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Preface

INTENDED AUDIENCE
This is an introductory textbook for a first course in applied statistics and probability for 

undergraduate students in engineering and the physical or chemical sciences. These indi-

viduals play a significant role in designing and developing new products and manufacturing 

systems and processes, and they also improve existing systems. Statistical methods are an 

important tool in these activities because they provide the engineer with both descriptive 

and analytical methods for dealing with the variability in observed data. Although many of 

the methods we present are fundamental to statistical analysis in other disciplines, such as 

business and management, the life sciences, and the social sciences, we have elected to focus 

on an engineering-oriented audience. We believe that this approach will best serve students 

in engineering and the chemical/physical sciences and will allow them to concentrate on the 

many applications of statistics in these disciplines. We have worked hard to ensure that our 

examples and exercises are engineering- and science-based, and in almost all cases we have 

used examples of real data—either taken from a published source or based on our consulting 

experiences.

We believe that engineers in all disciplines should take at least one course in statistics. 

Unfortunately, because of other requirements, most engineers will only take one statistics 

course. This book can be used for a single course, although we have provided enough material 

for two courses in the hope that more students will see the important applications of statistics 

in their everyday work and elect a second course. We believe that this book will also serve as 

a useful reference.

We have retained the relatively modest mathematical level of the first five editions. We have 

found that engineering students who have completed one or two semesters of calculus and 

have some knowledge of matrix algebra should have no difficulty reading all of the text. It is 

our intent to give the reader an understanding of the methodology and how to apply it, not the 

mathematical theory. We have made many enhancements in this edition, including reorganiz-

ing and rewriting major portions of the book and adding a number of new exercises.

ORGANIZATION OF THE BOOK
Perhaps the most common criticism of engineering statistics texts is that they are too long. 

Both instructors and students complain that it is impossible to cover all of the topics in the 

book in one or even two terms. For authors, this is a serious issue because there is great variety 

in both the content and level of these courses, and the decisions about what material to delete 

without limiting the value of the text are not easy. Decisions about which topics to include in 

this edition were made based on a survey of instructors.

Chapter 1 is an introduction to the field of statistics and how engineers use statistical meth-

odology as part of the engineering problem-solving process. This chapter also introduces the 

reader to some engineering applications of statistics, including building empirical models, 

designing engineering experiments, and monitoring manufacturing processes. These topics 

are discussed in more depth in subsequent chapters.
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Preface vii

Chapters 2, 3, 4, and 5 cover the basic concepts of probability, discrete and continuous 

random variables, probability distributions, expected values, joint probability distributions, 

and independence. We have given a reasonably complete treatment of these topics but have 

avoided many of the mathematical or more theoretical details.

Chapter 6 begins the treatment of statistical methods with random sampling; data sum-

mary and description techniques, including stem-and-leaf plots, histograms, box plots, and 

probability plotting; and several types of time series plots. Chapter 7 discusses sampling dis-

tributions, the central limit theorem, and point estimation of parameters. This chapter also 

introduces some of the important properties of estimators, the method of maximum likeli-

hood, the method of moments, and Bayesian estimation.

Chapter 8 discusses interval estimation for a single sample. Topics included are confidence 

intervals for means, variances or standard deviations, proportions, prediction intervals, and tol-

erance intervals. Chapter 9 discusses hypothesis tests for a single sample. Chapter 10 presents 

tests and confidence intervals for two samples. This material has been extensively rewritten and 

reorganized. There is detailed information and examples of methods for determining appropri-

ate sample sizes. We want the student to become familiar with how these techniques are used to 

solve real-world engineering problems and to get some understanding of the concepts behind 

them. We give a logical, heuristic development of the procedures rather than a formal, mathe-

matical one. We have also included some material on nonparametric methods in these chapters.

Chapters 11 and 12 present simple and multiple linear regression including model ade-

quacy checking and regression model diagnostics and an introduction to logistic regression. 

We use matrix algebra throughout the multiple regression material (Chapter 12) because it is 

the only easy way to understand the concepts presented. Scalar arithmetic presentations of 

multiple regression are awkward at best, and we have found that undergraduate engineers are 

exposed to enough matrix algebra to understand the presentation of this material.

Chapters 13 and 14 deal with single- and multifactor experiments, respectively. The notions 

of randomization, blocking, factorial designs, interactions, graphical data analysis, and frac-

tional factorials are emphasized. Chapter 15 introduces statistical quality control, emphasiz-

ing the control chart and the fundamentals of statistical process control.

WHAT’S NEW IN THIS EDITION
We received much feedback from users of the fifth edition of the book, and in response we 

have made substantial changes in this new edition.

have added material on the bootstrap and its use in constructing confidence intervals.

P-value in hypothesis testing. Many sections 

of several chapters were rewritten to reflect this.

try to make the concepts easier to understand.

-

ing, a technique widely used in the biopharmaceutical industry, but which has widespread 

applications in other areas.

P-values when performing mutiple tests is incuded.

-

tions of the results.
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viii  Preface

Learning Objectives
Learning Objectives at the start 

of each chapter guide the students 

in what they are expected to take 

away from this chapter and serve as 

a study reference.

FEATURED IN THIS BOOK
Definitions, Key Concepts, and Equations
Throughout the text, definitions and key 

concepts and equations are highlighted by a 

box to emphasize their importance.

Seven-Step Procedure for Hypothesis Testing 
The text introduces a sequence of seven steps in 

applying hypothesis-testing methodology and 

explicitly exhibits this procedure in examples.
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Preface   ix

Figures
Numerous figures throughout  

the text illustrate statistical concepts  

in multiple formats.

Computer Output
Example throughout the book, use computer 

output to illustrate the role of modern statistical 

software.

Example Problems
A set of example problems provides the 

student with detailed solutions and comments 

for interesting, real-world situations. Brief 

practical interpretations have been added in 

this edition.
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x  Preface

Exercises
Each chapter has an extensive 

collection of exercises, including 

end-of-section exercises that 

emphasize the material in that 

section, supplemental exercises
at the end of the chapter that cover 

the scope of chapter topics and 

require the student to make a 

decision about the approach they 

will use to solve the problem, 

and mind-expanding exercises
that often require the student to 

extend the text material somewhat 

or to apply it in a novel situation. 

Answers are provided to most odd-

numbered exercises in Appendix C 

in the text, and the WileyPLUS
online learning environment 

includes for students complete 

detailed solutions to selected 

exercises.

Important Terms and Concepts
At the end of each chapter is a list 

of important terms and concepts 

for an easy self-check and study 

tool.

STUDENT RESOURCES

the book Web site at www.wiley.com/college/montgomery to access these materials.

Student Solutions Manual may be purchased from the Web site at www.wiley.com/college/

montgomery.

INSTRUCTOR RESOURCES
The following resources are available only to instructors who adopt the text:

Solutions Manual  All solutions to the exercises in the text.

Data Sets  Data sets for all examples and exercises in the text.

Image Gallery of Text Figures

PowerPoint Lecture Slides

Section on Logistic Regression
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These instructor-only resources are password-protected. Visit the instructor section of the 

book Web site at www.wiley.com/college/montgomery to register for a password to access 

these materials.

COMPUTER SOFTWARE
We have used several different packages, including Excel, to demonstrate computer usage. 

Minitab can be used for most exercises. A student version of Minitab is available as an option to 

purchase in a set with this text. Student versions of software often do not have all the functionality 

that full versions do. Consequently, student versions may not support all the concepts presented 

in this text. If you would like to adopt for your course the set of this text with the student version 

of Minitab, please contact your local Wiley representative at www.wiley.com/college/rep.

Alternatively, students may find information about how to purchase the professional 

version of the software for academic use at www.minitab.com.

WileyPLUS
This online teaching and learning environment integrates the entire digital textbook with the 

most effective instructor and student resources to fit every learning style.

With WileyPLUS:

-

ments, grade tracking, and more.

WileyPLUS can complement your current textbook or replace the printed text altogether.

For Students

Personalize the learning experience
Different learning styles, different levels of proficiency, different levels of preparation—each of 

your students is unique. WileyPLUS empowers them to take advantage of their individual strengths:

immediate feedback and remediation when needed.

-

erences and encourage more active learning.

WileyPLUS includes many opportunities for self-assessment linked to the relevant portions 

of the text. Students can take control of their own learning and practice until they master 

the material.

For Instructors

Personalize the teaching experience
WileyPLUS empowers you with the tools and resources you need to make your teaching even 

more effective:

-

-

als to your WileyPLUS course.

WileyPLUS you can identify those students who are falling behind and intervene 

accordingly, without having to wait for them to come to office hours.

WileyPLUS simplifies and automates such tasks as student performance assessment, mak-

ing assignments, scoring student work, keeping grades, and more.
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COURSE SYLLABUS SUGGESTIONS

course on statistics for engineers vary widely, as do the abilities of different groups of stu-

dents. Therefore, we hesitate to give too much advice, but will explain how we use the book.

We believe that a first course in statistics for engineers should be primarily an applied statistics 

course, not a probability course. In our one-semester course we cover all of Chapter 1 (in one or 

two lectures); overview the material on probability, putting most of the emphasis on the normal 

distribution (six to eight lectures); discuss most of Chapters 6 through 10 on confidence intervals 

and tests (twelve to fourteen lectures); introduce regression models in Chapter 11 (four lectures); 

give an introduction to the design of experiments from Chapters 13 and 14 (six lectures); and 

present the basic concepts of statistical process control, including the Shewhart control chart 

from Chapter 15 (four lectures). This leaves about three to four periods for exams and review. 

Let us emphasize that the purpose of this course is to introduce engineers to how statistics can 

be used to solve real-world engineering problems, not to weed out the less mathematically gifted 

students. This course is not the “baby math-stat” course that is all too often given to engineers.

If a second semester is available, it is possible to cover the entire book, including much of 

the supplemental material, if appropriate for the audience. It would also be possible to assign 

and work many of the homework problems in class to reinforce the understanding of the con-

cepts. Obviously, multiple regression and more design of experiments would be major topics 

in a second course.

USING THE COMPUTER
In practice, engineers use computers to apply statistical methods to solve problems. Therefore, 

we strongly recommend that the computer be integrated into the class. Throughout the book 

we have presented typical example of the output that can be obtained with modern statistical 

software. In teaching, we have used a variety of software packages, including Minitab, Stat-

graphics, JMP, and Statistica. We did not clutter up the book with operational details of these 

different packages because how the instructor integrates the software into the class is ultimate-

ly more important than which package is used. All text data are available in electronic form 

on the textbook Web site. In some chapters, there are problems that we feel should be worked 

using computer software. We have marked these problems with a special icon in the margin.

In our own classrooms, we use the computer in almost every lecture and demonstrate how the 

technique is implemented in software as soon as it is discussed in the lecture. Student versions 

of many statistical software packages are available at low cost, and students can either purchase 

their own copy or use the products available through the institution. We have found that this 

greatly improves the pace of the course and student understanding of the material.

Users should be aware that final answers may differ slightly due to different numerical preci-

sion and rounding protocols among softwares.
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1

Statistics is a science that helps us make decisions and draw 

conclusions in the presence of variability. For example, civil 

engineers working in the transportation fi eld are concerned 

about the capacity of regional highway systems. A typical 

problem related to transportation would involve data regarding 

this specifi c system’s number of nonwork, home-based trips, 

the number of persons per household, and the number of vehi-

cles per household. The objective would be to produce a trip-

generation model relating trips to the number of persons per 

household and the number of vehicles per household. A statis-

tical technique called regression analysis can be used to con-

struct this model. The trip-generation model is an important 

tool for transportation systems planning. Regression methods 

are among the most widely used statistical techniques in engi-

neering. They are presented in Chapters 11 and 12.

The hospital emergency department (ED) is an important 

part of the healthcare delivery system. The process by which 

patients arrive at the ED is highly variable and can depend on 

the hour of the day and the day of the week, as well as on 

longer-term cyclical variations. The service process is also 

highly variable, depending on the types of services that the 

patients require, the number of patients in the ED, and how the 

ED is staffed and organized. An ED’s capacity is also limited; 

consequently, some patients experience long waiting times. 

How long do patients wait, on average? This is an important 

question for healthcare providers. If waiting times become 

excessive, some patients will leave without receiving treatment 

LWOT. Patients who LWOT are a serious problem, because 

they do not have their medical concerns addressed and are at 

risk for further problems and complications. Therefore, another 
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2 Chapter 1/The Role of Statistics in Engineering

important question is: What proportion of patients LWOT from the ED? These questions can be 

solved by employing probability models to describe the ED, and from these models very precise 

estimates of waiting times and the number of patients who LWOT can be obtained. Probability 

models that can be used to solve these types of problems are discussed in Chapters 2 through 5.

The concepts of probability and statistics are powerful ones and contribute extensively to 

the solutions of many types of engineering problems. You will encounter many examples of 

these applications in this book.

Learning Objectives

 After careful study of this chapter, you should be able to do the following:

1. Identify the role that statistics can play in the engineering problem-solving process

2. Discuss how variability affects the data collected and used for making engineering decisions

3. Explain the difference between enumerative and analytical studies

4. Discuss the different methods that engineers use to collect data

5. Identify the advantages that designed experiments have in comparison to other methods of collecting 
engineering data

6. Explain the differences between mechanistic models and empirical models

7. Discuss how probability and probability models are used in engineering and science

1-1 The Engineering Method and Statistical Thinking
An engineer is someone who solves problems of interest to society by the efficient application of 

scientific principles. Engineers accomplish this by either refining an existing product or process 

or by designing a new product or process that meets customers’ needs. The engineering, or 

scientific, method is the approach to formulating and solving these problems. The steps in the 

engineering method are as follows:

1. Develop a clear and concise description of the problem.

2. Identify, at least tentatively, the important factors that affect this problem or that may play 

a role in its solution.

3. Propose a model for the problem, using scientific or engineering knowledge of the 

phenomenon being studied. State any limitations or assumptions of the model.

4. Conduct appropriate experiments and collect data to test or validate the tentative model or 

conclusions made in steps 2 and 3.

5. Refine the model on the basis of the observed data.

6. Manipulate the model to assist in developing a solution to the problem.

7. Conduct an appropriate experiment to confirm that the proposed solution to the problem is 

both effective and efficient.

8. Draw conclusions or make recommendations based on the problem solution.

The steps in the engineering method are shown in Fig. 1-1. Many engineering sciences 

employ the engineering method: the mechanical sciences (statics, dynamics), fluid science, 

thermal science, electrical science, and the science of materials. Notice that the engineer-

ing method features a strong interplay among the problem, the factors that may influence 

its solution, a model of the phenomenon, and experimentation to verify the adequacy of 

the model and the proposed solution to the problem. Steps 2–4 in Fig. 1-1 are enclosed in 

a box, indicating that several cycles or iterations of these steps may be required to obtain 

the final solution. Consequently, engineers must know how to efficiently plan experiments, 

collect data, analyze and interpret the data, and understand how the observed data relate to 

the model they have proposed for the problem under study.
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Section 1-1/The Engineering Method and Statistical Thinking   3

The field of statistics deals with the collection, presentation, analysis, and use of data to make 

decisions, solve problems, and design products and processes. In simple terms, statistics is the sci-
ence of data. Because many aspects of engineering practice involve working with data, obviously 

knowledge of statistics is just as important to an engineer as are the other engineering sciences. 

Specifically, statistical techniques can be powerful aids in designing new products and systems, 

improving existing designs, and designing, developing, and improving production processes.

Statistical methods are used to help us describe and understand variability. By variability, we 

mean that successive observations of a system or phenomenon do not produce exactly the same 

result. We all encounter variability in our everyday lives, and statistical thinking can give us a 

useful way to incorporate this variability into our decision-making processes. For example, con-

sider the gasoline mileage performance of your car. Do you always get exactly the same mileage 

performance on every tank of fuel? Of course not — in fact, sometimes the mileage performance 

varies considerably. This observed variability in gasoline mileage depends on many factors, such 

as the type of driving that has occurred most recently (city versus highway), the changes in the 

vehicle’s condition over time (which could include factors such as tire inflation, engine com-

pression, or valve wear), the brand and/or octane number of the gasoline used, or possibly even 

the weather conditions that have been recently experienced. These factors represent potential 

sources of variability in the system. Statistics provides a framework for describing this vari-

ability and for learning about which potential sources of variability are the most important or 

which have the greatest impact on the gasoline mileage performance.

We also encounter variability in dealing with engineering problems. For example, suppose 

that an engineer is designing a nylon connector to be used in an automotive engine application. 

The engineer is considering establishing the design specification on wall thickness at 3 32 inch 

but is somewhat uncertain about the effect of this decision on the connector pull-off force. If 

the pull-off force is too low, the connector may fail when it is installed in an engine. Eight 

prototype units are produced and their pull-off forces measured, resulting in the following 

data (in pounds): 12 6 12 9 13 4 12 3 13 6 13 5 12 6 13 1. , . , . , . , . , . , . , .       . As we anticipated, not all of 

the prototypes have the same pull-off force. We say that there is variability in the pull-off force 

measurements. Because the pull-off force measurements exhibit variability, we consider the 

pull-off force to be a random variable. A convenient way to think of a random variable, say X,  

that represents a measurement is by using the model

 X 5m 1 e (1-1)

where m is a constant and e is a random disturbance. The constant remains the same with every 

measurement, but small changes in the environment, variance in test equipment, differences 

in the individual parts themselves, and so forth change the value of e. If there were no distur-

bances, e would always equal zero and X would always be equal to the constant m. However, 

this never happens in the real world, so the actual measurements X exhibit variability. We 

often need to describe, quantify, and ultimately reduce variability.

Figure 1-2 presents a dot diagram of these data. The dot diagram is a very useful plot for 

displaying a small body of data—say, up to about 20 observations. This plot allows us to easily 

see two features of the data: the location, or the middle, and the scatter or variability. When 

the number of observations is small, it is usually difficult to identify any specific patterns in the 

variability, although the dot diagram is a convenient way to see any unusual data features.

The Science of Data

Variability

FIGURE 1-1 The engineering method.
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4  Chapter 1/The Role of Statistics in Engineering

The need for statistical thinking arises often in the solution of engineering problems. Consider 

the engineer designing the connector. From testing the prototypes, he knows that the average pull-

off force is 13.0 pounds. However, he thinks that this may be too low for the intended application, 

so he decides to consider an alternative design with a thicker wall, 1 8 inch in thickness. Eight pro-

totypes of this design are built, and the observed pull-off force measurements are 12.9, 13.7, 12.8, 

13.9, 14.2, 13.2, 13.5, and 13.1. The average is 13.4. Results for both samples are plotted as dot 

diagrams in Fig. 1-3. This display gives the impression that increasing the wall thickness has led to 

an increase in pull-off force. However, there are some obvious questions to ask. For instance, how 

do we know that another sample of prototypes will not give different results? Is a sample of eight 

prototypes adequate to give reliable results? If we use the test results obtained so far to conclude 

that increasing the wall thickness increases the strength, what risks are associated with this deci-

sion? For example, is it possible that the apparent increase in pull-off force observed in the thicker 

prototypes is due only to the inherent variability in the system and that increasing the thickness of 

the part (and its cost) really has no effect on the pull-off force?

Often, physical laws (such as Ohm’s law and the ideal gas law) are applied to help design prod-

ucts and processes. We are familiar with this reasoning from general laws to specific cases. But it 

is also important to reason from a specific set of measurements to more general cases to answer 

the previous questions. This reasoning comes from a sample (such as the eight connectors) to 

a population (such as the connectors that will be in the products that are sold to customers). 

The reasoning is referred to as statistical inference. See Fig. 1-4. Historically, measurements 

were obtained from a sample of people and generalized to a population, and the terminology has 

remained. Clearly, reasoning based on measurements from some objects to measurements on all 

objects can result in errors (called sampling errors). However, if the sample is selected properly, 

these risks can be quantified and an appropriate sample size can be determined.

1-2 Collecting Engineering Data
1-2.1 BASIC PRINCIPLES

In the previous subsection, we illustrated some simple methods for summarizing data. Some-

times the data are all of the observations in the population. This results in a census. However, 

in the engineering environment, the data are almost always a sample that has been selected 

from the population. Three basic methods of collecting data are

A retrospective study using historical data

An observational study
A designed experiment

Population and 
Samples

12 1413 15

Pull-off force

FIGURE 1-2 Dot diagram of the pull-off force 
data when wall thickness is 3 32 inch.
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Section 1-2/Collecting Engineering Data  5

An effective data-collection procedure can greatly simplify the analysis and lead to improved 

understanding of the population or process that is being studied. We now consider some 

examples of these data-collection methods.

1-2.2 RETROSPECTIVE STUDY

Montgomery, Peck, and Vining (2012) describe an acetone-butyl alcohol distillation column for 

which concentration of acetone in the distillate (the output product stream) is an important variable. 

Factors that may affect the distillate are the reboil temperature, the condensate temperature, and the 

reflux rate. Production personnel obtain and archive the following records:

The concentration of acetone in an hourly test sample of output product

The reboil temperature log, which is a record of the reboil temperature over time

The condenser temperature controller log

The nominal reflux rate each hour

The reflux rate should be held constant for this process. Consequently, production personnel 

change this very infrequently.

A retrospective study would use either all or a sample of the historical process data archived 

over some period of time. The study objective might be to discover the relationships among the 

two temperatures and the reflux rate on the acetone concentration in the output product stream. 

However, this type of study presents some problems:

1. We may not be able to see the relationship between the reflux rate and acetone concentration 

because the reflux rate did not change much over the historical period.

2. The archived data on the two temperatures (which are recorded almost continuously) do 

not correspond perfectly to the acetone concentration measurements (which are made 

hourly). It may not be obvious how to construct an approximate correspondence.

3. Production maintains the two temperatures as closely as possible to desired targets or set 

points. Because the temperatures change so little, it may be difficult to assess their real 

impact on acetone concentration.

4. In the narrow ranges within which they do vary, the condensate temperature tends to 

increase with the reboil temperature. Consequently, the effects of these two process vari-

ables on acetone concentration may be difficult to separate.

As you can see, a retrospective study may involve a significant amount of data, but those data 

may contain relatively little useful information about the problem. Furthermore, some of the 

relevant data may be missing, there may be transcription or recording errors resulting in outli-
ers (or unusual values), or data on other important factors may not have been collected and 

archived. In the distillation column, for example, the specific concentrations of butyl alcohol 

and acetone in the input feed stream are very important factors, but they are not archived 

because the concentrations are too hard to obtain on a routine basis. As a result of these types 

of issues, statistical analysis of historical data sometimes identifies interesting phenomena, but 

solid and reliable explanations of these phenomena are often difficult to obtain.

1-2.3 OBSERVATIONAL STUDY

In an observational study, the engineer observes the process or population, disturbing it as 

little as possible, and records the quantities of interest. Because these studies are usually 

conducted for a relatively short time period, sometimes variables that are not routinely 

measured can be included. In the distillation column, the engineer would design a form to 

record the two temperatures and the reflux rate when acetone concentration measurements 

are made. It may even be possible to measure the input feed stream concentrations so that 

the impact of this factor could be studied. 

Hazards of Using
Historical Data
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6  Chapter 1/The Role of Statistics in Engineering

Generally, an observational study tends to solve problems 1 and 2 and goes a long way 

toward obtaining accurate and reliable data. However, observational studies may not help 

resolve problems 3 and 4.

1-2.4 DESIGNED EXPERIMENTS

In a designed experiment, the engineer makes deliberate or purposeful changes in the controlla-

ble variables of the system or process, observes the resulting system output data, and then makes 

an inference or decision about which variables are responsible for the observed changes in output 

performance. The nylon connector example in Section 1-1 illustrates a designed experiment; 
that is, a deliberate change was made in the connector’s wall thickness with the objective of dis-

covering whether or not a stronger pull-off force could be obtained. Experiments designed with 

basic principles such as randomization are needed to establish cause-and-effect relationships.

Much of what we know in the engineering and physical-chemical sciences is developed 

through testing or experimentation. Often engineers work in problem areas in which no scien-

tific or engineering theory is directly or completely applicable, so experimentation and obser-

vation of the resulting data constitute the only way that the problem can be solved. Even when 

there is a good underlying scientific theory that we may rely on to explain the phenomena of 

interest, it is almost always necessary to conduct tests or experiments to confirm that the the-

ory is indeed operative in the situation or environment in which it is being applied. Statistical 

thinking and statistical methods play an important role in planning, conducting, and analyzing 

the data from engineering experiments. Designed experiments play a very important role in 

engineering design and development and in the improvement of manufacturing processes.

For example, consider the problem involving the choice of wall thickness for the nylon connec-

tor. This is a simple illustration of a designed experiment. The engineer chose two wall thicknesses 

for the connector and performed a series of tests to obtain pull-off force measurements at each 

wall thickness. In this simple comparative experiment, the engineer is interested in determining 

whether there is any difference between the 3 32- and 1 8-inch designs. An approach that could be 

used in analyzing the data from this experiment is to compare the mean pull-off force for the 3 32

-inch design to the mean pull-off force for the 1 8-inch design using statistical hypothesis testing, 

which is discussed in detail in Chapters 9 and 10. Generally, a hypothesis is a statement about 

some aspect of the system in which we are interested. For example, the engineer might want to 

know if the mean pull-off force of a 3 32-inch design exceeds the typical maximum load expected 

to be encountered in this application, say, 12.75 pounds. Thus, we would be interested in testing the 

hypothesis that the mean strength exceeds 12.75 pounds. This is called a single-sample hypothesis-
testing problem. Chapter 9 presents techniques for this type of problem. Alternatively, the engineer 

might be interested in testing the hypothesis that increasing the wall thickness from 3 32 to 1 8 inch 

results in an increase in mean pull-off force. It is an example of a two-sample hypothesis-testing 
problem. Two-sample hypothesis-testing problems are discussed in Chapter 10.

Designed experiments offer a very powerful approach to studying complex systems, such 

as the distillation column. This process has three factors—the two temperatures and the reflux 

rate—and we want to investigate the effect of these three factors on output acetone concentra-

tion. A good experimental design for this problem must ensure that we can separate the effects 

of all three factors on the acetone concentration. The specified values of the three factors used 

in the experiment are called factor levels. Typically, we use a small number of levels such as 

two or three for each factor. For the distillation column problem, suppose that we use two lev-

els, “high’’ and “low’’ (denoted +1 and -1, respectively), for each of the three factors. A very 

reasonable experiment design strategy uses every possible combination of the factor levels to 

form a basic experiment with eight different settings for the process. This type of experiment 

is called a factorial experiment. See Table 1-1 for this experimental design.

Figure 1-5 illustrates that this design forms a cube in terms of these high and low levels. 

With each setting of the process conditions, we allow the column to reach equilibrium, take 

a sample of the product stream, and determine the acetone concentration. We then can draw 
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Section 1-2/Collecting Engineering Data   7

specifi c inferences about the effect of these factors. Such an approach allows us to proactively 

study a population or process.

An important advantage of factorial experiments is that they allow one to detect an interac-
tion between factors. Consider only the two temperature factors in the distillation experiment. 

Suppose that the response concentration is poor when the reboil temperature is low, regardless 

of the condensate temperature. That is, the condensate temperature has no effect when the reboil 

temperature is low. However, when the reboil temperature is high, a high condensate tempera-

ture generates a good response, but a low condensate temperature generates a poor response. 

That is, the condensate temperature changes the response when the reboil temperature is high. 

The effect of condensate temperature depends on the setting of the reboil temperature, and these 

two factors are said to interact in this case. If the four combinations of high and low reboil and 

condensate temperatures were not tested, such an interaction would not be detected.

We can easily extend the factorial strategy to more factors. Suppose that the engineer wants 

to consider a fourth factor, type of distillation column. There are two types: the standard one 

and a newer design. Figure 1-6 illustrates how all four factors—reboil temperature, conden-

sate temperature, refl ux rate, and column design—could be investigated in a factorial design. 

Because all four factors are still at two levels, the experimental design can still be represented 

geometrically as a cube (actually, it’s a hypercube). Notice that as in any factorial design, all 

possible combinations of the four factors are tested. The experiment requires 16 trials.

Generally, if there are k factors and each has two levels, a factorial experimental design will 

require 2k runs. For example, with k  = 4, the 24 design in Fig. 1-6 requires 16 tests. Clearly, as the 

number of factors increases, the number of trials required in a factorial experiment increases rap-

idly; for instance, eight factors each at two levels would require 256 trials. This quickly becomes 

unfeasible from the viewpoint of time and other resources. Fortunately, with four to fi ve or more 

factors, it is usually unnecessary to test all possible combinations of factor levels. A fractional 
factorial experiment is a variation of the basic factorial arrangement in which only a subset of the 

factor combinations is actually tested. Figure 1-7 shows a fractional factorial experimental design 

for the four-factor version of the distillation experiment. The circled test combinations in this fi gure 

are the only test combinations that need to be run. This experimental design requires only 8 runs 

instead of the original 16; consequently it would be called a one-half fraction. This is an excellent 

experimental design in which to study all four factors. It will provide good information about the 

individual effects of the four factors and some information about how these factors interact.

Interaction can be a 
Key Element in

Problem Solving

FIGURE 1-5 The 
factorial design 
for the distillation 
column.
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8 Chapter 1/The Role of Statistics in Engineering

Factorial and fractional factorial experiments are used extensively by engineers and scientists in 

industrial research and development, where new technology, products, and processes are designed 

and developed and where existing products and processes are improved. Since so much engineer-

ing work involves testing and experimentation, it is essential that all engineers understand the basic 

principles of planning efficient and effective experiments. We discuss these principles in Chapter 

13. Chapter 14 concentrates on the factorial and fractional factorials that we have introduced here.

1-2.5 Observing Processes Over Time

Often data are collected over time. In this case, it is usually very helpful to plot the data versus 

time in a time series plot. Phenomena that might affect the system or process often become 

more visible in a time-oriented plot and the concept of stability can be better judged.

Figure 1-8 is a dot diagram of acetone concentration readings taken hourly from the distil-

lation column described in Section 1-2.2. The large variation displayed on the dot diagram 

indicates considerable variability in the concentration, but the chart does not help explain the 

reason for the variation. The time series plot is shown in Fig. 1-9. A shift in the process mean 

level is visible in the plot and an estimate of the time of the shift can be obtained.

W. Edwards Deming, a very influential industrial statistician, stressed that it is important 

to understand the nature of variability in processes and systems over time. He conducted an 

experiment in which he attempted to drop marbles as close as possible to a target on a table. 

He used a funnel mounted on a ring stand and the marbles were dropped into the funnel. See 

Fig. 1-10. The funnel was aligned as closely as possible with the center of the target. He then 

used two different strategies to operate the process. (1) He never moved the funnel. He just 

dropped one marble after another and recorded the distance from the target. (2) He dropped 

the first marble and recorded its location relative to the target. He then moved the funnel an 

equal and opposite distance in an attempt to compensate for the error. He continued to make 

this type of adjustment after each marble was dropped.

After both strategies were completed, he noticed that the variability of the distance from the 

target for strategy 2 was approximately twice as large than for strategy 1. The adjustments to 

the funnel increased the deviations from the target. The explanation is that the error (the devia-

tion of the marble’s position from the target) for one marble provides no information about 

the error that will occur for the next marble. Consequently, adjustments to the funnel do not 

decrease future errors. Instead, they tend to move the funnel farther from the target.

Unnecessary
Adjustments Can 

Increase Variability

FIGURE 1-7 A
fractional factorial 
experiment for the 
connector wall 
thickness problem.
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Section 1-2/Collecting Engineering Data   9

This interesting experiment points out that adjustments to a process based on random dis-

turbances can actually increase the variation of the process. This is referred to as overcontrol 
or tampering. Adjustments should be applied only to compensate for a nonrandom shift in 

the process—then they can help. A computer simulation can be used to demonstrate the les-

sons of the funnel experiment. Figure 1-11 displays a time plot of 100 measurements (denoted 

as y) from a process in which only random disturbances are present. The target value for the 

process is 10 units. The figure displays the data with and without adjustments that are applied 

to the process mean in an attempt to produce data closer to target. Each adjustment is equal 

and opposite to the deviation of the previous measurement from target. For example, when the 

measurement is 11 (one unit above target), the mean is reduced by one unit before the next 

measurement is generated. The overcontrol increases the deviations from the target.

Figure 1-12 displays the data without adjustment from Fig. 1-11, except that the measure-

ments after observation number 50 are increased by two units to simulate the effect of a shift 

in the mean of the process. When there is a true shift in the mean of a process, an adjustment 

can be useful. Figure 1-12 also displays the data obtained when one adjustment (a decrease of 

two units) is applied to the mean after the shift is detected (at observation number 57). Note 

that this adjustment decreases the deviations from target.

The question of when to apply adjustments (and by what amounts) begins with an under-

standing of the types of variation that affect a process. The use of a control charts is an 

invaluable way to examine the variability in time-oriented data. Figure 1-13 presents a control 

chart for the concentration data from Fig. 1-9. The center line on the control chart is just the 

average of the concentration measurements for the first 20 samples (x = /91.5 g l) when the 

process is stable. The upper control limit and the lower control limit are a pair of statisti-

cally derived limits that reflect the inherent or natural variability in the process. These limits 

are located 3 standard deviations of the concentration values above and below the center line. 

If the process is operating as it should without any external sources of variability present in 

the system, the concentration measurements should fluctuate randomly around the center line, 

and almost all of them should fall between the control limits.

In the control chart of Fig. 1-13, the visual frame of reference provided by the center line 

and the control limits indicates that some upset or disturbance has affected the process around 
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10  Chapter 1/The Role of Statistics in Engineering

sample 20 because all of the following observations are below the center line, and two of them 

actually fall below the lower control limit. This is a very strong signal that corrective action is 

required in this process. If we can find and eliminate the underlying cause of this upset, we can 

improve process performance considerably. Thus control limits serve as decision rules about 

actions that could be taken to improve the process.

Furthermore, Deming pointed out that data from a process are used for different types of 

conclusions. Sometimes we collect data from a process to evaluate current production. For 

example, we might sample and measure resistivity on three semiconductor wafers selected 

from a lot and use this information to evaluate the lot. This is called an enumerative study. 

However, in many cases, we use data from current production to evaluate future production. 

We apply conclusions to a conceptual, future population. Deming called this an analytic 
study. Clearly this requires an assumption of a stable process, and Deming emphasized that 

control charts were needed to justify this assumption. See Fig. 1-14 as an illustration.

The use of control charts is a very important application of statistics for monitoring, control-

ling, and improving a process. The branch of statistics that makes use of control charts is called 

statistical process control, or SPC. We will discuss SPC and control charts in Chapter 15.

FIGURE 1-11  
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Section 1-3/Mechanistic and Empirical Models   11

1-3 Mechanistic and Empirical Models
Models play an important role in the analysis of nearly all engineering problems. Much of 

the formal education of engineers involves learning about the models relevant to specific 

fields and the techniques for applying these models in problem formulation and solution. As 

a simple example, suppose that we are measuring the flow of current in a thin copper wire. 

Our model for this phenomenon might be Ohm’s law:

 Current Voltage/Resistance=  

or

 I E R= /  (1-2)

We call this type of model a mechanistic model because it is built from our underlying knowl-

edge of the basic physical mechanism that relates these variables. However, if we performed 

this measurement process more than once, perhaps at different times, or even on different 

days, the observed current could differ slightly because of small changes or variations in fac-

tors that are not completely controlled, such as changes in ambient temperature, fluctuations 

in performance of the gauge, small impurities present at different locations in the wire, and 

drifts in the voltage source. Consequently, a more realistic model of the observed current 

might be

 I E R= / + e (1-3)

where e is a term added to the model to account for the fact that the observed values of current 

flow do not perfectly conform to the mechanistic model. We can think of e as a term that includes 

the effects of all unmodeled sources of variability that affect this system.

Sometimes engineers work with problems for which no simple or well-understood 

mechanistic model explains the phenomenon. For instance, suppose that we are interested 

in the number average molecular weight (Mn ) of a polymer. Now we know that Mn is 

related to the viscosity of the material (V), and it also depends on the amount of catalyst 

(C) and the temperature (T) in the polymerization reactor when the material is manufac-

tured. The relationship between M
n
 and these variables is

 M f V C Tn = , ,  ( )  (1-4)

say, where the form of the function f is unknown. Perhaps a working model could be developed 

from a first-order Taylor series expansion, which would produce a model of the form

 M V C Tn = β + β + β + β0 1 2 3   (1-5)

Mechanistic and 
Empirical Models

FIGURE 1-13 A control chart for the chemical 
process concentration data.
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12  Chapter 1/The Role of Statistics in Engineering

where the β’s are unknown parameters. Now just as in Ohm’s law, this model will not exactly 

describe the phenomenon, so we should account for the other sources of variability that may 

affect the molecular weight by adding another term to the model; therefore,

 M V C Tn = β + β + β + β +0 1 2 3 e (1-6)

is the model that we will use to relate molecular weight to the other three variables. This 

type of model is called an empirical model; that is, it uses our engineering and scientific 

knowledge of the phenomenon, but it is not directly developed from our theoretical or first-

principles understanding of the underlying mechanism.

To illustrate these ideas with a specific example, consider the data in Table 1-2, which contains 

data on three variables that were collected in an observational study in a semiconductor manu-

facturing plant. In this plant, the finished semiconductor is wire-bonded to a frame. The variables 

reported are pull strength (a measure of the amount of force required to break the bond), the wire 

length, and the height of the die. We would like to find a model relating pull strength to wire length 

and die height. Unfortunately, there is no physical mechanism that we can easily apply here, so it 

does not seem likely that a mechanistic modeling approach will be successful.

Figure 1-15 presents a three-dimensional plot of all 25 observations on pull strength, wire 

length, and die height. From examination of this plot, we see that pull strength increases as both 

wire length and die height increase. Furthermore, it seems reasonable to think that a model such as

 Pull strength wire length die height� = β + β + β +0 1 2( ) ( ) e 

would be appropriate as an empirical model for this relationship. In general, this type of empiri-

cal model is called a regression model. In Chapters 11 and 12 we show how to build these 

models and test their adequacy as approximating functions. We will use a method for estimating 

the parameters in regression models, called the method of least squares, that traces its origins to 

work by Karl Gauss. Essentially, this method chooses the parameters in the empirical model (the 

β’s) to minimize the sum of the squared distances in each data point and the plane represented 

by the model equation. Applying this technique to the data in Table 1-2 results in

 Pull Strength wire length die height� = ( ) ( )2 26 2 74 0 0125. . .+ +  (1-7)

where the “hat,” or circumflex, over pull strength indicates that this is an estimated or 

predicted quality.

Figure 1-16 is a plot of the predicted values of pull strength versus wire length and die 

height obtained from Equation 1-7. Notice that the predicted values lie on a plane above the 

wire length–die height space. From the plot of the data in Fig. 1-15, this model does not appear 

unreasonable. The empirical model in Equation 1-7 could be used to predict values of pull 

strength for various combinations of wire length and die height that are of interest. Essentially, 

an engineer could use the empirical model in exactly the same way as a mechanistic model.

1-4 Probability and Probability Models
Section 1-1 mentioned that decisions often need to be based on measurements from only a 

subset of objects selected in a sample. This process of reasoning from a sample of objects to 

FIGURE 
1-15 Three- 
dimensional plot of 
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strength data.
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Section 1-4/Probability and Probability Models   13

conclusions for a population of objects was referred to as statistical inference. A sample of three 

wafers selected from a large production lot of wafers in semiconductor manufacturing was an 

example mentioned. To make good decisions, an analysis of how well a sample represents a pop-

ulation is clearly necessary. If the lot contains defective wafers, how well will the sample detect 

these defective items? How can we quantify the criterion to “detect well?” Basically, how can we 

quantify the risks of decisions based on samples? Furthermore, how should samples be selected 

to provide good decisions—ones with acceptable risks? Probability models help quantify the 

risks involved in statistical inference, that is, the risks involved in decisions made every day.

1-2 Wire Bond Pull Strength Data

Observation Number Pull Strength y Wire Length x1 Die Height x2

1 9.95 2 50

2 24.45 8 110

3 31.75 11 120

4 35.00 10 550

5 25.02 8 295

6 16.86 4 200

7 14.38 2 375

8 9.60 2 52

9 24.35 9 100

10 27.50 8 300

11 17.08 4 412

12 37.00 11 400

13 41.95 12 500

14 11.66 2 360

15 21.65 4 205

16 17.89 4 400

17 69.00 20 600

18 10.30 1 585

19 34.93 10 540

20 46.59 15 250

21 44.88 15 290

22 54.12 16 510

23 56.63 17 590

24 22.13 6 100

25 21.15 5 400

FIGURE 1-16 Plot 
of predicted values of 
pull strength from the 
empirical model.
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14 Chapter 1/The Role of Statistics in Engineering

More details are useful to describe the role of probability models. Suppose that a produc-

tion lot contains 25 wafers. If all the wafers are defective or all are good, clearly any sample 

will generate all defective or all good wafers, respectively. However, suppose that only 1 wafer 

in the lot is defective. Then a sample might or might not detect (include) the wafer. A prob-

ability model, along with a method to select the sample, can be used to quantify the risks that 

the defective wafer is or is not detected. Based on this analysis, the size of the sample might 

be increased (or decreased). The risk here can be interpreted as follows. Suppose that a series 

of lots, each with exactly one defective wafer, is sampled. The details of the method used to 

select the sample are postponed until randomness is discussed in the next chapter. Neverthe-

less, assume that the same size sample (such as three wafers) is selected in the same manner 

from each lot. The proportion of the lots in which the defective wafer are included in the sam-

ple or, more specifically, the limit of this proportion as the number of lots in the series tends to 

infinity, is interpreted as the probability that the defective wafer is detected.

A probability model is used to calculate this proportion under reasonable assumptions 

for the manner in which the sample is selected. This is fortunate because we do not want to 

attempt to sample from an infinite series of lots. Problems of this type are worked in Chapters 

2 and 3. More importantly, this probability provides valuable, quantitative information regard-

ing any decision about lot quality based on the sample.

Recall from Section 1-1 that a population might be conceptual, as in an analytic study 

that applies statistical inference to future production based on the data from current pro-

duction. When populations are extended in this manner, the role of statistical inference 

and the associated probability models become even more important.

In the previous example, each wafer in the sample was classified only as defective or 

not. Instead, a continuous measurement might be obtained from each wafer. In Section 

1-2.5, concentration measurements were taken at periodic intervals from a production 

process. Figure 1-8 shows that variability is present in the measurements, and there might 

be concern that the process has moved from the target setting for concentration. Similar 

to the defective wafer, one might want to quantify our ability to detect a process change 

based on the sample data. Control limits were mentioned in Section 1-2.5 as decision rules 

for whether or not to adjust a process. The probability that a particular process change 

is detected can be calculated with a probability model for concentration measurements. 

Models for continuous measurements are developed based on plausible assumptions for 

the data and a result known as the central limit theorem, and the associated normal dis-

tribution is a particularly valuable probability model for statistical inference. Of course, 

a check of assumptions is important. These types of probability models are discussed in 

Chapter 4. The objective is still to quantify the risks inherent in the inference made from 

the sample data.

Throughout Chapters 6 through 15, we base decisions on statistical inference from sample 

data. We use continuous probability models, specifically the normal distribution, extensively 

to quantify the risks in these decisions and to evaluate ways to collect the data and how large 

a sample should be selected.

Important Terms and Concepts
Analytic study

Cause and effect

Designed experiment

Empirical model

Engineering method

Enumerative study

Factorial experiment

Fractional factorial 

experiment

Hypothesis

Hypothesis testing

Interaction

Mechanistic model

Observational study

Overcontrol

Population

Probability model

Random variable

Randomization

Retrospective study

Sample

Scientific method

Statistical inference

Statistical process control

Statistical thinking

Tampering

Time series

Variability
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An athletic woman in her twenties arrives at the emergency 

department complaining of dizziness after running in hot 

weather. An electrocardiogram is used to check for a heart 

attack, and the patient generates an abnormal result. The test 

has a false positive rate 0.1 (the probability of an abnormal 

result when the patient is normal) and a false negative rate 

of 0.1 (the probability of a normal result when the patient is 

abnormal). Furthermore, it might be assumed that the prior 

probability of a heart attack for this patient is 0.001. Although 

the abnormal test is a concern, you might be surprised to 

learn that the probability of a heart attack given the electro-

cardiogram result is still less than 0.01. See “Why Clinicians 

are Natural Bayesians” (2005, bmj.com) for details of this 

example and others.

The key is to properly combine the given probabilities. 

Furthermore, the exact same analysis used for this medical 

example can be applied to tests of engineered products. Con-

sequently, knowledge of how to manipulate probabilities in 

order to assess risks and make better decisions is important 

throughout scientifi c and engineering disciplines. In this 

chapter, the laws of probability are presented and used to 

assess risks in cases such as this one and numerous others.

2
Probability

Chapter Outline

2-1 Sample Spaces and Events
2-1.1 Random Experiments
2-1.2 Sample Spaces
2-1.3 Events
2-1.4 Counting Techniques

2-2  Interpretations and Axioms of 
Probability

2-3 Addition Rules

2-4 Conditional Probability

2-5  Multiplication and Total Probability 
Rules

2-6 Independence

2-7 Bayes’ Theorem

2-8 Random Variables
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16 Chapter 2/Probability

 Learning Objectives

After careful study of this chapter, you should be able to do the following:

1. Understand and describe sample spaces and events for random experiments with graphs, tables, lists, 
or tree diagrams

2. Interpret probabilities and use the probabilities of outcomes to calculate probabilities of events in 
discrete sample spaces

3. Use permuations and combinations to count the number of outcomes in both an event and the 
sample space

4. Calculate the probabilities of joint events such as unions and intersections from the probabilities of 
individual events

5. Interpret and calculate conditional probabilities of events

6. Determine the independence of events and use independence to calculate probabilities

7. Use Bayes’ theorem to calculate conditional probabilities

8. Understand random variables

2-1 Sample Spaces and Events

2-1.1 RANDOM EXPERIMENTS

If we measure the current in a thin copper wire, we are conducting an experiment. However, 

day-to-day repetitions of the measurement can differ slightly because of small variations in 

variables that are not controlled in our experiment, including changes in ambient temperatures, 

slight variations in the gauge and small impurities in the chemical composition of the wire 

(if different locations are selected), and current source drifts. Consequently, this experiment 

(as well as many we conduct) is said to have a random component. In some cases, the ran-

dom variations are small enough, relative to our experimental goals, that they can be ignored. 

However, no matter how carefully our experiment is designed and conducted, the variation is 

almost always present, and its magnitude can be large enough that the important conclusions 

from our experiment are not obvious. In these cases, the methods presented in this book for 

modeling and analyzing experimental results are quite valuable.

Our goal is to understand, quantify, and model the type of variations that we often 

encounter. When we incorporate the variation into our thinking and analyses, we can make 

informed judgments from our results that are not invalidated by the variation.

Models and analyses that include variation are not different from models used in other 

areas of engineering and science. Fig. 2-1 displays the important components. A math-

ematical model (or abstraction) of the physical system is developed. It need not be a per-

fect abstraction. For example, Newton’s laws are not perfect descriptions of our physical 

universe. Still, they are useful models that can be studied and analyzed to approximately 

quantify the performance of a wide range of engineered products. Given a mathematical 

abstraction that is validated with measurements from our system, we can use the model to 

understand, describe, and quantify important aspects of the physical system and predict the 

response of the system to inputs.

Throughout this text, we discuss models that allow for variations in the outputs of a sys-

tem, even though the variables that we control are not purposely changed during our study. 

Fig. 2-2 graphically displays a model that incorporates uncontrollable inputs (noise) that 

combine with the controllable inputs to produce the output of our system. Because of the 

uncontrollable inputs, the same settings for the controllable inputs do not result in identical 

outputs every time the system is measured.
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Section 2-1/Sample Spaces and Events   17

Physical system

Model

Measurements Analysis

FIGURE 2-1 Continuous iteration between 
model and physical system.

Controlled

variables

Noise

variables

OutputInput System

FIGURE 2-2 Noise variables affect the 
transformation of inputs to outputs.

An experiment that can result in different outcomes, even though it is repeated in the 

same manner every time, is called a random experiment.

Random  
Experiment

For the example of measuring current in a copper wire, our model for the system might 

simply be Ohm’s law. Because of uncontrollable inputs, variations in measurements of cur-

rent are expected. Ohm’s law might be a suitable approximation. However, if the variations 

are large relative to the intended use of the device under study, we might need to extend our 

model to include the variation. See Fig. 2-3.

As another example, in the design of a communication system, such as a computer or voice 

communication network, the information capacity available to serve individuals using the net-

work is an important design consideration. For voice communication, sufficient external lines 

need to be available to meet the requirements of a business. Assuming each line can carry only 

a single conversation, how many lines should be purchased? If too few lines are purchased, calls 

can be delayed or lost. The purchase of too many lines increases costs. Increasingly, design and 

product development is required to meet customer requirements at a competitive cost.
In the design of the voice communication system, a model is needed for the number of calls 

and the duration of calls. Even knowing that, on average, calls occur every five minutes and 

that they last five minutes is not sufficient. If calls arrived precisely at five-minute intervals 

and lasted for precisely five minutes, one phone line would be sufficient. However, the slight-

est variation in call number or duration would result in some calls being blocked by others. 

See Fig. 2-4. A system designed without considering variation will be woefully inadequate for 

practical use. Our model for the number and duration of calls needs to include variation as an 

integral component.

2-1.2 SAMPLE SPACES

To model and analyze a random experiment, we must understand the set of possible outcomes 

from the experiment. In this introduction to probability, we use the basic concepts of sets and 

operations on sets. It is assumed that the reader is familiar with these topics.

The set of all possible outcomes of a random experiment is called the sample space 
of the experiment. The sample space is denoted as S.

Sample Space

A sample space is often defined based on the objectives of the analysis. The following example 

illustrates several alternatives.
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18  Chapter 2/Probability

It is useful to distinguish between two types of sample spaces.

A sample space is discrete if it consists of a fi nite or countable infi nite set of outcomes. 

A sample space is continuous if it contains an interval (either fi nite or infi nite) of 

real numbers.

Discrete and 
Continuous 

Sample Spaces

In Example 2-1, the choice S R= +  is an example of a continuous sample space, whereas 

S yes no= { , } is a discrete sample space. As mentioned, the best choice of a sample space 

depends on the objectives of the study. As specifi c questions occur later in the book, 

appropriate sample spaces are discussed.

Voltage

C
u
rr

e
n
t

FIGURE 2-3 A closer examination of the system 
identifi es deviations from the model.

0 5 10 15 20

1 2 3 4

Minutes

Call

Call duration

Time

0 5 10 15 20

1 2 3

Minutes

Call

Call duration

Time

Call 3 blocked

FIGURE 2-4 Variation causes disruptions in the 
system.

Camera Flash Consider an experiment that selects a cell phone camera and records the recycle 

time of a fl ash (the time taken to ready the camera for another fl ash). The possible values for this 

time depend on the resolution of the timer and on the minimum and maximum recycle times. However, because the 

time is positive it is convenient to defi ne the sample space as simply the positive real line

S R x x= =+ >{ 0}|

If it is known that all recycle times are between 1.5 and 5 seconds, the sample space can be

S x x= { | . }1 5 5< <
If the objective of the analysis is to consider only whether the recycle time is low, medium, or high, the sample space 

can be taken to be the set of three outcomes

S low medium high= { , , }

If the objective is only to evaluate whether or not a particular camera conforms to a minimum recycle time specifi ca-

tion, the sample space can be simplifi ed to a set of two outcomes

S yes no= { , }

that indicates whether or not the camera conforms.

Example 2-1

Camera Specifi cations Suppose that the recycle times of two cameras are recorded. The exten-

sion of the positive real line R is to take the sample space to be the positive quadrant of the plane

S R R= ×+ +

If the objective of the analysis is to consider only whether or not the cameras conform to the manufacturing specifi cations, 

either camera may or may not conform. We abbreviate yes and no as y and n. If the ordered pair yn indicates that the fi rst 

camera conforms and the second does not, the sample space can be represented by the four outcomes:

Example 2-2
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Section 2-1/Sample Spaces and Events   19

Sample spaces can also be described graphically with tree diagrams. When a sample space can 

be constructed in several steps or stages, we can represent each of the n1 ways of completing the 

fi rst step as a branch of a tree. Each of the ways of completing the second step can be represented 

as n2 branches starting from the ends of the original branches, and so forth.

Message Delays Each message in a digital communication system is classifi ed as to whether it 

is received within the time specifi ed by the system design. If three messages are classifi ed, use a 

tree diagram to represent the sample space of possible outcomes.

Each message can be received either on time or late. The possible results for three messages can be displayed by 

eight branches in the tree diagram shown in Fig. 2-5.

Practical Interpretation: A tree diagram can effectively represent a sample space. Even if a tree becomes too large to 

construct, it can still conceptually clarify the sample space.

On time Late

On time Late

On time Late On time Late On time Late

On time Late

On time Late

Message 3

Message 2

Message 1

FIGURE 2-5  Tree diagram for three messages.

Example 2-3

Automobile Options An automobile manufacturer provides vehicles equipped with selected 

options. Each vehicle is ordered

With or without an automatic transmission

With or without a sunroof

With one of three choices of a stereo system

With one of four exterior colors

If the sample space consists of the set of all possible vehicle types, what is the number of outcomes in the sample space? 

The sample space contains 48 outcomes. The tree diagram for the different types of vehicles is displayed in Fig. 2-6.

Example 2-4

S yy, yn,ny,nn=    { }
If we are interested only in the number of conforming cameras in the sample, we might summarize the sample space as

S , ,=   { }0 1 2

As another example, consider an experiment in which cameras are tested unitl the fl ash recycle time fails to meet 

the specifi cations. The sample space can be represented as

S n, yn, yyn, yyyn, yyyyn,=        { }and so forth

and this is an example of a discrete sample space that is countably infi nite.
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20  Chapter 2/Probability

2-1.3 EVENTS

Often we are interested in a collection of related outcomes from a random experiment. Related 

outcomes can be described by subsets of the sample space, and set operations can also be applied.

An event is a subset of the sample space of a random experiment.

Event

We can also be interested in describing new events from combinations of existing events. 

Because events are subsets, we can use basic set operations such as unions, intersections, and 

complements to form other events of interest. Some of the basic set operations are summarized 

here in terms of events:

Color

Stereo

Sunroof

Transmission  

Automatic Manual

1 2 3 1 2 3 1 2 3 1 2 3

Yes No Yes No

FIGURE 2-6 Tree diagram for different types of vehicles with 48 outcomes in the sample space.

Automobile Colors Consider an extension of the automobile manufacturer illustration in 

the previous example in which another vehicle option is the interior color. There are four 

choices of interior color: red, black, blue, or brown. However,

With a red exterior, only a black or red interior can be chosen.

With a white exterior, any interior color can be chosen.

With a blue exterior, only a black, red, or blue interior can be chosen.

With a brown exterior, only a brown interior can be chosen.

In Fig. 2-6, there are 12 vehicle types with each exterior color, but the number of interior color choices depends on 

the exterior color. As shown in Fig. 2-7, the tree diagram can be extended to show that there are 120 different vehicle 

types in the sample space.

Exterior color Red White Blue Brown

RedBlackInterior color

12 3 2 = 24 12 3 4 = 48 12 3 3 = 36 12 3 1 = 12

24 + 48 + 36 + 12 = 120 vehicle types

FIGURE 2-7 Tree diagram for different types of vehicles with interior colors

Example 2-5
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Section 2-1/Sample Spaces and Events   21

The union of two events is the event that consists of all outcomes that are contained in either 

of the two events. We denote the union as E E1 2∪ .

The intersection of two events is the event that consists of all outcomes that are contained 

in both of the two events. We denote the intersection as E E1 2∩ .

The complement of an event in a sample space is the set of outcomes in the sample space that 

are not in the event. We denote the complement of the event E  as E′. The notation EC is also 

used in other literature to denote the complement.

Events Consider the sample space S yy yn ny nn= { , , , } in Example 2-2. Suppose that the subset of 
outcomes for which at least one camera conforms is denoted as E1. Then,

E yy, yn,ny1 =   { }
The event such that both cameras do not conform, denoted as E2, contains only the single outcome, E nn2 = { }. Other 

examples of events are E3 = ∅, the null set, and E S4 = , the sample space. If E yn ny nn5 = { , , },

E E S E E yn,ny E nn1 5 1 5 1∪ = ∩ =  { } = { }′
Practical Interpretation: Events are used to defi ne outcomes of interest from a random experiment. One is often 

interested in the probabilities of specifi ed events.

Example 2-6

As in Example 2-1, camera recycle times might use the sample space S R= + , the set of posi-

tive real numbers. Let

E x x E x x1 210 12 11 15= ≤ <{ } = < <{ }| |and

Then,

E E x x1 2 10 15∪ = ≤ <{ }|

and

E E x x1 2 11 12∩ = < <{ }|

Also,

E x x x1 10 12′ = < ≤{ }| or

and

E E x x1 2 12 15′ ∩ = ≤ <{ }|

Example 2-7

Hospital Emergency Visits The following table summarizes visits to emergency departments at 

four hospitals in Arizona. People may leave without being seen by a physician, and those visits are 

denoted as LWBS. The remaining visits are serviced at the emergency department, and the visitor may or may not be 

admitted for a stay in the hospital.

Let A denote the event that a visit is to hospital 1, and let B denote the event that the result of the visit is LWBS. 

Calculate the number of outcomes in A B, A , A B∩ ∪  and ′ .

The event A B∩  consists of the 195 visits to hospital 1 that result in LWBS. The event A′ consists of the visits to 

hospitals 2, 3, and 4 and contains 6991 5640 4329 16 690+ + = ,  visits. The event A B∪  consists of the visits to hospital 

1 or the visits that result in LWBS, or both, and contains 5292 270 246 6050+ + =  visits. Notice that the last result can 

also be calculated as the number of visits in A plus the number of visits in B minus the number of visits A B∩  (that 

would otherwise be counted twice) = + − =5292 953 195 6050.

Practical Interpretation: Hospitals track visits that result in LWBS to understand resource needs and to improve 

patient services.

Example 2-8

c02.indd   21 9/24/2013   8:16:12 PM



22  Chapter 2/Probability

Diagrams are often used to portray relationships between sets, and these diagrams are also 

used to describe relationships between events. We can use Venn diagrams to represent a sample 

space and events in a sample space. For example, in Fig. 2-8(a) the sample space of the random 

experiment is represented as the points in the rectangle S. The events A and B are the subsets of 

points in the indicated regions. Figs. 2-8(b) to 2-8(d) illustrate additional joint events. Fig. 2-9 

illustrates two events with no common outcomes.

Two events, denoted as E1 and E2, such that

E E1 2∩ = ∅
are said to be mutually exclusive.

Mutually 
Exclusive 

Events

Additional results involving events are summarized in the following. The defi nition of the 

complement of an event implies that

( ′ ′ =E E)

The distributive law for set operations implies that

A B C A C B C A B C A C B C∪( ) ∩ = ∩( ) ∪ ∩( ) ∩( ) ∪ = ∪( ) ∩ ∪( )and

DeMorgan’s laws imply that

A B A B A B A B∪( )′ = ′ ∩ ′ ∩( )′ = ′ ∪ ′and

Also, remember that

A B B A A B B A∩ = ∩ ∪ = ∪and

2-1.4 COUNTING TECHNIQUES

In many of the examples in this chapter, it is easy to determine the number of outcomes in each 

event. In more complicated examples, determining the outcomes in the sample space (or an 

event) becomes more diffi cult. Instead, counts of the numbers of outcomes in the sample space 

and various events are used to analyze the random experiments. These methods are referred to 

as counting techniques. Some simple rules can be used to simplify the calculations.

In Example 2-4, an automobile manufacturer provides vehicles equipped with selected 

options. Each vehicle is ordered

With or without an automatic transmission

With or without a sunroof

With one of three choices of a stereo system

With one of four exterior colors

Hospital

1 2 3 4 Total

Total 5292 6991 5640 4329 22,252

LWBS 195 270 246 242 953

Admitted 1277 1558 666 984 4485

Not admitted 3820 5163 4728 3103 16,814
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FIGURE 2-8 Venn diagrams.

A B

(a)

Sample space S with events A and B

(b)

A B

A B

(d)

A B

(c)

A > B

S

(A > C)'

SS

(A < B) > C

S

C C

A B

S

FIGURE 2-9 Mutually exclusive events.

The tree diagram in Fig. 2-6 describes the sample space of all possible vehicle types. The size 

of the sample space equals the number of branches in the last level of the tree, and this quantity 

equals 2 2 3 4 48× × × = . This leads to the following useful result.

Assume an operation can be described as a sequence of k steps, and

the number of ways of completing step 1 is n1, and

 the number of ways of completing step 2 is n2 for each way of completing step 

1, and

 the number of ways of completing step 3 is n3 for each way of completing step 2, 

and so forth.

The total number of ways of completing the operation is

n n nk1 2× × ×…

Multiplication Rule 
(for counting 

techniques)

Web Site Design The design for a Website is to consist of four colors, three fonts, and three 

positions for an image. From the multiplication rule, 4 3 3 36× × =  different designs are possible.

Practical Interpretation: The use of the multipication rule and other counting techniques enables one to easily deter-

mine the number of outcomes in a sample space or event and this, in turn, allows probabilities of events to be determined.

Example 2-9 

Permutations
Another useful calculation fi nds the number of ordered sequences of the elements of a 

set. Consider a set of elements, such as S a b c= { , , }. A permutation of the elements is an 

ordered sequence of the elements. For example, abc acb bac bca cab, , , , , and cba are all of 

the permutations of the elements of S.

The number of permutations of n different elements is n! where

 n n n n! = × −( ) × −( ) × × ×1 2 2 1…  (2-1)
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24  Chapter 2/Probability

Sometimes we are interested in counting the number of ordered sequences for objects that 

are not all different. The following result is a useful, general calculation.

The number of permutations of subsets of r elements selected from a set of n 

different elements is

 P n n n n r
n

n r
r

n = × −( ) × −( ) × × − +( ) =
−( )1 2 1... !

!
 (2-2)

Permutations 
of Subsets

The number of permutations of n n n nr=  1 2+ +…+  objects of which n1 are of one 

type, n2 are of a second type, … , and nr  are of an rth type is

 
n

n n n nr

!

! ! ! ... !1 2 3

 (2-3)

Permutations of 
Similar Objects

This result follows from the multiplication rule. A permutation can be constructed by 

selecting the element to be placed in the fi rst position of the sequence from the n ele-

ments, then selecting the element for the second position from the remaining n −1 ele-

ments, then selecting the element for the third position from the remaining n − 2 elements, 

and so forth. Permutations such as these are sometimes referred to as linear permutations.

In some situations, we are interested in the number of arrangements of only some of the 

elements of a set. The following result also follows from the multiplication rule.

Printed Circuit Board A printed circuit board has eight different locations in which a component can 

be placed. If four different components are to be placed on the board, how many different designs are 

possible?

Each design consists of selecting a location from the eight locations for the fi rst component, a location from 

the remaining seven for the second component, a location from the remaining six for the third component, and a 

location from the remaining fi ve for the fourth component. Therefore,

P4
8 8 7 6 5

8

4

1680

= × × × =

=     .

!

!

different designs are possible

Example 2-10

Hospital Schedule A hospital operating room needs to schedule three knee surgeries and 

two hip surgeries in a day. We denote a knee and hip surgery as k and h, respectively. The 

number of possible sequences of three knee and two hip surgeries is
5

2 3
10

!

! !
=

The 10 sequences are easily summarized:

{kkkhh kkhkh kkhhk khkkh khkhk khhkk hkkkh hkkhk hkhkk hhk, , , , , , , , , kkk}

Example 2-11

Bar Code 39 Code 39 is a common bar code system that consists of narrow and wide bars 

(black) separated by either wide or narrow spaces (white). Each character contains nine elements 

(fi ve bars and four spaces). The code for a character starts and ends with a bar (either narrow or wide) and a (white) 

space appears between each bar. The original specifi cation (since revised) used exactly two wide bars and one wide 

space in each character. For example, if b and B denote narrow and wide (black) bars, respectively, and w and W denote 

narrow and wide (white) spaces, a valid character is bwBwBWbwb (the number 6). One character is held back as a start 

and stop delimiter. How many other characters can be coded by this system? Can you explain the name of the system? 

Example 2-12 
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Combinations
Another counting problem of interest is the number of subsets of r elements that can be selected 

from a set of n elements. Here, order is not important. These are called combinations. Every 

subset of r elements can be indicated by listing the elements in the set and marking each element 

with a “ * ” if it is to be included in the subset. Therefore, each permutation of r*
,
s and n r−  blanks 

indicates a different subset, and the numbers of these are obtained from Equation 2-3. For exam-

ple, if the set is S a b c d= { , , , }, the subset { , }a c  can be indicated as

a b c d

* ∗

The number of combinations, subsets of r elements that can be selected from a set of 

n elements, is denoted as r
n( ) or Cr

n and

 C
n

r

n

r n r
r
n = =

⎛
⎝⎜

⎞
⎠⎟ −( )

!

! !
 (2-4)

Combinations

Printed Circuit Board Layout A printed circuit board has eight different locations in which a 

component can be placed. If fi ve identical components are to be placed on the board, how many 

different designs are possible?

Each design is a subset of size fi ve from the eight locations that are to contain the components. From Equation 

2-4, the number of possible designs is
8

5 3
56

!

! ! 
=

Example 2-13

The following example uses the multiplication rule in combination with Equation 2-4 to answer 

a more diffi cult, but common, question. In random experiments in which items are selected from 

a batch, an item may or may not be replaced before the next one is selected. This is referred to 

as sampling with or without replacement, respectively.

The four white spaces occur between the fi ve black bars. In the fi rst step, focus on the bars. The number of permutations 

of fi ve black bars when two are B and three are b is
5

2 3
10

!

! !
=

In the second step, consider the white spaces. A code has three narrow spaces w and one wide space W so there are four 

possible locations for the wide space. Therefore, the number of possible codes is 10 × 4 = 40. If one code is held back 

as a start/stop delimiter, then 39 other characters can be coded by this system (and the name comes from this result). 

Sampling without Replacement A bin of 50 manufactured parts contains 3 defective parts and 

47 nondefective parts. A sample of 6 parts is selected from the 50 parts without replacement. That 

is, each part can be selected only once, and the sample is a subset of the 50 parts. How many different samples are there 

of size 6 that contain exactly 2 defective parts?

A subset containing exactly 2 defective parts can be formed by fi rst choosing the 2 defective parts from the three 

defective parts. Using Equation 2-4, this step can be completed in

3

2

3

2 1
3

⎛
⎝⎜

⎞
⎠⎟  

  = =!

! !
different ways

Example 2-14
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FOR SECTION 2-1Exercises

Provide a reasonable description of the sample space for each 

of the random experiments in Exercises 2-1 to 2-17. There can 

be more than one acceptable inter pretation of each experiment. 

Describe any assumptions you make.

2-1. Each of three machined parts is classifi ed as either above 

or below the target specifi cation for the part.

2-2. Each of four transmitted bits is classifi ed as either in error 

or not in error.

2-3. In the fi nal inspection of electronic power supplies, either 

units pass, or three types of nonconformities might occur: func-

tional, minor, or cosmetic. Three units are inspected.

2-4. The number of hits (views) is recorded at a high-volume 

Web site in a day.

2-5. Each of 24 Web sites is classifi ed as containing or not 

containing banner ads.

2-6. An ammeter that displays three digits is used to measure 

current in milliamperes.

2-7. A scale that displays two decimal places is used to meas-

ure material feeds in a chemical plant in tons.

2-8.  The following two questions appear on an employee 

survey questionnaire. Each answer is chosen from the fi ve-

point scale 1 (never), 2, 3, 4, 5 (always).

Is the corporation willing to listen to and fairly evaluate 

new ideas?

How often are my coworkers important in my overall 

job performance?

2-9. The concentration of ozone to the nearest part per 

billion.

2-10. The time until a service transaction is requested of a 

computer to the nearest millisecond.

2-11. The pH reading of a water sample to the nearest tenth 

of a unit.

2-12. The voids in a ferrite slab are classifi ed as small, 

medium, or large. The number of voids in each category is 

measured by an optical inspection of a sample.

2-13. The time of a chemical reaction is recorded to the near-

est millisecond.

2-14. An order for an automobile can specify either an automatic 

or a standard transmission, either with or without air condition-

ing, and with any one of the four colors red, blue, black, or white. 

Describe the set of possible orders for this experiment.

2-15. A sampled injection-molded part could have been pro-

duced in either one of two presses and in any one of the eight 

cavities in each press.

2-16. An order for a computer system can specify memory of 4, 

8, or 12 gigabytes and disk storage of 200, 300, or 400 gigabytes. 

Describe the set of possible orders.

2-17.  Calls are repeatedly placed to a busy phone line 

until a connection is achieved.

2-18. Three attempts are made to read data in a magnetic 

storage device before an error recovery procedure that reposi-

tions the magnetic head is used. The error recovery procedure 

attempts three repositionings before an “abort’’ message is sent 

to the operator. Let

s denote the success of a read operation

f  denote the failure of a read operation

S denote the success of an error recovery procedure

F denote the failure of an error recovery procedure

A denote an abort message sent to the operator

Describe the sample space of this experiment with a tree diagram.

2-19. Three events are shown on the Venn diagram in the fol-

lowing fi gure:

A B

C

Reproduce the fi gure and shade the region that corresponds to 

each of the following events.

(a) A′  (b) A B∩   (c)  A B C∩( ) ∪
(d)  B C∪( )′ (e)  A B C∩( ) ∪′

 Problem available in WileyPLUS at instructor’s discretion. 

 Tutoring problem available in WileyPLUS at instructor’s discretion

Then, the second step is to select the remaining 4 parts from the 47 acceptable parts in the bin. The second step can be 

completed in
47

4

47

4 43
178 365

⎛
⎝⎜

⎞
⎠⎟

  = =!

! !
, different ways

Therefore, from the multiplication rule, the number of subsets of size 6 that contain exactly 2 defective parts is

3 178 365 535 095× =, ,

As an additional computation, the total number of different subsets of size 6 is found to be

50

6

50

6 44
15 890 700

⎛
⎝⎜

⎞
⎠⎟

= =!

! !
, ,
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2-20. Three events are shown on the Venn diagram in the fol-

lowing figure:

A B

C

Reproduce the figure and shade the region that corresponds to 

each of the following events.

(a) A′   (b) A B A B∩( ) ∪ ∩( )′
(c) A B C∩( ) ∪   (d) B C∪( )′
(e) A B C∩( ) ∪′
2-21.  A digital scale that provides weights to the nearest 

gram is used.

(a) What is the sample space for this experiment?

Let A denote the event that a weight exceeds 11 grams, let B 

denote the event that a weight is less than or equal to 15 grams, 

and let C denote the event that a weight is greater than or equal 

to 8 grams and less than 12 grams.

Describe the following events.

(b) A B∪   (c) A B∩
(d) A′   (e) A B C∪ ∪
(f) A C∪( )′  (g) A B C∩ ∩
(h) B C′ ∩   (i)   A B C∪ ∩( )
2-22. In an injection-molding operation, the length and width, 

denoted as X  and Y , respectively, of each molded part are eval-

uated. Let

A denote the event of 48 < X  < 52 centimeters

B denote the event of 9 < Y  < 11 centimeters

Construct a Venn diagram that includes these events. Shade the 

areas that represent the following:

(a) A   (b) A B∩
(c) A B′ ∪   (d) A B∩
(e)  If these events were mutually exclusive, how successful 

would this production operation be? Would the process pro-

duce parts with X = 50 centimeters and Y = 10 centimeters?

2-23.  Four bits are transmitted over a digi-

tal communications channel. Each bit is either distorted or 

received without distortion. Let Ai denote the event that the 

ith bit is distorted, i , ,= …1 4.

(a) Describe the sample space for this experiment.

(b) Are the Ai’s mutually exclusive?

Describe the outcomes in each of the following events:
(c) A1   (d) A1′
(e) A A A A1 2 3 4∩ ∩ ∩  (f)   A A A A1 2 3 4∩( ) ∪ ∩( )
2-24. In light-dependent photosynthesis, light quality refers 

to the wavelengths of light that are important. The wavelength 

of a sample of photosynthetically active radiations (PAR) is 

measured to the nearest nanometer. The red range is 675–700 

nm and the blue range is 450–500 nm. Let A denote the event 

that PAR occurs in the red range, and let B denote the event that 

PAR occurs in the blue range. Describe the sample space and 

indicate each of the following events:

(a) A (b) B (c) A B∩   (d) A B∪
2-25. In control replication, cells are replicated over 

a period of two days. Not until mitosis is completed can 

freshly synthesized DNA be replicated again. Two control 

mechanisms have been identified—one positive and one 

negative. Suppose that a replication is observed in three 

cells. Let A denote the event that all cells are identified as 

positive, and let B denote the event that all cells are nega-

tive. Describe the sample space graphically and display each 

of the following events:

(a) A   (b) B
(c) A B∩   (d) A B∪
2-26.  Disks of polycarbonate plastic from a supplier are 

analyzed for scratch and shock resistance. The results from 100 

disks are summarized here:

Shock Resistance

High Low

Scratch High 70 9

Resistance Low 16 5

Let A denote the event that a disk has high shock resistance, and 

let B denote the event that a disk has high scratch resistance. 

Determine the number of disks in A B, A ,∩  ′  and A B∪ .

2-27. Samples of a cast aluminum part are classified on the 

basis of surface finish (in microinches) and edge finish. The 

results of 100 parts are summarized as follows:

Edge Finish

Excellent Good

Surface Excellent 80 2

Finish Good 10 8

(a) Let A denote the event that a sample has excellent sur-

face finish, and let B denote the event that a sample has 

excellent edge finish. Determine the number of samples in 

A B, B′ ′∩   and in A B∪ .

(b) Assume that each of two samples is to be classified on the 

basis of surface finish, either excellent or good, and on the 

basis of edge finish, either excellent or good. Use a tree dia-

gram to represent the possible outcomes of this experiment.

2-28.  Samples of emissions from three suppliers are clas-

sified for conformance to air-quality specifications. The results 

from 100 samples are summarized as follows:

Conforms

Yes No

1 22 8

Supplier 2 25 5

3 30 10

Let A denote the event that a sample is from supplier 1, and let 

B denote the event that a sample conforms to specifications. 

Determine the number of samples in A B, B ,′ ′∩   and A B∪ .
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2-29.  The rise time of a reactor is measured in minutes 

(and fractions of minutes). Let the sample space be posi-

tive, real numbers. Define the events A and B as follows: 

A x x= < .{ }| 72 5  and B x x= > .{ }| 52 5 .

Describe each of the following events: 

(a) A′   (b) B′
(c) A B∩   (d) A B∪
2-30. A sample of two items is selected without replacement 

from a batch. Describe the (ordered) sample space for each of the 

following batches:

(a) The batch contains the items { , , , }a b c d .

(b) The batch contains the items { , , , , , , }a b c d e f g .

(c) The batch contains 4 defective items and 20 good items.

(d) The batch contains 1 defective item and 20 good items.

2-31.  A sample of two printed circuit boards is selected 

without replacement from a batch. Describe the (ordered) 

sample space for each of the following batches:

(a) The batch contains 90 boards that are not defective, 8 

boards with minor defects, and 2 boards with major defects.

(b) The batch contains 90 boards that are not defective, 8 

boards with minor defects, and 1 board with major defects.

2-32. Counts of the Web pages provided by each of two com-

puter servers in a selected hour of the day are recorded. Let A 

denote the event that at least 10 pages are provided by server 1, 

and let B denote the event that at least 20 pages are provided by 

server 2. Describe the sample space for the numbers of pages 

for the two servers graphically in an x y−  plot. Show each of 

the following events on the sample space graph:

(a) A   (b) B
(c) A B∩   (d) A B∪
2-33. A reactor’s rise time is measured in minutes (and frac-

tions of minutes). Let the sample space for the rise time of each 

batch be positive, real numbers. Consider the rise times of two 

batches. Let A denote the event that the rise time of batch 1 is 

less than 72.5 minutes, and let B denote the event that the rise 

time of batch 2 is greater than 52.5 minutes.

Describe the sample space for the rise time of two batches 

graphically and show each of the following events on a two-

dimensional plot:

(a) A   (b) B′
(c) A B∩   (d) A B∪
2-34.  A wireless garage door opener has a code deter-

mined by the up or down setting of 12 switches. How many 

outcomes are in the sample space of possible codes?

2-35.  An order for a computer can specify any one of five 

memory sizes, any one of three types of displays, and any one 

of four sizes of a hard disk, and can either include or not include 

a pen tablet. How many different systems can be ordered?

2-36.  In a manufacturing operation, a part is produced by 

machining, polishing, and painting. If there are three machine 

tools, four polishing tools, and three painting tools, how many 

different routings (consisting of machining, followed by pol-

ishing, and followed by painting) for a part are possible?

2-37.  New designs for a wastewater treatment tank have 

proposed three possible shapes, four possible sizes, three loca-

tions for input valves, and four locations for output valves. How 

many different product designs are possible?

2-38.  A manufacturing process consists of 10 operations 

that can be completed in any order. How many different pro-

duction sequences are possible?

2-39.  A manufacturing operation consists of 10 opera-

tions. However, five machining operations must be completed 

before any of the remaining five assembly operations can begin. 

Within each set of five, operations can be completed in any 

order. How many different production sequences are possible?

2-40.  In a sheet metal operation, three notches and four 

bends are required. If the operations can be done in any order, 

how many different ways of completing the manufacturing are 

possible?

2-41.  A batch of 140 semiconductor chips is inspected by 

choosing a sample of 5 chips. Assume 10 of the chips do not 

conform to customer requirements.

(a) How many different samples are possible?

(b) How many samples of five contain exactly one noncon-

forming chip?

(c) How many samples of five contain at least one noncon-

forming chip?

2-42. In the layout of a printed circuit board for an electronic 

product, 12 different locations can accommodate chips.

(a) If five different types of chips are to be placed on the board, 

how many different layouts are possible?

(b) If the five chips that are placed on the board are of the same 

type, how many different layouts are possible?

2-43. In the laboratory analysis of samples from a chemical 

process, five samples from the process are analyzed daily. In 

addition, a control sample is analyzed twice each day to check 

the calibration of the laboratory instruments.

(a) How many different sequences of process and control sam-

ples are possible each day? Assume that the five process 

samples are considered identical and that the two control 

samples are considered identical.

(b) How many different sequences of process and control sam-

ples are possible if we consider the five process samples to 

be different and the two control samples to be identical?

(c) For the same situation as part (b), how many sequences 

are possible if the first test of each day must be a control 

sample?

2-44. In the design of an electromechanical product, 12 com-

ponents are to be stacked into a cylindrical casing in a manner 

that minimizes the impact of shocks. One end of the casing is 

designated as the bottom and the other end is the top.

(a) If all components are different, how many different designs 

are possible?

(b) If seven components are identical to one another, but 

the others are different, how many different designs are 

possible?

(c) If three components are of one type and identical to one 

another, and four components are of another type and 

identical to one another, but the others are different, how 

many different designs are possible?

2-45. Consider the design of a communication system.

(a) How many three-digit phone prefixes that are used to repre-

sent a particular geographic area (such as an area code) can 

be created from the digits 0 through 9?
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(b) As in part (a), how many three-digit phone prefixes are possible 

that do not start with 0 or 1, but contain 0 or 1 as the middle digit?

(c) How many three-digit phone prefixes are possible in which 

no digit appears more than once in each prefix?

2-46. A byte is a sequence of eight bits and each bit is either 0 or 1.

(a) How many different bytes are possible?

(b) If the first bit of a byte is a parity check, that is, the first byte 

is determined from the other seven bits, how many different 

bytes are possible?

2-47. In a chemical plant, 24 holding tanks are used for final 

product storage. Four tanks are selected at random and without 

replacement. Suppose that six of the tanks contain material in 

which the viscosity exceeds the customer requirements.

(a) What is the probability that exactly one tank in the sample 

contains high-viscosity material?

(b) What is the probability that at least one tank in the sample 

contains high-viscosity material?

(c) In addition to the six tanks with high viscosity levels, four 

different tanks contain material with high impurities. What 

is the probability that exactly one tank in the sample con-

tains high-viscosity material and exactly one tank in the 

sample contains material with high impurities?

2-48.  Plastic parts produced by an injection-molding 

operation are checked for conformance to specifications. Each 

tool contains 12 cavities in which parts are produced, and these 

parts fall into a conveyor when the press opens. An inspector 

chooses 3 parts from among the 12 at random. Two cavities are 

affected by a temperature malfunction that results in parts that 

do not conform to specifications.

(a) How many samples contain exactly 1 nonconforming part?

(b) How many samples contain at least 1 nonconforming part?

2-49. A bin of 50 parts contains 5 that are defective. A sample 

of 10 parts is selected at random, without replacement. How 

many samples contain at least four defective parts?

2-50. The following table summarizes 204 endothermic reac-

tions involving sodium bicarbonate.

Final Temperature 
Conditions Heat Absorbed (cal)

Below Target Above Target

266 K 12 40

271 K 44 16

274 K 56 36

Let A denote the event that a reaction’s final temperature is 271 K  

or less. Let B denote the event that the heat absorbed is below 

target. Determine the number of reactions in each of the  

following events.

(a) A B∩  (b) A′ (c) A B∪  (d) A B∪ ′ (e) A B′ ′∩
2-51. A Web ad can be designed from four different colors, 

three font types, five font sizes, three images, and five text 

phrases. How many different designs are possible?

2-52. Consider the hospital emergency department data in Exam-

ple 2-8. Let A denote the event that a visit is to hospital 1, and let 

B denote the event that a visit results in admittance to any hospital. 

Determine the number of persons in each of the following events.

(a) A B∩  (b) A′ (c) A B∪  (d) A B∪ ′ (e) A B′ ′∩
2-53. An article in The Journal of Data Science [“A Statistical 

Analysis of Well Failures in Baltimore County” (2009, Vol. 7, 

pp. 111–127)] provided the following table of well failures for 

different geological formation groups in Baltimore County.

Wells
Geological Formation Group Failed Total
Gneiss 170 1685

Granite 2   28

Loch raven schist 443 3733

Mafic 14  363

Marble 29  309

Prettyboy schist 60 1403

Other schists 46  933

Serpentine 3   39

Let A denote the event that the geological formation has more 

than 1000 wells, and let B denote the event that a well failed. 

Determine the number of wells in each of the following events.

(a) A B∩  (b) A′  (c) A B∪  (d) A B∩ ′ (e) A B′ ′∩
2-54. Similar to the hospital schedule in Example 2-11, sup-

pose that an operat ing room needs to handle three knee, four 

hip, and five shoulder surgeries.

(a) How many different sequences are possible?

(b) How many different sequences have all hip, knee, and 

shoulder surgeries scheduled consecutively?

(c) How many different schedules begin and end with a knee 

surgery?

2-55. Consider the bar code in Example 2-12. One code is still 

held back as a delimiter. For each of the following cases, how 

many characters can be encoded?

(a) The constraint of exactly two wide bars is replaced with 

one that requires exactly one wide bar.

(b) The constraint of exactly two wide bars is replaced with 

one that allows either one or two wide bars.

(c) The constraint of exactly two wide bars is dropped.

(d) The constraints of exactly two wide bars and one wide 

space are dropped.

2-56. A computer system uses passwords that contain exactly 

eight characters, and each character is 1 of the 26 lowercase 

letters (a–z) or 26 uppercase letters (A–Z) or 10 integers (0–9). 

Let Ω denote the set of all possible passwords, and let A and 

B denote the events that consist of passwords with only letters 

or only integers, respectively. Determine the number of pass-

words in each of the following events.

(a) Ω            (b) A            (c) A B′ ′∩  

(d) Passwords that contain at least 1 integer 

(e) Passwords that contain exactly 1 integer

2-57. The article “Term Efficacy of Ribavirin Plus Interferon 

Alfa in the Treat ment of Chronic Hepatitis C,” [Gastroenterol-
ogy (1996, Vol. 111, no. 5, pp. 1307–1312)], considered the 

effect of two treatments and a control for treatment of hepatitis 

C. The following table provides the total patients in each group 

and the number that showed a complete (positive) response 

after 24 weeks of treatment. 
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Complete  
Response

 
Total

Ribavirin plus interferon alfa 16 21

Interferon alfa 6 19

Untreated controls 0 20

Let A denote the event that the patient was treated with riba-

virin plus interferon alfa, and let B denote the event that the 

response was complete. Determine the number of patients in 

each of the following events. 

(a) A        (b) A B∩         (c) A B∪         (d) A B′ ′∩

2-2 Interpretations and Axioms of Probability
In this chapter, we introduce probability for discrete sample spaces—those with only a finite 

(or countably infinite) set of outcomes. The restriction to these sample spaces enables us to 

simplify the concepts and the presentation without excessive mathematics.

Probability is used to quantify the likelihood, or chance, that an outcome of a random 

experiment will occur. “The chance of rain today is 30%” is a statement that quantifies our 

feeling about the possibility of rain. The likelihood of an outcome is quantified by assigning a 

number from the interval [0, 1] to the outcome (or a percentage from 0 to 100%). Higher num-

bers indicate that the outcome is more likely than lower numbers. A 0 indicates an outcome 

will not occur. A probability of 1 indicates that an outcome will occur with certainty.

The probability of an outcome can be interpreted as our subjective probability, or degree of 
belief, that the outcome will occur. Different individuals will no doubt assign different proba-

bilities to the same outcomes. Another interpretation of probability is based on the conceptual 

model of repeated replications of the random experiment. The probability of an outcome is 

interpreted as the limiting value of the proportion of times the outcome occurs in n repetitions 

of the random experiment as n increases beyond all bounds. For example, if we assign prob-

ability 0.2 to the outcome that there is a corrupted pulse in a digital signal, we might interpret 

this assignment as implying that, if we analyze many pulses, approximately 20% of them will 

be corrupted. This example provides a relative frequency interpretation of probability. The 

proportion, or relative frequency, of replications of the experiment that result in the outcome is 

0.2. Probabilities are chosen so that the sum of the probabilities of all outcomes in an experi-

ment adds up to 1. This convention facilitates the relative frequency interpretation of prob-

ability. Fig. 2-10 illustrates the concept of relative frequency.

Probabilities for a random experiment are often assigned on the basis of a reasonable model 

of the system under study. One approach is to base probability assignments on the simple con-

cept of equally likely outcomes. For example, suppose that we select 1 laser diode randomly 
from a batch of 100. Randomly implies that it is reasonable to assume that each diode in the 

batch has an equal chance of being selected. Because the sum of the probabilities must equal 

1, the probability model for this experiment assigns probability of 0.01 to each of the 100 out-

comes. We can interpret the probability by imagining many replications of the experiment. Each 

time we start with all 100 diodes and select 1 at random. The probability 0.01 assigned to a 

particular diode represents the proportion of replicates in which a particular diode is selected. 

When the model of equally likely outcomes is assumed, the probabilities are chosen to be equal.

FIGURE 2-10   Relative frequency of corrupted pulses sent over a  
communication channel.
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Whenever a sample space consists of N possible outcomes that are equally likely, the 

probability of each outcome is 1/N.

Equally Likely 
Outcomes

It is frequently necessary to assign probabilities to events that are composed of several 

outcomes from the sample space. This is straightforward for a discrete sample space.

For a discrete sample space, the probability of an event can be defi ned by the reasoning 

used in the preceding example.

For a discrete sample space, the probability of an event E, denoted as P E( ), equals 

the sum of the probabilities of the outcomes in E .

Probability of 
an Event

Laser Diodes Assume that 30% of the laser diodes in a batch of 100 meet the minimum power 

requirements of a specifi c customer. If a laser diode is selected randomly, that is, each laser diode is 

equally likely to be selected, our intuitive feeling is that the probability of meeting the customer’s requirements is 0.30.

Let E  denote the subset of 30 diodes that meet the customer’s requirements. Because E  contains 30 outcomes and each 

outcome has probability 0.01, we conclude that the probability of E  is 0.3. The conclusion matches our intuition. Fig. 2-11 

illustrates this example.

E

Diodes

S

P(E) = 30(0.01) = 0.30

FIGURE 2-11 Probability of the event E  is the sum of the probabilities of the outcomes in E .

Example 2-15

Probabilities of Events A random experiment can result in one of the outcomes { , , , }a b c d  with 

probabilities 0.1, 0.3, 0.5, and 0.1, respectively. Let A denote the event { , }a b , B the event { , , }b c d , 

and C the event { }d . Then,
P A

P B

P C

( )
( )
( )

= . + . = .
= . + . + . = .
= .

0 1 0 3 0 4

0 3 0 5 0 1 0 9

0 1

Also, P A , P B′ ′ =( ) = . ( ) .0 6 0 1, and P C′( ) = .0 9. Furthermore, because A B b ,∩ = { }  P A B∩( ) = .0 3. Because 
A B a b c d∪ = { , , , }, P A B( ) . . . . .∪ = + + + =0 1 0 3 0 5 0 1 1  Because A C∩  is the null set, P A C∪( ) = 0.

Example 2-16

Contamination Particles A visual inspection of a location on wafers from a semiconductor 
manufacturing process resulted in the following table.

If one wafer is selected randomly from this process and the location is inspected, what is the probability that it 

contains no particles? If information were available for each wafer, we could defi ne the sample space as the set of all 

wafers inspected and proceed as in the example with diodes. However, this level of detail is not needed in this case. We 

can consider the sample space to consist of the six categories that summarize the number of contamination particles 

on a wafer. Each category has probability equal to the proportion of wafers in the category. The event that there is no 

Example 2-17
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Often more than one item is selected from a batch without replacement when production is 

inspected. In this case, randomly selected implies that each possible subset of items is equally likely.

Now that the probability of an event has been defi ned, we can collect the assumptions that 

we have made concerning probabilities into a set of axioms that the probabilities in any random 

experiment must satisfy. The axioms ensure that the probabilities assigned in an experiment can be 

interpreted as relative frequencies and that the assignments are consistent with our intuitive under-

standing of relationships between relative frequencies. For example, if event A is contained in event 

B, we should have P A P B( ) ≤ ( ). The axioms do not determine probabilities; the probabilities 

are assigned based on our knowledge of the system under study. However, the axioms enable us to 

easily calculate the probabilities of some events from knowledge of the probabilities of other events.

Manufacturing Inspection Consider the inspection described in Example 2-14. From a bin of 50 

parts, 6 parts are selected ran domly without replacement. The bin contains 3 defective parts and 47 

nondefective parts. What is the probability that exactly 2 defective parts are selected in the sample?

The sample space consists of all possible (unordered) subsets of 6 parts selected without replacement. As shown in 

Example 2-14, the number of subsets of size 6 that contain exactly 2 defective parts is 535,095 and the total number 

of subsets of size 6 is 15,890,700. The probability of an event is determined as the ratio of the number of outcomes in 

the event to the number of outcomes in the sample space (for equally likely outcomes). Therefore, the probability that 

a sample contains exactly 2 defective parts is
535 095

15 890 700
0 034

,

, ,
.=

A subset with no defective parts occurs when all 6 parts are selected from the 47 nondefective ones. Therefore, 

the number of subsets with no defective parts is
47

6 41
10 737 573

!

! !
, ,=

and the probability that no defective parts are selected is

10 737 573

15 890 700
0 676

, ,

, ,
.=

Therefore, the sample of size 6 is likely to omit the defective parts. This example illustrates the hypergeometric distri-

bution studied in Chapter 3.

Example 2-18

contamination particle in the inspected location on the wafer, denoted as E , can be considered to be composed of the 

single outcome, namely, E = { }0 . Therefore,

P E( ) = .0 4

What is the probability that a wafer contains three or more particles in the inspected location? Let E denote the 

event that a wafer contains three or more particles in the inspected location. Then, E  consists of the three outcomes 

{3, 4, 5 or more}. Therefore,
P E( ) = . + . + . = .0 10 0 05 0 10 0 25

Practical Interpretation: Contamination levels affect the yield of functional devices in semiconductor manufacturing 

so that probabilities such as these are regularly studied.

Number of Contamination 
Particles

Proportion of 
Wafers

0 0.40

1 0.20

2 0.15

3 0.10

4 0.05

5 or more 0.10
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Probability is a number that is assigned to each member of a collection of events 

from a random experiment that satisfies the following properties:

If S is the sample space and E  is any event in a random experiment,

(1) P S( ) = 1

(2) 0 1≤ ( ) ≤P E

(3) For two events E1 and E2 with E E1 2∩ = ∅

P E E P E P E1 2 1 2∪( ) = ( ) + ( )

Axioms of  
Probability

The property that 0 1≤ ≤P E( )  is equivalent to the requirement that a relative frequency must be 

between 0 and 1. The property that P S( ) = 1 is a consequence of the fact that an outcome from the 

sample space occurs on every trial of an experiment. Consequently, the relative frequency of S is 1. 

Property 3 implies that if the events E1 and E2 have no outcomes in common, the relative frequency 

of outcomes in E E1 2∪  is the sum of the relative frequencies of the outcomes in E1 and E2.

These axioms imply the following results. The derivations are left as exercises at the end 

of this section. Now,

P ∅( ) = 0

and for any event E ,

P E P E′( ) = − ( )1

For example, if the probability of the event E  is 0.4, our interpretation of relative frequency implies 

that the probability of E′ is 0.6. Furthermore, if the event E1 is contained in the event E2,

P E P E1 2( ) ≤ ( )

2-58. Each of the possible five outcomes of a random experi-

ment is equally likely. The sample space is { , , , , }a b c d e . Let A 

denote the event { , }a b , and let B denote the event { , , }c d e . Deter-

mine the following:

(a) P A( )  (b) P B( )  (c) P A( )′  

(d) P A B( )∪  (e) P A B( )∩
2-59.  The sample space of a random experiment is { , ,a b  

c d e, , } with probabilities 0.1, 0.1, 0.2, 0.4, and 0.2, respec-

tively. Let A denote the event { , , }a b c , and let B denote the 

event { , , }c d e . Determine the following:

(a) P A( )  (b) P B( )  (c) P A( ′)

(d) P A B( )∪  (e) P A B( )∩

2-60.  Orders for a computer are summarized by the 

optional features that are requested as follows:

Proportion of Orders
No optional features 0.3

One optional feature 0.5

More than one optional feature 0.2

(a) What is the probability that an order requests at least one 

optional feature?

(b) What is the probability that an order does not request more 

than one optional feature?

2-61.  If the last digit of a weight measurement is equally 

likely to be any of the digits 0 through 9,

(a) What is the probability that the last digit is 0?

(b) What is the probability that the last digit is greater than or 

equal to 5?

2-62. A part selected for testing is equally likely to have been 

produced on any one of six cutting tools.

(a) What is the sample space?

(b) What is the probability that the part is from tool 1?

(c)  What is the probability that the part is from tool 3 or tool 5?

(d) What is the probability that the part is not from tool 4?

2-63.  An injection-molded part is equally likely to be obtained 

from any one of the eight cavities on a mold.

(a) What is the sample space?

(b) What is the probability that a part is from cavity 1 or 2?

(c) What is the probability that a part is from neither cavity 3 nor 4?

2-64.  In an acid-base titration, a base or acid is gradually 

added to the other until they have completely neutralized each 

other. Because acids and bases are usually colorless (as are the 

water and salt produced in the neutralization reaction), pH is 

FOR SECTION 2-2Exercises 
 Problem available in WileyPLUS at instructor’s discretion. 

 Tutoring problem available in WileyPLUS at instructor’s discretion
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measured to monitor the reaction. Suppose that the equiva-

lence point is reached after approximately 100 mL of an NaOH 

solution has been added (enough to react with all the acetic 

acid present) but that replicates are equally likely to indicate 

from 95 to 104 mL to the nearest mL. Assume that volumes 

are measured to the nearest mL and describe the sample space.

(a) What is the probability that equivalence is indicated  

at 100 mL?

(b) What is the probability that equivalence is indicated at less 

than 100 mL?

(c) What is the probability that equivalence is indicated 

between 98 and 102 mL (inclusive)?

2-65.  In a NiCd battery, a fully charged cell is composed of 

nickelic hydroxide. Nickel is an element that has multiple oxida-

tion states and that is usually found in the following states:

Nickel Charge Proportions Found
0 0.17

+2 0.35

+3 0.33

+4 0.15

(a)  What is the probability that a cell has at least one of the 

positive nickel-charged options?

(b) What is the probability that a cell is not composed of a 

positive nickel charge greater than +3?

2-66.  A credit card contains 16 digits between 0 and 9. How-

ever, only 100 million numbers are valid. If a number is entered 

randomly, what is the probability that it is a valid number?

2-67.  Suppose your vehicle is licensed in a state that 

issues license plates that consist of three digits (between 0 and 

9) followed by three letters (between A and Z ). If a license 

number is selected randomly, what is the probability that yours 

is the one selected?

2-68. A message can follow different paths through servers on 

a network. The sender’s message can go to one of five servers 

for the first step; each of them can send to five servers at the 

second step; each of those can send to four servers at the third 

step; and then the message goes to the recipient’s server.

(a) How many paths are possible?

(b) If all paths are equally likely, what is the probability that 

a message passes through the first of four servers at the 

third step?

2-69. Magnesium alkyls are used as homogenous catalysts in the 

production of linear low-density polyethylene (LLDPE), which 

requires a finer magnesium powder to sustain a reaction. Redox 

reaction experiments using four different amounts of magnesium 

powder are performed. Each result may or may not be further 

reduced in a second step using three different magnesium powder 

amounts. Each of these results may or may not be further reduced 

in a third step using three different amounts of magnesium powder.

(a) How many experiments are possible?

(b) If all outcomes are equally likely, what is the probability 

that the best result is obtained from an experiment that uses 

all three steps?

(c) Does the result in part (b) change if five or six or seven dif-

ferent amounts are used in the first step? Explain.

2-70.  Disks of polycarbonate plastic from a supplier are 

analyzed for scratch and shock resistance. The results from 100 

disks are summarized as follows:

Shock Resistance
High Low

Scratch High 70 9

Resistance Low 16 5

Let A denote the event that a disk has high shock resistance, 

and let B denote the event that a disk has high scratch resist-

ance. If a disk is selected at random, determine the following 

probabilities:

(a) P A( )  (b) P B( )  (c) P A′( ) 
(d) P A B∩( ) (e) P A B∪( ) (f) P A B′ ∪( )
2-71. Samples of emissions from three suppliers are classified 

for conformance to air-quality specifications. The results from 

100 samples are summarized as follows:

Conforms
Yes No

1 22 8

Supplier 2 25 5

3 30 10

Let A denote the event that a sample is from supplier 1, and let B 

denote the event that a sample conforms to specifications. If a sam-

ple is selected at random, determine the following probabilities:

(a) P A( )  (b) P B( )  (c) P A( )′  

(d) P A B( )∩  (e) P A B( )∪  (f) P A B( )′ ∩
2-72.  An article in the Journal of Database Management 
[“Experimental Study of a Self-Tuning Algorithm for DBMS 

Buffer Pools” (2005, Vol. 16, pp. 1–20)] provided the workload 

used in the TPC-C OLTP (Transaction Processing Performance 

Council’s Version C On-Line Transaction Processing) bench-

mark, which simulates a typical order entry application. See 

Table 2E-1.

The frequency of each type of transaction (in the second 

column) can be used as the percentage of each type of trans-

action. The average number of selects operations required for 

each type of transaction is shown. Let A denote the event of 

transactions with an average number of selects operations of 12 

or fewer. Let B denote the event of transactions with an aver-

age number of updates operations of 12 or fewer. Calculate the 

following probabilities.

(a) P A( )  (b) P B( )  (c) P A B( )∩
(d) P A B( )∩ ′  (e) P A B( )∪
2-73. Use the axioms of probability to show the following:

(a) For any event E, P E P E ( ) = − ( )′ 1 .

(b) P ∅( ) = 0

(c) If A is contained in B, then P A P B( ) ≤ ( ).
2-74. Consider the endothermic reaction’s in Exercise 2-50. Let 

A denote the event that a reaction's final temperature is 271 K or 

less. Let B denote the event that the heat absorbed is above target.

Determine the following probabilities.
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(a) P A B∩( ) (b) P A( ′)  (c) P A B∪( )
(d) P A B∪( )′  (e) P A B′ ′∩( )
2-75. A Web ad can be designed from four different colors, 

three font types, fi ve font sizes, three images, and fi ve text 

phrases. A specifi c design is randomly generated by the Web 

server when you visit the site. If you visit the site fi ve times, 

what is the probability that you will not see the same design?

2-76. Consider the hospital emergency room data in Example 

2-8. Let A denote the event that a visit is to hospital 4, and let B
denote the event that a visit results in LWBS (at any hospital). 

Determine the following probabilities.

(a) P A B∩( ) (b) P A( )′   (c) P A B∪( )
(d) P A B∪( )′  (e) P A B′ ′∩( )
2-77. Consider the well failure data in Exercise 2-53. Let A
denote the event that the geological formation has more than 

1000 wells, and let B denote the event that a well failed. Deter-

mine the following probabilities.

(a) P A B∩( ) (b) P A( )′   (c) P A B∪( )
(d) P A B∪( )′  (e) P A B′ ′∩( )
2-78. Consider the bar code in Example 2-12. Suppose that all 

40 codes are equally likely (none is held back as a delimiter). 

Determine the probability for each of the following:

(a) A wide space occurs before a narrow space.

(b) Two wide bars occur consecutively.

(c)  Two consecutive wide bars are at the start or end.

(d) The middle bar is wide.

2-79. Similar to the hospital schedule in Example 2-11, suppose 

that an oper ating room needs to schedule three knee, four hip, 

and fi ve shoulder surgeries. Assume that all schedules are equally 

likely. Determine the probability for each of the following:

(a) All hip surgeries are completed before another type of surgery.

(b) The schedule begins with a hip surgery.

(c) The fi rst and last surgeries are hip surgeries.

(d) The fi rst two surgeries are hip surgeries.

2-80.  Suppose that a patient is selected randomly from the 

those described in Exercise 2-57. Let A denote the event that 

the patient is in the group treated with interferon alfa, and let 

B denote the event that the patient has a complete response. 

Determine the following probabilities.

(a) P A( )   (b) P B( )  

(c) P A B( )∩  (d) P A B( )∪  (e) P A B( )′ ∪  

2-81. A computer system uses passwords that contain 

exactly eight characters, and each character is one of 26 low-

ercase letters (a–z) or 26 uppercase letters (A–Z) or 10 inte-

gers (0–9). Let Ω denote the set of all possible passwords, 

and let A and B denote the events that consist of passwords 

with only letters or only integers, respectively. Suppose that 

all passwords in Ω are equally likely. Determine the probabil-

ity of each of the following:

(a) A   (b) B 
(c) A password contains at least 1 integer. 

(d) A password contains exactly 2 integers.

2-3 Addition Rules
Joint events are generated by applying basic set operations to individual events. Unions of events, 

such as A B∪ ; intersections of events, such as A B∩ ; and complements of events, such as A′—are 

commonly of interest. The probability of a joint event can often be determined from the probabili-

ties of the individual events that it comprises. Basic set operations are also sometimes helpful in 

determining the probability of a joint event. In this section, the focus is on unions of events.

Semiconductor Wafers Table 2-1 lists the history of 940 wafers in a semiconductor manu-

facturing process. Suppose that 1 wafer is selected at random. Let H denote the event that the 

wafer contains high levels of contamination. Then, P H( ) /= 358 940.

Let C  denote the event that the wafer is in the center of a sputtering tool. Then, P C( ) /= .626 940  Also, P H C( )∩  is the 

probability that the wafer is from the center of the sputtering tool and contains high levels of contamination. Therefore,

Example 2-19

2E-1 Average Frequencies and Operations in TPC-C 

Transaction Frequency Selects Updates Inserts Deletes Nonunique 
Selects

Joins

New order 43 23 11 12 0 0 0

Payment 44 4.2 3 1 0 0.6 0

Order status 4 11.4 0 0 0 0.6 0

Delivery 5 130 120 0 10 0 0

Stock level 4 0 0 0 0 0 1 
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The preceding example illustrates that the probability of A or B is interpreted as P A B∪( )
and that the following general addition rule applies.

P H C∩( ) = 112 940/

The event H C∪  is the event that a wafer is from the center of the sputtering tool or contains high levels of contamination 

(or both). From the table, P H C( ) / .∪ = 872 940  An alternative calculation of P H C∪( ) can be obtained as follows. The 

112 wafers in the event H C∩  are included once in the calculation of P H( ) and again in the calculation of P C( ). Therefore, 

P H C∪( ) can be determined to be

P H C P H P C P H C∪( ) = ( ) + ( ) − ∩( )
= + − =358 940 626 940 112 940 872 940/ / / /

Practical Interpretation: To better understand the sources of contamination, yield from defferent locations on wafers 

are routinely aggregated.

Location in Sputtering Tool
Contamination Center Edge Total

Low 514 68 582

High 112 246 358

Total 626 314

2-1  Wafers in Semiconductor Manufacturing Classifi ed by 
Contamination and Location

 P A B P A P B P A B∪( ) = ( ) + ( ) − ∩( ) (2-5)

Probability of 
a Union

Semiconductor Wafers and Location The wafers in Example 2-19 were further classifi ed by 

the degree of contamination. Table 2-2 shows the proportion of wafers in each category. What is the 

probability that a wafer was either at the edge or that it contains four or more particles? Let E1 denote the event that a wafer 

contains four or more particles, and let E2 denote the event that a wafer was at the edge.

The requested probability is P E E1 2∪( ). Now, P E1 0 15( ) = .  and P E2 0 28( ) = . . Also, from the table, 

P E E1 2 0 04∩( ) .= . Therefore, using Equation 2-1, we fi nd that

P E E1 2 0 15 0 28 0 04 0 39∪( ) = . + . − . = .

Example 2-20

Number of 
Contamination 

Particles Center Edge Totals

0 0.30 0.10 0.40

1 0.15 0.05 0.20

2 0.10 0.05 0.15

3 0.06 0.04 0.10

4 0.04 0.01 0.05

5 or more 0.07 0.03 0.10

Totals 0.72 0.28 1.00

2-2 Wafers Classifi ed by Contamination and Location
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Recall that two events A and B are said to be mutually exclusive if A ∩ B = ∅. Then, 

P A B∩( ) = 0, and the general result for the probability of A B∪  simplifi es to the third axiom 

of probability.

If A and B are mutually exclusive events,

 P A B P A P B( ) ( ) ( )∪ = +  (2-6)

Three or More Events
More complicated probabilities, such as P A B C∪ ∪( ), can be determined by repeated use of 

Equation 2-5 and by using some basic set operations. For example,

P A B C P A B C P A B P C P A B C∪ ∪( ) = ∪( ) ∪⎡⎣ ⎤⎦ = ∪( ) + ( ) − ∪( ) ∩⎡⎣ ⎤⎦

Upon expanding P A B∪( ) by Equation 2-5 and using the distributed rule for set operations to 

simplify P A B C∪( ) ∩⎡⎣ ⎤⎦, we obtain

P A B C P A P B P A B P C P A C B C

P A P B

∪ ∪( ) = ( ) + ( ) − ∩( ) + ( ) − ∩( ) ∪ ∩( )⎡⎣ ⎤⎦
= ( ) + ( ) − PP A B P C P A C P B C P A B C

P A P B P C P A

∩( ) + ( ) − ∩( ) + ∩( ) − ∩ ∩( )⎡⎣ ⎤⎦
= ( ) + ( ) + ( ) − ∩ BB P A C P B C P A B C( ) − ∩( ) − ∩( ) + ∩ ∩( )

We have developed a formula for the probability of the union of three events. Formulas can 

be developed for the probability of the union of any number of events, although the formulas 

become very complex. As a summary, for the case of three events, 

FIGURE 2-12   Venn diagram of four 
mutually exclusive events.

E1

E2

E3

E4

P A B C P A P B P C P A B∪ ∪( ) = ( ) + ( ) + ( ) − ∩( )
 − ∩( ) − ∩( ) + ∩ ∩( )P A C P B C P A B C  (2-7)

Results for three or more events simplify considerably if the events are mutually exclusive. 

In general, a collection of events, E , E , , E ,k1 2   …  is said to be mutually exclusive if there is no 

overlap among any of them. The Venn diagram for several mutually exclusive events is shown 

in Fig. 2-12. By generalizing the reasoning for the union of two events, the following result 

can be obtained:

What is the probability that a wafer contains less than two particles or that it is both at the edge and contains more than 

four particles? Let E1 denote the event that a wafer contains less than two particles, and let E2 denote the event that a wafer 

is both at the edge and contains more than four particles. The requested probability is P E E1 2∪( ). Now, P E1 0 60( ) = .  

and P E2 0 03( ) = . . Also, E1 and E2 are mutually exclusive. Consequently, there are no wafers in the intersection and 

P E E1 2 0∩( ) = . Therefore,

P E E1 2 0 60 0 03 0 63∪( ) = . + . = .
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A collection of events, E , E , , E ,k1 2    …  is said to be mutually exclusive if for all pairs,

E Ei j∩ = ∅
For a collection of mutually exclusive events,

 P E E E P E P E P Ek k1 2 1 2∪ ∪…∪( ) = ( ) + ( ) +… ( ) (2-8)

Mutually 
Exclusive 

Events

 Problem available in WileyPLUS at instructor’s discretion. 

 Tutoring problem available in WileyPLUS at instructor’s discretion

pH Here is a simple example of mutually exclusive events, which will be used quite frequently. 

Let X denote the pH of a sample. Consider the event that X is greater than 6.5 but less than or equal 

to 7.8. This probability is the sum of any collection of mutually exclusive events with union equal to the same range 

for X. One example is

P X P X P X P X6 5 7 8 6 5 7 0 7 0 7 5 7 5 7 8. < ≤ .( ) = . ≤ ≤ .( ) . < ≤ .( ) + < ≤( )+ . .  

Another example is

P X P X P X P X P X6 5 7 8 6 5 6 6 6 6 7 1 7 1 7 4 7 4. < ≤ .( ) = . < ≤ .( ) + . < ≤ .( ) + . < ≤ .( ) + . < ≤≤ .( )7 8

The best choice depends on the particular probabilities available.

Practical Interpretation: The partition of an event into mutually exclusive subsets is widely used in later chapters to 

calculate probabilities.

Example 2-21

2-82.  If P A( ) = .0 3, P B ,( ) = .0 2  and P A B ,( )∩ = .0 1  deter-

mine the following probabilities:

(a) P A( )′   (b) P A B( )∪  (c) P A B( )′ ∩
(d) P A B( )∩ ′  (e) P A B[( ) ]∪ ′  (f) P A B( )′ ∪

2-83.  If A, B, and C are mutually exclusive events with 

P A ,( ) = .0 2  P B ,( ) = .0 3  and P C ,( ) = .0 4  determine the follow-

ing probabilities:

(a) P A B C( )∪ ∪   (b) P A B C( )∩ ∩
(c) P A B( )∩   (d) P A B C[( ) ]∪ ∩
(e) P A B C( )′ ′ ′∩ ∩

2-84.  In the article “ACL Reconstruction Using Bone-

Patellar Tendon-Bone Press-Fit Fixation: 10-Year Clinical 

Results” in Knee Surgery, Sports Traumatology, Arthroscopy
(2005, Vol. 13, pp. 248–255), the following causes for knee 

injuries were considered:

Activity
Percentage of 
Knee Injuries

Contact sport 46%

Noncontact sport 44%

Activity of daily living 9%

Riding motorcycle 1%

(a) What is the probability that a knee injury resulted from a 

sport (contact or noncontact)?

(b) What is the probability that a knee injury resulted from an 

activity other than a sport?

2-85.  Disks of polycarbonate plastic from a supplier are 

analyzed for scratch and shock resistance. The results from 100 

disks are summarized as follows:

Shock Resistance

High Low

Scratch High 70 9

Resistance Low 16 5

(a) If a disk is selected at random, what is the probability that its 

scratch resistance is high and its shock resistance is high?

(b) If a disk is selected at random, what is the probability that its 

scratch resistance is high or its shock resistance is high?

(c) Consider the event that a disk has high scratch resistance and 

the event that a disk has high shock resistance. Are these two 

events mutually exclusive?

2-86.  Strands of copper wire from a manufacturer are 

analyzed for strength and conductivity. The results from 100 

strands are as follows: 

Strength
High Low

High conductivity 74 8

Low conductivity 15 3

FOR SECTION 2-3Exercises
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(a) If a strand is randomly selected, what is the probability that 

its conductivity is high and its strength is high?

(b) If a strand is randomly selected, what is the probability that 

its conductivity is low or its strength is low?

(c) Consider the event that a strand has low conductivity and the 

event that the strand has low strength. Are these two events 

mutually exclusive?

2-87.  The analysis of shafts for a compressor is summa-

rized by conformance to specifications.

Roundness Conforms
Yes No

Surface Finish Yes 345 5

Conforms No 12 8

(a) If a shaft is selected at random, what is the probability that 

it conforms to surface finish requirements?

(b) What is the probability that the selected shaft conforms to 

surface finish requirements or to roundness requirements?

(c) What is the probability that the selected shaft either con-

forms to surface finish requirements or does not conform 

to roundness requirements?

(d) What is the probability that the selected shaft conforms to 

both surface finish and roundness requirements?

2-88.  Cooking oil is produced in two main varieties: mono- 

and polyunsaturated. Two common sources of cooking oil are 

corn and canola. The following table shows the number of bot-

tles of these oils at a supermarket:

Type of oil
Canola Corn

Type of Unsaturation Mono 7 13

Poly 93 77

(a) If a bottle of oil is selected at random, what is the probabil-

ity that it belongs to the polyunsaturated category?

(b) What is the probability that the chosen bottle is monoun-

saturated canola oil?

2-89.  A manufacturer of front lights for automobiles tests 

lamps under a high-humidity, high-temperature environment 

using intensity and useful life as the responses of interest. The 

following table shows the performance of 130 lamps:

Useful life

Satisfactory Unsatisfactory

Intensity Satisfactory 117 3

Unsatisfactory    8 2

(a) Find the probability that a randomly selected lamp will 

yield unsatisfactory results under any criteria.

(b) The customers for these lamps demand 95% satisfactory 

results. Can the lamp manufacturer meet this demand?

2-90.  A computer system uses passwords that are six 

characters, and each character is one of the 26 letters (a–z) or 

10 integers (0–9). Uppercase letters are not used. Let A denote 

the event that a password begins with a vowel (either a, e, i, o, 
or u), and let B denote the event that a password ends with an 

even number (either 0, 2, 4, 6, or 8). Suppose a hacker selects 

a password at random. Determine the following probabilities:

(a) P A( )  (b) P B( )
(c) P A B∩( ) (d) P A B∪( )
2-91. Consider the endothermic reactions in Exercise 2-50. Let 

A denote the event that a reaction's final temperature is 271 K or 

less. Let B denote the event that the heat absorbed is above target. 

Use the addition rules to calculate the following probabilities.

(a) P A B∪( ) (b) P A B∩( )′  (c) P A B′ ′∪( )
2-92. A Web ad can be designed from four different colors, three 

font types, five font sizes, three images, and five text phrases. A 

specific design is randomly generated by the Web server when you 

visit the site. Let A denote the event that the design color is red, 

and let B denote the event that the font size is not the smallest one. 

Use the addition rules to calculate the following probabilities.

(a) P A B∪( ) (b) P A B∪( )′  (c) P A B′ ′∪( )
2-93. Consider the hospital emergency room data in Example 

2-8. Let A denote the event that a visit is to hospital 4, and let B 

denote the event that a visit results in LWBS (at any hospital). 

Use the addition rules to calculate the following probabilities.

(a) P A B∪( ) (b) P A B∪( )′  (c) P A B′ ′∪( )
2-94. Consider the well failure data in Exercise 2-53. Let A 

denote the event that the geological formation has more than 

1000 wells, and let B denote the event that a well failed. Use 

the addition rules to calculate the following probabilities.

(a) P A B∪( ) (b) P A B∪( )′  (c) P A B′ ′∪( )
2-95. Consider the bar code in Example 2-12. Suppose that all 

40 codes are equally likely (none is held back as a delimiter). 

Determine the probability for each of the following:

(a) The first bar is wide or the second bar is wide.

(b) Neither the first nor the second bar is wide.

(c) The first bar is wide or the second bar is not wide.

(d) The first bar is wide or the first space is wide.

2-96. Consider the three patient groups in Exercise 2-57. Let 

A denote the event that the patient was treated with ribavirin 

plus interferon alfa, and let B denote the event that the response 

was complete. Determine the following probabilities: 

(a) P A B( )∪   (b) P A B( )′ ∪  (c) P A B( )∪ ′
2-97. A computer system uses passwords that contain exactly 

eight characters, and each character is one of the 26 lowercase 

letters (a–z) or 26 uppercase letters (A–Z) or 10 integers (0–9). 

Assume all passwords are equally likely. Let A and B denote 

the events that consist of passwords with only letters or only 

integers, respectively. Determine the following probabilities:

(a) P A B( )∪   (b) P A B( )′ ∪  

(c) P (Password contains exactly 1 or 2 integers)

2-98. The article [“Clinical and Radiographic Outcomes of Four 

Different Treatment Strategies in Patients with Early Rheumatoid 

Arthritis,” Arthritis & Rheumatism (2005, Vol. 52, pp. 3381–

3390)] considered four treatment groups. The groups consisted of 

patients with different drug therapies (such as prednisone and inf-

liximab): sequential monotherapy (group 1), step-up combination 

therapy (group 2), initial combination therapy (group 3), or ini-

tial combination therapy with infliximab (group 4). Radiographs 

of hands and feet were used to evaluate disease pro gression. The 

number of patients without progression of joint damage was 76 of 
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114 patients (67%), 82 of 112 patients (73%), 104 of 120 patients 

(87%), and 113 of 121 patients (93%) in groups 1–4, respectively. 

Suppose that a patient is selected randomly. Let A denote the event 

that the patient is in group 1, and let B denote the event that there is 

no progression. Determine the following probabilities:

(a) P A B( )∪  (b) P A B( )′ ′∪  (c) P A B( )∪ ′

2-4 Conditional Probability
Sometimes probabilities need to be reevaluated as additional information becomes available. A 

useful way to incorporate additional information into a probability model is to assume that the out-

come that will be generated is a member of a given event. This event, say A, defi nes the conditions 

that the outcome is known to satisfy. Then probabilities can be revised to include this knowledge. 

The probability of an event B under the knowledge that the outcome will be in event A is denoted as

P B A|( )
and this is called the conditional probability of B given A.

A digital communication channel has an error rate of 1 bit per every 1000 transmitted. 

Errors are rare, but when they occur, they tend to occur in bursts that affect many consecutive 

bits. If a single bit is transmitted, we might model the probability of an error as 1/1000. How-

ever, if the previous bit was in error because of the bursts, we might believe that the probability 

that the next bit will be in error is greater than 1/1000.

In a thin fi lm manufacturing process, the proportion of parts that are not acceptable is 2%. 

However, the process is sensitive to contamination problems that can increase the rate of parts 

that are not acceptable. If we knew that during a particular shift there were problems with the 

fi lters used to control contamination, we would assess the probability of a part being unac-

ceptable as higher than 2%.

In a manufacturing process, 10% of the parts contain visible surface fl aws and 25% of the parts 

with surface fl aws are (functionally) defective parts. However, only 5% of parts without surface 

fl aws are defective parts. The probability of a defective part depends on our knowledge of the pres-

ence or absence of a surface fl aw. Let D denote the event that a part is defective, and let F denote 

the event that a part has a surface fl aw. Then we denote the probability of D given or assuming that 

a part has a surface fl aw, as P D F( | ). Because 25% of the parts with surface fl aws are defective, 

our conclusion can be stated as P D F|( ) = .0 25. Furthermore, because F′ denotes the event that a 

part does not have a surface fl aw and because 5% of the parts without surface fl aws are defective, 

we have P D F| ′( ) = .0 05. These results are shown graphically in Fig. 2-13.

Surface Flaws and Defectives Table 2-3 provides an example of 400 parts classifi ed by surface 

fl aws and as (functionally) defective. For this table, the conditional probabilities match those discussed 

previously in this section. For example, of the parts with surface fl aws (40 parts), the number of defective ones is 10. Therefore,

P D F| /( ) = = .10 40 0 25

and of the parts without surface fl aws (360 parts), the number of defective ones is 18. Therefore,

P D F| /′( ) = = .18 360 0 05

Practical Interpretation: The probability of being defective is fi ve times greater for parts with surface fl aws. This 

calculation illustrates how probabilities are adjusted for additional information. The result also suggests that there may 

be a link between surface fl aws and functionally defective parts, which should be investigated.

Example 2-22

2-3 Parts Classifi ed

Surface Flaws
Yes (event F) No Total

Defective Yes (event D) 10 18 28

No 30 342 372

Total 40 360 400
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In Example 2-22, conditional probabilities were calculated directly. These probabilities can 

also be determined from the formal defi nition of conditional probability.

The conditional probability of an event B given an event A, denoted as P B A|( ), is
 P B A P A B P A| /( ) = ∩( ) ( ) (2-9)

for P A( ) > 0.

Conditional 
Probability

This defi nition can be understood in a special case in which all outcomes of a random experiment are 

equally likely. If there are n total outcomes,

P A A n( ) =    ( )number  of outcomes  in /

Also,

P A B A B n∩( ) =     ∩( )number of outcomes in /

Consequently,

P A B P A
A B∩( ) ( ) =     ∩

   
/

number of outcomes in

number of outcomes in  A
Therefore, P B A|( ) can be interpreted as the relative frequency of event B among the trials that 

produce an outcome in event A.

FIGURE 2-13 Conditional 
probabilities for parts with 
surface fl aws.

5% defective

P(D uF') = 0.05

F' = parts without

       surface flaws

25%

defective

P(D uF) = 0.25

F = parts with

         surface flaws

Tree Diagram Again consider the 400 parts in Table 2-3. From this table,

P D F P D F P F|( ) = ∩( ) ( ) = =10

400

40

400

10

40

Note that in this example all four of the following probabilities are different:

P F P F D

P D P D F

( ) = ( ) =

( ) = ( ) =

40 400 10 28

28 400 10 40

/ | /

/ | /

Here, P D( ) and P D F|( ) are probabilities of the same event, but they are computed under two different states of 

knowledge. Similarly, P F( ) and P F D|( ) are computed under two different states of knowledge.

The tree diagram in Fig. 2-14 can also be used to display conditional probabilities. The fi rst branch is on surface fl aw. Of 

the 40 parts with surface fl aws, 10 are functionally defective and 30 are not. Therefore,

P D F P D F| / ( | ) /( ) = =10 40 30 40and ′

Of the 360 parts without surface fl aws, 18 are functionally defective and 342 are not. Therefore,

P D F P D F| / | /′ ′ ′( ) = ( ) =18 360 342 360and

Example 2-23
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Surface flaw

No Yes

No Yes No Yes

Defective

360

400

40

400

342

360

18

360

30

40

10

40

FIGURE 2-14 Tree diagram for parts classifi ed.

Random Samples and Conditional Probability
Recall that to select one item randomly from a batch implies that each item is equally likely to 

be picked. If more than one item is selected, randomly implies that each element of the sample 

space is equally likely to be picked. When sample spaces were presented earlier in this chap-

ter, sampling with and without replacement was defi ned and illustrated for the simple case of 

a batch with three items { , , }a b c . If two items are selected randomly from this batch without 

replacement, each of the six outcomes in the ordered sample space ab,ac,ba,bc,ca,cb     { } has 

probability 1 6/ . If the unordered sample space is used, each of the three outcomes in {{ , },a b
{ , },{ , }}a c b c  has probability 1 3/ .

When a sample is selected randomly from a large batch, it is usually easier to avoid enu-

meration of the sample space and calculate probabilities from conditional probabilities. For 

example, suppose that a batch contains 10 parts from tool 1 and 40 parts from tool 2. If two 

parts are selected randomly, without replacement, what is the conditional probability that a 

part from tool 2 is selected second given that a part from tool 1 is selected fi rst?

Although the answer can be determined from counts of outcomes, this type of question can 

be answered more easily with the following result.

To select randomly implies that at each step of the sample, the items that remain in 

the batch are equally likely to be selected.

Random Samples

If a part from tool 1 were selected with the fi rst pick, 49 items would remain, 9 from tool 1 and 

40 from tool 2, and they would be equally likely to be picked. Therefore, the probability that a 

part from tool 2 would be selected with the second pick given this fi rst pick is

P E E2 1 40 49| /( ) =
In this manner, other probabilities can also be simplifi ed. For example, let the event E

consist of the outcomes with the fi rst selected part from tool 1 and the second part from tool 

2. To determine the probability of E , consider each step. The probability that a part from 

tool 1 is selected with the fi rst pick is P E1 10 50( ) = / . The conditional probability that a part 

from tool 2 is selected with the second pick, given that a part from tool 1 is selected fi rst, is 

P E E2 1 40 49| /( ) = . Therefore,

P E P E E P E( ) = ( ) ( ) = =2 1 1

40

49

10

50

8

49
| .

Sometimes a partition of the question into successive picks is an easier method to solve the problem.

Random Inspection Consider the inspection described in Example 2-14. Six parts are selected ran-

domly without replacement from a bin of 50 parts. The bin contains 3 defective parts and 47 nondefec-

tive parts. What is the probability that the second part is defective given that the fi rst part is defective?

Example 2-24
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Let A and B denote the events that the fi rst and second part selected are defective, respectively. The probability requested 

can be expressed as P(B | A). If the fi rst part is defective, prior to selecting the second part the batch contains 49 parts, of 

which 2 are defective. Therefore,

P B A( | ) = 2

49

Continuing Example 2-24, what is the probability that the fi rst two parts selected are defective 

and the third is not defective?

This probability can be described in shorthand notation as P(d
1
d

2
n

3
), where d and n denote parts 

that are defective and not defective, respectively. Here

P d d n P n d d P d d P n d d P d d P d( ) ( | ) ( ) ( | ) ( | ) ( )1 2 3 3 1 2 1 2 3 1 2 2 1 1

47

48

2= = = ⋅
449

3

50
0 0024⋅ = .

The probabilities for the fi rst and second selections are similar to those in the previous example. The P(n
3
|d

1
d

2
) is 

based on the fact that after the fi rst 2 parts are selected, 1 defective and 47 nondefective parts remain.

When the probability is written to account for the order of the selections, it is easy to solve this question from the 

defi nition of conditional probabil ity. There are other ways to express the probability, such as P(d
1
d

2
n

3
) = P(d

2
|d

1
n

3
)

P(d
1
n

3
). However, such alternatives do not lead to conditional prob abilities that can be easily calculated.

Example 2-25

2-99.  Disks of polycarbonate plastic from a supplier are 

analyzed for scratch and shock resistance. The results from 100 

disks are summarized as follows:

Shock Resistance

High Low

Scratch High 70 9

Resistance Low 16 5

Let A denote the event that a disk has high shock resistance, 

and let B denote the event that a disk has high scratch resist-

ance. Determine the following probabilities:

(a) P A( )  (b) P B( )
(c) P A B|( ) (d) P B A|( )
2-100.  Samples of skin experiencing desquamation are 

analyzed for both moisture and melanin content. The results 

from 100 skin samples are as follows:

Melanin Content

High Low

Moisture High 13 7

Content Low 48 32

Let A denote the event that a sample has low melanin content, 

and let B denote the event that a sample has high moisture con-

tent. Determine the following probabilities:

(a) P A( )  (b) P B( )
(c) P A B|( ) (d) P B A|( )

2-101.  The analysis of results from a leaf transmutation 

experiment (turning a leaf into a petal) is summarized by type 

of transformation completed:

Total Textural 
Transformation

Yes No

Total Color Yes 243 26

Transformation No  13 18

(a) If a leaf completes the color transformation, what is the 

probability that it will complete the textural transformation?

(b) If a leaf does not complete the textural transformation, what 

is the probability it will complete the color transformation?

2-102.  Samples of a cast aluminum part are classifi ed on the 

basis of surface fi nish (in microinches) and length measurements. 

The results of 100 parts are summarized as follows:

Length

Excellent Good

Surface Excellent 80 2

Finish Good 10 8

Let A denote the event that a sample has excellent surface 

fi nish, and let B denote the event that a sample has excellent 

length. Determine:

(a) P A( )  (b) P B( )
(c) P A B|( ) (d) P B A|( )

FOR SECTION 2-4Exercises
 Problem available in WileyPLUS at instructor’s discretion. 

 Tutoring problem available in WileyPLUS at instructor’s discretion
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(e) If the selected part has excellent surface finish, what is the 

probability that the length is excellent?

(f) If the selected part has good length, what is the probability 

that the surface finish is excellent?

2-103.  The following table summarizes the analysis of sam-

ples of galvanized steel for coating weight and surface roughness:

Coating Weight

High Low

Surface High 12 16

Roughness Low 88 34

(a) If the coating weight of a sample is high, what is the 

probability that the surface roughness is high?

(b) If the surface roughness of a sample is high, what is the 

probability that the coating weight is high?

(c) If the surface roughness of a sample is low, what is the 

probability that the coating weight is low?

2-104. Consider the data on wafer contamination and location 

in the sputtering tool shown in Table 2-2. Assume that one wafer 

is selected at random from this set. Let A denote the event that a 

wafer contains four or more particles, and let B denote the event 

that a wafer is from the center of the sputtering tool. Determine:

(a) P A( )  (b) P A B|( )
(c) P B( )  (d) P B A|( )
(e) P A B∩( ) (f) P A B∪( )
2-105.  The following table summarizes the number of 

deceased beetles under autolysis (the destruction of a cell after 

its death by the action of its own enzymes) and putrefaction 

(decomposition of organic matter, especially protein, by micro-

organisms, resulting in production of foul-smelling matter):

Autolysis
High Low

Putrefaction High 14 59

Low 18 9

(a) If the autolysis of a sample is high, what is the probability that 

the putrefaction is low?

(b) If the putrefaction of a sample is high, what is the probability 

that the autolysis is high?

(c) If the putrefaction of a sample is low, what is the probability 

that the autolysis is low?

2-106.  A maintenance firm has gathered the following 

information regarding the failure mechanisms for air condi-

tioning systems:

Evidence of Gas Leaks

Yes No

Evidence of 
electrical failure

Yes 55 17

No 32 3

The units without evidence of gas leaks or electrical failure 

showed other types of failure. If this is a representative sample 

of AC failure, find the probability

(a) That failure involves a gas leak

(b) That there is evidence of electrical failure given that there 

was a gas leak

(c) That there is evidence of a gas leak given that there is 

evidence of electrical failure

2-107.  A lot of 100 semiconductor chips contains 20 that 

are defective. Two are selected randomly, without replacement, 

from the lot.

(a) What is the probability that the first one selected is 

defective?

(b) What is the probability that the second one selected is 

defective given that the first one was defective?

(c) What is the probability that both are defective?

(d) How does the answer to part (b) change if chips selected 

were replaced prior to the next selection?

2-108.  A batch of 500 containers for frozen orange juice 

contains 5 that are defective. Two are selected, at random, with-

out replacement from the batch.

