Explain how the question in part (a) could be answered

by constructing a two-sided confidence interval on the mean

interior temperature.

9.3.7 . VS An article in Growth: A Journal Devoted to Problems
of Normal and Abnormal Growth [“Comparison of Measured

and Estimated Fat-Free Weight, Fat, Potassium and Nitrogen of

Growing Guinea Pigs” (1982, Vol. 46(4), pp. 306–321)] reported

the results of a study that measured the body weight (in grams)

for guinea pigs at birth.
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421.0 452.6 456.1 494.6 373.8

90.5 110.7 96.4 81.7 102.4

241.0 296.0 317.0 290.9 256.5

447.8 687.6 705.7 879.0 88.8

296.0 273.0 268.0 227.5 279.3

258.5 296.0

a. Test the hypothesis that mean body weight is 300 grams.

Use α = 0.05.

b. What is the smallest level of significance at which you

would be willing to reject the null hypothesis?

c. Explain how you could answer the question in

part (a) with a two-sided confidence interval on mean body

weight.

9.3.8 . WP Cloud seeding has been studied for many decades

as a weather modification procedure (for an interesting study

of this subject, see the article in Technometrics, “A Bayesian

Analysis of a Multiplicative Treatment Effect in Weather Mod-

ification,” 1975, Vol. 17, pp. 161–166). The rainfall in acre-feet

from 20 clouds that were selected at random and seeded with sil-

ver nitrate follows: 18.0, 30.7, 19.8, 27.1, 22.3, 18.8, 31.8, 23.4,

21.2, 27.9, 31.9, 27.1, 25.0, 24.7, 26.9, 21.8, 29.2, 34.8, 26.7,

and 31.6.

a. Can you support a claim that mean rainfall from seeded

clouds exceeds 25 acre-feet? Use α = 0.01. Find the P-value.

b. Check that rainfall is normally distributed.

c. Compute the power of the test if the true mean rainfall is

27 acre-feet.

d. What sample size would be required to detect a true mean

rainfall of 27.5 acre-feet if you wanted the power of the test

to be at least 0.9?

e. Explain how the question in part (a) could be answered

by constructing a one-sided confidence bound on the mean

diameter.

9.3.9 . WP . SS A 1992 article in the Journal of the American
Medical Association (“A Critical Appraisal of 98.6 Degrees F,

the Upper Limit of the Normal Body Temperature, and Other

Legacies of Carl Reinhold August Wunderlich”) reported body

temperature, gender, and heart rate for a number of subjects.

The body temperatures for 25 female subjects follow: 97.8, 97.2,

97.4, 97.6, 97.8, 97.9, 98.0, 98.0, 98.0, 98.1, 98.2, 98.3, 98.3,

98.4, 98.4, 98.4, 98.5, 98.6, 98.6, 98.7, 98.8, 98.8, 98.9, 98.9,

and 99.0.

a. Test the hypothesis H0: μ = 98.6 versus H1: μ ≠ 98.6,

using α = 0.05. Find the P-value.

b. Check the assumption that female body temperature is

normally distributed.

c. Compute the power of the test if the true mean female

body temperature is as low as 98.0.

d. What sample size would be required to detect a true mean

female body temperature as low as 98.2 if you wanted the

power of the test to be at least 0.9?

e. Explain how the question in part (a) could be answered

by constructing a two-sided confidence interval on the mean

female body temperature.

9.3.10 . WP Reconsider the data from Medicine and Science in
Sports and Exercise described in Exercise 8.2.6. The sample size

was seven and the sample mean and sample standard deviation

were 315 watts and 16 watts, respectively.

a. Is there evidence that leg strength exceeds 300 watts at

significance level 0.05? Find the P-value.

b. Compute the power of the test if the true strength is

305 watts.

c. What sample size would be required to detect a true

mean of 305 watts if the power of the test should be at least

0.90?

d. Explain how the question in part (a) could be answered

with a confidence interval.

9.3.11 Exercise 6.2.8 gave data on the heights of female engineer-

ing students at ASU.

a. Can you support a claim that the mean height of female

engineering students at ASU is at least 65 inches? Use

α = 0.05. Find the P-value.

b. Check the normality assumption.

c. Compute the power of the test if the true mean height is

68 inches.

d. What sample size would be required to detect a true mean

height of 66 inches if you wanted the power of the test to be

at least 0.8?

9.3.12 Exercise 6.2.10 presented data on the concentration of sus-

pended solids in lake water.

a. Test the hypothesis H0: μ = 55 versus H1: μ ≠ 55; use

α = 0.05. Find the P-value.

b. Check the normality assumption.

c. Compute the power of the test if the true mean concen-

tration is as low as 50.

d. What sample size would be required to detect a true mean

concentration as low as 50 if you wanted the power of the test

to be at least 0.9?

9.3.13 In a little over a month, from June 5, 1879, to July 2,

1879, Albert Michelson measured the velocity of light in air 100

times (Stigler, Annals of Statistics, 1977). Today we know that the

true value is 299,734.5 km/sec. Michelson’s data have a mean of

299,852.4 km/sec with a standard deviation of 79.01.

a. Find a two-sided 95% confidence interval for the true

mean (the true value of the speed of light).

b. What does the confidence interval say about the accuracy

of Michelson’s measurements?
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Exercises for Section 9.4

WP Problem available in WileyPLUS at instructor’s discretion.
WP GO Tutorial Tutoring problem available in WileyPLUS at

instructor’s discretion
SS Student solution available in WileyPLUS.

VS Student video solution available in WileyPLUS.

9.4.1 . WP Consider the test of H0: σ2 = 7 against H1: σ2 ≠ 7.

What are the critical values for the test statistic χ2
0

for the follow-

ing significance levels and sample sizes?

a. α = 0.01 and n = 20 b. α = 0.05 and n = 12

c. α = 0.10 and n = 15

9.4.2 . WP Consider the test of H0: σ2 = 5 against H1: σ2
< 5.

Approximate the P-value for each of the following test statistics.

a. x2
0
= 25.2 and n = 20 b. x2

0
= 15.2 and n = 12

c. x2
0
= 4.2 and n = 15

9.4.3 The data from Medicine and Science in Sports and Exercise
described in Exercise 8.3.4 considered ice hockey player perfor-

mance after electrostimulation training. In summary, there were

17 players, and the sample standard deviation of performance was

0.09 seconds.

a. Is there strong evidence to conclude that the standard

deviation of performance time exceeds the historical value

of 0.75 seconds? Use α = 0.05. Find the P-value for

this test.

b. Discuss how part (a) could be answered by constructing

a 95% one-sided confidence interval for σ.

9.4.4 . WP Reconsider the percentage of titanium in an alloy used

in aerospace castings from Exercise 8.3.1. Recall that s = 0.37

and n = 51.

a. Test the hypothesis H0: σ = 0.25 versus H1: σ ≠ 0.25

using α = 0.05. State any necessary assumptions about the

underlying distribution of the data. Find the P-value.

b. Explain how you could answer the question in part (a) by

constructing a 95% two-sided confidence interval for σ.

9.4.5 . WP . SS Data for tire life was described in Exercise

8.2.3. The sample standard deviation was 3645.94 kilometers and

n = 16.

a. Can you conclude, using α = 0.05, that the standard devi-

ation of tire life is less than 4000 kilometers? State any nec-

essary assumptions about the underlying distribution of the

data. Find the P-value for this test.

b. Explain how you could answer the question in part

(a) by constructing a 95% one-sided confidence interval

for σ.

Exercises for Section 9.5

WP Problem available in WileyPLUS at instructor’s discretion.
WP GO Tutorial Tutoring problem available in WileyPLUS at

instructor’s discretion
SS Student solution available in WileyPLUS.

VS Student video solution available in WileyPLUS.

9.5.1 Consider the following computer output.

Test and CI for One Proportion
Test of p = 0.4 vs p not = 0.4

X N Sample p 95% CI Z-Value P-Value

98 275 ? (0.299759, 0.412968) ? ?

Using the normal approximation,

a. Is this a one-sided or a two-sided test?

b. Complete the missing items.

c. The normal approximation was used in the problem.

Was that appropriate?

9.5.2 . WP Suppose that of 1000 customers surveyed, 850 are sat-

isfied or very satisfied with a corporation’s products and services.

a. Test the hypothesis H0: p = 0.9 against H1: p ≠ 0.9 at

α = 0.05. Find the P-value.

b. Explain how the question in part (a) could be answered

by constructing a 95% two-sided confidence interval for p.

9.5.3 An article in the British Medical Journal [“Comparison

of Treatment of Renal Calculi by Operative Surgery, Percu-

taneous Nephrolithotomy, and Extra-Corporeal Shock Wave

Lithotripsy” (1986, Vol. 292, pp. 879–882)] repeated that per-

cutaneous nephrolithotomy (PN) had a success rate in removing

kidney stones of 289 of 350 patients. The traditional method was

78% effective.

a. Is there evidence that the success rate for PN is greater

than the historical success rate? Find the P-value.

b. Explain how the question in part (a) could be answered

with a confidence interval.

9.5.4 . WP An article in Fortune (September 21, 1992) claimed

that nearly one-half of all engineers continue academic studies

beyond the B.S. degree, ultimately receiving either an M.S. or

a Ph.D. degree. Data from an article in Engineering Horizons
(Spring 1990) indicated that 117 of 484 new engineering grad-

uates were planning graduate study.

a. Are the data from Engineering Horizons consistent with

the claim reported by Fortune? Use α = 0.05 in reaching your

conclusions. Find the P-value for this test.

b. Discuss how you could have answered the question in

part (a) by constructing a two-sided confidence interval

on p.
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9.5.5 . WP . SS A random sample of 500 registered voters in

Phoenix is asked if they favor the use of oxygenated fuels

year-round to reduce air pollution. If more than 315 voters

respond positively, we will conclude that at least 60% of the voters

favor the use of these fuels.

a. Find the probability of type I error if exactly 60% of the

voters favor the use of these fuels.

b. What is the type II error probability β if 75% of the voters

favor this action?

9.5.6 A computer manufacturer ships laptop computers with the

batteries fully charged so that customers can begin to use their

purchases right out of the box. In its last model, 85% of customers

received fully charged batteries. To simulate arrivals, the com-

pany shipped 100 new model laptops to various company sites

around the country. Of the 100 laptops shipped, 96 of them arrived

reading 100% charged. Do the data provide evidence that this

model’s rate is at least as high as the previous model? Test the

hypothesis at α = 0.05.

Exercises for Section 9.7

WP Problem available in WileyPLUS at instructor’s discretion.
WP GO Tutorial Tutoring problem available in WileyPLUS at

instructor’s discretion
SS Student solution available in WileyPLUS.

VS Student video solution available in WileyPLUS.

9.7.1 . WP Consider the following frequency table of observa-

tions on the random variable X.

Values 0 1 2 3 4

Frequency 4 21 10 13 2

a. Based on these 50 observations, is a binomial distribu-

tion with n = 6 and p = 0.25 an appropriate model? Perform

a goodness-of-fit procedure with α = 0.05.

b. Calculate the P-value for this test.

9.7.2 . WP Consider the following frequency table of observa-

tions on the random variable X.

Values 0 1 2 3 4

Observed frequency 24 30 31 11 4

a. Based on these 100 observations, is a Poisson distribu-

tion with a mean of 1.2 an appropriate model? Perform a

goodness-of-fit procedure with α = 0.05.

b. Calculate the P-value for this test.

9.7.3 . SS A group of civil engineering students has tabulated

the number of cars passing eastbound through the intersection of

Mill and University Avenues. They obtained the data in the fol-

lowing table.

a. Does the assumption of a Poisson distribution seem

appropriate as a probability model for this process? Use

α = 0.05.

b. Calculate the P-value for this test.

Vehicles per Observed Vehicles per Observed
Minute Frequency Minute Frequency

40 14 53 102

41 24 54 96

42 57 55 90

43 111 56 81

44 194 57 73

45 256 58 64

46 296 59 61

47 378 60 59

48 250 61 50

49 185 62 42

50 171 63 29

51 150 64 18

52 110 65 15

9.7.4 . WP The number of calls arriving at a switchboard from

noon to 1:00 P.M. during the business days Monday through Fri-

day is monitored for 6 weeks (i.e., 30 days). Let X be defined

as the number of calls during that one-hour period. The relative

frequency of calls was recorded and reported as

Value 5 6 8 9 10

Relative frequency 0.067 0.067 0.100 0.133 0.200

Value 11 12 13 14 15

Relative frequency 0.133 0.133 0.067 0.033 0.067

a. Does the assumption of a Poisson distribution seem

appropriate as a probability model for this data? Use α= 0.05.

b. Calculate the P-value for this test.
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Exercises for Section 9.8

WP Problem available in WileyPLUS at instructor’s discretion.
WP GO Tutorial Tutoring problem available in WileyPLUS at

instructor’s discretion
SS Student solution available in WileyPLUS.

VS Student video solution available in WileyPLUS.

9.8.1 The Hopkins Forest is a 2600-acre forest reserve located

at the intersection of three states: New York, Vermont, and

Massachusetts. Researchers monitor forest resources to study

long-term ecological changes. They have conducted surveys of

existing trees, shrubs, and herbs at various sites in the forest for

nearly 100 years. Following are some data from surveys of three

species of maple trees at the same location over three very differ-

ent time periods.

Species (Acre)

Y
ea

r

Pennsylvanicum Rubrum Saccharum Total
1936 12 27 94 133

1972 22 40 52 114

2011 97 25 18 140

Total 131 92 164 387

Does the species distribution seem to be independent of year? Test

the hypothesis at α = 0.05. Find the P-value of the test statistic.

9.8.2 Did survival rate for passengers on the Titanic really depend

on the type of ticket they had? Following are the data for the 2201

people on board listed by whether they survived and what type of

ticket they had. Does survival appear to be independent of ticket

class? (Test the hypothesis at α = 0.05.) What is the P-value of

the test statistic?

Crew First Second Third Total
Alive 212 202 118 178 710

Dead 673 123 167 528 1491

Total 885 325 285 706 2201

9.8.3 . WP A company operates four machines in three shifts

each day. From production records, the following data on the

number of breakdowns are collected:

Machines
Shift A B C D
1 41 20 12 16

2 31 11 9 14

3 15 17 16 10

Test the hypothesis (using α = 0.05) that breakdowns are inde-

pendent of the shift. Find the P-value for this test.

9.8.4 . WP Patients in a hospital are classified as surgical or med-

ical. A record is kept of the number of times patients require

nursing service during the night and whether or not these patients

are on Medicare. The data are presented here:

Patient Category
Medicare Surgical Medical

Yes 46 52

No 36 43

Test the hypothesis (using α = 0.01) that calls by surgical-medical

patients are independent of whether the patients are receiving

Medicare. Find the P-value for this test.

9.8.5 . WP . SS Grades in a statistics course and an operations

research course taken simultaneously were as follows for a group

of students.

Operation Research Grade
Statistics Grade A B C Other

A 25 6 17 13

B 17 16 15 6

C 18 4 18 10

Other 10 8 11 20

Are the grades in statistics and operations research related? Use

α = 0.01 in reaching your conclusion. What is the P-value for this

test?

9.8.6 . WP An experiment with artillery shells yields the follow-

ing data on the characteristics of lateral deflections and ranges.

Would you conclude that deflection and range are independent?

Use α = 0.05. What is the P-value for this test?

Lateral Deflection
Range (yards) Left Normal Right
0–1,999 6 14 8

2,000–5,999 9 11 4

6,000–11,999 8 17 6

9.8.7 . WP A study is being made of the failures of an electronic

component. There are four types of failures possible and two

mounting positions for the device. The following data have been

taken:

Failure Type
Mounting Position A B C D

1 22 46 18 9

2 4 17 6 12

Would you conclude that the type of failure is independent of the

mounting position? Use α = 0.01. Find the P-value for this test.
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9.8.8 . WP A random sample of students is asked their opinions

on a proposed core curriculum change. The results are as follows.

Opinion
Class Favoring Opposing
Freshman 120 80

Sophomore 70 130

Junior 60 70

Senior 40 60

Test the hypothesis that opinion on the change is independent of

class standing. Use α = 0.05. What is the P-value for this test?

9.8.9 . WP An article in the British Medical Journal
[“Comparison of Treatment of Renal Calculi by Operative

Surgery, Percutaneous Nephrolithotomy, and Extracorporeal

Shock Wave Lithotripsy” (1986, Vol. 292, pp. 879–882)] reported

that percutaneous nephrolithotomy (PN) had a success rate in

removing kidney stones of 289 out of 350 (83%) patients. How-

ever, when the stone diameter was considered, the results looked

different. For stones of <2 cm, 87% (234/270) of cases were suc-

cessful. For stones of ≥2 cm, a success rate of 69% (55/80) was

observed for PN.

a. Are the successes and size of stones independent? Use

α = 0.05.

b. Find the P-value for this test.

Exercises for Section 9.9

WP Problem available in WileyPLUS at instructor’s discretion.
WP GO Tutorial Tutoring problem available in WileyPLUS at

instructor’s discretion
SS Student solution available in WileyPLUS.

VS Student video solution available in WileyPLUS.

9.9.1 . WP The titanium content in an aircraft-grade alloy is an

important determinant of strength. A sample of 20 test coupons

reveals the following titanium content (in percent):

8.32, 8.05, 8.93, 8.65, 8.25, 8.46, 8.52, 8.35, 8.36, 8.41,

8.42, 8.30, 8.71, 8.75, 8.60, 8.83, 8.50, 8.38, 8.29, 8.46

The median titanium content should be 8.5%.

a. Use the sign test with α = 0.05 to investigate this hypoth-

esis. Find the P-value for this test.

b. Use the normal approximation for the sign test to test

H0: μ̃ = 8.5 versus H1: μ̃ ≠ 8.5 with α = 0.05. What is the

P-value for this test?

9.9.2 . WP Ten samples were taken from a plating bath used in

an electronics manufacturing process, and the pH of the bath was

determined. The sample pH values are 7.91, 7.85, 6.82, 8.01,

7.46, 6.95, 7.05, 7.35, 7.25, and 7.42. Manufacturing engineering

believes that pH has a median value of 7.0.

a. Do the sample data indicate that this statement is correct?

Use the sign test with α = 0.05 to investigate this hypothesis.

Find the P-value for this test.

b. Use the normal approximation for the sign test to test

H0: μ̃ = 7.0 versus H0: μ̃ ≠ 7.0. What is the P-value for this

test?

9.9.3 . WP An inspector measured the diameter of a ball bear-

ing using a new type of caliper. The results were as follows

(in mm): 0.265, 0.263, 0.266, 0.267, 0.267, 0.265, 0.267,0.267,

0.265, 0.268, 0.268, and 0.263.

a. Use the Wilcoxon signed-rank test to evaluate the

claim that the mean ball diameter is 0.265 mm. Use

α = 0.05.

b. Use the normal approximation for the test. With α = 0.05,

what conclusions can you draw?

9.9.4 . WP The impurity level (in ppm) is routinely measured

in an intermediate chemical product. The following data were

observed in a recent test:

2.4, 2.5, 1.7, 1.6, 1.9, 2.6, 1.3, 1.9, 2.0, 2.5, 2.6, 2.3, 2.0,

1.8, 1.3, 1.7, 2.0, 1.9, 2.3, 1.9, 2.4, 1.6

Can you claim that the median impurity level is less than

2.5 ppm?

a. State and test the appropriate hypothesis using the sign

test with α = 0.05. What is the P-value for this test?

b. Use the normal approximation for the sign test to test

H0: μ̃ = 2.5 versus H1: μ̃ < 2.5. What is the P-value for this

test?

9.9.5 . WP . SS A primer paint can be used on aluminum pan-

els. The primer’s drying time is an important consideration in

the manufacturing process. Twenty panels are selected, and the

drying times are as follows: 1.6, 1.3, 1.5, 1.6, 1.7, 1.9, 1.8, 1.6,

1.4, 1.8, 1.9, 1.8, 1.7, 1.5, 1.6, 1.4, 1.3, 1.6, 1.5, and 1.8. Is

there evidence that the mean drying time of the primer exceeds

1.5 hr?

9.9.6 . WP A new type of tip can be used in a Rockwell hard-

ness tester. Eight coupons from test ingots of a nickel-based alloy

are selected, and each coupon is tested using the new tip. The

Rockwell C-scale hardness readings are 63, 65, 58, 60, 55, 57, 53,

and 59. Do the results support the claim that the mean hardness

exceeds 60 at a 0.05 level?
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Exercises for Section 9.10

WP Problem available in WileyPLUS at instructor’s discretion.
WP GO Tutorial Tutoring problem available in WileyPLUS at

instructor’s discretion
SS Student solution available in WileyPLUS.

VS Student video solution available in WileyPLUS.

9.10.1 A chemical products manufacturer must identify a new

supplier for a raw material that is an essential component of

a particular product. The previous supplier was able to deliver

material with a mean molecular weight of 3500. The new sup-

plier must show equivalence to this value of molecular weight. If

the new supplier can deliver material that has a molecular weigh

that is within 50 units of this value, it will be considered equiv-

alent. A random sample of 10 lots of product is available, and

the sample mean and standard deviation of molecular weight are

3550 and 25, respectively.

a. State the appropriate hypotheses that must be tested to

demonstrate equivalence.

b. What are your conclusions using α = 0.05?

9.10.2 In developing a generic drug, it is necessary for a man-

ufacturer of biopharmaceutical products to show equivalence to

the current product. The variable of interest is the absorption rate

of the product. The current product has an absorption rate of 18

mg/hr. If the new generic product has an absorption rate that is

within 0.50 mg/hr of this value, it will be considered equiva-

lent. A random sample of 20 units of product is available, and

the sample mean and standard deviation of absorption rate are

18.22 mg/hr and 0.92 mg/hr, respectively.

a. State the appropriate hypotheses that must be tested to

demonstrate equivalence.

b. What are your conclusions using α = 0.05?

9.10.3 . SS The mean bond strength of a cement product must

be at least 10000 psi. The process by which this material is man-

ufactured must show equivalence to this standard. If the process

can manufacture cement for which the mean bond strength is at

least 9750 psi, it will be considered equivalent to the standard. A

random sample of six observations is available, and the sample

mean and standard deviation of bond strength are 9360 psi and

42.6 psi, respectively.

a. State the appropriate hypotheses that must be tested to

demonstrate equivalence.

b. What are your conclusions using α = 0.05?

9.10.4 The mean breaking strength of a ceramic insulator must

be at least 10 psi. The process by which this insulator is manu-

factured must show equivalence to this standard. If the process

can manufacture insulators with a mean breaking strength of at

least 9.5 psi, it will be considered equivalent to the standard.

A random sample of 50 insulators is available, and the sample

mean and standard deviation of breaking strength are 9.31 psi and

0.22 psi, respectively.

a. State the appropriate hypotheses that must be tested to

demonstrate equivalence.

b. What are your conclusions using α = 0.05?

Exercises for Section 9.11

WP Problem available in WileyPLUS at instructor’s discretion.
WP GO Tutorial Tutoring problem available in WileyPLUS at

instructor’s discretion
SS Student solution available in WileyPLUS.

VS Student video solution available in WileyPLUS.

9.11.1 Suppose that eight sets of hypotheses about a population

proportion of the form

H0: p = 0.3 H1: p > 0.3

have been tested and that the P-values for these tests are 0.15,

0.83, 0.103, 0.024, 0.03, 0.07, 0.09, and 0.13. Use Fisher’s

procedure to combine all of these P-values. Is there sufficient evi-

dence to conclude that the population proportion exceeds 0.30?

9.11.2 Suppose that 10 sets of hypotheses of the form

H0: μ = μ0 H1: μ ≠ μ0

have been tested and that the P-values for these tests are 0.12,

0.08. 0.93, 0.02, 0.01, 0.05, 0.88, 0.15, 0.13, and 0.06. Use

Fisher’s procedure to combine all of these P-values. What con-

clusions can you draw about these hypotheses?

9.11.3 . SS The mean weight of a package of frozen fish must

equal 22 oz. Five independent samples were selected, and the

statistical hypotheses about the mean weight were tested. The

P-values that resulted from these tests were 0.065, 0.0924, 0.073,

0.025, and 0.021. Is there sufficient evidence to conclude that the

mean package weight is not equal to 22 oz?

9.11.4 The standard deviation of fill volume of a container of

a pharmaceutical product must be less than 0.2 oz to ensure

that the container is accurately filled. Six independent samples

were selected, and the statistical hypotheses about the standard

deviation were tested. The P-values that resulted were 0.15,

0.091, 0.075, 0.02, 0.04, and 0.06. Is there sufficient evidence to

conclude that the standard deviation of fill volume is less than

0.2 oz?
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Supplemental Exercises for Chapter 9

WP Problem available in WileyPLUS at instructor’s discretion.
WP GO Tutorial Tutoring problem available in WileyPLUS at

instructor’s discretion
SS Student solution available in WileyPLUS.

VS Student video solution available in WileyPLUS.

9.S5 . WP Consider the following computer output.

One-Sample T:
Test of mu = 100 vs not = 100
Variable N Mean StDev SE Mean 95% CI T P

X 16 98.33 4.61 ? (?, ?) ? ?

a. How many degrees of freedom are there on the

t-statistic?

b. Fill in the missing information. You may use bounds on

the P-value.

c. What are your conclusions if α = 0.05?

d. What are your conclusions if the hypothesis is H0: μ =
100 versus H0: μ > 100?

9.S6 Consider the following computer output.

One-Sample Z:
Test of mu = 26 vs > 26
The assumed standard deviation = 1.5
Variable N Mean StDev SE Mean Z P
X ? 26.541 2.032 0.401 ? ?

a. Fill in the missing information.

b. Is this a one-sided or a two-sided test?

c. What are your conclusions if α = 0.05?

d. Find a 95% two-sided CI on the mean.

9.S7 Consider the following computer output.

One-Sample T:
Test of mu = 85 vs < 85
Variable N Mean StDev SE Mean T P
X 25 84.331 ? 0.631 ? ?

a. How many degrees of freedom are there on the

t-statistic?

b. Fill in the missing information. You may use bounds on

the P-value.

c. What are your conclusions if α = 0.05?

d. Find a 95% upper-confidence bound on the mean.

e. What are your conclusions if the hypothesis is H0: μ =
100 versus H0: μ > 100?

9.S8 An article in Fire Technology [“An Experimental Exami-

nation of Dead Air Space for Smoke Alarms” (2009, Vol. 45,

pp. 97–115)] studied the performance of smoke detectors

installed not less than 100 mm from any adjoining wall if mounted

on a flat ceiling, and not closer than 100 mm and not farther

than 300 mm from the adjoining ceiling surface if mounted on

walls. The purpose of this rule is to avoid installation of smoke

alarms in the “dead air space,” where it is assumed to be difficult

for smoke to reach. The paper described a number of interesting

experiments. Results on the time to signal (in seconds) for one

such experiment with pine stick fuel in an open bedroom using

photoelectric smoke alarms are as follows: 220, 225, 297, 315,

282, and 313.

a. Is there sufficient evidence to support a claim that the

mean time to signal is less than 300 seconds?

b. Is there practical concern about the assumption of a nor-

mal distribution as a model for the time-to-signal data?

c. Find a 95% two-sided CI on the mean time to signal.

9.S9 . SS Consider the situation in Exercise 9.S10. After col-

lecting a sample, we are interested in testing H0: p = 0.10 versus

H1: p ≠ 0.10 with α = 0.05. For each of the following situations,

compute the p-value for this test:

a. n = 50, p̂ = 0.095

b. n = 100, p̂ = 0.095

c. n = 500, p̂ = 0.095

d. n = 1000, p̂ = 0.095

e. Comment on the effect of sample size on the observed

P-value of the test.

9.S10 A manufacturer of semiconductor devices takes a random

sample of size n of chips and tests them, classifying each chip

as defective or nondefective. Let Xi = 0 if the chip is nonde-

fective and Xi = 1 if the chip is defective. The sample fraction

defective is

p̂ =
X1 + X2 + · · · + Xn

n

What are the sampling distribution, the sample mean, and sample

variance estimates of p̂ when

a. The sample size is n = 50?

b. The sample size is n = 80?

c. The sample size is n = 100?

d. Compare your answers to parts (a)–(c) and comment on

the effect of sample size on the variance of the sampling

distribution.

9.S11 Suppose that you are testing H0: p = 0.5 versus H0: p ≠

0.5. Suppose that p is the true value of the population proportion.

a. Using α = 0.05, find the power of the test for n = 100,

150, and 300, assuming that p = 0.6. Comment on the effect

of sample size on the power of the test.

b. Using α = 0.01, find the power of the test for n = 100,

150, and 300, assuming that p = 0.6. Compare your answers

to those from part (a) and comment on the effect of α on the

power of the test for different sample sizes.

c. Using α = 0.05, find the power of the test for n = 100,

assuming p = 0.08. Compare your answer to part (a) and

comment on the effect of the true value of p on the power of

the test for the same sample size and α level.

d. Using α = 0.01, what sample size is required if p = 0.6

and we want β = 0.05? What sample is required if p = 0.8

and we want β = 0.05? Compare the two sample sizes and
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comment on the effect of the true value of p on a sample size

required when β is held approximately constant.

9.S12 The cooling system in a nuclear submarine consists of an

assembly of welded pipes through which a coolant is circulated.

Specifications require that weld strength must meet or exceed

150 psi.

a. Suppose that the design engineers decide to test the

hypothesis H0: μ = 150 versus H1: μ > 150. Explain

why this choice of alternative hypothesis is better than

H1: μ < 150.

b. A random sample of 20 welds results in x = 153.7 psi

and s = 11.3 psi. What conclusions can you draw about

the hypothesis in part (a)? State any necessary assumptions

about the underlying distribution of the data.

9.S13 A biotechnology company produces a therapeutic drug

whose concentration has a standard deviation of 4 grams per

liter. A new method of producing this drug has been proposed,

although some additional cost is involved. Management will

authorize a change in production technique only if the standard

deviation of the concentration in the new process is less than

4 grams per liter. The researchers chose n = 10 and obtained the

following data in grams per liter. Perform the necessary analysis

to determine whether a change in production technique should be

implemented.

16.628 16.630

16.622 16.631

16.627 16.624

16.623 16.622

16.618 16.626

9.S14 A manufacturer of precision measuring instruments claims

that the standard deviation in the use of the instruments is at most

0.00002 millimeter. An analyst who is unaware of the claim uses

the instrument eight times and obtains a sample standard devia-

tion of 0.00001 millimeter.

a. Confirm using a test procedure and an α level of 0.01

that there is insufficient evidence to support the claim that

the standard deviation of the instruments is at most 0.00002.

State any necessary assumptions about the underlying distri-

bution of the data.

b. Explain why the sample standard deviation, s = 0.00001,

is less than 0.00002, yet the statistical test procedure results

do not support the claim.

9.S15 . SS Consider the water quality data in Exercise 6.2.10.

a. Do these data support the claim that the mean concentra-

tion of suspended solids does not exceed 50 parts per million?

Use α = 0.05.

b. What is the P-value for the test in part (a)?

c. Does the normal distribution seem to be a reasonable

model for these data? Perform an appropriate goodness-of-fit

test to answer this question.

9.S16 Consider the spot weld shear strength data in Exercise

6.2.9. Does the normal distribution seem to be a reasonable model

for these data? Perform an appropriate goodness-of-fit test to

answer this question.

9.S17 An article in Food Testing and Analysis [“Improving

Reproducibility of Refractometry Measurements of Fruit Juices”

(1999, Vol. 4(4), pp. 13–17)] measured the sugar concentration

(Brix) in clear apple juice. All readings were taken at 20∘C:

11.48 11.45 11.48 11.47 11.48

11.50 11.42 11.49 11.45 11.44

11.45 11.47 11.46 11.47 11.43

11.50 11.49 11.45 11.46 11.47

a. Test the hypothesis H0: μ = 11.5 versus H1: μ ≠ 11.5

using α = 0.05. Find the P-value.

b. Compute the power of the test if the true mean is 11.4.

c. What sample size would be required to detect a true mean

sugar concentration of 11.45 if we wanted the power of the

test to be at least 0.9?

d. Explain how the question in part (a) could be answered

by constructing a two-sided confidence interval on the mean

sugar concentration.

e. Is there evidence to support the assumption that the sugar

concentration is normally distributed?

9.S18 Consider the computer output below.

Test and CI for One Proportion

Test of p = 0.25 vs p < 0.25

X N Sample p Bound Z-Value P-Value

53 225 0.235556 0.282088 ? ?

Using the normal approximation:

a. Fill in the missing information.

b. What are your conclusions if α = 0.05?

c. The normal approximation to the binomial was used here.

Was that appropriate?

d. Find a 95% upper-confidence bound on the true pro-

portion.

e. What are the P-value and your conclusions if the alterna-

tive hypothesis is H1: p ≠ 0.25?

9.S19 An article in Experimental Brain Research [“Synapses

in the Granule Cell Layer of the Rat Dentate Gyrus:

Serial-Sectioning Study” (1996, Vol. 112(2), pp. 237–243)]

showed the ratio between the numbers of symmetrical and total

synapses on somata and azon initial segments of reconstructed

granule cells in the dentate gyrus of a 12-week-old rat:

0.65 0.90 0.78 0.94 0.40 0.94

0.91 0.86 0.53 0.84 0.42 0.50

0.50 0.68 1.00 0.57 1.00 1.00

0.84 0.9 0.91 0.92 0.96

0.96 0.56 0.67 0.96 0.52

0.89 0.60 0.54

a. Use the data to test H0: σ2 = 0.02 versus H1: σ2 ≠ 0.02

using α = 0.05.

b. Find the P-value for the test.
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9.S20 An article in Biological Trace Element Research [“Interac-

tion of Dietary Calcium, Manganese, and Manganese Source (Mn

Oxide or Mn Methionine Complex) or Chick Performance and

Manganese Utilization” (1991, Vol. 29(3), pp. 217–228)] showed

the following results of tissue assay for liver manganese (ppm) in

chicks fed high-Ca diets.

6.02 6.08 7.11 5.73 5.32 7.10

5.29 5.84 6.03 5.99 4.53 6.81

a. Test the hypothesis H0: σ2 = 0.6 versus H1: σ2 ≠ 0.6 using

α = 0.01.

b. What is the P-value for this test?

c. Discuss how part (a) could be answered by constructing

a 99% two-sided confidence interval for σ.

9.S21 Consider the television picture tube brightness experiment

described in Exercise 8.2.7.

a. For the sample size n = 10, do the data support the

claim that the standard deviation of current is less than

20 microamps?

b. Suppose that instead of n = 10, the sample size was 51.

Repeat the analysis performed in part (a) using n = 51.

c. Compare your answers and comment on how sample size

affects your conclusions drawn in parts (a) and (b).

Chapter 10 Exercises

Exercises for Section 10.1

WP Problem available in WileyPLUS at instructor’s discretion.
WP GO Tutorial Tutoring problem available in WileyPLUS at

instructor’s discretion
SS Student solution available in WileyPLUS.

VS Student video solution available in WileyPLUS.

10.1.1 Consider the hypothesis test H0: μ1 = μ2 against H1: μ1

≠ μ2 with known variances σ1 = 10 and σ2 = 5. Suppose that

sample sizes n1 = 10 and n2 = 15 and that x1 = 4.7 and x2 = 7.8.

Use α = 0.05.

a. Test the hypothesis and find the P-value.

b. Explain how the test could be conducted with a confi-

dence interval.

c. What is the power of the test in part (a) for a true differ-

ence in means of 3?

d. Assume that sample sizes are equal. What sample size

should be used to obtain β = 0.05 if the true difference in

means is 3? Assume that α = 0.05.

10.1.2 Two machines are used for filling plastic bottles with a

net volume of 16.0 ounces. The fill volume can be assumed to

be normal with standard deviation σ1 = 0.020 and σ2 = 0.025

ounces. A member of the quality engineering staff suspects that

both machines fill to the same mean net volume, whether or not

this volume is 16.0 ounces. A random sample of 10 bottles is taken

from the output of each machine.

Machine 1 Machine 2

16.03 16.01 16.02 16.03

16.04 15.96 15.97 16.04

16.05 15.98 15.96 16.02

16.05 16.02 16.01 16.01

16.02 15.99 15.99 16.00

a. Do you think the engineer is correct? Use α = 0.05. What

is the P-value for this test?

b. Calculate a 95% confidence interval on the difference in

means. Provide a practical interpretation of this interval.

c. What is the power of the test in part (a) for a true differ-

ence in means of 0.04?

d. Assume that sample sizes are equal. What sample size

should be used to ensure that β = 0.05 if the true difference

in means is 0.04? Assume that α = 0.05.

10.1.3 . WP . SS The burning rates of two different solid-fuel

propellants used in air crew escape systems are being studied.

It is known that both propellants have approximately the same

standard deviation of burning rate; that is, σ1 = σ2 = 3 centime-

ters per second. Two random samples of n1 = 20 and n2 = 20

specimens are tested; the sample mean burning rates are x1 = 18

centimeters per second and x2 = 24 centimeters per second.

a. Test the hypothesis that both propellants have the same

mean burning rate. Use α = 0.05. What is the P-value?

b. Construct a 95% confidence interval on the difference in

means μ1 − μ2. What is the practical meaning of this interval?

c. What is the β-error of the test in part (a) if the true differ-

ence in mean burning rate is 2.5 centimeters per second?

d. Assume that sample sizes are equal. What sample size is

needed to obtain power of 0.9 at a true difference in means

of 14 cm/s?

10.1.4 A polymer is manufactured in a batch chemical process.

Viscosity measurements are normally made on each batch, and

long experience with the process has indicated that the variability

in the process is fairly stable with σ = 20. Fifteen batch viscosity

measurements are given as follows:

724, 718, 776, 760, 745, 759, 795, 756, 742, 740, 761, 749,

739, 747, 742

A process change that involves switching the type of catalyst used

in the process is made. Following the process change, eight batch

viscosity measurements are taken:

735, 775, 729, 755, 783, 760, 738, 780
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Assume that process variability is unaffected by the catalyst

change. If the difference in mean batch viscosity is 10 or less,

the manufacturer would like to detect it with a high probability.

a. Formulate and test an appropriate hypothesis using

α = 0.10. What are your conclusions? Find the P-value.

b. Find a 90% confidence interval on the difference in mean

batch viscosity resulting from the process change.

c. Compare the results of parts (a) and (b) and discuss your

findings.

10.1.5 An article in Industrial Engineer (September 2012)

reported on a study of potential sources of injury to equine

veterinarians conducted at a university veterinary hospital. Forces

on the hand were measured for several common activities that

veterinarians engage in when examining or treating horses. We

consider the forces on the hands for two tasks, lifting and using

ultrasound. Assume that both sample sizes are 6, the sample

mean force for lifting was 6.0 pounds with standard deviation

1.5 pounds, and the sample mean force for using ultrasound was

6.2 pounds with standard deviation 0.3 pounds (data read from

graphs in the article). Assume that the standard deviations are

known. Is there evidence to conclude that the two activities result

in significantly different forces on the hands?

Exercises for Section 10.2

WP Problem available in WileyPLUS at instructor’s discretion.
WP GO Tutorial Tutoring problem available in WileyPLUS at

instructor’s discretion
SS Student solution available in WileyPLUS.

VS Student video solution available in WileyPLUS.

10.2.1 Consider the following computer output.

Two-Sample T-Test and CI
Sample N Mean StDev SE Mean

1 12 10.94 1.26 0.36

2 16 12.15 1.99 0.50

Difference = mu (1) − mu (2)
Estimate for difference: −1.210
95% CI for difference: (−2.560, 0.140)
T-test of difference = 0 (vs not =) :
T-value = ? P-value = ? DF = ?
Both use Pooled StDev = ?

a. Fill in the missing values. Is this a one-sided or a

two-sided test? Use lower and upper bounds for the P-value.

b. What are your conclusions if α = 0.05? What if α = 0.01?

c. This test was done assuming that the two population vari-

ances were equal. Does this seem reasonable?

d. Suppose that the hypothesis had been H0 : μ1 = μ2 versus

H0 : μ1 < μ2. What would your conclusions be if α = 0.05?

10.2.2 . WP Consider the hypothesis test H0 : μ1 = μ2 against

H1: μ1 ≠ μ2. Suppose that sample sizes are n1 = 15 and n2 = 15,

that x1 = 4.7 and x2 = 7.8, and that s2
1
= 4 and s2

2
= 6.25. Assume

that σ2
1
= σ2

2
and that the data are drawn from normal distribu-

tions. Use α = 0.05.

a. Test the hypothesis and find the P-value.

b. Explain how the test could be conducted with a confi-

dence interval.

c. What is the power of the test in part (a) for a true differ-

ence in means of 3?

d. Assume that sample sizes are equal. What sample size

should be used to obtain β = 0.05 if the true difference in

means is −2? Assume that α = 0.05.

10.2.3 .WP GO Tutorial The diameter of steel rods manufactured

on two different extrusion machines is being investigated. Two

random samples of sizes n1 = 15 and n2 = 17 are selected,

and the sample means and sample variances are x1 = 8.73, s2
1
=

0.35, x2 = 8.68, and s2
2
= 0.40, respectively. Assume that σ2

1
= σ2

2

and that the data are drawn from a normal distribution.

a. Is there evidence to support the claim that the two

machines produce rods with different mean diameters? Use

α = 0.05 in arriving at this conclusion. Find the P-value.

b. Construct a 95% confidence interval for the difference in

mean rod diameter. Interpret this interval.

10.2.4 . WP Consider the hypothesis test H0 : μ1 = μ2 against

H1: μ1 ≠ μ2. Suppose that sample sizes n1 = 10 and n2 = 10, that

x1 = 7.8 and x2 = 5.6, and that s2
1
= 4 and s2

2
= 9. Assume that

σ2
1
= σ2

2
and that the data are drawn from normal distributions.

Use α = 0.05.

a. Test the hypothesis and find the P-value.

b. Explain how the test could be conducted with a confi-

dence interval.

c. What is the power of the test in part (a) if μ1 is 3 units

greater than μ2?

d. Assume that sample sizes are equal. What sample size

should be used to obtain β = 0.05 if μ1 is 3 units greater than

μ2? Assume that α = 0.05.

10.2.5 . WP Two catalysts may be used in a batch chemical

process. Twelve batches were prepared using catalyst 1, resulting

in an average yield of 86 and a sample standard deviation of 3.

Fifteen batches were prepared using catalyst 2, and they resulted

in an average yield of 89 with a standard deviation of 2. Assume

that yield measurements are approximately normally distributed

with the same standard deviation.

a. Is there evidence to support a claim that catalyst 2 pro-

duces a higher mean yield than catalyst 1? Use α = 0.01.

b. Find a 99% confidence interval on the difference in mean

yields that can be used to test the claim in part (a).

10.2.6 . WP VS Two suppliers manufacture a plastic gear used

in a laser printer. The impact strength of these gears measured

in foot-pounds is an important characteristic. A random sample

of 10 gears from supplier 1 results in x1 = 290 and s1 = 12,

and another random sample of 16 gears from the second supplier

results in x2 = 321 and s2 = 22.

a. Is there evidence to support the claim that supplier

2 provides gears with higher mean impact strength? Use
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α = 0.05, and assume that both populations are normally dis-

tributed but the variances are not equal. What is the P-value

for this test?

b. Do the data support the claim that the mean impact

strength of gears from supplier 2 is at least 25 foot-pounds

higher than that of supplier 1? Make the same assumptions

as in part (a).

c. Construct a confidence interval estimate for the

difference in mean impact strength, and explain how this

interval could be used to answer the question posed regarding

supplier-to-supplier differences.

10.2.7 . WP . SS An article in Electronic Components and Tech-
nology Conference (2001, Vol. 52, pp. 1167–1171) compared

single versus dual spindle saw processes for copper metallized

wafers. A total of 15 devices of each type were measured for

the width of the backside chipouts, xsingle = 66.385, ssingle = 7.895

and xdouble = 45.278, sdouble = 8.612.

a. Do the sample data support the claim that both processes

have the same chip outputs? Use α = 0.05 and assume that

both populations are normally distributed and have the same

variance. Find the P-value for the test.

b. Construct a 95% two-sided confidence interval on the

mean difference in spindle saw process. Compare this inter-

val to the results in part (a).

c. If the β-error of the test when the true difference in chip

outputs is 15 should not exceed 0.1, what sample sizes must

be used? Use α = 0.05.

10.2.8 . WP A photoconductor film is manufactured at a nomi-

nal thickness of 25 mils. The product engineer wishes to increase

the mean speed of the film and believes that this can be achieved

by reducing the thickness of the film to 20 mils. Eight sam-

ples of each film thickness are manufactured in a pilot pro-

duction process, and the film speed (in microjoules per square

inch) is measured. For the 25-mil film, the sample data result is

x1 = 1.15 and s1 = 0.11, and for the 20-mil film the data yield

x2 = 1.06 and s2 = 0.09. Note that an increase in film speed

would lower the value of the observation in microjoules per

square inch.

a. Do the data support the claim that reducing the film thick-

ness increases the mean speed of the film? Use σ = 0.10, and

assume that the two population variances are equal and the

underlying population of film speed is normally distributed.

What is the P-value for this test?

b. Find a 95% confidence interval on the difference in the

two means that can be used to test the claim in part (a).

10.2.9 . WP An article in Radio Engineering and Electronic
Physics [1984, Vol. 29(3), pp. 63–66] investigated the behavior

of a stochastic generator in the presence of external noise. The

number of periods was measured in a sample of 100 trains for

each of two different levels of noise voltage, 100 and 150 mV.

For 100 mV, the mean number of periods in a train was 7.9 with

s = 2.6. For 150 mV, the mean was 6.9 with s = 2.4.

a. It was originally suspected that raising noise voltage

would reduce the mean number of periods. Do the data

support this claim? Use α = 0.01 and assume that each

population is normally distributed and the two population

variances are equal. What is the P-value for this test?

b. Calculate a confidence interval to answer the question in

part (a).

10.2.10 . VS An article in IEEE International Symposium on
Electromagnetic Compatibility [“EM Effects of Different Mobile

Handsets on Rats’ Brain” (2002, Vol. 2, pp. 667–670)] quantified

the absorption of electromagnetic energy and the resulting ther-

mal effect from cellular phones. The experimental results were

obtained from in vivo experiments conducted on rats. The arte-

rial blood pressure values (mmHg) for the control group (8 rats)

during the experiment are x1 = 90, s1 = 5 and for the test group

(9 rats) are x2 = 115, s2 = 10.

a. Is there evidence to support the claim that the test group

has higher mean blood pressure? Use α = 0.05, and assume

that both populations are normally distributed but the vari-

ances are not equal. What is the P-value for this test?

b. Calculate a confidence interval to answer the question in

part (a).

c. Do the data support the claim that the mean blood pres-

sure from the test group is at least 15 mmHg higher than the

control group? Make the same assumptions as in part (a).

d. Explain how the question in part (c) could be answered

with a confidence interval.

10.2.11 . WP . SS The overall distance traveled by a golf ball is

tested by hitting the ball with Iron Byron, a mechanical golfer

with a swing that is said to emulate the distance hit by the leg-

endary champion Byron Nelson. Ten randomly selected balls of

two different brands are tested and the overall distance measured.

The data follow:

Brand 1: 275, 286, 287, 271, 283, 271, 279, 275, 263, 267

Brand 2: 258, 244, 260, 265, 273, 281, 271, 270, 263, 268

a. Is there evidence that overall distance is approximately

normally distributed? Is an assumption of equal variances

justified?

b. Test the hypothesis that both brands of ball have equal

mean overall distance. Use α = 0.05. What is the P-value?

c. Construct a 95% two-sided CI on the mean difference in

overall distance for the two brands of golf balls.

d. What is the power of the statistical test in part (b) to detect

a true difference in mean overall distance of 5 yards?

e. What sample size would be required to detect a true dif-

ference in mean overall distance of 3 yards with power of

approximately 0.75?

10.2.12 The “spring-like effect” in a golf club could be deter-

mined by measuring the coefficient of restitution (the ratio of the

outbound velocity to the inbound velocity of a golf ball fired at

the clubhead). Twelve randomly selected drivers produced by two

clubmakers are tested and the coefficient of restitution measured.

The data follow:

Club 1: 0.8406, 0.8104, 0.8234, 0.8198, 0.8235, 0.8562,

0.8123, 0.7976, 0.8184, 0.8265, 0.7773, 0.7871

Club 2: 0.8305, 0.7905, 0.8352, 0.8380, 0.8145, 0.8465,

0.8244, 0.8014, 0.8309, 0.8405, 0.8256, 0.8476

a. Is there evidence that coefficient of restitution is approxi-

mately normally distributed? Is an assumption of equal vari-

ances justified?
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b. Test the hypothesis that both brands of clubs have equal

mean coefficient of restitution. Use α = 0.05. What is the

P-value of the test?

c. Construct a 95% two-sided CI on the mean difference in

coefficient of restitution for the two brands of golf clubs.

d. What is the power of the statistical test in part (b) to detect

a true difference in mean coefficient of restitution of 0.2?

e. What sample size would be required to detect a true

difference in mean coefficient of restitution of 0.1 with power

of approximately 0.8?

10.2.13 A paper in Quality Engineering [2013, Vol. 25(1)]

presented data on cycles to failure of solder joints at different

temperatures for different types of printed circuit boards (PCB).

Failure data for two temperatures (20 and 60∘C) for a copper-

nickel-gold PCB follow.

20∘C 218, 265, 279, 282, 336, 469, 496, 507, 685, 685

60∘C 185, 242, 254, 280, 305, 353, 381, 504, 556, 697

a. Test the null hypothesis at α = 0.05 that the cycles to fail-

ure are the same at both temperatures. Is the alternative one

or two sided?

b. Find a 95% confidence interval for the difference in the

mean cycles to failure for the two temperatures.

c. Is the value zero contained in the 95% confidence inter-

val? Explain the connection with the conclusion you reached

in part (a).

d. Do normal probability plots of part cycles to failure indi-

cate any violations of the assumptions for the tests and con-

fidence interval that you performed?

10.2.14 An article in Quality Engineering [2012, Vol. 24(1)]

described an experiment on a grinding wheel. The following are

some of the grinding force data (in N) from this experiment at two

different vibration levels.

Low 242, 249, 235, 250, 254, 244, 258, 311, 237, 261, 314, 252

High 302, 421, 419, 399, 317, 311, 350, 363, 392, 367, 301, 302

a. Is there evidence to support the claim that the mean grind-

ing force increases with the vibration level?

b. Find a 95% confidence interval for the difference in the

mean grinding force for the two vibration levels.

c. Is the value zero contained in the 95% confidence

interval? Explain the connection with the conclusion you

reached in part (a).

d. Do normal probability plots of grinding force indicate

any violations of the assumptions for the tests and confidence

interval that you performed?

Exercises for Section 10.3

WP Problem available in WileyPLUS at instructor’s discretion.
WP GO Tutorial Tutoring problem available in WileyPLUS at

instructor’s discretion
SS Student solution available in WileyPLUS.

VS Student video solution available in WileyPLUS.

10.3.1 . WP An electrical engineer must design a circuit to

deliver the maximum amount of current to a display tube to

achieve sufficient image brightness. Within her allowable design

constraints, she has developed two candidate circuits and tests

prototypes of each. The resulting data (in microamperes) are as

follows:

Circuit 1: 251, 255, 258, 257, 250, 251, 254, 250, 248

Circuit 2: 250, 253, 249, 256, 259, 252, 260, 251

a. Use the Wilcoxon rank-sum test to test H0: μ1 =μ2 against

the alternative H1: μ1 > μ2. Use α = 0.025.

b. Use the normal approximation for the Wilcoxon rank-

sum test. Assume that α= 0.05. Find the approximate P-value

for this test statistic.

10.3.2 . WP One of the authors travels regularly to Seattle,

Washington. He uses either Delta or Alaska Airlines. Flight

delays are sometimes unavoidable, but he would be willing to

give most of his business to the airline with the best on-time

arrival record. The number of minutes that his flight arrived late

for the last six trips on each airline follows. Is there evidence

that either airline has superior on-time arrival performance? Use

α = 0.01 and the Wilcoxon rank-sum test.

Delta: 13, 10, 1, 4, 0, 9 (minutes late)

Alaska: 15, 8, 3, −1, −2, 4 (minutes late)

10.3.3 . WP . SS VS The manufacturer of a hot tub is inter-

ested in testing two different heating elements for its product. The

element that produces the maximum heat gain after 15 minutes

would be preferable. The manufacturer obtains 10 samples of each

heating unit and tests each one. The heat gain after 15 minutes (in
∘F) follows.

Unit 1: 25, 27, 29, 31, 30, 26, 24, 32, 33, 38

Unit 2: 31, 33, 32, 35, 34, 29, 38, 35, 37, 30

a. Is there any reason to suspect that one unit is superior to

the other? Use α = 0.05 and the Wilcoxon rank-sum test.

b. Use the normal approximation for the Wilcoxon rank-

sum test. Assume that α = 0.05. What is the approximate

P-value for this test statistic?
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10.3.4 Consider the distance traveled by a golf ball in Exercise

10.2.11.

a. Use the Wilcoxon rank-sum test to investigate if the

means differ. Use α = 0.05.

b. Use the normal approximation for the Wilcoxon rank-

sum test with α = 0.05. Find the approximate P-value for

this test.

Exercises for Section 10.4

WP Problem available in WileyPLUS at instructor’s discretion.
WP GO Tutorial Tutoring problem available in WileyPLUS at

instructor’s discretion
SS Student solution available in WileyPLUS.

VS Student video solution available in WileyPLUS.

10.4.1 . WP The manager of a fleet of automobiles is testing two

brands of radial tires and assigns one tire of each brand at random

to the two rear wheels of eight cars and runs the cars until the tires

wear out. The data (in kilometers) follow. Find a 99% confidence

interval on the difference in mean life. Which brand would you

prefer based on this calculation?

Car Brand 1 Brand 2
1 36,925 34,318

2 45,300 42,280

3 36,240 35,500

4 32,100 31,950

5 37,210 38,015

6 48,360 47,800

7 38,200 37,810

8 33,500 33,215

10.4.2 . WP VS A computer scientist is investigating the use-

fulness of two different design languages in improving program-

ming tasks. Twelve expert programmers who are familiar with

both languages are asked to code a standard function in both lan-

guages and the time (in minutes) is recorded. The data follow:

Time

Programmer Design Language 1 Design Language 2
1 17 18

2 16 14

3 21 19

4 14 11

5 18 23

6 24 21

7 16 10

8 14 13

9 21 19

10 23 24

11 13 15

12 18 20

a. Is the assumption that the difference in coding time is nor-

mally distributed reasonable?

b. Find a 95% confidence interval on the difference in mean

coding times. Is there any indication that one design language

is preferable?

10.4.3 . WP An article in the Journal of Aircraft [“Equivalent

Plate Analysis of Aircraft Wing Box Structures with General

Planform Geometry” (1986, Vol. 23, pp. 859–864)] described a

new equivalent plate analysis method formulation that is capa-

ble of modeling aircraft structures such as cranked wing boxes

and that produces results similar to the more computationally

intensive finite element analysis method. Natural vibration fre-

quencies for the cranked wing box structure are calculated using

both methods, and results for the first seven natural frequencies

follow:

Freq. Finite Element, Cycle/s Equivalent Plate, Cycle/s
1 14.58 14.76

2 48.52 49.10

3 97.22 99.99

4 113.99 117.53

5 174.73 181.22

6 212.72 220.14

7 277.38 294.80

a. Do the data suggest that the two methods provide the

same mean value for natural vibration frequency? Use α =
0.05. Find the P-value.

b. Find a 95% confidence interval on the mean difference

between the two methods.

10.4.4 . WP Two different analytical tests can be used to deter-

mine the impurity level in steel alloys. Eight specimens are tested

using both procedures, and the results are shown in the following

tabulation.

Specimen Test 1 Test 2
1 1.2 1.4

2 1.3 1.7

3 1.5 1.5

4 1.4 1.3

5 1.7 2.0

6 1.8 2.1

7 1.4 1.7

8 1.3 1.6
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a. Is there sufficient evidence to conclude that tests differ in

the mean impurity level, using α = 0.01?

b. Is there evidence to support the claim that test 1 generates

a mean difference 0.1 units lower than test 2? Use α = 0.05.

c. If the mean from test 1 is 0.1 less than the mean from test

2, it is important to detect this with probability at least 0.90.

Was the use of eight alloys an adequate sample size? If not,

how many alloys should have been used?

10.4.5 . SS Neuroscientists conducted research in a Canadian

prison to see whether solitary confinement affects brain wave

activity [“Changes in EEG Alpha Frequency and Evoked

Response Latency During Solitary Confinement,” Journal of
Abnormal Psychology (1972, Vol. 7, pp. 54–59)]. They randomly

assigned 20 inmates to two groups, assigning half to solitary

confinement and the other half to regular confinement. The data

follow:

Nonconfined Confined
10.7 9.6

10.7 10.4

10.4 9.7

10.9 10.3

10.5 9.2

10.3 9.3

9.6 9.9

11.1 9.5

11.2 9.0

10.4 10.9

a. Is a paired t-test appropriate for testing whether the mean

alpha wave frequencies are the same in the two groups?

Explain.

b. Perform an appropriate test.

10.4.6 In Biometrics (1990, Vol. 46, pp. 673–87), the authors

analyzed the circumference of five orange trees (labeled as A–E)

measured on seven occasions (xi).

Tree x1 x2 x3 x4 x5 x6 x7

A 30 58 87 115 120 142 145

B 33 69 111 156 172 203 203

C 30 51 75 108 115 139 140

D 32 62 112 167 179 209 214

E 30 49 81 125 142 174 177

a. Compare the mean increase in circumference in periods

1 to 2 to the mean increase in periods 2 to 3. The increase is

the difference in circumference in the two periods. Are these

means significantly different at α = 0.10?

b. Is there evidence that the mean increase in period 1

to period 2 is greater than the mean increase in period 6

to period 7 at α = 0.05?

c. Are the assumptions of the test in part (a) violated

because the same data (period 2 circumference) are used to

calculate both mean increases?

10.4.7 In a series of tests to study the efficacy of ginkgo biloba

on memory, Solomon et al. first looked at differences in mem-

ory tests of people 6 weeks before and after joining the study

[“Ginkgo for Memory Enhancement: A Randomized Controlled

Trial,” Journal of the American Medical Association (2002, Vol.

288, pp. 835–840)]. For 99 patients receiving no medication, the

average increase in category fluency (number of words generated

in one minute) was 1.07 words with a standard deviation of 3.195

words. Researchers wanted to know whether the mean number of

words recalled was positive.

a. Is this a one- or two-sided test?

b. Perform a hypothesis test to determine whether the mean

increase is zero.

c. Why can this be viewed as a paired t-test?

d. What does the conclusion say about the importance of

including placebos in such tests?

Exercises for Section 10.5

WP Problem available in WileyPLUS at instructor’s discretion.
WP GO Tutorial Tutoring problem available in WileyPLUS at

instructor’s discretion
SS Student solution available in WileyPLUS.

VS Student video solution available in WileyPLUS.

10.5.1 For an F distribution, find the following:

a. f 0.25,5,10 b. f 0.10,24,9

c. f 0.05,8,15 d. f 0.75,5,10

e. f 0.90,24,9 f. f 0.95,8,15

10.5.2 . WP Two chemical companies can supply a raw mate-

rial. The concentration of a particular element in this material is

important. The mean concentration for both suppliers is the same,

but you suspect that the variability in concentration may differ for

the two companies. The standard deviation of concentration in a

random sample of n1 = 10 batches produced by company 1 is

s1 = 4.7 grams per liter, and for company 2, a random sample of

n2 = 16 batches yields s2 = 5.8 grams per liter. Is there sufficient

evidence to conclude that the two population variances differ?

Use α = 0.05.

10.5.3 Consider the hypothesis test H0∶ σ2
1
= σ2

2
against H1∶ σ2

1
<

σ2
2
, respectively. Suppose that the sample sizes are n1 = 5 and

n2 = 10, and that s2
1
= 23.2 and s2

2
= 28.8. Use α = 0.05. Test the

hypothesis and explain how the test could be conducted with a

confidence interval on σ1/σ2.

10.5.4 . WP Consider the gear impact strength data in Exercise

10.2.6. Is there sufficient evidence to conclude that the variance

of impact strength is different for the two suppliers? Use α = 0.05.
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10.5.5 . WP . SS Reconsider the overall distance data for golf

balls in Exercise 10.2.11. Is there evidence to support the claim

that the standard deviation of overall distance is the same for both

brands of balls (use α = 0.05)? Explain how this question can be

answered with a 95% confidence interval on σ1/σ2.

10.5.6 Reconsider the coefficient of restitution data in Exercise

10.2.12. Do the data suggest that the standard deviation is the

same for both brands of drivers (use α = 0.05)? Explain how to

answer this question with a confidence interval on σ1/σ2.

Exercises for Section 10.6

WP Problem available in WileyPLUS at instructor’s discretion.
WP GO Tutorial Tutoring problem available in WileyPLUS at

instructor’s discretion
SS Student solution available in WileyPLUS.

VS Student video solution available in WileyPLUS.

10.6.1 Consider the following computer output.

Test and Cl for Two Proportions
Sample X N Sample p

1 54 250 0.216000

2 60 290 0.206897

Difference = p(1) −p(2)
Estimate for difference: 0.00910345
95% CI for difference: (-0.0600031,
0.0782100)
Test for difference
= 0(vs not=0):Z = ? P-Value = ?

a. Is this a one-sided or a two-sided test?

b. Fill in the missing values.

c. Can the null hypothesis be rejected?

d. Construct an approximate 90% CI for the difference in the

two proportions.

10.6.2 . WP An article in Knee Surgery, Sports Traumatology,
Arthroscopy (2005, Vol. 13(4), pp. 273–279) considered arthro-

scopic meniscal repair with an absorbable screw. Results showed

that for tears greater than 25 millimeters, 14 of 18 (78%) repairs

were successful, but for shorter tears, 22 of 30 (73%) repairs were

successful.

a. Is there evidence that the success rate is greater for longer

tears? Use α = 0.05. What is the P-value?

b. Calculate a one-sided 95% confidence bound on the dif-

ference in proportions that can be used to answer the question

in part (a).

10.6.3 . SS VS Two different types of injection-molding

machines are used to form plastic parts. A part is considered

defective if it has excessive shrinkage or is discolored. Two ran-

dom samples, each of size 300, are selected, and 15 defective parts

are found in the sample from machine 1, and 8 defective parts are

found in the sample from machine 2.

a. Is it reasonable to conclude that both machines produce

the same fraction of defective parts, using α = 0.05? Find the

P-value for this test.

b. Construct a 95% confidence interval on the difference in

the two fractions defective.

c. Suppose that p1 = 0.05 and p2 = 0.01. With the sample

sizes given here, what is the power of the test for this two-

sided alternate?

d. Suppose that p1 = 0.05 and p2 = 0.01. Determine the sam-

ple size needed to detect this difference with a probability of

at least 0.9.

e. Suppose that p1 = 0.05 and p2 = 0.02. With the sample

sizes given here, what is the power of the test for this two-

sided alternate?

f. Suppose that p1 = 0.05 and p2 = 0.02. Determine the sam-

ple size needed to detect this difference with a probability of

at least 0.9.

10.6.4 A random sample of 500 adult residents of Maricopa

County indicated that 385 were in favor of increasing the highway

speed limit to 75 mph, and another sample of 400 adult residents

of Pima County indicated that 267 were in favor of the increased

speed limit.

a. Do these data indicate that there is a difference in the

support for increasing the speed limit for the residents of

the two counties? Use α = 0.05. What is the P-value for

this test?

b. Construct a 95% confidence interval on the difference in

the two proportions. Provide a practical interpretation of this

interval.

10.6.5 The New England Journal of Medicine reported an exper-

iment to judge the efficacy of surgery on men diagnosed with

prostate cancer. The randomly assigned half of 695 (347) men in

the study had surgery, and 18 of them eventually died of prostate

cancer compared with 31 of the 348 who did not have surgery.

Is there any evidence to suggest that the surgery lowered the pro-

portion of those who died of prostate cancer?

10.6.6 Consider the highway speed limit data introduced in

Exercise 10.6.4. Find a 99% CI on the difference in the two

proportions using the alternate CI procedure described in this

section. Compare the lengths of the CI from Exercise 10.6.4 with

those in this one. Discuss the possible causes of any differences

that you observe.
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Supplemental Exercises for Chapter 10

WP Problem available in WileyPLUS at instructor’s discretion.
WP GO Tutorial Tutoring problem available in WileyPLUS at

instructor’s discretion
SS Student solution available in WileyPLUS.

VS Student video solution available in WileyPLUS.

10.S7 Consider the following computer output.

Two-Sample T-Test and CI
Sample N Mean StDev SE Mean

1 20 11.87 2.23 ?

2 20 12.73 3.19

0.71 Difference = mu(1) - mu(2)
Estimate for difference: −0.860
95% CI for difference: (?, ?)
T-Test of difference = 0(vs not =):
T-Value = ? P-Value = ? DF = ?
Both use Pooled StDev = ?

a. Fill in the missing values. You may use bounds for the

P-value.
b. Is this a two-sided test or a one-sided test?

c. What are your conclusions if α = 0.05? What if α =
0.10?

10.S8 A procurement specialist has purchased 25 resistors from

vendor 1 and 35 resistors from vendor 2. Each resistor’s resistance

is measured with the following results (ohm):

Vendor 1

96.8 100.0 100.3 98.5 98.3 98.2

99.6 99.4 99.9 101.1 103.7 97.7

99.7 101.1 97.7 98.6 101.9 101.0

99.4 99.8 99.1 99.6 101.2 98.2

98.6

Vendor 2

106.8 106.8 104.7 104.7 108.0 102.2

103.2 103.7 106.8 105.1 104.0 106.2

102.6 100.3 104.0 107.0 104.3 105.8

104.0 106.3 102.2 102.8 104.2 103.4

104.6 103.5 106.3 109.2 107.2 105.4

106.4 106.8 104.1 107.1 107.7

a. What distributional assumption is needed to test the claim

that the variance of resistance of the product from vendor 1

is not significantly different from the variance of resistance

of the product from vendor 2? Perform a graphical procedure

to check this assumption.

b. Perform an appropriate statistical hypothesis-testing pro-

cedure to determine whether the procurement specialist can

claim that the variance of resistance of the product from

vendor 1 is significantly different from the variance of resis-

tance of the product from vendor 2.

10.S9 . SS A liquid dietary product implies in its advertising

that using the product for one month results in an average

weight loss of at least 3 pounds. Eight subjects use the product

for one month, and the resulting weight loss data follow. Use

hypothesis-testing procedures to answer the following questions.

Subject Initial Weight (lb) Final Weight (lb)

1 165 161

2 201 195

3 195 192

4 198 193

5 155 150

6 143 141

7 150 146

8 187 183

a. Do the data support the claim of the dietary product’s pro-

ducer with the probability of a type I error set to 0.05?

b. Do the data support the claim of the dietary product’s pro-

ducer with the probability of a type I error set to 0.01?

c. In an effort to improve sales, the producer is consider-

ing changing its claim from “at least 3 pounds” to “at least

5 pounds.” Repeat parts (a) and (b) to test this new claim.

10.S10 The Salk polio vaccine experiment in 1954 focused on the

effectiveness of the vaccine in combating paralytic polio. Because

it was believed that without a control group of children, there

would be no sound basis for evaluating the efficacy of the Salk

vaccine, the vaccine was administered to one group, and a placebo

(visually identical to the vaccine but known to have no effect) was

administered to a second group. For ethical reasons and because

it was suspected that knowledge of vaccine administration would

affect subsequent diagnoses, the experiment was conducted in a

double-blind fashion. That is, neither the subjects nor the admin-

istrators knew who received the vaccine and who received the

placebo. The actual data for this experiment are as follows:

Placebo group: n = 201,299: 110 cases of polio observed

Vaccine group: n = 200,745: 33 cases of polio observed

a. Use a hypothesis-testing procedure to determine whether

the proportion of children in the two groups who contracted

paralytic polio is statistically different. Use a probability of a

type I error equal to 0.05.

b. Repeat part (a) using a probability of a type I error equal

to 0.01.

c. Compare your conclusions from parts (a) and (b) and

explain why they are the same or different.
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10.S11 . WP A random sample of 1500 residential telephones in

Phoenix in 1990 indicated that 387 of the numbers were unlisted.

A random sample of 1200 telephones in the same year in Scotts-

dale indicated that 310 were unlisted.

a. Find a 95% confidence interval on the difference in the

two proportions and use this confidence interval to determine

whether there is a statistically significant difference in pro-

portions of unlisted numbers between the two cities.

b. Find a 90% confidence interval on the difference in the

two proportions and use this confidence interval to determine

if there is a statistically significant difference in proportions

of unlisted numbers for the two cities.

c. Suppose that all the numbers in the problem descrip-

tion were doubled. That is, 774 residents of 3000 sampled in

Phoenix and 620 residents of 2400 in Scottsdale had unlisted

phone numbers. Repeat parts (a) and (b) and comment on

the effect of increasing the sample size without changing the

proportions on your results.

10.S12 The manufacturer of a new pain relief tablet would

like to demonstrate that its product works twice as fast as the

competitor’s product. Specifically, the manufacturer would like

to test

H0∶ μ1 = 2μ2

H1∶ μ1 > 2μ2

where μ1 is the mean absorption time of the competitive product

and μ2 is the mean absorption time of the new product. Assuming

that the variances σ2
1

and σ2
2

are known, develop a procedure for

testing this hypothesis.

10.S13 . WP A fuel-economy study was conducted for two Ger-

man automobiles, Mercedes and Volkswagen. One vehicle of

each brand was selected, and the mileage performance was

observed for 10 tanks of fuel in each car. The data are as follows

(in miles per gallon):

Mercedes Volkswagen
24.7 24.9 41.7 42.8

24.8 24.6 42.3 42.4

24.9 23.9 41.6 39.9

24.7 24.9 39.5 40.8

24.5 24.8 41.9 29.6

a. Construct a normal probability plot of each of the data

sets. Based on these plots, is it reasonable to assume that they

are each drawn from a normal population?

b. Suppose that it was determined that the lowest obser-

vation of the Mercedes data was erroneously recorded and

should be 24.6. Furthermore, the lowest observation of the

Volkswagen data was also mistaken and should be 39.6.

Again construct normal probability plots of each of the data

sets with the corrected values. Based on these new plots, is it

reasonable to assume that each is drawn from a normal pop-

ulation?

c. Compare your answers from parts (a) and (b) and

comment on the effect of these mistaken observations on the

normality assumption.

d. Using the corrected data from part (b) and a 95% con-

fidence interval, is there evidence to support the claim

that the variability in mileage performance is greater for a

Volkswagen than for a Mercedes?

e. Rework part (d) of this problem using an appropriate

hypothesis-testing procedure. Did you get the same answer

as you did originally? Why?

10.S14 . WP Suppose that you are testing H0: μ1 = μ2 versus

H1: μ1 ≠ μ2, and you plan to use equal sample sizes from the

two populations. Both populations are assumed to be normal with

unknown but equal variances. If you use α = 0.05 and if the true

mean μ1 = μ2 + σ, what sample size must be used for the power

of this test to be at least 0.90?

10.S15 . WP A Rockwell hardness-testing machine presses a tip

into a test coupon and uses the depth of the resulting depression to

indicate hardness. Two different tips are being compared to deter-

mine whether each provides the same Rockwell C-scale hardness

readings. Nine coupons are tested with both tips being tested on

each coupon. The data are shown in the following table.

a. State any assumptions necessary to test the claim that

each tip produces the same Rockwell C-scale hardness

readings. Check those assumptions for which you have the

information.

Coupon Tip 1 Tip 2 Coupon Tip 1 Tip 2

1 47 46 6 41 41

2 42 40 7 45 46

3 43 45 8 45 46

4 40 41 9 49 48

5 42 43

b. Apply an appropriate statistical method to determine

whether the data support the claim that the difference in

Rockwell C-scale hardness readings of the two tips differ sig-

nificantly from zero.

c. Suppose that if the two tips differ in mean hardness read-

ings by as much as 1.0, you want the power of the test to be

at least 0.9. For an α = 0.01, how many coupons should have

been used in the test?

10.S16 . WP An article in the Journal of the Environmental
Engineering Division [“Distribution of Toxic Substances in

Rivers” (1982, Vol. 108, pp. 639–649)] investigated the concen-

tration of several hydrophobic organic substances in the Wolf

River in Tennessee. Measurements on hexachlorobenzene (HCB)

in nanograms per liter were taken at different depths downstream

of an abandoned dump site. Data for two depths follow:

Surface: 3.74, 4.61, 4.00, 4.67, 4.87, 5.12, 4.52, 5.29, 5.74, 5.48

Bottom: 5.44, 6.88, 5.37, 5.44, 5.03, 6.48, 3.89, 5.85, 6.85, 7.16

a. What assumptions are required to test the claim that mean

HCB concentration is the same at both depths? Check those

assumptions for which you have the information.
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b. Apply an appropriate procedure to determine whether the

data support the claim in part (a).

c. Suppose that the true difference in mean concentrations

is 2.0 nanograms per liter. For α = 0.05, what is the power of

a statistical test for H0: μ1 = μ2 versus H1: μ1 ≠ μ2?

d. What sample size would be required to detect a difference

of 1.0 nanograms per liter at α = 0.05 if the power must be at

least 0.9?

10.S17 Consider the unlisted telephone number data in Exercise

10.S11. Find 95% CIs on the difference in the proportions of

unlisted telephone numbers for Phoenix and Scottsdale residents

using both procedures described in this chapter. Compare the

lengths of these two intervals and comment on any difference you

may observe.

Chapter 11 Exercises

Exercises for Section 11.2

WP Problem available in WileyPLUS at instructor’s discretion.
WP GO Tutorial Tutoring problem available in WileyPLUS at

instructor’s discretion
SS Student solution available in WileyPLUS.

VS Student video solution available in WileyPLUS.

11.2.1 Diabetes and obesity are serious health concerns in the

United States and much of the developed world. Measuring the

amount of body fat a person carries is one way to monitor

weight control progress, but measuring it accurately involves

either expensive X-ray equipment or a pool in which to dunk

the subject. Instead body mass index (BMI) is often used as a

proxy for body fat because it is easy to measure: BMI = mass(kg)/

(height(m))2 = 703 mass(lb)/(height(in))2. In a study of 250 men

at Brigham Young University, both BMI and body fat were mea-

sured. Researchers found the following summary statistics:

n∑

i=1

xi = 6322.28

n∑

i=1

x2
i = 162674.18

n∑

i=1

yi = 4757.90

n∑

i=1

y2
i = 107679.27

n∑

i=1

xiyi = 125471.10

a. . WP Calculate the least squares estimates of the slope

and intercept. Graph the regression line.

b. . WP Use the equation of the fitted line to predict what

body fat would be observed, on average, for a man with a

BMI of 30.

c. Suppose that the observed body fat of a man with a BMI

of 25 is 25%. Find the residual for that observation.

d. Was the prediction for the BMI of 25 in part (c) an over-

estimate or underestimate? Explain briefly.

11.2.2 . WP An article in Technometrics by S. C. Narula and J. F.

Wellington [“Prediction, Linear Regression, and a Minimum Sum

of Relative Errors” (1977, Vol. 19(2), pp. 185–190)] presents data

on the selling price and annual taxes for 24 houses. The data are

in the table that follows.

a. Assuming that a simple linear regression model is appro-

priate, obtain the least squares fit relating selling price to

taxes paid. What is the estimate of σ2?

b. Find the mean selling price given that the taxes paid are

x = 7.50.

c. Calculate the fitted value of y corresponding to x =
5.8980. Find the corresponding residual.

d. Calculate the fitted ŷi for each value of xi used to fit the

model. Then construct a graph of ŷi versus the corresponding

observed value yi and comment on what this plot would look

like if the relationship between y and x was a deterministic (no

random error) straight line. Does the plot actually obtained

indicate that taxes paid is an effective regressor variable in

predicting selling price?

Sale Taxes Sale Taxes
Price/ (local, school, Price/ (local, school,
1000 county)/1000 1000 county)/1000

25.9 4.9176 30.0 5.0500

29.5 5.0208 36.9 8.2464

27.9 4.5429 41.9 6.6969

25.9 4.5573 40.5 7.7841

29.9 5.0597 43.9 9.0384

29.9 3.8910 37.5 5.9894

30.9 5.8980 37.9 7.5422

28.9 5.6039 44.5 8.7951

35.9 5.8282 37.9 6.0831

31.5 5.3003 38.9 8.3607

31.0 6.2712 36.9 8.1400

30.9 5.9592 45.8 9.1416
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11.2.3 . WP An article in Concrete Research [“Near Surface

Characteristics of Concrete: Intrinsic Permeability” (1989,

Vol. 41, pp. 87–97)] presented data on compressive strength x
and intrinsic permeability y of various concrete mixes and cures.

Summary quantities are n = 14,
∑

yi = 572,
∑

y2
i = 23,530,

∑
xi = 43,

∑
x2

i = 157.42, and
∑

xiyi = 1697.80. Assume that

the two variables are related according to the simple linear

regression model.

a. Calculate the least squares estimates of the slope and

intercept. Estimate σ2. Graph the regression line.

b. Use the equation of the fitted line to predict what perme-

ability would be observed when the compressive strength is

x = 4.3.

c. Give a point estimate of the mean permeability when the

compressive strength is x = 3.7.

d. Suppose that the observed value of permeability at x =
3.7 is y = 46.1. Calculate the value of the corresponding

residual.

11.2.4 An article in the Journal of Sound and Vibration
[“Measurement of Noise-Evoked Blood Pressure by Means of

Averaging Method: Relation between Blood Pressure Rise and

SPL” (1991, Vol. 151(3), pp. 383–394)] described a study inves-

tigating the relationship between noise exposure and hyperten-

sion. The following data are representative of those reported in

the article.

y 1 0 1 2 5 1 4 6 2 3

x 60 63 65 70 70 70 80 90 80 80

y 5 4 6 8 4 5 7 9 7 6

x 85 89 90 90 90 90 94 100 100 100

a. Draw a scatter diagram of y (blood pressure rise in

millimeters of mercury) versus x (sound pressure level

in decibels). Does a simple linear regression model seem rea-

sonable in this situation?

b. Fit the simple linear regression model using least squares.

Find an estimate of σ2.

c. Find the predicted mean rise in blood pressure level asso-

ciated with a sound pressure level of 85 decibels.

11.2.5 . SS An article in the Tappi Journal (March 1986) pre-

sented data on green liquor Na2S concentration (in grams per liter)

and paper machine production (in tons per day). The data (read

from a graph) follow:

y 40 42 49 46 44 48

x 825 830 890 895 890 910

y 46 43 53 52 54 57 58

x 915 960 990 1010 1012 1030 1050

a. Fit a simple linear regression model with y = green liquor

Na2S concentration and x = production. Find an estimate of

σ2. Draw a scatter diagram of the data and the resulting least

squares fitted model.

b. Find the fitted value of y corresponding to x = 910 and

the associated residual.

c. Find the mean green liquor Na2S concentration when the

production rate is 950 tons per day.

11.2.6 . WP VS An article in the Journal of Environmental
Engineering (1989, Vol. 115(3), pp. 608–619) reported the results

of a study on the occurrence of sodium and chloride in surface

streams in central Rhode Island. The following data are chloride

concentration y (in milligrams per liter) and roadway area in the

watershed x (in percentage).

y 4.4 6.6 9.7 10.6 10.8 10.9

x 0.19 0.15 0.57 0.70 0.67 0.63

y 11.8 12.1 14.3 14.7 15.0 17.3

x 0.47 0.70 0.60 0.78 0.81 0.78

y 19.2 23.1 27.4 27.7 31.8 39.5

x 0.69 1.30 1.05 1.06 1.74 1.62

a. Draw a scatter diagram of the data. Does a simple linear

regression model seem appropriate here?

b. Fit the simple linear regression model using the method

of least squares. Find an estimate of σ2.

c. Estimate the mean chloride concentration for a watershed

that has 1% roadway area.

d. Find the fitted value corresponding to x = 0.47 and the

associated residual.

11.2.7 .WP GO Tutorial . SS An article in the Journal of the
American Ceramic Society [“Rapid Hot-Pressing of Ultrafine

PSZ Powders” (1991, Vol. 74, pp. 1547–1553)] considered the

microstructure of the ultrafine powder of partially stabilized zir-

conia as a function of temperature. The data follow:

x = Temperature (∘C): 1100 1200 1300 1100 1500

1200 1300

y = Porosity (%): 30.8 19.2 6.0 13.5 11.4

7.7 3.6

a. Fit the simple linear regression model using the method

of least squares. Find an estimate of σ2.

b. Estimate the mean porosity for a temperature of 1400 ∘C.

c. Find the fitted value corresponding to y = 11.4 and the

associated residual.

d. Draw a scatter diagram of the data. Does a simple linear

regression model seem appropriate here? Explain.

11.2.8 An article in Wood Science and Technology [“Creep in

Chipboard, Part 3: Initial Assessment of the Influence of Mois-

ture Content and Level of Stressing on Rate of Creep and Time

to Failure” (1981, Vol. 15, pp. 125–144)] reported a study of

the deflection (mm) of particleboard from stress levels of relative

humidity. Assume that the two variables are related according to

the simple linear regression model. The data follow:

x = Stress level (%): 54 54 61 61 68

y = Deflection (mm): 16.473 18.693 14.305 15.121 13.505

x = Stress level (%): 68 75 75 75

y = Deflection (mm): 11.640 11.168 12.534 11.224
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a. Calculate the least square estimates of the slope and inter-

cept. What is the estimate of σ2? Graph the regression model

and the data.

b. Find the estimate of the mean deflection if the stress level

can be limited to 65%.

c. Estimate the change in the mean deflection associated

with a 5% increment in stress level.

d. To decrease the mean deflection by one millimeter, how

much increase in stress level must be generated?

e. Given that the stress level is 68%, find the fitted value of

deflection and the corresponding residual.

11.2.9 . WP An article in the Journal of the Environmental
Engineering Division [“Least Squares Estimates of BOD Param-

eters” (1980, Vol. 106, pp. 1197–1202)] took a sample from the

Holston River below Kingport, Tennessee, during August 1977.

The biochemical oxygen demand (BOD) test is conducted over a

period of time in days. The resulting data follow:

Time (days): 1 2 4 6 8 10 12 14 16

18 20

BOD (mg/liter): 0.6 0.7 1.5 1.9 2.1 2.6 2.9 3.7 3.5

3.7 3.8

a. Assuming that a simple linear regression model is appro-

priate, fit the regression model relating BOD (y) to the time

(x). What is the estimate of σ2?

b. What is the estimate of expected BOD level when the

time is 15 days?

c. What change in mean BOD is expected when the time

changes by 3 days?

d. Suppose that the time used is 6 days. Calculate the fitted

value of y and the corresponding residual.

e. Calculate the fitted ŷi for each value of xi used to fit the

model. Then construct a graph of ŷi versus the corresponding

observed values yi and comment on what this plot would look

like if the relationship between y and x was a deterministic (no

random error) straight line. Does the plot actually obtained

indicate that time is an effective regressor variable in pre-

dicting BOD?

11.2.10 Show that in a simple linear regression model the point

(x, y) lies exactly on the least squares regression line.

Exercises for Section 11.4

WP Problem available in WileyPLUS at instructor’s discretion.
WP GO Tutorial Tutoring problem available in WileyPLUS at

instructor’s discretion
SS Student solution available in WileyPLUS.

VS Student video solution available in WileyPLUS.

11.4.1 . WP Recall the regression of percent body fat on BMI

from Exercise 11.2.1.

a. Estimate the error standard deviation.

b. Estimate the standard deviation of the slope.

c. What is the value of the t-statistic for the slope?

d. Test the hypothesis that β1 = 0 at α = 0.05. What is the

P-value for this test?

11.4.2 Consider the simple linear regression model y = 10 + 25x
+ ϵ where the random error term is normally and independently

distributed with mean zero and standard deviation 2. Use software

to generate a sample of eight observations, one each at the levels

x = 10, 12, 14, 16, 18, 20, 22, and 24.

a. Fit the linear regression model by least squares and find

the estimates of the slope and intercept.

b. Find the estimate of σ2.

c. Find the standard errors of the slope and intercept.

d. Now use software to generate a sample of 16 observa-

tions, two each at the same levels of x used previously. Fit

the model using least squares.

e. Find the estimate of σ2 for the new model in part (d).

Compare this to the estimate obtained in part (b). What

impact has the increase in sample size had on the estimate?

f. Find the standard errors of the slope and intercept using

the new model from part (d). Compare these standard errors

to the ones that you found in part (c). What impact has

the increase in sample size had on the estimated standard

errors?

11.4.3 . WP Consider the following computer output.

The regression equation is

Y = 12.9 + 2.34 x

Predictor Coef SE Coef T P

Constant 12.857 1.032 ? ?

X 2.3445 0.1150 ? ?
S = 1.48111 R-sq = 98.1% R-sq(adj) = 97.9%

Analysis of Variance

Source DF SS MS F P

Regression 1 912.43 912.43 ? ?

Residual error 8 17.55 ?

Total 9 929.98

a. Fill in the missing information. You may use bounds for

the P-values.

b. Can you conclude that the model defines a useful linear

relationship?

c. What is your estimate of σ2?
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11.4.4 Consider the data from Exercise 11.2.2 on y = sales price

and x = taxes paid.

a. Test H0: β1 = 0 using the t-test; use α = 0.05.

b. Test H0: β1 = 0 using the analysis of variance with α =
0.05. Discuss the relationship of this test to the test from

part (a).

c. Estimate the standard errors of the slope and intercept.

d. Test the hypothesis that β0 = 0.

11.4.5 Consider the data from Exercise 11.2.3 on x = compres-

sive strength and y = intrinsic permeability of concrete.

a. Test for significance of regression using α = 0.05. Find

the P-value for this test. Can you conclude that the model

specifies a useful linear relationship between these two

variables?

b. Estimate σ2 and the standard deviation of ̂β1.

c. What is the standard error of the intercept in this model?

11.4.6 Consider the data from Exercise 11.2.4 on y = blood pres-

sure rise and x = sound pressure level.

a. Test for significance of regression using α = 0.05. What

is the P-value for this test?

b. Estimate the standard errors of the slope and intercept.

c. Test H0: β0 = 0 versus H1: β0 ≠ 0 using α = 0.05. Find

the P-value for this test.

11.4.7 Consider the data from Exercise 11.2.5 on y= green liquor

Na2S concentration and x = production in a paper mill.

a. Test for significance of regression using α = 0.05. Find

the P-value for this test.

b. Estimate the standard errors of the slope and intercept.

c. Test H0: β0 = 0 versus H1: β0 ≠ 0 using α = 0.05. What

is the P-value for this test?

11.4.8 Consider the data from Exercise 11.2.6 on y = chloride

concentration in surface streams and x = roadway area.

a. Test the hypothesis H0: β1 = 0 versus H1: β1 ≠ 0 using

the analysis of variance procedure with α = 0.01.

b. Find the P-value for the test in part (a).

c. Estimate the standard errors of ̂β1 and ̂β0.

d. Test H0: β1 = 0 versus H1: β0 ≠ 0 using α = 0.01. What

conclusions can you draw? Does it seem that the model might

be a better fit to the data if the intercept were removed?

11.4.9 . WP Consider the data in Exercise 11.2.9 on y = oxygen

demand and x = time.

a. Test for significance of regression using α = 0.01. Find

the P-value for this test. What conclusions can you draw?

b. Estimate the standard errors of the slope and intercept.

c. Test the hypothesis that β0 = 0.

11.4.10 . WP . SS Consider the data in Exercise 11.2.8 on y =
deflection and x = stress level.

a. Test for significance of regression using α = 0.01. What

is the P-value for this test? State the conclusions that result

from this test.

b. Does this model appear to be adequate?

c. Estimate the standard errors of the slope and intercept.

11.4.11 .WP GO Tutorial An article in the Journal of Clinical
Endocrinology and Metabolism [“Simultaneous and Continuous

24-Hour Plasma and Cerebrospinal Fluid Leptin Measurements:

Dissociation of Concentrations in Central and Peripheral Com-

partments” (2004, Vol. 89, pp. 258–265)] reported on a study

of the demographics of simultaneous and continuous 24-hour

plasma and cerebrospinal fluid leptin measurements. The data

follow:

y = BMI (kg/m2): 19.92 20.59 29.02 20.78 25.97

20.39 23.29 17.27 35.24

x = Age (yr): 45.5 34.6 40.6 32.9 28.2 30.1

52.1 33.3 47.0

a. Test for significance of regression using α = 0.05. Find

the P-value for this test. Can you conclude that the model

specifies a useful linear relationship between these two

variables?

b. Estimate σ2 and the standard deviation of ̂β1.

c. What is the standard error of the intercept in this model?

Exercises for Sections 11.5 and 11.6

WP Problem available in WileyPLUS at instructor’s discretion.
WP GO Tutorial Tutoring problem available in WileyPLUS at

instructor’s discretion
SS Student solution available in WileyPLUS.

VS Student video solution available in WileyPLUS.

11.6.1 . WP Using the regression from Exercise 11.2.1,

a. Find a 95% confidence interval for the slope.

b. Find a 95% confidence interval for the mean percent body

fat for a man with a BMI of 25.

c. Find a 95% prediction interval for the percent body fat for

a man with a BMI of 25.

d. Which interval is wider, the confidence interval or the

prediction interval? Explain briefly.

11.6.2 . WP Refer to the data on y = house selling price and x =
taxes paid in Exercise 11.2.2. Find a 95% confidence interval on

each of the following:

a. β1

b. β0

c. Mean selling price when the taxes paid are x = 7.50

d. Compute the 95% prediction interval for selling price

when the taxes paid are x = 7.50.

11.6.3 . WP Refer to the data in Exercise 11.2.3 on y = intrin-

sic permeability of concrete and x = compressive strength. Find

a 95% confidence interval on each of the following:

a. Slope

b. Intercept

c. Mean permeability when x = 2.5
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d. Find a 95% prediction interval on permeability when

x = 2.5. Explain why this interval is wider than the interval

in part (c).

11.6.4 Exercise 11.2.4 presented data on y = blood pressure rise

and x = sound pressure level. Find a 95% confidence interval on

each of the following:

a. β1

b. β0

c. Mean blood pressure rise when the sound pressure level

is 85 decibels

d. Find a 95% prediction interval on blood pressure rise

when the sound pressure level is 85 decibels.

11.6.5 . WP . SS Consider the data in Exercise 11.2.5 on

y = green liquor Na2S concentration and x = production in

a paper mill. Find a 99% confidence interval on each of the

following:

a. β1

b. β0

c. Mean Na2S concentration when production x = 910

tons/day

d. Find a 99% prediction interval on Na2S concentration

when x = 910 tons/day.

11.6.6 Exercise 11.2.6 presented data on chloride concentration

y and roadway area x on watersheds in central Rhode Island. Find

a 99% confidence interval on each of the following:

a. β1

b. β0

c. Mean chloride concentration when roadway area

x = 1.0%

d. Find a 99% prediction interval on chloride concentration

when roadway area x = 1.0%.

11.6.7 . WP Refer to the data in Exercise 11.2.9 on oxygen

demand. Find a 99% confidence interval on each of the following:

a. β1

b. β0

c. Find a 95% confidence interval on mean BOD when the

time is 8 days.

11.6.8 Refer to the data in Exercise 11.2.7 on the microstruc-

ture of zirconia. Find a 95% confidence interval on each of the

following:

a. Slope

b. Intercept

c. Mean length when x = 1500

d. Find a 95% prediction interval on length when x = 1500.

Explain why this interval is wider than the interval in part (c).

Exercises for Section 11.7

WP Problem available in WileyPLUS at instructor’s discretion.
WP GO Tutorial Tutoring problem available in WileyPLUS at

instructor’s discretion
SS Student solution available in WileyPLUS.

VS Student video solution available in WileyPLUS.

11.7.1 . WP . SS Repeat Exercise 11.7.2 using an error term with

a standard deviation of 4. What impact has increasing the error

standard deviation had on the values of R2?

11.7.2 Consider the simple linear regression model y = 10 + 0.3x
+ ϵ where the random error term is normally and independently

distributed with mean zero and standard deviation 1. Use software

to generate a sample of eight observations, one each at the levels

x = 10, 12, 14, 16, 18, 20, 22, and 24.

a. Fit the linear regression model by least squares and find

the estimates of the slope and intercept.

b. Find the estimate of σ2.

c. Find the value of R2.

d. Now use software to generate a new sample of eight

observations, one each at the levels of x = 10, 14, 18, 22,

26, 30, 34, and 38. Fit the model using least squares.

e. Find R2 for the new model in part (d). Compare this

to the value obtained in part (c). What impact has the

increase in the spread of the predictor variable x had on the

value?

11.7.3 Refer to the compressive strength data in Exercise 11.2.3.

Use the summary statistics provided to calculate R2 and provide

a practical interpretation of this quantity.

11.7.4 Refer to the data in Exercise 11.2.2 on house-selling price

y and taxes paid x.

a. Find the residuals for the least squares model.

b. Prepare a normal probability plot of the residuals and

interpret this display.

c. Plot the residuals versus ŷ and versus x. Does the assump-

tion of constant variance seem to be satisfied?

d. What proportion of total variability is explained by the

regression model?

11.7.5 Refer to Exercise 11.2.6, which presented data on chloride

concentration y and roadway area x.

a. What proportion of the total variability in chloride con-

centration is accounted for by the regression model?

b. Plot the residuals versus ŷ and versus x. Interpret these

plots.

c. Prepare a normal probability plot of the residuals. Does

the normality assumption appear to be satisfied?

11.7.6 . WP Refer to Exercise 11.2.4, which presented data on

blood pressure rise y and sound pressure level x.

a. What proportion of total variability in blood pressure rise

is accounted for by sound pressure level?

b. Prepare a normal probability plot of the residuals from

this least squares model. Interpret this plot.

c. Plot residuals versus ŷ and versus x. Comment on these

plots.

11.7.7 . WP VS SS An article in the Journal of the American
Statistical Association [“Markov Chain Monte Carlo Methods

for Computing Bayes Factors: A Comparative Review” (2001,

Vol. 96, pp. 1122–1132)] analyzed the tabulated data on compres-

sive strength parallel to the grain versus resin-adjusted density for

specimens of radiata pine. The data are shown below.
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Compressive Compressive
Strength Density Strength Density

3040 29.2 3840 30.7

2470 24.7 3800 32.7

3610 32.3 4600 32.6

3480 31.3 1900 22.1

3810 31.5 2530 25.3

2330 24.5 2920 30.8

1800 19.9 4990 38.9

3110 27.3 1670 22.1

3160 27.1 3310 29.2

2310 24.0 3450 30.1

4360 33.8 3600 31.4

1880 21.5 2850 26.7

3670 32.2 1590 22.1

1740 22.5 3770 30.3

2250 27.5 3850 32.0

2650 25.6 2480 23.2

4970 34.5 3570 30.3

2620 26.2 2620 29.9

2900 26.7 1890 20.8

1670 21.1 3030 33.2

2540 24.1 3030 28.2

a. Fit a regression model relating compressive strength to

density.

b. Test for significance of regression with α = 0.05.

c. Estimate σ2 for this model.

d. Calculate R2 for this model. Provide an interpretation of

this quantity.

e. Prepare a normal probability plot of the residuals and

interpret this display.

f. Plot the residuals versus ŷ and versus x. Does the assump-

tion of constant variance seem to be satisfied?

11.7.8 . WP Consider the data in Exercise 11.2.5 on y = green

liquor Na2S concentration and x = paper machine production.

Suppose that a 14th sample point is added to the original data

where y14 = 59 and x14 = 855.

a. Prepare a scatter diagram of y versus x. Fit the simple

linear regression model to all 14 observations.

b. Test for significance of regression with α = 0.05.

c. Estimate σ2 for this model.

d. Compare the estimate of σ2 obtained in part (c) with the

estimate of σ2 obtained from the original 13 points. Which

estimate is larger and why?

e. Compute the residuals for this model. Does the value of

e14 appear unusual?

f. Prepare and interpret a normal probability plot of the

residuals.

g. Plot the residuals versus ŷ and versus x. Comment on

these graphs.

11.7.9 Show that an equivalent way to define the test for signifi-

cance of regression in simple linear regression is to base the test

on R2 as follows: to test H0: β1 = 0 versus H0: β1 ≠ 0, calculate

F0 =
R2(n − 2)

1 − R2

and to reject H0: β1 = 0 if the computed value f 0 > f α,1,n−2. Sup-

pose that a simple linear regression model has been fit to n = 25

observations and R2 = 0.90.

a. Test for significance of regression at α = 0.05.

b. What is the smallest value of R2 that would lead to the

conclusion of a significant regression if α = 0.05?

11.7.10 . WP Studentized Residuals. Show that the variance of

the ith residual is

V(ei) = σ2

[

1 −
(

1

n
+

(xi − x)2

Sxx

)]

Hint:
cov(Yi,

̂Yi) = σ2

[
1

n
+

(xi − x)2

Sxx

]

.

The ith studentized residual is defined as

ri =
ei

√

σ̂2

[

1 −
(

1

n
+

(xi − x)2

Sxx

)]

a. Explain why ri has unit standard deviation.

b. Do the standardized residuals have unit standard devia-

tion?

c. Discuss the behavior of the studentized residual when the

sample value xi is very close to the middle of the range of x.

d. Discuss the behavior of the studentized residual when the

sample value xi is very near one end of the range of x.

Exercises for Section 11.8

WP Problem available in WileyPLUS at instructor’s discretion.
WP GO Tutorial Tutoring problem available in WileyPLUS at

instructor’s discretion
SS Student solution available in WileyPLUS.

VS Student video solution available in WileyPLUS.

11.8.1 . WP Suppose that data are obtained from 20 pairs of

(x, y) and the sample correlation coefficient is 0.8.

a. Test the hypothesis that H0: ρ = 0 against H1: ρ ≠ 0 with

α = 0.05. Calculate the P-value.

b. Test the hypothesis that H1: ρ = 0.5 against H1: ρ ≠ 0.5

with α = 0.05. Calculate the P-value.

c. Construct a 95% two-sided confidence interval for the

correlation coefficient. Explain how the questions in parts (a)

and (b) could be answered with a confidence interval.
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11.8.2 A random sample of n = 25 observations was made

on the time to failure of an electronic component and the

temperature in the application environment in which the compo-

nent was used.

a. Given that ρ̂ = 0.83, test the hypothesis that ρ = 0 using

α = 0.05. What is the P-value for this test?

b. Find a 95% confidence interval on ρ.

c. Test the hypothesis H0: ρ = 0.8 versus H1: ρ ≠ 0.8, using

α = 0.05. Find the P-value for this test.