(a) What is the probability that the second one selected is 

defective given that the first one was defective?

(b) What is the probability that both are defective?

(c) What is the probability that both are acceptable?

 Three containers are selected, at random, without replace-

ment, from the batch.

(d) What is the probability that the third one selected is defective 

given that the first and second ones selected were defective?

(e) What is the probability that the third one selected is defective 

given that the first one selected was defective and the second 

one selected was okay?

(f) What is the probability that all three are defective?

2-109. A batch of 350 samples of rejuvenated mitochondria 

contains 8 that are mutated (or defective). Two are selected 

from the batch, at random, without replacement.

(a) What is the probability that the second one selected is 

defective given that the first one was defective?

(b) What is the probability that both are defective?

(c) What is the probability that both are acceptable?

2-110. A computer system uses passwords that are exactly 

seven characters and each character is one of the 26 letters (a–z) 

or 10 integers (0–9). You maintain a password for this computer 

system. Let A denote the subset of passwords that begin with 

a vowel (either a, e, i, o, or u) and let B denote the subset of 

passwords that end with an even number (either 0, 2, 4, 6, or 8).

(a) Suppose a hacker selects a password at random. What is the 

probability that your password is selected?

(b) Suppose a hacker knows that your password is in event A 

and selects a password at random from this subset. What 

is the probability that your password is selected?

(c) Suppose a hacker knows that your password is in A and B 

and selects a password at random from this subset. What is 

the probability that your password is selected?

2-111. If P A B|( ) = 1, must A B= ? Draw a Venn diagram to 

explain your answer.

2-112. Suppose A and B are mutually exclusive events. 

Construct a Venn diagram that contains the three events A B, , 

and C  such that P A C|( ) = 1 and P B C|( ) = 0.
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2-5 Multiplication and Total Probability Rules
The probability of the intersection of two events is often needed. The conditional probability defi -

nition in Equation 2-9 can be rewritten to provide a formula known as the multiplication rule for 

probabilities.

2-113. Consider the endothermic reactions in Exercise 2-50. 

Let A denote the event that a reaction's fi nal temperature is 271 

K or less. Let B denote the event that the heat absorbed is above 

target. Determine the following probabilities.

(a) P A B|( )  (b) P A B′ |( )
(c) P A B| ′( )  (d) P B A|( )
2-114. Consider the hospital emergency room data in Exam-

ple 2-8. Let A denote the event that a visit is to hospital 4, and 

let B denote the event that a visit results in LWBS (at any hos-

pital). Determine the following probabilities.

(a) P A B|( )  (b) P A B′ |( )
(c) P A B| ′( )  (d) P B A|( )
2-115. Consider the well failure data in Exercise 2-53.

(a) What is the probability of a failure given there are more 

than 1,000 wells in a geological formation?

(b) What is the probability of a failure given there are fewer 

than 500 wells in a geological formation?

2-116. An article in the The Canadian Entomologist (Har-

court et al., 1977, Vol. 109, pp. 1521–1534) reported on the 

life of the alfalfa weevil from eggs to adulthood. The follow-

ing table shows the number of larvae that survived at each 

stage of development from eggs to adults.

Eggs Early 
Larvae

Late 
Larvae

Pre-
pupae

Late 
Pupae Adults

421 412 306 45 35 31

(a) What is the probability an egg survives to adulthood?

(b) What is the probability of survival to adulthood given 

survival to the late larvae stage?

(c) What stage has the lowest probability of survival to the 

next stage?

2-117. Consider the bar code in Example 2-12. Suppose that 

all 40 codes are equally likely (none is held back as a delimiter). 

Determine the probability for each of the following:

(a) The second bar is wide given that the fi rst bar is wide.

(b) The third bar is wide given that the fi rst two bars are not wide.

(c) The fi rst bar is wide given that the last bar is wide.

2-118. Suppose that a patient is selected randomly from those 

described in Exercise 2-57. Let A denote the event that the 

patient is treated with ribavirin plus interferon alfa, and let B
denote the event that the response is complete. Determine the 

following probabilities:

(a) P B A( | )   (b) P A B( | ) 

(c) P A B( | )′    (d) P A B( | )′
2-119. Suppose that a patient is selected randomly from those 

described in Exer cise 2-98. Let A denote the event that the patient 

is in group 1, and let B denote the event that there is no progres-

sion. Determine the following probabilities:

(a) P B A( | )   (b) P A B( | ) 

(c) P A B( | )′    (d) P A B( | )′
2-120. A computer system uses passwords that contain 

exactly eight characters, and each character is one of the 26 

lowercase letters (a–z) or 26 uppercase letters (A–Z) or 10 

integers (0–9). Let Ω denote the set of all possible passwords. 

Suppose that all passwords in Ω are equally likely. Determine 

the probability for each of the following:

(a) Password contains all lowercase letters given that it con-

tains only letters

(b) Password contains at least 1 uppercase letter given that it 

contains only letters

(c) Password contains only even numbers given that is con-

tains all numbers

 P A B P B A P A P A B P B∩( ) = ( ) ( ) = ( ) ( )| |  (2-10)
Multiplication 

Rule

The last expression in Equation 2-10 is obtained by interchanging A and B.

Machining Stages The probability that the fi rst stage of a numerically controlled machining 

operation for high-rpm pistons meets specifi cations is 0.90. Failures are due to metal variations, 

fi xture alignment, cutting blade condition, vibration, and ambient environmental conditions. Given that the fi rst stage 

meets specifi cations, the probability that a second stage of machining meets specifi cations is 0.95. What is the prob-

ability that both stages meet specifi cations?

Let A and B denote the events that the fi rst and second stages meet specifi cations, respectively. The probability requested is

P A B P B A P A∩( ) = ( ) ( ) = . .( ) = .| 0 95 0 90 0 855

Although it is also true that P A B P A B P B ,∩( ) = ( ) ( )|  the information provided in the problem does not match this 

second formulation.

Practical Interpretation: The probability that both stages meet specifi cations is approximately 0.85, and if additional stages 

were needed to complete a piston, the probability would decrease further. Consequently, the probability that each stage is 

completed successfully needs to be large in order for a piston to meet all specifi cations.

Example 2-26
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Sometimes the probability of an event is given under each of several conditions. With enough 

of these conditional probabilities, the probability of the event can be recovered. For example, 

suppose that in semiconductor manufacturing, the probability is 0.10 that a chip subjected to 

high levels of contamination during manufacturing causes a product failure. The probability 

is 0.005 that a chip not subjected to high contamination levels during manufacturing causes a 

product failure. In a particular production run, 20% of the chips are subject to high levels of 

contamination. What is the probability that a product using one of these chips fails?

Clearly, the requested probability depends on whether or not the chip was exposed to high 

levels of contamination. For any event B, we can write B as the union of the part of B in A and 

the part of B in A′. That is,

B A B A B= ∩( ) ∪ ∩( )′
This result is shown in the Venn diagram in Fig. 2-15. Because A and A′ are mutually exclu-

sive, A B∩  and A B′ ∩  are mutually exclusive. Therefore, from the probability of the union 

of mutually exclusive events in Equation 2-6 and the multiplication rule in Equation 2-10, 

the following total probability rule is obtained.

For any events A and B,

 P B P B A P B A P B A P A P B A P A( ) = ∩( ) + ∩( ) = ( ) ( ) + ( ) ( )′ ′ ′| |  (2-11)

Total Probability Rule 
(Two Events)

Assume E , E , , Ek1 2 …   are k mutually exclusive and exhaustive sets. Then

 

P B P B E P B E P B E

P B E P E P B E P E

k( ) = ∩( ) + ∩( ) + ∩( )
= ( ) ( ) + ( ) ( ) +

1 2

1 1 2 2

…+
…| | ++ P B E P Ek k|( ) ( ) (2-12)

Total Probability 
Rule (Multiple 

Events)

The reasoning used to develop Equation 2-11 can be applied more generally. Because 

A A S∪ ′ = , we know A B A B∩( ) ∪ ∩( )′  equals B, and because A A∩ ′ = φ, we know A B∩
and A B′ ∩  are mutually exclusive. In general, a collection of sets E , E , , Ek1 2 …   such that 

E E E Sk1 2∪ ∪…∪ =  is said to be exhaustive. A graphical display of partitioning an event B
among a collection of mutually exclusive and exhaustive events is shown in Fig. 2-16.

Semiconductor Contamination Consider the contamination discussion at the start of this sec-

tion. The information is summarized here.

Probability of 
Failure

Level of 
Contamination

Probability 
of Level

0.1 High 0.2

  0.005 Not high 0.8

Let F  denote the event that the product fails, and let H denote the event that the chip is exposed to high levels of con-

tamination. The requested probability is P F( ), and the information provided can be represented as

P F H P F H

P H P H

| |( ) = . ( ) = .

( ) = .  ( ) = .

0 10 0 005

0 20 0 80

and

and

′

′
From Equation 2-11,

P F( ) = . .( ) + . .( ) = .0 10 0 20 0 005 0 80 0 024

which can be interpreted as just the weighted average of the two probabilities of failure.

Example 2-27
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FIGURE 2-16 Partitioning an event 
into several mutually exclusive subsets.

E1

B > E1

E2 E3
E4

B > E2
B > E3

B > E4

B = (B > E1) < (B > E2) < (B > E3) < (B > E4) 

A A'

B

B > A
B > A'

FIGURE 2-15 Partitioning 
an event into two mutually 
exclusive subsets.

Semiconductor Failures Continuing with semiconductor manufacturing, assume the following 

probabilities for product failure subject to levels of contamination in manufacturing: 

Probability of Failure Level of Contamination

0.10 High

0.01 Medium

0.001 Low

In a particular production run, 20% of the chips are subjected to high levels of contamination, 30% to medium levels 

of contamination, and 50% to low levels of contamination. What is the probability that a product using one of these 

chips fails? Let

H denote the event that a chip is exposed to high levels of contamination

M denote the event that a chip is exposed to medium levels of contamination

L denote the event that a chip is exposed to low levels of contamination

Then,

P F P F H P H P F M P M P F L P L( ) = ( ) ( ) + ( ) ( ) + ( ) ( )
= . .( ) + . .(

| | |

0 10 0 20 0 01 0 30)) + . .( ) = .0 001 0 50 0 0235

The calculations are conveniently organized with the tree diagram in Fig. 2-17.

0.10(0.20)

5 0.02

0.90(0.20)

5 0.18

0.01(0.30)

5 0.003

0.99(0.30)

5 0.297

0.001(0.50)

5 0.0005

0.999(0.50)

5 0.4995

P(Fail) 5 0.02 + 0.003 + 0.0005 5 0.0235

Contamination

0.20 0.50

0.30

High Medium Low

P(FailuHigh)

5 0.10

P(Not FailuHigh)

5 0.90

P(FailuMedium)

5 0.01

P(Not FailuMedium)

5 0.99

P(FailuLow)

5 0.001

P(Not FailuLow)

5 0.999

FIGURE 2-17 Tree diagram for Example 2-28.

Example 2-28
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2-121.  Suppose that P A B|( ) = .0 4 and P B( ) = . .0 5  Deter-

mine the following:

(a) P A B∩( )  (b) P A B′ ∩( )
2-122.  Suppose that P A B , P A B ,| |( ) = .   ( ) = .0 2 0 3′  and 

P B( ) = . .0 8  What is P A( )?
2-123.  The probability is 1% that an electrical connector 

that is kept dry fails during the warranty period of a portable 

computer. If the connector is ever wet, the probability of a fail-

ure during the warranty period is 5%. If 90% of the connectors 

are kept dry and 10% are wet, what proportion of connectors 

fail during the warranty period?

2-124.  Suppose 2% of cotton fabric rolls and 3% of nylon 

fabric rolls contain flaws. Of the rolls used by a manufacturer, 

70% are cotton and 30% are nylon. What is the probability that a 

randomly selected roll used by the manufacturer contains flaws?

2-125.  The edge roughness of slit paper products increases 

as knife blades wear. Only 1% of products slit with new blades 

have rough edges, 3% of products slit with blades of average 

sharpness exhibit roughness, and 5% of products slit with worn 

blades exhibit roughness. If 25% of the blades in manufacturing 

are new, 60% are of average sharpness, and 15% are worn, what 

is the proportion of products that exhibit edge roughness?

2-126.  In the 2012 presidential election, exit polls from 

the critical state of Ohio provided the following results:

Total Obama Romney

No college degree (60%) 52% 45%

College graduate (40%) 47% 51%

What is the probability a randomly selected respondent voted 

for Obama?

2-127.  Computer keyboard failures are due to faulty electrical 

connects (12%) or mechanical defects (88%). Mechanical defects 

are related to loose keys (27%) or improper assembly (73%). 

Electrical connect defects are caused by defective wires (35%), 

improper connections (13%), or poorly welded wires (52%).

(a) Find the probability that a failure is due to loose keys.

(b) Find the probability that a failure is due to improperly 

connected or poorly welded wires.

2-128.  Heart failures are due to either natural occurrences 

(87%) or outside factors (13%). Outside factors are related to 

induced substances (73%) or foreign objects (27%). Natural 

occurrences are caused by arterial blockage (56%), disease 

(27%), and infection (e.g., staph infection) (17%).

(a) Determine the probability that a failure is due to an induced 

substance.

(b) Determine the probability that a failure is due to disease or 

infection.

2-129.  A batch of 25 injection-molded parts contains 5 

parts that have suffered excessive shrinkage.

(a) If two parts are selected at random, and without replace-

ment, what is the probability that the second part selected 

is one with excessive shrinkage?

(b) If three parts are selected at random, and without replace-

ment, what is the probability that the third part selected is 

one with excessive shrinkage?

2-130.  A lot of 100 semiconductor chips contains 20 that 

are defective.

(a) Two are selected, at random, without replacement, from the 

lot. Determine the probability that the second chip selected 

is defective.

(b) Three are selected, at random, without replacement, from 

the lot. Determine the probability that all are defective.

2-131. An article in the British Medical Journal [“Comparison 

of treatment of renal calculi by operative surgery, percutaneous 

nephrolithotomy, and extracorporeal shock wave lithotripsy” 

(1986, Vol. 82, pp. 879–892)] provided the following discussion 

of success rates in kidney stone removals. Open surgery had a 

success rate of 78% (273/350) and a newer method, percutane-

ous nephrolithotomy (PN), had a success rate of 83% (289/350). 

This newer method looked better, but the results changed when 

stone diameter was considered. For stones with diameters less 

than 2 centimeters, 93% (81/87) of cases of open surgery were 

successful compared with only 83% (234/270) of cases of PN. 

For stones greater than or equal to 2 centimeters, the success 

rates were 73% (192/263) and 69% (55/80) for open surgery and 

PN, respectively. Open surgery is better for both stone sizes, but 

less successful in total. In 1951, E. H. Simpson pointed out this 

apparent contradiction (known as Simpson’s paradox), and the 

hazard still persists today. Explain how open surgery can be bet-

ter for both stone sizes but worse in total.

2-132. Consider the endothermic reactions in Exercise 2-50. 

Let A denote the event that a reaction's final temperature is 271 

K or less. Let B denote the event that the heat absorbed is above 

target. Determine the following probabilities.

(a) P A B∩( )     (b) P A B∪( )      (c) P A B′ ′∪( )
(d) Use the total probability rule to determine P A( )

2-133. Consider the hospital emergency room data in Exam-

ple 2-8. Let A denote the event that a visit is to hospital 4 and 

let B denote the event that a visit results in LWBS (at any hos-

pital). Determine the following probabilities.

(a) P A B∩( )      (b) P A B∪( )      (c) P A B′ ′ ′∪( )
(d) Use the total probability rule to determine P A( )

2-134. Consider the hospital emergency room data in Example 

2-8. Suppose that three visits that resulted in LWBS are selected 

randomly (without replacement) for a follow-up interview.

(a) What is the probability that all three are selected from 

hospital 2?

(b) What is the probability that all three are from the same 

hospital?

FOR SECTION 2-5Exercises
 Problem available in WileyPLUS at instructor’s discretion. 

 Tutoring problem available in WileyPLUS at instructor’s discretion
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2-135. Consider the well failure data in Exercise 2-53. Let A
denote the event that the geological formation has more than 

1000 wells, and let B denote the event that a well failed. Deter-

mine the following probabilities.

(a) P A B∩( ) (b) P A B∪( ) (c) P A B′ ′∪( )
(d) Use the total probability rule to determine P A( )

2-136. Consider the well failure data in Exercise 2-53. Sup-

pose that two failed wells are selected randomly (without 

replacement) for a follow-up review.

(a) What is the probability that both are from the gneiss geo-

logical formation group?

(b) What is the probability that both are from the same geo-

logical formation group?

2-137. A Web ad can be designed from four different colors, 

three font types, fi ve font sizes, three images, and fi ve text 

phrases. A specifi c design is randomly generated by the Web 

server when you visit the site. Determine the probability that 

the ad color is red and the font size is not the smallest one.

2-138. Consider the code in Example 2-12. Suppose that all 

40 codes are equally likely (none is held back as a delimiter). 

Determine the probability for each of the following:

(a) The code starts and ends with a wide bar.

(b) Two wide bars occur consecutively.

(c) Two consecutive wide bars occur at the start or end.

(d) The middle bar is wide.

2-139. Similar to the hospital schedule in Example 2-11, sup-

pose that an oper ating room needs to schedule three knee, four 

hip, and fi ve shoulder surgeries. Assume that all schedules are 

equally likely. Determine the following probabil ities:

(a) All hip surgeries are completed fi rst given that all knee 

surgeries are last.

(b) The schedule begins with a hip surgery given that all knee 

surgeries are last.

(c) The fi rst and last surgeries are hip surgeries given that knee 

surgeries are scheduled in time periods 2 through 4.

(d) The fi rst two surgeries are hip surgeries given that all knee 

surgeries are last.

2-140. Suppose that a patient is selected randomly from those 

described in Exercise 2-98. Let A denote the event that the 

patient is in group 1, and let B denote the event for which there 

is no progression. Determine the following probabilities:

(a) P A B( )∩   (b) P B( ) 

(c) P A B( )′ ∩  (d) P A B( )∪  (e) P A B( )′ ∪
2-141. A computer system uses passwords that contain exactly 

eight characters, and each character is one of the 26 lowercase 

letters (a–z) or 26 uppercase letters (A–Z) or 10 integers (0–9). 

Let Ω denote the set of all possible password, and let A and B
denote the events that consist of passwords with only letters or 

only integers, respectively. Suppose that all passwords in Ω are 

equally likely. Determine the following robabilities:

(a) P(A|B′)
(b) P A B( )′ ∩
(c) P (password contains exactly 2 integers given that it con-

tains at least 1 integer)

2-6 Independence
In some cases, the conditional probability of P B A|( ) might equal P B( ). In this special case, 

knowledge that the outcome of the experiment is in event A does not affect the probability that 

the outcome is in event B.

Sampling with Replacement Consider the inspection described in Example 2-14. Six parts are 

selected ran domly from a bin of 50 parts, but assume that the selected part is replaced before the next 

one is selected. The bin contains 3 defective parts and 47 nondefective parts. What is the probability that the second part is 

defective given that the fi rst part is defective?

In shorthand notation, the requested probability is P(B | A), where A and B denote the events that the fi rst and second parts 

are defective, respectively. Because the fi rst part is replaced prior to selecting the second part, the bin still contains 50 parts, 

of which 3 are defective. Therefore, the probability of B does not depend on whether or not the fi rst part is defective. That is,

P B A( | ) = 3

50
Also, the probability that both parts are defective is

P A B P B A P A( ) ( | ) ( )∩ = = ⋅ =3

50

3

50

9

2500

Example 2-29

Flaws and Functions The information in Table 2-3 related surface fl aws to functionally defec-

tive parts. In that case, we determined that P D F( | ) /= = .10 40 0 25 and P D( ) / .= = .28 400 0 07  

Suppose that the situation is different and follows Table 2-4. Then,

P D F P D| / /( ) = = . ( ) = = .2 40 0 05 20 400 0 05and

That is, the probability that the part is defective does not depend on whether it has surface fl aws. Also,

P F D P F| / /( ) = = . ( ) = = .2 20 0 10 40 400 0 10and

Example 2-30
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so the probability of a surface fl aw does not depend on whether the part is defective. Furthermore, the defi nition of 

conditional probability implies that

P F D P D F P F∩( ) = ( ) ( )|

but in the special case of this problem,

P F D P D P F∩( ) = ( ) ( ) = =2

40

2

20

1

200
.

2-4 Parts Classifi ed

Surface Flaws

Yes (event F) No Total

Defective Yes (event D)  2 18 20

No 38 342 380

Total 40 360 400

The preceding example illustrates the following conclusions. In the special case that 

P B A P B ,|( ) = ( )  we obtain

P A B P B A P A P B P A∩( ) = ( ) ( ) = ( ) ( )|

and

P A B
P A B

P B

P A P B

P B
P A|( ) =

∩( )
( ) = ( ) ( )

( ) = ( )
These conclusions lead to an important defi nition.

Two events are independent if any one of the following equivalent statements is true:

(1) P A B P A|( ) = ( )
(2) P B A P B|( ) = ( )
(3) P A B P A P B∩( ) = ( ) ( )                                                  (2-13)

Independence 
(two events)

It is left as a mind-expanding exercise to show that independence implies related results such as

P A B P A P B′ ′ ′ ′∩( ) = ( ) ( )
The concept of independence is an important relationship between events and is used 

throughout this text. A mutually exclusive relationship between two events is based only on 

the outcomes that compose the events. However, an independence relationship depends on the 

probability model used for the random experiment. Often, independence is assumed to be part 

of the random experiment that describes the physical system under study.

Consider the inspection described in Example 2-14. Six parts are selected ran domly without replace-

ment from a bin of 50 parts. The bin contains 3 defective parts and 47 nondefective parts. Let A and 

B denote the events that the fi rst and second parts are defective, respectively.

We suspect that these two events are not independent because the knowledge that the fi rst part is defective suggests that it 

is less likely that the second part selected is defective. Indeed, P(B | A) = 2/49. Now, what is P(B)? Finding the unconditional 

P(B) takes some work because the possible values of the fi rst selection need to be considered:

P B P B A P A P B A P A( ) ( | ) ( ) ( | ) ( )= +

= ⋅ + ⋅ =

′ ′
2

49

3

50

3

49

47

50

3

50

Example 2-31
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Interestingly, P(B), the unconditional probability that the second part se lected is defective, without any knowl-

edge of the fi rst part, is the same as the probability that the fi rst part selected is defective. Yet our goal is to assess 

independence. Because P(B | A) does not equal P(B), the two events are not independent, as we expected.

When considering three or more events, we can extend the defi nition of independence with 

the following general result.

The events E , E , , En1 2
  …  are independent if and only if for any subset of these events 

 P E E E P E P E P Ei i i i i ik k1 2 1 2
∩ ∩ ∩( ) = ( ) × ( ) × × ( )… …  (2-14)

Independence 
(multiple events)

This defi nition is typically used to calculate the probability that several events occur, assuming 

that they are independent and the individual event probabilities are known. The knowledge that the 

events are independent usually comes from a fundamental understanding of the random experiment.

Series Circuit The following circuit operates only if there is a path of functional devices from 

left to right. The probability that each device functions is shown on the graph. Assume that devices 

fail independently. What is the probability that the circuit operates?

0.8 0.9

Let L and R denote the events that the left and right devices operate, respectively. There is a path only if both oper-

ate. The probability that the circuit operates is

P L R P L R P L P R  ( ) = ∩( ) = ( ) ( ) = . .( ) = .and 0 80 0 90 0 72

Practical Interpretation: Notice that the probability that the circuit operates degrades to approximately 0.5 when all 

devices are required to be functional. The probability that each device is functional needs to be large for a circuit to 

operate when many devices are connected in series.

Example 2-32

Semiconductor Wafers Assume that the probability that a wafer contains a large particle of con-

tamination is 0.01 and that the wafers are independent; that is, the probability that a wafer contains 

a large particle does not depend on the characteristics of any of the other wafers. If 15 wafers are analyzed, what is the 

probability that no large particles are found?

Let Ei denote the event that the ith wafer contains no large particles, i , , ,=  …  .1 2 15  Then, P Ei( ) .= .0 99  The prob-

ability requested can be represented as P E E E1 2 15∩ ∩ ∩( ).…  From the independence assumption and Equation 2-14,

P E E E P E P E P E1 2 15 1 2 15
150 99 0 86∩ ∩ ∩( ) = ( ) × ( ) × × ( ) = . = .… …

Example 2-33

Parallel Circuit The following circuit operates only if there is a path of functional devices from 

left to right. The probability that each device functions is shown on the graph. Assume that devices 

fail independently. What is the probability that the circuit operates?

0.95

0.95

a b

Let T  and B denote the events that the top and bottom devices operate, respectively. There is a path if at least one 

device operates. The probability that the circuit operates is

Example 2-34
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P T B P T B P T B  ( ) = −   ( )⎡⎣ ⎤⎦ = −   ( )or or and1 1′ ′ ′

A simple formula for the solution can be derived from the complements T ′ and B′. From the independence assumption,

P T B P T P B′ ′ ′ ′  ( ) = ( ) ( ) = − .( ) = .and 1 0 95 0 05
2 2

so

P T B  ( ) = − . = .or 1 0 05 0 99752

Practical Interpretation: Notice that the probability that the circuit operates is larger than the probability that either 

device is functional. This is an advantage of a parallel architecture. A disadvantage is that multiple devices are needed.

Advanced Circuit The following circuit operates only if there is a path of functional devices 

from left to right. The probability that each device functions is shown on the graph. Assume that 

devices fail independently. What is the probability that the circuit operates?

0.9

0.9

0.95

0.95

0.9 0.99a b

The solution can be obtained from a partition of the graph into three columns. Let L denote the event that there is a path 

of functional devices only through the three units on the left. From the independence and based upon the previous example,

P L( ) = − .1 0 13

Similarly, let M denote the event that there is a path of functional devices only through the two units in the middle. Then,

P M( ) = − .1 0 052

The probability that there is a path of functional devices only through the one unit on the right is simply the probability 

that the device functions, namely, 0.99. Therefore, with the independence assumption used again, the solution is

1 0 1 1 0 05 0 99 0 9873 2− .( ) − .( ) .( ) = .

Example 2-35

FOR SECTION 2-6Exercises

2-142.  If P A B , P B ,|( ) = .  ( ) = .0 4 0 8  and P A ,( ) = .0 5  are 

the events A and B independent?

2-143.  If P A B , P B ,|( ) = .  ( ) = .0 3 0 8  and P A ,( ) = .0 3  are 

the events B and the complement of A independent?

2-144.  If P A , P B ,( ) = .  ( ) = .0 2 0 2  and A and B are mutu-

ally exclusive, are they independent?

2-145.  A batch of 500 containers of frozen orange juice con-

tains 5 that are defective. Two are selected, at random, without 

replacement, from the batch. Let A and B denote the events that 

the fi rst and second containers selected are defective, respectively.

(a) Are A and B independent events?

(b) If the sampling were done with replacement, would A and 

B be independent?

2-146.  Disks of polycarbonate plastic from a supplier are 

analyzed for scratch and shock resistance. The results from 100 

disks are summarized as follows:

Shock Resistance

High Low

Scratch High 70 9

Resistance Low 16 5

Let A denote the event that a disk has high shock resistance, 

and let B denote the event that a disk has high scratch resist-

ance. Are events A and B independent?

 Problem available in WileyPLUS at instructor’s discretion. 

 Tutoring problem available in WileyPLUS at instructor’s discretion
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2-147. Samples of emissions from three suppliers are classi-

fied for conformance to air-quality specifications. The results 

from 100 samples are summarized as follows:

Conforms

Yes No

1 22 8

Supplier 2 25 5

3 30 10

Let A denote the event that a sample is from supplier 1, and let 

B denote the event that a sample conforms to specifications.

(a) Are events A and B independent?

(b) Determine P B A( | ).

2-148.  Redundant array of inexpensive disks (RAID) is a 

technology that uses multiple hard drives to increase the speed 

of data transfer and provide instant data backup. Suppose that 

the probability of any hard drive failing in a day is 0.001 and 

the drive failures are independent.

(a) A RAID 0 scheme uses two hard drives, each containing a 

mirror image of the other. What is the probability of data loss? 

Assume that data loss occurs if both drives fail within the 

same day.

(b) A RAID 1 scheme splits the data over two hard drives. 

What is the probability of data loss? Assume that data 

loss occurs if at least one drive fails within the same 

day.

2-149.  The probability that a lab specimen contains high 

levels of contamination is 0.10. Five samples are checked, and 

the samples are independent.

(a) What is the probability that none contain high levels of 

contamination?

(b) What is the probability that exactly one contains high lev-

els of contamination?

(c) What is the probability that at least one contains high levels 

of contamination?

2-150.  In a test of a printed circuit board using a random 

test pattern, an array of 10 bits is equally likely to be 0 or 1. 

Assume the bits are independent.

(a) What is the probability that all bits are 1s?

(b) What is the probability that all bits are 0s?

(c) What is the probability that exactly 5 bits are 1s and 5 bits 

are 0s?

2-151. Six tissues are extracted from an ivy plant infested by 

spider mites. The plant in infested in 20% of its area. Each tissue 

is chosen from a randomly selected area on the ivy plant.

(a) What is the probability that four successive samples show 

the signs of infestation?

(b) What is the probability that three out of four successive 

samples show the signs of infestation?

2-152.  A player of a video game is confronted with a 

series of four opponents and an 80% probability of defeating 

each opponent. Assume that the results from opponents are 

independent (and that when the player is defeated by an oppo-

nent the game ends).

(a) What is the probability that a player defeats all four oppo-

nents in a game?

(b) What is the probability that a player defeats at least two 

opponents in a game?

(c) If the game is played three times, what is the probability 

that the player defeats all four opponents at least once?

2-153. In an acid-base titration, a base or acid is gradually 

added to the other until they have completely neutralized each 

other. Because acids and bases are usually colorless (as are the 

water and salt produced in the neutralization reaction), pH is 

measured to monitor the reaction. Suppose that the equivalence 

point is reached after approximately 100 mL of an NaOH solu-

tion has been added (enough to react with all the acetic acid pre-

sent) but that replicates are equally likely to indicate from 95 to 

104 mL, measured to the nearest mL. Assume that two techni-

cians each conduct titrations independently.

(a) What is the probability that both technicians obtain equiva-

lence at 100 mL?

(b) What is the probability that both technicians obtain equiva-

lence between 98 and 104 mL (inclusive)?

(c) What is the probability that the average volume at equiva-

lence from the technicians is 100 mL?

2-154. A credit card contains 16 digits. It also contains the 

month and year of expiration. Suppose there are 1 million 

credit card holders with unique card numbers. A hacker ran-

domly selects a 16-digit credit card number.

(a) What is the probability that it belongs to a user?

(b) Suppose a hacker has a 25% chance of correctly guessing 

the year your card expires and randomly selects 1 of the 12 

months. What is the probability that the hacker correctly 

selects the month and year of expiration?

2-155.  Eight cavities in an injection-molding tool produce 

plastic connectors that fall into a common stream. A sample 

is chosen every several minutes. Assume that the samples are 

independent.

(a) What is the probability that five successive samples were 

all produced in cavity 1 of the mold?

(b) What is the probability that five successive samples were 

all produced in the same cavity of the mold?

(c) What is the probability that four out of five successive sam-

ples were produced in cavity 1 of the mold?

2-156. The following circuit operates if and only if there is 

a path of functional devices from left to right. The probability 

that each device functions is as shown. Assume that the prob-

ability that a device is functional does not depend on whether 

or not other devices are functional. What is the probability that 

the circuit operates?

0.95

0.9

0.95

0.8

0.95

0.7

2-157. The following circuit operates if and only if there is a path 

of functional devices from left to right. The probability that each 

device functions is as shown. Assume that the probability that 
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a device is functional does not depend on whether or not other 

devices are functional. What is the probability that the circuit 

operates?

0.95

0.9

0.95

0.9

0.9

0.8

2-158. Consider the endothermic reactions in Exercise 2-50. Let 

A denote the event that a reaction's final temperature is 271 K or 

less. Let B denote the event that the heat absorbed is above target. 

Are these events independent?

2-159. Consider the hospital emergency room data in Example 

2-8. Let A denote the event that a visit is to hospital 4, and let B 

denote the event that a visit results in LWBS (at any hospital). 

Are these events independent?

2-160. Consider the well failure data in Exercise 2-53. Let A 

denote the event that the geological formation has more than 

1000 wells, and let B denote the event that a well failed. Are 

these events independent?

2-161. A Web ad can be designed from four different colors, 

three font types, five font sizes, three images, and five text 

phrases. A specific design is randomly generated by the Web 

server when you visit the site. Let A denote the event that the 

design color is red, and let B denote the event that the font 

size is not the smallest one. Are A and B independent events? 

Explain why or why not.

2-162.  Consider the code in Example 2-12. Suppose that all 

40 codes are equally likely (none is held back as a delimiter). 

Let A and B denote the event that the first bar is wide and B 

denote the event that the second bar is wide. Determine the 

following:

(a) P(A)   (b) P(B)  (c) P A B( )∩  

(d) Are A and B independent events?

2-163. An integrated circuit contains 10 million logic gates 

(each can be a logical AND or OR circuit). Assume the prob-

ability of a gate failure is p and that the failures are independent. 

The integrated circuit fails to function if any gate fails. Deter-

mine the value for p so that the probability that the integrated 

circuit functions is 0.95.

2-164. Table 2-1 provides data on wafers categorized by 

location and contam ination levels. Let A denote the event 

that contamination is low, and let B denote the event that 

the location is center. Are A and B independent? Why or 

why not?

2-165. Table 2-1 provides data on wafers categorized by loca-

tion and contamination levels. More generally, let the number 

of wafers with low contamination from the center and edge 
locations be denoted as n

lc
 and n

le
, respectively. Similarly, let 

n
hc

 and n
he

 denote the number of wafers with high contamina-

tion from the center and edge locations, respectively. Suppose 

that n
lc
 = 10n

hc
 and n

le
 = 10n

he
. That is, there are 10 times as 

many low con tamination wafers as high ones from each loca-

tion. Let A denote the event that contamination is low, and let 

B denote the event that the location is center. Are A and B inde-

pendent? Does your conclusion change if the multiplier of 10 

(between low and high contamination wafers) is changed from 

10 to another positive integer? 

2-7 Bayes’ Theorem
The examples in this chapter indicate that information is often presented in terms of conditional 

probabilities. These conditional probabilities commonly provide the probability of an event (such 

as failure) given a condition (such as high or low contamination). But after a random experiment 

generates an outcome, we are naturally interested in the probability that a condition was present 

(high contamination) given an outcome (a semiconductor failure). Thomas Bayes addressed this 

essential question in the 1700s and developed the fundamental result known as Bayes’ theorem. 

Do not let the simplicity of the mathematics conceal the importance. There is extensive interest in 

such probabilities in modern statistical analysis.

From the definition of conditional probability,

P A B P A B P B P B A P B A P A∩( ) = ( ) ( ) = ∩( ) = ( ) ( )| |

Now, considering the second and last terms in the preceding expression, we can write

 P A B
P B A P A

P B
P B( | )

( | ) ( )

( )
= ( ) >for 0 (2-15)

This is a useful result that enables us to solve for P A B( | ) in terms of P B A( | ).
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In general, if P B( ) in the denominator of Equation 2-15 is written using the total probability 

rule in Equation 2-12, we obtain the following general result, which is known as Bayes’ theorem.

If E , E , , Ek1 2 …   are k mutually exclusive and exhaustive events and B is any event,

 
P E B

P B E P E

P B E P E P B E P E P B E P Ek k
1

1 1

1 1 2 2

|
|

| | |
( ) = ( ) ( )

( ) ( ) + ( ) ( ) + ( )…+ (( ) 
(2-16)

for P B( ) > 0

Bayes’ Theorem

Notice that the numerator always equals one of the terms in the sum in the denominator.

Reconsider Example 2-27. The conditional probability that a high level of contamination was present 

when a failure occurred is to be determined. The information from Example 2-27 is summarized here.

Probability of Failure Level of Contamination Probability of Level

0.1 High 0.2

0.005 Not high 0.8

The probability of P H F|( ) is determined from

P H F
P F H P H

P F
( | )

( | ) ( )

( )
= =

. .( )
.

= .
0 10 0 20

0 024
0 83

The value of P F( ) in the denominator of our solution was found from P F P F P F H P H P F H P H( ) ′ ′= ( ) = ( ) ( ) + ( ) ( )| | .

Example 2-36

Medical Diagnostic Because a new medical procedure has been shown to be effective in the 

early detection of an illness, a medical screening of the population is proposed. The probability that 

the test correctly identifi es someone with the illness as positive is 0.99, and the probability that the test correctly identi-

fi es someone without the illness as negative is 0.95. The incidence of the illness in the general population is 0.0001. 

You take the test, and the result is positive. What is the probability that you have the illness?

Let D denote the event that you have the illness, and let S denote the event that the test signals positive. The probability 

requested can be denoted as P D S|( ). The probability that the test correctly signals someone without the illness as nega-

tive is 0.95. Consequently, the probability of a positive test without the illness is

P S D| ′( ) = .0 05

From Bayes’ theorem,
P D S P S D P D P S D D P S D P D( ) = ( ) ( ) / [ ( ) ( ) ( ′) ( ′)]α

( )
| | | |

. /

P +
= .0 99 0 0001 [[ . .

/

0 99 0 0001 0 05 0 0001

1 506 0 002

( ) (1− )]. + .
= = .

Practical Interpretation: The probability of your having the illness given a positive result from the test is only 0.002. Surpris-

ingly, even though the test is effective, in the sense that P S D|( ) is high and P S D| ′( ) is low, because the incidence of the illness 

in the general population is low, the chances are quite small that you actually have the disease even if the test is positive.

Example 2-37

Bayesian Network Bayesian networks are used on the Web sites of high-technology manufac-

turers to allow customers to quickly diagnose problems with products. An oversimplifi ed example 

is presented here. 

A printer manufacturer obtained the following probabilities from a database of test results. Printer failures are asso-

ciated with three types of problems: hardware, software, and other (such as connectors) with probabilities of 0.1, 0.6, 

and 0.3, respectively. The probability of a printer failure given a hardware problem is 0.9, given a software problem is 

0.2, and given any other type of problem is 0.5. If a customer enters the manufacturer’s Web site to diagnose a printer 

failure, what is the most likely cause of the problem?

Example 2-38
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and chlorinated compounds—instead of having to use a single 

test for each pollutant. The makers of the test claim that it can 

detect high levels of organic pollutants with 99.7% accuracy, 

volatile solvents with 99.95% accuracy, and chlorinated com-

pounds with 89.7% accuracy. If a pollutant is not present, the 

test does not signal. Samples are prepared for the calibration of 

the test and 60% of them are contaminated with organic pollut-

ants, 27% with volatile solvents, and 13% with traces of chlo-

rinated compounds. A test sample is selected randomly.

(a) What is the probability that the test will signal?

(b) If the test signals, what is the probability that chlorinated 

compounds are present?

2-174. Consider the endothermic reactions in Exercise 2-50. 

Use Bayes’ theorem to calculate the probability that a reac-

tion's final temperature is 271 K or less given that the heat 

absorbed is above target.

2-175. Consider the hospital emergency room data in 

Example 2-8. Use Bayes’ theorem to calculate the probability  

that a person visits hospital 4 given they are LWBS.

2-176. Consider the well failure data in Exercise 2-53. Use 

Bayes’ theorem to calculate the probability that a randomly 

selected well is in the gneiss group given that the well has 

failed.

2-177. Two Web colors are used for a site advertisement. If a site 

visitor arrives from an affiliate, the probabilities of the blue or green 

colors being used in the advertisement are 0.8 and 0.2, respectively. 

If the site visitor arrives from a search site, the probabilities of blue 

and green colors in the advertisement are 0.4 and 0.6, respectively. 

The proportions of visitors from affiliates and search sites are 0.3 

and 0.7, respectively. What is the probability that a visitor is from 

a search site given that the blue ad was viewed?

2-178. Suppose that a patient is selected randomly from those 

described in Exercise 2-98. Let A denote the event that the patient 

is in group 1, and let B denote the event that there is no progres-

sion. Determine the following probabilities:

(a) P (B)   (b) P (B | A) (c) P (A | B)

2-179. An e-mail filter is planned to separate valid e-mails 

from spam. The word free occurs in 60% of the spam mes-

sages and only 4% of the valid messages. Also, 20% of the 

messages are spam. Determine the following probabilities:

(a) The message contains free.
(b) The message is spam given that it contains free.
(c) The message is valid given that it does not contain free.

2-180. A recreational equipment supplier finds that among orders 

that include tents, 40% also include sleeping mats. Only 5% of 

orders that do not include tents do include sleeping mats. Also, 

20% of orders include tents. Determine the following probabilities:

(a) The order includes sleeping mats.

(b) The order includes a tent given it includes sleeping mats.

2-181. The probabilities of poor print quality given no printer 

problem, misaligned paper, high ink viscosity, or printer-head 

debris are 0, 0.3, 0.4, and 0.6, respectively. The probabilities 

of no printer problem, misaligned paper, high ink viscosity, or 

printer-head debris are 0.8, 0.02, 0.08, and 0.1, respectively.

(a) Determine the probability of high ink viscosity given poor 

print quality.

(b) Given poor print quality, what problem is most likely?

2-8 Random Variables
We often summarize the outcome from a random experiment by a simple number. In many 

of the examples of random experiments that we have considered, the sample space has been 

a description of possible outcomes. In some cases, descriptions of outcomes are sufficient, 

but in other cases, it is useful to associate a number with each outcome in the sample space. 

Because the particular outcome of the experiment is not known in advance, the resulting value 

of our variable is not known in advance. For this reason, the variable that associates a number 

with the outcome of a random experiment is referred to as a random variable.

Sometimes a measurement (such as current in a copper wire or length of a machined 

part) can assume any value in an interval of real numbers (at least theoretically). Then 

arbitrary precision in the measurement is possible. Of course, in practice, we might round 

A random variable is a function that assigns a real number to each outcome in the 

sample space of a random experiment.

Random  
Variable

Notation is used to distinguish between a random variable and the real number.

 A random variable is denoted by an uppercase letter such as X. After an experiment 

is conducted, the measured value of the random variable is denoted by a lowercase 

letter such as x = 70 milliamperes.

Notation
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off to the nearest tenth or hundredth of a unit. The random variable that represents this 

measurement is said to be a continuous random variable. The range of the random vari-

able includes all values in an interval of real numbers; that is, the range can be thought 

of as a continuum.

In other experiments, we might record a count such as the number of transmitted bits that 

are received in error. Then, the measurement is limited to integers. Or we might record that 

a proportion such as 0.0042 of the 10,000 transmitted bits were received in error. Then, the 

measurement is fractional, but it is still limited to discrete points on the real line. Whenever 

the measurement is limited to discrete points on the real line, the random variable is said to be 

a discrete random variable.

A discrete random variable is a random variable with a finite (or countably infinite) range.

A continuous random variable is a random variable with an interval (either finite 

or infinite) of real numbers for its range.

Discrete and  
Continuous  

Random  
Variables

In some cases, the random variable X is actually discrete but, because the range of possible 

values is so large, it might be more convenient to analyze X as a continuous random variable. For 

example, suppose that current measurements are read from a digital instrument that displays the 

current to the nearest 100th of a milliampere. Because the possible measurements are limited, 

the random variable is discrete. However, it might be a more convenient, simple approximation 

to assume that the current measurements are values of a continuous random variable.

Examples of continuous random variables:

 electrical current, length, pressure, temperature, time, voltage, weight

Examples of discrete random variables:

  number of scratches on a surface, proportion of defective parts among 1000 

tested, number of transmitted bits received in error

Examples of  
Random  

Variables

2-182. Decide whether a discrete or continuous random vari-

able is the best model for each of the following variables:

(a) The time until a projectile returns to earth.

(b) The number of times a transistor in a computer memory 

changes state in one operation.

(c) The volume of gasoline that is lost to evaporation during 

the filling of a gas tank.

(d) The outside diameter of a machined shaft.

2-183. Decide whether a discrete or continuous random 

variable is the best model for each of the following variables:

(a) The number of cracks exceeding one-half inch in 10 miles 

of an interstate highway.

(b) The weight of an injection-molded plastic part.

(c) The number of molecules in a sample of gas.

(d) The concentration of output from a reactor.

(e) The current in an electronic circuit.

2-184. Decide whether a discrete or continuous random 

variable is the best model for each of the following variables:

(a) The time for a computer algorithm to assign an image to a 

category.

(b) The number of bytes used to store a file in a computer.

(c) The ozone concentration in micrograms per cubic meter.

(d) The ejection fraction (volumetric fraction of blood pumped 

from a heart ventricle with each beat).

(e) The fluid flow rate in liters per minute.

FOR SECTION 2-8Exercises
 Problem available in WileyPLUS at instructor’s discretion. 

 Tutoring problem available in WileyPLUS at instructor’s discretion
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2-185.  Samples of laboratory glass are in small, light 

packaging or heavy, large packaging. Suppose that 2% and 1%, 

respectively, of the sample shipped in small and large packages, 

respectively, break during transit. If 60% of the samples are shipped 

in large packages and 40% are shipped in small packages, what 

proportion of samples break during shipment?

2-186. A sample of three calculators is selected from a manufac-

turing line, and each calculator is classified as either defective or 

acceptable. Let A B, , and C denote the events that the first, second, 

and third calculators, respectively, are defective.

(a) Describe the sample space for this experiment with a tree 

diagram.

 Use the tree diagram to describe each of the following events:

(b) A (c) B (d) A B∩  (e) B C∪
2-187.  Samples of a cast aluminum part are classified on 

the basis of surface finish (in microinches) and edge finish. The 

results of 100 parts are summarized as follows:

Edge Finish
Excellent Good

Surface Excellent 80 2

Finish Good 10 8

Let A denote the event that a sample has excellent surface fin-

ish, and let B denote the event that a sample has excellent edge 

finish. If a part is selected at random, determine the following 

probabilities:

(a) P A( )  (b) P B( )  (c) P A( )′
(d) P A B( )∩  (e) P A B( )∪  (f) P A B( )′ ∪
2-188. Shafts are classified in terms of the machine tool that 

was used for manufacturing the shaft and conformance to sur-

face finish and roundness.

Tool 1 Roundness Conforms
Yes No

Surface Finish Yes 200 1

Conforms No  4 2

Tool 2 Roundness Conforms
Yes No

Surface Finish Yes 145 4

Conforms No  8 6

(a) If a shaft is selected at random, what is the probability 

that the shaft conforms to surface finish requirements or to 

roundness requirements or is from tool 1?

(b) If a shaft is selected at random, what is the probability that 

the shaft conforms to surface finish requirements or does not 

conform to roundness requirements or is from tool 2?

(c) If a shaft is selected at random, what is the probability that 

the shaft conforms to both surface finish and roundness 

requirements or the shaft is from tool 2?

(d) If a shaft is selected at random, what is the probability that 

the shaft conforms to surface finish requirements or the 

shaft is from tool 2?

2-189. If A B, , and C are mutually exclusive events, is it possible 

for P A P B( ) . , ( ) . ,= =0 3 0 4  and P C( ) . ?= 0 5  Why or why not?

2-190.  The analysis of shafts for a compressor is  

summarized by conformance to specifications:

Roundness Conforms
Yes No

Surface finish Yes 345 5

Conforms No 12 8

(a) If we know that a shaft conforms to roundness requirements, 

what is the probability that it conforms to surface finish 

requirements?

(b) If we know that a shaft does not conform to roundness 

requirements, what is the probability that it conforms to 

surface finish requirements?

2-191.  A researcher receives 100 containers of oxygen. 

Of those containers, 20 have oxygen that is not ionized, and the 

rest are ionized. Two samples are randomly selected, without 

replacement, from the lot.

(a) What is the probability that the first one selected is not 

ionized?

(b) What is the probability that the second one selected is not 

ionized given that the first one was ionized?

(c) What is the probability that both are ionized?

(d) How does the answer in part (b) change if samples selected 

were replaced prior to the next selection?

2-192.  A lot contains 15 castings from a local supplier and 

25 castings from a supplier in the next state. Two castings are 

selected randomly, without replacement, from the lot of 40. Let 

A be the event that the first casting selected is from the local 

supplier, and let B denote the event that the second casting is 

selected from the local supplier. Determine:

(a) P A( ) (b) P B A|( ) (c) P A B∩( ) (d) P A B∪( )
Suppose that 3 castings are selected at random, without replace-

ment, from the lot of 40. In addition to the definitions of events 

A and B, let C denote the event that the third casting selected is 

from the local supplier. Determine:

(e) P A B C∩ ∩( )  (f) P A B C∩ ∩( )′
2-193.  In the manufacturing of a chemical adhesive, 3% 

of all batches have raw materials from two different lots. This 

occurs when holding tanks are replenished and the remaining 

portion of a lot is insufficient to fill the tanks.

Only 5% of batches with material from a single lot require 

reprocessing. However, the viscosity of batches consisting of 

two or more lots of material is more difficult to control, and 

40% of such batches require additional processing to achieve 

the required viscosity.

Supplemental Exercises
 Problem available in WileyPLUS at instructor’s discretion. 

 Tutoring problem available in WileyPLUS at instructor’s discretion
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Let A denote the event that a batch is formed from two dif-

ferent lots, and let B denote the event that a lot requires addi-

tional processing. Determine the following probabilities:

(a) P A( )   (b) P A′( )   (c) P B A|( ) (d) P B A| ′( )
(e) P A B∩( )   (f) P A B∩( )′    (g) P B( )
2-194.  Incoming calls to a customer service center are 

classified as complaints (75% of calls) or requests for informa-

tion (25% of calls). Of the complaints, 40% deal with computer 

equipment that does not respond and 57% deal with incomplete 

software installation; in the remaining 3% of complaints, the 

user has improperly followed the installation instructions. The 

requests for information are evenly divided on technical ques-

tions (50%) and requests to purchase more products (50%).

(a) What is the probability that an incoming call to the cus-

tomer service center will be from a customer who has not 

followed installation instructions properly?

(b) Find the probability that an incoming call is a request for 

purchasing more products.

2-195.  A congested computer network has a 0.002 

probability of losing a data packet, and packet losses are 

independent events. A lost packet must be resent.

(a) What is the probability that an e-mail message with 100 

packets will need to be resent?

(b) What is the probability that an e-mail message with 3 packets 

will need exactly 1 to be resent?

(c) If 10 e-mail messages are sent, each with 100 packets, what 

is the probability that at least 1 message will need some 

packets to be resent?

2-196.  Samples of a cast aluminum part are classified on the 

basis of surface finish (in microinches) and length measurements. 

The results of 100 parts are summarized as follows:

Length
Excellent Good

Surface Excellent 80 2

Finish Good 10 8

Let A denote the event that a sample has excellent surface 

finish, and let B denote the event that a sample has excellent 

length. Are events A and B independent?

2-197.  An optical storage device uses an error 

recovery procedure that requires an immediate satisfactory read-

back of any written data. If the readback is not successful after 

three writing operations, that sector of the disk is eliminated as 

unacceptable for data storage. On an acceptable portion of the 

disk, the probability of a satisfactory readback is 0.98. Assume 

the readbacks are independent. What is the probability that an 

acceptable portion of the disk is eliminated as unacceptable for 

data storage?

2-198. Semiconductor lasers used in optical storage products 

require higher power levels for write operations than for read 

operations. High-power-level operations lower the useful life 

of the laser.

Lasers in products used for backup of higher-speed  

magnetic disks primarily write, and the probability that the use-

ful life exceeds five years is 0.95. Lasers that are in products that 

are used for main storage spend approximately an equal amount 

of time reading and writing, and the probability that the useful 

life exceeds five years is 0.995. Now, 25% of the products from 

a manufacturer are used for backup and 75% of the products are 

used for main storage.

Let A denote the event that a laser’s useful life exceeds five 

years, and let B denote the event that a laser is in a product that 

is used for backup.

 Use a tree diagram to determine the following:

(a) P B( )  (b) P A B|( ) (c) P A B| ′( )
(d) P A B∩( ) (e) P A B∩( )′  (f)   P A( )
(g)  What is the probability that the useful life of a laser exceeds 

five years?

(h)  What is the probability that a laser that failed before five 

years came from a product used for backup?

2-199. Energy released from cells breaks the molecular bond 

and converts ATP (adenosine triphosphate) into ADP (adeno-

sine diphosphate). Storage of ATP in muscle cells (even for an 

athlete) can sustain maximal muscle power only for less than 

five seconds (a short dash). Three systems are used to replen-

ish ATP—phosphagen system, glycogen-lactic acid system 

(anaerobic), and aerobic respiration—but the first is useful only 

for less than 10 seconds, and even the second system provides 

less than two minutes of ATP. An endurance athlete needs to 

perform below the anaerobic threshold to sustain energy for 

extended periods. A sample of 100 individuals is described by 

the energy system used in exercise at different intensity levels.

Primarily Aerobic

Period Yes No

1 50 7

2 13 30

Let A denote the event that an individual is in period 2, and let 

B denote the event that the energy is primarily aerobic. Deter-

mine the number of individuals in

(a) A B′ ∩   (b) B′  (c) A B∪
2-200.  A sample preparation for a chemical measurement is 

completed correctly by 25% of the lab technicians, completed with 

a minor error by 70%, and completed with a major error by 5%.

(a) If a technician is selected randomly to complete the preparation,  

what is the probability that it is completed without error?

(b) What is the probability that it is completed with either a 

minor or a major error?

2-201. In circuit testing of printed circuit boards, each board either 

fails or does not fail the test. A board that fails the test is then checked 

further to determine which one of five defect types is the primary 

failure mode. Represent the sample space for this experiment.

2-202. The data from 200 machined parts are summarized as 

follows:

Depth of Bore

Edge Condition Above Target Below Target

Coarse 15 10

Moderate 25 20

Smooth 50 80
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(a) What is the probability that a part selected has a moderate 

edge condition and a below-target bore depth?

(b) What is the probability that a part selected has a moderate 

edge condition or a below-target bore depth?

(c) What is the probability that a part selected does not have 

a moderate edge condition or does not have a below-target 

bore depth?

2-203.  Computers in a shipment of 100 units contain a 

portable hard drive, solid-state memory, or both, according to 

the following table:

Portable Hard Drive

Solid-state memory Yes No

Yes 15 80 

No 4 1

Let A denote the event that a computer has a portable hard 

drive, and let B denote the event that a computer has a solid-

state memory. If one computer is selected randomly, compute

(a) P A( )  (b) P A B∩( ) (c) P A B∪( )
(d) P A B′ ∩( ) (e) P A B|( )
2-204.  The probability that a customer’s order is not 

shipped on time is 0.05. A particular customer places three 

orders, and the orders are placed far enough apart in time that 

they can be considered to be independent events.

(a) What is the probability that all are shipped on time?

(b) What is the probability that exactly one is not shipped 

on time?

(c) What is the probability that two or more orders are not 

shipped on time?

2-205. Let E E1 2, , and E3 denote the samples that conform 

to a percentage of solids specification, a molecular weight 

specification, and a color specification, respectively. A total of 

240 samples are classified by the E E1 2, , and E3 specifications, 

where yes indicates that the sample conforms.

E3 yes

E2

Yes No Total

E
1

Yes 200 1 201

No 5 4 9

Total 205 5 210

E3 no

E2

Yes No Total

E
1

Yes 20 4 24

No  6 0 6

Total 26 4 30

(a) Are E E1 2, , and E3 mutually exclusive events?

(b) Are E E1 2′ ′, , and E3′ mutually exclusive events?

(c) What is P(E1′ or E2′ or E3′)?
(d) What is the probability that a sample conforms to all three 

specifications?

(e) What is the probability that a sample conforms to the E1 or 

E3 specification?

(f) What is the probability that a sample conforms to the E1 or 

E2 or E3 specification?

2-206.  Transactions to a computer database are either 

new items or changes to previous items. The addition of an 

item can be completed in less than 100 milliseconds 90% of the 

time, but only 20% of changes to a previous item can be com-

pleted in less than this time. If 30% of transactions are changes, 

what is the probability that a transaction can be completed in 

less than 100 milliseconds?

2-207.  A steel plate contains 20 bolts. Assume that 5 bolts 

are not torqued to the proper limit. 4 bolts are selected at ran-

dom, without replacement, to be checked for torque.

(a) What is the probability that all 4 of the selected bolts are 

torqued to the proper limit?

(b) What is the probability that at least 1 of the selected bolts is 

not torqued to the proper limit?

2-208. The following circuit operates if and only if there is a 

path of functional devices from left to right. Assume devices fail 

independently and that the probability of failure of each device 

is as shown. What is the probability that the circuit operates?

0.1

0.1

0.1

0.010.01

2-209.  The probability that concert tickets are available 

by telephone is 0.92. For the same event, the probability that 

tickets are available through a Web site is 0.95. Assume that 

these two ways to buy tickets are independent. What is the 

probability that someone who tries to buy tickets through the 

Web and by phone will obtain tickets?

2-210. The British government has stepped up its information 

campaign regarding foot-and-mouth disease by mailing bro-

chures to farmers around the country. It is estimated that 99% 

of Scottish farmers who receive the brochure possess enough 

information to deal with an outbreak of the disease, but only 

90% of those without the brochure can deal with an outbreak. 

After the first three months of mailing, 95% of the farmers in 

Scotland had received the informative brochure. Compute the 

probability that a randomly selected farmer will have enough 

information to deal effectively with an outbreak of the disease.

2-211.  In an automated filling operation, the probability of 

an incorrect fill when the process is operated at a low speed is 

0.001. When the process is operated at a high speed, the probabil-

ity of an incorrect fill is 0.01. Assume that 30% of the containers 

are filled when the process is operated at a high speed and the 

remainder are filled when the process is operated at a low speed.

(a) What is the probability of an incorrectly filled container?

(b) If an incorrectly filled container is found, what is the prob-

ability that it was filled during the high-speed operation?

2-212.  An encryption-decryption system consists of three 

elements: encode, transmit, and decode. A faulty encode occurs 

in 0.5% of the messages processed, transmission errors occur 
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in 1% of the messages, and a decode error occurs in 0.1% of the 

messages. Assume the errors are independent.

(a) What is the probability of a completely defect-free message?

(b) What is the probability of a message that has either an 

encode or a decode error?

2-213.  It is known that two defective copies of a commer-

cial software program were erroneously sent to a shipping lot 

that now has a total of 75 copies of the program. A sample of 

copies will be selected from the lot without replacement.

(a) If three copies of the software are inspected, determine the 

probability that exactly one of the defective copies will be 

found.

(b) If three copies of the software are inspected, determine the 

probability that both defective copies will be found.

(c) If 73 copies are inspected, determine the probability that 

both copies will be found. (Hint: Work with the copies that 

remain in the lot.)

2-214.  A robotic insertion tool contains 10 primary com-

ponents. The probability that any component fails during the 

warranty period is 0.01. Assume that the components fail inde-

pendently and that the tool fails if any component fails. What 

is the probability that the tool fails during the warranty period?

2-215. An e-mail message can travel through one of two 

server routes. The probability of transmission error in each 

of the servers and the proportion of messages that travel each 

route are shown in the following table. Assume that the servers 

are independent.

Probability of Error
Percentage 

of Messages Server 1 Server 2 Server 3 Server 4

Route 1 30 0.01 0.015 — —

Route 2 70 — — 0.02 0.003

(a) What is the probability that a message will arrive without 

error?

(b) If a message arrives in error, what is the probability it was 

sent through route 1?

2-216. A machine tool is idle 15% of the time. You request 

immediate use of the tool on five different occasions during the 

year. Assume that your requests represent independent events.

(a) What is the probability that the tool is idle at the time of all 

of your requests?

(b) What is the probability that the machine is idle at the time 

of exactly four of your requests?

(c) What is the probability that the tool is idle at the time of at 

least three of your requests?

2-217.  A lot of 50 spacing washers contains 30 washers that 

are thicker than the target dimension. Suppose that 3 washers are 

selected at random, without replacement, from the lot.

(a) What is the probability that all 3 washers are thicker than 

the target?

(b) What is the probability that the third washer selected is 

thicker than the target if the first 2 washers selected are 

thinner than the target?

(c) What is the probability that the third washer selected is 

thicker than the target?

2-218. Continuing Exercise 2-217, washers are selected from 

the lot at random without replacement.

(a) What is the minimum number of washers that need to be 

selected so that the probability that all the washers are 

thinner than the target is less than 0.10?

(b) What is the minimum number of washers that need to be 

selected so that the probability that 1 or more washers are 

thicker than the target is at least 0.90?

2-219.  The following table lists the history of 940 orders 

for features in an entry-level computer product.

Extra Memory

No Yes

Optional high- 
speed processor

No 514 68

Yes 112 246

Let A be the event that an order requests the optional high-

speed processor, and let B be the event that an order requests 

extra memory. Determine the following probabilities:

(a) P A B∪( )  (b) P A B∩( )
(c) P A B′ ∪( )  (d) P A B′ ′∩( )
(e) What is the probability that an order requests an optional 

high-speed processor given that the order requests extra 

memory?

(f) What is the probability that an order requests extra 

memory given that the order requests an optional high-

speed processor?

2-220.  The alignment between the magnetic media and 

head in a magnetic storage system affects the system’s perfor-

mance. Suppose that 10% of the read operations are degraded 

by skewed alignments, 5% of the read operations are degraded 

by off-center alignments, and the remaining read operations are 

properly aligned. The probability of a read error is 0.01 from 

a skewed alignment, 0.02 from an off-center alignment, and 

0.001 from a proper alignment.

(a) What is the probability of a read error?

(b) If a read error occurs, what is the probability that it is due 

to a skewed alignment?

2-221. The following circuit operates if and only if there is 

a path of functional devices from left to right. Assume that 

devices fail independently and that the probability of failure of 

each device is as shown. What is the probability that the circuit 

does not operate?

0.02

0.02

0.010.01

0.010.01
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2-222. A company that tracks the use of its Web site determined 

that the more pages a visitor views, the more likely the visitor 

is to provide contact information. Use the following tables to 

answer the questions:

Number of pages viewed: 1 2 3 4 or more

Percentage of visitors: 40 30 20 10

Percentage of  
visitors in each  
page-view category 
that provides  
contact information: 10 10 20 40

(a) What is the probability that a visitor to the Web site pro-

vides contact information?

(b) If a visitor provides contact information, what is the prob-

ability that the visitor viewed four or more pages?

2-223. An article in Genome Research [“An Assessment of 

Gene Prediction Accuracy in Large DNA Sequences” (2000, 

Vol. 10, pp. 1631–1642)], considered the accuracy of com-

mercial software to predict nucleotides in gene sequences. The 

following table shows the number of sequences for which the 

programs produced predictions and the number of nucleotides 

correctly predicted (computed globally from the total number 

of prediction successes and failures on all sequences).

Number of 
Sequences Proportion

GenScan 177 0.93

Blastx default 175 0.91

Blastx topcomboN 174 0.97

Blastx 2 stages 175 0.90

GeneWise 177 0.98

Procrustes 177 0.93

Assume the prediction successes and failures are independent 

among the programs.

(a) What is the probability that all programs predict a nucleotide 

correctly?

(b) What is the probability that all programs predict a nucleotide 

incorrectly?

(c) What is the probability that at least one Blastx program 

predicts a nucleotide correctly?

2-224.  A batch contains 36 bacteria cells. Assume that 12 

of the cells are not capable of cellular replication. Of the cells, 

6 are selected at random, without replacement, to be checked 

for replication.

(a) What is the probability that all 6 of the selected cells are 

able to replicate?

(b) What is the probability that at least 1 of the selected cells is 

not capable of replication?

2-225. A computer system uses passwords that are exactly 

seven characters, and each character is one of the 26 letters 

(a–z) or 10 integers (0–9). Uppercase letters are not used.

(a) How many passwords are possible?

(b) If a password consists of exactly 6 letters and 1 number, 

how many passwords are possible?

(c) If a password consists of 5 letters followed by 2 numbers, 

how many passwords are possible?

2-226. Natural red hair consists of two genes. People with red 

hair have two dominant genes, two regressive genes, or one 

dominant and one regressive gene. A group of 1000 people was 

categorized as follows:

Gene 2

Gene 1 Dominant Regressive Other

Dominant 5 25 30

Regressive 7 63 35

Other 20 15 800

Let A denote the event that a person has a dominant red hair 

gene, and let B denote the event that a person has a regressive 

red hair gene. If a person is selected at random from this group, 

compute the following:

(a) P A( )  (b) P A B∩( ) (c) P A B∪( )
(d) P A B′ ∩( )   (e) P A B|( )
(f) Probability that the selected person has red hair

2-227.  Two suppliers each supplied 2000 parts that were 

evaluated for conformance to specifications. One part type 

was more complex than the other. The proportion of noncon-

forming parts of each type are shown in the table.

Supplier
Simple 

Component
Complex 
Assembly Total

1  Nonconforming 2 10 12

Total 1000 1000 2000

2  Nonconforming 4 6 10

Total 1600 400 2000

One part is selected at random from each supplier. For each 

supplier, separately calculate the following probabilities:

(a) What is the probability a part conforms to specifications?

(b) What is the probability a part conforms to specifications 

given it is a complex assembly?

(c) What is the probability a part conforms to specifications 

given it is a simple component?

(d) Compare your answers for each supplier in part (a) to those in 

parts (b) and (c) and explain any unusual results.

2-228. Consider the treatments in Exercise 2-57. Suppose a 

patient is selected randomly. Let A denote the event that the 

patient is treated with ribavirin plus interferon alfa or interferon 

alfa, and let B denote the event that the response is complete. 

Determine the following probabilities.

(a) P(A | B) (b) P(B   | A) (c) P A B( )∩  (d) P A B( )∪
2-229. Consider the patient groups in Exercise 2-98. Suppose 

a patient is selected randomly. Let A denote the event that the 

patient is in group 1 or 2, and let B denote the event that there is 

no progression. Determine the following probabilities:

(a) P(A | B)  (b) P(B  | A)  (c) P A B( )∩   (d) P A B( )∪
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Mind-Expanding Exercises

2-230. Suppose documents in a lending organization are 

selected randomly (without replacement) for review. In a set 

of 50 documents, suppose that 2 actually contain errors.

(a) What is the minimum sample size such that the probability 

exceeds 0.90 that at least 1 document in error is selected?

(b) Comment on the effectiveness of sampling inspection to 

detect errors.

2-231. Suppose that a lot of washers is large enough that it 

can be assumed that the sampling is done with replacement. 

Assume that 60% of the washers exceed the target thickness.

(a) What is the minimum number of washers that need to 

be selected so that the probability that none is thicker 

than the target is less than 0.10?

(b) What is the minimum number of washers that need to 

be selected so that the probability that 1 or more wash-

ers are thicker than the target is at least 0.90?

2-232. A biotechnology manufacturing firm can produce 

diagnostic test kits at a cost of $20. Each kit for which there 

is a demand in the week of production can be sold for $100. 

However, the half-life of components in the kit requires the 

kit to be scrapped if it is not sold in the week of production. 

The cost of scrapping the kit is $5. The weekly demand is 

summarized as follows:

Weekly Demand

Number of units 0 50 100 200

Probability of 
demand 0.05 0.4 0.3 0.25

How many kits should be produced each week to maximize 

the firm’s mean earnings?

2-233. Assume the following characteristics of the inspec-

tion process in Exercise 2-207. If an operator checks a bolt, 

the probability that an incorrectly torqued bolt is identified 

is 0.95. If a checked bolt is correctly torqued, the operator’s 

conclusion is always correct. What is the probability that 

at least one bolt in the sample of four is identified as being 

incorrectly torqued?

2-234. If the events A and B are independent, show that A′ 
and B′ are independent.

2-235. Suppose that a table of part counts is generalized 

as follows:

Conforms
Yes No

Supplier 1 ka kb
2 a b

where a, b, and k are positive integers. Let A denote the 

event that a part is from supplier 1, and let B denote the 

event that a part conforms to specifications. Show that A 

and B are independent events.

This exercise illustrates the result that whenever the rows 

of a table (with r rows and c columns) are proportional, an 

event defined by a row category and an event defined by a 

column category are independent.

Addition rule

Axioms of probability

Bayes’ theorem

Combination

Conditional probability

Counting  

techniques

Equally likely  

outcomes

Event

Independence

Multiplication rule

Mutually exclusive events

Outcome

Permutation

Probability

Random samples

Random variables—discrete 

and continuous

Sample spaces—discrete and 

continuous

Simpson’s paradox

Total probability rule

Tree diagram

Venn diagram

With or without replacement

Important Terms and Concepts 
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A redundant array of independent disks (RAID) uses multiple 

physical disk drives as one logical unit in a computer system. 

The array can increase performance and robustness to a disk 

failure. Data copies can be written simultaneously to multiple 

drives (known as mirroring) to provide immediate backup and 

the ability to recover from failures but with less storage capac-

ity than would otherwise be available. Alternatively, to increase 

performance, the data can be distributed among multiple disks 

with only a fraction of the data on each one (known as striping). 

But a failure to even a single disk can lead to loss of data. An 

intermediate design is to distribute the source data along with 

additional data (known as parity data) across multiple disks. 

With the parity data, the source data can be recovered even with 

disk failures. In particular, a RAID 5 design uses striping and 

parity to be able to recover the source data if one disk in the 

array fails, and a RAID 6 design allows for data recovery even 

if two disks fail. Disk failures due to hardware malfunction are 

often assumed to be independent with constant probability. With 

a large number of disks in an array, the risk of data loss and the 

appropriate array design to meet the system performance, avail-

ability, and cost criteria are important. The number of failed 

drives can be modeled as a discrete random variable, and the 

risk of data loss in a redundant system is only one example of 

the use of the topics in this chapter.

3
Discrete Random 
Variables and 
Probability 
Distributions

Chapter Outline

3-1 Discrete Random Variables

3-2 Probability Distributions and 
Probability Mass Functions

3-3 Cumulative Distribution Functions 

3-4 Mean and Variance of a Discrete 
Random Variable

3-5 Discrete Uniform Distribution

3-6 Binomial Distribution

3-7 Geometric and Negative Binomial 
Distributions

3-8 Hypergeometric Distribution

3-9 Poisson Distribution
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 Learning Objectives

After careful study of this chapter, you should be able to do the following:

1. Determine probabilities from probability mass functions and the reverse

2. Determine probabilities and probability mass functions from cumulative distribution functions and the 
reverse

3. Calculate means and variances for discrete random variables

4. Understand the assumptions for some common discrete probability distributions

5. Select an appropriate discrete probability distribution to calculate probabilities in specifi c applications

6. Calculate probabilities and determine means and variances for some common discrete probability 
distributions

3-1 Discrete Random Variables
Many physical systems can be modeled by the same or similar random experiments and random 

variables. The distribution of the random variables involved in each of these common systems 

can be analyzed, and the results can be used in different applications and examples. In this 

chapter, we present the analysis of several random experiments and discrete random variables
that frequently arise in applications. We often omit a discussion of the underlying sample space 

of the random experiment and directly describe the distribution of a particular random variable.

Voice Lines A voice communication system for a business contains 48 external lines. At a par-

ticular time, the system is observed, and some of the lines are being used. Let the random variable 

X denote the number of lines in use. Then X can assume any of the integer values 0 through 48. When the system is 

observed, if 10 lines are in use, x = 10.

Example 3-1

The time to recharge the fl ash is tested in three cell-phone  cameras. The probability that a camera 

passes the test is 0.8, and the cameras perform independently. See Table 3-1 for the sample space 

for the experiment and associated probabilities. For example, because the cameras are independent, 

the probability that the fi rst and second cameras pass the test and the third one fails, denoted as ppf, is

P ppf( ) ( )( )( )    = =0 8 0 8 0 2 0 128. . . .

The random variable X denotes the number of cameras that pass the test. The last column of the table shows the values 

of X assigned to each outcome of the experiment.

Camera 1 Camera 2 Camera 3 Probability X

Pass Pass Pass 0.512 3 

Fail Pass Pass 0.128 2 

Pass Fail Pass 0.128 2 

Fail Fail Pass 0.032 1 

Pass Pass Fail 0.128 2 

Fail Pass Fail 0.032 1 

Pass Fail Fail 0.032 1 

Fail Fail Fail 0.008 0

3-1  Camera Flash Tests

Example 3-2
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Note that more than one random variable can be defi ned on a sample space. In Example 3-3, we 

might also defi ne the random variable Y  to be the number of chips from a wafer that fails the fi nal test.

Defi ne the random variable X to be the number of contamination particles on a wafer in semicon-

ductor manufacturing. Although wafers possess a number of characteristics, the random variable X 

summarizes the wafer only in terms of the number of particles.

The possible values of X are integers from zero up to some large value that represents the maximum number of par-

ticles that can be found on one of the wafers. If this maximum number is large, we might simply assume that the range 

of X is the set of integers from zero to infi nity.

Example 3-3

3-2  Probability Distributions and Probability 
Mass Functions

Random variables are so important in random experiments that sometimes we essentially 

ignore the original sample space of the experiment and focus on the probability distribution 

of the random variable. For example, in Example 3-1, our analysis might focus exclusively on 

the integers {0, 1, . . . , 48} in the range of X. In Example 3-2, we might summarize the ran-

dom experiment in terms of the three possible values of X, namely {0, 1, 2}. In this manner, a 

random variable can simplify the description and analysis of a random experiment.

The probability distribution of a random variable X is a description of the probabilities 

associated with the possible values of X. For a discrete random variable, the distribution is 

often specifi ed by just a list of the possible values along with the probability of each. In some 

cases, it is convenient to express the probability in terms of a formula.

For each of the following exercises, determine the range (pos-

sible values) of the random variable.

3-1.  The random variable is the number of nonconform-

ing solder connections on a printed circuit board with 1000 

connections.

3-2.  In a voice communication system with 50 lines, the 

random variable is the number of lines in use at a particular time.

3-3.  An electronic scale that displays weights to the near-

est pound is used to weigh packages. The display shows only 

fi ve digits. Any weight greater than the display can indicate is 

shown as 99999. The random variable is the displayed weight.

3-4.  A batch of 500 machined parts contains 10 that do not 

conform to customer requirements. The random variable is the 

number of parts in a sample of fi ve parts that do not conform to 

customer requirements.

3-5.  A batch of 500 machined parts contains 10 that do 

not conform to customer requirements. Parts are selected suc-

cessively, without replacement, until a nonconforming part is 

obtained. The random variable is the number of parts selected.

3-6.  The random variable is the moisture content of a lot 

of raw material, measured to the nearest percentage point.

3-7. The random variable is the number of surface fl aws in a 

large coil of galvanized steel.

3-8. The random variable is the number of computer clock 

cycles required to complete a selected arithmetic calculation.

3-9.  An order for an automobile can select the base model 

or add any number of 15 options. The random variable is the 

number of options selected in an order.

3-10.  Wood paneling can be ordered in thicknesses of 

1 8, 1 4, or 3 8 inch. The random variable is the total thickness 

of paneling in two orders.

3-11.  A group of 10,000 people are tested for a gene called 

Ifi 202 that has been found to increase the risk for lupus. The 

random variable is the number of people who carry the gene.

3-12.  In an acid-base titration, the milliliters of base that 

are needed to reach equivalence are measured to the nearest 

milliliter between 0.1 and 0.15 liters (inclusive).

3-13.  The number of mutations in a nucleotide sequence 

of length 40,000 in a DNA strand after exposure to radiation is 

measured. Each nucleotide may be mutated.

3-14. A healthcare provider schedules 30 minutes for each 

patient’s visit, but some visits require extra time. The random 

variable is the number of patients treated in an eight-hour day.

3-15. A Web site contains 100 interconnected pages. The ran-

dom variable is the number of unique pages viewed by a visitor 

to the Web site.

FOR SECTION 3-1Exercises
 Problem available in WileyPLUS at instructor’s discretion. 

 Tutoring problem available in WileyPLUS at instructor’s discretion
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Suppose that a loading on a long, thin beam places mass only at discrete points. See Fig. 3-2. 

The loading can be described by a function that specifi es the mass at each of the discrete points. 

Similarly, for a discrete random variable X, its distribution can be described by a function that 

specifi es the probability at each of the possible discrete values for X. 

x0 1 2 3 4

0.2916 0.0036
0.0001

0.0486

0.6561

f (x)

FIGURE 3-1 Probability distribution for bits in error.

Loading

x

FIGURE 3-2 Loadings at discrete points on a long, thin beam.

For a discrete random variable X with possible values x , x , , xn1 2 … , a probability 
mass function is a function such that

(1) f xi( ) ≥ 0

(2) f xi
i

n

( ) =
=
∑

1

1

(3) f x P X xi i( ) = =( ) (3-1)

Probability Mass 
Function

For the bits in error in Example 3-4, f , f , f , f0 0 6561 1 0 2916 2 0 0486 3( ) = ( ) = ( ) =  ( ) =. . .  

0 0036. , and f 4 0 0001( ) = . . Check that the probabilities sum to 1.

Digital Channel There is a chance that a bit transmitted through a digital transmission channel 

is received in error. Let X equal the number of bits in error in the next four bits transmitted. The 

possible values for X  are {0, 1, 2, 3, 4}. Based on a model for the errors that is presented in the following section, prob-

abilities for these values will be determined. Suppose that the probabilities are

P X P X

P X P X

P X

=( ) = =( ) =

=( ) = =( ) =

=( )

0 0 6561 1 0 2916

2 0 0486 3 0 0036

4

. .

. .

== 0 0001.

The probability distribution of X is specifi ed by the possible values along with the probability of each. A graphical 

description of the probability distribution of X is shown in Fig. 3-1.

Practical Interpretation: A random experiment can often be summarized with a random variable and its distribution. 

The details of the sample space can often be omitted.

Example 3-4

Wafer Contamination Let the random variable X denote the number of semiconductor wafers that 

need to be analyzed in order to detect a large particle of contamination. Assume that the probability that a 

wafer contains a large particle is 0.01 and that the wafers are independent. Determine the probability distribution of X.

Let p denote a wafer in which a large particle is present, and let a denote a wafer in which it is absent. The sample 

space of the experiment is infi nite, and it can be represented as all possible sequences that start with a string of a’s and 

end with p. That is,

s p,ap,aap,aaap,aaaap,aaaaap,=         { }and so forth

Example 3-5
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Consider a few special cases. We have P X P p= =1 0 01( ) ( ) = . . Also, using the independence assumption,

P X P ap=( ) = ( ) = ( ) =2 0 99 0 01 0 0099. . .

A general formula is

P X x P aa ap

x a’s

  for xx= = …
−

= =−( ) ( ) ( )
( 1)

0.99 0.01 , 1, 2, 31

� �� ��
,, …

Describing the probabilities associated with X in terms of this formula is a simple method to defi ne the distribution of X 

in this example. Clearly f x( ) ≥ 0. The fact that the sum of the probabilities is 1 is left as an exercise. This is an example 

of a geometric random variable for which details are provided later in this chapter.

Practical Interpretation: The random experiment here has an unbounded number of outcomes, but it can still be 

conveniently modeled with a discrete random variable with a (countably) infi nite range.

3-16. The sample space of a random experiment is {a, b, c, d, 

e, f}, and each outcome is equally likely. A random variable is 

defi ned as follows:

outcome a b c d e f

x 0 0 1.5 1.5 2 3

Determine the probability mass function of a . Use the 

probability mass function to determine the following 

probabilities:

(a) P X =( )1 5.   (b) P X0 5 2 7. .< <( )
(c) P X >( )3   (d) P X0 2≤ <( )
(e) P X X= =( )0 2or

For Exercises 3-17 to 3-21, verify that the following functions 

are probability mass functions, and determine the requested 

probabilities.

3-17.  x –2 –1 0 1 2

f x( ) 0 2. 0 4. 0 1. 0 2. 0 1.

(a) P X ≤( )2   (b) P X > −( )2

(c) P X− ≤ ≤( )1 1   (d) P X X≤ − =( )1 2or

3-18.  f x , x , ,
x( ) ( )= ( ) =   8 7 1 2 1 2 3/ /

(a) P X( )≤ 1  (b) P X( )> 1

(c) P X( )2 6< <  (d) P X X( )≤ >1 1or

3-19.  f x
x

, x , , , ,( ) = + =     2 1

25
0 1 2 3 4

(a) P X( )= 4   (b) P X( )≤ 1

(c) P X( )2 4≤ <   (d) P X( )> −10

3-20.  f x , x , , ,x( ) ( / )( / ) …= =   3 4 1 4 0 1 2

(a) P X = 2( ) (b) P X ≤( )2

(c) P X >( )2  (d) P X ≥( )1

3-21. x 1.25 1.5 1.75 2 2.25

f x( ) 0 2. 0 4. 0 1. 0 2. 0 1.

(a) P X( )≥ 2   (b) P X <( ) 1 65.

(c) P X =( ) 1 5.   (d) P X X( . )< >1 3 21 or 

3-22. Consider the hospital patients in Example 2-8. Two 

patients are selected randomly, with replacement, from the 

total patients at Hospital 1. What is the probability mass func-

tion of the number of patients in the sample who are admitted?

3-23.  An article in Knee Surgery, Sports Traumatology,
Arthroscopy [“Arthroscopic Meniscal Repair with an Absorb-

able Screw: Results and Surgical Technique” (2005, Vol. 13, pp. 

273–279)] cites a success rate of more than 90% for meniscal tears 

with a rim width under 3 mm, but only a 67% success rate for tears 

of 3–6 mm. If you are unlucky enough to suffer a meniscal tear of 

under 3 mm on your left knee and one of width 3–6 mm on your 

right knee, what is the probability mass function of the number of 

successful surgeries? Assume that the surgeries are independent.

3-24.  An optical inspection system is used to distinguish 

among different part types. The probability of a correct classifi -

cation of any part is 0.98. Suppose that three parts are inspected 

and that the classifi cations are independent. Let the random 

variable X  denote the number of parts that are correctly classi-

fi ed. Determine the probability mass function of X .

3-25.  In a semiconductor manufacturing process, three 

wafers from a lot are tested. Each wafer is classifi ed as pass or 

fail. Assume that the probability that a wafer passes the test is 0.8 

and that wafers are independent. Determine the probability mass 

function of the number of wafers from a lot that pass the test.

3-26.  The space shuttle fl ight control system called Pri-

mary Avionics Software Set (PASS) uses four independent 

computers working in parallel. At each critical step, the com-

puters “vote” to determine the appropriate step. The probability 

that a computer will ask for a roll to the left when a roll to 

the right is appropriate is 0.0001. Let X  denote the number of 

FOR SECTION 3-2Exercises
 Problem available in WileyPLUS at instructor’s discretion. 

 Tutoring problem available in WileyPLUS at instructor’s discretion
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computers that vote for a left roll when a right roll is appropri-

ate. What is the probability mass function of X ?

3-27. A disk drive manufacturer sells storage devices with 

capacities of one terabyte, 500 gigabytes, and 100 gigabytes 

with probabilities 0.5, 0.3, and 0.2, respectively. The revenues 

associated with the sales in that year are estimated to be $50 

million, $25 million, and $10 million, respectively. Let X  

denote the revenue of storage devices during that year. Deter-

mine the probability mass function of X .

3-28.  Marketing estimates that a new instrument for the 

analysis of soil samples will be very successful, moderately 

successful, or unsuccessful with probabilities 0.3, 0.6, and 

0.1, respectively. The yearly revenue associated with a very 

successful, moderately successful, or unsuccessful product is 

$10 million, $5 million, and $1 million, respectively. Let the 

random variable X  denote the yearly revenue of the product. 

Determine the probability mass function of X .

3-29.  The distributor of a machine for cytogenics has 

developed a new model. The company estimates that when it 

is introduced into the market, it will be very successful with a 

probability 0.6, moderately successful with a probability 0.3, 

and not successful with probability 0.1. The estimated yearly 

profit associated with the model being very successful is $15 

million and with it being moderately successful is $5 million; 

not successful would result in a loss of $500,000. Let X  be the 

yearly profit of the new model. Determine the probability mass 

function of X .

3-30.  An assembly consists of two mechanical compo-

nents. Suppose that the probabilities that the first and second 

components meet specifications are 0.95 and 0.98, respectively. 

Assume that the components are independent. Determine the 

probability mass function of the number of components in the 

assembly that meet specifications.

3-31.  An assembly consists of three mechanical com-

ponents. Suppose that the probabilities that the first, second, 

and third components meet specifications are 0.95, 0.98, and 

0.99, respectively. Assume that the components are independ-

ent. Determine the probability mass function of the number of 

components in the assembly that meet specifications.

3-32. The data from 200 endothermic reactions involving 

sodium bicarbonate are summarized as follows:

Final Temperature 
Conditions

Number of  
Reactions

266 K 48

271 K 60

274 K 92

Calculate the probability mass function of final temperature.

3-33.  Actual lengths of stay at a hospital’s emergency depart-

ment in 2009 are shown in the following table (rounded to the 

nearest hour). Length of stay is the total of wait and service times. 

Some longer stays are also approximated as 15 hours in this table.

Hours Count Percent
 1 19 3.80

 2 51 10.20

 3  86 17.20

 4 102 20.40

 5  87 17.40

 6  62 12.40

 7  40  8.00

 8  18  3.60

 9  14  2.80

10  11  2.20

15  10  2.00

Calculate the probability mass function of the wait time for 

service.

3-34. The distribution of the time until a Web site changes is 

important to Web crawlers that search engines use to maintain 

current information about Web sites. The distribution of the 

time until change (in days) of a Web site is approximated in 

the following table.

Days until 
Changes

Probability

1.5 0.05

3.0 0.25

4.5 0.35

5.0 0.20

7.0 0.15

Calculate the probability mass function of the days until change.

3-35 The following table shows the typical depth (rounded to 

the nearest foot) for nonfailed wells in geological formations 

in Baltimore County (The Journal of Data Science, 2009, Vol. 

7, pp. 111–127).

Geological  
Formation Group

Number of  
Nonfailed Wells

Nonfailed 
Well Depth

Gneiss 1,515 255

Granite 26 218

Loch Raven Schist 3,290 317

Mafic 349 231

Marble 280 267

Prettyboy Schist 1,343 255

Other schists 887 267

Serpentine 36 217

Total 7,726 2,027

Calculate the probability mass function of depth for nonfailed 

wells from the table.

3-36. Consider the wafers with contamination particles in 

Example 2-17. Assume that wafers are independent with 

respect to contamination particles. Wafers are selected until 

one with five or more contamination particles occurs. What 

is the probability mass function of the number of wafers 

selected?

3-37. Consider the circuit in Example 2-32. Assume that 

devices fail independently. What is the probability mass func-

tion of the number of failed devices?
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3-3 Cumulative Distribution Functions
An alternate method for describing a random variable’s probability distribution is with cumu-

lative probabilities such as P X x( )≤ . Furthermore, cumulative probabilities can be used to fi nd 

the probability mass function of a discrete random variable. Consider the following example.

Digital Channel In Example 3-4, we might be interested in the probability that three or fewer 

bits are in error. This question can be expressed as P X ≤( )3 .

The event that X ≤{ }3  is the union of the events X , X , X ,={ }  ={ }  ={ }  0 1 2 and X ={ }3 . Clearly, these three events 

are mutually exclusive. Therefore,

P X P X P X P X P X≤( ) = =( ) + =( ) + =( ) + =( )
= + + +

3 0 1 2 3

0 6561 0 2916 0 0486 0. . . .00036 0 9999= .

This approach can also be used to determine

P X P X P X=( ) = ≤( ) − ≤( ) =3 3 2 0 0036.

Example 3-6

The cumulative distribution function of a discrete random variable X, denoted as 

F x ,( )  is

F x P X x f xi
x xi

( ) ( ) ( )= ≤ =
≤

∑

Cumulative 
Distribution Function

For a discrete random variable X, F x( ) satisfi es the following properties.

(1) F x P X x f xix xi
( ) ( ) ( )= ≤ = ≤∑

(2) 0 1≤ ≤F x( )

(3) If then ≤  ( ) ≤ ( )x y, F x F y  (3-2)

Properties (1) and (2) of a cumulative distribution function follow from the defi nition. Property 

(3) follows from the fact that if x y≤ , the event that X x≤{ } is contained in the event X y≤{ }. 

Like a probability mass function, a cumulative distribution function provides probabilities.

Even if the random variable X can assume only integer values, the cumulative distri-

bution function is defi ned at noninteger values. In Example 3-6, F(1.5) ( 1.5)= P X ≤ =
P X P X{ 0} + ( 1) 0.6561 + 0.2916 0.9477= = = = . Also, F x( )  = 0 9477.  for all 1 2≤ <x  and 

F x

x

x

x

x

x

x

( )

.

.

.

.

=

≤ <
≤ <
≤ <
≤ <
≤

⎧0 0

0 6561 0 1

0 9477 1 2

0 9963 2 3

0 9999 3 4

1 4

<

⎨⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

That is, F x( ) is piecewise constant between the values x x1 2, ,….

In general, for any discrete random variable with possible values x x1 2, ,…, the events 

{ }X x= 1 , { },X x= …2  are mutually exclusive. Therefore, P X x P X x
x x

i
i

( ) ( )≤ = =
≤

∑ . This leads 

to the following defi nition.
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Furthermore, P X xi  =( ) can be determined from the jump at the value xi . More 

specifi cally,

P X x F x F xi i
x x

i
i

( ) ( ) lim ( )= = −
↑

and this expression calculates the difference between F xi( ) and the limit as x increases 

to xi .

Cumulative Distribution Function Determine the probability mass function of X from the 

following cumulative distribution function:

F x

x

x

x

x

( ) =

< −
. − ≤ <
. ≤ <

≤

⎧

⎨
⎪⎪

⎩
⎪
⎪

0 2

0 2 2 0

0 7 0 2

1 2

Figure 3-3 displays a plot of F x( ). From the plot, the only points that receive nonzero probability are –2, 0, 

and 2. The probability mass function at each point is the jump in the cumulative distribution function at the point. 

Therefore,
f

f

f

( )
(0)
(2)

− = − =
= − =
= − =

2 0 2 0 0 2

0 7 0 2 0 5

1 0 0 7 0 3

. .

. . .

. . .

Example 3-7

Sampling Without Replacement Suppose that a day’s production of 850 manufactured parts 

contains 50 parts that do not conform to customer requirements. Two parts are selected at random, 

without replacement, from the batch. Let the random variable X equal the number of nonconforming parts in the sam-

ple. What is the cumulative distribution function of X?

The question can be answered by fi rst fi nding the probability mass function of X.

P X

P X

P X

( )

( )

(

⋅

⋅ ⋅

= = =

= = =

=

0
800

850

799

849
0 886

1 2
800

850

50

849
0 111

2

.

.

)) ⋅= =50

850

49

849
0 003.

Therefore,

F P X

F P X

F P X

( ) ( )
( ) ( )
( ) ( )

0 0 0 886

1 1 0 886 0 111 0 997

2 2

= ≤ =
= ≤ = + =
= ≤ =

.

. . .

11

and

F x

x

x

x

x

( )
.

.
=

<
≤ <
≤ <
≤

⎧

⎨
⎪⎪

⎩
⎪
⎪

0 0

0 886 0 1

0 997 1 2

1 2

The cumulative distribution function for this example is graphed in Fig. 3-4. 

Example 3-8
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3-38.  Determine the cumulative distribution function of 

the random variable in Exercise 3-16.

3-39.  Determine the cumulative distribution function for 

the random variable in Exercise 3-17; also determine the fol-

lowing probabilities:

(a) P X( )≤ 1 25.   (b) P X( )≤ 2 2.

(c) P X( )− < ≤1 1 1.   (d) P X( )> 0

3-40.  Determine the cumulative distribution function for 

the random variable in Exercise 3-18; also determine the fol-

lowing probabilities:

(a) P X( )< 1 5.   (b) P X( )≤ 3

(c) P X( )> 2   (d) P X( )1 2< ≤
3-41. Determine the cumulative distribution function for the 

random variable in Exercise 3-19.

3-42. Determine the cumulative distribution function for the 

random variable in Exercise 3-20.

3-43. Determine the cumulative distribution function for the 

random variable in Exercise 3-21.

3-44. Determine the cumulative distribution function for the 

random variable in Exercise 3-22.

3-45.  Determine the cumulative distribution function for 

the random variable in Exercise 3-25.

3-46.  Determine the cumulative distribution function for 

the random variable in Exercise 3-26.

3-47.  Determine the cumulative distribution function for 

the random variable in Exercise 3-27.

3-48.  Determine the cumulative distribution function for 

the variable in Exercise 3-28.

Verify that the following functions are cumulative distribution 

functions, and determine the probability mass function and the 

requested probabilities.

3-49.  F x

x

x

x

( ) =
<

≤ <
≤

⎧

⎨
⎪

⎩
⎪

0 1

0 5 1 3

1 3

.

(a) P X( )≤ 3   (b) P X( )≤ 2

(c) P X( )1 2≤ ≤   (d) P X( )> 2

3-50.  Errors in an experimental transmission channel are 

found when the transmission is checked by a certifier that detects 

missing pulses. The number of errors found in an eight-bit byte 

is a random variable with the following distribution:

F x

x

x

x

x

( ) =
≤ <
≤ <
≤

⎧

⎨
⎪⎪

⎩
⎪
⎪

0 1

0 7 1 4

0 9 4 7

1 7

<
.

.

Determine each of the following probabilities:

(a) P X ≤( )4  (b) P X >( )7  (c) P X ≤( )5

(d) P X >( )4  (e) P X ≤( )2

3-51.   F x

x

x

x

x

( ) =
− ≤ <

≤ <
≤

⎧

⎨
⎪⎪

⎩
⎪
⎪

< −0 10

0 25 10 30

0 75 30 50

1 50

.

.

(a) P X ≤( )50   (b) P X ≤( )40

(c) P X40 60≤ ≤( )  (d) P X <( )0

(e) P X0 10≤ <( )  (f) P X− < <( )10 10

3-52.  The thickness of wood paneling (in inches) that a 

customer orders is a random variable with the following cumu-

lative distribution function:

F x

x

x

x

x

( ) =

<
≤ <
≤ <
≤

⎧

⎨
⎪⎪

⎩
⎪
⎪

0 1 8

0 2 1 8 1 4

0 9 1 4 3 8

1 3 8

/
/ /
/ /
/

.

.

Determine the following probabilities:

(a) P X ≤( )1 18/  (b) P X ≤( )1 4/  (c) P X ≤( )5 16/

(d) P X >( )1 4/  (e) P X ≤( )1 2/
3-53. Determine the cumulative distribution function for the 

random variable in Exercise 3-32.

3-54.  Determine the cumulative distribution function for 

the random variable in Exercise 3-33.

3-55. Determine the cumulative distribution function for the 

random variable in Exercise 3-34.

3-56. Determine the cumulative distribution function for the 

random variable in Exercise 3-35.

FOR SECTION 3-3Exercises

FIGURE 3-3 Cumulative distribution function 
for Example 3-7.

0

0.2

2–2

0.7

1.0

x

F(x)

FIGURE 3-4 Cumulative distribution function 
for Example 3-8.

0 2

0.997
1.000

x

0.886

1

F(x)

 Problem available in WileyPLUS at instructor’s discretion. 

 Tutoring problem available in WileyPLUS at instructor’s discretion
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3-4  Mean and Variance of a Discrete Random Variable
Two numbers are often used to summarize a probability distribution for a random variable X. The 

mean is a measure of the center or middle of the probability distribution, and the variance is a 

measure of the dispersion, or variability in the distribution. These two measures do not uniquely 

identify a probability distribution. That is, two different distributions can have the same mean and 

variance. Still, these measures are simple, useful summaries of the probability distribution of X.

Mean, Variance, and 
Standard Deviation

The mean or expected value of the discrete random variable X, denoted as μ or E X ,( )  is

 μ = ( ) = ( )∑E X xf x
x

 (3-3)

The variance of X, denoted as σ2 or V X ,( )  is

 σ = = − μ = − μ = − μ∑ ∑2 2 2 2 2V X E X x f x x f x
x x

( ) ( ) ( ) ( ) ( )

The standard deviation of X  is σ = σ2 .

The mean of a discrete random variable X is a weighted average of the possible values of X 

with weights equal to the probabilities. If f x( ) is the probability mass function of a loading on a 

long, thin beam, E X( ) is the point at which the beam balances. Consequently, E X( ) describes the 

“center” of the distribution of X in a manner similar to the balance point of a loading. See Fig. 3-5.

The variance of a random variable X  is a measure of dispersion or scatter in the pos-

sible values for X . The variance of X  uses weight f x( ) as the multiplier of each possi-

ble squared deviation x − μ( )2
. Figure 3-5 illustrates probability distributions with equal 

means but different variances. Properties of summations and the definition of μ  can be 

used to show the equality of the formulas for variance.

V X x f x x f x xf x f x

x f x

x x x x

x

( ) = − μ( ) ( ) = ( ) − μ ( ) + μ ( )
= ( ) − μ

∑ ∑ ∑ ∑

∑

2 2 2

2 2

2

2 ++ μ = ( ) − μ∑2 2 2x f x
x

Either formula for V x( ) can be used. Figure 3-6 illustrates that two probability distributions 

can differ even though they have identical means and variances.

0 8642 10

(a)

0 8642 10

(b)

FIGURE 3-5 A probability distribution can be viewed as a loading with the mean equal to the 
balance point. Parts (a) and (b) illustrate equal means, but part (a) illustrates a larger variance.

0 8642 10

(a)

0 8642 10

(b)

FIGURE 3-6 The probability distributions illustrated in parts (a) and (b) differ even 
though they have equal means and equal variances.
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Marketing Two new product designs are to be compared on the basis of revenue potential. Mar-

keting believes that the revenue from design A can be predicted quite accurately to be $3 million. 

The revenue potential of design B is more diffi cult to assess. Marketing concludes that there is a probability of 0.3 that 

the revenue from design B will be $7 million, but there is a 0.7 probability that the revenue will be only $2 million. 

Which design do you prefer?

Let X denote the revenue from design A. Because there is no uncertainty in the revenue from design A, we can 

model the distribution of the random variable X as $3 million with probability 1. Therefore, E X( ) = $3 million.

Let Y  denote the revenue from design B. The expected value of Y  in millions of dollars is

E Y( ) ( ) + ( ) = .= $ $ $7 0 3 2 0 7 3 5. .

Because E Y( ) exceeds E X( ), we might prefer design B. However, the variability of the result from design B is 

larger. That is,

σ = −( ) ( ) + −( ) ( )
=     

2 2 2
7 3 5 0 3 2 3 5 0 7

5 25

. . . .

. millions of dollars squuared

Example 3-10

Digital Channel In Example 3-4, there is a chance that a bit transmitted through a digital trans-

mission channel is received in error. Let X equal the number of bits in error in the next four bits 

transmitted. The possible values for X are 0 1 2 3 4, , , ,    { }. Based on a model for the errors presented in the following sec-

tion, probabilities for these values will be determined. Suppose that the probabilities are

P X P X P X

P X

=( ) = =( ) = =( ) =

=( ) =

0 0 6561 2 0 0486 4 0 0001

1 0 2916

. . .

.

    

  PP X =( ) =3 0 0036.

Now

μ = ( ) = ( ) + ( ) + ( ) + ( ) + ( )
= ( ) + ( ) +

E X f f f f f0 0 1 1 2 2 3 3 4 4

0 0 6561 1 0 2916 2. . 00 0486 3 0 0036 4 0 0001

0 4

. . .

.

( ) + ( ) + ( )
=

Although X never assumes the value 0.4, the weighted average of the possible values is 0.4.

To calculate V X ,( )  a table is convenient.

x x − 0 4. x −( )0 4
2

. f x( ) f x x( ) −( )0 4
2

.

0 –0.4 0.16 0.6561 0.104976

1 0.6 0.36 0.2916 0.104976

2 1.6 2.56 0.0486 0.124416

3 2.6 6.76 0.0036 0.024336

4 3.6 12.96 0.0001 0.001296

V X f x xi i
i

( ) = σ = ( ) −( ) =
=  
∑2 2

1

5

0 4 0 36. .

The alternative formula for variance could also be used to obtain the same result.

Practical Interpretation: The mean and variance summarize the distribution of a random variable. The mean is a 

weighted average of the values, and the variance measures the dispersion of the values from the mean. Different distri-

butions may have the same mean and variance.

Example 3-9
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The variance of a random variable X  can be considered to be the expected value of 

a specifi c function of X , namely, h X X( ) = − μ( )2
. In general, the expected value of any 

function h X( ) of a discrete random variable is defi ned in a similar manner.

Expected Value of a 
Function of a Discrete 

Random Variable
If X is a discrete random variable with probability mass function f x ,( )
   E h X h x f x

x
( )⎡⎣ ⎤⎦ = ( ) ( )∑   (3-4)

In Example 3-12, the expected value of h X X( ) = 2 does not equal h E X[ ]( ) . However, in the 

special case that h X aX b( ) = +  (for any constants a and b), the following  can be shown from 

the properties of sums in the defi nition in Equation 3-4.

E aX b aE X b+( ) = ( ) +    

and

V aX b a V X( ) ( )+ = 2

Because the units of the variables in this example are millions of dollars and because the variance of a random vari-

able squares the deviations from the mean, the units of σ2 are millions of dollars squared. These units make interpreta-

tion diffi cult.

Because the units of standard deviation are the same as the units of the random variable, the standard deviation σ is 

easier to interpret. Here σ = =5 25 2 29. .  millions of dollars and σ is large relative to μ.

Messages The number of e-mail messages received per hour has the following distribution:

x = number of messages 10 11 12 13 14 15

f x( ) 0.08 0.15 0.30 0.20 0.20 0.07

Determine the mean and standard deviation of the number of messages received per hour.

E X

V X

( ) ( . ) ( . )

. .

= + +

( ) = ( ) +

10 0 08 11 0 15

10 0 08 11 02 2

…+15(0.07) = 12.5

115 15 0 07 12 5 1 85

1 85 1 36

2 2( ) + + ( ) − =

σ = ( ) = =

… . . .

. .V X

Example 3-11

Digital Channel In Example 3-9, X is the number of bits in error in the next four bits transmitted. 

What is the expected value of the square of the number of bits in error? Now, h X X( ) = 2. Therefore,

E h X( )⎡⎣ ⎤⎦ = + + + +0 0 6561 1 0 2916 2 0 0486 3 0 0036 4 0 0002 2 2 2 2× × × × ×. . . . . 11

0 52= .

Practical Interpretation: The expected value of a function of a random variable is simply a weighted average of the 

function evaluated at the values of the random variable.

Example 3-12
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In Example 3-11, suppose that each e-mail message header reserves 15 kilobytes of memory 

space for storage. Let the random variable Y  denote the memory space reserved for all message 

headers per hour (in kilobytes). Then Y h X X= =( ) 15 . Also, because h X( ) is a linear function,

E Y E X( ) ( ) ( . ) .= = =15 15 12 5 187 5 kilobytes

and

V Y V X( ) ( ) ( . ) .= = =15 15 1 85 416 252 2  square kilobytes

3-57.  If the range of X  is the set {0,1,2,3,4} and P X x( )=
= 0 2. , determine the mean and variance of the random variable.

3-58.  Determine the mean and variance of the random vari-

able in Exercise 3-16.

3-59.  Determine the mean and variance of the random vari-

able in Exercise 3-17.

3-60.  Determine the mean and variance of the random vari-

able in Exercise 3-18.

3-61.  Determine the mean and variance of the random vari-

able in Exercise 3-19.

3-62.  Determine the mean and variance of the random vari-

able in Exercise 3-20.

3-63.  Determine the mean and variance of the random vari-

able in Exercise 3-23.

3-64.  Determine the mean and variance of the random vari-

able in Exercise 3-24.

3-65.  The range of the random variable X  is 0 1 2 3, , , , x    ⎡⎣ ⎤⎦ 

where x  is unknown. If each value is equally likely and the 

mean of X  is 6, determine x .

3-66. In a NiCd battery, a fully charged cell is composed of 

nickelic hydroxide. Nickel is an element that has multiple oxi-

dation states. Assume the following proportions of the states:

Nickel Charge Proportions Found
  0 0.17

+2 0.35

+3 0.33

+4 0.15

(a)  Determine the cumulative distribution function of nickel charge.

(b)  Determine the mean and variance of the nickel charge.

3-67.  The space shuttle flight control system called 

Primary Avionics Software Set (PASS) uses four independ-

ent computers working in parallel. At each critical step, the 

computers “vote” to determine the appropriate step. The 

probability that a computer will ask for a roll to the left 

when a roll to the right is appropriate is 0.0001. Let X denote 

the number of computers that vote for a left roll when a right 

roll is appropriate. What are the mean and variance of X ?

3-68.  Trees are subjected to different levels of carbon diox-

ide atmosphere with 6% of them in a minimal growth condition 

at 350 parts per million (ppm), 10% at 450 ppm (slow growth), 

47% at 550 ppm (moderate growth), and 37% at 650 ppm (rapid 

growth). What are the mean and standard deviation of the carbon 

dioxide atmosphere (in ppm) for these trees in ppm?

3-69.  An article in the Journal of Database Management 
[“Experimental Study of a Self-Tuning Algorithm for DBMS 

Buffer Pools” (2005, Vol. 16, pp. 1–20)] provided the workload 

used in the Transaction Processing Performance Council’s Ver-

sion C On-Line Transaction Processing (TPC-C OLTP) bench-

mark, which simulates a typical order entry application.

The frequency of each type of transaction (in the second 

column) can be used as the percentage of each type of transac-

tion. The average number of selects operations required for 

each type of transaction is shown.

(a)  Determine the mean and standard deviation of the number 

of selects operations for a transaction from the distribution 

of types shown in the table.

(b)  Determine the mean and standard deviation of the total 

number of operations (selects, updates,…, and joins) for a 

transaction from the distribution of types shown in the table.

3-70. Calculate the mean and variance for the random variable 

in Exercise 3-32.

3-71.  Calculate the mean and variance for the random 

variable in Exercise 3-33.

3-72. Calculate the mean and variance for the random variable 

in Exercise 3-34.

3-73. Calculate the mean and variance for the random variable 

in Exercise 3-35.

3-74. Calculate the mean and variance for the random variable 

in Exercise 3-36.

3-75. Calculate the mean for the random variable in Exercise 3-37.

 FOR SECTION 3-4Exercises 

Average Frequencies and Operations in TPC-C
Transaction Frequency Selects Updates Inserts Deletes Nonunique Selects Joins
New order 43 23 11 12 0 0 0

Payment 44 4.2 3 1 0 0.6 0

Order status 4 11.4 0 0 0 0.6 0

Delivery 5 130 120 0 10 0 0

Stock level 4 0 0 0 0 0 1

 Problem available in WileyPLUS at instructor’s discretion. 

 Tutoring problem available in WileyPLUS at instructor’s discretion
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3-5 Discrete Uniform Distribution
The simplest discrete random variable is one that assumes only a fi nite number of possible 

values, each with equal probability. A random variable X that assumes each of the values 
x , x , , xn1 2  …  with equal probability 1 / n is frequently of interest.

A random variable X has a discrete uniform distribution if each of the n values in 

its range, x , x , , x ,n1 2 …  has equal probability. Then

    f x ni( ) = 1 /   (3-5)

Discrete Uniform 
Distribution

Suppose that the range of the discrete random variable X equals the consecutive integers 

a, a a b+ +1 2, ,..., , for a b≤ . The range of X contains b a− +1 values each with probability 

1 1/ b a− +( ). Now

μ =
− +

⎛
⎝⎜

⎞
⎠⎟=  

∑ k
b ak a

b 1

1

The algebraic identity k
b b a a

k a

b

=
+( ) − −( )

=  
∑

1 1

2
 can be used to simplify the result 

to μ = +( )b a / 2. The derivation of the variance is left as an exercise.

Serial Number The fi rst digit of a part’s serial number is equally likely to be any one of the digits 

0 through 9. If one part is selected from a large batch and X is the fi rst digit of the serial number, X 

has a discrete uniform distribution with probability 0.1 for each value in R , , , ,=   { }0 1 2 9… . That is,

f x( ) = 0 1.

for each value in R. The probability mass function of X  is shown in Fig. 3-7.

Example 3-13

Suppose that X is a discrete uniform random variable on the consecutive integers 

a,a ,a , , b, +  +1 2 …  for a b≤ . The mean of X is

μ = ( ) = +
E X

b a

2

The variance of X is

 σ =
− +( ) −2

2
1 1

12

b a
 (3-6)

Mean and Variance

Number of Voice Lines As in Example 3-1, let the random variable X denote the number of 48 

voice lines that are used at a particular time. Assume that X is a discrete uniform random variable 

with a range of 0 to 48. Then,

E X( ) = +( ) =48 0 2 24/

and

Example 3-14

FIGURE 3-7 Probability mass function for a discrete uniform random variable.

f(x)

x0 1 2 3 4 5 6 7 8 9

0.1
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Equation 3-6 is more useful than it might fi rst appear. For example, suppose that the discrete uni-

form random variable Y  has range 5 10 30, , ,… . Then Y X= 5  where X has range 1 2 6, , , .…  The mean 

and variance of Y  are obtained from the formulas for a linear function of X in Section 3-4 to be

E Y E X

V Y V X

( ) ( ) .

( ) ( )
( )

= = +⎛
⎝⎜

⎞
⎠⎟

=

= = − + −⎡

⎣
⎢

⎤

⎦

5 5
1 6

2
17 5

5 25
6 1 1 1

12
2

2

⎥⎥ = 72 92.

Proportion of Voice Lines Let the random variable Y  denote the proportion of the 48 voice lines used at 

a particular time, and X denote the number of lines used at a particular time. Then Y X= / 48. Therefore,

E Y E X( ) = ( ) =/ .48 0 5

and
V Y V X( ) = ( ) =/ .48 0 0872

Example 3-15

σ = − + − =( )
.

48 0 1 1

12
14 14

2

Practical Interpretation: The average number of lines in use is 24, but the dispersion (as measured by σ) is large. 

Therefore, at many times far more or fewer than 24 lines are used.

3-76. Let the random variable X  have a discrete uniform dis-

tribution on the integers 0 99≤ ≤x . Determine the mean and 

variance of X .

3-77.  Let the random variable X  have a discrete uniform 

distribution on the integers 1 3≤ ≤x . Determine the mean and 

variance of X .

3-78.  Thickness measurements of a coating process are 

made to the nearest hundredth of a millimeter. The thickness 

measurements are uniformly distributed with values 0.15, 0.16, 

0.17, 0.18, and 0.19. Determine the mean and variance of the 

coating thickness for this process.

3-79.  Product codes of two, three, four, or fi ve letters are 

equally likely. What are the mean and standard deviation of the 

number of letters in the codes?

3-80.  The lengths of plate glass parts are measured to the 

nearest tenth of a millimeter. The lengths are uniformly dis-

tributed with values at every tenth of a millimeter starting at 

590.0 and continuing through 590.9. Determine the mean and 

variance of the lengths.

3-81.  Assume that the wavelengths of photosynthetically 

active radiations (PAR) are uniformly distributed at integer 

nanometers in the red spectrum from 675 to 700 nm.

(a)  What are the mean and variance of the wavelength distribu-

tion for this radiation?

(b)  If the wavelengths are uniformly distributed at integer 

nanometers from 75 to 100 nanometers, how do the mean 

and variance of the wavelength distribution compare to the 

previous part? Explain.

3-82.  The probability of an operator entering alphanu-

meric data incorrectly into a fi eld in a database is equally likely. 

The random variable X  is the number of fi elds on a data entry 

form with 28 fi elds that have an error. Is X  a discrete uniform 

random variable? Why or why not?

3-83.  Suppose that X  has a discrete uniform distribution 

on the integers 0 through 9. Determine the mean, variance, 

and standard deviation of the random variable Y X= 5  and 

compare to the corresponding results for X .

3-84. Show that for a discrete uniform random variable X , if each 

of the values in the range of X  is multiplied by the constant c, the 

effect is to multiply the mean of X  by c and the variance of X  by c2. 

That is, show that E cX cE X( ) = ( ) and V cX c V X( ) = ( )2 .

3-85. The number of pages in a PDF document you create has 

a discrete uniform distribution from fi ve to nine pages (includ-

ing the end points). What are the mean and standard deviation 

of the number of pages in the document?

3-86. Suppose that nine-digit Social Security numbers are 

assigned at random. If you randomly select a number, what is 

the probability that it belongs to one of the 300 million people 

in the United States?

3-87. Suppose that 1000 seven-digit telephone numbers 

within your area code are dialed randomly. What is the prob-

ability that your number is called?

FOR SECTION 3-5Exercises 

 Problem available in WileyPLUS at instructor’s discretion. 

 Tutoring problem available in WileyPLUS at instructor’s discretion
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3-88. The probability that data are entered incorrectly into a 

fi eld in a database is 0.005. A data entry form has 28 fi elds, and 

errors occur independently for each fi eld. The random variable 

X  is the number of fi elds on the form with an error. Does X
have a discrete uniform distribution? Why or why not?

3-89. Each multiple-choice question on an exam has four 

choices. Suppose that there are 10 questions and the choice is 

selected randomly and independently for each question. Let X
denote the number of questions answered correctly. Does X
have a discrete uniform distribution? Why or why not?

3-90. Consider the hospital data in Example 2-8. Suppose a 

patient is selected randomly from the collection in the table. Let X
denote the hospital number of the selected patient (either 1, 2, 3, or 

4). Does X  have a discrete uniform distribution? Why or why not?

3-6 Binomial Distribution
Consider the following random experiments and random variables:

1. Flip a coin 10 times. Let X =  number of heads obtained.

2. A worn machine tool produces 1% defective parts. Let X =  number of defective parts in 

the next 25 parts produced.

3. Each sample of air has a 10% chance of containing a particular rare molecule. Let X =
the number of air samples that contain the rare molecule in the next 18 samples analyzed.

4. Of all bits transmitted through a digital transmission channel, 10% are received in error. 

Let X =  the number of bits in error in the next fi ve bits transmitted.

5. A multiple-choice test contains 10 questions, each with four choices, and you guess at each 

question. Let X =  the number of questions answered correctly.

6. In the next 20 births at a hospital, let X =  the number of female births.

7. Of all patients suffering a particular illness, 35% experience improvement from a particular 

medication. In the next 100 patients administered the medication, let X =  the number of 

patients who experience improvement.

These examples illustrate that a general probability model that includes these experiments as 

particular cases would be very useful.

Each of these random experiments can be thought of as consisting of a series of repeated, random 

trials: 10 fl ips of the coin in experiment 1, the production of 25 parts in experiment 2, and so forth. 

The random variable in each case is a count of the number of trials that meet a specifi ed criterion. 

The outcome from each trial either meets the criterion that X counts or it does not; consequently, 

each trial can be summarized as resulting in either a success or a failure. For example, in the mul-

tiple-choice experiment, for each question, only the choice that is correct is considered a success. 

Choosing any one of the three incorrect choices results in the trial being summarized as a failure.

The terms success and failure are just labels. We can just as well use A and B or 0 or 1. 

Unfortunately, the usual labels can sometimes be misleading. In experiment 2, because X counts 

defective parts, the production of a defective part is called a success.

A trial with only two possible outcomes is used so frequently as a building block of a ran-

dom experiment that it is called a Bernoulli trial. It is usually assumed that the trials that con-

stitute the random experiment are independent. This implies that the outcome from one trial 

has no effect on the outcome to be obtained from any other trial. Furthermore, it is often rea-

sonable to assume that the probability of a success in each trial is constant. In the multiple-

choice experiment, if the test taker has no knowledge of the material and just guesses at each 

question, we might assume that the probability of a correct answer is 1 4 for each question.

Digital Channel The chance that a bit transmitted through a digital transmission channel is 

received in error is 0.1. Also, assume that the transmission trials are independent. Let X =  the 

number of bits in error in the next four bits transmitted. Determine P X =( )2 .

Let the letter E  denote a bit in error, and let the letter O denote that the bit is okay, that is, received without error. 

We can represent the outcomes of this experiment as a list of four letters that indicate the bits that are in error and 

EXAMPLE 3-16
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those that are okay. For example, the outcome OEOE  indicates that the second and fourth bits are in error and the 

other two bits are okay. The corresponding values for x are

Outcome x Outcome x
OOOO 0 EOOO 1

OOOE 1 EOOE 2

OOEO 1 EOEO 2

OOEE 2 EOEE 3

OEOO 1 EEOO 2

OEOE 2 EEOE 3

OEEO 2 EEEO 3

OOOO 3 EEEE 4

The event that X = 2 consists of the six outcomes:

EEOO, EOEO, EOOE, OEEO, OEOE, OOEE     { }
Using the assumption that the trials are independent, the probability of { }EEOO  is

P EEOO P E P E P O P O( ) = ( ) ( ) ( ) ( ) = ( ) ( ) =0 1 0 9 0 0081
2 2

. . .

Also, any one of the six mutually exclusive outcomes for which X = 2 has the same probability of occurring. Therefore,

P X =( ) = ( ) =2 6 0 0081 0 0486. .

In general, P X x=( ) = (number of outcomes that result in x errors) × ( . ) ( . )0 1 0 9 4x x− .

To complete a general probability formula, only an expression for the number of outcomes that contain x errors is needed. 

An outcome that contains x errors can be constructed by partitioning the four trials (letters) in the outcome into two 

groups. One group is of size x and contains the errors, and the other group is of size n x−  and consists of the trials that 

are okay. The number of ways of partitioning four objects into two groups, one of which is of size x, is 
4 4

4x x x

⎛
⎝⎜

⎞
⎠⎟

= !
! −( ) !

. 

Therefore, in this example,

P X x
x

x x=( ) =
⎛
⎝⎜

⎞
⎠⎟

.( ) .( ) −4
0 1 0 9

4

Notice that 
4

2
4 2 2 6

⎛
⎝⎜

⎞
⎠⎟

⎡⎣ ⎤⎦ == !/ ! ! , as found above. The probability mass function of X was shown in Example 3-4 and Fig. 3-1.

A random experiment consists of n Bernoulli trials such that

(1) The trials are independent.

(2)  Each trial results in only two possible outcomes, labeled as “success” 

and “failure.”

(3)  The probability of a success in each trial, denoted as p, remains constant.

The random variable X that equals the number of trials that result in a success is 

a binomial random variable with parameters 0 1< <p  and n , ,= 1 2 …. The prob-

ability mass function of X is

 f x
n

x
p p x , , , nx n x( ) =

⎛
⎝⎜

⎞
⎠⎟
 −( ) =−

1 0 1 …  (3-7)

Binomial 
Distribution

The previous example motivates the following result.
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As in Example 3-16, 
n

x

⎛
⎝⎜

⎞
⎠⎟
 equals the total number of different sequences of trials that con-

tain x successes and n x−  failures. The total number of different sequences that contain x
successes and n x−  failures times the probability of each sequence equals P X x=( ).

The preceding probability expression is a very useful formula that can be applied in a num-

ber of examples. The name of the distribution is obtained from the binomial expansion. For 

constants a and b, the binomial expansion is

a b
n

k
a b

n k n k

k

n

+( ) =
⎛
⎝⎜

⎞
⎠⎟
 −

=
∑

0

Let p denote the probability of success on a single trial. Then by using the binomial expansion 

with a p=  and b p= −1 , we see that the sum of the probabilities for a binomial random variable 

is 1. Furthermore, because each trial in the experiment is classifi ed into two outcomes, {success, 

failure}, the distribution is called a “bi”-nomial. A more general distribution, which includes the 

binomial as a special case, is the multinomial distribution, and this is presented in Chapter 5.

Examples of binomial distributions are shown in Fig. 3-8. For a fi xed n, the distribution 

becomes more symmetric as p increases from 0 to 0.5 or decreases from 1 to 0.5. For a fi xed 
p, the distribution becomes more symmetric as n increases.

FIGURE 3-8 
Binomial distribu-
tions for selected 
values of n  and p.
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Binomial Coeffi cient Several examples using the binomial coeffi cient 
n

x

⎛
⎝⎜

⎞
⎠⎟
 follow.

10

3
10 3 7 10 9 8 3 2 120

⎛
⎝⎜

⎞
⎠⎟

=  [ ] = =! ! ! ( ) ( )⋅ ⋅ ⋅

15

10
15 10 5 15 14 13 12 11 5 4 3 2

3003

⎛
⎝⎜

⎞
⎠⎟

=  [ ] =

=

! ! ! ( ) ( )⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

100

4
100 4 96 100 99 98 97 4 3 2

3 921 225

⎛
⎝⎜

⎞
⎠⎟

=  [ ] =

=

! ! ! ( ) ( ). . . . .

, ,
Also recall that 0! 1= .

Example 3-17
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A table of cumulative binomial probabilities is provided in Appendix A, and it can simplify 

some calculations. For example, the binomial distribution in Example 3-16 has p = 0.1 and 

n = 4. A probability such as P X =( )2  can be calculated from the table as

P X P X P X=( ) = ≤( ) − ≤( ) = − =2 2 1 0 9963 0 9477 0 0486. . .

and this agrees with the result obtained previously.

The mean and variance of a binomial random variable can be obtained from an analysis of 

the independent trials that comprise the binomial experiment. Defi ne new random variables

X
i

i =
 ⎧

⎨
⎩

1

0

if th trial is a success

otherwise
for i n. = 1, 2, ,…  Then

X X X Xn= + + + 1 2
…

Also, it is easy to derive the mean and variance of each Xi as

Organic Pollution Each sample of water has a 10% chance of containing a particular organic 

pollutant. Assume that the samples are independent with regard to the presence of the pollutant. 

Find the probability that in the next 18 samples, exactly 2 contain the pollutant.

Let X = the number of samples that contain the pollutant in the next 18 samples analyzed. Then X is a binomial 

random variable with p = 0.1 and n = 18. Therefore,

P X =( ) =
⎛
⎝⎜

⎞
⎠⎟

2
18

2
0 1 0 92 16( . ) ( . )

Now 
18

2
18 2 16 18 17 2 153

⎛
⎝⎜

⎞
⎠⎟

=  [ ] = ( ) =! ! ! . Therefore,

P X =( ) = ( ) ( ) =2 153 0 1 0 9 0 284
2 16

. . .

Determine the probability that at least four samples contain the pollutant. The requested probability is

P X
xx

x x( ) ( . ) ( . )≥ =
⎛
⎝⎜

⎞
⎠⎟=

−∑4
18

0 1 0 9
4

18
18

However, it is easier to use the complementary event,

P X P X
xx

x x≥( ) = − <( ) = −
⎛
⎝⎜

⎞
⎠⎟

.( ) .( )

= − +
=

−∑4 1 4 1
18

0 1 0 9

1 0 150 0

0

3
18

. .3300 0 284 0 168 0 098+ +[ ] =. . .

Determine the probability that 3 7≤ X < . Now

P
x

x
3 7

3

6
18≤ <( ) ⎛

⎝⎜
⎞
⎠⎟

( ) ( )
=

−∑X
x

x=

= + + +

18
0.1 0.9

0.168 0.070 0.022 0..005

0.265=

Practical Interpretation: Binomial random variables are used to model many physical systems and probabilities for 

all such models can be obtained from the binomial probability mass function.

Example 3-18
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E X p p pi( ) = + −( ) =1 0 1

and

V X p p p p p pi( ) = −( ) + −( ) −( ) = −( )1 0 1 1
2 2

Sums of random variables are discussed in Chapter 5, and there the intuitively reasonable result that

E X E X E X E Xn( ) ( ) ( ) … ( )= + + +1 2

is derived. Furthermore, for the independent trials of a binomial experiment, Chapter 5 also 

shows that
V X V X V X V Xn( ) ( ) ( ) … ( )= + + +1 2

Because E X pi( ) =  and V X p p ,i( ) = −( )1  we obtain the solution E X np( ) =  and V X( ) =
np p1−( ).

If X is a binomial random variable with parameters p and n,

 μ = ( ) = σ = ( ) = −( )E X np V X np pand 2 1  (3-8)

Mean and Variance For the number of transmitted bits received in error in Example 3-16, n = 4 

and p = 0.1, so

E X V X( ) = ( ) = ( ) = ( )( ) =4 0 1 0 4 4 0 1 0 9 0 36. . . . .and

and these results match those obtained from a direct calculation in Example 3-9.

Example 3-19

Mean and 
Variance 

3-91. For each scenario (a)–(j), state whether or not the bino-

mial distribution is a reasonable model for the random variable 

and why. State any assumptions you make.

(a)  A production process produces thousands of temperature trans-

ducers. Let X  denote the number of nonconforming transduc-

ers in a sample of size 30 selected at random from the process.

(b)  From a batch of 50 temperature transducers, a sample of 

size 30 is selected without replacement. Let X  denote the 

number of nonconforming transducers in the sample.

(c)  Four identical electronic components are wired to a con-

troller that can switch from a failed component to one of 

the remaining spares. Let X  denote the number of compo-

nents that have failed after a specifi ed period of operation.

(d)  Let X  denote the number of accidents that occur along the 

federal highways in Arizona during a one-month period.

(e)  Let X  denote the number of correct answers by a student 

taking a multiple-choice exam in which a student can elim-

inate some of the choices as being incorrect in some ques-

tions and all of the incorrect choices in other questions.

(f)  Defects occur randomly over the surface of a semiconductor 

chip. However, only 80% of defects can be found by testing. 

A sample of 40 chips with one defect each is tested. Let X  

denote the number of chips in which the test fi nds a defect.

(g)  Reconsider the situation in part (f). Now suppose that the 

sample of 40 chips consists of chips with 1 and with 0 

defects.

(h)  A fi lling operation attempts to fi ll detergent packages to the 

advertised weight. Let X  denote the number of detergent 

packages that are underfi lled.

(i)  Errors in a digital communication channel occur in bursts that 

affect several consecutive bits. Let X  denote the number of 

bits in error in a transmission of 100,000 bits.

(j) Let X  denote the number of surface fl aws in a large coil of 

galvanized steel.

3-92.  Let X  be a binomial random variable with p = 0 2.   

and n = 20. Use the binomial table in Appendix A to determine 

the following probabilities.

(a) P X ≤( )3      (b) P X >( )10

(c) P X =( )6      (d) P X6 11≤ ≤( )
3-93.  Let X  be a binomial random variable with p = 0 1.  

and n = 10. Calculate the following probabilities from the bino-

mial probability mass function and from the binomial table in 

Appendix A and compare results.

(a) P X ≤( )2      (b) P X >( )8

(c) P X =( )4      (d) P X5 7≤ ≤( )

FOR SECTION 3-6Exercises 
 Problem available in WileyPLUS at instructor’s discretion. 

 Tutoring problem available in WileyPLUS at instructor’s discretion
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3-94.  The random variable X  has a binomial distribution 

with n = 10 and p = 0.5. Determine the following probabilities:

(a) P X =( )5   (b) P X ≤( )2

(c) P X ≥( )9   (d) P X3 5≤ <( )
3-95.  The random variable X  has a binomial distribution 

with n = 10 and p = 0.01. Determine the following probabilities.

(a) P X =( )5   (b) P X ≤( )2

(c) P X ≥( )9   (d) P X3 5≤ <( )
3-96. The random variable X  has a binomial distribution with 

n = 10 and p = 0.5. Sketch the probability mass function of X .

(a) What value of X  is most likely?

(b) What value(s) of X  is(are) least likely?

3-97. Sketch the probability mass function of a binomial dis-

tribution with n = 10 and p = 0.01 and comment on the shape 

of the distribution.

(a) What value of X  is most likely?

(b) What value of X  is least likely?

3-98.  Determine the cumulative distribution function of a 

binomial random variable with n = 3 and p = 1 2.

3-99. Determine the cumulative distribution function of a 

binomial random variable with n = 3 and p = 1 4.

3-100.  An electronic product contains 40 integrated cir-

cuits. The probability that any integrated circuit is defective is 

0.01, and the integrated circuits are independent. The product 

operates only if there are no defective integrated circuits. What 

is the probability that the product operates?

3-101. The phone lines to an airline reservation system are 

occupied 40% of the time. Assume that the events that the lines 

are occupied on successive calls are independent. Assume that 

10 calls are placed to the airline.

(a)  What is the probability that for exactly three calls, the lines 

are occupied?

(b)  What is the probability that for at least one call, the lines 

are not occupied?

(c)  What is the expected number of calls in which the lines are 

all occupied?

3-102. A multiple-choice test contains 25 questions, each 

with four answers. Assume that a student just guesses on each 

question.

(a)  What is the probability that the student answers more than 20 

questions correctly?

(b)  What is the probability that the student answers fewer than 5 

questions correctly?

3-103. A particularly long traffic light on your morning com-

mute is green 20% of the time that you approach it. Assume that 

each morning represents an independent trial.

(a)  Over 5 mornings, what is the probability that the light is 

green on exactly one day?

(b)  Over 20 mornings, what is the probability that the light is 

green on exactly four days?

(c)  Over 20 mornings, what is the probability that the light is 

green on more than four days?

3-104.  Samples of rejuvenated mitochondria are mutated 

(defective) in 1% of cases. Suppose that 15 samples are studied 

and can be considered to be independent for mutation. Deter-

mine the following probabilities. The binomial table in Appen-

dix A can help.

(a) No samples are mutated.

(b) At most one sample is mutated.

(c) More than half the samples are mutated.

3-105.  An article in Information Security Technical Report 
[“Malicious Software—Past, Present and Future” (2004, Vol. 9, 

pp. 6–18)] provided the following data on the top 10 malicious 

software instances for 2002. The clear leader in the number of 

registered incidences for the year 2002 was the Internet worm 

“Klez,” and it is still one of the most widespread threats. This 

virus was first detected on 26 October 2001, and it has held the 

top spot among malicious software for the longest period in the 

history of virology.

The 10 most widespread malicious programs for 2002

Place Name % Instances

 1 I-Worm.Klez 61.22%

 2 I-Worm.Lentin 20.52%

 3 I-Worm.Tanatos  2.09%

 4 I-Worm.BadtransII  1.31%

 5 Macro.Word97.Thus  1.19%

 6 I-Worm.Hybris  0.60%

 7 I-Worm.Bridex  0.32%

 8 I-Worm.Magistr  0.30%

 9 Win95.CIH  0.27%

10 I-Worm.Sircam  0.24%

(Source: Kaspersky Labs).
Suppose that 20 malicious software instances are reported. 

Assume that the malicious sources can be assumed to be 

independent.

(a)  What is the probability that at least one instance is “Klez?”

(b)  What is the probability that three or more instances are “Klez?”

(c) What are the mean and standard deviation of the number of 

“Klez” instances among the 20 reported?

3-106.  Heart failure is due to either natural occurrences 

(87%) or outside factors (13%). Outside factors are related to 

induced substances or foreign objects. Natural occurrences are 

caused by arterial blockage, disease, and infection. Suppose 

that 20 patients will visit an emergency room with heart fail-

ure. Assume that causes of heart failure for the individuals are 

independent.

(a)  What is the probability that three individuals have condi-

tions caused by outside factors?

(b)  What is the probability that three or more individuals have 

conditions caused by outside factors?

(c)  What are the mean and standard deviation of the number 

of individuals with conditions caused by outside factors?

3-107. A computer system uses passwords that are exactly six 

characters and each character is one of the 26 letters (a–z) or 

10 integers (0–9). Suppose that 10,000 users of the system have 

unique passwords. A hacker randomly selects (with replace-

ment) one billion passwords from the potential set, and a match 

to a user’s password is called a hit.
(a) What is the distribution of the number of hits?

(b) What is the probability of no hits?

(c) What are the mean and variance of the number of hits?
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3-108.  Samples of 20 parts from a metal punching pro-

cess are selected every hour. Typically, 1% of the parts require 

rework. Let X  denote the number of parts in the sample of 

20 that require rework. A process problem is suspected if X  

exceeds its mean by more than 3 standard deviations.

(a) If the percentage of parts that require rework remains at 

1%, what is the probability that X  exceeds its mean by 

more than 3 standard deviations?

(b) If the rework percentage increases to 4%, what is the 

probability that X  exceeds 1?

(c) If the rework percentage increases to 4%, what is the 

probability that X  exceeds 1 in at least one of the next 

five hours of samples?

3-109.  Because all airline passengers do not show up 

for their reserved seat, an airline sells 125 tickets for a flight 

that holds only 120 passengers. The probability that a pas-

senger does not show up is 0.10, and the passengers behave 

independently.

(a)  What is the probability that every passenger who shows up 

can take the flight?

(b)  What is the probability that the flight departs with empty 

seats?

3-110.  This exercise illustrates that poor quality can 

affect schedules and costs. A manufacturing process has 100 

customer orders to fill. Each order requires one component 

part that is purchased from a supplier. However, typically, 2% 

of the components are identified as defective, and the compo-

nents can be assumed to be independent.

(a) If the manufacturer stocks 100 components, what is the prob-

ability that the 100 orders can be filled without reordering 

components?

(b) If the manufacturer stocks 102 components, what is the prob-

ability that the 100 orders can be filled without reordering 

components?

(c) If the manufacturer stocks 105 components, what is the prob-

ability that the 100 orders can be filled without reordering 

components?

3-111.  Consider the lengths of stay at a hospital’s emer-

gency department in Exercise 3-33. Assume that five persons 

independently arrive for service.

(a) What is the probability that the length of stay of exactly 

one person is less than or equal to 4 hours?

(b) What is the probability that exactly two people wait more 

than 4 hours?

(c) What is the probability that at least one person waits more 

than 4 hours?

3-112. Consider the patient data in Example 2-8. Suppose that 

five patients are randomly selected with replacement from the 

total for hospital 4. Determine the following probabilities:

(a)  Exactly one is LWBS.  (b)  Two or more are LWBS.

(c)  At least one is LWBS.

3-113. Assume that a Web site changes its content according 

to the distribution in Exercise 3-34. Assume that 10 changes 

are made independently.

(a)  What is the probability that the change is made in less than 

4 days in 7 of the 10 updates?

(b)  What is the probability that the change is made in less than 

4 days in 2 or fewer of the 10 updates?

(c) What is the probability that at least one change is made in 

less than 4 days?

(d) What is the expected number of the 10 updates that occur 

in less than 4 days?

3-114. Consider the endothermic reactions in Exercise 3-32. 

A total of 20 independent reactions are to be conducted.

(a) What is the probability that exactly 12 reactions result in a 

final temperature less than 272 K?

(b) What is the probability that at least 19 reactions result in a 

final temperature less than 272 K?

(c) What is the probability that at least 18 reactions result in a 

final temperature less than 272 K?

(d) What is the expected number of reactions that result in a 

final temperature of less than 272 K?

3-115. The probability that a visitor to a Web site provides 

contact data for additional information is 0.01. Assume that 

1000 visitors to the site behave independently. Determine the 

following probabilities:

(a) No visitor provides contact data.

(b) Exactly 10 visitors provide contact data.

(c) More than 3 visitors provide contact data.

3-116. Consider the circuit in Example 2-34. Assume that devices 

fail independently. What is the probability mass function of the 

number of device failures? Explain why a binomial distribution 

does not apply to the number of device failures in Example 2-32.

3-117. Consider the time to recharge the flash in cell-phone cam-

eras as in Example 3-2. Assume that the probability that a camera 

passes the test is 0.8 and the cameras perform independently. What 

is the smallest sample size needed so that the probability of at least 

one camera failing is at least 95%?

3-118. Consider the patient data in Example 2-8. Suppose that 

patients are randomly selected with replacement from the total 

for hospital 4. What is the smallest sample size needed so that 

the probability is at least 90% that at least one patient is LWBS?

3-7  Geometric and Negative Binomial Distributions

3-7.1 GEOMETRIC DISTRIBUTION

Consider a random experiment that is closely related to the one used in the definition of a 

binomial distribution. Again, assume a series of Bernoulli trials (independent trials with 

constant probability p of a success on each trial). However, instead of a fixed number of 

trials, trials are conducted until a success is obtained. Let the random variable X denote the 

c03.indd   86 9/24/2013   6:39:03 PM



Section 3-7/Geometric and Negative Binomial Distributions   87

number of trials until the fi rst success. Example 3-5 analyzed successive wafers until a large 

particle was detected. Then X is the number of wafers analyzed. In the transmission of bits, 

X might be the number of bits transmitted until an error occurs.

Digital Channel The probability that a bit transmitted through a digital transmission channel is 

received in error is 0.1. Assume that the transmissions are independent events, and let the random 

variable X denote the number of bits transmitted until the fi rst error.

Then P X =( )5  is the probability that the fi rst four bits are transmitted correctly and the fi fth bit is in error. This 

event can be denoted as { }OOOOE , where O denotes an okay bit. Because the trials are independent and the prob-

ability of a correct transmission is 0.9,

P X P OOOOE=( ) = ( ) = =5 0 9 0 1 0 0664. . .

Note that there is some probability that X will equal any integer value. Also, if the fi rst trial is a success, X = 1. There-

fore, the range of X is { }1 2 3, , , ,…  that is, all positive integers.

Example 3-20

In a series of Bernoulli trials (independent trials with constant probability p of 

a success), the random variable X  that equals the number of trials until the fi rst 

success is a geometric random variable with parameter 0 1< <p  and

 f x p p x , ,
x( ) = −( ) =−

1 1 2
1 … (3-9)

Geometric 
Distribution

Examples of the probability mass functions for geometric random variables are shown in Fig. 

3-9. Note that the height of the line at x is 1 −( )p  times the height of the line at x − 1. That is, 

the probabilities decrease in a geometric progression. The distribution acquires its name from 

this result.

FIGURE 3-9 Geometric distributions for selected values of 
the parameter p.
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If X is a geometric random variable with parameter p,

 μ σ= ( ) = = ( ) = −( )E X p V X p p1 12 2and  (3-10)

Mean and Variance

Mean and Standard Deviation Consider the transmission of bits in Example 3-20. Here p = 0 1. . 

The mean number of transmissions until the fi rst error is 1 0 1 10. = . The standard deviation of the 

number of transmissions before the fi rst error is

σ = −( )⎡⎣ ⎤⎦ =1 0 1 0 1 9 492
1 2

. / . .
/

Practical Interpretation: The standard deviation here is approximately equal to the mean, and this occurs when p is 

small. The actual number of trials until the fi rst success may be much different from the mean when p is small.

Example 3-22

Lack of Memory Property
A geometric random variable has been defi ned as the number of trials until the fi rst success. 

However, because the trials are independent, the count of the number of trials until the next 

success can be started at any trial without changing the probability distribution of the random 

variable. For example, if 100 bits are transmitted, the probability that the fi rst error, after bit 100, 

occurs on bit 106 is the probability that the next six outcomes are OOOOOE. This probability 

is ( . ) ( . ) .0 9 0 1 0 0595 = , which is identical to the probability that the initial error occurs on bit 6.

The implication of using a geometric model is that the system presumably will not wear 

out. The probability of an error remains constant for all transmissions. In this sense, the geo-

metric distribution is said to lack any memory. The lack of memory property will be dis-

cussed again in the context of an exponential random variable in Chapter 4.

The mean of a geometric random variable is

   μ = −( ) =−

=

∞
−

=

∞

∑ ∑kp p p kq
k

k

k

k

1
1

1

1

1

where q p= − 1. The right-hand side of the previous equation is recognized to be the partial 

derivative with respect to q of

   p q
pq

q
k

k

=
−=

∞

∑
11

where the last equality is obtained from the known sum of a geometric series. Therefore,

   μ = ∂
∂

 
−

⎢

⎣
⎢

⎥

⎦
⎥ =

−( )
= =

q

pq

q

p

q

p

p p1 1

1
2 2

and the mean is derived. To obtain the variance of a geometric random variable, we can fi rst 

derive E X 2( ) by a similar approach. This can be obtained from partial second derivatives with 

respect to q. Then the formula V X  E X  EX( ) ( ) ( )= −2 2 is applied. The details are a bit more 

work, and this is left as a mind-expanding exercise.

Wafer Contamination The probability that a wafer contains a large particle of contamination 

is 0.01. If it is assumed that the wafers are independent, what is the probability that exactly 125 

wafers need to be analyzed before a large particle is detected?

Let X denote the number of samples analyzed until a large particle is detected. Then X is a geometric random variable 

with p = 0 01. . The requested probability is

P X =( ) = ( ) =125 0 99 0 01 0 0029
124

. . .

Example 3-21
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Lack of Memory Property In Example 3-20, the probability that a bit is transmitted in error is 

equal to 0.1. Suppose that 50 bits have been transmitted. The mean number of bits until the next 

error is 1 0 1 10. = —the same result as the mean number of bits until the fi rst error.

Example 3-23

Negative Binomial Distribution
A generalization of a geometric distribution in which the random variable is the number of 

Bernoulli trials required to obtain r successes results in the negative binomial distribution.

Digital Channel As in Example 3-20, suppose that the probability that a bit transmitted through 

a digital transmission channel is received in error is 0.1. Assume that the transmissions are inde-

pendent events, and let the random variable X denote the number of bits transmitted until the fourth error.

Then X has a negative binomial distribution with r = 4. Probabilities involving X can be found as follows. For example, 

P X =( )10  is the probability that exactly three errors occur in the fi rst 9 trials and then trial 10 results in the fourth error. 

The probability that exactly three errors occur in the fi rst 9 trials is determined from the binomial distribution to be

9

3
0 1 0 9

3 6⎛
⎝⎜

⎞
⎠⎟

( ) ( ). .

Because the trials are independent, the probability that exactly three errors occur in the fi rst 9 trials and trial 10 results 

in the fourth error is the product of the probabilities of these two events, namely,

9

3
0 1 0 9 0 1

9

3
0 1 0 9

3 6 4 6⎛
⎝⎜

⎞
⎠⎟

( ) ( ) ( ) =
⎛
⎝⎜

⎞
⎠⎟

( ) ( ). . . . .

Example 3-24

In general, probabilities for X can be determined as follows. Here P X x=( ) implies that r −1

successes occur in the fi rst x −1 trials and the rth success occurs on trial x. The probability 

that r −1 successes occur in the fi rst x −1 trials is obtained from the binomial distribution to be

x

r
p pr x r−

−
−

⎛
⎝⎜

⎞
⎠⎟

− −1

1
11( )

for r x≤ . The probability that trial x is a success is p. Because the trials are independent, these 

probabilities are multiplied so that

P X x
x

r
p p pr x r( ) ( )= =

−
−

−
⎛
⎝⎜

⎞
⎠⎟

− −1

1
11

This leads to the following result.

In a series of Bernoulli trials (independent trials with constant probability p of a suc-

cess), the random variable X that equals the number of trials until r successes occur is a 

negative binomial random variable with parameters 0 1< <p  and r = 1 2 3, , , …, and

 f x
x

r
p p x r r r

x r r( ) =
−
−

⎛
⎝⎜

⎞
⎠⎟

−( ) = + +−1

1
1 1 2, , , … (3-11)

Because at least r trials are required to obtain r successes, the range of X is from r to ∞. In the 

special case that r = 1, a negative binomial random variable is a geometric random variable. 

Selected negative binomial distributions are illustrated in Fig. 3-10.

The lack of memory property of a geometric random variable implies the following. Let 

X denote the total number of trials required to obtain r successes. Let X1 denote the num-

ber of trials required to obtain the fi rst success, let X2 denote the number of extra trials 

required to obtain the second success, let X3 denote the number of extra trials to obtain the 

third success, and so forth. Then the total number of trials required to obtain r successes is 

X X X Xr= + + +1 2
… . Because of the lack of memory property, each of the random variables 

Negative Binomial 
Distribution
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X , X , , Xr1 2 …   has a geometric distribution with the same value of p. Consequently, a negative 

binomial random variable can be interpreted as the sum of r geometric random variables. This 

concept is illustrated in Fig. 3-11.

Recall that a binomial random variable is a count of the number of successes in n Bernoulli 

trials. That is, the number of trials is predetermined, and the number of successes is random. A 

negative binomial random variable is a count of the number of trials required to obtain r suc-

cesses. That is, the number of successes is predetermined, and the number of trials is random. 

In this sense, a negative binomial random variable can be considered the opposite, or negative, 

of a binomial random variable.

The description of a negative binomial random variable as a sum of geometric random 

variables leads to the following results for the mean and variance. Sums of random variables 

are studied in Chapter 5.

If X is a negative binomial random variable with parameters p and r,

 μ = ( ) = σ = ( ) = −( )E X r p V X r p pand 2 21  (3-12)

Mean and Variance
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FIGURE 3-10  
Negative binomial  
distributions for 
selected values of the 
parameters r  and p.

FIGURE 3-11 Negative binomial random variable represented as a 
sum of geometric random variables.
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3-119.  Suppose that the random variable X  has a geometric 

distribution with p = 0 5. . Determine the following probabilities:

(a) P X =( )1  (b) P X =( )4  (c) P X =( )8

(d) P X ≤( )2  (e) P X >( )2

3-120.  Suppose that the random variable X  has a geometric dis-

tribution with a mean of 2.5. Determine the following probabilities:

(a) P X =( )1  (b) P X =( )4  (c) P X =( )5

(d) P X ≤( )3  (e) P X >( )3

3-121.  Consider a sequence of independent Bernoulli tri-

als with p = 0 2. .

(a)  What is the expected number of trials to obtain the fi rst success?

(b)  After the eighth success occurs, what is the expected number 

of trials to obtain the ninth success?

3-122.  Suppose that X  is a negative binomial random 

variable with p = 0 2.  and r = 4. Determine the following:

(a) E X( )   (b) P X =( )20

(c) P X =( )19   (d) P X =( )21

(e) The most likely value for X
3-123.  The probability of a successful optical align-

ment in the assembly of an optical data storage product is 0.8. 

Assume that the trials are independent.

(a)  What is the probability that the fi rst successful alignment 

requires exactly four trials?

(b)  What is the probability that the fi rst successful alignment 

requires at most four trials?

(c)  What is the probability that the fi rst successful alignment 

requires at least four trials?

3-124.  In a clinical study, volunteers are tested for a gene 

that has been found to increase the risk for a disease. The prob-

ability that a person carries the gene is 0.1.

(a)  What is the probability that four or more people need to be 

tested to detect two with the gene?

(b)  What is the expected number of people to test to detect two 

with the gene?

3-125.  Assume that each of your calls to a popular radio 

station has a probability of 0.02 of connecting, that is, of not 

obtaining a busy signal. Assume that your calls are independent.

(a)  What is the probability that your fi rst call that connects is 

your 10th call?

(b)  What is the probability that it requires more than fi ve calls 

for you to connect?

(c)  What is the mean number of calls needed to connect?

3-126.  A player of a video game is confronted with a series 

of opponents and has an 80% probability of defeating each one. 

Success with any opponent is independent of previous encoun-

ters. Until defeated, the player continues to contest opponents.

(a)  What is the probability mass function of the number of 

opponents contested in a game?

(b)  What is the probability that a player defeats at least two 

opponents in a game?

(c)  What is the expected number of opponents contested in a game?

(d)  What is the probability that a player contests four or more 

opponents in a game?

(e)  What is the expected number of game plays until a player 

contests four or more opponents?

3-127.  Heart failure is due to either natural occurrences 

(87%) or outside factors (13%). Outside factors are related to 

induced substances or foreign objects. Natural occurrences are 

caused by arterial blockage, disease, and infection. Assume 

that causes of heart failure for the individuals are independent.

(a) What is the probability that the fi rst patient with heart fail-

ure who enters the emergency room has the condition due 

to outside factors?

(b) What is the probability that the third patient with heart fail-

ure who enters the emergency room is the fi rst one due to 

outside factors?

(c) What is the mean number of heart failure patients with the con-

dition due to natural causes who enter the emergency room 

before the fi rst patient with heart failure from outside factors?

3-128.  A computer system uses passwords constructed 

from the 26 letters (a–z) or 10 integers (0–9). Suppose that 

10,000 users of the system have unique passwords. A hacker 

randomly selects (with replacement) passwords from the 

potential set.

(a)  Suppose that 9900 users have unique six-character passwords 

and the hacker randomly selects six-character passwords. 

What are the mean and standard deviation of the number of 

attempts before the hacker selects a user password?

(b)  Suppose that 100 users have unique three-character passwords 

and the hacker randomly selects three-character passwords. 

FOR SECTION 3-7Exercises 

Camera Flashes Consider the time to recharge the fl ash in Example 3-25. The probability that a 

camera passes the test is 0.8, and the cameras perform independently. What is the probability that the 

third failure is obtained in fi ve or fewer tests?

Let X denote the number of cameras tested until three failures have been obtained. The requested probability is 

P X ≤( )5 . Here X has a negative binomial distribution with p = 0 2.  and r = 3. Therefore,

P X
x

x

x≤( ) =
−

=
= + +

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

∑ −5
1

23

5
0 2 0 8 0 2

3

2
0 2 0 83 3 3 3. ( . ) . . ( . )

44

2
0 2 0 8 0 0563 2⎛

⎝⎜
⎞
⎠⎟

=. ( . ) .

Example 3-25

 Problem available in WileyPLUS at instructor’s discretion. 

 Tutoring problem available in WileyPLUS at instructor’s discretion
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What are the mean and standard deviation of the number of 

attempts before the hacker selects a user password?

(c)  Comment on the security differences between six- and 

three-character passwords.

3-129. A trading company uses eight computers to trade on 

the New York Stock Exchange (NYSE). The probability of a 

computer failing in a day is 0.005, and the computers fail inde-

pendently. Computers are repaired in the evening, and each day 

is an independent trial.

(a)  What is the probability that all eight computers fail in a day?

(b)  What is the mean number of days until a specific computer fails?

(c)  What is the mean number of days until all eight computers 

fail on the same day?

3-130. Assume that 20 parts are checked each hour and that X  

denotes the number of parts in the sample of 20 that require rework. 

Parts are assumed to be independent with respect to rework.

(a)  If the percentage of parts that require rework remains at 

1%, what is the probability that hour 10 is the first sample 

at which X  exceeds 1?

(b) If the rework percentage increases to 4%, what is the proba-

bility that hour 10 is the first sample at which X  exceeds 1?

(c)  If the rework percentage increases to 4%, what is the 

expected number of hours until X  exceeds 1?

3-131. A fault-tolerant system that processes transactions for 

a financial services firm uses three separate computers. If the 

operating computer fails, one of the two spares can be immedi-

ately switched online. After the second computer fails, the last 

computer can be immediately switched online. Assume that the 

probability of a failure during any transaction is 10 8−  and that 

the transactions can be considered to be independent events.

(a)  What is the mean number of transactions before all comput-

ers have failed?

(b)  What is the variance of the number of transactions before 

all computers have failed?

3-132.  In the process of meiosis, a single parent diploid 

cell goes through eight different phases. However, only 60% 

of the processes pass the first six phases and only 40% pass all 

eight. Assume that the results from each phase are independent.

(a) If the probability of a successful pass of each one of the first 

six phases is constant, what is the probability of a success-

ful pass of a single one of these phases?

(b) If the probability of a successful pass of each one of the last 

two phases is constant, what is the probability of a success-

ful pass of a single one of these phases?

3-133. Show that the probability density function of a negative 

binomial random variable equals the probability density function of 

a geometric random variable when r = 1. Show that the formulas for 

the mean and variance of a negative binomial random variable equal 

the corresponding results for a geometric random variable when r = 1. 

3-134. Consider the endothermic reactions in Exercise 3-32. 

Assume that independent reactions are conducted.

(a)  What is the probability that the first reaction to result in a 

final temperature less than 272 K is the tenth reaction?

(b)  What is the mean number of reactions until the first final 

temperature is less than 272 K?

(c) What is the probability that the first reaction to result in a 

final temperature less than 272 K occurs within three or 

fewer reactions?

(d) What is the mean number of reactions until two reactions 

result in final temperatures less than 272 K?

3-135. A Web site randomly selects among 10 products to discount 

each day. The color printer of interest to you is discounted today.

(a)  What is the expected number of days until this product is 

again discounted?

(b)  What is the probability that this product is first discounted 

again exactly 10 days from now?

(c)  If the product is not discounted for the next five days, what 

is the probability that it is first discounted again 15 days 

from now?

(d)  What is the probability that this product is first discounted 

again within three or fewer days?

3-136. Consider the visits that result in leave without being 

seen (LWBS) at an emergency department in Example 2-8. 

Assume that people independently arrive for service at hospital l.

(a) What is the probability that the fifth visit is the first one to 

LWBS?

(b)  What is the probability that either the fifth or sixth visit is 

the first one to LWBS?

(c)  What is the probability that the first visit to LWBS is among 

the first four visits?

(d)  What is the expected number of visits until the third LWBS 

occurs?

3-137. Consider the time to recharge the flash in cell-phone 

cameras as in Example 3-2. Assume that the probability that 

a camera passes the test is 0.8 and the cameras perform inde-

pendently. Determine the following:

(a) Probability that the second failure occurs on the tenth cam-

era tested.

(b)  Probability that the second failure occurs in tests of four or 

fewer cameras.

(b)  Expected number of cameras tested to obtain the third 

failure.

3-138. An array of 30 LED bulbs is used in an automotive 

light. The probability that a bulb is defective is 0.001 and 

defective bulbs occur independently. Determine the following:

(a)  Probability that an automotive light has two or more defec-

tive bulbs.

(b)  Expected number of automotive lights to check to obtain 

one with two or more defective bulbs.

3-139. Consider the patient data in Example 2-8. Suppose that 

patients are randomly selected with replacement, from the total 

for hospital 4. Determine the following:

(a)  Probability that the first patient admitted is the first one 

selected.

(b)  Probability that four or fewer patients are selected to 

admit two.

(c) Expected number of patients selected to admit 10.

3-140. Customers visit a Web site, and the probability of an 

order if a customer views five or fewer pages is 0.01. However, 

if a customer views more than five pages, the probability of 

an order is 0.1. The probability a customer views five or more 

pages is 0.25. The customers behave independently.

(a) Is the number of customers who visit the site until an order 

is obtained a geometric random variable? Why or why not?

(b) What is the probability that the first order is obtained from 

the tenth customer to visit the site?
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3-8 Hypergeometric Distribution
In Example 3-8, a day’s production of 850 manufactured parts contains 50 parts that do not 

conform to customer requirements. Two parts are selected at random without replacement 

from the day’s production. Let A and B denote the events that the fi rst and second parts are 

nonconforming, respectively. In Chapter 2, we found P B A|( ) = 49 849/  and P A( ) = 50 850/ . 

Consequently, knowledge that the fi rst part is nonconforming suggests that it is less likely that 

the second part selected is nonconforming.

Let X equal the number of nonconforming parts in the sample. Then,

P X P=( ) = ( ) = =0
800

850

799

849
0 886both parts conform · .

P X P=( ) =1  (fi rst part selected conforms and the second part selected does not, or the fi rst 

part selected does not and the second part selected conforms)

= + =

=( ) =

800

850

50

849

50

850

800

849
0 111

2

· · .

P X P both parts do not cconform( ) = =50

850

49

849
0 003· .

This experiment is fundamentally different from the examples based on the binomial dis-

tribution. In this experiment, the trials are not independent. Note that, in the unusual case that 

each unit selected is replaced before the next selection, the trials are independent and there is 

a constant probability of a nonconforming part on each trial. Then the number of nonconform-

ing parts in the sample is a binomial random variable.

But as in Example 3-8, samples are often selected without replacement. Although prob-

abilities can be determined by the preceding reasoning, a general formula for computing prob-

abilities when samples are selected without replacement is quite useful. The counting rules 

presented in Chapter 2 can be used to justify the following formula.

A set of N  objects contains

K  objects classifi ed as successes

N K−  objects classifi ed as failures

A sample of size n objects is selected randomly (without replacement) from the N  

objects where K N≤  and n N≤ .

The random variable X that equals the number of successes in the sample is a 

hypergeometric random variable and

 f x

K

x

N K

n x

N

n

x , n K N K, n( )
⎛
⎝⎜

⎞
⎠⎟

−
−

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

= + −{ }  {= max to min0 }} (3-13)

Hypergeometric 
Distribution

The expression min K n, { } is used in the defi nition of the range of X because the maximum 

number of successes that can occur in the sample is the smaller of the sample size, n, and the 

number of successes available, K . Also, if n K N+ > , at least n K N+ −  successes must occur 

in the sample. Selected hypergeometric distributions are illustrated in Fig. 3-12.

Sampling Without Replacement The computations at the start of this section can be reanalyzed 

by using the general expression in the defi nition of a hypergeometric random variable. That is,
Example 3-26
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FIGURE 3-12 
Hypergeometric 
distributions for 
selected values of 
parameters N , K , 
and n.
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Parts from Suppliers A batch of parts contains 100 from a local supplier of tubing and 200 from a 

supplier of tubing in the next state. If four parts are selected randomly and without replacement, what 

is the probability they are all from the local supplier?

Let X equal the number of parts in the sample from the local supplier. Then X has a hypergeometric distribution and 

the requested probability is P X = 4( ). Consequently,

P X = 4

100

4

200

0

300

4

0 0119( ) =

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

= .

What is the probability that two or more parts in the sample are from the local supplier?

P X( )≥ =

⎛
⎝⎜

⎞
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⎛
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⎛
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0 298 0 098 0 0
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⎛
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= + +. . . 1119 0 408= .

Example 3-27
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What is the probability that at least one part in the sample is from the local supplier?

P X P X≥( ) = − =( ) = −

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

=1 1 0 1

100

0

200

4

300

4

0 804.

Practical Interpretation: Sampling without replacement is frequently used for inspection and the hypergeometric 

distribution simplifi es the calculations.

The mean and variance of a hypergeometric random variable can be determined from the 

trials that compose the experiment. However, the trials are not independent, so the calculations 

are more diffi cult than for a binomial distribution. The results are stated as follows.

If X is a hypergeometric random variable with parameters N,K, n,   and  then

 μ = ( ) = σ = ( ) = −( ) −
−

⎛
⎝⎜

⎞
⎠⎟

E X np V X np p
N n

N
and 2 1

1
 (3-14)

where p K N= .

Mean and Variance

Here p is the proportion of successes in the set of N  objects.

Mean and Variance In Example 3-27, the sample size is four. The random variable X is the 

number of parts in the sample from the local supplier. Then, p = =100 1/ 300 / 3. Therefore,

E X( ) = ⎛
⎝⎜

⎞
⎠⎟

4
100

300
1 33= .

and

V X( ) = ⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

−⎛
⎝⎜

⎞
⎠⎟

=4
1

3

2

3

300 4

299
0 88.

Example 3-28

For a hypergeometric random variable, E X( ) is similar to the mean of a binomial random vari-

able. Also, V X( ) differs from the result for a binomial random variable only by the following term.

The term in the variance of a hypergeometric random variable

 N n

N

−
−1

 (3-15)

is called the fi nite population correction factor.

Finite Population 
Correction Factor

Sampling with replacement is equivalent to sampling from an infi nite set because the proportion 

of success remains constant for every trial in the experiment. As mentioned previously, if sampling 

were done with replacement, X would be a binomial random variable and its variance would be 

np p1 −( ). Consequently, the fi nite population correction represents the correction to the binomial 

variance that results because the sampling is without replacement from the fi nite set of size N .

If n is small relative to N , the correction is small and the hypergeometric distribution is similar 

to the binomial  distribution. In this case, a binomial distribution can effectively approximate the 

hypergeometric distribution. A case is illustrated in Fig. 3-13.
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Customer Sample A list of customer accounts at a large corporation contains 1000 customers. 

Of these, 700 have purchased at least one of the corporation’s products in the last three months. To 

evaluate a new product design, 50 customers are sampled at random from the corporate list. What is the probability that 

more than 45 of the sampled customers have purchased from the corporation in the last three months?

The sampling is without replacement. However, because the sample size of 50 is small relative to the number of 

customer accounts, 1000, the probability of selecting a customer who has purchased from the corporation in the last 

three months remains approximately constant as the customers are chosen.

For example, let A denote the event that the fi rst customer selected has purchased from the corporation in the last three 

months, and let B denote the event that the second customer selected has purchased from the corporation in the last three 

months. Then, P A( ) = =700 1000 0 7/ .  and P B A| .( ) = =699 999 0 6997/ . That is, the trials are approximately independent.

Let X denote the number of customers in the sample who have purchased from the corporation in the last three months. 

Then, X is a hypergeometric random variable with N = 1 000, , n = 50, and K = 700. Consequently, p K N= =/ 0 7. . The 

requested probability is P X > 45( ). Because the sample size is small relative to the batch size, the distribution of X can be 

approximated as binomial with n = 50 and p = 0 7. . Using the binomial approximation to the distribution of X results in

P X > 45
50

0 7 1 0 7 0 00017
46

50
50( ) =

⎛
⎝⎜

⎞
⎠⎟
  −( ) =

=

−∑
xx

. . .x x

The probability from the hypergeometric distribution is 0.00013, but this requires computer software to compute. The result 

agrees well with the binomial approximation.

Example 3-29

FIGURE 3-13 
Comparison of 
hypergeometric and 
binomial distributions.
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3-141.  Suppose that X  has a hypergeometric distribution 

with N = 100, n = 4, and K = 20. Determine the following:

(a) P X( )= 1   (b) P X( )= 6
(c) P X( )= 4   (d) Mean and variance of X
3-142.  Suppose that X  has a hypergeometric distribution 

with N = 20, n = 4, and K = 4. Determine the following:

(a) P X( )= 1   (b) P X( )= 4

(c) P X( )≤ 2   (d) Mean and variance of X .

3-143.  Suppose that X  has a hypergeometric distribution 

with N = 10, n = 3, and K = 4. Sketch the probability mass func-

tion of X . Determine the cumulative distribution function for X .

3-144.  A batch contains 36 bacteria cells and 12 of the cells 

are not capable of cellular replication. Suppose that you examine 

three bacteria cells selected at random without replacement.

FOR SECTION 3-8Exercises 

 Problem available in WileyPLUS at instructor’s discretion. 

 Tutoring problem available in WileyPLUS at instructor’s discretion
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(a)  What is the probability mass function of the number of cells 

in the sample that can replicate?

(b)  What are the mean and variance of the number of cells in 

the sample that can replicate?

(c)  What is the probability that at least one of the selected cells 

cannot replicate?

3-145.  A research study uses 800 men under the age of 55. 

Suppose that 30% carry a marker on the male chromosome that 

indicates an increased risk for high blood pressure.

(a)  If 10 men are selected randomly and tested for the marker, 

what is the probability that exactly 1 man has the marker?

(b)  If 10 men are selected randomly and tested for the marker, 

what is the probability that more than 1 has the marker?

3-146.  Printed circuit cards are placed in a functional test 

after being populated with semiconductor chips. A lot contains 

140 cards, and 20 are selected without replacement for func-

tional testing.

(a) If 20 cards are defective, what is the probability that at least 

1 defective card is in the sample?

(b) If 5 cards are defective, what is the probability that at least 

1 defective card appears in the sample?

3-147.  The analysis of results from a leaf transmutation 

experiment (turning a leaf into a petal) is summarized by the 

type of transformation completed:

Total Textural 
Transformation
Yes No

Total Color Yes 243 26

Transformation No 13 18

A naturalist randomly selects three leaves from this set without 

replacement. Determine the following probabilities.

(a)  Exactly one has undergone both types of transformations.

(b)  At least one has undergone both transformations.

(c)  Exactly one has undergone one but not both transformations.

(d) At least one has undergone at least one transformation.

3-148.  A state runs a lottery in which six numbers are 

randomly selected from 40 without replacement. A player 

chooses six numbers before the state’s sample is selected.

(a)  What is the probability that the six numbers chosen by a 

player match all six numbers in the state’s sample?

(b)  What is the probability that five of the six numbers chosen 

by a player appear in the state’s sample?

(c)  What is the probability that four of the six numbers chosen 

by a player appear in the state’s sample?

(d)  If a player enters one lottery each week, what is the expected 

number of weeks until a player matches all six numbers in 

the state’s sample?

3-149.  A slitter assembly contains 48 blades. Five blades 

are selected at random and evaluated each day for sharpness. If 

any dull blade is found, the assembly is replaced with a newly 

sharpened set of blades.

(a)  If 10 of the blades in an assembly are dull, what is the probabil-

ity that the assembly is replaced the first day it is evaluated?

(b)  If 10 of the blades in an assembly are dull, what is the prob-

ability that the assembly is not replaced until the third day 

of evaluation? [Hint: Assume that the daily decisions are 

independent, and use the geometric distribution.]

(c)  Suppose that on the first day of evaluation, 2 of the blades 

are dull; on the second day of evaluation, 6 are dull; and 

on the third day of evaluation, 10 are dull. What is the 

probability that the assembly is not replaced until the third 

day of evaluation? [Hint: Assume that the daily decisions 

are independent. However, the probability of replacement 

changes every day.]

3-1 50. Calculate the finite population corrections

(a)  For Exercises 3-141 and 3-142, for which exercise should 

the binomial approximation to the distribution of X  be 

better?

(b)  For Exercise 3-141, calculate P X =( )1  and P X =( )4 , 

assuming that X  has a binomial distribution, and compare 

these results to results derived from the hypergeometric 

distribution.

(c)  For Exercise 3-142, calculate P X =( )1  and P X =( )4 , 

assuming that X  has a binomial distribution, and compare 

these results to the results derived from the hypergeometric 

distribution.

(d)  Use the binomial approximation to the hypergeometric dis-

tribution to approximate the probabilities in Exercise 3-146. 

What is the finite population correction in this exercise?

3-151. Consider the visits that result in leave without being seen 

(LWBS) at an emergency department in Example 2-8. Assume that 

four visits that result in LWBS are to be randomly selected (with-

out replacement) for a follow-up interview.

(a) What is the probability that all selected visits are from hos-

pital 4?

(b) What is the probability that no selected visits are from hos-

pital 4?

(c) What is the probability that all selected visits are from the 

same hospital?

3-152. Consider the nonfailed wells in Exercises 3-35. Assume 

that four wells are selected randomly (without replacement) for 

inspection.

(a) What is the probability that exactly two are selected from 

the Loch Raven Schist?

(b) What is the probability that one or more is selected from the 

Loch Raven Schist?

(c) What is the expected number selected from the Loch Raven 

Schist?

3-153. Consider the semiconductor wafer data in Table 2-1. Sup-

pose that 10 wafers are selected randomly (without replacement) 

for an electrical test. Determine the following:

(a) Probability that exactly 4 wafers have high contamination.

(b) Probability that at least 1 is from the center of the sputter-

ing tool and has high contamination.

(c) Probability that exactly 3 have high contamination or are 

from the edge of the sputtering tool.

(d) Instead of 10 wafers, what is the minimum number of wafers 

that need to be selected so that the probability that at least 1 

wafer has high contamination is greater than or equal to 0.9?

3-154. Suppose that a healthcare provider selects 20 patients 

randomly (without replacement) from among 500 to evaluate 

adherence to a medication schedule. Suppose that 10% of the 

500 patients fail to adhere with the schedule. Determine the 

following:
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(a)  Probability that exactly 10% of the patients in the sample 

fail to adhere.

(b)  Probability that fewer than 10% of the patients in the sample 

fail to adhere.

(c)  Probability that more than 10% of the patients in the sample 

fail to adhere.

(d)  Mean and variance of the number of patients in the sample 

who fail to adhere.

3-155. Suppose that lesions are present at 5 sites among 50 in a 

patient. A biopsy selects 8 sites randomly (without replacement).

(a)  What is the probability that lesions are present in at least 

one selected site?

(b)  What is the probability that lesions are present in two or 

more selected sites?

(c)  Instead of eight sites, what is the minimum number of sites 

that need to be selected to meet the following objective? 

The probability that at least one site has lesions present is 

greater than or equal to 0.9.

3-156. A utility company might offer electrical rates based 

on time-of-day consumption to decrease the peak demand in 

a day. Enough customers need to accept the plan for it to be 

successful. Suppose that among 50 major customers, 15 would 

accept the plan. The utility selects 10 major customers ran-

domly (without replacement) to contact and promote the plan.

(a) What is the probability that exactly two of the selected 

major customers accept the plan?

(b) What is the probability that at least one of the selected 

major customers accepts the plan?

(c) Instead of 15 customers, what is the minimum number of major 

customers that would need to accept the plan to meet the fol-

lowing objective? The probability that at least 1 selected major 

customer accepts the plan is greater than or equal to 0.95.

3-9 Poisson Distribution
A widely-used distribution emerges from the concept that events occur randomly in an inter-

val (or, more generally, in a region). The random variable of interest is the count of events that 

occur within the interval. Consider the following example.

Wire Flaws Flaws occur at random along the length of a thin copper wire. Let X denote the ran-

dom variable that counts the number of fl aws in a length of T  millimeters of wire and suppose that 

the average number of fl aws per millimeter is λ.

We expect E X T( ) = λ  from the defi nition of λ. The probability distribution of X is determined as follows. Partition 

the length of wire into n subintervals of small length Δt T n= /  (say, one micrometer each). If the subintervals are chosen 

small enough, the probability that more than one fl aw occurs in a subinterval is negligible. Furthermore, we can inter-

pret the assumption that fl aws occur at random to imply that every subinterval has the same probability of containing a 

fl aw, say p. Also, the occurrence of a fl aw in a subinterval is assumed to be independent of fl aws in other subintervals.

Then we can model the distribution of X as approximately a binomial random variable. Each subinterval generates 

an event (fl aw) or not. Therefore,

E X T np( ) = =λ
and one can solve for p to obtain

p
T

n
= λ

From the approximate binomial distribution

P X x
n

x
p px n x( ) ( )= ≈ −

⎛
⎝⎜

⎞
⎠⎟

−1

With small enough subintervals, n is large and p is small. Basic properties of limits can be used to show that as n 

increases
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!
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T x

P X x
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x
x

→∞

−

= = = …
λ λ

0 1 2

Because the number of subintervals tends to infi nity, the range of X (the number of fl aws) can equal any nonnegative 

integer.

Example 3-30
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Example 3-30 can be generalized to include a broad array of random experiments. The 

interval that was partitioned was a length of wire. However, the same reasoning can be applied 

to an interval of time, an area, or a volume. For example, counts of (1) particles of contami-

nation in semiconductor manufacturing, (2) fl aws in rolls of textiles, (3) calls to a telephone 

exchange, (4) power outages, and (5) atomic particles emitted from a specimen have all been 

successfully modeled by the probability mass function in the following defi nition.

In general, consider subintervals of small length Δt  and assume that as Δt  tends to zero,

1. The probability of more than one event in a subinterval tends to zero.

2. The probability of one event in a subinterval tends to λΔt .

3. The event in each subinterval is independent of other subintervals.

A random experiment with these properties is called a Poisson process.

These assumptions imply that the subintervals can be thought of as approximate inde-

pendent Bernoulli trials with the number of trials equal to n T t= /Δ  and success probability 

p t T n= =λ λΔ / . This leads to the following result.

The random variable X that equals the number of events in a Poisson process is a 

Poisson random variable with parameter 0 < λ, and

f x
e T

x
x

T x

( )
( )

!
, , ,= = …

−λ λ
0 1 2

Poisson 
Distribution

The sum of the probabilities is 1 because

e T

x
e

T

x

T x

x

T
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∞
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∞

∑ ∑=
λ

λλ λ( )

!
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and the summation on the right-hand side of the previous equation is recognized to be Taylor’s 

expansion of ex evaluated at λT . Therefore, the summation equals e Tλ  and the right-hand side 

equals 1.

Historically, the term process has been used to suggest the observation of a system over 

time. In our example with the copper wire, we showed that the Poisson distribution can also 

apply to intervals such as lengths, and a following example uses areas. 

The parameter λ is the mean number of events per unit length. It is important to use con-
sistent units for λ and T . For example, if λ = 2 3.  fl aws per millimeter, then T  should be 

expressed in millimeters. If λ = 7 1.  square centimeters, then an area of 4.5 square inches 

should be expressed as T = =4 5 2 54 29 032. ( . ) .  square centimeters (Figure 3-14).

Calculations for Wire Flaws For the case of the thin copper wire, suppose that the number of 

fl aws follows a Poisson distribution with a mean of 2.3 fl aws per millimeter. Determine the prob-

ability of exactly two fl aws in 1 millimeter of wire.

Let X denote the number of fl aws in 1 millimeter of wire. Then, λT = 2 3.  fl aws and

P X
e=( ) = =

− .

2
2 3

2
0 265

2 3 2.

!
.

Determine the probability of 10 fl aws in 5 millimeters of wire. Let X denote the number of fl aws in 5 millimeters of 

wire. Then, X has a Poisson distribution with

λT = × =2 3 5 11 5. . flaws/mm mm  flaws

Example 3-31
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Therefore,

P 10 eX = = =( ) −  11 5
1011 5

10
0 113. .

!
. 

Determine the probability of at least one fl aw in 2 millimeters of wire. Let X denote the number of fl aws in 2 mil-

limeters of wire. Then X has a Poisson distribution with

λT = × =2 3 2 4 6. . flaws/mm  mm  flaws

Therefore,

P X P X e≥( ) = − =( ) = − =−1 1 0 1 0 98994 6. .

Practical Interpretation: Given the assumptions for a Poisson process and a value for λ, probabilities can be calcu-

lated for intervals of arbitrary length. Such calculations are widely used to set product specifi cations, control processes, 

and plan resources.
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FIGURE 3-14 Poisson distributions for selected values of the parameters.
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The mean of a Poisson random variable is

E X x
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x
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where the summation can start at x = 1 because the x = 0 term is zero. If a change of variable 

y x= −1 is used, the summation on the right-hand side of the previous equation is recognized 

to be the sum of the probabilities of a Poisson random variable and this equals 1. Therefore, 

the previous equation simplifi es to

   E X T( ) = λ
To obtain the variance of a Poisson random variable, we can start with E X 2( ) and this equals

   E X x
e T

x
T x
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T x
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Write x x= − +( )1 1 to obtain

   E X T x
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x
T
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The summation in the fi rst term on the right-hand side of the previous equation is recog-

nized to be the mean of X, which equals λT  so that the fi rst term is ( )λT 2. The summation in 

the second term on the right-hand side is recognized to be the sum of the probabilities, which 

equals 1. Therefore, the previous equation simplifi es to E X T T( ) ( )2 2= +λ λ . Because the 

V X E X EX( ) ( ) − ( )= 2 2
, we have

   V X T T T T( ) ( ) ( )= + − =λ λ λ λ2 2

and the variance is derived.

Magnetic Storage and Contamination Contamination is a problem in the manufacture of magnetic 

storage disks. Assume that the number of particles of contamination that occur on a disk surface has a 

Poisson distribution, and the average number of particles per square centimeter of media surface is 0.1. The area of a disk 

under study is 100 square centimeters. Determine the probability that 12 particles occur in the area of a disk under study.

Let X denote the number of particles in the area of a disk under study. Here the mean number of particles per cm2 

is λ = 0 1.  and T = 100 2cm  so that λT = =0 1 100 10. ( )  particles. Therefore,

P X
e=( ) = =

−

12
10

12
0 095

10 12

!
.

The probability that zero particles occur in the area of the disk under study is

P X e=( ) = =− −0 4 54 1010 5. ×
Determine the probability that 12 or fewer particles occur in the area of the disk under study. The probability is

P X P X P X P X

e

x

x

x

≤( ) = =( ) + =( ) + =( )
=

−

=
∑

12 0 1 12

1010

0

12

…+

( )

!

Because this sum is tedious to compute, many computer programs calculate cumulative Poisson probabilities. From one such 

program, P X ≤( ) =12 0 792. .

Example 3-32

If X is a Poisson random variable over an interval of length T  with parameter λ, then

 μ λ σ λ= = = =E X T V X T( ) ( )and 2  (3-16)

Mean and 
Variance

The mean and variance of a Poisson random variable are equal. For example, if particle counts 

follow a Poisson distribution with a mean of 25 particles per square centimeter, the variance 
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is also 25 and the standard deviation of the counts is 5 per square centimeter. Consequently, 

information on the variability is very easily obtained. Conversely, if the variance of count data 

is much greater than the mean of the same data, the Poisson distribution is not a good model 

for the distribution of the random variable.

3-157.  Suppose that X  has a Poisson distribution with a 

mean of 4. Determine the following probabilities:

(a) P X = 0( )  (b) P X ≤( )2

(c) P X = 4( )  (d) P X = 8( )
3-158.  Suppose that X  has a Poisson distribution with a 

mean of 0.4. Determine the following probabilities:

(a) P X = 0( )  (b) P X ≤( )2

(c) P X =( )4   (d) P X =( )8

3-159.  Suppose that the number of customers who enter 

a bank in an hour is a Poisson random variable, and suppose 

that P X =( ) =0 0 05. . Determine the mean and variance of X .

3-160. The number of telephone calls that arrive at a phone 

exchange is often modeled as a Poisson random variable. Assume 

that on the average there are 10 calls per hour.

(a) What is the probability that there are exactly 5 calls in one 

hour?

(b) What is the probability that there are 3 or fewer calls in 

one hour?

(c) What is the probability that there are exactly 15 calls in two 

hours?

(d) What is the probability that there are exactly 5 calls in 30 

minutes?

3-161.  Astronomers treat the number of stars in a given 

volume of space as a Poisson random variable. The density in 

the Milky Way Galaxy in the vicinity of our solar system is one 

star per 16 cubic light-years.

(a) What is the probability of two or more stars in 16 cubic 

light-years?

(b) How many cubic light-years of space must be studied so 

that the probability of one or more stars exceeds 0.95?

3-162. Data from www.centralhudsonlabs.com determined 

the mean number of insect fragments in 225-gram chocolate 

bars was 14.4, but three brands had insect contamination more 

than twice the average. See the U.S. Food and Drug Admin-

istration–Center for Food Safety and Applied Nutrition for 

Defect Action Levels for food products. Assume that the num-

ber of fragments (contaminants) follows a Poisson distribution.

(a) If you consume a 225-gram bar from a brand at the mean 

contamination level, what is the probability of no insect 

contaminants?

(b) Suppose that you consume a bar that is one-fifth the size 

tested (45 grams) from a brand at the mean contamination 

level. What is the probability of no insect contaminants?

(c) If you consume seven 28.35-gram (one-ounce) bars this 

week from a brand at the mean contamination level, what 

is the probability that you consume one or more insect frag-

ments in more than one bar?

(d) Is the probability of contamination more than twice the 

mean of 14.4 unusual, or can it be considered typical vari-

ation? Explain.

3-163.  In 1898, L. J. Bortkiewicz published a book enti-

tled The Law of Small Numbers. He used data collected over 20 

years to show that the number of soldiers killed by horse kicks 

each year in each corps in the Prussian cavalry followed a Pois-

son distribution with a mean of 0.61.

(a) What is the probability of more than one death in a corps in 

a year?

(b) What is the probability of no deaths in a corps over five years?

3-164. The number of flaws in bolts of cloth in textile manu-

facturing is assumed to be Poisson distributed with a mean of 

0.1 flaw per square meter.

(a) What is the probability that there are two flaws in one 

square meter of cloth?

(b) What is the probability that there is one flaw in 10 square 

meters of cloth?

(c) What is the probability that there are no flaws in 20 square 

meters of cloth?

(d) What is the probability that there are at least two flaws in 

10 square meters of cloth?

3-165.  When a computer disk manufacturer tests a disk, it 

writes to the disk and then tests it using a certifier. The certifier 

counts the number of missing pulses or errors. The number of errors 

on a test area on a disk has a Poisson distribution with λ = 0 2. .

(a) What is the expected number of errors per test area?

(b) What percentage of test areas have two or fewer errors?

3-166. The number of cracks in a section of interstate highway 

that are significant enough to require repair is assumed to follow a 

Poisson distribution with a mean of two cracks per mile.

(a) What is the probability that there are no cracks that require 

repair in 5 miles of highway?

(b) What is the probability that at least one crack requires 

repair in 1 2/  mile of highway?

(c) If the number of cracks is related to the vehicle load on 

the highway and some sections of the highway have a 

heavy load of vehicles whereas other sections carry a light 

load, what do you think about the assumption of a Poisson 

distribution for the number of cracks that require repair?

3-167.  The number of surface flaws in plastic panels used 

in the interior of automobiles has a Poisson distribution with a 

mean of 0.05 flaw per square foot of plastic panel. Assume that 

an automobile interior contains 10 square feet of plastic panel.

FOR SECTION 3-9Exercises
 Problem available in WileyPLUS at instructor’s discretion. 

 Tutoring problem available in WileyPLUS at instructor’s discretion
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(a) What is the probability that there are no surface flaws in an 

auto’s interior?

(b) If 10 cars are sold to a rental company, what is the prob-

ability that none of the 10 cars has any surface flaws?

(c) If 10 cars are sold to a rental company, what is the prob-

ability that at most 1 car has any surface flaws?

3-168.  The number of failures of a testing instrument 

from contamination particles on the product is a Poisson ran-

dom variable with a mean of 0.02 failures per hour.

(a) What is the probability that the instrument does not fail in 

an 8-hour shift?

(b) What is the probability of at least one failure in a 24-hour day?

3-169. The number of content changes to a Web site follows a 

Poisson distribution with a mean of 0.25 per day.

(a) What is the probability of two or more changes in a day?

(b) What is the probability of no content changes in five days?

(c) What is the probability of two or fewer changes in five days?

3-170. The number of views of a page on a Web site follows a 

Poisson distribution with a mean of 1.5 per minute.

(a) What is the probability of no views in a minute?

(b) What is the probability of two or fewer views in 10 minutes?

(c) Does the answer to the previous part depend on whether the 

10-minute period is an uninterrupted interval? Explain.

3-171. Cabs pass your workplace according to a Poisson pro-

cess with a mean of five cabs per hour. Suppose that you exit 

the workplace at 6:00 p.m. Determine the following:

(a) Probability that you wait more than 10 minutes for a cab.

(b) Probability that you wait fewer than 20 minutes for a cab.

(c) Mean number of cabs per hour so that the probability that 

you wait more than 10 minutes is 0.1.

3-172. Orders arrive at a Web site according to a Poisson pro-

cess with a mean of 12 per hour. Determine the following:

(a) Probability of no orders in five minutes.

(b) Probability of 3 or more orders in five minutes.

(c) Length of a time interval such that the probability of no 

orders in an interval of this length is 0.001.

3-173. The article “An Association Between Fine Particles and 

Asthma Emergency Department Visits for Children in Seattle” 

[Environmental Health Perspectives June, 1999 107(6)] used 

Poisson models for the number of asthma emergency depart-

ment (ED) visits per day. For the zip codes studied, the mean 

ED visits were 1.8 per day. Determine the following:

(a) Probability of more than five visits in a day.

(b) Probability of fewer than five visits in a week.

(c) Number of days such that the probability of at least one 

visit is 0.99.

(d) Instead of a mean of 1.8 per day, determine the mean visits 

per day such that the probability of more than five visits in 

a day is 0.1.

3-174. Inclusions are defects in poured metal caused by con-

taminants. The number of (large) inclusions in cast iron follows 

a Poisson distribution with a mean of 2.5 per cubic millimeter. 

Determine the following:

(a) Probability of at least one inclusion in a cubic millimeter.

(b) Probability of at least five inclusions in 5.0 cubic millimeters.

(c) Volume of material to inspect such that the probability of at 

least one inclusion is 0.99.

(d) Instead of a mean of 2.5 per cubic millimeters, the mean 

inclusions per cubic millimeter such that the probability of 

at least one inclusion is 0.95.

3-175.  Let the random variable X  be equally likely to 

assume any of the values 1 8/ , 1 4/ , or 3 8/ . Determine the mean 

and variance of X .

3-176.  Let X  denote the number of bits received in error 

in a digital communication channel, and assume that X  is a 

binomial random variable with p = 0 001. . If 1000 bits are 

transmitted, determine the following:

(a) P X =( )1   (b) P X( )≥ 1

(c) P X ≤( )2   (d) mean and variance of X
3-177. Batches that consist of 50 coil springs from a produc-

tion process are checked for conformance to customer require-

ments. The mean number of nonconforming coil springs in 

a batch is five. Assume that the number of nonconforming 

springs in a batch, denoted as X , is a binomial random variable.

(a) What are n and p?

(b) What is P X( )≤ 2 ?

(c) What is P X( )≥ 49 ?

3-178. An automated egg carton loader has a 1% probability 

of cracking an egg, and a customer will complain if more than 

one egg per dozen is cracked. Assume that each egg load is an 

independent event.

(a) What is the distribution of cracked eggs per dozen? Include 

parameter values.

(b) What is the probability that a carton of a dozen eggs results 

in a complaint?

(c) What are the mean and standard deviation of the number of 

cracked eggs in a carton of a dozen eggs?

3-179.  A total of 12 cells are replicated. Freshly synthe-

sized DNA cannot be replicated again until mitosis is com-

pleted. Two control mechanisms have been identified—one 

positive and one negative—that are used with equal probabil-

ity. Assume that each cell independently uses a control mecha-

nism. Determine the following probabilities.

(a) All cells use a positive control mechanism.

(b) Exactly half the cells use a positive control mechanism.

(c) More than four but fewer than seven cells use a positive 

control mechanism.

3-180. A congested computer network has a 1% chance of 

losing a data packet, and packet losses are independent events. 

An e-mail message requires 100 packets.

(a) What distribution of data packets must be re-sent? Include 

the parameter values.

Supplemental Exercises
 Problem available in WileyPLUS at instructor’s discretion. 

 Tutoring problem available in WileyPLUS at instructor’s discretion
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(b) What is the probability that at least one packet must be 

re-sent?

(c) What is the probability that two or more packets must be 

re-sent?

(d) What are the mean and standard deviation of the number of 

packets that must be re-sent?

(e) If there are 10 messages and each contains 100 packets, 

what is the probability that at least one message requires 

that two or more packets be re-sent?

3-181. A particularly long traffic light on your morning 

commute is green on 20% of the mornings. Assume that each 

morning represents an independent trial.

(a) What is the probability that the first morning that the light 

is green is the fourth morning?

(b) What is the probability that the light is not green for 10 

consecutive mornings?

3-182. The probability is 0.6 that a calibration of a transducer 

in an electronic instrument conforms to specifications for the 

measurement system. Assume that the calibration attempts are 

independent. What is the probability that at most three calibration 

attempts are required to meet the specifications for the measure-

ment system?

3-183. An electronic scale in an automated filling opera-

tion stops the manufacturing line after three underweight 

packages are detected. Suppose that the probability of an 

underweight package is 0.001 and each fill is independent.

(a) What is the mean number of fills before the line is stopped?

(b) What is the standard deviation of the number of fills before 

the line is stopped?

3-184. The probability that an eagle kills a rabbit in a day 

of hunting is 10%. Assume that results are independent for 

each day.

(a) What is the distribution of the number of days until a suc-

cessful hunt?

(b) What is the probability that the first successful hunt occurs 

on day five?

(c) What is the expected number of days until a successful hunt?

(d) If the eagle can survive up to 10 days without food (it requires 

a successful hunt on the 10th day), what is the probability that 

the eagle is still alive 10 days from now?

3-185. Traffic flow is traditionally modeled as a Poisson dis-

tribution. A traffic engineer monitors the traffic flowing through 

an intersection with an average of six cars per minute. To set the 

timing of a traffic signal, the following probabilities are used.

(a) What is the probability that no cars pass through the inter-

section within 30 seconds?

(b) What is the probability that three or more cars pass through 

the intersection within 30 seconds?

(c) Calculate the minimum number of cars through the inter-

section so that the probability of this number or fewer cars 

in 30 seconds is at least 90%.

(d) If the variance of the number of cars through the intersec-

tion per minute is 20, is the Poisson distribution appropri-

ate? Explain.

3-186. A shipment of chemicals arrives in 15 totes. Three 

of the totes are selected at random without replacement for an 

inspection of purity. If two of the totes do not conform to purity 

requirements, what is the probability that at least one of the 

nonconforming totes is selected in the sample?

3-187. The probability that your call to a service line is 

answered in less than 30 seconds is 0.75. Assume that your 

calls are independent.

(a) If you call 10 times, what is the probability that exactly 

nine of your calls are answered within 30 seconds?

(b) If you call 20 times, what is the probability that at least 16 

calls are answered in less than 30 seconds?

(c) If you call 20 times, what is the mean number of calls that 

are answered in less than 30 seconds?

3-188. The probability that your call to a service line is 

answered in less than 30 seconds is 0.75. Assume that your 

calls are independent.

(a) What is the probability that you must call four times to 

obtain the first answer in less than 30 seconds?

(b) What is the mean number of calls until you are answered in 

less than 30 seconds?

3-189. The probability that your call to a service line is 

answered in less than 30 seconds is 0.75. Assume that your 

calls are independent.

(a) What is the probability that you must call six times in 

order for two of your calls to be answered in less than 30 

seconds?

(b) What is the mean number of calls to obtain two answers in 

less than 30 seconds?

3-190. The number of messages that arrive at a Web site is a 

Poisson random variable with a mean of five messages per hour.

(a) What is the probability that five messages are received in 

1.0 hour?

(b) What is the probability that 10 messages are received in 1.5 

hours?

(c) What is the probability that fewer than two messages are 

received in 0.5 hour?

3-191. Four identical computer servers operate a Web site. 

Only one is used to operate the site; the others are spares that can 

be activated in case the active server fails. The probability that a 

request to the Web site generates a failure in the active server is 

0.0001. Assume that each request is an independent trial. What 

is the mean time until all four computers fail?

3-192. The number of errors in a textbook follows a Pois-

son distribution with a mean of 0.01 error per page. What is the 

probability that there are three or fewer errors in 100 pages?

3-193. The probability that an individual recovers from an 

illness in a one-week time period without treatment is 0.1. 

Suppose that 20 independent individuals suffering from this 

illness are treated with a drug and 4 recover in a one-week time 

period. If the drug has no effect, what is the probability that 

4 or more people recover in a one-week time period?

3-194. Patient response to a generic drug to control pain is 

scored on a 5-point scale where a 5 indicates complete relief. 

Historically, the distribution of scores is

1 2 3 4 5

0.05 0.1 0.2 0.25 0.4
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Two patients, assumed to be independent, are each scored.

(a) What is the probability mass function of the total score?

(b) What is the probability mass function of the average score?

3-195.  In a manufacturing process that laminates several 

ceramic layers, 1% of the assemblies are defective. Assume that 

the assemblies is independent.

(a) What is the mean number of assemblies that need to be 

checked to obtain five defective assemblies?

(b) What is the standard deviation of the number of assemblies 

that need to be checked to obtain five defective assemblies?

(c) Determine the minimum number of assemblies that need to 

be checked so that the probability that at least one defective 

assembly is obtained exceeds 0.95.

3-196. Consider the circuit in Example 2-35. Assume that 

devices fail independently. What is the probability of two or 

fewer failed devices?

3-197. Determine the constant c so that the following func-

tion is a probability mass function: f x cx( ) =  for x = 1 2 3 4, , , .

3-198.  A manufacturer of a consumer electronics product 

expects 2% of units to fail during the warranty period. A sample 

of 500 independent units is tracked for warranty performance.

(a) What is the probability that none fails during the warranty 

period?

(b) What is the expected number of failures during the war-

ranty period?

(c) What is the probability that more than two units fail during 

the warranty period?

3-199.  Messages that arrive at a service center for an 

information systems manufacturer have been classified on the 

basis of the number of keywords (used to help route messages) 

and the type of message, either e-mail or voice. Also, 70% of 

the messages arrive via e-mail and the rest are voice.

Number of keywords 0 1 2 3 4

E-mail 0.1 0.1 0.2 0.4 0.2

Voice 0.3 0.4 0.2 0.1 0

Determine the probability mass function of the number of key-

words in a message.

3-200.  The random variable X  has the following prob-

ability distribution:

x 2 3 5 8

Probability 0.2 0.4 0.3 0.1

Determine the following:

(a) P X ≤( )3   (b) P X > 2 5.( )
(c) P 2 7 5 1. .< <( )X  (d) E X( )  (e) V X( )
3-201. Determine the probability mass function for the random 

variable with the following cumulative distribution function:
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3-202.  Each main bearing cap in an engine contains 4 

bolts. The bolts are selected at random without replacement 

from a parts bin that contains 30 bolts from one supplier and 70 

bolts from another.

(a) What is the probability that a main bearing cap contains all 

bolts from the same supplier?

(b) What is the probability that exactly 3 bolts are from the 

same supplier?

3-203. Assume that the number of errors along a magnetic 

recording surface is a Poisson random variable with a mean 

of one error every 105 bits. A sector of data consists of 4096 

eight-bit bytes.

(a) What is the probability of more than one error in a sector?

(b) What is the mean number of sectors until an error occurs?

3-204.  An installation technician for a specialized com-

munication system is dispatched to a city only when three or 

more orders have been placed. Suppose that orders follow a 

Poisson distribution with a mean of 0.25 per week for a city 

with a population of 100,000, and suppose that your city con-

tains a population of 800,000.

(a) What is the probability that a technician is required after a 

one-week period?

(b) If you are the first one in the city to place an order, what is 

the probability that you have to wait more than two weeks 

from the time you place your order until a technician is 

dispatched?

3-205. From 500 customers, a major appliance manufacturer 

randomly selects a sample without replacement. The company 

estimates that 25% of the customers will reply to the survey. If 

this estimate is correct, what is the probability mass function of 

the number of customers that will reply?

(a) Assume that the company samples 5 customers.

(b) Assume that the company samples 10 customers.

3-206.  It is suspected that some of the totes containing 

chemicals purchased from a supplier exceed the moisture con-

tent target. Samples from 30 totes are to be tested for mois-

ture content. Assume that the totes are independent. Determine 

the proportion of totes from the supplier that must exceed the 

moisture content target so that the probability is 0.90 that at 

least 1 tote in the sample of 30 fails the test.

3-207.  Messages arrive to a computer server according to 

a Poisson distribution with a mean rate of 10 per hour. Deter-

mine the length of an interval of time such that the probability 

that no messages arrive during this interval is 0.90.

3-208.  Flaws occur in the interior of plastic used for auto-

mobiles according to a Poisson distribution with a mean of 

0.02 flaw per panel.

(a) If 50 panels are inspected, what is the probability that there 

are no flaws?

(b) What is the expected number of panels that need to be 

inspected before a flaw is found?

(c) If 50 panels are inspected, what is the probability that the 

number of panels that have one or more flaws is fewer than 

or equal to 2?
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3-209.  Saguaro cacti are large cacti indigenous to the 

southwestern United States and Mexico. Assume that the 

number of saguaro cacti in a region follows a Poisson distri-

bution with a mean of 280 per square kilometer. Determine 

the following:

(a) Mean number of cacti per 10,000 square meters.

(b) Probability of no cacti in 10,000 square meters.

(c) Area of a region such that the probability of at least two 

cacti in the region is 0.9.

3-210. Suppose that 50 sites on a patient might contain lesions. 

A biopsy selects 8 sites randomly (without replacement). What 

is the minimum number of sites with lesions so that the prob-

ability of at least one selected site contains lesions is greater 

than or equal to 0.95? Rework for greater than or equal to 0.99.

Mind-Expanding Exercises

3-211. Derive the convergence results used to obtain a 

Poisson distribution as the limit of a binomial distribution.

3-212. Show that the function f x( ) in Example 3-5 satis-

fies the properties of a probability mass function by sum-

ming the infinite series.

3-213. Derive the formula for the mean and standard devi-

ation of a discrete uniform random variable over the range 

of integers a, a , b+ 1 … .

3-214. Derive the expression for the variance of a geomet-

ric random variable with parameter p.

3-215.  An air flight can carry 120 passengers. A passenger 

with a reserved seat arrives for the flight with probability 

0.95. Assume that the passengers behave independently. 

(Use of computer software is expected.)

(a) What is the minimum number of seats the airline should 

reserve for the probability of a full flight to be at least 0.90?

(b) What is the maximum number of seats the airline should 

reserve for the probability that more passengers arrive 

than the flight can seat to be less than 0.10?

(c) Discuss some reasonable policies the airline could use 

to reserve seats based on these probabilities.

3-216. A company performs inspection on shipments from 

suppliers to detect nonconforming products. Assume that a 

lot contains 1000 items and 1% are nonconforming. What 

sample size is needed so that the probability of choosing at 

least one nonconforming item in the sample is at least 0.90? 

Assume that the binomial approximation to the hypergeo-

metric distribution is adequate.

3-217. A company performs inspection on shipments from 

suppliers to detect nonconforming products. The company’s 

policy is to use a sample size that is always 10% of the lot size. 

Comment on the effectiveness of this policy as a general rule 

for all sizes of lots.

3-218. A manufacturer stocks components obtained from 

a supplier. Suppose that 2% of the components are defec-

tive and that the defective components occur independently. 

How many components must the manufacturer have in 

stock so that the probability that 100 orders can be com-

pleted without reordering components is at least 0.95?

3-219. A large bakery can produce rolls in lots of either 0, 

1000, 2000, or 3000 per day. The production cost per item 

is $0.10. The demand varies randomly according to the fol-

lowing distribution:

Demand for rolls 0 1000 2000 3000

Probability of demand 0.3 0.2 0.3 0.2

Every roll for which there is a demand is sold for $0.30. 

Every roll for which there is no demand is sold in a second-

ary market for $0.05. How many rolls should the bakery 

produce each day to maximize the mean profit?

Bernoulli trial

Binomial distribution

Cumulative distribution  

function-discrete random 

variable

Discrete uniform distribution

Expected value  

of a function of a discrete 

random variable

Finite population correction 

factor

Geometric distribution

Hypergeometric distribution

Lack of memory property-

discrete random variable

Mean—discrete random 

variable

Negative binomial 

distribution

Poisson distribution

Poisson process

Probability distribution-

discrete random variable

Probability mass  

function

Standard deviation- 

discrete random variable

Variance—discrete  

random variable

Important Terms and Concepts
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The kinetic theory of gases provides a link between statis-

tics and physical phenomena. The physicist James Maxwell 

used some basic assumptions to determine the distribution 

of molecular velocity in a gas at equilibrium. As a result of 

molecular collisions, all directions of rebound are equally 

likely. From this concept, he assumed equal probabilities 

for velocities in all the x, y, and z directions and inde-

pendence of these components of velocity. This alone is 

suffi cient to show that the probability distribution of the 

velocity in a particular direction x is the continuous prob-

ability distribution known as the normal distribution. This 

fundamental probability distribution can be derived from 

other directions (such as the central limit theorem to be dis-

cussed in a later chapter), but the kinetic theory may be the 

most parsimonious. This role for the normal distribution 

illustrates one example of the importance of continuous 

probability distributions within science and engineering.

4
Continuous Random 
Variables and 
Probability 
Distributions

Chapter Outline

4-1  Continuous Random Variables

4-2   Probability Distributions and 
Probability Density Functions

4-3  Cumulative Distribution Functions

4-4   Mean and Variance of a Continuous 
Random Variable

4-5  Continuous Uniform Distribution

4-6  Normal Distribution

4-7   Normal Approximation to the Binomial 
and Poisson Distributions

4-8  Exponential Distribution

4-9  Erlang and Gamma Distributions

4-10  Weibull Distribution

4-11 Lognormal Distribution

4-12  Beta Distribution
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 Learning Objectives

After careful study of this chapter, you should be able to do the following:

1. Determine probabilities from probability density functions

2. Determine probabilities from cumulative distribution functions and cumulative distribution functions 
from probability density functions, and the reverse

3. Calculate means and variances for continuous random variables

4. Understand the assumptions for some common continuous probability distributions

5. Select an appropriate continuous probability distribution to calculate probabilities in specific applications

6. Calculate probabilities, determine means and variances for some common continuous probability 
distributions

7. Standardize normal random variables

8. Use the table for the cumulative distribution function of a standard normal distribution to calculate 
probabilities

9. Approximate probabilities for some binomial and Poisson distributions

4-1 Continuous Random Variables
Suppose that a dimensional length is measured on a manufactured part selected from a day’s 

production. In practice, there can be small variations in the measurements due to many causes, 

such as vibrations, temperature fluctuations, operator differences, calibrations, cutting tool 

wear, bearing wear, and raw material changes. In an experiment such as this, the measurement 

is naturally represented as a random variable X, and it is reasonable to model the range of 

possible values of X with an interval of real numbers. Recall from Chapter 2 that a continu-
ous random variable is a random variable with an interval (either finite or infinite) of real 

numbers for its range. The model provides for any precision in length measurements.

Because the number of possible values of X is uncountably infinite, X has a distinctly 

different distribution from the discrete random variables studied previously. But as in the dis-

crete case, many physical systems can be modeled by the same or similar continuous random 

variables. These random variables are described, and example computations of probabilities, 

means, and variances are provided in the sections of this chapter.

4-2  Probability Distributions and Probability  
Density Functions

Density functions are commonly used in engineering to describe physical systems. For example, 

consider the density of a loading on a long, thin beam as shown in Fig. 4-1. For any point x along 

the beam, the density can be described by a function (in grams/cm). Intervals with large loadings 

correspond to large values for the function. The total loading between points a and b is determined 

as the integral of the density function from a to b. This integral is the area under the density function 

over this interval, and it can be loosely interpreted as the sum of all the loadings over this interval.

L
o
a
d
in

g

x

FIGURE 4-1 Density function of a 
loading on a long, thin beam.

P(a < X < b)

a b x

f (x)

FIGURE 4-2 Probability determined from the 
area under f x( ).

c04.indd   108 9/24/2013   6:40:02 PM
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Similarly, a probability density function f x( ) can be used to describe the probability 

distribution of a continuous random variable X. If an interval is likely to contain a value for X,  

its probability is large and it corresponds to large values for f x( ). The probability that X is 

between a and b is determined as the integral of f x( ) from a to b. See Fig. 4-2.

For a continuous random variable X , a probability density function is a function 

such that

(1) f x( ) ≥ 0

(2) f x dx( )
−∞

∞

∫ = 1

(3)  P a X b f x dx f x
a

b

≤ ≤( ) = ( ) = ( )∫ area under from toa b for any a and b (4-1)

Probability Density 
Function

A probability density function provides a simple description of the probabilities associated 

with a random variable. As long as f x( ) is nonnegative and f x ,( ) =
−∞

∞
∫ 1  0 1 ≤ ( ) ≤P a X b, ,  

so that the probabilities are properly restricted. A probability density function is zero for x 

values that cannot occur, and it is assumed to be zero wherever it is not specifically defined.

A histogram is an approximation to a probability density function. See Fig. 4-3. For each 

interval of the histogram, the area of the bar equals the relative frequency (proportion) of the 

measurements in the interval. The relative frequency is an estimate of the probability that a 

measurement falls in the interval. Similarly, the area under f x( ) over any interval equals the 

true probability that a measurement falls in the interval.

The important point is that f x( ) is used to calculate an area that represents the prob-

ability that X assumes a value in [a, b]. For the current measurement example, the probability 

that X results in [14 mA, 15 mA] is the integral of the probability density function of X over 

this interval. The probability that X results in [14.5 mA, 14.6 mA] is the integral of the same 

function, f x( ), over the smaller interval. By appropriate choice of the shape of f x( ), we can 

represent the probabilities associated with any continuous random variable X. The shape of 

f x( ) determines how the probability that X assumes a value in [14.5 mA, 14.6 mA] compares 

to the probability of any other interval of equal or different length.

For the density function of a loading on a long, thin beam, because every point has zero width, 

the loading at any point is zero. Similarly, for a continuous random variable X and any value x,

  P X x=( ) = 0

Based on this result, it might appear that our model of a continuous random variable is useless. 

However, in practice, when a particular current measurement such as 14.47 milliamperes, is 

observed, this result can be interpreted as the rounded value of a current measurement that 

is actually in a range such as 14 465 14 475. ≤ ≤ . .x  Therefore, the probability that the rounded 

value 14.47 is observed as the value for X is the probability that X assumes a value in the inter-

val [14.465, 14.475], which is not zero. Similarly, because each point has zero probability, 

one need not distinguish between inequalities such as < or ≤ for continuous random variables.

 x

f (x)

FIGURE 4-3 Histogram approximates a probability density function.
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If X is a continuous random variable, for any x1 and x2,

P x X x P x X x P x X x P x X x1 2 1 2 1 2 1 2≤ ≤( ) = ≤( ) = ≤( ) = ( )< < < <  (4-2)

FIGURE 4-4 Probability density 
function for Example 4-1.

4.9 5.1

5

f (x)

x

FIGURE 4-5 Probability density function 
for Example 4-2.

12.5

f (x)

x12.6

Electric Current Let the continuous random variable X denote the current measured in a thin 

copper wire in milliamperes. Assume that the range of X is [4.9, 5.1] mA, and assume that the 

probability density function of X is f x( ) = 5 for 4 9 5 1. .≤ ≤ .x  What is the probability that a current measurement is 

less than 5 milliamperes?

The probability density function is shown in Fig. 4-4. It is assumed that f x( ) = 0 wherever it is not specifi cally 

defi ned. The shaded area in Fig. 4-4 indicates the probability.

P X f x dx dx< 5 5( ) = ( ) = =∫∫
4 9

5

4 9

5

0 5
..

.

As another example,

P X f x dx4.95 < < 5.1( ) = ( ) =∫
4 95

5 1

0 75
.

.

.

Example 4-1

Hole Diameter Let the continuous random variable X denote the diameter of a hole drilled in 

a sheet metal component. The target diameter is 12.5 millimeters. Most random disturbances to 

the process result in larger diameters. Historical data show that the distribution of X can be modeled by a probability 

density function f x e x( ) = − − .( )20
20 12 5

, for x ≥ .12 5.

If a part with a diameter greater than 12.60 mm is scrapped, what proportion of parts is scrapped? The density func-

tion and the requested probability are shown in Fig. 4-5. A part is scrapped if X > 12.60. Now,

P X f x dx e dx

e

x

x

> 12.60( ) = ( ) =

= −

− −( )
∞∞

− −

∫∫ 20
20 12 5

12 612 6

20 12 5

.

..

.(( ) ∞
=12 6 0 135. .

What proportion of parts is between 12.5 and 12.6 millimeters? Now

P X f x dx e x
12.5 12.6< <( ) = ( ) = − = .∫ − −( )

12 5

12 6
20 12 5

12 5

12 6

0 865
.

.
.

.

.

Because the total area under f x( ) equals 1, we can also calculate P X P X12 5 1 12 6 1 0 135 0 865. . . .< < 12.6 >( ) = − ( ) = − = .

Practical Interpretation: Because 0.135 is the proportion of parts with diameters greater than 12.60 mm, a large 

proportion of parts is scrapped. Process improvements are needed to increase the proportion of parts with dimensions 

near 12.50 mm.

Example 4-2

c04.indd   110 9/24/2013   6:40:12 PM



Section 4-2/Probability Distributions and Probability Density Functions    111

4-1.  Suppose that f x e x( ) = −  for 0 < x. Determine the 

following:

(a) P X1 <( ) (b)  P X1 2 5< < .( )
(c) P X =( )3  (d)  P X < 4( ) (e) P X3 ≤( )
(f) x  such that P x X<( ) = .0 10

(g) x  such that P X x≤( ) = .0 10

4-2.  Suppose that f x x x x( ) = −( ) .3 8 256 0 82 ⁄ < < for  

Determine the following:

(a) P X < 2( ) (b) P X < 9( ) (c) P X2 4< <( )
(d) P X > 6( ) (e) x  such that P X x<( ) = .0 95

4-3. Suppose that f x x x( ) = . − π π .0 5 2 2 cos  for ⁄ < < ⁄  Deter-

mine the following:

(a) P X < 0( )  (b) P X < ⁄−π( )4   (c) P X− π π( )⁄ < < ⁄4 4

(d) P X > ⁄−π( )4   (e) x  such that P X x<( ) = .0 95

4-4.  The diameter of a particle of contamination (in 

micrometers) is modeled with the probability density function 

f x x( ) = 2 3⁄  for x > 1. Determine the following:

(a) P X < 2( )  (b) P X > 5( )  (c) P X4 8< <( ) 
(d) P X X< >4 8 or ( )  (e) x  such that P X x<( ) = .0 95

4-5.   Suppose that f x x( ) = 8 for 3 5< <x . 
Determine the following probabilities:

(a) P X < 4( ) (b) P X > 3 5.( ) (c) P X4 5< <( )
(d) P X < 4 5.( )  (e) P X X< >3 5 4 5.   .( )or

4-6.  Suppose that f x e xx( ) =   .− −( )4
4for <  Determine the 

following:

(a) P X1 <( )  (b) P X2 5≤( )<   (c) P X5 <( )
(d) P X8 12< <( )  (e) x  such that P X x<( ) = 0 90.

4-7.  Suppose that f x x( ) = .1 5 2 for − .1 1< x <  Determine 

the following:

(a) P < X0( ) (b) P < X0 5.( )
(c) P X− . ≤ ≤ .( )0 5 0 5  (d) P X < −( )2

(e) P X < X >0 0 5  − .( )or  (f) x  such that P x X<( ) = . .0 05

4-8.  The probability density function of the time to fail-

ure of an electronic component in a copier (in hours) is f x( ) = 
e x− / /1000 1000 for x > 0. Determine the probability that

(a) A component lasts more than 3000 hours before failure.

(b) A component fails in the interval from 1000 to 2000 hours.

(c) A component fails before 1000 hours.

(d) The number of hours at which 10% of all components  

have failed.

4-9.  The probability density function of the net weight 

in pounds of a packaged chemical herbicide is f x( ) = .2 0 for 

49 75 50 25. .< <x  pounds.

(a) Determine the probability that a package weighs more 

than 50 pounds.

(b) How much chemical is contained in 90% of all packages?

4-10.  The probability density function of the length of 

a cutting blade is f x( ) = .1 25 for 74 6 75 4. .< <x  millimeters. 

Determine the following:

(a) P X < 74 8.( )  (b)  P X X< >74 8 75 2. .( )or

(c) If the specifications for this process are from 74.7 to 75.3 

millimeters, what proportion of blades meets specifications?

4-11.  The probability density function of the length of a 

metal rod is f x( ) = 2 for  2 3 2 8. .< <x   meters.

(a) If the specifications for this process are from 2.25 to 2.75 

meters, what proportion of rods fail to meet the specifications?

(b) Assume that the probability density function is f x( ) = 2 for 

an interval of length 0.5 meters. Over what value should the 

density be centered to achieve the greatest proportion of 

rods within specifications?

4-12. An article in Electric Power Systems Research [“Mod-

eling Real-Time Balancing Power Demands in Wind Power 

Systems Using Stochastic Differential Equations” (2010, Vol. 

80(8), pp. 966–974)] considered a new probabilistic model to 

balance power demand with large amounts of wind power. In 

this model, the power loss from shutdowns is assumed to have 

a triangular distribution with probability density function 

f x

x x

x( )

[ ]

=
− . × + . × , ∈ ,

. × − . ×

− −

− −

5 56 10 5 56 10 100 500

4 44 10 4 44 10

4 6

3 6 ,, ∈ ,
,

⎧

⎨
⎪

⎩
⎪

x [ ]500 1000

0 otherwise

Determine the following: 

(a) P X( )< 90  (b) P X( )100 200< ≤  

(c) P X( )> 800  (d) Value exceeded with probability 0.1. 

4-13. A test instrument needs to be calibrated periodically to 

prevent measurement errors. After some time of use without cal-

ibration, it is known that the probability density function of the 

measurement error is f x x( ) = − .1 0 5  for 0 2< <x  millimeters. 

(a) If the measurement error within 0.5 millimeters is accept-

able, what is the probability that the error is not acceptable 

before calibration? 

(b) What is the value of measurement error exceeded with 

probability 0.2 before calibration? 

(c) What is the probability that the measurement error is 

exactly 0.22 millimeters before calibration? 

4-14. The distribution of X  is approximated with a triangu-

lar probability density function f x x( ) = . − .0 025 0 0375 for 

30 50< <x  and f x x( ) = − . + .0 025 0 0875 for 50 70< <x . 

Determine the following: 

(a) P X( )≤ 40   (b) P X( )40 60< ≤  

(c) Value x  exceeded with probability 0.99. 

4-15. The waiting time for service at a hospital emergency depart-

ment (in hours) follows a distribution with probability density  

function f x x( ) exp( )= . − .0 5 0 5  for 0 < x. Determine the following: 

(a) P X( )< .0 5    (b) P X( )> 2  

(c) Value x  (in hours) exceeded with probability 0.05. 

4-16. If X  is a continuous random variable, argue that 
P x X x1 2≤ ≤( ) = ≤( )= ≤( )= ( )P x X x P x X x P x X x1 2 1 2 1 2< < < < .

 Problem available in WileyPLUS at instructor’s discretion. 

 Tutoring problem available in WileyPLUS at instructor’s discretion.

FOR SECTION 4-2Exercises
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Notice that in the defi nition of F x( ), any < can be changed to ≤ and vice versa. That is, 

in Example 4-3 F x( ) can be defi ned as either 5  x − 24 5. or 0 at the end-point x ,= 4 9.  and 

F x( ) can be defi ned as either 5  x − 24 5.  or 1 at the end-point x = .5 1.  In other words, F x( ) 
is a continuous function. For a discrete random variable, F x( ) is not a continuous function. 

Sometimes a continuous random variable is defi ned as one that has a continuous cumulative 

distribution function.

4-3 Cumulative Distribution Functions
An alternative method to describe the distribution of a discrete random variable can also be 

used for continuous random variables.

The cumulative distribution function of a continuous random variable X is

 F x P X x f u du
x

( ) = ≤( ) = ( )
−∞
∫  (4-3)

for −∞ ∞.< <x

Cumulative 
Distribution Function

The cumulative distribution function is defi ned for all real numbers. The following example 

illustrates the defi nition.

FIGURE 4-6 Cumulative distribution 
function for Example 4-3.

20

1

x0

f(x)

FIGURE 4-7 Cumulative distribution 
function for Example 4-4.

12.5

1

x0

f(x)

Electric Current For the copper current measurement in Example 4-1, the cumulative 

 distribution function of the random variable X consists of three expressions. If x < , f x4 9 0.  ( ) = .  

Therefore,

F x , x( ) = 0 for < 4.9
and

F x f u du x , x
x

( ) = ( ) = − ≤∫
 4 9

5 24 5 4 9 5 1
.

. . .for <

Finally,

F x f u du , x
x

( ) = ( ) = ≤∫
4 9

1 5 1
.

.for

Therefore,

F x

x

x x

x

( ) = − ≤
≤

⎧
⎨
⎪

⎩⎪

0 4 9

5 24 5 4 9 5 1

1 5 1

<
<

.

. . .

.

The plot of F x( ) is shown in Fig. 4-6.

Example 4-3
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Then, given F x( ),
f x

dF x

dx
( )

( )=

as long as the derivative exists.

Reaction Time The time until a chemical reaction is complete (in milliseconds) is approximated by 

the cumulative distribution function

F x e x
x

x( ) = − ≤
<{ −1 0

0 0
0 01.

Determine the probability density function of X. What proportion of reactions is complete within 200 milliseconds? 

Using the result that the probability density function is the derivative of F x( ), we obtain

f x e x
x

x( ) = ≤
<{ −0 01 0

0 0
0 01. .

The probability that a reaction completes within 200 milliseconds is

P X F e< 200 200 1 0 86472( ) = ( ) = − =− .

Example 4-5

Hole Diameter For the drilling operation in Example 4-2, F x( ) consists of two expressions.

F x( ) = 0  for  x < 12 5.

and for 12 5. ≤ x ,

F x e du eu
x

x( ) = = −− −( ) − −( )∫ 20 1
20 12 5

12 5

20 12 5.

.

.

Therefore,

f x e x
x

x( ) = ≤{ − − −( )1 12 5
0 12 5

20 12 5. .
.<

Figure 4-7 displays a graph of F x( ).
Practical Interpretation: The cumulative distribution function enables one to easily calculate the probability a diam-

eter in less than a value (such as 12.60 mm). Therefore, the probability of a scrapped part can be easily determined.

Example 4-4

FOR SECTION 4-3Exercises
 Problem available in WileyPLUS at instructor’s discretion. 

 Tutoring problem available in WileyPLUS at instructor’s discretion

4-17.  Suppose that the cumulative distribution function of 

the random variable X  is

F x

x

x x

x

( ) = . ≤
≤

⎧

⎨
⎪

⎩
⎪

0 0

0 25 0 5

1 5

<
<

Determine the following:

(a) P X < 2 8.( ) (b) P X > 1 5.( )
(c) P X < −( )2  (d) P X > 6( )
4-18.  Suppose that the cumulative distribution function of 

the random variable X  is

Probability Density 
Function from the 

Cumulative 
Distribution Function

The probability density function of a continuous random variable can be determined from the 

cumulative distribution function by differentiating. The fundamental theorem of calculus states that
d

dx
f u du f x

x

( ) = ( )
−∞
∫
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F x

x

x x

x

( ) =
−

. + . − ≤
≤

⎧

⎨
⎪

⎩
⎪

0 2

0 25 0 5 2 2

1 2

<
<

Determine the following:

(a) P X < 1 8.( ) (b) P X > − .( )1 5

(c) P X < −( )2  (d)  P X−( )1 1< <

4-19.  Determine the cumulative distribution function for 

the distribution in Exercise 4-1.

4-20.  Determine the cumulative distribution function for 

the distribution in Exercise 4-2.

4-21. Determine the cumulative distribution function for the 

distribution in Exercise 4-3.

4-22. Determine the cumulative distribution function for the 

distribution in Exercise 4-4.

4-23. Determine the cumulative distribution function for the 

distribution in Exercise 4-5.

4-24. Determine the cumulative distribution function for the 

distribution in Exercise 4-8. Use the cumulative distribution 

function to determine the probability that a component lasts 

more than 3000 hours before failure.

4-25. Determine the cumulative distribution function for the 

distribution in Exercise 4-11. Use the cumulative distribution 

function to determine the probability that a length exceeds  

2.7 meters.

4-26.  The probability density function of the time you arrive 

at a terminal (in minutes after 8:00 a.m.) is f x x( ) = 0 1. exp( 0.1 )−   

for 0 < x. Determine the probability that

(a) You arrive by 9:00 a.m.

(b) You arrive between 8:15 a.m. and 8:30 a.m.

(c) You arrive before 8:40 a.m. on two or more days of five 

days. Assume that your arrival times on different days are 

independent.

(d) Determine the cumulative distribution function and use the 

cumulative distribution function to determine the probabil-

ity that you arrive between 8:15 a.m. and 8:30 a.m.

4-27.  The gap width is an important property of a magnetic 

recording head. In coded units, if the width is a continuous ran-

dom variable over the range from 0  <  x   <  2 with f x x( ) = 0 5. , 

determine the cumulative distribution function of the gap width.

Determine the probability density function for each of the 

 following cumulative distribution functions.

4-28.  F x e xx( ) = − −1 02  >
4-29. 

F x

x

x x

x x

x

( ) =
. ≤
. + . ≤

≤

⎧

⎨
⎪⎪

⎩
⎪
⎪

0 0

0 2 0 4

0 04 0 64 4 9

1 9

<
<
<

4-30. 

F x

x

x x

x x

x

( ) =

−
. + . − ≤
. + . ≤ .

. ≤

⎧

⎨
⎪⎪

⎩
⎪
⎪

0 2

0 25 0 5 2 1

0 5 0 25 1 1 5

1 1 5

<
<
<

4-31. Determine the cumulative distribution function for the 

random variable in Exercise 4-13.

4-32. Determine the cumulative distribution function for the 

random variable in Exercise 4-14. Use the cumulative distri-

bution function to determine the probability that the random 

variable is less than 55.

4-33. Determine the cumulative distribution function for the 

random variable in Exercise 4-15. Use the cumulative distribu-

tion function to determine the probability that 40 60< ≤X .

4-34. Determine the cumulative distribution function for the 

random variable in Exercise 4-16. Use the cumulative distribu-

tion function to determine the probability that the waiting time 

is less than one hour. 

4-4  Mean and Variance of a Continuous  
Random Variable

The mean and variance can also be defined for a continuous random variable. Integration 

replaces summation in the discrete definitions. If a probability density function is viewed as a 

loading on a beam as in Fig. 4-1, the mean is the balance point.

Suppose that X is a continuous random variable with probability density function 

f x( ). The mean or expected value of X, denoted as μ or E X( ), is
 μ = ( ) = ( )

−∞

∞

∫E X xf x dx (4-4)

The variance of X, denoted as V X( ) or σ2 , is

 s2 2 2 2= ( ) = −( ) ( ) = ( ) −
−∞

∞

−∞

∞

∫∫V X x f x dx x f x dxμ μ  

The standard deviation of X is σ = σ2 .

Mean and Variance
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The equivalence of the two formulas for variance can be derived from the same approach used 

for discrete random variables.

Electric Current For the copper current measurement in Example 4-1, the mean of X is

E X xf x dx x( ) = ( ) = =∫ 5 2 52

4 9

5 1

4 9

5 1

/
.

.

.

.

The variance of X is

V X x f x dx x( ) = −( ) ( ) = −( ) =∫ 10 5 10 3
2

4 9

5 1
3

4 9

5 1

.

.

.

.
/ 0.0033

Example 4-6

If X is a continuous random variable with probability density function f x( ),
 E h X h x f x dx( )⎡⎣ ⎤⎦ = ( ) ( )

−∞

∞

∫  (4-5)

Expected Value of a 
Function of a 

Continuous Random 
Variable

In Example 4-1, X is the current measured in milliamperes. What is the expected value of power 

when the resistance is 100 ohms? Use the result that power in watts P RI= −10 6 2, where I is the 

current in milliamperes and R is the resistance in ohms. Now, h X X( ) = 10 1006− 2. Therefore,

E h X x dx
x( )⎡⎣ ⎤⎦ = = =− ∫10 0 0001
3

0 000504 2
3

4 9

5 1

4 9

5 1
( ) . .

.

.

.

.
watts

Example 4-7

In the special case that h X aX b( ) = +  for any constants a and b, E h X aE X b( )⎡⎣ ⎤⎦ = ( ) + . This 

can be shown from the properties of integrals.

The expected value of a function h X( ) of a continuous random variable is also defi ned in 

a straightforward manner.

Hole Diameter For the drilling operation in Example 4-2, the mean of x is

E X xf x dx x e dxx( ) = ( ) =
∞

− −( )
∞

∫ ∫
12 5

20 12 5

12 5

20
.

.

.

Integration by parts can be used to show that

E X xe
ex

x

( ) = − − = + =− −( )
− −( )

20 12 5
20 12 5

12 520
12 5 0 05 12 55

.
.

.
. . .

∞

The variance of X is

V X x f x dx( ) = −( ) ( )
∞

∫ 12 55
2

12 5

.
.

Although more diffi cult, integration by parts can be used twice to show that V(X) = 0.0025 and σ = 0.05.

Practical Interpretation: The scrap limit at 12.60 mm is only 1 standard deviation greater than the mean. This is 

generally a warning that the scrap may be unacceptably high.

Example 4-8
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4-35.  Suppose that f x( ) = .0 25 for 0 4< <x . Determine 

the mean and variance of X .

4-36.  Suppose that f x x( ) = .0 125  for 0 4< <x . Deter-

mine the mean and variance of X .

4-37.  Suppose that f x x( ) = .1 5 2 for − .1 1< <x  Determine 

the mean and variance of X .

4-38.  Suppose that f x x( ) = / 8 for 3 5< <x . Determine 

the mean and variance of x .

4-39. Determine the mean and variance of the random variable 

in Exercise 4-1.

4-40. Determine the mean and variance of the random variable 

in Exercise 4-2.

4.41 Determine the mean and variance of the random variable 

in Exercise 4-13.

4.42 Determine the mean and variance of the random variable 

in Exercise 4-14.

4.43 Determine the mean and variance of the random variable 

in Exercise 4-15.

4.44 Determine the mean and variance of the random variable 

in Exercise 4-16.

4-45.  Suppose that contamination particle size (in microm-

eters) can be modeled as f x x( ) = −2 3 for 1 < x. Determine the 

mean of X . What can you conclude about the variance of X?

4-46.  Suppose that the probability density function of 

the length of computer cables is f x( ) = 0 1.  from 1200 to 1210 

millimeters.

(a) Determine the mean and standard deviation of the cable 

length.

(b) If the length specifications are 1195 1205< <x  millimeters, 

what proportion of cables is within specifications?

4-47.  The thickness of a conductive coating in microm-

eters has a density function of 600 2x−  for 100 m 120 mμ < < μx .

(a) Determine the mean and variance of the coating thickness.

(b) If the coating costs $0.50 per micrometer of thickness on 

each part, what is the average cost of the coating per part?

4-48.  The probability density function of the weight of 

packages delivered by a post office is f x x( ) = ( )70 69 2/  for 

1 < <x 70 pounds.

(a) Determine the mean and variance of weight.

(b) If the shipping cost is $2.50 per pound, what is the average 

shipping cost of a package?

(c) Determine the probability that the weight of a package 

exceeds 50 pounds.

4-49.  Integration by parts is required. The probability 

density function for the diameter of a drilled hole in millim-

eters is 10
10 5e x− −( ) for x > 5 mm. Although the target diameter 

is 5 millimeters, vibrations, tool wear, and other nuisances pro-

duce diameters greater than 5 millimeters.

(a) Determine the mean and variance of the diameter of the holes.

(b) Determine the probability that a diameter exceeds 5.1 

millimeters.

4-5 Continuous Uniform Distribution
The simplest continuous distribution is analogous to its discrete counterpart.

A continuous random variable X with probability density function

 f x b a , a x b( ) = −( ) ≤ ≤1  (4-6)

is a continuous uniform random variable.

Continuous Uniform 
Distribution

 Problem available in WileyPLUS at instructor’s discretion. 

 Tutoring problem available in WileyPLUS at instructor’s discretion.

The probability density function of a continuous uniform random variable is shown in Fig. 4-8.  

The mean of the continuous uniform random variable X is

E X
x

b a
dx

x

b a

a b

a

b

a

b( ) =
−

=
−

=
+( )

∫
0 5

2

2.

The variance of X is

V X
x

a b

b a
dx

x
a b

b a

a

b

a

b

( ) =
− +⎛

⎝⎜
⎞
⎠⎟

−
=

− +⎛
⎝⎜

⎞
⎠⎟

−
=

⌠

⌡

⎮
⎮
⎮⎮

( ) ( )

( )

2 2

3

2 3

(( )b a− 2

12

 FOR SECTION 4-4Exercises
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The cumulative distribution function of a continuous uniform random variable is obtained 

by integration. If a x b,, ,

F x
b a

du
x a

b aa

x

( ) =
−

= −
−∫

1

Therefore, the complete description of the cumulative distribution function of a continuous 

uniform random variable is

F x

x a

x a

b a
a x b

b x

( ) = −
−

≤

≤

⎧

⎨
⎪⎪

⎩
⎪
⎪

0

1

<

<

An example of F x( ) for a continuous uniform random variable is shown in Fig. 4-6.

Uniform Current In Example 4-1, the random variable X has a continuous uniform distribution on 

[4.9, 5.1]. The probability density function of X is f x , x( ) =  ≤ ≤ .5 4 9 5 1. .

What is the probability that a measurement of current is between 4.95 and 5.0 milliamperes? The requested prob-

ability is shown as the shaded area in Fig. 4-9.

P x f x dx4 95 5 0 5 0 05 0 25
4 95

5 0

. . . .
.

.

< <( ) = ( ) = ( ) =∫

The mean and variance formulas can be applied with a = 4 9.  and b = .5 1.  Therefore,

E X V X( ) = ( ) = =5 0 2 122 2mA and 0.0033 mA.

Consequently, the standard deviation of X is 0.0577 mA.

Example 4-9

FIGURE 4-8  Continuous uniform probability density function.

a

1

b – a

x

f(x)

b

FIGURE 4-9 Probability for Example 4-9.

x

f(x)

4.9 4.95 5.0 5.1

5

If X is a continuous uniform random variable over a x b≤ ≤ ,

 μ = ( ) =
+( ) σ = ( ) =

−( )
E X

a b
V X

b a

2 12
2

2

and  (4-7)

Mean and Variance

These results are summarized as follows.
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4-50.  Suppose that X  has a continuous uniform distribu-

tion over the interval [1.5, 5.5]. Determine the following:

(a) Mean, variance, and standard deviation of X
(b) P X < 2 5.( ). (c) Cumulative distribution function

4-51.  Suppose X  has a continuous uniform distribution 

over the interval −  ⎡⎣ ⎤⎦.1 1,  Determine the following:

(a) Mean, variance, and standard deviation of X
(b) Value for x  such that P −( ) =x X x< < 0 90.

(c) Cumulative distribution function

4-52.  The net weight in pounds of a packaged chemical 

herbicide is uniform for 49 75 50 25. .< <x  pounds. Determine 

the following:

(a) Mean and variance of the weight of packages

(b) Cumulative distribution function of the weight of packages

(c) P X < 50 1.( )
4-53.  The thickness of a flange on an aircraft component 

is uniformly distributed between 0.95 and 1.05 millimeters. 

Determine the following:

(a) Cumulative distribution function of flange thickness

(b) Proportion of flanges that exceeds 1.02 millimeters

(c) Thickness exceeded by 90% of the flanges

(d) Mean and variance of flange thickness

4-54.  Suppose that the time it takes a data collection oper-

ator to fill out an electronic form for a database is uniformly 

between 1.5 and 2.2 minutes.

(a) What are the mean and variance of the time it takes an oper-

ator to fill out the form?

(b) What is the probability that it will take less than two min-

utes to fill out the form?

(c) Determine the cumulative distribution function of the time 

it takes to fill out the form.

4-55.  The thickness of photoresist applied to wafers in 

semiconductor manufacturing at a particular location on the 

wafer is uniformly distributed between 0.2050 and 0.2150 

micrometers. Determine the following:

(a) Cumulative distribution function of photoresist thickness

(b) Proportion of wafers that exceeds 0.2125 micrometers in 

photoresist thickness

(c) Thickness exceeded by 10% of the wafers

(d) Mean and variance of photoresist thickness

4-56. An adult can lose or gain two pounds of water in the course 

of a day. Assume that the changes in water weight are uniformly 

distributed between minus two and plus two pounds in a day. 

What is the standard deviation of a person’s weight over a day?

4-57.  A show is scheduled to start at 9:00 a.m., 9:30 a.m., 

and 10:00 a.m. Once the show starts, the gate will be closed. 

A visitor will arrive at the gate at a time uniformly distributed 

between 8:30 a.m. and 10:00 a.m. Determine the following:

(a) Cumulative distribution function of the time (in minutes) 

between arrival and 8:30 a.m.

(b) Mean and variance of the distribution in the previous part

(c) Probability that a visitor waits less than 10 minutes for a show

(d) Probability that a visitor waits more than 20 minutes for a show

4-58. The volume of a shampoo filled into a container is uni-

formly distributed between 374 and 380 milliliters.

(a) What are the mean and standard deviation of the volume of 

shampoo?

(b) What is the probability that the container is filled with less 

than the advertised target of 375 milliliters?

(c) What is the volume of shampoo that is exceeded by 95% of 

the containers?

(d) Every milliliter of shampoo costs the producer $0.002. Any 

shampoo more than 375 milliliters in the container is an 

extra cost to the producer. What is the mean extra cost?

4-59. An e-mail message will arrive at a time uniformly dis-

tributed between 9:00 a.m. and 11:00 a.m. You check e-mail at 

9:15 a.m. and every 30 minutes afterward.

(a) What is the standard deviation of arrival time (in minutes)?

(b) What is the probability that the message arrives less than 10 

minutes before you view it?

(c) What is the probability that the message arrives more than 

15 minutes before you view it?

4-60.  Measurement error that is continuous and uniformly 

distributed from –3 to +3 millivolts is added to a circuit’s true 

voltage. Then the measurement is rounded to the nearest mil-

livolt so that it becomes discrete. Suppose that the true voltage 

is 250 millivolts.

(a) What is the probability mass function of the measured voltage?

(b) What are the mean and variance of the measured voltage?

4-61. A beacon transmits a signal every 10 minutes (such as 

8:20, 8:30, etc.). The time at which a receiver is tuned to detect 

the beacon is a continuous uniform distribution from 8:00 a.m. 

to 9:00 a.m. Consider the waiting time until the next signal from 

the beacon is received. 

(a) Is it reasonable to model the waiting time as a continuous 

uniform distribution? Explain. 

(b) What is the mean waiting time? 

(c) What is the probability that the waiting time is less than  

3 minutes? 

4-62. An electron emitter produces electron beams with 

changing kinetic energy that is uniformly distributed between 

three and seven joules. Suppose that it is possible to adjust the 

upper limit of the kinetic energy (currently set to seven joules). 

(a) What is the mean kinetic energy? 

(b) What is the variance of the kinetic energy? 

(c) What is the probability that an electron beam has a kinetic 

energy of exactly 3.2 joules? 

(d) What should be the upper limit so that the mean kinetic 

energy increases to eight joules? 

(e) What should be the upper limit so that the variance of 

kinetic energy decreases to 0.75 joules?

   FOR SECTION 4-5EXERCISES
 Problem available in WileyPLUS at instructor’s discretion. 

 Tutoring problem available in WileyPLUS at instructor’s discretion.
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Section 4-6/Normal Distribution   119

4-6 Normal Distribution
Undoubtedly, the most widely used model for a continuous measurement is a normal ran-
dom variable. Whenever a random experiment is replicated, the random variable that equals 

the average (or total) result over the replicates tends to have a normal distribution as the 

number of replicates becomes large. De Moivre presented this fundamental result, known 

as the central limit theorem, in 1733. Unfortunately, his work was lost for some time, and 

Gauss independently developed a normal distribution nearly 100 years later. Although De 

Moivre was later credited with the derivation, a normal distribution is also referred to as a 

Gaussian distribution.

When do we average (or total) results? Almost always. For example, an automotive engi-

neer may plan a study to average pull-off force measurements from several connectors. If we 

assume that each measurement results from a replicate of a random experiment, the normal 

distribution can be used to make approximate conclusions about this average. These conclu-

sions are the primary topics in the subsequent chapters of this book.

Furthermore, sometimes the central limit theorem is less obvious. For example, assume that 

the deviation (or error) in the length of a machined part is the sum of a large number of infini-

tesimal effects, such as temperature and humidity drifts, vibrations, cutting angle variations, 

cutting tool wear, bearing wear, rotational speed variations, mounting and fixture variations, 

variations in numerous raw material characteristics, and variation in levels of contamination. 

If the component errors are independent and equally likely to be positive or negative, the total 

error can be shown to have an approximate normal distribution. Furthermore, the normal dis-

tribution arises in the study of numerous basic physical phenomena. For example, the physicist 

Maxwell developed a normal distribution from simple assumptions regarding the velocities  

of molecules.

The theoretical basis of a normal distribution is mentioned to justify the somewhat complex 

form of the probability density function. Our objective now is to calculate probabilities for a 

normal random variable. The central limit theorem will be stated more carefully in Chapter 5.

Random variables with different means and variances can be modeled by normal probability 

density functions with appropriate choices of the center and width of the curve. The value of 

E X( ) = μ determines the center of the probability density function, and the value of V X( ) = σ2 

determines the width. Figure 4-10 illustrates several normal probability density functions with 

selected values of μ and σ2. Each has the characteristic symmetric bell-shaped curve, but the cen-

ters and dispersions differ. The following definition provides the formula for normal probability 

density functions.

A random variable X with probability density function

 f x e x
x

( ) =  − ∞ ∞
− −( )

1

2

2

2

π
< <

μ

σ
σ2

  (4-8)

is a normal random variable with parameters μ where −∞ μ ∞< < , and σ > 0. Also,

 E X V X( ) = μ ( ) =and σ2 (4-9)

and the notation N ,μ σ2( ) is used to denote the distribution.

Normal Distribution

The mean and variance of X are shown to equal μ and σ2 , respectively, in an exercise at the 

end of Chapter 5.
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Appendix Table III provides cumulative probabilities for a standard normal random vari-

able. Cumulative distribution functions for normal random variables are also widely available in 

computer packages. They can be used in the same manner as Appendix Table III to obtain prob-

abilities for these random variables. The use of Table III is illustrated by the following example.

The following equations and Fig. 4-12 summarize some useful results concerning a normal 

distribution. For any normal random variable,

P Xμ < < μ− +( ) =s s 0 6827.

P Xμ < < μ− +( ) =2 2 0 9545s s .

P Xμ < < μ− +( ) =3 3 0 9973s s .

Also, from the symmetry of f x , P X P X( )  μ( ) = μ( ) = . .< < 0 5  Because f x( ) is positive for 

all x, this model assigns some probability to each interval of the real line. However, the prob-

ability density function decreases as x moves farther from μ. Consequently, the probability 

that a measurement falls far from μ is small, and at some distance from μ, the probability of an 

interval can be approximated as zero.

The area under a normal probability density function beyond 3σ from the mean is quite 

small. This fact is convenient for quick, rough sketches of a normal probability density func-

tion. The sketches help us determine probabilities. Because more than 0.9973 of the prob-

ability of a normal distribution is within the interval μ −  μ +( )3 3s s, , 6σ is often referred to 

as the width of a normal distribution. Advanced integration methods can be used to show that 

the area under the normal probability density function from −∞ ∞< <x   is 1.

FIGURE 4-10 Normal probability density functions for 
selected values of the parameters μ and σ2.

x

s2 = 1

s2 = 4

s2 = 1
f (x)

= 15m= 5m

FIGURE 4-11 Probability that X  > 13 for a normal 
random variable with μ = 10 and σ = .2 4

10 x13

f (x)

Assume that the current measurements in a strip of wire follow a normal distribution with a mean 

of 10 milliamperes and a variance of 4 (milliamperes)2. What is the probability that a measurement 

exceeds 13 milliamperes?

Let X denote the current in milliamperes. The requested probability can be represented as P X > 13( ). This prob-

ability is shown as the shaded area under the normal probability density function in Fig. 4-11. Unfortunately, there is no 

closed-form expression for the integral of a normal probability density function, and probabilities based on the normal 

distribution are typically found numerically or from a table (that we introduce soon).

Example 4-10

A normal random variable with

μ σ= =0 12and

is called a standard normal random variable and is denoted as Z . The cumulative 

distribution function of a standard normal random variable is denoted as

Φ( ) = ≤( )z P Z z

Standard Normal 
Random Variable
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Probabilities that are not of the form P Z z#( ) are found by using the basic rules of prob-

ability and the symmetry of the normal distribution along with Appendix Table III. The 

 following examples illustrate the method.

Standard Normal Distribution Assume that Z  is a standard normal random variable. Appendix 

Table III provides probabilities of the form Φ( ) = ≤( ).z P Z z  The use of Table III to fi nd P Z ≤ .( )1 5  

is illustrated in Fig. 4-13. Read down the z column to the row that equals 1.5. The probability is read from the adjacent 

column, labeled 0.00, to be 0.93319.

FIGURE 4-13 Standard normal probability density function.

z0

= shaded area
P(Z # 1.5) = F (1.5)

1.5

0.00 0.01 0.02

0

1.5

z

0.93319

. 
. 

.

. 
. 

.

0.93448 0.93574

0.50000 0.50399 0.50398

0.03

0.93699

0.51197

The column headings refer to the hundredths digit of the value of z in P Z z≤( ). For example, P Z ≤ .( )1 53  is found by 

reading down the z column to the row 1.5 and then selecting the probability from the column labeled 0.03 to be 0.93699.

Example 4-11

FIGURE 4-12 Probabilities associated with a normal distribution.

– 3 xm s – 2m s – m s m +m s + 2m s + 3m s

68%

95%

99.7%

f (x)

The following calculations are shown pictorially in Fig. 4-14. In practice, a probability is often 

rounded to one or two signifi cant digits.

(1) P Z P Z> 1 26 1 1 26 1 0 89616 0 10384.( ) = − ≤ .( ) = − . = = . .

(2) P Z < 20 86 0 19490.( ) = . .
(3) P Z P Z> <− .( ) = .( ) = .1 37 1 37 0 91465.

(4) P Z− . .( )1 25 0 37< < . This probability can be found from the difference of two areas, P Z P Z< <0 37 1 25.( ) − − .( ). 
Now,

P Z < 0 37 0 64431.( ) = .
and

P Z < − .( ) = .1 25 0 10565

Therefore,

P Z− . .( ) = . − . = .1 25 0 37 0 64431 0 10565 0 53866< <

(5) P Z ≤ − .( )4 6  cannot be found exactly from Appendix Table III. However, the last entry in the table can be used to 

fi nd that P Z ≤ − .( ) = .3 99 0 00003 . Because P Z P Z ,≤ − .( ) ≤ − .( )4 6 3 99<  P Z ≤ − .( )4 6  is nearly zero.

Example 4-12
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The cases in Example 4-12 show how to calculate probabilities for standard normal random vari-

ables. To use the same approach for an arbitrary normal random variable would require the availabil-

ity of a separate table for every possible pair of values for μ and σ. Fortunately, all normal probability 

distributions are related algebraically, and Appendix Table III can be used to fi nd the probabilities 

associated with an arbitrary normal random variable by fi rst using a simple transformation.

(6) Find the value z such that P Z z>( ) = . .0 05  This probability expression can be written as P Z z≤( ) = .0 95. Now 

Table III is used in reverse. We search through the probabilities to fi nd the value that corresponds to 0.95. The solution 

is illustrated in Fig. 4-14. We do not fi nd 0.95 exactly; the nearest value is 0.95053, corresponding to z = 1.65.

(7) Find the value of z such that P z Z z−( ) = .< < 0 99. Because of the symmetry of the normal distribution, if the area of 

the shaded region in Fig. 4-14(7) is to equal 0.99, the area in each tail of the distribution must equal 0.005. Therefore, the 

value for z corresponds to a probability of 0.995 in Table III. The nearest probability in Table III is 0.99506 when z = 2.58.

If X is a normal random variable with E X( ) = μ and V X( ) = σ2, the random variable

 Z
X= − μ

σ
 (4-10)

is a normal random variable with E Z( ) = 0 and V Z( ) = 1. That is, Z  is a standard 

normal random variable.

Standardizing a 
Normal Random 

Variable

Creating a new random variable by this transformation is referred to as standardizing. The 

random variable Z  represents the distance of X from its mean in terms of standard deviations. 

It is the key step to calculating a probability for an arbitrary normal random variable.

FIGURE 4-14 Graphical displays for standard normal distributions.
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–

= –
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1
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Normally Distributed Current Suppose that the current measurements in a strip of wire are 

assumed to follow a normal distribution with a mean of 10 milliamperes and a variance of four 

(milliamperes)2. What is the probability that a measurement exceeds 13 milliamperes?

Let X denote the current in milliamperes. The requested probability can be represented as P X > 13( ). Let 

Z X= −( )10 2. The relationship between the several values of X and the transformed values of Z  are shown in 

Fig. 4-15. We note that X > 13 corresponds to Z > 1 5. . Therefore, from Appendix Table III,

P X P Z P Z> >13 1 5 1 1 5 1 0 93319 0 06681( ) = ( ) = − ≤( ) = − =. . . .

Rather than using Fig. 4-15, the probability can be found from the inequality X > 13. That is,

P X P
X

P Z> >13
10

2

13 10

2
1 5 0 06681( ) =

−( ) −( )⎛

⎝⎜
⎞

⎠⎟
= ≤( ) =. .

Practical Interpretation: Probabilities for any normal random variable can be computed with a simple transform to 

a standard normal random variable.

Example 4-13

FIGURE 4-15 Standardizing a normal random variable.

4 x7 9 10 13 16

–3 z–1.5 –0.5 0 1.5 3

11

0.5

0 1.5

Distribution of Z =
X – m

s

Distribution of X

10 13 x

z

In Example 4-13, the value 13 is transformed to 1.5 by standardizing, and 1.5 is often 

referred to as the z-value associated with a probability. The following summarizes the calcula-

tion of probabilities derived from normal random variables.

Suppose that X is a normal random variable with mean μ and variance σ2. Then,

 P X x P
X x

P Z z≤( ) = − μ
σ

≤ − μ
σ

⎛
⎝⎜

⎞
⎠⎟

= ≤( ) (4-11)

where Z  is a standard normal random variable, and z
x

=
− μ( )
σ

 is the z-value 

obtained by standardizing X. The probability is obtained by using Appendix 

Table III with z x= −( )μ / s.

Standardizing 
to Calculate a 

Probability

FIGURE 4-16 
Determining the 
value of x  to meet a 
specifi ed probability. 10 x

z = = 2.05
x – 10

2

0.98
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Normally Distributed Current Continuing Example 4-13, what is the probability that a current mea-

surement is between 9 and 11 milliamperes? From Fig. 4-15, or by proceeding algebraically, we have

P X P X

P Z P Z

9 11 9 10 2 10 10

0 5 0 5

< < / < / 2 < 11 / 2

< < <

( ) = −( ) −( ) −( )( )
= − . .( ) = 00 5 0 5

0 69146 0 30854 0 38292

.( ) − −( )
= . − . = .

P Z < .

Determine the value for which the probability that a current measurement is less than this value is 0.98. The requested 

value is shown graphically in Fig. 4-16. We need the value of x such that P X x<( ) = 0 98. . By standardizing, this prob-

ability expression can be written as

P X x P X x

P Z x

< / < /( ) = −( ) −( )( )
= −( )( ) =

10 2 10 2

10 2 0 98, / .

Appendix Table III is used to fi nd the z-value such that P Z < z( ) = 0 98. . The nearest probability from Table III results in

P Z < 2 06 0 97982. .( ) =
Therefore, x −( ) =10 2 2 05/ . , and the standardizing transformation is used in reverse to solve for x. The result is

x = ( ) + =2 2 05 10 14 1. . mA

Example 4-14

Signal Detection Assume that in the detection of a digital signal, the background noise  follows 

a normal distribution with a mean of 0 volt and standard deviation of 0.45 volt. The system assumes 

a digital 1 has been transmitted when the voltage exceeds 0.9. What is the probability of detecting a digital 1 when 

none was sent?

Let the random variable N  denote the voltage of noise. The requested probability is

P N P
N

P Z> > >0 9
0 45

0 9

0 45
2 1 0 97725 0 02275.( ) =

.
.
.

⎛
⎝⎜

⎞
⎠⎟

= ( ) = − . = .

This probability can be described as the probability of a false detection.

Determine symmetric bounds about 0 that include 99% of all noise readings. The question requires us to fi nd x such 

that P x N x−( ) = .< < 0 99. A graph is shown in Fig. 4-17. Now,

P x N x P x N x

P x Z x

−( ) = − . . .( )
= −( ) =

< < / < / < /0 45 0 45 0 45

0 45 0 45 0 9/ , , /. . . 99

From Appendix Table III,

P Z− . .( ) = .2 58 2 58 0 99< <
Therefore,

x / 0 45 2 58. = .

and

x = . .( ) = .2 58 0 45 1 16

Suppose that when a digital 1 signal is transmitted, the mean of the noise distribution shifts to 1.8 volts. What is the prob-

ability that a digital 1 is not detected? Let the random variable S denote the voltage when a digital 1 is transmitted. Then,

P S P
S

P Z< < <0 9
1 8

0 45

0 9 1 8

0 45
2 0 02275.( ) = − .

.
. − .

.
⎛
⎝⎜

⎞
⎠⎟

= −( ) = .

Example 4-15 
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This probability can be interpreted as the probability of a missed signal.

Practical Interpretation: Probability calculations such as these can be used to quantify the rates of missed signals or 

false signals and to select a threshold to distinguish a zero and a one bit.

Shaft Diameter The diameter of a shaft in an optical storage drive is normally distributed 

with mean 0.2508 inch and standard deviation 0.0005 inch. The specifi cations on the shaft are 

0.2500 0.0015±  inch. What proportion of shafts conforms to specifi cations?

Let X denote the shaft diameter in inches. The requested probability is shown in Fig. 4-18 and

P X P Z0 2485 0 2515
0 2485 0 2508

0 0005

0 2515 0 2508

0 0
. .( ) = . − .

.
. − .

.
< < < <

0005

4 6 1 4 1 4 4 6

0 91924 0 0000

⎛
⎝⎜

⎞
⎠⎟

= − . .( ) = .( ) − − .( )
= −

P Z P Z P Z< < < <

. . == 0 91924.

Most of the nonconforming shafts are too large because the process mean is located very near to the upper specifi ca-

tion limit. If the process is centered so that the process mean is equal to the target value of 0.2500,

P X P Z0 2485 0 2515
0 2485 0 2500

0 0005

0 2515 0 2500

0 0
. .< < < <( ) = . − .

.
. − .

. 0005

3 3 3 3

0 99865 0 00135 0 9973

⎛
⎝⎜

⎞
⎠⎟

= −( ) = ( ) − −( )
= . − . = .

P Z P Z P Z< < < <

Practical Interpretation: By recentering the process, the yield is increased to approximately 99.73%.

Example 4-16

Standardized distribution of
N

0.45

z– z 0 0 x– x

Distribution of NFIGURE 
4-17  Determining 
the value of x  to 
meet a specifi ed 
probability.

0.2515

f (x)

0.2508

0.25

0.2485 x

Specifications

FIGURE 
4-18  Distribution 
for Example 4-16.
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4-63.  Use Appendix Table III to determine the following 

probabilities for the standard normal random variable Z :

(a) P Z ,1 32.( ) (b) P Z , 3 0.( )
(c) P Z .1 45.( ) (d) P Z . −( )2 15.

(e) P Z−( )2 34 1 76. ., ,

4-64. Use Appendix Table III to determine the following 

probabilities for the standard normal random variable Z :

(a) P Z−( )1 1, ,  (b) P Z−( )2 2, ,
(c) P Z−( )3 3, ,  (d) P Z , 3( )
(e) P Z0 1, ,( )
4-65.  Assume that Z  has a standard normal distribution. 

Use Appendix Table III to determine the value for z that solves 

each of the following:

(a) P Z z,( ) = 0 9.  (b) P Z z,( ) = 0 5.

(c) P Z z.( ) = 0 1.  (d) P Z z.( ) = 0 9.

(e) P Z z−( ) =1 24 0 8. ., ,
4-66.  Assume that Z  has a standard normal distribution. 

Use Appendix Table III to determine the value for z that solves 

each of the following:

(a) P z Z z−( ) =, , 0 95.  (b) P z Z z−( ) =, , 0 99.

(c) P z Z z−( ) =, , 0 68.  (d) P z Z z−( ) =, , 0 9973.

4-67.  Assume that X  is normally distributed with a mean 

of 10 and a standard deviation of 2. Determine the following:

(a) P Z ,13( ) (b) P Z . 9( )
(c) P X6 14, ,( ) (d) P X2 4, ,( ) (e) P X−( )2 8, ,

4-68.  Assume that X  is normally distributed with a mean 

of 10 and a standard deviation of 2. Determine the value for x  

that solves each of the following:

(a) P X x.( ) = 0 5.   (b) P X x.( ) = 0 95.  

(c) P x X, ,10 0( ) = . (d) P x X x− −( ) =, ,10 0 95.

(e) P x X x− −( ) =, ,10 0 99.

4-69.  Assume that X  is normally distributed with a mean 

of 5 and a standard deviation of 4. Determine the following:

(a) P X ,11( ) (b) P X . 0( ) (c) P X3 7, ,( )
(d) P X−( )2 9, ,   (e) P X2 8, ,( )
4-70. Assume that X  is normally distributed with a mean of 

5 and a standard deviation of 4. Determine the value for x  that 

solves each of the following:

(a) P X x.( ) = 0 5.   (b) P X x.( ) = 0 95.

(c) P x X, , 9 0 2( ) = .  (d) P X x3 0 95, ,( ) = .

(e) P x X x− −( ) =, ,5 0 99.

4-71.  The compressive strength of samples of cement can 

be modeled by a normal distribution with a mean of 6000 kilo-

grams per square centimeter and a standard deviation of 100 

kilograms per square centimeter.

(a) What is the probability that a sample’s strength is less than

6250 Kg/cm2?

(b) What is the probability that a sample’s strength is between 

5800 and 5900 Kg/cm2?

(c) What strength is exceeded by 95% of the samples?

4-72.  The time until recharge for a battery in a laptop com-

puter under common conditions is normally distributed with a 

mean of 260 minutes and a standard deviation of 50 minutes.

(a) What is the probability that a battery lasts more than four 

hours?

(b) What are the quartiles (the 25% and 75% values) of battery life?

(c) What value of life in minutes is exceeded with 95% probability?

4-73. An article in Knee Surgery Sports Traumatol Arthrosc 

[“Effect of Provider Volume on Resource Utilization for Surgi-

cal Procedures” (2005, Vol. 13, pp. 273–279)] showed a mean 

time of 129 minutes and a standard deviation of 14 minutes for 

anterior cruciate ligament (ACL)  reconstruction surgery at high-

volume hospitals (with more than 300 such surgeries per year).

(a) What is the probability that your ACL surgery at a high-

volume hospital requires a time more than two standard 

deviations above the mean?

(b) What is the probability that your ACL surgery at a high-

volume hospital is completed in less than 100 minutes?

(c) The probability of a completed ACL surgery at a high-vol-

ume hospital is equal to 95% at what time?

(d) If your surgery requires 199 minutes, what do you conclude 

about the volume of such surgeries at your hospital? Explain.

4-74. Cholesterol is a fatty substance that is an important part 

of the outer lining (membrane) of cells in the body of animals. 

Its normal range for an adult is 120–240 mg/dl. The Food and 

Nutrition Institute of the Philippines found that the total cho-

lesterol level for Filipino adults has a mean of 159.2 mg/dl and 

84.1% of adults have a cholesterol level less than 200 mg/dl 

(http://www.fnri.dost.gov.ph/). Suppose that the total choles-

terol level is normally distributed.

(a) Determine the standard deviation of this distribution.

(b) What are the quartiles (the 25% and 75% percentiles) of 

this distribution?

(c) What is the value of the cholesterol level that exceeds 90% 

of the population?

(d) An adult is at moderate risk if cholesterol level is more 

than one but less than two standard deviations above the 

mean. What percentage of the population is at moderate 

risk according to this criterion?

(e) An adult whose cholesterol level is more than two standard 

deviations above the mean is thought to be at high risk. 

What percentage of the population is at high risk?

(f) An adult whose cholesterol level is less than one standard 

deviations below the mean is thought to be at low risk.  

What percentage of the population is at low risk?

4-75.  The line width for semiconductor manufacturing is 

assumed to be normally distributed with a mean of 0.5 microm-

eter and a standard deviation of 0.05 micrometer.

(a) What is the probability that a line width is greater than 0.62 

micrometer?

FOR SECTION 4-6EXERCISES

 Problem available in WileyPLUS at instructor’s discretion. 

 Tutoring problem available in WileyPLUS at instructor’s discretion.
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(b) What is the probability that a line width is between 0.47 

and 0.63 micrometer?

(c) The line width of 90% of samples is below what value?

4-76. The fill volume of an automated filling machine used 

for filling cans of carbonated beverage is normally distributed 

with a mean of 12.4 fluid ounces and a standard deviation of 0.1 

fluid ounce.

(a) What is the probability that a fill volume is less than 12 

fluid ounces?

(b) If all cans less than 12.1 or more than 12.6 ounces are 

scrapped, what proportion of cans is scrapped?

(c) Determine specifications that are symmetric about the 

mean that include 99% of all cans.

4-77. In the previous exercise, suppose that the mean of the 

filling operation can be adjusted easily, but the standard devia-

tion remains at 0.1 fluid ounce.

(a) At what value should the mean be set so that 99.9% of all 

cans exceed 12 fluid ounces?

(b) At what value should the mean be set so that 99.9% of all 

cans exceed 12 fluid ounces if the standard deviation can be 

reduced to 0.05 fluid ounce?

4-78. A driver’s reaction time to visual stimulus is nor-

mally distributed with a mean of 0.4 seconds and a standard 

deviation of 0.05 seconds.

(a) What is the probability that a reaction requires more than 

0.5 seconds?

(b) What is the probability that a reaction requires between 0.4 

and 0.5 seconds?

(c) What reaction time is exceeded 90% of the time?

4-79. The speed of a file transfer from a server on campus to a 

personal computer at a student’s home on a weekday evening is 

normally distributed with a mean of 60 kilobits per second and 

a standard deviation of four kilobits per second.

(a) What is the probability that the file will transfer at a speed 

of 70 kilobits per second or more?

(b) What is the probability that the file will transfer at a speed 

of less than 58 kilobits per second?

(c) If the file is one megabyte, what is the average time it will 

take to transfer the file? (Assume eight bits per byte.)

4-80. In 2002, the average height of a woman aged 20–74 years 

was 64 inches with an increase of approximately 1 inch from 1960 

(http://usgovinfo.about.com/od/healthcare). Suppose the height 

of a woman is normally distributed with a standard deviation of 

two inches.

(a) What is the probability that a randomly selected woman in 

this population is between 58 inches and 70 inches?

(b) What are the quartiles of this distribution?

(c) Determine the height that is symmetric about the mean that 

includes 90% of this population.

(d) What is the probability that five women selected at random 

from this population all exceed 68 inches?

4-81. In an accelerator center, an experiment needs a 1.41-cm- 

thick aluminum cylinder (http://puhep1.princeton.edu/mumu/

target/Solenoid_Coil.pdf). Suppose that the thickness of a cyl-

inder has a normal distribution with a mean of 1.41 cm and a 

standard deviation of 0.01 cm.

(a) What is the probability that a thickness is greater than 1.42 cm?

(b) What thickness is exceeded by 95% of the samples?

(c) If the specifications require that the thickness is between 

1.39 cm and 1.43 cm, what proportion of the samples meets 

specifications?

4-82. The demand for water use in Phoenix 

in 2003 hit a high of about 442 million gallons per day on June 

27 (http://phoenix.gov/WATER/wtrfacts.html). Water use in the 

summer is normally distributed with a mean of 310 million gal-

lons per day and a standard deviation of 45 million gallons per 

day. City reservoirs have a combined storage capacity of nearly 

350 million gallons.

(a) What is the probability that a day requires more water than 

is stored in city reservoirs?

(b) What reservoir capacity is needed so that the probability 

that it is exceeded is 1%?

(c) What amount of water use is exceeded with 95% probability?

(d) Water is provided to approximately 1.4 million people. 

What is the mean daily consumption per person at which 

the probability that the demand exceeds the current reser-

voir capacity is 1%? Assume that the standard deviation of 

demand remains the same.

4-83. The life of a semiconductor laser at a constant power is 

normally distributed with a mean of 7000 hours and a standard 

deviation of 600 hours.

(a) What is the probability that a laser fails before 5000 hours?

(b) What is the life in hours that 95% of the lasers exceed?

(c) If three lasers are used in a product and they are assumed to 

fail independently, what is the probability that all three are 

still operating after 7000 hours?

4-84. The diameter of the dot produced by a printer is nor-

mally distributed with a mean diameter of 0.002 inch and a 

standard deviation of 0.0004 inch.

(a) What is the probability that the diameter of a dot exceeds 

0.0026?

(b) What is the probability that a diameter is between 0.0014 

and 0.0026?

(c) What standard deviation of diameters is needed so that the 

probability in part (b) is 0.995?

4-85. The weight of a sophisticated running shoe is normally 

distributed with a mean of 12 ounces and a standard deviation 

of 0.5 ounce.

(a) What is the probability that a shoe weighs more than 

13 ounces?

(b) What must the standard deviation of weight be in order for 

the company to state that 99.9% of its shoes weighs less 

than 13 ounces?

(c) If the standard deviation remains at 0.5 ounce, what must 

the mean weight be for the company to state that 99.9% of 

its shoes weighs less than 13 ounces?

4-86. Measurement error that is normally distributed with a 

mean of 0 and a standard deviation of 0.5 gram is added to the 

true weight of a sample. Then the measurement is rounded to 

the nearest gram. Suppose that the true weight of a sample is 

165.5 grams.

(a) What is the probability that the rounded result is 167 grams?

(b) What is the probability that the rounded result is 167 grams 

or more?
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4-7  Normal Approximation to the Binomial and  
Poisson Distributions

We began our section on the normal distribution with the central limit theorem and the 

normal distribution as an approximation to a random variable with a large number of trials. 

Consequently, it should not be surprising to learn that the normal distribution can be used 

4-87. Assume that a random variable is normally distributed 

with a mean of 24 and a standard deviation of 2. Consider an 

interval of length one unit that starts at the value a so that the 

interval is[ ,  + 1]a a . For what value of a is the probability of 

the interval greatest? Does the standard deviation affect that 

choice of interval?

4-88. A study by Bechtel et al., 2009, described in the Archives 
of Environmental & Occupational Health considered polycy-

clic aromatic hydrocarbons and immune system function in beef 

cattle. Some cattle were near major oil- and gas-producing areas 

of western Canada. The mean monthly exposure to PM1.0 (par-

ticulate matter that is < μ1 m in diameter) was approximately 

7.1 g/m3μ with standard deviation 1.5. Assume that the monthly 

exposure is normally distributed.

(a) What is the probability of a monthly exposure greater than 

9 g/m3μ ?

(b) What is the probability of a monthly exposure between 3 

and 8 g/m3μ ?

(c) What is the monthly exposure level that is exceeded with 

probability 0.05?

(d) What value of mean monthly exposure is needed so that 

the probability of a monthly exposure more than 9 g/m3μ  is 

0.01?

4-89. An article in Atmospheric Chemistry and Physics “Rela-

tionship Between Particulate Matter and Childhood Asthma—

Basis of a Future Warning System for Central Phoenix” (2012, 

Vol. 12, pp. 2479–2490)] reported the use of PM10 (particulate 

matter < μ10 m diameter) air quality data measured hourly from 

sensors in Phoenix, Arizona. The 24-hour (daily) mean PM10 

for a centrally located sensor was 50.9 g/m3μ  with a standard 

deviation of 25.0. Assume that the daily mean of PM10 is nor-

mally distributed.

(a) What is the probability of a daily mean of PM10 greater 

than 100 g/m3μ ?

(b) What is the probability of a daily mean of PM10 less than 

25 g/m3μ ?

(c) What daily mean of PM10 value is exceeded with prob-

ability 5%?

4-90. The length of stay at a specific emergency department 

in Phoenix, Arizona, in 2009 had a mean of 4.6 hours with 

a standard deviation of 2.9. Assume that the length of stay is 

normally distributed.

(a) What is the probability of a length of stay greater than 10 hours?

(b) What length of stay is exceeded by 25% of the visits?