11.8.3 The data in the following table give x = the water content

of snow on April 1 and y = the yield from April to July (in inches)

on the Snake River watershed in Wyoming for 1919 to 1935. (The

data were taken from an article in Research Notes, Vol. 61, 1950,

Pacific Northwest Forest Range Experiment Station, Oregon.)

x y x y
23.1 10.5 37.9 22.8

32.8 16.7 30.5 14.1

31.8 18.2 25.1 12.9

32.0 17.0 12.4 8.8

30.4 16.3 35.1 17.4

24.0 10.5 31.5 14.9

39.5 23.1 21.1 10.5

24.2 12.4 27.6 16.1

52.5 24.9

a. Estimate the correlation between Y and X.

b. Test the hypothesis that ρ = 0 using α = 0.05.

c. Fit a simple linear regression model and test for signifi-

cance of regression using α= 0.05. What conclusions can you

draw? How is the test for significance of regression related to

the test on ρ in part (b)?

d. Analyze the residuals and comment on term list.

11.8.4 The weight and systolic blood pressure of 26 randomly

selected males in the age group 25 to 30 are shown below. Assume

that weight and blood pressure are jointly normally distributed.

Systolic Systolic
Subject Weight BP Subject Weight BP

1 165 130 14 172 153

2 167 133 15 159 128

3 180 150 16 168 132

4 155 128 17 174 149

5 212 151 18 183 158

6 175 146 19 215 150

7 190 150 20 195 163

8 210 140 21 180 156

9 200 148 22 143 124

10 149 125 23 240 170

11 158 133 24 235 165

12 169 135 25 192 160

13 170 150 26 187 159

a. Find a regression line relating systolic blood pressure to

weight.

b. Test for significance of regression using α = 0.05.

c. Estimate the correlation coefficient.

d. Test the hypothesis that ρ = 0, using α = 0.05.

e. Test the hypothesis that ρ = 0, using α = 0.05.

f. Construct a 95% confidence interval for the correlation

coefficient.

11.8.5 . SS In an article in IEEE Transactions on Instrumenta-
tion and Measurement (2001, Vol. 50, pp. 986–990), researchers

reported on a study of the effects of reducing current draw in a

magnetic core by electronic means. They measured the current in

a magnetic winding with and without the electronics in a paired

experiment. Data for the case without electronics are provided in

the following table.

Supply Voltage Current Without Electronics (mA)
0.66 7.32

1.32 12.22

1.98 16.34

2.64 23.66

3.3 28.06

3.96 33.39

4.62 34.12

3.28 39.21

5.94 44.21

6.6 47.48

a. Graph the data and fit a regression line to predict current

without electronics to supply voltage. Is there a significant

regression at α = 0.05? What is the P-value?

b. Estimate the correlation coefficient.

c. Test the hypothesis that ρ = 0 against the alternative

ρ ≠ 0 with α = 0.05. What is the P-value?

d. Compute a 95% confidence interval for the correlation

coefficient.

11.8.6 The monthly absolute estimate of global (land and ocean

combined) temperature indexes (degrees C) in 2000 and 2001

(www.ncdc.noaa.gov/oa/climate/ ) are:

2000: 12.28, 12.63, 13.22, 14.21, 15.13, 15.82, 16.05,

16.02, 15.29, 14.29, 13.16, 12.47

2001: 12.44, 12.55, 13.35, 14.22, 15.28, 15.99, 16.23,

16.17, 15.44, 14.52, 13.52, 12.61

a. Graph the data and fit a regression line to predict 2001

temperatures from those in 2000. Is there a significant regres-

sion at α = 0.05? What is the P-value?

b. Estimate the correlation coefficient.

c. Test the hypothesis that ρ = 0.9 against the alternative

ρ ≠ 0.9 with α = 0.05. What is the P-value?

d. Compute a 95% confidence interval for the correlation

coefficient.
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Exercises for Section 11.9

WP Problem available in WileyPLUS at instructor’s discretion.
WP GO Tutorial Tutoring problem available in WileyPLUS at

instructor’s discretion
SS Student solution available in WileyPLUS.

VS Student video solution available in WileyPLUS.

11.9.1 . SS Determine if the following models are intrinsically

linear. If yes, determine the appropriate transformation to gener-

ate the linear model.

a. Y = β0xβ1 ε

b. Y = 3 + 5x
x

+ ε

c. Y = β0βx
1
ε

d. Y = x
β0x + β1 + xε

11.9.2 . VS The vapor pressure of water at various temperatures

is in the table below:

a. Draw a scatter diagram of these data. What type of rela-

tionship seems appropriate in relating y to x?

b. Fit a simple linear regression model to these data.

c. Test for significance of regression using α = 0.05. What

conclusions can you draw?

d. Plot the residuals from the simple linear regression model

versus ŷi. What do you conclude about model adequacy?

e. The Clausius–Clapeyron relationship states that ln(Pv) ∝
− 1

T
where Pv is the vapor pressure of water. Repeat parts

(a)–(d) using an appropriate transformation.

Observation Temperature Vapor pressure
Number (K) (mm Hg)

1 273 4.6

2 283 9.2

3 293 17.5

4 303 31.8

5 313 55.3

6 323 92.5

7 333 149.4

8 343 233.7

9 353 355.1

10 363 525.8

11 373 760.0

11.9.3 An electric utility is interested in developing a model relat-

ing peak-hour demand (y in kilowatts) to total monthly energy

usage during the month (x, in kilowatt hours). Data for 50 resi-

dential customers are shown in the table below.

a. Draw a scatter diagram of y versus x.

b. Fit the simple linear regression model.

c. Test for significance of regression using α = 0.05.

d. Plot the residuals versus ŷi and comment on the under-

lying regression assumptions. Specifically, does it seem that

the equality of variance assumption is satisfied?

e. Find a simple linear regression model using
√

y as the

response. Does this transformation on y stabilize the inequal-

ity of variance problem noted in part (d)?

Customer x y Customer x y

1 679 0.79 26 1434 0.31

2 292 0.44 27 837 4.20

3 1012 0.56 28 1748 4.88

4 493 0.79 29 1381 3.48

5 582 2.70 30 1428 7.58

6 1156 3.64 31 1255 2.63

7 997 4.73 32 1777 4.99

8 2189 9.50 33 370 0.59

9 1097 5.34 34 2316 8.19

10 2078 6.85 35 1130 4.79

11 1818 5.84 36 463 0.51

12 1700 5.21 37 770 1.74

13 747 3.25 38 724 4.10

14 2030 4.43 39 808 3.94

15 1643 3.16 40 790 0.96

16 414 0.50 41 783 3.29

17 354 0.17 42 406 0.44

18 1276 1.88 43 1242 3.24

19 745 0.77 44 658 2.14

20 795 3.70 45 1746 5.71

21 540 0.56 46 895 4.12

22 874 1.56 47 1114 1.90

23 1543 5.28 48 413 0.51

24 1029 0.64 49 1787 8.33

25 710 4.00 50 3560 14.94
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Exercises for Section 11.10

WP Problem available in WileyPLUS at instructor’s discretion.
WP GO Tutorial Tutoring problem available in WileyPLUS at

instructor’s discretion
SS Student solution available in WileyPLUS.

VS Student video solution available in WileyPLUS.

11.10.1 . WP A study was conducted attempting to relate home

ownership to family income. Twenty households were selected

and family income was estimated along with information con-

cerning home ownership (y = 1 indicates yes and y = 0 indicates

no). The data are shown in the table below.

Household Income Home Ownership Status

1 38,000 0

2 51,200 1

3 39,600 0

4 43,400 1

5 47,700 0

6 53,000 0

7 41,500 1

8 40,800 0

9 45,400 1

10 52,400 1

11 38,700 1

12 40,100 0

13 49,500 1

14 38,000 0

15 42,000 1

16 54,000 1

17 51,700 1

18 39,400 0

19 40,900 0

20 52,800 1

a. Fit a logistic regression model to the response variable y.

Use a simple linear regression model as the structure for the

linear predictor.

b. Is the logistic regression model in part (a) adequate?

c. Provide an interpretation of the parameter β1 in this

model.

11.10.2 . WP The compressive strength of an alloy fastener used

in aircraft construction is being studied. Ten loads were selected

over the range 2500–4300 psi, and a number of fasteners were

tested at those loads. The numbers of fasteners failing at each load

were recorded. The complete test data are shown in the follow-

ing table.

Load, x (psi) Sample Size, n Number Failing, r

2500 50 10

2700 70 17

2900 100 30

3100 60 21

3300 40 18

3500 85 43

3700 90 54

3900 50 33

4100 80 60

4300 65 51

a. Fit a logistic regression model to the data. Use a sim-

ple linear regression model as the structure for the linear

predictor.

b. Is the logistic regression model in part (a) adequate?

11.10.3 . WP . SS The market research department of a soft

drink manufacturer is investigating the effectiveness of a price

discount coupon on the purchase of a 2-liter beverage product. A

sample of 5500 customers was given coupons for varying price

discounts between 5 and 25 cents. The response variable was

the number of coupons in each price discount category redeemed

after one month. The data follow.

Discount, x Sample Size, n Number Redeemed, r

5 500 100

7 500 122

9 500 147

11 500 176

13 500 211

15 500 244

17 500 277

19 500 310

21 500 343

23 500 372

25 500 391

a. Fit a logistic regression model to the data. Use a sim-

ple linear regression model as the structure for the linear

predictor.

b. Is the logistic regression model in part (a) adequate?

c. Draw a graph of the data and the fitted logistic regression

model.



�

� �

�

Exercises P-97

d. Expand the linear predictor to include a quadratic term.

Is there any evidence that this quadratic term is required in

the model?

e. Draw a graph of this new model on the same plot that

you prepared in part (c). Does the expanded model visually

provide a better fit to the data than the original model from

part (a)?

11.10.4 . WP A study was performed to investigate new automo-

bile purchases. A sample of 20 families was selected. Each family

was surveyed to determine the age of their oldest vehicle and their

total family income. A follow-up survey was conducted 6 months

later to determine if they had actually purchased a new vehicle

during that time period (y = 1 indicates yes and y = 0 indicates

no). The data from this study are shown in the table below.

Income, x1 Age, x2 y Income, x1 Age, x2 y

45,000 2 0 37,000 5 1

40,000 4 0 31,000 7 1

60,000 3 1 40,000 4 1

50,000 2 1 75,000 2 0

55,000 2 0 43,000 9 1

50,000 5 1 49,000 2 0

35,000 7 1 37,500 4 1

65,000 2 1 71,000 1 0

53,000 2 0 34,000 5 0

48,000 1 0 27,000 6 0

a. Fit a logistic regression model to the data.

b. Is the logistic regression model in part (a) adequate?

c. Interpret the model coefficients β1 and β2.

d. What is the estimated probability that a family with an

income of $45,000 and a car that is 5 years old will purchase

a new vehicle in the next 6 months?

e. Expand the linear predictor to include an interaction

term. Is there any evidence that this term is required in the

model?

11.10.5 . WP The World Health Organization defines obesity in

adults as having a body mass index (BMI) higher than 30. Of the

250 men in the study mentioned in Exercise 11.2.1, 23 are by this

definition obese. How good is waist (size in inches) as a predictor

of obesity? A logistic regression model was fit to the data:

log

(
p

1 − p

)

= −41.828 + 0.9864 waist

where p is the probability of being classified as obese.

a. Does the probability of being classified as obese increase

or decrease as a function of waist size? Explain.

b. What is the estimated probability of being classified as

obese for a man with a waist size of 36 inches?

c. What is the estimated probability of being classified as

obese for a man with a waist size of 42 inches?

d. What is the estimated probability of being classified as

obese for a man with a waist size of 48 inches?

e. Make a plot of the estimated probability of being classi-

fied as obese as a function of waist size.

Supplemental Exercises for Chapter 11

WP Problem available in WileyPLUS at instructor’s discretion.
WP GO Tutorial Tutoring problem available in WileyPLUS at

instructor’s discretion
SS Student solution available in WileyPLUS.

VS Student video solution available in WileyPLUS.

11.S7 . WP An article in the IEEE Transactions on Instrumen-
tation and Measurement [“Direct, Fast, and Accurate Measure-

ment of VT and K of MOS Transistor Using VT-Sift Circuit”

(1991, Vol. 40, pp. 951–955)] described the use of a simple linear

regression model to express drain current y (in milliamperes) as a

function of ground-to-source voltage x (in volts). The data are as

follows:

y x y x
0.734 1.1 1.50 1.6

0.886 1.2 1.66 1.7

1.04 1.3 1.81 1.8

1.19 1.4 1.97 1.9

1.35 1.5 2.12 2.0

a. Draw a scatter diagram of these data. Does a straight-

line relationship seem plausible?

b. Fit a simple linear regression model to these data.

c. Test for significance of regression using α = 0.05. What

is the P-value for this test?

d. Find a 95% confidence interval estimate on the slope.

e. Test the hypothesis H0: β0 = 0 versus H1: β0 ≠ 0 using

α = 0.05. What conclusions can you draw?

11.S8 Show that, for the simple linear regression model, the fol-

lowing statements are true:

a.
n∑

i=1

(yi − ŷi) = 0

b.
n∑

i=1

(yi − ŷi)xi = 0

c. 1

n

n∑

i=1

ŷi = y

11.S9 . SS Consider the following data. Suppose that the

relationship between Y and x is hypothesized to be Y =
(β0 + β1x + ϵ)−1.
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Fit an appropriate model to the data. Does the assumed model

form seem reasonable?

x 10 15 18 12 9 8 11 6

y 0.1 0.13 0.09 0.15 0.20 0.21 0.18 0.24

11.S10 . WP The strength of paper used in the manufacture of

cardboard boxes (y) is related to the percentage of hardwood con-

centration in the original pulp (x). Under controlled conditions, a

pilot plant manufactures 16 samples, each from a different batch

of pulp, and measures the tensile strength. The data follow:

y 101.4 117.4 117.1 106.2

x 1.0 1.5 1.5 1.5

y 131.9 146.9 146.8 133.9

x 2.0 2.0 2.2 2.4

y 111.0 123.0 125.1 145.2

x 2.5 2.5 2.8 2.8

y 134.3 144.5 143.7 146.9

x 3.0 3.0 3.2 3.3

a. Fit a simple linear regression model to the data.

b. Test for significance of regression using α = 0.05.

c. Construct a 90% confidence interval on the slope β1.

d. Construct a 90% confidence interval on the intercept β0.

e. Construct a 95% confidence interval on the mean strength

at x = 2.5.

f. Analyze the residuals and comment on model adequacy.

11.S11 . WP The data in the table below, adapted from Mont-

gomery, Peck, and Vining (2012), present the number of certified

mental defectives per 10,000 of estimated population in the

United Kingdom (y) and the number of radio receiver licenses

issued (x) by the BBC (in millions) for the years 1924 through

1937. Fit a regression model relating y and x. Comment on the

model. Specifically, does the existence of a strong correlation

imply a cause-and-effect relationship?

Year y x Year y x

1924 8 1.350 1931 16 4.620

1925 8 1.960 1932 18 5.497

1926 9 2.270 1933 19 6.260

1927 10 2.483 1934 20 7.012

1928 11 2.730 1935 21 7.618

1929 11 3.091 1936 22 8.131

1930 12 3.674 1937 23 8.593

11.S12 An article in Air and Waste [“Update on Ozone Trends in

California’s South Coast Air Basin” (1993, Vol. 43, pp. 226–240)]

reported on a study of the ozone levels on the South Coast air

basin of California for the years 1976–1991. The author believes

that the number of days that the ozone level exceeds 0.20 parts

per million depends on the seasonal meteorological index (the

seasonal average 850 millibar temperature). The data follow:

Year Days Index Year Days Index

1976 91 16.7 1984 81 18.0

1977 105 17.1 1985 65 17.2

1978 106 18.2 1986 61 16.9

1979 108 18.1 1987 48 17.1

1980 88 17.2 1988 61 18.2

1981 91 18.2 1989 43 17.3

1982 58 16.0 1990 33 17.5

1983 82 17.2 1991 36 16.6

a. Construct a scatter diagram of the data.

b. Fit a simple linear regression model to the data. Test for

significance of regression.

c. Find a 95% CI on the slope β1.

d. Analyze the residuals and comment on model

adequacy.

11.S13 An article in the Journal of Applied Polymer Sci-
ence [“Preparation and Characterizations of Thermotropic

Copolyesters of p-Hydroxybenzoic Acid, Sebacic Acid, and

Hydroquinone” (1995, Vol. 56, pp. 471–476)] reported on a study

of the effect of the mole ratio of sebacic acid on the intrinsic vis-

cosity of copolyesters. The data follow:

Mole ratio x 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3

Viscosity y 0.45 0.20 0.34 0.58 0.70 0.57 0.55 0.44

a. Construct a scatter diagram of the data.

b. Fit a simple linear repression model.

c. Test for significance of regression. Calculate R2 for the

model.

d. Analyze the residuals and comment on model adequacy.

11.S14 Two different methods can be used for measuring the tem-

perature of the solution in a Hall cell used in aluminum smelting, a

thermocouple implanted in the cell and an indirect measurement

produced from an IR device. The indirect method is preferable

because the thermocouples are eventually destroyed by the solu-

tion. Consider the following 10 measurements:

Thermocouple 921 935 916 920 940

IR 918 934 924 921 945

Thermocouple 936 925 940 933 927

IR 930 919 943 932 935

a. Construct a scatter diagram for these data, letting

x = thermocouple measurement and y = IR measurement.
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b. Fit a simple linear regression model.

c. Test for significance of a regression and calculate R2.

What conclusions can you draw?

d. Is there evidence to support a claim that both devices pro-

duce equivalent temperature measurements? Formulate and

test an appropriate hypothesis to support this claim.

e. Analyze the residuals and comment on model adequacy.

11.S15 The data below related diamond carats to purchase prices.

It appeared in Singapore’s Business Times, February 18, 2000.

Carat Price Carat Price

0.3 1302 0.33 1327

0.3 1510 0.33 1098

0.3 1510 0.34 1693

0.3 1260 0.34 1551

0.31 1641 0.34 1410

0.31 1555 0.34 1269

0.31 1427 0.34 1316

0.31 1427 0.34 1222

0.31 1126 0.35 1738

0.31 1126 0.35 1593

0.32 1468 0.35 1447

0.32 1202 0.35 1255

0.36 1635 0.45 1572

0.36 1485 0.46 2942

0.37 1420 0.48 2532

0.37 1420 0.5 3501

0.4 1911 0.5 3501

0.4 1525 0.5 3501

0.41 1956 0.5 3293

0.43 1747 0.5 3016

a. Graph the data. What is the relation between carat and

price? Is there an outlier?

b. What would you say to the person who purchased the dia-

mond that was an outlier?

c. Fit two regression models, one with all the data and the

other with unusual data omitted. Estimate the slope coeffi-

cient with a 95% confidence interval in both cases. Comment

on any difference.

Chapter 12 Exercises

Exercises for Section 12.1

WP Problem available in WileyPLUS at instructor’s discretion.
WP GO Tutorial Tutoring problem available in WileyPLUS at

instructor’s discretion
SS Student solution available in WileyPLUS.

VS Student video solution available in WileyPLUS.

12.1.1 Exercise 11.2.1 described a regression model between per-

cent of body fat (%BF) as measured by immersion and BMI from

a study on 250 male subjects. The researchers also measured

13 physical characteristics of each man, including his age (yrs),

height (in), and waist size (in).
A regression of percent of body fat with both height and

waist as predictors shows the following computer output:

Estimate Std. Error t-value Pr(>|t|)
(Intercept) −3.10088 7.68611 −0.403 0.687
Height −0.60154 0.10994 −5.472 1.09e−07
Waist 1.77309 0.07158 24.770 < 2e −16

Residual standard error: 4.46 on 247 degrees of freedom
Multiple R-squared: 0.7132, Adjusted R-squared: 0.7109
F-statistic: 307.1 on 2 and 247 DF, p-value: < 2.2e-16

a. Write out the regression model if

(X′X)−1 =
⎡
⎢
⎢
⎢
⎣

2.9705 −4.0042E−2 −4.1679E−2

−0.04004 6.0774E−4 −7.3875E−5

−4.1679E−3 −7.3875E−5 2.5766E−4

⎤
⎥
⎥
⎥
⎦

and

(X′y) =
⎡
⎢
⎢
⎢
⎣

4757.9

334335.8

179706.7

⎤
⎥
⎥
⎥
⎦

b. Verify that the model found from technology is correct to

at least two decimal places.

c. What is the predicted body fat of a man who is 6-ft tall

with a 34-in. waist?

12.1.2 Hsuie, Ma, and Tsai [“Separation and Characterizations of

Thermotropic Copolyesters of p-Hydroxybenzoic Acid, Sebacic

Acid, and Hydroquinone” Journal of Applied Polymer Science
(1995, Vol. 56, pp. 471–476)] studied the effect of the molar

ratio of sebacic acid (the regressor) on the intrinsic viscosity

of copolyesters (the response). The following display presents

the data.

Ratio Viscosity

1.0 0.45

0.9 0.20

0.8 0.34

(continued)
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0.7 0.58

0.6 0.70

0.5 0.57

0.4 0.55

0.3 0.44

a. Construct a scatter plot of the data.

b. Fit a second-order prediction equation.

12.1.3 Can the percentage of the workforce who are engineers

in each U.S. state be predicted by the amount of money spent

on higher education (as a percent of gross domestic product), on

venture capital (dollars per $1000 of gross domestic product) for

high-tech business ideas, and state funding (in dollars per student)

for major research universities? Data for all 50 states and a soft-

ware package revealed the following results:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.051e+00 1.567e-01 6.708 2.5e-08 ***
Venture cap 9.514e-02 3.910e-02 2.433 0.0189 *
State funding 4.106e-06 1.437e-05 0.286 0.7763
Higher.eD -1.673e-01 2.595e-01 -0.645 0.5223

Residual standard error: 0.3007 on 46 degrees of
freedom
Multiple R-squared: 0.1622, Adjusted R-squared: 0.1075
F-statistic: 2.968 on 3 and 46 DF, p-value: 0.04157

a. Write the equation predicting the percent of engineers in

the workforce.

b. For a state that has $1 per $1000 in venture capital,

spends $10,000 per student on funding for major research

universities, and spends 0.5% of its GDP on higher educa-

tion, what percent of engineers do you expect to see in the

workforce?

c. If the state in part (b) actually had 1.5% engineers in the

workforce, what would the residual be?

12.1.4 . WP . SS A regression model is to be developed for pre-

dicting the ability of soil to absorb chemical contaminants. Ten

observations have been taken on a soil absorption index (y) and

two regressors: x1 = amount of extractable iron ore and x2 =
amount of bauxite. We wish to fit the model y = β0 + β1x1 +
β2x2 + 𝛜. Some necessary quantities are:

(X′X)−1 =
⎡
⎢
⎢
⎢
⎣

1.17991 −7.30982 E-3 7.3006 E-4

−7.30982 E-3 7.9799 E-5 −1.23713 E-4

7.3006 E-4 −1.23713 E-4 4.6576 E-4

⎤
⎥
⎥
⎥
⎦

X′y =
⎡
⎢
⎢
⎢
⎣

220

36,768

9,965

⎤
⎥
⎥
⎥
⎦

a. Estimate the regression coefficients in the model

specified.

b. What is the predicted value of the absorption index y
when x1 = 200 and x2 = 50?

12.1.5 The data from a patient satisfaction survey in a hospital

are shown next.

Obser- Satis-
vation Age Severity Surg-Med Anxiety faction

1 55 50 0 2.1 68

2 46 24 1 2.8 77

3 30 46 1 3.3 96

4 35 48 1 4.5 80

5 59 58 0 2.0 43

6 61 60 0 5.1 44

7 74 65 1 5.5 26

8 38 42 1 3.2 88

9 27 42 0 3.1 75

10 51 50 1 2.4 57

11 53 38 1 2.2 56

12 41 30 0 2.1 88

13 37 31 0 1.9 88

14 24 34 0 3.1 102

15 42 30 0 3.0 88

16 50 48 1 4.2 70

17 58 61 1 4.6 52

18 60 71 1 5.3 43

19 62 62 0 7.2 46

20 68 38 0 7.8 56

21 70 41 1 7.0 59

22 79 66 1 6.2 26

23 63 31 1 4.1 52

24 39 42 0 3.5 83

25 49 40 1 2.1 75

The regressor variables are the patient’s age, an illness sever-

ity index (higher values indicate greater severity), an indicator

variable denoting whether the patient is a medical patient (0) or a

surgical patient (1), and an anxiety index (higher values indicate

greater anxiety).

a. Fit a multiple linear regression model to the satisfaction

response using age, illness severity, and the anxiety index as

the regressors.

b. Estimate σ2.

c. Find the standard errors of the regression coefficients.

d. Are all of the model parameters estimated with nearly the

same precision? Why or why not?

12.1.6 The electric power consumed each month by a chemical

plant is thought to be related to the average ambient temperature

(x1), the number of days in the month (x2), the average product

purity (x3), and the tons of product produced (x4). The past year’s

historical data are available and are presented below.
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y x1 x2 x3 x4

240 25 24 91 100

236 31 21 90 95

270 45 24 88 110

274 60 25 87 88

301 65 25 91 94

316 72 26 94 99

300 80 25 87 97

296 84 25 86 96

267 75 24 88 110

276 60 25 91 105

288 50 25 90 100

261 38 23 89 98

a. Fit a multiple linear regression model to these data.

b. Estimate σ2.

c. Compute the standard errors of the regression coeffi-

cients. Are all of the model parameters estimated with the

same precision? Why or why not?

d. Predict power consumption for a month in which

x1 = 75∘F, x2 = 24 days, x3 = 90%, and x4 = 98 tons.

12.1.7 An article in Electronic Packaging and Production (2002,

Vol. 42) considered the effect of X-ray inspection of integrated

circuits. The rads (radiation dose) were studied as a function of

current (in milliamps) and exposure time (in minutes). The data

are shown below.

Rads mAmps Exposure Time

7.4 10 0.25

14.8 10 0.5

29.6 10 1

59.2 10 2

88.8 10 3

296 10 10

444 10 15

592 10 20

11.1 15 0.25

22.2 15 0.5

44.4 15 1

88.8 15 2

133.2 15 3

444 15 10

666 15 15

888 15 20

14.8 20 0.25

29.6 20 0.5

59.2 20 1

118.4 20 2

177.6 20 3

592 20 10

888 20 15

1184 20 20

22.2 30 0.25

44.4 30 0.5

88.8 30 1

177.6 30 2

266.4 30 3

888 30 10

1332 30 15

1776 30 20

29.6 40 0.25

59.2 40 0.5

118.4 40 1

236.8 40 2

355.2 40 3

1184 40 10

1776 40 15

2368 40 20

a. Fit a multiple linear regression model to these data with

rads as the response.

b. Estimate σ2 and the standard errors of the regression

coefficients.

c. Use the model to predict rads when the current is 15 mil-

liamps and the exposure time is 5 seconds.

12.1.8 . WP . SS The pull strength of a wire bond is an important

characteristic. The table below gives information on pull strength

(y), die height (x1), post height (x2), loop height (x3), wire length

(x4), bond width on the die (x5), and bond width on the post (x6).

y x1 x2 x3 x4 x5 x6

8.0 5.2 19.6 29.6 94.9 2.1 2.3

8.3 5.2 19.8 32.4 89.7 2.1 1.8

8.5 5.8 19.6 31.0 96.2 2.0 2.0

8.8 6.4 19.4 32.4 95.6 2.2 2.1

9.0 5.8 18.6 28.6 86.5 2.0 1.8

9.3 5.2 18.8 30.6 84.5 2.1 2.1

9.3 5.6 20.4 32.4 88.8 2.2 1.9

9.5 6.0 19.0 32.6 85.7 2.1 1.9

9.8 5.2 20.8 32.2 93.6 2.3 2.1

10.0 5.8 19.9 31.8 86.0 2.1 1.8

10.3 6.4 18.0 32.6 87.1 2.0 1.6

10.5 6.0 20.6 33.4 93.1 2.1 2.1

(continued)
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y x1 x2 x3 x4 x5 x6

10.8 6.2 20.2 31.8 83.4 2.2 2.1

11.0 6.2 20.2 32.4 94.5 2.1 1.9

11.3 6.2 19.2 31.4 83.4 1.9 1.8

11.5 5.6 17.0 33.2 85.2 2.1 2.1

11.8 6.0 19.8 35.4 84.1 2.0 1.8

12.3 5.8 18.8 34.0 86.9 2.1 1.8

12.5 5.6 18.6 34.2 83.0 1.9 2.0

a. Fit a multiple linear regression model using x2, x3, x4, and

x5 as the regressors.

b. Estimate σ2.

c. Find the se( ̂βj). How precisely are the regression coeffi-

cients estimated, in your opinion?

d. Use the model from part (a) to predict pull strength when

x2 = 20, x3 = 30, x4 = 90, and x5 = 2.0.

12.1.9 An article in IEEE Transactions on Instrumentation and
Measurement [“Measurement and Calculation of Powered Mix-

ture Permittivities” (2001, Vol. 50, pp. 1066–1070)] reported on a

study that had analyzed powdered mixtures of coal and limestone

for permittivity. The errors in the density measurement was the

response. The data are reported in the following table.

Dielectric Loss
Density Constant Factor

0.749 2.05 0.016

0.798 2.15 0.02

0.849 2.25 0.022

0.877 2.3 0.023

0.929 2.4 0.026

0.963 2.47 0.028

0.997 2.54 0.031

1.046 2.64 0.034

1.133 2.85 0.039

1.17 2.94 0.042

1.215 3.05 0.045

a. Fit a multiple linear regression model to these data with

the density as the response.

b. Estimate σ2 and the standard errors of the regression coef-

ficients.

c. Use the model to predict the density when the dielectric

constant is 2.5 and the loss factor is 0.03.

12.1.10 An article in Biotechnology Progress [“Optimiza-

tion of Conditions for Bacteriocin Extraction in PEG/Salt

Aqueous Two-Phase Systems Using Statistical Experimental

Designs” (2001, Vol. 17, pp. 366–368)] reported on an exper-

iment to investigate and optimize nisin extraction in aqueous

two-phase systems (ATPS). The nisin recovery was the dependent

variable (y). The two regressor variables were concentration (%)

of PEG 4000 (denoted as x1) and concentration (%) of Na2SO4

(denoted as x2). The data are shown below.

x1 x2 y

13 11 62.8739

15 11 76.1328

13 13 87.4667

15 13 102.3236

14 12 76.1872

14 12 77.5287

14 12 76.7824

14 12 77.4381

14 12 78.7417

a. Fit a multiple linear regression model to these data.

b. Estimate σ2 and the standard errors of the regression

coefficients.

c. Use the model to predict the nisin recovery when

x1 = 14.5 and x2 = 12.5.

12.1.11 . SS VS An article in Optical Engineering [“Operat-

ing Curve Extraction of a Correlator’s Filter” (2004, Vol. 43,

pp. 2775–2779)] reported on the use of an optical correlator to

perform an experiment by varying brightness and contrast. The

resulting modulation is characterized by the useful range of gray

levels. The data follow:

Brightness (%): 54 61 65 100 100 100 50 57 54

Contrast (%): 56 80 70 50 65 80 25 35 26

Useful range (ng): 96 50 50 112 96 80 155 144 255

a. Fit a multiple linear regression model to these data.

b. Estimate σ2.

c. Compute the standard errors of the regression coeffi-

cients.

d. Predict the useful range when brightness = 80 and con-

trast = 75.

12.1.12 The table below and on the next page presents statistics

for the National Hockey League teams from the 2008–2009 sea-

son (The Sports Network). Fit a multiple linear regression model

that relates wins to the variables GF through FG. Teams play 82

games, W = 82 − L − T − OTL, but such a model does not help

build a better team. Estimate σ2 and find the standard errors of the

regression coefficients for your model.

12.1.13 A study was performed on wear of a bearing and its rela-

tionship to x1 = oil viscosity and x2 = load. The following data

were obtained.

y x1 x2

293 1.6 851

230 15.5 816

172 22.0 1058

91 43.0 1201

113 33.0 1357

125 40.0 1115
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a. Fit a multiple linear regression model to these data.

b. Estimate σ2 and the standard errors of the regression

coefficients.

c. Use the model to predict wear when x1 = 25 and

x2 = 1000.

d. Fit a multiple linear regression model with an interaction

term to these data.

e. Estimate σ2 and se( ̂βj) for this new model. How did these

quantities change? Does this tell you anything about the value

of adding the interaction term to the model?

f. Use the model in part (d) to predict when x1 = 25 and

x2 = 1000. Compare this prediction with the predicted value

from part (c).

Team W L OTL PTS GF GA ADV PPGF PCTG PEN BMI AVG SHT PPGA PKPCT SHGF SHGA FG
Anaheim 42 33 7 91 238 235 309 73 23.6 1418 8 17.4 385 78 79.7 6 6 43

Atlanta 35 41 6 76 250 279 357 69 19.3 1244 12 15.3 366 88 76 13 9 39

Boston 53 19 10 116 270 190 313 74 23.6 1016 12 12.5 306 54 82.4 8 7 47

Buffalo 41 32 9 91 242 229 358 75 21 1105 16 13.7 336 61 81.8 7 4 44

Carolina 45 30 7 97 236 221 374 70 18.7 786 16 9.8 301 59 80.4 8 7 39

Columbus 41 31 10 92 220 223 322 41 12.7 1207 20 15 346 62 82.1 8 9 41

Calgary 46 30 6 98 251 246 358 61 17 1281 18 15.8 349 58 83.4 6 13 37

Chicago 46 24 12 104 260 209 363 70 19.3 1129 28 14.1 330 64 80.6 10 5 43

Colorado 32 45 5 69 190 253 318 50 15.7 1044 18 13 318 64 79.9 4 5 31

Dallas 36 35 11 83 224 251 351 54 15.4 1134 10 14 327 70 78.6 2 2 38

Detroit 51 21 10 112 289 240 353 90 25.5 810 14 10 327 71 78.3 6 4 46

Edmonton 38 35 9 85 228 244 354 60 17 1227 20 15.2 338 76 77.5 3 8 39

Florida 41 30 11 93 231 223 308 51 16.6 884 16 11 311 54 82.6 7 6 39

Los Angeles 34 37 11 79 202 226 360 69 19.2 1191 16 14.7 362 62 82.9 4 7 39

Minnesota 40 33 9 89 214 197 328 66 20.1 869 20 10.8 291 36 87.6 9 6 39

Montreal 41 30 11 93 242 240 374 72 19.2 1223 6 15 370 65 82.4 10 10 38

New Jersey 51 27 4 106 238 207 307 58 18.9 1038 20 12.9 324 65 79.9 12 3 44

Nashville 40 34 8 88 207 228 318 50 15.7 982 12 12.1 338 59 82.5 9 8 41

NY Islanders 26 47 9 61 198 274 320 54 16.9 1198 18 14.8 361 73 79.8 12 5 37

NY Rangers 43 30 9 95 200 212 346 48 13.9 1175 24 14.6 329 40 87.8 9 13 42

Ottawa 36 35 11 83 213 231 339 66 19.5 1084 14 13.4 346 64 81.5 8 5 46

Philadelphia 44 27 11 99 260 232 316 71 22.5 1408 26 17.5 393 67 83 16 1 43

Phoenix 36 39 7 79 205 249 344 50 14.5 1074 18 13.3 293 68 76.8 5 4 36

Pittsburgh 45 28 9 99 258 233 360 62 17.2 1106 8 13.6 347 60 82.7 7 11 46

San Jose 53 18 11 117 251 199 360 87 24.2 1037 16 12.8 306 51 83.3 12 10 46

St. Louis 41 31 10 92 227 227 351 72 20.5 1226 22 15.2 357 58 83.8 10 8 35

Tampa Bay 24 40 18 66 207 269 343 61 17.8 1280 26 15.9 405 89 78 4 8 34

Toronto 34 35 13 81 244 286 330 62 18.8 1113 12 13.7 308 78 74.7 6 7 40

Vancouver 45 27 10 100 243 213 357 67 18.8 1323 28 16.5 371 69 81.4 7 5 47

Washington 50 24 8 108 268 240 337 85 25.2 1021 20 12.7 387 75 80.6 7 9 45

W Wins

L Losses during regular time

OTL Overtime losses

PTS Points. Two points for winning a game, one point for a tie

or losing in overtime, zero points for losing in regular time.

GF Goals for

GA Goals against

ADV Total advantages. Power-play opportunities.

PPGF Power-play goals for. Goals scored while on power play.

PCTG Power-play percentage. Power-play goals divided by total

advantages.

PEN Total penalty minutes including bench minutes

BMI Total bench minor minutes

AVG Average penalty minutes per game

SHT Total times short-handed. Measures opponent opportunities.

PPGA Power-play goals against

PKPCT Penalty killing percentage. Measures a team’s ability to prevent

goals while its opponent is on a power play. Opponent opportuni-

ties minus power-play goals divided by opponent’s opportunities.

SHGF Short-handed goals for

SHGA Short-handed goals against

FG Games scored first
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Exercises for Section 12.2

WP Problem available in WileyPLUS at instructor’s discretion.
WP GO Tutorial Tutoring problem available in WileyPLUS at

instructor’s discretion
SS Student solution available in WileyPLUS.

VS Student video solution available in WileyPLUS.

12.2.1 Recall the regression of percent of body fat on height and

waist from Exercise 12.1.1. The simple regression model of per-

cent of body fat on height alone shows the following:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 25.58078 14.15400 1.807 0.0719
Height −0.09316 0.20119 −0.463 0.6438

a. Test whether the coefficient of height is statistically

significant.

b. Looking at the model with both waist and height, test

whether the coefficient of height is significant in this model.

c. Explain the discrepancy in your two answers.

12.2.2 Consider the linear regression model from Exercise

12.1.2. Is the second-order term necessary in the regression

model?

12.2.3 Consider the regression model in Exercise 12.1.3 attempt-

ing to predict the percent of engineers in the workforce from

various spending variables.

a. Are any of the variables useful for prediction? (Test an

appropriate hypothesis.)

b. What percent of the variation in the percent of engineers

is accounted for by the model?

c. What might you do next to create a better model?

12.2.4 You have fit a regression model with two regressors to a

data set that has 20 observations. The total sum of squares is 1000

and the model sum of squares is 750.

a. What is the value of R2 for this model?

b. What is the adjusted R2 for this model?

c. What is the value of the F-statistic for testing the signifi-

cance of regression? What conclusions would you draw about

this model if α = 0.05? What if α = 0.01?

d. Suppose that you add a third regressor to the model and as

a result, the model sum of squares is now 785. Does it seem

to you that adding this factor has improved the model?

12.2.5 . SS Consider the absorption index data in Exercise

12.1.4. The total sum of squares for y is SST = 742.00.

a. Test for significance of regression using α = 0.01. What

is the P-value for this test?

b. Test the hypothesis H0: β1 = 0 versus H1: β1 ≠ 0 using

α = 0.01. What is the P-value for this test?

c. What conclusion can you draw about the usefulness of x1

as a regressor in this model?

12.2.6 Consider the electric power consumption data in Exercise

12.1.6.

a. Test for significance of regression using α = 0.05. What

is the P-value for this test?

b. Use the t-test to assess the contribution of each regres-

sor to the model. Using α = 0.05, what conclusions can you

draw?

12.2.7 Consider the regression model fit to the X-ray inspection

data in Exercise 12.1.7. Use rads as the response.

a. Test for significance of regression using α = 0.05. What

is the P-value for this test?

b. Construct a t-test on each regression coefficient. What

conclusions can you draw about the variables in this model?

Use α = 0.05.

12.2.8 Consider the wire bond pull strength data in Exercise

12.1.8.

a. Test for significance of regression using α = 0.05.

Find the P-value for this test. What conclusions can you

draw?

b. Calculate the t-test statistic for each regression coeffi-

cient. Using α = 0.05, what conclusions can you draw?

Do all variables contribute to the model?

12.2.9 . VS Consider the regression model fit to the gray range

modulation data in Exercise 12.1.11. Use the useful range as the

response.

a. Test for significance of regression using α = 0.05. What

is the P-value for this test?

b. Construct a t-test on each regression coefficient. What

conclusions can you draw about the variables in this model?

Use α = 0.05.

12.2.10 Consider the regression model fit to the nisin extraction

data in Exercise 12.1.10. Use nisin extraction as the response.

a. Test for significance of regression using α = 0.05. What

is the P-value for this test?

b. Construct a t-test on each regression coefficient. What

conclusions can you draw about the variables in this model?

Use α = 0.05.

c. Comment on the effect of a small sample size to the tests

in the previous parts.

12.2.11 . SS Consider the bearing wear data in Exercise 12.1.13.

a. For the model with no interaction, test for significance of

regression using α = 0.05. What is the P-value for this test?

What are your conclusions?

b. For the model with no interaction, compute the t-statistics

for each regression coefficient. Using α = 0.05, what conclu-

sions can you draw?

c. For the model with no interaction, use the extra sum

of squares method to investigate the usefulness of adding

x2 = load to a model that already contains x1 = oil viscosity.

Use α = 0.05.

d. Refit the model with an interaction term. Test for signifi-

cance of regression using α = 0.05.

e. Use the extra sum of squares method to determine

whether the interaction term contributes significantly to the

model. Use α = 0.05.

f. Estimate σ2 for the interaction model. Compare this to the

estimate of σ2 from the model in part (a).

12.2.12 Data on National Hockey League team performance

were presented in Exercise 12.1.12.

a. Test the model from this exercise for significance of

regression using α = 0.05. What conclusions can you draw?



�

� �

�

Exercises P-105

b. Use the t-test to evaluate the contribution of each regres-

sor to the model. Does it seem that all regressors are

necessary? Use α = 0.05.

c. Fit a regression model relating the number of games won

to the number of goals for and the number of power-play

goals for. Does this seem to be a logical choice of regressors,

considering your answer to part (b)? Test this new model

for significance of regression and evaluate the contribution

of each regressor to the model using the t-test. Use α = 0.05.

12.2.13 Data from a hospital patient satisfaction survey were pre-

sented in Exercise 12.1.5.

a. Test the model from this exercise for significance of

regression. What conclusions can you draw if α= 0.05? What

if α = 0.01?

b. Test the contribution of the individual regressors using

the t-test. Does it seem that all regressors used in the model

are really necessary?

Exercises for Sections 12.3 and 12.4

WP Problem available in WileyPLUS at instructor’s discretion.
WP GO Tutorial Tutoring problem available in WileyPLUS at

instructor’s discretion
SS Student solution available in WileyPLUS.

VS Student video solution available in WileyPLUS.

12.4.1 Using the regression model from Exercise 12.1.1,

a. Find a 95% confidence interval for the coefficient of

height.

b. Find a 95% confidence interval for the mean percent of

body fat for a man with a height of 72 in. and waist of 34 in.

c. Find a 95% prediction interval for the percent of body fat

for a man with the same height and waist as in part (b).

d. Which interval is wider, the confidence interval or the

prediction interval? Explain briefly.

e. Given your answer to part (c), do you believe that this is

a useful model for predicting body fat? Explain briefly.

12.4.2 Using the second-order polynomial regression model

from Exercise 12.1.2,

a. Find a 95% confidence interval on both the first-order and

the second-order term in this model.

b. Is zero in the confidence interval you found for the

second-order term in part (a)? What does that fact tell you

about the contribution of the second-order term to the model?

c. Refit the model with only the first-order term. Find a 95%

confidence interval on this term. Is this interval longer or

shorter than the confidence interval that you found on this

term in part (a)?

12.4.3 Consider the soil absorption data in Exercise 12.1.4.

a. Find 95% confidence intervals on the regression co-

efficients.

b. Find a 95% confidence interval on the mean soil absorp-

tion index when x1 = 200 and x2 = 50.

c. Find a 95% prediction interval on the soil absorption

index when x1 = 200 and x2 = 50.

12.4.4 Consider the electric power consumption data in Exercise

12.1.6.

a. Find 95% confidence intervals on β1, β2, β3, and β4.

b. Find a 95% confidence interval on the mean of Y when

x1 = 75, x2 = 24, x3 = 90, and x4 = 98.

c. Find a 95% prediction interval on the power consumption

when x1 = 75, x2 = 24, x3 = 90, and x4 = 98.

12.4.5 Consider the regression model fit to the X-ray inspection

data in Exercise 12.1.7. Use rads as the response.

a. Calculate 95% confidence intervals on each regression

coefficient.

b. Calculate a 99% confidence interval on mean rads at

15 milliamps and 1 second on exposure time.

c. Calculate a 99% prediction interval on rads for the same

values of the regressors used in part (b).

12.4.6 . WP . SS Consider the wire bond pull strength data in

Exercise 12.1.8.

a. Find a 95% confidence interval on the regression

coefficients.

b. Find a 95% confidence interval on mean pull strength

when x2 = 20, x3 = 30, x4 = 90, and x5 = 2.0.

c. Find a 95% prediction interval on pull strength when

x2 = 20, x3 = 30, x4 = 90, and x5 = 2.0.

12.4.7 Consider the regression model fit to the gray range mod-

ulation data in Exercise 12.1.11. Use the useful range as the

response.

a. Calculate 99% confidence intervals on each regression

coefficient.

b. Calculate a 99% confidence interval on mean useful range

when brightness = 70 and contrast = 80.

c. Calculate a prediction interval on useful range for the

same values of the regressors used in part (b).

d. Calculate a 99% confidence interval and a 99% prediction

interval on useful range when brightness = 50 and contrast =
25. Compare the widths of these intervals to those calculated

in parts (b) and (c). Explain any differences in widths.

12.4.8 . WP . SS Consider the regression model fit to the nisin

extraction data in Exercise 12.1.10.

a. Calculate 95% confidence intervals on each regression

coefficient.

b. Calculate a 95% confidence interval on mean nisin extrac-

tion when x1 = 15.5 and x2 = 16.

c. Calculate a prediction interval on nisin extraction for the

same values of the regressors used in part (b).

d. Comment on the effect of a small sample size to the

widths of these intervals.

12.4.9 Consider the NHL data in Exercise 12.1.12.

a. Find a 95% confidence interval on the regression coeffi-

cient for the variable GF.
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b. Fit a simple linear regression model relating the re-

sponse variable to the regressor GF.

c. Find a 95% confidence interval on the slope for the simple

linear regression model from part (b).

d. Compare the lengths of the two confidence intervals

computed in parts (a) and (c). Which interval is shorter?

Does this tell you anything about which model is preferable?

Exercises for Section 12.5

WP Problem available in WileyPLUS at instructor’s discretion.
WP GO Tutorial Tutoring problem available in WileyPLUS at

instructor’s discretion
SS Student solution available in WileyPLUS.

VS Student video solution available in WileyPLUS.

12.5.1 . WP Consider the regression model fit to the X-ray

inspection data in Exercise 12.1.7. Use rads as the response.

a. What proportion of total variability is explained by this

model?

b. Construct a normal probability plot of the residuals. What

conclusion can you draw from this plot?

c. Plot the residuals versus ŷ and versus each regressor, and

comment on model adequacy.

d. Calculate Cook’s distance for the observations in this data

set. Are there any influential points in these data?

12.5.2 Consider the electric power consumption data in Exercise

12.1.6.

a. Calculate R2 for this model. Interpret this quantity.

b. Plot the residuals versus ŷ and versus each regressor.

Interpret this plot.

c. Construct a normal probability plot of the residuals and

comment on the normality assumption.

12.5.3 . WP . SS VS Consider the regression model fit to the

coal and limestone mixture data in Exercise 12.1.9. Use density

as the response.

a. What proportion of total variability is explained by this

model?

b. Construct a normal probability plot of the residuals. What

conclusion can you draw from this plot?

c. Plot the residuals versus ŷ and versus each regressor, and

comment on model adequacy.

d. Calculate Cook’s distance for the observations in this data

set. Are there any influential points in these data?

12.5.4 Consider the regression model fit to the nisin extraction

data in Exercise 12.1.10.

a. What proportion of total variability is explained by this

model?

b. Construct a normal probability plot of the residuals. What

conclusion can you draw from this plot?

c. Plot the residuals versus ŷ and versus each regressor, and

comment on model adequacy.

d. Calculate Cook’s distance for the observations in this data

set. Are there any influential points in these data?

12.5.5 Consider the regression model fit to the gray range mod-

ulation data in Exercise 12.1.11. Use the useful range as the

response.

a. What proportion of total variability is explained by this

model?

b. Construct a normal probability plot of the residuals. What

conclusion can you draw from this plot?

c. Plot the residuals versus ŷ and versus each regressor, and

comment on model adequacy.

d. Calculate Cook’s distance for the observations in this data

set. Are there any influential points in these data?

12.5.6 Consider the regression model for the NHL data from

Exercise 12.1.12.

a. Fit a model using GF as the only regressor.

b. How much variability is explained by this model?

c. Plot the residuals versus ŷ and comment on model

adequacy.

d. Plot the residuals from part (a) versus PPGF, the points

scored while in power play. Does this indicate that the model

would be better if this variable were included?

12.5.7 Consider the bearing wear data in Exercise 12.1.13.

a. Find the value of R2 when the model uses the regressors

x1 and x2.

b. What happens to the value of R2 when an interaction term

x1x2 is added to the model? Does this necessarily imply that

adding the interaction term is a good idea?