(c) From the normally distributed model, what is the probabil-

ity of a length of stay less than 0 hours? Comment on the 

normally distributed assumption in this example.

4-91. A signal in a communication channel is detected when 

the voltage is higher than 1.5 volts in absolute value. Assume 

that the voltage is normally distributed with a mean of 0. What 

is the standard deviation of voltage such that the probability of 

a false signal is 0.005?

4-92. An article in Microelectronics Reliability [“Advanced  

Electronic Prognostics through System Telemetry and Pattern 

Recognition Methods” (2007, Vol.47(12), pp. 1865–1873)] pre-

sented an example of electronic prognosis. The objective was to 

detect faults to decrease the system downtime and the number of 

unplanned repairs in high-reliability systems. Previous measure-

ments of the power supply indicated that the signal is normally 

distributed with a mean of 1.5 V and a standard deviation of 0.02 V. 

(a) Suppose that lower and upper limits of the predetermined 

specifications are 1.45 V and 1.55 V, respectively. What is 

the probability that a signal is within these specifications? 

(b) What is the signal value that is exceeded with 95% probability? 

(c) What is the probability that a signal value exceeds the 

mean by two or more standard deviations? 

4-93. An article in International Journal of Electrical Power 
& Energy Systems [“Stochastic Optimal Load Flow Using a 

Combined Quasi–Newton and Conjugate Gradient Technique” 

(1989, Vol.11(2), pp. 85–93)] considered the problem of opti-

mal power flow in electric power systems and included the 

effects of uncertain variables in the problem formulation. The 

method treats the system power demand as a normal random 

variable with 0 mean and unit variance. 

(a) What is the power demand value exceeded with 95% 

probability? 

(b) What is the probability that the power demand is positive? 

(c) What is the probability that the power demand is more than 

– 1 and less than 1? 

4-94. An article in the Journal of Cardiovascular Magnetic 
Resonance [“Right Ventricular Ejection Fraction Is Better 

Reflected by Transverse Rather Than Longitudinal Wall Motion 

in Pulmonary Hypertension” (2010, Vol.12(35)] discussed a 

study of the regional right ventricle transverse wall motion in 

patients with pulmonary hypertension (PH). The right ventricle 

ejection fraction (EF) was approximately normally distributed 

with a mean and a standard deviation of 36 and 12, respec-

tively, for PH subjects, and with mean and standard deviation 

of 56 and 8, respectively, for control subjects. 

(a) What is the EF for PH subjects exceeded with 5% probability? 

(b) What is the probability that the EF of a control subject is 

less than the value in part (a)? 

(c) Comment on how well the control and PH subjects can be 

distinguished by EF measurements. 
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to approximate binomial probabilities for cases in which n is large. The following exam-

ple illustrates that for many physical systems, the binomial model is appropriate with an 

extremely large value for n. In these cases, it is diffi cult to calculate probabilities by using 

the binomial distribution. Fortunately, the normal approximation is most effective in these 

cases. An illustration is provided in Fig. 4-19. The area of each bar equals the binomial 

probability of x. Notice that the area of bars can be approximated by areas under the normal 

probability density function.

From Fig. 4-19, it can be seen that a probability such as P X3 7≤ ≤( ) is better approxi-

mated by the area under the normal curve from 2.5 to 7.5. Consequently, a modifi ed 

interval is used to better compensate for the difference between the continuous normal 

distribution and the discrete binomial distribution. This modifi cation is called a continu-
ity correction.

If X is a binomial random variable with parameters n and p,

 Z
X np

np p
= −

−( )1
 (4-12)

is approximately a standard normal random variable. To approximate a bino-

mial probability with a normal distribution, a continuity correction is applied as 

follows:

P X x P X x P Z
x np

np p
≤( ) = ≤ +( ) ≈ ≤ + −

−( )
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

0 5
0 5

1
.

.

and

P x X P x X P
x np

np p
Z≤( ) = − ≤( ) ≈ − −

−( )
≤

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

0 5
0 5

1
.

.

The approximation is good for np n p> >5 1 5  −( ) .and

Normal Approxima-
tion to the Binomial 

Distribution

Recall that for a binomial variable X, E X np( ) =  and V X np p( ) = −( )1 . Consequently, the 

expression in Equation 4-12 is nothing more than the formula for standardizing the random 

variable X. Probabilities involving X can be approximated by using a standard normal distri-

bution. The approximation is good when n is large relative to p.

A way to remember the approximation is to write the probability in terms of ≤ or ≥ and then 

add or subtract the 0.5 correction factor to make the probability greater.

Assume that in a digital communication channel, the number of bits received in error can be  modeled 

by a binomial random variable, and assume that the probability that a bit is received in error is 

1 10 5× − . If 16 million bits are transmitted, what is the probability that 150 or fewer errors occur?

Let the random variable X denote the number of errors. Then X is a binomial random variable and

P X
x

x x

x

≤( ) = ( )( ) −( )− − −

=
∑150 000 000 10 1 105 5

16 000 000

0

150
16, , , ,

Practical Interpretation: Clearly, this probability is diffi cult to compute. Fortunately, the normal distribution can be 

used to provide an excellent approximation in this example.

Example 4-17
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Normal Approximation to Binomial Again consider the transmission of bits in Example 4-18. 

To judge how well the normal approximation works, assume that only n = 50 bits are to be trans-

mitted and that the probability of an error is p = 0 1. . The exact probability that two or fewer errors occur is

P X ≤( ) = ⎛
⎝

⎞
⎠ + ⎛

⎝
⎞
⎠ ( ) + ⎛

⎝
⎞
⎠ ( ) =2

50
0

0 9
50
1

0 1 0 9
50
2

0 1 050 49 2. . . . 0.948 ..112

Based on the normal approximation,

P X P
X

P Z≤( ) = −

( ) ( )
≤ −

( ) ( )
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

≈ −2
5

50 0 1 0 9

2 5 5

50 0 1 0 9
1 18

. .

.

. .
.<(( ) = 0 119.

As another example, P X P X8 9<( ) = ≤( ), which is better approximated as

P X P X P Z P9 8 5
8 5 5

2 12
1 65 0 05≤( ) = ≤( ) ≈ − ≤⎛

⎝⎜
⎞
⎠⎟

= . ≤( ) =.
.

.
.Z

We can even approximate P X P X=( ) = ≤ ≤( )5 5 5  as

Example 4-19

FIGURE 4-20 Binomial distribution is not symmetri-
cal if p is near 0 or 1.
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FIGURE 4-19 Normal approximation to the binomial 
distribution.

The digital communication problem in Example 4-17 is solved as follows:

P X P X P
X≤( ) = ≤( ) = −

−( )
≤ −

−( )− −
150 150 5

160

160 1 10

150 5 160

160 1 105 5
.

.
⎛⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

≈ ≤ −( ) =P Z 0 75 0 227. .

Because np = ( )( ) =−16 10 1 10 1606 5× ×  and n p1 −( ) is much larger, the approximation is expected to work well in 

this case.

Practical Interpretation: Binomial probabilities that are diffi cult to compute exactly can be approximated with easy-

to-compute probabilities based on the normal distribution.

Example 4-18
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The correction factor is used to improve the approximation. However, if np or n p1 −( ) is 

small, the binomial distribution is quite skewed and the symmetric normal distribution is not 

a good approximation. Two cases are illustrated in Fig. 4-20.

Recall that the binomial distribution is a satisfactory approximation to the hypergeomet-

ric distribution when n, the sample size, is small relative to N , the size of the population from 

which the sample is selected. A rule of thumb is that the binomial approximation is effective 

if n N/ < 0 1. . Recall that for a hypergeometric distribution, p is defi ned as p = .K N/  That is, 

p is interpreted as the number of successes in the population. Therefore, the normal distribu-

tion can provide an effective approximation of hypergeometric probabilities when n N < 0 1. , 

np > 5, and n p1 5−( ) > . Figure 4-21 provides a summary of these guidelines.

Recall that the Poisson distribution was developed as the limit of a binomial distribution as 

the number of trials increased to infi nity. Consequently, it should not be surprising to fi nd that the 

normal distribution can also be used to approximate probabilities of a Poisson random variable.

Normal Approximation to Poisson Assume that the number of asbestos particles in a squared 

meter of dust on a surface follows a Poisson distribution with a mean of 1000. If a squared meter 

of dust is analyzed, what is the probability that 950 or fewer particles are found?

This probability can be expressed exactly as

P X
e x

≤( ) =
!

−  

=
∑950

10001000

0

950

xx

The computational diffi culty is clear. The probability can be approximated as

P X P X P Z P Z≤( ) = ≤ .( ) ≈ ≤ . −⎛
⎝⎜

⎞
⎠⎟

= ≤ − .( ) = .950 950 5
950 5 1000

1000
1 57 0 0558

Practical Interpretation: Poisson probabilities that are diffi cult to compute exactly can be approximated with easy-

to-compute probabilities based on the normal distribution.

Example 4-20

FIGURE 4-21 Conditions for approximating hypergeometric and binomial probabilities.

Hypergometric Binomial  

distribution distribution

Normal
distrributionn

N

np > 5
n p< 0 1 1 5. ( )

≈ ≈

>_

P X P X P Z

P

5 5 4 5 5 5
4 5 5

2 12

5 5 5
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0 24

≤ ≤( ) = ≤ ≤( ) ≈ − ≤ ≤ −⎛
⎝⎜

⎞
⎠⎟

= − ≤

. .
.

.

.

.

. ZZ

P X

≤( ) =

= ≤ ≤( )
0 24 0 19

4 5 5 5

. .

. .

and this compares well with the exact answer of 0.1849.

Practical Interpretation: Even for a sample as small as 50 bits, the normal approximation is reasonable, when p = 0 1. .

If X is a Poisson random variable with E X( ) = λ and V X ,( ) = λ

 Z
X= − λ

λ
 (4-13)

is approximately a standard normal random variable. The same continuity correction 

used for the binomial distribution can also be applied. The approximation is good for

λ > 5

Normal Approxima-
tion to the Poisson 

Distribution
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4-95.  Suppose that X  is a binomial random variable with 

n = 200 and p = . .0 4  Approximate the following probabilities:

(a) P X( )≤ 70   (b) P(70 < X < 90)  (c) P(X = 80)

4-96.  Suppose that X  is a Poisson random variable 

with λ = 6.

(a) Compute the exact probability that X  is less than four.

(b) Approximate the probability that X  is less than four and 

compare to the result in part (a).

(c) Approximate the probability that 8 12< <X .

4-97.  Suppose that X  has a Poisson distribution with a 

mean of 64. Approximate the following probabilities:

(a) P X > 72( ) (b) P X < 64( ) (c) P X60 68< ≤( )
4-98.  The manufacturing of semiconductor chips pro-

duces 2% defective chips. Assume that the chips are inde-

pendent and that a lot contains 1000 chips. Approximate the 

following probabilities:

(a) More than 25 chips are defective.

(b) Between 20 and 30 chips are defective.

4-99.  There were 49.7 million people with some type of 

long-lasting condition or disability living in the United States 

in 2000. This represented 19.3 percent of the majority of civil-

ians aged five and over (http://factfinder.census.gov). A sample 

of 1000 persons is selected at random.

(a) Approximate the probability that more than 200 persons in 

the sample have a disability.

(b) Approximate the probability that between 180 and 300 

people in the sample have a disability.

4-100. Phoenix water is provided to approximately 1.4 million 

people who are served through more than 362,000 accounts (http://

phoenix.gov/WATER/wtrfacts.html). All accounts are metered and 

billed monthly. The probability that an account has an error in a 

month is 0.001, and accounts can be assumed to be independent.

(a) What are the mean and standard deviation of the number of 

account errors each month?

(b) Approximate the probability of fewer than 350 errors in a month.

(c) Approximate a value so that the probability that the number 

of errors exceeds this value is 0.05.

(d) Approximate the probability of more than 400 errors per 

month in the next two months. Assume that results between 

months are independent.

4-101.  An electronic office product contains 5000 elec-

tronic components. Assume that the probability that each compo-

nent operates without failure during the useful life of the product 

is 0.999, and assume that the components fail independently. 

Approximate the probability that 10 or more of the original 5000 

components fail during the useful life of the product.

4-102.  A corporate Web site contains errors on 50 of 1000 

pages. If 100 pages are sampled randomly without replace-

ment, approximate the probability that at least one of the pages 

in error is in the sample.

4-103.  Suppose that the number of asbestos particles in 

a sample of 1 squared centimeter of dust is a Poisson random 

variable with a mean of 1000. What is the probability that 10 

squared centimeters of dust contains more than 10,000 particles?

4-104.  A high-volume printer produces minor print-quality 

errors on a test pattern of 1000 pages of text according to a Pois-

son distribution with a mean of 0.4 per page.

(a) Why are the numbers of errors on each page independent 

random variables?

(b) What is the mean number of pages with errors (one or more)?

(c) Approximate the probability that more than 350 pages con-

tain errors (one or more).

4-105. Hits to a high-volume Web site are assumed to follow 

a Poisson distribution with a mean of 10,000 per day. Approxi-

mate each of the following:

(a) Probability of more than 20,000 hits in a day

(b) Probability of less than 9900 hits in a day

(c) Value such that the probability that the number of hits in a 

day exceeds the value is 0.01

(d) Expected number of days in a year (365 days) that exceed 

10,200 hits.

(e) Probability that over a year (365 days), each of the more 

than 15 days has more than 10,200 hits.

4-106. An acticle in Biometrics [“Integrative Analysis of 

Transcriptomic and Proteomic Data of Desulfovibrio Vulgaris: 

A Nonlinear Model to Predict Abundance of Undetected Pro-

teins” (2009)] reported that protein abundance from an operon 

(a set of biologically related genes) was less dispersed than 

from randomly selected genes. In the research, 1000 sets of 

genes were randomly constructed, and of these sets, 75% were 

more disperse than a specific opteron. If the probability that 

a random set is more disperse than this opteron is truly 0.5, 

approximate the probability that 750 or more random sets 

exceed the opteron. From this result, what do you conclude 

about the dispersion in the opteron versus random genes?

4-107. An article in Atmospheric Chemistry and Physics  

[“Relationship Between Particulate Matter and Childhood Asthma 

– Basis of a Future Warning System for Central Phoenix,” 2012, 

Vol. 12, pp. 2479-2490] linked air quality to childhood asthma 

incidents. The study region in central Phoenix, Arizona recorded 

10,500 asthma incidents in children in a 21-month period. Assume 

that the number of asthma incidents follows a Poisson distribution.

(a) Approximate the probability of more than 550 asthma inci-

dents in a month.

(b) Approximate the probability of 450 to 550 asthma inci-

dents in a month.

(c) Approximate the number of asthma incidents exceeded 

with probability 5%.

(d) If the number of asthma incidents was greater during the 

winter than the summer, what would this imply about the 

Poisson distribution assumption?

FOR SECTION 4-7EXERCISES

 Problem available in WileyPLUS at instructor’s discretion. 

 Tutoring problem available in WileyPLUS at instructor’s discretion.
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4-108. A set of 200 independent patients take antiacid medi-

cation at the start of symptoms, and 80 experience moderate 

to substantial relief within 90 minutes. Historically, 30% of 

patients experience relief within 90 minutes with no medi-

cation. If the medication has no effect, approximate the 

probability that 80 or more patients experience relief of symp-

toms. What can you conclude about the effectiveness of this 

medication?

4-109. Among homeowners in a metropolitan area, 75% recy-

cle plastic bottles each week. A waste management company 

services 1500 homeowners (assumed independent). Approxi-

mate the following probabilities: 

(a) At least 1150 recycle plastic bottles in a week

(b) Between 1075 and 1175 recycle plastic bottles in a week

4-110. Cabs pass your workplace according to a Poisson pro-

cess with a mean of five cabs per hour. 

(a) Determine the mean and standard deviation of the number 

of cabs per 10-hour day. 

(b) Approximate the probability that more than 65 cabs pass 

within a 10-hour day. 

(c)  Approximate the probability that between 50 and 65 cabs 

pass in a 10-hour day. 

(d)  Determine the mean hourly rate so that the probability  

is approximately 0.95 that 100 or more cabs pass in a 

10-hour data. 

4-111. The number of (large) inclusions in cast iron follows 

a Poisson distribution with a mean of 2.5 per cubic millimeter. 

Approximate the following probabilities: 

(a) Determine the mean and standard deviation of the number 

of inclusions in a cubic centimeter (cc). 

(b) Approximate the probability that fewer than 2600 inclu-

sions occur in a cc. 

(c) Approximate the probability that more than 2400 inclu-

sions occur in a cc. 

(d) Determine the mean number of inclusions per cubic mil-

limeter such that the probability is approximately 0.9 that 

500 or fewer inclusions occur in a cc. 

4-8 Exponential Distribution
The discussion of the Poisson distribution defined a random variable to be the number of flaws 

along a length of copper wire. The distance between flaws is another random variable that is often 

of interest. Let the random variable X denote the length from any starting point on the wire until 

a flaw is detected. As you might expect, the distribution of X can be obtained from knowledge of 

the distribution of the number of flaws. The key to the relationship is the following concept. The 

distance to the first flaw exceeds three millimeters if and only if there are no flaws within a length 

of three millimeters—simple but sufficient for an analysis of the distribution of X.

In general, let the random variable N  denote the number of flaws in x millimeters of wire. 

If the mean number of flaws is λ per millimeter, N  has a Poisson distribution with mean λx. 

We assume that the wire is longer than the value of x. Now

P X > x P N
e x

e
x

x( ) = =( ) =
λ( )
!

=
− λ

− λ0
0

0 
 

Therefore,

F x P X x e , xx( ) = ≤( ) = − ≥−λ1 0 

is the cumulative distribution function of X. By differentiating F x( ), the probability density 

function of X is calculated to be

f x e , xx( ) = λ ≥−λ 0

The derivation of the distribution of X depends only on the assumption that the flaws in the wire 

follow a Poisson process. Also, the starting point for measuring X does not matter because the 

probability of the number of flaws in an interval of a Poisson process depends only on the length 

of the interval, not on the location. For any Poisson process, the following general result applies.

The random variable X that equals the distance between successive events from a 

Poisson process with mean number of events λ > 0 per unit interval is an exponential 
random variable with parameter λ. The probability density function of X is

 f x e x <x( ) = λ ≤ ∞− λ for 0  (4-14)

Exponential 
Distribution

The exponential distribution obtains its name from the exponential function in the prob-

ability density function. See plots of the exponential distribution for selected values of λ in 
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Fig. 4-22. For any value of λ, the exponential distribution is quite skewed. The following 

results are easily obtained and are left as an exercise.

If the random variable X has an exponential distribution with parameter λ,

 μ = ( ) =
λ

σ = ( ) =
λ

E X V X
1 12

2
and  (4-15)

Mean and Variance

It is important to use consistent units to express intervals, X, and λ. The following exam-

ple illustrates unit conversions.

Computer Usage In a large corporate computer network, user log-ons to the system can be 

modeled as a Poisson process with a mean of 25 log-ons per hour. What is the probability that there 

are no log-ons in an interval of six minutes?

Let X denote the time in hours from the start of the interval until the fi rst log-on. Then X has an exponential distribu-

tion with λ = 25 log-ons per hour. We are interested in the probability that X exceeds 6 minutes. Because λ is given in 

log-ons per hour, we express all time units in hours. That is, 6 minutes 0.1 hour= . The probability requested is shown 

as the shaded area under the probability density function in Fig. 4-23. Therefore,

P X e dx ex> 0 1 25 0 08225 25 0 1

0 1

.( )  = = .− − .( )
∞

∫=
.

The cumulative distribution function also can be used to obtain the same result as follows:

P X > F e0 1 1 0 1
25 0 1.( ) = − .( ) = − .( )

An identical answer is obtained by expressing the mean number of log-ons as 0.417 log-ons per minute and computing 

the probability that the time until the next log-on exceeds six minutes. Try it.

What is the probability that the time until the next log-on is between two and three minutes? Upon converting all 

units to hours,

Example 4-21

FIGURE 4-22 Probability density function of exponential 
random variables for selected values of λ.
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FIGURE 4-23 Probability for the exponential 
distribution in Example 4-21.
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In Example 4-21, the probability that there are no log-ons in a six-minute interval is 0.082 

regardless of the starting time of the interval. A Poisson process assumes that events occur 

uniformly throughout the interval of observation; that is, there is no clustering of events. If 

the log-ons are well modeled by a Poisson process, the probability that the fi rst log-on after 

noon occurs after 12:06 p.m. is the same as the probability that the fi rst log-on after 3:00 p.m.

occurs after 3:06 p.m. And if someone logs on at 2:22 p.m., the probability that the next log-

on occurs after 2:28 p.m. is still 0.082.

Our starting point for observing the system does not matter. However, if high-use periods 

occur during the day, such as right after 8:00 a.m., followed by a period of low use, a Poisson 

process is not an appropriate model for log-ons and the distribution is not appropriate for com-

puting probabilities. It might be reasonable to model each of the high- and low-use periods by 

a separate Poisson process, employing a larger value for λ during the high-use periods and a 

smaller value otherwise. Then an exponential distribution with the corresponding value of λ
can be used to calculate log-on probabilities for the high- and low-use periods.

Lack of Memory Property
An even more interesting property of an exponential random variable concerns conditional 

probabilities.

P < X < e dx ex x0 033 0 05 25 0 125

0 033

0 05
25

0 033

0 05

. .( ) =  = −  = .−

 

−

.

.
∫

.

.

552

An alternative solution is

P < X < F F0 033 0 05 0 05 0 033 0 152. .( ) = .( ) − .( ) = .

Determine the interval of time such that the probability that no log-on occurs in the interval is 0.90. The question 

asks for the length of time x such that P X > x( ) = .0 90. Now,

P X > x e x( ) = = .−25 0 90

Take the (natural) log of both sides to obtain − = .( ) = − .25 0 90 0 1054x ln . Therefore,

x = .  = .  0 00421 0 25hour minute

Furthermore, the mean time until the next log-on is

μ = = .  = .  1 25 0 04 2 4/ hour minutes

The standard deviation of the time until the next log-on is

σ =  = .  1 25 2 4/ hours minutes

Practical Interpretation: Organizations make wide use of probabilities for exponential random variables to evaluate 

resources and staffi ng levels to meet customer service needs.

Lack of Memory Property Let X denote the time between detections of a particle with a Geiger 

counter and assume that X has an exponential distribution with E X( ) = .1 4 minutes. The probabil-

ity that we detect a particle within 30 seconds of starting the counter is

 P X < F e0 5 0 5 1 0 300 5 1 4.  ( ) = .( ) = − = .− . .minute /  

In this calculation, all units are converted to minutes. Now, suppose that we turn on the Geiger counter and wait three  

minutes without detecting a particle. What is the probability that a particle is detected in the next 30 seconds?

Example 4-22
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Example 4-22 illustrates the lack of memory property of an exponential random variable, 

and a general statement of the property follows. In fact, the exponential distribution is the only 

continuous distribution with this property.

Because we have already been waiting for three minutes, we feel that a detection is “due.’’ That is, the probability of 

a detection in the next 30 seconds should be higher than 0.3. However, for an exponential distribution, this is not true. 

The requested probability can be expressed as the conditional probability that P X < X >3 5 3.( ).u  From the defi nition 

of conditional probability,

P X < X > P < X < P X >3 5 3 3 3 5 3.( ) = .( ) ( )u /

where

P < X < F F

e e

3 3 5 3 5 3

1 1 0 0353 5 1 4 3 1 4

.( ) = .( ) − ( )
= −⎡⎣ ⎤⎦ − −⎡⎣ ⎤⎦ = .− . . − ./ /

and

P X > F e /3 1 3 0 1173 1 4( ) = − ( ) = = .− .

Therefore,

P X < X >3 5 3 0 035 0 117 0 30.( ) = . . = .u /

Practical Interpretation: After waiting for three minutes without a detection, the probability of a detection in the next 30 

seconds is the same as the probability of a detection in the 30 seconds immediately after starting the counter. The fact that 

we have waited three minutes without a detection does not change the probability of a detection in the next 30 seconds.

For an exponential random variable X,

 P X < t t X > t P X < t1 2 1 2+( ) = ( )u  (4-16)

Lack of Memory 
Property

Figure 4-24 graphically illustrates the lack of memory property. The area of region A divided 

by the total area under the probability density function A B C D+ + + =( )1  equals P X < t2( ). 
The area of region C  divided by the area C D+  equals P X < t t X > t1 2 1+( ).u  The lack of 

memory property implies that the proportion of the total area that is in A equals the propor-

tion of the area in C  and D that is in C . The mathematical verifi cation of the lack of memory 

property is left as a Mind-Expanding exercise.

The lack of memory property is not so surprising when we consider the development of a 

Poisson process. In that development, we assumed that an interval could be partitioned into 

small intervals that were independent. These subintervals are similar to independent Bernoulli 

trials that comprise a binomial experiment; knowledge of previous results does not affect the 

probabilities of events in future subintervals. An exponential random variable is the continu-

ous analog of a geometric random variable, and it shares a similar lack of memory property.

FIGURE 4-24 Lack 
of memory property 
of an exponential 
distribution. t2 x

C D
B

A

t1 t1 + t2

f (x)
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The exponential distribution is often used in reliability studies as the model for the time until 

failure of a device. For example, the lifetime of a semiconductor chip might be modeled as an 

exponential random variable with a mean of 40,000 hours. The lack of memory property of the 

exponential distribution implies that the device does not wear out. That is, regardless of how long 

the device has been operating, the probability of a failure in the next 1000 hours is the same as the 

probability of a failure in the first 1000 hours of operation. The lifetime L of a device with failures 

caused by random shocks might be appropriately modeled as an exponential random variable. 

However, the lifetime L of a device that suffers slow mechanical wear, such as bearing 

wear, is better modeled by a distribution such that P L < t t L > t+ Δ( )u  increases with t. Distri-

butions such as the Weibull distribution are often used in practice to model the failure time of 

this type of device. The Weibull distribution is presented in a later section.

FOR SECTION 4-8Exercises

4-112.  Suppose that X  has an exponential distribution 

with λ = 2. Determine the following:

(a) P X ≤( )0  (b) P X ≥( )2

(c) P X ≤( )1  (d) P < X <1 2( )
(e) Find the value of x  such that P X < x( ) = . .0 05

4-113.  Suppose that X  has an exponential distribution 

with mean equal to 10. Determine the following:

(a) P X >10( ) (b) P X > 20( ) (c) P X < 30( )
(d) Find the value of x  such that P X < x( ) = . .0 95

4-114.  Suppose that X  has an exponential distribution 

with a mean of 10. Determine the following:

(a) P X < 5( ) (b) P X < X >15 10|( )
(c) Compare the results in parts (a) and (b) and comment on 

the role of the lack of memory property.

4-115.  Suppose that the counts recorded by a Geiger 

counter follow a Poisson process with an average of two counts 

per minute.

(a) What is the probability that there are no counts in a 30-sec-

ond interval?

(b) What is the probability that the first count occurs in less 

than 10 seconds?

(c) What is the probability that the first count occurs between 

one and two minutes after start-up?

4-116.  Suppose that the log-ons to a computer network 

follow a Poisson process with an average of three counts per 

minute.

(a) What is the mean time between counts?

(b) What is the standard deviation of the time between counts?

(c) Determine x  such that the probability that at least one count 

occurs before time x  minutes is 0.95.

4-117.  The time between calls to a plumbing supply busi-

ness is exponentially distributed with a mean time between 

calls of 15 minutes.

(a) What is the probability that there are no calls within a 

30-minute interval?

(b) What is the probability that at least one call arrives within 

a 10-minute interval?

(c) What is the probability that the first call arrives within 5 

and 10 minutes after opening?

(d) Determine the length of an interval of time such that the 

probability of at least one call in the interval is 0.90.

4-118.  The life of automobile voltage regulators has  

an exponential distribution with a mean life of six years. You 

purchase a six-year-old automobile, with a working voltage 

regulator and plan to own it for six years.

(a) What is the probability that the voltage regulator fails dur-

ing your ownership?

(b) If your regulator fails after you own the automobile three years 

and it is replaced, what is the mean time until the next failure?

4-119.  Suppose that the time to failure (in hours) of fans 

in a personal computer can be modeled by an exponential dis-

tribution with λ = . .0 0003

(a) What proportion of the fans will last at least 10,000 hours?

(b) What proportion of the fans will last at most 7000 hours?

4-120.  The time between the arrival of electronic mes-

sages at your computer is exponentially distributed with a mean 

of two hours.

(a) What is the probability that you do not receive a message 

during a two-hour period?

(b) If you have not had a message in the last four hours, what 

is the probability that you do not receive a message in the 

next two hours?

(c) What is the expected time between your fifth and sixth 

messages?

4-121.  The time between arrivals of taxis at a busy inter-

section is exponentially distributed with a mean of 10 minutes.

(a) What is the probability that you wait longer than one hour 

for a taxi?

(b) Suppose that you have already been waiting for one hour 

for a taxi. What is the probability that one arrives within the 

next 10 minutes?

(c) Determine x  such that the probability that you wait more 

than x  minutes is 0.10.

(d) Determine x  such that the probability that you wait less 

than x  minutes is 0.90.

 Problem available in WileyPLUS at instructor’s discretion. 

 Tutoring problem available in WileyPLUS at instructor’s discretion.
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(e) Determine x  such that the probability that you wait less 

than x  minutes is 0.50.

4-122. The number of stork sightings on a route in South 

Carolina follows a Poisson process with a mean of 2.3 per year.

(a) What is the mean time between sightings?

(b) What is the probability that there are no sightings within 

three months (0.25 years)?

(c) What is the probability that the time until the first sighting 

exceeds six months?

(d) What is the probability of no sighting within three years?

4-123. According to results from the analysis of chocolate bars 

in Chapter 3, the mean number of insect fragments was 14.4 

in 225 grams. Assume that the number of fragments follows a 

Poisson distribution.

(a) What is the mean number of grams of chocolate until a 

fragment is detected?

(b) What is the probability that there are no fragments in a 

28.35-gram (one-ounce) chocolate bar?

(c) Suppose you consume seven one-ounce (28.35-gram) bars 

this week. What is the probability of no insect fragments?

4-124.  The distance between major cracks in a highway 

follows an exponential distribution with a mean of five miles.

(a) What is the probability that there are no major cracks in a 

10-mile stretch of the highway?

(b) What is the probability that there are two major cracks in a 

10-mile stretch of the highway?

(c) What is the standard deviation of the distance between 

major cracks?

(d) What is the probability that the first major crack occurs 

between 12 and 15 miles of the start of inspection?

(e) What is the probability that there are no major cracks in 

two separate five-mile stretches of the highway?

(f) Given that there are no cracks in the first five miles 

inspected, what is the probability that there are no major 

cracks in the next 10 miles inspected?

4-125.  The lifetime of a mechanical assembly in a vibra-

tion test is exponentially distributed with a mean of 400 hours.

(a) What is the probability that an assembly on test fails in less 

than 100 hours?

(b) What is the probability that an assembly operates for more 

than 500 hours before failure?

(c) If an assembly has been on test for 400 hours without a fail-

ure, what is the probability of a failure in the next 100 hours?

(d) If 10 assemblies are tested, what is the probability that 

at least one fails in less than 100 hours? Assume that the 

assemblies fail independently.

(e) If 10 assemblies are tested, what is the probability that all 

have failed by 800 hours? Assume that the assemblies fail 

independently.

4-126.  The time between arrivals of small aircraft at a county 

airport is exponentially distributed with a mean of one hour.

(a) What is the probability that more than three aircraft arrive 

within an hour?

(b) If 30 separate one-hour intervals are chosen, what is the 

probability that no interval contains more than three arrivals?

(c) Determine the length of an interval of time (in hours) such that 

the probability that no arrivals occur during the interval is 0.10.

4-127. The time between calls to a corporate office is expo-

nentially distributed with a mean of 10 minutes.

(a) What is the probability that there are more than three calls 

in one-half hour?

(b) What is the probability that there are no calls within one-

half hour?

(c) Determine x  such that the probability that there are no calls 

within x  hours is 0.01.

(d) What is the probability that there are no calls within a two-

hour interval?

(e) If four nonoverlapping one-half-hour intervals are selected, 

what is the probability that none of these intervals contains 

any call?

(f) Explain the relationship between the results in part (a) and (b).

4-128.  Assume that the flaws along a magnetic tape fol-

low a Poisson distribution with a mean of 0.2 flaw per meter. 

Let X denote the distance between two successive flaws.

(a) What is the mean of X ?

(b) What is the probability that there are no flaws in 10 con-

secutive meters of tape?

(c) Does your answer to part (b) change if the 10 meters are 

not consecutive?

(d) How many meters of tape need to be inspected so that the 

probability that at least one flaw is found is 90%?

(e) What is the probability that the first time the distance 

between two flaws exceeds eight meters is at the fifth flaw?

(f) What is the mean number of flaws before a distance between 

two flaws exceeds eight meters?

4-129. If the random variable X  has an exponential distribu-

tion with mean θ, determine the following:

(a) P X > θ( ) (b) P X > 2θ( ) (c) P X > 3θ( )
(d) How do the results depend on θ?

4-130.  Derive the formula for the mean and variance of 

an exponential random variable.

4-131. Web crawlers need to estimate the frequency of changes 

to Web sites to maintain a current index for Web searches. 

Assume that the changes to a Web site follow a Poisson process 

with a mean of 3.5 days.

(a) What is the probability that the next change occurs in less 

than 2.0 days?

(b) What is the probability that the time until the next change 

is greater 7.0 days?

(c) What is the time of the next change that is exceeded with 

probability 90%?

(d) What is the probability that the next change occurs in less than 

10.0 days, given that it has not yet occurred after 3.0 days?

4-132. The length of stay at a specific emergency department 

in a hospital in Phoenix, Arizona had a mean of 4.6 hours. 

Assume that the length of stay is exponentially distributed.

(a) What is the standard deviation of the length of stay?

(b) What is the probability of a length of stay of more than 10 

hours?

(c) What length of stay is exceeded by 25% of the visits?

4-133. An article in Journal of National Cancer Institute 

[“Breast Cancer Screening Policies in Developing Countries:  

A Cost-Effectiveness Analysis for India” (2008, Vol.100(18),  
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pp. 1290–1300)] presented a screening analysis model of breast 

cancer based on data from India. In this analysis, the time that 

a breast cancer case stays in a preclinical state is modeled to be 

exponentially distributed with a mean depending on the state. 

For example, the time that a cancer case stays in the state of T1C 

(tumor size of 11–20 mm) is exponentially distributed with a 

mean of 1.48 years. 

(a) What is the probability that a breast cancer case in India 

stays in the state of T1C for more than 2.0 years? 

(b) What is the proportion of breast cancer cases in India that 

spend at least 1.0 year in the state of T1C? 

(c) Assume that a person in India is diagnosed to be in the state 

of T1C. What is the probability that the patient is in the 

same state six months later?  

4-134. Requests for service in a queuing model follow a Pois-

son distribution with a mean of fi ve per unit time. 

(a)  What is the probability that the time until the fi rst request is 

less than 4 minutes? 

(b) What is the probability that the time between the second 

and third requests is greater than 7.5 time units? 

(c) Determine the mean rate of requests such that the probabil-

ity is 0.9 that there are no requests in 0.5 time units. 

(d) If the service times are independent and exponentially distrib-

uted with a mean of 0.4 time units, what can you conclude 

about the long-term response of this system to requests? 

4-135. An article in Vaccine [“Modeling the Effects of Infl uenza 

Vaccination of Health Care Workers in Hospital Departments” 

(2009, Vol.27(44), pp. 6261–6267)] considered the immunization 

of healthcare workers to reduce the hazard rate of infl uenza virus 

infection for patients in regular hospital departments. In this anal-

ysis, each patient’s length of stay in the department is taken as 

exponentially distributed with a mean of 7.0 days. 

(a) What is the probability that a patient stays in hospital for 

less than 5.5 days? 

(b) What is the probability that a patient stays in hospital for 

more than 10.0 days if the patient has currently stayed for 

7.0 days? 

(c) Determine the mean length of stay such that the probability 

is 0.9 that a patient stays in the hospital less than 6.0 days. 

4-136. An article in Ad Hoc Networks [“Underwater Acous-

tic Sensor Networks: Target Size Detection and Performance 

Analysis” (2009, Vol.7(4), pp. 803–808)] discussed an under-

water acoustic sensor network to monitor a given area in an 

ocean. The network does not use cables and does not interfere 

with shipping activities. The arrival of clusters of signals gen-

erated by the same pulse is taken as a Poisson arrival process 

with a mean of λ per unit time. Suppose that for a specifi c 

underwater acoustic sensor network, this Poisson process has a 

rate of 2.5 arrivals per unit time. 

(a) What is the mean time between 2.0 consecutive arrivals? 

(b) What is the probability that there are no arrivals within 0.3 

time units? 

(c) What is the probability that the time until the fi rst arrival 

exceeds 1.0 unit of time? 

(d) Determine the mean arrival rate such that the probability is 

0.9 that there are no arrivals in 0.3 time units.

4-9 Erlang and Gamma Distributions
An exponential random variable describes the length until the fi rst count is obtained in a Pois-

son process. A generalization of the exponential distribution is the length until r events occur 

in a Poisson process. Consider Example 4-23.

The previous example can be generalized to show that if X is the time until the rth event in a 

Poisson process, then

  P X > x
e x

k

x k

k

r

( ) =
λ( )
!

 
− λ

=

−

∑
 

0

1

 (4-17)

Processor Failure The failures of the central processor units of large computer systems are often 

modeled as a Poisson process. Typically, failures are not caused by components wearing out but 

by more random failures of the large number of semiconductor circuits in the units. Assume that the units that fail are 

immediately repaired, and assume that the mean number of failures per hour is 0.0001. Let X denote the time until four 

failures occur in a system. Determine the probability that X exceeds 40,000 hours.

Let the random variable N  denote the number of failures in 40,000 hours of operation. The time until four failures 

occur exceeds 40,000 hours if and only if the number of failures in 40,000 hours is three or less. Therefore,

P X > , P N40 000 3( ) = ≤( )
The assumption that the failures follow a Poisson process implies that N  has a Poisson distribution with

E N , ,( ) = .( ) =     40 000 0 0001 4 40 000failures per hours

Therefore,

P X > , P N
e

k

k

k

40 000 3
4

0 433
4

0

3

( ) = ≤( ) =
!

= .
−

=
∑

Example 4-23
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Because P X > x F x ,( ) = − ( )1  the probability density function of X equals the negative of the 

derivative of the right-hand side of the previous equation. After extensive algebraic simplifica-

tion, the probability density function of X can be shown to equal

f x
x e

r

r r x

( ) = λ
−( )!
− − λ1

1

 

 for x > 0 and r = 1,  2, . . . .

This probability density function defines an Erlang random variable. Clearly, an Erlang 

random variable with r = 1 is an exponential random variable.

It is convenient to generalize the Erlang distribution to allow r to assume any non-negative 

value. Then the Erlang and some other common distributions become special cases of this 

generalized distribution. To accomplish this step, the factorial function r −( )1 ! is generalized 

to apply to any non-negative value of r, but the generalized function should still equal r −( )1 ! 
when r is a positive integer.

The gamma function is

 Γ( ) =   − −
∞

 
∫r x e dx, r >r x1

0

0for  (4-18)

Gamma Function

It can be shown that the integral in the definition of Γ( )r  is finite. Furthermore, by using inte-

gration by parts, it can be shown that

Γ( ) = −( )Γ −( )r r r1 1

This result is left as an exercise. Therefore, if r is a positive integer (as in the Erlang distribution),

Γ( ) = −( )!r r 1

Also, Γ( ) = ! =1 0 1 and it can be shown that Γ ( ) = π1 2 1 2/ / . The gamma function can be inter-

preted as a generalization to noninteger values of r of the term that is used in the Erlang prob-

ability density function. Now the Erlang distribution can be generalized.

The random variable X with probability density function

 f x
x e

r
, x >

r r x

( ) = λ
Γ( )  

− − λ1

0
 

for  (4-19)

is a gamma random variable with parameters λ   > r >0 0and . If r is an integer, X 

has an Erlang distribution.

Gamma Distribution

The parameters λ and r are often called the scale and shape parameters, respectively. How-

ever, one should check the definitions used in software packages. For example, some sta-

tistical software defines the scale parameter as 1 / λ. Sketches of the gamma distribution for 

several values of λ and r are shown in Fig. 4-25. Many different shapes can be generated from 

changes to the parameters. Also, the change of variable u x= λ  and the definition of the gamma 

function can be used to show that the probability density function integrates to 1.

For the special case when r is an integer and the value of r is not large, Equation (4-17) 

can be applied to calculate probabilities for a gamma random variable. However, in general, 

the integral of the gamma probability density function is difficult to evaluate so computer 

software is used to determine probabilities.

Recall that for an exponential distribution with parameter λ, the mean and variance are 1 / λ 

and 1 2/ λ , respectively. An Erlang random variable is the time until the rth event in a Poisson 

process and the time between events are independent. Therefore, it is plausible that the mean 
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and variance of a gamma random variable multiply the exponential results by r. This motivates 

the following conclusions. Repeated integration by parts can be used to derive these, but the 

details are lengthy and omitted.
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FIGURE 4-25 
Gamma probability 
density functions 
for selected values 
of λ and r.

If X is a gamma random variable with parameters λ and r,

μ = ( ) = λ σ = ( ) = λE X r V X r/ /and 2 2

Mean and Variance

The time to prepare a micro-array slide for high-throughput genomics is a Poisson process with a mean 

of two hours per slide. What is the probability that 10 slides require more than 25 hours to prepare?

Let X denote the time to prepare 10 slides. Because of the assumption of a Poisson process, X has a gamma distribu-

tion with λ =  =1 2 10/ ,r , and the requested probability is P X > 25( ). The probability can be obtained from software 

that provides cumulative Poisson probabilities or gamma probabilities. For the cumulative Poisson probabilities, we 

use the method in Example 4-23 to obtain

P X >
e

k

k

k

25
12 512 5

0

9

( ) =
.( )

!
 

− .

=
∑

In software we set the mean 12.5 = and the input 9 = to obtain P X > 25 0 2014( ) = . .
As a check, we use the gamma cumulative probability function in Minitab. Set the shape parameter to 10, the scale 

parameter to 0.5, and the input to 25. The probability computed is P X ≤( ) = .25 0 7986, and when this is subtracted 

from one we match with the previous result that P X > 25 0 2014( ) = . .
What are the mean and standard deviation of the time to prepare 10 slides? The mean time is

E X r( ) = λ = . =/ /10 0 5 20

The variance of time is

V X r( ) = λ = . =/ /2 210 0 5 40

so that the standard deviation is 40 6.32 hours1/2 = .

The slides will be completed by what length of time with probability equal to 0.95? The question asks for x such that

P X x≤( ) = .0 95

Example 4-24
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Furthermore, the chi-squared distribution is a special case of the gamma distribution 

in which λ = 1 2/  and r equals one of the values 1/2, 1, 3/2, 2, . . . . This distribution is used 

extensively in interval estimation and tests of hypotheses that are discussed in subsequent 

chapters. The chi-squared distribution is discussed in Chapter 7.

where X is gamma with λ = .0 5 and r = .10  In software, we use the gamma inverse cumulative probability function and 

set the shape parameter to 10, the scale parameter to 0.5, and the probability to 0.95. The solution is

P X ≤ .( ) = .31 41 0 95

Practical Interpretation: Based on this result, a schedule that allows 31.41 hours to prepare 10 slides should be met 

95% of the time.

4-137.  Use the properties of the gamma function to evalu-

ate the following:

(a) Γ( )6    (b) Γ( )5 2/    (c) Γ( )9 2/
4-138.  Given the probability density function f x( ) = .0 013

 

x e ,x2 0 01 3− . Γ( )/  determine the mean and variance of the 

distribution.

4-139.  Calls to a telephone system follow a Poisson dis-

tribution with a mean of fi ve calls per minute.

(a) What is the name applied to the distribution and parameter 

values of the time until the 10th call?

(b) What is the mean time until the 10th call?

(c) What is the mean time between the 9th and 10th calls?

(d) What is the probability that exactly four calls occur within 

one minute?

(e) If 10 separate one-minute intervals are chosen, what is the 

probability that all intervals contain more than two calls?

4-140.  Raw materials are studied for contamination. Sup-

pose that the number of particles of contamination per pound 

of material is a Poisson random variable with a mean of 0.01 

particle per pound.

(a) What is the expected number of pounds of material required 

to obtain 15 particles of contamination?

(b) What is the standard deviation of the pounds of materials 

required to obtain 15 particles of contamination?

4-141.  The time between failures of a laser in a cytogenics 

machine is exponentially distributed with a mean of 25,000 hours.

(a) What is the expected time until the second failure?

(b) What is the probability that the time until the third failure 

exceeds 50,000 hours?

4-142.  In a data communication system, several messages 

that arrive at a node are bundled into a packet before they are 

transmitted over the network. Assume that the messages arrive 

at the node according to a Poisson process with τ = 30 mes-

sages per minute. Five messages are used to form a packet.

(a) What is the mean time until a packet is formed, that is, until 

fi ve messages have arrived at the node?

(b) What is the standard deviation of the time until a packet is 

formed?

(c) What is the probability that a packet is formed in less than 

10 seconds?

(d) What is the probability that a packet is formed in less than 

fi ve seconds?

4-143.  Errors caused by contamination on optical disks 

occur at the rate of one error every 105 bits. Assume that the 

errors follow a Poisson distribution.

(a) What is the mean number of bits until fi ve errors occur?

(b) What is the standard deviation of the number of bits until 

fi ve errors occur?

(c) The error-correcting code might be ineffective if there are 

three or more errors within 105 bits. What is the probability 

of this event?

4-144.  Calls to the help line of a large computer distribu-

tor follow a Poisson distribution with a mean of 20 calls per 

minute. Determine the following:

(a) Mean time until the one-hundredth call

(b) Mean time between call numbers 50 and 80

(c) Probability that three or more calls occur within 15 seconds

4-145.  The time between arrivals of customers at an auto-

matic teller machine is an exponential random variable with a 

mean of fi ve minutes.

(a) What is the probability that more than three customers 

arrive in 10 minutes?

(b) What is the probability that the time until the fi fth customer 

arrives is less than 15 minutes?

4-146. Use integration by parts to show that Γ( ) = −( )r r 1  

 Γ −( ).r 1

4-147. Show that the gamma density function f x, ,r λ  ( ) inte-

grates to 1.

4-148.  Use the result for the gamma distribution to determine 

the mean and variance of a chi-square distribution with r = 7 2.

4-149. Patients arrive at a hospital emergency department 

according to a Poisson process with a mean of 6.5 per hour.

FOR SECTION 4-9EXERCISES

 Problem available in WileyPLUS at instructor’s discretion. 

 Tutoring problem available in WileyPLUS at instructor’s discretion.
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(a) What is the mean time until the 10th arrival?

(b) What is the probability that more than 20 minutes is 

required for the third arrival?

4-150. The total service time of a multistep manufacturing 

operation has a gamma distribution with mean 18 minutes and 

standard deviation 6.

(a) Determine the parameters λ and r  of the distribution.

(b) Assume that each step has the same distribution for service 

time. What distribution for each step and how many steps 

produce this gamma distribution of total service time?

4-151. An article in Sensors and Actuators A: Physical 
[“Characterization and Simulation of Avalanche PhotoDiodes 

for Next-Generation Colliders” (2011, Vol.172(1), pp.181–

188)] considered an avalanche photodiode (APD) to detect 

charged particles in a photo. The number of arrivals in each 

detection window was modeled with a Poisson distribution 

with a mean depending on the intensity of beam. For one beam 

intensity, the number of electrons arriving at an APD follows a 

Poisson distribution with a mean of 1.74 particles per detection 

window of 200 nanoseconds. 

(a) What is the mean and variance of the time for 100 arrivals? 

(b) What is the probability that the time until the fifth particle 

arrives is greater than 1.0 nanosecond? 

4-152. An article in Mathematical Biosciences [“Influence of 

Delayed Viral Production on Viral Dynamics in HIV-1 Infected 

Patients” (1998, Vol.152(2), pp. 143–163)] considered the time 

delay between the initial infection by immunodeficiency virus 

type 1 (HIV-1) and the formation of productively infected cells. 

In the simulation model, the time delay is approximated by a 

gamma distribution with parameters r = 4 and 1 0 25/ = .λ  days. 

Determine the following: 

(a) Mean and variance of time delay

(b) Probability that a time delay is more than half a day

(c) Probability that a time delay is between one-half and one day

The random variable X with probability density function

 f x
x x

, x >( ) = β
δ
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0exp  for  (4-20)

is a Weibull random variable with scale parameter δ > 0 and shape parameter β .> 0

Weibull Distribution

If X has a Weibull distribution with parameters δ and β,

μ = ( ) = δΓ +
β

⎛
⎝⎜

⎞
⎠⎟

σ = ( ) = δ Γ +
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 (4-21)

Mean and Variance

The graphs of selected probability density functions in Fig. 4-26 illustrate the flexibility of 

the Weibull distribution. By inspecting the probability density function, we can see that when 

β = 1, the Weibull distribution is identical to the exponential distribution. Also, the Raleigh 
distribution is a special case when the shape parameter is 2.

The cumulative distribution function is often used to compute probabilities. The following 

result can be obtained.

If X has a Weibull distribution with parameters δ and β, then the cumulative distribu-

tion function of X is

 F x e
x

( ) = −
−⎛

⎝⎜
⎞
⎠⎟1 δ

β

 

Cumulative Distribu-
tion Function

Also, the following results can be obtained.

4-10 Weibull Distribution
As mentioned previously, the Weibull distribution is often used to model the time until failure 

of many different physical systems. The parameters in the distribution provide a great deal 

of flexibility to model systems in which the number of failures increases with time (bearing 

wear), decreases with time (some semiconductors), or remains constant with time (failures 

caused by external shocks to the system).
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FIGURE 4-26 Weibull probability density functions for selected values of δ and β.
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Bearing Wear The time to failure (in hours) of a bearing in a mechanical shaft is satisfactorily 

modeled as a Weibull random variable with β =   δ =  .1 2 5000/ and hours  Determine the mean time 

until failure.

From the expression for the mean,

E X( ) = Γ + ( )⎡⎣ ⎤⎦ = Γ .[ ] = . π = .  5000 1 1 2 5000 1 5 5000 0 5 4431 1/ × hours

Determine the probability that a bearing lasts at least 6000 hours. Now,

P X > F e6000 1 6000
6000

5000
0 2

2

1 44( ) = − ( ) = − ⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= = .− .exp 337

Practical Interpretation: Consequently, only 23.7% of all bearings last at least 6000 hours.

Example 4-25

4-153.  Suppose that X  has a Weibull distribution with β = .0 2 

and δ = 100 hours. Determine the mean and variance of X .

4-154.  Suppose that X  has a Weibull distribution with 

β = .0 2 and δ = 100 hours. Determine the following:

(a) P X < ,10 000( )  (b) P X > 5000( )
4-155.  If X  is a Weibull random variable with β = 1 and

δ = 1000, what is another name for the distribution of X ,  and 

what is the mean of X ?

4-156.  Assume that the life of a roller bearing follows a 

Weibull distribution with parameters β = 2 and δ = 10 000,  hours.

(a) Determine the probability that a bearing lasts at least 8000 

hours.

(b) Determine the mean time until failure of a bearing.

(c) If 10 bearings are in use and failures occur independently, what 

is the probability that all 10 bearings last at least 8000 hours?

4-157.  The life (in hours) of a computer processing unit 

(CPU) is modeled by a Weibull distribution with parameters 

β = 3 and δ = 900 hours. Determine (a) and (b):

(a) Mean life of the CPU. (b) Variance of the life of the CPU.

(c) What is the probability that the CPU fails before 500 hours?

 FOR SECTION 4-10EXERCISES
 Problem available in WileyPLUS at instructor’s discretion. 

 Tutoring problem available in WileyPLUS at instructor’s discretion.
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4-158.  Assume that the life of a packaged magnetic disk 

exposed to corrosive gases has a Weibull distribution with 

β = .0 5 and the mean life is 600 hours. Determine the following:

(a) Probability that a disk lasts at least 500 hours.

(b) Probability that a disk fails before 400 hours.

4-159.  The life (in hours) of a magnetic resonance imag-

ing machine (MRI) is modeled by a Weibull distribution with 

parameters β = 2 and δ = 500 hours. Determine the following:

(a) Mean life of the MRI

(b) Variance of the life of the MRI

(c) Probability that the MRI fails before 250 hours.

4-160.  An article in the Journal of the Indian Geophysi-
cal Union titled “Weibull and Gamma Distributions for Wave 

Parameter Predictions” (2005, Vol. 9, pp. 55–64) described the 

use of the Weibull distribution to model ocean wave heights. 

Assume that the mean wave height at the observation station is 

2.5 m and the shape parameter equals 2. Determine the stand-

ard deviation of wave height.

4-161. An article in the Journal of Geophysical Research 

[“Spatial and Temporal Distributions of U.S. of Winds and Wind 

Power at 80 m Derived from Measurements” (2003, vol. 108)] 

considered wind speed at stations throughout the United States. 

A Weibull distribution can be used to model the distribution of 

wind speeds at a given location. Every location is characterized 

by a particular shape and scale parameter. For a station at Ama-

rillo, Texas, the mean wind speed at 80 m (the hub height of large 

wind turbines) in 2000 was 10.3 m/s with a standard deviation of 

4.9 m/s. Determine the shape and scale parameters of a Weibull 

distribution with these properties.

4-162. Suppose that X  has a Weibull distribution with β = 2 

and δ = 8 6. . Determine the following:

(a) P X( 10)<  (b) P X( 9)>  (c) P X(8 11)< <
(d) Value for x  such that P X x( ) = 0.9>
4-163. Suppose that the lifetime of a component (in hours) is 

modeled with a Weibull distribution with β = 2 and δ = 4000. 

Determine the following in parts (a) and (b):

(a) P X( 3000)>  (b) P X > > 30006000 u X( )
(c) Comment on the probabilities in the previous parts com-

pared to the results for an exponential distribution.

4-164. Suppose that the lifetime of a component (in hours), X is 

modeled with a Weibull distribution with β = 0 5.  and δ = 4000.  

Determine the following in parts (a) and (b):

(a) P X( 3500)>  (b) P X X> > 30006000( )
(c) Comment on the probabilities in the previous parts com-

pared to the results for an exponential distribution.

(d) Comment on the role of the parameter β in a lifetime model 

with the Weibull distribution.

4-165. Suppose that X  has a Weibull distribution with β = 2

and δ = 2000. Determine the following in parts (a) and (b):

(a) P X( 3500)>
(b) P X( 3500)>  for an exponential random variable with the 

same mean as the Weibull distribution

(c) Comment on the probability that the lifetime exceeds 3500 

hours under the Weibull and exponential distributions.

4-166. An article in Electronic Journal of Applied Statistical 
Analysis [“Survival Analysis of Dialysis Patients Under Para-

metric and Non-Parametric Approaches” (2012, Vol. 5(2), pp. 

271–288)] modeled the survival time of dialysis patients with 

chronic kidney disease with a Weibull distribution. The mean 

and standard deviation of survival time were 16.01 and 11.66 

months, respectively. Determine the following:

(a) Shape and scale parameters of this Weibull distribution

(b) Probability that survival time is more  than 48 months

(c) Survival time exceeded with 90% probability

4-167. An article in Proceeding of the 33rd International 
ACM SIGIR Conference on Research and Development in 
Information Retrieval [“Understanding Web Browsing Behav-

iors Through Weibull Analysis of Dwell Time” (2010, p. 379l–

386)] proposed that a Weibull distribution can be used to model 

Web page dwell time (the length of time a Web visitor spends 

on a Web page). For a specific Web page, the shape and scale 

parameters are 1 and 300 seconds, respectively. Determine the 

following: 

(a) Mean and variance of dwell time

(b) Probability that a Web user spends more than four minutes 

on this Web page

(c) Dwell time exceeded with probability 0.25

4-168. An article in Financial Markets Institutions and Instru-
ments [“Pricing Reinsurance Contracts on FDIC Losses” (2008, 

Vol. 17(3)] modeled average annual losses (in billions of dollars) 

of the Federal Deposit Insurance Corporation (FDIC) with a 

Weibull distribution with parameters δ = .1 9317 and β = .0 8472.  

Determine the following: 

(a) Probability of a loss greater than $2 billion

(b) Probability of a loss between $2 and $4 billion 

(c) Value exceeded with probability 0.05

(d) Mean and standard deviation of loss 

4-169. An article in IEEE Transactions on Dielectrics and 
Electrical Insulation [“Statistical Analysis of the AC Break-

down Voltages of Ester Based Transformer Oils” (2008, Vol. 

15(4))] used Weibull distributions to model the breakdown 

voltage of insulators. The breakdown voltage is the mini-

mum voltage at which the insulator conducts. For 1 mm of 

natural ester, the 1% probability of breakdown voltage is 

approximately 26 kV, and the 7% probability is approximately 

31.6 kV. Determine the parameters δ  and β of the Weibull 

distribution.

4-11 Lognormal Distribution
Variables in a system sometimes follow an exponential relationship as x w= ( )exp . If the expo-

nent is a random variable W, X W = ( )then exp  is a random variable with a distribution of 

interest. An important special case occurs when W  has a normal distribution. In that case, the 
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distribution of X is called a lognormal distribution. The name follows from the transforma-

tion ln X W( ) = . That is, the natural logarithm of X is normally distributed.

Probabilities for X are obtained from the transform of the normal distribution. The range 

of X is 0, ∞( ). Suppose that W  is normally distributed with mean θ and variance ω2; then the 

cumulative distribution function for X is

F x P X x P W x P W x

P Z
x

( ) = ≤[ ] = ( ) ≤⎡⎣ ⎤⎦ = ≤ ( )⎡⎣ ⎤⎦

= ≤ ( ) − θ
ω

⎡

⎣
⎢

⎤

⎦
⎥ = Φ

exp ln

ln lln x( ) − θ
ω

⎡

⎣
⎢

⎤

⎦
⎥

for x > 0, where Z  is a standard normal random variable and Φ( )⋅  is the cumulative distribu-

tion function of the standard normal distribution. Therefore, Appendix Table III can be used to 

determine the probability. Also, F x x( ) =   ≤ .0 0for

The probability density function of X can be obtained from the derivative of F x( ). This 

derivative is applied to the last term in the expression for F x( ). Because Φ( )⋅  is the integral of 

the standard normal density function, the fundamental theorem of calculus is used to calculate 

the derivative. Furthermore, from the probability density function, the mean and variance of X 

can be derived. The details are omitted, but a summary of results follows.

Let W  have a normal distribution with mean θ and variance ω2; then X W= ( )exp  is 

a lognormal random variable with probability density function

 f x
x

x
< x <( ) =

ω π
− − θ

ω
⎡

⎣
⎢

⎤

⎦
⎥ ∞1

2 2
0

2

2
exp

(ln( ) )
 

The mean and variance of X are

 E X e V X e e( ) = ( ) =  −( )θ+ω θ+ω ω2 2 22 2 1y and  (4-22)

Lognormal 
Distribution

The parameters of a lognormal distribution are θ and ω2, but these are the mean and vari-

ance of the normal random variable W . The mean and variance of X are the functions of 

these parameters shown in Equation (4-22). Figure 4-27 illustrates lognormal distributions 

for selected values of the parameters.

The lifetime of a product that degrades over time is often modeled by a lognormal random 

variable. For example, this is a common distribution for the lifetime of a semiconductor laser. 

A Weibull distribution can also be used in this type of application, and with an appropriate 

choice for parameters, it can approximate a selected lognormal distribution. However, a log-

normal distribution is derived from a simple exponential function of a normal random vari-

able, so it is easy to understand and easy to evaluate probabilities.
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Semiconductor Laser The lifetime (in hours) of a semiconductor laser has a lognormal distribu-

tion with θ = 10 and ω = .1 5. What is the probability that the lifetime exceeds 10,000 hours?

From the cumulative distribution function for X,

P X > , P W ,

P W ,

10 000 1 10 000

1 10 000

1

( ) = − ( ) ≤⎡⎣ ⎤⎦
= − ≤ ( )⎡⎣ ⎤⎦

= − Φ

exp

ln

ln 110 000 10

1 5
1 0 52

1 0 30 0 70

,( ) −
.

⎛

⎝⎜
⎞

⎠⎟
= − Φ − .( )

= − . = .

What lifetime is exceeded by 99% of lasers? The question is to determine x such that P X > x( ) = . .0 99  Therefore,

P X > x P W > x P W > x

x

( ) = ( )⎡⎣ ⎤⎦ = ( )⎡⎣ ⎤⎦

= − Φ ( ) −
.

⎛

⎝⎜
⎞

⎠⎟
= .

exp ln

ln
1

10

1 5
0 999

From Appendix Table III,  − Φ( ) = .1 0 99z  when z = − .2 33. Therefore,

ln
and exp hours

x
x

( ) −
.

= − . = .( ) = .  
10

1 5
2 33 6 505 668 48

Determine the mean and standard deviation of lifetime. Now

E X e e ,

V X e e e

( ) = = = .

( ) = −( ) =

θ+ω + .( )

θ+ω ω + .

2

2 2

2 10 1 125

2 20 2

67 846 3

1

/

225 2 25 1

39 070 059 886 6

( ) −

= .

( ).e

, , ,

so the standard deviation of X is 197,661.5 hours.

Practical Interpretation: The standard deviation of a lognormal random variable can be large relative to the mean.

Example 4-26

 Problem available in WileyPLUS at instructor’s discretion. 

 Tutoring problem available in WileyPLUS at instructor’s discretion.

4-170.  Suppose that X  has a lognormal distribution with 

parameters θ = 5 and ω =2 9. Determine the following:

(a) P X < ,13 300( ) (b) Value for x  such that P X x≤( ) = .0 95

(c) Mean and variance of X
4-171.  Suppose that X  has a lognormal distribution with 

parameters θ = − 2 and ω =2 9. Determine the following:

(a) P < X <500 1000( ) (b) Value for x such that P X < x( ) = .0 1

(c) Mean and variance of X
4-172.  Suppose that X  has a lognormal distribution with 

parameters θ = 2 and ω =2 4. Determine the following in parts 

(a) and (b):

(a) P X < 500( )
(b) Conditional probability that X <1500 given that X >1000

(c) What does the difference between the probabilities in parts (a) 

and (b) imply about lifetimes of lognormal random variables?

4-173.  The length of time (in seconds) that a user views

 a page on a Web site before moving to another page is 

a lognormal random variable with parameters θ = .0 5 and 

ω =2 1.

(a) What is the probability that a page is viewed for more than 

10 seconds?

(b) By what length of time have 50% of the users moved to 

another page?

(c) What are the mean and standard deviation of the time until 

a user moves from the page?

4-174.  Suppose that X  has a lognormal distribution and 

that the mean and variance of X  are 100 and 85,000, respec-

tively. Determine the parameters θ and ω2 of the lognormal dis-

tribution. [Hint: defi ne x = θ( )exp  and y = ω( )exp 2  and write 

two equations in terms of x  and y .]

FOR SECTION 4-11Exercises
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4-175.  The lifetime of a semiconductor laser has a log-

normal distribution, and it is known that the mean and standard 

deviation of lifetime are 10,000 and 20,000, respectively.

(a) Calculate the parameters of the lognormal distribution.

(b) Determine the probability that a lifetime exceeds 10,000 

hours.

(c) Determine the lifetime that is exceeded by 90% of lasers.

4-176.  An article in Health and Population: Perspectives 
and Issues (2000, Vol. 23, pp. 28–36) used the lognormal distri-

bution to model blood pressure in humans. The mean systolic 

blood pressure (SBP) in males age 17 was 120.87 mm Hg. If the 

co-efficient of variation (100%  Standard deviation/mean)×  

is 9%, what are the parameter values of the lognormal 

distribution?

4-177. Derive the probability density function of a lognormal 

random variable from the derivative of the cumulative distribu-

tion function.

4-178. Suppose that X  has a lognormal distribution with 

parameters θ = 10 and ω =2 16. Determine the following:

(a) P X < 2000( ) (b) P X > 1500( )
(c) Value exceeded with probability 0.7

4-179. Suppose that the length of stay (in hours) at a hospital 

emergency department is modeled with a lognormal random 

variable X  with θ = 1 5.  and ω = 0 4. . Determine the following 

in parts (a) and (b):

(a) Mean and variance (b) P X < 8( )
(c) Comment on the difference between the probability 

P X < 0( ) calculated from this lognormal distribution and 

a normal distribution with the same mean and variance.

4-180. An article in Journal of Hydrology [“Use of a Lognormal 

Distribution Model for Estimating Soil Water Retention Curves 

from Particle-Size Distribution Data” (2006, Vol. 323(1), pp. 

325–334)] considered a lognormal distribution model to estimate 

water retention curves for a range of soil textures. The particle-size 

distribution (in centimeters) was modeled as a lognormal random 

variable X  with θ = − .3 8 and ω = .0 7. Determine the following: 

(a) P X( )< .0 02   (b) Value for x  such that P X x( )≤ = .0 95

(c) Mean and variance of X
4-181. An article in Applied Mathematics and Computa-
tion [“Confidence Intervals for Steady State Availability of 

a System with Exponential Operating Time and Lognormal 

Repair Time” (2003, Vol.137(2), pp. 499-509)] considered the 

long-run availability of a system with an assumed lognormal 

distribution for repair time. In a given example, repair time 

follows a lognormal distribution with θ ω= = 1. Determine the 

following: 

(a) Probability that repair time is more than five time units 

(b) Conditional probability that a repair time is less than eight 

time units given that it is more than five time units 

(c) Mean and variance of repair time 

4-182. An article in Chemosphere [“Statistical Evaluations 

Reflecting the Skewness in the Distribution of TCDD Lev-

els in Human Adipose Tissue” (1987, Vol.16(8), pp. 2135-

2140)] concluded that the levels of 2,3,7,8-TCDD (colorless 

persistent environmental contaminants with no distinguish-

able odor at room temperature) in human adipose tissue 

has a lognormal distribution (based on empirical evidence 

from North America). The mean and variance of this log-

normal distribution in the USA are 8 and 21, respectively. 

Let X  denote this lognormal random variable. Determine the 

following: 

(a) P X( )2000 2500< <
(b) Value exceeded with probability 10%

(c) Mean and variance of X  

4-183. Consider the lifetime of a laser in Example 4-26. 

Determine the following in parts (a) and (b): 

(a) Probability the lifetime is less than 1000 hours 

(b) Probability the lifetime is less than 11,000 hours given that 

it is more than 10,000 hours 

(c) Compare the answers to parts (a) and (b) and comment on 

any differences between the lognormal and exponential 

distributions.

4-12 Beta Distribution
A continuous distribution that is flexble but bounded over a finite range is useful for probabil-

ity models. The proportion of solar radiation absorbed by a material or the proportion (of the 

maximum time) required to complete a task in a project are examples of continuous random 

variables over the interval [0, 1].

The random variable X with probability density function

 f x x x , x ,( ) =
Γ α + β( )

Γ α( ) Γ β( ) −( ) [ ]α− β−

 
 for   1 1

1 0 1in  

is a beta random variable with parameters a > 0 and b > 0.

The shape parameters α and β allow the probability density function to assume many differ-

ent shapes. Figure 4-28 provides some examples. If α = β, the distribution is symmetric about 

x = 0 5. , and if α = β = 1, the beta distribution equals a continuous uniform distribution. Figure 

4-28 illustrates that other parameter choices generate nonsymmetric distributions.
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In general, there is a not a closed-form expression for the cumulative distribution function, 

and probabilities for beta random variables need to be computed numerically. The exercises 

provide some special cases in which the probability density function is more easily handled.

If X has a beta distribution with parameters α and β,

μ = ( ) = α
α + β

σ = ( ) = αβ
α + β( ) α + β +( )

E X V X and 2

2
1

Mean and 
Variance
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FIGURE 4-28 Beta 
probability 
density functions 
for selected values 
of the parameters a 
and b.

Consider the completion time of a large commercial development. The proportion of the maximum 

allowed time to complete a task is modeled as a beta random variable with α = 2.5 and β = 1. What 

is the probability that the proportion of the maximum time exceeds 0.7?

Suppose that X denotes the proportion of the maximum time required to complete the task. The probability is

P X > x x0 7 1
3 5

2 5 1
1 1

0

1

.( ) =
Γ α + β( )

Γ α( ) Γ β( ) −( ) =
Γ .( )

Γ .( ) Γ(
α− β−∫

 
  

 ))

=
. .( ) .( ) π

.( ) .( ) π .
= − . =

∫

.

.

 

 

x

x

1 5

0

1

2 5

0 7

1
2 52 5 1 5 0 5

1 5 0 5 2 5
1 0 7

.

.

00 59.

Example 4-27

If a > 1 and β > 1, the mode (peak of the density) is in the interior of [0, 1] and equals

mode = α −
α + β −

1

2

This expression is useful to relate the peak of the density to the parameters. Suppose that the pro-

portion of time to complete one task among several follows a beta distribution with α = 2.5 and 

β = 1. The mode of this distribution is (2.5 1)/(3.5 2) 1− − = . The mean and variance of a beta dis-

tribution can be obtained from the integrals, but the details are left to a Mind-Expanding exercise.

Also, although a beta random variable X is defi ned over the interval [0, 1], a random vari-

able W  defi ned over the fi nite interval [ ] a, b can be constructed from W  a  (b  a)X= + − .
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4-184. Suppose that X  has a beta distribution with  parameters 

α = 2.5 and β = 2.5. Sketch an approximate graph of the prob-

ability density function. Is the density symmetric?

4-185. Suppose that x  has a beta distribution with parameters 

α = 2.5 and β = 1. Determine the following:

(a) P X < 0 25.( ) (b) P X0 25. < < 0.75( )
(c) Mean and variance

4-186. Suppose that X  has a beta distribution with parameters 

α = 1 and β = 4 2. . Determine the following:

(a) P X < 0 25.( ) (b) P X0 5. <( ) (c) Mean and variance

4-187. A European standard value for a low-emission win-

dow glazing uses 0.59 as the proportion of solar energy that 

enters a room. Suppose that the distribution of the proportion 

of solar energy that enters a room is a beta random variable.

(a) Calculate the mode, mean, and variance of the distribution 

for α = 3 and β = 1 4. .

(b) Calculate the mode, mean, and variance of the distribution 

for α = 10 and β = 6 25. .

(c) Comment on the difference in dispersion in the distribution 

from parts (a) and (b).

4-188. The length of stay at a hospital emergency department 

is the sum of the waiting and service times. Let X  denote the 

proportion of time spent waiting and assume a beta distribution 

with α = 10 and β = 1. Determine the following:

(a) P X > 0 9.( ) (b) P X < 0 5.( ) (c) Mean and variance

4-189. The maximum time to complete a task in a project is 2.5 

days. Suppose that the completion time as a proportion of this max-

imum is a beta random variable with α = 2 and β = 3. What is the 

probability that the task requires more than two days to complete?

FOR SECTION 4-12Exercises
 Problem available in WileyPLUS at instructor’s discretion. 

 Tutoring problem available in WileyPLUS at instructor’s discretion.

The time to complete a task in a large project is modeled as a generalized beta distribution with 

minimum and maximum times a = 8 and b = 20 days, respectively, along with mode of m = 16 

days. Also, assume that the mean completion time is μ = + + /( )a m b4 6. Determine the parameters 

α and β of the generalized beta distribution with these properties. 

The values ( )a m b, ,  specify the minimum, mode, and maximum times, but the mode value alone does not uniquely deter-

mine the two parameters α and β. Consequently, the mean completion time, μ, is assumed to equal μ = + + /( )a m b4 6. 

Here the generalized beta random variable is W a b a X= + −( ) , where X is a beta random variable. Because the 

minimum and maximum values for W  are 8 and 20, respectively, a = 8 and b = 20. The mean of W  is 

μ α
α β

= + − = + −
+

a b a E X a b a( ) ( ) ( )
( )

The assumed mean is μ = + + / = .( ( ) )8 4 16 20 6 15 333. The mode of W  is 

m a b a= + − −
+ −

( )
α

α β
1

2

with m = 16. These equations can be solved for α and β to obtain 

α μ
μ

β α μ
μ

= − − −
− −

= −
−

( )( )

( )( )

( )

a m a b

m b a

b

a

2

Therefore, 

α

β

= . − − −
− . −

= .

= . −

( )( ( ) )

( )( )

(

15 333 8 2 16 8 20

16 15 333 20 8
3 665

3 665 20 115 333

15 333 8
2 333

.
. −

= .)

Practical Interpretation: The program evaluation and review technique (PERT) widely uses the distribution of W to 

model the duration of tasks. Therefore, W  is said to have a PERT distribution. Notice that we need only specify the 

minimum, maximum, and mode (most likely time) for a task to specify the distribution. The model assumes that the 

mean is the function of these three values and allows the α and β parameters to be computed. 

Example 4-28
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4-190. An allele is an alternate form of a gene, and the propor-

tion of alleles in a population is of interest in genetics. An article 

in BMC Genetics [“Calculating Expected DNA Remnants From 

Ancient Founding Events in Human Population Genetics” (2008, 

Vol. 9:66)] used a beta distribution with mean 0.3 and standard 

deviation 0.17 to model initial allele proportions in a genetic simu-

lation. Determine the parameters α and β for this beta distribution. 

4-191. Suppose that the construction of a solar power station is 

initiated. The project’s completion time has not been set due to 

uncertainties in financial resources. The completion time for the 

first phase is modeled with a beta distribution and the minimum, 

most likely (mode), and maximum completion times for the first 

phase are 1.0, 1.25, and 2.0 years, respectively. Also, the mean 

time is assumed to equal μ = + . + / = .1 4 1 25 2 6 1 333( ) ) .  Deter-

mine the following in parts (a) and (b):

(a) Parameters α and β of the beta distribution. 

(b) Standard deviation of the distribution. 

(c) Sketch the probability density function. 

Supplemental Exercises

4-192.  The probability density function of the time it 

takes a hematology cell counter to complete a test on a blood 

sample is f x < x <( ) = .   0 04 50 75for  seconds.

(a) What percentage of tests requires more than 70 seconds to 

complete?

(b) What percentage of tests requires less than one minute to 

complete?

(c) Determine the mean and variance of the time to complete a 

test on a sample.

4-193.  The tensile strength of paper is modeled by a nor-

mal distribution with a mean of 35 pounds per square inch and 

a standard deviation of 2 pounds per square inch.

(a) What is the probability that the strength of a sample is less 

than 40 lb/in2?

(b) If the specifications require the tensile strength to exceed

30 lb/in2, what proportion of the samples is scrapped?

4-194.  The time it takes a cell to divide (called mitosis) 

is normally distributed with an average time of one hour and a 

standard deviation of five minutes.

(a) What is the probability that a cell divides in less than 45 

minutes?

(b) What is the probability that it takes a cell more than 65 

minutes to divide?

(c) By what time have approximately 99% of all cells com-

pleted mitosis?

4-195.  The length of an injection-molded plastic case 

that holds magnetic tape is normally distributed with a length 

of 90.2 millimeters and a standard deviation of 0.1 millimeter.

(a) What is the probability that a part is longer than 90.3 mil-

limeters or shorter than 89.7 millimeters?

(b) What should the process mean be set at to obtain the high-

est number of parts between 89.7 and 90.3 millimeters?

(c) If parts that are not between 89.7 and 90.3 millimeters are 

scrapped, what is the yield for the process mean that you 

selected in part (b)?

Assume that the process is centered so that the mean is 90 milli-

meters and the standard deviation is 0.1 millimeter. Suppose that 

10 cases are measured, and they are assumed to be independent.

(d) What is the probability that all 10 cases are between 89.7 

and 90.3 millimeters?

(e) What is the expected number of the 10 cases that are 

between 89.7 and 90.3 millimeters?

4-196.  The sick-leave time of employees in a firm in a 

month is normally distributed with a mean of 100 hours and a 

standard deviation of 20 hours.

(a) What is the probability that the sick-leave time for next 

month will be between 50 and 80 hours?

(b) How much time should be budgeted for sick leave if the 

budgeted amount should be exceeded with a probability of 

only 10%?

4-197. The percentage of people exposed to a bacteria who 

become ill is 20%. Assume that people are independent. Assume 

that 1000 people are exposed to the bacteria. Approximate each of 

the following:

(a) Probability that more than 225 become ill

(b) Probability that between 175 and 225 become ill

(c) Value such that the probability that the number of people 

who become ill exceeds the value is 0.01

4-198.  The time to failure (in hours) for a laser in a cytom-

etry machine is modeled by an exponential distribution with 

λ = . .0 00004  What is the probability that the time until failure is

(a) At least 20,000 hours? (b) At most 30,000 hours?

(c) Between 20,000 and 30,000 hours?

4-199.  When a bus service reduces fares, a particular trip 

from New York City to Albany, New York, is very popular. A 

small bus can carry four passengers. The time between calls for 

tickets is exponentially distributed with a mean of 30 minutes. 

Assume that each caller orders one ticket. What is the probabil-

ity that the bus is filled in less than three hours from the time 

of the fare reduction?

4-200.  The time between process problems in a manufac-

turing line is exponentially distributed with a mean of 30 days.

(a) What is the expected time until the fourth problem?

(b) What is the probability that the time until the fourth prob-

lem exceeds 120 days?

4-201. The life of a recirculating pump follows a Weibull dis-

tribution with parameters β = 2 and δ = 700 hours. Determine 

for parts (a) and (b):

(a) Mean life of a pump  (b) Variance of the life of a pump

(c) What is the probability that a pump will last longer than its 

mean?

 Problem available in WileyPLUS at instructor’s discretion. 

 Tutoring problem available in WileyPLUS at instructor’s discretion.
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4-202. The size of silver particles in a photographic emulsion 

is known to have a log normal distribution with a mean of 0.001 

mm and a standard deviation of 0.002 mm.

(a) Determine the parameter values for the lognormal distribution.

(b) What is the probability of a particle size greater than 0.005 mm?

4-203. Suppose that f x x( ) = . −0 5 1 for 2 4< x < . Determine 

the following:

(a) P X < 2 5.( )  (b) P X > 3( )  (c) P < X <2 5 3 5. .( )
(d) Determine the cumulative distribution function of the ran-

dom variable.

(e) Determine the mean and variance of the random variable.

4-204.  The time between calls is exponentially distrib-

uted with a mean time between calls of 10 minutes.

(a) What is the probability that the time until the first call is 

less than five minutes?

(b) What is the probability that the time until the first call is 

between 5 and 15 minutes?

(c) Determine the length of an interval of time such that the 

probability of at least one call in the interval is 0.90.

(d) If there has not been a call in 10 minutes, what is the proba-

bility that the time until the next call is less than 5 minutes?

(e) What is the probability that there are no calls in the inter-

vals from 10:00 to 10:05, from 11:30 to 11:35, and from 

2:00 to 2:05?

(f) What is the probability that the time until the third call is 

greater than 30 minutes?

(g) What is the mean time until the fifth call?

4-205.  The CPU of a personal computer has a lifetime 

that is exponentially distributed with a mean lifetime of six 

years. You have owned this CPU for three years.

(a) What is the probability that the CPU fails in the next three 

years?

(b) Assume that your corporation has owned 10 CPUs for three 

years, and assume that the CPUs fail independently. What 

is the probability that at least one fails within the next three 

years?

4-206.  Suppose that X  has a lognormal distribution with 

parameters θ = 0 and ω =2 4. Determine the following:

(a) P < X <10 50( )
(b) Value for x  such that P X < x( ) = .0 05

(c) Mean and variance of X
4-207.  Suppose that X  has a lognormal distribution and 

that the mean and variance of X  are 50 and 4000, respectively. 

Determine the following:

(a) Parameters θ and ω2 of the lognormal distribution

(b) Probability that X  is less than 150

4-208. Asbestos fibers in a dust sample are identified by an 

electron microscope after sample preparation. Suppose that the 

number of fibers is a Poisson random variable and the mean 

number of fibers per square centimeter of surface dust is 100. A 

sample of 800 square centimeters of dust is analyzed. Assume 

that a particular grid cell under the microscope represents 

1/160,000 of the sample.

(a) What is the probability that at least one fiber is visible in 

the grid cell?

(b) What is the mean of the number of grid cells that need to be 

viewed to observe 10 that contain fibers?

(c) What is the standard deviation of the number of grid cells 

that need to be viewed to observe 10 that contain fibers?

4-209.  Without an automated irrigation system, the height of 

plants two weeks after germination is normally distributed with a 

mean of 2.5 centimeters and a standard deviation of 0.5 centimeter.

(a) What is the probability that a plant’s height is greater than 

2.25 centimeters?

(b) What is the probability that a plant’s height is between 2.0 

and 3.0 centimeters?

(c) What height is exceeded by 90% of the plants?

4-210. With an automated irrigation system, a plant grows to a 

height of 3.5 centimeters two weeks after germination. Without an 

automated system, the height is normally distributed with mean 

and standard deviation 2.5 and 0.5 centimeters, respectively. 

(a) What is the probability of obtaining a plant of this height or 

greater without an automated system?

(b) Do you think the automated irrigation system increases the 

plant height at two weeks after germination?

4-211.  The thickness of a laminated covering for a wood 

surface is normally distributed with a mean of five millimeters 

and a standard deviation of 0.2 millimeter.

(a) What is the probability that a covering thickness is more 

than 5.5 millimeters?

(b) If the specifications require the thickness to be between 4.5 

and 5.5 millimeters, what proportion of coverings does not 

meet specifications?

(c) The covering thickness of 95% of samples is below what 

value?

4-212.  The diameter of the dot produced by a printer is 

normally distributed with a mean diameter of 0.002 inch. 

(a) Suppose that the specifications require the dot diameter to 

be between 0.0014 and 0.0026 inch. If the probability that 

a dot meets specifications is to be 0.9973, what standard 

deviation is needed?

(b) Assume that the standard deviation of the size of a dot 

is 0.0004 inch. If the probability that a dot meets speci-

fications is to be 0.9973, what specifications are needed? 

Assume that the specifications are to be chosen symmetri-

cally around the mean of 0.002.

4-213. The waiting time for service at a hospital emergency 

department follows an exponential distribution with a mean of 

three hours. Determine the following:

(a) Waiting time is greater than four hours

(b) Waiting time is greater than six hours given that you have 

already waited two hours

(c) Value x (in hours) exceeded with probability 0.25

4-214.  The life of a semiconductor laser at a constant power is 

normally distributed with a mean of 7000 hours and a standard 

deviation of 600 hours.

(a) What is the probability that a laser fails before 5800 hours?

(b) What is the life in hours that 90% of the lasers exceed?

(c) What should the mean life equal for 99% of the lasers to 

exceed 10,000 hours before failure?
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(d) A product contains three lasers, and the product fails if 

any of the lasers fails. Assume that the lasers fail indepen-

dently. What should the mean life equal for 99% of the 

products to exceed 10,000 hours before failure?

4-215. Continuation of Exercise 4-214. Rework parts (a) and 

(b). Assume that the lifetime is an exponential random variable 

with the same mean.

4-216. Continuation of Exercise 4-214. Rework parts (a) and 

(b). Assume that the lifetime is a lognormal random variable 

with the same mean and standard deviation.

4-217.  A square inch of carpeting contains 50 carpet fib-

ers. The probability of a damaged fiber is 0.0001. Assume that 

the damaged fibers occur independently.

(a) Approximate the probability of one or more damaged fib-

ers in one square yard of carpeting.

(b) Approximate the probability of four or more damaged fib-

ers in one square yard of carpeting.

4-218. An airline makes 200 reservations for a flight that 

holds 185 passengers. The probability that a passenger arrives 

for the flight is 0.9, and the passengers are assumed to be 

independent.

(a) Approximate the probability that all the passengers who  

arrive can be seated.

(b) Approximate the probability that the flight has empty seats.

(c) Approximate the number of reservations that the airline 

should allow so that the probability that everyone who 

arrives can be seated is 0.95. [Hint: Successively try values 

for the number of reservations.]

4-219. Suppose that the construction of a solar power station 

is initiated. The project’s completion time has not been set due 

to uncertainties in financial resources. The proportion of com-

pletion within one year has a beta distribution with parameters 

α = 1 and β = 5. Determine the following: 

(a) Mean and variance of the proportion completed within 

one year

(b) Probability that more than half of the project is completed 

within one year 

(c) Proportion of the project that is completed within one year 

with probability 0.9 

4-220. An article in IEEE Journal on Selected Areas in Commu-
nications [“Impulse Response Modeling of Indoor Radio Propa-

gation Channels” (1993, Vol. 11(7), pp. 967–978)] indicated that 

the successful design of indoor communication systems requires 

characterization of radio propagation. The distribution of the 

amplitude of individual multipath components was well modeled 

with a lognormal distribution. For one test configuration (with 100 

ns delays), the mean amplitude was −24 dB (from the peak) with 

a standard deviation of 4.1 dB. The amplitude decreased nearly 

linearly with increased excess delay. Determine the following:

(a) Probability the amplitude exceeds −20 dB

(b) Amplitude exceeded with probability 0.05 

4-221. Consider the regional right ventricle transverse wall 

motion in patients with pulmonary hypertension (PH). The 

right ventricle ejection fraction (EF) is approximately normally 

distributed with standard deviation of 12 for PH subjects, and 

with mean and standard deviation of 56 and 8, respectively, for 

control subjects. 

(a) What is the EF for control subjects exceeded with 99% 

probability? 

(b) What is the mean for PH subjects such that the probability 

is 1% that the EF of a PH subject is greater than the value 

in part (a)? 

(c) Comment on how well the control and PH subjects [with 

the mean determined in part (b)] can be distinguished by 

EF measurements. 

4-222. Provide approximate sketches for beta probability 

density functions with the following parameters. Comment on 

any symmetries and show any peaks in the probability density  

functions in the sketches. 

(a) α β= < 1  (b) α β= = 1.  (c) α β= > 1. 

4-223. Among homeowners in a metropolitan area, 25% recy-

cle paper each week. A waste management company services 

10,000 homeowners (assumed independent). Approximate the 

following probabilities: 

(a) More than 2600 recycle paper in a week

(b) Between 2400 and 2600 recycle paper in a week

(c) Number of customers who recycle paper in a week that is 

exceeded with probability approximately 0.05

4-224. An article in Journal of Theoretical Biology [“Com-

puter Model of Growth Cone Behavior and Neuronal Morpho-

genesis” (1995, Vol. 174(4), pp. 381–389)] developed a model 

for neuronal morphogenesis in which neuronal growth cones 

have a significant function in the development of the nervous 

system. This model assumes that the time interval between 

filopodium formation (a process in growth cone behavior) is 

exponentially distributed with a mean of 6 time units. Deter-

mine the following: 

(a) Probability formation requires more than nine time units

(b) Probability formation occurs within six to seven time units

(c) Formation time exceeded with probability 0.9

4-225. An article in Electric Power Systems Research [“On the 

Self-Scheduling of a Power Producer in Uncertain Trading Envi-

ronments” (2008, Vol. 78(3), pp. 311–317)] considered a self-

scheduling approach for a power producer. In addition to price 

and forced outages, another uncertainty was due to generation 

reallocations to manage congestions. Generation reallocation 

was modeled as 110 60X −  (with range [ ]− ,60 50  MW/h) where 

X  has a beta distribution with parameters α = .3 2 and β = .2 8.  

Determine the mean and variance of generation reallocation. 

4-226. An article in Electronic Journal of Applied Statistical 
Analysis [“Survival Analysis of Acute Myocardial Infarction 

Patients Using Non-Parametric and Parametric Approaches” 

(2009, Vol. 2(1), pp. 22–36)] described the use of a Weibull distri-

bution to model the survival time of acute myocardial infarction 

(AMI) patients in a hospital-based retrospective study. The shape 

and scale parameters for the Weibull distribution in the model 

were 1.16 and 0.25 years, respectively. Determine the following: 

(a) Mean and standard deviation of survival time

(b) Probability that a patient survives more than a year 

(c) Survival time exceeded with probability 0.9
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Mind-Expanding Exercises

4-227. The steps in this exercise lead to the probability den-

sity function of an Erlang random variable X with parameters 

λ and r, f x x e r , x > ,r r x ( ) = λ −( )!  − − λ1 1 0 /  and r , ,= ….1 2

(a) Use the Poisson distribution to express P X x>( ).
(b) Use the result from part (a) to determine the cumulative 

distribution function of X .

(c) Differentiate the cumulative distribution function in part (b) 

and simplify to obtain the probability density function of X .

4-228. A bearing assembly contains 10 bearings. The bearing 

diameters are assumed to be independent and normally distrib-

uted with a mean of 1.5 millimeters and a standard deviation 

of 0.025 millimeter. What is the probability that the maximum 

diameter bearing in the assembly exceeds 1.6 millimeters?

4-229. Let the random variable X  denote a measurement 

from a manufactured product. Suppose that the target value for 

the measurement is m. For example, X  could denote a dimen-

sional length, and the target might be 10 millimeters. The 

quality loss of the process producing the product is defined to 

be the expected value of k X m−( )2
, where k is a constant that 

relates a deviation from target to a loss measured in dollars.

(a) Suppose that X  is a continuous random variable with 

E X m( ) =  and V X( ) = σ2. What is the quality loss of the 

process?

(b) Suppose that X  is a continuous random variable with 

E X( ) = μ and V X( ) = σ2. What is the quality loss of the 

process?

4-230. The lifetime of an electronic amplifier is modeled 

as an exponential random variable. If 10% of the amplifiers 

have a mean of 20,000 hours and the remaining amplifiers 

have a mean of 50,000 hours, what proportion of the ampli-

fiers will fail before 60,000 hours?

4-231. Lack of Memory Property. Show that for an expon-

ential random variable X , P X t t X t P X t< > <1 2 1 2+( ) = ( ) u . 

4-232. Determine the mean and variance of a beta random 

variable. Use the result that the probability density function 

integrates to 1. That is,

Γ Γ
Γ
( ) ( )
( ) ( )α β
α β

α β
+

− −= −∫0

1 1 11x x  for α β> , >0 0. 

4-233. The two-parameter exponential distribution uses a dif-

ferent range for the random variable X , namely, 0 ≤ ≤γ x for 

a constant γ  (and this equals the usual exponential distribution 

in the special case that γ = 0). The probability density func-

tion for X  is f x x( ) exp[ ( )]= − −λ λ γ  for 0 ≤ ≤γ x and 0 < λ .  

Determine the following in terms of the parameters λ and γ : 

(a) Mean and variance of X .   (b) P X( )< + /γ λ1  

4-234. A process is said to be of six-sigma quality if the pro-

cess mean is at least six standard deviations from the nearest 

specification. Assume a normally distributed measurement.

(a) If a process mean is centered between upper and lower 

specifications at a distance of six standard deviations from 

each, what is the probability that a product does not meet 

specifications? Using the result that 0.000001 equals one 

part per million, express the answer in parts per million.

(b) Because it is difficult to maintain a process mean centered 

between the specifications, the probability of a product 

not meeting specifications is often calculated after assum-

ing that the process shifts. If the process mean positioned 

as in part (a) shifts upward by 1.5 standard deviations, 

what is the probability that a product does not meet speci-

fications? Express the answer in parts per million.

(c) Rework part (a). Assume that the process mean is at a 

distance of three standard deviations.

(d) Rework part (b). Assume that the process mean is at 

a distance of three standard deviations and then shifts 

upward by 1.5 standard deviations.

(e) Compare the results in parts (b) and (d) and comment.

Beta random variable

Chi-squared distribution

Continuity correction

Continuous uniform 

distribution

Continuous random variable

Continuous uniform random 

variable

Cumulative distribution 

function

Erlang random variable

Exponential random  

variable

Gamma function

Gamma random variable

Gaussian distribution

Lack of memory property-

continuous random 

variable

Lognormal random variable

Mean-continuous random 

variable

Mean-function of a continuous 

random variable

Normal approximation to 

binomial and Poisson 

probabilities

Normal random variable

Poisson process

Probability density function

Probability distribution-

continuous random 

variable

Standard deviation-continuous 

random variable

Standardizing

Standard normal random 

variable

Variance-continuous random 

variable

Weibull random variable 

Important Terms and Concepts
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Air-quality monitoring stations are maintained throughout 

Maricopa County, Arizona and the Phoenix metropolitan 

area. Measurements for particulate matter and ozone are 

measured hourly. Particulate matter (known as PM10) is a 

measure (in μg m/ 3) of solid and liquid particles in the air 

with diameters less than 10 micrometers. Ozone is a color-

less gas with molecules comprised of three oxygen atoms 

that make it very reactive. Ozone is formed in a complex 

reaction from heat, sunlight, and other pollutants, especially 

volatile organic compounds. The U.S. Environmental Pro-

tection Agency sets limits for both PM10 and ozone. For 

example, the limit for ozone is 0.075 ppm. The probability 

that a day in Phoenix exceeds the limits for PM10 and ozone 

is important for compliance and remedial actions with the 

county and city. But this might be more involved that the 

product of the probabilities for each pollutant separately. 

It might be that days with high PM10 measurements also tend 

to have ozone values. That is, the measurements might not be 

independent, so the joint relationship between these meas-

urements becomes important. The study of probability dis-

tributions for more than one random variable is the focus of 

this chapter and the air-quality data is just one illustration 

of the ubiquitous need to study variables jointly.

5
Joint Probability 
Distributions

Chapter Outline

5-1 Two or More Random Variables
5-1.1 Joint Probability Distributions
5-1.2 Marginal Probability Distributions
5-1.3  Conditional Probability 

Distributions
5-1.4 Independence
5-1.5 More Than Two Random Variables

5-2 Covariance and Correlation

5-3 Common Joint Distributions
5-3.1  Multinomial Probability 

Distribution
5-3.2 Bivariate Normal Distribution

5-4 Linear Functions of Random Variables

5-5 General Functions of Random Variables

5-6 Moment Generating Functions
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 Learning Objectives

After careful study of this chapter, you should be able to do the following:

1. Use joint probability mass functions and joint probability density functions to calculate probabilities

2. Calculate marginal and conditional probability distributions from joint probability distributions

3. Interpret and calculate covariances and correlations between random variables

4. Use the multinomial distribution to determine probabilities

5. Understand properties of a bivariate normal distribution and be able to draw contour plots for the 
probability density function

6. Calculate means and variances for linear combinations of random variables and calculate 
probabilities for linear combinations of normally distributed random variables

7. Determine the distribution of a general function of a random variable

8. Calculate moment generating functions and use the functions to determine moments and distributions

In Chapters 3 and 4, you studied probability distributions for a single random variable. How-

ever, it is often useful to have more than one random variable defi ned in a random experi-

ment. For example, in the classifi cation of transmitted and received signals, each signal can be 

classifi ed as high, medium, or low quality. We might defi ne the random variable X to be the 

number of high-quality signals received and the random variable Y  to be the number of low-

quality signals received. In another example, the continuous random variable X can denote the 

length of one dimension of an injection-molded part, and the continuous random variable Y
might denote the length of another dimension. We might be interested in probabilities that can 

be expressed in terms of both X and Y . For example, if the specifi cations for X and Y  are (2.95 

to 3.05) and (7.60 to 7.80) millimeters, respectively, we might be interested in the probability 

that a part satisfi es both specifi cations; that is, P 2.95    3.05 , ,X(  and 7.60   7.80, ,Y ).
Because the two random variables are measurements from the same part, small disturbances 

in the injection-molding process, such as pressure and temperature variations, might be more 

likely to generate values for X and Y  in specifi c regions of two-dimensional space. For exam-

ple, a small pressure increase might generate parts such that both X and Y  are greater than their 

respective targets, and a small pressure decrease might generate parts such that X and Y  are both 

less than their respective targets. Therefore, based on pressure variations, we expect that the 

probability of a part with X much greater than its target and Y  much less than its target is small.

In general, if X and Y  are two random variables, the probability distribution that defi nes 

their simultaneous behavior is called a joint probability distribution. In this chapter, we 

investigate some important properties of these joint distributions.

5-1 Two or More Random Variables

5-1.1 JOINT PROBABILITY DISTRIBUTIONS

Joint Probability Mass Function
For simplicity, we begin by considering random experiments in which only two random vari-

ables are studied. In later sections, we generalize the presentation to the joint probability 

distribution of more than two random variables.

Mobile Response Time The response time is the speed of page downloads and it is critical for 

a mobile Web site. As the response time increases, customers become more frustrated and poten-

tially abandon the site for a competitive one. Let X denote the number of bars of service, and let Y  denote the response 

time (to the nearest second) for a particular user and site.

Example 5-1
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If X and Y  are discrete random variables, the joint probability distribution of X and Y  is a descrip-

tion of the set of points ( , )x y  in the range of ( , )X Y  along with the probability of each point. Also, 

P X( and )= x Y = y  is usually written as P X x Y y( , )= = . The joint probability distribution of two 

random variables is sometimes referred to as the bivariate probability distribution or bivariate 
distribution of the random variables. One way to describe the joint probability distribution of two 

discrete random variables is through a joint probability mass function f x y P X x Y y( , ) ( , )= = = .

The joint probability mass function of the discrete random variables X and Y , 

denoted as f x yxy( , ), satisfi es

(1) f x, yXY  ( )$ 0

(2) f x, yXY
YX

 ( )  ∑∑ 51

(3) f x, y P X x,Y yXY  ( )  ( )5 5 5  (5-1)

Joint Probability 
Mass Function

Just as the probability mass function of a single random variable X is assumed to be zero at all 

values outside the range of X, so the joint probability mass function of X and Y  is assumed to 

be zero at values for which a probability is not specifi ed.

Joint Probability Density Function
The joint probability distribution of two continuous random variables X and Y  can be speci-

fi ed by providing a method for calculating the probability that X and Y  assume a value in any 

region R of two-dimensional space. Analogous to the probability density function of a single 

continuous random variable, a joint probability density function can be defi ned over two-

dimensional space. The double integral of f x yXY ( , ) over a region R provides the probability 

that X Y,( ) assumes a value in R. This integral can be interpreted as the volume under the 

surface f x yXY , ( ) over the region R.

A joint probability density function for X and Y  is shown in Fig. 5-2. The probability that 

X Y,( ) assumes a value in the region R equals the volume of the shaded region in Fig. 5-2. In 

this manner, a joint probability density function is used to determine probabilities for X and Y .

Typically, f x yXY , ( ) is defi ned over all of two-dimensional space by assuming that 

f x yXY , ( )5 0 for all points for which f x yXY , ( ) is not specifi ed.

FIGURE 5-1 Joint 
probability 
distribution of X  and 
Y  in Example 5-1.
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By specifying the probability of each of the points in Fig. 5-1, we specify the joint probability distribution of X and 

Y . Similarly to an individual random variable, we defi ne the range of the random variables ( , )X Y  to be the set of points 

( , )x y  in two-dimensional space for which the probability that X x=  and Y y=  is positive .

A joint probability density function for the continuous random variables X and Y , 

denoted as f x, y ,XY  ( )  satisfi es the following properties:

(1) f x, y x, yXY  ( )     $ 0 for all

Joint Probability 
Density Function
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fXY (x, y)

x

y

R

FIGURE 5-2 Joint probability density function for 
random variables X  and Y . Probability that ( )X ,Y  is in 
the region R  is determined by the volume of f x yXY ( , ) 
over the region R .

FIGURE 5-3 Joint probability density function for the 
lengths of different dimensions of an injection-molded part.

fXY(x, y)

y
x

3.0

2.95

3.057.70

7.80

7.60

At the start of this chapter, the lengths of different dimensions of an injection-molded 

part were presented as an example of two random variables. However, because the meas-

urements are from the same part, the random variables are typically not independent. If 

the specifi cations for X and Y  are [2.95, 3.05] and [7.60, 7.80] millimeters, respectively, 

we might be interested in the probability that a part satisfi es both specifi cations; that is, 

P X Y2 95 3 05 7 60 7 80. . . ., , , ,, ( ). Suppose that f x yXY , ( ) is shown in Fig. 5-3. The required 

probability is the volume of f x yXY , ( ) within the specifi cations. Often a probability such as this 

must be determined from a numerical integration.

(2) f x, y dx dyXY  ( )  ∫∫ 5
22

1
∞

∞

∞

∞

(3) For any region R of two-dimensional space,

 P X,Y R f x, y dx dyXY
R

 ( ) ∈( )  ( ) ∫∫5  (5-2)

Server Access Time Let the random variable X denote the time until a computer server con-

nects to your machine (in milliseconds), and let Y  denote the time until the server authorizes you 

as a valid user (in milliseconds). Each of these random variables measures the wait from a common starting time and 

X Y< . Assume that the joint probability density function for X and Y  is

f x, yXY ( ) ( ) 5 3 2 226 10 0 001 0 0026 exp . .x y     for     x y<

Reasonable assumptions can be used to develop such a distribution, but for now, our focus is on only the joint prob-

ability density function.

The region with nonzero probability is shaded in Fig. 5-4. The property that this joint probability density function inte-

grates to 1 can be verifi ed by the integral of f x yXY ( , ) over this region as follows:

f x, y dy dx e dy dXY
x y

x

 ( )   
⎛
⎝⎜

⎞
⎠⎟∫∫ ∫

22

2 2 25 3
∞

∞

∞

∞ ∞

6 10 6 0 001 0 002. . xx e dy e dx

e

y x

0

6 0 002

0

0 001

0

6
0 0

6 10

6 10

∞ ∞∞

∫ ∫∫ − − 
⎛
⎝⎜

⎞
⎠⎟

 5 3

5 3

2

2
2

. .

. 002
0 001

0

0 003

00 002
0 003 0

x
x xe dx e dx

.
. .. .⎛

⎝⎜
⎞
⎠⎟

  
⎛
⎝⎜

⎞
⎠⎟∫ ∫2 25 5

∞ ∞

0003
1

0 003
1 ⎛

⎝⎜
⎞
⎠⎟.

5

Example 5-2
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FIGURE 5-5 Region of integration for the probability 
that X < 1000 and Y < 2000 is darkly shaded.

y

x0

FIGURE 5-4 The joint probability density function of 
X  and Y  is nonzero over the shaded region.

y

x0
0

2000

1000

5-1.2 MARGINAL PROBABILITY DISTRIBUTIONS

If more than one random variable is defi ned in a random experiment, it is important to dis-

tinguish between the joint probability distribution of X and Y  and the probability distribution 

of each variable individually. The individual probability distribution of a random variable is 

referred to as its marginal probability distribution.

In general, the marginal probability distribution of X can be determined from the joint 

probability distribution of X and other random variables. For example, consider discrete ran-

dom variables X and Y . To determine P X x( )= , we sum P X x Y y( , )= =  over all points in 

the range of ( , )X Y  for which X x= . Subscripts on the probability mass functions distinguish 

between the random variables.

Marginal Distribution The joint probability distribution of X and Y  in Fig. 5-1 can be used to 

fi nd the marginal probability distribution of X. For example,

f P X P X , Y P X , Y P X ,Y P X ,YX 3 3 3 1 3 2 3 3 3 4( ) ( ) ( ) ( ) ( ) ( )5 5 5 5 5 1 5 5 1 5 5 1 5 5  

55 1 1 1 50 25 0 2 0 05 0 05 0 55. . . . .

The marginal probability distribution for X is found by summing the probabilities in each column whereas the mar-

ginal probability distribution for Y  is found by summing the probabilities in each row. The results are shown in Fig. 5-6.

Example 5-3

The probability that X Y, ,1000 2000and  is determined as the integral over the darkly shaded region in Fig. 5-5.

P X ,Y f x, y dy dx eXY
x

# # 5 5 3 2 21000 2000 6 10
2000

0

1000
6 0 002( )  ( )  ∫∫ . yy

x

x

x

dy e dx

e e

 

 

 ∫∫
⎛
⎝⎜

⎞
⎠⎟

2000

0

1000
0 001

6
0 002 4

6 10
0 00

2

2
2 2

5 3
2

.

.

. 22
0 003

0

1000
0 001 0 003 4 0 001

0

1⎛
⎝⎜

⎞
⎠⎟
   ∫  e dx e e e dxx x x2 2 2 25 2. . ..

0000

3
4

21

0 003
1

0 003

1

0 001

∫  

⎛
⎝⎜

⎞
⎠⎟

 
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

5
2

2 5
2

2.
. .

e
e

e−
00 003 316 738 11 578 0 915. . . .2 5( )

Practical Interpretation: A joint probability density function enables probabilities for two (or more) random vari-

ables to be calculated as in these examples.
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A probability for only one random variable, say, for example, P a X b ,, ,( )  can be found 

from the marginal probability distribution of X or from the integral of the joint probability 

distribution of X and Y  as

P a X b f x dx f x, y dy dx f x, y dydxX
a

b

a

b

, , 5 5 5
2

( ) ( )  ( )⎡

⎣
⎢

⎤

⎦
⎥  ( )∫ ∫∫

 ∞

∞

−∞∞

∞

∫∫
a

b

x = Number of Bars of Signal Strength

Marginal Probability Distribution of X

Marginal
Probability
Distribution of Y

1
2
3
4

1 2

0.15 0.1
0.02
0.02
0.01

0.1
0.03
0.02

0.25

3

0.05
0.05
0.2
0.25

0.3
0.17
0.25
0.28

0.550.2

y = Response time
(nearest second)

FIGURE 5-6 
Marginal probability 
distributions of X  
and Y  from Fig. 5-1.

If the joint probability density function of random variables X and Y  is f x yXY ( , ), the 

marginal probability density functions of X and Y  are

 f x f x, y dy f y f x, y dxX XY Y XY( )  ( ) ( )  ( ) ∫ ∫5 5and  (5-3)

where the fi rst integral is over all points in the range of ( , )X Y  for which X x=  and 

the second integral is over all points in the range of ( , )X Y  for which Y y= .

For continuous random variables, an analogous approach is used to determine marginal 

probability distributions. In the continuous case, an integral replaces the sum.

Marginal 
Probability Density 

Function

Server Access Time For the random variables that denote times in Example 5-2, calculate the 

probability that Y  exceeds 2000 milliseconds.

This probability is determined as the integral of f x yXY ( , ) over the darkly shaded region in Fig. 5-7. The region is 

partitioned into two parts and different limits of integration are determined for each part.

P Y e dy dxx y. 5 3 1 32 2 22000 6 10 6 16 0 001 0 002

20000

2000

( )  
⎛
⎝⎜

⎞
⎠⎟∫∫ . .

∞

00 6 0 001 0 002

2000

2 2 2e dy dxx y

x

. .  ∫∫
⎛
⎝⎜

⎞
⎠⎟

∞∞

The fi rst integral is

6 10
0 002

6 106
0 002

20000

2000
0 001

6

3
2

5
32

2
2

2

 
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

 ∫
e

e dx
y

x
.

.

.

∞

00 002

6 10

0 002

1

0 001
4 0 001

0

2000 6
4

2

. . .
.    

⎛
⎝⎜∫  e e dx e

ex2 2
2

2
2

5
3 2 ⎞⎞

⎠⎟
5 0 0475.

The second integral is

6 10
0 002

6 10

0 0
6

0 002

2000

0 001
6

3
2

5
32

2
2

2

 
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

 ∫
e

e dx
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x
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.

. .

∞∞

002

6 10

0 002 0 003
0 00250 003

2000

6 6

e dx
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2 2

5
3
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. .
. 

⎛
⎝⎜

⎞
⎠⎟∫

∞

Example 5-4
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FIGURE 5-7 
Region of 
integration for the 
probability that 
Y > 2000 is darkly 
shaded, and it is 
partitioned into two 
regions with x , 2000
and x . 2000.

y

x0
0

2000

2000

Therefore,

P Y . 5 1 52000 0 0475 0 0025 0( ) . . .

Alternatively, the probability can be calculated from the marginal probability distribution of Y  as follows. For y > 0,

f y e dx e e dxY
x y

y
y x( )  ∫5 3 5 32 2 2 2 2 26 10 6 106 0 001 0 002

0

6 0 002 0 001. . . .

00

6 0 002
0 001

0

6 0 002

6 10
0 001

6 10

y
y

x y

y

e
e

e

∫
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

5 3
2

5 3

2 2
2

2 2

.
.

.

.

11

0 001
6 10 1 0

0 001
3 0 002 0 0012

5 3 2 .
2

2 2 2e
e e y

y
y y

.
. .

.

⎛
⎝⎜

⎞
⎠⎟

( )  for

We have obtained the marginal probability density function of Y . Now,

P Y e e dy
ey y. 5 3 2 5 32 2 2 2

2

2000 6 10 1 6 103 0 002 0 001

2000

3
0 0

( )  ( ) ∫
.

. .
∞ 002

2000

0 003

2000
0 002 0 003

y ye

2
2

2

2

.

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ .

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎡

⎣

⎢
⎢

⎤

⎦

⎥
.∞ ∞

⎥⎥

−
⎡

⎣
⎢

⎤

⎦
⎥5 3 52

2 2

6 10
0 002 0 003

0 053
4 6e e

. .
.

Also, E X( ) and V X( ) can be obtained by fi rst calculating the marginal probability distribu-

tion of X and then determining E X( ) and V X( ) by the usual method. In Fig. 5-6, the marginal 

probability distributions of X and Y  are used to obtain the means as

E X( ) ( ) ( ) ( )5 1 1 51 0 2 2 0 25 3 0 55 2 35. . . .

E Y( )=1(0.28)+2(0.25)+3(0.177)+4(0.3)=2.49

5-1.3 CONDITIONAL PROBABILITY DISTRIBUTIONS

When two random variables are defi ned in a random experiment, knowledge of one can change 

the probabilities that we associate with the values of the other. Recall that in Example 5-1, X
denotes the number of bars of service and Y  denotes the response time. One expects the probability 

Y 51 to be greater at X53 bars than at X51 bar. From the notation for conditional probability in 

Chapter 2, we can write such conditional probabilities as P Y X5 51 3u( ) and P Y X5 5 ?1 1u( )
Consequently, the random variables X and Y  are expected to be dependent. Knowledge of the value 

obtained for X changes the probabilities associated with the values of Y .

Recall that the defi nition of conditional probability for events A and B is P B Au( ) = 
P A B P A( ) ( )> / . This defi nition can be applied with the event A defi ned to be X x=  and event 

B defi ned to be Y y= .
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162   Chapter 5/Joint Probability Distributions

Example 5-5 illustrates that the conditional probabilities for Y  given that X x=  can be 

thought of as a new probability distribution called the conditional probability mass func-
tion for Y  given X x= . The following defi nition applies these concepts to continuous random 

variables.

Conditional 
Probability Density 

Function
Given continuous random variables X  and Y  with joint probability density 

function f x yXY ( , ), the conditional probability density function of Y  given 

X x=  is

 f y
f x, y

f x
f xY x

XY

X
Xu ( )  ( )

( ) ( )5 .for 0 (5-4)

Because the conditional probability density function f yY x|| ( ) is a probability density 

function for all y in Rx , the following properties are satisfi ed:

(1) f yY x| $( ) 0

(2) f y dyY x| 5( )∫ 1

(3) P Y B X x f y dy B YY x
B

∈( ) ( )         ∫u u5 5 for any set in the range of  (5-5)

The conditional probability density function provides the conditional probabilities for the 

values of Y  given that X x= .

It is important to state the region in which a joint, marginal, or conditional probability density 

function is not zero. The following example illustrates this.

Conditional Probabilities for Mobile Response Time For Example 5-1, X and Y  denote the 

number of bars of signal strength and response time, respectively. Then,

P Y X P X ,Y P X f , fXY X( ) ( ) ( ) ( ) ( )5 5 5 5 5 / 5 5 / 5 / 51 3 3 1 3 3 1 3 0 25 0 55 0 4u  . . . 554

The probability that Y = 2 given that X = 3 is

P Y X P X ,Y P X f , fXY X( ) ( ) ( ) ( ) ( )5 5 5 5 5 / 5 5 / 5 / 52 3 3 2 3 3 2 3 0 2 0 55 0 36u  . . . 44

Further work shows that

P Y X( ) .= = =3 3 0 091u

and

P Y X( ) .= = =4 3 0 091u .

Note that P Y X P Y X P Y X P Y X( ) ( ) ( ) ( )= = + = = + = = + = = =1 3 2 3 3 3 4 3 1⏐ ⏐ ⏐ ⏐ . This set of probabilities 

defi nes the conditional probability distribution of Y  given that X = 3.

Example 5-5
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Conditional Probability For the random variables that denote times in Example 5-2, deter-

mine the conditional probability density function for Y given that X x= .

First the marginal density function of x is determined. For x > 0,

f x e dy e
e

X
x y

x

x
y

( ) ∫5 3 5 3
2

2 2 2 2 2
2

6 10 6 10
0

6 0 001 0 002 6 0 001
0 002

. . .
.

.0002

6 10
0 002

0 0036 0 001
0 002

0

x

x
x

e
e

e

∞⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛
⎝⎜

⎞
⎠⎟

5 3 52 2
2

2.
.

.

.
. 0003 0x xfor .

This is an exponential distribution with λ = 0 003. . Now for 0 , ,x x yand , the conditional probability density 

function is

f y f x, y f x
e

e
Y x XY x

x y

x| ( ) ( ) ( )5 / 5
3

5
2 2 2

2

6 10

0 003

6 0 001 0 002

0 003

. .

..
00 002 00 002 0 002. . .e x x yx y2 , ,for and

The conditional probability density function of Y , given that X = 1500, is nonzero on the solid line in Fig. 5-8.

Determine the probability that Y  exceeds 2000, given that x = 1500. That is, determine P Y X. 5 ?2000 1500u( )  

The conditional probability density function is integrated as follows:

P Y X f y dy eY. 5 5 5
2

2000 1500 0 0021500

2000

0 002 1500 0 0u u( ) ( ) ∫ ( )
∞

.
. . 002

2000

3
0 002

2000

30 002
0 002

0 002

y

y

dy

e
e

e
e

 

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

∫

 

∞

∞

5
2

5
2

.
.

.
. 22

5
4

0 002
0 368

.
.

⎛
⎝⎜

⎞
⎠⎟

Example 5-6

For the joint probability distribution in Fig. 5-1, f yY x| ( ) is found by dividing each f x yXY ,( ) by f xx( ). 

Here, f xx( ) is simply the sum of the probabilities in each column of Fig. 5-1. The function f yY x| ( ) 
is shown in Fig. 5-9. In Fig. 5-9, each column sums to 1 because it is a probability distribution.

Properties of random variables can be extended to a conditional probability distribution of Y  given X x= . The usual 

formulas for mean and variance can be applied to a conditional probability density or mass function.

Example 5-7

FIGURE 5-8 The conditional probability density function for Y , given that 
x = 1500, is nonzero over the solid line.

y

x0
0

1500

1500
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FIGURE 5-9 
Conditional 
probability 
distributions of Y  
given X x= , f yY xu ( ) in 
Example 5-7.

x = Number of Bars of Signal Strength

1
2
3
4
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0.750
0.100
0.100
0.050
1 1 1

2

0.400
0.400
0.120
0.080

3

0.091
0.091
0.364
0.454

y = Response time
(nearest second)

Total

Conditional Mean and 
Variance

The conditional mean of Y  given X x= , denoted as E Y xu u( )  μ  or isY x ,

 E Y x y f yY x
y

u u( ) ( ) ∫5  (5-6)

and the conditional variance of Y  given X x= , denoted as V Y x Y xu u( ) σor 2 , is

V Y x y f y y f yY x Y x
y

Y x Y x
y

u u u u u( ) − μ( )  ( )  ( ) − μ∫ ∫5 5
2 2 2

Conditional Mean And Variance For the random variables that denote times in Example 5-2, 

determine the conditional mean for Y  given that x = 1500.

The conditional probability density function for Y  was determined in Example 5-6. Because f yYu1500( ) is nonzero for 

y > 1500,

E Y X y e dy e yeyu 5 5 5
2

1500 0 002 0 002
0 002 1500 0 002

1500

3( ) ( ) ( )∫ . .
. .

∞
220 002

1500

. y dy ∫
∞

Integrate by parts as follows:

ye dy y
e ey

y y
2

2 2

5
2

2
2

0 002

1500

0 002

1500

0 002

0 002 0 002
.

. .

. .

∞ ∞

∫
⎛
⎝⎜

⎞
⎠⎟⎟
 ( )( )

⎛

⎝
⎜
⎜∫ dy e

e y

1500

3
0 002

1500

1500

0 002 0 002 0 002

∞
∞

5 2
2 2

2
2

. . .

. ⎞⎞

⎠
⎟
⎟

( )( ) = ( )5 12
2 21500

0 002 0 002 0 002 0 002
20003

3 3

. . . .
e

e e

 With the constant 0 002 3. e  reapplied,

E Y X5 51500 2000( )
Practical Interpretation: If the connect time is 1500 ms, then the expected time to be authorized is 2000 ms.

Example 5-8

For the discrete random variables in Example 5-1, the conditional mean of Y  given X = 1 is obtained 

from the conditional distribution in Fig. 5-9:

E Y Yu u1 1 0 05 2 0 1 3 0 1 4 0 75 3 551( ) μ ( ) ( ) ( ) ( )5 5 1 1 1 5. . . . .

The conditional mean is interpreted as the expected response time given that one bar of signal is present. The conditional 

variance of Y  given X = 1 is

V Y u1 1 3 55 0 05 2 3 55 0 1 3 3 55 0 1 4 3 55
2 2 2( ) ( )  ( )  + − .( )  . + − .( )5 2 1 2. . . .

22
0 75 0 748 . = .

Example 5-9
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5-1.4 INDEPENDENCE

In some random experiments, knowledge of the values of X does not change any of the prob-

abilities associated with the values for Y . In this case, marginal probability distributions can be 

used to calculate probabilities more easily.

FIGURE 5-10 
(a) Joint and mar-
ginal probability 
distributions of X  
and Y  for Example 
5-10. (b) Conditional 
probability 
distribution of Y  
given X x=  for 
Example 5-10.
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fX(x)

fY(y)

fX(x)

fY(y)

By analogy with independent events, we defi ne two random variables to be independent
whenever f x, y f x f yXY X Y( ) ( ) ( )=  for all x and y. Notice that independence implies that 

f x, y f x f yXY X Y( ) ( ) ( )=  for all x and y. If we fi nd one pair of x and y in which the equality fails, 

X and Y  are not independent.

If two random variables are independent, then for f xX ( ) > 0,

f y
f x, y

f x

f x f y

f x
f yY x

XY

X

X Y

X
Y| 5 5 5( )  ( )

( )
( ) ( )

( ) ( )
With similar calculations, the following equivalent statements can be shown.

For random variables X  and Y , if any one of the following properties is true, the 

others are also true, and X  and Y  are independent.

(1) f x, y f x f y x yXY X Y ( ) ( ) ( )     5 for all and

(2) f y f y x y f xY x Y X| 5 .( ) ( ) ( )for all and with 0

(3) f x f x x y f yX y X Yu ( ) ( )  ( )5 .for all and with 0

(4)  P X A, Y B P X A P Y B∈  ∈( ) ∈( ) ∈( )5  for any sets 

A and B in the range of X and Y , respectively. (5-7)

Independence

Independent Random Variables An orthopedic physician’s practice considers the number 

of errors in a bill and the number of X-rays listed on the bill. There may or may not be a relation-

ship between these random variables. Let the random variables X and Y  denote the number of errors and the number 

of X-rays on a bill, respectively.

Assume that the joint probability distribution of X and Y  is defi ned by f x, yXY ( ) in Fig. 5-10(a). The marginal probability 

distributions of X and Y  are also shown in Fig. 5-10(a). Note that

f x, y f x f yXY X Y( ) ( ) ( )= .

The conditional probability mass function f yY x| ( ) is shown in Fig. 5-10(b). Notice that for any x, f y f yY x Y⏐ ( )  ( )= . 

That is, knowledge of whether or not the part meets color specifi cations does not change the probability that it meets 

length specifi cations.

Example 5-10
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Rectangular Range for (X , Y )
Let D denote the set of points in two-dimensional space that receive positive probability under 

f x, yXY ( ). If D is not rectangular, X and Y  are not independent because knowledge of X can 

restrict the range of values of Y  that receive positive probability. If D is rectangular, independ-

ence is possible but not demonstrated. One of the conditions in Equation 5-6 must still be verifi ed.

The variables in Example 5-2 are not independent. This can be quickly determined because 

the range of (X, Y ) shown in Fig. 5-4 is not rectangular. Consequently, knowledge of X changes 

the interval of values for Y  with nonzero probability.

Often, based on knowledge of the system under study, random variables are assumed to be 

independent. Then probabilities involving both variables can be determined from the marginal 

probability distributions. For example, the time to complete a computer search should be 

independent of an adult’s height.

Independent Random Variables Suppose that Example 5-2 is modifi ed so that the joint 

probability density function of X and Y  is f x, y   x yXY ( ) 10 ( 0.001 0.002 )6= − −−2 × exp  for x  $ 0 and 

y  $ 0. Show that X and Y  are independent and determine P X ,Y. ,1000 1000 ( ).
Note that the range of positive probability is rectangular so that independence is possible but not yet demonstrated.

The marginal probability density function of X is

f x e dy e xX
x y x( )  ∫5 3 5 .2 2 2 22 10 0 001 06 0 001 0 002

0

0 001. . ..
∞

for

The marginal probability density function of Y  is

f y e dx e yY
x y y( )  ∫5 3 5 .2 2 2 22 10 0 002 06 0 001 0 002

0

0 002. . ..
∞

for

Therefore, f x, y f x f yXY X Y( ) ( ) ( )=  for all x and y, and X and Y  are independent.

To determine the probability requested, property (4) of Equation 5-7 can be applied along with the fact that each 

random variable has an exponential distribution. Therefore,

P X ,Y P X P Y

e e

. , 5 . ,

5 2 52 2

1000 1000 1000 1000

1 0 3181 2

 ( ) ( ) ( )
( ) .

Example 5-11

Machined Dimensions Let the random variables X and Y  denote the lengths of two dimen-

sions of a machined part, respectively. Assume that X and Y  are independent random variables, 

and further assume that the distribution of X is normal with mean 10.5 millimeters and variance 0.0025 (mm2) and that 

the distribution of Y  is normal with mean 3.2 millimeters and variance 0.0036 (mm2). Determine the probability that 

10 4 10 6 3 15 3 25. . . .  X    Y  < < < < and .

Because X and Y  are independent,

P X , Y P X P Y

P

10 4 10 6 3 15 3 25 10 4 10 6 3 15 3 25. . . . . . . ., , , , 5 , , , ,

5

 ( ) ( ) ( )
110 4 10 5

0 05

10 6 10 5

0 05

3 15 3 2

0 06

3 25 3. .

.

. .

.

. .

.

.− −⎛
⎝⎜

⎞
⎠⎟

, ,
2

, ,
2

Z P Z
..

.

. . .

2

0 06

2 2 0 833 0 833 0 568

⎛
⎝⎜

⎞
⎠⎟

( ) ( )5 2 , , 2 , , 5P Z P Z

where Z  denotes a standard normal random variable.

Practical Interpretation: If random variables are independent, probabilities for multiple variables are often much 

easier to compute.

Example 5-12
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Joint Probability 
Density Function

5-1.5 MORE THAN TWO RANDOM VARIABLES

More than two random variables can be defi ned in a random experiment. Results for multiple 

random variables are straightforward extensions of those for two random variables. A summary is 

provided here.

The joint probability distribution of random variables X , X , X , , X p1 2 3 …  can be specifi ed with 

a method to calculate the probability that X , X , X , , X p1 2 3 …  assume a value in any region Rof 

p-dimensional space. For continuous random variables, a joint probability density function 
f x , x , , xX X X pp1 2 1 2… …( ) is used to determine the probability that X , X , X , , X p1 2 3 …( ) ∈ R by the 

multiple integral of f x , x , , xX X X pp1 2 1 2… …( ) over the region R.

A joint probability density function for the continuous random variables X , X , X ,1 2 3  

…, X ,p  denoted as f x , x , , x ,X X X pp1 2 1 2… …( )  satisfi es the following properties:

(1) f x , x , , xX X X pp1 2 1 2 0… …( ) ≥

(2) ??? f x , x , , x dx dx dxX X X p pp1 2 1 2 1 2 1…
∞

∞

∞

∞

∞

∞

… …( ) =∫∫∫
 222

(3) For any region B of p-dimensional space,

 P X , X , , X B f x , x , , x dx dx dxp X X X p pB p1 2 1 2 1 21 2
… … …( ) ∈⎡⎣ ⎤⎦  ( )  ∫∫5 ???   

 (5-8)

Typically, f x , x , , xX X X pp1 2 1 2???   ( )…  is defi ned over all of p-dimensional space by assuming that 

f x , x , , xX X X pp1 2 1 2 0???   ( ) =…  for all points for which f x , x , , xX X X pp1 2 1 2???   ( )…  is not specifi ed.

Machined Dimensions Many dimensions of a machined part are routinely measured during 

production. Let the random variables, X , X , X X  1 2 3 4, and denote the lengths of four dimensions of 

a part. Then at least four random variables are of interest in this study.

Example 5-13

Component Lifetimes In an electronic assembly, let the random variables X , X , X , X1 2 3 4    denote 

the lifetime of four components, respectively, in hours. Suppose that the joint probability density 

function of these variables is

f x , x , x , x eX X X X
x x x

1 2 3 4

1 2
1 2 3 4

12 0 001 0 002 0 00159 10   ( ) 5 3 2 2 ? 2 ? 2 ? 33 40 003

1 2 3 40 0 0 0

2 ? x

x , x , x , xfor ≥  ≥  ≥  ≥
What is the probability that the device operates for more than 1000 hours without any failures? The requested prob-

ability is P X   , X   , X   , X   1 2 3 4> > > >1000 1000 1000 1000( ), which equals the multiple integral of f x , x , x , xX X X X1 2 3 4 1 2 3 4   ( ) 
over the region x   , x   , x   , x   1 2 3 4> > > >1000 1000 1000 1000. The joint probability density function can be written as a 

product of exponential functions, and each integral is the simple integral of an exponential function. Therefore,

P X > , X > , X > , X >

e

1 2 3 4

1 2 1 5 3

1000 1000 1000 1000

0 00055

   ( )
= = .− − − . −

Example 5-14

Suppose that the joint probability density function of several continuous random variables 

is a constant c over a region R (and zero elsewhere). In this special case,

… …( )  … = ×    ( ) =…f x , x , , x dx dx dx c RX X X p pp1 2 1 2 1 2 volume of region 11∫∫∫
R
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168   Chapter 5/Joint Probability Distributions

by property (2) of Equation 5-8. Therefore, c = 1/(volume of region R). Furthermore, by 

property (3) of Equation 5-8, P X , X , , X Bp1 2 …( ) ∈⎡⎣ ⎤⎦

= …( )  … = ×  ( ) =…∫∫∫ … f x , x , , x dx dx dx c B RX X X p p
B

p1 2 1 2 1 2 volume
volu

>
mme

volume

 ( )
 ( )

B R

R

>

When the joint probability density function is constant, the probability that the random vari-

ables assume a value in the region B is just the ratio of the volume of the region B R>  to the 

volume of the region R for which the probability is positive.

Marginal 
Probability Density 

Function
If the joint probability density function of continuous random variables X , X , , X p1 2 …   

is f x , x , , x ,X X X pp1 2 1 2… …( )  the marginal probability density function of Xi is

 f x f x , x , , x dx dx dx dx dxX i X X X p i i pi p( ) = …  …  ( ) …  …… − +∫∫∫ 1 2 1 2 1 2 1 1  (5-9)

where the integral is over all points in the range of X , X , , X p1 2 …  for which X xi i= .

E X x f x , x , , x dx dx dx x f xi i X X X p p i X ip i( ) = … …( ) … =   …  
−∞

∞

∫  1 2 1 2 1 2 ( ) ddxi
−∞

∞

−∞

∞

−∞

∞

∫∫∫
and (5-10)

V X x f x , x , , x dx dx dxi i X X X X p pi p( ) = … − μ( ) …( )  ……
−∞

∞

−∞

∞

−∞
∫∫

2

1 2 1 21 2

∞∞

−∞

∞

∫ ∫= −( ) ( )x f x dxi X X i ii iμ 2

As for two random variables, a probability involving only one random variable, for example, 

P a < X < b ,i  ( )  can be determined from the marginal probability distribution of Xi or from the 

joint probability distribution of X , X , , X p1 2 … . That is,

P a < X < b P < X < , , < X < ,a < X < b ,

< X < , ,

i i i

i

( ) = −∞ ∞ …  − ∞ ∞  (
−∞ ∞ …  − ∞

−

+

1 1

1

 

 << X <p ∞)
Furthermore, E Xi( ) and V Xi( ) for i , , , p=  …  1 2  can be determined from the marginal prob-

ability distribution of Xi or from the joint probability distribution of X , X , , Xp1 2 …   as follows.

Mean and 
Variance from Joint 

Distribution

Probability as a Ratio of Volumes Suppose that the joint probability density function of the 

continuous random variables X and Y  is constant over the region x y2 2 4+ ≤ . Determine the prob-

ability that X Y2 2 1+ ≤ .
The region that receives positive probability is a circle of radius 2. Therefore, the area of this region is 4π. The area 

of the region x y2 2 1+ ≤  is π. Consequently, the requested probability is π π( ) = ./ 4 1 4/

Example 5-15

Points that have positive probability in the joint probability distribution of three random variables X , X , X1 2 3 

are shown in Fig. 5-11. Suppose the 10 points are equally likely with probability 0.1 each. The range is the 

non-negative integers with x   x   x   1 2 3 3+ + = . The marginal probability distribution of X2 is found as follows.

P X f , , f , , f , ,X X X X X X X X X2 0 3 0 0 0 0 3 1 0 2
1 2 3 1 2 3 1 2 3

=( ) =   ( ) +   ( ) +   ( ) ++   ( ) =

=( ) =   ( ) +  

f , ,

P X f , , f ,

X X X

X X X X X X

1 2 3

1 2 3 1 2 3

2 0 1 0 4

1 2 1 0 0 12

.

,, f , ,

P X f , , f

X X X

X X X X X X

 ( ) +   ( ) =

=( ) =   ( ) +

2 1 1 1 0 3

2 1 2 0

1 2 3

1 2 3 1 22

.

33

1 2 3

0 2 1 0 2

3 0 3 02

, ,

P X f , ,X X X

  ( ) =

=( ) =   ( )
.

= 0.1

Also, ( ) = 0(0.4) + 1(0.3) + 2(0.2) + 3(0.1) = 12E X

Example 5-16

c05.indd   168 9/24/2013   6:45:06 PM
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With several random variables, we might be interested in the probability distribution of some 

subset of the collection of variables. The probability distribution of X , X , , X ,k1 2 …   k p<  can be 

obtained from the joint probability distribution of X , X , , Xp1 2 …   as follows.

If the joint probability density function of continuous random variables X , X , , X p1 2 …
is f x , x , , x ,X X X pp1 2 1 2… …( )  the probability density function of X , X , , X ,k1 2 …  k p< , is

f x , x , , x f x , x , , x dx dx dxX X X k X X X p k kk p1 2 1 21 2 1 2 1 2… … + + …  ( ) = … …( ) … pp∫∫∫  (5-11)

where the integral is over all points R in the range of X , X , , X p1 2 …  for which   
X x , X x , , X xk k1 1 2 2=  = …  = .