Exercises for Section 12.6

WP Problem available in WileyPLUS at instructor’s discretion.
WP GO Tutorial Tutoring problem available in WileyPLUS at

instructor’s discretion
SS Student solution available in WileyPLUS.

VS Student video solution available in WileyPLUS.

12.6.1 An article titled “A Method for Improving the Accuracy of

Polynomial Regression Analysis” in the Journal of Quality Tech-
nology (1971, Vol. 3(4), pp. 149–155) reported the following data

on y = ultimate shear strength of a rubber compound (psi) and

x = cure temperature (∘F).
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y 770 800 840 810

x 280 284 292 295

y 735 640 590 560

x 298 305 308 315

a. Fit a second-order polynomial to these data.

b. Test for significance of regression using α = 0.05.

c. Test the hypothesis that β11 = 0 using α = 0.05.

d. Compute the residuals from part (a) and use them to eval-

uate model adequacy.

12.6.2 Consider the following data, which result from an experi-

ment to determine the effect of x= test time in hours at a particular

temperature on y = change in oil viscosity:

y −1.42 −1.39 −1.55 −1.89 −2.43

x .25 .50 .75 1.00 1.25

y −3.15 −4.05 −5.15 −6.43 −7.89

x 1.50 1.75 2.00 2.25 2.50

a. Fit a second-order polynomial to the data.

b. Test for significance of regression using α = 0.05.

c. Test the hypothesis that β11 = 0 using α = 0.05.

d. Compute the residuals from part (a) and use them to eval-

uate model adequacy.

12.6.3 . SS The following data were collected during an exper-

iment to determine the change in thrust efficiency (y, in percent)

as the divergence angle of a rocket nozzle (x) changes:

y 24.60 24.71 23.90 39.50 39.60 57.12

x 4.0 4.0 4.0 5.0 5.0 6.0

y 67.11 67.24 67.15 77.87 80.11 84.67

x 6.5 6.5 6.75 7.0 7.1 7.3

a. Test for significance of regression using α = 0.05.

b. Test for significance of regression and lack of fit using

α = 0.05.

c. Test the hypothesis that β11 = 0, using α = 0.05.

d. Plot the residuals and comment on model adequacy.

e. Fit a cubic model, and test for the significance of the cubic

term using α = 0.05.

12.6.4 An article in the Journal of Pharmaceuticals Sciences
[“Statistical Analysis of the Extended Hansen Method Using the

Bootstrap Technique” (1991, Vol. 80, pp. 971–977)] presents data

on the observed mole fraction solubility of a solute at a constant

temperature and the dispersion, dipolar, and hydrogen-bonding

Hansen partial solubility parameters. The data are shown in the

following table, where y is the negative logarithm of the mole

fraction solubility, x1 is the dispersion partial solubility, x2 is the

dipolar partial solubility, and x3 is the hydrogen-bonding partial

solubility.

Observation Number y x1 x2 x3

1 0.22200 7.3 0.0 0.0

2 0.39500 8.7 0.0 0.3

3 0.42200 8.8 0.7 1.0

4 0.43700 8.1 4.0 0.2

5 0.42800 9.0 0.5 1.0

6 0.46700 8.7 1.5 2.8

7 0.44400 9.3 2.1 1.0

8 0.37800 7.6 5.1 3.4

9 0.49400 10.0 0.0 0.3

10 0.45600 8.4 3.7 4.1

11 0.45200 9.3 3.6 2.0

12 0.11200 7.7 2.8 7.1

13 0.43200 9.8 4.2 2.0

14 0.10100 7.3 2.5 6.8

15 0.23200 8.5 2.0 6.6

16 0.30600 9.5 2.5 5.0

17 0.09230 7.4 2.8 7.8

18 0.11600 7.8 2.8 7.7

19 0.07640 7.7 3.0 8.0

20 0.43900 10.3 1.7 4.2

21 0.09440 7.8 3.3 8.5

22 0.11700 7.1 3.9 6.6

23 0.07260 7.7 4.3 9.5

24 0.04120 7.4 6.0 10.9

25 0.25100 7.3 2.0 5.2

26 0.00002 7.6 7.8 20.7

a. Fit the model Y = β0 + β1x1 + β2x2 + β3x3 + β12x1x2

+ β13x1x3 + β23x2x3 + β11x2
1
+ β22x2

2
+ β33x2

3
+ ε.

b. Test for significance of regression using α = 0.05.

c. Plot the residuals and comment on model adequacy.

d. Use the extra sum of squares method to test the contribu-

tion of the second-order terms using α = 0.05.

12.6.5 Consider the electric power data in Exercise 12.1.6. Build

regression models for the data using the following techniques:

a. All possible regressions. Find the minimum Cp and min-

imum MSE equations.

b. Stepwise regression.

c. Forward selection.

d. Backward elimination.

e. Comment on the models obtained. Which model would

you prefer?

12.6.6 Consider the X-ray inspection data in Exercise 12.1.7. Use

rads as the response. Build regression models for the data using

the following techniques:

a. All possible regressions.

b. Stepwise regression.

c. Forward selection.

d. Backward elimination.

e. Comment on the models obtained. Which model would

you prefer? Why?

12.6.7 Consider the wire bond pull strength data in Exercise

12.1.8. Build regression models for the data using the following

methods:
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a. All possible regressions. Find the minimum Cp and min-

imum MSE equations.

b. Stepwise regression.

c. Forward selection.

d. Backward elimination.

e. Comment on the models obtained. Which model would

you prefer?

12.6.8 Consider the regression model fit to the coal and lime-

stone mixture data in Exercise 12.1.9. Use density as the response.

Build regression models for the data using the following tech-

niques:

a. All possible regressions.

b. Stepwise regression.

c. Forward selection.

d. Backward elimination.

e. Comment on the models obtained. Which model would

you prefer? Why?

12.6.9 Consider the nisin extraction data in Exercise 12.1.10.

Build regression models for the data using the following tech-

niques:

a. All possible regressions.

b. Stepwise regression.

c. Forward selection.

d. Backward elimination.

e. Comment on the models obtained. Which model would

you prefer? Why?

12.6.10 Consider the gray range modulation data in Exercise

12.1.11. Use the useful range as the response. Build regression

models for the data using the following techniques:

a. All possible regressions.

b. Stepwise regression.

c. Forward selection.

d. Backward elimination.

e. Comment on the models obtained. Which model would

you prefer? Why?

12.6.11 Consider the NHL data in Exercise 12.1.12. Build regres-

sion models for these data with regressors GF through FG using

the following methods:

a. All possible regressions. Find the minimum Cp and min-

imum MSE equations.

b. Stepwise regression.

c. Forward selection.

d. Backward elimination.

e. Which model would you prefer?

12.6.12 . WP . SS When fitting polynomial regression models,

we often subtract x from each x value to produce a “centered”

regressor x′ = x − x. This reduces the effects of dependencies

among the model terms and often leads to more accurate esti-

mates of the regression coefficients. Using the data from Exercise

12.6.1, fit the model Y = β∗
0
+ β∗

1
x′ + β∗

11
(x′)2 + ε.

a. Use the results to estimate the coefficients in the uncen-

tered model Y = β0 + β1x + β11x2 + ε. Predict y when

x = 285∘F. Suppose that you use a standardized variable

x′ = (x − x)∕sx where sx is the standard deviation of x in

constructing a polynomial regression model. Fit the model

Y = β∗
0
+ β∗

1
x′ + β∗

11
(x′)2 + ε.

b. What value of y do you predict when x = 285∘F?

c. Estimate the regression coefficients in the unstandardized

model Y = β0 + β1x + β11x2 + ε.

d. What can you say about the relationship between SSE and

R2 for the standardized and unstandardized models?

e. Suppose that y′ = (y − y)∕sy is used in the model along

with x′. Fit the model and comment on the relationship

between SSE and R2 in the standardized model and the

unstandardized model.

12.6.13 . WP Consider the data in Exercise 12.6.4. Use all the

terms in the full quadratic model as the candidate regressors.

a. Use forward selection to identify a model.

b. Use backward elimination to identify a model.

c. Compare the two models obtained in parts (a) and (b).

Which model would you prefer and why?

12.6.14 We have used a sample of 30 observations to fit a regres-

sion model. The full model has nine regressors, the variance esti-

mate is σ̂2 = MSE = 100 and R2 = 0.92.

a. Calculate the F-statistic for testing significance of regres-

sion. Using α = 0.05, what would you conclude?

b. Suppose that we fit another model using only four of the

original regressors and that the error sum of squares for this

new model is 2200. Find the estimate of σ2 for this new

reduced model. Would you conclude that the reduced model

is superior to the old one? Why?

c. Find the value of Cp for the reduced model in part (b).

Would you conclude that the reduced model is better than

the old model?

12.6.15 A sample of 25 observations is used to fit a regression

model in seven variables. The estimate of σ2 for this full model is

MSE = 10.

a. A forward selection algorithm has put three of the origi-

nal seven regressors in the model. The error sum of squares

for the three-variable model is SSE = 300. Based on Cp, would

you conclude that the three-variable model has any remaining

bias?

b. After looking at the forward selection model in part (a),

suppose you could add one more regressor to the model. This

regressor will reduce the error sum of squares to 275. Will the

addition of this variable improve the model? Why?
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Supplemental Exercises for Chapter 12

WP Problem available in WileyPLUS at instructor’s discretion.
WP GO Tutorial Tutoring problem available in WileyPLUS at

instructor’s discretion
SS Student solution available in WileyPLUS.

VS Student video solution available in WileyPLUS.

12.S8 . WP Consider the following computer output.

The regression equation is

Y = 517 + 11.5 x1 − 8.14 x2 + 10.9 x3

Predictor Coef SE Coef T P

Constant 517.46 11.76 ? ?

x1 11.4720 ? 36.50 ?

x2 −8.1378 0.1969 ? ?

x3 10.8565 0.6652 ? ?

S = 10.2560 R-Sq = ? R-Sq (adj) = ?

Analysis of Variance

Source DF SS MS F P

Regression ? 347300 115767 ? ?

Residual error 16 ? 105

Total 19 348983

a. Fill in the missing values. Use bounds for the P-values.

b. Is the overall model significant at α = 0.05? Is it signifi-

cant at α = 0.01?

c. Discuss the contribution of the individual regressors to

the model.

12.S9 . WP . SS Consider the inverter data in Exercise 12.S10.

Delete observation 2 from the original data. Define new variables

as follows: y∗ = ln y, x∗
1
= 1∕

√
x1, x∗

2
=
√

x2, x∗
3
= 1∕

√
x3, and

x∗
4
=
√

x4.

a. Fit a regression model using these transformed regres-

sors (do not use x5 or x6).

b. Test the model for significance of regression using

α = 0.05. Use the t-test to investigate the contribution of each

variable to the model (α = 0.05). What are your conclusions?

c. Plot the residuals versus ŷ∗ and versus each of the trans-

formed regressors. Comment on the plots.

12.S10 . WP Transient points of an electronic inverter are influ-

enced by many factors. Shown below is the data on the transient

point (y, in volts) of PMOS-NMOS inverters and five candidate

regressors: x1 = width of the NMOS device, x2 = length of the

NMOS device, x3 = width of the PMOS device, x4 = length of

the PMOS device, and x5 = temperature (∘C).

Observation
Number x1 x2 x3 x4 x5 y

1 3 3 3 3 0 0.787

2 8 30 8 8 0 0.293

3 3 6 6 6 0 1.710

4 4 4 4 12 0 0.203

5 8 7 6 5 0 0.806

6 10 20 5 5 0 4.713

7 8 6 3 3 25 0.607

8 6 24 4 4 25 9.107

9 4 10 12 4 25 9.210

10 16 12 8 4 25 1.365

11 3 10 8 8 25 4.554

12 8 3 3 3 25 0.293

13 3 6 3 3 50 2.252

14 3 8 8 3 50 9.167

15 4 8 4 8 50 0.694

16 5 2 2 2 50 0.379

17 2 2 2 3 50 0.485

18 10 15 3 3 50 3.345

19 15 6 2 3 50 0.208

20 15 6 2 3 75 0.201

21 10 4 3 3 75 0.329

22 3 8 2 2 75 4.966

23 6 6 6 4 75 1.362

24 2 3 8 6 75 1.515

25 3 3 8 8 75 0.751

a. Fit a multiple linear regression model that uses all regres-

sors to these data. Test for significance of regression using α
= 0.01. Find the P-value for this test and use it to draw your

conclusions.

b. Test the contribution of each variable to the model using

the t-test with α = 0.05. What are your conclusions?

c. Delete x5 from the model. Test the new model for signifi-

cance of regression. Also test the relative contribution of each

regressor to the new model with the t-test. Using α = 0.05,

what are your conclusions?

d. Notice that the MSE for the model in part (c) is smaller

than the MSE for the full model in part (a). Explain why this

has occurred.
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e. Calculate the studentized residuals. Do any of these seem

unusually large?

f. Suppose that you learn that the second observation was

recorded incorrectly. Delete this observation and refit the

model using x1, x2, x3, and x4 as the regressors. Notice that

the R2 for this model is considerably higher than the R2 for

either of the models fitted previously. Explain why the R2 for

this model has increased.

g. Test the model from part (f) for significance of regres-

sion using α = 0.05. Also investigate the contribution of each

regressor to the model using the t-test with α = 0.05. What

conclusions can you draw?

h. Plot the residuals from the model in part (f) versus ŷ and

versus each of the regressors x1, x2, x3, and x4. Comment on

the plots.

12.S11 . WP A multiple regression model was used to relate

y = viscosity of a chemical product to x1 = temperature and

x2 = reaction time. The data set consisted of n = 15 observations.

a. The estimated regression coefficients were ̂β0 = 300.00,
̂β1 = 0.85, and ̂β2 = 10.40. Calculate an estimate of mean

viscosity when x1 = 100∘F and x2 = 2 hours.

b. The sums of squares were SST = 1230.50 and SSE =
120.30. Test for significance of regression using α = 0.05.

What conclusion can you draw?

c. What proportion of total variability in viscosity is

accounted for by the variables in this model?

d. Suppose that another regressor, x3 = stirring rate, is added

to the model. The new value of the error sum of squares is

SSE = 117.20. Has adding the new variable resulted in a

smaller value of MSE? Discuss the significance of this result.

e. Calculate an F-statistic to assess the contribution of x3

to the model. Using α = 0.05, what conclusions do you

reach?

12.S12 Consider the electronic inverter data in Exercises 12.S9

and 12.S10. Define the response and regressor variables as

in Exercise 12.S9, and delete the second observation in the

sample.

a. Use all possible regressions to find the equation that min-

imizes Cp.

b. Use all possible regressions to find the equation that min-

imizes MSE.

c. Use stepwise regression to select a subset regression

model.

d. Compare the models you have obtained.

12.S13 . WP An article in the Journal of the American Ceramics
Society [“In Situ Vitrification and the Effects of Soil Additives—

A Mixture Experiment Case Study” (1992, Vol. 75, pp. 112–116)]

described a process for immobilizing chemical or nuclear wastes

in soil by dissolving the contaminated soil into a glass block.

The authors mix CaO and Na2O with soil and model vis-

cosity and electrical conductivity. The electrical conductivity

model involves six regressors, and the sample consists of n = 14

observations.

a. For the six-regressor model, suppose that SST = 0.50 and

R2 = 0.94. Find SSE and SSR, and use this information to test

for significance of regression with α = 0.05. What are your

conclusions?

b. Suppose that one of the original regressors is deleted from

the model, resulting in R2 = 0.92. What can you conclude

about the contribution of the variable that was removed?

Answer this question by calculating an F-statistic.

c. Does deletion of the regressor variable in part (b) result

in a smaller value of MSE for the five-variable model, in com-

parison to the original six-variable model? Comment on the

significance of your answer.

12.S14 Exercise 12.1.5 introduced the hospital patient satis-

faction survey data. One of the variables in that data set is a

categorical variable indicating whether the patient is a medical

patient or a surgical patient. Fit a model including this indicator

variable to the data using all three of the other regressors. Is there

any evidence that the service the patient is on (medical versus

surgical) has an impact on the reported satisfaction?

12.S15 Consider the following inverse model matrix.

(X′X)−1 =
⎡
⎢
⎢
⎢
⎣

0.125 0 0 0

0 0.125 0 0

0 0 0.125 0

0 0 0 0.125

⎤
⎥
⎥
⎥
⎦

a. How many regressors are in this model?

b. What was the sample size?

c. Notice the special diagonal structure of the matrix. What

does that tell you about the columns in the original X matrix?

Chapter 13 Exercises

Exercises for Section 13.2

WP Problem available in WileyPLUS at instructor’s discretion.
WP GO Tutorial Tutoring problem available in WileyPLUS at

instructor’s discretion
SS Student solution available in WileyPLUS.

VS Student video solution available in WileyPLUS.

13.2.1 . VS Consider the following computer output.

Source DF SS MS F P-value
Factor ? 117.4 39.1 ? ?
Error 16 396.8 ?
Total 19 514.2
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a. How many levels of the factor were used in this experi-

ment?

b. How many replicates did the experimenter use?

c. Fill in the missing information in the ANOVA table. Use

bounds for the P-value.

d. What conclusions can you draw about differences in the

factor-level means?

13.2.2 Consider the following computer output for an experi-

ment. The factor was tested over four levels.

Source DF SS MS F P-value

Factor ? ? 330.4716 4.42 ?

Error ? ? ?

Total 31 ?

a. How many replicates did the experimenter use?

b. Fill in the missing information in the ANOVA table. Use

bounds for the P-value.

c. What conclusions can you draw about differences in the

factor-level means?

13.2.3 . WP In Design and Analysis of Experiments, 9th edition

(Wiley, 2017), D. C. Montgomery described an experiment in

which the tensile strength of a synthetic fiber was of interest to the

manufacturer. It is suspected that strength is related to the percent-

age of cotton in the fiber. Five levels of cotton percentage were

used and five replicates were run in random order, resulting in the

following data.

Cotton Percentage Tensile Strength

15 7 7 15 11 9

20 12 17 12 18 18

25 14 18 18 19 19

30 19 25 22 19 23

35 7 10 11 15 11

a. Does cotton percentage affect breaking strength? Draw

comparative box plots and perform an analysis of variance.

Use α = 0.05.

b. Plot average tensile strength against cotton percentage

and interpret the results.

c. Analyze the residuals and comment on model adequacy.

13.2.4 An article in Nature describes an experiment to inves-

tigate the effect on consuming chocolate on cardiovascular

health (“Plasma Antioxidants from Chocolate,” 2003, Vol. 424,

p. 1013). The experiment consisted of using three different types

of chocolates: 100 g of dark chocolate, 100 g of dark chocolate

with 200 ml of full-fat milk, and 200 g of milk chocolate. Twelve

subjects were used, seven women and five men with an average

age range of 32.2 ± 1 years, an average weight of 65.8 ± 3.1 kg,

and body mass index of 21.9 ± 0.4 kg m−2. On different days, a

subject consumed one of the chocolate-factor levels, and one hour

later total antioxidant capacity of that person’s blood plasma was

measured in an assay. Data similar to those summarized in the

article follow.

DC DC + MK MC

118.8 115.8 105.4 100.0 102.1 102.8

122.6 115.1 101.1 99.8 105.8 98.7

115.6 116.9 102.7 102.6 99.6 94.7

113.6 115.4 97.1 100.9 102.7 97.8

119.5 115.6 101.9 104.5 98.8 99.7

115.9 107.9 98.9 93.5 100.9 98.6

a. Construct comparative box plots and study the data. What

visual impression do you have from examining these plots?

b. Analyze the experimental data using an ANOVA. If

α = 0.05, what conclusions would you draw? What would

you conclude if α = 0.01?

c. Is there evidence that the dark chocolate increases the

mean antioxidant capacity of the subjects’ blood plasma?

d. Analyze the residuals from this experiment.

13.2.5 . WP In “Orthogonal Design for Process Optimization

and Its Application to Plasma Etching” (Solid State Technology,

1987), G. Z. Yin and D. W. Jillie described an experiment to

determine the effect of C2F6 flow rate on the uniformity of the

etch on a silicon wafer used in integrated circuit manufacturing.

Three flow rates are used in the experiment, and the resulting

uniformity (in percent) for six replicates follows.

C2F6 Flow (SCCM) Uniformity (%)

125 2.7 4.6 2.6 3.0 3.2 3.8

160 4.9 4.6 5.0 4.2 3.6 4.2

200 4.6 3.4 2.9 3.5 4.1 5.1

a. Does C2F6 flow rate affect etch uniformity? Construct

box plots to compare the factor levels and perform the anal-

ysis of variance. Use α = 0.05.

b. Do the residuals indicate any problems with the underly-

ing assumptions?

13.2.6 An article in Environment International [“Influence of

Water Temperature and Shower Head Orifice Size on the Release

of Radon During Showering” (1992, Vol. 18(4), pp. 363–369)]

described an experiment in which the amount of radon released

in showers was investigated. Radon-enriched water was used in

the experiment, and six different orifice diameters were tested in

shower heads. The data from the experiment are shown in the

following table.

Orifice Diameter Radon Released (%)

0.37 80 83 83 85

0.51 75 75 79 79

0.71 74 73 76 77

1.02 67 72 74 74

1.40 62 62 67 69

1.99 60 61 64 66
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a. Does the size of the orifice affect the mean percentage of

radon released? Use α = 0.05.

b. Find the P-value for the F-statistic in part (a).

c. Analyze the residuals from this experiment.

d. Find a 95% confidence interval on the mean percent of

radon released when the orifice diameter is 1.40.

13.2.7 . WP . SS An article in the ACI Materials Journal (1987,

Vol. 84, pp. 213–216) described several experiments investigat-

ing the rodding of concrete to remove entrapped air. A 3-inch ×
6-inch cylinder was used, and the number of times this rod was

used is the design variable. The resulting compressive strength of

the concrete specimen is the response. The data are shown in the

following table.

Rodding Level Compressive Strength

10 1530 1530 1440

15 1610 1650 1500

20 1560 1730 1530

25 1500 1490 1510

a. Is there any difference in compressive strength due to the

rodding level?

b. Find the P-value for the F-statistic in part (a).

c. Analyze the residuals from this experiment. What

conclusions can you draw about the underlying model

assumptions?

13.2.8 An article in the Materials Research Bulletin [1991, Vol.

26(11), pp. 1151–1165] investigated four different methods of

preparing the superconducting compound PbMo6S8. The authors

contend that the presence of oxygen during the preparation

process affects the material’s superconducting transition temper-

ature Tc. Preparation methods 1 and 2 use techniques that are

designed to eliminate the presence of oxygen, and methods 3 and

4 allow oxygen to be present. Five observations on Tc (in ∘K) were

made for each method, and the results are as follows:

Preparation Method Transition Temperature Tc(∘K)

1 14.8 14.8 14.7 14.8 14.9

2 14.6 15.0 14.9 14.8 14.7

3 12.7 11.6 12.4 12.7 12.1

4 14.2 14.4 14.4 12.2 11.7

a. Is there evidence to support the claim that the presence

of oxygen during preparation affects the mean transition tem-

perature? Use α = 0.05.

b. What is the P-value for the F-test in part (a)?

c. Analyze the residuals from this experiment.

d. Find a 95% confidence interval on mean Tc when method

1 is used to prepare the material.

13.2.9 . VS A paper in the Journal of the Association of Asphalt
Paving Technologists (1990, Vol. 59) described an experiment to

determine the effect of air voids on percentage retained strength of

asphalt. For purposes of the experiment, air voids are controlled

at three levels; low (2–4%), medium (4–6%), and high (6–8%).

The data are shown in the following table.

Air Voids Retained Strength (%)

Low 106 90 103 90 79 88 92 95

Medium 80 69 94 91 70 83 87 83

High 78 80 62 69 76 85 69 85

a. Do the different levels of air voids significantly affect

mean retained strength? Use α = 0.01.

b. Find the P-value for the F-statistic in part (a).

c. Analyze the residuals from this experiment.

d. Find a 95% confidence interval on mean retained strength

where there is a high level of air voids.

e. Find a 95% confidence interval on the difference in mean

retained strength at the low and high levels of air voids.

13.2.10 An article in Quality Engineering [“Estimating Sources

of Variation: A Case Study from Polyurethane Product Research”

(1999–2000, Vol. 12, pp. 89–96)] reported a study on the effects

of additives on final polymer properties. In this case, polyurethane

additives were referred to as cross-linkers. The average domain

spacing was the measurement of the polymer property. The data

are as follows:

Cross-Linker Level Domain Spacing (nm)

−1 8.2 8 8.2 7.9 8.1 8

−0.75 8.3 8.4 8.3 8.2 8.3 8.1

−0.5 8.9 8.7 8.9 8.4 8.3 8.5

0 8.5 8.7 8.7 8.7 8.8 8.8

0.5 8.8 9.1 9.0 8.7 8.9 8.5

1 8.6 8.5 8.6 8.7 8.8 8.8

a. Is there a difference in the cross-linker level? Draw com-

parative box plots and perform an analysis of variance. Use

α = 0.05.

b. Find the P-value of the test. Estimate the variability due

to random error.

c. Plot average domain spacing against cross-linker level

and interpret the results.

d. Analyze the residuals from this experiment and comment

on model adequacy.

13.2.11 . WP . SS An article in Journal of Food Science [“Pre-

vention of Potato Spoilage During Storage by Chlorine Dioxide”

(2001, Vol. 66(3), pp. 472–477)] reported on a study of potato

spoilage based on different conditions of acidified oxine (AO),

which is a mixture of chlorite and chlorine dioxide. The data

follow:

AO Solution (ppm) % Spoilage

50 100 50 60

100 60 30 30

200 60 50 29

400 25 30 15

a. Do the AO solutions differ in the spoilage percentage?

Use α = 0.05.

b. Find the P-value of the test. Estimate the variability due

to random error.
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c. Plot average spoilage against AO solution and interpret

the results. Which AO solution would you recommend for

use in practice?

d. Analyze the residuals from this experiment.

13.2.12 An article in Scientia Iranica [“Tuning the Parameters

of an Artificial Neural Network (ANN) Using Central Com-

posite Design and Genetic Algorithm” (2011, Vol. 18(6), pp.

1600–1608)] described a series of experiments to tune parame-

ters in artificial neural networks. One experiment considered the

relationship between model fitness [measured by the square root

of mean square error (RMSE) on a separate test set of data] and

model complexity that were controlled by the number of nodes in

the two hidden layers. The following data table (extracted from a

much larger data set) contains three different ANNs: ANN1 has

33 nodes in layer 1 and 30 nodes in layer 2, ANN2 has 49 nodes in

layer 1 and 45 nodes in layer 2, and ANN3 has 17 nodes in layer 1

and 15 nodes in layer 2.

ANN1 ANN2 ANN3

0.0121 0.0031 0.1562

0.0132 0.0006 0.2227

0.0011 0 0.0953

0.0023 0 0.8911

0.0391 0.022 1.3892

0.0054 0.0019 0.0154

0.0003 0.0007 1.7916

0.0014 0 0.1992

a. Construct a box plot to compare the different ANNs.

b. Perform the analysis of variance with α = 0.05. What is

the P-value?

c. Analyze the residuals from the experiment.

d. Calculate a 95% confidence interval on RMSE for ANN2.

For each of the following exercises, use the previous data to com-
plete these parts.

a. Apply Fisher’s LSD method with α = 0.05 and determine

which levels of the factor differ.

b. Use the graphical method to compare means described

in this section and compare your conclusions to those from

Fisher’s LSD method.

13.2.13 Cotton percentage in Exercise 13.2.3. Use α = 0.05.

13.2.14 Chocolate type in Exercise 13.2.4. Use α = 0.05.

13.2.15 . WP Flow rate in Exercise 13.2.5. Use α = 0.01.

13.2.16 Preparation method in Exercise 13.2.8. Use α = 0.05.

13.2.17 Air voids in Exercise 13.2.9. Use α = 0.05.

13.2.18 Cross-linker Exercise 13.2.10. Use α = 0.05.

Exercises for Section 13.3

WP Problem available in WileyPLUS at instructor’s discretion.
WP GO Tutorial Tutoring problem available in WileyPLUS at

instructor’s discretion
SS Student solution available in WileyPLUS.

VS Student video solution available in WileyPLUS.

13.3.1 . WP An article in the Journal of the Electrochemical
Society [1992, Vol. 139(2), pp. 524–532)] describes an experi-

ment to investigate the low-pressure vapor deposition of polysil-

icon. The experiment was carried out in a large-capacity reactor

at Sematech in Austin, Texas. The reactor has several wafer posi-

tions, and four of these positions were selected at random. The

response variable is film thickness uniformity. Three replicates of

the experiment were run, and the data are as follows:

a. Is there a difference in the wafer positions? Use α = 0.05.

b. Estimate the variability due to wafer positions.

c. Estimate the random error component.

d. Analyze the residuals from this experiment and comment

on model adequacy.

Wafer Position Uniformity

1 2.76 5.67 4.49

2 1.43 1.70 2.19

3 2.34 1.97 1.47

4 0.94 1.36 1.65

13.3.2 . WP VS A textile mill has a large number of looms.

Each loom is supposed to provide the same output of cloth per

minute. To investigate this assumption, five looms are chosen at

random, and their output is measured at different times. The fol-

lowing data are obtained:

Loom Output (lb/min)

1 4.0 4.1 4.2 4.0 4.1

2 3.9 3.8 3.9 4.0 4.0

3 4.1 4.2 4.1 4.0 3.9

4 3.6 3.8 4.0 3.9 3.7

5 3.8 3.6 3.9 3.8 4.0

a. Are the looms similar in output? Use α = 0.05.

b. Estimate the variability between looms.

c. Estimate the experimental error variance.

d. Analyze the residuals from this experiment and check for

model adequacy.

13.3.3 In the book Bayesian Inference in Statistical Analysis
(1973, John Wiley and Sons) by Box and Tiao, the total prod-

uct yield for five samples was determined randomly selected from

each of six randomly chosen batches of raw material.
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Batch Yield (in grams)

1 1545 1440 1440 1520 1580

2 1540 1555 1490 1560 1495

3 1595 1550 1605 1510 1560

4 1445 1440 1595 1465 1545

5 1595 1630 1515 1635 1625

6 1520 1455 1450 1480 1445

a. Do the different batches of raw material significantly

affect mean yield? Use α = 0.01.

b. Estimate the variability between batches.

c. Estimate the variability between samples within batches.

d. Analyze the residuals from this experiment and check for

model adequacy.

13.3.4 . WP An article in the Journal of Quality Technology
[1981, Vol. 13(2), pp. 111–114)] described an experiment that

investigated the effects of four bleaching chemicals on pulp

brightness. These four chemicals were selected at random from

a large population of potential bleaching agents. The data are as

follows:

a. Is there a difference in the chemical types? Use α = 0.05.

b. Estimate the variability due to chemical types.

c. Estimate the variability due to random error.

d. Analyze the residuals from this experiment and comment

on model adequacy.

Chemical Pulp Brightness

1 77.199 74.466 92.746 76.208 82.876

2 80.522 79.306 81.914 80.346 73.385

3 79.417 78.017 91.596 80.802 80.626

4 78.001 78.358 77.544 77.364 77.386

13.3.5 . WP . SS Consider the vapor-deposition experiment

described in Exercise 13.3.1.

a. Estimate the total variability in the uniformity response.

b. How much of the total variability in the uniformity

response is due to the difference between positions in the

reactor?

c. To what level could the variability in the uniformity

response be reduced if the position-to-position variability in

the reactor could be eliminated? Do you believe this is a sub-

stantial reduction?

13.3.6 Consider the cloth experiment described in Exercise

13.3.2.

a. Estimate the total variability in the output response.

b. 13.67 How much of the total variability in the output

response is due to the difference between looms?

c. To what level could the variability in the output response

be reduced if the loom-to-loom variability could be elimi-

nated? Do you believe this is a significant reduction?

Exercises for Section 13.4

WP Problem available in WileyPLUS at instructor’s discretion.
WP GO Tutorial Tutoring problem available in WileyPLUS at

instructor’s discretion
SS Student solution available in WileyPLUS.

VS Student video solution available in WileyPLUS.

13.4.1 . VS Consider the following computer output from a

RCBD.

Source DF SS MS F P
Factor ? 193.800 64.600 ? ?
Block 3 464.218 154.739
Error ? ? 4.464
Total 15 698.190

a. How many levels of the factor were used in this experi-

ment?

b. How many blocks were used in this experiment?

c. Fill in the missing information. Use bounds for the

P-value.

d. What conclusions would you draw if α = 0.05? What

would you conclude if α = 0.01?

13.4.2 Exercise 13.2.4 introduced you to an experiment to inves-

tigate the potential effect of consuming chocolate on cardiovas-

cular health. The experiment was conducted as a completely

randomized design, and the exercise asked you to use the ANOVA

to analyze the data and draw conclusions. Now assume that the

experiment had been conducted as an RCBD with the subjects

considered as blocks. Analyze the data using this assumption.

What conclusions would you draw (using α = 0.05) about the

effect of the different types of chocolate on cardiovascular health?

Would your conclusions change if α = 0.01?

13.4.3 . WP . SS In “The Effect of Nozzle Design on the Stabil-

ity and Performance of Turbulent Water Jets” (Fire Safety Jour-
nal, August 1981, Vol. 4(1), pp. 1–13), C. Theobald described

an experiment in which a shape measurement was determined for

several different nozzle types at different levels of jet efflux veloc-

ity. Interest in this experiment focuses primarily on nozzle type,

and velocity is a nuisance factor. The data are as follows:

Jet Efflux Velocity (m/s)

Nozzle Type 11.73 14.37 16.59 20.43 23.46 28.74
1 0.78 0.80 0.81 0.75 0.77 0.78

2 0.85 0.85 0.92 0.86 0.81 0.83

3 0.93 0.92 0.95 0.89 0.89 0.83

4 1.14 0.97 0.98 0.88 0.86 0.83

5 0.97 0.86 0.78 0.76 0.76 0.75
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a. Does nozzle type affect shape measurement? Compare

the nozzles with box plots and the analysis of variance.

b. Use Fisher’s LSD method to determine specific differ-

ences among the nozzles. Does a graph of the average (or

standard deviation) of the shape measurements versus nozzle

type assist with the conclusions?

c. Analyze the residuals from this experiment.

13.4.4 . WP An article in Quality Engineering [“Designed

Experiment to Stabilize Blood Glucose Levels” (1999–2000, Vol.

12, pp. 83–87)] described an experiment to minimize variations

in blood glucose levels. The treatment was the exercise time on a

Nordic Track cross-country skier (10 or 20 min). The experiment

was blocked for time of day. The data were as follows:

Exercise (min) Time of Day Average Blood Glucose
10 pm 71.5

10 am 103.0

20 am 83.5

20 pm 126.0

10 am 125.5

10 pm 129.5

20 pm 95.0

20 am 93.0

a. Is there an effect of exercise time on the average blood

glucose? Use α = 0.05.

b. Find the P-value for the test in part (a).

c. Analyze the residuals from this experiment.

13.4.5 . WP . SS VS An article in the American Industrial
Hygiene Association Journal [“A Rapid Method for the Deter-

mination of Arsenic Concentrations in Urine at Field Locations”

(1976, Vol. 37(7), pp. 418–422)] described a field test for detect-

ing the presence of arsenic in urine samples. The test has been pro-

posed for use among forestry workers because of the increasing

use of organic arsenics in that industry. The experiment compared

the test as performed by both a trainee and an experienced trainer

to an analysis at a remote laboratory. Four subjects were selected

for testing and are considered as blocks. The response variable is

arsenic content (in ppm) in the subject’s urine. The data are as

follows:

Subject

Test 1 2 3 4

Trainee 0.05 0.05 0.04 0.15

Trainer 0.05 0.05 0.04 0.17

Lab 0.04 0.04 0.03 0.10

a. Is there any difference in the arsenic test procedure?

b. Analyze the residuals from this experiment.

13.4.6 In Design and Analysis of Experiments, 9th edition (John

Wiley & Sons, 2017), D. C. Montgomery described an experi-

ment that determined the effect of four different types of tips in

a hardness tester on the observed hardness of a metal alloy. Four

specimens of the alloy were obtained, and each tip was tested once

on each specimen, producing the following data:

Specimen

Type of Tip 1 2 3 4

1 9.3 9.4 9.6 10.0

2 9.4 9.3 9.8 9.9

3 9.2 9.4 9.5 9.7

4 9.7 9.6 10.0 10.2

a. Is there any difference in hardness measurements

between the tips?

b. Use Fisher’s LSD method to investigate specific differ-

ences between the tips.

c. Analyze the residuals from this experiment.

13.4.7 An experiment was conducted to investigate leaking cur-

rent in a SOS MOSFETS device. The purpose of the experiment

was to investigate how leakage current varies as the channel

length changes. Four channel lengths were selected. For each

channel length, five different widths were also used, and width is

to be considered a nuisance factor. The data are as follows:

Width
Channel
Length 1 2 3 4 5

1 0.7 0.8 0.8 0.9 1.0

2 0.8 0.8 0.9 0.9 1.0

3 0.9 1.0 1.7 2.0 4.0

4 1.0 1.5 2.0 3.0 20.0

a. Test the hypothesis that mean leakage voltage does not

depend on the channel length using α = 0.05.

b. Analyze the residuals from this experiment. Comment on

the residual plots.

c. The observed leakage voltage for channel length 4 and

width 5 was erroneously recorded. The correct observation is

4.0. Analyze the corrected data from this experiment. Is there

evidence to conclude that mean leakage voltage increases

with channel length?

13.4.8 An article in the Food Technology Journal (1956, Vol. 10,

pp. 39–42) described a study on the protopectin content of toma-

toes during storage. Four storage times were selected, and samples

from nine lots of tomatoes were analyzed. The protopectin con-

tent (expressed as hydrochloric acid soluble fraction mg/kg) is in

the table below.

a. The researchers in this study hypothesized that mean pro-

topectin content would be different at different storage times.

Can you confirm this hypothesis with a statistical test using

α = 0.05?

b. Find the P-value for the test in part (a).

c. Which specific storage times are different? Would you

agree with the statement that protopectin content decreases

as storage time increases?

d. Analyze the residuals from this experiment.
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Lot

Storage Time 1 2 3 4 5 6 7 8 9
0 days 1694.0 989.0 917.3 346.1 1260.0 965.6 1123.0 1106.0 1116.0

7 days 1802.0 1074.0 278.8 1375.0 544.0 672.2 818.0 406.8 461.6

14 days 1568.0 646.2 1820.0 1150.0 983.7 395.3 422.3 420.0 409.5

21 days 415.5 845.4 377.6 279.4 447.8 272.1 394.1 356.4 351.2

Supplemental Exercises for Chapter 13

WP Problem available in WileyPLUS at instructor’s discretion.
WP GO Tutorial Tutoring problem available in WileyPLUS at

instructor’s discretion
SS Student solution available in WileyPLUS.

VS Student video solution available in WileyPLUS.

13.S9 Consider the following computer output.

Source DF SS MS F P

Factor ? 126.880 63.4401 ? ?

Block ? 54.825 18.2751

Error 6 ? 2.7403

Total 11 198.147

a. How many levels of the factor were used in this

experiment?

b. How many blocks were used?

c. Fill in the missing information. Use bounds for the

P-value.

d. What conclusions would you draw if α = 0.05? What if

α = 0.01?

13.S10 . WP An article in Lubrication Engineering (December

1990) described the results of an experiment designed to investi-

gate the effects of carbon material properties on the progression

of blisters on carbon face seals. The carbon face seals are used

extensively in equipment such as air turbine starters. Five different

carbon materials were tested, and the surface roughness was mea-

sured. The data are as follows:

Carbon
Material Type Surface Roughness

EC10 0.50 0.55 0.55 0.36

EC10A 0.31 0.07 0.25 0.18 0.56 0.20

EC4 0.20 0.28 0.12

EC1 0.10 0.16

a. Does carbon material type have an effect on mean surface

roughness? Use α = 0.05.

b. Find the residuals for this experiment. Does a normal

probability plot of the residuals indicate any problem with

the normality assumption?

c. Plot the residuals versus ŷij. Comment on the plot.

d. Find a 95% confidence interval on the difference between

mean surface roughness for the EC10 and the EC1 carbon

grades.

e. Apply the Fisher LSD method to this experiment. Sum-

marize your conclusions regarding the effect of material type

on surface roughness.

13.S11 . WP An article in the IEEE Transactions on Compo-
nents, Hybrids, and Manufacturing Technology [(1992, Vol.

15(2), pp. 146–153)] described an experiment in which the con-

tact resistance of a brake-only relay was studied for three different

materials (all were silver-based alloys). The data are as follows.

Alloy Contact Resistance

1 95 97 99 98 99

99 99 94 95 98

2 104 102 102 105 99

102 111 103 100 103

3 119 130 132 136 141

172 145 150 144 135

a. Does the type of alloy affect mean contact resistance? Use

α = 0.01.

b. Use Fisher’s LSD method to determine which means

differ.

c. Find a 99% confidence interval on the mean contact resis-

tance for alloy 3.

d. Analyze the residuals for this experiment.

13.S12 An article in the Journal of Quality Technology [(1982,

Vol. 14(2), pp. 80–89)] described an experiment in which three

different methods of preparing fish were evaluated on the basis of

sensory criteria, and a quality score was assigned. Assume that

these methods have been randomly selected from a large popula-

tion of preparation methods. The data are in the following table:

Method Score
1 24.4

22.2

23.2

24.4

25.0

23.8

19.7

18.0

2 22.1

22.3

19.5

23.2

17.3

21.4

19.7

22.6

3 23.3

20.4

22.8

23.5

22.4

20.8

23.7

24.1



�

� �

�

Exercises P-117

a. Is there any difference in preparation methods? Use

α = 0.05.

b. Calculate the P-value for the F-statistic in part (a).

c. Analyze the residuals from this experiment and comment

on model adequacy.

d. Estimate the components of variance.

13.S13 . WP . SS An article in the Journal of Agricultural Engi-
neering Research (1992, Vol. 52, pp. 53–76) described an experi-

ment to investigate the effect of drying temperature of wheat grain

on baking quality bread. Three temperature levels were used, and

the response variable measured was the volume of the loaf of

bread produced. The data are as follows:

Temperature (∘C) Volume (cc)

70.0 1245 1235 1285 1245 1235

75.0 1235 1240 1200 1220 1210

80.0 1225 1200 1170 1155 1095

a. Does drying temperature affect mean bread volume? Use

α = 0.01.

b. Find the P-value for this test.

c. Use the Fisher LSD method to determine which means

are different.

d. Analyze the residuals from this experiment and comment

on model adequacy.

13.S14 An article in Nature Genetics [“Treatment-Specific

Changes in Gene Expression Discriminate In Vivo Drug

Response in Human Leukemia Cells” (2003, Vol. 34(1), pp.

85–90)] reported the results of a study of gene expression as a

function of different treatments for leukemia. Three treatment

groups are mercaptopurine (MP) only, low-dose methotrexate

(LDMTX) and MP, and high-dose methotrexate (HDMTX) and

MP. Each group contained 10 subjects. The responses from a spe-

cific gene are shown below.

Treatments Gene Expression

MP ONLY 334.5 31.6 701 41.2 61.2

69.6 67.5 66.6 120.7 881.9

MP + HDMTX 919.4 404.2 1024.8 54.1 62.8

671.6 882.1 354.2 321.9 91.1

MP + LDMTX 108.4 26.1 240.8 191.1 69.7

242.8 62.7 396.9 23.6 290.4

a. Check the normality of the data. Can you assume that

these samples are from normal populations?

b. Take the logarithm of the raw data and check the nor-

mality of the transformed data. Is there evidence to support

the claim that the treatment means differ for the transformed

data? Use α = 0.1.

c. Analyze the residuals from the transformed data and

comment on model adequacy.

13.S15 . WP An article in Communications of the ACM [(1987,

Vol. 30(5), pp. 53–76] reported on a study of different algorithms

for estimating software development costs. Six algorithms were

applied to eight software development projects (nuisance factor)

and the percent error in estimating the development cost was

observed. The data are in the table below.

a. Do the algorithms differ in mean cost estimation accu-

racy? Use α = 0.05.

b. Analyze the residuals from this experiment.

c. Which algorithm would you recommend for use in

practice?

13.S16 An article in the Journal of Hazardous Materials
[“Toxicity Assessment from Electro-Coagulation Treated-Textile

Dye Waste Waters by Bioassays” (2009, Vol. 172(1), pp.

330–337)] discussed a study of pollutant removal from tex-

tile dyeing waste water with an electro-coagulation technique.

Chemical oxygen demand (COD) (a common measure of water

pollution) was used as the response, and three different values

for electrolysis time were considered. The following data were

extracted from a larger study. Suppose that a randomized com-

plete block experiment was conducted with three blocks based on

initial pH values.

Initial pH
Electrolysis
time (min) 3 7 11

15 77.1 75.2 42.2

30 80.1 76.8 45.0

45 82.8 75.2 46.8

a. Is there an effect of electrolysis time at α = 0.05?

Calculate the P-value.

b. Analyze the residuals from the experiment.

c. Calculate a 95% confidence interval on mean COD

removal when the electrolysis time is 15 minutes.

d. Perform an ANOVA assuming that all data are collected

at a single pH value. Comment on differences from part (a).

Project

Algorithm 1 2 3 4 5 6 7 8

1(SLIM) 1244 21 82 2221 905 839 527 122

2(COCOMO-A) 281 129 396 1306 336 910 473 199

3(COCOMO-R) 220 84 458 543 300 794 488 142

4(COCOMO-C) 225 83 425 552 291 826 509 153

5(FUNCTION POINTS) 19 11 −34 121 15 103 87 −17

6(ESTIMALS) −20 35 −53 170 104 199 142 41
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Chapter 14 Exercises

Exercises for Section 14.3

WP Problem available in WileyPLUS at instructor’s discretion.
WP GO Tutorial Tutoring problem available in WileyPLUS at

instructor’s discretion
SS Student solution available in WileyPLUS.

VS Student video solution available in WileyPLUS.

14.3.1 . WP An article in Industrial Quality Control (1956,

pp. 5–8) describes an experiment to investigate the effect of two

factors (glass type and phosphor type) on the brightness of a

television tube. The response variable measured is the current

(in microamps) necessary to obtain a specified brightness level.

The data are shown in the following table:

Phosphor Type

Glass Type 1 2 3
1 280 300 290

290 310 285

285 295 290

2 230 260 220

235 240 225

240 235 230

a. State the hypotheses of interest in this experiment.

b. Test the hypotheses in part (a) and draw conclusions

using the analysis of variance with α = 0.05.

c. Analyze the residuals from this experiment.

14.3.2 An engineer suspects that the surface finish of metal parts

is influenced by the type of paint used and the drying time. He

selected three drying times—20, 25, and 30 minutes—and used

two types of paint. Three parts are tested with each combination

of paint type and drying time. The data are as follows:

Drying Time (min)

Paint 20 25 30
1 74 73 78

64 61 85

50 44 92

2 92 98 66

86 73 45

68 88 85

a. State the hypotheses of interest in this experiment.

b. Test the hypotheses in part (a) and draw conclusions

using the analysis of variance with α = 0.05.

c. Analyze the residuals from this experiment.

14.3.3 An article in Technometrics [“Exact Analysis of Means

with Unequal Variances” (2002, Vol. 44, pp. 152–160)] described

the technique of the analysis of means (ANOM) and presented the

results of an experiment on insulation. Four insulation types were

tested at three different temperatures. The data are as follows:

Temperature (∘F)

Insulation 1 2 3

1 6.6 4 4.5 2.2 2.3 0.9

2.7 6.2 5.5 2.7 5.6 4.9

6 5 4.8 5.8 2.2 3.4

2 3 3.2 3 1.5 1.3 3.3

2.1 4.1 2.5 2.6 0.5 1.1

5.9 2.5 0.4 3.5 1.7 0.1

3 5.7 4.4 8.9 7.7 2.6 9.9

3.2 3.2 7 7.3 11.5 10.5

5.3 9.7 8 2.2 3.4 6.7

4 7 8.9 12 9.7 8.3 8

7.3 9 8.5 10.8 10.4 9.7

8.6 11.3 7.9 7.3 10.6 7.4

a. Write a model for this experiment.

b. Test the appropriate hypotheses and draw conclusions

using the analysis of variance with α = 0.05.

c. Graphically analyze the interaction.

d. Analyze the residuals from the experiment.

e. Use Fisher’s LSD method to investigate the differences

between mean effects of insulation type. Use α = 0.05.

14.3.4 An experiment was conducted to determine whether either

firing temperature or furnace position affects the baked density of

a carbon anode. The data are as follows:

Temperature (∘C)

Position 800 825 850

1 570 1063 565

565 1080 510

583 1043 590

2 528 988 526

547 1026 538

521 1004 532

a. State the hypotheses of interest.

b. Test the hypotheses in part (a) using the analysis of vari-

ance with α = 0.05. What are your conclusions?

c. Analyze the residuals from this experiment.

d. Using Fisher’s LSD method, investigate the differences

between the mean baked anode density at the three different

levels of temperature. Use α = 0.05.
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14.3.5 . WP . SS An article in the IEEE Transactions on Elec-
tron Devices (1986, Vol. 33, p. 1754) described a study on the

effects of two variables—polysilicon doping and anneal condi-

tions (time and temperature)—on the base current of a bipolar

transistor. The data from this experiment follow.

a. Is there any evidence to support the claim that either

polysilicon doping level or anneal conditions affect base cur-

rent? Do these variables interact? Use α = 0.05.

b. Graphically analyze the interaction.

c. Analyze the residuals from this experiment.

d. Use Fisher’s LSD method to isolate the effects of anneal

conditions on base current, with α = 0.05.

Anneal (temperature/time)

900 900 950 1000 1000Polysilicon
doping 60 180 60 15 30

1 × 1020 4.40 8.30 10.15 10.29 11.01

4.60 8.90 10.20 10.30 10.58

2 × 1020 3.20 7.81 9.38 10.19 10.81

3.50 7.75 10.02 10.10 10.60

14.3.6 An article in the Journal of Testing and Evaluation (1988,

Vol. 16, pp. 508–515) investigated the effects of cyclic loading

frequency and environment conditions on fatigue crack growth at

a constant 22 MPa stress for a particular material. The data follow.

The response variable is fatigue crack growth rate.

Environment

Frequency Air H2O Salt H2O
10 2.29 2.06 1.90

2.47 2.05 1.93

2.48 2.23 1.75

2.12 2.03 2.06

1 2.65 3.20 3.10

2.68 3.18 3.24

2.06 3.96 3.98

2.38 3.64 3.24

0.1 2.24 11.00 9.96

2.71 11.00 10.01

2.81 9.06 9.36

2.08 11.30 10.40

a. Is there indication that either factor affects crack growth

rate? Is there any indication of interaction? Use α = 0.05.

b. Analyze the residuals from this experiment.

c. Repeat the analysis in part (a) using ln(y) as the response.

Analyze the residuals from this new response variable and

comment on the results.

14.3.7 . VS An article in Bioresource Technology [“Quantitative

Response of Cell Growth and Tuber Polysaccharides Biosynthesis

by Medicinal Mushroom Chinese Truffle Tuber Sinense to Metal

Ion in Culture Medium” (2008, Vol. 99(16), pp. 7606–7615)]

described an experiment to investigate the effect of metal ion

concentration to the production of extracellular polysaccharides

(EPS). It is suspected that Mg2+ and K+ (in millimolars) are

related to EPS. The data from a full factorial design follow.

Run Mg2+ (mM) K+ (mM) EPS (g/L)

1 40 5 3.88

2 50 15 4.23

3 40 10 4.67

4 30 5 5.86

5 50 10 4.50

6 50 5 3.62

7 30 15 3.84

8 40 15 3.25

9 30 10 4.18

a. State the hypotheses of interest.

b. Test the hypotheses with α = 0.5.

c. Analyze the residuals and plot residuals versus the pre-

dicted production.

Exercises for Section 14.4

WP Problem available in WileyPLUS at instructor’s discretion.
WP GO Tutorial Tutoring problem available in WileyPLUS at

instructor’s discretion
SS Student solution available in WileyPLUS.

VS Student video solution available in WileyPLUS.

14.4.1 . WP . SS VS The percentage of hardwood concentra-

tion in raw pulp, the freeness, and the cooking time of the pulp

are being investigated for their effects on the strength of paper.

The data from a three-factor factorial experiment are shown in

the following table.

a. Analyze the data using the analysis of variance assuming

that all factors are fixed. Use α = 0.05.

b. Compute approximate P-values for the F-ratios in

part (a).
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c. The residuals are found from eijkl = yijkl − yijk • .

Graphically analyze the residuals from this experiment.

Cooking Cooking
Time Time

1.5 hours 2.0 hours
Freeness Freeness

Hardwood
Concentration % 350 500 650 350 500 650

10 96.6 97.7 99.4 98.4 99.6 100.6

96.0 96.0 99.8 98.6 100.4 100.9

15 98.5 96.0 98.4 97.5 98.7 99.6

97.2 96.9 97.6 98.1 96.0 99.0

20 97.5 95.6 97.4 97.6 97.0 98.5

96.6 96.2 98.1 98.4 97.8 99.8

14.4.2 The quality control department of a fabric finishing plant

is studying the effects of several factors on dyeing for a blended

cotton/synthetic cloth used to manufacture shirts. Three oper-

ators, three cycle times, and two temperatures were selected,

and three small specimens of cloth were dyed under each set of

conditions. The finished cloth was compared to a standard, and

a numerical score was assigned. The results are shown in the

following table.

a. State and test the appropriate hypotheses using the anal-

ysis of variance with α = 0.05.

Temperature

300∘ 350∘

Operator Operator

Cycle Time 1 2 3 1 2 3

40 23 27 31 24 38 34

24 28 32 23 36 36

25 26 28 28 35 39

50 36 34 33 37 34 34

35 38 34 39 38 36

36 39 35 35 36 31

60 28 35 26 26 36 28

24 35 27 29 37 26

27 34 25 25 34 34

b. The residuals may be obtained from eijkl = yijkl − yijk • .

Graphically analyze the residuals from this experiment.

Exercises for Section 14.5

WP Problem available in WileyPLUS at instructor’s discretion.
WP GO Tutorial Tutoring problem available in WileyPLUS at

instructor’s discretion
SS Student solution available in WileyPLUS.

VS Student video solution available in WileyPLUS.

14.5.1 . VS Four factors are thought to influence the taste of

a soft-drink beverage: type of sweetener (A), ratio of syrup to

water (B), carbonation level (C), and temperature (D). Each fac-

tor can be run at two levels, producing a 24 design. At each run

in the design, samples of the beverage are given to a test panel

consisting of 20 people. Each tester assigns the beverage a point

score from 1 to 10. Total score is the response variable, and the

objective is to find a formulation that maximizes total score. Two

replicates of this design are run, and the results are shown in the

table. Analyze the data and draw conclusions. Use α = 0.05 in

the statistical tests.

Replicate

Treatment
Combination I II

(1) 159 163

a 168 175

b 158 163

ab 166 168

c 175 178

ac 179 183

bc 173 168

abc 179 182

d 164 159

ad 187 189

bd 163 159

abd 185 191

cd 168 174

acd 197 199

bcd 170 174

abcd 194 198

14.5.2 . WP An engineer is interested in the effect of cutting

speed (A), metal hardness (B), and cutting angle (C) on the life

of a cutting tool. Two levels of each factor are chosen, and two

replicates of a 23 factorial design are run. The tool life data (in

hours) are shown in the following table.
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Replicate

Treatment
Combination I II

(1) 221 311

a 325 435

b 354 348

ab 552 472

c 440 453

ac 406 377

bc 605 500

abc 392 419

a. Analyze the data from this experiment.

b. Find an appropriate regression model that explains tool

life in terms of the variables used in the experiment.

c. Analyze the residuals from this experiment.

14.5.3 . WP . SS An article in IEEE Transactions on Semicon-
ductor Manufacturing (1992, Vol. 5, pp. 214–222) described an

experiment to investigate the surface charge on a silicon wafer.

The factors thought to influence induced surface charge are clean-

ing method (spin rinse dry or SRD and spin dry or SD) and the

position on the wafer where the charge was measured. The surface

charge (×1011 q/cm3) response data follow:

Test Position

Cleaning
Method L R

SD 1.66 1.84

1.90 1.84

1.92 1.62

SRD −4.21 −7.58

−1.35 −2.20

−2.08 −5.36

a. Estimate the factor effects.

b. Which factors appear important? Use α = 0.05.

c. Analyze the residuals from this experiment.

14.5.4 An article in Talanta (2005, Vol. 65, pp. 895–899) pre-

sented a 23 factorial design (with two replicates) to find lead level

by using flame atomic absorption spectrometry (FAAS). The data

are in the table at the top of the next column.

Factors Lead Recovery (%)

Run ST pH RC R1 R2

1 − − − 39.8 42.1

2 + − − 51.3 48

3 − + − 57.9 58.1

4 + + − 78.9 85.9

5 − − + 78.9 84.2

6 + − + 84.2 84.2

7 − + + 94.4 90.9

8 + + + 94.7 105.3

The factors and levels are in the following table.

Factor Low (−) High (+)

Reagent concentration

(RC) (mol 1−1)

5 × 10−6 5 × 10−5

pH 6.0 8.0

Shaking time (ST) (min) 10 30

a. Construct a normal probability plot of the effect esti-

mates. Which effects appear to be large?

b. Conduct an analysis of variance to confirm your findings

for part (a).

c. Analyze the residuals from this experiment. Are there any

problems with model adequacy?

14.5.5 An article in the Journal of Construction Engineering
and Management [“Analysis of Earth-Moving Systems Using

Discrete-Event Simulation” (1995, Vol. 121(4), pp. 388–396)]

considered a replicated two-level factorial experiment to study the

factors most important to output in an earth-moving system. Han-

dle the experiment as four replicates of a 24 factorial design with

response equal to production rate (m3/h). The data are shown in

the following table.

a. Estimate the factor effects. Based on a normal probability

plot of the effect estimates, identify a model for the data from

this experiment.

b. Conduct an ANOVA based on the model identified in part

(a). What are the conclusions?

c. Analyze the residuals and plot residuals versus the

predicted production.

d. Comment on model adequacy.
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Production (m3/h)
Number of Passes Load-pass Travel

Row Trucks per Load Time Time 1 2 3 4
1 − − − − 179.6 179.8 176.3 173.1

2 + − − − 373.1 375.9 372.4 361.1

3 − + − − 153.2 153.6 150.8 148.6

4 + + − − 226.1 220.0 225.7 218.5

5 − − + − 156.9 155.4 154.2 152.2

6 + − + − 242.0 233.5 242.3 233.6

7 − + + − 122.7 119.6 120.9 118.6

8 + + + − 135.7 130.9 135.5 131.6

9 − − − + 44.2 44.0 43.5 43.6

10 + − − + 124.2 123.3 122.8 121.6

11 − + − + 42.0 42.4 42.5 41.0

12 + + − + 116.3 117.3 115.6 114.7

13 − − + + 42.1 42.6 42.8 42.9

14 + − + + 119.1 119.5 116.9 117.2

15 − + + + 39.6 39.7 39.5 39.2

16 + + + + 107.0 105.3 104.2 103.0

Level Number of trucks Passes per load Load pass time Travel time

−1 2 4 12 s 100 s

1 6 7 22 s 800 s

Exercises for Section 14.6

WP Problem available in WileyPLUS at instructor’s discretion.
WP GO Tutorial Tutoring problem available in WileyPLUS at

instructor’s discretion
SS Student solution available in WileyPLUS.

VS Student video solution available in WileyPLUS.

14.6.1 . WP Consider the data from Exercise 14.5.2. Suppose

that the data from the second replicate were not available. Analyze

the data from replicate I only and comment on your findings.

14.6.2 The following data represent a single replicate of a 25

design that is used in an experiment to study the compressive

strength of concrete. The factors are mix (A), time (B), laboratory

(C), temperature (D), and drying time (E).

(1) = 700 e = 800

a = 900 ae = 1200

b = 3400 be = 3500

ab = 5500 abe = 6200

c = 600 ce = 600

ac = 1000 ace = 1200

bc = 3000 bce = 3006

abc = 5300 abce = 5500

d = 1000 de = 1900

ad = 1100 ade = 1500

bd = 3000 bde = 4000

abd = 6100 abde = 6500

cd = 800 cde = 1500

acd = 1100 acde = 2000

bcd = 3300 bcde = 3400

abcd = 6000 abcde = 6800

a. Estimate the factor effects.

b. Which effects appear important? Use a normal probabil-

ity plot.

c. If it is desirable to maximize the strength, in which direc-

tion would you adjust the process variables?

d. Analyze the residuals from this experiment.
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14.6.3 . WP An experiment has run a single replicate of a

24 design and calculated the following factor effects:

A = 80.25 AB = 53.25 ABC =−2.95

B = −65.50 AC = 11.00 ABD =−8.00

C = −9.25 AD = 9.75 ACD = 10.25

D = −20.50 BC = 18.36 BCD =−7.95

BD = 15.10 ABCD =−6.25

CD =−1.25

a. Construct a normal probability plot of the effects.

b. Identify a tentative model, based on the plot of effects in

part (a).

c. Estimate the regression coefficients in this model, assum-

ing that y = 400.

14.6.4 . VS An experiment described by M. G. Natrella in the

National Bureau of Standards’ Handbook of Experimental Statis-
tics (1963, No. 91) involves flame-testing fabrics after applying

fire-retardant treatments. The four factors considered are type of

fabric (A), type of fire-retardant treatment (B), laundering condi-

tion (C—the low level is no laundering, the high level is after one

laundering), and method of conducting the flame test (D). All fac-

tors are run at two levels, and the response variable is the inches

of fabric burned on a standard-size test sample. The data are:

(1) = 42 d = 40

a = 31 ad = 30

b = 45 bd = 50

ab = 29 abd = 25

c = 39 cd = 40

ac = 28 acd = 25

bc = 46 bcd = 50

abc = 32 abcd = 23

a. Estimate the effects and prepare a normal plot of the

effects.

b. Construct an analysis of variance table based on the

model tentatively identified in part (a).

c. Construct a normal probability plot of the residuals and

comment on the results.

14.6.5 . SS Consider the following computer output for one

replicate of a 24 factorial experiment.

a. What effects are used to estimate error?

b. Calculate the entries marked with “?” in the output.

Estimated Effects and Coefficients
Term Effect Coef SE Coef t P

Constant 35.250 ? 39.26 0.000
A 2.250 ? ? ? ?
B 24.750 12.375 ? 13.78 0.000
C 1.000 0.500 ? 0.56 0.602
D 10.750 5.375 ? 5.99 0.002
A*B −10.500 −5.250 ? −5.85 0.002
A*C 4.250 2.125 ? 2.37 0.064
A*D −5.000 −2.500 ? −2.78 0.039
B*C 5.250 2.625 ? 2.92 0.033
B*D 4.000 2.000 ? 2.23 0.076
C*D −0.750 −0.375 ? −0.42 0.694
S = 3.59166

Analysis of Variance

Source DF SS MS F P
A ? ? ? ? 0.266
B 1 2450.25 2450.25 189.94 0.000
C 1 4.00 4.00 0.31 0.602
D 1 462.25 462.25 35.83 0.002
AB 1 441.00 441.00 34.19 0.002
AC 1 72.25 72.25 5.60 0.064
AD 1 100.00 100.00 7.75 0.039
BC 1 110.25 110.25 8.55 0.033
BD 1 64.00 64.00 4.96 0.076
CD 1 2.25 2.25 0.17 0.694
Residual Error ? 64.50 ?
Total ? 3791.00

14.6.6 An article in Bioresource Technology [“Influence of Veg-

etable Oils Fatty-Acid Composition on Biodiesel Optimization”

(2011, Vol. 102(2), pp. 1059–1065)] described an experiment to

analyze the influence of the fatty-acid composition on biodiesel.

Factors were the concentration of catalyst, amount of methanol,

reaction temperature and time, and the design included three cen-

ter points. Maize oil methyl ester (MME) was recorded as the

response. Data follow.

Methanol
Temperature Time Catalyst to oil MME

Run (∘C) (min) (wt.%) molar ratio (wt.%)
1 45 40 0.8 5.4 88.30

2 25 40 1.2 5.4 90.50

3 45 10 0.8 4.2 77.96

4 25 10 1.2 5.4 85.59

5 45 40 1.2 5.4 97.14

6 45 10 1.2 4.2 90.64

7 45 40 1.2 4.2 89.86

8 25 40 0.8 4.2 82.35

9 25 10 0.8 5.4 80.31

10 25 40 0.8 5.4 85.51

11 25 10 0.8 4.2 76.21

12 45 40 0.8 4.2 86.86

13 25 10 1.2 4.2 86.35

14 45 10 0.8 5.4 84.58

15 25 40 1.2 4.2 89.37

16 45 10 1.2 5.4 90.51

17 35 25 1 4.8 91.40

18 35 25 1 4.8 91.96

19 35 25 1 4.8 91.07

a. Identify the important effects from a normal probabil-

ity plot.

b. Compare the results in the previous part with results that

use an error term based on the center points.

c. Test for curvature.

d. Analyze the residuals from the model.



�

� �

�

P-124 Exercises

14.6.7 An article in Analytica Chimica Acta [“Design-of-

Experiment Optimization of Exhaled Breath Condensate Analy-

sis Using a Miniature Differential Mobility Spectrometer (DMS)”

(2008, Vol. 628(2), pp. 155–161)] examined four parameters that

affect the sensitivity and detection of the analytical instruments

used to measure clinical samples. They optimized the sensor func-

tion using exhaled breath condensate (EBC) samples spiked with

acetone, a known clinical biomarker in breath. The following

table shows the results for a single replicate of a 24 factorial exper-

iment for one of the outputs, the average amplitude of acetone

peak over three repetitions.

Configuration A B C D y
1 + + + + 0.12

2 + + + − 0.1193

3 + + − + 0.1196

4 + + − − 0.1192

5 + − + + 0.1186

6 + − + − 0.1188

7 + − − + 0.1191

8 + − − − 0.1186

9 − + + + 0.121

10 − + + − 0.1195

11 − + − + 0.1196

12 − + − − 0.1191

13 − − + + 0.1192

14 − − + − 0.1194

15 − − − + 0.1188

16 − − − − 0.1188

The factors and levels are shown in the following table.

A RF voltage of the DMS sensor (1200 or 1400 V)

B Nitrogen carrier gas flow rate (250 or 500 mL min−1)

C Solid phase microextraction (SPME) filter type

(polyacrylate or PDMS–DVB)

D GC cooling profile (cryogenic and noncryogenic)

a. Estimate the factor effects and use a normal probability

plot of the effects. Identify which effects appear to be large,

and identify a model for the data from this experiment.

b. Conduct an ANOVA based on the model identified in part

(a). What are your conclusions?

c. Analyze the residuals from this experiment. Are there any

problems with model adequacy?

d. Project the design in this problem into a 2r design for

r < 4 in the important factors. Sketch the design and show

the average and range of yields at each run. Does this sketch

aid in data representation?

Exercises for Section 14.7

WP Problem available in WileyPLUS at instructor’s discretion.
WP GO Tutorial Tutoring problem available in WileyPLUS at

instructor’s discretion
SS Student solution available in WileyPLUS.

VS Student video solution available in WileyPLUS.

14.7.1 . WP . SS Consider a 22 factorial experiment with four

center points. The data are (1) = 21, a = 125, b = 154, ab = 352,

and the responses at the center point are 92, 130, 98, and 152.

Compute an ANOVA with the sum of squares for curvature and

conduct an F-test for curvature. Use α = 0.05.

14.7.2 . WP Consider the experiment in Exercise 14.6.2. Sup-

pose that a center point with five replicates is added to the factorial

runs and the responses are 2800, 5600, 4500, 5400, and 3600.

Compute an ANOVA with the sum of squares for curvature and

conduct an F-test for curvature. Use α = 0.05.

Exercises for Section 14.8

WP Problem available in WileyPLUS at instructor’s discretion.
WP GO Tutorial Tutoring problem available in WileyPLUS at

instructor’s discretion
SS Student solution available in WileyPLUS.

VS Student video solution available in WileyPLUS.

14.8.1 . WP Consider the data from the first replicate of

Exercise 14.5.2.

a. Construct a design with two blocks of four observations

each with ABC confounded.

b. Analyze the data.

14.8.2 Consider the data from Exercise 14.6.4.

a. Construct the design that would have been used to run

this experiment in two blocks of eight runs each.

b. Analyze the data and draw conclusions.

14.8.3 Construct a 25 design in two blocks. Select the ABCDE
interaction to be confounded with blocks.

14.8.4 Consider the data from the first replicate of Exercise

14.5.1, assuming that four blocks are required. Confound ABD
and ABC (and consequently CD) with blocks.
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a. Construct a design with four blocks of four observa-

tions each.

b. Analyze the data.

14.8.5 . SS An article in Quality Engineering [“Designed

Experiment to Stabilize Blood Glucose Levels” (1999–2000, Vol.

12, pp. 83–87)] reported on an experiment to minimize variations

in blood glucose levels. The factors were volume of juice intake

before exercise (4 or 8 oz), amount of exercise on a Nordic Track

cross-country skier (10 or 20 min), and delay between the time of

juice intake (0 or 20 min) and the beginning of the exercise period.

The experiment was blocked for time of day. The data follow.

a. What effects are confounded with blocks? Comment on

any concerns with the confounding in this design.

b. Analyze the data and draw conclusions.

Juice Exercise Delay Time Average Blood
Run (oz) (min) (min) of Day Glucose

1 4 10 0 pm 71.5

2 8 10 0 am 103

3 4 20 0 am 83.5

4 8 20 0 pm 126

5 4 10 20 am 125.5

6 8 10 20 pm 129.5

7 4 20 20 pm 95

8 8 20 20 am 93

14.8.6 Construct a 26 design in four blocks. Show that a design

that confounds three of the four-factor interactions with blocks is

the best possible blocking arrangement.

14.8.7 An article in Advanced Semiconductor Manufacturing
Conference (ASMC) (May 2004, pp. 325–29) stated that dis-

patching rules and rework strategies are two major operational

elements that impact productivity in a semiconductor fabrication

plant (fab). A four-factor experiment was conducted to determine

the effect of dispatching rule time (5 or 10 min), rework delay

(0 or 15 min), fab temperature (60 or 80∘F), and rework levels

(level 0 or level 1) on key fab performance measures. The perfor-

mance measure that was analyzed was the average cycle time. The

experiment was blocked for the fab temperature. Data modified

from the original study are in the following table.

Average
Dispatching Rework Fab Cycle
Rule Time Delay Rework Temperature TimeRun

Run (min) (min) Level (∘F) (min)
1 5 0 0 60 218

2 10 0 0 80 256.5

3 5 0 1 80 231

4 10 0 1 60 302.5

5 5 15 0 80 298.5

6 10 15 0 60 314

7 5 15 1 60 249

8 10 15 1 80 241

a. What effects are confounded with blocks? Do you find

any concerns with confounding in this design? If so, com-

ment on it.

b. Analyze the data and draw conclusions.

Exercises for Section 14.9

WP Problem available in WileyPLUS at instructor’s discretion.
WP GO Tutorial Tutoring problem available in WileyPLUS at

instructor’s discretion
SS Student solution available in WileyPLUS.

VS Student video solution available in WileyPLUS.

14.9.1 . WP An article by L. B. Hare [“In the Soup: A Case

Study to Identify Contributors to Filling Variability,” Journal
of Quality Technology (1988, Vol. 20, pp. 36–43)] described

a factorial experiment used to study filling variability of dry

soup mix packages. The factors are A = number of mixing ports

through which the vegetable oil was added (1, 2), B = temper-

ature surrounding the mixer (cooled, ambient), C = mixing time

(60, 80 sec), D= batch weight (1500, 2000 lb), and E = number of

days of delay between mixing and packaging (1, 7). Between 125

and 150 packages of soup were sampled over an 8-hour period

for each run in the design, and the standard deviation of package

weight was used as the response variable. The design and result-

ing data follow.

a. What is the generator for this design?

b. What is the resolution of this design?

c. Estimate the factor effects. Which effects are large?

d. Does a residual analysis indicate any problems with the

underlying assumptions?

e. Draw conclusions about this filling process.

A D
Std Mixer B C Batch E y

Order Ports Temp Time Weight Delay Std Dev
1 − − − − − 1.13

2 + − − − + 1.25

3 − + − − + 0.97

4 + + − − − 1.70

5 − − + − + 1.47

6 + − + − − 1.28

7 − + + − − 1.18

8 + + + − + 0.98

9 − − − + + 0.78

10 + − − + − 1.36
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11 − + − + − 1.85

12 + + − + + 0.62

13 − − + + − 1.09

14 + − + + + 1.10

15 − + + + + 0.76

16 + + + + − 2.10

14.9.2 An article in Quality Engineering [“A Comparison of

Multi-Response Optimization: Sensitivity to Parameter Selec-

tion” (1999, Vol. 11, pp. 405–415)] conducted a half replicate of

a 25 factorial design to optimize the retort process of beef stew

MREs, a military ration. The design factors are x1 = sauce vis-

cosity, x2 = residual gas, x3 = solid/liquid ratio, x4 = net weight,

x5 = rotation speed. The response variable is the heating

rate index, a measure of heat penetration, and there are two

replicates.

Heating Rate
Index

Run x1 x2 x3 x4 x5 I II
1 −1 −1 −1 −1 1 8.46 9.61

2 1 −1 −1 −1 −1 15.68 14.68

3 −1 1 −1 −1 −1 14.94 13.09

4 1 1 −1 −1 1 12.52 12.71

5 −1 −1 1 −1 −1 17.0 16.36

6 1 −1 1 −1 1 11.44 11.83

7 −1 1 1 −1 1 10.45 9.22

8 1 1 1 −1 −1 19.73 16.94

9 −1 −1 −1 1 −1 17.37 16.36

10 1 −1 −1 1 1 14.98 11.93

11 −1 1 −1 1 1 8.40 8.16

12 1 1 −1 1 −1 19.08 15.40

13 −1 −1 1 1 1 13.07 10.55

14 1 −1 1 1 −1 18.57 20.53

15 −1 1 1 1 −1 20.59 21.19

16 1 1 1 1 1 14.03 11.31

a. Estimate the factor effects. Based on a normal probability

plot of the effect estimates, identify a model for the data from

this experiment.

b. Conduct an ANOVA based on the model identified in part

(a). What are your conclusions?

c. Analyze the residuals and comment on model adequacy.

d. Find a regression model to predict yield in terms of the

coded factor levels.

e. This experiment was replicated, so an ANOVA could

have been conducted without using a normal plot of the

effects to tentatively identify a model. What model would

be appropriate? Use the ANOVA to analyze this model and

compare the results with those obtained from the normal

probability plot approach.

14.9.3 . WP . SS R. D. Snee (“Experimenting with a Large Num-

ber of Variables,” in Experiments in Industry: Design, Analy-
sis and Interpretation of Results, Snee, Hare, and Trout, eds.,

ASQC, 1985) described an experiment in which a 25−1 design

with I = ABCDE was used to investigate the effects of five factors

on the color of a chemical product. The factors are A = solvent/

reactant, B = catalyst/reactant, C = temperature, D = reac-

tant purity, and E = reactant pH. The results obtained are

as follows:

e = −0.63 d = 6.79

a = 2.51 ade = 6.47

b = −2.68 bde = 3.45

abe = 1.66 abd = 5.68

c = 2.06 cde = 5.22

ace = 1.22 acd = 4.38

bce = −2.09 bcd = 4.30

abc = 1.93 abcde = 4.05

a. Prepare a normal probability plot of the effects. Which

factors are active?

b. Calculate the residuals. Construct a normal probability

plot of the residuals and plot the residuals versus the fitted

values. Comment on the plots.

c. If any factors are negligible, collapse the 25−1 design into

a full factorial in the active factors. Comment on the resulting

design, and interpret the results.

Exercises for Section 14.10

WP Problem available in WileyPLUS at instructor’s discretion.
WP GO Tutorial Tutoring problem available in WileyPLUS at

instructor’s discretion
SS Student solution available in WileyPLUS.

VS Student video solution available in WileyPLUS.

14.10.1 . WP An article in Industrial and Engineering Chemistry
[“More on Planning Experiments to Increase Research Efficien-

cy” (1970, pp. 60–65)] uses a 25−2 design to investigate the effect

on process yield of A = condensation temperature, B = amount

of material 1, C = solvent volume, D = condensation time, and E
= amount of material 2. The results obtained are as follows:

ae = 23.2 cd = 23.8

ab = 15.5 ace = 23.4

ad = 16.9 bde = 16.8

bc = 16.2 abcde = 18.1
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a. Verify that the design generators used were I = ACE and

I = BDE.

b. Write down the complete defining relation and the aliases

from the design.

c. Estimate the main effects.

d. Prepare an analysis of variance table. Verify that the AB
and AD interactions are available to use as error.

e. Plot the residuals versus the fitted values. Also construct

a normal probability plot of the residuals. Comment on the

results.

14.10.2 . WP Suppose that in Exercise 14.6.2 only a 1∕4 fraction

of the 25 design could be run. Construct the design and analyze

the data that are obtained by selecting only the response for the

eight runs in your design.

14.10.3 . WP . SS For each of the following designs, write down

the aliases, assuming that only main effects and two factor inter-

actions are of interest.

a. 26−3

III
b. 28−4

IV

14.10.4 . WP Consider the 26−2 design in Table 14.26.

a. Suppose that after analyzing the original data, we find

that factors C and E can be dropped. What type of 2k design

is left in the remaining variables?

b. Suppose that after the original data analysis, we find that

factors D and F can be dropped. What type of 2k design is left

in the remaining variables? Compare the results with part (a).

Can you explain why the answers are different?

14.10.5 An article in the Journal of Marketing Research (1973,

Vol. 10(3), pp. 270–276) presented a 27−4 fractional factorial

design to conduct marketing research:

Sales for a
6-Week Period

Runs A B C D E F G (in $1000)
1 −1 −1 −1 1 1 1 −1 8.7

2 1 −1 −1 −1 −1 1 1 15.7

3 −1 1 −1 −1 1 −1 1 9.7

4 1 1 −1 1 −1 −1 −1 11.3

5 −1 −1 1 1 −1 −1 1 14.7

6 1 −1 1 −1 1 −1 −1 22.3

7 −1 1 1 −1 −1 1 −1 16.1

8 1 1 1 1 1 1 1 22.1

The factors and levels are shown in the following table.

Factor −1 +1

A Television

advertising

No advertising Advertising

B Billboard

advertising

No advertising Advertising

C Newspaper

advertising

No advertising Advertising

D Candy wrapper

design

Conservative

design

Flashy design

E Display design Normal shelf

display

Special aisle

display

F Free sample

program

No free samples Free samples

G Size of candy bar 1 oz bar 21∕2 oz bar

a. Write down the alias relationships.

b. Estimate the main effects.

c. Prepare a normal probability plot for the effects and inter-

pret the results.

Exercises for Section 14.11

WP Problem available in WileyPLUS at instructor’s discretion.
WP GO Tutorial Tutoring problem available in WileyPLUS at

instructor’s discretion
SS Student solution available in WileyPLUS.

VS Student video solution available in WileyPLUS.

14.11.1 . WP An article in Rubber Age (1961, Vol. 89,

pp. 453–458) describes an experiment on the manufacture of

a product in which two factors were varied. The factors are

reaction time (hr) and temperature (∘C). These factors are

coded as x1 = (time − 12)/8 and x2 = (temperature − 250)/30.
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The following data were observed where y is the yield

(in percent):

Run Number x1 x2 y
1 −1 0 83.8

2 1 0 81.7

3 0 0 82.4

4 0 0 82.9

5 0 −1 84.7

6 0 1 75.9

7 0 0 81.2

8 −1.414 −1.414 81.3

9 −1.414 1.414 83.1

10 1.414 −1.414 85.3

11 1.414 1.414 72.7

12 0 0 82.0

a. Plot the points at which the experimental runs were made.

b. Fit a second-order model to the data. Is the second-order

model adequate?

c. Plot the yield response surface. What recommendations

would you make about the operating conditions for this

process?

14.11.2 . WP An article in Quality Engineering [“Mean and

Variance Modeling with Qualitative Responses: A Case Study”

(1998–1999, Vol. 11, pp. 141–148)] studied how three active

ingredients of a particular food affect the overall taste of the prod-

uct. The measure of the overall taste is the overall mean liking

score (MLS). The three ingredients are identified by the variables

x1, x2, and x3. The data are shown in the following table.

Run x1 x2 x3 MLS

1 1 1 −1 6.3261

2 1 1 1 6.2444

3 0 0 0 6.5909

4 0 −1 0 6.3409

5 1 −1 1 5.907

6 1 −1 −1 6.488

7 0 0 −1 5.9773

8 0 1 0 6.8605

9 −1 −1 1 6.0455

10 0 0 1 6.3478

11 1 0 0 6.7609

12 −1 −1 −1 5.7727

13 −1 1 −1 6.1805

14 −1 1 1 6.4894

15 −1 0 0 6.8182

a. Fit a second-order response surface model to the

data.

b. Construct contour plots and response surface plots for

MLS. What are your conclusions?

c. Analyze the residuals from this experiment. Does your

analysis indicate any potential problems?

d. This design has only a single center point. Is this a good

design in your opinion?

14.11.3 . WP Consider the first-order model

ŷ = 50 + 1.5x1 − 0.8x2

where −1 ≤ xi ≤ 1. Find the direction of steepest ascent.

14.11.4 . WP A manufacturer of cutting tools has developed two

empirical equations for tool life (y1) and tool cost (y2). Both mod-

els are functions of tool hardness (x1) and manufacturing time

(x2). The equations are

ŷ1 = 10 + 5x1 + 2x2

ŷ2 = 23 + 3x1 + 4x2

and both are valid over the range −1.5 ≤ xi ≤ 1.5. Suppose

that tool life must exceed 12 hours and cost must be below

$27.50.

a. Is there a feasible set of operating conditions?

b. Where would you run this process?

14.11.5 . WP An article in Tappi (1960, Vol. 43, pp. 38–44)

describes an experiment that investigated the ash value of paper

pulp (a measure of inorganic impurities). Two variables, temper-

ature T in degrees Celsius and time t in hours, were studied, and

some of the results are shown in the following table. The coded

predictor variables shown are

x1 =
(T − 775)

115
, x2 = (t − 3)

1.5

and the response y is (dry ash value in %) × 103.

x1 x2 y x1 x2 y

−1 −1 211 0 −1.5 168

1 −1 92 0 1.5 179

−1 1 216 0 0 122

1 1 99 0 0 175

−1.5 0 222 0 0 157

1.5 0 48 0 0 146

a. What type of design has been used in this study? Is the

design rotatable?

b. Fit a quadratic model to the data. Is this model satis-

factory?

c. If it is important to minimize the ash value, where would

you run the process?



�

� �

�

Exercises P-129

14.11.6 . WP In their book Empirical Model Building and
Response Surfaces (John Wiley, 1987), Box and Draper described

an experiment with three factors. The data in the following table

are a variation of the original experiment from their book. Sup-

pose that these data were collected in a semiconductor manufac-

turing process.

a. The response y1 is the average of three readings on

resistivity for a single wafer. Fit a quadratic model to this

response.

b. The response y2 is the standard deviation of the three

resistivity measurements. Fit a linear model to this response.

c. Where would you recommend that we set x1, x2, and x3 if

the objective is to hold mean resistivity at 500 and minimize

the standard deviation?

x1 x2 x3 y1 y2

−1 −1 −1 24.00 12.49

0 −1 −1 120.33 8.39

1 −1 −1 213.67 42.83

−1 0 −1 86.00 3.46

0 0 −1 136.63 80.41

1 0 −1 340.67 16.17

−1 1 −1 112.33 27.57

0 1 −1 256.33 4.62

1 1 −1 271.67 23.63

−1 −1 0 81.00 0.00

0 −1 0 101.67 17.67

1 −1 0 357.00 32.91

−1 0 0 171.33 15.01

0 0 0 372.00 0.00

1 0 0 501.67 92.50

−1 1 0 264.00 63.50

0 1 0 427.00 88.61

1 1 0 730.67 21.08

−1 −1 1 220.67 133.82

0 −1 1 239.67 23.46

1 −1 1 422.00 18.52

−1 0 1 199.00 29.44

0 0 1 485.33 44.67

1 0 1 673.67 158.21

−1 1 1 176.67 55.51

0 1 1 501.00 138.94

1 1 1 1010.00 142.45

14.11.7 . SS Consider the first-order model

y = 12 + 1.2x1 − 2.1x2 + 1.6x3 − 0.6x4

where −1 ≤ xi ≤ 1.

a. Find the direction of steepest ascent.

b. Assume that the current design is centered at the point

(0, 0, 0, 0). Determine the point that is three units from the

current center point in the direction of steepest ascent.

14.11.8 Suppose that a response y1 is a function of two inputs x1

and x2 with y1 = 2x2
2
− 4x2

1
− x1x2 + 4.

a. Draw the contours of this response function.

b. Consider another response y2 = (x1 − 2)2 + (x2 − 3)2.

c. Add the contours for y2 and discuss how feasible it is to

minimize both y1 and y2 with values for x1 and x2.

14.11.9 Two responses y1 and y2 are related to two inputs x1 and

x2 by the models y1 = 5 + (x1 − 2)2 + (x2 − 3)2 and y2 = x2 − x1

+ 3. Suppose that the objectives are y1 ≤ 9 and y2 ≥ 6.

a. Is there a feasible set of operating conditions for x1

and x2? If so, plot the feasible region in the space of

x1 and x2.

b. Determine the point(s) (x1, x2) that yields y2 ≥ 6 and min-

imizes y1.

14.11.10 An article in the Journal of Materials Processing Tech-
nology (1997, Vol. 67, pp. 55–61) used response surface method-

ology to generate surface roughness prediction models for turning

EN 24T steel (290 BHN). The data are shown in the following

table.

The factors and levels for the experiment are shown below.

Levels Lowest Low Center High Highest

Coding −
√

2 −1 0 1
√

2

Speed, V (m min−1) 28 36 65 117 150

Feed, f (mm rev−1) 0.12 0.15 0.25 0.40 0.50

Depth of cut, d (mm) 0.42 0.50 0.75 1.125 1.33

a. Plot the points at which the experimental runs were made.

b. Fit both first-and second-order models to the data. Com-

ment on the adequacies of these models.

c. Plot the roughness response surface for the second-order

model and comment.

14.11.11 An article in Analytical Biochemistry [“Application of

Central Composite Design for DNA Hybridization Onto Mag-

netic Microparticles,” (2009, Vol. 391(1), 2009, pp. 17–23)]

considered the effects of probe and target concentration and par-

ticle number in immobilization and hybridization on a micro

particle-based DNA hybridization assay. Mean fluorescence is the

response. Particle concentration was transformed to surface area

measurements. Other concentrations were measured in micro-

moles per liter (μM). Data are shown below.
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Trial Speed (m min−1) Feed (mm rev−1) Depth of cut (mm) Coding Surface roughness, (𝛍m)

x1 x2 x3

1 36 0.15 0.50 −1 −1 −1 1.8

2 117 0.15 0.50 1 −1 −1 1.233

3 36 0.40 0.50 −1 1 −1 5.3

4 117 0.40 0.50 1 1 −1 5.067

5 36 0.15 1.125 −1 −1 1 2.133

6 117 0.15 1.125 1 −1 1 1.45

7 36 0.40 1.125 −1 1 1 6.233

8 117 0.40 1.125 1 1 1 5.167

9 65 0.25 0.75 0 0 0 2.433

10 65 0.25 0.75 0 0 0 2.3

11 65 0.25 0.75 0 0 0 2.367

12 65 0.25 0.75 0 0 0 2.467

13 28 0.25 0.75 −
√

2 0 0 3.633

14 150 0.25 0.75
√

2 0 0 2.767

15 65 0.12 0.75 0 −
√

2 0 1.153

16 65 0.50 0.75 0
√

2 0 6.333

17 65 0.25 0.42 0 0 −
√

2 2.533

18 65 0.25 1.33 0 0
√

2 3.20

19 28 0.25 0.75 −
√

2 0 0 3.233

20 150 0.25 0.75
√

2 0 0 2.967

21 65 0.12 0.75 0 −
√

2 0 1.21

22 65 0.50 0.75 0
√

2 0 6.733

23 65 0.25 0.42 0 0 −
√

2 2.833

24 65 0.25 1.33 0 0
√

2 3.267

Run Immobilization area (cm2) Probe area (𝛍M) Hybridization (cm2) Target (𝛍M) Mean Fluorescence

1 0.35 0.025 0.35 0.025 4.7

2 7 0.025 0.35 0.025 4.7

3 0.35 2.5 0.35 0.025 28.0

4 7 2.5 0.35 0.025 81.2

5 0.35 0.025 3.5 0.025 5.7
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6 7 0.025 3.5 0.025 3.8

7 0.35 2.5 3.5 0.025 12.2

8 7 2.5 3.5 0.025 19.5

9 0.35 0.025 0.35 5 4.4

10 7 0.025 0.35 5 2.6

11 0.35 2.5 0.35 5 83.7

12 7 2.5 0.35 5 84.7

13 0.35 0.025 3.5 5 6.8

14 7 0.025 3.5 5 2.4

15 0.35 2.5 3.5 5 76

16 7 2.5 3.5 5 77.9

17 0.35 5 2 2.5 42.6

18 7 5 2 2.5 52.3

19 3.5 0.025 2 2.5 2.6

20 3.5 2.5 2 2.5 72.8

21 3.5 5 0.35 2.5 47.7

22 3.5 5 3.5 2.5 54.4

23 3.5 5 2 0.025 30.8

24 3.5 5 2 5 64.8

25 3.5 5 2 2.5 51.6

26 3.5 5 2 2.5 52.6

27 3.5 5 2 2.5 56.1

a. What type of design is used?

b. Fit a second-order response surface model to the data.

c. Does a residual analysis indicate any problems?

14.11.12 An article in Applied Biochemistry and Biotechnol-
ogy [“A Statistical Approach for Optimization of Polyhydroxy-

butyrate Production by Bacillus sphaericus NCIM 5149 under

Submerged Fermentation Using Central Composite Design”

(2010, Vol. 162(4), pp. 996–1007)] described an experiment to

optimize the production of polyhydroxybutyrate (PHB). Inocu-

lum age, pH, and substrate were selected as factors, and a central

composite design was conducted. Data follow.

Run Inoculum age (h) pH Substrate (g/L) PHB (g/L)
1 12 4 1 0.84

2 24 8 1 0.55

3 18 6 2.5 1.96

4 28 6 2.5 1.2

5 12 4 4 0.783

6 18 6 2.5 1.66

7 18 6 2.5 2.22

8 18 6 5 0.8
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9 12 8 4 0.48

10 18 6 2.5 1.97

11 18 6 2.5 2.2

12 18 6 2.5 2.25

13 18 2 2.5 0.2

14 18 6 0 0.22

15 12 8 1 0.37

16 24 8 4 0.66

17 24 4 1 0.28

18 24 4 4 0.88

19 18 9 2.5 0.3

20 7 6 2.5 0.42

a. Plot the points at which the experimental runs were made.

[Hint: Code each variable first.] What type of design is

used?

b. Fit a second-order response surface model to the data.

c. Does a residual analysis indicate any problems?

d. Construct a contour plot and response surface for PHB

amount in terms of two factors.

e. Can you recommend values for inoculum age, pH and

substrate to maximize production?

Supplemental Exercises for Chapter 14

WP Problem available in WileyPLUS at instructor’s discretion.
WP GO Tutorial Tutoring problem available in WileyPLUS at

instructor’s discretion
SS Student solution available in WileyPLUS.

VS Student video solution available in WileyPLUS.

14.S6 . WP Heat-treating metal parts is a widely used manufac-

turing process. An article in the Journal of Metals [“Optimiz-

ing Heat Treatment with Factorial Design” (1989, Vol. 41(3),

pp. 52–53)] described an experiment to investigate flatness dis-

tortion from heat-treating for three types of gears and two

heat-treating times. The data follow:

Time (minutes)

Gear Type 90 120
20-tooth 0.0265 0.0560

0.0340 0.0650

24-tooth 0.0430 0.0720

0.0510 0.0880

28-tooth 0.0405 0.0620

0.0575 0.0825

a. Is there any evidence that flatness distortion is differ-

ent for the different gear types? Is there any indication that

heat-treating time affects the flatness distortion? Do these

factors interact? Use α = 0.05.

b. Construct graphs of the factor effects that aid in drawing

conclusions from this experiment.

c. Analyze the residuals from this experiment. Comment on

the validity of the underlying assumptions.

14.S7 . WP An article in Process Engineering (1992, No. 71, pp.

46–47) presented a two-factor factorial experiment to investigate

the effect of pH and catalyst concentration on product viscosity

(cSt). The data are as follows:

Catalyst Concentration

pH 2.5 2.7
5.6 192, 199, 189, 198 178, 186, 179, 188

5.9 185, 193, 185, 192 197, 196, 204, 204

a. Test for main effects and interactions using α = 0.05.

What are your conclusions?

b. Graph the interaction and discuss the information pro-

vided by this plot.

c. Analyze the residuals from this experiment.

14.S8 . WP An article in the IEEE Transactions on Compo-
nents, Hybrids, and Manufacturing Technology (1992, Vol. 15)

described an experiment for aligning optical chips onto circuit

boards. The method involves placing solder bumps onto the bot-

tom of the chip. The experiment used three solder bump sizes

and three alignment methods. The response variable is alignment

accuracy (in micrometers). The data are as follows:

Alignment Method

Solder Bump Size
(diameter in mm) 1 2 3

75 4.60 1.55 1.05

4.53 1.45 1.00

130 2.33 1.72 0.82

2.44 1.76 0.95

260 4.95 2.73 2.36

4.55 2.60 2.46



�

� �

�

Exercises P-133

a. Is there any indication that either solder bump size or

alignment method affects the alignment accuracy? Is there

any evidence of interaction between these factors? Use

α = 0.05.

b. What recommendations would you make about this

process?

c. Analyze the residuals from this experiment. Comment on

model adequacy.

14.S9 An article in the Textile Research Institute Journal (1984,

Vol. 54, pp. 171–179) reported the results of an experiment that

studied the effects of treating fabric with selected inorganic salts

on the flammability of the material. Two application levels of each

salt were used, and a vertical burn test was used on each sam-

ple. (This finds the temperature at which each sample ignites.)

The burn test data follow.

Salt

Level Untreated MgCl2 NaCl CaCO3 CaCl2 Na2CO3

1 812 752 739 733 725 751

827 728 731 728 727 761

876 764 726 720 719 755

2 945 794 741 786 756 910

881 760 744 771 781 854

919 757 727 779 814 848

a. Test for differences between salts, application levels, and

interactions. Use α = 0.01.

b. Draw a graph of the interaction between salt and applica-

tion level. What conclusions can you draw from this graph?

c. Analyze the residuals from this experiment.

14.S10 . WP An article in the Journal of Coatings Technology
(1988, Vol. 60, pp. 27–32) described a 24 factorial design used

for studying a silver automobile basecoat. The response variable

is distinctness of image (DOI). The variables used in the experi-

ment are

A = Percentage of polyester by weight of polyester/melamine

(low value = 50%, high value = 70%)
B = Percentage of cellulose acetate butyrate carboxylate

(low value = 15%, high value = 30%)
C = Percentage of aluminum stearate (low value = 1%,

high value = 3%)
D = Percentage of acid catalyst (low value = 0.25%, high value

= 0.50%)

The responses are (1) = 63.8, a = 77.6, b = 68.8, ab = 76.5,

c = 72.5, ac = 77.2, bc = 77.7, abc = 84.5, d = 60.6, ad = 64.9,

bd = 72.7, abd = 73.3, cd = 68.0, acd = 76.3, bcd = 76.0, and

abcd = 75.9.

a. Estimate the factor effects.

b. From a normal probability plot of the effects, identify a

tentative model for the data from this experiment.

c. Using the apparently negligible factors as an estimate of

error, test for significance of the factors identified in part (b).

Use α = 0.05.

d. What model would you use to describe the process based

on this experiment? Interpret the model.

e. Analyze the residuals from the model in part (d) and com-

ment on your findings.

14.S11 . WP . SS An article in Solid State Technology (1984,

Vol. 29, pp. 281–284) described the use of factorial experiments

in photolithography, an important step in the process of manu-

facturing integrated circuits. The variables in this experiment (all

at two levels) are prebake temperature (A), prebake time (B), and

exposure energy (C), and the response variable is delta line width,

the difference between the line on the mask and the printed line

on the device. The data are as follows: (1) = −2.30, a = −9.87,

b = −18.20, ab = −30.20, c = −23.80, ac = −4.30, bc = −3.80,

and abc = −14.70.

a. Estimate the factor effects.

b. Use a normal probability plot of the effect estimates to

identity factors that may be important.

c. What model would you recommend for predicting

the delta line width response based on the results of this

experiment?

d. Analyze the residuals from this experiment, and comment

on model adequacy.

14.S12 Construct a 24−1

IV
design for the problem in Exercise

14.S10. Select the data for the eight runs that would have been

required for this design. Analyze these runs and compare your

conclusions to those obtained in Exercise 14.S10 for the full

factorial.

14.S13 Construct a 25−2

III
design in eight runs. What are the alias

relationships in this design?

14.S14 Construct a 28−4

IV
design in 16 runs. What are the alias

relationships in this design?

14.S15 An article in Rubber Chemistry and Technology (1974,

Vol. 47, pp. 825–836) described an experiment to study the effect

of several variables on the Mooney viscosity of rubber, including

silica filler (parts per hundred) and oil filler (parts per hundred).

Data typical of that reported in this experiment are reported in the

following table where

x1 = silica − 60

15
, x2 =

oil − 21

15

a. What type of experimental design has been used?

b. Analyze the data and draw appropriate conclusions.

Coded levels
x1 x2 y

−1 −1 13.71

1 −1 14.15

−1 1 12.87

1 1 13.53

−1 −1 13.90

1 −1 14.88

−1 1 12.25

−1 1 13.35
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14.S16 . WP An article in Plant Disease [“Effect of Nitrogen and

Potassium Fertilizer Rates on Severity of Xanthomonas Blight

of Syngonium Podophyllum” (1989, Vol. 73(12), pp. 972–975)]

showed the effect of the variable nitrogen and potassium rates

on the growth of “White Butterfly” and the mean percentage of

disease. Data representative of that collected in this experiment

is provided in the following table.

Potassium (mg/pot/wk)

Nitrogen
(mg/pot/wk) 30 90 120

50 61.0 61.3 45.5 42.5 59.5 58.2

150 54.5 55.9 53.5 51.9 34.0 35.9

250 42.7 40.4 36.5 37.4 32.5 33.8

a. State the appropriate hypotheses.

b. Use the analysis of variance to test these hypotheses

with α = 0.05.

c. Graphically analyze the residuals from this experiment.

d. Estimate the appropriate variance components.