Distribution of a 
Subset of Random 

Variables

FIGURE 5-11 
Joint probability 
distribution of
X X X1 2 3, , .and  Points 
are equally likely. 1

0
0 2 3 x1

1

2

3

x3

x2

2

3

1

Conditional Probability Distribution
Conditional probability distributions can be developed for multiple random variables by an 

extension of the ideas used for two random variables. For example, the joint conditional prob-

ability distribution of X
1
, X

2
, and X

3
 given (X

4
 = x

4
, X

5
 = x

5
) is

f x , x , x
f x , x , x , x , x

f
X X X x x

X X X X X

X
1 2 3 4 5

1 2 3 4 5

1 2 3
1 2 3 4 5

|   ( ) =
    ( )

44 5

4 5

4 5

4 5 0
X

X X
x , x

f x , x >
 ( )  ( ) .for 

The concept of independence can be extended to multiple random variables.

Independence

Random variables X , X , , X p1 2 …  are independent if and only if

 f x , x , x f x f x f x all x , x , ,X X X p X X X pp p1 2 1 21 2 1 2 1 2… …( ) = ( ) ( )… ( )   …for xxp (5-12)

Similar to the result for only two random variables, independence implies that Equation 5-12 

holds for all x , x , , xp1 2 … . If we fi nd one point for which the equality fails, X , X , , X p1 2 …  are 

not independent. It is left as an exercise to show that if X , X , , X p1 2 …  are independent,

P X A , X A , , X A P X A P X A P X Ap p p p1 1 2 2 1 1 2 2∈  ∈ …  ∈( ) = ∈( ) ∈( )… ∈( )
for any regions A , A , , Ap1 2 …   in the range of X , X , , X ,p1 2 …   respectively.

In Chapter 3, we showed that a negative binomial random variable with parameters p and r can be 

represented as a sum of r geometric random variables X , X , , Xr1 2 … . Each geometric random vari-

able represents the additional trials required to obtain the next success. Because the trials in a binomial experiment are 

independent, X , X , , Xr1 2 …  are independent random variables.

Example 5-17
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170   Chapter 5/Joint Probability Distributions

5-1.  Show that the following function satisfi es the proper-

ties of a joint probability mass function.

x y f x, yXY ( )

1.0 1 1 4

1.5 2 1 8

1.5 3 1 4

2.5 4 1 4

3.0 5 1 8

Determine the following:

(a) P X < ,Y <2 5 3.  ( ) (b) P X < 2 5.( )
(c) P Y < 3( )  (d) P X > ,Y >1 8 4 7.  .( )
(e) E X( ), E Y ,V X , V Y( )  ( )   ( ).and

(f) Marginal probability distribution of X
(g) Conditional probability distribution of Y  given that X = 1.5

(h) Conditional probability distribution of X  given that Y = 2

(i) E Y X| = .( )1 5   (j) Are X  and Y  independent?

5-2.  Determine the value of c that makes the function

f x, y c x y ( ) = +( ) a joint probability mass function over the 

nine points with x = 1 2 3, ,  and y = 1 2 3, , .

Determine the following:

(a) P X ,Y <=  ( )1 4   (b) P X =( )1

(c) P Y =( )2   (d) P X < ,Y <2 2 ( )

(e) E X ,( )  E Y ,( )  V X ,( )  and V Y( )
(f) Marginal probability distribution of X
(g) Conditional probability distribution of Y  given that X = 1

(h) Conditional probability distribution of X  given that Y = 2

(i) E Y X| =( )1   (j) Are X  and Y  independent?

5-3.  Show that the following function satisfi es the proper-

ties of a joint probability mass function.

x y f x, yXY ( )

–1.0 –2 1 8

–0.5 –1 1 4

0.5 1 1 2

1.0 2 1 8

Determine the following:

(a) P X < ,Y <0 5 1 5.  .( ) (b) P X < 0 5.( )
(c) P Y <1 5.( )  (d) P X > ,Y <0 25 4 5.  .( )
(e) E X ,( )  E Y ,( )  V X ,( )  and V Y( )
(f) Marginal probability distribution of X
(g) Conditional probability distribution of Y  given that X = 1

(h) Conditional probability distribution of X  given that Y = 1

(i) E X y| =( )1   (j) Are X  and Y  independent?

5-4.  Four electronic printers are selected from a large lot 

of damaged printers. Each printer is inspected and classifi ed 

as containing either a major or a minor defect. Let the random 

variables X  and Y  denote the number of printers with major 

FOR SECTION 5-1EXERCISES 
 Problem available in WileyPLUS at instructor’s discretion. 

 Tutoring problem available in WileyPLUS at instructor’s discretion.

Layer Thickness Suppose that X , X , X1 2 3 and  represent the thickness in micrometers of a 

substrate, an active layer, and a coating layer of a chemical product, respectively. Assume that 

X , X , X1 2 3 and  are independent and normally distributed with μ =  μ =1 210000 1000, , μ =3 80, σ =  σ =1 2250 20, , 
and σ =3 4, respectively. The specifi cations for the thickness of the substrate, active layer, and coating layer are 

9200 10 800 950 10501 2< x < , , < x < , and 75 853< x < , respectively. What proportion of chemical products meets all 

thickness specifi cations? Which one of the three thicknesses has the least probability of meeting specifi cations?

The requested probability is P < X < , ,9200 108001(  950 1050 75 852 3< X < , < X < .)  Because the random variables 

are independent,

P < X < , , < X < , < X < P < X < ,9200 10 800 950 1050 75 85 9200 10 8001 2 3 1  ( ) = ( )

×× ( )P < X < P < X <( )950 1050 75 852 3

After standardizing, the above equals

P < Z < P < Z < P < Z <− . .( ) − . .( ) − . .( )3 2 3 2 2 5 2 5 1 25 1 25

where Z  is a standard normal random variable. From the table of the standard normal distribution, the requested 

probability equals

0 99862 0 98758 0 78870 0 7778.( ) .( ) .( ) = .

The thickness of the coating layer has the least probability of meeting specifi cations. Consequently, a priority should 

be to reduce variability in this part of the process.

Example 5-18
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and minor defects, respectively. Determine the range of the 

joint probability distribution of X  and Y .

5-5.  In the transmission of digital information, the probabil-

ity that a bit has high, moderate, and low distortion is 0.01, 0.04, 

and 0.95, respectively. Suppose that three bits are transmitted 

and that the amount of distortion of each bit is assumed to be 

independent. Let X  and Y  denote the number of bits with high 

and moderate distortion out of the three, respectively. Determine:

(a)  f x, yXY  ( )  (b) f xX ( )
(c) E X( )   (d) f yY | ( )1

(e) E Y X| =( )1   (f) Are X  and Y  independent?

5-6.  A small-business Web site contains 100 pages and 60%, 

30%, and 10% of the pages contain low, moderate, and high 

graphic content, respectively. A sample of four pages is selected 

without replacement, and X  and Y  denote the number of pages 

with moderate and high graphics output in the sample. Determine:

(a) f x, yXY  ( )  (b) f xX ( )
(c) E X( )   (d) f yY |  ( )3

(e) E Y X| =( )3   (f) V Y X| =( )3

(g) Are X  and Y  independent?

5-7.  A manufacturing company employs two devices to 

inspect output for quality control purposes. The first device is 

able to accurately detect 99.3% of the defective items it receives, 

whereas the second is able to do so in 99.7% of the cases. 

Assume that four defective items are produced and sent out for 

inspection. Let X  and Y  denote the number of items that will 

be identified as defective by inspecting devices 1 and 2, respec-

tively. Assume that the devices are independent. Determine:

(a)  f x, yXY  ( )  (b) f xX ( )
(c) E X( )   (d) f yY |  ( )2

(e) E Y X| =( )2   (f) V Y X| =( )2

(g) Are X  and Y  independent?

5-8.  Suppose that the random variables X , Y , and Z  have 

the following joint probability distribution.

x y z f x y z, ,( )
1 1 1 0.05

1 1 2 0.10

1 2 1 0.15

1 2 2 0.20

2 1 1 0.20

2 1 2 0.15

2 2 1 0.10

2 2 2 0.05

Determine the following:

(a) P X =( )2   (b) P X ,Y=  =( )1 2

(c) P Z <1 5.( )  (d) P X Z= =( )1 2or

(e) E X( )   (f) P X Y= | =( )1 1

(g) P X ,Y Z=  = | =( )1 1 2  (h) P X Y , Z= | =  =( )1 1 2

(i)  Conditional probability distribution of X  given that Y = 1

and Z = 2

5-9. An engineering statistics class has 40 students; 60% are 

electrical engineering majors, 10% are industrial engineering 

majors, and 30% are mechanical engineering majors. A sample 

of four students is selected randomly without replacement for 

a project team. Let X  and Y  denote the number of industrial 

engineering and mechanical engineering majors, respectively. 

Determine the following:

(a)  f x, yXY  ( )  (b) f xX ( ) (c) E X( )
(d) f yY |  ( )3   (e) E Y X| =( )3

(f) V Y X| =( )3

(g) Are X  and Y  independent?

5-10.  An article in the Journal of Database Management 
[“Experimental Study of a Self-Tuning Algorithm for DBMS 

Buffer Pools” (2005, Vol. 16, pp. 1–20)] provided the workload 

used in the TPC-C OLTP (Transaction Processing Performance 

Council’s Version C On-Line Transaction Processing) bench-

mark, which simulates a typical order entry application. See 

the following table. The frequency of each type of transaction 

(in the second column) can be used as the percentage of each 

type of transaction. Let X  and Y  denote the average number of 

selects and updates operations, respectively, required for each 

type transaction. Determine the following:

(a) P X < 5( )  (b) E X( )
(c) Conditional probability mass function of X  given Y = 0

(d) P X < Y6 0| =( )  (e) E X Y| =( )0

5-11.  For the Transaction Processing Performance Coun-

cil’s benchmark in Exercise 5-10, let X , Y , and Z  denote the aver-

age number of selects, updates, and inserts operations required 

for each type of transaction, respectively. Calculate the following:

(a)  f x, y, zXYZ ( )
(b) Conditional probability mass function for X  and Y  given Z = 0

(c) P X < ,Y < Z6 6 0 | =( ) (d) E X Y , Z| =  =( )0 0

5-12.  In the transmission of digital information, the prob-

ability that a bit has high, moderate, or low distortion is 0.01, 

0.04, and 0.95, respectively. Suppose that three bits are trans-

mitted and that the amount of distortion of each bit is assumed 

to be independent. Let X  and Y  denote the number of bits with 

high and moderate distortion of the three transmitted, respec-

tively. Determine the following:

Average Frequencies and Operations in TPC-C

Transaction Frequency Selects Updates Inserts Deletes Non-unique Selects Joins
New order 43 23.0 11 12 0 0 0

Payment 44 4.2 3 1 0 0.6 0

Order status 4 11.4 0 0 0 0.6 0

Delivery 5 130.0 120 0 10 0 0

Stock level 4 0 0 0 0 0 1
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(a) Probability that two bits have high distortion and one has 

moderate distortion

(b) Probability that all three bits have low distortion

(c) Probability distribution, mean, and variance of X
(d) Conditional probability distribution, conditional mean, and 

conditional variance of X  given that Y = 2

5-13.  Determine the value of c such that the function 

f x y cxy,( ) =  for 0 3< <x  and 0 3< <y  satisfies the properties 

of a joint probability density function.

Determine the following:

(a) P X < ,Y <2 3 ( )  (b) P X < 2 5.( )
(c) P <Y <1 2 5.( )  (d) P X > , <Y <1 8 1 2 5.  .( )
(e)  E X( )   (f) P X < ,Y <0 4 ( )
(g) Marginal probability distribution of X
(h) Conditional probability distribution of Y  given that X = 1 5.

(i) E Y X|( ) = . )1 5   (j) P Y < X2 1 5| = .( )
(k) Conditional probability distribution of X given that Y = 2

5-14.  Determine the value of c that makes the function 

f x, y c x  y( ) = +( ) a joint probability density function over the 

range 0 3< <x  and x y x< < + 2.

Determine the following:

(a) P X < ,Y <1 2 ( )  (b) P < X <1 2( )
(c) P Y >1( )  (d) P X < ,Y <2 2 ( )
(e) E X( )   (f) V X( )
(g) Marginal probability distribution of X
(h) Conditional probability distribution of Y  given that X = 1

(i) E Y X| =( )1   (j) P Y > X2 1| =( )
(k) Conditional probability distribution of X given that Y = 2

5-15.  Determine the value of c that makes the function 

f x, y  c x  y( ) = +( ) a joint probability density function over the 

range 0 3< <x  and 0 < <y x.

Determine the following:

(a) P X < ,Y <1 2 ( )  (b) P < X <1 2( )
(c) P Y >1( )  (d) P X < ,Y <2 2 ( )
(e) E X( )   (f) E Y( )

(g) Marginal probability distribution of X
(h) Conditional probability distribution of Y  given X = 1

(i) E Y X| =( )1   (j) P Y > X2 1| =( )
(k) Conditional probability distribution of X given Y = 2

5-16.  Determine the value of c that makes the function 

f x, y ce x y ( ) = − −2 3  a joint probability density function over the 

range 0 < x and 0 < <y x.

Determine the following:

(a) P X < ,Y <1 2 ( )  (b) P < X <1 2( )
(c) P Y > 3( )  (d) P X Y( , )< <2 2

(e) E X( )   (f) E Y( )

(g) Marginal probability distribution of X
(h) Conditional probability distribution of Y  given X = 1

(i) E Y X| =( )1

(j) Conditional probability distribution of X  given Y = 2

5-17. Determine the value of c that makes the function 

f x, y ce x y ( ) = − −2 3 , a joint probability density function over the 

range 0 < x and x y< .

Determine the following:

(a) P X < ,Y <1 2 ( )  (b) P < X <1 2( )

(c) P Y > 3( )  (d) P X < ,Y <2 2 ( )
(e) E X( )   (f) E Y( )
(g) Marginal probability distribution of X
(h) Conditional probability distribution of Y  given X = 1

(i) E Y X| =( )1   (j) P Y < X2 1| =( )
(k) Conditional probability distribution of X  given Y = 2

5-18. The conditional probability distribution of Y  given X x=  

is f y xeY x
xy

|
−( ) =  for y > 0, and the marginal probability distri-

bution of X  is a continuous uniform distribution over 0 to 10.

(a)  Graph f y xeY X
xy

|
−( ) =  for y > 0 for several values of x . 

Determine:

(b) P Y < X2 2| =( )  (c) E Y X| =( )2

(d) E Y X x| =( )  (e)  f x, yXY  ( ) (f)  f yY ( )
5-19. Two methods of measuring surface smoothness are used 

to evaluate a paper product. The measurements are recorded 

as deviations from the nominal surface smoothness in coded 

units. The joint probability distribution of the two measure-

ments is a uniform distribution over the region 0 4< <x , 0 < y,  

and x y x− +1 1< < . That is, f x, y  cXY ( ) =  for x  and y  in the 

region. Determine the value for c such that f x, y  XY ( ) is a joint 

probability density function.

Determine the following:

(a) P X < ,Y <0 5 0 5.  .( ) (b) P X < 0 5.( )
(c) E X( )   (d) E Y( )
(e) Marginal probability distribution of X
(f) Conditional probability distribution of Y  given X = 1

(g) E Y X| =( )1  (h) P Y < X0 5 1. | =( )
5-20.  The time between surface finish problems in a gal-

vanizing process is exponentially distributed with a mean of 40 

hours. A single plant operates three galvanizing lines that are 

assumed to operate independently.

(a) What is the probability that none of the lines experiences a 

surface finish problem in 40 hours of operation?

(b)  What is the probability that all three lines experience 

a surface finish problem between 20 and 40 hours of 

operation?

(c) Why is the joint probability density function not needed to 

answer the previous questions?

5-21.  A popular clothing manufacturer receives Internet 

orders via two different routing systems. The time between 

orders for each routing system in a typical day is known to 

be exponentially distributed with a mean of 3.2 minutes. Both 

systems operate independently.

(a) What is the probability that no orders will be received in a 

5-minute period? In a 10-minute period?

(b) What is the probability that both systems receive two orders 

between 10 and 15 minutes after the site is officially open 

for business?

(c)  Why is the joint probability distribution not needed to 

answer the previous questions?

5-22.  The blade and the bearings are important parts of a lathe. 

The lathe can operate only when both of them work properly. The  

lifetime of the blade is exponentially distributed with the mean 

three years; the lifetime of the bearings is also exponentially 

distributed with the mean four years. Assume that each lifetime 

is independent.
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(a) What is the probability that the lathe will operate for at least 

five years?

(b)  The lifetime of the lathe exceeds what time with 95% 

probability?

5-23.  Suppose that the random variables X , Y , and Z  

have the joint probability density function f x, y, z xyz  ( ) = 8  for 

0 1< <x , 0 1< <y , and 0 1< <z . Determine the following:

(a) P X < 0 5.( )  (b) P X < ,Y <0 5 0 5.  .( )
(c) P Z < 2( )  (d) P X < Z <0 5 2.   ( )or

(e) E X( )   (f) P X < Y0 5 0 5. | = .( )
(g) P X < ,Y < Z0 5 0 5 0 8.  . | = .( )
(h) Conditional probability distribution of X  given that Y = 0 5.

and Z = 0 8.

(i) P X < Y , Z0 5 0 5 0 8. | = .  = .( )
5-24. Suppose that the random variables X , Y , and Z  have 

the joint probability density function f x, y z  cXYZ ,( ) =  over the 

cylinder x y2 2 4+ <  and 0 4< <z . Determine the constant c so 

that f x, y z  XYZ ,( ) is a probability density function.

Determine the following:

(a) P X Y <2 2 2+( )  (b) P Z < 2( )
(c) E X( )   (d) P X < Y1 1| =( )
(e) P X Y < Z2 2 1 1+ | =( )
(f) Conditional probability distribution of Z  given that X = 1 

and Y = 1.

5-25. Determine the value of c that makes f x, y z  cXYZ ,( ) =  a 

joint probability density function over the region x > 0, y > 0, 

z > 0, and x y z+ + < 1.

Determine the following:

(a) P X < ,Y < , Z <0 5 0 5 0 5.  .  .( ) (b) P X < ,Y <0 5 0 5.  .( )
(c) P X < 0 5.( )   (d) E X( )
(e) Marginal distribution of X  

(f) Joint distribution of X  and Y
(g) Conditional probability distribution of X  given that Y = 0 5.  

and Z = 0 5.

(h) Conditional probability distribution of X  given that Y = 0 5.

5-26.  The yield in pounds from a day’s production is nor-

mally distributed with a mean of 1500 pounds and standard 

deviation of 100 pounds. Assume that the yields on different 

days are independent random variables.

(a) What is the probability that the production yield exceeds 

1400 pounds on each of five days next week?

(b) What is the probability that the production yield exceeds 

1400 pounds on at least four of the five days next week?

5-27.  The weights of adobe bricks used for construction 

are normally distributed with a mean of 3 pounds and a stand-

ard deviation of 0.25 pound. Assume that the weights of the 

bricks are independent and that a random sample of 20 bricks 

is selected.

(a)  What is the probability that all the bricks in the sample 

exceed 2.75 pounds?

(b) What is the probability that the heaviest brick in the sample 

exceeds 3.75 pounds?

5-28.  A manufacturer of electroluminescent lamps knows 

that the amount of luminescent ink deposited on one of its 

products is normally distributed with a mean of 1.2 grams and a 

standard deviation of 0.03 gram. Any lamp with less than 1.14 

grams of luminescent ink fails to meet customers’ specifica-

tions. A random sample of 25 lamps is collected and the mass 

of luminescent ink on each is measured.

(a) What is the probability that at least one lamp fails to meet 

specifications?

(b) What is the probability that five or fewer lamps fail to meet 

specifications?

(c)  What is the probability that all lamps conform to 

specifications?

(d) Why is the joint probability distribution of the 25 lamps not 

needed to answer the previous questions?

5-29. The lengths of the minor and major axes are used 

to summarize dust particles that are approximately ellipti-

cal in shape. Let X  and Y  denote the lengths of the minor 

and major axes (in micrometers), respectively. Suppose 

that f x x xX ( ) exp( )= − , <0  and the conditional distribu-

tion f y y x x yY x| = − − , <( ) exp[ ( )] . Answer or determine the 

following: 

(a)  That f yY x| ( ) is a probability density function for any value 

of x . 

(b) P X Y( )<  and comment on the magnitudes of X  and Y . 

(c) Joint probability density function f x yXY ( ), . 

(d) Conditional probability density function of X  given Y y= . 

(e) P Y X( )< | =2 1    (f) E Y X( )| = 1  

(g) P X Y( )< , <1 1    (h) P Y( )< 2  

(i) c such that P Y c( )< = .0 9 

(j) Are X  and Y  independent?

5-30. An article in Health Economics [“Estimation of the 

Transition Matrix of a Discrete-Time Markov Chain” (2002, 

Vol.11, pp. 33–42)] considered the changes in CD4 white 

blood cell counts from one month to the next. The CD4 count 

is an important clinical measure to determine the severity of 

HIV infections. The CD4 count was grouped into three distinct 

categories: 0–49, 50–74, and ≥ 75. Let X  and Y  denote the 

(category minimum) CD4 count at a month and the following 

month, respectively. The conditional probabilities for Y  given 

values for X  were provided by a transition probability matrix 

shown in the following table.  

X  Y  
0 50 75 

0 0.9819 0.0122 0.0059  

50 0.1766 0.7517 0.0717  

75 0.0237 0.0933 0.8830  

This table is interpreted as follows. For example, P Y X( )= | =50 75

= .0 0717. Suppose also that the probability distribution for X  is 

P X P X P X( ) ( ) ( )= = . , = = . , = = .75 0 9 50 0 08 0 0 02. Determine 

the following: 

(a) P Y X( )≤ | =50 50   (b) P X Y( )= , =0 75  

(c) E Y X( )| = 50    (d) f yY ( )  (e) f x yXY ( ),
(f) Are X  and Y  independent? 

5-31. An article in Clinical Infectious Diseases [“Strength-

ening the Supply of Routinely Administered Vaccines in the 

United States: Problems and Proposed Solutions” (2006, 

Vol.42(3), pp. S97–S103)] reported that recommended vac-

cines for infants and children were periodically unavailable or 
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That is, E h X Y,( )⎡⎣ ⎤⎦ can be thought of as the weighted average of h x y,( ) for each point in 

the range of X Y,( ). The value of E h X Y,( )⎡⎣ ⎤⎦ represents the average value of h X Y,( ) that is 

expected in a long sequence of repeated trials of the random experiment.

5-2 Covariance and Correlation
When two or more random variables are defi ned on a probability space, it is useful to describe 

how they vary together; that is, it is useful to measure the relationship between the variables. A 

common measure of the relationship between two random variables is the covariance. To defi ne 

the covariance, we need to describe the expected value of a function of two random variables 

h X Y,( ). The defi nition simply extends the one for a function of a single random variable.

in short supply in the United States. Although the number of 

doses demanded each month is a discrete random variable, the 

large demands can be approximated with a continuous prob-

ability distribution. Suppose that the monthly demands for two 

of those vaccines, namely measles–mumps–rubella (MMR) 

and varicella (for chickenpox), are independently, normally 

distributed with means of 1.1 and 0.55 million doses and stand-

ard deviations of 0.3 and 0.1 million doses, respectively. Also 

suppose that the inventory levels at the beginning of a given 

month for MMR and varicella vaccines are 1.2 and 0.6 million 

doses, respectively. 

(a) What is the probability that there is no shortage of either 

vaccine in a month without any vaccine production? 

(b) To what should inventory levels be set so that the prob-

ability is 90% that there is no shortage of either vaccine in 

a month without production? Can there be more than one 

answer? Explain. 

5-32. The systolic and diastolic blood pressure values (mm 

Hg) are the pressures when the heart muscle contracts and 

relaxes (denoted as Y  and X , respectively). Over a collection 

of individuals, the distribution of diastolic pressure is normal 

with mean 73 and standard deviation 8. The systolic pressure is 

conditionally normally distributed with mean 1 6. x when X x=
and standard deviation of 10. Determine the following: 

(a) Conditional probability density function f yY |73( ) of Y  given 

X = 73

(b) P Y X( )< | =115 73  

(c) E Y X( )| = 73  

(d) Recognize the distribution f x yXY ( ),  and identify the mean 

and variance of Y  and the correlation between X  and Y  

 E h X,Y
h x, y f x, y X,Y

h x, y f x,

XY

XY

 ( )⎡⎣ ⎤⎦ =
 ( )  ( )   

  ( )
∑∑  

discrete

  ( )   

⎧
⎨
⎪

⎩⎪ ∫∫ y dx dy X,Y continuous
 (5-13)

Expected Value of a 
Function of Two 

Random Variables

Expected Value of a Function of Two Random Variables For the joint probability dis-

tribution of the two random variables in Example 5-1, calculate E X YX Y− μ( ) − μ( )⎡⎣ ⎤⎦ .
The result is obtained by multiplying x − μX times y − μY, times f X Yxy ,( ) for each point in the range of X Y,( ). First, 

μX and μY were determined previously from the marginal distributions for X and Y :

μ = .X 2 35 

and

μ =Y 2 49.

Therefore,

E X YX Y[( )( )] ( )( )( ) ( )( )(− − = − . − . . + − . − . .μ μ 1 2 35 1 2 49 0 01 2 2 35 1 2 4 0 022 3 2 35 1 2 49 0 25

1 2 35 2 2 49 0 02 2 2 35

) ( )( )( )

( )( )( ) ( )

+ − . − . .
+ − . − . . + − . (( )( ) ( )( )( )

( )( )(

2 2 4 0 03 3 2 35 2 2 49 0 2

1 2 35 3 2 49 0 02

− . . + − . − . .
+ − . − . . )) ( )( )( ) ( )( )( )

( )(

+ − . − . . + − . − . .
+ − . −

2 2 35 3 2 4 0 1 3 2 35 3 2 49 0 05

1 2 35 4 22 49 0 15 2 2 35 4 2 4 0 1 3 2 35 4 2 49 0 05. . + − . − . . + − . − . . = −)( ) ( )( )( ) ( )( )( ) 00 5815.

Example 5-19

The covariance is defi ned for both continuous and discrete random variables by the same 

formula.
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The covariance between the random variables X  and Y , denoted as cov X Y,( ) 
or σXY , is

 σ = − μ( ) − μ( )⎡⎣ ⎤⎦ = ( ) − μ μXY X Y X YE X Y E XY  (5-14)

Covariance

If the points in the joint probability distribution of X and Y  that receive positive probability 

tend to fall along a line of positive (or negative) slope, σXY , is positive (or negative). If the 

points tend to fall along a line of positive slope, X tends to be greater than μX when Y  is 

greater than μY. Therefore, the product of the two terms x − μX and y − μY tends to be positive. 

However, if the points tend to fall along a line of negative slope, x − μX tends to be positive 

when y − μY is negative, and vice versa. Therefore, the product of x − μX and y − μY tends to 

be negative. In this sense, the covariance between X and Y  describes the variation between the 

two random variables. Figure 5-12 assumes all points are equally likely and shows examples 

of pairs of random variables with positive, negative, and zero covariance.

Covariance is a measure of linear relationship between the random variables. If the relation-

ship between the random variables is nonlinear, the covariance might not be sensitive to the rela-

tionship. This is illustrated in Fig. 5-12(d). The only points with nonzero probability are the points 

on the circle. There is an identifiable relationship between the variables. Still, the covariance is zero.

The equality of the two expressions for covariance in Equation 5-14 is shown for continu-

ous random variables as follows. By writing the expectations as integrals,

E Y X x y f x, y dx dy

xy

Y X X Y XY− μ( ) − μ( )⎡⎣ ⎤⎦ = − μ( ) − μ( )  ( ) 

= − μ

 
− ∞

∞

− ∞

∞

∫∫

XX Y X Y XYy x f x, y dx dy− μ + μ μ⎡⎣ ⎤⎦  ( )  
− ∞

∞

− ∞

∞

∫∫

FIGURE 5-12 Joint 
probability  
distributions and the 
sign of covariance 
between X  and Y .

x

y

x

y

x

y

x

y

(a) Positive covariance (b) Zero covariance

(c) Negative covariance (d) Zero covariance

All points are of

equal probability
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There is another measure of the relationship between two random variables that is often 

easier to interpret than the covariance.

Now

 μ   ( ) = μ   ( )  
⎡

⎣
⎢

⎤

⎦
⎥ = μ μ

−∞

∞

−∞

∞

∫∫X XY X XY X Yy f x, y dx dy yf x, y dx dy
−−∞

∞

−∞

∞

∫∫
Therefore,

E X Y xyf x, y dx dyX Y XY X Y X Y X Y− μ( ) − μ( )⎡⎣ ⎤⎦ =  ( ) − μ μ − μ μ + μ μ

=

−∞

∞

−∞

∞

∫∫

xxyf x, y dx dy E XYXY X Y X Y ( ) − μ μ = ( ) − μ μ
−∞

∞

−∞

∞

∫∫

In Example 5-1, the random variables X and Y  are the number of signal bars and the response time 

(to the nearest second), respectively. Interpret the covariance between X and Y  as positive or negative.

As the signal bars increase, the response time tends to decrease. Therefore, X and Y  have a negative covariance. The 

covariance was calculated to be −0.5815 in Example 5-19.

Example 5-20

Correlation

The correlation between random variables X and Y , denoted as ρXY , is

 ρ =
 ( )

( ) ( )
= σ

σ σXY
XY

X Y

X,Y

V X V Y

cov
 (5-15)

For any two random variables X and Y ,

 − ≤ ρ ≤ +1 1XY  (5-16)

Because σX > 0 and σY > 0, if the covariance between X and Y  is positive, negative, or zero, 

the correlation between X and Y  is positive, negative, or zero, respectively. The following 

result can be shown.

The correlation just scales the covariance by the product of the standard deviation of each vari-

able. Consequently, the correlation is a dimensionless quantity that can be used to compare the 

linear relationships between pairs of variables in different units.

If the points in the joint probability distribution of X and Y  that receive positive probability 

tend to fall along a line of positive (or negative) slope, ρXY is near +1 (or −1). If ρXY equals +1

or −1, it can be shown that the points in the joint probability distribution that receive positive 

probability fall exactly along a straight line. Two random variables with nonzero correlation 

are said to be correlated. Similar to covariance, the correlation is a measure of the linear 
relationship between random variables.

Covariance For the discrete random variables X and Y  with the joint distribution shown in Fig. 

5-13, determine σXY  and ρXY.

The calculations for E XY( ), E X( ), and V X( ) are as follows.

E XY( ) = × × . + × × . + × × . + × × . + × × . + × × . = .0 0 0 2 1 1 0 1 1 2 0 1 2 1 0 1 2 2 0 1 3 3 0 4 4 5

Example 5-21
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For independent random variables, we do not expect any relationship in their joint prob-

ability distribution. The following result is left as an exercise.

If X and Y  are independent random variables,

 σ = ρ =XY XY 0 (5-17)

E X( ) = × . + × . + × . + × . = .0 0 2 1 0 2 2 0 2 3 0 4 1 8

V X( ) = − .( ) × . + − .( ) × . + − .( ) × . + − .( ) × . =0 0 1 8 0 2 1 1 8 0 2 2 1 8 0 2 3 1 8 0 4
2 2 2 2

11 36.

Because the marginal probability distribution of Y  is the same as for X, E Y( ) = 1 8.  and V Y( ) = 1 36. . Consequently,

σ = ( ) − ( ) ( ) = . − .( ) .( ) = .XY E XY E X E Y 4 5 1 8 1 8 1 26

Furthermore,

ρ = σ
σ σ

= .
. .

= .XY
XY

X Y

1 26

1 36 1 36
0 926

FIGURE 5-14 Joint distribution for Example 5-21.
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FIGURE 5-13 Joint distribution for Example 5-20.
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Correlation Suppose that the random variable X has the following distribution: P X   =( ) =1 0 2. , 

P X   P X   =( ) = =( ) =2 0 6 3 0 2. , . . Let Y X= +2 5. That is, P Y   =( ) =7 0 2. , P Y   =( ) =11 0 2. . Determine 

the correlation between X and Y . Refer to Fig. 5-14.

Because X and Y  are linearly related, ρ = 1. This can be verifi ed by direct calculations: Try it.

Example 5-22

Independence Implies Zero Covariance For the two random variables in Fig. 5-15, show 

that σ =XY 0.

The two random variables in this example are continuous random variables. In this case, E XY( ) is defi ned as the 

double integral over the range of X Y,( ). That is,

E XY xy f x, y dx dy x y dx dy yXY( ) =  ( ) =
⎡

⎣
⎢

⎤

⎦
⎥  =∫∫∫∫

1

16

1

16
2 2

0

2

0

4

0

2

0

4
2 xx

y dy y

3

0

2

0

4

2 3

0

4

0

4

3

1

16
8 3

1

6
3

1

6
64 3 32 9

⎡
⎣⎢

⎤
⎦⎥
 

=  [ ] = ⎡
⎣⎢

⎤
⎦⎥

= [ ] =

∫

∫

Example 5-23
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However, if the correlation between two random variables is zero, we cannot immediately 

conclude that the random variables are independent. Figure 5-12(d) provides an example.

Also,

E X x f x, y dx dy y x dx dy y x dyXY( ) =  ( ) =   =∫∫∫∫
1

16

1

16
32

0

2

0

4

0

2

0

4
3

0

2

0

4

∫∫

= [ ] = [ ] =1

16
2 8 3

1

6
16 2 4 32

0

4

y

E Y y f x, y dx dy y x dx dy y x dyXY( ) =  ( ) =  =∫∫∫ ∫
1

16

1

16
22

0

2

0

4

0

2
2 2

0

2

0

4

0

4

∫∫  

= = [ ] =2

16
3

1

8
64 3 8 33

0

4

y

Thus,

E XY E X E Y( ) − ( ) ( ) = − ( )( ) =32 9 4 3 8 3 0/ / /

It can be shown that these two random variables are independent. You can check that f x, y   f x f yXY X Y( ) = ( ) ( ) for all x and y.

FIGURE 5-15 Random variables with 
zero covariance from Example 5-22.
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fXY(x,y) =      xy1

16

5-33.  Determine the covariance and correlation for the 

following joint probability distribution:

x    1 1 2 4

y    3 4 5 6

f x, yXY ( )  1 8/  1 4/  1 2/  1 8/

5-34.  Determine the covariance and correlation for the fol-

lowing joint probability distribution:

x    –1 –0.5 0.5 1

y    –2 –1 1 2

f x, yXY ( )  1 8/  1 4/  1 2/  1 8/

5-35.  Determine the value for c and the covariance 

and correlation for the joint probability mass function 

f x, y c x yXY ( ) = +( ) for x  , , = 1 2 3 and y  , , = 1 2 3.

5-36.  Determine the covariance and correlation for 

the joint proba.bility distribution shown in Fig. 5-10(a) and 

described in Example 5-10.

5-37.  Patients are given a drug treatment and then 

evaluated. Symptoms either improve, degrade, or remain the 

same with probabilities 0.4, 0.1, 0.5, respectively. Assume 

that four independent patients are treated and let X  and Y  

FOR SECTION 5-2EXERCISES
 Problem available in WileyPLUS at instructor’s discretion. 

 Tutoring problem available in WileyPLUS at instructor’s discretion.
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5-3 Common Joint Distributions

5-3.1 MULTINOMIAL PROBABILITY DISTRIBUTION

The binomial distribution can be generalized to generate a useful joint probability distribution 

for multiple discrete random variables. The random experiment consists of a series of inde-

pendent trials. However, the outcome from each trial is categorized into one of k classes. The 

random variables of interest count the number of outcomes in each class.

denote the number of patients who improve or degrade. Are 

X  and Y  independent? Calculate the covariance and correla-

tion between X  and Y .

5-38. For the Transaction Processing Performance Council’s 

benchmark in Exercise 5-10, let X  Y Z,  and  , denote the average 

number of selects, updates, and inserts operations required for 

each type of transaction, respectively. Calculate the following:

(a) Covariance between X Y and 

(b) Correlation between X Y and 

(c) Covariance between X Z and 

(d) Correlation between X Z and 

5-39.  Determine the value for c and the covariance 

and correlation for the joint probability density function 

f x, y   cxy XY ( ) = over the range 0 3< <x  and 0 < <y x.

5-40.  Determine the value for c and the covariance and cor-

relation for the joint probability density function f x, y   cXY ( ) =
over the range 0 < <x 5, 0 < y, and x y x− +1 1< < .

5-41.  Determine the covariance and correlation for the 

joint probability density function f x, y eXY
x y ( ) = − −  over the 

range 0 < x and 0 < y.

5-42.  Determine the covariance and correlation for the joint 

probability density function f x, y eXY
x y( ) = − − −6 10 6 0.001 0.002  ×

over the range 0 < x and x y<  from Example 5-2.

5-43. The joint probability distribution is

x       –1     0     0     1

y         0    –1      1     0

f x, yXY ( )   1 4/    1 4/   1 4/   1 4/

Show that the correlation between X  and Y  is zero but X  and Y
are not independent.

5-44. Determine the covariance and correlation for the 

CD4 counts in a month and the following month in Exer-

cise 5-30.

5-45. Determine the covariance and correlation for the lengths 

of the minor and major axes in Exercise 5-29. 

5-46. Suppose that X  and Y  are independent continuous random 

variables. Show that σXY = 0.

5-47.  Suppose that the correlation between X and Y  is ρ. 

For constants a, b, c,  dand , what is the correlation between 

the random variables U  aX  b= +  and V  cY  d= + ?

Digital Channel We might be interested in a probability such as the following. Of the 20 bits 

received, what is the probability that 14 are excellent, 3 are good, 2 are fair, and 1 is poor? Assume that 

the classifi cations of individual bits are independent events and that the probabilities of E, G, F , and P are 0.6, 0.3, 0.08, and 

0.02, respectively. One sequence of 20 bits that produces the specifi ed numbers of bits in each class can be represented as

EEEEEEEEEEEEEEGGGFFP

Using independence, we fi nd that the probability of this sequence is

P EEEEEEEEEEEEEEGGGFFP( ) = . . . .

= . × −

0 6 0 3 0 08 0 02

2 708 10

14 3 2 1

9

Clearly, all sequences that consist of the same numbers of E’s, G’s, F’s, and P’s  have the same probability. Conse-

quently, the requested probability can be found by multiplying 2.708 10  9× −  by the number of sequences with 14 E’s, 

3 G’s, 2 F’s , and 1 P . The number of sequences is found from Chapter 2 to be

20

14 3 2 1

!
! ! ! !

= 2,325,600

Therefore, the requested probability is

P E , G , F , P14 2325600 2 708 10 0 00639’ ’ ’s 3 s 2 s and1      ( ) = . ×( ) = .−

Example 5-21 

Example 5-24 leads to the following generalization of a binomial experiment and a 

binomial distribution.
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Each trial in a multinomial random experiment can be regarded as either generating or 

not generating a result in class i, for each i  , , . . . , k= 1 2 . Because the random variable Xi is the 

number of trials that result in class i, Xi has a binomial distribution.

The multinomial distribution is considered a multivariable extension of the binomial distribution.

Suppose that a random experiment consists of a series of n trials. Assume that

(1) The result of each trial is classifi ed into one of k classes.

(2)  The probability of a trial generating a result in class 1, class 2,

… , class k is constant over the trials and equal to p , p ,  , pk1 2 … , 

respectively.

(3) The trials are independent.

The random variables X , X , , X  k1 2 … that denote the number of trials that result in 

class 1, class 2, … , class k, respectively, have a multinomial distribution and the 

joint probability mass function is

 P X x , X x , , X x
n

x x x
p p pk k

k

x x
k
xk

1 1 2 2

1 2

1 2
1 2=  = …  =( ) = !

! !… !
  …  (5-18)

for x x x nk1 2+ + … + =  and p p pk1 2 1+ +…+ = .

If X ,  X , , Xk1 2 …  have a multinomial distribution, the marginal probability distribu-

tion of Xi is binomial with

 E X np V X np pi i i i i( ) = ( ) = −( )and 1  (5-19)

Multinomial 
Distribution

Digital Channel In Example 5-24, let the random variables X , X , X1 2 3, and X4 denote the num-

ber of bits that are E, G, F , and P , respectively, in a transmission of 20 bits. The probability that 12 

of the bits received are E , 6 are G, 2 are F , and 0 are P  is

P X , X , X , X1 2 3 412 6 2 0=  =  =  =( )
= !

! ! ! !
 . . . . = .20

12 6 2 0
0 6 0 3 0 08 0 02 0 035812 6 2 0

Example 5-25

Mean and Variance

Marginal Probability Distributions In Example 5-25, the marginal probability distribution 

of X2 is binomial with n = 20 and p = 0 3. . Furthermore, the joint marginal probability distribution 

of X2 and X3 is found as follows. The P X   x , X   x2 2 3 3= =( ) is the probability that exactly x2 trials result in G and that x3 

result in F . The remaining n x x− −2 3 trials must result in either E  or P . Consequently, we can consider each trial in 

the experiment to result in one of three classes: { }, { }G F , and { }E, P  with probabilities 0.3, 0.08, and 0.6 0.02 0.62+ = , 

respectively. With these new classes, we can consider the trials to comprise a new multinomial experiment. Therefore,

f x , x P X x , X xX X2 3 2 3 2 2 3 3 ( ) = =  =( )
= !

! ! − −( )!  .( ) .( ) .( ) − −n

x x n x x
x x n x x

2 3 2 3

0 3 0 08 0 62
2 3 2 3

The joint probability distribution of other sets of variables can be found similarly.

Example 5-26
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Bivariate Normal 
Probability Density 

Function

5-3.2 BIVARIATE NORMAL DISTRIBUTION

An extension of a normal distribution to two random variables is an important bivariate probability 

distribution. The joint probability distribution can be defi ned to handle positive, negative, or zero 

correlation between the random variables.

The probability density function of a bivariate normal distribution is

f x, y; , , , ,

x

XY X Y X Y

X Y

  σ  σ  μ  μ  ρ( ) =
πσ σ − ρ

 

×  −
− ρ( )

− μ

1

2 1

1

2 1

2

2
exp

XX

X

X Y

X Y

Y

Y

x y y( )
σ

⎡

⎣
⎢
⎢

⎧
⎨
⎪

⎩⎪
−

ρ − μ( ) − μ( )
σ σ

+
− μ( )
σ

⎤

⎦
⎥
⎥

⎫
⎬
⎪

⎭⎪

2

2

2

2

2

 

(5-20)

for −∞ ∞< x <  and − ∞ ∞< y < , with parameters s . s .X Y 0,   0, − ∞ ∞< <μX , 

− ∞ ∞< <μY , and 2 , r ,1 1.

Bivariate Normal Distribution At the start of this chapter, the length of different dimensions of an 

injection-molded part were presented as an example of two random variables. If the specifi cations for X 

and Y  are 2.95 to 3.05 and 7.60 to 7.80 millimeters, respectively, we might be interested in the probability that a part satisfi es 

both specifi cations; that is, P 2 95 < 3 5  7 60 <( . . , . . )X Y< <0 7 80 . Each length might be modeled by a normal distribution. 

However, because the measurements are from the same part, the random variables are typically not independent. Therefore, 

a probability distribution for two normal random variables that are not independent is important in many applications.

Example 5-27

The result that f x yXY X Y X Y( , ; , , , , ) σ σ μ μ ρ  integrates to 1 is left as an exercise. Also, the 

bivariate normal probability density function is positive over the entire plane of real numbers.

Two examples of bivariate normal distributions along with corresponding contour plots are 

illustrated in Fig. 5-16. Each curve on the contour plots is a set of points for which the prob-

ability density function is constant. As seen in the contour plots, the bivariate normal probability 

density function is constant on ellipses in the ( , )x y  plane. (We can consider a circle to be a 

special case of an ellipse.) The center of each ellipse is at the point (μ , μX Y ). If ρ ρ> <0 0 ( ), the 

major axis of each ellipse has positive (negative) slope, respectively. If ρ = 0, the major axis of 

the ellipse is aligned with either the x or y coordinate axis.

The joint probability density function

 
f x, y eXY

x y
 ( )

π
− . +( )

=
1

2

0 5 2 2

is a special case of a bivariate normal distribution with σX = 1, σy = 1, μX = 0, μ y = 0, and ρ = 0. This probability density 

function is illustrated in Fig. 5-17. Notice that the contour plot consists of concentric circles about the origin.

Example 5-28

FIGURE 5-16 Examples of bivariate normal distributions.

x

y
fXY(x, y)

fXY(x, y)

y

x

0
x

y

y
x

Xm mX

fXY(x, y)

Ym

Ym

Xm
Ym

Xm

Ym
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Marginal  
Distributions of  

Bivariate Normal 
Random Variables

An important use of the bivariate normal distribution is to calculate probabilities involving 

two correlated normal random variables.

The following results can be shown for a bivariate normal distribution. The details are left 

as an exercise.

If X and Y  have a bivariate normal distribution with joint probability density f x yxy X( , , ,σ
σ μ μ ρY X Y ,, , ), the marginal probability distributions of X and Y  are normal with means  

μX and μ y and standard deviations σX and σy, respectively. (5-21)

If X and Y  have a bivariate normal distribution with joint probability density f x, yXY  ( , 
σ σ  μ  μ  ρ)X Y X Y, , , , , the conditional probability distribution of Y  given X x=  is normal 

with mean

μ = + −|Y x Y X
Y

X
xμ ρ

σ
σ μ( )

and variance

σ = σ − ρ( )|Y x Y
2 2 21

If X and Y  have a bivariate normal distribution with joint probability density function 

f x yXY x y x y( , , , , , , )σ σ μ μ ρ , the correlation between X and Y  is r. (5-22)

If X and Y  have a bivariate normal distribution with r = 0, X and Y   

are independent. (5-23)

0

0

x

yfXY(x, y)

x
0

y

0

FIGURE 5-17  
Bivariate normal 
probability density 
function with σx = 1,  
σy = 1, ρ = 0, μx = 0
μX = 0, and μy = 0.

Conditional  
Distribution of  

Bivariate Normal 
Random Variables

Furthermore, as the notation suggests, r represents the correlation between X and Y . The fol-

lowing result is left as an exercise.

Correlation of  
Bivariate Normal 

Random Variables

The contour plots in Fig. 5-16 illustrate that as r moves from 0 (left graph) to 0.9 (right graph), 

the ellipses narrow around the major axis. The probability is more concentrated about a line in 

the ( , )x y  plane and graphically displays greater correlation between the variables. If ρ −1  =  or

+1, all the probability is concentrated on a line in the x,y( ) plane. That is, the probability that 

Xand Y  assume a value that is not on the line is zero. In this case, the bivariate normal prob-

ability density is not defined.

In general, zero correlation does not imply independence. But in the special case that X 

and Y  have a bivariate normal distribution, if p = 0, X and Y  are independent. The details are 

left as an exercise.

For Bivariate Normal 
Random Variables 

Zero Correlation 
Implies Independence
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Injection-Molded Part Suppose that the X and Y  dimensions of an injection-molded part have 

a bivariate normal distribution with σ σ μ μX Y X Y= = = =0.04, 0.08 3.00, 7.70, , and ρ = 0.8. Then 

the probability that a part satisfi es both specifi cations is

P < X < , <Y <2 95 3 05 7 60 7 80. .  . .( )
This probability can be obtained by integrating f x,y , , , ,XY X Y X Y( ; )σ σ μ μ ρ  over the region 2.95 < 3.05x <  and 

7.60 7.80< y < , as shown in Fig. 5-3. Unfortunately, there is often no closed-form solution to probabilities involving 

bivariate normal distributions. In this case, the integration must be done numerically.

Example 5-29

5-48. Test results from an electronic circuit board indicate that 

50% of board failures are caused by assembly defects, 30% by 

electrical components, and 20% by mechanical defects. Sup-

pose that 10 boards fail independently. Let the random vari-

ables X , Y , and Z  denote the number of assembly, electrical, 

and mechanical defects among the 10 boards.

Calculate the following:

(a) P X = ,Y = ,Z = 5 3 2( )  (b) P X = 8( )
(c) P X = |Y =8 1( )   (d) P X |Y =≥ 8 1( )
(e) P X = ,Y = | Z =7 1 2( )
5-49.  Based on the number of voids, a ferrite slab is clas-

sifi ed as either high, medium, or low. Historically, 5% of the 

slabs are classifi ed as high, 85% as medium, and 10% as low. 

A sample of 20 slabs is selected for testing. Let X , Y , and Z  

denote the number of slabs that are independently classifi ed as 

high, medium, and low, respectively.

(a) What are the name and the values of the parameters of the 

joint probability distribution of X , Y , and Z?

(b) What is the range of the joint probability distribution of X , 

Y , and Z?

(c) What are the name and the values of the parameters of the 

marginal probability distribution of X ?

(d) Determine E X( ) and V X( ).
Determine the following:

(e) P X ,Y , Z=  =  =( )1 17 3  (f) P X ,Y , Z≤  =  =( )1 17 3

(g) P X ≤( )1   (h) E Y( ) 
(i) P X , Z Y=  = | =( )2 3 17  (j) P X Y= | =( )2 17

(k) E X Y| =( )17

5-50. A Web site uses ads to route visitors to one of four landing 

pages. The probabilities for each landing page are equal. Consider 

20 independent visitors and let the random variables W , X , Y , and 

Z  denote the number of visitors routed to each page.

Calculate the following:

(a) P W X Y Z= = = =( ) 5  5  5  5, , ,

(b) P W X Y Z= = = =( ) 5  5  5  5, , ,

(c) P W X Y Z= = = =( ) 7  7 6  3, ,

(d) P W = , X = ,Y = Z = 7 7 3 3( ) 
(e) P W( 2)≤   (f) E W( )

(g) P W = ,X = 5 5( )  (h) P W = | X = 5 5( )
5-51. Four electronic ovens that were dropped during shipment 

are inspected and classifi ed as containing either a major, a minor, 

or no defect. In the past, 60% of dropped ovens had a major 

defect, 30% had a minor defect, and 10% had no defect. Assume 

that the defects on the four ovens occur independently.

(a)  Is the probability distribution of the count of ovens in 

each category multinomial? Why or why not?

(b)  What is the probability that, of the four dropped ovens, 

two have a major defect and two have a minor defect?

(c) What is the probability that no oven has a defect?

Determine the following:

(d) Joint probability mass function of the number of ovens 

with a major defect and the number with a minor defect

(e) Expected number of ovens with a major defect

(f) Expected number of ovens with a minor defect

(g) Conditional probability that two ovens have major defects 

given that two ovens have minor defects

(h) Conditional probability that three ovens have major defects 

given that two ovens have minor defects

(i) Conditional probability distribution of the number of ovens 

with major defects given that two ovens have minor defects

(j) Conditional mean of the number of ovens with major defects 

given that two ovens have minor defects.

5-52. Let X  and Y  represent the concentration and viscosity of 

a chemical product. Suppose that X  and Y  have a bivariate nor-

mal distribution with σ σ μX Y X= = =4 1 2, ,  and μ y = 1. Draw a 

rough contour plot of the joint probability density function for 

each of the following values of r:

(a) ρ ρ = 0 (b) = 0 8.   (c) ρ = −0 8.

5-53.  Suppose that X  and Y  have a bivariate normal distribu-

tion with σ σ μ μX Y X Y= = = =0 0 0 0 00 0. , . , . , .4 8 3 7 7 , and ρ = 0.

Determine the following:

(a) P < X <2 95 3 05. .( ) (b) P <Y <7 60 7 80. .( )
(c) P < X < , <Y <2 95 3 05 7 60 7 80. .  . .( )
5-54.  In an acid-base titration, a base or acid is gradu-

ally added to the other until they have completely neutralized 

each other. Let X  and Y  denote the milliliters of acid and base 

needed for equivalence, respectively. Assume that X  and Y  have 

a bivariate normal distribution with σ =  X 5 mL, σ =  Y 2 mL, 

μ =  X 120 mL, μ =  Y 100 mL, and ρ = .0 6.

FOR SECTION 5-3EXERCISES
 Problem available in WileyPLUS at instructor’s discretion. 

 Tutoring problem available in WileyPLUS at instructor’s discretion.
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184   Chapter 5/Joint Probability Distributions

5-4  Linear Functions of Random Variables
A random variable is sometimes defined as a function of one or more random variables. In this 

section, results for linear functions are highlighted because of their importance in the remain-

der of the book. For example, if the random variables X1 and X2 denote the length and width, 

respectively, of a manufactured part, Y = 2X + 2X1 2 is a random variable that represents the 

perimeter of the part. As another example, recall that the negative binomial random variable 

was represented as the sum of several geometric random variables.

In this section, we develop results for random variables that are linear combinations of 

random variables.

Determine the following:

(a) Covariance between X  and Y
(b) Marginal probability distribution of X   (c) P X < 116( )
(d) Conditional probability distribution of X  given that Y = 102

(e) P X Y< 116 102| =( )
5-55.  In the manufacture of electroluminescent lamps, 

several different layers of ink are deposited onto a plastic sub-

strate. The thickness of these layers is critical if specifications 

regarding the final color and intensity of light are to be met. 

Let X  and Y  denote the thickness of two different layers of ink. 

It is known that X  is normally distributed with a mean of 0.1 

millimeter and a standard deviation of 0.00031 millimeter, and 

Y  is normally distributed with a mean of 0.23 millimeter and 

a standard deviation of 0.00017 millimeter. The value of ρ for 

these variables is equal to 0. Specifications call for a lamp to 

have a thickness of the ink corresponding to X  in the range of 

0.099535 to 0.100465 millimeter and Y  in the range of 0.22966 

to 0.23034 millimeter. What is the probability that a randomly 

selected lamp will conform to specifications?

5-56. Patients given drug therapy either improve, remain the 

same, or degrade with probabilities 0.5, 0.4, 0.1, respectively. 

Suppose that 20 patients (assumed to be independent) are given 

the therapy. Let X X1 2, , and X3 denote the number of patients 

who improved, stayed the same, or became degraded. Deter-

mine the following.

(a) Are , ,  independent?1 2 3X X X  (b) P X( 1 10)=
(c) P X X X( = 10, = 8, = 2)1 2 3  (d) P X X( | )1 25 12= =
(e) E( )X1

5-57. Suppose that X  has a standard normal distribution. Let 

the conditional distribution of Y  given X = x  be normally dis-

tributed with mean E( = 2Y x x| )  and variance V Y x x( | ) = 2 . 

Determine the following.

(a) Are X  and Y  independent?  (b) P Y X( < 3 | = 3) 

(c) E Y | X = 3( ) (d) f x,yXY ( )

(e) Recognize the distribution f x yXY ( , ) and identify the mean 

and variance of Y  and the correlation between X  and Y .

5-58. Suppose that X  and Y  have a bivariate normal distribution 

with joint probability density function f x,y; , , , ,XY X Y X Y( )σ σ μ μ ρ
(a) Show that the conditional distribution of Y  given that X = x   

is normal.

(b)  Determine E Y X x| =( ).
(c)  Determine V Y X x| =( ).
5-59. If X  and Y have a bivariate normal distribution with 

ρ = 0, show that X  and Y  are independent.

5-60. Show that the probability density function fXY  
( )x,y; , , , ,X Y X Yσ σ μ μ ρ  of a bivariate normal distribution inte-

grates to 1. [Hint: Complete the square in the exponent and use 

the fact that the integral of a normal probability density func-

tion for a single variable is 1.]

5-61. If X  and Y  have a bivariate normal distribution with 

joint probability density f x,y; , , , ,XY X Y X Y( )σ σ μ μ ρ , show that 

the marginal probability distribution of X  is normal with mean 

μ x and standard deviation σx . [Hint: Complete the square in the 

exponent and use the fact that the integral of a normal prob-

ability density function for a single variable is 1.]

Linear Combination
Given random variables X ,X , ,X1 2 p…  and constants c ,c , c1 2 p… ,

 Y c X c X c Xp p= + + … +1 1 2 2  (5-24)

is a linear combination of  X , X , , Xp1 2 …  .

Now E Y( ) can be found from the joint probability distribution of X ,X , ,X1 2 p…  as follows. 

Assume that X X Xp1 2, ,  are continuous random variables. An analogous calculation can be 

used for discrete random variables.

E Y c x c x c( ) = … + + … +( )  …  ( )  ……1 1 2 2 1 2 1 21 2p p X X X p pf x , x , , x dx dx dxpx
−−∞

∞

−∞

∞

−∞

∞

…
−∞

∞

∫∫∫  

=  …  …  ( )  …c x f x , x , , x dx dx dxX X X p pp1 1 1 2 1 21 2∫∫∫∫  
−∞

∞

−∞

∞
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Mean of a Linear 
Function

+  …  …  ( )  … + …  …
−∞

∞

−∞

∞

−∞

∞

∫∫∫c x f x , x , , x dx dx dx , ,X X X p pp2 2 1 2 1 21 2

+  …  …  ( )  ……
−∞

∞

−∞

∞

−∞

∞

∫∫∫c x f x , x , , x dx dx dxp p X X X p pp1 2 1 2 1 2

By using Equation 5-10 for each of the terms in this expression, we obtain the following.

If Y c X c X c X ,p p= + + … +1 1 2 2

 E Y c E X c E X c E Xp p( ) = ( ) + ( ) + … + ( )1 1 2 2  (5-25)

If X ,X , ,X p1 2 …  are random variables, and Y c X c X c X ,p p= + + … +1 1 2 2  then in general,

 V Y c V X c V X c V X c c X , Xp p i j
i j

i j( ) = ( ) + ( ) + … + ( ) +    ( )∑∑
<

1
2

1 2
2

2
2 2 cov  (5-26)

If X ,X , ,X p1 2 …  are independent,

 V Y c V X c V X c V Xp p( ) = ( ) + ( ) + … + ( )1
2

1 2
2

2
2  (5-27)

Furthermore, it is left as an exercise to show the following.

Variance of a Linear 
Function

Note that the result for the variance in Equation 5-27 requires the random variables to 

be independent. To see why the independence is important, consider the following simple 

example. Let X1 denote any random variable and defi ne X = X2 1− . Clearly, X1 and X2 are not 

independent. In fact, ρ −XY = 1. Now Y = X + X1 2 is 0 with probability 1. Therefore, V Y  ( ) = 0 

regardless of the variances of X1 and X2.

Negative Binomial Distribution In Chapter 3, we found that if Y  is a negative binomial ran-

dom variable with parameters p and r, Y X X X ,r= + + … +1 2  where each Xi is a geometric random 

variable with parameter p, and they are independent. Therefore, E X pi( ) = 1 /  and V X p pi( ) = −( )1 2/ . From Equation 

5-25, E Y r p( ) = / , and from Equation 5-27, V Y r p p( ) = −( )1 2/ .

Example 5-30

An approach similar to the one applied in Example 5-30 can be used to verify the formulas 

for the mean and variance of an Erlang random variable in Chapter 4. An important use of 

Equation 5-27 is in error propagation, which is presented in the following example.

Error Propagation A semiconductor product consists of three layers. Supposing that the 

variances in thickness of the fi rst, second, and third layers are 25, 40, and 30 square nanometers, 

respectively, and the layer thicknesses are independent. What is the variance of the thickness of the fi nal product?

Let X X X1 2 3, , , and X be random variables that denote the thicknesses of the respective layers, and the fi nal product. Then,

X X X X= + +1 2 3

The variance of X is obtained from Equation 5-27:

V X V X V X V X( ) = ( ) + ( ) + ( )1 2 3

= + + =  25 40 30 95 2nm

Consequently, the standard deviation of thickness of the fi nal product is 95  9 75 nm1 2/ .= , and this shows how the 

variation in each layer is propagated to the fi nal product.

Example 5-31
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Mean and Variance 
of an Average

The particular linear function that represents the average of random variables with identical 

means and variances is used quite often in subsequent chapters. We highlight the results for 

this special case.

If X X X X pp= + + … +( )1 2  with E(X
i
) = μ for i p= 1, 2, ,… ,

 E X( ) = μ (5-28a)

If X
1
, X

2
, …, X

p
 are also independent with V(X

i
) = σ2 for i = 1, 2, …, p,

    V X
p

( ) = σ2

 (5-28b)

If X
1
, X

2
, …, X

p
 are independent, normal random variables with E(X

i
) = μ

i
 and 

V Xi i( ) = σ2, for i = 1, 2, …, p,

Y c X c X c Xp p= + + … +1 1 2 2

is a normal random variable with

E Y c c cp p( ) = μ + μ + … + μ1 1 2 2

and

 V Y c c cp p( ) = σ + σ +…+ σ1
2

1
2

2
2

2
2 2 2 (5-29)

The conclusion for V X( ) is obtained as follows. Using Equation 5-27 with c pi = 1 /  and V(X
i
) 

= σ2 yields

V X p

p

p( ) ( / ) /= =1 2σ +…+ (1/ ) σ σ2 2 2 2p

terms
� ����� �����

Another useful result concerning linear functions of random variables is a reproductive 
property that holds for independent, normal random variables.

Reproductive 
Property of the 

Normal Distribution

The mean and variance of Y follow from Equations 5-25 and 5-27. The fact that Y has a normal 

distribution can be obtained from moment generating functions in a later section of this chapter.

Linear Function of Independent Normal Random Variables Let the random variables X
1
 

and X
2
 denote the length and width, respectively, of a manufactured part. Assume that X

1
 is normal 

with E(X
1
) = 2 cm and standard deviation 0.1 cm and that X

2
 is normal with E(X

2
) = 5 cm and standard deviation 0.2 cm. 

Also assume that X
1
 and X

2
 are independent. Determine the probability that the perimeter exceeds 14.5 cm.

Then Y = 2X
1
 + 2X

2
 is a normal random variable that represents the perimeter of the part. We obtain E(Y) = 14 cm 

and the variance of Y is

V Y( ) = × . + × . = .4 0 1 4 0 2 0 22 2

Now

P Y > P Y

P Z >

Y

Y
14 5 14 5 14

0 2

1 12 0 13

.( ) = > . −
.

⎛
⎝⎜

⎞
⎠⎟

= .( ) = .

−μ
σ

Example 5-32

Beverage Volume An automated fi lling machine fi lls soft-drink cans. The mean fi ll volume is 

12.1 fl uid ounces, and the standard deviation is 0.1 oz. Assume that the fi ll volumes of the cans are 

independent, normal random variables. What is the probability that the average volume of 10 cans selected from this 

process is less than 12 oz?

Example 5-33
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Let X
1
, X

2
, . . . , X

10
 denote the fi ll volumes of the 10 cans. The average fi ll volume (denoted as X) is a normal random 

variable with

E X V X( ) = . ( ) = .  = .12 1
0 1

10
0 001

2

and

Consequently,

P X < P
X

<

P Z <

X

X

12
12 12 1

0 001

3 16 0 00079

( ) =
− μ
σ

− .
.

⎡

⎣
⎢

⎤

⎦
⎥

= − .( ) = .

5-62.  X and Y are independent, normal random variables 

with E(X) = 0, V(X) = 4, E(Y) = 10, and V(Y) = 9.

Determine the following:

(a) E X Y2 3+( )  (b) V X Y2 3+( )
(c) P X Y <2 3 30+( ) (d) P X Y <2 3 40+( )
5-63. X and Y are independent, normal random variables with 

E X ,V X , E Y , V Y( ) =  ( ) =  ( ) =   ( ) = .2 5 6 8and

Determine the following:

(a) E X Y3 2+( )  (b) V X Y3 2+( )
(c) P X Y <3 2 18+( ) (d) P X Y <3 2 28+( )
5-64.  Suppose that the random variable X represents the 

length of a punched part in centimeters. Let Y be the length of 

the part in millimeters. If E(X) = 5 and V(X) = 0.25, what are 

the mean and variance of Y?

5-65.  A plastic casing for a magnetic disk is composed of 

two halves. The thickness of each half is normally distributed 

with a mean of 2 millimeters, and a standard deviation of 0.1 

millimeter and the halves are independent.

(a)  Determine the mean and standard deviation of the total 

thickness of the two halves.

(b) What is the probability that the total thickness exceeds 4.3 

millimeters?

5-66.  Making handcrafted pottery generally takes two 

major steps: wheel throwing and fi ring. The time of wheel 

throwing and the time of fi ring are normally distributed ran-

dom variables with means of 40 minutes and 60 minutes and 

standard deviations of 2 minutes and 3 minutes, respectively.

(a) What is the probability that a piece of pottery will be fi nished 

within 95 minutes?

(b) What is the probability that it will take longer than 110 minutes?

5-67.  In the manufacture of electroluminescent lamps, sev-

eral different layers of ink are deposited onto a plastic substrate. 

The thickness of these layers is critical if specifi cations regard-

ing the fi nal color and intensity of light are to be met. Let X and 

Y denote the thickness of two different layers of ink. It is known 

that X is normally distributed with a mean of 0.1 mm and a stand-

ard deviation of 0.00031 mm, and Y is also normally distributed 

with a mean of 0.23 mm and a standard deviation of 0.00017 mm. 

Assume that these variables are independent.

(a) If a particular lamp is made up of these two inks only, what 

is the probability that the total ink thickness is less than 

0.2337 mm?

(b)  A lamp with a total ink thickness exceeding 0.2405 mm 

lacks the uniformity of color that the customer demands. 

Find the probability that a randomly selected lamp fails to 

meet customer specifi cations.

5-68.  The width of a casing for a door is normally distributed 

with a mean of 24 inches and a standard deviation of 1/8 inch. The 

width of a door is normally distributed with a mean of 23 7/8 inches 

and a standard deviation of 1/16 inch. Assume independence.

(a) Determine the mean and standard deviation of the difference 

between the width of the casing and the width of the door.

(b) What is the probability that the width of the casing minus 

the width of the door exceeds 1/4 inch?

(c) What is the probability that the door does not fi t in the casing?

5-69.  An article in Knee Surgery Sports Traumatology, 
Arthroscopy [“Effect of Provider Volume on Resource Utili-

zation for Surgical Procedures” (2005, Vol. 13, pp. 273–279)] 

showed a mean time of 129 minutes and a standard deviation 

of 14 minutes for ACL reconstruction surgery for high-volume 

hospitals (with more than 300 such surgeries per year). If a 

high-volume hospital needs to schedule 10 surgeries, what are 

the mean and variance of the total time to complete these sur-

geries? Assume that the times of the surgeries are independent 

and normally distributed.

5-70.  An automated fi lling machine fi lls soft-drink cans, 

and the standard deviation is 0.5 fl uid ounce. Assume that the fi ll 

volumes of the cans are independent, normal random variables.

(a) What is the standard deviation of the average fi ll volume 

of 100 cans?

(b) If the mean fi ll volume is 12.1 oz, what is the probability that 

the average fi ll volume of the 100 cans is less than 12 oz?

(c) What should the mean fi ll volume equal so that the prob-

ability that the average of 100 cans is less than 12 oz is 

0.005?

(d) If the mean fi ll volume is 12.1 oz, what should the standard 

deviation of fi ll volume equal so that the probability that 

the average of 100 cans is less than 12 oz is 0.005?

 FOR SECTION 5-4EXERCISES
 Problem available in WileyPLUS at instructor’s discretion. 

 Tutoring problem available in WileyPLUS at instructor’s discretion.
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188   Chapter 5/Joint Probability Distributions

5-5 General Functions of Random Variables
In many situations in statistics, it is necessary to derive the probability distribution of a func-

tion of one or more random variables. In this section, we present some results that are helpful 

in solving this problem.

(e)  Determine the number of cans that need to be measured 

such that the probability that the average fill volume is less 

than 12 oz is 0.01.

5-71.  The photoresist thickness in semiconductor manufac-

turing has a mean of 10 micrometers and a standard deviation of 

1 micrometer. Assume that the thickness is normally distributed 

and that the thicknesses of different wafers are independent.

(a) Determine the probability that the average thickness of 10 

wafers is either greater than 11 or less than 9 micrometers.

(b) Determine the number of wafers that need to be measured 

such that the probability that the average thickness exceeds 

11 micrometers is 0.01.

(c) If the mean thickness is 10 micrometers, what should the 

standard deviation of thickness equal so that the probability 

that the average of 10 wafers is either more than 11 or less 

than 9 micrometers is 0.001?

5-72.  Assume that the weights of individuals are inde-

pendent and normally distributed with a mean of 160 pounds 

and a standard deviation of 30 pounds. Suppose that 25 people 

squeeze into an elevator that is designed to hold 4300 pounds.

(a) What is the probability that the load (total weight) exceeds 

the design limit?

(b) What design limit is exceeded by 25 occupants with prob-

ability 0.0001?

5-73. Weights of parts are normally distributed with variance 

σ2. Measurement error is normally distributed with mean 0 and 

variance 0.5σ2, independent of the part weights, and adds to the 

part weight. Upper and lower specifications are centered at 3σ 

about the process mean.

(a) Without measurement error, what is the probability that a 

part exceeds the specifications?

(b) With measurement error, what is the probability that a part 

is measured as being beyond specifications? Does this 

imply it is truly beyond specifications?

(c)  What is the probability that a part is measured as being 

beyond specifications if the true weight of the part is 1 σ 

below the upper specification limit?

5-74. A U-shaped component is to be formed from the three 

parts A, B, and C. See Fig. 5-18. The length of A is normally 

distributed with a mean of 10 mm and a standard deviation of 0.1 

mm. The thickness of parts B and C is normally distributed with 

a mean of 2 mm and a standard deviation of 0.05 mm. Assume 

that all dimensions are independent.

(a) Determine the mean and standard deviation of the length 

of the gap D.

(b) What is the probability that the gap D is less than 5.9 mm?

5-75. Consider the perimeter of a part in Example 5-32. Let 

X1 and X2 denote the length and width of a part with stand-

ard deviations 0.1 and 0.2 centimeters, respectively. Suppose 

that the covariance between X1 and X2 is 0.02. Determine the 

variance of the perimeter Y X X= +2 21 2 of a part. Compare and 

comment on the result here and in the example.

5-76. Three electron emitters produce electron beams with 

changing kinetic energies that are uniformly distributed in the 

ranges [ ]3 7, , [ ]2 5, , and [ ]4 10, . Let Y  denote the total kinetic 

energy produced by these electron emitters. 

(a)  Suppose that the three beam energies are independent. 

Determine the mean and variance of Y . 

(b)  Suppose that the covariance between any two beam ener-

gies is − .0 5. Determine the mean and variance of Y . 

(c) Compare and comment on the results in parts (a) and (b). 

5-77. In Exercise 5-31, the monthly demand for MMR vac-

cine was assumed to be approximately normally distributed 

with a mean and standard deviation of 1.1 and 0.3 million 

doses, respectively. Suppose that the demands for different 

months are independent, and let Z  denote the demand for a 

year (in millions of does). Determine the following: 

(a) Mean, variance, and distribution of Z  

(b) P Z( )< .13 2  

(c) P Z( )11 15< <  

(d) Value for c such that P Z c( )< = .0 99 

5-78. The rate of return of an asset is the change in price divided 

by the initial price (denoted as r ). Suppose that $10,000 is used 

to purchase shares in three stocks with rates of returns X X X1 2 3, , .  

Initially, $2500, $3000, and $4500 are allocated to each one, 

respectively. After one year, the distribution of the rate of return 

for each is normally distributed with the following parameters: 

μ σ μ σ μ σ1 1 2 2 3 30 12 0 14 0 04 0 02 0 07 0 08= . , = . , = . , = . , = . , = . . 

(a)  Assume that these rates of return are independent. Determine 

the mean and variance of the rate of return after one year for 

the entire investment of $10,000. 

(b)  Assume that X1 is independent of X2 and X3 but that the 

covariance between X2 and X3 is − .0 005. Repeat part (a). 

(c)  Compare the means and variances obtained in parts (a) and 

(b) and comment on any benefits from negative covari-

ances between the assets.

CB

B C

A

A

D

FIGURE 5-18 Illustration for the U-shaped component.
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General Function of 
a Discrete Random 

Variable

Suppose that X is a discrete random variable with probability distribution f
X
(x). Let Y = h(X) be 

a function of X that defi nes a one-to-one transformation between the values of X and Y and that we 

wish to fi nd the probability distribution of Y. By a one-to-one transformation, we mean that each 

value x is related to one and only one value of y = h(x) and that each value of y is related to one 

and only one value of x, say, x = u(y) where u(y) is found by solving y = h(x) for x in terms of y.

Now the random variable Y takes on the value y when X takes on the value u(y). Therefore, 

the probability distribution of Y is

f y P Y y P X u y f u yY X( ) = =( ) = = ( )⎡⎣ ⎤⎦ = ( )⎡⎣ ⎤⎦
We may state this result as follows.

Suppose that X is a discrete random variable with probability distribution f
X
(x). Let 

Y = h(X) defi ne a one-to-one transformation between the values of X and Y so that 

the equation y = h(x) can be solved uniquely for x in terms of y. Let this solution be 

x = u(y). Then the probability mass function of the random variable Y is

 f y f u yY X( ) = ( )⎡⎣ ⎤⎦ (5-30)

Suppose that X is a continuous random variable with probability distribution f
X
(x). 

The function Y = h(X) is a one-to-one transformation between the values of Y and X, 

so that the equation y = h(x) can be uniquely solved for x in terms of y. Let this solu-

tion be x = u(y). The probability distribution of Y is

 f y f u y JY X( ) = ( )⎡⎣ ⎤⎦⏐⏐ (5-31)

where J u= ′(y) is called the Jacobian of the transformation and the absolute value 

of J is used.

We now consider the situation in which the random variables are continuous. Let Y = h(X) 

with X continuous and the transformation one to one.

Function of a Discrete Random Variable Let X be a geometric random variable with 

probability distribution

f x p p , x , ,X
x( ) = −( ) =  …−

1 1 2
1

Find the probability distribution of Y = X
2
.

Because X $ 0, the transformation is one to one; that is, y = x
2
 and x y= . Therefore, Equation 5-30 indicates that 

the distribution of the random variable Y is

f y f y p p , y , , , ,Y
y( ) = ( ) = −( ) =    …−

1 1 4 9 16
1

Example 5-34

General Function of a 
Continuous Random 

Variable

Equation 5-31 is shown as follows. Let the function y = h(x) be an increasing function of x. Now

P Y a P X u a f x dxX

u a

≤( ) = ≤ ( )⎡⎣ ⎤⎦ = ( )  
−∞
∫
( )

If we change the variable of integration from x to y by using x = u(y), we obtain dx = u′(y) dy
and then

P Y a f u y u y dyX

a

≤( ) = ( )⎡⎣ ⎤⎦ ′( )  
−∞
∫
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Because the integral gives the probability that Y # a for all values of a contained in the feasible 

set of values for y, f u y u yX ( )⎡⎣ ⎤⎦ ′( ) must be the probability density of Y. Therefore, the prob-

ability distribution of Y is

f y f u y u y f u y JY X X( ) = ( )⎡⎣ ⎤⎦ ′( ) = ( )⎡⎣ ⎤⎦
If the function y = h(x) is a decreasing function of x, a similar argument holds.

Function of a Continuous Random Variable Let X be a continuous random variable with 

probability distribution

f x
x

, x <X ( ) = ≤
8

0 4

Find the probability distribution of Y = h(X) = 2X + 4.

Note that y = h(x) = 2x + 4 is an increasing function of x. The inverse solution is x = u(y) = (y – 4) / 2, and from this, 

we fi nd the Jacobian to be J = u′(y) = dx / dy = 1 / 2. Therefore, from Equation 5-31, the probability distribution of Y is

f y
y / y

, yY ( ) −( )  ⎛
⎝⎜

⎞
⎠⎟

= − ≤ ≤=
4 2

8

1

2

4

32
4 12

Example 5-35

 Problem available in WileyPLUS at instructor’s discretion. 

 Tutoring problem available in WileyPLUS at instructor’s discretion

5-79.  Suppose that X is a random variable with probabil-

ity distribution

 f x / , x , , ,X ( ) = =    1 4 1 2 3 4

Determine the probability distribution of Y = 2X + 1.

5-80. Let X be a binomial random variable with p = 0.25 and 

n = 3. Determine the probability distribution of the random vari-

able Y = X2.

5-81.  Suppose that X is a continuous random variable 

with probability distribution

 f x
x

, xX ( ) = ≤ ≤
18

0 6

(a) Determine the probability distribution of the random vari-

able Y = 2X + 10.

(b) Determine the expected value of Y.

5-82. Suppose that X has a uniform probability distribution

 f x , xX ( ) = ≤ ≤1 0 1

Show that the probability distribution of the random variable Y 

= –2 X is chi-squared with two degrees of freedom.

5-83.  A random variable X has the probability distribution

 f x e , xX
x( ) = ≥− 0

Determine the probability distribution for the following:

(a) Y = X2  (b) Y = X /1 2  (c) Y = ln X
5-84.  The velocity of a particle in a gas is a random vari-

able V with probability distribution

 f v av e v >V
bv( ) = −2 0

where b is a constant that depends on the temperature of the gas 

and the mass of the particle.

(a) Determine the value of the constant a.

(b) The kinetic energy of the particle is W mV /= 2 2. Determine 

the probability distribution of W.

5-85.  Suppose that X has the probability distribution

 f x , xX ( ) = ≤ ≤1 1 2

Determine the probability distribution of the random variable Y = eX.

5-86.  The random variable X has the probability distribution

 f x
x

, xX ( ) = ≤ ≤
8

0 4

Determine the probability distribution of Y = (X – 2)2.

5-87. An aircraft is fl ying at a constant altitude with veloc-

ity magnitude r1 (relative to the air) and angle θ1 (in a two-

dimensional coordinate system). The magnitude and direction 

of the wind are r2 and θ2, respectively. Suppose that the wind 

angle is uniformly distributed between 10 and 20 degrees and 

all other parameters are constant. Determine the probabil-

ity density function of the magnitude of the resultant vector 

r r r r r= + + − .[ (cos cos )]1
2

2
2

1 2 1 2
0 5θ θ .

5-88. Derive the probability density function for a lognormal 

random variable Y  from the relationship that Y W= exp( ) for a 

normal random variable W  with mean θ and variance ω2.

5-89. The computational time of a statistical analysis applied 

to a data set can sometimes increase with the square of N , the 

number of rows of data. Suppose that for a particular algo-

rithm, the computation time is approximately T N= .0 004 2 sec-

onds. Although the number of rows is a discrete measurement, 

assume that the distribution of N  over a number of data sets can 

be approximated with an exponential distribution with a mean 

of 10,000 rows. Determine the probability density function and 

the mean of T . 

5-90. Power meters enable cyclists to obtain power meas-

urements nearly continuously. The meters also calculate the 

average power generated over a time interval. Professional 

FOR SECTION 5-5EXERCISES
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Section 5-6/Moment-Generating Functions   191

riders can generate 6.6 watts per kilogram of body weight for 

extended periods of time. Some meters calculate a normal-

ized power measurement to adjust for the physiological effort 

required when the power output changes frequently. Let the 

random variable X  denote the power output at a measure-

ment time and assume that X  has a lognormal distribution 

with parameters θ = .5 2933 and ω2 0 00995= . . The normalized 

power is computed as the fourth root of the mean of Y X= 4. 

Determine the following: 

(a) Mean and standard deviation of X  

(b) f yY ( ) 

(c) Mean and variance of Y  

(d) Fourth root of the mean of Y  

(e) Compare [ ( )]E X 4 1 4/  to E X( ) and comment. 

5-6 Moment-Generating Functions
Suppose that X is a random variable with mean μ. Throughout this book we have used the idea 

of the expected value of the random variable X, and in fact E X( ) = μ. Now suppose that we 

are interested in the expected value of a function of X, g X Xr( ) = . The expected value of this 

function, or E g X E Xr[ ( )] ( ) = , is called the rth moment about the origin of the random vari-

able X, which we will denote by μr
′ .

Definition of Moments 
about the Origin The rth moment about the origin of the random variable X is

 μ′r
rE X

x f x dx X

x f x X

r

r

x= =
∫

∑⎧

⎨
⎪

⎩
⎪

−∞

∞( )
( ) ,

( ),

continuous

discrete
 (5-32)

The moment-generating function of the random variable X is the expected value of 
etX

 and is denoted by M tX ( ). That is,

 M t E e
e f x dx X

e f x X
X

tX

tx

tx

x( ) ( )
( ) ,

( ),
= =

∫

∑⎧

−∞

∞
continuous

discrete

⎨⎨
⎪

⎩
⎪

 (5-33)

Notice that the first moment about the origin is just the mean, that is, E X( ) = =μ μ1
′ . Fur-

thermore, since the second moment about the origin is E X( )2
2= μ′ , we can write the variance 

of a random variable in terms of origin moments as follows:

σ μ μ2 2 2
2

2= − = −E X E X( ) [ ( )] ′

The moments of a random variable can often be determined directly from the definition in 

Equation 5-32, but there is an alternative procedure that is frequently useful that makes use of 

a special function.

Definition of a  
Moment-Generating  

Function

The moment-generating function M tX ( ) will exist only if the sum or integral in the above defi-

nition converges. If the moment-generating function of a random variable does exist, it can be 

used to obtain all the origin moments of the random variable.

Let X be a random variable with moment-generating function M tX ( ). Then

 μ′r d M t

dt
t

r
X
r= =( )

0 (5-34)
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Assuming that we can differentiate inside the summation and integral signs,

d M t

dt x e f x dx X

x e f x Xr
X
r

r tx

r tx

x
( )

( ) ,

( ),
=

∫

∑

−∞

∞
continuous

discretee⎧

⎨
⎪

⎩
⎪

Now if we set t = 0 in this expression, we fi nd that

d M t

dt
E X

r
X
r t

r( )
( )= =0

Moment-Generating Function for a Binomial Random Variable Suppose that X has a 

binomial distribution, that is 

f x
n

x
p p x nx n x( ) ( ) , , , ,=

⎛
⎝⎜

⎞
⎠⎟

− =−1 0 1 . . .

Determine the moment-generating function and use it to verify that the mean and variance of the binomial random 

variable are μ = np and σ2 1 = np p( )− .

From the defi nition of a moment-generatingfunction, we have

M t e
n

x
p p

n

x
pe pX

tx

x

n
x n x

x

n
t x n( ) ( ) ( ) ( )=

⎛
⎝⎜

⎞
⎠⎟

− =
⎛
⎝⎜

⎞
⎠⎟

−
=

−

=
∑ ∑

0 0

1 1 −−x

This last summation is the binomial expansion of [ ( )]pe pt n+ −1 , so

 M t pe pX
t n( ) [ ( )]= + −1

Taking the fi rst and second derivatives, we obtain

 M t
dM t

dt
npe p eX

X t t n′ ( )
( )

[ ( )]= = + − −1 1 1

and

 M t
d M t

dt
npe p npe p eX

X t t t n″ ( )
( )

( )[ ( )]= = − + + − −
2

2

21 1 1

If we set t = 0 in M tX
′ ( ), we obtain

 M t npX t
′ μ′ μ( ) | = = = =0 1

which is the mean of the binomial random variable X. Now if we set t = 0 in M tX
n ( ),

M t np p npX
n

t( ) | ( )= = = − +0 2 1μ′

Therefore, the variance of the binomial random variable is

σ2
2

2 2 21 1= − = − + − = − = −μ′ μ np p np np np np np p( ) ( ) ( )

Example 5-36

Moment-Generating Function for a Normal Random Variable Find the moment-generating 

function of the normal random variable and use it to show that the mean and variance of this random 

variable are μ and σ2, respectively.

The moment-generating function is

M t e e

e

X
tx x

x t x

( ) ( /( )

[ ( ) ]/(

=

=

− −

−∞

∞

− − +

∫
1

2

1

2

2 2

2 2 2

2

2 2

σ

σ

μ σ

μ σ μ

π

π

)

+ σσ2 )dx
−∞

∞

∫

Example 5-37 
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Moment generating functions have many important and useful properties. One of the most 

important of these is the uniqueness property. That is, the moment-generating function of 

a random variable is unique when it exists, so if we have two random variables X and Y, say, 

with moment-generating functions M tX ( ) and M tY ( ), then if M t M tX Y( ) ( )=  for all values of t, 
both X and Y have the same probability distribution. Some of the other useful properties of the 

moment-generating function are summarized as follows.

If we complete the square in the exponent, we have

x t x x t t t2 2 2 2 2 2 2 42 2− + + = − + − −( ) [ ( )]μ σ μ μ σ μ σ σ

and then

M t e

e

X
x t t t dx

t t

( ) {[ ( } ( )=

=

− − + − −

−∞

∞

+

∫
1

2

2 2 2 2 4 2

2 2

2 2

σ
μ σ μ σ σ σ

μ σ

π
)] /

//2 +1

2

1 2 2 2 2

σ
μ σ

π
σe dxx t− −

−∞

∞

∫ ( / )[ ( )] /

Let u x t= − +[ ( )] /μ σ σ2 . Then dx du= σ , and the last expression above becomes

M t e eX
t t du( ) /= + −

−∞

∞

∫μ σ2 2 2 21

2

/2

π
u

Now the integral is just the total area under a standard normal density, which is 1, so the moment-generating function 

of a normal random variable is

M t eX
t t( ) = +μ σ2 2 /2

Differentiating this function twice with respect to t and setting t = 0 in the result, yields

dM t

dt

d M t

dt
X

t

X

t

( ) ( )
’

= =

= = = = +
0

1

2

2

0

2
2 2μ μ μ σ μ′and

Therefore, the variance of the normal random variable is

σ μ μ σ μ μ σ′2
2

2 2 2 2 2= − = + − =

Property (1) follows from M t E e e E e e M tX a
t X a at tX at

X+
+= = =( ) [ ] ( ) ( )( ) . Property (2) follows 

from M t E e E e M ataX
t aX at X

X( ) [ ] [ ] ( )( ) ( )= = = . Consider property (3) for the case where the X’s 

are continuous random variables:

M t E e E e

e f x x x

Y
tY t X X X

t x x x
n

n

n

( ) ( ) [ ]

( , , ,

( )

( )

= =

=

+ + +

+ + +

1 2

1 2
1 2

�

�� … )) dx dx dxz n1 …
−∞

∞

−∞

∞

−∞

∞

∫∫∫

If X is a random variable and a is a constant, then

(1) M t e M tX a
at

X+ =( ) ( )

(2) M t M ataX X( ) ( )=

If X X Xn1 2, , ,…  are independent random variables with moment generating functions 

M t M t M tX X Xn1 2
( ), ( ), , ( )… , respectively, and if Y X X Xn= + + +1 2 � , then the moment 

generating function of Y is

(3) M t M t M t M tY X X Xn( ) ( ) ( ) ( )= ⋅ ⋅ ⋅
1 2

…  (5-35)

Properties of 
Moment Generating 

Functions
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Because the X’s are independent,

f x x x f x f x f xn X X X nn( , , , ) ( ) ( ) ( )1 2 1 21 2
… �= ⋅ ⋅ ⋅

and one may write

M t e f x dx e f x dx e f x dxY
tx

X
tx

X
tx

Xn n n
n( ) ( ) ( ) ( )=

−∞

∞

−∞

∞

−
∫ ∫1

1

2

21 1 2 2�
∞∞

∞

∫

= ⋅ ⋅ ⋅M t M t M tX X Xn1 2
( ) ( ) ( )�

For the case when the X’s are discrete, we would use the same approach replacing integrals 

with summations.

Equation 5-35 is particularly useful. In many situations we need to fi nd the distribution of 

the sum of two or more independent random variables, and often this result makes the problem 

very easy. This is illustrated in the following example.

Distribution of a Sum of Poisson Random Variables Suppose that X1 and X2 are two inde-

pendent Poisson random variables with parameters λ1 and λ2, respectively. Determine the prob-

ability distribution of Y X X= +1 2.

The moment-generating function of a Poisson random variable with parameter λ is

M t eX
et

( ) ( )= −λ 1

so the moment-generating functions of X1 and X2 are M t eX
et

1

1 1( ) ( )= −λ  and M t eX
et

2

2 1( ) ( )= −λ , respectively. Using 

Equation 5-35, the moment-generating function of Y X X= +1 2 is

M t M t M t e e eY X X
e e et t t

( ) ( ) ( ) ( ) ( ) ( )( )= = =− − + −
1 2

1 2 1 21 1 1λ λ λ λ

which is recognized as the moment-generating function of a Poisson random variable with parameter λ λ1 2+ . There-

fore, the sum of two independent Poisson random variables with parameters λ1 and λ2 is a Poisson random variable 

with parameter equal to the sum λ λ1 2+ .

Example 5-38

5-91. A random variable X has the discrete uniform distribution

 f x
m

x m( ) , , , ,= =1
1 2…

(a) Show that the moment-generating function is

 M t
e e

m e
X

t tm

t( )
( )

( )
= −

−
1

1

(b) Use M tX ( ) to fi nd the mean and variance of X.

5-92. A random variable X has the Poisson distribution

 f x
e

x
x

x

( )
!

, , ,= =
−λλ

0 1…

(a) Show that the moment-generating function is

 M t eX
et

( ) ( )= −λ 1

(b) Use M tX ( ) to fi nd the mean and variance of the Poisson

random variable.

5-93. The geometric random variable X has probability 

distribution

 f x p p xx( ) ( ) , , ,= − =−1 1 21 …
Show that the moment-generating function is

 M t
pe

p e
X

t

t( ) =
− −1 1( )

Use M tX ( ) to find the mean and variance of X.

5-94. The chi-squared random variable with k degrees of free-

dom has moment-generating function M t kX t( ) ( ) /= − −1 2 2. 

Suppose that X1 and X2 are independent chi-squared random 

variables with k1 and k2 degrees of freedom, respectively. What 

is the distribution of Y X X= +1 2?

FOR SECTION 5-6EXERCISES 

 Problem available in WileyPLUS at instructor’s discretion. 

 Tutoring problem available in WileyPLUS at instructor’s discretion
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5-95. A continuous random variable X has the following prob-

ability distribution:

 f x xe x( ) ,= >−4 02 x
(a) Find the moment-generating function for X.

(b) Find the mean and variance of X.

5-96 The continuous uniform random variable X has density 

function

 F x x( ) =
−

≤ ≤1

β α
α β,

(a) Show that the moment-generating function is

 M t
e e

t
X

t t

( )
( )

�= −
−

β α

β α
(b) Use M tX ( ) to find the mean and variance of X.

5-97. A random variable X has the exponential distribution

 f x e x( ) ,= >−λ λ x 0

Show that the moment-generating function of X is 

 M t
t

X ( ) = −⎛
⎝⎜

⎞
⎠⎟

1
λ

(b) Find the mean and variance of X.

5-98. A random variable X has the gamma distribution

 f x
r

x er x( ) ( ) ,= ( ) >− −λ
Γ

λ λ1 0x

(a) Show that the moment-generating function of X is

 M t
t

X

r

( ) = −⎛
⎝⎜

⎞
⎠⎟

−

1
λ

(b) Find the mean and variance of X.

5-99. Let X X Xr1 2, ,...,  be independent exponential random 

variables with parameter λ.

(a)  Find the moment-generating function of Y X X= + +1 2

…+ Xr .

(b) What is the distribution of the random variable Y? 

5-100. Suppose that Xi has a normal distribution with mean μi 

and variance σi
2, i = 1  2, . Let X1 and X2 be independent.

(a) Find the moment-generating function of Y X X= +1 1.

(b) What is the distribution of the random variable Y?

5-101.  Show that the following function satisfies the 

properties of a joint probability mass function:

x y f(x, y)
0 0 1 / 4

0 1 1 / 8

1 0 1 / 8

1 1 1 / 4

2 2 1 / 4

Determine the following:

(a) P X < ,Y <0 5 1 5.  .( ) (b) P X ≤( )1

(c) P X <1 5.( )  (d) P X > ,Y <0 5 1 5.  .( )
(e) E(X), E(Y), V(X), V(Y).

(f) Marginal probability distribution of the random variable X
(g) Conditional probability distribution of Y given that X = 1

(h) E Y X| =( )1

(i) Are X and Y independent? Why or why not?

(j) Correlation between X and Y.

5-102.  The percentage of people given an antirheumatoid 

medication who suffer severe, moderate, or minor side effects 

are 10, 20, and 70%, respectively. Assume that people react 

independently and that 20 people are given the medication. 

Determine the following:

(a) Probability that 2, 4, and 14 people will suffer severe, mod-

erate, or minor side effects, respectively

(b) Probability that no one will suffer severe side effects

(c)  Mean and variance of the number of people who will suffer 

severe side effects

(d)  Conditional probability distribution of the number of 

people who suffer severe side effects given that 19 suffer 

minor side effects

(e)  Conditional mean of the number of people who suf-

fer severe side effects given that 19 suffer minor side 

effects

5-103. The backoff torque required to remove bolts in a steel 

plate is rated as high, moderate, or low. Historically, the prob-

ability of a high, moderate, or low rating is 0.6, 0.3, or 0.1, 

respectively. Suppose that 20 bolts are evaluated and that the 

torque ratings are independent.

(a) What is the probability that 12, 6, and 2 bolts are rated as 

high, moderate, and low, respectively?

(b)  What is the marginal distribution of the number of bolts 

rated low?

(c) What is the expected number of bolts rated low?

(d) What is the probability that the number of bolts rated low 

is more than two?

(e) What is the conditional distribution of the number of bolts 

rated low given that 16 bolts are rated high?

(f) What is the conditional expected number of bolts rated low 

given that 16 bolts are rated high?

(g) Are the numbers of bolts rated high and low independent 

random variables?

5-104. To evaluate the technical support from a computer 

manufacturer, the number of rings before a call is answered 

by a service representative is tracked. Historically, 70% of the 

calls are answered in two rings or less, 25% are answered in 

three or four rings, and the remaining calls require five rings 

or more. Suppose that you call this manufacturer 10 times and 

assume that the calls are independent.

(a)  What is the probability that eight calls are answered in two 

rings or less, one call is answered in three or four rings, and 

one call requires five rings or more?

Supplemental Exercises
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(b) What is the probability that all 10 calls are answered in four 

rings or less?

(c) What is the expected number of calls answered in four 

rings or less?

(d) What is the conditional distribution of the number of 

calls requiring five rings or more given that eight calls are 

answered in two rings or less?

(e) What is the conditional expected number of calls requiring 

five rings or more given that eight calls are answered in two 

rings or less?

(f) Is the number of calls answered in two rings or less and the 

number of calls requiring five rings or more independent 

random variables?

5-105.  Determine the value of c such that the function f(x, 

y) = cx2y for 0 , x , 3 and 0 , y , 2 satisfies the properties of 

a joint probability density function.

Determine the following:

(a) P X < ,Y <1 1 ( )  (b) P X < 2 5.( )
(c) P <Y <1 2 5.( )  (d) P X > <Y <2 1 1 5. .( )
(e) E X( )   (f) E Y( )
(g) Marginal probability distribution of the random variable X
(h) Conditional probability distribution of Y given that X = 1

(i) Conditional probability distribution of X given that Y = 1

5-106. The joint distribution of the continuous random varia-

bles X, Y, and Z is constant over the region x y , < z <2 2 1 0 4+ ≤  . 
Determine the following:

(a) P X Y2 2 0 5+ ≤ .( ) (b) P X Y , Z <2 2 0 5 2+ ≤ .  ( )
(c) Joint conditional probability density function of X and Y 

given that Z = 1

(d) Marginal probability density function of X
(e) Conditional mean of Z given that X = 0 and Y = 0

(f) Conditional mean of Z given that X = x and Y = y
5-107.  Suppose that X and Y are independent, continuous 

uniform random variables for 0 , x , 1 and 0 , y , 1. Use the 

joint probability density function to determine the probability 

that ⏐ ⏐X Y <− . .0 5

5-108.  The lifetimes of six major components in a cop-

ier are independent exponential random variables with means 

of 8000, 10,000, 10,000, 20,000, 20,000, and 25,000 hours, 

respectively.

(a) What is the probability that the lifetimes of all the compo-

nents exceed 5000 hours?

(b) What is the probability that at least one component's life-

time exceeds 25,000 hours?

5-109.  Contamination problems in semiconductor manu-

facturing can result in a functional defect, a minor defect, or no 

defect in the final product. Suppose that 20%, 50%, and 30% of 

the contamination problems result in functional, minor, and no 

defects, respectively. Assume that the defects of 10 contamina-

tion problems are independent.

(a) What is the probability that the 10 contamination problems 

result in two functional defects and five minor defects?

(b) What is the distribution of the number of contamination 

problems that result in no defects?

(c) What is the expected number of contamination problems 

that result in no defects?

5-110.  The weight of adobe bricks for construction is 

normally distributed with a mean of 3 pounds and a stand-

ard deviation of 0.25 pound. Assume that the weights of the 

bricks are independent and that a random sample of 25 bricks 

is chosen.

(a) What is the probability that the mean weight of the sample 

is less than 2.95 pounds?

(b) What value will the mean weight exceed with probability 

0.99?

5-111. The length and width of panels used for interior 

doors (in inches) are denoted as X and Y, respectively. Sup-

pose that X and Y are independent, continuous uniform ran-

dom variables for 17.75 , x , 18.25 and 4.75 , y , 5.25, 

respectively.

(a) By integrating the joint probability density function over 

the appropriate region, determine the probability that the 

area of a panel exceeds 90 square inches.

(b) What is the probability that the perimeter of a panel exceeds 

46 inches?

5-112.  The weight of a small candy is normally distrib-

uted with a mean of 0.1 ounce and a standard deviation of 0.01 

ounce. Suppose that 16 candies are placed in a package and that 

the weights are independent.

(a) What are the mean and variance of the package's net weight?

(b) What is the probability that the net weight of a package is 

less than 1.6 ounces?

(c) If 17 candies are placed in each package, what is the prob-

ability that the net weight of a package is less than 1.6 

ounces?

5-113.  The time for an automated system in a warehouse 

to locate a part is normally distributed with a mean of 45 sec-

onds and a standard deviation of 30 seconds. Suppose that 

independent requests are made for 10 parts.

(a) What is the probability that the average time to locate 10 

parts exceeds 60 seconds?

(b) What is the probability that the total time to locate 10 parts 

exceeds 600 seconds?

5-114.  A mechanical assembly used in an automobile 

engine contains four major components. The weights of the com-

ponents are independent and normally distributed with the follow-

ing means and standard deviations (in ounces):

Component Mean Standard Deviation

Left case  4.0 0.4

Right case  5.5 0.5

Bearing assembly 10.0 0.2

Bolt assembly  8.0 0.5

(a) What is the probability that the weight of an assembly 

exceeds 29.5 ounces?

(b) What is the probability that the mean weight of eight inde-

pendent assemblies exceeds 29 ounces?
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5-115. Suppose that X and Y have a bivariate normal distribu-

tion with σ =X 4, σ =Y 1, /, μ =Y 4, and ρ = − .0 2. Draw a rough 

contour plot of the joint probability density function.

5-116. If f x, y x

x y y

XY  ( ) =
. π

  −
.

−( )⎡
⎣⎢

⎧
⎨
⎩

− . −( ) −( ) + −( )

1

1 2

1

0 72
1

1 6 1 2 2

2
exp

22 ⎤
⎦⎥}

determine E(X), E(Y), V(X), V(Y), and ρ by reorganizing the 

parameters in the joint probability density function.

5-117.  The permeability of a membrane used as a 

moisture barrier in a biological application depends on the 

thickness of two integrated layers. The layers are normally 

distributed with means of 0.5 and 1 millimeters, respec-

tively. The standard deviations of layer thickness are 0.1 

and 0.2 millimeters, respectively. The correlation between 

layers is 0.7.

(a) Determine the mean and variance of the total thickness of 

the two layers.

(b) What is the probability that the total thickness is less than 1 

millimeter?

(c) Let X
1
 and X

2
 denote the thickness of layers 1 and 2, respec-

tively. A measure of performance of the membrane is a 

function of 2X
1
 + 3X

2
 of the thickness. Determine the mean 

and variance of this performance measure.

5-118.  The permeability of a membrane used as a mois-

ture barrier in a biological application depends on the thick-

ness of three integrated layers. Layers 1, 2, and 3 are normally 

distributed with means of 0.5, 1, and 1.5 millimeters, respec-

tively. The standard deviations of layer thickness are 0.1, 0.2, 

and 0.3, respectively. Also, the correlation between layers 1 

and 2 is 0.7, between layers 2 and 3 is 0.5, and between layers 

1 and 3 is 0.3.

(a) Determine the mean and variance of the total thickness of 

the three layers.

(b) What is the probability that the total thickness is less than 

1.5 millimeters?

5-119. A small company is to decide what investments to 

use for cash generated from operations. Each investment has 

a mean and standard deviation associated with the percent-

age gain. The first security has a mean percentage gain of 

5% with a standard deviation of 2%, and the second security 

provides the same mean of 5% with a standard deviation 

of 4%. The securities have a correlation of –0.5, so there 

is a negative correlation between the percentage returns. If 

the company invests two million dollars with half in each 

security, what are the mean and standard deviation of the 

percentage return? Compare the standard deviation of this 

strategy to one that invests the two million dollars into the 

first security only.

5-120.  An order of 15 printers contains 4 with a graph-

ics-enhancement feature, 5 with extra memory, and 6 with 

both features. Four printers are selected at random, with-

out replacement, from this set. Let the random variables X, 

Y, and Z denote the number of printers in the sample with 

graphics enhancement only, extra memory only, and both, 

respectively.

(a) Describe the range of the joint probability distribution of X, 

Y, and Z.

(b) Is the probability distribution of X, Y, and Z multinomial? 

Why or why not?

(c) Determine the conditional probability distribution of X 

given that Y = 2.

Determine the following:

(d) P X ,Y , Z=  =  =( )1 2 1  (e) P X ,Y=  =( )1 1

(f) E X( ) and V X( ) (g) P X ,Y Z=  = | =( )1 2 1

(h) P X Y= | =( )2 2

(i) Conditional probability distribution of X given that Y = 0 

and Z = 3.

5-121.  A marketing company performed a risk analysis 

for a manufacturer of synthetic fibers and concluded that new 

competitors present no risk 13% of the time (due mostly to 

the diversity of fibers manufactured), moderate risk 72% of 

the time (some overlapping of products), and very high risk 

(competitor manufactures the exact same products) 15% of the 

time. It is known that 12 international companies are planning 

to open new facilities for the manufacture of synthetic fibers 

within the next three years. Assume that the companies are 

independent. Let X, Y, and Z denote the number of new com-

petitors that will pose no, moderate, and very high risk for the 

interested company, respectively.

Determine the following:

(a) Range of the joint probability distribution of X, Y, and Z
(b) P X Y Z= = =( )1 3 1, ,  (c) P Z ≤( )2

(d) P Z Y , X= | =  =( )2 1 10  (e) P Z X≤ | =( )1 10

(f) P Y , Z X≤  ≤ | =( )1 1 10  (g) E Z X| =( )10

5-122. Suppose X  has a lognormal distribution with param-

eters θ and ω. Determine the probability density function and 

the parameters values for Y X= γ  for a constant γ > 0. What is 

the name of this distribution?

5-123. The power in a DC circuit is P I R= /2  where I  and R 

denote the current and resistance, respectively. Suppose that 

I  is normally distributed with mean of 200 mA and standard 

deviation 0.2 mA and R is a constant. Determine the probabil-

ity density function of power.

5-124. The intensity (mW/mm2) of a laser beam on a surface 

theoretically follows a bivariate normal distribution with maxi-

mum intensity at the center, equal variance σ in the x  and y  

directions, and zero covariance. There are several definitions 

for the width of the beam. One definition is the diameter at 

which the intensity is 50% of its peak. Suppose that the beam 

width is 1.6 mm under this definition. Determine σ. Also deter-

mine the beam width when it is defined as the diameter where 

the intensity equals 1 2/ e  of the peak.

5-125. Use moment generating functions to determine the 

normalized power [ ( )]E X 4 1 4/  from a cycling power meter when 

X  has a normal distribution with mean 200 and standard devia-

tion 20 Watts. 
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Mind-Expanding Exercises

5-126. Show that if X
1
, X

2
,…, X

p
 are independent, 

continuous random variables, P(X
1
 ∈ A

1
, X

2
 ∈ A

2
,…, 

X
p
 ∈ A

p
) = P(X

1
 ∈ A

1
)P(X

2
∈ A

2
) … P(X

p
 ∈ A

p
) for 

any regions A
1
, A

2
,…, A

p
 in the range of X

1
, X

2
,…, X

p
 

respectively.

5-127. Show that if X
1
, X

2
,…, X

p
 are independent random 

variables and Y = c
1
X

1
 + c

2
X

2
 + ... + c

p
X

p
, V Y c V X( ) = ( ) +1

2
1

c V X c V Xp p2
2

2
2( ) + + ( )...

You may assume that the random variables are continuous.

5-128. Suppose that the joint probability function of 

the continuous random variables X and Y is constant on 

the rectangle 0 < x < a, 0 < y < b. Show that X and Y are 

independent.

5-129. Suppose that the range of the continuous variables 

X and Y is 0 < x < a and 0 < y < b. Also suppose that the joint 

probability density function f
XY

(x, y) = g(x)h(y), where g(x) 

is a function only of x, and h(y) is a function only of y. Show 

that X and Y are independent.

5-130. This exercise extends the hypergeometric distribu-

tion to multiple variables. Consider a population with N items 

of k different types. Assume that there are N
1
 items of type 

1, N
2
 items of type 2,…, N

k
 items of type k so that N

1
 + N

2
 + 

… + … N
k
 = N. Suppose that a random sample of size n is 

selected, without replacement, from the population. Let X
1
, 

X
2
,…, X

k
 denote the number of items of each type in the sam-

ple so that X
1
 + X

2
, + … + … + X

k
 = n. Show that for feasible 

values of n, x
1
, x

2
, …, x

k
, N

1
, N

2
, …, N

k
, the probability is

P (X
1
 = x

1
, X

2
 = x

2
,..., X

k
 = x

k
) =

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

…
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

N

x

N

x

N

x

N

n

k

n

1

1

2

2

5-131. Use the properties of moment generating functions 

to show that a sum of p independent normal random vari-

ables with means μ
i
 and variances σ

i
2 for i = 1,2, ...., p has a 

normal distribution.

5-132. Show that by expanding etX
 in a power series and 

taking expectations term by term we may write the moment-

generating function as

 M t E e t
t t

r
X

tX
r

r

( ) = ( ) = + + + + +1
2

1 2

2

μ μ μ′ ′ ′
! !
� �

Thus, the coefficient of / !t rr  in this expansion is μr′ , the rth 

origin moment.

Write the power series expansion for M tX ( ) for a 

gamma random variable and determine μ1′  and μ2′  using this 

approach.

Bivariate distribution

Bivariate normal distribution

Conditional mean

Conditional probability 

density function

Conditional probability mass 

function

Conditional variance

Contour plots

Correlation

Covariance

Error propagation

General functions of random 

variables

Independence

Joint probability density 

function

Joint probability distribution

Joint probability mass 

function

Linear functions of random 

variables

Marginal probability 

distribution

Moment generating functions

Multinomial distribution

Reproductive property of the 

normal distribution

Important Terms and Concepts
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Statistics is the science of data. An important aspect of deal-

ing with data is organizing and summarizing the data in ways 

that facilitate its interpretation and subsequent analysis. This 

aspect of statistics is called descriptive statistics, and is the 

subject of this chapter. For example, in Chapter 1 we pre-

sented eight prototype units made on the pull-off force of 

prototype automobile engine connectors. The observations 

(in pounds) were 12.6, 12.9, 13.4, 12.3, 13.6, 13.5, 12.6, and 

13.1. There is obvious variability in the pull-off force values. 

How should we summarize the information in these data? 

This is the general question that we consider. Data summary 

methods should highlight the important features of the data, 

such as the middle or central tendency and the variability, 

because these characteristics are most often important for 

engineering decision making. We will see that there are both 

numerical methods for summarizing data and a number of 

powerful graphical techniques. The graphical techniques are 

particularly important. Any good statistical analysis of data 

should always begin with plotting the data.

6
Descriptive Statistics

Chapter Outline

6-1 Numerical Summaries of Data

6-2 Stem-and-Leaf Diagrams

6-3  Frequency Distributions and 
Histograms

6-4 Box Plots

6-5 Time Sequence Plots

6-6 Scatter Diagrams

6-7 Probability Plots
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200   Chapter 6/Descriptive Statistics

 Learning Objectives

After careful study of this chapter, you should be able to do the following:

1. Compute and interpret the sample mean, sample variance, sample standard deviation, sample 
median, and sample range

2. Explain the concepts of sample mean, sample variance, population mean, and population variance

3. Construct and interpret visual data displays, including the stem-and-leaf display, the histogram, and 
the box plot

4. Explain the concept of random sampling

5. Construct and interpret normal probability plots

6. Explain how to use box plots and other data displays to visually compare two or more samples of data

7. Know how to use simple time series plots to visually display the important features of time-oriented data

8. Know how to construct and interpret scatter diagrams of two or more variables

If the n observations in a sample are denoted by x , x , , x ,n1 2   …  the sample mean is

 x
x x x

n

x

n
n

i
i

n

− = + + + = =
∑

1 2 1
…

 (6-1)

Sample Mean

6-1 Numerical Summaries of Data
Well-constructed data summaries and displays are essential to good statistical thinking, 

because they can focus the engineer on important features of the data or provide insight about 

the type of model that should be used in solving the problem. The computer has become an 

important tool in the presentation and analysis of data. Although many statistical techniques 

require only a handheld calculator, this approach may require much time and effort, and a 

computer will perform the tasks much more effi ciently.

Most statistical analysis is done using a prewritten library of statistical programs. The user 

enters the data and then selects the types of analysis and output displays that are of interest. 

Statistical software packages are available for both mainframe machines and personal com-

puters. We will present examples of typical output from computer software throughout the 

book. We will not discuss the hands-on use of specifi c software packages for entering and 

editing data or using commands. 

We often fi nd it useful to describe data features numerically. For example, we can charac-

terize the location or central tendency in the data by the ordinary arithmetic average or mean. 

Because we almost always think of our data as a sample, we will refer to the arithmetic mean 

as the sample mean.

Sample Mean Let’s consider the eight observations on pull-off force collected from the proto-

type engine connectors from Chapter 1. The eight observations are x x x1 2 312 6 12 9 13 4= = =. , . , . ,  

x x x x4 5 6 712 3 13 6 13 5 12 6= = = =. , . , . , . , and x8 13 1= . . The sample mean is

x
x x x

n

x
n

i
i= + + + = = + + + = = .  =
∑

1 2 1

8

8

12 6 12 9 13 1

8

104

8
13 0

� �. . .
pounds

Example 6-1
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Section 6-1/Numerical Summaries of Data   201

The units of measurement for the sample variance are the square of the original units of 

the variable. Thus, if x is measured in pounds, the units for the sample variance are (pounds)2. 

The standard deviation has the desirable property of measuring variability in the original units 

of the variable of interest, x.

How Does the Sample Variance Measure Variability?
To see how the sample variance measures dispersion or variability, refer to Fig. 6-2, which 

shows a dot diagram with the deviations x xi −  for the connector pull-off force data. The 

higher the amount of variability in the pull-off force data, the larger in absolute magnitude 

The sample mean is the average value of all observations in the data set. Usually, these data 

are a sample of observations that have been selected from some larger population of observa-

tions. Here the population might consist of all the connectors that will be manufactured and 

sold to customers. Recall that this type of population is called a conceptual or hypothetical 
population because it does not physically exist. Sometimes there is an actual physical popula-

tion, such as a lot of silicon wafers produced in a semiconductor factory.

In previous chapters, we have introduced the mean of a probability distribution, denoted 

μ. If we think of a probability distribution as a model for the population, one way to think of 

the mean is as the average of all the measurements in the population. For a fi nite population 

with N  equally likely values, the probability mass function is f x Ni( ) = 1 /  and the mean is

 μ = ( ) =
−

=∑
∑

x f x
x

N
i i

i

N i
i

N

1

1  (6-2)

The sample mean, x, is a reasonable estimate of the population mean, μ. Therefore, the engi-

neer designing the connector using a 3/32-inch wall thickness would conclude on the basis of 

the data that an estimate of the mean pull-off force is 13.0 pounds.

Although the sample mean is useful, it does not convey all of the information about a sam-

ple of data. The variability or scatter in the data may be described by the sample variance or 

the sample standard deviation.

FIGURE 6-1 Dot diagram showing the sample mean 
as a balance point for a system of weights.

x = 13

12 14 15

Pull-off force

A physical interpretation of the sample mean as a measure of location is shown in the dot diagram of the pull-off 

force data. See Fig. 6-1. Notice that the sample mean x = 13 0.  can be thought of as a “balance point.” That is, if each 

observation represents 1 pound of mass placed at the point on the x-axis, a fulcrum located at x would exactly balance 

this system of weights.

If x , x , , xn1 2 …   is a sample of n observations, the sample variance is

 s
x x

n

i
i

n

2

2

1

1
=

−( )
−

=
∑

 (6-3)

The sample standard deviation, s, is the positive square root of the sample variance.

Sample Variance and 
Standard Deviation
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202   Chapter 6/Descriptive Statistics

some of the deviations x xi −  will be. Because the deviations x xi −  always sum to zero, we 

must use a measure of variability that changes the negative deviations to non-negative quanti-

ties. Squaring the deviations is the approach used in the sample variance. Consequently, if 

s2 is small, there is relatively little variability in the data, but if s2 is large, the variability is 

relatively large.

Sample Variance Table 6-1 displays the quantities needed for calculating the sample variance 

and sample standard deviation for the pull-off force data. These data are plotted in Fig. 6-2. The 

numerator of s2 is

x xi
i

−( ) =
=
∑ 2

1

8

1 60.

Example 6-2

x5x4

x7

x

x6

x1 x3

x2 x8

12 13 14 15

FIGURE 6-2 How the sample variance measures variability through the deviations x xi − .

so the sample variance is

s2 21 60

8 1

1 60

7
0 2286= .

−
= . = .  ( )pounds

and the sample standard deviation is

s = . = .  0 2286 0 48 pounds

Computation of s 2
The computation of s2  requires calculation of x , n subtractions, and n squaring and adding 

operations. If the original observations or the deviations x xi −  are not integers, the devia-

tions x xi −  may be tedious to work with, and several decimals may have to be carried 

i xi x xi − ( )x xi − 2

1  12.6 –0.4 0.16

2  12.9 –0.1 0.01

3  13.4  0.4 0.16

4  12.3 –0.7 0.49

5  13.6  0.6 0.36

6  13.5  0.5 0.25

7  12.6 –0.4 0.16

8  13.1  0.1 0.01

104.0  0.0 1.60

6-1  Calculation of Terms for the Sample Variance and Sample Standard Deviation
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Section 6-1/Numerical Summaries of Data   203

Analogous to the sample variance s2, the variability in the population is defi ned by the 

population variance ( )σ2 . As in earlier chapters, the positive square root of σ2, or σ, will 

denote the population standard deviation. When the population is fi nite and consists of N
equally likely values, we may defi ne the population variance as

σ2

2

1=
−( )

=
∑ x

N

i
i

N

μ
  (6-5)

We observed previously that the sample mean could be used as an estimate of the population 

mean. Similarly, the sample variance is an estimate of the population variance. In Chapter 7, 

we will discuss estimation of parameters more formally.

Note that the divisor for the sample variance is the sample size minus 1 n −( )1 , and for the 

population variance, it is the population size N . If we knew the true value of the population 
mean μ, we could fi nd the sample variance as the average square deviation of the sample 

observations about μ. In practice, the value of μ is almost never known, and so the sum of the 

square deviations about the sample average x  must be used instead. However, the observations 

xi tend to be closer to their average, x , than to the population mean, μ. Therefore, to compen-

sate for this, we use n − 1 as the divisor rather than n. If we used n as the divisor in the sample 

variance, we would obtain a measure of variability that is on the average consistently smaller 

than the true population variance σ2.

to ensure numerical accuracy. A more effi cient computational formula for the sample 

variance is obtained as follows:

s
x x

n

x x xx

n

x nx x xi
i

n

i i
i

n

i
i

n

i
2

2

1

2 2

1

2 2

1

1

2

1

2

=
−( )

−
=

−( )
−

=
+ −

= = =
∑ ∑ ∑+

ii

n

n
=
∑

−
1

1

and because x n xi
n

i= =( ) ,1 1/ Σ   this last equation reduces to

 s
x

x

n
n

i
i

n
i

i

n

2

2

1

1

2

1
=

−

⎛
⎝⎜

⎞
⎠⎟

−
=

=∑
∑

 (6-4)

Note that Equation 6-4 requires squaring each individual x ,i  then squaring the sum of the x ,i  

subtracting ∑( )x ni
2 /  from ∑ xi

2, and fi nally dividing by n − 1. Sometimes this is called the 

shortcut method for calculating s2 (or s).

We will calculate the sample variance and standard deviation using the shortcut method, 

 Equation 6-4. The formula gives

s
x

x

n
n

i

i
i

n

i

n

2

2 1

2

1

2

1

1353 6
104

8
7

1 60

7
0 228=

−

⎛
⎝⎜

⎞
⎠⎟

−
=

−
= =

=

=

∑
∑ .

( )
.

. 66
2

pounds( )
and

s = =0 2286 0 48. . pounds

These results agree exactly with those obtained previously.

Example 6-3
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204   Chapter 6/Descriptive Statistics

For the pull-off force data, the sample range is r = . − . = . .13 6 12 3 1 3  Generally, as the variability 

in sample data increases, the sample range increases.

The sample range is easy to calculate, but it ignores all of the information in the sample 

data between the largest and smallest values. For example, the two samples 1, 3, 5, 8, and 9 

and 1, 5, 5, 5, and 9 both have the same range ( )r = 8 . However, the standard deviation of the 

first sample is s ,1 3 35= .  while the standard deviation of the second sample is s2 2 83= . . The 

variability is actually less in the second sample.

Sometimes when the sample size is small, say n < ,8 10  or  the information loss associated 

with the range is not too serious. For example, the range is used widely in statistical quality 

control where sample sizes of 4 or 5 are fairly common. We will discuss some of these appli-

cations in Chapter 15.

In most statistics problems, we work with a sample of observations selected from the 

population that we are interested in studying. Figure 6-3 illustrates the relationship between 

the population and the sample.

Another way to think about this is to consider the sample variance s2 as being based 

on n − 1 degrees of freedom. The term degrees of freedom results from the fact that the n 

deviations x x x x , x xn1 2−  −   −, ,…  always sum to zero, and so specifying the values of any 

n −1 of these quantities automatically determines the remaining one. This was illustrated in 

Table 6-1. Thus, only n −1 of the n deviations, x x,i −  are freely determined. We may think 

of the number of degrees of freedom as the number of independent pieces of information 

in the data.

In addition to the sample variance and sample standard deviation, the sample range, or the 

difference between the largest and smallest observations, is often a useful measure of vari-

ability. The sample range is defined as follows.

If the n observations in a sample are denoted by x , x , , x ,n1 2   …  the sample range is

 r x xi i= ( ) − ( )max min  (6-6)

Sample Range

m

Population

Sample (x1, x2, x3, … , xn)

Histogram

x x
s

x, sample average

s, sample standard

deviation

s

FIGURE 6-3 Relationship between a population and a sample.
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Section 6-1/Numerical Summaries of Data   205

6-1. Will the sample mean always correspond to one of the 

observations in the sample?

6-2. Will exactly half of the observations in a sample fall 

below the mean?

6-3. Will the sample mean always be the most frequently 

occurring data value in the sample?

6-4. For any set of data values, is it possible for the sample 

standard deviation to be larger than the sample mean? If so, 

give an example.

6-5. Can the sample standard deviation be equal to zero? If so, 

give an example.

6-6. Suppose that you add 10 to all of the observations in a 

sample. How does this change the sample mean? How does it 

change the sample standard deviation?

6-7.  Eight measurements were made on the inside diam-

eter of forged piston rings used in an automobile engine. The 

data (in millimeters) are 74.001, 74.003, 74.015, 74.000, 

74.005, 74.002, 74.005, and 74.004. Calculate the sample 

mean and sample standard deviation, construct a dot diagram, 

and comment on the data.

6-8.  In Applied Life Data Analysis (Wiley, 

1982), Wayne Nelson presents the breakdown time of an insulat-

ing fluid between electrodes at 34 kV. The times, in minutes, are 

as follows: 0.19, 0.78, 0.96, 1.31, 2.78, 3.16, 4.15, 4.67, 4.85, 

6.50, 7.35, 8.01, 8.27, 12.06, 31.75, 32.52, 33.91, 36.71, and 

72.89. Calculate the sample mean and sample standard deviation.

6-9.  The January 1990 issue of Arizona Trend contains a 

supplement describing the 12 “best” golf courses in the state. 

The yardages (lengths) of these courses are as follows: 6981, 

7099, 6930, 6992, 7518, 7100, 6935, 7518, 7013, 6800, 7041, 

and 6890. Calculate the sample mean and sample standard 

deviation. Construct a dot diagram of the data.

6-10.  An article in the Journal of Structural Engineering 

(Vol. 115, 1989) describes an experiment to test the yield strength 

of circular tubes with caps welded to the ends. The first yields (in 

kN) are 96, 96, 102, 102, 102, 104, 104, 108, 126, 126, 128, 128, 

140, 156, 160, 160, 164, and 170. Calculate the sample mean and 

sample standard deviation. Construct a dot diagram of the data.

6-11.  An article in Human Factors (June 1989) presented 

data on visual accommodation (a function of eye movement) 

when recognizing a speckle pattern on a high-resolution CRT 

screen. The data are as follows: 36.45, 67.90, 38.77, 42.18, 

26.72, 50.77, 39.30, and 49.71. Calculate the sample mean and 

sample standard deviation. Construct a dot diagram of the data.

6-12.  The following data are direct solar intensity meas-

urements (watts/m2) on different days at a location in southern 

Spain: 562, 869, 708, 775, 775, 704, 809, 856, 655, 806, 878, 

909, 918, 558, 768, 870, 918, 940, 946, 661, 820, 898, 935, 

952, 957, 693, 835, 905, 939, 955, 960, 498, 653, 730, and 

753. Calculate the sample mean and sample standard deviation. 

Prepare a dot diagram of these data. Indicate where the sample 

mean falls on this diagram. Give a practical interpretation of 

the sample mean.

6-13.  The April 22, 1991, issue of Aviation Week and 
Space Technology reported that during Operation Desert 

Storm, U.S. Air Force F-117A pilots flew 1270 combat sor-

ties for a total of 6905 hours. What is the mean duration of an 

F-117A mission during this operation? Why is the parameter 

you have calculated a population mean?

6-14. Preventing fatigue crack propagation in aircraft structures 

is an important element of aircraft safety. An engineering study 

to investigate fatigue crack in n = 9 cyclically loaded wing boxes 

reported the following crack lengths (in mm): 2.13, 2.96, 3.02, 

1.82, 1.15, 1.37, 2.04, 2.47, 2.60. Calculate the sample mean and 

sample standard deviation. Prepare a dot diagram of the data.

6-15.  An article in the Journal of Physiology [“Response of Rat 

Muscle to Acute Resistance Exercise Defined by Transcriptional 

and Translational Profiling” (2002, Vol. 545, pp. 27–41)] studied 

gene expression as a function of resistance exercise. Expression 

data (measures of gene activity) from one gene are shown in the 

following table. One group of rats was exercised for six hours 

while the other received no exercise. Compute the sample mean 

and standard deviation of the exercise and no-exercise groups sep-

arately. Construct a dot diagram for the exercise and no-exercise 

groups separately. Comment on any differences for the groups.

6 Hours of 
Exercise

6 Hours of 
Exercise

No  
Exercise

No  
Exercise

425.313 208.475 485.396 406.921

223.306 286.484 159.471 335.209

388.793 244.242 478.314

139.262 408.099 245.782

212.565 157.743 236.212

324.024 436.37 252.773

6-16.  Exercise 6-11 describes data from an article in 

Human Factors on visual accommodation from an experiment 

involving a high-resolution CRT screen.

Data from a second experiment using a low-resolution screen 

were also reported in the article. They are 8.85, 35.80, 26.53, 

64.63, 9.00, 15.38, 8.14, and 8.24. Prepare a dot diagram for this 

second sample and compare it to the one for the first sample. 

What can you conclude about CRT resolution in this situation?

6-17.  The pH of a solution is measured eight times by one 

operator using the same instrument. She obtains the following 

data: 7.15, 7.20, 7.18, 7.19, 7.21, 7.20, 7.16, and 7.18. Calcu-

late the sample mean and sample standard deviation. Comment 

on potential major sources of variability in this experiment.

6-18.  An article in the Journal of Aircraft (1988) described 

the computation of drag coefficients for the NASA 0012 air-

foil. Different computational algorithms were used at M∞ = .0 7 

FOR SECTION 6-1Exercises
 Problem available in WileyPLUS at instructor’s discretion. 

 Tutoring problem available in WileyPLUS at instructor’s discretion.
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206   Chapter 6/Descriptive Statistics

6-2 Stem-and-Leaf Diagrams
The dot diagram is a useful data display for small samples up to about 20 observations. How-

ever, when the number of observations is moderately large, other graphical displays may be 

more useful.

For example, consider the data in Table 6-2. These data are the compressive strengths in 

pounds per square inch (psi) of 80 specimens of a new aluminum-lithium alloy undergoing 

evaluation as a possible material for aircraft structural elements. The data were recorded in 

the order of testing, and in this format they do not convey much information about compres-

sive strength. Questions such as “What percent of the specimens fail below 120 psi?” are not 

with the following results (drag coefficients are in units of drag 

counts; that is, one count is equivalent to a drag coefficient of 

0.0001): 79, 100, 74, 83, 81, 85, 82, 80, and 84. Compute the 

sample mean, sample variance, and sample standard deviation, 

and construct a dot diagram.

6-19.  The following data are the joint temperatures of the 

O-rings (°F) for each test firing or actual launch of the space 

shuttle rocket motor (from Presidential Commission on the 
Space Shuttle Challenger Accident, Vol. 1, pp. 129–131): 84, 49, 

61, 40, 83, 67, 45, 66, 70, 69, 80, 58, 68, 60, 67, 72, 73, 70, 57, 

63, 70, 78, 52, 67, 53, 67, 75, 61, 70, 81, 76, 79, 75, 76, 58, 31.

(a) Compute the sample mean and sample standard deviation and 

construct a dot diagram of the temperature data.

(b) Set aside the smallest observation 31°( )F  and recompute 

the quantities in part (a). Comment on your findings. How 

“different” are the other temperatures from this last value?

6-20. The United States has an aging infrastructure as wit-

nessed by several recent disasters, including the I-35 bridge 

failure in Minnesota. Most states inspect their bridges regularly 

and report their condition (on a scale from 1–17) to the public. 

Here are the condition numbers from a sample of 30 bridges 

in New York State (https://www.dot.ny.gov/main/bridgedata):

5.08 5.44 6.66 5.07 6.80 5.43 4.83 4.00 4.41 4.38  

7.00 5.72 4.53 6.43 3.97 4.19 6.26 6.72 5.26 5.48  

4.95 6.33 4.93 5.61 4.66 7.00 5.57 3.42 5.18 4.54

(a) Find the sample mean and sample standard deviation of 

these condition numbers.

(b) Construct a dot diagram of the data.

6-21. In an attempt to measure the effects of acid rain, research-

ers measured the pH (7 is neutral and values below 7 are acidic) 

of water collected from rain in Ingham County, Michigan.

5.47 5.37 5.38 4.63 5.37 3.74 3.71 4.96 4.64 5.11  

5.65 5.39 4.16 5.62 4.57 4.64 5.48 4.57 4.57 4.51  

4.86 4.56 4.61 4.32 3.98 5.70 4.15 3.98 5.65 3.10  

5.04 4.62 4.51 4.34 4.16 4.64 5.12 3.71 4.64 5.59

(a) Find the sample mean and sample standard deviation of 

these measurements.

(b) Construct a dot diagram of the data.

6-22. Cloud seeding, a process in which chemicals such as sil-

ver iodide and frozen carbon dioxide are introduced by aircraft 

into clouds to promote rainfall was widely used in the 20th cen-

tury. Recent research has questioned its effectiveness [Journal 
of Atmospheric Research (2010, Vol. 97 (2), pp. 513– 525)]. An 

experiment was performed by randomly assigning 52 clouds 

to be seeded or not. The amount of rain generated was then 

measured in acre-feet. Here are the data for the unseeded and 

seeded clouds:

Unseeded:

81.2  26.1  95.0  41.1  28.6  21.7  11.5  68.5  345.5  321.2 

1202.6  1.0  4.9  163.0  372.4  244.3  47.3  87.0  26.3   24.4  

830.1  4.9  36.6  147.8  17.3  29.0

Seeded:

274.7  302.8  242.5  255.0  17.5  115.3  31.4  703.4  334.1 

1697.8  118.3  198.6  129.6  274.7  119.0  1656.0  7.7  430.0  

40.6  92.4  200.7  32.7  4.1  978.0  489.1 2745.6

Find the sample mean, sample standard deviation, and range 

of rainfall for

(a) All 52 clouds

(b) The unseeded clouds

(c) The seeded clouds

6-23. Construct dot diagrams of the seeded and unseeded 

clouds and compare their distributions in a couple of sentences.

6-24. In the 2000 Sydney Olympics, a special program initi-

ated by IOC president Juan Antonio Samaranch allowed devel-

oping countries to send athletes to the Olympics without the 

usual qualifying procedure. Here are the 71 times for the first 

round of the 100 meter men’s swim (in seconds). 

60.39  49.93  53.40  51.82  50.46  51.34  50.28  50.19  52.14  

50.56  52.72  50.95  49.74  49.16  52.57  52.53  52.09  52.40  

49.75  54.06  53.50  50.63  51.93  51.62  52.58  53.55  51.07  

49.76  49.73  50.90  59.26  49.29  52.78 112.72  49.79  49.83  

52.43  51.28  52.22  49.76  49.70  52.90  50.19  54.33  62.45  

51.93  52.24  52.82  50.96  48.64  51.11  50.87  52.18  54.12  

50.49  49.84  52.91  52.52  50.32  51.52  52.0  52.85  52.24  

49.45  51.28  49.09  58.79  49.74  49.32  50.62  49.45

(a) Find the sample mean and sample standard deviation of 

these 100 meter swim times.

(b) Construct a dot diagram of the data.

(c) Comment on anything unusual that you see.
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To illustrate, if the data consist of percent defective information between 0 and 100 on lots 

of semiconductor wafers, we can divide the value 76 into the stem 7 and the leaf 6. In general, 

we should choose relatively few stems in comparison with the number of observations. It is 

usually best to choose between 5 and 20 stems.

A stem-and-leaf diagram is a good way to obtain an informative visual display of a data 

set x , x , , xn1 2 …   where each number xi consists of at least two digits. To construct a stem-and-

leaf diagram, use the following steps.

(1)  Divide each number xi into two parts: a stem, consisting of one or more of the 

leading digits, and a leaf, consisting of the remaining digit.

(2) List the stem values in a vertical column.