14.S17 . SS An article in the Journal of Applied Electrochem-
istry (May 2008, Vol. 38(5), pp. 583–590) presented a 27−3

fractional factorial design to perform optimization of

polybenzimidazole-based membrane electrode assemblies for

H2/O2 fuel cells. The design and data are shown in the following

table.

Current Density
Runs A B C D E F G (CD mA cm2)

1 −1 −1 −1 −1 −1 −1 −1 160

2 +1 −1 −1 −1 +1 +1 +1 20

3 −1 +1 −1 −1 +1 +1 −1 80

4 +1 +1 −1 −1 −1 −1 +1 317

5 −1 −1 +1 −1 +1 −1 +1 19

6 +1 −1 +1 −1 −1 +1 −1 4

7 −1 +1 +1 −1 −1 +1 +1 20

8 +1 +1 +1 −1 +1 −1 −1 88

9 −1 −1 −1 +1 −1 +1 +1 1100

10 +1 −1 −1 +1 +1 −1 −1 12

11 −1 +1 −1 +1 +1 −1 +1 552

12 +1 +1 −1 +1 −1 +1 −1 880

13 −1 −1 +1 +1 +1 +1 −1 16

14 +1 −1 +1 +1 −1 −1 +1 20

15 −1 +1 +1 +1 −1 −1 −1 8

16 +1 +1 +1 +1 +1 +1 +1 15

The factors and levels are shown in the following table.

Factor −1 +1
A Amount of binder in the

catalyst layer

0.2 mg cm2 1 mg cm2

B Electrocatalyst loading 0.1 mg cm2 1 mg cm2

C Amount of carbon in the

gas diffusion layer

2 mg cm2 4.5 mg cm2

D Hot compaction time 1 min 10 min

E Compaction temperature 100∘C 150∘C
F Hot compaction load 0.04 ton cm2 0.2 ton cm2

G Amount of PTFE in the

gas diffusion layer

0.1 mg cm2 1 mg cm2

a. Write down the alias relationships.

b. Estimate the main effects.

c. Prepare a normal probability plot for the effects and inter-

pret the results.

d. Calculate the sum of squares for the alias set that contains

the ABG interaction from the corresponding effect estimate.

14.S18 Consider the following results from a two-factor exper-

iment with two levels for factor A and three levels for factor B.

Each treatment has three replicates.

A B Mean StDev

1 1 21.33333 6.027714

1 2 20 7.549834

1 3 32.66667 3.511885

2 1 31 6.244998

2 2 33 6.557439

2 3 23 10

a. Calculate the sum of squares for each factor and the

interaction.

b. Calculate the sum of squares total and error.

c. Complete an ANOVA table with F-statistics.

14.S19 The rework time required for a machine was found to

depend on the speed at which the machine was run (A), the lubri-

cant used while working (B), and the hardness of the metal used

in the machine (C). Two levels of each factor were chosen and a

single replicate of a 23 experiment was run. The rework time data

(in hours) are shown in the following table.

Treatment Time
Combination (in hours)

(1) 27

a 34

b 38

ab 59

c 44

ac 40

bc 63

abc 37
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a. These treatments cannot all be run under the same

conditions. Set up a design to run these observations in two

blocks of four observations each, with ABC confounded with

blocks.

b. Analyze the data.

14.S20 An article in Process Biochemistry (1996, Vol. 31(8),

pp. 773–785) presented a 27−3 fractional factorial to perform opti-

mization of manganese dioxide bioleaching media. The data are

shown in the following table.

Manganese
Extraction

Runs A B C D E F G Yield (%)

1 −1 −1 −1 −1 −1 −1 −1 99.0

2 1 −1 −1 −1 1 −1 1 97.4

3 −1 1 −1 −1 1 1 1 97.7

4 1 1 −1 −1 −1 1 −1 90.0

5 −1 −1 1 −1 1 1 −1 100.0

6 1 −1 1 −1 −1 1 1 98.0

7 −1 1 1 −1 −1 −1 1 90.0

8 1 1 1 −1 1 −1 −1 93.5

9 −1 −1 −1 1 −1 1 1 100.0

10 1 −1 −1 1 1 1 −1 98.6

11 −1 1 −1 1 1 −1 −1 97.1

12 1 1 −1 1 −1 −1 1 92.4

13 −1 −1 1 1 1 −1 1 93.0

14 1 −1 1 1 −1 −1 −1 95.0

15 −1 1 1 1 −1 1 −1 97.0

16 1 1 1 1 1 1 1 98.0

The factors and levels are shown in the following table.

Factor −1 +1
A Mineral concentration (%) 10 20

B Molasses (g/liter) 100 200

C NH4NO3 (g/liter) 1.25 2.50

D KH2PO4 (g/liter) 0.75 1.50

E MgSO4 (g/liter) 0.5 1.00

F Yeast extract (g/liter) 0.20 0.50

G NaHCO3 (g/liter) 2.00 4.00

a. Write down the complete defining relation and the aliases

from the design.

b. Estimate the main effects.

c. Plot the effect estimates on normal probability paper and

interpret the results.

d. Conduct a residual analysis.

14.S21 Consider the following ANOVA table from a two-factor

factorial experiment.

Two-way ANOVA: y Versus A, B
Source DF SS MS F P

A 3 1213770 404590 ? 0.341

B 2 ? 17335441 58.30 0.000

Error ? 1784195 ?

Total 11 37668847

a. How many levels of each factor were used in the

experiment?

b. How many replicates were used?

c. What assumption is made in order to obtain an estimate

of error?

d. Calculate the missing entries (denoted with “?”) in the

ANOVA table.

Chapter 15 Exercises

Exercises for Section 15.3

WP Problem available in WileyPLUS at instructor’s discretion.
WP GO Tutorial Tutoring problem available in WileyPLUS at

instructor’s discretion
SS Student solution available in WileyPLUS.

VS Student video solution available in WileyPLUS.

15.3.1 . WP Control charts are to be constructed for samples of

size n = 4, and x and s are computed for each of 20 preliminary

samples as follows:

20∑

i=1

xi = 4460

20∑

i=1

si = 271.6

a. Calculate trial control limits for X and S charts.

b. Assuming the process is in control, estimate the process

mean and standard deviation.



�

� �

�

P-136 Exercises

15.3.2 . WP Twenty-five samples of size 5 are drawn from

a process at one-hour intervals, and the following data are

obtained:

25∑

i=1

xi = 362.75

25∑

i=1

ri = 8.60

25∑

i=1

si = 3.64

a. Calculate trial control limits for X and R charts.

b. Repeat part (a) for X and S charts.

15.3.3 . WP The level of cholesterol (in mg/dL) is an impor-

tant index for human health. The sample size is n = 5.

The following summary statistics are obtained from cholesterol

measurements:

30∑

i=1

xi = 140.03,

30∑

i=1

ri = 13.63,

30∑

i=1

si = 5.10

a. Find trial control limits for X and R charts.

b. Repeat part (a) for X and S charts.

15.3.4 An X control chart with 3-sigma control limits has

UCL = 48.75 and LCL = 42.71. Suppose that the process stan-

dard deviation is σ = 2.25. What subgroup size was used for

the chart?

15.3.5 . WP . SS The pull strength of a wire-bonded lead for an

integrated circuit is monitored. The following table provides data

for 20 samples each of size 3.

Sample Number x1 x2 x3

1 15.4 15.6 15.3

2 15.4 17.1 15.2

3 16.1 16.1 13.5

4 13.5 12.5 10.2

5 18.3 16.1 17.0

6 19.2 17.2 19.4

7 14.1 12.4 11.7

8 15.6 13.3 13.6

9 13.9 14.9 15.5

10 18.7 21.2 20.1

11 15.3 13.1 13.7

12 16.6 18.0 18.0

13 17.0 15.2 18.1

14 16.3 16.5 17.7

15 8.4 7.7 8.4

16 11.1 13.8 11.9

17 16.5 17.1 18.5

18 18.0 14.1 15.9

19 17.8 17.3 12.0

20 11.5 10.8 11.2

a. Use all the data to determine trial control limits for X and

R charts, construct the control limits, and plot the data.

b. Use the control limits from part (a) to identify out-

of-control points. If necessary, revise your control limits

assuming that any samples that plot outside of the control

limits can be eliminated.

c. Repeat parts (a) and (b) for X and S charts.

15.3.6 . WP VS The copper content of a plating bath is mea-

sured three times per day, and the results are reported in ppm. The

x and r values for 25 days are shown in the following table:

Day x r Day x r

1 5.45 1.21 14 7.01 1.45

2 5.39 0.95 15 5.83 1.37

3 6.85 1.43 16 6.35 1.04

4 6.74 1.29 17 6.05 0.83

5 5.83 1.35 18 7.11 1.35

6 7.22 0.88 19 7.32 1.09

7 6.39 0.92 20 5.90 1.22

8 6.50 1.13 21 5.50 0.98

9 7.15 1.25 22 6.32 1.21

10 5.92 1.05 23 6.55 0.76

11 6.45 0.98 24 5.90 1.20

12 5.38 1.36 25 5.95 1.19

13 6.03 0.83

a. Using all the data, find trial control limits for X and R
charts, construct the chart, and plot the data. Is the process in

statistical control?

b. If necessary, revise the control limits computed in part

(a), assuming that any samples that plot outside the control

limits can be eliminated.

15.3.7 Apply the Western Electric rules to the following control

chart. The warning limits are shown as dotted lines. Describe any

rule violations.

252321191715131197531

32.5

30.0

27.5

25.0

22.5

20.0

17.5

15.0

Observation

_
X = 22.98

UCL = 30.82

LCL = 15.15

28.21

17.76

25.60

20.37
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15.3.8 The following data were considered in Quality Engi-
neering [“An SPC Case Study on Stabilizing Syringe Lengths”

(1999–2000, Vol. 12(1), pp. 65–71)]. The syringe length is

measured during a pharmaceutical manufacturing process. The

following table provides data (in inches) for 20 samples each of

size 5.

Sample x1 x2 x3 x4 x5

1 4.960 4.946 4.950 4.956 4.958

2 4.958 4.927 4.935 4.940 4.950

3 4.971 4.929 4.965 4.952 4.938

4 4.940 4.982 4.970 4.953 4.960

5 4.964 4.950 4.953 4.962 4.956

6 4.969 4.951 4.955 4.966 4.954

7 4.960 4.944 4.957 4.948 4.951

8 4.969 4.949 4.963 4.952 4.962

9 4.984 4.928 4.960 4.943 4.955

10 4.970 4.934 4.961 4.940 4.965

11 4.975 4.959 4.962 4.971 4.968

12 4.945 4.977 4.950 4.969 4.954

13 4.976 4.964 4.970 4.968 4.972

14 4.970 4.954 4.964 4.959 4.968

15 4.982 4.962 4.968 4.975 4.963

16 4.961 4.943 4.950 4.949 4.957

17 4.980 4.970 4.975 4.978 4.977

18 4.975 4.968 4.971 4.969 4.972

19 4.977 4.966 4.969 4.973 4.970

20 4.975 4.967 4.969 4.972 4.972

a. Using all the data, find trial control limits for X and R
charts, construct the chart, and plot the data. Is this process

in statistical control?

b. Use the trial control limits from part (a) to identify

out-of-control points. If necessary, revise your control lim-

its assuming that any samples that plot outside the control

limits can be eliminated.

c. Repeat parts (a) and (b) for X and S charts.

15.3.9 . SS Consider the data in Exercise 15.3.5. Calculate the

sample standard deviation of all 60 measurements and compare

this result to the estimate of σ obtained from your revised X and

R charts. Explain any differences.

15.3.10 Web traffic can be measured to help highlight secu-

rity problems or indicate a potential lack of bandwidth. Data

on Web traffic (in thousand hits) from http://en.wikipedia

.org/wiki/Web_traffic are given in the following table for 25 sam-

ples each of size 4.

Sample x1 x2 x3 x4

1 163.95 164.54 163.87 165.10

2 163.30 162.85 163.18 165.10

3 163.13 165.14 162.80 163.81

4 164.08 163.43 164.03 163.77

5 165.44 163.63 163.95 164.78

6 163.83 164.14 165.22 164.91

7 162.94 163.64 162.30 163.78

8 164.97 163.68 164.73 162.32

9 165.04 164.06 164.40 163.69

10 164.74 163.74 165.10 164.32

11 164.72 165.75 163.07 163.84

12 164.25 162.72 163.25 164.14

13 164.71 162.63 165.07 162.59

14 166.61 167.07 167.41 166.10

15 165.23 163.40 164.94 163.74

16 164.27 163.42 164.73 164.88

17 163.59 164.84 164.45 164.12

18 164.90 164.20 164.32 163.98

19 163.98 163.53 163.34 163.82

20 164.08 164.33 162.38 164.08

21 165.71 162.63 164.42 165.27

22 164.03 163.36 164.55 165.77

23 160.52 161.68 161.18 161.33

24 164.22 164.27 164.35 165.12

25 163.93 163.96 165.05 164.52

a. Use all the data to determine trial control limits for X and

R charts, construct the chart, and plot the data.

b. Use the trial control limits from part (a) to identify

out-of-control points. If necessary, revise your control lim-

its, assuming that any samples that plot outside the control

limits can be eliminated.

15.3.11 An X control chart with 3-sigma control limits and

subgroup size n = 4 has control limits UCL = 48.75 and LCL
= 40.55.

a. Estimate the process standard deviation.

b. Does the response to part (a) depend on whether r or s
was used to construct the X control chart?

15.3.12 An article in Quality & Safety in Health Care [“Sta-

tistical Process Control as a Tool for Research and Healthcare

Improvement” (2003, Vol. 12, pp. 458–464)] considered a

http://en.wikipedia.org/wiki/Web_traffic
http://en.wikipedia.org/wiki/Web_traffic
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number of control charts in healthcare. The following ap-

proximate data were used to construct X − S charts for the

turnaround time (TAT) for complete blood counts (in min-

utes). The subgroup size is n = 3 per shift, and the mean standard

deviation is 21. Construct the X chart and comment on the control

of the process. If necessary, assume that assignable causes can

be found, eliminate suspect points, and revise the control limits.

t 1 2 3 4 5 6 7 8 9 10 11 12 13 14

TAT 51 73 28 52 65 49 51 50 25 39 40 30 49 31

Exercises for Section 15.4

WP Problem available in WileyPLUS at instructor’s discretion.
WP GO Tutorial Tutoring problem available in WileyPLUS at

instructor’s discretion
SS Student solution available in WileyPLUS.

VS Student video solution available in WileyPLUS.

15.4.1 . WP In a semiconductor manufacturing process, CVD

metal thickness was measured on 30 wafers obtained over approx-

imately 2 weeks. Data are shown in the following table.

a. Using all the data, compute trial control limits for indi-

vidual observations and moving-range charts. Construct the

chart and plot the data. Determine whether the process is in

statistical control. If not, assume that assignable causes can

be found to eliminate these samples and revise the control

limits.

b. Estimate the process mean and standard deviation for the

in-control process.

Wafer x Wafer x Wafer x
1 16.8 11 17.1 21 15.2

2 14.9 12 15.9 22 16.7

3 18.3 13 16.4 23 15.2

4 16.5 14 15.8 24 14.7

5 17.1 15 15.4 25 17.9

6 17.4 16 15.4 26 14.8

7 15.9 17 14.3 27 17.0

8 14.4 18 16.1 28 16.2

9 15.0 19 15.8 29 15.6

10 15.7 20 15.9 30 16.3

15.4.2 . WP The viscosity of a chemical intermediate is mea-

sured every hour. Twenty samples each of size n = 1 are in the

following table.

Sample Viscosity Sample Viscosity Sample Viscosity
1 495 8 504 15 497

2 491 9 542 16 499

3 501 10 508 17 468

4 501 11 493 18 486

5 512 12 507 19 511

6 540 13 503 20 487

7 492 14 475

a. Using all the data, compute trial control limits for indi-

vidual observations and moving-range charts. Determine

whether the process is in statistical control. If not, assume

that assignable causes can be found to eliminate these sam-

ples and revise the control limits.

b. Estimate the process mean and standard deviation for the

in-control process.

15.4.3 . WP VS The following table of data was analyzed

in Quality Engineering [1991–1992, Vol. 4(1)]. The average

particle size of raw material was obtained from 25 successive

samples.

Observation Size Observation Size Observation Size

1 96.1 10 96.8 19 87.4

2 94.4 11 100.9 20 96.1

3 116.2 12 117.7 21 97.1

4 98.8 13 115.6 22 95.7

5 95.0 14 100.5 23 94.2

6 120.3 15 103.1 24 102.4

7 104.8 16 93.1 25 131.9

8 88.4 17 93.7

9 106.8 18 72.4

a. Using all the data, compute trial control limits for indi-

vidual observations and moving-range charts. Construct the

chart and plot the data. Determine whether the process is in

statistical control. If not, assume that assignable causes can

be found to eliminate these samples and revise the control

limits.

b. Estimate the process mean and standard deviation for the

in-control process.

15.4.4 Pulsed laser deposition technique is a thin film deposi-

tion technique with a high-powered laser beam. Twenty-five films

were deposited through this technique. The thicknesses of the

films obtained are shown in the following table.
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Thickness Thickness Thickness
Film (nm) Film (nm) Film (nm)

1 28 10 35 19 56

2 45 11 47 20 49

3 34 12 50 21 21

4 29 13 32 22 62

5 37 14 40 23 34

6 52 15 46 24 31

7 29 16 59 25 98

8 51 17 20

9 23 18 33

a. Using all the data, compute trial control limits for indi-

vidual observations and moving-range charts. Determine

whether the process is in statistical control. If not, assume

that assignable causes can be found to eliminate these sam-

ples and revise the control limits.

b. Estimate the process mean and standard deviation for the

in-control process.

15.4.5 . SS An article in the Journal of the Operational
Research Society [“A Quality Control Approach for Monitoring

Inventory Stock Levels” (1993, Vol. 44, pp. 1115–1127)] reported

on a control chart to monitor the accuracy of an inventory man-

agement system. Inventory accuracy at time t, AC(t), is defined

as the difference between the recorded and actual inventory (in

absolute value) divided by the recorded inventory. Consequently,

AC(t) ranges between 0 and 1, with lower values better. Extracted

data are shown in the following table.

t 1 2 3 4 5 6 7 8

AC(t) 0.190 0.050 0.095 0.055 0.090 0.200 0.030 0.105

t 9 10 11 12 13 14 15 16

AC(t) 0.115 0.103 0.121 0.089 0.180 0.122 0.098 0.173

t 17 18 19 20 21 22

AC(t) 0.298 0.075 0.083 0.115 0.147 0.079

a. Calculate individuals and moving-range charts for

these data.

b. Comment on the control of the process. If necessary,

assume that assignable causes can be found, eliminate sus-

pect points, and revise the control limits.

15.4.6 An article in Quality & Safety in Health Care [“Statistical

Process Control as a Tool for Research and Healthcare Improve-

ment” (2003, Vol. 12, pp. 458–464)] considered a number of

control charts in healthcare. An X chart was constructed for the

amount of infectious waste discarded each day (in pounds). The

article mentions that improperly classified infectious waste (actu-

ally not hazardous) adds substantial costs to hospitals each year.

The following tables show approximate data for the average daily

waste per month before and after process changes, respectively.

The process change included an education campaign to provide

an operational definition for infectious waste.

Before Process Change
Month 1 2 3 4 5 6 7 8 9

Waste 6.9 6.8 6.9 6.7 6.9 7.5 7 7.4 7

Month 13 14 15 16 17 18 19 20 21

Waste 7.5 7.4 6.5 6.9 7.0 7.2 7.8 6.3 6.7

After Process Change
Month 1 2 3 4 5 6 7 8 9 10

Waste 5.0 4.8 4.4 4.3 4.6 4.3 4.5 3.5 4.0 4.1

Month 11 12 13 14 15 16 17 18 19 20

Waste 3.8 5.0 4.6 4.0 5.0 4.9 4.9 5.0 6.0 4.5

Month 21 22 23 24 25 26 27 28 29 30

Waste 4.0 5.0 4.5 4.6 4.6 3.8 5.3 4.5 4.4 3.8

a. Handle the data before and after the process change sepa-

rately and construct individuals and moving-range charts for

each set of data. Assume that assignable causes can be found

and eliminate suspect observations. If necessary, revise the

control limits.

b. Comment on the control of each chart and differences

between the charts. Was the process change effective?

Exercises for Section 15.5

WP Problem available in WileyPLUS at instructor’s discretion.
WP GO Tutorial Tutoring problem available in WileyPLUS at

instructor’s discretion
SS Student solution available in WileyPLUS.

VS Student video solution available in WileyPLUS.

15.5.1 . WP Suppose that a quality characteristic is normally dis-

tributed with specifications from 20 to 32 units.

a. What value is needed for σ to achieve a PCR of 1.5?

b. What value for the process mean minimizes the fraction

defective? Does this choice for the mean depend on the value

of σ?

15.5.2 . WP Suppose that a quality characteristic is normally dis-

tributed with specifications at 100 ± 20. The process standard

deviation is 6.

a. Suppose that the process mean is 100. What are the natu-

ral tolerance limits? What is the fraction defective? Calculate

PCR and PCRk and interpret these ratios.

b. Suppose that the process mean is 106. What are the natu-

ral tolerance limits? What is the fraction defective? Calculate

PCR and PCRk and interpret these ratios.
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15.5.3 . WP . SS A normally distributed process uses 66.7% of

the specification band. It is centered at the nominal dimension,

located halfway between the upper and lower specification limits.

a. Estimate PCR and PCRk. Interpret these ratios.

b. What fallout level (fraction defective) is produced?

15.5.4 Reconsider Exercise 15.3.2 in which the specification lim-

its are 14.50 ± 0.50.

a. What conclusions can you draw about the ability of the

process to operate within these limits? Estimate the percent-

age of defective items that is produced.

b. Estimate PCR and PCRk. Interpret these ratios.

15.5.5 . WP . SS Reconsider Exercise 15.3.1. Suppose that the

variable is normally distributed with specifications at 220 ± 50.

What is the proportion out of specifications? Estimate and inter-

pret PCR and PCRk.

15.5.6 Reconsider the copper-content measurements in Exercise

15.3.6. Given that the specifications are at 6.0± 1.0, estimate PCR
and PCRk and interpret these ratios.

15.5.7 . VS Suppose that a quality characteristic is normally dis-

tributed with specifications at 120 ± 20. The process standard

deviation is 6.5.

a. Suppose that the process mean is 120. What are the natu-

ral tolerance limits? What is the fraction defective? Calculate

PCR and PCRk and interpret these ratios.

b. Suppose that the process mean shifts off-center by 1.5

standard deviations toward the upper specification limit.

Recalculate the quantities in part (a).

c. Compare the results in parts (a) and (b) and comment on

any differences.

15.5.8 . WP Reconsider the viscosity measurements in Exercise

15.4.2. The specifications are 500 ± 25. Calculate estimates of

the process capability ratios PCR and PCRk for this process and

provide an interpretation.

15.5.9 A process mean is centered between the specification lim-

its and PCR = 1.33. Assume that the process mean increases

by 1.5σ.
a. Calculate PCR and PCRk for the shifted process.

b. Calculate the estimated fallout from the shifted process

and compare your result to those in Table 15.4. Assume a

normal distribution for the measurement.

15.5.10 The PCR for a measurement is 1.5 and the control limits

for an X chart with n = 4 are 24.6 and 32.6.

a. Estimate the process standard deviation σ.

b. Assume that the specification limits are centered around

the process mean. Calculate the specification limits.

Exercises for Section 15.6

WP Problem available in WileyPLUS at instructor’s discretion.
WP GO Tutorial Tutoring problem available in WileyPLUS at

instructor’s discretion
SS Student solution available in WileyPLUS.

VS Student video solution available in WileyPLUS.

15.6.1 . WP VS An early example of SPC was described in

Industrial Quality Control [“The Introduction of Quality Control

at Colonial Radio Corporation” (1944, Vol. 1(1), pp. 4–9)]. The

following are the fractions defective of shaft and washer assem-

blies during the month of April in samples of n = 1500 each:

Fraction Fraction Fraction
Sample Defective Sample Defective Sample Defective

1 0.11 8 0.03 15 0.04

2 0.06 9 0.02 16 0.04

3 0.1 10 0.03 17 0.04

4 0.11 11 0.03 18 0.03

5 0.14 12 0.03 19 0.06

6 0.11 13 0.04 20 0.06

7 0.14 14 0.07

a. Set up a P chart for this process. Is this process in statis-

tical control?

b. Suppose that instead of n = 1500, n = 100. Use the data

given to set up a P chart for this process. Revise the control

limits if necessary.

c. Compare your control limits for the P charts in parts (a)

and (b). Explain why they differ. Also, explain why your

assessment about statistical control differs for the two sizes

of n.

15.6.2 . WP The following represent the number of defects per

1000 feet in copper wire: 1, 1, 3, 7, 8, 10, 5, 13, 0, 19, 24, 6, 9,

11, 15, 8, 3, 6, 7, 4, 9, 20, 11, 7, 18, 10, 6, 4, 0, 9, 7, 3, 1, 8, 12.

Do the data come from a controlled process?

15.6.3 . WP . SS The following represent the number of solder

defects observed on 24 samples of five printed circuit boards: 7,

6, 8, 10, 24, 6, 5, 4, 8, 11, 15, 8, 4, 16, 11, 12, 8, 6, 5, 9, 7, 14,

8, 21.

a. Using all the data, compute trial control limits for a U
control chart, construct the chart, and plot the data.

b. Can we conclude that the process is in control using a U
chart? If not, assume that assignable causes can be found, and

list points and revise the control limits.

15.6.4 The following data are the number of spelling errors

detected for every 1000 words on a news Web site over 20 weeks.
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No. of Spelling No. of Spelling
Week Errors Week Errors

1 3 11 1

2 6 12 6

3 0 13 9

4 5 14 8

5 9 15 6

6 5 16 4

7 2 17 13

8 2 18 3

9 3 19 0

10 2 20 7

a. What control chart is most appropriate for these data?

b. Using all the data, compute trial control limits for the

chart in part (a), construct the chart, and plot the data.

c. Determine whether the process is in statistical control.

If not, assume that assignable causes can be found and

out-of-control points eliminated. Revise the control limits.

15.6.5 A article in Epilepsy Research [“Statistical Process Con-

trol (SPC): A Simple Objective Method for Monitoring Seizure

Frequency and Evaluating Effectiveness of Drug Interventions in

Refractory Childhood Epilepsy” (2010, Vol. 91, pp. 205–213)]

used control charts to monitor weekly seizure changes in

patients with refractory childhood epilepsy. The following table

shows representative data of weekly observations of seizure

frequency (SF).

Week 1 2 3 4 5 6 7 8 9 10

SF 13 10 17 10 18 14 10 12 16 13

Week 11 12 13 14 15 16 17 18 19 20

SF 14 11 8 11 10 3 2 13 15 21

Week 21 22 23 24 25

SF 15 12 14 18 12

a. What type of control chart is appropriate for these data?

Construct this chart.

b. Comment on the control of the process.

c. If necessary, assume that assignable causes can be found,

eliminate suspect points, and revise the control limits.

d. In the publication, the weekly SFs were approximated

as normally distributed and an individuals chart was con-

structed. Construct this chart and compare it to the attribute

chart you built in part (a).

15.6.6 A article in Graefe’s Archive for Clinical and Experimen-
tal Ophthalmology [“Statistical Process Control Charts for Oph-

thalmology” (2011, Vol. 249, pp. 1103–1105)] considered the

number of cataract surgery cases by month. The data are shown

in the following table.

a. What type of control chart is appropriate for these data?

Construct this chart.

b. Comment on the control of the process.

c. If necessary, assume that assignable causes can be found,

eliminate suspect points, and revise the control limits.

d. In the publication, the data were approximated as nor-

mally distributed and an individuals chart was constructed.

Construct this chart and compare it to the attribute chart

you built in part (a). Why might an individuals chart be

reasonable?

January February March April May June July

61 88 80 68 80 70 60

August September October November December

56 72 118 106 60

Exercises for Section 15.7

WP Problem available in WileyPLUS at instructor’s discretion.
WP GO Tutorial Tutoring problem available in WileyPLUS at

instructor’s discretion
SS Student solution available in WileyPLUS.

VS Student video solution available in WileyPLUS.

15.7.1 . WP . SS VS An X chart uses samples of size 1. The

center line is at 100, and the upper and lower 3-sigma limits are

at 112 and 88, respectively.

a. What is the process σ?

b. Suppose that the process mean shifts to 96. Find the prob-

ability that this shift is detected on the next sample.

c. Find the ARL to detect the shift in part (b).

15.7.2 . WP An X chart uses samples of size 4. The center line is

at 100, and the upper and lower 3-sigma control limits are at 106

and 94, respectively.

a. What is the process σ?

b. Suppose that the process mean shifts to 96. Find the prob-

ability that this shift is detected on the next sample.

c. Find the ARL to detect the shift in part (b).

15.7.3 Consider an X control chart with UCL = 0.0635,LCL =
0.0624, and n = 5. Suppose that the mean shifts to 0.0625.
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a. What is the probability that this shift is detected on the

next sample?

b. What is the ARL after the shift?

15.7.4 . WP Consider an X control chart with UCL =
14.708,LCL = 14.312, and n = 5. Suppose that the mean shifts

to 14.6.

a. What is the probability that this shift is detected on the

next sample?

b. What is the ARL after the shift?

15.7.5 An X chart uses a sample of size 3. The center line is at

200, and the upper and lower 3-sigma control limits are at 212 and

188, respectively. Suppose that the process mean shifts to 195.

a. Find the probability that this shift is detected on the next

sample.

b. Find the ARL to detect the shift in part (a).

15.7.6 . WP Consider an X control chart with UCL = 17.40,

LCL = 12.79, and n = 3. Suppose that the mean shifts to 13.

a. What is the probability that this shift is detected on the

next sample?

b. What is the ARL after the shift?

15.7.7 . SS Consider a P-chart with subgroup size n = 50 and

center line at 0.12.

a. Calculate the LCL and UCL.

b. Suppose that the true proportion defective changes from

0.12 to 0.18. What is the ARL after the shift? Assume that the

sample proportions are approximately normally distributed.

c. Rework part (a) and (b) with n = 100 and comment on the

difference in ARL. Does the increased sample size change the

ARL substantially?

15.7.8 Consider the U chart for printed circuit boards in

Example 15.3.3. The center line = 1.6, UCL = 3.3, and n = 5.

a. Calculate the LCL and UCL.

b. Suppose that the true mean defects per unit shifts from

1.6 to 2.4. What is the ARL after the shift? Assume that

the average defects per unit are approximately normally dis-

tributed.

c. Rework part (b) if the true mean defects per unit shifts

from 1.6 to 2.0 and comment on the difference in ARL.

Exercises for Section 15.8

WP Problem available in WileyPLUS at instructor’s discretion.
WP GO Tutorial Tutoring problem available in WileyPLUS at

instructor’s discretion
SS Student solution available in WileyPLUS.

VS Student video solution available in WileyPLUS.

15.8.1 . WP The following data were considered in Quality
Engineering [“Parabolic Control Limits for the Exponentially

Weighted Moving Average Control Charts in Quality Engineer-

ing” (1992, Vol. 4(4), pp. 487–495)]. In a chemical plant, the data

for one of the quality characteristics (viscosity) were obtained

for each 12-hour batch completion. The results of 15 consecutive

measurements are shown in the following table.

a. Set up a EWMA control chart for this process with

λ = 0.2. Assume that the desired process target is 14.1. Does

the process appear to be in control?

Batch Viscosity Batch Viscosity
1 13.3 9 14.6

2 14.5 10 14.1

3 15.3 11 14.3

4 15.3 12 16.1

5 14.3 13 13.1

6 14.8 14 15.5

7 15.2 15 12.6

8 14.9

b. Suppose that the next five observations are 14.6, 15.3,

15.7, 16.1, and 16.8. Apply the EWMA in part (a) to these

new observations. Is there any evidence that the process has

shifted out of control?

15.8.2 The purity of a chemical product is measured every

2 hours. The results of 20 consecutive measurements are as

follows:

Sample Purity Sample Purity

1 89.11 11 88.55

2 90.59 12 90.43

3 91.03 13 91.04

4 89.46 14 88.17

5 89.78 15 91.23

6 90.05 16 90.92

7 90.63 17 88.86

8 90.75 18 90.87

9 89.65 19 90.73

10 90.15 20 89.78

Use σ = 0.8 and assume that the process target is 90.

a. Construct an EWMA control chart with λ = 0.2. Does the

process appear to be in control?

b. Construct an EWMA control chart with λ = 0.5. Compare

your results to part (a).

c. Suppose that the next five observations are 90.75, 90.00,

91.15, 90.95, and 90.86. Apply the EWMAs in parts (a) and

(b) to these new observations. Is there any evidence that the

process has shifted out of control?
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15.8.3 Consider an EMWA control chart. The target value for the

process is μ0 = 50 and σ = 2. Use Table 15.8.

a. If the sample size is n = 1, would you prefer an EWMA

chart with λ = 0.1 and L = 2.81 or λ = 0.5 and L = 3.07 to

detect a shift in the process mean to μ = 52 on average? Why?

b. If the sample size is increased to n = 4, which chart in

part (a) do you prefer? Why?

c. If an EWMA chart with λ= 0.1 and L= 2.81 is used, what

sample size is needed to detect a shift to μ = 52 in approxi-

mately three samples on average?

15.8.4 . WP The concentration of a chemical product is measured

by taking four samples from each batch of material. The aver-

age concentration of these measurements for the last 20 batches

is shown in the following table:

Batch Concentration Batch Concentration
1 104.5 11 95.4

2 99.9 12 94.5

3 106.7 13 104.5

4 105.2 14 99.7

5 94.8 15 97.7

6 94.6 16 97

7 104.4 17 95.8

8 99.4 18 97.4

9 100.3 19 99

10 100.3 20 102.6

Use σ = 8 and assume that the desired process target is 100.

a. Construct an EWMA control chart with λ = 0.2. Does the

process appear to be in control?

b. Construct an EWMA control chart with λ = 0.5. Compare

your results to part (a).

c. If the concentration shifted to 104, would you prefer the

chart in part (a) or (b)? Explain.

15.8.5 . SS Heart rate (in counts/minute) is measured every

30 minutes. The results of 20 consecutive measurements are as

follows:

Sample Heart Rate Sample Heart Rate
1 68 11 79

2 71 12 79

3 67 13 78

4 69 14 78

5 71 15 78

6 70 16 79

7 69 17 79

8 67 18 82

9 70 19 82

10 70 20 81

Use μ = 70 and σ = 3.

a. Construct an EWMA control chart with λ = 0.1. Use

L = 2.81. Does the process appear to be in control?

b. Construct an EWMA control chart with λ = 0.5. Use

L = 3.07. Compare your results to those in part (a).

c. If the heart rate mean shifts to 76, approximate the ARLs

for the charts in parts (a) and (b).

15.8.6 The number of influenza patients (in thousands) visiting

hospitals weekly is shown in the following table.

Number of Number of
Sample Patients Sample Patients

1 162.27 13 159.989

2 157.47 14 159.09

3 157.065 15 162.699

4 160.45 16 163.89

5 157.993 17 164.247

6 162.27 18 162.7

7 160.652 19 164.859

8 159.09 20 163.65

9 157.442 21 165.99

10 160.78 22 163.22

11 159.138 23 164.338

12 161.08 24 164.83

Use μ = 160 and σ = 2.

a. Construct an EWMA control chart with λ = 0.1. Use

L = 2.81. Does the process appear to be in control?

b. Construct an EWMA control chart with λ = 0.5. Use

L = 3.07. Compare your results to those in part (a).

Exercises for Section 15.10

WP Problem available in WileyPLUS at instructor’s discretion.
WP GO Tutorial Tutoring problem available in WileyPLUS at

instructor’s discretion
SS Student solution available in WileyPLUS.

VS Student video solution available in WileyPLUS.

15.10.1 Suppose that the cost of a major repair without the

extended warranty in Example 15.8 is changed to $1000.

Determine the decision selected based on the minimax, most

probable, and expected cost criteria.

15.10.2 Reconsider the extended warranty decision in Example

15.8. Suppose that the probabilities of the major, minor, and

no repair states are changed to 0.2, 0.4, and 0.4, respectively.

Determine the decision selected based on the minimax, most

probable, and expected cost criteria.
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15.10.3 . SS Analyze Example 15.9 based on the most probable

criterion and determine the actions that are selected at each deci-

sion node. Do any actions differ from those selected in the

example?

15.10.4 Analyze Example 15.9 based on the expected profit

criterion and determine the actions that are selected at each

decision node. Do any actions differ from those selected in the

example?

Supplemental Exercises for Chapter 15

WP Problem available in WileyPLUS at instructor’s discretion.
WP GO Tutorial Tutoring problem available in WileyPLUS at

instructor’s discretion
SS Student solution available in WileyPLUS.

VS Student video solution available in WileyPLUS.

15.S7 The diameter of fuse pins used in an aircraft engine appli-

cation is an important quality characteristic. Twenty-five samples

of three pins each are shown as follows:

Sample
Number Diameter

1 64.030 64.002 64.019

2 63.995 63.992 64.001

3 63.988 64.024 64.021

4 64.002 63.996 63.993

5 63.992 64.007 64.015

6 64.009 63.994 63.997

7 63.995 64.006 63.994

8 63.985 64.003 63.993

9 64.008 63.995 64.009

10 63.998 74.000 63.990

11 63.994 63.998 63.994

12 64.004 64.000 64.007

13 63.983 64.002 63.998

14 64.006 63.967 63.994

15 64.012 64.014 63.998

16 64.000 63.984 64.005

17 63.994 64.012 63.986

18 64.006 64.010 64.018

19 63.984 64.002 64.003

20 64.000 64.010 64.013

21 63.988 64.001 64.009

22 64.004 63.999 63.990

23 64.010 63.989 63.990

24 64.015 64.008 63.993

25 63.982 63.984 63.995

a. Set up X and R charts for this process. If necessary, revise

limits so that no observations are out of control.

b. Estimate the process mean and standard deviation.

c. Suppose that the process specifications are at 64 ± 0.02.

Calculate an estimate of PCR. Does the process meet a min-

imum capability level of PCR ≥ 1.33?

d. Calculate an estimate of PCRk. Use this ratio to draw con-

clusions about process capability.

e. To make this process a 6-sigma process, the variance σ2

would have to be decreased such that PCRk = 2.0. What

should this new variance value be?

f. Suppose that the mean shifts to 64.01. What is the prob-

ability that this shift is detected on the next sample? What is

the ARL after the shift?

15.S8 Rework Exercise 15.S7 with X and S charts.

15.S9 . WP Plastic bottles for liquid laundry detergent are formed

by blow molding. Twenty samples of n= 100 bottles are inspected

in time order of production, and the fraction defective in each

sample is reported. The data are as follows:

Fraction Fraction
Sample Defective Sample Defective

1 0.12 11 0.10

2 0.15 12 0.07

3 0.18 13 0.12

4 0.10 14 0.08

5 0.12 15 0.09

6 0.11 16 0.15

7 0.05 17 0.10

8 0.09 18 0.06

9 0.13 19 0.12

10 0.13 20 0.13

a. Set up a P chart for this process. Is the process in statisti-

cal control?

b. Suppose that instead of n = 100, n = 200. Use the data

given to set up a P chart for this process. Revise the control

limits if necessary.

c. Compare your control limits for the P charts in parts (a)

and (b). Explain why they differ. Also, explain why your

assessment about statistical control differs for the two sizes

of n.

15.S10 The following data from the U.S. Department of Energy

Web site (www.eia.doe.gov) reported the total U.S. renewable
energy consumption by year (quadrillion BTU).
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Total Renewable Total Renewable
Energy Consumption Energy Consumption

Year (Quadrillion BTU) Year (Quadrillion BTU)

1973 4.41 1995 6.56

1974 4.74 1996 7.01

1975 4.69 1997 7.01

1976 4.73 1998 6.49

1977 4.21 1999 6.51

1978 5.01 2000 6.10

1979 5.12 2001 5.16

1980 5.43 2002 5.73

1981 5.41 2003 5.94

1982 5.98 2004 6.07

1983 6.50 2005 6.23

1984 6.44 2006 6.64

1985 6.08 2007 6.52

1986 6.11 2008 7.17

1987 5.62 2009 7.60

1988 5.46 2010 8.03

1989 6.23 2011 9.00

1990 6.04 2012 8.71

1991 6.07 2013 9.27

1992 5.82 2014 9.56

1993 6.08 2015 9.58

1994 5.99

a. Using all the data, calculate control limits for a control

chart for individual measurements, construct the chart, and

plot the data.

b. Do the data appear to be generated from an in-control

process? Comment on any patterns on the chart.

15.S11 . WP . SS An article in Quality Engineering [“Is the Pro-

cess Capable?: Tables and Graphs in Assessing Cpm” (1992, Vol.

4(4), pp. 563–576)] considered manufacturing data. Specifica-

tions for the outer diameter of hubs were 60.3265 ± 0.001 mm.

A sample of 20 hubs was taken, and the data are shown in the

following table:

Hub x Hub x Hub x

1 60.3262 8 60.3267 15 60.3265

2 60.3262 9 60.3263 16 60.3266

3 60.3262 10 60.3269 17 60.3265

4 60.3266 11 60.3262 18 60.3268

5 60.3263 12 60.3262 19 60.3262

6 60.3260 13 60.3269 20 60.3266

7 60.3262 14 60.3261

a. Construct a control chart for individual measurements.

Revise the control limits if necessary.

b. Compare your chart in part (a) to one that uses only the

last (least significant) digit of each diameter as the measure-

ment. Explain your conclusion.

c. Estimate μ and σ from the moving range of the revised

chart and use this value to estimate PCR and PCRk and inter-

pret these ratios.

15.S12 . WP Suppose that an X control chart with 2-sigma lim-

its is used to control a process. Find the probability that a false

out-of-control signal is produced on the next sample. Compare

this with the corresponding probability for the chart with 3-sigma

limits and discuss. Comment on when you would prefer to use

2-sigma limits instead of 3-sigma limits.

15.S13 The following data set was considered in Quality
Engineering [“Analytic Examination of Variance Components”

(1994–1995, Vol. 7(2), pp. 315–336)]. A quality characteristic for

cement mortar briquettes was monitored. Samples of size n = 6

were taken from the process, and 25 samples from the process are

shown in the following table.

Batch x s Batch x s

1 572.00 73.25 14 485.67 103.33

2 583.83 79.30 15 746.33 107.88

3 720.50 86.44 16 436.33 98.69

4 368.67 98.62 17 556.83 99.25

5 374.00 92.36 18 390.33 117.35

6 580.33 93.50 19 562.33 75.69

7 388.33 110.23 20 675.00 90.10

8 559.33 74.79 21 416.50 89.27

9 562.00 76.53 22 568.33 61.36

10 729.00 49.80 23 762.67 105.94

11 469.00 40.52 24 786.17 65.05

12 566.67 113.82 25 530.67 99.42

13 578.33 58.03

a. Using all the data, calculate trial control limits for X and

S charts. Is the process in control?

b. Suppose that the specifications are at 580 ± 250. What

statements can you make about process capability? Compute

estimates of the appropriate process capability ratios.

c. To make this process a “6-sigma process,” the variance

σ2 would have to be decreased such that PCRk = 2.0. What

should this new variance value be?

d. Suppose the mean shifts to 600. What is the probability

that this shift is detected on the next sample? What is the

ARL after the shift?

15.S14 Suppose that a process is in control and an X chart is used

with a sample size of four to monitor the process. Suddenly there

is a mean shift of 1.5σ.

a. If 3-sigma control limits are used on the X chart, what

is the probability that this shift remains undetected for three

consecutive samples?

b. If 2-sigma control limits are in use on the X chart, what

is the probability that this shift remains undetected for three

consecutive samples?
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c. Compare your answers to parts (a) and (b) and explain

why they differ. Also, which limits would you recommend

using and why?

15.S15 Consider the diameter data in Exercise 15.S7.

a. Construct an EWMA control chart with λ = 0.2 and L =
3. Comment on process control.

b. Construct an EWMA control chart with λ = 0.5 and L =
3 and compare your conclusion to part (a).

15.S16 Consider a control chart for individuals applied to a

continuous 24-hour chemical process with observations taken

every hour.

a. If the chart has 3-sigma limits, how many false alarms

would occur each 30-day month, on the average, with this

chart?

b. Suppose that the chart has 2-sigma limits. Does this

reduce the ARL for detecting a shift in the mean of mag-

nitude σ?

c. Find the in-control ARL if 2-sigma limits are used on the

chart. How many false alarms would occur each month with

this chart? Is this in-control ARL performance satisfactory?

Explain your answer.

15.S17 . WP Consider the hub data in Exercise 15.S11.

a. Construct an EWMA control chart with λ = 0.2 and

L = 3. Comment on process control.

b. Construct an EWMA control chart with λ = 0.5 and

L = 3 and compare your conclusion to part (a).

15.S18 . WP Consider a control chart for individuals with

3-sigma limits. What is the probability that there is not a signal in

3 samples? In 6 samples? In 10 samples?

15.S19 The following data were considered in Quality Progress
[“Digidot Plots for Process Surveillance” (1990, Vol. 23(5),

pp. 66–68)]. Measurements of center thickness (in mils) from

25 contact lenses sampled from the production process at regular

intervals are shown in the following table.

Sample x Sample x

1 0.3978 14 0.3999

2 0.4019 15 0.4062

3 0.4031 16 0.4048

4 0.4044 17 0.4071

5 0.3984 18 0.4015

6 0.3972 19 0.3991

7 0.3981 20 0.4021

8 0.3947 21 0.4009

9 0.4012 22 0.3988

10 0.4043 23 0.3994

11 0.4051 24 0.4016

12 0.4016 25 0.4010

13 0.3994

Construct an EWMA control chart with μ0 = 0.4, λ = 0.5, and

L = 3 and compare to an individuals chart with 3-sigma limits.

15.S20 A process is controlled by a P chart using samples of size

100. The center line on the chart is 0.05.

a. What is the probability that the control chart detects a

shift to 0.08 on the first sample following the shift?
b. What is the probability that the control chart does not

detect a shift to 0.08 on the first sample following the shift,

but does detect it on the second sample?

c. Suppose that instead of a shift in the mean to 0.08, the

mean shifts to 0.10. Repeat parts (a) and (b).

d. Compare your answers for a shift to 0.08 and for a shift

to 0.10. Explain why they differ. Also, explain why a shift to

0.10 is easier to detect.

15.S21 . WP Consider the control chart for individuals with

3-sigma limits.

a. Suppose that a shift in the process mean of magnitude σ
occurs. Verify that the ARL for detecting the shift is ARL =
43.9.

b. Find the ARL for detecting a shift of magnitude 2σ in the

process mean.

c. Find the ARL for detecting a shift of magnitude 3σ in the

process mean.

d. Compare your responses to parts (a), (b), and (c) and

explain why the ARL for detection is decreasing as the mag-

nitude of the shift increases.

15.S22 Consider an X control chart with UCL = 32.802, LCL =
24.642, and n = 5. Suppose that the mean shifts to 30.

a. What is the probability that this shift is detected on the

next sample?

b. What is the ARL to detect the shift?

15.S23 . WP . SS The depth of a keyway is an important part

quality characteristic. Samples of size n = 5 are taken every 4

hours from the process, and 20 samples are summarized in the

following table.

Sample x r
1 139.7 1.1

2 139.8 1.4

3 140.0 1.3

4 140.1 1.6

5 139.8 0.9

6 139.9 1.0

7 139.7 1.4

8 140.2 1.2

9 139.3 1.1

10 140.7 1.0

Sample x r
11 138.4 0.8

12 138.5 0.9

13 137.9 1.2

14 138.5 1.1

15 140.8 1.0

16 140.5 1.3

17 139.4 1.4

18 139.9 1.0

19 137.5 1.5

20 139.2 1.3

a. Using all the data, find trial control limits for X and R
charts. Is the process in control?

b. Use the trial control limits from part (a) to identify

out-of-control points. If necessary, revise your control limits.

Then estimate the process standard deviation.

c. Suppose that the specifications are at 140 ± 2. Using the

results from part (b), what statements can you make about

process capability? Compute estimates of the appropriate

process capability ratios.

d. To make this a 6-sigma process, the variance σ2 would

have to be decreased such that PCRk = 2.0. What should this

new variance value be?
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e. Suppose that the mean shifts to 139.7. What is the prob-

ability that this shift is detected on the next sample? What is

the ARL after the shift?

15.S24 The following are the number of defects observed on 15

samples of transmission units in an automotive manufacturing

company. Each lot contains five transmission units.

Sample No. of Defects Sample No. of Defects
1 8 11 6

2 10 12 10

3 24 13 11

4 6 14 17

5 5 15 9

6 21

7 10

8 7

9 9

10 15

a. Using all the data, compute trial control limits for a

U control chart, construct the chart, and plot the data.

b. Determine whether the process is in statistical control.

If not, assume assignable causes can be found and out-of-

control points eliminated. Revise the control limits.

15.S25 . WP Suppose that the average number of defects in a unit

is known to be 8. If the mean number of defects in a unit shifts to

16, what is the probability that it is detected by a U chart on the

first sample following the shift

a. if the sample size is n = 4?

b. if the sample size is n = 10?