(3) Record the leaf for each observation beside its stem.

(4) Write the units for stems and leaves on the display.

Steps to Construct 
a Stem-and-Leaf 

Diagram

Alloy Strength To illustrate the construction of a stem-and-leaf diagram, consider the alloy 

compressive strength data in Table 6-2. We will select as stem values the numbers 7 8 9 24, , , ,    .…  

The resulting stem-and-leaf diagram is presented in Fig. 6-4. The last column in the diagram is a frequency count 

of the number of leaves associated with each stem. Inspection of this display immediately reveals that most of the 

compressive strengths lie between 110 and 200 psi and that a central value is somewhere between 150 and 160 psi. 

Furthermore, the strengths are distributed approximately symmetrically about the central value. The stem-and-leaf 

diagram enables us to determine quickly some important features of the data that were not immediately obvious in 

the original display in Table 6-2.

Example 6-4

In some data sets, providing more classes or stems may be desirable. One way to do 

this would be to modify the original stems as follows: Divide stem 5 into two new stems, 

5L and 5U. Stem 5L has leaves 0, 1, 2, 3, and 4, and stem 5U has leaves 5, 6, 7, 8, and 9. 

This will double the number of original stems. We could increase the number of original 

stems by four by defi ning fi ve new stems: 5z with leaves 0 and 1, 5t (for twos and three) 

with leaves 2 and 3, 5f (for fours and fi ves) with leaves 4 and 5, 5s (for six and seven) with 

leaves 6 and 7, and 5e with leaves 8 and 9.

easy to answer. Because there are many observations, constructing a dot diagram of these data 

would be relatively ineffi cient; more effective displays are available for large data sets.

105 221 183 186 121 181 180 143

 97 154 153 174 120 168 167 141

245 228 174 199 181 158 176 110

163 131 154 115 160 208 158 133

207 180 190 193 194 133 156 123

134 178  76 167 184 135 229 146

218 157 101 171 165 172 158 169

199 151 142 163 145 171 148 158

160 175 149  87 160 237 150 135

196 201 200 176 150 170 118 149

6-2  Compressive Strength (in psi) of 80 Aluminum-Lithium Alloy Specimens
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FIGURE 6-4 Stem-and-leaf diagram for the compressive strength data in Table 6-2.

Stem Leaf Frequency
 7 6  1

 8 7  1

 9 7  1

10 5 1  2

11 5 8 0  3

12 1 0 3  3

13 4 1 3 5 3 5  6

14 2 9 5 8 3 1 6 9  8

15 4 7 1 3 4 0 8 8 6 8 0 8 12

16 3 0 7 3 0 5 0 8 7 9 10

17 8 5 4 4 1 6 2 1 0 6 10

18 0 3 6 1 4 1 0  7

19 9 6 0 9 3 4  6

20 7 1 0 8  4

21 8  1

22 1 8 9  3

23 7  1

24 5  1

Stem:  Tens and hundreds digits (psi); Leaf: Ones digits (psi).

Chemical Yield Figure 6-5 is the stem-and-leaf diagram for 25 observations on batch yields 

from a chemical process. In Fig. 6-5(a), we have used 6, 7, 8, and 9 as the stems. This results in too 

few stems, and the stem-and-leaf diagram does not provide much information about the data. In Fig. 6-5(b), we have 

divided each stem into two parts, resulting in a display that more adequately displays the data. Figure 6-5(c) illustrates a 

stem-and-leaf display with each stem divided into fi ve parts. There are too many stems in this plot, resulting in a display 

that does not tell us much about the shape of the data.

Example 6-5

Stem Leaf Stem Leaf Stem Leaf

6 1 3 4 5 5 6 6L 1 3 4 6z 1

7 0 1 1 3 5 7 8 8 9 6U 5 5 6 6t 3

8 1 3 4 4 7 8 8 7L 0 1 1 3 6f 4 5 5

9 2 3 5 7U 5 7 8 8 9 6s 6

   (a) 8L 1 3 4 4 6e

8U 7 8 8 7z 0 1 1

9L 2 3 7t 3

9U 5 7f 5

   (b) 7s 7

7e 8 8 9

8z 1

8t 3

8f 4 4

8s 7

8e 8 8

9z

9t 2 3

9f 5

9s

9e

   (c)

FIGURE 6-5 Stem-and-leaf displays for Example 6-5. Stem: Tens digits. Leaf: Ones digits.
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Figure 6-6 is a typical computer-generated stem-and-leaf display of the compressive strength 

data in Table 6-2. The software uses the same stems as in Fig. 6-4. Note also that the computer 

orders the leaves from smallest to largest on each stem. This form of the plot is usually called an 

ordered stem-and-leaf diagram. This is not usually used when the plot is constructed manu-

ally because it can be time-consuming. The computer also adds a column to the left of the stems 

that provides a count of the observations at and above each stem in the upper half of the display 

and a count of the observations at and below each stem in the lower half of the display. At the 

middle stem of 16, the column indicates the number of observations at this stem.

The ordered stem-and-leaf display makes it relatively easy to find data features such as per-

centiles, quartiles, and the median. The sample median is a measure of central tendency that 

divides the data into two equal parts, half below the median and half above. If the number of 

observations is even, the median is halfway between the two central values. From Fig. 6-6 we 

find the 40th and 41st values of strength as 160 and 163, so the median is 160 163 2 161 5+( ) = . ./  

If the number of observations is odd, the median is the central value. The sample mode is the 

most frequently occurring data value. Figure 6-6 indicates that the mode is 158; this value 

occurs four times, and no other value occurs as frequently in the sample. If there were more 

than one value that occurred four times, the data would have multiple modes.

We can also divide data into more than two parts. When an ordered set of data is divided 

into four equal parts, the division points are called quartiles. The first or lower quartile, q1,  

is a value that has approximately 25% of the observations below it and approximately 75% 

of the observations above. The second quartile, q2, has approximately 50% of the observa-

tions below its value. The second quartile is exactly equal to the median. The third or upper 
quartile, q3, has approximately 75% of the observations below its value. As in the case of 

the median, the quartiles may not be unique. The compressive strength data in Fig. 6-6 con-

tain n = 80 observations. Therefore, calculate the first and third quartiles as the n +( )1 4/  and 

3 1 4n +( ) /  ordered observations and interpolate as needed, for example, 80 1 4 20 25+( ) = ./  

and 3 80 1 4 60 75+( ) = . ./  Therefore, interpolating between the 20th and 21st ordered observa-

tion we obtain q1 143 50= .  and between the 60th and 61st observation we obtain q3 181 00= . . 
In general, the 100kth percentile is a data value such that approximately 100k% of the obser-

vations are at or below this value and approximately 100 1−( )k % of them are above it. Finally, 

Stem-and-leaf of Strength

N = 80 Leaf    Unit = 1.0

1 7 6

2 8 7

3 9 7

5 10 1 5

8 11 0 5 8

11 12 0 1 3

17 13 1 3 3 4 5 5

25 14 1 2 3 5 6 8 9 9

37 15 0 0 1 3 4 4 6 7 8 8 8 8

(10) 16 0 0 0 3 3 5 7 7 8 9

33 17 0 1 1 2 4 4 5 6 6 8

23 18 0 0 1 1 3 4 6

16 19 0 3 4 6 9 9

10 20 0 1 7 8

6 21 8

5 22 1 8 9

2 23 7

1 24 5

FIGURE 6-6 A typical 
computer-generated 
stem-and-leaf 
diagram.
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6-25. For the data in Exercise 6-20,

(a) Construct a stem-and-leaf diagram.

(b) Do any of the bridges appear to have unusually good or 

poor ratings?

(c) If so, compute the mean with and without these bridges and 

comment.

6-26. For the data in Exercise 6-21,

(a) Construct a stem-and-leaf diagram. 

(b) Many scientists consider rain with a pH below 5.3 to be 

acid rain (http://www.ec.gc.ca/eau-water/default.asp?

lang=En&n=FDF30C16-1). What percentage of these sam-

ples could be considered as acid rain?

6-27. A back-to-back stem-and-leaf display on two data sets 

is conducted by hanging the data on both sides of the same 

stems. Here is a back-to-back stem-and-leaf display for the 

cloud seeding data in Exercise 6-22 showing the unseeded 

clouds on the left and the seeded clouds on the right.

     65098754433332221000  |   0 | 01233492223
                                     |   2 | 00467703

      |   4 | 39
     |   6 | 0
                3 |   8 | 8
    | 10 | 
               0 | 12 | 
   | 14 | 
   | 16 | 60
   | 18 | 
   | 20 | 
   | 22 | 
   | 24 | 
   | 26 | 5

How does the back-to-back stem-and-leaf display show the dif-

ferences in the data set in a way that the dotplot cannot?

6-28. When will the median of a sample be equal to the 

sample mean?

6-29. When will the median of a sample be equal to the mode?

6-30.  An article in Technometrics (1977, Vol. 19, p. 425) 

presented the following data on the motor fuel octane ratings of 

several blends of gasoline:

88.5 98.8 89.6 92.2 92.7 88.4 87.5 90.9

94.7 88.3 90.4 83.4 87.9 92.6 87.8 89.9

84.3 90.4 91.6 91.0 93.0 93.7 88.3 91.8

90.1 91.2 90.7 88.2 94.4 96.5 89.2 89.7

89.0 90.6 88.6 88.5 90.4 84.3 92.3 92.2

89.8 92.2 88.3 93.3 91.2 93.2 88.9

91.6 87.7 94.2 87.4 86.7 88.6 89.8

90.3 91.1 85.3 91.1 94.2 88.7 92.7

90.0 86.7 90.1 90.5 90.8 92.7 93.3

91.5 93.4 89.3 100.3 90.1 89.3 86.7

89.9 96.1 91.1 87.6 91.8 91.0 91.0

Construct a stem-and-leaf display for these data. Calculate the 

median and quartiles of these data.

6-31.  The following data are the numbers 

of cycles to failure of aluminum test coupons subjected to 

repeated alternating stress at 21,000 psi, 18 cycles per second.

1115 865 1015 885 1594 1000 1416 1501

1310 2130 845 1223 2023 1820 1560 1238

1540 1421 1674 375 1315 1940 1055 990 

1502 1109 1016 2265 1269 1120 1764 1468

1258 1481 1102 1910 1260 910 1330 1512

1315 1567 1605 1018 1888 1730 1608 1750

1085 1883 706 1452 1782 1102 1535 1642

798 1203 2215 1890 1522 1578 1781

1020 1270 785 2100 1792 758 1750

Construct a stem-and-leaf display for these data. Calculate the 

median and quartiles of these data. Does it appear likely that a 

coupon will “survive” beyond 2000 cycles? Justify your answer.

FOR SECTION 6-2Exercises

we may use the interquartile range, defi ned as IQR = −q q ,3 1  as a measure of variability. The 

interquartile range is less sensitive to the extreme values in the sample than is the ordinary 

sample range.

Many statistics software packages provide data summaries that include these quantities. 

Typical computer output for the compressive strength data in Table 6-2 is shown in Table 6-3.

 Problem available in WileyPLUS at instructor’s discretion. 

 Tutoring problem available in WileyPLUS at instructor’s discretion.

N Mean Median StDev SE Mean Min Max Q1 Q3

80 162.66 161.50    33.77 3.78 76.00 245.00 143.50 181.00

6-3  Summary Statistics for the Compressive Strength Data from Software
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6-32. The percentage of cotton in material used to manu-

facture men’s shirts follows. Construct a stem-and-leaf display 

for the data. Calculate the median and quartiles of these data.

34.2 37.8 33.6 32.6 33.8 35.8 34.7 34.6

33.1 36.6 34.7 33.1 34.2 37.6 33.6 33.6

34.5 35.4 35.0 34.6 33.4 37.3 32.5 34.1

35.6 34.6 35.4 35.9 34.7 34.6 34.1 34.7

36.3 33.8 36.2 34.7 34.6 35.5 35.1 35.7

35.1 37.1 36.8 33.6 35.2 32.8 36.8 36.8

34.7 34.0 35.1 32.9 35.0 32.1 37.9 34.3

33.6 34.1 35.3 33.5 34.9 34.5 36.4 32.7

6-33. The following data represent the yield on 90 consecutive 

batches of ceramic substrate to which a metal coating has been 

applied by a vapor-deposition process. Construct a stem-and-

leaf display for these data. Calculate the median and quartiles 

of these data.

94.1 86.1 95.3 84.9 88.8 84.6 94.4 84.1

93.2 90.4 94.1 78.3 86.4 83.6 96.1 83.7

90.6 89.1 97.8 89.6 85.1 85.4 98.0 82.9

91.4 87.3 93.1 90.3 84.0 89.7 85.4 87.3

88.2 84.1 86.4 93.1 93.7 87.6 86.6 86.4

86.1 90.1 87.6 94.6 87.7 85.1 91.7 84.5

95.1 95.2 94.1 96.3 90.6 89.6 87.5

90.0 86.1 92.1 94.7 89.4 90.0 84.2

92.4 94.3 96.4 91.1 88.6 90.1 85.1

87.3 93.2 88.2 92.4 84.1 94.3 90.5

86.6 86.7 86.4 90.6 82.6 97.3 95.6

91.2 83.0 85.0 89.1 83.1 96.8 88.3

6-34. Calculate the sample median, mode, and mean of 

the data in Exercise 6-30. Explain how these three measures of 

location describe different features of the data.

6-35. Calculate the sample median, mode, and mean of the 

data in Exercise 6-31. Explain how these three measures of 

location describe different features in the data.

6-36. Calculate the sample median, mode, and mean for 

the data in Exercise 6-32. Explain how these three measures of 

location describe different features of the data.

6-37. The net energy consumption (in billions of kilowatt- 

hours) for countries in Asia in 2003 was as follows (source: 

U.S. Department of Energy Web site, www.eia.doe.gov/emeu). 

Construct a stem-and-leaf diagram for these data and comment 

on any important features that you notice. Compute the sample 

mean, sample standard deviation, and sample median.

Billions of Kilowatt-Hours

Afghanistan 1.04

Australia 200.66

Bangladesh 16.20

Burma 6.88

China 1671.23

Hong Kong 38.43

India 519.04

Indonesia 101.80

Japan 946.27

Korea, North 17.43

Korea, South 303.33

Laos 3.30

Malaysia 73.63

Mongolia 2.91

Nepal 2.30

New Zealand 37.03

Pakistan 71.54

Philippines 44.48

Singapore 30.89

Sri Lanka 6.80

Taiwan 154.34

Thailand 107.34

Vietnam 36.92

Total 4393.8

6-38. The female students in an undergraduate engineer-

ing core course at ASU self-reported their heights to the nearest 

inch. The data follow. Construct a stem-and-leaf diagram for 

the height data and comment on any important features that 

you notice. Calculate the sample mean, the sample standard 

deviation, and the sample median of height.

62 64 61 67 65 68 61 65 60 65 64 63 59

68 64 66 68 69 65 67 62 66 68 67 66 65

69 65 69 65 67 67 65 63 64 67 65

6-39. The shear strengths of 100 spot welds in a titanium 

alloy follow. Construct a stem-and-leaf diagram for the weld 

strength data and comment on any important features that you 

notice. What is the 95th percentile of strength?

5408 5431 5475 5442 5376 5388 5459 5422 5416 5435

5420 5429 5401 5446 5487 5416 5382 5357 5388 5457

5407 5469 5416 5377 5454 5375 5409 5459 5445 5429

5463 5408 5481 5453 5422 5354 5421 5406 5444 5466

5399 5391 5477 5447 5329 5473 5423 5441 5412 5384

5445 5436 5454 5453 5428 5418 5465 5427 5421 5396

5381 5425 5388 5388 5378 5481 5387 5440 5482 5406

5401 5411 5399 5431 5440 5413 5406 5342 5452 5420

5458 5485 5431 5416 5431 5390 5399 5435 5387 5462

5383 5401 5407 5385 5440 5422 5448 5366 5430 5418

6-40. An important quality characteristic of water is the con-

centration of suspended solid material. Following are 60 meas-

urements on suspended solids from a certain lake. Construct 

a stem-and-leaf diagram for these data and comment on any 

important features that you notice. Compute the sample mean, 

the sample standard deviation, and the sample median. What is 

the 90th percentile of concentration?
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42.4 65.7 29.8 58.7 52.1 55.8 57.0 68.7 67.3 67.3

54.3 54.0 73.1 81.3 59.9 56.9 62.2 69.9 66.9 59.0

56.3 43.3 57.4 45.3 80.1 49.7 42.8 42.4 59.6 65.8

61.4 64.0 64.2 72.6 72.5 46.1 53.1 56.1 67.2 70.7

42.6 77.4 54.7 57.1 77.3 39.3 76.4 59.3 51.1 73.8

61.4 73.1 77.3 48.5 89.8 50.7 52.0 59.6 66.1 31.6

6-41. The United States Golf Association tests golf balls 

to ensure that they conform to the rules of golf. Balls are 

tested for weight, diameter, roundness, and overall distance. 

The overall distance test is conducted by hitting balls with 

a driver swung by a mechanical device nicknamed “Iron 

Byron” after the legendary great Byron Nelson, whose swing 

the machine is said to emulate. Following are 100 distances 

(in yards) achieved by a particular brand of golf ball in the 

overall distance test. Construct a stem-and-leaf diagram for 

these data and comment on any important features that you 

notice. Compute the sample mean, sample standard devia-

tion, and the sample median. What is the 90th percentile of 

distances?

261.3 259.4 265.7 270.6 274.2 261.4 254.5 283.7

258.1 270.5 255.1 268.9 267.4 253.6 234.3 263.2

254.2 270.7 233.7 263.5 244.5 251.8 259.5 257.5

257.7 272.6 253.7 262.2 252.0 280.3 274.9 233.7

237.9 274.0 264.5 244.8 264.0 268.3 272.1 260.2

255.8 260.7 245.5 279.6 237.8 278.5 273.3 263.7

241.4 260.6 280.3 272.7 261.0 260.0 279.3 252.1

244.3 272.2 248.3 278.7 236.0 271.2 279.8 245.6

241.2 251.1 267.0 273.4 247.7 254.8 272.8 270.5

254.4 232.1 271.5 242.9 273.6 256.1 251.6

256.8 273.0 240.8 276.6 264.5 264.5 226.8

255.3 266.6 250.2 255.8 285.3 255.4 240.5

255.0 273.2 251.4 276.1 277.8 266.8 268.5

6-42. A semiconductor manufacturer produces devices used as 

central processing units in personal computers. The speed of the 

devices (in megahertz) is important because it determines the 

price that the manufacturer can charge for the devices. The fol-

lowing table contains measurements on 120 devices. Construct 

a stem-and-leaf diagram for these data and comment on any 

important features that you notice. Compute the sample mean, 

the sample standard deviation, and the sample median. What 

percentage of the devices has a speed exceeding 700 megahertz?

680 669 719 699 670 710 722 663 658 634 720 690

677 669 700 718 690 681 702 696 692 690 694 660

649 675 701 721 683 735 688 763 672 698 659 704

681 679 691 683 705 746 706 649 668 672 690 724

652 720 660 695 701 724 668 698 668 660 680 739

717 727 653 637 660 693 679 682 724 642 704 695

704 652 664 702 661 720 695 670 656 718 660 648

683 723 710 680 684 705 681 748 697 703 660 722

662 644 683 695 678 674 656 667 683 691 680 685

681 715 665 676 665 675 655 659 720 675 697 663

6-43.  A group of wine enthusiasts taste-tested a pinot noir 

wine from Oregon. The evaluation was to grade the wine on 

a 0-to-100-point scale. The results follow. Construct a stem-

and-leaf diagram for these data and comment on any important 

features that you notice. Compute the sample mean, the sam-

ple standard deviation, and the sample median. A wine rated 

above 90 is considered truly exceptional. What proportion 

of the taste-tasters considered this particular pinot noir truly 

exceptional?

94 90 92 91 91 86 89 91 91 90

90 93 87 90 91 92 89 86 89 90

88 95 91 88 89 92 87 89 95 92

85 91 85 89 88 84 85 90 90 83

6-44.  In their book Introduction to Linear Regression 
Analysis (5th edition, Wiley, 2012), Montgomery, Peck, and 

Vining presented measurements on NbOCl
3
 concentration 

from a tube-flow reactor experiment. The data, in gram-mole 

per liter × −10 3, are as follows. Construct a stem-and-leaf dia-

gram for these data and comment on any important features 

that you notice. Compute the sample mean, the sample stand-

ard deviation, and the sample median.

450 450 473 507 457 452 453 1215 1256

1145 1085 1066 1111 1364 1254 1396 1575 1617

1733 2753 3186 3227 3469 1911 2588 2635 2725

6-45. In Exercise 6-38, we presented height data that were 

self-reported by female undergraduate engineering students 

in a core course at ASU. In the same class, the male students 

self-reported their heights as follows. Construct a comparative 

stem-and-leaf diagram by listing the stems in the center of the 

display and then placing the female leaves on the left and the 

male leaves on the right. Comment on any important features 

that you notice in this display.

69 67 69 70 65 68 69 70 71 69 66 67 69 75 68 67 68

69 70 71 72 68 69 69 70 71 68 72 69 69 68 69 73 70

73 68 69 71 67 68 65 68 68 69 70 74 71 69 70 69
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Figure 6-7 is the histogram for the compression strength data. The histogram, like the stem-
and-leaf diagram, provides a visual impression of the shape of the distribution of the meas-

urements and information about the central tendency and scatter or dispersion in the data. 

6-3 Frequency Distributions and Histograms
A frequency distribution is a more compact summary of data than a stem-and-leaf diagram. To 

construct a frequency distribution, we must divide the range of the data into intervals, which are 

usually called class intervals, cells, or bins. If possible, the bins should be of equal width in order 

to enhance the visual information in the frequency distribution. Some judgment must be used in 

selecting the number of bins so that a reasonable display can be developed. The number of bins 

depends on the number of observations and the amount of scatter or dispersion in the data. A fre-

quency distribution that uses either too few or too many bins will not be informative. We usually 

fi nd that between 5 and 20 bins is satisfactory in most cases and that the number of bins should 

increase with n. Several sets of rules can be used to determine the member of bins in a histogram. 

However, choosing the number of bins approximately equal to the square root of the number of 

observations often works well in practice.

A frequency distribution for the comprehensive strength data in Table 6-2 is shown in 

Table 6-4. Because the data set contains 80 observations, and because 80 9� , we suspect 

that about eight to nine bins will provide a satisfactory frequency distribution. The largest and 

smallest data values are 245 and 76, respectively, so the bins must cover a range of at least 

245 76 169− =  units on the psi scale. If we want the lower limit for the fi rst bin to begin 

slightly below the smallest data value and the upper limit for the last bin to be slightly above 

the largest data value, we might start the frequency distribution at 70 and end it at 250. This 

is an interval or range of 180 psi units. Nine bins, each of width 20 psi, give a reasonable fre-

quency distribution, so the frequency distribution in Table 6-4 is based on nine bins.

The second row of Table 6-4 contains a relative frequency distribution. The relative fre-

quencies are found by dividing the observed frequency in each bin by the total number of 

observations. The last row of Table 6-4 expresses the relative frequencies on a cumulative 

basis. Frequency distributions are often easier to interpret than tables of data. For example, 

from Table 6-4, it is very easy to see that most of the specimens have compressive strengths 

between 130 and 190 psi and that 97.5 percent of the specimens fall below 230 psi.

The histogram is a visual display of the frequency distribution. The steps for constructing 

a histogram follow.

Choosing the Number 
of Bins in a Frequency 
Distribution or Histo-

gram is Important

(1) Label the bin (class interval) boundaries on a horizontal scale.

(2)  Mark and label the vertical scale with the frequencies or the relative frequencies.

(3)  Above each bin, draw a rectangle where height is equal to the frequency (or rela-

tive frequency) corresponding to that bin.

Constructing a 
Histogram (Equal 

Bin Widths)

Class 70 90Ä <x 90 110Ä <x 110 130Ä <x 130 150Ä <x 150 170Ä <x 170 190Ä <x 190 210Ä <x 210 230Ä <x 230 250Ä <x

Frequency 2 3 6 14 22 17 10 4 2

Relative 

 frequency

0.0250 0.0375 0.0750 0.1750 0.2750 0.2125 0.1250 0.0500 0.0250

Cumulative 

 relative 

 frequency

0.0250 0.0625 0.1375 0.3125 0.5875 0.8000 0.9250 0.9750 1.0000

6-4  Frequency Distribution for the Compressive Strength Data in Table 6-2
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Notice the symmetric, bell-shaped distribution of the strength measurements in Fig. 6-7.  

This display often gives insight about possible choices of probability distributions to use 

as a model for the population. For example, here we would likely conclude that the normal 

distribution is a reasonable model for the population of compression strength measurements.

Sometimes a histogram with unequal bin widths will be employed. For example, if the 

data have several extreme observations or outliers, using a few equal-width bins will result 

in nearly all observations falling in just a few of the bins. Using many equal-width bins will 

result in many bins with zero frequency. A better choice is to use shorter intervals in the region 

where most of the data fall and a few wide intervals near the extreme observations. When the 

bins are of unequal width, the rectangle’s area (not its height) should be proportional to the 

bin frequency. This implies that the rectangle height should be

 Rectangular height
Bin frequancy

Bin width
=

In passing from either the original data or stem-and-leaf diagram to a frequency distribu-

tion or histogram, we have lost some information because we no longer have the individual 

observations. However, this information loss is often small compared with the conciseness 

and ease of interpretation gained in using the frequency distribution and histogram.

Figure 6-8 is a histogram of the compressive strength data with 17 bins. We have noted 

that histograms may be relatively sensitive to the number of bins and their width. For small 

data sets, histograms may change dramatically in appearance if the number and/or width of 

the bins changes. Histograms are more stable and thus reliable for larger data sets, preferably 

of size 75 to 100 or more. Figure 6-9 is a histogram for the compressive strength data with 

Histograms are Best 
for Relatively Large 

Samples

FIGURE 6-7  
Histogram of  
compressive strength 
for 80 aluminum- 
lithium alloy 
specimens.
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FIGURE 6-9 A histogram of the compressive strength 
data with nine bins.
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FIGURE 6-8 A histogram of the compressive 
strength data with 17 bins.
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Section 6-3/Frequency Distributions and Histograms   215

nine bins. This is similar to the original histogram shown in Fig. 6-7. Because the number of 

observations is moderately large ( )n = 80 , the choice of the number of bins is not especially 

important, and both Figs. 6-8 and 6-9 convey similar information.

Figure 6-10 is a variation of the histogram available in some software packages, the 

cumulative frequency plot. In this plot, the height of each bar is the total number of obser-

vations that are less than or equal to the upper limit of the bin. Cumulative distributions 

are also useful in data interpretation; for example, we can read directly from Fig. 6-10 that 

approximately 70 observations are less than or equal to 200 psi.

When the sample size is large, the histogram can provide a reasonably reliable indicator of 

the general shape of the distribution or population of measurements from which the sample 

was drawn. See Figure 6-11 for three cases. The median is denoted as 	x. Generally, if the data 

are symmetric, as in Fig. 6-11(b), the mean and median coincide. If, in addition, the data have 

only one mode (we say the data are unimodal), the mean, median, and mode all coincide. 

If the data are skewed (asymmetric, with a long tail to one side), as in Fig. 6-11(a) and (c), 

the mean, median, and mode do not coincide. Usually, we fi nd that mode median mean< <  

if the distribution is skewed to the right, whereas mode median mean> >  if the distribution 

is skewed to the left.

Frequency distributions and histograms can also be used with qualitative or categorical 

data. Some applications will have a natural ordering of the categories (such as freshman, 

sophomore, junior, and senior), whereas in others, the order of the categories will be arbitrary 

(such as male and female). When using categorical data, the bins should have equal width.

Figure 6-12 presents the production of transport aircraft by the Boeing Company in 1985. Notice 

that the 737 was the most popular model, followed by the 757, 747, 767, and 707.
Example 6-6

FIGURE 6-10 
A  cumulative 
distribution plot of the 
compressive strength 
data.
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A chart of occurrences by category (in which the categories are ordered by the number of 

occurrences) is sometimes referred to as a Pareto chart. An exercise asks you to construct 

such a chart.

FIGURE 6-11 
Histograms for 
symmetric and 
skewed distributions.
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216  Chapter 6/Descriptive Statistics

6-46. Construct a frequency distribution and histogram for 

the motor fuel octane data from Exercise 6-30. Use eight bins.

6-47. Construct a frequency distribution and histogram using 

the failure data from Exercise 6-31.

6-48. Construct a frequency distribution and histogram 

for the cotton content data in Exercise 6-32.

6-49. Construct a frequency distribution and histogram for the 

yield data in Exercise 6-33.

6-50. Construct frequency distributions and histograms 

with 8 bins and 16 bins for the motor fuel octane data in Exer-

cise 6-30. Compare the histograms. Do both histograms dis-

play similar information?

6-51. Construct histograms with 8 and 16 bins for the data in 

Exercise 6-31. Compare the histograms. Do both histograms 

display similar information?

6-52. Construct histograms with 8 and 16 bins for the data 

in Exercise 6-32. Compare the histograms. Do both histograms 

display similar information?

6-53. Construct a histogram for the energy consumption data 

in Exercise 6-37.

6-54. Construct a histogram for the female student height 

data in Exercise 6-38.

6-55. Construct a histogram for the spot weld shear strength 

data in Exercise 6-39. Comment on the shape of the histogram. 

Does it convey the same information as the stem-and-leaf 

display?

6-56. Construct a histogram for the water quality data in 

Exercise 6-40. Comment on the shape of the histogram. Does 

it convey the same information as the stem-and-leaf display?

6-57. Construct a histogram for the overall golf distance data 

in Exercise 6-41. Comment on the shape of the histogram. Does 

it convey the same information as the stem-and-leaf display?

6-58. Construct a histogram for the semiconductor speed 

data in Exercise 6-42. Comment on the shape of the histo-

gram. Does it convey the same information as the stem-and-

leaf display?

6-59. Construct a histogram for the pinot noir wine rating 

data in Exercise 6-43. Comment on the shape of the histo-

gram. Does it convey the same information as the stem-and-

leaf display?

6-60. The Pareto Chart. An important variation of a 

histogram for categorical data is the Pareto chart. This chart 

is widely used in quality improvement efforts, and the cat-

egories usually represent different types of defects, failure 

modes, or product/process problems. The categories are 

ordered so that the category with the largest frequency is on 

the left, followed by the category with the second largest fre-

quency, and so forth. These charts are named after the Italian 

economist V. Pareto, and they usually exhibit “Pareto’s law”; 

that is, most of the defects can be accounted for by only a 

few categories. Suppose that the following information on 

structural defects in automobile doors is obtained: dents, 4; 

FOR SECTION 6-3Exercises

In this section, we have concentrated on descriptive methods for the situation in which 

each observation in a data set is a single number or belongs to one category. In many cases, 

we work with data in which each observation consists of several measurements. For example, 

in a gasoline mileage study, each observation might consist of a measurement of miles per 

gallon, the size of the engine in the vehicle, engine horsepower, vehicle weight, and vehicle 

length. This is an example of multivariate data. In section 6.6, we will illustrate one simple 

graphical display or multivariate data. In later chapters, we will discuss analyzing this type 

of data.

FIGURE 6-12
Airplane production 
in 1985. (Source:
Boeing Company.)
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 Problem available in WileyPLUS at instructor’s discretion. 

 Tutoring problem available in WileyPLUS at instructor’s discretion.
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6-4 Box Plots
The stem-and-leaf display and the histogram provide general visual impressions about a data 

set, but numerical quantities such as x  or s provide information about only one feature of 

the data. The box plot is a graphical display that simultaneously describes several important 

features of a data set, such as center, spread, departure from symmetry, and identification of 

unusual observations or outliers.

A box plot, sometimes called box-and-whisker plots, displays the three quartiles, the mini-

mum, and the maximum of the data on a rectangular box, aligned either horizontally or verti-

cally. The box encloses the interquartile range with the left (or lower) edge at the first quartile, 

q1, and the right (or upper) edge at the third quartile, q3. A line is drawn through the box at 

the second quartile (which is the 50th percentile or the median), q x2 = . A line, or whisker, 

extends from each end of the box. The lower whisker is a line from the first quartile to the 

smallest data point within 1.5 interquartile ranges from the first quartile. The upper whisker is 

a line from the third quartile to the largest data point within 1.5 interquartile ranges from the 

third quartile. Data farther from the box than the whiskers are plotted as individual points. A 

point beyond a whisker, but less than three interquartile ranges from the box edge, is called an 

outlier. A point more than three interquartile ranges from the box edge is called an extreme 
outlier. See Fig. 6-13. Occasionally, different symbols, such as open and filled circles, are 

used to identify the two types of outliers.

Figure 6-14 presents a typical computer-generated box plot for the alloy compressive 

strength data shown in Table 6-2. This box plot indicates that the distribution of compressive 

strengths is fairly symmetric around the central value because the left and right whiskers and 

the lengths of the left and right boxes around the median are about the same. There are also 

two mild outliers at lower strength and one at higher strength. The upper whisker extends to 

observation 237 because it is the highest observation below the limit for upper outliers. This 

limit is q3 1 5 181 1 5 181 143 5 237 25+ . = + . − .( ) = . .IQR  The lower whisker extends to observa-

tion 97 because it is the smallest observation above the limit for lower outliers. This limit is 

q1 1 5 143 5 1 5 181 143 5 87 25− . = . − . − .( ) = .IQR .

Box plots are very useful in graphical comparisons among data sets because they have 

high visual impact and are easy to understand. For example, Fig. 6-15 shows the comparative 

box plots for a manufacturing quality index on semiconductor devices at three manufacturing 

plants. Inspection of this display reveals that there is too much variability at plant 2 and that 

plants 2 and 3 need to raise their quality index performance.

pits, 4; parts assembled out of sequence, 6; parts under-

trimmed, 21; missing holes/slots, 8; parts not lubricated, 5; 

parts out of contour, 30; and parts not deburred, 3. Construct 

and interpret a Pareto chart.

6-61. Construct a frequency distribution and histogram for the 

bridge condition data in Exercise 6-20.

6-62. Construct a frequency distribution and histogram for the 

acid rain measurements in Exercise 6-21.

6-63. Construct a frequency distribution and histogram for the 

combined cloud-seeding rain measurements in Exercise 6-22.

6-64. Construct a frequency distribution and histogram for the 

swim time measurements in Exercise 6-24.

FIGURE 6-13  
Description of a  
box plot.
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FIGURE 6-14 Box plot for compressive strength data in  
Table 6-2.

FIGURE 6-15 Comparative box plots of a 
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6-65. Using the data on bridge conditions from Exercise 6-20,

(a) Find the quartiles and median of the data.

(b) Draw a box plot for the data.

(c) Should any points be considered potential outliers? Compare 

this to your answer in Exercise 6-20. Explain.

6-66. Using the data on acid rain from Exercise 6-21,

(a) Find the quartiles and median of the data.

(b) Draw a box plot for the data.

(c) Should any points be considered potential outliers? Compare 

this to your answer in Exercise 6-21. Explain.

6-67. Using the data from Exercise 6-22 on cloud seeding, 

(a) Find the median and quartiles for the unseeded cloud data.

(b) Find the median and quartiles for the seeded cloud data.

(c) Make two side-by-side box plots, one for each group on the 

same plot.

(d) Compare the distributions from what you can see in the 

side-by-side box plots.

6-68. Using the data from Exercise 6-24 on swim times, 

(a) Find the median and quartiles for the data.

(b) Make a box plot of the data.

(c) Repeat (a) and (b) for the data without the extreme outlier 

and comment.

(d) Compare the distribution of the data with and without the 

extreme outlier.

6-69.  The “cold start ignition time” of an 

automobile engine is being investigated by a gasoline manu-

facturer. The following times (in seconds) were obtained for a 

test vehicle: 1.75, 1.92, 2.62, 2.35, 3.09, 3.15, 2.53, 1.91.

(a) Calculate the sample mean, sample variance, and sample 

standard deviation.

(b) Construct a box plot of the data.

6-70. An article in Transactions of the Institution of Chemi-
cal Engineers (1956, Vol. 34, pp. 280–293) reported data from 

an experiment investigating the effect of several process vari-

ables on the vapor phase oxidation of naphthalene. A sample 

of the percentage mole conversion of naphthalene to maleic 

anhydride follows: 4.2, 4.7, 4.7, 5.0, 3.8, 3.6, 3.0, 5.1, 3.1, 3.8, 

4.8, 4.0, 5.2, 4.3, 2.8, 2.0, 2.8, 3.3, 4.8, 5.0.

(a) Calculate the sample mean, sample variance, and sample 

standard deviation.

(b) Construct a box plot of the data.

6-71.  The nine measurements that follow are furnace tem-

peratures recorded on successive batches in a semiconductor 

manufacturing process (units are °F): 953, 950, 948, 955, 951, 

949, 957, 954, 955.

(a) Calculate the sample mean, sample variance, and standard 

deviation.

(b) Find the median. How much could the highest temperature 

measurement increase without changing the median value?

(c) Construct a box plot of the data.

6-72. Exercise 6-18 presents drag coefficients for the NASA 

0012 airfoil. You were asked to calculate the sample mean, sam-

ple variance, and sample standard deviation of those coefficients.

(a) Find the median and the upper and lower quartiles of the 

drag coefficients.

(b) Construct a box plot of the data.

(c) Set aside the highest observation (100) and rework parts (a) 

and (b). Comment on your findings.

6-73. Exercise 6-19 presented the joint temperatures of the 

O-rings (°F) for each test firing or actual launch of the space 

shuttle rocket motor. In that exercise, you were asked to find 

the sample mean and sample standard deviation of temperature.

FOR SECTION 6-4Exercises
 Problem available in WileyPLUS at instructor’s discretion. 

 Tutoring problem available in WileyPLUS at instructor’s discretion.
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6-5 Time Sequence Plots
The graphical displays that we have considered thus far such as histograms, stem-and-leaf plots, and 

box plots are very useful visual methods for showing the variability in data. However, we noted in 

Chapter 1 that time is an important factor that contributes to variability in data, and those graphical 

methods do not take this into account. A time series or time sequence is a data set in which the 

observations are recorded in the order in which they occur. A time series plot is a graph in which the 

vertical axis denotes the observed value of the variable (say, )x  and the horizontal axis denotes the 

time (which could be minutes, days, years, etc.). When measurements are plotted as a time series, 

we often see trends, cycles, or other broad features of the data that could not be seen otherwise.

For example, consider Fig. 6-16(a), which presents a time series plot of the annual sales of 

a company for the last 10 years. The general impression from this display is that sales show 

an upward trend. There is some variability about this trend with some years’ sales increasing 

over those of the last year and some years’ sales decreasing. Figure 6-16(b) shows the last 

three years of sales reported by quarter. This plot clearly shows that the annual sales in this 

business exhibit a cyclic variability by quarter with the fi rst- and second-quarter sales being 

generally higher than sales during the third and fourth quarters.

(a)  Find the median and the upper and lower quartiles of 

temperature.

(b) Set aside the lowest observation 31°( )F  and recompute the 

quantities in part (a). Comment on your fi ndings. How “dif-

ferent” are the other temperatures from this lowest value?

(c) Construct a box plot of the data and comment on the pos-

sible presence of outliers.

6-74.  Reconsider the motor fuel octane rating data in 

Exercise 6-28. Construct a box plot of the data and write an 

interpretation of the plot. How does the box plot compare in 

interpretive value to the original stem-and-leaf diagram?

6-75. Reconsider the energy consumption data in Exercise 

6-37. Construct a box plot of the data and write an interpreta-

tion of the plot. How does the box plot compare in interpretive 

value to the original stem-and-leaf diagram?

6-76.  Reconsider the water quality data in Exercise 6-40. 

Construct a box plot of the concentrations and write an inter-

pretation of the plot. How does the box plot compare in inter-

pretive value to the original stem-and-leaf diagram?

6-77. Reconsider the weld strength data in Exercise 6-39. 

Construct a box plot of the data and write an interpretation of 

the plot. How does the box plot compare in interpretive value 

to the original stem-and-leaf diagram?

6-78. Reconsider the semiconductor speed data in Exercise 

6-42. Construct a box plot of the data and write an interpreta-

tion of the plot. How does the box plot compare in interpretive 

value to the original stem-and-leaf diagram?

6-79.  Use the data on heights of female and male engi-

neering students from Exercises 6-38 and 6-45 to construct 

comparative box plots. Write an interpretation of the informa-

tion that you see in these plots.

6-80  In Exercise 6-69, data were presented on the cold 

start ignition time of a particular gasoline used in a test vehicle. 

A second formulation of the gasoline was tested in the same 

vehicle, with the following times (in seconds): 1.83, 1.99, 3.13, 

3.29, 2.65, 2.87, 3.40, 2.46, 1.89, and 3.35. Use these new data 

along with the cold start times reported in Exercise 6-69 to 

construct comparative box plots. Write an interpretation of the 

information that you see in these plots.

6-81. An article in Nature Genetics [“Treatment-specifi c 

Changes in Gene Expression Discriminate in Vivo Drug 

Response in Human Leukemia Cells” (2003, Vol. 34(1), pp. 

85–90)] studied gene expression as a function of treatments for 

leukemia. One group received a high dose of the drug, while 

the control group received no treatment. Expression data (meas-

ures of gene activity) from one gene are shown in Table 6E.1. 

Construct a box plot for each group of patients. Write an interpre-

tation to compare the information in these plots.

High Dose Control Control Control

16.1 297.1 25.1 131.1

134.9 491.8 820.1 166.5

52.7 1332.9 82.5 2258.4

14.4 1172 713.9 497.5

124.3 1482.7 785.6 263.4

99 335.4 114 252.3

24.3 528.9 31.9 351.4

16.3 24.1 86.3 678.9

15.2 545.2 646.6 3010.2

47.7 92.9 169.9 67.1

12.9 337.1 20.2 318.2

72.7 102.3 280.2 2476.4

126.7 255.1 194.2 181.4

46.4 100.5 408.4 2081.5

60.3 159.9 155.5 424.3

23.5 168 864.6 188.1

43.6 95.2 355.4 563

79.4 132.5 634 149.1

38 442.6 2029.9 2122.9

58.2 15.8 362.1 1295.9

26.5 175.6

6E.1 Gene Expression
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Sometimes it can be very helpful to combine a time series plot with some of the other 

graphical displays that we have considered previously. J. Stuart Hunter (The American Statis-
tician, 1988, Vol. 42, p. 54) has suggested combining the stem-and-leaf plot with a time series 

plot to form a digidot plot.
Figure 6-17 is a digidot plot for the observations on compressive strength from Table 

6-2, assuming that these observations are recorded in the order in which they occurred. 

This plot effectively displays the overall variability in the compressive strength data 

and simultaneously shows the variability in these measurements over time. The general 

impression is that compressive strength varies around the mean value of 162.66, and no 

strong obvious pattern occurs in this variability over time.

The digidot plot in Fig. 6-18 tells a different story. This plot summarizes 30 observations on 

concentration of the output product from a chemical process where the observations are recorded 

at one-hour time intervals. This plot indicates that during the first 20 hours of operation, this 

process produced concentrations generally above 85 grams per liter, but that following sample 

20, something may have occurred in the process that resulted in lower concentrations. If this vari-

ability in output product concentration can be reduced, operation of this process can be improved. 

Notice that this apparent change in the process output is not seen in the stem-and-leaf portion of 

the digidot plot. The stem-and-leaf plot compresses the time dimension out of the data. This illus-

trates why it is always important to construct a time series plot for time-oriented data.

FIGURE 6-16 Company sales by year ( )a . By quarter ( )b .
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FIGURE 6-17 A 
digidot plot of the 
compressive strength 
data in Table 6-2.
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FIGURE 6-18 A  
digidot plot of  
chemical process 
concentration 
readings, observed 
hourly.
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6-82.  The following data are the viscosity measurements 

for a chemical product observed hourly (read down, then left to 

right). Construct and interpret either a digidot plot or a separate 

stem-and-leaf and time series plot of these data. Specifications 

on product viscosity are at 48 2± . What conclusions can you 

make about process performance?

47.9 48.6 48.0 48.1 43.0 43.2

47.9 48.8 47.5 48.0 42.9 43.6

48.6 48.1 48.6 48.3 43.6 43.2

48.0 48.3 48.0 43.2 43.3 43.5

48.4 47.2 47.9 43.0 43.0 43.0

48.1 48.9 48.3 43.5 42.8

48.0 48.6 48.5 43.1 43.1

6-83.  The pull-off force for a connector is measured in a 

laboratory test. Data for 40 test specimens follow (read down, 

then left to right). Construct and interpret either a digidot plot 

or a separate stem-and-leaf and time series plot of the data.

241 203 201 251 236 190

258 195 195 238 245 175

237 249 255 210 209 178

210 220 245 198 212 175

194 194 235 199 185 190

225 245 220 183 187

248 209 249 213 218

6-84.  In their book Time Series Analysis, Forecasting, and 
Control (Prentice Hall, 1994), G. E. P. Box, G. M. Jenkins, and 

G. C. Reinsel present chemical process concentration readings 

made every two hours. Some of these data follow (read down, 

then left to right).

17.0 16.7 17.1 17.5 17.6

16.6 17.4 17.4 18.1 17.5

16.3 17.2 17.4 17.5 16.5

16.1 17.4 17.5 17.4 17.8

17.1 17.4 17.4 17.4 17.3

16.9 17.0 17.6 17.1 17.3

16.8 17.3 17.4 17.6 17.1

17.4 17.2 17.3 17.7 17.4

17.1 17.4 17.0 17.4 16.9

17.0 16.8 17.8 17.8 17.3

Construct and interpret either a digidot plot or a separate stem-

and-leaf and time series plot of these data.

6-85.  The 100 annual Wolfer sunspot numbers from 1770 to 

1869 follow. (For an interesting analysis and interpretation of these 

numbers, see the book by Box, Jenkins, and Reinsel referenced in 

Exercise 6-84. Their analysis requires some advanced knowledge 

of statistics and statistical model building.) Read down, then left to 

right. The 1869 result is 74. Construct and interpret either a digidot 

plot or a stem-and-leaf and time series plot of these data.

101 31 154 38 83 90

82 7 125 23 132 67

66 20 85 10 131 60

35 92 68 24 118 47

41 10 16 8 62 94

21 8 7 13 98 96

16 2 4 57 124 77

6 0 2 122 96 59

4 1 8 138 66 44

7 5 17 103 64 47

14 12 36 86 54 30

34 14 50 63 39 16

45 35 62 37 21 7

43 46 67 24 7 37

48 41 71 11 4 74

42 30 48 15 23

28 24 28 40 55

FOR SECTION 6-5Exercises
 Problem available in WileyPLUS at instructor’s discretion. 

 Tutoring problem available in WileyPLUS at instructor’s discretion.

c06.indd   221 9/24/2013   6:49:22 PM



222   Chapter 6/Descriptive Statistics

6-86.  In their book Introduction to Time Series Analysis and
Forecasting (Wiley, 2008), Montgomery, Jennings, and Kolahci 

presented the data in Table 6E.2, which are the monthly total pas-

senger airline miles fl own in the United Kingdom from 1964 to 

1970 (in millions of miles). Comment on any features of the data 

that are apparent. Construct and interpret either a digidot plot or a 

separate stem-and-leaf and time series plot of these data.

6-87. Table 6E.3 shows the number of earthquakes per 

year of magnitude 7.0 and higher since 1900 (source: Earth-

quake Data Base System of the U.S. Geological Survey, 

National Earthquake Information Center, Golden, Colorado). 

Construct and interpret either a digidot plot or a separate stem-

and-leaf and time series plot of these data.

6-88. Table 6E.4 shows U.S. petroleum imports as a percent-

age of the totals, and Persian Gulf imports as a percentage of 

all imports by year since 1973 (source: U.S. Department of 

Energy Web site, www.eia.doe.gov/). Construct and interpret 

either a digidot plot or a separate stem-and-leaf and time series 

plot for each column of data.

6-89. Table 6E.5 contains the global mean surface air temper-

ature anomaly and the global CO
2
 concentration for the years 

1880–2004. The temperature is measured at a number of loca-

tions around the world and averaged annually, and then sub-

tracted from a base period average (1951–1980) and the result 

reported as an anomaly.

(a) Construct a time series plot of the global mean surface air 

temperature anomaly data and comment on any features 

that you observe.

(b) Construct a time series plot of the global CO
2
 concentration 

data and comment on any features that you observe.

(c) Overlay the two plots on the same set of axes and comment 

on the plot.

Month 1964 1965 1966 1967 1968 1969 1970

Jan. 7.269 8.350 8.186 8.334 8.639 9.491 10.840

Feb. 6.775 7.829 7.444 7.899 8.772 8.919 10.436

Mar. 7.819 8.829 8.484 9.994 10.894 11.607 13.589

Apr. 8.371 9.948 9.864 10.078 10.455 8.852 13.402

May 9.069 10.638 10.252 10.801 11.179 12.537 13.103

June 10.248 11.253 12.282 12.953 10.588 14.759 14.933

July 11.030 11.424 11.637 12.222 10.794 13.667 14.147

Aug. 10.882 11.391 11.577 12.246 12.770 13.731 14.057

Sept. 10.333 10.665 12.417 13.281 13.812 15.110 16.234

Oct. 9.109 9.396 9.637 10.366 10.857 12.185 12.389

Nov. 7.685 7.775 8.094 8.730 9.290 10.645 11.594

Dec. 7.682 7.933 9.280 9.614 10.925 12.161 12.772

6E.2 United Kingdom Passenger Airline Miles Flown

1900 13 1928 22 1956 15 1984  8

1901 14 1929 19 1957 34 1985 15

1902 8 1930 13 1958 10 1986  6

1903 10 1931 26 1959 15 1987 11

1904 16 1932 13 1960 22 1988  8

1905 26 1933 14 1961 18 1989  7

1906 32 1934 22 1962 15 1990 18

1907 27 1935 24 1963 20 1991 16

1908 18 1936 21 1964 15 1992 13

1909 32 1937 22 1965 22 1993 12

1910 36 1938 26 1966 19 1994 13

1911 24 1939 21 1967 16 1995 20

1912 22 1940 23 1968 30 1996 15

1913 23 1941 24 1969 27 1997 16

1914 22 1942 27 1970 29 1998 12

6E.3 Earthquake Data
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1915 18 1943 41 1971 23 1999 18

1916 25 1944 31 1972 20 2000 15

1917 21 1945 27 1973 16 2001 16

1918 21 1946 35 1974 21 2002 13

1919 14 1947 26 1975 21 2003 15

1920  8 1948 28 1976 25 2004 16

1921 11 1949 36 1977 16 2005 11

1922 14 1950 39 1978 18 2006 11

1923 23 1951 21 1979 15 2007 18

1924 18 1952 17 1980 18 2008 12

1925 17 1953 22 1981 14 2009 15

1926 19 1954 17 1982 10

1927 20 1955 19 1983 15

Year

Petroleum Imports 
(thousand barrels per 

day)

Total Petroleum Imports 
as Percent of Petroleum 

 Products Supplied

Petroleum Imports from Persian 
Gulf as Percent of Total 

Petroleum Imports

1973 6256 36.1 13.5

1974 6112 36.7 17.0

1975 6055 37.1 19.2

1976 7313 41.8 25.1

1977 8807 47.7 27.8

1978 8363 44.3 26.5

1979 8456 45.6 24.4

1980 6909 40.5 21.9

1981 5996 37.3 20.3

1982 5113 33.4 13.6

1983 5051 33.1 8.7

1984 5437 34.5 9.3

1985 5067 32.2 6.1

1986 6224 38.2 14.6

1987 6678 40.0 16.1

1988 7402 42.8 20.8

1989 8061 46.5 23.0

1990 8018 47.1 24.5

1991 7627 45.6 24.1

1992 7888 46.3 22.5

1993 8620 50.0 20.6

1994 8996 50.7 19.2

1995 8835 49.8 17.8

1996 9478 51.7 16.9

1997 10,162 54.5 17.2

1998 10,708 56.6 19.9

1999 10,852 55.5 22.7

2000 11,459 58.1 21.7

2001 11,871 60.4 23.2

6E.4 Petroleum Import Data
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Year Petroleum Imports 
(thousand barrels per day)

Total Petroleum Imports as 
Percent of Petroleum Prod-

ucts Supplied

Petroleum Imports from Persian Gulf as 
Percent of Total Petroleum 

Imports

2002 11,530 58.3 19.6

2003 12,264 61.2 20.3

2004 13,145 63.4 18.9

2005 13,714 65.9 17.0

2006 13,707 66.3 16.1

2007 13,468 65.1 16.1

2008 12,915 66.2 18.4

6E.4 (Continued)

Year Anomaly, oC CO2, ppmv Year Anomaly, oC CO2, ppmv Year Anomaly, oC CO2, ppmv

1880 −0.11 290.7 1922 −0.09 303.8 1964 −0.25 319.2

1881 −0.13 291.2 1923 −0.16 304.1 1965 −0.15 320.0

1882 −0.01 291.7 1924 −0.11 304.5 1966 −0.07 321.1

1883 −0.04 292.1 1925 −0.15 305.0 1967 −0.02 322.0

1884 −0.42 292.6 1926 0.04 305.4 1968 −0.09 322.9

1885 –0.23 293.0 1927 −0.05 305.8 1969 0.00 324.2

1886 −0.25 293.3 1928 0.01 306.3 1970 0.04 325.2

1887 −0.45 293.6 1929 −0.22 306.8 1971 −0.10 326.1

1888 −0.23 293.8 1930 −0.03 307.2 1972 −0.05 327.2

1889 0.04 294.0 1931 0.03 307.7 1973 0.18 328.8

1890 −0.22 294.2 1932 0.04 308.2 1974 −0.06 329.7

1891 −0.55 294.3 1933 −0.11 308.6 1975 −0.02 330.7

1892 −0.40 294.5 1934 0.05 309.0 1976 −0.21 331.8

1893 −0.39 294.6 1935 −0.08 309.4 1977 0.16 333.3

1894 −0.32 294.7 1936 0.01 309.8 1978 0.07 334.6

1895 −0.32 294.8 1937 0.12 310.0 1979 0.13 336.9

1896 −0.27 294.9 1938 0.15 310.2 1980 0.27 338.7

1897 −0.15 295.0 1939 −0.02 310.3 1981 0.40 339.9

1898 −0.21 295.2 1940 0.14 310.4 1982 0.10 341.1

1899 −0.25 295.5 1941 0.11 310.4 1983 0.34 342.8

1900 −0.05 295.8 1942 0.10 310.3 1984 0.16 344.4

1901 −0.05 296.1 1943 0.06 310.2 1985 0.13 345.9

1902 −0.30 296.5 1944 0.10 310.1 1986 0.19 347.2

1903 −0.35 296.8 1945 −0.01 310.1 1987 0.35 348.9

1904 −0.42 297.2 1946 0.01 310.1 1988 0.42 351.5

1905 −0.25 297.6 1947 0.12 310.2 1989 0.28 352.9

1906 −0.15 298.1 1948 −0.03 310.3 1990 0.49 354.2

1907 −0.41 298.5 1949 −0.09 310.5 1991 0.44 355.6

1908 −0.30 298.9 1950 −0.17 310.7 1992 0.16 356.4

1909 −0.31 299.3 1951 −0.02 311.1 1993 0.18 357.0

1910 −0.21 299.7 1952 0.03 311.5 1994 0.31 358.9

6E.5 Global Mean Surface Air Temperature Anomaly and Global CO
2
 Concentration
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Year Anomaly, oC CO2, ppmv Year Anomaly, oC CO2, ppmv Year Anomaly, oC CO2, ppmv

1911 −0.25 300.1 1953 0.12 311.9 1995 0.47 360.9

1912 −0.33 300.4 1954 −0.09 312.4 1996 0.36 362.6

1913 −0.28 300.8 1955 −0.09 313.0 1997 0.40 363.8

1914 −0.02 301.1 1956 −0.18 313.6 1998 0.71 366.6

1915 0.06 301.4 1957 0.08 314.2 1999 0.43 368.3

1916 −0.20 301.7 1958 0.10 314.9 2000 0.41 369.5

1917 −0.46 302.1 1959 0.05 315.8 2001 0.56 371.0

1918 −0.33 302.4 1960 −0.02 316.6 2002 0.70 373.1

1919 −0.09 302.7 1961 0.10 317.3 2003 0.66 375.6

1920 −0.15 303.0 1962 0.05 318.1 2004 0.60 377.4

1921 −0.04 303.4 1963 0.03 318.7

(source: http://data.giss.nasa.gov/gistemp/)

6-6 Scatter Diagrams
In many problems, engineers and scientists work with data that is multivariate in nature; that 

is, each observation consists of measurements of several variables. We saw an example of this 

in the wire bond pull strength data in Table 1.2. Each observation consisted of data on the 

pull strength of a particular wire bond, the wire length, and the die height. Such data are very 

commonly encountered. Table 6.5 contains a second example of multivariate data taken from 

an article on the quality of different young red wines in the Journal of the Science of Food 

Quality pH Total SO2 Color Density Color

19.2 3.85 66 9.35 5.65

18.3 3.75 79 11.15 6.95

17.1 3.88 73 9.40 5.75

15.2 3.66 86 6.40 4.00

14.0 3.47 178 3.60 2.25

13.8 3.75 108 5.80 3.20

12.8 3.92 96 5.00 2.70

17.3 3.97 59 10.25 6.10

16.3 3.76 22 8.20 5.00

16.0 3.98 58 10.15 6.00

15.7 3.75 120 8.80 5.50

15.3 3.77 144 5.60 3.35

14.3 3.76 100 5.55 3.25

14.0 3.76 104 8.70 5.10

13.8 3.90 67 7.41 4.40

12.5 3.80 89 5.35 3.15

11.5 3.65 192 6.35 3.90

14.2 3.60 301 4.25 2.40

17.3 3.86 99 12.85 7.70

15.8 3.93 66 4.90 2.75

6.5 Quality Data for Young Red Wines
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and Agriculture (1974, Vol. 25) by T.C. Somers and M.E. Evans. The authors reported quality 

along with several other descriptive variables. We show only quality, pH, total SO
2
 (in ppm), 

color density, and wine color for a sample of their wines.

Suppose that we wanted to graphically display the potential relationship between quality and 

one of the other variables, say color. The scatter diagram is a useful way to do this. A scatter 
diagram is constructed by plotting each pair of observations with one measurement in the pair 

on the vertical axis of the graph and the other measurement in the pair on the horizontal axis.

Figure 6.19 is the scatter diagram of quality versus the descriptive variable color. Notice 

that there is an apparent relationship between the two variables with wines of more intense 

color generally having a higher quality rating.

A scatter diagram is an excellent exploratory tool and can be very useful in identifying poten-

tial relationships between two variables. Data in Figure 6-19 indicate that a linear relationship 

FIGURE 6-19
Scatter diagram of 
wine quality and 
color from Table 6-5.
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FIGURE 6-20
Matrix of scatter 
diagrams for the 
wine quality data in 
Table 6-5.
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between quality and color may exist. We saw an example of a three-dimensional scatter diagram 

in Chapter 1 where we plotted wire bond strength versus wire length and die height for the bond 

pull strength data.

When two or more variables exist, the matrix of scatter diagrams may be useful in 

looking at all of the pairwise relationships between the variables in the sample. Figure 6-20  

is the matrix of scatter diagrams (upper half only shown) for the wine quality data in 

Table 6-5. The top row of the graph contains individual scatter diagrams of quality ver-

sus the other four descriptive variables, and other cells contain other pairwise plots of 

the four descriptive variables pH, SO
2
, color density, and color. This display indicates a 

weak potential linear relationship between quality and pH and somewhat stronger potential 

relationships between quality and color density and quality and color (which was noted 

previously in Figure 6-19). A strong apparent linear relationship between color density and 

color exists (this should be expected). 

The sample correlation coefficient rxy is a quantitative measure of the strength of the 

linear relationship between two random variables x and y. The sample correlation coefficient 

is defined as 

 r
y x x

y y x x
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i i
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If the two variables are perfectly linearly related with a positive slope rxy = 1 and if they are 

perfectly linearly related with a negative slope, then rxy = −1. If no linear relationship between 

the two variables exists, then rxy 
= 0. The simple correlation coefficient is also sometimes 

called the Pearson correlation coefficient after Karl Pearson, one of the giants of the fields 

of statistics in the late 19th and early 20th centuries.

The value of the sample correlation coefficient between quality and color, the two vari-

ables plotted in the scatter diagram of Figure 6-19, is 0.712. This is moderately strong corre-

lation, indicating a possible linear relationship between the two variables. Correlations below 

| 0.5 | are generally considered weak and correlations above | 0.8 | are generally considered 

strong.

All pairwise sample correlations between the five variables in Table 6-5 are as follows:

Quality pH Total SO2 Color Density

pH 0.349

Total SO
2 −0.445 −0.679

Color density 0.702 0.482 −0.492

Color 0.712 0.430 −0.480 0.996

Moderately strong correlations exist between quality and the two variables color and 

color density and between pH and total SO
2
 (note that this correlation is negative). The 

correlation between color and color density is 0.996, indicating a nearly perfect linear 

relationship.

See Fig. 6-21 for several examples of scatter diagrams exhibiting possible relationships 

between two variables. Parts (e) and (f) of the figure deserve special attention; in part (e), a 

probable quadratic relationship exists between y and x, but the sample correlation coefficient 

is close to zero because the correlation coefficient is a measure of linear association, but 

in part (f), the correlation is approximately zero because no association exists between the  

two variables.
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6-90. Table 6E.6 presents data on the ratings of quarterbacks 

for the 2008 National Football League season (source: The
Sports Network). It is suspected that the rating (y) is related to 

the average number of yards gained per pass attempt (x).

(a) Construct a scatter plot of quarterback rating versus yards 

per attempt. Comment on the suspicion that rating is related 

to yards per attempt.

(b) What is the simple correlation coeffi cient between these two 

variables?

6-91. An article in Technometrics by S. C. Narula and J. F. 

Wellington [“Prediction, Linear Regression, and a Minimum 

Sum of Relative Errors” (1977, Vol. 19)] presents data on 

the selling price and annual taxes for 24 houses. The data are 

shown in Table 6E.7. 

 Problem available in WileyPLUS at instructor’s discretion. 

 Tutoring problem available in WileyPLUS at instructor’s discretion.

FOR SECTION 6-6Exercises

FIGURE 6-21 
Potential relationship 
between variables.

(a) Weak positive relationship (b) Strong positive relationship

(c) Weak negative relationship (d) Strong negative relationship

(e) Nonlinear quadratic relationship, rxy < o (f) No relationship, rxy < o

Player Team 
Yards per 
Attempt

Rating
Points

Philip Rivers SD 8.39 105.5

Chad Pennington MIA 7.67  97.4

Kurt Warner ARI 7.66  96.9

Drew Brees NO 7.98  96.2

Peyton Manning IND 7.21 95

Aaron Rodgers GB 7.53  93.8

6E.6 2008 NFL Quarterback Rating Data

c06.indd   228 9/24/2013   6:49:26 PM



Section 6-6/Scatter Diagrams   229

Matt Schaub HOU 8.01  92.7

Tony Romo DAL 7.66  91.4

Jeff Garcia TB 7.21  90.2

Matt Cassel NE 7.16  89.4

Matt Ryan ATL 7.93  87.7

Shaun Hill SF 7.10  87.5

Seneca Wallace SEA 6.33 87

Eli Manning NYG 6.76  86.4

Donovan McNabb PHI 6.86  86.4

Jay Cutler DEN 7.35 86

Trent Edwards BUF 7.22  85.4

Jake Delhomme CAR 7.94  84.7

Jason Campbell WAS 6.41  84.3

David Garrard JAC 6.77  81.7

Brett Favre NYJ 6.65 81

Joe Flacco BAL 6.94  80.3

Kerry Collins TEN 6.45  80.2

Ben Roethlisberger PIT 7.04  80.1

Kyle Orton CHI 6.39  79.6

JaMarcus Russell OAK 6.58  77.1

Tyler Thigpen KC 6.21 76

Gus Freotte MIN 7.17  73.7

Dan Orlovsky DET 6.34  72.6

Marc Bulger STL 6.18  71.4

Ryan Fitzpatrick CIN 5.12 70

Derek Anderson CLE 5.71  66.5

Sale
Price/1000

Taxes (local, 
school),

county)/1000
Sale

Price/1000

Taxes (local, 
school),

county)/1000

25.9 4.9176 30.0 5.0500

29.5 5.0208 36.9 8.2464

27.9 4.5429 41.9 6.6969

25.9 4.5573 40.5 7.7841

29.9 5.0597 43.9 9.0384

29.9 3.8910 37.5 5.9894

30.9 5.8980 37.9 7.5422

28.9 5.6039 44.5 8.7951

35.9 5.8282 37.9 6.0831

31.5 5.3003 38.9 8.3607

31.0 6.2712 36.9 8.1400

30.9 5.9592 45.8 9.1416

6E.7 House Price and Tax Data

Observation 
Number y x1 x2 x3

 1 0.22200 7.3 0.0 0.0

 2 0.39500 8.7 0.0 0.3

 3 0.42200 8.8 0.7 1.0

 4 0.43700 8.1 4.0 0.2

 5 0.42800 9.0 0.5 1.0

 6 0.46700 8.7 1.5 2.8

 7 0.44400 9.3 2.1 1.0

 8 0.37800 7.6 5.1 3.4

 9 0.49400 10.0 0.0 0.3

10 0.45600 8.4 3.7 4.1

11 0.45200 9.3 3.6 2.0

12 0.11200 7.7 2.8 7.1

13 0.43200 9.8 4.2 2.0

14 0.10100 7.3 2.5 6.8

15 0.23200 8.5 2.0 6.6

16 0.30600 9.5 2.5 5.0

17 0.09230 7.4 2.8 7.8

18 0.11600 7.8 2.8 7.7

19 0.07640 7.7 3.0 8.0

20 0.43900 10.3 1.7 4.2

21 0.09440 7.8 3.3 8.5

22 0.11700 7.1 3.9 6.6

23 0.07260 7.7 4.3 9.5

24 0.04120 7.4 6.0 10.9

25 0.25100 7.3 2.0 5.2

26 0.00002 7.6 7.8 20.7

6E.8 Solubility Data for Exercise 6-93

(a) Construct a scatter plot of sales price versus taxes paid. 

Comment on the widely held belief that price is related to 

taxes paid.

(b) What is the simple correlation coeffi cient between these 

two variables?

6-92. An article in the Journal of Pharmaceuticals Sciences
(1991, Vol. 80, pp. 971–977) presented data on the observed 

mole fraction solubility of a solute at a constant temperature 

and the dispersion, dipolar, and hydrogen-bonding Hansen 

partial solubility parameters. The data are as shown in Table 

6E.8, where y is the negative logarithm of the mole fraction 

solubility, x
1
 is the dispersion partial solubility, x

2
 is the dipo-

lar partial solubility, and x
3
 is the hydrogen bonding partial 

solubility.

(a) Construct a matrix of scatter plots for these variables.

(b) Comment on the apparent relationships among y and the 

other three variables?
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6-7 Probability Plots
How do we know whether a particular probability distribution is a reasonable model for data? 

Sometimes this is an important question because many of the statistical techniques presented 

in subsequent chapters are based on an assumption that the population distribution is of a spe-

cifi c type. Thus, we can think of determining whether data come from a specifi c probability 

distribution as verifying assumptions. In other cases, the form of the distribution can give 

insight into the underlying physical mechanism generating the data. For example, in reliability 

engineering, verifying that time-to-failure data come from an exponential distribution identi-

fi es the failure mechanism in the sense that the failure rate is constant with respect to time.

Some of the visual displays we used earlier, such as the histogram, can provide insight about 

the form of the underlying distribution. However, histograms are usually not really reliable indica-

tors of the distribution form unless the sample size is very large. A probability plot is a graphical 

method for determining whether sample data conform to a hypothesized distribution based on a 

subjective visual examination of the data. The general procedure is very simple and can be per-

formed quickly. It is also more reliable than the histogram for small- to moderate-size samples. 

Probability plotting typically uses special axes that have been scaled for the hypothesized distri-

bution. Software is widely available for the normal, lognormal, Weibull, and various chi-square 

and gamma distributions. We focus primarily on normal probability plots because many statistical 

techniques are appropriate only when the population is (at least approximately) normal.

To construct a probability plot, the observations in the sample are fi rst ranked from small-

est to largest. That is, the sample x , x , , xn1 2 …   is arranged as x , x , , x ,n1 2( ) ( ) ( ) …   where x 1( ) is the 

smallest observation, x 2( ) is the second-smallest observation, and so forth with x n( ) the largest. 

The ordered observations x j( ) are then plotted against their observed cumulative frequency 

( . ) /j n− 0 5  on the appropriate probability paper. If the hypothesized distribution adequately 

describes the data, the plotted points will fall approximately along a straight line; if the plot-

ted points deviate signifi cantly from a straight line, the hypothesized model is not appropriate. 

Usually, the determination of whether or not the data plot is a straight line is subjective. The 

procedure is illustrated in the following example.

Battery Life Ten observations on the effective service life in minutes of batteries used in a 

portable personal computer are as follows: 176, 191, 214, 220, 205, 192, 201, 190, 183, 185. We 

hypothesize that battery life is adequately modeled by a normal distribution. To use probability plotting to inves-

tigate this hypothesis, fi rst arrange the observations in ascending order and calculate their cumulative frequencies 

( . ) /j − 0 5 10 as shown in Table 6-6.

6-6 Calculation for Constructing a Normal Probability Plot

 j x j( ) j −( )0.5 10/ z j

 1 176 0.05 –1.64

 2 183 0.15 –1.04

 3 185 0.25 –0.67

 4 190 0.35 –0.39

 5 191 0.45 –0.13

 6 192 0.55 0.13

 7 201 0.65 0.39

 8 205 0.75 0.67

 9 214 0.85 1.04

10 220 0.95 1.64

Example 6-7
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A normal probability plot can also be constructed on ordinary axes by plotting the stand-

ardized normal scores z j against x j( ) where the standardized normal scores satisfy

 
j

n
P Z z zj j

− . = ≤ = Φ0 5
( ) ( ) 

For example, if ( . ) / . , .j n z j− = =0 5 0 05 0 05Φ( )  implies that z j = − . .1 64  To illustrate, consider 

the data from Example 6-4. In the last column of Table 6-6 we show the standardized normal 

scores. Figure 6-23 is the plot of z j versus x j( ). This normal probability plot is equivalent to the 

one in Fig. 6-22.

We have constructed our probability plots with the probability scale (or the z-scale) on 

the vertical axis. Some computer packages “fl ip” the axis and put the probability scale on the 

horizontal axis.

The pairs of values x j( ) and j −( )0 5 10. /  are now plotted on normal probability axes. This plot is shown in Fig. 6-22. 

Most normal probability plots have 100 0 5j n−( ). /  on the left vertical scale and (sometimes) 100 1 0 5− −[ ]( . ) /j n  on 

the right vertical scale, with the variable value plotted on the horizontal scale. A straight line, chosen subjectively, has 

been drawn through the plotted points. In drawing the straight line, you should be infl uenced more by the points near 

the middle of the plot than by the extreme points. A good rule of thumb is to draw the line approximately between the 

25th and 75th percentile points. This is how the line in Fig. 6-22 was determined. In assessing the “closeness” of the 

points to the straight line, imagine a “fat pencil” lying along the line. If all the points are covered by this imaginary 

pencil, a normal distribution adequately describes the data. Because the points in Fig. 6-19 would pass the “fat pencil” 

test, we conclude that the normal distribution is an appropriate model.
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FIGURE 6-22 Normal probability plot for battery life.

 

FIGURE 6-23 
Normal probability 
plot obtained from 
standardized normal 
scores.
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The normal probability plot can be useful in identifying distributions that are symmetric but 

that have tails that are “heavier” or “lighter” than the normal. They can also be useful in iden-

tifying skewed distributions. When a sample is selected from a light-tailed distribution (such as 

the uniform distribution), the smallest and largest observations will not be as extreme as would 

be expected in a sample from a normal distribution. Thus, if we consider the straight line drawn 

through the observations at the center of the normal probability plot, observations on the left side 

will tend to fall below the line, and observations on the right side will tend to fall above the line. 

This will produce an S-shaped normal probability plot such as shown in Fig. 6-24(a). A heavy-

tailed distribution will result in data that also produce an S-shaped normal probability plot, but now 

the observations on the left will be above the straight line and the observations on the right will lie 

below the line. See Fig. 6-24(b). A positively skewed distribution will tend to produce a pattern 

such as shown in Fig. 6-24(c), where points on both ends of the plot tend to fall below the line, 

giving a curved shape to the plot. This occurs because both the smallest and the largest observa-

tions from this type of distribution are larger than expected in a sample from a normal distribution.

Even when the underlying population is exactly normal, the sample data will not plot 

exactly on a straight line. Some judgment and experience are required to evaluate the plot. 

Generally, if the sample size is n < 30, there can be significant deviation from linearity in 

normal plots, so in these cases only a very severe departure from linearity should be inter-

preted as a strong indication of nonnormality. As n increases, the linear pattern will tend 

to become stronger, and the normal probability plot will be easier to interpret and more 

reliable as an indicator of the form of the distribution.

Normal Probability 
Plots of Small Samples 

Can Be Unreliable

FIGURE 6-24 Normal probability plots indicating a nonnormal distribution. (a) Light-tailed distribution.  
(b) Heavy-tailed distribution. (c) A distribution with positive (or right) skew.
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6-93.  Construct a normal probability plot of the piston 

ring diameter data in Exercise 6-7. Does it seem reasonable to 

assume that piston ring diameter is normally distributed?

6-94.  Construct a normal probability plot of the insulating 

fluid breakdown time data in Exercise 6-8. Does it seem rea-

sonable to assume that breakdown time is normally distributed?

6-95.  Construct a normal probability plot of the visual 

accommodation data in Exercise 6-11. Does it seem rea-

sonable to assume that visual accommodation is normally 

distributed?

6-96.  Construct a normal probability plot of the solar 

intensity data in Exercise 6-12. Does it seem reasonable to 

assume that solar intensity is normally distributed?

6-97. Construct a normal probability plot of the O-ring joint 

temperature data in Exercise 6-19. Does it seem reasonable to 

assume that O-ring joint temperature is normally distributed? 

Discuss any interesting features that you see on the plot.

6-98.  Construct a normal probability plot of the octane 

rating data in Exercise 6-30. Does it seem reasonable to assume 

that octane rating is normally distributed?

FOR SECTION 6-7Exercises
 Problem available in WileyPLUS at instructor’s discretion. 

 Tutoring problem available in WileyPLUS at instructor’s discretion.
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6-99.  Construct a normal probability plot of the cycles 

to failure data in Exercise 6-31. Does it seem reasonable to 

assume that cycles to failure is normally distributed?

6-100. Construct a normal probability plot of the suspended 

solids concentration data in Exercise 6-40. Does it seem rea-

sonable to assume that the concentration of suspended solids 

in water from this particular lake is normally distributed?

6-101. Construct two normal probability plots for the height 

data in Exercises 6-38 and 6-45. Plot the data for female 

and male students on the same axes. Does height seem to 

be normally distributed for either group of students? If both 

populations have the same variance, the two normal probabil-

ity plots should have identical slopes. What conclusions would 

you draw about the heights of the two groups of students from 

visual examination of the normal probability plots?

6-102. It is possible to obtain a “quick-and-dirty” estimate 

of the mean of a normal distribution from the 50th percentile 

value on a normal probability plot. Provide an argument why 

this is so. It is also possible to obtain an estimate of the stand-

ard deviation of a normal distribution by subtracting the 84th 

percentile value from the 50th percentile value. Provide an 

argument explaining why this is so.

6-103. The National Oceanic and Atmospheric Administra-

tion provided the monthly absolute estimates of global (land 

and ocean combined) temperature index (degrees C) from 

2000. Read January to December from left to right in www.

ncdc.noaa.gov/oa/climate/research/anomalies/anomalies.

html). Construct and interpret either a digidot plot or a separate 

stem-and-leaf and time series plot of these data.

6-104.  The concentration of a solution is measured six 

times by one operator using the same instrument. She obtains 

the following data: 63.2, 67.1, 65.8, 64.0, 65.1, and 65.3 

(grams per liter).

(a) Calculate the sample mean. Suppose that the desirable 

value for this solution has been specifi ed to be 65.0 grams 

per liter. Do you think that the sample mean value com-

puted here is close enough to the target value to accept the 

solution as conforming to target? Explain your reasoning.

(b) Calculate the sample variance and sample standard 

deviation.

(c) Suppose that in measuring the concentration, the operator 

must set up an apparatus and use a reagent material. What 

do you think the major sources of variability are in this 

experiment? Why is it desirable to have a small variance of 

these measurements?

6-105.  Table 6E.10 shows unemployment data for the 

United States that are seasonally adjusted. Construct a time 

series plot of these data and comment on any features (source: 

U.S. Bureau of Labor Web site, http://data.bls.gov).

6-106. A sample of six resistors yielded the following resistances 

(ohms): x , x , x , x , x ,1 2 3 4 545 38 47 41 35=  =  =  =  =  and x6 43= .
(a) Compute the sample variance and sample standard deviation.

(b) Subtract 35 from each of the original resistance measure-

ments and compute s2 and s. Compare your results with 

those obtained in part (a) and explain your fi ndings.

(c) If the resistances were 450, 380, 470, 410, 350, and 430 

ohms, could you use the results of previous parts of this 

problem to fi nd s2 and s?

6-107.  Consider the following two samples:

Sample 1: 10, 9, 8, 7, 8, 6, 10, 6

Sample 2: 10, 6, 10, 6, 8, 10, 8, 6

(a) Calculate the sample range for both samples. Would you con-

clude that both samples exhibit the same variability? Explain.

(b) Calculate the sample standard deviations for both samples. 

Do these quantities indicate that both samples have the 

same variability? Explain.

(c) Write a short statement contrasting the sample range versus 

the sample standard deviation as a measure of variability.

Supplemental Exercises

Year 1 2 3 4 5 6 7 8 9 10 11 12

2000 12.3 12.6 13.2 14.3 15.3 15.9 16.2 16.0 15.4 14.3 13.1 12.5

2001 12.4 12.5 13.3 14.2 15.4 16.0 16.3 16.2 15.5 14.5 13.5 12.7

2002 12.7 12.9 13.4 14.2 15.3 16.1 16.4 16.1 15.5 14.5 13.5 12.6

2003 12.6 12.6 13.2 14.2 15.4 16.0 16.3 16.2 15.6 14.7 13.4 12.9

2004 12.6 12.8 13.3 14.3 15.2 16.0 16.3 16.1 15.5 14.6 13.6 12.7

2005 12.6 12.5 13.4 14.4 15.4 16.2 16.4 16.2 15.7 14.6 13.6 12.8

2006 12.4 12.6 13.2 14.2 15.3 16.1 16.4 16.2 15.6 14.6 13.5 12.9

2007 12.8 12.7 13.3 14.4 15.3 16.0 16.3 16.1 15.5 14.5 13.4 12.6

2008 12.2 12.4 13.4 14.1 15.2 16.0 16.3 16.1 15.5 14.6 13.5 12.7

2009 12.5 12.6 13.2 14.3 15.3 16.1 16.4 16.2 15.6

6E.9 Global Monthly Temperature

 Problem available in WileyPLUS at instructor’s discretion. 

 Tutoring problem available in WileyPLUS at instructor’s discretion.
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6-108. An article in Quality Engineering (1992, Vol. 4, 

pp. 487–495) presents viscosity data from a batch chemical 

process. A sample of these data is in Table 6E.11.

13.3 14.3 14.9 15.2 15.8 14.2 16.0 14.0

14.5 16.1 13.7 15.2 13.7 16.9 14.9 14.4

15.3 13.1 15.2 15.9 15.1 14.9 13.6 13.7

15.3 15.5 14.5 16.5 13.4 15.2 15.3 13.8

14.3 12.6 15.3 14.8 14.1 14.4 14.3 15.6

14.8 14.6 15.6 15.1 14.8 15.2 15.6 14.5

15.2 14.3 15.8 17.0 14.3 14.6 16.1 12.8

14.5 15.4 13.3 14.9 14.3 16.4 13.9 16.1

14.6 15.2 14.1 14.8 16.4 14.2 15.2 16.6

14.1 16.8 15.4 14.0 16.9 15.7 14.4 15.6

(a) Reading left to right and up and down, draw a time series 

plot of all the data and comment on any features of the data 

that are revealed by this plot.

(b) Consider the notion that the fi rst 40 observations were gen-

erated from a specifi c process, whereas the last 40 observa-

tions were generated from a different process. Does the plot 

indicate that the two processes generate similar results?

(c) Compute the sample mean and sample variance of the fi rst 

40 observations; then compute these values for the second 40 

observations. Do these quantities indicate that both processes 

yield the same mean level? The same variability? Explain.

6-109.  The total net electricity consumption of the United 

States by year from 1980 to 2007 (in billion kilowatt-hours) 

is in Table 6E.12. Net consumption excludes the energy con-

sumed by the generating units.

Construct a time series plot of these data. Construct and 

interpret a stem-and-leaf display of these data.

6-110. Reconsider the data from Exercise 6-108. Prepare com-

parative box plots for two groups of observations: the fi rst 40 

and the last 40. Comment on the information in the box plots.

6-111. The data shown in Table 6E.13 are monthly cham-

pagne sales in France (1962–1969) in thousands of bottles.

(a) Construct a time series plot of the data and comment on 

any features of the data that reveals by this plot.

(b) Speculate on how you would use a graphical procedure to 

forecast monthly champagne sales for the year 1970.

6-112.  The following data are the temperatures of effl uent 

at discharge from a sewage treatment facility on consecutive 

days:

43 47 51 48 52 50 46 49

45 52 46 51 44 49 46 51

49 45 44 50 48 50 49 50

(a) Calculate the sample mean, sample median, sample vari-

ance, and sample standard deviation.

(b) Construct a box plot of the data and comment on the infor-

mation in this display.

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

1999 4.3 4.4 4.2 4.3 4.2 4.3 4.3 4.2 4.2 4.1 4.1 4.0

2000 4.0 4.1 4.0 3.8 4.0 4.0 4.0 4.1 3.9 3.9 3.9 3.9

2001 4.2 4.2 4.3 4.4 4.3 4.5 4.6 4.9 5.0 5.3 5.5 5.7

2002 5.7 5.7 5.7 5.9 5.8 5.8 5.8 5.7 5.7 5.7 5.9 6.0

2003 5.8 5.9 5.9 6.0 6.1 6.3 6.2 6.1 6.1 6.0 5.8 5.7

2004 5.7 5.6 5.8 5.6 5.6 5.6 5.5 5.4 5.4 5.5 5.4 5.4

2005 5.2 5.4 5.2 5.2 5.1 5.1 5.0 4.9 5.0 5.0 5.0 4.8

2006 4.7 4.8 4.7 4.7 4.7 4.6 4.7 4.7 4.5 4.4 4.5 4.4

2007 4.6 4.5 4.4 4.5 4.5 4.6 4.7 4.7 4.7 4.8 4.7 4.9

2008 4.9 4.8 5.1 5.0 5.5 5.6 5.8 6.2 6.2 6.6 6.8 7.2

2009 7.6 8.1 8.5 8.9 9.4 9.5 9.4 9.7 9.8

6E.10 Unemployment Percentage

(source: U.S. Department of Energy Web site, www.eia.doe.gov/emeu/

international/contents.html#InternationalElectricity).

1980 2094.4 1981 2147.1 1982 2086.4 1983 2151.0

1984 2285.8 1985 2324.0 1986 2368.8 1987 2457.3

1988 2578.1 1989 2755.6 1990 2837.1 1991 2886.1

1992 2897.2 1993 3000.7 1994 3080.9 1995 3164.0

1996 3253.8 1997 3301.8 1998 3425.1 1999 3483.7

2000 3592.4 2001 3557.1 2002 3631.7 2003 3662.0

2004 3715.9 2005 3811.0 2006 3816.8 2007 3891.7

 TABLE 6E.12 U.S. Electricity Consumption

13.3 14.3 14.9 15.2 15.8 14.2 16.0 14.0

14.5 16.1 13.7 15.2 13.7 16.9 14.9 14.4

15.3 13.1 15.2 15.9 15.1 14.9 13.6 13.7

15.3 15.5 14.5 16.5 13.4 15.2 15.3 13.8

14.3 12.6 15.3 14.8 14.1 14.4 14.3 15.6

14.8 14.6 15.6 15.1 14.8 15.2 15.6 14.5

15.2 14.3 15.8 17.0 14.3 14.6 16.1 12.8

14.5 15.4 13.3 14.9 14.3 16.4 13.9 16.1

14.6 15.2 14.1 14.8 16.4 14.2 15.2 16.6

14.1 16.8 15.4 14.0 16.9 15.7 14.4 15.6

6E.11 Viscosity Data
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6-113.  A manufacturer of coil springs is interested in 

implementing a quality control system to monitor his pro-

duction process. As part of this quality system, it is decided 

to record the number of nonconforming coil springs in each 

production batch of size 50. During 40 days of production, 40 

batches of data were collected as follows:

Read data across and down.

 9 12  6  9  7 14 12  4  6  7

 8  5  9  7  8 11  3  6  7  7

11  4  4  8  7  5  6  4  5  8

19 19 18 12 11 17 15 17 13 13

(a) Construct a stem-and-leaf plot of the data.

(b) Find the sample average and standard deviation.

(c) Construct a time series plot of the data. Is there evidence 

that there was an increase or decrease in the average num-

ber of nonconforming springs made during the 40 days? 

Explain.

6-114. A communication channel is being monitored by record-

ing the number of errors in a string of 1000 bits. Data for 20 of 

these strings follow:

Read data across and down 

3 1 0 1 3 2 4 1 3 1

1 1 2 3 3 2 0 2 0 1

(a) Construct a stem-and-leaf plot of the data.

(b) Find the sample average and standard deviation.

(c) Construct a time series plot of the data. Is there evidence 

that there was an increase or decrease in the number of 

errors in a string? Explain.

6-115. Reconsider the golf course yardage data in Exercise 

6-9. Construct a box plot of the yardages and write an interpre-

tation of the plot.

6-116. Reconsider the data in Exercise 6-108. Construct normal 

probability plots for two groups of the data: the fi rst 40 and the 

last 40 observations. Construct both plots on the same axes. What 

tentative conclusions can you draw?

6-117. Construct a normal probability plot of the effl uent 

discharge temperature data from Exercise 6-112. Based on the 

plot, what tentative conclusions can you draw?

6-118. Construct normal probability plots of the cold start 

ignition time data presented in Exercises 6-69 and 6-80. Con-

struct a separate plot for each gasoline formulation, but arrange 

the plots on the same axes. What tentative conclusions can 

you draw?

6-119. Reconsider the golf ball overall distance data in Exer-

cise 6-41. Construct a box plot of the yardage distance and write 

an interpretation of the plot. How does the box plot compare in 

interpretive value to the original stem-and-leaf diagram?

6-120. Transformations. In some data sets, a transformation 

by some mathematical function applied to the original data, 

such as y  or log y , can result in data that are simpler to work 

with statistically than the original data. To illustrate the effect 

of a transformation, consider the following data, which repre-

sent cycles to failure for a yarn product: 675, 3650, 175, 1150, 

290, 2000, 100, 375.

(a) Construct a normal probability plot and comment on the 

shape of the data distribution.

(b) Transform the data using logarithms; that is, let y ∗(new

value) = log  (old value)y . Construct a normal probability 

plot of the transformed data and comment on the effect of 

the transformation.

6-121. In 1879, A. A. Michelson made 100 determinations of 

the velocity of light in air using a modifi cation of a method 

proposed by the French physicist Foucault. Michelson made 

the measurements in fi ve trials of 20 measurements each. The 

observations (in kilometers per second) are in Table 6E.14. 

Each value has 299,000 subtracted from it.

The currently accepted true velocity of light in a vacuum 

is 299,792.5 kilometers per second. Stigler (1977, The Annals 
of Statistics) reported that the “true” value for comparison to 

these measurements is 734.5. Construct comparative box plots 

of these measurements. Does it seem that all fi ve trials are 

Month 1962 1963 1964 1965 1966 1967 1968 1969

Jan. 2.851 2.541 3.113  5.375  3.633  4.016  2.639  3.934

Feb. 2.672 2.475 3.006  3.088  4.292  3.957  2.899  3.162

Mar. 2.755 3.031 4.047  3.718  4.154  4.510  3.370  4.286

Apr. 2.721 3.266 3.523  4.514  4.121  4.276  3.740  4.676

May 2.946 3.776 3.937  4.520  4.647  4.968  2.927  5.010

June 3.036 3.230 3.986  4.539  4.753  4.677  3.986  4.874

July 2.282 3.028 3.260  3.663  3.965  3.523  4.217  4.633

Aug. 2.212 1.759 1.573  1.643  1.723  1.821  1.738  1.659

Sept. 2.922 3.595 3.528  4.739  5.048  5.222  5.221  5.591

Oct. 4.301 4.474 5.211  5.428  6.922  6.873  6.424  6.981

Nov. 5.764 6.838 7.614  8.314  9.858 10.803  9.842  9.851

Dec. 7.132 8.357 9.254 10.651 11.331 13.916 13.076 12.670

6E.13 Champagne Sales in France
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consistent with respect to the variability of the measurements? 

Are all fi ve trials centered on the same value? How does each 

group of trials compare to the true value? Could there have been 

“startup” effects in the experiment that Michelson performed? 

Could there have been bias in the measuring instrument?

6-122. In 1789, Henry Cavendish estimated the density 

of the Earth by using a torsion balance. His 29 measurements 

follow, expressed as a multiple of the density of water.

5.50 5.30 5.47 5.10 5.29 5.65

5.55 5.61 5.75 5.63 5.27 5.44

5.57 5.36 4.88 5.86 5.34 5.39

5.34 5.53 5.29 4.07 5.85 5.46

5.42 5.79 5.62 5.58 5.26

(a) Calculate the sample mean, sample standard deviation, and 

median of the Cavendish density data.

(b) Construct a normal probability plot of the data. Comment on 

the plot. Does there seem to be a “low” outlier in the data?

(c) Would the sample median be a better estimate of the den-

sity of the earth than the sample mean? Why?

6-123. In their book Introduction to Time Series Analysis 
and Forecasting (Wiley, 2008), Montgomery, Jennings, and 

Kulahci presented the data on the drowning rate for children 

between one and four years old per 100,000 of population in 

Arizona from 1970 to 2004. The data are: 19.9, 16.1, 19.5, 19.8, 

21.3, 15.0, 15.5, 16.4, 18.2, 15.3, 15.6, 19.5, 14.0, 13.1, 10.5, 

11.5, 12.9, 8.4, 9.2, 11.9, 5.8, 8.5, 7.1, 7.9, 8.0, 9.9, 8.5, 9.1, 9.7, 

6.2, 7.2, 8.7, 5.8, 5.7, and 5.2.

(a) Perform an appropriate graphical analysis of the data.

(b) Calculate and interpret the appropriate numerical summaries.

(c) Notice that the rate appears to decrease dramatically start-

ing about 1990. Discuss some potential reasons explaining 

why this could have happened.

(d) If there has been a real change in the drowning rate begin-

ning about 1990, what impact does this have on the sum-

mary statistics that you calculated in part (b)?

6-124. Patients arriving at a hospital emergency department 

present a variety of symptoms and complaints. The following 

data were collected during one weekend night shift (11:00 p.m.

to 7:00 a.m.):

Chest pain  8

Diffi culty breathing  7

Numbness in extremities  3

Broken bones 11

Abrasions 16

Cuts 21

Stab wounds  9

Gunshot wounds  4

Blunt force trauma 10

Fainting, loss of consciousness  5

Other  9

(a) Calculate numerical summaries of these data. What practical 

interpretation can you give to these summaries?

(b) Suppose that you knew that a certain fraction of these 

patients leave without treatment (LWOT). This is an impor-

tant problem because these patients may be seriously ill or 

injured. Discuss what additional data you would require to 

begin a study into the reasons why patients LWOT.

6-125. One of the authors (DCM) has a Mercedes-Benz 500 

SL Roadster. It is a 2003 model and has fairly low mileage 

(currently 45,324 miles on the odometer). He is interested in 

learning how his car’s mileage compares with the mileage on 

similar SLs. Table 6E.15 contains the mileage on 100 Mercedes-

Benz SLs from the model years 2003−2009 taken from the 

Cars.com website.

(a) Calculate the sample mean and standard deviation of the 

odometer readings.

(b) Construct a histogram of the odometer readings and com-

ment on the shape of the data distribution.

(c) Construct a stem-and-leaf diagram of the odometer 

readings.

(d) What is the percentile of DCM’s mileage?

6-126. The energy consumption for 90 gas-heated homes 

during a winter heating season is given in Table 6E.16. The 

variable reported is BTU/number of heating degree days.

(a) Calculate the sample mean and standard deviation of 

energy usage.

(b) Construct a histogram of the energy usage data and com-

ment on the shape of the data distribution.

Trial 1
850 900 930 950 980

1000 930 760 1000 960

740 1070 850 980 880

980 650 810 1000 960

Trial 2
960 960 880 850 900

830 810 880 800 760

940 940 800 880 840

790 880 830 790 800

Trial 3
880 880 720 620 970

880 850 840 850 840

880 860 720 860 950

910 870 840 840 840

Trial 4
890 810 800 760 750

910 890 880 840 850

810 820 770 740 760

920 860 720 850 780

Trial 5
890 780 760 790 820

870 810 810 950 810

840 810 810 810 850

870 740 940 800 870

6E.14 Velocity of Light Data
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(c) Construct a stem-and-leaf diagram of energy usage.

(d) What proportion of the energy usage data is above the aver-

age usage plus 2 standard deviations?

6-127. The force needed to remove the cap from a medicine 

bottle is an important feature of the product because requir-

ing too much force may cause diffi culty for elderly patients 

or patients with arthritis or similar conditions. Table 6E.17 

presents the results of testing a sample of 68 caps attached to 

bottles for the force (in pounds) required for removing the cap.

(a) Construct a stem-and-leaf diagram of the force data.

(b) What are the average and the standard deviation of the force?

(c) Construct a normal probability plot of the data and com-

ment on the plot.

(d) If the upper specifi cation on required force is 30 pounds, 

what proportion of the caps do not meet this requirement?

(e) What proportion of the caps exceeds the average force plus 

2 standard deviations?

(f) Suppose that the fi rst 36 observations in the table come from 

one machine and the remaining come from a second machine 

(read across the rows and the down). Does there seem to be a 

possible difference in the two machines? Construct an appro-

priate graphical display of the data as part of your answer.

(g) Plot the fi rst 36 observations in the table on a normal prob-

ability plot and the remaining observations on another normal 

probability plot. Compare the results with the single normal 

probability plot that you constructed for all of the data in part (c).

6-128. Consider the global mean surface air temperature 

anomaly and the global CO
2
 concentration data originally 

shown in Table 6E.5. 

(a) Construct a scatter plot of the global mean surface air 

temperature anomaly versus the global CO
2
 concentration 

Comment on the plot.

(b) What is the simple correlation coeffi cient between these 

two variables?

7.87 9.43 7.16 8.67 12.31 9.84 16.90 10.04 12.62 7.62

11.12 13.43 9.07 6.94 10.28 9.37 7.93 13.96 6.80 4.00

8.58 8.00 5.98 15.24 8.54 11.09 11.70 12.71 6.78 9.82

12.91 10.35 9.60 9.58 9.83 9.52 18.26 10.64 6.62 5.20

12.28 7.23 2.97 8.81 9.27 11.29 8.29 9.96 10.30 16.06

14.24 11.43 10.28 13.60 5.94 10.36 6.85 6.72 10.21 8.61

11.62 11.21 10.95 7.62 10.40 12.92 15.12 13.47 8.47 11.70

7.73 8.37 7.29 10.49 8.69 8.26 7.69 12.19 5.56 9.76

7.15 12.69 13.38 13.11 10.50 14.35 13.42 6.35 9.83 12.16

6E.16 Energy Usage in BTU/Number of Heating Degree Days

2020 8905 1698 17,971 6207 22,643 4977 17,656 8940 11,508

7893 10,327 37,687 15,000 4166 9056 19,842 15,598 33,745 22,168

19,000 31,668 33,512 28,522 5824 18,327 31,845 30,015 2171 36,161

15,984 16,903 37,789 28,958 40,944 18,498 40,057 15,272 28,968 30,487

32,271 36,889 21,564 31,000 42,915 19,377 19,634 26,313 43,049 30,396

38,277 72,272 3800 21,218 29,250 48,648 29,216 44,944 49,125 33,065

32,524 38,139 62,940 51,326 54,126  4100 45,540 26,235 46,505 34,420

15,972 41,218 43,382 15,879 13,500 77,809 25,708 29,000 58,006 51,071

63,249 58,526 66,325 49,489 32,800 67,000 60,499 63,260 60,449 27,422

60,583 83,500 56,314 67,072 62,500 47,603 51,936 65,195 64,473 85,475

6E.15 Odometer Readings on 100 Mercedes-Benz SL500 Automobiles, Model Years 2003−2009

14 18 27 24 24 28 22 21 16

17 22 16 16 18 30 16 14 15

25 15 16 15 15 19 19 10 22

17 15 17 20 17 20 15 17 20

24 27 17 32 31 27 21 21 26

31 34 32 24 16 37 36 34 20

19 21 14 14 19 15 30 24 15

17 17 21 34 24

TABLE 6E.17 Force to Remove Bottle Caps
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Mind-Expanding Exercises

6-129. Consider the airfoil data in Exercise 6-18. Subtract 

30 from each value and then multiply the resulting quantities 

by 10. Now compute s2 for the new data. How is this quan-

tity related to s2 for the original data? Explain why.

6-130. Consider the quantity  −( )=∑ x aii

n 2

1
. For what 

value of a is this quantity minimized?

6-131. Using the results of Exercise 6-130, which of the 

two quantities  −( )=∑ x xii

n 2

1
 and  −( )

=∑ xi
n

i
μ 2

1
 will be 

smaller, provided that x ≠ μ?

6-132. Coding the Data. Let y a bx ,i i= +  i n= 1 2, , , ,…  

where a and b are nonzero constants. Find the relationship 

between x  and y , and between sx  and sy .

6-133. A sample of temperature measurements in a fur-

nace yielded a sample average (°F) of 835.00 and a sample 

standard deviation of 10.5. Using the results from Exercise 

6-132, what are the sample average and sample standard 

deviations expressed in oC?

6-134. Consider the sample x x xn1 2, , ,…  with sam-

ple mean x  and sample standard deviation s . Let 

z x x s i ni = −( ) = .i , , , , / …1 2  What are the values of the 

sample mean and sample standard deviation of the zi?

6-135. An experiment to investigate the survival time in 

hours of an electronic component consists of placing the 

parts in a test cell and running them for 100 hours under 

elevated temperature conditions. (This is called an “accel-

erated” life test.) Eight components were tested with the 

following resulting failure times:

75 63 100 36 51 45 80 90, , , , , , ,       +

The observation 100+ indicates that the unit still functioned at 

100 hours. Is there any meaningful measure of location that 

can be calculated for these data? What is its numerical value?

6-136. Suppose that you have a sample x x xn1 2, , ,…  and 

have calculated xn  and sn
2 for the sample. Now an ( 1)n +

st observation becomes available. Let xn + 1 and sn + 1

2  be the 

sample mean and sample variance for the sample using all 

n + 1 observations.

(a) Show how xn + 1 can be computed using xn  and xn + 1 .

(b) Show that n n
n x x

n
n n

n n
s s+

+= −( ) +
−( )

+1
2 2 1

2

1
1

(c) Use the results of parts (a) and (b) to calculate the new 

sample average and standard deviation for the data of 

Exercise 6-38, when the new observation is x38 64= .

6-137. Trimmed Mean. Suppose that the data are arranged 

in increasing order, T% of the observations are removed from 

each end, and the sample mean of the remaining numbers is 

calculated. The resulting quantity is called a trimmed mean, 

which generally lies between the sample mean x and the sam-

ple median x. Why? The trimmed mean with a moderate trim-

ming percentage (5% to 20%) is a reasonably good estimate of 

the middle or center. It is not as sensitive to outliers as the mean 

but is more sensitive than the median.

(a) Calculate the 10% trimmed mean for the yield data in 

Exercise 6-33.

(b) Calculate the 20% trimmed mean for the yield data in 

Exercise 6-33 and compare it with the quantity found 

in part (a).

(c) Compare the values calculated in parts (a) and (b) with the 

sample mean and median for the yield data. Is there much 

difference in these quantities? Why?

6-138. Trimmed Mean. Suppose that the sample size n is 

such that the quantity nT /100 is not an integer. Develop a 

procedure for obtaining a trimmed mean in this case.

Box plot

Degrees of freedom

Frequency distribution and 

histogram

Histogram

Interquartile range

Matrix of scatter plots

Quartiles, and percentiles

Multivariate data

Normal probability plot

Outlier 

Pareto chart

Percentile

Population mean

Population standard deviation

Population variance

Probability plot

Relative frequency 

distribution

Sample correlation coefficient

Sample mean

Sample median

Sample mode

Sample range

Sample standard deviation

Sample variance

Scatter diagram

Stem-and-leaf diagram

Time series

Important Terms and Concepts
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Chapter Outline

7-1 Point Estimation

7-2 Sampling Distributions and the Central 
Limit Theorem

7-3 General Concepts of Point Estimation
7-3.1 Unbiased Estimators
7-3.2 Variance of a Point Estimator
7-3.3  Standard Error: Reporting a Point 

Estimate
7-3.4 Bootstrap Standard Error
7-3.5  Mean Squared Error of an 

Estimator

7-4 Methods of Point Estimation
7-4.1 Method of Moments
7-4.2  Method of Maximum Likelihood
7-4.3  Bayesian Estimation of 

Parameters

Introduction

Statistical methods are used to make decisions and draw 

conclusions about populations. This aspect of statistics is 

generally called statistical inference. These techniques uti-

lize the information in a sample for drawing conclusions. 

This chapter begins our study of the statistical methods used 

in decision making.

Statistical inference may be divided into two major areas: 

parameter estimation and hypothesis testing. As an exam-

ple of a parameter estimation problem, suppose that an 

engineer is analyzing the tensile strength of a component 

used in an air frame. This is an important part of assessing 

the overall structural integrity of the airplane. Variability is 

naturally present in the individual components because of 

differences in the batches of raw material used to make the 

components, manufacturing processes, and measurement 

procedures (for example), so the engineer wants to estimate 

the mean strength of the population of components. In prac-

tice, the engineer will use sample data to compute a number 

that is in some sense a reasonable value (a good guess) of 

the true population mean. This number is called a point esti-
mate. We will see that procedures are available for develop-

ing point estimates of parameters that have good statistical 

properties. We will also be able to establish the precision of 

the point estimate.

7
Point Estimation of 
Parameters and 
Sampling Distributions 
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Now let’s consider a different type of question. Suppose that two different reaction tem-

peratures t1 and t2 can be used in a chemical process. The engineer conjectures that t1 will result 

in higher yields than t2. If the engineers can demonstrate that t1 results in higher yields, then 

a process change can probably be justified. Statistical hypothesis testing is the framework for 

solving problems of this type. In this example, the engineer would be interested in formulating 

hypotheses that allow him or her to demonstrate that the mean yield using t1 is higher than the 

mean yield using t2. Notice that there is no emphasis on estimating yields; instead, the focus is 

on drawing conclusions about a hypothesis that is relevant to the engineering decision.

This chapter and Chapter 8 discuss parameter estimation. Chapters 9 and 10 focus on 

hypothesis testing.

 Learning Objectives

After careful study of this chapter, you should be able to do the following:

1. Explain the general concepts of estimating the parameters of a population or a probability  
distribution

2. Explain the important role of the normal distribution as a sampling distribution

3. Understand the central limit theorem

4. Explain important properties of point estimators, including bias, variance, and mean square error

5. Know how to construct point estimators using the method of moments and the method of maximum 
likelihood

6. Know how to compute and explain the precision with which a parameter is estimated

7. Know how to construct a point estimator using the Bayesian approach

7-1 Point Estimation
Statistical inference always focuses on drawing conclusions about one or more parameters of 

a population. An important part of this process is obtaining estimates of the parameters. Sup-

pose that we want to obtain a point estimate (a reasonable value) of a population parameter. 

We know that before the data are collected, the observations are considered to be random vari-

ables, say, X , X , , Xn1 2 …  . Therefore, any function of the observation, or any statistic, is also 

a random variable. For example, the sample mean X and the sample variance S2 are statistics 

and random variables.

Another way to visualize this is as follows. Suppose we take a sample of n = 10 observa-

tions from a population and compute the sample average, getting the result x = 10 2. . Now we 

repeat this process, taking a second sample of n = 10 observations from the same population 

and the resulting sample average is 10.4. The sample average depends on the observations in 

the sample, which differ from sample to sample because they are random variables. Conse-

quently, the sample average (or any other function of the sample data) is a random variable.

Because a statistic is a random variable, it has a probability distribution. We call the prob-

ability distribution of a statistic a sampling distribution. The notion of a sampling distribution 

is very important and will be discussed and illustrated later in the chapter.

When discussing inference problems, it is convenient to have a general symbol to represent 

the parameter of interest. We will use the Greek symbol θ (theta) to represent the parameter. 

The symbol θ can represent the mean μ, the variance σ2, or any parameter of interest to us. The 

objective of point estimation is to select a single number based on sample data that is the most 

plausible value for θ. A numerical value of a sample statistic will be used as the point estimate.

In general, if X is a random variable with probability distribution f x( ), characterized by the 

unknown parameter θ, and if X , X , , Xn1 2 …   is a random sample of size n from X, the statistic 
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Section 7-2/Sampling Distributions and the Central Limit Theorem   241

Θ̂ =  …  ( )h X , X , , Xn1 2  is called a point estimator of θ. Note that Θ̂ is a random variable because 

it is a function of random variables. After the sample has been selected, Θ̂ takes on a particular 

numerical value θ
∧
 called the point estimate of θ.

A point estimate of some population parameter θ is a single numerical value θ̂ of a 

statistic Θ̂. The statistic Θ̂ is called the point estimator.

Point Estimator

As an example, suppose that the random variable X is normally distributed with an unknown 

mean μ. The sample mean is a point estimator of the unknown population mean μ. That is, 

μ̂ = X . After the sample has been selected, the numerical value x  is the point estimate of μ. 

Thus, if x , x , x1 2 325 30 29=  =  = , and x4 31= , the point estimate of μ is

x = 25 30 29 31

4
28 75

+ + + = .

Similarly, if the population variance σ2 is also unknown, a point estimator for σ2 is the sample 

variance S2, and the numerical value s2 6 9= .  calculated from the sample data is called the 

point estimate of s 2.

Estimation problems occur frequently in engineering. We often need to estimate

The mean μ of a single population

The variance σ2 (or standard deviation σ) of a single population

The proportion p of items in a population that belong to a class of interest

The difference in means of two populations, μ −1 2μ
The difference in two population proportions, p p1 2−

Reasonable point estimates of these parameters are as follows:

For μ, the estimate is μ̂ = x, the sample mean.

For σ2, the estimate is σ̂2 2= s , the sample variance.

For p, the estimate is p̂ /= x n, the sample proportion, where x is the number of items in a 

random sample of size n that belong to the class of interest.

For μ − μ1 2, the estimate is ˆ ˆμ − μ = −1 2 1 2x x , the difference between the sample means of 

two independent random samples.

For p p1 2− , the estimate is ˆ ˆp p1 2− , the difference between two sample proportions com-

puted from two independent random samples.

We may have several different choices for the point estimator of a parameter. For example, if we 

wish to estimate the mean of a population, we might consider the sample mean, the sample median, 

or perhaps the average of the smallest and largest observations in the sample as point estimators. To 

decide which point estimator of a particular parameter is the best one to use, we need to examine 

their statistical properties and develop some criteria for comparing estimators.

7-2  Sampling Distributions  
and the Central Limit Theorem

Statistical inference is concerned with making decisions about a population based on the informa-

tion contained in a random sample from that population. For instance, we may be interested in the 

mean fill volume of a container of soft drink. The mean fill volume in the population is required to 

be 300 milliliters. An engineer takes a random sample of 25 containers and computes the sample 
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We have encountered statistics before. For example, if X X Xn, , ... ,2  is a random sample of size 

n, the sample mean X, the sample variance S2, and the sample standard deviation S are 

statistics. Because a statistic is a random variable, it has a probability distribution.

average fill volume to be x = 298 8.  milliliters. The engineer will probably decide that the popula-

tion mean is μ = 300 milliliters even though the sample mean was 298.8 milliliters because he or 

she knows that the sample mean is a reasonable estimate of μ and that a sample mean of 298.8 

milliliters is very likely to occur even if the true population mean is μ = 300 milliliters. In fact, if 

the true mean is 300 milliliters, tests of 25 containers made repeatedly, perhaps every five min-

utes, would produce values of x  that vary both above and below μ = 300 milliliters.

The link between the probability models in the earlier chapters and the data is made as 

follows. Each numerical value in the data is the observed value of a random variable. Further-

more, the random variables are usually assumed to be independent and identically distributed. 

These random variables are known as a random sample.

A statistic is any function of the observations in a random sample.

Statistic

The probability distribution of a statistic is called a sampling distribution.

Sampling 
Distribution

The random variables X X Xn1 2, , ... ,  are a random sample of size n if (a) the Xi’s are 

independent random variables and (b) every Xi has the same probability distribution.

Random Sample

The observed data are also referred to as a random sample, but the use of the same phrase 

should not cause any confusion.

The assumption of a random sample is extremely important. If the sample is not random 

and is based on judgment or is flawed in some other way, statistical methods will not work 

properly and will lead to incorrect decisions.

The primary purpose in taking a random sample is to obtain information about the unknown 

population parameters. Suppose, for example, that we wish to reach a conclusion about the 

proportion of people in the United States who prefer a particular brand of soft drink. Let p rep-

resent the unknown value of this proportion. It is impractical to question every individual in the 

population to determine the true value of p. To make an inference regarding the true proportion 

p, a more reasonable procedure would be to select a random sample (of an appropriate size) 

and use the observed proportion p̂ of people in this sample favoring the brand of soft drink.

The sample proportion, p̂, is computed by dividing the number of individuals in the sam-

ple who prefer the brand of soft drink by the total sample size n. Thus, p̂ is a function of the 

observed values in the random sample. Because many random samples are possible from a 

population, the value of p̂ will vary from sample to sample. That is, p̂ is a random variable. 

Such a random variable is called a statistic.

For example, the probability distribution of X is called the sampling distribution of the 
mean. The sampling distribution of a statistic depends on the distribution of the population, 

the size of the sample, and the method of sample selection. We now present perhaps the most 

important sampling distribution. Other sampling distributions and their applications will be 

illustrated extensively in the following two chapters.

Consider determining the sampling distribution of the sample mean X. Suppose that a 

random sample of size n is taken from a normal population with mean μ and variance σ2.  

Now each observation in this sample, say, X X Xn1 2, , ,… , is a normally and independently 
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It is easy to demonstrate the central limit theorem with a computer simulation experi-
ment. Consider the lognormal distribution in Fig. 7-1. This distribution has parameters θ = 2 

(called the location parameter) and ω = 0.75 (called the scale parameter), resulting in mean μ 

= 9.79 and standard deviation σ = 8.51. Notice that this lognormal distribution does not look 

very much like the normal distribution; it is defined only for positive values of the random 

variable X and is skewed considerably to the right. We used computer software to draw 20 

samples at random from this distribution, each of size n = 10. The data from this sampling 

experiment are shown in Table 7-1. The last row in this table is the average of each sample x .

The first thing that we notice in looking at the values of x  is that they are not all the 

same. This is a clear demonstration of the point made previously that any statistic is a random 

If X X Xn1 2, , ,…  is a random sample of size n taken from a population (either finite or 

infinite) with mean μ and finite variance σ2 and if X is the sample mean, the limiting 

form of the distribution of

 Z
X

/ n
= − μ

σ
 (7-1)

as n → ∞, is the standard normal distribution.

Central Limit 
Theorem

distributed random variable with mean μ and variance σ2. Then because linear functions of 

independent, normally distributed random variables are also normally distributed (Chapter 5), 

we conclude that the sample mean

X
X X X

n
n= + + +1 2

…

has a normal distribution with mean

μ = μ + μ + + μ = μX
n

…

and variance

σ = σ + σ + + σ = σ2
2 2 2

2

2

X
n n

…

If we are sampling from a population that has an unknown probability distribution, the 

sampling distribution of the sample mean will still be approximately normal with mean μ and 

variance σ2 / n if the sample size n is large. This is one of the most useful theorems in statistics, 

called the central limit theorem. The statement is as follows:

403020100
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FIGURE 7-1  
A lognormal  
distribution with  
θ = 2 and ω = 0.75.
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variable. If we had calculated any sample statistic (s, the sample median, the upper or lower 

quartile, or a percentile), they would also have varied from sample to sample because they are 

random variables. Try it and see for yourself.

According to the central limit theorem, the distribution of the sample average x  is normal. 

Figure 7-2 is a normal probability plot of the 20 sample averages x  from Table 7-1. The 

observations scatter generally along a straight line, providing evidence that the distribution of 

the sample mean is normal even though the distribution of the population is very non-normal. 

This type of sampling experiment can be used to investigate the sampling distribution of any 

statistic.

The normal approximation for X depends on the sample size n. Figure 7-3(a) is the distri-

bution obtained for throws of a single, six-sided true die. The probabilities are equal (1 / 6) for 

all the values obtained: 1, 2, 3, 4, 5, or 6. Figure 7-3(b) is the distribution of the average score 

obtained when tossing two dice, and Fig. 7-3(c), 7-3(d), and 7-3(e) show the distributions of 

average scores obtained when tossing 3, 5, and 10 dice, respectively. Notice that, although the 

population (one die) is relatively far from normal, the distribution of averages is approximated 

reasonably well by the normal distribution for sample sizes as small as five. (The dice throw 

distributions are discrete, but the normal is continuous.) 

The central limit theorem is the underlying reason why many of the random variables 

encountered in engineering and science are normally distributed. The observed variable of the 

results from a series of underlying disturbances that act together to create a central limit effect.

Sample

Obs 1 2 3 4 5 6 7 8 9 10

1  3.9950  8.2220  4.1893 15.0907 12.8233 15.2285  5.6319  7.5504  2.1503  3.1390

2  7.8452 13.8194  2.6186  4.5107  3.1392 16.3821  3.3469  1.4393 46.3631  1.8314

3  1.8858  4.0513  8.7829  7.1955  7.1819 12.0456  8.1139  6.0995  2.4787  3.7612

4 16.3041  7.5223  2.5766 18.9189  4.2923 13.4837 13.6444  8.0837 19.7610 15.7647

5  9.7061  6.7623  4.4940 11.1338  3.1460 13.7345  9.3532  2.1988  3.8142  3.6519

6  7.6146  5.3355 10.8979  3.6718 21.1501  1.6469  4.9919 13.6334  2.8456 14.5579

7  6.2978  6.7051  6.0570  8.5411  3.9089 11.0555  6.2107  7.9361 11.4422  9.7823

8 19.3613 15.6610 10.9201  5.9469  8.5416 19.7158 11.3562  3.9083 12.8958  2.2788

9  7.2275  3.7706 38.3312  6.0463 10.1081  2.2129 11.2097  3.7184 28.2844 26.0186

10 16.2093  3.4991  6.6584  4.2594  6.1328  9.2619  4.1761  5.2093 10.0632 17.9411

x  9.6447  7.5348  9.5526  8.5315  8.0424 11.4767  7.8035  5.9777 14.0098  9.8727

Obs 11 12 13 14 15 16 17 18 19 20

1  7.5528  8.4998  2.5299  2.3115  6.1115  3.9102  2.3593  9.6420  5.0707  6.8075

2  4.9644  3.9780 11.0097 18.8265  3.1343 11.0269  7.3140 37.4338  5.5860  8.7372

3 16.7181  6.2696 21.9326  7.9053  2.3187 12.0887  5.1996  3.6109  3.6879 19.2486

4  8.2167  8.1599 15.5126  7.4145  6.7088  8.3312 11.9890 11.0013  5.6657  5.3550

5  9.0399 15.9189  7.9941 22.9887  8.0867  2.7181  5.7980  4.4095 12.1895 16.9185

6  4.0417  2.8099  7.1098  1.4794 14.5747  8.6157  7.8752  7.5667 32.7319  8.2588

7  4.9550 40.1865  5.1538  8.1568  4.8331 14.4199  4.3802 33.0634 11.9011  4.8917

8  7.5029 10.1408  2.6880  1.5977  7.2705  5.8623  2.0234  6.4656 12.8903  3.3929

9  8.4102  6.4106  7.6495  7.2551  3.9539 16.4997  1.8237  8.1360  7.4377 15.2643

10  7.2316 11.5961  4.4851 23.0760 10.3469  9.9330  8.6515  1.6852  3.6678  2.9765

x  7.8633 11.3970  8.6065 10.1011  6.7339  9.3406  5.7415 12.3014 10.0828  9.1851

  7-1 Twenty samples of size n = 10 from the lognormal distribution in Figure 7-1.
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When is the sample size large enough so that the central limit theorem can be assumed to 

apply? The answer depends on how close the underlying distribution is to the normal. If the 

underlying distribution is symmetric and unimodal (not too far from normal), the central limit 

theorem will apply for small values of n, say 4 or 5. If the sampled population is very non-normal, 

larger samples will be required. As a general guideline, if n > 30, the central limit theorem will 

almost always apply. There are exceptions to this guideline are relatively rare. In most cases 

encountered in practice, this guideline is very conservative, and the central limit theorem will 

apply for sample sizes much smaller than 30. For example, consider the dice example in Fig. 7-3.

x1 2 3 4 5 6

(b) Two dice

x1 2 3 4 5 6

(d) Five dice

x1 2 3 4 5 6

(e) Ten dice

x1 2 3 4 5 6

(a) One die

x1 2 3 4 5 6

(c) Three dice

FIGURE 7-3 
Distributions of 
average scores 
from throwing dice. 
Source: [Adapted 
with permission from 
Box, Hunter, and 
Hunter (1978).]
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FIGURE 7-2 Normal 
probability plot of 
the sample averages 
from Table 7-1.

Resistors An electronics company manufactures resistors that have a mean resistance of 100 

ohms and a standard deviation of 10 ohms. The distribution of resistance is normal. Find the prob-

ability that a random sample of n = 25 resistors will have an average resistance of fewer than 95 ohms.

Note that the sampling distribution of X is normal with mean μ =  X 100 ohms and a standard deviation of

σ = σ = =X n

10

25
2

Therefore, the desired probability corresponds to the shaded area in Fig. 7-4. Standardizing the point X = 95 in 

Fig. 7-4, we fi nd that

Example 7-1
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If the two populations are not normally distributed and if both sample sizes n1 and n2 are 

more than 30, we may use the central limit theorem and assume that X2 and X2 follow approxi-

mately independent normal distributions. Therefore, the sampling distribution of X X1 2−  is 

approximately normal with mean and variance given by Equations 7-2 and 7-3, respectively. 

The following example makes use of the central limit theorem.

Central Limit Theorem Suppose that a random variable X has a continuous uniform distribution

f x
x( ) =

≤ ≤⎧
⎨
⎩

1 2 4 6

0

/ ,

, otherwise

Find the distribution of the sample mean of a random sample of size n = 40.

The mean and variance of X are μ = 5 and σ = −( ) =2 2
6 4 12 1 3/ / . The central limit theorem indicates that the 

distribution of X is approximately normal with mean μ =X 5 and variance σ  X
2 =  σ = =2 1 3 40 1 120/ n / /[ ( )] . See the 

distributions of X and X in Fig. 7-5.

Now consider the case in which we have two independent populations. Let the fi rst population have mean μ1 and 

variance σ1
2 and the second population have mean μ 2 and variance σ2

2. Suppose that both populations are normally 

distributed. Then, using the fact that linear combinations of independent normal random variables follow a normal 

distribution (see Chapter 5), we can say that the sampling distribution of X X1 2−  is normal with mean

     μ = μ − μ = μ − μ−X X X X1 2 1 2 1 2   (7-2)

and variance

     σ = σ + σ = σ + σ
−X X X X n n1 2 1 2

2 2 2 1
2

1

2
2

2

   (7-3)

Example 7-2

x10095

X = 2�

FIGURE 7-4 Probability for Example 7-1. FIGURE 7-5 The distribution of X  and X  for Example 7-2.

x5 64

X = 1/120�

x54 6

 

z = − = − .95 100

2
2 5

and therefore,

P X P Z< <95 2 5( ) = − .( )
= .0 0062

Practical Conclusion: This example shows that if the distribution of resistance is normal with mean 100 ohms and 

standard deviation of 10 ohms, fi nding a random sample of resistors with a sample mean less than 95 ohms is a rare 
event. If this actually happens, it casts doubt as to whether the true mean is really 100 ohms or if the true standard 

deviation is really 10 ohms.
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If either n1 or n2 is fewer than 30, the sampling distribution of X X1 2−  will still be approxi-

mately normal with mean and variance given by Equations 7-2 and 7-3 provided that the 

population from which the small sample is taken is not dramatically different from the normal. 

We may summarize this with the following defi nition.

If we have two independent populations with means μ1 and μ2 and variances σ1
2 and 

σ2
2 and if X1 and X2 are the sample means of two independent random samples of 

sizes n1 and n2 from these populations, then the sampling distribution of

 Z
X X

/ n / n
=

− − μ − μ( )
σ + σ

1 2 1 2

1
2

1 2
2

2

 (7-4)

is approximately standard normal if the conditions of the central limit theorem apply. 

If the two populations are normal, the sampling distribution of Z  is exactly standard 

normal.

Approximate 
Sampling 

Distribution of a 
Difference in Sample 

Means

Aircraft Engine Life The effective life of a component used in a jet-turbine aircraft engine is a 

random variable with mean 5000 hours and standard deviation 40 hours. The distribution of effec-

tive life is fairly close to a normal distribution. The engine manufacturer introduces an improvement into the manufac-

turing process for this component that increases the mean life to 5050 hours and decreases the standard deviation to 30 

hours. Suppose that a random sample of n1 16=  components is selected from the “old” process and a random sample 

of n2 25=  components is selected from the “improved” process. What is the probability that the difference in the two 

samples means X X2 1−  is at least 25 hours? Assume that the old and improved processes can be regarded as independ-

ent populations.

To solve this problem, we fi rst note that the distribution of X1 is normal with mean μ =1 5000 hours and standard devia-

tion σ = =1 1 40 16 10/ n /  hours, and the distribution of X2 is normal with mean μ =2 5050 hours and standard devi-

ation σ = =2 2 30 25 6/ n /  hours. Now the distribution of X X2 1−  is normal with mean μ − μ = − =2 1 5050 5000 50 

hours and variance σ + σ  2
2

2 1
2

1/ n / n = 6 10 136
2 2( ) + ( ) =  hours2. This sampling distribution is shown in Fig. 7-6. The 

probability that X X2 1 25− ≥  is the shaded portion of the normal distribution in this fi gure.

Corresponding to the value x x2 1 25− =  in Fig. 7-4, we fi nd that

z = − = − .25 50

136
2 14

and consequently, 

P X P( )2 1 25 2 14

0 9838

− ≥ = ≥ − .( )
= .

X Z

Therefore, there is a high probability ( . )0 9838  that the difference in sample means between the new and the old 

process will be at least 25 hours if the sample sizes are n1 16=  and n2 25= .

Example 7-3

x2 – x1
1007550250

FIGURE 7-6 The sampling distribution of X X2 1−  in Example 7-3.
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7-1. Consider the hospital emergency room data from  Exercise 

6-124. Estimate the proportion of patients who arrive at this 

emergency department experiencing chest pain.

7-2.  Consider the compressive strength data in Table 6-2. 

What proportion of the specimens exhibit compressive strength 

of at least 200 psi?

7-3.  PVC pipe is manufactured with a mean diameter of 1.01 

inch and a standard deviation of 0.003 inch. Find the probability 

that a random sample of n = 9 sections of pipe will have a sample 

mean diameter greater than 1.009 inch and less than 1.012 inch.

7-4.  Suppose that samples of size n = 25 are selected at 

random from a normal population with mean 100 and standard 

deviation 10. What is the probability that the sample mean falls 

in the interval from μ − . σ    μ + . σ  X X X X1 8 1 0t ?o

7-5.  A synthetic fiber used in manufacturing carpet has 

tensile strength that is normally distributed with mean 75.5 psi 

and standard deviation 3.5 psi. Find the probability that a ran-

dom sample of n = 6 fiber specimens will have sample mean 

tensile strength that exceeds 75.75 psi.

7-6.  Consider the synthetic fiber in the previous exercise. 

How is the standard deviation of the sample mean changed 

when the sample size is increased from n = 6 to n = 49?

7-7.  The compressive strength of concrete is normally dis-

tributed with μ = 2500 psi and σ = 50 psi. Find the probability 

that a random sample of n = 5 specimens will have a sample 

mean diameter that falls in the interval from 2499 psi to 2510 psi.

7-8.  Consider the concrete specimens in Exercise 7-7. 

What is the standard error of the sample mean?

7-9.  A normal population has mean 100 and variance 25. 

How large must the random sample be if you want the standard 

error of the sample average to be 1.5?

7-10.  Suppose that the random variable X  has the continu-

ous uniform distribution

f x
, x

,
( ) =

≤ ≤⎧
⎨
⎩

1 0 1

0 otherwise

Suppose that a random sample of n = 12 observations is selected 

from this distribution. What is the approximate probability dis-

tribution of X ?− 6  Find the mean and variance of this quantity.

7-11.  Suppose that X  has a discrete uniform distribution

f x
, x , ,

,
( ) =

=   ⎧
⎨
⎪

⎩⎪

1
3 1 2 3

0 otherwise

A random sample of n = 36 is selected from this population. 

Find the probability that the sample mean is greater than 2.1 

but less than 2.5, assuming that the sample mean would be 

measured to the nearest tenth.

7-12.  The amount of time that a customer spends waiting 

at an airport check-in counter is a random variable with mean 

8.2 minutes and standard deviation 1.5 minutes. Suppose that a 

random sample of n = 49 customers is observed. Find the prob-

ability that the average time waiting in line for these customers is

(a) Less than 10 minutes (b) Between 5 and 10 minutes

(c) Less than 6 minutes

7-13.  A random sample of size n1 16=  is selected from 

a normal population with a mean of 75 and a standard devia-

tion of 8. A second random sample of size n2 9=  is taken from 

another normal population with mean 70 and standard devia-

tion 12. Let X1 and X2 be the two sample means. Find:

(a) The probability that X X1 2−  exceeds 4

(b) The probability that 3 5 5 51 2. ≤ − ≤ .X X
7-14. A consumer electronics company is comparing the bright-

ness of two different types of picture tubes for use in its television 

sets. Tube type A has mean brightness of 100 and standard devia-

tion of 16, and tube type B has unknown mean brightness, but the 

standard deviation is assumed to be identical to that for type A

. A random sample of n = 25 tubes of each type is selected, and 

X XB A−  is computed. If μB equals or exceeds μA, the manufac-

turer would like to adopt type B for use. The observed difference 

is xB A− x = 3 5. . What decision would you make, and why?

7-15.  The elasticity of a polymer is affected by the con-

centration of a reactant. When low concentration is used, the 

true mean elasticity is 55, and when high concentration is used, 

the mean elasticity is 60. The standard deviation of elasticity is 

4 regardless of concentration. If two random samples of size 16 

are taken, find the probability that X Xhigh low− ≥ .2

7-16. Scientists at the Hopkins Memorial Forest in western 

Massachusetts have been collecting meteorological and environ-

mental data in the forest data for more than 100 years. In the past 

few years, sulfate content in water samples from Birch Brook 

has averaged 7.48 mg/L with a standard deviation of 1.60 mg/L.

(a)  What is the standard error of the sulfate in a collection of 

10 water samples?

(b)  If 10 students measure the sulfate in their samples, what is 

the probability that their average sulfate will be between 

6.49 and 8.47 mg/L?

(c)  What do you need to assume for the probability calculated 

in (b) to be accurate?

7-17. From the data in Exercise 6-21 on the pH of rain in 

Ingham County, Michigan: 

5.47 5.37 5.38 4.63 5.37 3.74 3.71 4.96 4.64 5.11 5.65 

5.39 4.16 5.62 4.57 4.64 5.48 4.57 4.57 4.51 4.86 4.56 

4.61 4.32 3.98 5.70 4.15 3.98 5.65 3.10 5.04 4.62 4.51 

4.34 4.16 4.64 5.12 3.71 4.64 

What proportion of the samples has pH below 5.0?

7-18. Researchers in the Hopkins Forest (see Exercise 7-16) 

also count the number of maple trees (genus acer) in plots 

throughout the forest. The following is a histogram of the 

number of live maples in 1002 plots sampled over the past 20 

years. The average number of maples per plot was 19.86 trees 

with a standard deviation of 23.65 trees.

(a)  If we took the mean of a sample of eight plots, what would 

be the standard error of the mean?

FOR SECTION 7-2Exercises
 Problem available in WileyPLUS at instructor’s discretion. 

 Tutoring problem available in WileyPLUS at instructor’s discretion
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(b)  Using the central limit theorem, what is the probability that 

the mean of the eight would be within 1 standard error of 

the mean?

(c)  Why might you think that the probability that you calcu-

lated in (b) might not be very accurate?

7-19. Like hurricanes and earthquakes, geomagnetic storms 

are natural hazards with possible severe impact on the Earth. 

Severe storms can cause communication and utility breakdowns, 

leading to possible blackouts. The National Oceanic and Atmos-

pheric Administration beams electron and proton flux data in 

various energy ranges to various stations on the Earth to help 

forecast possible disturbances. The following are 25 readings of 

proton flux in the 47-68 kEV range (units are in p / (cm2-sec-ster-

MeV)) on the evening of December 28, 2011:

2310 2320 2010 10800 2190 3360 5640 2540 3360 

11800 2010 3430 10600 7370 2160 3200 2020 2850 

3500 10200 8550 9500 2260 7730 2250

(a)  Find a point estimate of the mean proton flux in this time 

period.

(b)  Find a point estimate of the standard deviation of the pro-

ton flux in this time period.

(c)  Find an estimate of the standard error of the estimate in 

part (a).

(d)  Find a point estimate for the median proton flux in this 

time period.

(e)  Find a point estimate for the proportion of readings that are 

less than 5000 p / (cm2-sec-ster-MeV).

7-20. Wayne Collier designed an experiment to measure the 

fuel efficiency of his family car under different tire pressures. 

For each run, he set the tire pressure and then measured the 

miles he drove on a highway (I-95 between Mills River and 

Pisgah Forest, NC) until he ran out of fuel using 2 liters of fuel 

each time. To do this, he made some alterations to the normal 

flow of gasoline to the engine. In Wayne’s words, “I inserted 

a T-junction into the fuel line just before the fuel filter, and a 

line into the passenger compartment of my car, where it joined 

with a graduated 2 liter Rubbermaid© bottle that I mounted in 

a box where the passenger seat is normally fastened. Then I 

sealed off the fuel-return line, which under normal operation 

sends excess fuel from the fuel pump back to the fuel tank.” 

Suppose that you call the mean miles that he can drive with 

normal pressure in the tires μ. An unbiased estimate for μ is the 

mean of the sample runs, x. But Wayne has a different idea. He 

decides to use the following estimator: He flips a fair coin. If the 

coin comes up heads, he will add five miles to each observation. 

If tails come up, he will subtract five miles from each observation.

(a) Show that Wayne’s estimate is, in fact, unbiased.

(b)  Compare the standard deviation of Wayne’s estimate with 

the standard deviation of the sample mean.

(c)  Given your answer to (b), why does Wayne’s estimate not 

make good sense scientifically? 

7-21. Consider a Weibull distribution with shape parameter 

1.5 and scale parameter 2.0. Generate a graph of the probabil-

ity distribution. Does it look very much like a normal distri-

bution? Construct a table similar to Table 7-1 by drawing 20 

random samples of size n = 10 from this distribution. Compute 

the sample average from each sample and construct a normal 

probability plot of the sample averages. Do the sample aver-

ages seem to be normally distributed?
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7-3 General Concepts of Point Estimation

7-3.1 UNBIASED ESTIMATORS

An estimator should be “close” in some sense to the true value of the unknown parameter. 

Formally, we say that Θ̂ is an unbiased estimator of θ if the expected value of Θ̂ is equal to θ. 

This is equivalent to saying that the mean of the probability distribution of Θ̂ (or the mean of 

the sampling distribution of Θ̂) is equal to θ.

The point estimator Θ̂ is an unbiased estimator for the parameter θ if

 E( )Θ̂ = θ (7-5)

If the estimator is not unbiased, then the difference

 E( )Θ̂ − θ (7-6)

is called the bias of the estimator Θ̂.

Bias of an Estimator
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When an estimator is unbiased, the bias is zero; that is, E( )Θ̂ − θ = .0

Sample Mean and Variance are Unbiased Suppose that X is a random variable with mean μ 

and variance σ2. Let X , X , , Xn1 2 …   be a random sample of size n from the population represented by 

X. Show that the sample mean X and sample variance S2 are unbiased estimators of μ and σ2, respectively.

First consider the sample mean. In Section 5.5 in Chapter 5, we showed that E X( ) = μ. Therefore, the sample mean 

X is an unbiased estimator of the population mean μ.

Now consider the sample variance. We have

E S E
X X

n n
E X X

i
i

n

i
i

n
2

2

1
2

11

1

1
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2 2
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2 2

1

( 22 2

1

) ( )−⎡
⎣⎢

⎤
⎦⎥=

∑ nE X
i

n

The last equality follows the equation for the mean of a linear function in Chapter 5. However, because E Xi( )2 2 2= μ + σ  

and E X /n,( )2 2 2= μ + σ  we have

E S
n

n n

n
n n n

i

n

( ) ( ) ( / )

(

2 2 2 2 2

1

2 2 2

1

1

1

1

=
−

μ + σ − μ + σ⎡
⎣⎢

⎤
⎦⎥

=
−

 μ + σ − μ −

=
∑

σσ = σ2 2)

Therefore, the sample variance S2 is an unbiased estimator of the population variance σ .2

Example 7-4

Although S2  is unbiased for σ2, S is a biased estimator of σ . For large samples, the bias is 

very small. However, there are good reasons for using S as an estimator of σ  in samples from 

normal distributions as we will see in the next three chapters when we discuss confi dence 

intervals and hypothesis testing.

Sometimes there are several unbiased estimators of the sample population parameter. 

For example, suppose that we take a random sample of size n = 10 from a normal popula-

tion and obtain the data x x x1 2 312 8 9 4 8 7= = =. , . , . , x x x x4 5 6 711 6 13 1 9 8 14 1= = = =. , . , . , . ,

x x x8 9 108 5 12 1 10 3= = =. , . , . . Now the sample mean is

x = . + . + . + . + . + . + . + . + . + . = .12 8 9 4 8 7 11 6 13 1 9 8 14 1 8 5 12 1 10 3

10
11 04

the sample median is

x = . + . = .10 3 11 6

2
10 95

and a 10% trimmed mean (obtained by discarding the smallest and largest 10% of the sample 

before averaging) is

xtr 10

8 7 9 4 9 8 10 3 11 6 12 1 12 8 13 1

8
10 98( ) = . + . + . + . + . + . + . + . = .
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We can show that all of these are unbiased estimates of μ. Because there is not a unique unbiased 

estimator, we cannot rely on the property of unbiasedness alone to select our estimator. We need 

a method to select among unbiased estimators. We suggest a method in the following section.

7-3.2 Variance of a Point Estimator

Suppose that Θ̂1 and Θ̂2 are unbiased estimators of θ. This indicates that the distribution of 

each estimator is centered at the true value of zero. However, the variance of these distribu-

tions may be different. Figure 7-7 illustrates the situation. Because Θ̂
1
 has a smaller variance 

than ˆ ,Θ2  the estimator Θ̂1 is more likely to produce an estimate close to the true value of θ.  

A logical principle of estimation when selecting among several unbiased estimators is to 

choose the estimator that has minimum variance.

If we consider all unbiased estimators of θ, the one with the smallest variance is 

called the minimum variance unbiased estimator (MVUE).

Minimum Variance 
Unbiased Estimator

In a sense, the MVUE is most likely among all unbiased estimators to produce an estimate θ̂ 

that is close to the true value of θ. It has been possible to develop methodology to identify the 

MVUE in many practical situations. Although this methodology is beyond the scope of this 

book, we give one very important result concerning the normal distribution.

If X , X , , Xn1 2 …   is a random sample of size n from a normal distribution with mean μ 

and variance σ2, the sample mean X  is the MVUE for μ.

When we do not know whether an MVUE exists, we could still use a minimum variance 

principle to choose among competing estimators. Suppose, for example, we wish to estimate 

the mean of a population (not necessarily a normal population). We have a random sample 

of n observations X , X , , Xn1 2 …  , and we wish to compare two possible estimators for μ: the 

sample mean X and a single observation from the sample, say, Xi. Note that both X and Xi are 

unbiased estimators of μ; for the sample mean, we have V X /n( ) = σ2  from Chapter 5 and the 

variance of any observation is V Xi( ) = σ2. Because V X <V Xi( ) ( ) for sample sizes n ,≥ 2  we 

would conclude that the sample mean is a better estimator of μ than a single observation Xi.

7-3.3 Standard Error: Reporting a Point Estimate

When the numerical value or point estimate of a parameter is reported, it is usually desirable 

to give some idea of the precision of estimation. The measure of precision usually employed 

is the standard error of the estimator that has been used.

u

Distribution of    1Q
^

Distribution of    2Q
^

FIGURE 7-7 The sampling distributions of two unbiased estimators Θ̂1 and Θ̂2.
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Sometimes the estimated standard error is denoted by sΘ̂  or se( )Θ̂ .

Suppose that we are sampling from a normal distribution with mean μ and variance σ2. Now 

the distribution of X is normal with mean μ and variance σ2 /n, so the standard error of X is

σ = σ
X n

If we did not know σ but substituted the sample standard deviation S into the preceding equa-

tion, the estimated standard error of X  would be

SE( )X
S

n
X= σ =ˆ

When the estimator follows a normal distribution as in the preceding situation, we can be rea-

sonably confi dent that the true value of the parameter lies within two standard errors of the esti-

mate. Because many point estimators are normally distributed (or approximately so) for large n, 

this is a very useful result. Even when the point estimator is not normally distributed, we can 

state that so long as the estimator is unbiased, the estimate of the parameter will deviate from the 

true value by as much as four standard errors at most 6 percent of the time. Thus, a very conserv-

ative statement is that the true value of the parameter differs from the point estimate by at most 

four standard errors. See Chebyshev’s inequality in the supplemental material on the Web site.

7.3.4 Bootstrap Standard Error

In some situations, the form of a point estimator is complicated, and standard statistical 

methods to fi nd its standard error are diffi cult or impossible to apply. One example of 

these is S, the point estimator of the population standard deviation σ. Others occur with 

The standard error of an estimator Θ̂ is its standard deviation given by σ =ˆ ( ˆ )Θ ΘV . 

If the standard error involves unknown parameters that can be estimated, substitution 

of those values into σΘ̂ produces an estimated standard error, denoted by ˆ ˆσΘ.

Standard Error of 
an Estimator

Thermal Conductivity An article in the Journal of Heat Transfer (Trans. ASME, Sec. C, 96, 

1974, p. 59) described a new method of measuring the thermal conductivity of Armco iron. Using 

a temperature of 100°F and a power input of 550 watts, the following 10 measurements of thermal conductivity (in 

Btu / hr-ft-°F) were obtained:

41 60 41 48 42 34 41 95 41 86

42 18 41 72 42 26 41 81

.  .  .  .  ., , , , ,

, , , ,. . . . 442 04.

A point estimate of the mean thermal conductivity at 100°F and 550 watts is the sample mean or

x = .  °41 924 Btu / hr-ft- F

The standard error of the sample mean is σ = σX n/ , and because σ is unknown, we may replace it by the sample 

standard deviation s = .0 284 to obtain the estimated standard error of X as

SE( )
.

.X X
s

n
= σ = = =∧ 0 284

10
0 0898

Practical Interpretation: Notice that the standard error is about 0.2 percent of the sample mean, implying that we 

have obtained a relatively precise point estimate of thermal conductivity. If we can assume that thermal conductivity is 

normally distributed, 2 times the standard error is 2 2 0 0898σ = .( )∧
X

 = 0.1796, and we are highly confi dent that the true 

mean thermal conductivity is within the interval 41 924 0 1796. ± .  or between 41.744 and 42.104.

Example 7-5
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some of the standard probability distributions, such as the exponential and Weibull dis-

tributions. A relatively new computer-intensive technique, the bootstrap, can be used to 

solve this problem.

To explain how the bootstrap works, suppose that we have a random variable X with 

a known probability density function characterized by a parameter θ, say f x( ; )θ . Also 

assume that we have a random sample of data from this distribution, x x xn1 2, , ... ,  and that 

the estimate of θ based on this sample data is ˆ . .θ = 4 5  The bootstrap procedure would use 

the computer to generate bootstrap samples randomly from the probability distribution 

f x( ; . )θ = 4 5  and calculate a bootstrap estimate θ̂B. This process is repeated n
B
 times, 

resulting in:

Bootstrap sample 1: , Bootstrap estimate ^

B

x x xn
B

1
1

2
1 1

1
, ..., θ

oootstrap sample 2: , Bootstrap estimate ^x x xn
B

1
2

2
2 2

2
, ..., θ



BBootstrap sample :  ,  Bootstrap estin x x xB
n n n

n
nB B B B

1 2, ..., mmate θ̂n
B

B

Typically, the number of bootstrap samples is n
B
 = 100 or 200. The sample mean of the boot-

strap estimates is 

θ θB

B
i
B

i

n

n

B

=
=
∑1

1

ˆ

The bootstrap standard error of θ̂ is just the sample standard deviation of the bootstrap 

estimates θ̂i
B or 

 SE
n

B
B

i
B B

i

nB

(θ) (θ θ )ˆ ˆ=
−

−
=
∑1

1
2

1

 (7-7)

Some authors use n
B
 in the denominator of Equation 7-7.

Bootstrap Standard Error A team of analytics specialists has been investigating the cycle time 

to process loan applications. The specialists' experience with the process informs them that cycle 

time is normally distributed with a mean of about 25 hours. A recent random sample of 10 applications gives the 

following (in hours):

24.1514, 27.4145, 20.4000, 22.5151, 28.5152, 28.5611, 21.2489, 20.9983, 24.9840, 22.6245

The sample standard deviation of these observations is s = 3.11407. We want to fi nd a bootstrap standard error for 

the sample standard deviation. We use a computer program to generate n
B
 = 200 bootstrap samples from a normal dis-

tribution with a mean of 25 and a standard deviation of 3.11417. The fi rst of these samples is:

25.4274, 24.2272, 24.8565, 24.3458, 18.4343, 23.3179, 23.0699, 25.2876, 27.1541, 27.2932

from which we calculate s = 2.50635. After all 200 bootstrap samples were generated, the average of the bootstrap esti-

mates of the standard deviation was 3.03972, and the bootstrap estimate of the standard error was 0.5464. The standard 

error is fairly large because the sample size here (n = 10) is fairly small.

Example 7-6 

In some problem situations, the distribution of the random variable is not known. The bootstrap 

can still be used in these situations. The procedure is to treat the data sample as a population 

and draw bootstrap samples from it. So, for example, if we had a sample of 25 observations, 

we would draw n
B
 bootstrap samples by sampling with replacement from the original sample. 

Then we would proceed as in the preceding example to calculate the bootstrap estimate of the 

standard error for the statistic of interest.
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7-3.5 Mean Squared Error of an Estimator

Sometimes it is necessary to use a biased estimator. In such cases, the mean squared error of 

the estimator can be important. The mean squared error of an estimator Q
∧

 is the expected 

squared difference between Q
∧

 and θ.

The mean squared error of an estimator Q
∧

 of the parameter θ is defined as

 
MSE( )Q Q

∧ ∧
= − θE( )2 (7-8)

Mean Squared Error 
of an Estimator

The mean squared error can be rewritten as follows:

MSE( )

bias

Q Q Q Q

Q

∧ ∧ ∧ ∧

∧

= − + θ −

= + ( )
E E E

V

[ ( )] [ ( )]

( )

2 2

2

That is, the mean squared error of Q
∧

 is equal to the variance of the estimator plus the 

squared bias. If Q
∧

 is an unbiased estimator of θ, the mean squared error of Q
∧

 is equal to 

the variance of Q
∧

.

The mean squared error is an important criterion for comparing two estimators. Let Q
∧

1 and Q
∧

2 

be two estimators of the parameter θ, and let MSE (Q
∧

1) and MSE (Q
∧

2) be the mean squared errors 

of Q
∧

1 and Q
∧

2. Then the relative efficiency of Q
∧

2 to Q
∧

1 is defined as

 MSE( )

MSE( )

Q

Q

∧

∧
1

1

 
(7-9)

If this relative efficiency is less than 1, we would conclude that Q
∧

1 is a more efficient estimator 

of θ than Q
∧

2 in the sense that it has a smaller mean squared error.

Sometimes we find that biased estimators are preferable to unbiased estimators because they 

have smaller mean squared error. That is, we may be able to reduce the variance of the estimator 

considerably by introducing a relatively small amount of bias. As long as the reduction in vari-

ance is larger than the squared bias, an improved estimator from a mean squared error viewpoint 

will result. For example, Fig. 7-8 is the probability distribution of a biased estimator Q
∧

1 that has 

a smaller variance than the unbiased estimator Q
∧

2. An estimate based on Q
∧

1 would more likely 

be close to the true value of θ than would an estimate based on Q
∧

2. Linear regression analysis 

(Chapters 11 and 12) is an example of an application area in which biased estimators are occa-

sionally used.

An estimator Q
∧

 that has a mean squared error that is less than or equal to the mean squared 

error of any other estimator, for all values of the parameter θ, is called an optimal estimator 

of θ. Optimal estimators rarely exist.

u

Distribution of    1Q
^

Distribution of    2Q

Q

^

^

FIGURE 7-8 A biased 
estimator Q

∧
1 that has 

smaller variance than 
the unbiased  
estimator Q

∧
2 .
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 Problem available in WileyPLUS at instructor’s discretion. 

 Tutoring problem available in WileyPLUS at instructor’s discretion.

7-22.  A computer software package calculated some numer-

ical summaries of a sample of data. The results are displayed here:

Variable N Mean SE Mean StDev Variance

x 20 50.184 ? 1.816 ?

(a) Fill in the missing quantities.

(b)  What is the estimate of the mean of the population from 

which this sample was drawn?

7-23. A computer software package calculated some 

numerical summaries of a sample of data. The results are 

displayed here:

Variable N Mean
SE  

Mean StDev Variance Sum
Sum of  
Squares

x ? ? 2.05 10.25 ? 3761.70 ?

(a) Fill in the missing quantities.

(b)  What is the estimate of the mean of the population from 

which this sample was drawn?

7-24.  Let X1 and X2 be independent random variables with 

mean μ and variance σ2. Suppose that we have two estimators 

of μ:

Q
∧

1
1 2

2
= +X X

 and Q
∧

2
1 23

4
= +X X

(a) Are both estimators unbiased estimators of μ?

(b) What is the variance of each estimator?

7-25. Suppose that we have a random sample X X Xn1 2, , ,…  

from a population that is N( , )μ σ2 . We plan to use Q
∧

= 

X X / cii

n −( )=∑
2

1
 to estimate σ2 . Compute the bias in Q

∧
 as an 

estimator of σ2  as a function of the constant c.

7-26. Suppose we have a random sample of size 2n from a pop-

ulation denoted by X , and E X( ) = μ and V X( ) = σ2. Let

X
n

X X
n

Xi
i

n

i
i

n

1
1

2

2
1

1

2

1=   =  
= =
∑ ∑and

be two estimators of μ. Which is the better estimator of μ? 

Explain your choice.

7-27.  Let X , X , , X1 2 7 …   denote a random sample from a 

population having mean μ and variance σ2. Consider the fol-

lowing estimators of μ:

Q

Q

∧

∧

…
1

1 2 7

2
1 6 4

7

2

2

= + + +

= − +

X X X

X X X

(a) Is either estimator unbiased?

(b)  Which estimator is better? In what sense is it better? 

Calculate the relative efficiency of the two estimators.

7-28.  Suppose that Q
∧

1 and Q
∧

2 are unbiased estimators 

of the parameter θ. We know that V ( )Q
∧

1 10=  and V ( )Q
∧

2 4= . 

Which estimator is better and in what sense is it better? Calcu-

late the relative efficiency of the two estimators.

7-29. Suppose that Q
∧

1 and Q
∧

2 are estimators of the parameter θ.  

We know that E , E ,V , V( ) ( ) / ( ) ( )Q Q Q Q
∧ ∧ ∧ ∧

1 2 1 22 10 4= θ  = θ  = = . 

Which estimator is better? In what sense is it better?

7-30. Suppose that Q
∧

1, Q
∧

2, and Q
∧

3 are estimators of θ. We know 

that E E ,( ) ( )Q Q
∧ ∧

1 2= = θ  E ,V V( ) ( ) , ( )Q Q Q
∧ ∧ ∧

3 1 212 10≠ θ = =   and 

E( )Q
∧

3
2 6− θ = . Compare these three estimators. Which do you 

prefer? Why?

7-31. Let three random samples of sizes n n1 220 10= =, , 

and n3 8=  be taken from a population with mean μ and vari-

ance σ2
. Let S1

2, S2
2, and S3

2 be the sample variances. Show that 

S S S S /2
1
2

2
2

3
220 10 8 38= + +( )  is an unbiased estimator of σ2.

7-32.  (a) Show that ( )X X / nii

n −  =∑ 2

1
 is a biased estima-

tor of σ2
.

(b) Find the amount of bias in the estimator.

(c)  What happens to the bias as the sample size n increases?

7-33.  Let X , X , , Xn1 2 …   be a random sample of size n 

from a population with mean μ and variance σ2
.

(a) Show that X 2 is a biased estimator for μ2.

(b) Find the amount of bias in this estimator.

(c)  What happens to the bias as the sample size n increases?

7-34.  Data on pull-off force (pounds) for connectors used 

in an automobile engine application are as follows: 79.3, 75.1, 

78.2, 74.1, 73.9, 75.0, 77.6, 77.3, 73.8, 74.6, 75.5, 74.0, 74.7, 

75.9, 72.9, 73.8, 74.2, 78.1, 75.4, 76.3, 75.3, 76.2, 74.9, 78.0, 

75.1, 76.8.

(a)  Calculate a point estimate of the mean pull-off force of all 

connectors in the population. State which estimator you 

used and why.

(b)  Calculate a point estimate of the pull-off force value that 

separates the weakest 50% of the connectors in the popula-

tion from the strongest 50%.

(c)  Calculate point estimates of the population variance and 

the population standard deviation.

(d)  Calculate the standard error of the point estimate found in 

part (a). Interpret the standard error.

(e)  Calculate a point estimate of the proportion of all connectors 

in the population whose pull-off force is less than 73 pounds.

7-35.  Data on the oxide thickness of semiconductor 

wafers are as follows: 425, 431, 416, 419, 421, 436, 418, 410, 

431, 433, 423, 426, 410, 435, 436, 428, 411, 426, 409, 437, 

422, 428, 413, 416.

(a)  Calculate a point estimate of the mean oxide thickness for 

all wafers in the population.

(b)  Calculate a point estimate of the standard deviation of 

oxide thickness for all wafers in the population.

(c)  Calculate the standard error of the point estimate from  

part (a).

FOR SECTION 7-3Exercises
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(d)  Calculate a point estimate of the median oxide thickness 

for all wafers in the population.

(e)  Calculate a point estimate of the proportion of wafers in 

the population that have oxide thickness of more than 430 

angstroms.

7-36. Suppose that X  is the number of observed “successes” 

in a sample of n observations where p is the probability of suc-

cess on each observation.

(a) Show that P̂ X / n=  is an unbiased estimator of p.

(b) Show that the standard error of P̂ is p p / n1 −( ) . How 

would you estimate the standard error?

7-37. X1 and S1
2 are the sample mean and sample variance 

from a population with mean μ1 and variance σ .1
2  Similarly, 

X2 and S2
2 are the sample mean and sample variance from a 

second independent population with mean μ2 and variance σ2
2. 

The sample sizes are n1 and n2, respectively.

(a) Show that X X1 2−  is an unbiased estimator of μ − μ1 2.

(b)  Find the standard error of X X1 2− . How could you estimate 

the standard error?

(c)  Suppose that both populations have the same variance; that 

is, σ = σ = σ1
2

2
2 2. Show that

S
n S n S

n n
p
2 1 1

2
2 2

2

1 2

1 1

2
=

−( ) + −( )
+ −

is an unbiased estimator of σ .2

7-38.  Two different plasma etchers in a semiconductor 

factory have the same mean etch rate μ. However, machine 1 is 

newer than machine 2 and consequently has smaller variability 

in etch rate. We know that the variance of etch rate for machine 

1 is σ1
2, and for machine 2, it is σ = σ2

2
1
2a . Suppose that we have 

n1 independent observations on etch rate from machine 1 and n2 

independent observations on etch rate from machine 2.

(a) Show that ˆ ( )μ α α= + −X X1 21  is an unbiased estimator 

of μ for any value of α between zero and one.

(b) Find the standard error of the point estimate of μ in part (a).

(c) What value of α would minimize the standard error of the 

point estimate of μ?

(d)  Suppose that a = 4 and n n1 22= . What value of α would 

you select to minimize the standard error of the point esti-

mate of μ? How “bad” would it be to arbitrarily choose 

α = .0 5 in this case?

7-39. Of n1 randomly selected engineering students at ASU, X1 

owned an HP calculator, and of n2 randomly selected engineering 

students at Virginia Tech, X2 owned an HP calculator. Let p1 and 

p2 be the probability that randomly selected ASU and Virginia 

Tech engineering students, respectively, own HP calculators.

(a)  Show that an unbiased estimate for p p1 2−  is ( / )X n1 1 =
( / )X n2 2 .

(b)  What is the standard error of the point estimate in part (a)?

(c)  How would you compute an estimate of the standard error 

found in part (b)?

(d)  Suppose that n X n1 1 2200 150 250= = =, , , and X2 185= . 

Use the results of part (a) to compute an estimate of p p1 2− .

(e)  Use the results in parts (b) through (d) to compute an esti-

mate of the standard error of the estimate.

7-40. Suppose that the random variable X has a lognormal dis-

tribution with parameters θ = 1.5 and ω = 0.8. A sample of size 

n = 15 is drawn from this distribution. Find the standard error of 

the sample median of this distribution with the bootstrap method 

using n
B
 = 200 bootstrap samples.

7-41. An exponential distribution is known to have a mean of 10. 

You want to find the standard error of the median of this distri-

bution if a random sample of size 8 is drawn. Use the bootstrap 

method to find the standard error, using n
B
 = 100 bootstrap samples.

7-42. Consider a normal random variable with mean 10 and 

standard deviation 4. Suppose that a random sample of size 16 is 

drawn from this distribution and the sample mean is computed. 

We know that the standard error of the sample mean in this case 

is σ σ/ / .n = =16 1  Use the bootstrap method with n
B
 = 200 

bootstrap samples to find the standard error of the sample mean. 

Compare the bootstrap standard error to the actual standard error.

7-43. Suppose that two independent random samples (of size 

n
1
 and n

2
) from two normal distributions are available. Explain 

how you would estimate the standard error of the difference in 

sample means X X1 2−  with the bootstrap method.

7-4 Methods of Point Estimation
The definitions of unbiasedness and other properties of estimators do not provide any guid-

ance about how to obtain good estimators. In this section, we discuss methods for obtaining 

point estimators: the method of moments and the method of maximum likelihood. We also 

briefly discuss a Bayesian approach to parameter estimation. Maximum likelihood esti-

mates are generally preferable to moment estimators because they have better efficiency 

properties. However, moment estimators are sometimes easier to compute. Both methods 

can produce unbiased point estimators.

7-4.1 Method of Moments

The general idea behind the method of moments is to equate population moments, which 

are defined in terms of expected values, to the corresponding sample moments. The 

population moments will be functions of the unknown parameters. Then these equations 

are solved to yield estimators of the unknown parameters.
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To illustrate, the fi rst population moment is E X( ) = μ, and the fi rst sample moment is 
1

1
/ n X Xii

n( ) ==∑ . Thus, by equating the population and sample moments, we fi nd that ˆ .μ = X
That is, the sample mean is the moment estimator of the population mean. In the general 

case, the population moments will be functions of the unknown parameters of the distribution, 

say, θ  θ …  θ .1 2, , , m

Let X , X , , Xn1 2 …   be a random sample from the probability distribution f x( ) where 

f x( ) can be a discrete probability mass function or a continuous probability density 

function. The kth population moment (or distribution moment) is E X kk( ), , , ...= 1 2

. The corresponding kth sample moment is 1 1 2
1

/ n X , k , ,i
k

i
n( )  =  …. =∑

Moments

Let X , X , , Xn1 2 …   be a random sample from either a probability mass function or a 

probability density function with m unknown parameters θ  θ  …  θ .1 2, , , m  The moment 
estimators Q Q Q

∧ ∧ ∧
1 2, , , m  …   are found by equating the fi rst m population moments to 

the fi rst m sample moments and solving the resulting equations for the unknown 

parameters.

Moment Estimators

Exponential Distribution Moment Estimator Suppose that X , X , , Xn1 2 …   is a random sample 

from an exponential distribution with parameter λ. Now there is only one parameter to estimate, 

so we must equate E X( ) to X. For the exponential, E X /( ) = λ.1  Therefore, E X X( ) =  results in 1 / X,λ =  so λ = 1 / X, 
is the moment estimator of λ.

Example 7-7

As an example, suppose that the time to failure of an electronic module used in an automo-

bile engine controller is tested at an elevated temperature to accelerate the failure mecha-

nism. The time to failure is exponentially distributed. Eight units are randomly selected and 

tested, resulting in the following failure time (in hours): x x x1 2 311 96 5 03 67 40= = =. , . , . ,
x x x x4 5 6 716 07 31 50 7 73 11 10= = = =. , . , . , . , and x8 22 38= . . Because x = 21 65. , the moment 

estimate of λ is λ̂ = = . = . .1 1 21 65 0 0462/ x /

Normal Distribution Moment Estimators Suppose that X , X , , Xn1 2 …   is a random sample 

from a normal distribution with parameters μ and σ2. For the normal distribution, E X( ) = μ and 

E X( )2 2= +μ σ2. Equating E X( ) to X and E(X2) to 1 2
n ii

n X∑  gives

μ = μ + σ =   
=
∑X,

n
Xi

i

n
2 2 2

1

1

Solving these equations gives the moment estimators

ˆ ˆμ = σ =
−   ⎛

⎝⎜
⎞
⎠⎟

 
=

−( )  
== =
∑∑ ∑

X,
X n

n
X

n

X X

n

i i
i

n

i

n

i
i

n

2

2

1

2

1

2

1

1

Practical Conclusion: Notice that the moment estimator of σ2 is not an unbiased estimator.

Example 7-8

c07.indd   257 9/24/2013   6:54:04 PM



258  Chapter 7/Point Estimation of Parameters and Sampling Distributions 

7-4.2 Method of Maximum Likelihood

One of the best methods of obtaining a point estimator of a parameter is the method of maxi-

mum likelihood. This technique was developed in the 1920s by a famous British statistician, 

Sir R. A. Fisher. As the name implies, the estimator will be the value of the parameter that 

maximizes the likelihood function.

Gamma Distribution Moment Estimators Suppose that X , X , , Xn1 2 …   is a random sample from 

a gamma distribution with parameters r and λ. For the gamma distribution, E X r /( ) = λ and 

E X r r /2 21( ) = +( ) λ . The moment estimators are found by solving

r / X, r r /
n

Xi
i

n

λ = +( ) λ =  
=  
∑1

12 2

1

 

The resulting estimators are

ˆ ˆr
X

/ n X X

X

/ n X Xi
i

n

i
i

n=
( ) −

λ =
( ) −

= =
∑ ∑

2

2 2

1

2 2

1

1 1

To illustrate, consider the time to failure data introduced following Example 7-7. For these data, x = .21 65 and 

∑ = .=i ix1
8 2 6639 40, so the moment estimates are

ˆ ˆr
/

,
/

=
.( )

( ) . − .( )
= . λ = .

( ) .

21 65

1 8 6645 43 21 65
1 29

21 65

1 8 6645 43

2

2 −− .( )
= .

21 65
0 0598

2

Interpretation: When r = 1, the gamma reduces to the exponential distribution. Because r̂ slightly exceeds unity, it 

is quite possible that either the gamma or the exponential distribution would provide a reasonable model for the data.

Example 7-9

Suppose that X is a random variable with probability distribution f x( ; )θ  where θ 

is a single unknown parameter. Let x , x , , xn1 2 …   be the observed values in a random 

sample of size n. Then the likelihood function of the sample is

 L f x f x f xnθ( ) =  θ( ) ⋅  θ( )⋅ ⋅⋅⋅ ⋅  θ( )1 2; ; ;  (7-10)

Note that the likelihood function is now a function of only the unknown parameter θ. 
The maximum likelihood estimator (MLE) of θ is the value of θ that maximizes 

the likelihood function L( )θ .

Maximum Likelihood 
Estimator

In the case of a discrete random variable, the interpretation of the likelihood function is 

simple. The likelihood function of the sample L( )θ  is just the probability

P X x , X x , , X xn n1 1 2 2=  = …  =( )
That is, L( )θ  is just the probability of obtaining the sample values x x x1 2, , ,… n. Therefore, 

in the discrete case, the maximum likelihood estimator is an estimator that maximizes the 

probability of occurrence of the sample values. Maximum likelihood estimators are generally 

preferable to moment estimators because they possess good effi ciency properties.
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Suppose that this estimator were applied to the following situation: n items are selected 

at random from a production line, and each item is judged as either defective (in which case 

we set xi = 1) or nondefective (in which case we set xi = 0). Then ∑ =i
n

ix1  is the number of 

defective units in the sample, and p̂ is the sample proportion defective. The parameter p is 

the population proportion defective, and it seems intuitively quite reasonable to use p̂ as an 

estimate of p.

Although the interpretation of the likelihood function just given is confi ned to the dis-

crete random variable case, the method of maximum likelihood can easily be extended to a 

 continuous distribution. We now give two examples of maximum likelihood estimation for 

continuous distributions.

Bernoulli Distribution MLE Let X be a Bernoulli random variable. The probability mass function is

f x p
p p , x ,

,

x x

;
otherwise

 ( ) = −( ) =  ⎧
⎨
⎪

⎩⎪

−
1 0 1

0

1

where p is the parameter to be estimated. The likelihood function of a random sample of size n is

 

L p p p p p p p

p p

x x x x x x

n

i

x

n n

i

( ) = −( ) −( ) −( )

=  −( )

− − −

=

 1 1 2 2
1 1 1

1

1 1 1

1

…

Π 11
1 11

− −
=

∑
−( ) ∑

= =
x

x n x
i

i
i

n

i
i

n

p p

We observe that if p̂ maximizes L p( ), p̂ also maximizes ln L p( ). Therefore,

ln ln lnL p x p n x pi
i

n

i
i

n

( ) =  ⎛
⎝⎜

⎞
⎠⎟
  + −  ⎛

⎝⎜
⎞
⎠⎟
 −( )

= =
∑ ∑

1 1

1

Now,

d L p

dp

x

p

n x

p

i
i

n

i
i

n

  ( ) = −
−⎛

⎝⎜
⎞
⎠⎟

−
= =
∑ ∑

ln
1 1

1

Equating this to zero and solving for p yields p̂ / n xii
n= ( ) .=∑1

1
 Therefore, the maximum likelihood estimator of p is

P̂ n Xi
i

n

=   
=
∑1

1

Example 7-10

Normal Distribution MLE Let X be normally distributed with unknown μ and known variance 

σ2. The likelihood function of a random sample of size n, say X X Xn1 2, , , ,…  is

 L e e
i

n x /

n /

i
xi

iμ( ) =  
σ π

=
πσ( )

 
=

− −μ( ) σ( ) σ
−μ( )

=Π
−

1

2

2
2

1

2

1

2

2 2
1

2 2

2

1

nn
∑  

Now

 ln ln μ( ) = −( ) πσ( ) − σ( )  − μ( )  
−

=
∑L n / xi
i

n

2 2 22 2
1 2

1

Example 7-11
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It is easy to illustrate graphically just how the method of maximum likelihood works. 

Figure 7-9(a) plots the log of the likelihood function for the exponential parameter from 

Example 7-12, using the n = 8 observations on failure time given following Example 7-6. 

It is common for the log likelihood function to be negative. We found that the estimate of λ
was λ̂ = .0 0462. From Example 7-12, we know that this is a maximum likelihood estimate. 

Figure 7-9(a) shows clearly that the log likelihood function is maximized at a value of λ
that is approximately equal to 0.0462. Notice that the log likelihood function is relatively 

fl at in the region of the maximum. This implies that the parameter is not estimated very 

precisely. If the parameter were estimated precisely, the log likelihood function would 

be very peaked at the maximum value. The sample size here is relatively small, and this 

has led to the imprecision in estimation. This is illustrated in Fig. 7-9(b) where we have 

plotted the difference in log likelihoods for the maximum value, assuming that the sample 

sizes were n = 8 20, , and 40 but that the sample average time to failure remained constant at 

and

d L

d
xi

i

n  μ( )
μ

= σ( )  − μ( ) −

=
∑

ln 2
1

1

Equating this last result to zero and solving for μ yields

μ̂ =
 

==
∑ X

n
X

i
i

n

1

Conclusion: The sample mean is the maximum likelihood estimator of μ. Notice that this is identical to the moment 

estimator.

Exponential Distribution MLE Let X be exponentially distributed with parameter λ . The 

likelihood function of a random sample of size n, say, X X Xn1 2, , , ,…  is

L e e
i

n
x n

x
i

i
i

n

λ( ) =  λ = λ
∑−λ − λ
 

=Π
=1

  1

The log likelihood is

ln ln λ( ) =   λ − λ 
=
∑L n xi
i

n

1

Now

d L

d

n
xi

i

n  λ( )
λ

=
λ

−
=
∑

ln

1

and upon equating this last result to zero, we obtain

λ̂ = =
=
∑n / X / Xi
i

n

1
1

Conclusion: Thus, the maximum likelihood estimator of λ is the reciprocal of the sample mean. Notice that this is 

the same as the moment estimator.

Example 7-12
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x = .21 65. Notice how much steeper the log likelihood is for n = 20 in comparison to n = 8, 

and for n = 40 in comparison to both smaller sample sizes.

The method of maximum likelihood can be used in situations that have several unknown 

parameters, say, θ θ … θ1 2, , , k to estimate. In such cases, the likelihood function is a function of 

the k unknown parameters θ θ … θ1 2, , , k, and the maximum likelihood estimators { }
∧
Qi  would 

be found by equating the k partial derivatives ∂ θ θ … θ( ) ∂θL , , , ,k i1 2  /  i , , , k= …1 2   to zero and 

solving the resulting system of equations.

(a)

–32.69

–32.67

–32.65

–32.63

–32.61

–32.59

.040 .042 .044 .046 .048 .050 .052

L
o
g
 l
ik

e
li
h
o
o
d

l

(b)
l

–0.4

0.038 0.040 0.042 0.044 0.046 0.048 0.050 0.052 0.054

–0.3

–0.2

–0.1

0.0

D
if

fe
re

n
c
e
 i
n
 l
o
g
 l
ik

e
li
h
o
o
d

n = 8

n = 20

n = 40

FIGURE 7-9 Log likelihood for the exponential distribution, using the failure time data. (a) Log likelihood with n = 8
(original data). (b) Log likelihood if n = 8, 20, and 40.

Normal Distribution MLEs For l and r2  Let X be normally distributed with mean μ and 

variance σ2 where both μ and σ2 are unknown. The likelihood function for a random sample of 

size n is

L , e e
i

n
x /

n /
i

xi

μ  σ( ) =  
σ π

=
πσ( )

 
=

− −μ( )
−
σ

−μ( )
2

1

2

2
2

1
1

2

1

2

2 2
2 2Π ( )σ

22

1i

n

=
∑

and

ln ln μ  σ( ) = −  πσ( ) −
σ

 − μ( )
=
∑L ,

n
xi

i

n
2 2

2

2

12
2

1

2

Now

∂  μ  σ( )
∂μ

=
σ

 − μ( ) =
=
∑

ln L ,
xi

i

n
2

2
1

1
0

∂  μ  σ( )
∂ σ( ) = −

σ
+

σ
 − μ( ) =

=
∑

ln L , n
xi

i

n
2

2 2 4

2

12

1

2
0

The solutions to these equations yield the maximum likelihood estimators

ˆ ˆμ = σ =  −( )  
=
∑X

n
X Xi

i

n
2 2

1

1

Conclusion: Once again, the maximum likelihood estimators are equal to the moment estimators.

Example 7-13
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Properties of the Maximum Likelihood Estimator
As noted previously, the method of maximum likelihood is often the estimation method that 

we prefer because it produces estimators with good statistical properties. We summarize these 

properties as follows.

Under very general and not restrictive conditions when the sample size n is large and 

if Θ̂ is the maximum likelihood estimator of the parameter θ,

(1) Θ̂ is an approximately unbiased estimator for θ θ[ ( )]E Θ̂ � ,

(2)  The variance of Θ̂ is nearly as small as the variance that could be obtained with 

any other estimator.

(3) Θ̂ has an approximate normal distribution.

Properties of a 
Maximum Likelihood 

Estimator

Properties 1 and 2 essentially state that the maximum likelihood estimator is approximately 

an MVUE. This is a very desirable result and, coupled with the facts that it is fairly easy to 

obtain in many situations and has an asymptotic normal distribution (the “asymptotic” means 

“when n is large”), explains why the maximum likelihood estimation technique is widely 

used. To use maximum likelihood estimation, remember that the distribution of the population 

must be either known or assumed.

To illustrate the “large-sample” or asymptotic nature of these properties, consider the maxi-

mum likelihood estimator for σ2, the variance of the normal distribution, in Example 7-13. 

It is easy to show that

E
n

n
( )σ̂ = − σ2 21

 

The bias is

E
n

n n
( ) − σ −σσ̂ = − σ − σ =2 2 2 2

21
 

Because the bias is negative, σ̂2 tends to underestimate the true variance σ2. Note that the bias 

approaches zero as n increases. Therefore, σ̂2 is an asymptotically unbiased estimator for σ2.

We now give another very important and useful property of maximum likelihood estimators.

Let ˆ ˆ ˆΘ Θ Θ1 2, , , k …   be the maximum likelihood estimators of the parameters θ1, θ2, …, 

θk. Then the maximum likelihood estimator of any function h k( , , , )θ θ … θ1 2  of these 

parameters is the same function h , , , k( )ˆ ˆ ˆΘ Θ Θ1 2 …   of the estimators ˆ ˆ ˆΘ Θ Θ1 2, , , k …  .

Invariance Property

In the normal distribution case, the maximum likelihood estimators of μ and σ2 were μ̂ = X  and 
ˆ /σ = −=

2
1

2Σ ( )i
n

iX X n, respectively. To obtain the maximum likelihood estimator of the function 

h , μ  σ σ = σ( ) =2 2 , substitute the estimators μ̂ and σ̂2 into the function h, which yields

ˆ ˆσ = σ =  −( )  ⎡
⎣⎢

⎤
⎦⎥=

∑2 2

1

1 2
1

n
X Xi

i

n /

Conclusion: The maximum likelihood estimator of the standard deviation σ is not the sample standard deviation S.

Example 7-14
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Complications in Using Maximum Likelihood Estimation
Although the method of maximum likelihood is an excellent technique, sometimes complica-

tions arise in its use. For example, it is not always easy to maximize the likelihood function 

because the equation(s) obtained from dL / d( )θ θ = 0 may be diffi cult to solve. Furthermore, it 

may not always be possible to use calculus methods directly to determine the maximum of L( )θ . 

These points are illustrated in the following two examples.

Uniform Distribution MLE Let X be uniformly distributed on the interval 0 to a. Because the 

density function is f x a( ) /= 1  for 0 ≤ ≤x a and zero otherwise, the likelihood function of a random 

sample of size n is

L a
a a

n

i n( ) = =
=
Π

1

1 1

for

0 0 01 2≤ ≤ ≤ ≤ … ≤ ≤x a x a x an, , ,

Note that the slope of this function is not zero anywhere. That is, as long as max( )x ai ≤ , the likelihood is 1/ an, which 

is positive, but when a xi< max( ), the likelihood goes to zero as illustrated in Fig. 7-10. Therefore, calculus methods can-

not be used directly because the maximum value of the likelihood function occurs at a point of discontinuity. However, 

because d / da a n / an n( )− += − 1 is less than zero for all values of a a n> −0,  is a decreasing function of a. This implies that 

the maximum of the likelihood function L a( ) occurs at the lower boundary point. The fi gure clearly shows that we could 

maximize L a( ) by setting â equal to the smallest value that it could logically take on, which is max( )xi . Clearly, a cannot 

be smaller than the largest sample observation, so setting â equal to the largest sample value is reasonable.

Example 7-15

Max (xi )0

L(a)

a  

FIGURE 7-10 The 
likelihood function 
for the uniform 
distribution in 
Example 7-15.

Gamma Distribution MLE Let X X Xn1 2, , ,…  be a random sample from the gamma distribution. 

The log of the likelihood function is

ln ln

ln

  λ( ) =   λ   
Γ ( )

⎛

⎝⎜
⎞

⎠⎟

=  λ + −

=

− −λ

L r,
x e

r

nr r

n

i

r
i
r xi

Π

( ) (

1

1

1)) ( ) [ ]  −  Γ − λ  
= =
∑ ∑ln lnx n r xi
i

n

i
i

n

1 1

( )

The derivatives of the log likelihood are

∂   λ
∂

=  λ + −  Γ′
Γ=  

∑ln
ln ln

L r,

r
n x n

r

r
i

i

n( ) ( ) ( ) ( )
( )1

∂   λ
∂λ

=
λ

−  
=
∑ln L r, nr

xi
i

n( )
1

Example 7-16
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7-4.3 Bayesian Estimation of Parameters

This book uses methods of statistical inference based on the information in the sample data. 

In effect, these methods interpret probabilities as relative frequencies. Sometimes we call 

probabilities that are interpreted in this manner objective probabilities. Another approach to 

statistical inference, called the Bayesian approach, combines sample information with other 

information that may be available prior to collecting the sample. In this section, we briefl y 

illustrate how this approach may be used in parameter estimation.

Suppose that the random variable X has a probability distribution that is a function of one 

parameter θ. We will write this probability distribution as f x( )| θ . This notation implies that 

the exact form of the distribution of X is conditional on the value assigned to θ. The classical 

approach to estimation would consist of taking a random sample of size n from this distribu-

tion and then substituting the sample values xi into the estimator for θ. This estimator could 

have been developed using the maximum likelihood approach, for example.

When the derivatives are equated to zero, we obtain the equations that must be solved to fi nd the maximum likelihood 

estimators of r and λ:

ˆ ˆ
λ = r

x

n x n
r

r
i

i

n

 λ + = Γ′
Γ=

∑ln ln( ) ( ) ( )
( )

ˆ ˆ

ˆ1

There is no closed form solution to these equations.

Figure 7-11 is a graph of the log likelihood for the gamma distribution using the n = 8 observations on failure time 

introduced previously. Figure 7-11a is the log likelihood surface as a function of r and λ, and Figure 7-11b is a contour 
plot. These plots reveal that the log likelihood is maximized at approximately r̂ = .1 75 and λ̂ = .0 08. Many statistics com-

puter programs use numerical techniques to solve for the maximum likelihood estimates when no simple solution exists.
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FIGURE 7-11 Log likelihood for the gamma distribution using the failure time data. (a) Log likelihood surface. 
(b) Contour plot.
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Suppose that we have some additional information about θ and that we can summarize that 

information in the form of a probability distribution for θ, say, f ( )θ . This probability distribu-

tion is often called the prior distribution for θ, and suppose that the mean of the prior is μ0

and the variance is σ0
2. This is a very novel concept insofar as the rest of this book is concerned 

because we are now viewing the parameter θ as a random variable. The probabilities associ-

ated with the prior distribution are often called subjective probabilities because they usually 

refl ect the analyst’s degree of belief regarding the true value of θ. The Bayesian approach to 

estimation uses the prior distribution for θ, f ( )θ , and the joint probability distribution of the 

sample, say, f x , x , , x ,n1 2 …  |θ( )  to fi nd a posterior distribution for θ, say, f x , x , , xn( )θ|  …  .1 2

This posterior distribution contains information from both the sample and the prior distri-

bution for θ. In a sense, it expresses our degree of belief regarding the true value of θ after 

observing the sample data. It is easy conceptually to fi nd the posterior distribution. The joint 

probability distribution of the sample X X Xn1 2, , ,…  and the parameter θ (remember that θ is a 

random variable) is

f x , x , , x , f x , x , , x fn n( ) ( ) ( )1 2 1 2 …   θ =  …  θ  θ|

and the marginal distribution of X X Xn1 2, , ,…  is

f x , x , , x

f x , x , , x , ,

f x , x ,
n

n

1 2

1 2
0

1 2

 …  ( ) =

 …   θ θ 

 …

∑ ( )

(

 discrete

,, x , d ,n  θ  θ θ 

⎧

⎨
⎪⎪

⎩
⎪
⎪−∞

∞

 
∫ )  continuous

Therefore, the desired distribution is

f x , x , , x
f x , x , , x ,

f x , x , , x
n

n

n

( ) ( )
( )

θ|  …  =  …   θ
 …  1 2

1 2

1 2

We defi ne the Bayes estimator of θ as the value θ
∼
 that corresponds to the mean of the poste-

rior distribution f x , x , , xn( )θ|  …  .1 2

Sometimes the mean of the posterior distribution of θ can be determined easily. As a 

function of θ, f x , , xn( )θ| …  1  is a probability density function and x , , xn1 …   are just constants. 

Because θ enters into f x , , xn( )θ | …  1  only through f x , , x ,n( )1 …   θ  if f x , , x ,n( )1 …   θ  because 

a function of θ is recognized as a well-known probability function, the posterior mean of θ 

can be deduced from the well-known distribution without integration or even calculation of 
f x , , xn( )1 …  .

Bayes Estimator for the Mean of a Normal Distribution Let X X Xn1 2, , ,…  be a random sample 

from the normal distribution with mean μ and variance σ2 where μ is unknown and σ2 is known. 

Assume that the prior distribution for μ is normal with mean μ0 and variance σ0
2; that is,

f e e/ /( )μ =
πσ

 =
πσ

 − μ− μ σ − μ − + μ σ1

2

1

20

2

0
2

2 20
2

0
2 2

0
0

2

0
2( ) ( ) ( ) ( )  μ

The joint probability distribution of the sample is

f x , x , , x en n /

/ xi
i

n

( )
( )

(

1 2 2 2

1 2

2

1

2

1

2

2 2

1 …  |μ =
πσ

 ∑

=
πσ

− σ  −μ
=

( ) ( )

))n /
/

x x n
e

i i

2

1 2
22

2 2

 
∑ ∑− σ − μ + μ⎛

⎝⎜
⎞
⎠⎟( )

Example 7-17
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A relationship exists between the Bayes estimator for a parameter and the maximum likeli-

hood estimator of the same parameter. For large sample sizes, the two are nearly equivalent. In 

general, the difference are the two estimators is small compared to 1/ n . In practical problems, 

a moderate sample size will produce approximately the same estimate by either the Bayes 

or maximum likelihood method if the sample results are consistent with the assumed prior 

information. If the sample results are inconsistent with the prior assumptions, the Bayes esti-

mate may differ considerably from the maximum likelihood estimate. In these circumstances, 

Thus, the joint probability distribution of the sample and μ is

f x , x , , x , en n /

/ n( )
( )

1 2 2 2
0

1 2 1 21

2 2

0
2 2 2

0 …   μ =
πσ πσ

−( ) σ +( )μ − μ/ /σ // /σ +( )μ+ σ +μ⎡
⎣⎢

⎤
⎦⎥

( )
σ

+
⎛

⎝

∑ ∑

=

0
2 2 2 2 2

0 0
2

0
2 2

2

1 2
1 1

x x

e

i / /

/
n

iσ

σ

σ

−
/

⎜⎜⎜

⎞

⎠
⎟⎟

μ − μ
σ

+
⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

μ
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

2 0

0
2 2

2
1 1

2x

n nh x x
−

/ …,σ σ( , , ,μμ σ0 0
2, )

Upon completing the square in the exponent,

f x , x , , x , en

/
/ n

n

1 2

1 2
1

0
2

1

2

2
2

0

0
2 …   μ( ) =

( ) +
σ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ μ −−

σ
σ
σ

( / ) μ
++σ

σ

+σ
+
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⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

…   σ  μ
2

2
0

0
2 2 2 1

2
0

/ n

x

/ n
h x , , x , , ,n

σ
(

2

  σ0
2)

where h x xi n( , , , , , )1
2

0
2
0… σ μ σ  is a function of the observed values and the parameters σ2, μ0, and σ0

2.

Now, because f x xn( , ... , )1  does not depend on μ,

f x , , x en

/
/ n

/ n x

μ| …  ( ) =
( ) +

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

μ −
σ

σ( )μ

1

1 2
1

0
2

1

2
2

2
0 0

2

0
2

−
σ

+ σ

σ ++ σ

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

…   σ  μ  σ( )2 3 1
2

0 0
2

/ n
h x , , x , , ,n

This is recognized as a normal probability density function with posterior mean

σ( )μ + σ
σ + σ

2
0 0

2

0
2 2

/ n x

/ n

and posterior variance

1 1

0
2 2

1
0
2 2

0
2 2σ

+
σ

⎛
⎝⎜

⎞
⎠⎟

=
σ σ( )
σ + σ

−

/ n

/ n

/ n

Consequently, the Bayes estimate of μ is a weighted average of μ0 and x . For purposes of comparison, note that the maxi-

mum likelihood estimate of μ is μ̂ = x.

To illustrate, suppose that we have a sample of size n = 10 from a normal distribution with unknown mean μ and 

variance σ2 4= . Assume that the prior distribution for μ is normal with mean μ0 = 0 and variance σ =0
2 1. If the sample 

mean is 0.75, the Bayes estimate of μ is

4 10 0 1 0 75

1 4 10

0 75

1 4
0 536

/

/

( ) + .( )
+ ( ) = .

.
= .

Conclusion: Note that the maximum likelihood estimate of μ is x = .0 75. The Bayes estimate is between the 

maximum likelihood estimate and the prior mean.
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if the sample results are accepted as being correct, the prior information must be incorrect. The 

maximum likelihood estimate would then be the better estimate to use.

If the sample results are very different from the prior information, the Bayes estimator 

will always tend to produce an estimate that is between the maximum likelihood estimate and 

the prior assumptions. This was illustrated in Example 7-16. If there is more inconsistency 

between the prior information and the sample, there will be more difference between the two 

estimates.

7-44.  Let X  be a geometric random variable with param-

eter p. Find the maximum likelihood estimator of p based on a 

random sample of size n.

7-45.  Consider the Poisson distribution with parameter λ. 
Find the maximum likelihood estimator of λ, based on a ran-

dom sample of size n.

7-46. Let X  be a random variable with the following prob-

ability distribution:

f x
x , x

,
( ) =

θ +( ) ≤ ≤
    

⎧
⎨
⎪

⎩⎪

θ1 0 1

0 otherwise

Find the maximum likelihood estimator of θ based on a random 

sample of size n.

7-47. Consider the shifted exponential distribution

f x e , xx( ) = λ ≥ θ−λ −θ( )

When θ = 0, this density reduces to the usual exponential dis-

tribution. When θ > 0, there is positive probability only to the 

right of θ.

(a)  Find the maximum likelihood estimator of λ and θ based 

on a random sample of size n.

(b)  Describe a practical situation in which one would suspect 

that the shifted exponential distribution is a plausible model.

7-48.  Consider the probability density function

f x xe , x < , < <x /( ) =
θ

≤ ∞ θ ∞− θ1
0 0

2

Find the maximum likelihood estimator for θ.

7-49. Let X X Xn1 2, , ,…
 
be uniformly distributed on the interval 

0 to a. Show that the moment estimator of a is â X= .2  Is this an 

unbiased estimator? Discuss the reasonableness of this estimator.

7-50. Consider the probability density function

f x c x , x( ) = + θ( ) − ≤ ≤1 1 1

(a) Find the value of the constant c.

(b) What is the moment estimator for θ?

(c) Show that θ̂ = 3X is an unbiased estimator for θ.

(d) Find the maximum likelihood estimator for θ.

7-51. The Rayleigh distribution has probability density function

f x
x

e , x > , < <x /( ) =
θ

θ ∞− θ2 2 0 0

(a)  It can be shown that E X( )2 2= θ. Use this information to 

construct an unbiased estimator for θ.

(b)  Find the maximum likelihood estimator of θ. Compare 

your answer to part (a).

(c)  Use the invariance property of the maximum likelihood 

estimator to find the maximum likelihood estimator of the 

median of the Raleigh distribution.

7-52. Let X
1
, X

2
, … , X

n
 be uniformly distributed on the interval 

0 to a. Recall that the maximum likelihood estimator of a is 

â Xi= max( ).
(a)  Argue intuitively why â cannot be an unbiased estimator 

for a.

(b)  Suppose that E a na / n( ) ( )ˆ = +1 . Is it reasonable that â con-

sistently underestimates a? Show that the bias in the esti-

mator approaches zero as n gets large.

(c)  Propose an unbiased estimator for a.

(d)  Let Y Xi= max( ). Use the fact that Y y≤  if and only if 

each X yi ≤  to derive the cumulative distribution function 

of Y . Then show that the probability density function of 

Y  is

f y
ny

a
, y a

,

n

n( ) = ≤ ≤
⎧
⎨
⎪

⎩⎪

−1

0

0 otherwise

 Use this result to show that the maximum likelihood esti-

mator for a is biased.

(e)  We have two unbiased estimators for a : the moment 

estimator â X1 2=  and â n n Xi2 1= +  [( ) / ] ( )max , where 

max( )Xi  is the largest observation in a random sample 

of size n . It can be shown that V a a / n( ) ( )ˆ1
2 3=  and that 

V a a / n n( ) [ ( )]ˆ2
2 2= + . Show that if n > 1, â2 is a better 

estimator than â . In what sense is it a better estimator 

of a?

7-53. Consider the Weibull distribution

f x
x

e , < x

x

( ) =
β
δ

 
δ

⎛
⎝⎜

⎞
⎠⎟

⎧

⎨
⎪⎪

⎩
⎪
⎪

β− ⎛

⎝
⎜

⎞

⎠
⎟δ

β
1

0

0

−

, otherwise

FOR SECTION 7-4Exercises
 Problem available in WileyPLUS at instructor’s discretion. 

 Tutoring problem available in WileyPLUS at instructor’s discretion
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(a)  Find the likelihood function based on a random sample of 

size n. Find the log likelihood.

(b)  Show that the log likelihood is maximized by solving the 

following equations

β =
( )

−
( )⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

δ =

β 

=

β

=

=

−

β

∑

∑

∑x x

x

x

n

x

i i
i

n

i
i

n

i
i

n

i
i

ln ln
1

1

1

1

==

β

∑⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

1

1n /

n

(c)  What complications are involved in solving the two equa-

tions in part (b)?

7-54. Reconsider the oxide thickness data in Exercise 7-35 

and suppose that it is reasonable to assume that oxide thickness 

is normally distributed.

(a)  Compute the maximum likelihood estimates of μ and σ2 .

(b)  Graph the likelihood function in the vicinity of μ̂ and σ̂2, the 

maximum likelihood estimates, and comment on its shape.

(c)  Suppose that the sample size was larger ( )n = 40  but the 

maximum likelihood estimates were numerically equal to 

the values obtained in part (a). Graph the likelihood function 

for n = 40, compare it to the one from part (b), and comment 

on the effect of the larger sample size.

7-55. Suppose that X  is a normal random variable with unknown 

mean μ and known variance σ2. The prior distribution for μ is a 

normal distribution with mean μ0 and variance σ0
2. Show that the 

Bayes estimator for μ becomes the maximum likelihood estimator 

when the sample size n is large.

7-56. Suppose that X  is a normal random variable with unknown 

mean μ and known variance σ2. The prior distribution for μ is a 

uniform distribution defined over the interval [ , ]a b .

(a) Find the posterior distribution for μ.

(b) Find the Bayes estimator for μ.

7-57. Suppose that X  is a Poisson random variable with 

parameter λ. Let the prior distribution for λ be a gamma distri-

bution with parameters m + 1 and m /+( ) λ1 0.

(a) Find the posterior distribution for λ.

(b) Find the Bayes estimator for λ.

7-58.  Suppose that X  is a normal random variable with 

unknown mean and known variance σ2 9= . The prior distribu-

tion for μ is normal with μ0 4=  and σ2

0
1= . A random sample of 

n = 25 observations is taken, and the sample mean is x = . .4 85

(a) Find the Bayes estimate of μ.

(b)   Compare the Bayes estimate with the maximum likelihood 

estimate.

7-59.  The weight of boxes of candy is a normal random 

variable with mean μ and variance 1 10/  pound. The prior dis-

tribution for μ is normal with mean 5.03 pound and variance 

1 25/  pound. A random sample of 10 boxes gives a sample 

mean of x = .5 05 pounds.

(a) Find the Bayes estimate of μ.

(b)  Compare the Bayes estimate with the maximum likelihood 

estimate.

7-60.  The time between failures of a machine has an expo-

nential distribution with parameter λ. Suppose that the prior distri-

bution for λ is exponential with mean 100 hours. Two machines are 

observed, and the average time between failures is x = 1125 hours.

(a) Find the Bayes estimate for λ.

(b)  What proportion of the machines do you think will fail 

before 1000 hours?

7-61.  Transistors have a life that is exponentially distrib-

uted with parameter λ. A random sample of n transistors is taken. 

What is the joint probability density function of the sample?

7-62. Suppose that a random variable is normally distributed 

with mean μ and variance σ2, and we draw a random sample of 

five observations from this distribution. What is the joint prob-

ability density function of the sample?

7-63.  Suppose that X  is uniformly distributed on the 

interval from 0 to 1. Consider a random sample of size 4 from 

X . What is the joint probability density function of the sample?

7-64.  A procurement specialist has purchased 25 resis-

tors from vendor 1 and 30 resistors from vendor 2. Let 

X X X1 1 1 2 1 25, , ,, , ... ,  represent the vendor 1 observed resistances, 

which are assumed to be normally and independently dis-

tributed with mean 100 ohms and standard deviation 1.5 

ohms. Similarly, let X X X2 1 2 2 2 30, , ,, , ... ,  represent the vendor 2 

observed resistances, which are assumed to be normally and 

independently distributed with mean 105 ohms and standard 

deviation of 2.0 ohms. What is the sampling distribution of 

X X1 2− ? What is the standard error of X X1 2− ?

7-65.  A random sample of 36 observations has been 

drawn from a normal distribution with mean 50 and stand-

ard deviation 12. Find the probability that the sample mean 

is in the interval 47 ≤ ≤ 53X . Is the assumption of normality 

important? Why?

7-66.  A random sample of n = 9 structural elements is 

tested for compressive strength. We know that the true mean 

compressive strength μ = 5500 psi and the standard deviation 

is σ = 100 psi. Find the probability that the sample mean com-

pressive strength exceeds 4985 psi.

7-67. A normal population has a known mean 50 and known 

variance σ2 2= . A random sample of n = 16 is selected from 

this population, and the sample mean is x = .52  How unusual 

is this result?

Supplemental Exercises

 Problem available in WileyPLUS at instructor’s discretion. 

 Tutoring problem available in WileyPLUS at instructor’s discretion
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7-68.  A random sample of size n = 16 is taken from a nor-

mal population with μ = 40 and σ2 5= . Find the probability 

that the sample mean is less than or equal to 37.

7-69. A manufacturer of semiconductor devices takes a ran-

dom sample of 100 chips and tests them, classifying each chip as 

defective or nondefective. Let Xi = 0 if the chip is nondefective 

and Xi = 1 if the chip is defective. The sample fraction defective is

P̂
X X X= + + ⋅⋅⋅ +1 2 100

100

What is the sampling distribution of the random variable P̂?

7-70.  Let X  be a random variable with mean 

μ and variance σ2. Given two independent random samples of 

sizes n1 and n2, with sample means X1 and X2, show that

X aX a X , < a <= + −( )1 21 0 1

is an unbiased estimator for μ. If X1 and X2 are independent, 

find the value of a that minimizes the standard error of X .

7-71.  A random variable x  has probability density function

f x x e , < x < , < <x /( ) =
θ

 ∞ θ ∞− θ1

2
0 0

3

2

Find the maximum likelihood estimator for θ.

7-72. Let f x x , < < , < x <( ) = θ θ ∞ .θ−1 0 0 1and  Show that 

Θ̂ = −  =n / Xi
n

i( Π )ln 1  is the maximum likelihood estimator for θ.

7-73. Let f x / x ,/( ) ( )= θ −θ( ) θ
1

1
 0 1< x < , and 0 < <θ ∞. Show 

that ˆ / ln( )Θ =  =−( )Σ1 1n Xi
n

i  is the maximum likelihood estimator 

for θ and that Θ̂ is an unbiased estimator for q.

7-74. You plan to use a rod to lay out a square, each side 

of which is the length of the rod. The length of the rod is μ, 

which is unknown. You are interested in estimating the area 

of the square, which is μ2. Because μ is unknown, you meas-

ure it n times, obtaining observations X X Xn1 2, , ,… . Suppose 

that each measurement is unbiased for μ with variance σ2
.

(a)  Show that X 2 is a biased estimate of the area of the square.

(b) Suggest an estimator that is unbiased.

7-75. An electric utility has placed special meters on 10 

houses in a subdivision that measures the energy consumed 

(demand) at each hour of the day. The company is interested 

in the energy demand at one specific hour—the hour at which 

the system experiences the peak consumption. The data from 

these 10 meters are as follows (in KW): 23.1, 15.6, 17.4, 20.1, 

19.8, 26.4, 25.1, 20.5, 21.9, and 28.7. If μ is the true mean peak 

demand for the 10 houses in this group of houses having the 

special meters, estimate μ. Now suppose that the utility wants 

to estimate the demand at the peak hour for all 5000 houses in 

this subdivision. Let θ be this quantity. Estimate θ using the 

data given. Estimate the proportion of houses in the subdivision 

that demand at least 20 KW at the hour of system peak.

Mind-Expanding Exercises

7-76. A lot consists of N  transistors, and of these, 

M M N( )≤  are defective. We randomly select two transistors 

without replacement from this lot and determine whether 

they are defective or nondefective. The random variable

X

, i

, i
i =

1

0

if the th transistor

is nondefective

if the th tran

   

 

   ssistor

is defective 

 2i ,=

⎧

⎨
⎪⎪

⎩
⎪
⎪

1

Determine the joint probability function for X1 and X2. 

What are the marginal probability functions for X1 and X2? 

Are X1 and X2 independent random variables?

7-77. When the sample standard deviation is based on a 

random sample of size n  from a normal population, it can 

be shown that S  is a biased estimator for σ. Specifically,

E S / n n n /( ) ( ) ( ) ( )= σ −  Γ Γ −⎡⎣ ⎤⎦2 1 2 1 2/ /

(a)  Use this result to obtain an unbiased estimator for σ 

of the form c Sn , when the constant cn depends on the 

sample size n.

(b)  Find the value of c
n
 for n = 10 and n = 25. Generally, 

how well does S perform as an estimator of σ for large 

n with respect to bias?

7-78. An operator using a gauge measure collection of 

n randomly selected parts twice. Let Xi and Yi  
denote the 

measured values for the ith part. Assume that these two ran-

dom variables are independent and normally distributed and 

that both have true mean μ
i 
and variance σ2.

(a)  Show that the maximum likelihood estimator of σ2 is 
ˆ ( / ) ( )σ = −=

2
1

21 4n X Yi
n

i iΣ .

(b)  Show that σ̂2
 is a biased estimator for σ̂2. What happens 

to the bias as n becomes large?

(c) Find an unbiased estimator for σ2.

7-79. Consistent Estimator. Another way to measure the 

closeness of an estimator Θ̂  to the parameter θ is in terms 

of consistency. If Θ̂n is an estimator of θ based on a random 

sample of n observations, Θ̂n is consistent for θ if

lim
n

nP <
→∞

 − θ( ) =⏐ ⏐Θ̂ e 1

Thus, consistency is a large-sample property describing the 

limiting behavior of Θ̂n as n tends to infinity. It is usually 

difficult to prove consistency using this definition, although it 

can be done from other approaches. To illustrate, show that X  

is a consistent estimator of μ (when σ ∞2 < ) by using Cheby-

shev’s inequality from the supplemental material on the Web.

7-80. Order Statistics. Let X X Xn1 2, , ,…  be a ran-

dom sample of size n  from X , a random variable hav-

ing distribution function F x( ). Rank the elements in 

order of increasing numerical magnitude, resulting 

in X X X n( ) ( ) ( ), , , ,1 2 …  where X( )1  is the smallest sample 
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FOR SECTION 1-7Important Terms and Concepts

Bayes estimator

Bias in parameter estimation

Bootstrap method

Central limit theorem

Estimator versus estimate

Likelihood function

Maximum likelihood 

estimator

Mean squared error of an 

estimator

Minimum variance unbiased 

estimator

Moment estimator

Normal distribution as the 

sampling distribution of a 

sample mean

Normal distribution as the 

sampling distribution 

of the difference in two 

sample means

Parameter estimation

Point estimator

Population or distribution 

moments

Posterior distribution

Prior distribution

Sample moments

Sampling distribution

Standard error and estimated 

standard error of an 

estimator

Statistic

Statistical inference

Unbiased estimator

element ( min{ , , , })( )X X X Xn1 1 2= …  and X n( ) is the largest 

sample element ( max{ , , , })( )X X X Xn n= 1 2 … . X i( ) is called 

the ith order statistic. Often the distribution of some of 

the order statistics is of interest, particularly the minimum 

and maximum sample values X( )1  and X n( ), respectively.

(a)  Prove that the cumulative distribution functions of these 

two order statistics, denoted respectively by F tX 1( ) ( ) and 

F tX n( ) ( ), are

F t F tX
n

1
1 1( ) = − −( ) [ ( )]

F t F tX
n

n( ) =( ) [ ( )]

(b)  Prove that if X  is continuous with probability density 

function f x( ), the probability distributions of X( )1  and 

X n( ) are

f t n F t f tX
n

1
1

1

( ) = −⎡⎣ ⎤⎦
−( ) ( ) ( )

f t n F t f tX
n

n( ) = ⎡⎣ ⎤⎦
−( ) ( ) ( )1

(c)  Let X X Xn1 2, , ,…  be a random sample of a Bernoulli 

random variable with parameter p. Show that

P X pn

n
( )( ) = = − −( )1 1 1

P X pn( )1 0 1( ) = = −

(d)  Let X X Xn1 2, , ,…  be a random sample of a normal ran-

dom variable with mean μ and variance σ2
. Derive the 

probability density functions of X( )1  and X n( ).

(e)  Let X X Xn1 2, , ,…  be a random sample of an exponential 

random variable of parameter λ. Derive the cumulative 

distribution functions and probability density functions 

for X( )1  and X n( ).

7-81. Let X X Xn1 2, , ,…  be a random sample of a continu-

ous random variable with cumulative distribution function 

F x( ). Find

E F X n( )( )⎡⎣ ⎤⎦
and

E F( )( )X
1

⎡⎣ ⎤⎦

7-82. Let X  be a random variable with mean μ and variance 

σ2, and let X X Xn1 2, , ,…  be a random sample of size n from X .  
Show that the statistic V k i

n= −
−Σ 1

1 X Xi i+ −( )1

2
 is an unbiased 

estimator for σ2 for an appropriate choice for the constant k. 

Find this value for k.

7-83. When the population has a normal distribution, the 

estimator

σ̂ =  −  −(  − ) .median X X , X X , , X X /n1 2 0 6745…

is sometimes used to estimate the population standard 

deviation. This estimator is more robust to outliers than the 

usual sample standard deviation and usually does not differ 

much from S when there are no unusual observations.

(a) Calculate σ̂ and S for the data 10, 12, 9, 14, 18, 15,  

and 16.

(b) Replace the first observation in the sample (10) with 50 

and recalculate both S and σ̂.

7-84. Censored Data. A common problem in industry is 

life testing of components and systems. In this problem, we 

assume that lifetime has an exponential distribution with 

parameter λ, so ˆ ˆμ = λ =1 / X is an unbiased estimate of μ.  

When n components are tested until failure and the data 

X X Xn1 2, , ,…  represent actual lifetimes, we have a complete 

sample, and X  is indeed an unbiased estimator of μ. How-

ever, in many situations, the components are only left under 

test until r n<  failures have occurred. Let Y1 be the time 

of the first failure, Y2 be the time of the second failure, ,…   

and Yr  
be the time of the last failure. This type of test results 

in censored data. There are n r−  units still running when 

the test is terminated. The total accumulated test time at ter-

mination is

T Y n r Yr i r
i

r

= + −  
=
∑ ( )

1

(a)  Show that μ̂ = T / rr  is an unbiased estimator for μ.  

[Hint: You will need to use the memoryless property of 

the exponential distribution and the results of Exercise 

7-80 for the distribution of the minimum of a sample 

from an exponential distribution with parameter λ.]

(b)  It can be shown that V T / r / rr( ) = λ( ).1 2  How does this 

compare to V( )X  in the uncensored experiment?
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Introduction

Engineers are often involved in estimating parameters. 

For example, there is an ASTM Standard E23 that defi nes 

a technique called the Charpy V-notch method for notched 
bar impact testing of metallic materials. The impact energy 

is often used to determine whether the material experiences 

a ductile-to-brittle transition as the temperature decreases. 

Suppose that we have tested a sample of 10 specimens of a 

particular material with this procedure. We know that we can 

use the sample average X to estimate the true mean impact 

energy μ. However, we also know that the true mean impact 

energy is unlikely to be exactly equal to your estimate. 

Reporting the results of your test as a single number is unap-

pealing because nothing inherent in X provides any informa-

tion about how close it is to μ. Our estimate could be very 

close, or it could be considerably far from the true mean. 

A way to avoid this is to report the estimate in terms of a 

range of plausible values called a confi dence interval. A 

confi dence interval always specifi es a confi dence level, usu-

ally 90%, 95%, or 99%, which is a measure of the reliabil-

ity of the procedure. So if a 95% confi dence interval on the 

impact energy based on the data from our 10 specimens has 

a lower limit of 63.84 J and an upper limit of 65.08 J, then 

we can say that at the 95% level of confi dence any value of 

mean impact energy between 63.84 J and 65.08 J is a plau-

sible value. By reliability, we mean that if we repeated this 

experiment over and over again, 95% of all samples would 

produce a confi dence interval that contains the true mean 

8
Statistical Intervals for 
a Single Sample
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Normal Distribution, Variance Known
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8-1.2 Choice of Sample Size
8-1.3 One-Sided Confi dence Bounds
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272   Chapter 8/Statistical intervals for a single sample

impact energy, and only 5% of the time would the interval be in error. In this chapter, you will 

learn how to construct confidence intervals and other useful types of statistical intervals for 

many important types of problem situations.

 Learning Objectives

After careful study of this chapter, you should be able to do the following:

1. Construct confidence intervals on the mean of a normal distribution, using either the normal  
distribution or the t distribution method

2. Construct confidence intervals on the variance and standard deviation of a normal distribution

3. Construct confidence intervals on a population proportion

4. Use a general method for constructing an approximate confidence interval on a parameter

5. Construct prediction intervals for a future observation

6. Construct a tolerance interval for a normal population

7. Explain the three types of interval estimates: confidence intervals, prediction intervals, and tolerance 
intervals

In the previous chapter, we illustrated how a point estimate of a parameter can be estimated 

from sample data. However, it is important to understand how good the estimate obtained 

is. For example, suppose that we estimate the mean viscosity of a chemical product to be 

μ̂ = = .x 1000  Now because of sampling variability, it is almost never the case that the true 

mean μ is exactly equal to the estimate x . The point estimate says nothing about how close μ̂ 

is to μ. Is the process mean likely to be between 900 and 1100? Or is it likely to be between 

990 and 1010? The answer to these questions affects our decisions regarding this process. 

Bounds that represent an interval of plausible values for a parameter are examples of an inter-

val estimate. Surprisingly, it is easy to determine such intervals in many cases, and the same 

data that provided the point estimate are typically used.

An interval estimate for a population parameter is called a confidence interval. Informa-

tion about the precision of estimation is conveyed by the length of the interval. A short interval 

implies precise estimation. We cannot be certain that the interval contains the true, unknown 

population parameter—we use only a sample from the full population to compute the point 

estimate and the interval. However, the confidence interval is constructed so that we have high 

confidence that it does contain the unknown population parameter. Confidence intervals are 

widely used in engineering and the sciences.

A tolerance interval is another important type of interval estimate. For example, the 

chemical product viscosity data might be assumed to be normally distributed. We might like 

to calculate limits that bound 95% of the viscosity values. For a normal distribution, we know 

that 95% of the distribution is in the interval

μ −1.96σ  μ −19.6σ,

However, this is not a useful tolerance interval because the parameters μ and σ are unknown. 

Point estimates such as x  and s can be used in the preceding equation for μ and σ. However, 

we need to account for the potential error in each point estimate to form a tolerance interval 

for the distribution. The result is an interval of the form

x ks x ks− +,

where k is an appropriate constant (that is larger than 1.96 to account for the estimation error). 

As in the case of a confidence interval, it is not certain that the tolerance interval bounds 95% 

of the distribution, but the interval is constructed so that we have high confidence that it does. 
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Tolerance intervals are widely used and, as we will subsequently see, they are easy to calculate 

for normal distributions.

Confidence and tolerance intervals bound unknown elements of a distribution. In this chapter, 

you will learn to appreciate the value of these intervals. A prediction interval provides bounds on 

one (or more) future observations from the population. For example, a prediction interval could 

be used to bound a single, new measurement of viscosity—another useful interval. With a large 

sample size, the prediction interval for normally distributed data tends to the tolerance interval, but 

for more modest sample sizes, the prediction and tolerance intervals are different.

Keep the purpose of the three types of interval estimates clear:

A confidence interval bounds population or distribution parameters (such as the mean 

viscosity).

A tolerance interval bounds a selected proportion of a distribution.

A prediction interval bounds future observations from the population or distribution.

Our experience has been that it is easy to confuse the three types of intervals. For example, a 

confidence interval is often reported when the problem situation calls for a prediction interval.

8-1  Confidence Interval on the Mean of a Normal 
Distribution, Variance Known

The basic ideas of a confidence interval (CI) are most easily understood by initially consider-

ing a simple situation. Suppose that we have a normal population with unknown mean μ and 

known variance σ2. This is a somewhat unrealistic scenario because typically both the mean 

and variance are unknown. However, in subsequent sections, we will present confidence inter-

vals for more general situations.

8-1.1 DEVELOPMENT OF THE CONFIDENCE INTERVAL AND ITS BASIC PROPERTIES

Suppose that X X Xn1 2, , ...,  is a random sample from a normal distribution with unknown mean 

μ and known variance σ2. From the results of Chapter 5, we know that the sample mean X is 

normally distributed with mean μ and variance σ2/ n. We may standardize X by subtracting 

the mean and dividing by the standard deviation, which results in the variable

  Z
X

n
= − μ

σ /
 (8-1)

The random variable Z  has a standard normal distribution.

A confidence interval estimate for μ is an interval of the form l ≤ μ ≤ u, where the end-points l 
and u are computed from the sample data. Because different samples will produce different values 

of l and u, these end-points are values of random variables L and U, respectively. Suppose that we 

can determine values of L  and U such that the following probability statement is true:

       P L U≤ ≤{ } = −μ 1 α (8-2)

where 0 1≤ ≤α . There is a probability of 1 − α of selecting a sample for which the CI will con-

tain the true value of μ. Once we have selected the sample, so that X x X x X xn n1 1 2 2= = =, , ... , , 

and computed l and u, the resulting confidence interval for μ is

     l u≤ μ ≤  (8-3)

The end-points or bounds l and u are called the lower- and upper-confidence limits (bounds), 
respectively, and 1 − α is called the confidence coefficient.
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Interpreting a Confi dence Interval
How does one interpret a confi dence interval? In the impact energy estimation problem in 

Example 8-1, the 95% CI is 63 84. ≤ μ ≤ 65.08, so it is tempting to conclude that μ is within 

In our problem situation, because Z X n= − μ( ) σ( )/  has a standard normal distribution, 

we may write

P z
X

n
z− ≤ − μ

σ
≤

⎧
⎨
⎩

⎫
⎬
⎭

= − αα α/ /2 2 1
/

Now manipulate the quantities inside the brackets by (1) multiplying through by σ n , (2) 

subtracting X from each term, and (3) multiplying through by −1. This results in

P X z
n

X z
n

− ≤ ≤ +
⎧
⎨
⎩

⎫
⎬
⎭

= −α α
σ σ

/ /μ α2 2 1  (8-4)

This is a random interval because the end-points X Z n± α σ/2  involve the random vari-

able X. From consideration of Equation 8-4, the lower and upper end-points or limits of the 

inequalities in Equation 8-4 are the lower- and upper-confi dence limits L and U, respectively. 

This leads to the following defi nition.

Confi dence Interval 
on the Mean, Variance 

Known

If x  is the sample mean of a random sample of size n from a normal population with 

known variance σ2, a 100 1( − α)% CI on μ is given by

 x z n x z n/ /− σ ≤ μ ≤ + σα α2 2  (8-5)

where z /α 2 is the upper 100 2α /  percentage point of the standard normal distribution.

The development of this CI assumed that we are sampling from a normal population. The CI 

is quite robust to this assumption. That is, moderate departures from normality are of no seri-

ous concern. From a practical viewpoint, this implies that an advertised 95% CI might have 

actual confi dence of 93% or 94%.

Metallic Material Transition ASTM Standard E23 defi nes standard test methods for notched 

bar impact testing of metallic materials. The Charpy V-notch (CVN) technique measures impact 

energy and is often used to determine whether or not a material experiences a ductile-to-brittle transition with decreas-

ing temperature. Ten measurements of impact energy (J ) on specimens of A238 steel cut at 60ºC are as follows: 64.1, 

64.7, 64.5, 64.6, 64.5, 64.3, 64.6, 64.8, 64.2, and 64.3. Assume that impact energy is normally distributed with σ = 1J. 

We want to fi nd a 95% CI for μ, the mean impact energy. The required quantities are z z nα = = = σ =/ 2 0.025 1.96, 10, 1, 

and x = 64 46. . The resulting 95% CI is found from Equation 8-5 as follows:

x z
n

x z
n

−  σ ≤ μ ≤ +  σ
α α/ /2 2

64 46 1 96
1

10
64 46 1 96

1

10
. − . ≤ μ ≤ . + .

63 84 65 08. ≤ μ ≤ .

Practical Interpretation: Based on the sample data, a range of highly plausible values for mean impact energy for 

A238 steel at 60°C is 63 84 65 08. ≤ μ ≤ .J J .

Example 8-1
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this interval with probability 0.95. However, with a little reflection, it is easy to see that this 

cannot be correct; the true value of μ is unknown, and the statement 63 84. ≤ μ ≤ 65.08 is 

either correct (true with probability 1) or incorrect (false with probability 1). The correct 

interpretation lies in the realization that a CI is a random interval because in the probability 

statement defining the end-points of the interval (Equation 8-2), L and U are random variables. 

Consequently, the correct interpretation of a 100 1( )%− α  CI depends on the relative frequency 

view of probability. Specifically, if an infinite number of random samples are collected and 

a 100 1( )%− α  confidence interval for μ is computed from each sample, 100 1( )%− α  of these 

intervals will contain the true value of μ.

The situation is illustrated in Fig. 8-1, which shows several 100 1( )%− α  confidence intervals 

for the mean μ of a normal distribution. The dots at the center of the intervals indicate the point 

estimate of μ (that is, x ). Notice that one of the intervals fails to contain the true value of μ. If this 

were a 95% confidence interval, in the long run only 5% of the intervals would fail to contain μ.

Now in practice, we obtain only one random sample and calculate one confidence interval. 

Because this interval either will or will not contain the true value of μ, it is not reasonable to attach 

a probability level to this specific event. The appropriate statement is that the observed interval 

[ , ]l u  brackets the true value of μ with confidence 100 1( )− α . This statement has a frequency 

interpretation; that is, we do not know whether the statement is true for this specific sample, but 

the method used to obtain the interval [ , ]l u  yields correct statements 100 1( )%− α  of the time.

Confidence Level and Precision of Estimation
Notice that in Example 8-1, our choice of the 95% level of confidence was essentially arbi-

trary. What would have happened if we had chosen a higher level of confidence, say, 99%? In 

fact, is it not reasonable that we would want the higher level of confidence? At α = 0 01. , we 

find z z zα / . / . . ,2 0 01 2 0 005 2 58= = = while for α = 0 05. , z0 025 1 96. .= . Thus, the length of the 95% 

confidence interval is

2 1 96 3 92. .σ( ) = σn n

whereas the length of the 99% CI is

2 2 58 5 16. σ( ) = . σn n

Thus, the 99% CI is longer than the 95% CI. This is why we have a higher level of confidence 

in the 99% confidence interval. Generally, for a fixed sample size n and standard deviation σ, 

the higher the confidence level, the longer the resulting CI.

The length of a confidence interval is a measure of the precision of estimation. Many 

authors define the half-length of the CI (in our case z α σ/2 n) as the bound on the error in 

estimation of the parameter. From the preceeding discussion, we see that precision is inversely 

FIGURE 8-1 Repeated 
construction of a confi-
dence interval for μ.

Interval number

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
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276   Chapter 8/Statistical intervals for a single sample

If the right-hand side of Equation 8-6 is not an integer, it must be rounded up. This will ensure 

that the level of confi dence does not fall below 100 1( )%− α . Notice that 2E  is the length of 

the resulting confi dence interval.

related to the confi dence level. It is desirable to obtain a confi dence interval that is short 

enough for decision-making purposes and that also has adequate confi dence. One way to 

achieve this is by choosing the sample size n to be large enough to give a CI of specifi ed length 

or precision with prescribed confi dence.

8-1.2 CHOICE OF SAMPLE SIZE

The precision of the confi dence interval in Equation 8-5 is 2 2z nα σ ./  This means that in 

using x  to estimate μ, the error E x= − μ  is less than or equal to z nα σ/2  with confi dence 

100 1( )− α . This is shown graphically in Fig. 8-2. In situations whose sample size can be con-

trolled, we can choose n so that we are 100 1( )%− α  confi dent that the error in estimating μ is 

less than a specifi ed bound on the error E . The appropriate sample size is found by choosing n
such that z n Eα σ =/2 . Solving this equation gives the following formula for n.

Sample Size for 
Specifi ed Error on the 

Mean, Variance Known

If x  is used as an estimate of μ, we can be 100 1( )%− α  confi dent that the error 

| x − μ | will not exceed a specifi ed amount E  when the sample size is

 n
z

E
/= σ⎛

⎝⎜
⎞
⎠⎟

α 2

2

 (8-6)

x

E = error = � x –  �

u = x + z  /2 / nl = x – z  /2 / nFIGURE 8-2 Error in 
estimating μ with x .

Metallic Material Transition To illustrate the use of this procedure, consider the CVN test 

described in Example 8-1 and suppose that we want to determine how many specimens must be 

tested to ensure that the 95% CI on μ for A238 steel cut at 60°C has a length of at most 1 0. J . Because the bound on 

error in estimation E  is one-half of the length of the CI, to determine n, we use Equation 8-6 with E = =0 5 1. , σ , and 

zα = . ./2 1 96  The required sample size is,

n
z

E
=

σ⎛
⎝⎜

⎞
⎠⎟

=
.( )

.
⎡

⎣
⎢

⎤

⎦
⎥ = .α /2

2 2
1 96 1

0 5
15 37

and because n must be an integer, the required sample size is n = 16.

Example 8-2

Notice the general relationship between sample size, desired length of the confi dence inter-

val 2E , confi dence level 100 1( )− α , and standard deviation σ:

As the desired length of the interval 2E  decreases, the required sample size n increases for 

a fi xed value of σ and specifi ed confi dence.

As σ increases, the required sample size n increases for a fi xed desired length 2E  and speci-

fi ed confi dence.

As the level of confi dence increases, the required sample size n increases for fi xed desired 

length 2E  and standard deviation σ.
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8-1.4 GENERAL METHOD TO DERIVE A CONFIDENCE INTERVAL

It is easy to give a general method for fi nding a confi dence interval for an unknown parameter θ. 

Let X X Xn1 2, , ,…  be a random sample of n observations. Suppose that we can fi nd a statistic 

g X X Xn( , , , ; )1 2 … θ  with the following properties:

1.  g X X Xn( , , , ; )1 2 … θ  depends on both the sample and θ.

2. The probability distribution of g X X Xn( , , ... , ; )1 2 θ  does not depend on θ or any other 

unknown parameter.

In the case considered in this section, the parameter θ μ= . The random variable 

g X X X X nn( , , , ; ) ( ) / ( / )1 2 … μ σ= − μ  satisfi es both conditions; the random variable 

depends on the sample and on μ, and it has a standard normal distribution because σ is known. 

Now we must fi nd constants CL and CU  so that

     P C g X , X , , X ; CL n U≤  …   θ( ) ≤⎡⎣ ⎤⎦ = − α1 2 1  (8-9)

Because of property 2, CL and CU  do not depend on θ. In our example, C zL = − α /2 and C zU = .α /2  

Finally, we must manipulate the inequalities in the probability statement so that

     P L X , X , , X U X , X , , Xn n1 2 1 2 1 …  ( ) ≤ θ ≤  …  ( )⎡⎣ ⎤⎦ = − α   (8-10)

8-1.3 ONE-SIDED CONFIDENCE BOUNDS

The confi dence interval in Equation 8-5 gives both a lower confi dence bound and an upper 

confi dence bound for μ. Thus, it provides a two-sided CI. It is also possible to obtain one-

sided confi dence bounds for m by setting either the lower bound l = − ∞ or the upper bound 

u = ∞ and replacing zα /2 by zα.

One-Sided Confi dence 
Bounds on the Mean, 

Variance Known
A 100 1( )%− α  upper-confi dence bound for μ is

 μ ≤ + σαx z n  (8-7)

and a 100 1( )%− α  lower-confi dence bound for μ is

 x z n l− σ = ≤ μα  (8-8)

One-Sided Confi dence Bound The same data for impact testing from Example 8-1 are used 

to construct a lower, one-sided 95% confi dence interval for the mean impact energy. Recall that 

x , J= . σ =64 46 1 , and n = 10. The interval is

x z
n

− ≤α
σ μ

64 46 1 64
1

10
. − . ≤ μ

 63 94. ≤ μ
Practical Interpretation: The lower limit for the two-sided interval in Example 8-1 was 63.84. Because z z /α < α 2, the 

lower limit of a one-sided interval is always greater than the lower limit of a two-sided interval of equal confi dence. The 

one-sided interval does not bound μ from above so that it still achieves 95% confi dence with a slightly larger lower limit. 

If our interest is only in the lower limit for μ, then the one-sided interval is preferred because it provides equal confi dence 

with a greater limit. Similarly, a one-sided upper limit is always less than a two-sided upper limit of equal confi dence.

Example 8-3
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This gives L X X Xn( , , , )1 2 …  and U X X Xn( , , , )1 2 …  as the lower and upper confi dence limits 

defi ning the 100 1( )− α  confi dence interval for θ. The quantity g(X
1
, X

2
, …, X

n
; θ) is often 

called a pivotal quantity because we pivot on this quantity in Equation 8-9 to produce 

 Equation 8-10. In our example, we manipulated the pivotal quantity ( ) ( )X / / n− μ σ  to 

obtain L X X X X n X X X X z nn n( , , , ) , , , .1 2 2 1 2 2… σ … σ= − = +α αz U / /( )and

The Exponential Distribution The exponential distribution is used extensively in the fi elds 

of reliability engineering and communications technology because it has been shown to be an 

excellent model for many of the kinds of problems encountered. For example, the call-handling (processing) time in 

 telephone networks often follows an exponential distribution. A sample of n = 10 calls had the following durations (in 

minutes):

x
1
 = 2.84, x

2 
= 2.37, x

3
 = 7.52, x

4
 = 2.76, x

5
 = 3.83, x

6 
= 1.32, x

7
 = 8.43, x

8
 = 2.25, x

9
 = 1.63 and x

10
 = 0.27.

Assume that call-handling time is exponentially distributed. Find a 95% two-sided CI on both the parameter λ of the 

exponential distribution and the mean call-handling time.

If X is an exponential random variable, it can be shown that 2
1

λ Xii
n
=∑ is a chi-square distributed random variable 

with 2n degrees of freedom (the chi-square distribution will be formally introduced in Section 8.3). So we can let 

g x x xn( , ,... ; )1 2 θ  in Equation (8-9) equal 2
1

λ Xii
n
=∑  and let C

L 
and C

U
 in that equation be the lower-tailed and upper-

tailed 2½ percentage points of the chi-square distribution, which are given in Appendix Table IV. For 2n = 2(10) = 

20 degrees of freedom, these percentage points are C
L
 = 9.59

 
and C

U
 = 34.17, respectively. Therefore, Equation (8-9) 

becomes

P Xi
i

n

9 59 2 34 17 0 95
1

. . .≤ ≤⎛
⎝⎜

⎞
⎠⎟

=
=
∑λ

Rearranging the quantities inside the probability statement by dividing through by 2
1
Xii

n
=∑  gives

P
X Xi

i

n

i
i

n

9 59

2

34 17

2

0 95

1 1

. .
.

= =
∑ ∑

≤ ≤

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

=λ

From the sample data, we fi nd that xii
n
=∑ =

1
33 22. , so the lower confi dence bound on λ is 

9 59

2

9 59

2 33 22
0 1443

1

. .

( . )
.

xi
i

n

=
∑

= =

and the upper confi dence bound is 

34 17

2

34 17

2 33 22
0 5143

1

. .

( . )
.

xi
i

n

=
∑

= =

The 95% two-sided CI on λ is 

0 1443 0 5143. .≤ ≤λ

The 95% confi dence interval on the mean call-handling time is found using the relationship between the mean μ of the 

exponential distribution and the parameter λ; that is, μ = 1/ λ. The resulting 95% CI on μ is 1 0 5143 1 1 0 1443/ . / / . ,≤ = ≤μ λ  or 

1 9444 6 9300. .≤ ≤μ

 Therefore, we are 95% confi dent that the mean call-handling time in this telephone network is between 1.9444 and 

6.9300 minutes.

Example 8-4 
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8-1.5 LARGE-SAMPLE CONFIDENCE INTERVAL FOR μ

We have assumed that the population distribution is normal with unknown mean and known 

standard deviation σ. We now present a large-sample CI for μ that does not require these 

assumptions. Let X
1
, X

2
, …, X

n 
be a random sample from a population with unknown mean 

μ and variance σ2. Now if the sample size n is large, the central limit theorem implies 

that X has approximately a normal distribution with mean μ and variance σ2/n. Therefore, 

Z X / n= − μ σ( ) ( ) has approximately a standard normal distribution. This ratio could be 

used as a pivotal quantity and manipulated as in Section 8-1.1 to produce an approximate CI 

for μ. However, the standard deviation σ is unknown. It turns out that when n is large, replac-

ing σ by the sample standard deviation S has little effect on the distribution of Z. This leads to 

the following useful result.

When n is large, the quantity
X

S / n

− μ

has an approximate standard normal distribution. Consequently,

 x z
s

n
x z

s

n
/ /−  ≤ μ ≤ +  α α2 2  (8-11)

is a large-sample confi dence interval for μ, with confi dence level of approximately 

100(1 – α)%.

Large-Sample 
Confi dence Interval 

on the Mean

Equation 8-11 holds regardless of the shape of the population distribution. Generally, n should 

be at least 40 to use this result reliably. The central limit theorem generally holds for n ≥ 30, 

but the larger sample size is recommended here because replacing s with S in Z results in 

additional variability.

Mercury Contamination An article in the 1993 volume of the Transactions of the American 
Fisheries Society reports the results of a study to investigate the mercury contamination in large-

mouth bass. A sample of fi sh was selected from 53 Florida lakes, and mercury concentration in the muscle tissue was 

measured (ppm). The mercury concentration values were

1.230 1.330 0.040 0.044 1.200 0.270

0.490 0.190 0.830 0.810 0.710 0.500

0.490 1.160 0.050 0.150 0.190 0.770

1.080 0.980 0.630 0.560 0.410 0.730

0.590 0.340 0.340 0.840 0.500 0.340

0.280 0.340 0.750 0.870 0.560 0.170

0.180 0.190 0.040 0.490 1.100 0.160

0.100 0.210 0.860 0.520 0.650 0.270

0.940 0.400 0.430 0.250 0.270

The summary statistics for these data are as follows:

Variable N Mean Median StDev Minimum Maximum Q1 Q3

Concentration 53 0.5250 0.4900 0.3486 0.0400 1.3300 0.2300 0.7900

Example 8-5
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Large-Sample Confi dence Interval for a Parameter
The large-sample confi dence interval for μ in Equation 8-11 is a special case of a more general 

result. Suppose that θ is a parameter of a probability distribution, and let Θ̂ be an estimator of θ. 

If Θ̂ (1) has an approximate normal distribution, (2) is approximately unbiased for θ, and (3) has 

standard deviation σ
Θ̂
 that can be estimated from the sample data, the quantity (  − 0)ˆ / ˆΘ Θ

σ  has an 

approximate standard normal distribution. Then a large-sample approximate CI for θ is given by

 ˆ ˆ
ˆ ˆθ − ≤ ≤ θ +z zα/ α/σ θ σ2 2Θ Θ (8-12)

Large-Sample 
Approximate 

Confi dence 
Interval

Figure 8-3 presents the histogram and normal probability plot of the mercury concentration data. Both plots indicate 

that the distribution of mercury concentration is not normal and is positively skewed. We want to fi nd an approximate 

95% CI on μ. Because n > 40, the assumption of normality is not necessary to use in Equation 8-11. The required 

quantities are n = 53, x , s= .  = .0 5250 0 3486, and z0 025 1 96. = . . The approximate 95% CI on μ is

x z
s

n
x z

s

n
−  ≤ μ ≤ +  . .0 025 0 025

0 5250 1 96
0 3486

53
0 5250 1 96

0 3486

53
. − .  . ≤ μ ≤ . + .  .

0 4311 0 6189. ≤ μ ≤ .

FIGURE 8-3 Mercury concentration in largemouth bass. (a) Histogram. (b) Normal probability plot.

Practical Interpretation: This interval is fairly wide because there is substantial variability in the mercury concentra-

tion measurements. A larger sample size would have produced a shorter interval.
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Maximum likelihood estimators usually satisfy the three conditions just listed, so Equation 8-12 

is often used when Θ̂ is the maximum likelihood estimator of θ. Finally, note that Equation 8-12 

can be used even when σΘ̂ is a function of other unknown parameters (or of θ). Essentially, we 

simply use the sample data to compute estimates of the unknown parameters and substitute those 

estimates into the expression for σΘ̂.
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 Problem available in WileyPLUS at instructor’s discretion. 

 Tutoring problem available in WileyPLUS at instructor’s discretion

8-1.  For a normal population with known variance σ2, 

answer the following questions:

(a) What is the confidence level for the interval x n− . σ2 14
≤ μ ≤ + . σx n2 14 ?

(b) What is the confidence level for the interval x n− . σ2 49

x n x n− . σ ≤ μ ≤ + . σ2 49 2 49 ?

(c) What is the confidence level for the interval x n− . σ1 85

≤ μ ≤ + . σx n1 85 ?

(d) What is the confidence level for the interval μ ≤ +x  
2 00. σ n?

(e) What is the confidence level for the interval x n− σ ≤1 96. μ?

8-2. For a normal population with known variance σ2:

(a) What value of z /α 2 in Equation 8-5 gives 98% confidence?

(b) What value of z /α 2 in Equation 8-5 gives 80% confidence?

(c) What value of z /α 2 in Equation 8-5 gives 75% confidence?

8-3.  Consider the one-sided confidence interval expres-

sions for a mean of a normal population.

(a) What value of zα would result in a 90% CI?

(b) What value of zα would result in a 95% CI?

(c) What value of zα would result in a 99% CI?

8-4.  A confidence interval estimate is desired for the gain 

in a circuit on a semiconductor device. Assume that gain is nor-

mally distributed with standard deviation s = 20.

(a) Find a 95% CI for m when n = 10 and x = .1000

(b) Find a 95% CI for m when n = 25 and x = .1000

(c) Find a 99% CI for m when n = 10 and x = .1000

(d) Find a 99% CI for m when n = 25 and x = .1000

(e) How does the length of the CIs computed change with the 

changes in sample size and confidence level?

8-5. A random sample has been taken from a normal distribu-

tion and the following confidence intervals constructed using the 

same data: (38.02, 61.98) and (39.95, 60.05)

(a) What is the value of the sample mean?

(b) One of these intervals is a 95% CI and the other is a 90% 

CI. Which one is the 95% CI and why?

8-6. A random sample has been taken from a normal distribu-

tion and the following confidence intervals constructed using the 

same data: (37.53, 49.87) and (35.59, 51.81)

(a) What is the value of the sample mean?

(b) One of these intervals is a 99% CI and the other is a 95% 

CI. Which one is the 95% CI and why?

8-7.  Consider the gain estimation problem in Exercise 8-4.

(a) How large must n be if the length of the 95% CI is to be 40?

(b) How large must n be if the length of the 99% CI is to be 40?

8-8. Following are two confidence interval estimates of the 

mean m of the cycles to failure of an automotive door latch 

mechanism (the test was conducted at an elevated stress level to 

accelerate the failure).

3124 9 3215 7 3110 5 3230 1. ≤ μ ≤ . . ≤ μ ≤ .

(a) What is the value of the sample mean cycles to failure?

(b) The confidence level for one of these CIs is 95% and for 

the other is 99%. Both CIs are calculated from the same 

sample data. Which is the 95% CI? Explain why.

8-9. Suppose that n = 100 random samples of water from a 

freshwater lake were taken and the calcium concentration (mil-

ligrams per liter) measured. A 95% CI on the mean calcium 

concentration is 0 49 0 82. .≤ μ ≤ .

(a) Would a 99% CI calculated from the same sample data be 

longer or shorter?

(b) Consider the following statement: There is a 95% chance 

that μ is between 0.49 and 0.82. Is this statement correct? 

Explain your answer.

(c) Consider the following statement: If n = 100 random sam-

ples of water from the lake were taken and the 95% CI on 

μ computed, and this process were repeated 1000 times, 

950 of the CIs would contain the true value of μ. Is this 

statement correct? Explain your answer.

8-10.  Past experience has indicated that the breaking 

strength of yarn used in manufacturing drapery material is nor-

mally distributed and that σ = 2 psi. A random sample of nine 

specimens is tested, and the average breaking strength is found 

to be 98 psi. Find a 95% two-sided confidence interval on the 

true mean breaking strength.

8-11.  The yield of a chemical process is being studied. From 

previous experience, yield is known to be normally distributed 

and σ = 3. The past five days of plant operation have resulted in 

the following percent yields: 91.6, 88.75, 90.8, 89.95, and 91.3. 

Find a 95% two-sided confidence interval on the true mean yield.

8-12.  The diameter of holes for a cable harness is known to 

have a normal distribution with σ = 0.01 inch. A random sample 

of size 10 yields an average diameter of 1.5045 inch. Find a 

99% two-sided confidence interval on the mean hole diameter.

8-13.  A manufacturer produces piston rings for an auto-

mobile engine. It is known that ring diameter is normally dis-

tributed with σ = 0.001 millimeters. A random sample of 15 

rings has a mean diameter of x = .74 036 millimeters.

(a) Construct a 99% two-sided confidence interval on the mean 

piston ring diameter.

(b) Construct a 99% lower-confidence bound on the mean pis-

ton ring diameter. Compare the lower bound of this confi-

dence interval with the one in part (a).

8-14. The life in hours of a 75-watt light bulb is known to be 

normally distributed with σ = 25 hours. A random sample of 20 

bulbs has a mean life of x = 1014 hours.

(a) Construct a 95% two-sided confidence interval on the 

mean life.

(b) Construct a 95% lower-confidence bound on the mean life. 

Compare the lower bound of this confidence interval with 

the one in part (a).

FOR SECTION 8-1Exercises 
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8-2  Confidence Interval on the Mean of a Normal 
Distribution, Variance Unknown

When we are constructing confidence intervals on the mean μ of a normal population when 

σ2 is known, we can use the procedure in Section 8-1.1. This CI is also approximately valid 

(because of the central limit theorem) regardless of whether or not the underlying population 

is normal so long as n is reasonably large (n ≥ 40, say). As noted in Section 8-1.5, we can 

even handle the case of unknown variance for the large-sample-size situation. However, when 

the sample is small and σ2 is unknown, we must make an assumption about the form of the 

underlying distribution to obtain a valid CI procedure. A reasonable assumption in many cases 

is that the underlying distribution is normal.

Many populations encountered in practice are well approximated by the normal distribu-

tion, so this assumption will lead to confidence interval procedures of wide applicability. In 

fact, moderate departure from normality will have little effect on validity. When the assump-

tion is unreasonable, an alternative is to use nonparametric statistical procedures that are valid 

for any underlying distribution.

8-15.  A civil engineer is analyzing the compressive 

strength of concrete. Compressive strength is normally distrib-

uted with σ2  = 1000(psi)2. A random sample of 12 specimens 

has a mean compressive strength of x = 3250 psi.

(a) Construct a 95% two-sided confidence interval on mean 

compressive strength.

(b) Construct a 99% two-sided confidence interval on mean 

compressive strength. Compare the width of this confi-

dence interval with the width of the one found in part (a).

8-16.  Suppose that in Exercise 8-14 we wanted the error in 

estimating the mean life from the two-sided confidence interval to 

be five hours at 95% confidence. What sample size should be used?

8-17.  Suppose that in Exercise 8-14 you wanted the total 

width of the two-sided confidence interval on mean life to be 

six hours at 95% confidence. What sample size should be used?

8-18.  Suppose that in Exercise 8-15 it is desired to esti-

mate the compressive strength with an error that is less than 15 

psi at 99% confidence. What sample size is required?

8-19.  By how much must the sample size n be increased if 

the length of the CI on μ in Equation 8-5 is to be halved?

8-20. If the sample size n is doubled, by how much is the 

length of the CI on μ in Equation 8-5 reduced? What happens 

to the length of the interval if the sample size is increased by a 

factor of four?

8-21.  An article in the Journal of Agricul-
tural Science [“The Use of Residual Maximum Likelihood to 

Model Grain Quality Characteristics of Wheat with Variety, 

Climatic and Nitrogen Fertilizer Effects” (1997, Vol. 128, pp. 

135–142)] investigated means of wheat grain crude protein 

content (CP) and Hagberg falling number (HFN) surveyed in 

the United Kingdom. The analysis used a variety of nitrogen 

fertilizer applications (kg N/ha), temperature (ºC), and total 

monthly rainfall (mm). The following data below describe 

temperatures for wheat grown at Harper Adams Agricultural 

College between 1982 and 1993. The temperatures measured 

in June were obtained as follows:

15.2 14.2 14.0 12.2 14.4 12.5

14.3 14.2 13.5 11.8 15.2

Assume that the standard deviation is known to be σ = 0.5.

(a) Construct a 99% two-sided confidence interval on the mean 

temperature.

(b) Construct a 95% lower-confidence bound on the mean 

temperature.

(c) Suppose that you wanted to be 95% confident that the error 

in estimating the mean temperature is less than 2 degrees 

Celsius. What sample size should be used?

(d) Suppose that you wanted the total width of the two-sided 

confidence interval on mean temperature to be 1.5 degrees 

Celsius at 95% confidence. What sample size should be used?

8-22. Ishikawa et al. (Journal of Bioscience and Bioengineering, 

2012) studied the adhesion of various biofilms to solid surfaces 

for possible use in environmental technologies. Adhesion assay 

is conducted by measuring absorbance at A
590

. Suppose that for 

the bacterial strain Acinetobacter, five measurements gave read-

ings of 2.69, 5.76, 2.67, 1.62 and 4.12 dyne-cm2. Assume that the 

standard deviation is known to be 0.66 dyne-cm2.

(a) Find a 95% confidence interval for the mean adhesion. 

(b) If the scientists want the confidence interval to be no 

wider than 0.55 dyne-cm2, how many observations should 

they take?

8-23. Dairy cows at large commercial farms often receive 

injections of bST (Bovine Somatotropin), a hormone used to 

spur milk production. Bauman et al. (Journal of Dairy Science, 

1989) reported that 12 cows given bST produced an average of 

28.0 kg/d of milk. Assume that the standard deviation of milk 

production is 2.25 kg/d.

(a) Find a 99% confidence interval for the true mean milk 

production.

(b) If the farms want the confidence interval to be no wider than 

±1.25 kg/d, what level of confidence would they need to use?
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Suppose that the population of interest has a normal distribution with unknown mean μ and 

unknown variance σ2. Assume that a random sample of size n, say, X
1
, X

2
, …, X

n
, is available, 

and let X and S2 be the sample mean and variance, respectively.

We wish to construct a two-sided CI on μ. If the variance σ2 is known, we know that 

Z X n= − μ σ( ) / ( / ) has a standard normal distribution. When σ2 is unknown, a logical pro-

cedure is to replace σ with the sample standard deviation S. The random variable Z now 

becomes T X S n= − μ( ) /( ). A logical question is what effect replacing σ with S has on the 

distribution of the random variable T. If n is large, the answer to this question is “very little,” 

and we can proceed to use the confidence interval based on the normal distribution from Sec-

tion 8-1.5. However, n is usually small in most engineering problems, and in this situation, a 

different distribution must be employed to construct the CI.

8-2.1 t DISTRIBUTION

Let X
1
, X

2
, … , X

n
 be a random sample from a normal distribution with unknown mean 

μ and unknown variance σ2. The random variable

 T
X

S / n
= − μ

 (8-13)

has a t distribution with n – 1 degrees of freedom.

t Distribution

The t probability density function is

     f x
k

k k x k
< x <

k /( ) =
Γ +[ ]

π Γ( ) ⋅
( ) +⎡

⎣
⎤
⎦

−∞ ∞+( )
( )1 2

2

1

12
1 2

   (8-14)

where k is the number of degrees of freedom. The mean and variance of the t distribution are 

zero and k k( )− 2  (for k > 2 ), respectively.

Several t distributions are shown in Fig. 8-4. The general appearance of the t distribution 

is similar to the standard normal distribution in that both distributions are symmetric and uni-

modal, and the maximum ordinate value is reached when the mean μ = 0. However, the t dis-

tribution has heavier tails than the normal; that is, it has more probability in the tails than does 

the normal distribution. As the number of degrees of freedom k → ∞, the limiting form of the 

t distribution is the standard normal distribution. Generally, the number of degrees of freedom 

for t is the number of degrees of freedom associated with the estimated standard deviation.

Appendix Table V provides percentage points of the t distribution. We will let tα,k
 be the 

value of the random variable T with k degrees of freedom above which we find an area (or 

probability) α. Thus, tα,k
 is an upper-tailed 100α percentage point of the t distribution with k 

degrees of freedom. This percentage point is shown in Fig. 8-5. In the Appendix Table V, the 

α values are the column headings, and the degrees of freedom are listed in the left column. To 

illustrate the use of the table, note that the t-value with 10 degrees of freedom having an area 

of 0.05 to the right is t
0.05,10 

= 1.812. That is,

P T > t P T >,10 0 05 10 10 1 812 0 05.( ) = .( ) = .

Because the t distribution is symmetric about zero, we have t
1–α,n

 = –tα,n
; that is, the t-value 

having an area of 1 – α to the right (and therefore an area of a to the left) is equal to the nega-

tive of the t-value that has area a in the right tail of the distribution. Therefore, t
0.95,10

 = –t
0.05,10

 = 

–1.812. Finally, because t ,α ∞ is the standard normal distribution, the familiar zα values appear 

in the last row of Appendix Table V.
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8-2.2 t CONFIDENCE INTERVAL ON μ

It is easy to find a 100(1 – α)% confidence interval on the mean of a normal distribution with 

unknown variance by proceeding essentially as we did in Section 8-1.1. We know that the dis-

tribution of T X S n= −μ( ) ( ) is t with n – 1 degrees of freedom. Letting t / ,nα −2 1 be the upper 

100α / 2 percentage point of the t distribution with n – 1 degrees of freedom, we may write

P t T t/ ,n / ,n− ≤ ≤( ) = −α − α −2 1 2 1 1 α

or

P t
X

S n
t/ ,n / ,n− ≤ − ≤

⎛
⎝⎜

⎞
⎠⎟

= −α − α −2 1 2 1 1
μ α

Rearranging this last equation yields

     P X t S n X t S n/ ,n / ,n− ≤ μ ≤ +( ) = − αα − α −2 1 2 1 1  (8-15)

This leads to the following definition of the 100(1 – α)% two-sided confidence interval on μ.

t0

FIGURE 8-5 Percentage points of the t 
distribution.

0

k = ` [N (0, 1)]

x

k = 10

k = 1

FIGURE 8-4 Probability density functions of several  
t distributions.

If x  and s are the mean and standard deviation of a random sample from a normal 

distribution with unknown variance σ2, a 100(1 – `)% confidence interval on l is 

given by

 x t s n x t s n/ ,n / ,n− ≤ μ ≤ +α − α −2 1 2 1  (8-16)

where t / ,nα −2 1 is the upper 100 2α  percentage point of the t distribution with n – 1 

degrees of freedom.

Confidence  
Interval on the  

Mean, Variance 
Unknown

The assumption underlying this CI is that we are sampling from a normal population. How-

ever, the t distribution-based CI is relatively insensitive or robust to this assumption. Check-

ing the normality assumption by constructing a normal probability plot of the data is a good 

general practice. Small to moderate departures from normality are not a cause for concern.

One-sided confidence bounds on the mean of a normal distribution are also of interest and 

are easy to find. Simply use only the appropriate lower or upper confidence limit from Equa-

tion 8-16 and replace t t/ ,n ,nα − α − .2 1 1 by 
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It is not as easy to select a sample size n to obtain a specifi ed length (or precision of estima-

tion) for this CI as it was in the known-σ case, because the length of the interval involves s (which 

is unknown before the data are collected), n, and t / ,nα −2 1. Note that the t-percentile depends on the 

sample size n. Consequently, an appropriate n can only be obtained through trial and error. The 

results of this will, of course, also depend on the reliability of our prior “guess” for σ.

Alloy Adhesion An article in the journal Materials Engineering (1989, Vol. II, No. 4, pp. 275–

281) describes the results of tensile adhesion tests on 22 U-700 alloy specimens. The load at speci-

men failure is as follows (in megapascals):

19.8 10.1 14.9 7.5 15.4 15.4
15.4 18.5 7.9 12.7 11.9 11.4
11.4 14.1 17.6 16.7 15.8

19.5 8.8 13.6 11.9 11.4

The sample mean is x  = 13.71, and the sample standard deviation is s = 3.55. Figures 8-6 and 8-7 show a box plot 

and a normal probability plot of the tensile adhesion test data, respectively. These displays provide good support for 

the assumption that the population is normally distributed. We want to fi nd a 95% CI on μ. Since n = 22, we have 

n – 1 = 21 degrees of freedom for t, so t
0.025,21

 = 2.080. The resulting CI is

x t s n x t s n/ ,n / ,n− ≤ μ ≤ +α − α −2 1 2 1

13 71 2 080 3 55 22 13 71 2 080 3 55 22. . ( . ) .− + . .( )≤ μ ≤
13 71 1 57 13 71 1 57. . . .− ≤ ≤ +μ

12 14 15 28. .≤ ≤μ
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FIGURE 8-6 Box and whisker plot for 
the load at failure data in Example 8-5.     

FIGURE 8-7 Normal probability plot of 
the load at failure data from Example 8-5.

Practical Interpretation: The CI is fairly wide because there is a lot of variability in the tensile adhesion test measure-

ments. A larger sample size would have led to a shorter interval.

Example 8-6

8-24.  Find the values of the following percentiles: t
0.025,15

, 

t
0.05,10

, t
0.10,20

, t
0.005,25

, and t
0.001,30

.

8-25.  Determine the t-percentile that is required to con-

struct each of the following two-sided confi dence intervals:

(a) Confi dence level = 95%, degrees of freedom = 12

(b) Confi dence level = 95%, degrees of freedom = 24

(c) Confi dence level = 99%, degrees of freedom = 13

(d) Confi dence level = 99.9%, degrees of freedom = 15

FOR SECTION 8-2Exercises
 Problem available in WileyPLUS at instructor’s discretion. 

 Tutoring problem available in WileyPLUS at instructor’s discretion
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8-26.  Determine the t-percentile that is required to con-

struct each of the following one-sided confidence intervals:

(a) Confidence level = 95%, degrees of freedom = 14

(b) Confidence level = 99%, degrees of freedom = 19

(c) Confidence level = 99.9%, degrees of freedom = 24

8-27. A random sample has been taken from a normal distri-

bution. Output from a software package follows:

Variable N Mean SE Mean StDev Varianc Sum

x 10 ? 0.507 1.605 ? 251.848

(a) Fill in the missing quantities.

(b) Find a 95% CI on the population mean.

8-28. A random sample has been taken from a normal distri-

bution. Output from a software package follows:

Variable N Mean SE Mean StDev Varianc Sum

x ? ? 1.58 6.11 ? 751.40

(a) Fill in the missing quantities.

(b) Find a 95% CI on the population mean.

8-29. A research engineer for a tire manufacturer is investigat-

ing tire life for a new rubber compound and has built 16 tires and 

tested them to end-of-life in a road test. The sample mean and 

standard deviation are 60,139.7 and 3645.94 kilometers. Find a 

95% confidence interval on mean tire life.

8-30.  An Izod impact test was performed on 20 specimens 

of PVC pipe. The sample mean is x  = 1.25 and the sample 

standard deviation is s = 0.25. Find a 99% lower confidence 

bound on Izod impact strength.

8-31.  A postmix beverage machine is adjusted to release 

a certain amount of syrup into a chamber where it is mixed 

with carbonated water. A random sample of 25 beverages was 

found to have a mean syrup content of x = 1 10.  fluid ounce and 

a standard deviation of s = 0.015 fluid ounce. Find a 95% CI on 

the mean volume of syrup dispensed.

8-32.  An article in Medicine and Science in Sports and Exer-
cise [“Maximal Leg-Strength Training Improves Cycling Econ-

omy in Previously Untrained Men” (2005, Vol. 37, pp. 131–136)] 

studied cycling performance before and after eight weeks of leg-

strength training. Seven previously untrained males performed 

leg-strength training three days per week for eight weeks (with 

four sets of five replications at 85% of one repetition maximum). 

Peak power during incremental cycling increased to a mean of 315 

watts with a standard deviation of 16 watts. Construct a 95% con-

fidence interval for the mean peak power after training.

8-33.  An article in Obesity Research [“Impaired Pressure 

Natriuresis in Obese Youths” (2003, Vol. 11, pp. 745–751)] 

described a study in which all meals were provided for 14 lean 

boys for three days followed by one stress test (with a video-

game task). The average systolic blood pressure (SBP) during 

the test was 118.3 mm HG with a standard deviation of 9.9 mm 

HG. Construct a 99% one-sided upper confidence interval for 

mean SBP.

8-34. An article in the Journal of Composite Materials 

(December 1989, Vol. 23, p. 1200) describes the effect of 

delamination on the natural frequency of beams made from 

composite laminates. Five such delaminated beams were 

subjected to loads, and the resulting frequencies (in hertz) were 

as follows:

230.66, 233.05, 232.58, 229.48, 232.58

Check the assumption of normality in the population. Calculate 

a 90% two-sided confidence interval on mean natural frequency.

8-35.  The Bureau of Meteorology of the Australian Gov-

ernment provided the mean annual rainfall (in millimeters) 

in Australia 1983–2002 as follows (http://www.bom.gov.au/ 

climate/change/rain03.txt):

499.2, 555.2, 398.8, 391.9, 453.4, 459.8, 483.7, 417.6, 469.2, 

452.4, 499.3, 340.6, 522.8, 469.9, 527.2, 565.5, 584.1, 727.3, 

558.6, 338.6

Check the assumption of normality in the population. Con-

struct a 95% confidence interval for the mean annual rainfall.

8-36.  The solar energy consumed (in trillion 

BTU) in the United States by year from 1989 to 2004 (source: 

U.S. Department of Energy, http://www.eia.doe.gov/emeu) is 

shown in the following table. Read down then across for year.

55.291 59.718 62.688 63.886

66.458 68.548 69.857 70.833
70.237 69.787 68.793 66.388
65.454 64.391 63.62 63.287

Check the assumption of normality in the population. Construct 

a 95% confidence interval for the mean solar energy consumed.

8-37. The brightness of a television picture tube can be evalu-

ated by measuring the amount of current required to achieve 

a particular brightness level. A sample of 10 tubes results in 

x = .317 2 and s = 15.7. Find (in microamps) a 99% confidence 

interval on mean current required. State any necessary assump-

tions about the underlying distribution of the data.

8-38. A particular brand of diet margarine was analyzed to 

determine the level of polyunsaturated fatty acid (in percent-

ages). A sample of six packages resulted in the following data: 

16.8, 17.2, 17.4, 16.9, 16.5, 17.1.

(a) Check the assumption that the level of polyunsaturated 

fatty acid is normally distributed.

(b) Calculate a 99% confidence interval on the mean μ. Provide 

a practical interpretation of this interval.

(c) Calculate a 99% lower confidence bound on the mean. 

Compare this bound with the lower bound of the two-sided 

confidence interval and discuss why they are different.

8-39. The compressive strength of concrete is being tested by 

a civil engineer who tests 12 specimens and obtains the fol-

lowing data:

2216 2237 2249 2204

2225 2301 2281 2263

2318 2255 2275 2295

(a) Check the assumption that compressive strength is normally 

distributed. Include a graphical display in your answer.

(b) Construct a 95% two-sided confidence interval on the mean 

strength.

(c) Construct a 95% lower confidence bound on the mean 

strength. Compare this bound with the lower bound of the 

two-sided confidence interval and discuss why they are 

different.
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8-40.  A machine produces metal rods used in an auto-

mobile suspension system. A random sample of 15 rods is 

selected, and the diameter is measured. The resulting data (in 

millimeters) are as follows:

8.24 8.25 8.20 8.23 8.24

8.21 8.26 8.26 8.20 8.25

8.23 8.23 8.19 8.28 8.24

(a) Check the assumption of normality for rod diameter.

(b) Calculate a 95% two-sided confidence interval on mean 

rod diameter.

(c) Calculate a 95% upper confidence bound on the mean. 

Compare this bound with the upper bound of the two-sided 

confidence interval and discuss why they are different.

8-41.  An article in Computers & Electrical Engineering 

[“Parallel Simulation of Cellular Neural Networks” (1996, 

Vol. 22, pp. 61–84)] considered the speedup of cellular neu-

ral networks (CNN) for a parallel general-purpose computing 

architecture based on six transputers in different areas. The 

data follow:

3.775302 3.350679 4.217981 4.030324 4.639692

4.139665 4.395575 4.824257 4.268119 4.584193

4.930027 4.315973 4.600101

(a) Is there evidence to support the assumption that speedup of 

CNN is normally distributed? Include a graphical display 

in your answer.

(b) Construct a 95% two-sided confidence interval on the mean 

speedup.

(c) Construct a 95% lower confidence bound on the mean 

speedup.

8-42.  The wall thickness of 25 glass 2-liter bottles was 

measured by a quality-control engineer. The sample mean was 

x = .4 05 millimeters, and the sample standard deviation was 

s = 0.08 millimeter. Find a 95% lower confidence bound for 

mean wall thickness. Interpret the interval obtained.

8-43. An article in Nuclear Engineering International (Febru-

ary 1988, p. 33) describes several characteristics of fuel rods 

used in a reactor owned by an electric utility in Norway. Meas-

urements on the percentage of enrichment of 12 rods were 

reported as follows:

2.94 3.00 2.90 2.75 3.00 2.95

2.90 2.75 2.95 2.82 2.81 3.05

(a) Use a normal probability plot to check the normality 

assumption.

(b) Find a 99% two-sided confidence interval on the mean 

percentage of enrichment. Are you comfortable with 

the statement that the mean percentage of enrichment is 

2.95%? Why?

8-44. Using the data from Exercise 8-22 on adhesion without 

assuming that the standard deviation is known,

(a) Check the assumption of normality by using a normal 

probability plot.

(b) Find a 95% confidence interval for the mean adhesion.

8-45. A healthcare provider monitors the number of CAT 

scans performed each month in each of its clinics. The most 

recent year of data for a particular clinic follows (the reported 

variable is the number of CAT scans each month expressed 

as the number of CAT scans per thousand members of the 

health plan): 

2.31, 2.09, 2.36, 1.95, 1.98, 2.25, 2.16, 2.07, 1.88, 1.94, 1.97, 

2.02.

(a) Find a 95% two-sided CI on the mean number of CAT 

scans performed each month at this clinic.

(b) Historically, the mean number of scans performed by all 

clinics in the system has been 1.95. If there any evidence 

that this particular clinic performs more CAT scans on 

average than the overall system average?

8-3  Confidence Interval on the Variance and  
Standard Deviation of a Normal Distribution

Sometimes confidence intervals on the population variance or standard deviation are needed. 

When the population is modeled by a normal distribution, the tests and intervals described 

in this section are applicable. The following result provides the basis of constructing these 

confidence intervals.

Let X
1
, X

2
, …, X

n
 be a random sample from a normal distribution with mean μ and 

variance σ2, and let S2 be the sample variance. Then the random variable

 X
n S2

2

2

1
=

−( ) 
σ

 (8-17)

has a chi-square χ2( ) distribution with n – 1 degrees of freedom.

b2  Distribution
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The probability density function of a χ2
 random variable is

           f x
k /

x e x >k /
k / x /( ) =

Γ( ) 
( )− −1

2 2
0

2

2 1 2
       (8-18)

where k is the number of degrees of freedom. The mean and variance of the χ2
 distribution 

are k and 2k, respectively. Several chi-square distributions are shown in Fig. 8-8. Note that the 

chi-square random variable is non-negative and that the probability distribution is skewed to 

the right. However, as k increases, the distribution becomes more symmetric. As k ,→ ∞  the 

limiting form of the chi-square distribution is the normal distribution.

The percentage points of the χ2
 distribution are given in Table IV of the Appendix. Define 

χα ,k
2

 as the percentage point or value of the chi-square random variable with k degrees of freedom 

such that the probability that X 2 exceeds this value is a. That is,

P X > f u du,k

,k

2 2

2

χ( ) = ( ) = αα

∞

α

∫
χ

This probability is shown as the shaded area in Fig. 8-9(a). To illustrate the use of Table IV, 

note that the areas α are the column headings and the degrees of freedom k are given in the 

left column. Therefore, the value with 10 degrees of freedom having an area (probability) 

of 0.05 to the right is χ = . ..0 05 10

2
18 31,  This value is often called an upper 5% point of chi-

square with 10 degrees of freedom. We may write this as a probability statement as follows:

P X > P X >,
2

0 05 10

2 2 18 31 0 05χ( ) = .( ) = ..

0 5 10 15 20 25 x

k = 10

k = 5

k = 2

f(x)

FIGURE 8-8  
Probability density 

functions of several 
χ2

 distributions.

(a)

0

f (x) f (x)

x

(b)

x2
0.95, 100

0.05 0.05

= 3.94

x2
0.05, 10

= 18.31

FIGURE 8-9 Percentage point of the χ2
 distribution. (a) The percentage point χα,k

2
.  

(b) The upper percentage point χ
2

0.05,10 18.31=  and the lower percentage point χ2

0.95,10 3.94= .
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Conversely, a lower 5% point of chi-square with 10 degrees of freedom would be χ =.0 95 10
2 3 94, .

(from Appendix A). Both of these percentage points are shown in Figure 8-9(b).

The construction of the 100(1 – α)% CI for σ2 is straightforward. Because

X
n S2

2

2

1
=

−( )
σ

is chi-square with n – 1 degrees of freedom, we may write

P X/ ,n / ,nχ ≤ ≤ χ( ) = − α−α − α −1 2 1

2 2 2
2 1 1

so that

P
n S

/ ,n / ,nχ ≤ −( )
σ

≤ χ⎛

⎝⎜
⎞

⎠⎟
= − α−α − α −1 2 1

2
2

2 2 1
21

1

This last equation can be rearranged as

P
n s n s

/ ,n / ,n

−( )
χ

≤ σ ≤
−( )

χ
⎛

⎝⎜
⎞

⎠⎟
= −

α − −α −

1 1
1

2

2 1
2

2
2

1 2 1
2

α

This leads to the following defi nition of the confi dence interval for σ2.

If s2 is the sample variance from a random sample of n observations from a normal dis-

tribution with unknown variance σ2, then a 100(1 – `)% confi dence interval on r2 is

 
n s n s

/ ,n / ,n

−( )
χ

≤ σ ≤
−( )

χα − −α −

1 12

2 1
2

2
2

1 2 1
2

 (8-19)

where χα −/ ,n2 1
2

 and χ −α −1 2 1
2

/ ,n  are the upper and lower 100 2α  percentage points of 

the chi-square distribution with n – 1 degrees of freedom, respectively. A confi dence 

interval for σ has lower and upper limits that are the square roots of the correspond-

ing limits in Equation 8-19.

Confi dence Interval 
on the Variance

It is also possible to fi nd a 100(1 – α)% lower confi dence bound or upper confi dence 

bound on σ2.

The 100(1 – α)% lower and upper confi dence bounds on σ2 are

 
n s n s

,n ,n

−( )
χ

≤ σ σ ≤
−( )

χα − −α −

1 12

1
2

2 2
2

1 1
2

and  (8-20)

respectively.

One-Sided Confi dence 
Bounds on the 

Variance

The CIs given in Equations 8-19 and 8-20 are less robust to the normality assumption. The distribution of n S−( ) σ1 2 2

can be very different from the chi-square if the underlying population is not normal.

Detergent Filling An automatic fi lling machine is used to fi ll bottles with liquid detergent. A 

random sample of 20 bottles results in a sample variance of fi ll volume of s2 = 0.01532 (fl uid 

ounce). If the variance of fi ll volume is too large, an unacceptable proportion of bottles will be under- or overfi lled. We 

will assume that the fi ll volume is approximately normally distributed. A 95% upper confi dence bound is found from 

Equation 8-26 as follows:

σ ≤
−( )

χ
.

2
2

0 95 19

2

1n s

,

Example 8-7
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or

σ ≤ ( ) = ( )2 219 0 0153

10 117
0 0287

.

.
. fluid ounce

This last expression may be converted into a confi dence interval on the standard deviation σ by taking the square root 

of both sides, resulting in

σ ≤ 0.17

Practical Interpretation: Therefore, at the 95% level of confi dence, the data indicate that the process standard devia-

tion could be as large as 0.17 fl uid ounce. The process engineer or manager now needs to determine whether a standard 

deviation this large could lead to an operational problem with under- or over-fi lled bottles.

8-46.  Determine the values of the following percentiles:

χ χ χ χ χ χ. . . . . .0 05 10
2

0 025 15
2

0 01 12
2

0 95 20
2

0 99 18
2

0 995, , , , , ,, , , , , 116
2

0 005 25
2, .and χ . ,

8-47. Determine the χ2
 percentile that is required to construct 

each of the following CIs:

(a) Confi dence level = 95%, degrees of freedom = 24, one-

sided (upper)

(b) Confi dence level = 99%, degrees of freedom = 9, one-sided 

(lower)

(c) Confi dence level = 90%, degrees of freedom = 19, two-sided.

8-48.  A rivet is to be inserted into a hole. A random sample 

of n = 15 parts is selected, and the hole diameter is measured. 

The sample standard deviation of the hole diameter measure-

ments is s = 0.008 millimeters. Construct a 99% lower confi -

dence bound for σ2.

8-49. Consider the situation in Exercise 8-48. Find a 99% 

lower confi dence bound on the standard deviation.

8-50.  The sugar content of the syrup in canned peaches is 

normally distributed. A random sample of n = 10 cans yields 

a sample standard deviation of s = 4.8 milligrams. Calculate a 

95% two-sided confi dence interval for σ.

8-51.  The percentage of titanium in an alloy used in aero-

space castings is measured in 51 randomly selected parts. The 

sample standard deviation is s = 0.37. Construct a 95% two-

sided confi dence interval for σ.

8-52.  An article in Medicine and Science in Sports and 
Exercise [“Electrostimulation Training Effects on the Physi-

cal Performance of Ice Hockey Players” (2005, Vol. 37, pp. 

455–460)] considered the use of electromyostimulation (EMS) 

as a method to train healthy skeletal muscle. EMS sessions 

consisted of 30 contractions (4-second duration, 85 Hz) and 

were carried out three times per week for three weeks on 17 ice 

hockey players. The 10-meter skating performance test showed 

a standard deviation of 0.09 seconds. Construct a 95% confi -

dence interval of the standard deviation of the skating perfor-

mance test.