Use a normal approximation for U.

15.S26 The number of visits (in millions) on a Web site is

recorded every day. The following table shows the samples for

25 consecutive days.

Number of Number of
Sample Visits Sample Visits

1 10.12 16 9.66

2 9.92 17 10.42

3 9.76 18 11.30

4 9.35 19 12.53

5 9.60 20 10.76

6 8.60 21 11.92

7 10.46 22 13.24

8 10.58 23 10.64

9 9.95 24 11.31

10 9.50 25 11.26

11 11.26 26 11.79

12 10.02 27 10.53

13 10.95 28 11.82

14 8.99 29 11.47

15 9.50 30 11.76

a. Estimate the process standard estimation.

b. Set up a EWMA control chart for this process, assuming

the target is 10 with λ = 0.4. Does the process appear to be

in control?

15.S27 The following table shows the number of e-mails a stu-

dent received each hour from 8:00 A.M. to 6:00 P.M. The samples

are collected for 5 days from Monday to Friday.

Hour M T W Th F

1 2 2 2 3 1

2 2 4 0 1 2

3 2 2 2 1 2

4 4 4 3 3 2

5 1 1 2 2 1

6 1 3 2 2 1

7 3 2 1 1 0

8 2 3 2 3 1

9 1 3 3 2 0

10 2 3 2 3 0

a. Use the rational subgrouping principle to comment on

why an X chart that plots one point each hour with a subgroup

of size 5 is not appropriate.

b. Construct an appropriate attribute control chart. Use all

the data to find trial control limits, construct the chart, and

plot the data.

c. Use the trial control limits from part (b) to identify

out-of-control points. If necessary, revise your control lim-

its, assuming that any samples that plot outside the control

limits can be eliminated.

15.S28 An article in the Journal of Quality in Clinical Prac-
tice [“The Application of Statistical Process Control Charts to

the Detection and Monitoring of Hospital-Acquired Infections”

(2001, Vol. 21, pp. 112–117)] reported the use of SPC meth-

ods to monitor hospital-acquired infections. The authors applied

Shewhart, EWMA, and other charts to the monitor ESBL Kleb-

siella pneumonia infections. The monthly number of infections

from June 1994 to April 1998 are shown in the following table.

Jan Feb Mar April May Jun Jul Aug Sep Oct Nov Dec
1994 5 0 0 2 2 3 1

1995 1 3 2 6 4 1 2 4 3 2 8 7

1996 10 6 10 11 5 6 3 0 3 3 1 3

1997 0 2 0 4 1 1 4 2 6 7 1 5

1998 3 0 1 0 2

a. What distribution might be expected for these data? What

type of control chart might be appropriate?

b. Construct the chart you selected in part (a).

c. Construct a EWMA chart for these data with λ = 0.2.

The article included a similarly constructed chart. What is

assumed for the distribution of the data in this chart? Can

your EWMA chart perform adequately?

15.S29 An article in Microelectronics Reliability [“Advanced

Electronic Prognostics through System Telemetry and Pattern
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Recognition Methods” (2007, Vol. 47(12), pp. 1865–1873)] pre-

sented an example of electronic prognostics (a technique to detect

faults in order to decrease the system downtime and the num-

ber of unplanned repairs in high-reliability and high-availability

systems). Voltage signals from enterprise servers were monitored

over time. The measurements are provided in the following table.

Voltage Voltage
Observation Signal Observation Signal

1 1.498 26 1.510

2 1.494 27 1.521

3 1.500 28 1.507

4 1.495 29 1.493

5 1.502 30 1.499

6 1.509 31 1.509

7 1.480 32 1.491

8 1.490 33 1.478

9 1.486 34 1.495

10 1.510 35 1.482

11 1.495 36 1.488

12 1.481 37 1.480

13 1.529 38 1.519

14 1.479 39 1.486

15 1.483 40 1.517

16 1.505 41 1.517

17 1.536 42 1.490

18 1.493 43 1.495

19 1.496 44 1.545

20 1.587 45 1.501

21 1.610 46 1.503

22 1.592 47 1.486

23 1.585 48 1.473

24 1.587 49 1.502

25 1.482 50 1.497

a. Using all the data, compute trial control limits for indi-

vidual observations and moving-range charts. Construct the

chart and plot the data. Determine whether the process is in

statistical control. If not, assume that assignable causes can

be found to eliminate these samples and revise the control

limits.

b. Estimate the process mean and standard deviation for the

in-control process.

c. The report in the article assumed that the signal is

normally distributed with a mean of 1.5 V and a standard

deviation of 0.02 V. Do your results in part (b) support this

assumption?

15.S30 Consider the turnaround time (TAT) for complete blood

counts in Exercise 15.3.12. Suppose that the specifications for

TAT are set at 20 and 80 minutes. Use the control chart summary

statistics for the following.

a. Estimate the process standard deviation.

b. Calculate PCR and PCRk for the process.

15.S31 An article in Electric Power Systems Research [“On

the Self-Scheduling of a Power Producer in Uncertain Trading

Environments” (2008, Vol. 78(3), pp. 311–317)] considered a

self-scheduling approach for a power producer. The following

table shows the forecasted prices of energy for a 24-hour time

period according to a base case scenario.

Hour Price Hour Price Hour Price

1 38.77 9 48.75 17 52.07

2 37.52 10 51.18 18 51.34

3 37.07 11 51.79 19 52.55

4 35.82 12 55.22 20 53.11

5 35.04 13 53.48 21 50.88

6 35.57 14 51.34 22 52.78

7 36.23 15 45.8 23 42.16

8 38.93 16 48.14 24 42.16

a. Construct individuals and moving-range charts. Deter-

mine whether the energy prices fluctuate in statistical control.

b. Is the assumption of independent observations reasonable

for these data?

15.S32 Consider the TAT data in Exercise 15.3.12.

a. Construct an EWMA control chart with the target equal

to the estimated process mean, k = 0.5, and h = 4. Does the

process appear to be in control at the target?

b. If the mean increases by 5 minutes, approximate the

chart’s ARL.

15.S33 Consider the infectious-waste data in Exercise 15.4.6.

Use the data after the process change only.

a. Construct an EWMA control chart with the target equal

to the estimated process mean, k = 0.5, and h = 4. Does the

process appear to be in control at the target?

b. If the mean increases by 1.0 lb, approximate the ARL of

the chart.



�

� �

�

Index

Note: A page number followed by an f refers to a figure (graph, illustration); a t refers to a table.

1∕4 fraction, called a 2k−2 fractional
factorial design, 418

1∕8 fraction, called a 2k−3 fractional
factorial design, 418

1∕16 fraction, called a 2k−4 fractional
factorial design, 418

22 factorial design, 390–391, 390f, 391t
interaction effect, 391
main effects of factors, 391
models and residual analysis, 401
signs for effects in the, 391t

23 factorial design, 396, 396f, 397f
main effects of factors, 396
three-factor interaction effects, 398,

398t
two-factor interaction effects, 397

2k factorial design, 390–402
addition of center points to a,

405–407, 406f
blocking and confounding in the,

408–413, 408f, 409f
models and residual analysis, 393
one-half fraction of the, 413–418,

413t, 414f
projection of, 401
response and residuals by fitting a

regression model, 393–394
2k−1 factorial design, projection of the,

417
2k−2 fractional factorial design, called a

1∕4 fraction, 418
2k−3 fractional factorial design, called a

1/8 fraction, 418
2k−4 fractional factorial design, called a

1/16 fraction, 418
2k−p fractional factorial, 418–424
2k−p fractional factorial design, 422,

423t–424t
3-sigma control limits, 460
6-sigma process, 455, 455f

A
Abscissa scale, 249
Abstraction, also called a mathematical

model, 18
Acceptance region, 196
Addition rule, 30
Adjusted R2 statistic, 324
Adjustments, when they should and

should not be made to a process,
10–11, 11f

Agresti-Coull confidence
interval, 188

Alias pattern, fractional factorial design
and, 417

Alias structure, 419t
how to find the, 422

Aliases, definition of, 414
All-possible regressions approach, 349

fit all regression equations for one
candidate variable, 342

Alternate fraction, 414, 414f
Alternative hypothesis, 195, 206, 255,

258, 262, 265, 271, 275
abscissa scale of the operating

characteristic curve and, 249
one- or two-sided, 249, 250, 259, 276
part of the procedure for hypothesis

tests, 206
Analysis, regression, 2
Analysis of variance (ANOVA),

354–359, 354t, 382–383. See also
ANOVA

for a single-factor experiment,
fixed-effects model, 357t

for first-order model, 430t
for quadratic model, 430t
for regression model, 320
to test for significance of regression,

291–292
Analysis of variance identity, equation

for, 291
Analysis of variance method, 366
Analysis, of variance table, 291, 291t
Analytic study, definition of, 11

versus enumerative study, 11, 12f
ANOVA

computing formulas, randomized block
experiment, 371

F-test, 357
sum of squares identity, single factor

experiment, 356
sum of squares identity, two factors,

383
sum of squares identity, randomized

complete block experiment, 370
variance components and, 365–368
variance components estimates, 367

ANOVA table, for a two-factor factorial,
fixed-effects model, 385t

ANOVA test, hypothesis for, 322
ANOVA test statistic, 322
Approximate confidence interval

on a binomial population, 186
on difference in population

proportions, 277

Approximate sample size
for a one-sided test on a binomial

proportion, 228
for a two-sided test on a binomial

proportion, 228
for a two-sided test on the difference in

population proportions, 276
Approximate sampling distribution, of a

difference in sample means, 156
Approximate tests

on a binomial proportion, 226
on the difference of two population

proportions, 274
Approximate type II error

for a one-sided test on difference of two
population proportions, 276

for a two-sided test on difference of two
population proportions, 276

Approximation
large-sample, 263
Wilcoxon rank-sum test and normal,

263
Arbitrary normal random variable, how

to calculate probabilities for, 77
Architecture, advantage and

disadvantage of parallel, 38
Area, Poisson distribution and, 64
Arithmetic mean, known as the sample

mean, 127
ASMT Standard E23, 171
Assignable causes, definition of, 437
Assumptions

for two-sample inference, 246–247
needed to fit a regression model, 296
verifying, 144

Asymptotic normal distribution, 166
Attribute control charts, 439, 456–460
Average, mean and variance of an, 119
Average run length (ARL), 460–461,

461t
Axioms

allow easy calculation of probability,
29

do not determine probability, 28
Axioms of probability, 26, 28

definition and equation for, 29

B
β-error, type II error, 198
Backward elimination algorithm, for

candidate regressors, 347–348,
348t

Bayes, Thomas, 39
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Bayes estimator, 168–169
Bayes’ theorem

equation for, 39–40
to calculate conditional probabilities,

39
Bayesian approach, 167

parameter estimation and the, 161
Bayesian estimation, of parameters,

167–169
Bernoulli distribution, maximum

likelihood estimator and, 163
Bernoulli random variable, 305
Bernoulli trial

binomial distribution and, 52
binomial random variable and, 59
definition of, 51, 5
geometric random variable and, 55,

56f
negative binomial distribution and,

57–59
subintervals and, 63

Beta distribution, 92–93
mean and variance of a, 93

Beta probability density functions, for
selected values, 93f

Beta random variable, 92, 93
Bias, of an estimator, 156
Biased estimator, 157, 160, 161f
Bimodal distribution, negative, 110
Bin, range of data in a frequency

distribution, 135
Binomial coefficient, 53, 53f
Binomial distribution, 51–55, 58, 63,

79
as an approximation to the

hypergeometric distribution, 81
Bernoulli trial and, 52
common joint distributions and the,

113–114
compared to hypergeometric

distribution, 62, 62f, 62t
definition of, 52–55, 53f
negative, 118
normal approximation and, 79, 80,

80f
when it is not symmetrical, 82f

Binomial expansion, equation for, 53
Binomial experiment, 54, 114
Binomial model, 79
Binomial population

approximate confidence interval on a,
186

sample size for a specified error on a,
187

Binomial probabilities, can be
approximated with probabilities
based on normal distribution, 81

Binomial probability, 79
Binomial probability mass function, 54
Binomial proportion

approximate sample size for a
one-sided test on a, 228

approximate sample size for a
two-sided test on a, 228

approximate tests and, 226
normal approximation for a, 185
small sample tests on a, 227
testing hypothesis and, 226

Binomial random variable, 54, 80
as opposite of negative binomial

random variable, 59
Bernoulli trial and, 59
definition of, 52
mean and variance of a, 54–55
moment-generating function for a,

123
Bins

how to choose the number of, 135
unequal width of, 136

Bits, digital communication channel and
transmitted, 31

Bivariate distribution, 97
Bivariate normal distribution, 115,

115f
probability density function of a, 115

Bivariate normal probability density
function, 116f

Bivariate normal random variable
correlation of, 116
marginal or conditional distribution

and, 116
zero correlation implies independence,

117
Bivariate probability distribution, 97
Bivariate probability function, 115
Block, principle, 409
Blocking

in the 2k factorial design, 408–413,
408f, 409f

when is it necessary, 372
Blocks, confounded with, 408
Bonferroni confidence intervals, for

standard deviations, 272
Bootstrap confidence interval, 189
Bootstrap samples, 160
Bootstrap standard error,

computer-intensive technique,
159–160

Bound, one-sided upper- or
lower-confidence, 252

Bounds
lower- and upper-confidence limits,

173, 176
one-sided confidence, 176, 181, 187

Box plot
also called a box-and-whisker plot,

139, 139f
type of graphical display, 139, 139f

Box-and-whisker plot, 182f
Business cycle, variability and a, 140

C
C, catalyst, 12
C chart, produced by computer, 460
Candidate regressors, 347
Candidate variables, 342, 348
Capability, actual and potential, 454

Categorical data, 138
Categorical regressors, indicator

variables and, 339–341
Categorical variable, 339
Causal sense, 284
Causality, in observation studies is

difficult to identify, 246
Cause-and-effect diagram, 472, 472f,

476
an SPC problem-solving tool, 436

Cause-and-effect relationship, 6, 246
Cell, range of data in a frequency

distribution, 135
Census, definition of, 5
Center line (CL)

location of upper and lower control
limits from the, 11

meaning of a control chart’s, 11
of a control chart, 437, 437f

Center points, 405, 417
Central composite design (CCD),

431–432, 432f
axial spacing and rotatable, 432, 432f

Central limit theorem, 152–154, 153f,
153t

computer simulation experiment
demonstrating, 152, 153f, 153t

definition of, 15
of De Moivre, 73–74
sample size large enough so can apply,

154
sampling distributions and, 150–151

Central tendency, of the data, 127, 133,
136

Chance causes, 437
Charpy V-notch (CVN) method, for

notched bar impact testing of
metallic metals, 171

Chart. See also Control chart
NP, 458
Pareto, 138, 476
tier, 452
time-weighted, 462–471
tolerance, 452

Chart, U, 458
Chebyshev’s inequality, 159
Check sheet, an SPC problem-solving

tool, 436
Chi-square

random variable, 183
upper and lower points of, 183

Chi-square (χ2) distribution, 89, 145,
183–184

Chi-square test
operating characteristic curves for,

224
P-value of a, 223

Circuit
advanced, 38, 38f
parallel, 38, 38f
series, 38, 38f

Circumflex, 13
Class interval, range of data in a

frequency distribution, 135
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Coefficient
binomial, 53, 53f
confidence, 173
correlation, 299
of multiple determination R2, 324,

349
partial regression, 312
Pearson correlation, 143
regression, 284, 321, 325
relationship between an effect and a,

394
regression, 281, 321
sample correlation, 143, 300
standard error of a, 394

Coefficient of determination (R2),
298–299

used to judge adequacy of regression
model, 298

Coefficient of restoration, 219, 219f
Column average, 386
Combinations

and subsets, 25
definition and equation for, 25–26

Common joint distributions, examples,
of, 113

Communications channel, corrupted
pulse in a digital signal over a,
26, 27f

Communications network, phone lines
and information capacity, 19

Comparative experiment, 7
objective of, 246

Complement
definition and notation for, 21
of an event, 21, 23, 29
type of set operation, 21

Complete defining relation, 419
Completely randomized design (CRD),

355, 382
Completely randomized experiment,

246
Computer

C chart produced by, 460
calculating one-sample T, 220
calculating power and sample size for a

1-sample Z-test, 214–215
calculating sample sizes and type II

error probabilities, 214–215
calculating test and CI for one

proportion, 227
calculating test and CI for one

variance, 224
calculations for test for equal

variances, 272
calculations for two-sample hypothesis

test and CI procedure for
proportions, 275

calculations for two-sample t-test and
confidence interval, 256f, 258

construction of an R control chart and
X control chart, 449

important tool in data analysis, 127
usually used in fitting multiple

regression models, 319

Computer software, available to compute
distributions, 145

Computing formulas for ANOVA, single
factor with unequal sample sizes,
359

Concentration, input feed stream, 6
Concept, of equally likely outcomes, 27
Conceptual model, of repeated

replications, 26
Conceptual population, 128
Conditional distribution, of bivariate

normal random variables, 116
Conditional mean and variance, 104
Conditional probability, 31–34, 32f, 39

independence and, 36
multiplication rule and, 34
of B given A, 31
of event B given an event A, 33
of parts with surface flaws, 32f
random samples and, 34

Conditional probability density function,
102–104, 103f

Conditional probability distribution,
102–106, 109

Conditional probability mass function
for continuous random variables,

102–103, 103f, 105
Conditional variance, 104
Confidence bounds, binomial population

and approximate one-sided, 187
Confidence coefficient, 173
Confidence interval (CI), 292–294

Agresti-Coull, 188
Bonferroni, 272
bootstrap, 189
definition of, 171
development and basic properties of,

172–173
for a correlation coefficient, 301
for μD from paired samples, 267
guidelines for constructing, 188–189,

189t
how to construct, 171
how to interpret, 174, 174f
hypothesis testing and relationship to,

206
in multiple linear regression,

329–331
large-sample for mean, 177
large-sample, 251
measure of reliability of a procedure,

171
method to derive a, 176–177
on a difference in treatment means,

359
on a treatment mean, 358
on a variance, 184
on individual regression coefficients,

329–330
on mean response, 330–331
on parameters, 293
on slope and intercept, 292–293
on the difference in means, variances

known, 251–252

on the difference in means, variances
unknown and equal, 260

on the difference in means, variances
unknown and not assumed equal,
approximate, 261

on the difference in population
proportions, 277–278

on the mean of a normal distribution,
variance known, 172–179

on the mean of a normal distribution,
variance unknown, 179–182

on the mean response, 293–294
on the mean, variance known, 173
on the mean, variance unknown, 181
on the ratio of variables from two

normal distributions, 273
parameter and large-scale, 179
purpose of, 172
t, 181
two-sided, 181, 186
used in engineering and science, 172

Confidence level, precision of estimation
and, 174–175, 175f

Conformance, quality of, 435
Confounded, with blocks, 408
Confounding, in the 2k factorial design,

408–413, 408f, 409f
Contingency table tests, 232–234, 232t
Continuity correction, 79, 80, 82
Continuous cumulative distribution

function, 70
Continuous probability distribution,

known as normal distribution,
67

Continuous random variable
conditional probability mass function

and, 102–103, 103f
defined as having a continuous

cumulative distribution function,
70

definition and examples of, 41, 67
distribution of as described by

cumulative distribution function,
70

expected value of a function of a, 72
general functions of a, 121
mean and variance of a, 71
probability density factor and a, 70
probability density function and, 71
probability distributions and, 66–94
standard deviation and, 71

Continuous sample space, definition of,
20

Continuous uniform distribution,
72–73

probability density function and, 72,
72f

Continuous uniform random variable,
72

mean and variance of, 73
Contour plot, 115, 115f
Contrast, relationship between an effect

and a, 392
Contrasts, 391
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Control chart. See also Chart
analysis of patterns on, 442–444,

442f
attribute, 439, 456–460
center line (CL), 437, 437f
cumulative sum, 452
CUSUM, 468
design of a, 440–441
EWMA, 463
exponentially weighted

moving-average (EWMA), 452,
462–465

for averages (X control chart),
444–446

for chemical concentrations, 12f
for fractional nonconforming (P chart),

456
for individual measurements,

450–452
fraction-defective, 456
general model for a, 438
individuals (X chart), 450
introduction to, 436–443
meaning of the center line on a, 11
most powerful SPC problem-solving

tool, 436
pattern recognition on a, 443
prevents unnecessary process

adjustments, 440
primary tool to understand process

variability, 435
process improvement and detect

assignable causes, 438, 439
provides diagnostic information, 440
provides information about process

capability, 440
range (R), 444–445
Shewhart, 438, 460
standard deviation (S), 444–446
time-weighted, 452
to look at variability in time-oriented

data, 11
total defects in a sample (C chart),

460
two types of, 439
upper control limit (UCL) and lower

control limit (LCL) on a, 437, 443
used as an estimating device, 439
used for controlling/improving a

process, 12, 12f
used for defect prevention, 439
used for online process monitoring,

438
used to improve productivity, 439
variables, 439
X, 440, 440f, 442f

Control chart performance, 460–461
Control limit

can help decide actions to
adjust/improve the process, 11,
15

for CUSUM, 467
lower, 11, 12f
upper, 11, 12f

Cook’s distance formula, 336
Cook’s distance measure, 336
Correction factor

finite population, 62
used to improve approximation, 81

Correlated, definition of, 113
Correlation, 299–302

nonzero, 113
of bivariate normal random variables,

116
relationship between two random

variables, 112–113
zero, 301

Correlation coefficient, 299
confidence interval for a, 301

Correlation model, 280
Countably infinite, 20
Counting techniques, 23–26, 21f
Covariance, 110–111

defined for both continuous and
discrete random variables, 111

joint probability distribution and the
sign of, 111f

measure of linear relationship between
random variables, 111, 111f

measure of relationship between two
random variables, 110

positive or negative, 111f
sign of, 111f
zero, 111f

Covariance matrix, 321
Cp statistic, 342
Criterion

expected cost, 475
minimax and minimin, 474
most probable, 472

Critical region, 196, 198f, 210, 222f
definition of, 196, 198f
for one- and two-sided alternative

hypotheses where to place the,
209, 209f

for one- or two-sided alternative
hypothesis, 240

for one-sided alternative hypothesis,
226

locate it to control the type I error,
216

location (two-tailed, upper-tailed,
lower-tailed) of the, 206, 209f

or rejection region, 210
what determines the location of the,

218
Critical values, boundaries between

critical and acceptance regions,
196

Cumulative distribution, of a standard
normal random variable, 75

Cumulative distribution functions
(CDF), 45–47, 70, 83, 84, 208

defined at noninteger values, 46
equation for, 45–46, 70
for distribution of discrete random and

continuous random variables, 70
of a discrete random variable, 45

often used to compute probabilities,
89

probability mass function and, 46
properties of, 46

Cumulative distribution plot, 137f
Cumulative frequency plot, variation of

histogram, 137
Cumulative Poisson probabilities, 88
Cumulative probabilities

and probability mass function, 45
used to describe random variable’s

probability distribution, 45
used to find probability mass function

of a discrete random variable, 45
Cumulative sum control chart

(CUSUM), 465–467, 466t, 467f.
See also CUSUM

as a time-weighted chart, 452
Current source drift, 18
Curvature sum of squares, t-statistic

and, 406
Curvilinear regression, 357
Curve

bell-shaped probability density
function, 74

probability and area under a normal,
80f

using operating characteristic (OC),
213–214

CUSUM, how to devise control limits for,
467

CUSUM control chart, 468

D
Data

categorical, 138
central tendency of the, 127, 133, 136
collected to evaluate current or future

production, 11
collecting engineering, 5–12
copies written to multiple drives, 43
Deming and different conclusions

from, 11
difference between a census and

sample, 5
distributed among multiple disks, 43
dot diagram used for limited amount

of, 4
historical archived, 5, 6
in the form of ranks, 234
location of on a dot diagram, 4
methods of collecting, 5–7
multivariate, 138, 142
numerical description of features of,

127
numerical summaries of, 127–131
parity, 43
plotting the, 127
retrospective study and use of

historical, 5
scatter of on a dot diagram, 4
statistics is the science of, 3
time-to-failure, 144
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transcription or recording error that
affects, 6

unimodal, 137
use control chart to look at variability

in time-oriented, 11
useful information versus, 6
variability of on a dot diagram, 4
wire bond pull strength, 14t

De Moivre, central limit theorem of,
73–74

Decision criteria, 474–476
for testing a hypothesis, 196f, 197t

Decision interval, 468–470
Decision making, statistical inference is

used in, 149
Decision models, definition of, 473
Decision theory, 473–476
Decision tree, 475, 475f
Decisions, statistical inference and, 150
Defect concentration diagram, 472,

472f, 476
an SPC problem-solving tool, 436

Defective parts
and nondefective parts, 26
surface flaws and, 32, 32t

Defects, quality improvement and
elimination of, 435

Defects-per-unit control chart (U chart),
458

Defining contrast, 409
Defining relation, for the design, 413
Degrees of freedom, 218

definition of, 130
Deming, W. Edwards, 9

14 points for quality and productivity
improvement, 477–478

analytic study and, 11
bowl of beads experiment, 435
control charts and, 11
funnel experiment of, 10f
industrial statistician, 9
stressed the variability of processes

over time, 9
use of data for different types of

conclusions, 11
DeMorgan’s laws, 23
Density function, used in engineering to

describe physical systems, 67
Dependent variable, 312
Descriptive statistics, 126–147

definition of, 127
Design

completely random, 382
of an experiment, 376

Design and analysis, of single-factor
experiments, 351–374

Design and statistical analysis,
368–372

Design generators, 419
Design matrix, 396
Design of experiments, with several

factors, 374–433
Design quality, 435

Design resolution, to catalog fractional
factorial designs according to alias
patterns, 417

Designed experiment, 5, 6–7, 7f
deliberates changes made to the

controllable variables, 6
is employed sequentially, 353
only way to determine cause-and-effect

relationship, 284
used to study complex systems with

several factors, 7
Designing engineering experiments,

352–353
Deterministic linear relationship, 281
Deviation, standard, 71
Diagram

cause-and-effect, 472, 472f, 476
defect concentration, 436, 472, 472f,

476
describes relationship between events,

22
dot, 4, 128, 128f
ordered stem-and-leaf, 133
Pareto, 471, 471f
portrays relationship between sets,

22
scatter, 142–144, 143f
several mutually exclusive events and

a Venn, 30, 31f
stem-and-leaf, 131–132, 132t, 133f
tolerance, 453f
tree, 21f, 23–24, 33, 33f
Venn, 22, 23f, 35

Die height, 13, 13f, 14f
Digidot plot, invented by Hunter,

140–141, 141f
Discrete random variable

definition and examples of, 41, 43
definition of the simplest, 49
distribution of as described by

cumulative distribution function,
70

equation for expected value of function
of a, 49

general functions of a, 120
mean and variance of a, 47
probability distributions and, 42–65
with a countably infinite range, 45

Discrete sample space
definition of, 20
probability for, 26

Discrete uniform distribution, 49–51
equation for, 49

Discrete uniform random variable, mean
and variance of, 50–51

Dispersion, 50
variability and, 47

Distillate, 5
Distillation column, 6–9, 7, 7f, 8f

acetone-butyl alcohol, 5, 7f
designed experiment for the, 7t
four-factorial experiment for a, 8, 8f
retrospective study of, 5–6

Distributed rule, for set operations, 30

Distribution
asymptotic normal, 166
beta, 92–93
bimodal, negative, 110
binomial, 51–55, 58, 79, 113–114
bivariate, 97
bivariate normal, 115
bivariate probability, 97
chi-square (χ2), 89, 145, 182–184
conditional, 116
conditional probability, 105, 109
continuous probability, 67
continuous uniform, 72–73
cumulative, 45–47, 70, 83, 84, 208
Erlang, 86–87
exponential, 83–84
F, 268–270, 269f
frequency, 135–136, 135t
gamma, 145
Gauss developed the normal, 73
Gaussian, 73
geometric, 55–57, 56f
heavy-tailed, 146, 147f
hypergeometric, 59–63, 61f, 81
joint probability, 107–110, 111f
light-tailed, 146, 147f
lognormal, 91
marginal, 116
marginal probability, 99, 100t, 109,

109f
mean and sampling, 151
multinomial probability, 113–114
negative binomial, 57–59, 110, 118
noncentral F-, 363
nonsymmetrical, 92
normal, 67, 73–79, 75f, 77f
null, 216
of the ratio of sample variances from

two normal distributions, 270
Poisson, 64–65, 64f, 81, 230
posterior, 167
prior, 167
probability, 44, 67, 67f, 167
Raleigh, 89
random variable and its individual

probability, 99
reference, 209, 216, 247
relative frequency, 135
sample means and approximate

sampling, 156
sampling, 149
symmetric continuous, 239
symmetrical and skewed histogram,

138f
t, 180, 180f
uniform, 92
Weibull, 86, 89–90
width of a normal, 75
χ2, 182–183, 183f

Distribution-free methods, parametric
and, 234

Distribution function, cumulative (CDF),
45–47, 70, 83, 84, 208

Distribution moment, 162
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Dodge, Harold F., 436
Dot diagram

data location and scatter on a, 4
of pull-off force data, 4f
physical interpretation of sample

mean, 128, 128f
pros and cons of a, 4
shows variation but not cause of

problem, 9, 9f
used for limited amount of data, 4

Drift, current source, 18
Ductal-to-brittle transition, 171
Dummy variable, 340

E
ϵ, definition of, 12
Effect

relationship between a coefficient and
an, 394

relationship between a contrast and
an, 392

Effects, normal probability plot
of, 417

Efficiency, loss of in nonparametric
procedure, 234

Electrical current, example of
continuous random variable, 41

Electrical science, 3
Elimination, quality improvement and

waste, 435
Empirical model, 281–284

definition of, 13
plot of predicted values of pull

strength, 14f
Engineer, problem-solving and the, 2
Engineering, role of statistics in, 1–16
Engineering method, steps in the, 2–5,

3f
Enumerative study

definition of, 11
versus analytic study, 11, 12f

Equality claim, null hypothesis and,
195

Equally likely outcomes, 27
Equivalence band, 241–242
Equivalence interval, 241
Equivalence testing, 240–242
Erlang distribution, 86–87
Erlang random variable, 87, 88

mean and variance of an, 118
Error, sampling, 5
Error in estimation, 175
Error of estimation, 190
Error mean square, 299, 324–325, 335,

356
Error propagation, 118–119
Error sum of squares, 291

computer software calls it “residual”
sum of squares, 292

definition of, 356
sum of squares of residuals and the,

287
Error variance, 283

Estimated standard error, 159, 321
definition of, 288

Estimating, variance of the error term ϵ,
287

Estimator
asymptotically unbiased, 166
Bayes, 168–169
bias of an, 156
biased, 157, 160, 161f
exponential distribution moment, 162
gamma distribution moment, 163
least squares, 288, 321
logical point, 247
maximum likelihood, 163, 165–166,

179
mean squared error of an, 160–161
minimum variance unbiased (MVUE),

158
moment, 162
normal distribution moment, 162
of variance, 287
of variance, equation for, 320
point, 161–169, 295
sampling distribution of two unbiased,

158f
standard error of an, 158
standard error of the point, 185
unbiased, 156–158, 158f, 287–288
variance and a pooled, 253–254

Event, 21–23. See also Events
as a subset of the sample space, 21
calculating the probability of an

individual, 29
definition of, 11
definition of the complement of an, 23
exhaustive, 36
mutually exclusive subsets and

partitioning of an, 36, 36f
mutually exclusive subsets by partition

of an, 31
rare, 155
sample, 18–23

Events
complement of, 29
diagram describes relationship

between, 22
intersection of, 29, 34–36
joint, 29
mutually exclusive, 23
mutually exclusive relationship

between two, 37
union of, 29
used to define outcomes of interest,

22
EWMA control chart, 463
EWMA update equation, 463
Example

access time of computer server
(milliseconds), 99, 99f, 101, 101f

acetone-butyl alcohol distillation
column, 5, 7f

acetone concentration readings taken
hourly, 7–9, 12f

adhesion properties of different
aircraft primer paints, 385–386,
385t, 386f, 386t, 387f, 387t

advanced circuit, 38, 38f
air crew escape system and burning

rate of solid propellant, 194–198,
201–203. 207, 211, 213–214

air quality monitoring stations, 96
air samples containing a rare molecule,

51
airplane sidewall panels cost per unit,

338, 338f, 338t, 339t
alloy adhesion of U-700 alloy

specimens load at failure, 181,
182f

alloy compression strength, 132
annual sales for a company over time,

140, 140f
arsenic concentration in public water,

257–258, 257f
arsenic contamination of drinking

water, 245
as a discrete random variable, 43
as a lognormal random variable, 91
asbestos particles in a square meter of

dust, 82
astaxanthin (a carotenoid) commercial

production, 376
automated filling of bottles with liquid

detergent, 223, 224
automatic machine used to fill bottles

with detergent, 184
automobile crankshaft bearings, 186,

187
average molecular weight of a polymer,

12
battery life in a portable personal

computer, 145
calculations for number of flaws in thin

copper wire, 64
camera flash recycle time of cell phone

tested until fails, 20, 22
camera flashes time to recharge and

third failure, 59
cell phone camera flash recycle time,

20, 22
cement hydration with standard

calcium and cement doped with
lead, 260–261

central computer processor failure, 86
ceramic substrate production line,

457, 457f, 457t
chance of rain today, 26
chemical batch yield, 134, 134f
chemical process concentration and

hourly output, 451, 451f, 451t
chemical process concentration

EWMA, 464, 464f, 465t
chemical process concentration tabular

CUSUM, 468–469, 469t, 470f,
470t

chemical process yield steepest ascent,
427, 427f
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coin flips and number of heads
obtained, 51

comparing tips for a hardness-testing
machine, 264

components with a standard mean
resistance of ohms, 240–241

compressive strengths of
aluminum-lithium alloy, 131,
132t, 133f, 135t

computer usage and user log-ons, 84
continuous sample space and

low/medium/high camera recycle
time, 20

corrupted pulse in a digital signal over
a communications channel, 26,
27f

curing methods on mean compressive
strength of concrete, 352

current in a thin copper wire, 12
current in a thin copper wire over time,

18, 19, 19f
cycle time to process loan applications,

160
density of loading on long, thin beam,

67–68, 67f
development of contract decision

problem, 476
different formulations for a soft-drink

beverage, 234–235
digital channel and bit errors, 45
digital channel and four bits received

in error, 57
digital channel and number of next

four bits received, 52, 52t
digital channel and numbers of errors

in next four transmitted bits, 49
digital channel and transmission error

with fifth bit, 55
digital channel of bits received,

113–114
digital communication channel error

rate, 31
digital transmission channel and all

bits received are errors, 51
digital transmission channel and bit

received in error, 44, 44f
dimensional length on a manufactured

part, 67
discrete sample space of yes/no camera

recycle time specifications, 20
discrete sample space that is countably

infinite, 20
distal communications channel bits

received in error, 80
distance between flaws in a length of

copper wire, 83
distribution of throws of single,

six-sided true dice, 154, 154f
door hinge on an automobile, 377
eating different types of chocolate and

cardiovascular health, 258–259
electrical current and power with

resistance in ohms, 72

electrical current in a thin copper wire,
69, 70, 71

electrical current in electronic
manufacturing, 454

electrical current measurements
(milliamperes) in a wire, 74, 74f

electronic assembly and lifetime of four
components, 107–108

electronics company resistors, 155,
155f

emergency department (ED) wait
times, 2

emergency department
electrocardiogram results, 18

epitaxial process on polished silicon
wafers, 392–393, 392t, 393t, 395f

etch variability in thickness of oxide
layers on semiconductor wafers,
271

expected value of a function of two
random variables, 110

extended warranty decision problem,
473, 473t

fabric strength and effect of different
chemicals, 371, 372t

fabric tensile strength and
loom-to-loom variability, 367,
367t, 368f

factors that affect gasoline mileage, 3
flash recharge time in cell-phone

camera, 43, 43t
gasoline mileage, 138
gasoline mileage performance of a

vehicle, factors that affect, 311
Geiger counter detection of a particle,

85
golf club design and coefficient of

restitution, 219, 219f, 221
grinding process on surface finish of

impellers in jet-turbine engines,
273

hardwood concentration and Fisher
LSD method, 360, 360f, 361f

health insurance plan preference,
232, 232t

heights of fathers and sons, 283
high iron levels and increase in heart

attack, 246
hole diameter drilled in metal sheet

component, 69
hospital emergency department (ED),

probability model and example of,
2

hospital emergency room visits and
outcomes, 22, 22t

hospital operating schedule, and
sequencing of surgeries, 25

injection-molded part, 117
injection-molding and excessive

shrinkage, 419–422, 420t, 421f,
422f

is modeled as a discrete random
variable, 43

joint and marginal probability
distribution, 105

jury trial, 201
laser diode in a batch and power

requirements, 27, 27f
lead-free solder in surface mount

technology (SMT), 376–377,
377f

length and width of a manufactured
part, 120

length of one dimension of an
injection-molded part, 96, 98, 98f

lengths of two dimensions of a
machined part, 106, 107

lifetime of a semiconductor chip, 86
loading on long thin beam puts mass at

discrete points, 44, 44f, 47, 47f,
48f

machining stages for high-rpm pistons,
35

manufactured defective and
nondefective parts, 26

manufactured parts and
nonconforming parts, 59–60

manufacturing inspection of defective
and nondefective parts, 26, 28

marketing and new product design,
48–49

mean axial stress in tensile
members in aircraft, 262–263,
262t, 263t

mean fill volume of a soft drink
container, 150

mean purity of oxygen from
hydrocarbon, 283, 283f

mean viscosity of a chemical product,
171–172

mean yield from catalyst sample size,
259–260

means being compared in completely
randomized experiment, 365,
365t

mechanical shaft bearing with wear
and time to failure, 90

medical diagnostic and screening of
population, 40

mercury contamination of largemouth
bass, 178, 178f

metallic metal transition and CVN
test, 175

missile miss distance of shoulder-fired
ground-to-air missile, 410–412,
410f, 411f, 411t, 412t

mobile response time, 102
model of an exponential random

variable, 86
modeled as a Poisson process, 86
modeled by a binomial random

variable, 80
most popular model of Boeing

transport aircraft, 138, 138f
multiple-choice test and questions

answered correctly, 51
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Example (contd.)
nitride etch process on single-wafer

plasma etcher with one-half
fraction, 416, 416f, 416t

nitride plasma etch process on
single-wafer plasma etcher,
402–405, 402t, 403f, 403t, 404t,
405f

normal distribution current
measurement in a wire, 78, 78f

normally distributed current in a wire
and measurement, 79, 79f

notebook computer power supply
distribution, 231–232, 231t

number of female births out of number
of hospital births, 51

number of signal bars and response
time, 112

number of voice lines in use, 50
nylon connector for automotive engine,

4, 6, 7
of a 22 factorial design, 392t
of a binomial coefficient, 53, 53f
of a comparative experiment, 7
of a designed experiment, 6, 7
of a negative binomial distribution,

57
of a Poisson distribution, 82
of a Poisson process, 64, 84, 88
of a probability model, 15
of a regression model, 13
of a retrospective study, 5–6
of a tree diagram and conditional

probabilities, 33, 33f
of a Weibull distribution, 91
of an analytic study, 11
of an empirical model, 13, 14f
of an enumerative study, 11
of analysis of variance, 292
of ANOVA method, 371, 372t
of Bayes estimator for the mean of a

normal distribution, 168
of Bernoulli distribution MLE, 163
of binomial probability mass function,

54
of binomial random variables, 54
of bivariate normal distribution, 115,

117
of bootstrap standard error, 160
of box-and-whisker plot, 182
of central limit theorem, 155, 155f
of concept of relative frequency, 27f
of condition probability, 32–33
of conditional mean and variance,

104
of conditional probability, 31, 102,

103
of conditional probability distribution,

105
of continuous random variables, 92
of control chart for chemical

concentration, 12f
of cumulative distribution function,

46, 46f, 70f, 71

of designing engineering, 352–353
of distribution of a sum of Poisson

random variables, 124
of error propagation, 119
of exponential distribution MLE, 164
of exponential distribution moment

estimators, 162
of Fisher’s LSD method, 372, 373t
of fraction-defective control chart

(P chart), 457
of gamma distribution moment

estimators, 163
of geometric random variable, 56
of histogram, 137f
of hypergeometric distribution

simplifies calculations, 61
of hypergeometric random variable,

60
of joint density function, 116, 116f
of joint probability density function,

99
of Karlsruhe and Lehigh procedures,

265–266
of lack of memory property, 57, 85
of linear function of independent

normal random variables, 120
of linear relationship, 113
of marginal probability distribution,

109, 109f
of matrix of scatter plots, 343f
of maximum likelihood estimators of

mean and variance, 166
of mean and variance, 62
of mean resistance and standard

deviation, 155, 155f
of moment-generating function for a

binomial random variable, 123
of moment-generating function for a

normal random variable, 123
of multivariate data, 138
of mutually exclusive events, 31
of negative binomial distribution, 59,

110, 118
of normal approximation to binomial,

81
of normal distribution calculations,

76–77, 77f
of normal distribution MLE for mean

and variance, 165
of normal distribution moment

estimators, 162
of normal probability plot, 145, 257f
of Ohm’s law, 12, 13
of one-sided confidence bound, 176
of Poisson distribution, 230–231,

230t, 231t
of polymerization reactor, 12
of possible number of sequences, 25
of probabilities of events in a random

experiment, 28
of probability and sensitivity of a test,

40
of probability as a ratio of volumes,

108

of probability density function, 69f
of probability distribution, 44f, 47f,

48f
of probability distributions for more

than one random variable, 96
of probability mass function for

discrete uniform random variable,
50, 50f

of probability of failure, 39
of probability of product failure, 35
of regression analysis, 301
of sample mean and variance being

unbiased, 156–157
of sample mean of data, 127–128,

128f
of sample variance, 129, 129t
of sampling without replacement, 61
of selected hypergeometric

distribution, 50, 60
of series of repeated, random trials,

51
of significance of regression, 323
of simple linear regression model, 286
of standard deviation of lognormal

random variable, 92
of standard normal distribution, 76
of stem-and-leaf diagram, 132
of subjective probability or degree of

belief, 26
of types of engineering estimation

problems, 150
of uniform distribution MLE, 167,

167f
of using the addition rule, 30
of variability, 3
of Weibull random variable, 90
of Wilcoxon signed-rank test, 239
organic pollution in water, 54
orthopedic physician office bill number

of errors, 105
oxygen purity, 286–287, 286f, 287t,

298f, 298t
oxygen purity ANOVA, 292
oxygen purity confidence interval on

the mean response, 294, 294f
oxygen purity confidence interval on

the slope, 293
oxygen purity prediction interval,

296, 296f
oxygen purity residuals, 297, 298f,

298t
oxygen purity tests of coefficients,

287t, 290
paint drying time sample size, 250
paint drying time sample size from OC

curves, 249
paper tensile strength ANOVA, 356,

358t
parallel circuit, 38, 38f
particles of contamination on

semiconductor wafer, 44
parts from two circuit board suppliers,

61
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patient satisfaction in a hospital,
factors that affect, 311

patients with illness who improve from
medication, 51

percentage of hydrocarbons in
condenser of distillation unit,
281–282, 282f, 282t

percentage of process yield with two
variables, 407, 407f, 407t

pinot noir wine quality, 343–345,
343f, 344t, 345t

pressure of gas in container and
temperature and other factors,
281

printed circuit board defects,
230–231, 230t, 231t

printed circuit board design layout for
five components, 26

printed circuit board design layout for
four components, 25

printed circuit board mechanical and
electrical components, 459, 459f,
459t

process yield control composite design,
428–431, 429f, 429t, 430f, 430t,
431f

propellant shear strength, 239
propellant shear strength sign test,

236, 236t
proportion of people who like a

particular soft drink, 151
proportion of solar radiation absorbed

by a material, 92
proportion of voice lines in use, 51
pull strength of a wire bond in

semiconductor manufacturing,
315–316, 315t, 316t

pull-off force for connectors in
automobile, 73

pull-off force of engine connectors,
127–128, 128f

pull-off force variability, 4, 4f, 7
quality of young red wines, 142–144,

142t, 143f
RAID to increase robustness to disk

failure, 43
reaction temperatures in a chemical

process, 149
reaction time of a chemical, 71
reducing the drying time of primer

paint, 248
resistivity of semiconductor wafers,

11
risk of data loss in a redundant

system, 43
rocket propellant burning rate

sample size from OC
curve, 214

rocket propellant burning rate type II
error, 213, 214

sampling with replacement, 36–37,
60

sampling without replacement, 26, 37

semiconductor automobile engine
controller and process fallout,
226, 228

semiconductor chip contamination,
39

semiconductor chip contamination and
product failure, 35, 35t

semiconductor etch variability sample
size and two gases, 272

semiconductor laser lifetime of
product, 91–92

semiconductor manufacturing quality
index at three plants, 139f, 140

semiconductor product and variance of
three layers, 119

semiconductor wafer and sources of
contamination, 29, 30f

semiconductor wafer with large
particles of contamination, 45

semiconductor wafers, 11–12, 15
semiconductor wire-bonded to a frame,

12, 13f
serial number and its digits, 50, 50f
series circuit, 38, 38f
shear strength for steel plate girders,

265–266, 265t
shear strength of spot welds to weld

diameter, 299
soft-drink beverage bottler bursting

strength of glass bottles, 202
Space Shuttle Challenger and failure

of O-rings, 281, 307–308, 307f,
307t, 308f

St. John’s wort to treat depression,
275

surface finish of metal parts on a lathe,
340–341, 340t, 341t

surface flaws and defective parts, 32,
32t

surface roughness of a part in a
metal-cutting operation, 389,
389t, 399–401, 399t, 400t, 402f

synthetic fiber breaking strength in
body armor for military/police,
242

tensile adhesion tests on U-700 alloy,
191, 192

tensile strength of component in air
frame, 149

tensile strength of different grades of
aluminum spars for aircraft
wings, 252

tensile strength of paper (psi),
353–354, 353t, 354f

thermal conductivity of Armco iron,
159

thin film manufacturing process and
contamination, 32

time needed for parallel parking for
cars with different wheel bases
and turning radii, 267–268, 268t

time needed for service of
constant-velocity joint in car, 93

time needed to prepare a slide for
high-throughput genomics, 88

transportation and trips, 2
trip-generation model, 2
two cameras flash recycle time, 20, 22
two catalysts and effect on mean yield

of chemical process, 255–256,
255t, 256f

uniform current and measure of
current, 73, 73f

use of probability model, 2
use of regression analysis, 2
use of the multiplication rule, 24, 26
vane opening jet engine part and

investment casting process,
446–449, 447t, 448f, 449f, 449t,
453f

voice communication system and
number of phone lines, 19

water contamination with a large
particle, 56

Web site design for color, font and
position of an image, 24

Web site mobile response time for
downloads, 96, 97t

windmill to generate electrical power,
303–305, 303f, 304f, 304t, 305t

wine quality stepwise regression,
346–347, 347t

wire bond pull strength, 13, 13f, 14f,
301–302, 302f

wire bond pull-strength general
regression test, 328

wire bond strength ANOVA, 323, 324t
wire bond strength coefficient test,

325–326
wire bond strength confidence interval,

330, 332
wire bond strength confidence interval

on the mean response, 331
wire bond strength Cook’s distances,

336, 337t
wire bond strength one-sided

coefficient test, 326
wire bond strength residuals, 333,

333f
wire bond strength with matrix

notation, 318–319, 318t, 319t,
320t

wire flaws in thin copper wire, 63
worn machine tool and defective parts

produced, 51
Exhaustive event, 36
Expected mean squares, randomized

complete block experiment, 370
Expected value

also called the mean, 47
of a function of a continuous random

variable, 72
of a function of a discrete random

variable, 49
of a function of two random variables,

110
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Expected value (contd.)
of mean squares, single-factor

experiment, 356
of mean squares, two factors, 384

Experiment. See also Study
2k factorial
binomial, 54
bowl of beads, 435
comparative, 7, 246
complete block, 370
completely randomized, 246
completely randomized single-factor,

353–365, 354t
definition of, 376
design of a, 376
designed, 5, 6–7, 7f, 284
factorial, 7, 7f, 8, 376, 378–381, 379t,

380f, 381f
four-factorial, 8f
fractional factorial, 8–9, 9f
optimization, 377, 378f, 381f
process characterization, 376
randomized block, 371
randomized complete block, 370
screening, 353, 413
single-factor, 352
statistical analysis of a two-factor,

382
statistical methods/thinking and

engineering, 7
two-factor factorial, 382–388, 382t
unbalanced, 359
with a random component, 18

Experimental design, tool for engineers
and scientists, 376

Experimental design methods, 352
Exponential distribution, 83–84

maximum likelihood estimator and,
164

used in reliability studies for time to
failure of a device, 86

where the name came from, 83, 84f
Exponential random variable, 83, 85

first event in a Poisson process and an,
86

is the continuous analog of a geometric
random variable, 86

Exponentially weighted moving-average
(EWMA), also called geometric
average, 462, 463f

Extra sum of squares method, 326
Extrapolation

be careful when going beyond original
observation to do a large, 284,
332

hidden, 332
in multiple regression, 332
of a regression model, 284

Extreme outlier, 139, 139f

F
F distribution, 268–270, 269f

finding lower-tail points of the, 270

probability density function of, 269f
upper and lower percentage points of

the, 269f
for general regression tests, 327

F-random variable, 346
F test, for effects, 384
Factor

correction, 62, 81
estimate the magnitude and direction

of effect of a, 377
fixed versus random, 365
finite population correction, 62
fixed versus random, 365
noise, 377
nuisance, 368
uncontrollable, 377
variance inflation (VIF), 349

Factor levels, definition of, 7
Factor of interest, 352
Factorial, two-factor, 385t
Factorial design, 7f, 8f
Factorial experiment, 376, 378–381,

379t, 380f, 381f
2k, 8
advantages of a, 8
definition of, 7, 7f, 378
how to calculate the number of runs

needed, 8
only way to find interaction between

variables, 380
used in industrial research and design,

9
with interaction, 379f
with two factors, 379f

Failure, label that can be misleading,
51

Failure mechanism, 144
Failure time, Weibull distribution used

to model device, 86
Fallout, definition of, 368
False alarm, 452, 460
False null hypothesis, 201
Finite population correction factor, 62
Fisher method, P-values and, 242
Fisher, R. A., 242
Fisher’s least significant difference

(LSD) method, 359–360,
372–373, 373f

Fitted regression equation/model, 283,
318

Fitted value, 318, 319t
Fixed factor, 365
Fixed significance level, 218
Fixed significance level testing, 203
Fixed-effects model, 355
Fluid science, 3
Forward selection, variation on stepwise

regression, 347
Fraction

alternate, 414, 414f
principle, 414, 414f

Fraction defective, 226, 228
Fraction-defective control chart, 456
Fraction generator, 413

Fractional factorial, main use is in
screening experiments, 413

Fractional factorial design, 413
alias pattern of, 417
design resolution for, 417

Fractional factorial experiment
definition of, 8–9, 9f
used in industrial research and

design, 9
Fractional factorial saturated, 424
Fractional replication, 413, 414
Freedom, degrees of, 130, 183
Frequency, relative, 29
Frequency distribution, 135–136, 135t

data divided into class intervals, cells,
or bins, 135

visually displayed by a histogram,
136

F-tests, 234
for significance of regression, 350
only allows testing against a two-sided

alternative hypothesis, 292
P-values for the, 271–272

Full model, 327
Function. See Specific function name
Funnel experiment, equipment and

details of Deming’s, 10, 10f

G
Galton, Sir Francis, 283
Gamma distribution, 145
Gamma distribution moment estimators,

163
Gamma function, equation for, 87
Gamma probability density function,

88f
Gamma random variable, 87

calculate the probabilities for a, 88
mean and variance of a, 88

Gas, distribution of molecular velocity at
equilibrium in a, 67

Gasoline mileage, variability in, 3
Gauss

developed the normal distribution, 73
Karl, 13
least squares method based on work of,

13
method of least squares created by

Karl, 284
Gaussian distribution, also called a

normal distribution, 73
General factorial experiments,

388–390, 388t
General regression significance test,

326
General regression test

F statistic and, 327
hypotheses for, 326

Generalized interaction, 412
Generating function, moment-,

121–124
Generator, of a fraction, 413
Generators, design, 419
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Geometric average (geometric mean),
462

also called exponentially weighted
moving-average, 462

Geometric distribution, 55–57, 56f
quality of lack of memory and, 57

Geometric notation, definition of, 390
Geometric random variable, 55, 110,

460
Bernoulli trial and, 55, 56f
equation for, 56
how to obtain the variance of a, 56
mean of, 56
probability mass function for, 55

Goodness-of-fit test, 229–232
Goodness-of-fit test statistic, 230
Grand mean, 444
Graphical comparison, of means, 360
Graphical display

for standard normal distribution, 77f
of partitioning an event, 36f

H
H matrix (hat matrix), 334–335
“Hat,” 13
Hat matrix (H matrix), 334–335

diagonal elements of a, 335
Hidden extrapolation, 332
Histogram

advantages and disadvantages of,
136

an SPC problem-solving tool, 436
approximates a probability density

function, 68f
definition of, 68
for symmetrical and skewed

distributions, 138f
how to construct a, 136
mercury concentration of largemouth

bass, 178f
symmetrical bell-shaped distribution

of measurements, 136, 136f
used to assess process capability, 452
visual display of the frequency

distribution, 136
Homogeneity test, 234
Homogeneous population, 234
Hunter, J. Stuart, 140
Hypercube, 8
Hypergeometric distribution, 59–63,

61f
binomial distribution and, 81

compared to binomial distribution,
62, 62f, 62t

for selected variables of parameters,
61f

Hypergeometric random variable, 60,
62

mean and variance of, 61
Hyperplane, 312
Hypothesis

alternative, 195, 206
an equality claim and null, 195

binomial proportion, and testing, 226
definition of, 7, 195
false null, 201
for ANOVA test, 322
for general regression test, 326
lower-tailed test and, 209
never about the sample, 195
null, 206
one-sided alternative, 195
one-sided and two-sided, 202–203
statistical, 194–196
test of, 196
two-sided alternative, 195, 208, 209f
two-tailed test and, 208–209

Hypothesis tests
in multiple linear regression,

322–329
in simple linear regression, 288–292
on the difference in means, variances

unknown, 253–259
on the equity of two variances,

270–272, 271f
on the mean, 208–211, 215–220
on the variance, 222–223, 222f
P-values in, 203–206, 204f, 205f

Hypothesis testing, 7, 149, 188,
194–207, 196f, 197t, 198f

confidence intervals and relationship
to, 206

objective of, 195
on difference in means, variances

known, 247–248
Hypothesis testing methodology, steps in

applying, 206–207
Hypothetical population, 128

I
Ideal gas law, 5
Independence, 36–39, 104–106

bivariate normal random variable and
zero correlation implies, 117

conditional probability and, 36
multiple random variables and the

concept of, 109–110
of multiple events, 37
of two events, 37

Independence relationship, probability
model and, 37

Independent normal random
variables, linear function
of, 120

Independent populations, 246f
Independent random variables,

105–106
probabilities for multiple variables are

easier to compute, 106
Indicator variable

categorical regressors and, 339–341
for different levels of qualitative

variables, 339
only one in a simple linear regression

model
Individuals control chart, 450

Inference, 206
assumptions for two-sample,

246–247
on the difference in means of two

normal distributions, variances
known, 245–261

on the variances of two normal
distributions, 268–273

on two population proportions,
273–278

statistical, 15
Inference procedure

for a single sample, 229
summary table and road map for two

samples, 278–279, 279t
Influential observations, 335
Influential points, 335
Information, data versus useful, 6
Input, controllable and uncontrollable,

18
Integer values, 46
Interaction

AD (gap-power), 403f
between factors, 8
between variables, 380
examples of, 312
factorial experiment with, 379f
generalized, 412

Interaction plot, two-factor, 380
Intercept, 312

and slope, 283
confidence intervals on, 292–293

Interquartile range, 135, 139, 139f
Intersection

definition and notation for, 21
type of set operation, 21

Intersection of events, 29, 34–36
Interval

confidence, 171–172
decision, 468–470
prediction, 172, 189–191
tolerance, 172, 191–192

Interval estimates, types of, 171, 172
Intrinsically linear model, 303
Invariance property, 166
Iteration, or cycle, 3

J
Jacobian, transformation and the, 121
Joint distribution, mean and variance

from a, 101, 108
Joint events

calculating the probability of, 29
types of, 29

Joint probability density function, 107
definition of, 97–98, 98f

Joint probability distribution, 95–125
defines simultaneous behavior of two

random variables, 96
for more than two random variables,

107–110
for two random variables, 96–101
sign of covariance and, 111f
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Joint probability mass function, 97
describes the joint probability

distribution of two discrete
random variables, 97

Juran, Joseph M., 436

K
Karlsruhe procedure, 265–266

L
Lack of memory property, 57, 59, 85–86

exponential distribution and, 86f
exponential random variable and, 85
probability distribution of random

variable and, 57
Lack-of-fit testing, use as final check on

model-building, 348
Large sample approximation, 240, 263
Large-sample test, 215, 225–227, 248

on a proportion, 225–227
on difference in population

proportions, 274–275
Law

DeMorgan’s, 23
examples of physical, 5
ideal gas, 5
movement from a specific case to a, 5
Newton’s, 18
Ohm’s, 5, 12, 19
set operations and distributive, 23

Leaf, definition of, 132
Least significant difference (LSD)

method/test, Fisher’s, 372–373
for multiple comparisons, 360

Least squares
estimate of β, 317
to estimate regression coefficients,

284
used to estimate regression coefficients

in multiple regression model,
314

Least squares estimates, 285, 314
Least squares estimation, of parameters,

314–316
Least squares estimators, properties of,

288, 321
Least squares fitted model, 394
Least squares line, called regression line

by Galton, 283
Least squares method

based on work of Karl Gauss, 13
used to estimate parameters in

regression models, 13
Least squares normal equations,

284–285
in matrix form, 317

Lehigh procedure, 265–266
Length

average run (ARL), 460–461, 461t
example of continuous random

variable, 41
Poisson distribution and, 64

Level of significance, 203, 247, 250

Levels, of a factor, 352
Likelihood, method of maximum, 300,

307
Likelihood function, 163–167
Limit

3-sigma control, 460
average run (ARL), 460–461, 461t
natural tolerance, 453
warning, 443

Line, regression, 283, 283f, 284, 285f
Linear association, 144
Linear function

mean and variance of a, 118
of independent normal random

variables, 120
of random variables, 117–119
of unknown parameters, 312

Linear model
intrinsically, 303
probabilistic, 281

Linear permutations, 24
Linear regression, works best when

response variable is quantitative,
305

Linear regression model, definition of,
313–314, 313f

Linear response function, 306, 306f
Listing, the elements in a set, 25
Location parameter, 152
Log

condenser temperature controller, 5
reboil temperature, 5
record over time, 5

Log likelihood, 164–165, 165f
Logical point estimator, 247
Logistic regression, 305–310
Logit response function, 306
Lognormal distribution, 91

central limit theorem and, 153f
Lognormal probability density function,

91f
Lognormal random variable, 91
Lot quality, probability model

and, 15
Lower control limit (LCL), on a control

chart, 437, 443
LWBS, leave without being seen, 22
LWOT, leave without receiving

treatment, 2

M
“Magnificent seven” problem-solving

tools, 476
Main effect, definition of, 379
Mann-Whitney test, another name for

Wilcoxon rank-sum test, 261
Marginal distribution, of bivariate

normal random variables, 116
Marginal probability density function,

100, 106, 108
Marginal probability distribution, 109,

109f
definition of, 99, 100t

Mathematical model
also called an abstraction, 18
of a physical system, 18, 19f

Matrix
covariance, 321
design, 396
of scatter diagrams, 143, 143f

Matrix approach, to multiple linear
regression, 316–321

Matrix notation, 316
Maximum likelihood estimation,

complications of using, 166–167
Maximum likelihood estimator (MLE),

163, 165–166
Maxwell, James, 67
Mean

also called expected value, 47
definition and equation for, 47
hypothesis tests on the, 208–211,

215–220
large-sample confidence interval for

the, 177
of a linear function, 118
of geometric random variable, 56
overall, 355
population, 130
sample, 151
sampling distribution of the, 151–152
trimmed, 157

Mean and variance
conditional, 104
from a joint distribution, 101, 108
normal distribution MLEs for, 165
normal probability density functions

and, 74f
of a beta distribution, 93
of a binomial random variable,

54–55
of a continuous random variable, 71
of a continuous uniform random

variable, 73
of a discrete random variable, 47–49
of a discrete uniform random variable,

50–51
of a gamma random variable, 88
of a geometric random variable, 57
of a hypergeometric random variable,

61
of a negative binomial random

variable, 59
of a Poisson random variable, 65
of a random variable with an

exponential distribution, 83
of a Weibull distribution, 90
of an average, 119
of an Erlang random variable, 118
of an χ2 distribution, 183
of maximum likelihood estimators,

166
Mean of a normal distribution,

variance known, tests on the,
208–215

Mean response, confidence interval on
the, 293–294, 330–331
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Mean square
or error (SSError ), 356
for treatments (MSTreatments), 356

Mean squared error, of an estimator,
160–161

Mean squares
how to compute, 291
random effects and expected values of,

366
Means

graphical comparison of, 360
tests on individual, 386

Mechanical science, 3
Mechanistic model, 12–13

definition of and equation for, 12
Median

sample, 133
sign test used to test hypothesis about

the, 235
Meta-analysis, combining results from

several studies, 242
Method

engineering, 2–5, 3f
least squares, 13
scientific, 2

Method of maximum likelihood,
163–167

and point estimators,161
Method of moments

and point estimators, 161
population moments and sample

moments, 162–163
Method of steepest ascent, 426, 427f
Method of steepest descent,

minimization and, 426
Minimax criterion, definition of, 474
Minimin criterion, definition of, 474
Minimization, method of steepest

descent and, 426
Minimum variance unbiased estimator

(MVUE), 158
Mirroring, definition of, 43
Mn, average molecular weight of a

polymer, 12
Mode, peak of density, 93
Model

binomial, 79
collect data to test a tentative, 2, 3f
continuous iteration between physical

system and, 19f
decision, 473
empirical, 13, 281–284
first-order, 425
fitted first-order, 426
fitted regression, 283
fixed-effects, 355, 385t
full, 327
in fitting polynomials use the

lowest-degree, 338
intrinsically linear, 303
least squares fitted, 394
limitations or assumptions of a, 2, 3f
linear regression, 313–314, 313f
manipulate the, 2, 3f

mathematical, 18
mechanistic, equation for, 12–13
multiple regression, 314
nonlinear, 303
polynomial regression, 337–339
probabilistic linear, 281
probability, 15
quadratic, 430t
random-effects, 365–368
reduced, 327
regression, 2, 13, 285f
second-order, 313–314, 338, 338t, 426
simple linear regression, 282, 286,

296
that includes variation, 18
that incorporates uncontrollable

inputs, 18
trip-generation, 2
true regression, 283
use observed data to refine a, 2, 3f
variance, 365

Model adequacy checking, 333–337,
386–387

Model and residual analysis, of a 22

factorial design, 401
Model and residual analysis, of a 2k

factorial design, 393
Model matrix, also called the X matrix,

317
Model parameter

estimating the, 296
testing a statistical hypothesis and,

288
Moment, population, 162
Moment about the origin, definition of,

122
Moment estimator, exponential

distribution, 162
Moment-generating function, 121–124

definition of, 122
for a binomial random variable, 123
for a normal random variable, 123
properties of the, 124

Montgomery, Peck, and Vining, 5, 297,
303, 307, 342, 350

Montgomery, Peck, Vining, and Myers,
336

Moving average, definition of, 462
Moving range, 450
Multicollinearity

strong dependency among regressor
variables and, 349

why it occurs, 349–350
Multinomial probability distribution,

113–114
Multinomial random experiment, 114
Multiple comparisons, following ANOVA,

359–361
Multiple comparison method, examples

of, 372, 359
Multiple linear regression, 310–350

confidence intervals in, 329–331
examples of the use of, 311
matrix approach to, 316–321

Multiple linear regression model
contains more than one regressor

variable, 311, 314t
with k regressor variables, 312

Multiple regression model, fitting of a,
316

Multiple regression modeling, aspects of,
337–350

Multiplication rule
a counting technique, 24
conditional probability and the, 34
equation for, 34
to determine number of outcomes in a

sample space or event, 24–26
Multivariate data, 138
Mutually exclusive, when two events

are, 30
Mutually exclusive events, 31

definition of, 23
Mutually exclusive subsets, partition of

an event into, 31, 36, 36f

N
Natural tolerance limits, 453
Negative binomial distribution, 57–59,

110
Bernoulli trial and, 57–59
for select values of parameters, 58f

Negative binomial random variable,
58–59, 59f

as opposite of binomial random
variable, 59

as sum of geometric random variables,
59f

mean and variance of, 59
Newton’s law, as model of physical

universe, 18
Noise, example of an uncontrollable

input, 18, 19f
Noise factors, are uncontrollable factors,

377
Noncentral F-distribution, 363
Nonconforming parts, 59–60
Nondefective parts, and defective parts,

26
Noninteger values, 46
Nonlinear relationship, between random

variables, 111
Nonlinearity, can be visually determined

from a scatter diagram, 303
Nonnegative integer, 63
Nonparametric approach, to paired

comparisons, 268
Nonparametric procedures, 234–240

less efficient than parametric
procedure, 234

Nonparametric test
difference in two means and a,

261–264
for the difference in two means,

261–264
Nonrandom shift, 10
Nonzero probability, 46
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Normal approximation, 79–80, 80f
binomial distribution and, 80–81, 80f
for a binomial proportion, 185
for the sign test statistic, 237
for Wilcoxon rank-sum test statistic,

263
for Wilcoxon signed-rank statistic,

240
Poisson distribution and, 82
to the binomial distribution, 79
to the Poisson distribution, 79

Normal distribution, 73–79, 75f, 77f
also called a Gaussian distribution,

73
can be used to approximate

probabilities of a Poisson random
variable, 81

continuous probability distribution
and, 67

developed by Gauss, 73
reproductive property and, 119
tests on the variance of a, 223
tests on variance and standard

deviation of a, 222–224
used to approximate binomial

probabilities, 79
Normal equation, matrix form of is

identical to scalar form, 317
Normal probability density function, 75

definition and formula for, 74
mean and variance for, 74f

Normal probability plot, 146–147,
147f, 182f

central limit theorem and, 154f
mercury contamination of largemouth

bass, 178f
of effects, 417
of residuals, 296, 297f, 333f
of the coefficient of restitution, 219f

Normal random variable, 74
moment-generating function for a,

123
most-used model for a continuous

measurement, 73
standardizing a, 77, 78f

Normality, t-test and, 219–220
Normality assumption, 361
Normally independently distributed

(NID), 289
Notation, for totals and means, 383
NP chart, computer produces a, 458
Nuisance factor

blocking out a, 368
definition of, 368

Null distribution, 216
Null hypothesis, 195, 206, 248, 254,

255, 258, 262, 264, 265, 270, 271,
274, 275, 278

for a paired t-test, 264
part of procedure for hypothesis tests,

206
sign test and the, 268

Null set, 22

O
Objective probabilities, 167
Observation, of processes over time,

9–12
Observational study, 246

advantages and disadvantages
of an, 6

definition and example of, 5–6
Observed significance level, 203
Odds, 307
Odds ratio, 307–308
Ohm’s law, 5, 12, 19
One-factor-at-a-time approach

380–381, 381f
One-half fraction, test that uses only

one-half of possible factor
combinations, 9

One observation per cell, 387–388
Operating characteristic (OC) curve

definition of, 363, 364f
using, 213–214, 249

Operations, on sets, 19. See also Set
operations

Optimization, definition of, 353
Optimization experiment

and one-factor-at-a-time approach,
381f

definition of, 377, 378f
Optimize the response, 425
Ordered stem-and-leaf diagram, 133
Orthogonal

columns in a table, 398
columns of a model matrix, 349

Orthogonal design, 401
Outcomes

continuous sample space and interval
of real numbers, 20

determining the number in a sample
space or event, 23, 24

discrete sample space and countable
set of, 20

equally like, 27
random experiment and set of all

possible, 20
to analyze a random experiment must

understand possible, 19
unbounded number of, 45

Outlier, 139, 139f, 297, 335
definition of, 6

Output, combination of uncontrollable
input and controllable input, 18

Overall mean, 355
Overcontrol, definition of, 10, 10f
Overfitting, definition of, 324–325
Ozone, definition of, 96

P
P chart

also called control chart for fractional
nonconforming, 456

center line and upper and lower control
limits for a, 457

control chart proportions, 456–458

Paired t-test, 264–265
compared to unpaired, 266–267
for Karlsruhe-Lehigh procedure, 256
null hypothesis and test statistic for a,

264
Parameter (θ), 149

Bayesian estimation of, 167–169
confidence interval on, 293
estimation of, 130
linear function of unknown, 312
location, 152
scale and shape, 87, 152

Parameter estimation, 149
Parameter of interest, 206, 248, 255,

258, 262, 265, 271, 275
part of the procedure for hypothesis

tests, 206
Parameters least squares estimation of,

314–316
Parametric methods, 234
Parametric procedure, more efficient

than nonparametric procedure,
234

Parametric technique, to transform
original data, 234

Pareto chart, 476
Pareto chart,

an SPC problem-solving tool, 436
definition of, 138

Pareto diagram, an SPC problem-solving
tool, 471, 471f

Parity data, definition of, 43
Partial F-test, 327
Partial regression coefficients, 312
Partitioning, of an event into mutually

exclusive subsets, 36, 36f
Parts per million (PPM), 455, 455t
Path, of functional devices, 38
Pattern recognition, on a control chart,

443
PCRk, equation for, 454
Pearson correlation coefficient, 143
Percentage points

F distribution and upper and lower,
269f

of a t distribution, 180, 180f
of an χ2 distribution, 183

Percentile, 134
Permutation

also known as linear permutations,
24

definition of, 24
how to construct a, 24
of similar objects and equation for, 25
of subsets and equation for, 24

Physical laws, examples of, 5
Physical system

can be modeled by continuous random
variables, 67

can be modeled by random
experiments and variables, 43

continuous iteration between model
and, 19f
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engineering uses density function to
describe, 67

failure due to wear or time or external
shocks, 89

mathematical model of a, 18
Piegorsch and Bailer, 242
Plot

box, 139, 139f
box-and-whisker, 139, 139f, 182f
contour, 115, 115f
cumulative distribution, 137f
cumulative frequency, 137
digidot, 140–141, 141f
normal probability, 146–147, 147f,

182f
of pull strength, 14f
of residuals, 334f
probability, 144–147, 145f, 145t
residual, 297, 297f, 304
residuals and normal probability,

296, 297f
three-dimensional, 13f
three-dimensional surface, 380, 381f
time-oriented, 9
time sequence, 140–141
time series, 9, 9f, 141f
two-factor interaction, 380

PM10, particulate matter in the
air, 96

Point estimate, 149, 150
Point estimation, 149–150
Point estimation

general concepts of, 156–161
points of, 161–169

Point estimation of parameters, and
sample distributions, 148–169

Point estimator, 150, 295
how to obtain good, 161
method of maximum likelihood, 161
method of moments and, 161
variance of a, 157–158

Poisson, Siméon-Denis, 64
Poisson distribution, 64–65, 64f, 230

definition of a random variable, 83
normal approximation and, 79, 82
why it was developed, 81

Poisson probabilities, can be
approximated with probabilities
based on normal distribution, 82

Poisson process, 83, 85, 86, 88
types of random experiments using

the, 63
Poisson random variable, 63

distribution of a sum of, 124
mean and variance of, 65

Polymer, average molecular weight of a
(Mn), 12, 13

Polymerization reactor, 12
Polynomial regression model, 337–339
Polynomials, use the lowest-degree

model in fitting, 338
Pooled estimator, 253–254
Pooled t-test, 254
Pooling, of the data, 341, 402

Population
also known as conceptual or

hypothetical population, 128
homogeneous, 234
independent, 246f
sample and relationship to a, 131,

131f
sample selected from a larger, 128
sample versus an entire, 5, 5f, 12f
true value of the, 130

Population mean, 130
Population moments, 162
Population proportion

approximate sample size and two-sided
test on difference in, 276

approximate type II error and
one-sided test on difference in,
276

approximate type II error and
two-sided test on difference in,
276

confidence interval on difference in,
277–278

inference on two, 273–278
large-sample confidence interval for a,

185–188
large-sample tests on different,

274–275
large-scale confident interval for a,

185
test statistic for difference of two, 274
tests on, 225–229

Population standard deviation, 130
Population variance, 130
Positive quadrant of the plane, 20
Power, of a statistical test, 201
Practical significance, versus statistical

significance, 207, 207t
Precision of estimation

confidence level and, 174–175, 175f
for regression coefficients, 321

Prediction, of new/future observations,
295–296, 331–332

Prediction error sum of squares (PRESS)
statistic, 343–345

Prediction interval
definition of, 172, 295
for future observation, 189–191
on a future observation, 295, 331
purpose of, 172

Predictor variable, 281, 284
PRESS statistic, regression models and

the, 343
Pressure, example of continuous random

variable, 41
Principal block, 409
Principal fraction, 414, 414f
Prior distribution, also called probability

distribution, 167
Probability, 17–41

as a ratio of volumes, 108
based on the conceptual model of

repeated replications, 26
binomial, 79

conditional, 31–34, 32f
definition of, 26, 27–28, 27f
degree of belief or subjective, 26
for a discrete sample space, 26
interpretations and axioms of, 26–29
nonzero, 46
objective, 167
of a type I error, 197, 201
of a type II error for a two-sided test on

the mean, variance known, 212
of a union, 30–31
of failure, 39
Poisson, 82
positive 106
relative frequency interpretation of,

27
rule of total, 35, 36
standardizing to calculate a, 78
subjective, 26, 167
type II error (β), 198–201, 199f, 200f,

211–212, 212f
unconditional, 37
what it is determined by, 28

Probability density factor, of a
continuous random variable, 70

Probability density function, 67–69,
68f, 83, 87, 90, 91f

characteristic symmetric bell-shaped
curve, 74

continuous random variable with,
71,72

definition of, 68
how to determine it from a cumulative

distribution function, 70
of a bivariate normal distribution, 115
of F distributions, 269f
of t distributions, 180f
on a histogram, 68f
used to describe probability

distribution of continuous random
variable, 67

Probability distribution, 44, 67, 67f
also called prior distribution, 167
definition of, 43
for a random variable, 47
for bits in error, 44f
loading with mean and balance points,

47f
of the random variable, 43

Probability mass function, 46, 52, 97,
100, 114, 120

and cumulative distribution function,
46

definition and equation for, 44
for geometric random variables, 55

Probability model
and statistical inference, 15
decreases number of samples needed,

15
definition of, 15

Probability of an event, ratio of number
of outcomes in event to that of
sample space, 28
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Probability plot, 144–147, 145f, 145t,
146f

how to construct a, 145, 146f
Probability plotting, 230
Probability space, 110
Probabilities

associated with a normal distribution,
75f

conditions for approximating
hypergeometric and binomial,
82f

cumulative Poisson, 88
for exponential random variables, used

in staffing and customer service,
84

properly combining given, 18
sum of all outcomes of an experiment

adds up to 1, 27–28, 27f
Problem. See also Example

engineering method and description of
the, 2, 3f

factors that affect a, 2, 3f
single-sample hypothesis-testing, 7
two-sample hypothesis-testing, 7

Problem-solving tools, types of SPC,
436

Process
6-sigma, 455, 456f
historical use of word, 64
Poisson, 83, 85, 86, 88

Process capability, 439
definition of, 452–456

Process capability ratio (PCR),
452–454, 453f, 455t

Process characterization experiment,
376

Process fallout, 453f
Process mean shift, 11f
Process variability, control chart is

primary tool to understand, 435
Projection property, used in factor

screening, 417
Properties, of the least squares

estimators, 288
Properties of summation, 47
Property, lack of memory, 57, 59
Proportion

large-sample tests on a, 225–227
sample, 151
tests on population, 225–229

Prototype, 4
Pull strength

definition of, 13
wire bond and data for, 13f

Pull-off force measurement/variability,
4, 4f, 7

P-value, 203–205, 204f, 205f, 208
for the F-test, 271–272
calculated by statistics software, 217
calculated for a t-test, 216f, 217, 217f
combining, 242
equals the observed significance level,

203, 204f

Fisher method to combine all
individual, 242

for a z-test, 209f
in hypothesis tests, 203–206, 204f,

205f

Q
Quadratic model, analysis of variance for

the, 430t
Qualitative response variable, 305
Quality, means fitness for use, 435
Quality control, statistical, 434
Quality improvement

elimination of defects and waste, 435
reduction of variability, 435
statistics and, 435–436

Quality of conformance, 435
Quality of design, 435
Quantitative response variable, 305
Quantitative variable, examples of, 339
Quartile, definition of, 134

R
R chart, estimator of mean of variance

from, 444
R control chart, computer construction

of, 449
R2, adjusted statistic, 324
R2, coefficient of determination,

298–299
RAID, redundant array of independent

disks, 43
5 design and 6 design, 43

Raleigh distribution, 89
Randomized block/complete block

experiment, 370, 371
Random component, of an experiment,

18
Random disturbance, 4

result of adjustments to, 10, 10f
Random-effects model, 365–368
Random error, 282, 284, 311, 317
Random factor, fixed versus, 365
Random order, 246, 248
Random sample

and conditional probability, 34
definition of, 34, 151
purpose in taking a, 151

Random variable, 40–41. See also
Variable

chi-square, 183
definition and equation for, 4, 40
definition of continuous, 41
definition of discrete, 41
independent, 98, 105, 110, 113
notation of before and after an

experiment, 40
probability distribution of the, 43

Randomization, 6
runs and the role of, 353

Randomized complete block design
(RCBD), 368–374, 369f, 369t,
371t

residuals for, 373, 373t, 374f

Randomly, definition of, 27
Randomness, and selection of a sample,

15
Range, interquartile, 135, 139, 139f
Range (R) control chart, to control

process variability, 444–445
Ranks, data in the form of, 234
Rare event, 155
Rate, false-negative or false-positive,

18
Rate, reflux, 5, 8f, 9f
Rational subgroups, 441–442

Shewhart concept of, 441
Reactor, polymerization, 12
Reasoning

statistical inference as a type of, 5f, 5
types of, 5f

Rectangle, area and height, 136
Rectangular range, 106
Reduced model, 327
Redundant array of independent disks

(RAID), 43
Reference distribution, 209, 216

for a test statistic, 247
Reference value, 468
Reflux rate, 5, 8f, 9f
Region

acceptance, 196
critical, 196, 198f, 206, 209, 210, 216,

218, 222f, 226, 240
rejection, 210

Regression
abuses and misuses of, 284
curvilinear, 357
logistic, 305–310
multiple linear, 310–350
on transformed variables, 303–305
significance of, 289–290, 290f
simple linear, 284–289
stepwise, 345–346

Regression analysis, 301, 328t
definition of, 281
statistical technique of, 2
term first used by Galton, 283

Regression coefficient, 281, 312
confidence intervals and individual,

329–330
method of least squares and, 284
precision of estimation for, 321
subsets and test on individual,

325–329
Regression equations, 342
Regression line, 283, 283f, 284, 285f

fitted or estimated, 285
Regression model, 13, 285f

2k factorial design and, 393–394
adequacy of the, 296–299
assumptions needed to fit, 296
can be used to predict future

observations, 331
coefficient of determination used to

judge adequacy of, 298
most widely used statistical

technique, 2
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use least squares method to estimate
parameters in a, 13

Regression modeling, computer software
programs widely used in, 287

Regression of sum of squares, 323
Regression plane, 312f
Regression relationships, only valid for

regressor variables within range
of original data, 284

Regression sum of squares, 291
computer software calls it “model” sum

of squares, 292
Regression variables, model building

and selection of, 341–349
Regressor, 281

candidate, 347
Regressor variables, 312, 349
Rejection region, 210
Relationship

cause-and-effect, 6
nonlinear between random variables,

111
Relative efficiency, 161
Relative frequency, 27f, 29
Relative frequency distribution, 135
Reliability, definition of, 171
Reliability study, exponential

distribution and, 86
Replacement, sampling with or without,

26
Replicate

and only one observation per cell, 387
or observation, 353

Replication
fractional, 413, 414
of a random experiment, 26

Reproductive property, of the normal
distribution, 119

Residual, 362f, 362t
definition of, 286, 361
from a regression model, 296
how to standardize, 297
normal probability plot of, 296, 297f,

333f
partial, 333
standardized, 334
studentized, 334, 336

Residual analysis, 296–297, 333–335,
333f, 334f

and model, 393
model checking and, 361–363, 362t,

373–374, 373t
use as final check on model-building,

348
Residual plots, 297, 297f, 304
Residual sum of squares, 292, 320
Resolution designs, III, IV, and V, 418
Response surface, 425, 425f

analysis of a second-order, 428
first-order, 426

Response surface methodology (RSM)
and designs, 425–432
is a sequential procedure, 426
use of, 425

Response surface plot, for first-order
model, 427f

Response variable, 284, 305
Retrospective study

acetone-butyl alcohol distillation
column example of a, 5–6

problems with historical data derived
from a, 6

use of historical data in a, 5
Ridge regression

alternative to ordinary least squares,
350

useful in combating multicollinearity,
350

Romig, Harry G., 436
Rotable, axial spacing and central

composite design, 432, 432f
Row average, 386
Rule

addition, 30
equation for multiplication, 34
multiplication, 24
set operations and the distributed, 30
total probability, 35, 36

Run, definition of a, 442
Run down, definition of, 442
Run rules, also known as Western

Electric zone rules, 443
Run up, definition of, 442

S
S chart, estimator of mean of variance

from, 446
s2, how to compute, 129–130
Sample

bootstrap, 160
data is usually a, 5
determine risk of decision based

on a, 15
population and relationship to a,

131, 131f
random, 151
randomness and selection of a, 15

selected from a larger population, 128
test, 5
versus entire population, 5, 5f, 12f

Sample correlation coefficient, 300
definition of, 143

Sample event, 18–23
Sample mean, 151

approximate sampling distribution
and, 156

average value of all observations of a
data set, 128

definition and equation for, 127
Sample median, definition of, 133
Sample mode, definition of, 133
Sample moments, 162
Sample proportion, 151
Sample range, 131
Sample size

choice of, 175, 175f, 187–188
determining the, 363–365

for a confidence interval on the
difference in means, variances
known, 252

for a one-sided test on the difference in
means, variances known, 250

for a specified error on a binomial
population, 187

for a two-sided test on the difference in
means, variances known, 250

for specified error on the mean,
variance known, 175

type II error and choice of, 220–222,
244, 227–229, 249–250, 259–260,
272, 276

Sample size formula, 249–250
for a one-sided test on the mean,

variance known, 213
for a two-sided test on the mean,

variance known, 212
Sample space (S), 18–23

as description of possible outcomes,
40

can be described graphically as tree
diagram, 21, 21f

defined by objectives of the analysis,
20

definition of continuous and discrete,
20

discrete, 27–28
number of branches in last level of tree

diagram equals size of, 23
related outcomes described as subsets

of, 21
types of, 20

Sample standard deviation (S), 151
positive square root of the sample

variance, 128
Sample variance (S2), 151

how it measures variability, 128–129,
129f

standard deviation and, 128, 129t
Sampling, with or without replacement,

26
Sampling distribution

central limit theorem and, 150–151
is the probability distribution of a

statistic, 149
of the mean, 151–152

Sampling error, definition of, 5
Saturated fractional factorial, definition

of, 424
Scale parameter, 152
Scatter

on a dot diagram, 4
or variability of data, 4

Scatter diagram, 142–144, 143f
an SPC problem-solving tool, 436
definition of, 281
matrix of, 143, 143f

Scatter plot
matrix of, 343f
matrix of computer-generated

two-dimensional, 316f
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Science
electrical, 3
fluid, 3
mechanical, 3
thermal, 3

Sciences, use of engineering method in
different, 3

Scientific method, 2
Scientific objectivity, comes from using

statistical methods, 353
Screening experiment, 353

definition of, 413
use fractional factorials, 413
use resolution designs III and IV, 418

Sensitivity
definition of, 40
of a medical test, 40

Sequences, of fractional factorial design,
415

Sequencing, hospital operating schedule
and, 25

Set
mutually exclusive and exhaustive,

36, 36f
null, 22
point, 6

Set operations
distributed rule and, 30
distributive law for, 23
types of, 21

Sets, 19
diagram portrays relationship

between, 22
Shewhart, Walter A., 436
Shewhart control chart, 438, 460
disadvantage of the, 462
Shift, nonrandom, 10
Sign test, 235–238

calculation for the, 237–238, 238f
ties in the, 237
type II error and the, 237–238
used to test hypothesis about the

median, 235
Sign test statistic, normal

approximation for the, 237
Signed-rank test, Wilcoxon, 239
Significance level, 203, 247, 250

also called type I error probability,
197

Significance of regression, 289–290,
290f

analysis of variance to test, 291–292
for the second-order model, 338t
test for, 322–325, 323t, 324t

Simple linear regression, 284–287
correlation and, 280–309
hypothesis tests in, 288–292

Simple linear regression model, 282,
286, 296

Single-factor experiments, design and
analysis of, 351–374

Single replicate, of the 2k design,
402–405

Skewed data, description of, 138

Slope
confidence intervals on, 292–293
intercept and, 283
test statistic for, 289

Source, of variability, 3
Space, sample, 18–23
Sparsity of effects principle, 402
SPC, statistical control process, 12
Sputtering tool, 29
Stable process, 11

upper and lower control limits
with a, 11

Standard error, of the point estimator,
185

Standard deviation (S), 71
and discrete random variable, 47
continuous random variable and, 71
equation for, 47
population, 130
sample variance and, 128, 129t
when units of random variable are

same as units of, 48
Standard deviation chart, to control

process variability, 444–446
Standard error

bootstrap, 159–160
estimated, 159, 288
of a coefficient, 394
of an estimator, 158
of the point estimator, 185

Standard normal distribution, 76
is reference distribution for a test

statistic, 247
Standard normal probability density

function, 76f
Standard normal random variable (Z),

75, 77f, 91
how to calculate probabilities for, 77

Standardize, residuals and how to, 297
Standardized residual, 334
Standardizing, definition of, 77
Statistic

adjusted R2, 324
Cp, 342
definition of a, 149, 151
prediction error sum of squares

(PRESS), 343–345
Statistical analysis

first step is plotting the data, 127
of a two-factor experiment, 382–386

Statistical control, definition of, 437
Statistical hypothesis, 194–196
Statistical hypothesis testing, 149,

196–202
Statistical inference, 15

and probability model, 15
definition of, 5, 5f
for two samples, 244–279
major areas of, 149
use of, 149

Statistical intervals, for a single sample,
170–192

Statistical methods, engineering
experiments and, 7

Statistical process control (SPC), 12
branch of statistics that uses control

charts, 12
definition of, 436
elements of a company-wide program,

477
goal to eliminate variability in the

process, 437
implementing a, 476–478
objective of, 476–478
types of problem-solving tools, 436

Statistical programs, 127
Statistical quality control, 434–479

pioneers in the field of, 436
Statistical significance, versus practical

significance, 207, 207t
Statistical software packages, 127
Statistical thinking, 2–5

engineering experiments and, 7
Statistically designed experiments,

advantage of, 353
Statistics

definition of, 2, 3
descriptive, 126–147
quality improvement and, 435–436
tell which sources of variability are

most important, 3
the science of data, 127

Steepest ascent, method of, 426, 427f
Steepest descent, minimization and

method of, 426
Stem, definition of, 132
Stem-and-leaf diagram, 131–132, 132t,

133f
can display, percentiles, quartiles, and

the median, 133
computer generated, 133f
how to construct a, 132

Stem-and-leaf display, 134f
Steps, in the engineering method, 2–3
Stepwise regression, most widely used

variable selection technique,
345–346

Striping, definition of, 43
Studentized residual, 334, 336
Study. See also Experiment

analytic versus enumerative, 11, 12f
analytic, 11
enumerative, 11
observational, 5–6
retrospective, 5

Study objective, 6
Subgroups, rational, 441–442
Subinterval, and Bernoulli trial, 63
Subjective probabilities, 167

also known as degree of belief, 26
Subset

factor combination tested is only a, 8
statistical inference and a data, 15
when measurements are based on a

data, 8, 15
Subsets

combinations and, 25
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partition of an event into mutually
exclusive, 31

related outcomes of random
experiment described as, 21

Success, label that can be misleading,
51

Sum of squares
error, regression, and total, 291
for an effect, 392
partitioning of variability of data into,

356
Sum of squares identity, 355
Summation, properties of, 47
Surface flaws

defective parts and, 32f, 32t, 33f
defects on parts and, 22, 22t

Surface mount technology (SMT), 459
Surface plot, three-dimensional, 380,

381f
Surface scratches, example of discrete

random variables, 41
Symmetric continuous distribution,

Wilcoxon signed-rank test and,
239

T
t confidence interval, 181, 234
t distribution, 180, 180f

percentage points of a, 180, 180f
t probability density function, 180
t-random variable, 329
t-statistic

curvature sum of squares and, 406
to test that a coefficient is zero, 394

t-test
allows testing against one- and

two-sided alternative hypotheses,
292

calculated P-value for a, 216f, 217
comparison to the Wilcoxon rank-sum

test, 264
lower-tailed, 217
normality and the, 219–220
one sample, 216, 220
paired, 264–265
pooled, 254
type II error probability for the, 220
upper-tailed, 217
use of, 289–290

T, temperature, 12
Tabular CUSUM, 468–471, 469t, 470f,

470t
Tampering, definition of, 10
Taylor series expansion, first-order, 13
Taylor’s expansion, 64
Temperature (T), 12

condensate, 5, 6, 8, 8f, 9f
example of continuous random

variable, 41
reboil, 5, 6, 8, 8f, 9f

Test
ANOVA, 322
chi-square, 223

contingency table, 232–234
difference in two means and a

nonparametric, 261–264
for significance of regression, 291,

291t, 322–325, 323t, 324t
general regression significance, 326
goodness-of-fit, 229–232
homogeneity, 234
hypothesis and lower-tailed, 209
hypothesis and two-tailed, 208–209
large-sample, 215, 225–227, 248
Mann-Whitney, 261
one- and two-sided, 212–213
partial F-, 327
partial or marginal, 325
power of a statistical, 201
probability and sensitivity of a

medical, 40
P-value for a z-test, 209f
sign, 235–238
Wilcoxon rank-sum test, 261–262
Wilcoxon signed-rank, 239–240
z, 209–210, 209f

Test sample, 5
Test statistic

based on standard normal distribution,
208

calculated to determine the P-value,
225

computing from sample data, 196
for a paired t-test, 264
for ANOVA, 322
for difference in means, variances

unknown and not assumed equal,
257

for difference of two population
proportions, 274

for slope, 289
for zero correlation, 301
goodness-of-fit, 230
hypothesis tests on variance and

using a, 222
normal approximation for sign, 237
part of procedure for hypothesis tests

computations on the, 206
reference distribution for a, 247
standard normal distribution is

reference distribution for a, 247
Testing, hypothesis, 7

on the mean of a normal distribution,
variance unknown, 218

Tests
on equality of variances from two

normal distributions, 270
on individual regression coefficients

and subsets of coefficients,
325–329

on the difference in means of
two normal distributions,
variances unknown and
equal, 254–255

on the difference in means, variances
known, 248

two one-sided (TOST), 241

Tests of hypotheses, for a single sample,
193–243

Tests on the mean
of a normal distribution, variance

unknown, 215–222
variance known, 210

Theorem
Bayes’, 39–40
central limit, 15, 152–154, 153f,

154t
De Moivre’s central limit, 73–74

Thermal science, 3
Thinking, statistical, 2–5
Tier chart, 452
Time

example of continuous random
variable, 41

observation of processes over, 9–12
Time-oriented plot, 9
Time sequence plot, 140–141

type of graphical display, 140
Time sequences, 140
Time series, 140
Time series plot, 141f

data versus time in a, 9, 9f
provides more information than dot

diagram, 9f
stability easier to judge in a, 9

Time to failure, exponential distribution
used in reliability studies for
device, 86

Time-weighted charts, as alternative
to Shewhart control chart,
462–471

Tolerance chart, to assess process
capability, 452

Tolerance diagram, 453f
Tolerance interval

as a type of interval estimate, 172
for a normal distribution, 191–192
purpose of, 172

Tolerance limit, natural, 453
Total corrected sum of squares, 291
Total probability rule

definition of, 35
for multiple events, 36

Total sum of squares, describes total
variability of data, 355

Transformation
the Jacobian one-to-one, 121
variance-stabilizing, 297

Treatment
each factor level is a, 353, 354
two different conditions and if either

produces an effect is called, 246
Transformed variables, 303
Treatment effect, 355
Treatment mean square, 356
Treatment sum of squares (SSTreatment ),

definition of, 356
Tree diagram, 21f, 23–24

and conditional probabilities, 33, 33f
Trend, 140
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Trial
Bernoulli, 55, 57
with only two possible outcomes

(Bernoulli), 51
Trials, independent of each other in a

random experiment, 51
True regression model, 283
True value, of the population, 130
Two-factor factorial experiments,

382–388, 382t
Type I error

definition of, 197
probability of, 197, 201

Type II error (β)
and choice of sample size, 211–215,

220–222, 224, 227–229, 249–250,
259–260, 272, 276

definition of, 197
finding the probability of, 211–212,

212f
probability for the t-test, 220
probability, 198–201, 199f, 200f
sign test and, 237–238

U
U chart

an SPC problem-solving tool, 459f,
471

center line and upper and lower control
limits on a, 458

control chart for defects per unit, 458
U.S. Environmental Protection Agency,

limits for PM10 and ozone set by
the, 96

Unbalanced experiment, definition of,
359

Unbiased estimator, 156–158, 158f,
287–288

Unbiasedness, 161
Unbounded number of outcomes, 45
Uncontrollable factors, also called noise

factors, 377
Uniform distribution, 92
Union

definition and notation for, 21
probability of a, 30
type of set operation, 21

Union of events, 29
Uniqueness property, 123
Unreplicated, as a single replicate of a

2kdesign, 402
Upper control limit (UCL), on a control

chart, 437, 443

V
V mask, used to make limits for

CUSUM, 467–468, 467f
V, viscosity of a material, 12
Value

expected, 47, 49, 72, 110, 356, 384
integer and noninteger, 46

Variability
all unmodeled sources of (ϵ), 12

definition of, 3
gasoline mileage and, 3
how sample variance measures,

128–129, 129f
making decisions when there is data,

2
or scatter of data, 4
quality improvement and reduction of,

435
sources of, 3

Variable. Also see Variables
Bernoulli random, 305
beta random, 92
binomial random, 52, 80, 123
bivariate normal random, 116
categorical, 339
chi-square random, 183
continuous random, 41, 67, 121
continuous uniform random, 72
dependent, 312
discrete random, 41, 121
dummy, 340
Erlang random, 87, 88
F-random, 346
gamma random, 87
geometric random, 55, 460
hypergeometric random, 60, 62
independent random, 98, 105–106,

110, 113
indicator, 339
lognormal random, 91
negative binomial random, 58–59,

59f
normal random, 63, 73, 123
predictor, 281, 284
qualitative response, 305
quantitative, 339
random, 4
regressor, 284, 312
response, 305
selection of, 341
standard normal random, 75, 77f, 91
t-random, 329
Weibull random, 89, 90

Variables
candidate, 342, 348
concept of independence and multiple

random, 109–110
discrete random, 43
distribution of a random subset of,

109
expected value of a function of two

random, 110
nonlinear quadratic relationship

between, 144f
nonzero correlation of two random,

113
positive/negative/zero correlation

between random, 115
potential relationship between, 144
random, 40–41
regressor, 349
transformed, 303

Variables control chart, 439

Variance. See also Mean and variance
analysis of, 351–374
analysis of (ANOVA), 382–383
conditional, 104
confidence interval on a, 184
definition and equation for, 47
equation for estimator of, 320
error, 283
estimator of, 287
hypothesis tests on the, 222–223,

222f
normal distribution and tests on the,

223
of a linear function, 118
of a point estimator, 157–158
of a Poisson random variable, 65
one-sided confidence bounds on the,

184
pooled estimator of, 253–254
sample, 151
tests on the standard deviation of a

normal distribution, 222–224
Variance components, ANOVA and,

365–368
Variance inflation factor (VIF), 349
Variance known

confidence interval on the mean of a
normal distribution, 172

confidence interval on the mean, 173
one-sided confidence bounds on the

mean, 176
sample size for specified error on the

mean, 175
Variance model, components of a, 365
Variance of the error term ϵ, estimating,

319–321
Variance table, analysis of, 291, 291t
Variances

computer calculations for equal, 272
equal, 272
known, 245–261
test on equality of, 270
unknown, 253–259
unknown and equal, 254–255, 260
unknown and not assumed equal,

257, 261
Variation

cause of disruption in voice
communication system, 19, 19f

need to understand, quantify, and
model the type of, 18

Variations, process is affected by types
of, 11

Venn diagram, 22, 23f, 35
for several mutually exclusive events,

30, 31f
represents mutually exclusive events,

23f
represents sample space with events in

it, 22, 23f
Viscosity (V), of a material, 12
Voltage, example of continuous random

variable, 41
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W
Warning limits, 443
Weibull distribution, 89–90

mean and variance of the, 90
used to model failure time of a

device, 86
Weibull probability density function,

90f
Weibull random variable, 89,

90
Weight, example of continuous

random variable, 41
Western Electric zone rules, 443,

443f
Whisker, on a box-and-whisker plot,

139, 139f
Wilcoxon, Frank, 239

Wilcoxon rank-sum test, 261–262
comparison to the t-test, 264
description of the, 262–263
sometimes called the Mann-Whitney

test, 261
Wilcoxon rank-sum test statistic, and

normal approximation, 263
Wilcoxon signed-rank test

and symmetric continuous
distribution, 239

preferable to the sign test, 240
similar to t-test for symmetric

distributions, 240
ties in the, 240

Wilcoxon signed-rank statistic, normal
approximation and, 240

Wilcoxon signed-rank test, 239–240

X
X chart, individuals control chart,

450
X control chart, 440, 440f, 442f

computer construction of, 449
control chart for averages, 444–446

X matrix, often called the model matrix,
317

χ2 distribution, 182–183, 183f

Z
z-test, 209–210, 209f

on a proportion, software package
sample size calculations for a
one-sample, 228–229

Zero correlation, test statistic for,
301
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