8-53.  An article in Urban Ecosystems, “Urbani-

zation and Warming of Phoenix (Arizona, USA): Impacts, Feed-

backs and Mitigation” (2002, Vol. 6, pp. 183–203), mentions 

that Phoenix is ideal to study the effects of an urban heat island 

because it has grown from a population of 300,000 to approxi-

mately 3 million over the last 50 years, which is a period with a 

continuous, detailed climate record. The 50-year averages of the 

mean annual temperatures at eight sites in Phoenix follow. Check 

the assumption of normality in the population with a probability 

plot. Construct a 95% confi dence interval for the standard devia-

tion over the sites of the mean annual temperatures.

Site Average Mean 
Temperature (°C)

Sky Harbor Airport 23.3

Phoenix Greenway 21.7

Phoenix Encanto 21.6

Waddell 21.7

Litchfi eld 21.3

Laveen 20.7

Maricopa 20.9

Harlquahala 20.1 

8-54.  An article in Cancer Research [“Analyses of Lit-

ter-Matched Time-to-Response Data, with Modifi cations for 

Recovery of Interlitter Information” (1977, Vol. 37, pp. 3863–

3868)] tested the tumorigenesis of a drug. Rats were randomly 

selected from litters and given the drug. The times of tumor 

appearance were recorded as follows:

101, 104, 104, 77, 89, 88, 104, 96, 82, 70, 89, 91, 39, 103, 93, 

85, 104, 104, 81, 67, 104, 104, 104, 87, 104, 89, 78, 104, 86, 

76, 103, 102, 80, 45, 94, 104, 104, 76, 80, 72, 73

Calculate a 95% confi dence interval on the standard deviation 

of time until a tumor appearance. Check the assumption of 

FOR SECTION 8-3Exercises
 Problem available in WileyPLUS at instructor’s discretion. 

 Tutoring problem available in WileyPLUS at instructor’s discretion
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normality of the population and comment on the assumptions 

for the confidence interval.

8-55.  An article in Technometrics (1999, Vol. 41, pp. 202–

211) studied the capability of a gauge by measuring the weight 

of paper. The data for repeated measurements of one sheet of 

paper are in the following table. Construct a 95% one-sided 

upper confidence interval for the standard deviation of these 

measurements. Check the assumption of normality of the data 

and comment on the assumptions for the confidence interval.

Observations

3.481 3.448 3.485 3.475 3.472

3.477 3.472 3.464 3.472 3.470

3.470 3.470 3.477 3.473 3.474

8-56.  An article in the Australian Journal of Agricultural 
Research [“Non-Starch Polysaccharides and Broiler Perfor-

mance on Diets Containing Soyabean Meal as the Sole Protein 

Concentrate” (1993, Vol. 44(8), pp. 1483–1499)] determined 

that the essential amino acid (Lysine) composition level of soy-

bean meals is as shown here (g/kg):

22.2 24.7 20.9 26.0 27.0

24.8 26.5 23.8 25.6 23.9

(a) Construct a 99% two-sided confidence interval for σ2.

(b) Calculate a 99% lower confidence bound for σ2.

(c) Calculate a 90% lower confidence bound for σ.

(d) Compare the intervals that you have computed.

8-57. From the data on the pH of rain in Ingham County, 

Michigan: 

5.47 5.37 5.38 4.63 5.37 3.74 3.71 4.96 4.64 5.11 5.65 

5.39 4.16 5.62 4.57 4.64 5.48 4.57 4.57 4.51 4.86 4.56 

4.61 4.32 3.98 5.70 4.15 3.98 5.65 3.10 5.04 4.62 4.51 

4.34 4.16 4.64 5.12 3.71 4.64 

Find a two-sided 95% confidence interval for the standard 

deviation of pH.

8-58. From the data on CAT scans in Exercise 8-45 

(a) Find a two-sided 95% confidence interval for the standard 

deviation.

(b) What should you do to address any reservations about the 

confidence interval you found in part (a)?

8-4  Large-Sample Confidence Interval  
for a Population Proportion

It is often necessary to construct confidence intervals on a population proportion. For exam-

ple, suppose that a random sample of size n has been taken from a large (possibly infinite) 

population and that X n( )≤  observations in this sample belong to a class of interest. Then 

P̂ X n=  is a point estimator of the proportion of the population p that belongs to this class. 

Note that n and p are the parameters of a binomial distribution. Furthermore, from Chapter 4 

we know that the sampling distribution of P̂  is approximately normal with mean p and vari-

ance p p n( ) ,1−  if p is not too close to either 0 or 1 and if n is relatively large. Typically, to 

apply this approximation we require that np and n(1 – p) be greater than or equal to 5. We will 

use the normal approximation in this section.

If n is large, the distribution of

Z
X np

np p

P p

p p

n

= −
−( )

= −
−( )1 1

ˆ

is approximately standard normal.

Normal  
Approximation  
for a Binomial 

Proportion

To construct the confidence interval on p, note that

P z Z z/ /− ≤ ≤( ) − αα α2 2 1�

so

P z
P p

p p

n

z/ /− ≤ −
−( )

≤

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

− αα α2 2

1
1

ˆ
�
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This may be rearranged as

P P z
p p

n
p P z

p p

n
/ / −  

−( ) ≤ ≤ +
−( )⎛

⎝
⎜

⎞

⎠
⎟ − αα α

ˆ ˆ
2 2

1 1
1�   (8-21)

The quantity p p n( )1− /  in Equation 8-21 is called the standard error of the point estimator P̂.
This was discussed in Chapter 7. Unfortunately, the upper and lower limits of the confi dence 

interval obtained from Equation 8-21 contain the unknown parameter p. However, as sug-

gested at the end of Section 8-1.5, a solution that is often safi sfactory is to replace p by P̂  in 

the standard error, which results in

P P z
P P

n
p P z

P P

n
/ / −  

−( )
≤ ≤ +

−( )⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

− αα α
ˆ

ˆ ˆ
ˆ

ˆ ˆ

2 2

1 1
1�  (8-22)

This leads to the approximate 100(1 – α)% confi dence interval on p.

If p^  is the proportion of observations in a random sample of size n that belongs to a 

class of interest, an approximate 100(1 – α)% confi dence interval on the proportion 

p of the population that belongs to this class is

 ˆ
ˆ ˆ

ˆ
ˆ ˆ

p z
p p

n
p p z

p p

n
/ /−

−( ) ≤ ≤ +
−( )

α α2 2

1 1
 (8-23)

where z /α 2 is the upper α / 2 percentage point of the standard normal distribution.

Approximate 
Confi dence 

Interval on a 
Binomial 

Proportion

This procedure depends on the adequacy of the normal approximation to the binomial. To 

be reasonably conservative, this requires that np and n(1 – p) be greater than or equal to 5. 

In situations when this approximation is inappropriate, particularly in cases when n is small, 

other methods must be used. Tables of the binomial distribution could be used to obtain a con-

fi dence interval for p. However, we could also use numerical methods that are implemented 

on the binomial probability mass function in some computer program.

Crankshaft Bearings In a random sample of 85 automobile engine crankshaft bearings, 10 

have a surface fi nish that is rougher than the specifi cations allow. Therefore, a point estimate of 

the proportion of bearings in the population that exceeds the roughness specifi cation is p̂ x / n /= = = . .10 85 0 12  

A 95% two-sided confi dence interval for p is computed from Equation 8-23 as

ˆ
ˆ ˆ

ˆ
ˆ ˆ

. .p z
p p

n
p p z

p p

n
−

−( ) ≤ ≤ +
−( )

0 025 0 025

1 1

or

0 12 1 96
0 12 0 88

85
0 12 1 96

0 12 0 88

85
. .

. .
. .

. .
− ( ) ≤ ≤ + ( )

p

which simplifi es to

0 0509 0 2243. .≤ ≤p

Practical Interpretation: This is a wide CI. Although the sample size does not appear to be small (n = 85), the value 

of p̂ is fairly small, which leads to a large standard error for p̂ contributing to the wide CI.

Example 8-8
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Choice of Sample Size
Because P̂  is the point estimator of p, we can defi ne the error in estimating p by P̂  as 

E p P= − .| |ˆ  Note that we are approximately 100(1 – α)% confi dent that this error is less 

than z p p / n/α − .2 1( )  For instance, in Example 8-8, we are 95% confi dent that the sample

proportion p̂ = .0 12 differs from the true proportion p by an amount not exceeding 0.07.

In situations when the sample size can be selected, we may choose n to be 100(1 – α)% 

confi dent that the error is less than some specifi ed value E. If we set E z p p / n/= −α 2 1( )  and 

solve for n, the appropriate sample size is

 n
z

E
p p/= ⎛

⎝⎜
⎞
⎠⎟

−( )α  2

2

1  (8-24)

Sample Size for a 
Specifi ed Error on a 
Binomial Proportion

An estimate of p is required to use Equation 8-24. If an estimate p̂ from a previous sam-

ple is available, it can be substituted for p in Equation 8-24, or perhaps a subjective estimate 

can be made. If these alternatives are unsatisfactory, a preliminary sample can be taken, p̂
computed, and then Equation 8-24 used to determine how many additional observations are 

required to estimate p with the desired accuracy. Another approach to choosing n uses the 

fact that the sample size from Equation 8-24 will always be a maximum for p = 0.5 [that is, 

p p1 −( ) ≤ 0 25.  with equality for p = 0.5], and this can be used to obtain an upper bound on 

n. In other words, we are at least 100(1 – α)% confi dent that the error in estimating p by P̂  is 

less than E if the sample size is

 n
z

E
/= ⎛

⎝⎜
⎞
⎠⎟ ( )α  2

2

0 25.  (8-25)

Crankshaft Bearings Consider the situation in Example 8-8. How large a sample is required if we 

want to be 95% confi dent that the error in using p̂ to estimate p is less than 0.05? Using p̂ = 0.12 as 

an initial estimate of p, we fi nd from Equation 8-24 that the required sample size is

n
z

E
p p= ⎛

⎝⎜
⎞
⎠⎟

 −( ) = .
.

⎛
⎝⎜

⎞
⎠⎟

 .( ) ≅.0 025

2 2

1
1 96

0 05
0 12 0 88 163ˆ ˆ .

If we wanted to be at least 95% confi dent that our estimate p̂ of the true proportion p was within 0.05 regardless of the 

value of p, we would use Equation 8-25 to fi nd the sample size

n
z

E
= ⎛

⎝⎜
⎞
⎠⎟

 .( ) = .
.

⎛
⎝⎜

⎞
⎠⎟

 .( ) ≅.0 025

2 2

0 25
1 96

0 05
0 25 385

Practical Interpretation: Notice that if we have information concerning the value of p, either from a preliminary 

sample or from past experience, we could use a smaller sample while maintaining both the desired precision of estima-

tion and the level of confi dence.

Example 8-9

One-Sided Confi dence Bounds
We may fi nd approximate one-sided confi dence bounds on p by using a simple modifi cation 

of Equation 8-23.
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A Different Cofi dence interval on the Binomial Proportion
There is a different way to construct a CI on a binomial proportion than the traditional approach 

in Equation 8-23. Starting with Equation 8-22 and replacing the inequalities with an equality 

and solving the resulting quadratic equation for p results in

p
p

z

n
z

p p

n

z

n
z n

=
+ ±

−( ) +

+

ˆ
ˆ ˆ

/ /

/

/
α α

α

α
2 2

2

2

2

2

2

2

2

1

4

1

This implies that a two-sided CI on a proportion p is as follows:

UCL
p

z

n
z

p p

n

z

n
z n

LCL
p

z

=
+ +

−( ) +

+

=
+

ˆ
ˆ ˆ

ˆ

/ /

/

/

/
α α

α

α

α
2 2

2

2

2

2

2

2

2

2

2

1

4

1

2nn
z

p p

n

z

n
z n

−
−( ) +

+

α
α

α

/

ˆ ˆ
/

/

2

2

2

2

1

4

1

2

2

        (8-27)

The article by Agresti and Coull in The American Statistician (“Approximate Better Than 

‘Exact’ for Interval Estimation of a Binomial Proportion,” 1998, pp. 119–126) reports that the 

actual confi dence level for the CI in Equation 8-27 is closer to the “advertised” or nominal level 

for almost all values of α and p than for the traditional CI in Equation 8-23. The authors also 

report that this new interval can be used with nearly all sample sizes. So the requirements that 
np̂ ≥ 5 or 10 or n p( )1 5− ≥ˆ  or 10 are not too important. If the sample size is large, the quantity 
z nα / )2

2 /(2  will be small relative to p̂, z aα / /( )2
2 24  will be small relative to ˆ( ˆ ) /p p n1− , and z nα / /2

2

will be small, so as a result the Agresti-Coull CI in Equation 8-27 will reduce to the traditional 

CI given in Equation 8-23. 

The approximate 100(1 – α)% lower and upper confi dence bounds are

 ˆ
ˆ ˆ

ˆ
ˆ ˆ

p z
p p

n
p p p z

p p

n
−  

−( ) ≤ ≤ +  
−( )

α α
1 1

and  (8-26)

respectively.

Approximate 
One-Sided Confi dence 
Bounds on a Binomial 

Proportion

The Agresti-Coull CI on a Proportion Reconsider the crankshaft bearing data introduced in 

Example 8-8. In that example we reported that ˆ .p = 0 12 and n = 85. The traditional 95% CI was

0 0509 0 2243. .≤ ≤p

To construct the new Agresti-Coull CI, we use Equation 8-27:

UCL
p

z

n
z

p p

n

z

n
z n

=
+ +

−( ) +

+
=

+ˆ
ˆ ˆ

.
.
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/
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α

α
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2
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2
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)
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( )
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+ +

+
=

=LCL
p ++ −
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=

+ −z

n
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z

n
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α
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ˆ ˆ
.

.

( )
2 2

2

2

2

2

2

2

2

2

1

4

1

0 12
1 96

2 85
1..

. ( . ) .
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The two CIs would agree more closely if the sample size were larger.

Example 8-10
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8-59. The fraction of defective integrated circuits produced 

in a photolithography process is being studied. A random sample 

of 300 circuits is tested, revealing 13 defectives.

(a) Calculate a 95% two-sided CI on the fraction of defective 

circuits produced by this particular tool.

(b) Calculate a 95% upper confidence bound on the fraction of 

defective circuits.

8-60. An article in Knee Surgery, Sports Traumatology,
Arthroscopy [“Arthroscopic Meniscal Repair with an Absorba-

ble Screw: Results and Surgical Technique” (2005, Vol. 13, pp. 

273–279)] showed that only 25 out of 37 tears (67.6%) located 

between 3 and 6 mm from the meniscus rim were healed.

(a) Calculate a two-sided 95% confidence interval on the pro-

portion of such tears that will heal.

(b) Calculate a 95% lower confidence bound on the proportion 

of such tears that will heal.

8-61. The 2004 presidential election exit polls from the 

critical state of Ohio provided the following results. The exit 

polls had 2020 respondents, 768 of whom were college gradu-

ates. Of the college graduates, 412 voted for George Bush.

(a) Calculate a 95% confidence interval for the proportion of 

college graduates in Ohio who voted for George Bush.

(b) Calculate a 95% lower confidence bound for the proportion 

of college graduates in Ohio who voted for George Bush.

8-62. Of 1000 randomly selected cases of lung cancer, 

823 resulted in death within 10 years.

(a) Calculate a 95% two-sided confidence interval on the death 

rate from lung cancer.

(b) Using the point estimate of p obtained from the preliminary 

sample, what sample size is needed to be 95% confident that 

the error in estimating the true value of p is less than 0.03?

(c) How large must the sample be if you wish to be at least 

95% confident that the error in estimating p is less than 

0.03, regardless of the true value of p?

8-63. An article in the Journal of the American Statistical 
Association (1990, Vol. 85, pp. 972–985) measured the weight 

of 30 rats under experiment controls. Suppose that 12 were 

underweight rats.

(a) Calculate a 95% two-sided confidence interval on the true 

proportion of rats that would show underweight from the 

experiment.

(b) Using the point estimate of p obtained from the preliminary 

sample, what sample size is needed to be 95% confident that 

the error in estimating the true value of p is less than 0.02?

(c) How large must the sample be if you wish to be at least 

95% confident that the error in estimating p is less than 

0.02, regardless of the true value of p?

8-64. A random sample of 50 suspension helmets used 

by motorcycle riders and automobile race-car drivers was 

subjected to an impact test, and some damage was observed on 

18 of these helmets.

(a) Find a 95% two-sided confidence interval on the true pro-

portion of helmets that would show damage from this test.

(b) Using the point estimate of p from the 50 helmets, how 

many helmets must be tested to be 95% confident that the 

error in estimating p is less than 0.02?

(c) How large must the sample be if we wish to be at least 95% 

confident that the error in estimating p is less than 0.02 

regardless of the true value of p?

8-65. The Arizona Department of Transportation wishes to 

survey state residents to determine what proportion of the popu-

lation would like to increase statewide highway speed limits 

from 65 mph to 75 mph. How many residents does the depart-

ment need to survey if it wants to be at least 99% confident that 

the sample proportion is within 0.05 of the true proportion?

8-66. A study is to be conducted of the percentage of 

homeowners who own at least two television sets. How large a 

sample is required if we wish to be 99% confident that the error 

in estimating this quantity is less than 0.017?

8-67. The U.S. Postal Service (USPS) has used optical character 

recognition (OCR) since the mid-1960s. In 1983, USPS began 

deploying the technology to major post offices throughout the 

country (www.britannica.com). Suppose that in a random sample 

of 500 handwritten zip code digits, 466 were read correctly. 

(a) Construct a 95% confidence interval for the true proportion 

of correct digits that can be automatically read.

(b) What sample sample size is needed to reduce the margin of 

error to 1%?

(c) How would the answer to part (b) change if you had to assume 

that the machine read only one-half of the digits correctly?

8-68. Information on a packet of seeds claims that 93% of 

them will germinate. Of the 200 seeds that I planted, only 180 

germinated.

(a) Find a 95% confidence interval for the true proportion of 

seeds that germinate based on this sample.

(b) Does this seem to provide evidence that the claim is wrong? 

8-69. Use the data from Exercise 8-59 to compute a two-sided 

Agresti-Coull CI on the proportion of defective circuits. Com-

pare and discuss the CI to the one computed in Exercise 8-59.

8-70. Use the data from Exercise 8-60 to compute a two-sided 

Agresti-Coull CI on the proportion of tears that will heal. Com-

pare and discuss the CI to the one computed in Exercise 8-60.

8-71. Use the data from Exercise 8-66 to compute a two-sided 

Agresti-Coull CI on the proportion of correct digits that can 

be automatically read. Compare and discuss the CI to the one 

computed in Exercise 8-66.

8-72. Use the data from Exercise 8-68 to compute a two-sided 

Agresti-Coull CI on the proportion of seeds that germinate. Com-

pare and discuss the CI to the one computed in Exercise 8-68.

FOR SECTION 8-4Exercises
 Problem available in WileyPLUS at instructor’s discretion. 

 Tutoring problem available in WileyPLUS at instructor’s discretion
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8-5 Guidelines for Constructing Confidence Intervals
The most difficult step in constructing a confidence interval is often the match of the appropri-

ate calculation to the objective of the study. Common cases are listed in Table 8-1 along with 

the reference to the section that covers the appropriate calculation for a confidence interval 

test. Table 8-1 provides a simple road map to help select the appropriate analysis. Two primary 

comments can help identify the analysis:

1.  Determine the parameter (and the distribution of the data) that will be bounded by the con-

fidence interval or tested by the hypothesis.

2.  Check if other parameters are known or need to be estimated.

8-1  The Roadmap for Constructing Confidence Intervals and Performing Hypothesis Tests,  
One-Sample Case

Parameter to Be Bounded 
by the Confidence 
Interval or Tested with a 
Hypothesis? Symbol Other Parameters?

Confidence 
Interval 
Section

Hypothesis 
Test Section Comments

Mean of normal 
distribution

μ Standard deviation σ 
known

8-1 9-2 Large sample size is often 
taken to be n ≥ 40

Mean of arbitrary distribu-
tion with large sample size

μ Sample size large 
enough that central limit 
theorem applies and σ 
is essentially known

   8-1.5    9-2.5

Mean of normal 
distribution

μ Standard deviation σ 
unknown and estimated

8-2 9-3

Variance (or standard 
deviation) of normal 
distribution

σ2 Mean μ unknown and 
estimated

8-3 9-4

Population proportion p None 8-4 9-5

In Chapter 9, we will study a procedure closely related to confidence intervals called 

hypothesis testing. Table 8-1 can be used for those procedures also. This road map will be 

extended to more cases in Chapter 10.

8.6 Bootstrap Confidence Interval
In Section 7-3.4, we saw how a computer-intensive technique called the bootstrap could be used 

to find the estimated standard error of a statistic, say ˆ.θ  The bootstrap technique can also be used 

to find confidence intervals. These bootstrap can be useful in situations in which a “standard” CI 

is not readily available. To illustrate the general approach, let’s consider a case for which there 

is a standard CI, the 100(1 – α)% CI on the mean of a normal distribution with known variance. 

Here the parameter of interest is the population mean μ, and the statistic that estimates μ is the 

sample average X. The quantity z nα σ/2  is the 1 100 2( )− α  percentile of the distribution of 
ˆ , , , ,θ θi

B B
Bi n− = 1 2 …  and by the same logic, the quantity −z nα σ/2  is the 100 2( )α  percentile 

of the distribution of X − μ. Therefore, the 100 1 2−( )α % CI can be written as:

P Xα μ α α/ ( / ) /2 1 2 1 2th percentile th percentile≤ − ≤ −( ) = −

This can be rearranged as

P X X− − ≤ ≤ +( ) = −( / ) / /1 2 2 1 2α μ α αth  percentile th percentile

So the lower confidence bound is X − −( / )1 2α th percentile of the distribution of X − μ and 

the upper confidence bound is X + α / 2th percentile of the distribution of X − μ. When these 

percentiles cannot be easily determined for some arbitrary parameter θ, they can often be 
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estimated by using bootstrap samples. The procedure would consist of taking n
B
 bootstrap 

samples, calculating the bootstrap estimates ˆ , ˆ , , ˆθ θ θ1 2
B B

n
B

B…  and θB, and then computing the 

differences ˆ , , , ,θ θi
B B

Bi n− = 1 2 … . The α/2 smallest and largest of these differences are the 

estimates of the percentiles required to construct the bootstrap CI.

8-7 Tolerance and Prediction Intervals

8-7.1 PREDICTION INTERVAL FOR A FUTURE OBSERVATION

In some problem situations, we may be interested in predicting a future observation of a vari-

able. This is a different problem than estimating the mean of that variable, so a confidence 

interval is not appropriate. In this section, we show how to obtain a 100(1 – α)% prediction 
interval on a future value of a normal random variable.

Suppose that X
1
, X

2
, …, X

n
 is a random sample from a normal population. We wish to pre-

dict the value X
n+1

, a single future observation. A point prediction of X
n+1

 is X, the sample 

mean. The prediction error is X Xn+ − .1  The expected value of the prediction error is

E X Xn + −( ) = − =1 0μ μ

and the variance of the prediction error is

V X Xn
n n

+ −( ) = + = +⎛
⎝⎜

⎞
⎠⎟1

2
2

2 1
1σ σ σ

because the future observation X
n+1

 is independent of the mean of the current sample X. The 

prediction error X
n+1

 – X is normally distributed. Therefore,

Z
X X

n

= −

+

+n 1

1
1σ

has a standard normal distribution. Replacing σ with S results in

T
X X

n

= −

+

+n

S

1

1
1

which has a t distribution with n – 1 degrees of freedom. Manipulating T as we have done pre-

viously in the development of a CI leads to a prediction interval on the future observation X
n+1

.

A 100(1 – α)% prediction interval (PI) on a single future observation from a normal 

distribution is given by

 x t s
n

X x t s
n

/ ,n n / ,n− + ≤ ≤ + +α − + α −2 1 1 2 11
1

1
1

 (8-28)

Prediction Interval

The prediction interval for X
n+1

 will always be longer than the confidence interval for μ 

because more variability is associated with the prediction error than with the error of estimation. 

This is easy to see because the prediction error is the difference between two random variables 

( )X Xn+ −1 , and the estimation error in the CI is the difference between one random variable and 

a constant ( )X − μ . As n gets larger ( )n → ∞ , the length of the CI decreases to zero, essentially 

becoming the single value μ, but the length of the PI approaches 2 2zα σ/ . So as n increases, the 

uncertainty in estimating μ goes to zero, although there will always be uncertainty about the 

future value X
n+1

, even when estimating any of the distribution parameters is not necessary.

c08.indd   297 9/24/2013   6:57:06 PM



298   Chapter 8/Statistical intervals for a single sample

We noted in Section 8-2 that the t distribution based CI for μ was robust to the normal-

ity assumption when n is small. The practical implication of this is that although we have 

computed a 95% CI, the actual confi dence level will not be exactly 95%, but it will be very 

close—maybe 93% or 94%. Prediction intervals, on the other hand, are very sensitive to the 

normality assumption, and Equaion 8-28 should not be used unless we are very comfortable 

with the normality assumption.

Alloy Adhesion Reconsider the tensile adhesion tests on specimens of U-700 alloy described in 

Example 8-6. The load at failure for n = 22 specimens was observed, and we found that x  = 13.71 

and s = 3.55. The 95% confi dence interval on μ was 12 14 15 28. .≤ ≤μ . We plan to test a 23rd specimen. A 95% predic-

tion interval on the load at failure for this specimen is

x t s
n

X x t s
n

/ ,n n / ,n− + ≤ ≤ + +α − + α −2 1 1 2 11
1

1
1

13 71 2 080 3 55 1
1

22
13 71 2 080 3 55 1

1

22
23. − .( ) . + ≤ ≤ . + .( ) . +X

6 16 21 26. .≤ ≤X23

Practical Interpretation: Notice that the prediction interval is considerably longer than the CI. This is because the CI 

is an estimate of a parameter, but the PI is an interval estimate of a single future observation.

Example 8-11

8-7.2 TOLERANCE INTERVAL FOR A NORMAL DISTRIBUTION

Consider a population of semiconductor processors. Suppose that the speed of these proces-

sors has a normal distribution with mean μ = 600 megahertz and standard deviation σ = 30 

megahertz. Then the interval from 600 – 1.96(30) = 541.2 to 600 + 1.96(30) = 658.8 mega-

hertz captures the speed of 95% of the processors in this population because the interval from 

–1.96 to 1.96 captures 95% of the area under the standard normal curve. The interval from 
μ σ μ σα α− +z z/ /2 2to  is called a tolerance interval.

If μ and σ are unknown, we can use the data from a random sample of size n to compute 

x  and s and then form the interval x s, x s− .  + .( )1 96 1 96 . However, because of sampling vari-

ability in x  and s, it is likely that this interval will contain less than 95% of the values in the 

population. The solution to this problem is to replace 1.96 with some value that will make the 

proportion of the distribution contained in the interval 95% with some level of confi dence. 

Fortunately, it is easy to do this.

A tolerance interval for capturing at least γ% of the values in a normal distribution 

with confi dence level 100(1 – α)% is

x ks x ks− +,

where k is a tolerance interval factor found in Appendix Table XII. Values are given 

for γ = 90%, 95%, and 99%, and for 90%, 95%, and 99% confi dence.

Tolerance Interval

This interval is very sensitive to the normality assumption. One-sided tolerance bounds 

can also be computed. The tolerance factors for these bounds are also given in Appendix 

Table XII.
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Alloy Adhesion Let’s reconsider the tensile adhesion tests originally described in Example 8-6. 

The load at failure for n = 22 specimens was observed, and we found that x  = 13.71 and s = 3.55. 

We want to fi nd a tolerance interval for the load at failure that includes 90% of the values in the population with 95% 

confi dence. From Appendix Table XII, the tolerance factor k for n = 22, γ = 0.90, and 95% confi dence is k = 2.264. 

The desired tolerance interval is

x ks x ks− +( ),

or

13 71 2 264 3 55 13 71 2 264 3 55. . . , . . .− ( ) + ( )⎡⎣ ⎤⎦
which reduces to (5.67, 21.74).

Practical Interpretation: We can be 95% confi dent that at least 90% of the values of load at failure for this particular 

alloy lie between 5.67 and 21.74 megapascals.

Example 8-12

From Appendix Table XII, we note that as n → ∞, the value of k goes to the z-value associ-

ated with the desired level of containment for the normal distribution. For example, if we want 

90% of the population to fall in the two-sided tolerance interval, k approaches z
0.05

 = 1.645 as 

n → ∞. Note that as n → ∞, a 100(1 – α)% prediction interval on a future value approaches a 

tolerance interval that contains 100(1 – α)% of the distribution.

8-73.  Consider the tire-testing data described in 

Exercise 8-29. Compute a 95% prediction interval on the life of the 

next tire of this type tested under conditions that are similar to those 

employed in the original test. Compare the length of the prediction 

interval with the length of the 95% CI on the population mean.

8-74. Consider the Izod impact test described in Exercise 8-30. 

Compute a 99% prediction interval on the impact strength of 

the next specimen of PVC pipe tested. Compare the length of 

the prediction interval with the length of the 99% CI on the 

population mean.

8-75.  Consider the syrup-dispensing measurements 

described in Exercise 8-31. Compute a 95% prediction interval 

on the syrup volume in the next beverage dispensed. Compare 

the length of the prediction interval with the length of the 95% 

CI on the population mean.

8-76. Consider the natural frequency of beams described in 

Exercise 8-34. Compute a 90% prediction interval on the diam-

eter of the natural frequency of the next beam of this type that 

will be tested. Compare the length of the prediction interval 

with the length of the 90% CI on the population mean.

8-77.  Consider the rainfall in Exercise 8-35. Compute a 

95% prediction interval on the rainfall for the next year. Com-

pare the length of the prediction interval with the length of the 

95% CI on the population mean.

8-78. Consider the margarine test described in Exercise 8-38. 

Compute a 99% prediction interval on the polyunsaturated 

fatty acid in the next package of margarine that is tested. Com-

pare the length of the prediction interval with the length of the 

99% CI on the population mean.

8-79.  Consider the television tube brightness test described 

in Exercise 8-37. Compute a 99% prediction interval on the bright-

ness of the next tube tested. Compare the length of the prediction 

interval with the length of the 99% CI on the population mean.

8-80.  Consider the suspension rod diameter measure-

ments described in Exercise 8-40. Compute a 95% prediction 

interval on the diameter of the next rod tested. Compare the 

length of the prediction interval with the length of the 95% CI 

on the population mean.

8-81.  Consider the test on the compressive strength of 

concrete described in Exercise 8-39. Compute a 90% predic-

tion interval on the next specimen of concrete tested.

8-82.  Consider the bottle-wall thickness 

measurements described in Exercise 8-42. Compute a 90% pre-

diction interval on the wall thickness of the next bottle tested.

8-83.  Consider the fuel rod enrichment data described in 

Exercise 8-43. Compute a 90% prediction interval on the enrich-

ment of the next rod tested. Compare the length of the prediction 

interval with the length of the 99% CI on the population mean.

8-84. How would you obtain a one-sided prediction bound 

on a future observation? Apply this procedure to obtain a 95% 

one-sided prediction bound on the wall thickness of the next 

bottle for the situation described in Exercise 8-42.

8-85. Consider the tire-testing data in Exercise 8-29. Compute 

a 95% tolerance interval on the life of the tires that has confi -

dence level 95%. Compare the length of the tolerance interval 

with the length of the 95% CI on the population mean. Which 

interval is shorter? Discuss the difference in interpretation of 

these two intervals.

FOR SECTION 8-6Exercises
 Problem available in WileyPLUS at instructor’s discretion. 

 Tutoring problem available in WileyPLUS at instructor’s discretion
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8-95. Consider the confidence interval for μ with known 

standard deviation σ:

x z n x z n− σ ≤ μ ≤ + σα α1 2

where α
1
 + α

2
 = α. Let α = 0.05 and find the interval for  

α
1
 = α

2
 = α/2 = 0.025. Now find the interval for the case  

α
1
 = 0.01 and α

2
 = 0.04. Which interval is shorter? Is there any 

advantage to a “symmetric” confidence interval?

8-96. A normal population has a known mean of 50 and 

unknown variance.

(a) A random sample of n = 16 is selected from this popula-

tion, and the sample results are x  = 52 and s = 8. How 

unusual are these results? That is, what is the probability of 

observing a sample average as large as 52 (or larger) if the 

known, underlying mean is actually 50?

(b) A random sample of n = 30 is selected from this popula-

tion, and the sample results are x  = 52 and s = 8. How 

unusual are these results?

(c) A random sample of n = 100 is selected from this popula-

tion, and the sample results are x  = 52 and s = 8. How 

unusual are these results?

(d) Compare your answers to parts (a)–(c) and explain why 

they are the same or different.

8-97. A normal population has known mean μ = 50 and 

variance σ2 = 5. What is the approximate probability that the 

sample variance is greater than or equal to 7.44? less than or 

equal to 2.56? For a random sample of size

(a) n = 16 (b) n = 30 (c) n = 71

(d) Compare your answers to parts (a)–(c) for the approximate 

probability that the sample variance is greater than or equal 

to 7.44. Explain why this tail probability is increasing or 

decreasing with increased sample size.

(e) Compare your answers to parts (a)–(c) for the approximate 

probability that the sample variance is less than or equal 

to 2.56. Explain why this tail probability is increasing or 

decreasing with increased sample size.

8-98.  An article in the Journal of Sports Science (1987, 

Vol. 5, pp. 261–271) presents the results of an investigation of 

the hemoglobin level of Canadian Olympic ice hockey players. 

The data reported are as follows (in g/dl):

15.3 16.0 14.4 16.2 16.2

14.9 15.7 15.3 14.6 15.7

16.0 15.0 15.7 16.2 14.7

14.8 14.6 15.6 14.5 15.2

(a) Given the following probability plot of the data, what is a logi-

cal assumption about the underlying distribution of the data?

(b) Explain why this check of the distribution underlying the 

sample data is important if you want to construct a confi-

dence interval on the mean.

8-86.  Consider the Izod impact test described in Exercise 

8-30. Compute a 99% tolerance interval on the impact strength 

of PVC pipe that has confidence level 90%. Compare the length 

of the tolerance interval with the length of the 99% CI on the 

population mean. Which interval is shorter? Discuss the differ-

ence in interpretation of these two intervals.

8-87.  Consider the syrup-volume data in Exercise 8-31. 

Compute a 95% tolerance interval on the syrup volume that 

has confidence level 90%. Compare the length of the tolerance 

interval with the length of the 95% CI on the population mean.

8-88.  Consider the margarine test described in Exercise 8-38. 

Compute a 99% tolerance interval on the polyunsaturated fatty 

acid in this particular type of margarine that has confidence level 

95%. Compare the length of the tolerance interval with the length 

of the 99% CI on the population mean. Which interval is shorter? 

Discuss the difference in interpretation of these two intervals.

8-89. Consider the rainfall data in Exercise 8-35. Compute a 

95% tolerance interval that has confidence level 95%. Compare 

the length of the tolerance interval with the length of the 95% 

CI on the population mean. Discuss the difference in interpreta-

tion of these two intervals.

8-90.  Consider the suspension rod diameter data in Exer-

cise 8-40. Compute a 95% tolerance interval on the diameter 

of the rods described that has 90% confidence. Compare the 

length of the tolerance interval with the length of the 95% CI 

on the population mean. Which interval is shorter? Discuss the 

difference in interpretation of these two intervals.

8-91. Consider the television tube brightness data in Exercise 

8-37. Compute a 99% tolerance interval on the brightness of 

the television tubes that has confidence level 95%. Compare the 

length of the tolerance interval with the length of the 99% CI 

on the population mean. Which interval is shorter? Discuss the 

difference in interpretation of these two intervals.

8-92. Consider the strength-of-concrete data in Exercise 8-39. 

Compute a 90% tolerance interval on the compressive strength 

of the concrete that has 90% confidence.

8-93. Consider the fuel rod enrichment data described in 

Exercise 8-43. Compute a 99% tolerance interval on rod 

enrichment that has confidence level 95%. Compare the length 

of the tolerance interval with the length of the 95% CI on the 

population mean.

8-94.  Consider the bottle-wall thickness measurements 

described in Exercise 8-42.

(a) Compute a 90% tolerance interval on bottle-wall thickness 

that has confidence level 90%.

(b) Compute a 90% lower tolerance bound on bottle-wall 

thickness that has confidence level 90%. Why would a 

lower tolerance bound likely be of interest here?

Supplemental Exercises

 Problem available in WileyPLUS at instructor’s discretion. 

 Tutoring problem available in WileyPLUS at instructor’s discretion
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(c) Based on this sample data, a 95% confidence interval for 

the mean is (15.04, 15.62). Is it reasonable to infer that the 

true mean could be 14.5? Explain your answer.
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(d) Explain why this check of the distribution underlying the 

sample data is important if we want to construct a confi-

dence interval on the variance.

(e) Based on these sample data, a 95% confidence interval for 

the variance is (0.22, 0.82). Is it reasonable to infer that the 

true variance could be 0.35? Explain your answer.

(f) Is it reasonable to use these confidence intervals to draw an 

inference about the mean and variance of hemoglobin levels

 (i) of Canadian doctors? Explain your answer.

 (ii)  of Canadian children ages 6–12? Explain your answer.

8-99. The article “Mix Design for Optimal Strength Develop-

ment of Fly Ash Concrete” (Cement and Concrete Research, 

1989, Vol. 19(4), pp. 634–640) investigates the compressive 

strength of concrete when mixed with fly ash (a mixture of 

silica, alumina, iron, magnesium oxide, and other ingredients). 

The compressive strength for nine samples in dry conditions on 

the 28th day are as follows (in megapascals):

40.2 30.4 28.9 30.5 22.4

25.8 18.4 14.2 15.3

(a) Given the following probability plot of the data, what is a logi-

cal assumption about the underlying distribution of the data?

(b) Find a 99% lower one-sided confidence interval on mean 

compressive strength. Provide a practical interpretation of 

this interval.

(c) Find a 98% two-sided confidence interval on mean com-

pressive strength. Provide a practical interpretation of this 

interval and explain why the lower end-point of the interval 

is or is not the same as in part (b).

(d) Find a 99% upper one-sided confidence interval on the 

variance of compressive strength. Provide a practical inter-

pretation of this interval.

(e) Find a 98% two-sided confidence interval on the variance 

of compression strength. Provide a practical interpretation 

of this interval and explain why the upper end-point of the 

interval is or is not the same as in part (d).

(f) Suppose that it was discovered that the largest observation 

40.2 was misrecorded and should actually be 20.4. Now the 

sample mean x  = 23 and the sample variance s2 = 39.8. Use 

these new values and repeat parts (c) and (e). Compare the 

original computed intervals and the newly computed inter-

vals with the corrected observation value. How does this 

mistake affect the values of the sample mean, sample vari-

ance, and the width of the two-sided confidence intervals?

(g) Suppose, instead, that it was discovered that the largest 

observation 40.2 is correct but that the observation 25.8 

is incorrect and should actually be 24.8. Now the sample 

mean x  = 25 and the standard deviation s = 8.41. Use these 

new values and repeat parts (c) and (e). Compare the origi-

nal computed intervals and the newly computed intervals 

with the corrected observation value. How does this mis-

take affect the values of the sample mean, the sample vari-

ance, and the width of the two-sided confidence intervals?

(h) Use the results from parts (f) and (g) to explain the effect of 

mistakenly recorded values on sample estimates. Comment 

on the effect when the mistaken values are near the sample 

mean and when they are not.

8-100.  An operating system for a personal computer has 

been studied extensively, and it is known that the standard devi-

ation of the response time following a particular command is 

σ = 8 milliseconds. A new version of the operating system is 

installed, and you wish to estimate the mean response time for 

the new system to ensure that a 95% confidence interval for μ 

has a length of at most 5 milliseconds.

(a) If you can assume that response time is normally distrib-

uted and that σ = 8 for the new system, what sample size 

would you recommend?

(b) Suppose that the vendor tells you that the standard deviation 

of the response time of the new system is smaller, say, σ = 6; 

give the sample size that you recommend and comment on the 

effect the smaller standard deviation has on this calculation.

8-101.  Consider the hemoglobin data in Exercise 8-97. 

Find the following:

(a) An interval that contains 95% of the hemoglobin values 

with 90% confidence.
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(b) An interval that contains 99% of the hemoglobin values 

with 90% confidence.

8-102. Consider the compressive strength of concrete 

data from Exercise 8-99. Find a 95% prediction interval on the 

next sample that will be tested.

8-103. The maker of a shampoo knows that customers like 

this product to have a lot of foam. Ten sample bottles of the 

product are selected at random and the foam heights observed 

are as follows (in millimeters): 210, 215, 194, 195, 211, 201, 

198, 204, 208, and 196.

(a) Is there evidence to support the assumption that foam 

height is normally distributed?

(b) Find a 95% CI on the mean foam height.

(c) Find a 95% prediction interval on the next bottle of sham-

poo that will be tested.

(d) Find an interval that contains 95% of the shampoo foam 

heights with 99% confidence.

(e) Explain the difference in the intervals computed in parts 

(b), (c), and (d).

8-104. During the 1999 and 2000 baseball seasons, there was 

much speculation that the unusually large number of home runs 

hit was due at least in part to a livelier ball. One way to test the 

“liveliness” of a baseball is to launch the ball at a vertical surface 

with a known velocity V
L
 and measure the ratio of the outgo-

ing velocity V
O
 of the ball to V

L
. The ratio R = V

O
/V

L
is called 

the coefficient of restitution. Following are measurements of the 

coefficient of restitution for 40 randomly selected baseballs. The 

balls were thrown from a pitching machine at an oak surface.

0.6248 0.6237 0.6118 0.6159 0.6298 0.6192
0.6520 0.6368 0.6220 0.6151 0.6121 0.6548
0.6226 0.6280 0.6096 0.6300 0.6107 0.6392
0.6230 0.6131 0.6223 0.6297 0.6435 0.5978
0.6351 0.6275 0.6261 0.6262 0.6262 0.6314
0.6128 0.6403 0.6521 0.6049 0.6170
0.6134 0.6310 0.6065 0.6214 0.6141

(a) Is there evidence to support the assumption that the coef-

ficient of restitution is normally distributed?

(b) Find a 99% CI on the mean coefficient of restitution.

(c) Find a 99% prediction interval on the coefficient of restitu-

tion for the next baseball that will be tested.

(d) Find an interval that will contain 99% of the values of the 

coefficient of restitution with 95% confidence.

(e) Explain the difference in the three intervals computed in 

parts (b), (c), and (d).

8-105. Consider the baseball coefficient of restitution 

data in Exercise 8-104. Suppose that any baseball that has 

a coefficient of restitution that exceeds 0.635 is considered 

too lively. Based on the available data, what proportion of 

the baseballs in the sampled population are too lively? Find a 

95% lower confidence bound on this proportion.

8-106 An article in the ASCE Journal of Energy Engi-
neering [“Overview of Reservoir Release Improvements at 20 

TVA Dams” (Vol. 125, April 1999, pp. 1–17)] presents data on 

dissolved oxygen concentrations in streams below 20 dams in 

the Tennessee Valley Authority system. The observations are 

(in milligrams per liter): 5.0, 3.4, 3.9, 1.3, 0.2, 0.9, 2.7, 3.7, 

3.8, 4.1, 1.0, 1.0, 0.8, 0.4, 3.8, 4.5, 5.3, 6.1, 6.9, and 6.5.

(a) Is there evidence to support the assumption that the dis-

solved oxygen concentration is normally distributed?

(b) Find a 95% CI on the mean dissolved oxygen concentration.

(c) Find a 95% prediction interval on the dissolved oxygen con-

centration for the next stream in the system that will be tested.

(d) Find an interval that will contain 95% of the values of the 

dissolved oxygen concentration with 99% confidence.

(e) Explain the difference in the three intervals computed in 

parts (b), (c), and (d).

8-107. The tar content in 30 samples of cigar tobacco follows:

1.542 1.585 1.532 1.466 1.499 1.611
1.622 1.466 1.546 1.494 1.548 1.626
1.440 1.608 1.520 1.478 1.542 1.511
1.459 1.533 1.532 1.523 1.397 1.487
1.598 1.498 1.600 1.504 1.545 1.558

(a) Is there evidence to support the assumption that the tar 

content is normally distributed?

(b) Find a 99% CI on the mean tar content.

(c) Find a 99% prediction interval on the tar content for the 

next observation that will be taken on this particular type 

of tobacco.

(d) Find an interval that will contain 99% of the values of the 

tar content with 95% confidence.

(e) Explain the difference in the three intervals computed in 

parts (b), (c), and (d).

8-108. A manufacturer of electronic calculators takes 

a random sample of 1200 calculators and finds 8 defective 

units.

(a) Construct a 95% confidence interval on the population 

proportion.

(b) Is there evidence to support a claim that the fraction of 

defective units produced is 1% or less?

8-109. An article in The Engineer (“Redesign for Sus-

pect Wiring,” June 1990) reported the results of an investiga-

tion into wiring errors on commercial transport aircraft that 

may display faulty information to the flight crew. Such a wir-

ing error may have been responsible for the crash of a British 

Midland Airways aircraft in January 1989 by causing the pilot 

to shut down the wrong engine. Of 1600 randomly selected 

aircraft, 8 were found to have wiring errors that could display 

incorrect information to the flight crew.

(a) Find a 99% confidence interval on the proportion of aircraft 

that have such wiring errors.

(b) Suppose that you use the information in this example to 

provide a preliminary estimate of p. How large a sample 

would be required to produce an estimate of p that we are 

99% confident differs from the true value by at most 0.008?

(c) Suppose that you did not have a preliminary estimate of p.

How large a sample would be required if you wanted to be at 

least 99% confident that the sample proportion differs from 

the true proportion by at most 0.008 regardless of the true 

value of p?

(d) Comment on the usefulness of preliminary information in 

computing the needed sample size.

8-110. An article in Engineering Horizons (Spring 1990, 

p. 26) reported that 117 of 484 new engineering graduates were 
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planning to continue studying for an advanced degree. Con-

sider this as a random sample of the 1990 graduating class.

(a) Find a 90% confidence interval on the proportion of such 

graduates planning to continue their education.

(b) Find a 95% confidence interval on the proportion of such 

graduates planning to continue their education.

(c) Compare your answers to parts (a) and (b) and explain why 

they are the same or different.

(d) Could you use either of these confidence intervals to deter-

mine whether the proportion is actually 0.25? Explain your 

answer. Hint: Use the normal approximation to the binomial.

8-111. An article in the Journal of Applied Physiology [“Humid-

ity Does Not Affect Central Nervous System Oxygen Toxicity” 

(2001, Vol. 91, pp. 1327–1333)] reported that central nervous 

system (CNS) oxygen toxicity can appear in humans on exposure 

to oxygen pressures >180 kPa. CNS oxygen toxicity can occur 

as convulsions (similar to epileptic seizures, grand mal) and loss 

of consciousness without any warning symptoms. CNS oxygen 

toxicity is a risk encountered in several fields of human activity, 

such as combat diving with closed-circuit breathing apparatus and 

diving with mixtures of nitrogen and oxygen (nitrox) or nitrogen, 

oxygen, and helium (trimix) in sport and professional diving to 

depths >30 μ. The risk of oxygen toxicity is always considered 

when deep diving is planned. The following data demonstrate 

shortened latencies in a dry atmosphere (<10% humidity) in 11 

rats at O
2
 of 507 kPa. The data collected are as follows:

22 26 19 27 37 27

14 19 23 18 18

(a) Given the following probability plot of the data, what is 

a logical assumption about the underlying distribution of 

the data?

(b) Explain why this check of the distribution underlying the 

sample data is important if you want to construct a confi-

dence interval on the mean.

(c) Find the 95% confidence interval for the mean.

(d) Explain why this check of the distribution underlying the 

sample data is important if you want to construct a confi-

dence interval on the variance.

(e) Find the 95% confidence interval for the variance.

8-112. An article in the Journal of Human Nutrition and Die-
tetics [“The Validation of Energy and Protein Intakes by Dou-

bly Labeled Water and 24-Hour Urinary Nitrogen Excretion in 

Post-Obese Subjects” (1995, Vol. 8, pp. 51–64)] showed the 

energy intake expressed as a basal metabolic rate, BMR (MJ).

5.40 5.67 5.79 6.85 6.92

5.70 6.08 5.48 5.44 5.51

(a) Use a normal probability plot to check the normality 

assumption.

(b) Find a 99% two-sided confidence interval on the mean BMR.
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Mind-Expanding Exercises

8-113. An electrical component has a time-to-failure (or life-

time) distribution that is exponential with parameter λ, so the 

mean lifetime is μ = 1/λ. Suppose that a sample of n of these 

components is put on test, and let X
i
 be the observed lifetime 

of component i. The test continues only until the rth unit fails, 

where r n< . This results in a censored life test. Let X
1
 denote 

the time at which the first failure occurred, X
2
 denote the time 

at which the second failure occurred, and so on. Then the total 

lifetime that has been accumulated at test termination is

T X n r Xr i r
i

r

= + −( )
=
∑

1

We have previously shown in Exercise 7-81 that Tr / r is an 

unbiased estimator for μ.

(a) It can be shown that 2λT
r
 has a chi-square distribution 

with 2r degrees of freedom. Use this fact to develop a 

100(1 – α)% confidence interval for mean lifetime μ = 1 / λ.

(b) Suppose that 20 units were tested, and the test termi-

nated after 10 failures occurred. The failure times (in 

hours) are 15, 18, 19, 20, 21, 21, 22, 27, 28, and 29. 

Find a 95% confidence interval on mean lifetime.

8-114. Consider a two-sided confidence interval for the 

mean μ when σ is known:

x z n x z n− σ ≤ μ ≤ + σα α1 2

where α
1
 + α

2
 = α. If α

1
 = α

2
 = α / 2, you have the usual 100(1 

– α)% confidence interval for μ. In the preceding, when 

α ≠ α1 2, the interval is not symmetric about μ. The length 
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of the interval is L z z n= σ + .α α( )
1 2

 Prove that the length 

of the interval L is minimized when α
1
 = α

2
 = α / 2. Hint: 

Remember that Φ = − α( )za 1 , so Φ − α =−
α

1 1( ) z , and the 

relationship between the derivative of a function y = f(x) and 

the inverse x f= −1( )y  is ( ) ( ) ( ) ( )d dy f y d dy f x− = ⎡⎣ ⎤⎦
1 1 .

8-115. It is possible to construct a nonparametric toler-
ance interval that is based on the extreme values in a ran-

dom sample of size n from any continuous population. If 

p is the minimum proportion of the population contained 

between the smallest and largest sample observations with 

confidence 1 – α, it can be shown that

np n pn n− − −( ) =1 1 α

and n is approximately

n
p

p
= + +

−
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

1

2

1

1

X 2
α,4

4

(a) To be 95% confident that at least 90% of the popula-

tion will be included between the extreme values of the 

sample, what sample size will be required?

(b) A random sample of 10 transistors gave the following 

measurements on saturation current (in milliamps): 10.25, 

10.41, 10.30, 10.26, 10.19, 10.37, 10.29, 10.34, 10.23, 

10.38. Find the limits that contain a proportion p of the 

saturation current measurements at 95% confidence. 

What is the proportion p contained by these limits?

8-116. Suppose that X
1
, X

2
, … , X

n
 is a random sample 

from a continuous probability distribution with median 	μ
(a) Show that

p X Xi i

n

{min max }( ) ( ) = − ⎛
⎝⎜

⎞
⎠⎟

−

< μ <~
1

1

2

1

[Hint: The complement of the event [min( )X <i 	μ 

< max( )Xi ] is [ ( ) ] [ ( ) ]max minX Xi i≤ ∪ ≤	 	μ μ  but max 

( )Xi ≤ 	μ if and only if Xi ≤ 	μ for all i.]
(b) Write down a 100(1 – α)% confidence interval for the 

median 	μ where

α = ⎛
⎝⎜

⎞
⎠⎟

−
1

2

1n

8-117. Students in the industrial statistics lab at ASU 

calculate confidence intervals on μ. Suppose that all 

these CIs are independent of each other. Consider the 

next one thousand 95% confidence intervals that will 

be calculated. How many of these CIs do you expect to 

capture the true value of μ? What is the probability that 

between 930 and 970 of these intervals contain the true 

value of μ?

8-118. The confidence interval for a population propor-

tion depends on the central limit theorem. A common rule 

of thumb is that to use the normal approximation for the 

sampling distribution for p̂, you should have at least 10 

“successes” and 10 “failures.” However, Agresti and Coull 

developed a method that can be used for smaller samples 

and increases the accuracy of all confidence intervals for 

proportions. The idea is simply to add 4 “pseudo obser-

vations” to the data set—2 successes and 2 failures. That 

is, if you have X successes from of n trials, use 	p
X

n
= +

+
2

4
 

instead of the usual p̂
X

n
=  in the formulas for the confi-

dence interval.

A quality control engineer is inspecting defects on 

a newly designed printed circuit board. She inspects 50 

boards and finds no defects. The usual estimate would be 

p̂ = 0, but she does not believe that there will ever be a no-

defects situation for this product. Use this Agresi-Coull 

estimate to come up with a 95% confidence interval for the 

true proportion of defects. [Hint: The lower bound may be 

negative, which is not feasible, so simply use the upper limit 

and report that she is 95% confident that the true defect pro-

portion is no higher than this number.]

8-119. A biology student finds that of 35 males with Dros-

ophila melanogaster, 2 have Adh genotypes with a male 

mating advantage. 

(a) Using the standard methods, find a 95% confidence inter-

val for the true proportion of males with this genotype. 

(b) Compare the confidence interval you found in part (a) 

with the Agresti-Coull confidence interval by adding 4 

pseudo-observations to the data discussed in the previ-

ous exercise.

Chi-square  

distribution

Confidence coefficient

Confidence interval

Confidence interval  

for a population 

proportion

Confidence interval on the 

variance of a normal 

distribution

Confidence intervals on 

the mean of a normal 

distribution

Confidence level

Error in estimation

Large-sample  

confidence interval

One-sided confidence bounds

Prediction interval

Tolerance interval

Two-sided  

confidence  

interval

t distribution 

Important Terms and Concepts
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INTRODUCTION
In the previous two chapters, we showed how a parameter of a population can be estimated 

from sample data, using either a point estimate (Chapter 7) or an interval of likely values 

called a confidence interval (Chapter 8). In many situations, a different type of problem is 

of interest; there are two competing claims about the value of a parameter, and the engineer 

must determine which claim is correct. For example, suppose that an engineer is designing 

an air crew escape system that consists of an ejection seat and a rocket motor that powers the 

seat. The rocket motor contains a propellant, and for the ejection seat to function properly, the 

propellant should have a mean burning rate of 50 cm/sec. If the burning rate is too low, the 

ejection seat may not function properly, leading to an unsafe ejection and possible injury of 

the pilot. Higher burning rates may imply instability in the propellant or an ejection seat that 

is too powerful, again leading to possible pilot injury. So the practical engineering question 

that must be answered is: Does the mean burning rate of the propellant equal 50 cm/sec, or is 

it some other value (either higher or lower)? This type of question can be answered using a 

statistical technique called hypothesis testing. This chapter focuses on the basic principles of 

hypothesis testing and provides techniques for solving the most common types of hypothesis 

testing problems involving a single sample of data.

Learning Objectives

After careful study of this chapter, you should be able to do the following:

1. Structure engineering decision-making problems as hypothesis tests

2. Test hypotheses on the mean of a normal distribution using either a Z-test or a t-test procedure

3. Test hypotheses on the variance or standard deviation of a normal distribution

4. Test hypotheses on a population proportion

5. Use the P - value approach for making decisions in hypothesis tests

6. Compute power and type II error probability, and make sample size selection decisions for tests on 
means, variances, and proportions

7. Explain and use the relationship between confidence intervals and hypothesis tests

8. Use the chi-square goodness-of-fit test to check distributional assumptions

9. Use contingency table tests

9-1 Hypothesis Testing

9-1.1 STATISTICAL HYPOTHESES

In the previous chapter, we illustrated how to construct a confidence interval estimate of a 

parameter from sample data. However, many problems in engineering require that we decide 

which of two competing claims or statements about some parameter is true. The statements 

are called hypotheses, and the decision-making procedure is called hypothesis testing. This 

is one of the most useful aspects of statistical inference, because many types of decision-

making problems, tests, or experiments in the engineering world can be formulated as hypoth-

esis-testing problems. Furthermore, as we will see, a very close connection exists between 

hypothesis testing and confidence intervals.

Statistical hypothesis testing and confidence interval estimation of parameters are the fun-

damental methods used at the data analysis stage of a comparative experiment in which the 

engineer is interested, for example, in comparing the mean of a population to a specified value. 

These simple comparative experiments are frequently encountered in practice and provide a 

good foundation for the more complex experimental design problems that we will discuss in 
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Chapters 13 and 14. In this chapter, we discuss comparative experiments involving a single 

population, and our focus is on testing hypotheses concerning the parameters of the population.

We now give a formal definition of a statistical hypothesis.

A statistical hypothesis is a statement about the parameters of one or more populations.

Statistical Hypothesis

Because we use probability distributions to represent populations, a statistical hypothesis 

may also be thought of as a statement about the probability distribution of a random variable. 

The hypothesis will usually involve one or more parameters of this distribution.

For example, consider the air crew escape system described in the introduction. Suppose 

that we are interested in the burning rate of the solid propellant. Burning rate is a random 

variable that can be described by a probability distribution. Suppose that our interest focuses 

on the mean burning rate (a parameter of this distribution). Specifically, we are interested in 

deciding whether or not the mean burning rate is 50 centimeters per second. We may express 

this formally as

 H H0 150 50: centimeters per second : centimeter per seconds =  ≠μ μ  (9-1)

The statement H0 50: =μ  centimeters per second in Equation 9-1 is called the null hypothesis. 
This is a claim that is initially assumed to be true. The statement H1 50: ≠μ  centimeters per sec-

ond is called the alternative hypothesis and it is a statement that condradicts the null hypothesis. 

Because the alternative hypothesis specifies values of μ that could be either greater or less than 50 

centimeters per second, it is called a two-sided alternative hypothesis. In some situations, we may 

wish to formulate a one-sided alternative hypothesis, as in

H H0 050 50: centimeters per second : centimeters per second =  =μ μ

 or  (9-2)

H H1 150 50: centimeter per seconds : centimeters per second <  >μ μ

We will always state the null hypothesis as an equality claim. However when the alternative 

hypothesis is stated with the < sign, the implicit claim in the null hypothesis can be taken as 

≥ and when the alternative hyphothesis is stated with the > sign, the implicit claim in the null 

hypothesis can be taken as ≤.

It is important to remember that hypotheses are always statements about the population 

or distribution under study, not statements about the sample. The value of the population 

parameter specified in the null hypothesis (50 centimeters per second in the preceding exam-

ple) is usually determined in one of three ways. First, it may result from past experience or 

knowledge of the process or even from previous tests or experiments. The objective of hypoth-

esis testing, then, is usually to determine whether the parameter value has changed. Second, 

this value may be determined from some theory or model regarding the process under study. 

Here the objective of hypothesis testing is to verify the theory or model. A third situation 

arises when the value of the population parameter results from external considerations, such 

as design or engineering specifications, or from contractual obligations. In this situation, the 

usual objective of hypothesis testing is conformance testing.

A procedure leading to a decision about the null hypothesis is called a test of a hypothesis. 

Hypothesis-testing procedures rely on using the information in a random sample from the popu-

lation of interest. If this information is consistent with the null hypothesis, we will not reject it; 

however, if this information is inconsistent with the null hypothesis, we will conclude that the 

null hypothesis is false and reject it in favor of the alternative. We emphasize that the truth or 

falsity of a particular hypothesis can never be known with certainty unless we can examine the 

entire population. This is usually impossible in most practical situations. Therefore, a hypothe-

sis-testing procedure should be developed with the probability of reaching a wrong conclusion in 
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Now suppose that the true mean burning rate is different from 50 centimeters per second, yet 

the sample mean x  falls in the acceptance region. In this case, we would fail to reject H0 when 

it is false. This type of wrong conclusion is called a type II error.

mind. Testing the hypothesis involves taking a random sample, computing a test statistic from 

the sample data, and then using the test statistic to make a decision about the null hypothesis.

9-1.2 TESTS OF STATISTICAL HYPOTHESES

To illustrate the general concepts, consider the propellant burning rate problem introduced 

earlier. The null hypothesis is that the mean burning rate is 50 centimeters per second, and the 

alternate is that it is not equal to 50 centimeters per second. That is, we wish to test

H0 50: centimeters per second =μ

H1 50: centimeters per second ≠μ

Suppose that a sample of n = 10 specimens is tested and that the sample mean burning rate x  

is observed. The sample mean is an estimate of the true population mean μ. A value of the sample 

mean x  that falls close to the hypothesized value of μ = 50 centimeters per second does not con-

flict with the null hypothesis that the true mean μ is really 50 centimeters per second. On the other 

hand, a sample mean that is considerably different from 50 centimeters per second is evidence in 

support of the alternative hypothesis H1. Thus, the sample mean is the test statistic in this case.

The sample mean can take on many different values. Suppose that if 48 5 51 5. .≤ ≤x ,  

we will not reject the null hypothesis H0 50: =μ , and if either x < 48 5.  or x > 51 5. , we will 

reject the null hypothesis in favor of the alternative hypothesis H1 50: ≠μ . This is illustrated 

in Fig. 9-1. The values of x  that are less than 48.5 and greater than 51.5 constitute the critical 
region for the test; all values that are in the interval 48 5 51 5. .≤ ≤x  form a region for which 

we will fail to reject the null hypothesis. By convention, this is usually called the acceptance 
region. The boundaries between the critical regions and the acceptance region are called the 

critical values. In our example, the critical values are 48.5 and 51.5. It is customary to state 

conclusions relative to the null hypothesis H0. Therefore, we reject H0 in favor of H1 if the test 

statistic falls in the critical region and fail to reject H0 otherwise.

This decision procedure can lead to either of two wrong conclusions. For example, the true 

mean burning rate of the propellant could be equal to 50 centimeters per second. However, for the 

randomly selected propellant specimens that are tested, we could observe a value of the test statis-

tic x  that falls into the critical region. We would then reject the null hypothesis H0 in favor of the 

alternate H1 when, in fact, H0 is really true. This type of wrong conclusion is called a type I error.

Rejecting the null hypothesis H0 when it is true is defined as a type I error.Type I Error

Failing to reject the null hypothesis when it is false is defined as a type II error.
Type II Error

50 51.548.5

Reject H0

m Þ 50 cm/s

Fail to Reject H0

m = 50 cm/s

Reject H0

m Þ 50 cm/s

x

FIGURE 9-1 Decision criteria for testing H0 50: =μ  centimeters 
per second versus H1 50: ≠μ  centimeters per second.
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Sometimes the type I error probability is called the signifi cance level, the `-error, or the

size of the test. In the propellant burning rate example, a type I error will occur when either 

x > 51 5.  or x < 48 5.  when the true mean burning rate really is μ = 50 centimeters per second. 

Suppose that the standard deviation of burning rate is σ = 2 5.  centimeters per second and 

that the burning rate has a distribution for which the conditions of the central limit theorem 

apply, so the distribution of the sample mean is approximately normal with mean μ = 50 and 

standard deviation σ = . = .n 2 5 10 0 79. The probability of making a type I error (or the 

signifi cance level of our test) is equal to the sum of the areas that have been shaded in the tails 

of the normal distribution in Fig. 9-2. We may fi nd this probability as

α = .   μ =( ) + .   μ =( )P X < P X >48 5 50 51 5 50when when

The z-values that correspond to the critical values 48.5 and 51.5 are

z z1 2

48 5 50

0 79
1 90

51 5 50

0 79
1 90= − = − = − =.

.
.

.

.
.and

Therefore,

a ,= −( ) + >( ) = + =P z P z1 90 1 90 0 0287 0 0287 0 0574. . . . .

This is the type I error probability. This implies that 5.74% of all random samples would lead 

to rejection of the hypothesis H0 50: centimeters per second μ =   when the true mean burning 

rate is really 50 centimeters per second.

From an inspection of Fig. 9-2, notice that we can reduce α by widening the acceptance 

region. For example, if we make the critical values 48 and 52, the value of α is

a , ,= − −⎛
⎝⎜

⎞
⎠⎟

+ > −⎛
⎝⎜

⎞
⎠⎟

= −( ) + >P z P z P z P z
48 50

0 79

52 50

0 79
2 53 2 5

. .
. . 33

0 0057 0 0057 0 0114

( )
= + =. . .

We could also reduce α by increasing the sample size. If n , n=  σ = .16 2 5 16  = 0.625 

and using the original critical region from Fig. 9-1, we fi nd

Computing the 
Type I Error 

Probability

The Impact of 
 Sample Size

Thus, in testing any statistical hypothesis, four different situations determine whether the fi nal 

decision is correct or in error. These situations are presented in Table 9-1.

Because our decision is based on random variables, probabilities can be associated with 

the type I and type II errors in Table 9-1. The probability of making a type I error is denoted 

by the Greek letter α.

 a = ( ) = ( )P P H Htype I error reject when is true0 0  (9-3)
Probability of 
Type I Error

48.5 51.5 Xm = 50

a/2 = 0.0287a /2 = 0.0287

FIGURE 9-2 The critical region for H0 50: =μ  
versus H1 50: ≠μ  and n = 10.

Decision H0 Is True H0 Is False

Fail to reject H0
No error Type II error

Reject H0
Type I error No error

9-1 Decisions in Hypothesis Testing
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z z1 2

48 5 50

0 625
2 40

51 5 50

0 625
2 40= . −

.
= − . = . −

.
= .and

Therefore,

α = − .( ) + .( ) = . + . = .P Z < P Z >2 40 2 40 0 0082 0 0082 0 0164

In evaluating a hypothesis-testing procedure, it is also important to examine the probability 

of a type II error, which we will denote by β. That is,

Probability of  
Type II Error  β = P(type II error) = P(fail to reject H0 when H0 is false) (9-4)

To calculate β (sometimes called the a-error), we must have a specific alternative hypothesis; that 

is, we must have a particular value of μ. For example, suppose that it is important to reject the null 

hypothesis H
0
: μ = 50 whenever the mean burning rate μ is greater than 52 centimeters per second 

or less than 48 centimeters per second. We could calculate the probability of a type II error β for 

the values μ = 52 and μ = 48 and use this result to tell us something about how the test procedure 

would perform. Specifically, how will the test procedure work if we wish to detect, that is, reject 

H0, for a mean value of μ = 52 or μ = 48? Because of symmetry, it is necessary to evaluate only one 

of the two cases—say, find the probability of accepting the null hypothesis H0: μ = 50 centimeters 

per second when the true mean is μ = 52 centimeters per second.

Figure 9-3 will help us calculate the probability of type II error β. The normal distribution on 

the left in Fig. 9-3 is the distribution of the test statistic X when the null hypothesis H
0
: μ = 50  

is true (this is what is meant by the expression “under H
0
: μ = 50”), and the normal distribution 

on the right is the distribution of X when the alternative hypothesis is true and the value of the 

mean is 52 (or “under H
1
: μ = 52”). A type II error will be committed if the sample mean X 

falls between 48.5 and 51.5 (the critical region boundaries) when μ = 52. As seen in Fig. 9-3, 

this is just the probability that 48 5 51 5. ≤ ≤ .X  when the true mean is μ = 52, or the shaded area 

under the normal distribution centered at μ = 52. Therefore, referring to Fig. 9-3, we find that

β = . ≤ ≤ . =P X( )48 5 51 5 52when μ

The z-values corresponding to 48.5 and 51.5 when μ = 52 are

z z1 2

48 5 52

0 79
4 43

51 5 52

0 79
0 63= . −

.
= − . = . −

.
= − .and

Therefore,
β = − . ≤ ≤ − .( ) = ≤ − .( ) − ≤ − .( )

= . − . = .

P Z P Z P Z4 43 0 63 0 63 4 43

0 2643 0 0000 0 26643

Thus, if we are testing H
0
: μ = 50 against H

1
: μ ≠ 50 with n = 10 and the true value of the 

mean is μ = 52, the probability that we will fail to reject the false null hypothesis is 0.2643. By 

symmetry, if the true value of the mean is μ = 48, the value of β will also be 0.2643.

The probability of making a type II error β increases rapidly as the true value of μ 

approaches the hypothesized value. For example, see Fig. 9-4, where the true value of the 

mean is μ = 50.5 and the hypothesized value is H
0
: μ = 50. The true value of μ is very close 

to 50, and the value for β is

β = . ≤ ≤ . =P X( . )48 5 51 5 50 5when μ

As shown in Fig. 9-4, the z-values corresponding to 48.5 and 51.5 when μ = 50.5 are

z z1 2

48 5 50 5

0 79
2 53

51 5 50 5

0 79
1 27= . −

.
= − = . −

.
=.

.
.

.and

Computing the  
Probability of Type II 

Error
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FIGURE 9-3 The probability of type II 
error when μ = 52 and n = 10.
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FIGURE 9-4 The probability of type II 
error when μ = 50.5 and n = 10.

Therefore,

β = − . ≤ ≤ .( ) = ≤ .( ) − ≤ − .( )
= . − . = .

P Z P Z P Z2 53 1 27 1 27 2 53

0 8980 0 0057 0 89233

Thus, the type II error probability is much higher for the case in which the true mean is 

50.5 centimeters per second than for the case in which the mean is 52 centimeters per second. 

Of course, in many practical situations, we would not be as concerned with making a type II 

error if the mean were “close” to the hypothesized value. We would be much more interested in 

detecting large differences between the true mean and the value specified in the null hypothesis.

The type II error probability also depends on the sample size n. Suppose that the null hypoth-

esis is H0 50: μ =  centimeters per second and that the true value of the mean is μ = .52  If the 

sample size is increased from n = 10 to n = 16, the situation of Fig. 9-5 results. The normal dis-

tribution on the left is the distribution of X when the mean μ = 50, and the normal distribution on 

the right is the distribution of X when μ = 52. As shown in Fig. 9-5, the type II error probability is

β = . ≤ ≤ . =P X( )48 5 51 5 52when μ

When n = 16, the standard deviation of X is σ = . = .n 2 5 16 0 625, and the z-values corre-

sponding to 48.5 and 51.5 when μ = 52 are

z z1 2

48 5 52

0 625
5 60

51 5 52

0 625
0 80= . − = − = . −

.
= −

.
. .and

Therefore,

β = − . ≤ ≤ − .( ) = ≤ − .( ) − ≤ − .( )
= . − . = .

P Z P Z P Z5 60 0 80 0 80 5 60

0 2119 0 0000 0 21119

Recall that when n = 10 and μ = 52, we found that β = .0 2643; therefore, increasing the sam-

ple size results in a decrease in the probability of type II error.

The results from this section and a few other similar calculations are summarized in the 

following table. The critical values are adjusted to maintain equal α for n = 10 and n = 16. This 

type of calculation is discussed later in the chapter.

Acceptance Region Sample Size ` a at l = 52 a at l = 50.5

48 5 51 5. .< <x 10 0.0576 0.2643 0.8923

48 52< x < 10 0.0114 0.5000 0.9705

48 81 51 19. .< x < 16 0.0576 0.0966 0.8606

48 42 51 58. .< x < 16 0.0114 0.2515 0.9578

Effect of Sample  
Size on a
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The results in boxes were not calculated in the text but the reader can easily verify them. 

This display and the discussion above reveal four important points:

1. The size of the critical region, and consequently the probability of a type I error α, can 

always be reduced by appropriate selection of the critical values.

2. Type I and type II errors are related. A decrease in the probability of one type of error 

always results in an increase in the probability of the other provided that the sample size 

n does not change.

3. An increase in sample size reduces β provided that α is held constant.

4. When the null hypothesis is false, β increases as the true value of the parameter approaches 

the value hypothesized in the null hypothesis. The value of β decreases as the difference 

between the true mean and the hypothesized value increases.

Generally, the analyst controls the type I error probability α when he or she selects the 

critical values. Thus, it is usually easy for the analyst to set the type I error probability at (or 

near) any desired value. Because the analyst can directly control the probability of wrongly 

rejecting H0, we always think of rejection of the null hypothesis H0 as a strong conclusion.

Because we can control the probability of making a type I error (or significance level), a 

logical question is what value should be used. The type I error probability is a measure of risk, 

specifically, the risk of concluding that the null hypothesis is false when it really is not. So, the 

value of α should be chosen to reflect the consequences (economic, social, etc.) of incorrectly 

rejecting the null hypothesis. Smaller values of α would reflect more serious consequences and 

larger values of α would be consistent with less severe consequences. This is often hard to do, 

so what has evolved in much of scientific and engineering practice is to use the value α = 0.05 in 

most situations unless information is available that this is an inappropriate choice. In the rocket 

propellant problem with n = 10, this would correspond to critical values of 48.45 and 51.55.
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FIGURE 9-5 The  
probability of type II 
error when μ = 52 
and n = 16.

A widely used procedure in hypothesis testing is to use a type 1 error or signifi-

cance level of α = 0.05. This value has evolved through experience and may not be 

appropriate for all situations.

On the other hand, the probability of type II error β is not a constant but depends on the true 

value of the parameter. It also depends on the sample size that we have selected. Because the 

type II error probability β is a function of both the sample size and the extent to which the null 

hypothesis H0 is false, it is customary to think of the decision to accept H0 as a weak conclu-
sion unless we know that β is acceptably small. Therefore, rather than saying we “accept H0,”  

we prefer the terminology “fail to reject H0.” Failing to reject H0 implies that we have not 

found sufficient evidence to reject H0, that is, to make a strong statement. Failing to reject H0 

Strong versus Weak 
Conclusions
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does not necessarily mean that there is a high probability that H0 is true. It may simply mean 

that more data are required to reach a strong conclusion. This can have important implications 

for the formulation of hypotheses.

A useful analog exists between hypothesis testing and a jury trial. In a trial, the defendant 

is assumed innocent (this is like assuming the null hypothesis to be true). If strong evidence is 

found to the contrary, the defendant is declared to be guilty (we reject the null hypothesis). If evi-

dence is insuffi cient,  the defendant is declared to be not guilty. This is not the same as proving 

the defendant innocent and so, like failing to reject the null hypothesis, it is a weak conclusion.

An important concept that we will use is the power of a statistical test.

The power of a statistical test is the probability of rejecting the null hypothesis H0 

when the alternative hypothesis is true.

Power

The power is computed as 1− β, and power can be interpreted as the probability of correctly 
rejecting a false null hypothesis. We often compare statistical tests by comparing their power 

properties. For example, consider the propellant burning rate problem when we are testing 

H0 50: μ =  centimeters per second against H1 50: μ ≠  centimeters per second. Suppose that the 

true value of the mean is μ = 52. When n = 10, we found that β = .0 2643, so the power of this 

test is 1 1 0 2643 0 7357− β = − . = .  when μ = 52.

Power is a very descriptive and concise measure of the sensitivity of a statistical test when by 

sensitivity we mean the ability of the test to detect differences. In this case, the sensitivity of the 

test for detecting the difference between a mean burning rate of 50 centimeters per second and 

52 centimeters per second is 0.7357. That is, if the true mean is really 52 centimeters per second, 

this test will correctly reject H0 50: μ =  and “detect” this difference 73.57% of the time. If this 

value of power is judged to be too low, the analyst can increase either α or the sample size n.

9-1.3 One-Sided and Two-Sided Hypotheses

In constructing hypotheses, we will always state the null hypothesis as an equality so that the 

probability of type I error α can be controlled at a specifi c value. The alternative hypothesis might 

be either one-sided or two-sided, depending on the conclusion to be drawn if H
0
 is rejected. If 

the objective is to make a claim involving statements such as greater than, less than, superior to, 

exceeds, at least, and so forth, a one-sided alternative is appropriate. If no direction is implied 

by the claim, or if the claim “not equal to” is to be made, a two-sided alternative should be used.

Propellant Burning Rate Consider the propellant burning rate problem. Suppose that if the 

burning rate is less than 50 centimeters per second, we wish to show this with a strong conclu-

sion. The hypotheses should be stated as

H H0 150 50: centimeters per second : centimeters per second =  μ μ ,

Here the critical region lies in the lower tail of the distribution of X. Because the rejection of H0 is always a strong 

conclusion, this statement of the hypotheses will produce the desired outcome if H0 is rejected. Notice that, although 

the null hypothesis is stated with an equals sign, it is understood to include any value of μ not specifi ed by the alter-

native hypothesis (that is, μ ≤ 50). Therefore, failing to reject H0 does not mean that μ = 50 centimeters per second 

exactly, but only that we do not have strong evidence in support of H1.

Example 9-1

In some real-world problems in which one-sided test procedures are indicated, selecting 

an appropriate formulation of the alternative hypothesis is occasionally diffi cult. For example, 

suppose that a soft-drink beverage bottler purchases 10-ounce bottles from a glass company. 

The bottler wants to be sure that the bottles meet the specifi cation on mean internal pressure or 
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bursting strength, which for 10-ounce bottles is a minimum strength of 200 psi. The bottler has 

decided to formulate the decision procedure for a specific lot of bottles as a hypothesis testing 

problem. There are two possible formulations for this problem, either

 H H0 1200 200: psi : psi =  μ μ >   (9-5)

or

 H H0 1200 200: psi : psi =  μ μ <  (9-6)

Consider the formulation in Equation 9-5. If the null hypothesis is rejected, the bottles will be 

judged satisfactory; if H0 is not rejected, the implication is that the bottles do not conform to 

specifications and should not be used. Because rejecting H0 is a strong conclusion, this formula-

tion forces the bottle manufacturer to “demonstrate” that the mean bursting strength of the bottles 

exceeds the specification. Now consider the formulation in Equation 9-6. In this situation, the 

bottles will be judged satisfactory unless H0 is rejected. That is, we conclude that the bottles are 

satisfactory unless there is strong evidence to the contrary.

Which formulation is correct, the one of Equation 9-5 or Equation 9-6? The answer is that it 

depends on the objective of the analysis. For Equation 9-5, there is some probability that H0 will 

not be rejected (i.e., we would decide that the bottles are not satisfactory) even though the true 

mean is slightly greater than 200 psi. This formulation implies that we want the bottle manu-

facturer to demonstrate that the product meets or exceeds our specifications. Such a formulation 

could be appropriate if the manufacturer has experienced difficulty in meeting specifications in 

the past or if product safety considerations force us to hold tightly to the 200-psi specification. 

On the other hand, for the formulation of Equation 9-6, there is some probability that H0 will be 

accepted and the bottles judged satisfactory, even though the true mean is slightly less than 200 

psi. We would conclude that the bottles are unsatisfactory only when there is strong evidence 

that the mean does not exceed 200 psi, that is, when H0 200: μ =  psi is rejected. This formula-

tion assumes that we are relatively happy with the bottle manufacturer’s past performance and 

that small deviations from the specification of μ ≥ 200 psi are not harmful.

Formulating 
One-Sided 
Hypothesis

In formulating one-sided alternative hypotheses, we should remember that rejecting H0 

is always a strong conclusion. Consequently, we should put the statement about which 

it is important to make a strong conclusion in the alternative hypothesis. In real-world 

problems, this will often depend on our point of view and experience with the situation.

9-1.4 P-Values in Hypothesis Tests

One way to report the results of a hypothesis test is to state that the null hypothesis was or was not 

rejected at a specified α-value or level of significance. This is called fixed significance level testing.

The fixed significance level approach to hypothesis testing is very nice because it leads 

directly to the concepts of type II error and power, which are of considerable value in deter-

mining the appropriate sample sizes to use in hypothesis testing. But the fixed significance 

level approach does have some disadvantages.

For example, in the propellant problem above, we can say that H
0
: μ = 50 was rejected at 

the 0.05 level of significance. This statement of conclusions may be often inadequate because 

it gives the decision maker no idea about whether the computed value of the test statistic was 

just barely in the rejection region or whether it was very far into this region. Furthermore, 

stating the results this way imposes the predefined level of significance on other users of the 

information. This approach may be unsatisfactory because some decision makers might be 

uncomfortable with the risks implied by α = 0.05.

To avoid these difficulties, the P-value approach has been adopted widely in practice. The 

P-value is the probability that the test statistic will take on a value that is at least as extreme as 
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the observed value of the statistic when the null hypothesis H0 is true. Thus, a P-value conveys 

much information about the weight of evidence against H0, and so a decision maker can draw a 

conclusion at any specified level of significance. We now give a formal definition of a P-value.

The P-value is the smallest level of significance that would lead to rejection of the 

null hypothesis H
0
 with the given data.

P-Value

It is customary to consider the test statistic (and the data) significant when the null hypothesis 

H0 is rejected; therefore, we may think of the P-value as the smallest level α at which the data 

are significant. In other words, the P-value is the observed significance level. Once the P-value 

is known, the decision maker can determine how significant the data are without the data analyst 

formally imposing a preselected level of significance.

Consider the two-sided hypothesis test for burning rate

H H0 150 50: : μ =  μ ≠
with n = 16 and σ = 2.5. Suppose that the observed sample mean is x = .51 3 centimeters per sec-

ond. Figure 9-6 is a critical region for this test with the value of x = .51 3 and the symmetric value 

48.7. The P-value of the test is the probability above 51.3 plus the probability below 48.7. The 

P-value is easy to compute after the test statistic is observed. In this example,

P-value = − . .( )
= − . − . −⎛

⎝⎜

1 48 7 51 3

1
48 7 50

2 5 16

51 3 50

2 5 16

P < X <

P < Z <
. .

⎞⎞
⎠⎟

= − − . .( )
= − . = .

1 2 08 2 08

1 0 962 0 038

P < Z <

The P-value tells us that if the null hypothesis H
0
 = 50 is true, the probability of obtaining 

a random sample whose mean is at least as far from 50 as 51.3 (or 48.7) is 0.038. Therefore, 

an observed sample mean of 51.3 is a fairly rare event if the null hypothesis H0 = 50 is really 

true. Compared to the “standard” level of significance 0.05, our observed P-value is smaller, 

so if we were using a fixed significance level of 0.05, the null hypothesis would be rejected. In 

fact, the null hypothesis H
0
 = 50 would be rejected at any level of significance greater than or 

equal to 0.038. This illustrates the previous boxed definition; the P-value is the smallest level 

of significance that would lead to rejection of H
0
 = 50.

Operationally, once a P-value is computed, we typically compare it to a predefined signifi-

cance level to make a decision. Often this predefined significance level is 0.05. However, in 

presenting results and conclusions, it is standard practice to report the observed P-value along 

with the decision that is made regarding the null hypothesis.
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FIGURE 9-6 P-value 
is the area of the 
shaded region when 
x = 51.3.
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Clearly, the P-value provides a measure of the credibility of the null hypothesis. Specifi-

cally, it is the risk that we have made an incorrect decision if we reject the null hypothesis H0. 

The P-value is not the probability that the null hypothesis is false, nor is 1 – P the probability 

that the null hypothesis is true. The null hypothesis is either true or false (there is no prob-

ability associated with this), so the proper interpretation of the P-value is in terms of the risk 

of wrongly rejecting the null hypothesis H0.

Computing the exact P-value for a statistical test is not always easy. However, most mod-

ern statistics software packages report the results of hypothesis testing problems in terms of 

P-values. We will use the P-value approach extensively.

More About P -Values
We have observed that the procedure for testing a statistical hypothesis consists of drawing a 

random sample from the population, computing an appropriate statistic, and using the infor-

mation in that statistic to make a decision regarding the null hypothesis. For example, we have 

used the sample average in decision making. Because the sample average is a random variable, 

its value will differ from sample to sample, meaning that the P-value associated with the test 

procedure will also be a random variable. It also will differ from sample to sample. We are 

going to use a computer experiment (a simulation) to show how the P-value behaves when the 

null hypothesis is true and when it is false.

Consider testing the null hypothesis H0 0: μ =  against the alternative hypothesis H0 0: μ ≠  

when we are sampling from a normal population with standard deviation σ = 1. Consider first the 

case in which the null hypothesis is true and let’s suppose that we are going to test the preceding 

hypotheses using a sample size of n = 10. We wrote a computer program to simulate drawing 10,000 

different samples at random from a normal distribution with μ = 0 and σ = 1. Then we calculated 

the P-values based on the values of the sample averages. Figure 9-7 is a histogram of the P-values 

obtained from the simulation. Notice that the histogram of the P-values is relatively uniform or flat 

over the interval from 0 to 1. It turns out that just slightly less than 5% of the P-values are in the 

interval from 0 to 0.05.  It can be shown theoretically that if the null hypothesis is true, the prob-

ability distribution of the P-value is exactly uniform on the interval from 0 to 1. Because the null 

hypothesis is true in this situation, we have demonstrated by simulation that if a test of significance 

level 0.05 is used, the probability of wrongly rejecting the null hypothesis is (approximately) 0.05.

Now let’s see what happens when the null hypothesis is false. We changed the mean of the 

normal distribution to μ = 1 and repeated the previous computer simulation experiment by draw-

ing another 10,000 samples and computing the P-values. Figure 9-8 is the histogram of the simu-

lated P-values for this situation. Notice that this histogram looks very different from the one in 

Figure 9-7; there is a tendency for the P-values to stack up near the origin with many more small 

values between 0 and 0.05 than in the case in which the null hypothesis was true. Not all of the 

P-values are less than 0.05; those that exceed 0.05 represent type II errors or cases in which the 

null hypothesis is not rejected at the 0.05 level of significance even though the true mean is not 0.

Finally, Figure 9-8 shows the simulation results when the true value of the mean is even 

larger; in this case, μ = 2. The simulated P-values are shifted even more toward 0 and concen-

trated on the left side of the histogram. Generally, as the true mean moves farther and farther 

away from the hypothesized value of 0 the distribution of the P-values will become more and 

more concentrated near 0 and fewer and fewer values will exceed 0.05. That is, the farther the 

mean is from the value specified in the null hypothesis, the higher is the chance that the test 

procedure will correctly reject the null hypothesis.

9-1.5  CONNECTION BETWEEN HYPOTHESIS TESTS AND CONFIDENCE INTERVALS

A close relationship exists between the test of a hypothesis about any parameter, say θ, and 

the confidence interval for θ. If [l, u] is a 100 1− α( )% confidence interval for the parameter θ, 

the test of size α of the hypothesis

H H0 0 1 0: :θ = θ θ ≠ θ

Interpreting a P-Value
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FIGURE 9-7 A P-value simulation when H0 : = 0μ  is true.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

P-values

P-values

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

FIGURE 9-8.  A P-value simulation when μ = 1.
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will lead to rejection of H
0
 if and only if θ

0
 is not in the 100 1− α( )% CI [l, u]. As an illustra-

tion, consider the escape system propellant problem with x = .51 3, σ = 2.5, and n = 16. The null 

hypothesis H
0
: μ = 50 was rejected, using α = . 0 05. The 95% two-sided CI on μ can be calculated 

using Equation 8-7. This CI is 51 3 1 96 2 5 16 50 075 52 525. ± . .( )   . ≤ μ ≤ . ./ and this is  Because 

the value μ
0
 = 50 is not included in this interval, the null hypothesis H

0
: μ = 50 is rejected.

Although hypothesis tests and CIs are equivalent procedures insofar as decision making or 

inference about μ is concerned, each provides somewhat different insights. For instance, the 

confidence interval provides a range of likely values for μ at a stated confidence level whereas 

hypothesis testing is an easy framework for displaying the risk levels such as the P-value 

associated with a specific decision. We will continue to illustrate the connection between the 

two procedures throughout the text.

9-1.6  GENERAL PROCEDURE FOR HYPOTHESIS TESTS

This chapter develops hypothesis-testing procedures for many practical problems. Use of the 

following sequence of steps in applying hypothesis-testing methodology is recommended.

1. Parameter of interest: From the problem context, identify the parameter of interest.

2. Null hypothesis, H0: State the null hypothesis, H
0
.

3. Alternative hypothesis, H1: Specify an appropriate alternative hypothesis, H1.

4. Test statistic: Determine an appropriate test statistic.

5. Reject H0 if: State the rejection criteria for the null hypothesis.

6. Computations: Compute any necessary sample quantities, substitute these into the equa-

tion for the test statistic, and compute that value.

7. Draw conclusions: Decide whether or not H0 should be rejected and report that in the 

problem context.

0.000 0.005 0.010 0.015 0.020 0.025 0.030

P-values

P-values

0.035 0.040 0.045 0.050 0.055FIGURE 9-9. A P-value 
simulation when μ = 2.
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Steps 1–4 should be completed prior to examining of the sample data. This sequence of steps 

will be illustrated in subsequent sections.

In practice, such a formal and (seemingly) rigid procedure is not always necessary. Gener-

ally, once the experimenter (or decision maker) has decided on the question of interest and 

has determined the design of the experiment (that is, how the data are to be collected, how 

the measurements are to be made, and how many observations are required), only three steps 

are really required:

1. Specify the test statistic to be used (such as Z0).

2. Specify the location of the critical region (two-tailed, upper-tailed, or lower-tailed).

3. Specify the criteria for rejection (typically, the value of α, or the P-value at which rejection 

should occur).

These steps are often completed almost simultaneously in solving real-world problems, 

although we emphasize that it is important to think carefully about each step. That is why 

we present and use the seven-step process; it seems to reinforce the essentials of the correct 

approach. Although we may not use it every time in solving real problems, it is a helpful 

framework when we are first learning about hypothesis testing.

Statistical Versus Practical Significance
We noted previously that reporting the results of a hypothesis test in terms of a P-value is very 

useful because it conveys more information than just the simple statement “reject H0” or “fail 

to reject H0.” That is, rejection of H0 at the 0.05 level of significance is much more meaningful 

if the value of the test statistic is well into the critical region, greatly exceeding the 5% critical 

value, than if it barely exceeds that value.

Even a very small P-value can be difficult to interpret from a practical viewpoint when we 

are making decisions because, although a small P-value indicates statistical significance in 

the sense that H0 should be rejected in favor of H
1
, the actual departure from H0 that has been 

detected may have little (if any) practical significance (engineers like to say “engineering 

significance”). This is particularly true when the sample size n is large.

For example, consider the propellant burning rate problem of Example 9-1 in which 

we test H
0
: μ = 50 centimeters per second versus H

1
: μ ≠ 50 centimeters per second with 

σ = 2.5. If we suppose that the mean rate is really 50.5 centimeters per second, this is 

not a serious departure from H
0
: μ = 50 centimeters per second in the sense that if the 

mean really is 50.5 centimeters per second, there is no practical observable effect on 

the performance of the air crew escape system. In other words, concluding that μ = 50 

centimeters per second when it is really 50.5 centimeters per second is an inexpensive 

error and has no practical significance. For a reasonably large sample size, a true value 

of μ = 50.5 will lead to a sample x  that is close to 50.5 centimeters per second, and we 

would not want this value of x  from the sample to result in rejection of H
0
. The following 

display shows the P-value for testing H
0
: μ = 50 when we observe x = .50 5 centimeters 

per second and the power of the test at α = 0.05 when the true mean is 50.5 for various 

sample sizes n:

Sample Size  
n

P-value When x = 50.5 Power (at ` = 0.05)  
When True l = 50.5

 10 0.527 0.097

 25 0.317 0.170

 50 0.157 0.293

 100 0.046 0.516

 400 6.3 × 10-5 0.979

1000 2.5 × 10-10 1.000
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The P-value column in this display indicates that for large sample sizes, the observed sam-

ple value of x = .50 5 would strongly suggest that H0  : μ = 50 should be rejected, even though 

the observed sample results imply that from a practical viewpoint, the true mean does not differ 

much at all from the hypothesized value μ
0
 = 50. The power column indicates that if we test a 

hypothesis at a fixed significance level α, and even if there is little practical difference between the 

true mean and the hypothesized value, a large sample size will almost always lead to rejection of  

H0. The moral of this demonstration is clear:

Be careful when interpreting the results from hypothesis testing when the sample size 

is large because any small departure from the hypothesized value μ
0
 will probably  

be detected, even when the difference is of little or no practical significance.

9-1.  State whether each of the following situations is a 

correctly stated hypothesis testing problem and why.

(a) H H0 125 25: , : μ =   μ ≠  (b) H H0 110 10: > , : σ   σ =
(c) H x H x0 150 50: , : =   ≠  (d) H p H p0 10 1 0 5: , : = .   = .
(e) H H0 130 30: : =   s s, >
9-2. A semiconductor manufacturer collects data from a new tool 

and conducts a hypothesis test with the null hypothesis that a criti-

cal dimension mean width equals 100 nm. The conclusion is to not 

reject the null hypothesis. Does this result provide strong evidence 

that the critical dimension mean equals 100 nm? Explain.

9-3.  The standard deviation of critical dimension thickness 

in semiconductor manufacturing is σ = 20 nm.

(a)  State the null and alternative hypotheses used to demon-

strate that the standard deviation is reduced.

(b)  Assume that the previous test does not reject the null hypoth-

esis. Does this result provide strong evidence that the standard 

deviation has not been reduced? Explain.

9-4. The mean pull-off force of a connector depends on cure time.

(a)  State the null and alternative hypotheses used to demon-

strate that the pull-off force is below 25 newtons.

(b)  Assume that the previous test does not reject the null hypoth-

esis. Does this result provide strong evidence that the pull-

off force is greater than or equal to 25 newtons? Explain.

9-5.  A textile fiber manufacturer is investigating a new 

drapery yarn, which the company claims has a mean thread 

elongation of 12 kilograms with a standard deviation of 0.5 kil-

ograms. The company wishes to test the hypothesis H0 12: μ =  

against H1 12: < , μ  using a random sample of four specimens.

(a)  What is the type I error probability if the critical region is 

defined as x < 11 5.  kilograms?

(b)  Find β for the case in which the true mean elongation is 

11.25 kilograms.

(c)  Find β for the case in which the true mean is 11.5 kilograms.

9-6. Repeat Exercise 9-5 using a sample size of n = 16 and the 

same critical region.

9-7.  In Exercise 9-5, find the boundary of the critical 

region if the type I error probability is

(a) α = 0.01 and n = 4 (c) α = 0.01 and n = 16

(b) α = 0.05 and n = 4 (d) α = 0.05 and n = 16

9-8. In Exercise 9-5, calculate the probability of a type II error 

if the true mean elongation is 11.5 kilograms and

(a) α = 0.05 and n = 4 (b) α = 0.05 and n = 16

(c)  Compare the values of β calculated in the previous parts. 

What conclusion can you draw?

9-9.  In Exercise 9-5, calculate the P-value if the observed 

statistic is

(a) x  = 11.25      (b) x  = 11.0      (c) x  = 11.75

9-10.  The heat evolved in calories per gram of a cement 

mixture is approximately normally distributed. The mean is 

thought to be 100, and the standard deviation is 2. You wish to test 

H0 100: μ =  versus H1 100: μ ≠  with a sample of n = 9 specimens.

(a)  If the acceptance region is defined as 98 5 101 5. ≤ ≤ .x , find 

the type I error probability α.

(b)  Find β for the case in which the true mean heat evolved is 103.

(c)  Find β for the case where the true mean heat evolved is 105. 

This value of β is smaller than the one found in part (b). Why?

9-11. Repeat Exercise 9-10 using a sample size of n = 5 and 

the same acceptance region.

9-12. In Exercise 9-10, find the boundary of the critical region 

if the type I error probability is

(a) α = 0.01 and n = 9 (c) α = 0.01 and n = 5

(b) α = 0.05 and n = 9 (d) α = 0.05 and n = 5

9-13. In Exercise 9-10, calculate the probability of a type II 

error if the true mean heat evolved is 103 and

(a) α = 0.05 and n = 9 (b) α = 0.05 and n = 5

(c)  Compare the values of β calculated in the previous parts. 

What conclusion can you draw?

9-14.  In Exercise 9-10, calculate the P-value if the 

observed statistic is

(a)  x  = 98      (b) x  = 101      (c) x  = 102

FOR SECTION 9-1Exercises 
 Problem available in WileyPLUS at instructor’s discretion. 

 Tutoring problem available in WileyPLUS at instructor’s discretion.
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9-15.  A consumer products company is formulating a 

new shampoo and is interested in foam height (in millimeters). 

Foam height is approximately normally distributed and has 

a standard deviation of 20 millimeters. The company wishes 

to test H0 175: μ =  millimeters versus H1 175: μ >  millimeters, 

using the results of n = 10 samples.

(a)  Find the type I error probability α if the critical region is 

x > 185.

(b)  What is the probability of type II error if the true mean 

foam height is 185 millimeters?

(c) Find β for the true mean of 195 millimeters.

9-16. Repeat Exercise 9-15 assuming that the sample size 

is n = 16 and the boundary of the critical region is the same.

9-17.  In Exercise 9-15, find the boundary of the critical 

region if the type I error probability is

(a) α = 0.01 and n = 10 (c) α = 0.01 and n = 16

(b) α = 0.05 and n = 10 (d) α = 0.05 and n = 16

9-18. In Exercise 9-15, calculate the probability of a type 

II error if the true mean foam height is 185 millimeters and

(a) α = 0.05 and n = 10 (b) α = 0.05 and n = 16

(c)  Compare the values of β calculated in the previous parts. 

What conclusion can you draw?

9-19.  In Exercise 9-15, calculate the P-value if the 

observed statistic is

(a)  x  = 180      (b) x  = 190      (c) x  = 170

9-20.  A manufacturer is interested in the output voltage of 

a power supply used in a PC. Output voltage is assumed to be 

normally distributed with standard deviation 0.25 volt, and the 

manufacturer wishes to test H
0
: μ = 5 volts against H

1
: μ ≠ 5 

volts, using n = 8 units.

(a)  The acceptance region is 4 85 5 15. ≤ ≤ . .x  Find the value of α.

(b)  Find the power of the test for detecting a true mean output 

voltage of 5.1 volts.

9-21. Rework Exercise 9-20 when the sample size is 16 and 

the boundaries of the acceptance region do not change. What 

impact does the change in sample size have on the results of 

parts (a) and (b)?

9-22. In Exercise 9-20, find the boundary of the critical region 

if the type I error probability is

(a) α = 0.01 and n = 8 (c) α = 0.01 and n = 16

(b) α = 0.05 and n = 8 (d) α = 0.05 and n = 16

9-23. In Exercise 9-20, calculate the P-value if the observed 

statistic is

(a)  x  = 5.2      (b) x  = 4.7      (c) x  = 5.1

9-24. In Exercise 9-20, calculate the probability of a type II 

error if the true mean output is 5.05 volts and

(a) α = 0.05 and n = 10 (b) α = 0.05 and n = 16

(c)  Compare the values of β calculated in the previous parts. 

What conclusion can you draw?

9-25. The proportion of adults living in Tempe, Arizona, who 

are college graduates is estimated to be p = 0.4. To test this 

hypothesis, a random sample of 15 Tempe adults is selected. If 

the number of college graduates is between 4 and 8, the hypoth-

esis will be accepted; otherwise, you will conclude that p ≠ .0 4.

(a)  Find the type I error probability for this procedure, assum-

ing that p = 0.4.

(b)  Find the probability of committing a type II error if the true 

proportion is really p = 0.2.

9-26. The proportion of residents in Phoenix favoring the 

building of toll roads to complete the freeway system is believed 

to be p = 0.3. If a random sample of 10 residents shows that 1 or 

fewer favor this proposal, we will conclude that p < 0.3.

(a)  Find the probability of type I error if the true proportion 

is p = 0.3.

(b)  Find the probability of committing a type II error with this 

procedure if p = 0.2.

(c)  What is the power of this procedure if the true proportion is 

p = 0.2?

9-27.  A random sample of 500 registered voters in  

Phoenix is asked whether they favor the use of oxygenated 

fuels year-round to reduce air pollution. If more than 400 vot-

ers respond positively, we will conclude that more than 60% of 

the voters favor the use of these fuels.

(a)  Find the probability of type I error if exactly 60% of the 

voters favor the use of these fuels.

(b)  What is the type II error probability β if 75% of the voters 

favor this action?

  Hint: use the normal approximation to the binomial.

9-28. If we plot the probability of accepting H
0
: μ = μ

0
 versus 

various values of μ and connect the points with a smooth curve, 

we obtain the operating characteristic curve (or the OC curve) 

of the test procedure. These curves are used extensively in indus-

trial applications of hypothesis testing to display the sensitivity 

and relative performance of the test. When the true mean is really 

equal to μ
0
, the probability of accepting H0 is 1 – α.

(a)  Construct an OC curve for Exercise 9-15, using values of the 

true mean μ of 178, 181, 184, 187, 190, 193, 196, and 199.

(b)   Convert the OC curve into a plot of the power function of 

the test.

9-29. A quality-control inspector is testing a batch of 

printed circuit boards to see whether they are capable of 

performing in a high temperature environment. He knows 

that the boards that will survive will pass all five of the tests 

with probability 98%. They will pass at least four tests with 

probability 99%, and they always pass at least three. On the 

other hand, the boards that will not survive sometimes pass 

the tests as well. In fact, 3% pass all five tests, and another 

20% pass exactly four. The rest pass at most three tests. The 

inspector decides that if a board passes all five tests, he will 

classify it as “good.” Otherwise, he’ll classify it as “bad.”

(a)  What does a type I error mean in this context? 

(b)  What is the probability of a type I error?

(c)  What does a type II error mean here?

(d)  What is the probability of a type II error?

9-30. In the quality-control example of Exercise 9-29, the 

manager says that the probability of a type I error is too large 

and that it must be no larger than 0.01.

(a)  How does this change the rule for deciding whether a board 

is “good”?

(b)  How does this affect the type II error?

(c)  Do you think this reduction in type I error is justified? 

Explain briefly.
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If the null hypothesis H
0
: μ = μ

0
 is true, E X( ) = μ0, and it follows that the distribution of Z0 is 

the standard normal distribution [denoted N(0, 1)].

The hypothesis testing procedure is as follows. Take a random sample of size n and com-

pute the value of the sample mean x . To test the null hypothesis using the P-value approach, 

we would find the probability of observing a value of the sample mean that is at least as 

extreme as x , given that the null hypothesis is true. The standard normal z-value that cor-

responds to x  is found from the test statistic in Equation 9-8:

z
x

n
0

0= − μ
σ

In terms of the standard normal cumulative distribution function (CDF), the probability we are 

seeking is 1 0− Φ( )| |z . The reason that the argument of the standard normal cdf is |z
0
| is that 

the value of z
0
 could be either positive or negative, depending on the observed sample mean. 

Because this is a two-tailed test, this is only one-half of the P-value. Therefore, for the two-

sided alternative hypothesis, the P-value is

 P z= − Φ( )⎡⎣ ⎤⎦2 1 0   (9-9)

This is illustrated in Fig. 9-10(a)

Now let’s consider the one-sided alternatives. Suppose that we are testing

 H H >0 0 1 0: : μ = μ μ μ  (9-10)

Once again, suppose that we have a random sample of size n and that the sample mean is x . We 

compute the test statistic from Equation 9-8 and obtain z
0
. Because the test is an upper-tailed 

test, only values of x  that are greater than μ
0
 are consistent with the alternative hypothesis. 

Therefore, the P-value would be the probability that the standard normal random variable is 

greater than the value of the test statistic z
0
. This P-value is computed as

 P z= − Φ( )1 0   (9-11)

This P-value is shown in Fig. 9-10(b).

9-2  Tests on the Mean of a Normal Distribution,  
Variance Known

In this section, we consider hypothesis testing about the mean μ of a single normal population 

where the variance of the population σ2 is known. We will assume that a random sample X
1
, 

X
2
, …, X

n
 has been taken from the population. Based on our previous discussion, the sample 

mean X is an unbiased point estimator of μ with variance σ2 /n.

9-2.1 HYPOTHESIS TESTS ON THE MEAN

Suppose that we wish to test the hypotheses

 H H0 0 1 0: : μ = μ  μ ≠ μ  (9-7)

where μ
0
 is a specified constant. We have a random sample X

1
, X

2
, …, X

n
 from a normal population. 

Because X has a normal distribution (i.e., the sampling distribution of X is normal) with mean 

μ
0
 and standard deviation σ n  if the null hypothesis is true, we could calculate a P-value or 

construct a critical region based on the computed value of the sample mean X, as in Section 9-1.2.

It is usually more convenient to standardize the sample mean and use a test statistic based on 

the standard normal distribution. That is, the test procedure for H
0
: μ = μ

0
 uses the test statistic:

 Z
X

/ n
0

0= − μ
σ

 (9-8)

Test Statistic
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The lower-tailed test involves the hypotheses

 H H <0 0 1 0: :μ = μ μ μ  (9-12)

Suppose that we have a random sample of size n and that the sample mean is x . We compute 

the test statistic from Equation 9-8 and obtain z
0
. Because the test is a lower-tailed test, only 

values of x  that are less than μ
0
 are consistent with the alternative hypothesis. Therefore, the 

P-value would be the probability that the standard normal random variable is less than the 

value of the test statistic z
0
. This P-value is computed as

 P z= Φ( )0   (9-13)

and shown in Fig. 9-10(c)

The reference distribution for this test is the standard normal distribution. The test is usu-

ally called a z-test.
We can also use the fixed significance level approach with the z-test. The only thing we have 

to do is determine where to place the critical regions for the two-sided and one-sided alternative 

hypotheses. First consider the two-sided alternative in Equation 9-10. Now if H
0
: μ = μ

0
 is true, 

the probability is 1 – α that the test statistic Z
0
 falls between −za/2 and za/2 where za/2 is the 100 2α  

percentage point of the standard normal distribution. The regions associated with zα 2 and −zα 2 

are illustrated in Fig. 9-11(a). Note that the probability is α that the test statistic Z
0
 will fall in 

the region Z z Z z0 2 0 2> <α αor − , when H
0 
: μ = μ

0
 is true. Clearly, a sample producing a value 

of the test statistic that falls in the tails of the distribution of Z
0
 would be unusual if H

0
: μ = μ

0
 is 

true; therefore, it is an indication that H
0
 is false. Thus, we should reject H

0
 if either

 z z0 2> a/   (9-14)

or

 z z0 2< − α   (9-15)

and we should fail to reject H
0
 if

 − ≤ ≤z z zα α2 0 2  (9-16)

Equations 9-14 and 9-15 define the critical region or rejection region for the test. The type I 

error probability for this test procedure is α.

We may also develop fixed significance level testing procedures for the one-sided alterna-

tives. Consider the upper-tailed case in Equation 9-10.

In defining the critical region for this test, we observe that a negative value of the test sta-

tistic Z
0
 would never lead us to conclude that H

0
: μ = μ

0
 is false. Therefore, we would place 

the critical region in the upper tail of the standard normal distribution and reject H0 if the 

computed value z
0
 is too large. Refer to Fig. 9-11(b). That is, we would reject H0 if

 z z0 > a  (9-17)

Similarly, to test the lower-tailed case in Equation 9-12, we would calculate the test statistic 

Z0 and reject H0 if the value of Z0 is too small. That is, the critical region is in the lower tail of 

the standard normal distribution as in Fig. 9-11(c), and we reject H0 if

 z z0 < − α  (9-18)

(a)

0

N(0,1)

–z0 –z0z0 z0 z0

(c)

0

N(0,1)

(b)

0

N(0,1)

P-value = 2[1 – Φ(|z0|)]

Two-tailed test Upper-tailed test Lower-tailed test

P-value = 1 – Φ(z0) P-value = Φ(z0)

FIGURE 9-10 The P-value for a z-test. (a) The two-sided alternative H1 0: μ ≠ μ . (b) The one-sided alternative 
H1 0:  μ μ> . (c) The one-sided alternative H <1 0:  μ μ .
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(a)

0

N(0,1)

   z   /2a  –z   /2a  Z0

   /2a     /2a  Acceptance

region

Critical region

(c)

0

N(0,1)

–z   a Z0

a Acceptance

region

(b)

0

N(0,1)

   z   a  

a

Critical region

Acceptance

region

Critical region

Two-tailed test Upper-tailed test Lower-tailed test

FIGURE 9-11 The distribution of Z 0 when H1 0: μ = μ  is true with critical region for (a) The two-sided alternative 
H1 0: μ ≠ μ  (b) The one-sided alternative H >1 0: μ μ . (c) The one-sided alternative H <1 0: μ μ .

Testing Hypotheses on the Mean, Variance Known (Z-Tests)

Null hypothesis: H
0
: μ = μ

0

Test statistic: Z
X

n
0

0= − μ
σ

Alternative 
Hypotheses

P-Value Rejection Criterion for Fixed-
Level Tests

H1 0: μ ≠ μ Probability above z0  and 

probability below − z0 , 

P z= − Φ( )⎡⎣ ⎤⎦2 1 0

z > z z < z/ /0 2 0 2α α −or 

H >1 0: μ μ Probability above z0, 

P z= − Φ( )1 0  

z z0 > α

H <1 0: μ μ Probability below z0, 

P z= Φ( )0

z z0 < − α

The P-values and critical regions for these situations are shown in Figs. 9-10 and 9-11.

Summary of Tests on 
the Mean, Variance 

Known

In general, understanding the critical reason and the test procedure is easier when the test 

statistic is Z0 rather than X. However, the same critical region can always be written in terms 

of the computed value of the sample mean x . A procedure identical to the preceding fi xed 

signifi cance level test is as follows:

Reject orH x a x b0 : if either0 μ = μ > <

where

a z n b z n= + = −μ μ0 2 0 2a/ a/s sand

Propellant Burning Rate Air crew escape systems are powered by a solid propellant. The burning 

rate of this propellant is an important product characteristic. Specifi cations require that the mean 

burning rate must be 50 centimeters per second. We know that the standard deviation of burning rate is σ = 2 centimeters 

per second. The experimenter decides to specify a type I error probability or signifi cance level of α = 0.05 and selects a 

random sample of n = 25 and obtains a sample average burning rate of x = .51 3 centimeters per second. What conclu-

sions should be drawn?

We may solve this problem by following the seven-step procedure outlined in Section 9-1.6. This results in

1. Parameter of interest: The parameter of interest is μ, the mean burning rate.

2. Null hypothesis: H0: μ = 50 centimeters per second

Example 9-2
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9-2.2 TYPE II ERROR AND CHOICE OF SAMPLE SIZE

In testing hypotheses, the analyst directly selects the type I error probability. However, the 

probability of type II error β depends on the choice of sample size. In this section, we will 

show how to calculate the probability of type II error β. We will also show how to select the 

sample size to obtain a specifi ed value of β.

Finding the Probability of Type II Error β
Consider the two-sided hypotheses

H H0 0 1 0: : μ = μ  μ ≠ μ
Suppose that the null hypothesis is false and that the true value of the mean is μ = μ + δ0 , say, 

where δ > 0. The test statistic Z
0
 is

Z
X

/ n

X

/ n

n
0

0 0= − μ
σ

=
− μ +( )
σ

+
σ

d d

Therefore, the distribution of Z
0
 when H

1
 is true is

 Z N
n

,0 1∼ δ
σ

 
⎛

⎝⎜
⎞

⎠⎟
  (9-19)

The distribution of the test statistic Z0 under both the null hypothesis H0 and the alter-

nate hypothesis H
1
 is shown in Fig. 9-9. From examining this fi gure, we note that if H

1

is true, a type II error will be made only if − ≤ ≤α αz Z z/ /2 0 2 where Z N n / ,0 1~ d σ  ( ). 
That is, the probability of the type II error β is the probability that Z

0
 falls between − αz / 2

and z /α 2 given that H
1
 is true. This probability is shown as the shaded portion of Fig. 9-12. 

Expressed mathematically, this probability is

3. Alternative hypothesis: H
1
: μ ≠ 50 centimeters per second

4. Test statistic: The test statistic is 

z
x

/ n
0

0= − μ
σ

5.  Reject H0 if: Reject H
0
 if the P-value is less than 0.05. To use a fi xed signifi cance level test, the boundaries 

of the critical region would be z
0.025

 = 1.96 and –z
0.025

 = –1.96.

6. Computations: Because x = .51 3 and σ = 2,

z
/

0

51 3 50

2 25
3 25= . − = .

7. Conclusion: Because the P-value = − Φ .( )⎡⎣ ⎤⎦ = .2 1 3 25 0 0012 we reject H
0
: μ = 50 at the 0.05 level of signifi cance.

Practical Interpretation: We conclude that the mean burning rate differs from 50 centimeters per second, based on a 

sample of 25 measurements. In fact, there is strong evidence that the mean burning rate exceeds 50 centimeters per second.

 β = Φ − δ
σ

⎛

⎝⎜
⎞

⎠⎟
− Φ − − δ

σ
⎛

⎝⎜
⎞

⎠⎟
α αz

n
z

n
/ /2 2  (9-20)

Probability of a 
Type II Error for a 
Two-Sided Test on 

the Mean, Variance 
Known

where Φ( )z  denotes the probability to the left of z in the standard normal distribution. Note 

that Equation 9-20 was obtained by evaluating the probability that Z
0
 falls in the interval 
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−  [ ]α αz , z/ /2 2  when H
1
 is true. Furthermore, note that Equation 9-20 also holds if δ < 0, 

because of the symmetry of the normal distribution. It is also possible to derive an equation 

similar to Equation 9-20 for a one-sided alternative hypothesis.

Sample Size Formulas
One may easily obtain formulas that determine the appropriate sample size to obtain a par-

ticular value of β for a given Δ and α. For the two-sided alternative hypothesis, we know from 

Equation 9-20 that

β = Φ − δ
σ

⎛

⎝⎜
⎞

⎠⎟
− Φ − − δ

σ
⎛

⎝⎜
⎞

⎠⎟
α αz

n
z

n
/ /2 2

or, if δ . 0,

β Φ − δ
σ

⎛

⎝⎜
⎞

⎠⎟
α. z

n
/ 2   (9-21)

because Φ − − δ σ( )αz n // 2 0  �  when δ is positive. Let zβ be the 100β upper percentile of the 

standard normal distribution. Then, β = Φ −( )βz . From Equation 9-21,

− − δ
σβ αz z

n
/� 2

or

FIGURE 9-12 
The distribution of Z 0 
under H0  and H1.

Under H
0
: m = m

0
Under H

1
:          

0
m m

N(0,1)

–z   /2a 0 z   /2a      nd
s

     nd
s , 1N ( (

b

Z0

Þ

 n
z z/�

( )α β
 + σ

δ
2

2 2

2
  where  δ = μ − μ0 (9-22)

Sample Size for a 
Two-Sided Test on 

the Mean, Variance 
Known

If n is not an integer, the convention is to round the sample size up to the next integer. This 

approximation is good when Φ − − δ σα( )z n // 2  is small compared to β. For either of the 

one-sided alternative hypotheses, the sample size required to produce a specifi ed type II error 

with probability β given δ and α is

 n
z z

=
+  σ

δ
α β( )2 2

2
  where  δ = μ − μ0 (9-23)

Sample Size for a 
One-Sided Test on 

the Mean, Variance 
Known

Propellant Burning Rate Type II Error Consider the rocket propellant problem of Example 9-2. 

Suppose that the true burning rate is 49 centimeters per second. What is β for the two-sided test 

with α = .0 05, σ = 2, and n = 25?

Example 9-3
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Using Operating Characteristic Curves
When performing sample size or type II error calculations, it is sometimes more convenient 

to use the operating characteristic (OC) curves in Appendix Charts VIIa & b. These curves 

plot β as calculated from Equation 9-20 against a parameter d for various sample sizes n. 

Curves are provided for both α = 0.05 and α = 0.01. The parameter d is defi ned as

d =
−

=
μ μ δ0

σ σ
 (9-24)

so one set of operating characteristic curves can be used for all problems regardless of the 

values of μ
0
 and σ. From examining the operating characteristic curves or from Equation 9-20 

and Fig. 9-9, we note that

1. The farther the true value of the mean μ is from μ
0
, the smaller the probability of type II 

error β for a given n and α. That is, we see that for a specifi ed sample size and α, large dif-

ferences in the mean are easier to detect than small ones.

2. For a given δ and α, the probability of type II error β decreases as n increases. That is, to 

detect a specifi ed difference δ in the mean, we may make the test more powerful by increas-

ing the sample size.

Here δ = 1 and z /α = . .2 1 96  From Equation 9-20,

β = Φ −
σ

⎛

⎝⎜
⎞

⎠⎟
− Φ − −

σ
⎛

⎝⎜
⎞

⎠⎟

= Φ − .( ) − Φ − .( ) = .

1 96
25

1 96
25

0 54 4 46 0 295

. .

The probability is about 0.3 that this difference from 50 centimeters per second will not be detected. That is, the probabil-

ity is about 0.3 that the test will fail to reject the null hypothesis when the true burning rate is 49 centimeters per second.

Practical Interpretation: A sample size of n = 25 results in reasonable, but not great, power = 1 – β = 1 – 0.3 = 0.70.

Suppose that the analyst wishes to design the test so that if the true mean burning rate differs from 50 centimeters 

per second by as much as 1 centimeter per second, the test will detect this (i.e., reject H
0
: μ = 50) with a high prob-

ability, say, 0.90. Now we note that σ = 2, δ = 51 – 50 = 1, α = 0.05, and β = 0.10. Because z z/α .= = .2 0 025 1 96  and 

z z ,β .= = .0 10 1 28  the sample size required to detect this departure from H
0
: μ = 50 is found by Equation 9-22 as

n
z z/� �

( ) ( )
( )

α +
δ

= +2
2 2

2

2 2

2

1 96 1 28 2

1
42

β σ . .

The approximation is good here, because Φ − − δ σ = Φ − . − ( )α( ) ( )z n/ 2 1 96 1 42 2  = Φ − .( )5 20 0� , which is small 

relative to β.

Practical Interpretation: To achieve a much higher power of 0.90, you will need a considerably large sample size, 

n = 42 instead of n = 25.

Propellant Burning Rate Type II Error From OC Curve Consider the propellant problem in 

Example 9-2. Suppose that the analyst is concerned about the probability of type II error if the 

true mean burning rate is μ = 51 centimeters per second. We may use the operating characteristic curves to fi nd β. 

Note that δ = 51 – 50 = 1, n = 25, σ = 2, and α = 0.05. Then using Equation 9-24 gives

d =
−

= =
μ μ δ0

σ σ
1

2

and from Appendix Chart VIIa with n = 25, we fi nd that β = 0.30. That is, if the true mean burning rate is μ = 51 cen-

timeters per second, there is approximately a 30% chance that this will not be detected by the test with n = 25.

Example 9-4
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In general, the operating characteristic curves involve three parameters: β, d, and n. Given 

any two of these parameters, the value of the third can be determined. There are two typical 

applications of these curves:

1. For a given n and d, fi nd β (as illustrated in Example 9-4). Analysts often encounter this 

kind of problem when they are concerned about the sensitivity of an experiment already 

performed, or when sample size is restricted by economic or other factors. 

2. For a given β and d, fi nd n. This was illustrated in Example 9-5. Analysts usually encoun-

ter this kind of problem when they have the opportunity to select the sample size at the 

outset of the experiment.

Operating characteristic curves are given in Appendix Charts VIIc and VIId for the one-

sided alternatives. If the alternative hypothesis is either H >1 0:μ μ  or H <1 0: μ μ , the abscissa 

scale on these charts is

 d =
−μ μ0

σ
  (9-25)

Using the Computer
Many statistics software packages can calculate sample sizes and type II error probabilities. To 

illustrate, here are some typical computer calculations for the propellant burning rate problem:

Power and Sample Size   
1-Sample Z-Test   

Testing mean = null (versus not = null)   

Calculating power for mean = null + difference   

Alpha = 0.05 Sigma = 2   

     Sample  Target  Actual

Difference     Size  Power  Power

 1     43  0.9000  0.9064

Power and Sample Size   

1-Sample Z-Test   

Testing mean = null (versus not = null)   

Calculating power for mean = null + difference   

Alpha = 0.05 Sigma = 2   

     Sample  Target  Actual

Difference     Size  Power  Power

 1     28  0.7500  0.7536

Power and Sample Size   

1-Sample Z-Test   

Testing mean = null (versus not = null)   

Calculating power for mean = null + difference   

Alpha = 0.05 Sigma = 2   

     Sample  

Difference     Size  Power 

 1     25  0.7054 

Use of OC Curves

Propellant Burning Rate Sample Size From OC Curve Once again, consider the propellant problem 

in Example 9-2. Suppose that the analyst would like to design the test so that if the true mean burning rate 

differs from 50 centimeters per second by as much as 1 centimeter per second, the test will detect this (i.e., reject H0: μ = 50) 

with a high probability, say, 0.90. This is exactly the same requirement as in Example 9-3 in which we used Equation 9-22 to 

fi nd the required sample size to be n = 42. The operating characteristic curves can also be used to fi nd the sample size for this 

test. Because d / , ,= μ − μ σ = α = .0 1 2 0 05  and β = 0.10, we fi nd from Appendix Chart VIIa that the required sample size 

is approximately n = 40. This closely agrees with the sample size calculated from Equation 9-22.

Example 9-5
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In the first part of the boxed display, we worked Example 9-3, that is, to find the sample 

size n that would allow detection of a difference from μ
0
 = 50 of 1 centimeter per second 

with power of 0.9 and α = 0.05. The answer, n = 43, agrees closely with the calculated 

value from Equation 9-22 in Example 9-3, which was n = 42. The difference is due to the 

software’s use of a value of zβ that has more than two decimal places. The second part of 

the computer output relaxes the power requirement to 0.75. Note that the effect is to reduce 

the required sample size to n = 28. The third part of the output is the solution to Example 

9-4 for which we wish to determine the type II error probability of (β) or the power = 1 – 

β for the sample size n = 25. Note that software computes the power to be 0.7054, which 

agrees closely with the answer obtained from the OC curve in Example 9-4. Generally, 

however, the computer calculations will be more accurate than visually reading values 

from an OC curve.

9-2.3 LARGE-SAMPLE TEST

We have developed the test procedure for the null hypothesis H
0
: μ = μ

0
 assuming that the 

population is normally distributed and that σ2 is known. In many if not most practical situ-

ations, σ2 will be unknown. Furthermore, we may not be certain that the population is well 

modeled by a normal distribution. In these situations, if n is large (say, n > 40), the sample 

standard deviation s can be substituted for σ in the test procedures with little effect. Thus, 

although we have given a test for the mean of a normal distribution with known σ2, it can be 

easily converted into a large-sample test procedure for unknown r2 that is valid regard-

less of the form of the distribution of the population. This large-sample test relies on the 

central limit theorem just as the large-sample confidence interval on μ that was presented 

in the previous chapter did. Exact treatment of the case in which the population is normal, 

σ2 is unknown, and n is small involves use of the t distribution and will be deferred until 

Section 9-3.

9-31. State the null and alternative hypothesis in each case.

(a)  A hypothesis test will be used to potentially provide evi-

dence that the population mean is more than 10.

(b)  A hypothesis test will be used to potentially provide evi-

dence that the population mean is not equal to 7.

(c)  A hypothesis test will be used to potentially provide evi-

dence that the population mean is less than 5.

9-32.  A hypothesis will be used to test that a population 

mean equals 7 against the alternative that the population mean 

does not equal 7 with known variance σ. What are the critical 

values for the test statistic Z
0
 for the following significance levels?

(a) 0.01      (b) 0.05      (c) 0.10

9-33. A hypothesis will be used to test that a population mean 

equals 10 against the alternative that the population mean is 

more than 10 with known variance σ. What is the critical value 

for the test statistic Z
0
 for the following significance levels?

(a) 0.01      (b) 0.05      (c) 0.10

9-34.  A hypothesis will be used to test that a population 

mean equals 5 against the alternative that the population mean is 

less than 5 with known variance σ. What is the critical value for 

the test statistic Z
0
 for the following significance levels?

(a) 0.01      (b) 0.05      (c) 0.10

9-35.  For the hypothesis test H0 7:μ =  against H1 7: μ ≠  

and variance known, calculate the P-value for each of the fol-

lowing test statistics.

(a) z0 2 05= .       (b) z0 1 84=− .       (c) z0 0 4= .
9-36.  For the hypothesis test H

0
: μ = 10 against H >1 10:μ  

and variance known, calculate the P-value for each of the fol-

lowing test statistics.

(a) z0 2 05= .       (b) z0 1 84= − .       (c) z0 0 4= .
9-37. For the hypothesis test H

0
: μ = 5 against H <1 5: μ  and 

variance known, calculate the P-value for each of the follow-

ing test statistics.

(a) z0 2 05= .       (b) z0 1 84= − .       (c) z0 0 4= .

FOR SECTION 9-2Exercises 
 Problem available in WileyPLUS at instructor’s discretion. 

 Tutoring problem available in WileyPLUS at instructor’s discretion.
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9-38. Output from a software package follows:

One-Sample Z:
Test of mu = 35 vs not = 35

The assumed standard deviation = 1.8

Variable N Mean StDev SE Mean Z P

x 25 35.710 1.475 ? ? ?

(a) Fill in the missing items. What conclusions would you draw?

(b) Is this a one-sided or a two-sided test?

(c)   Use the normal table and the preceding data to construct a 

95% two-sided CI on the mean.

(d)  What would the P-value be if the alternative hypothesis 

is H >1 35: μ ?

9-39. Output from a software package follows:

One-Sample Z:
Test of mu = 20 20vs >
The assumed standard deviation = 0.75

Variable N Mean StDev SE Mean Z P

x 10 19.889 ? 0.237 ? ?

(a)  Fill in the missing items. What conclusions would you draw?

(b) Is this a one-sided or a two-sided test?

(c)  Use the normal table and the preceding data to construct a 

95% two-sided CI on the mean.

(d)  What would the P-value be if the alternative hypothesis is 

H1 20: μ≠ ?

9-40. Output from a software package follows:

One-Sample Z:
Test of mu = 14 5 14 5. .vs >
The assumed standard deviation = 1.1

Variable N Mean StDev SE Mean Z P

x 16 15.016 1.015 ? ? ?

(a)  Fill in the missing items. What conclusions would you draw?

(b) Is this a one-sided or a two-sided test?

(c)  Use the normal table and the preceding data to construct a 

95% lower bound on the mean.

(d)  What would the P-value be if the alternative hypothesis 

is H1 14 5: μ ≠ . ?

9-41. Output from a software package follows:

One-Sample Z:

Test of mu = 99 99vs >

The assumed standard deviation = 2.5

Variable N Mean StDev SE Mean Z P

x 12 100.039 2.365 ? 1.44 0.075

(a)  Fill in the missing items. What conclusions would you draw?

(b) Is this a one-sided or a two-sided test?

(c)  If the hypothesis had been H0 98: μ=  versus H0: μ > 98, 

would you reject the null hypothesis at the 0.05 level of 

significance? Can you answer this without referring to the 

normal table?

(d)  Use the normal table and the preceding data to construct a 

95% lower bound on the mean.

(e)  What would the P-value be if the alternative hypothesis is 

H1 99: μ ≠ ?

9-42.  The mean water temperature downstream from a 

discharge pipe at a power plant cooling tower should be no 

more than 100°F. Past experience has indicated that the stand-

ard deviation of temperature is 2°F. The water temperature is 

measured on nine randomly chosen days, and the average tem-

perature is found to be 98°F.

(a)  Is there evidence that the water temperature is acceptable 

at α = 0.05?

(b) What is the P-value for this test?

(c)  What is the probability of accepting the null hypothesis at 
α = 0.05 if the water has a true mean temperature of 104°F?

9-43. A manufacturer produces crankshafts for an automo-

bile engine. The crankshafts wear after 100,000 miles (0.0001 

inch) is of interest because it is likely to have an impact on 

warranty claims. A random sample of n = 15 shafts is tested 

and x  = 2.78. It is known that σ = 0.9 and that wear is normally 

distributed.

(a) Test H0 3: μ =  versus H1 3: μ ≠  using α = 0.05.

(b) What is the power of this test if μ = 3.25?

(c)  What sample size would be required to detect a true mean 

of 3.75 if we wanted the power to be at least 0.9?

9-44.  A melting point test of n = 10 samples of a 

binder used in manufacturing a rocket propellant resulted in 

x = . ° .154 2 F  Assume that the melting point is normally dis-

tributed with σ = . ° .1 5 F
(a) Test H0 155:μ =  versus H1 155:μ ≠  using α = 0.01.

(b) What is the P-value for this test?

(c) What is the β-error if the true mean is μ = 150?

(d)  What value of n would be required if we want β < 0.1 when 
μ = 150? Assume that α = 0.01.

9-45.  The life in hours of a battery is known to be approx-

imately normally distributed with standard deviation σ = 1.25 

hours. A random sample of 10 batteries has a mean life of 

x = 40.5 hours.

(a)  Is there evidence to support the claim that battery life 

exceeds 40 hours? Use α = 0.05.

(b) What is the P-value for the test in part (a)?

(c)  What is the β-error for the test in part (a) if the true mean 

life is 42 hours?

(d)  What sample size would be required to ensure that β does 

not exceed 0.10 if the true mean life is 44 hours?

(e)  Explain how you could answer the question in part (a) by 

calculating an appropriate confidence bound on life.

9-46. An engineer who is studying the tensile strength of 

a steel alloy intended for use in golf club shafts knows that 

tensile strength is approximately normally distributed with  

σ = 60 psi. A random sample of 12 specimens has a mean ten-

sile strength of x = 3450 psi.

(a) Test the hypothesis that mean strength is 3500 psi. Use  
α = 0.01.

(b) What is the smallest level of significance at which you 

would be willing to reject the null hypothesis?

(c) What is the β-error for the test in part (a) if the true mean 

is 3470?
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9-3  Tests on the Mean of a Normal Distribution,  
Variance Unknown

9-3.1 HYPOTHESIS TESTS ON THE MEAN

We now consider the case of hypothesis testing on the mean of a population with unknown vari-
ance r2. The situation is analogous to the one in Section 8-2 where we considered a confidence 
interval on the mean for the same situation. As in that section, the validity of the test procedure 

we will describe rests on the assumption that the population distribution is at least approximately 

normal. The important result on which the test procedure relies is that if X
1
, X

2
, …, X

n
 is a random 

sample from a normal distribution with mean μ and variance σ2, the random variable

(d) Suppose that you wanted to reject the null hypothesis with 

probability at least 0.8 if mean strength μ = 3470. What 

sample size should be used?

(e) Explain how you could answer the question in part (a) 

with a two-sided confidence interval on mean tensile 

strength.

9-47.  Supercavitation is a propulsion technology for 

undersea vehicles that can greatly increase their speed. It 

occurs above approximately 50 meters per second when pres-

sure drops sufficiently to allow the water to dissociate into 

water vapor, forming a gas bubble behind the vehicle. When 

the gas bubble completely encloses the vehicle, supercavita-

tion is said to occur. Eight tests were conducted on a scale 

model of an undersea vehicle in a towing basin with the aver-

age observed speed x = 102 2.  meters per second. Assume that 

speed is normally distributed with known standard deviation σ 

= 4 meters per second.

(a)  Test the hypothesis H0 100:μ =  versus H <1 100: μ  using 

α = 0.05.

(b) What is the P-value for the test in part (a)?

(c)  Compute the power of the test if the true mean speed is as 

low as 95 meters per second.

(d)  What sample size would be required to detect a true mean 

speed as low as 95 meters per second if you wanted the 

power of the test to be at least 0.85?

(e)  Explain how the question in part (a) could be answered by 

constructing a one-sided confidence bound on the mean 

speed.

9-48.  A bearing used in an automotive application is sup-

posed to have a nominal inside diameter of 1.5 inches. A random 

sample of 25 bearings is selected, and the average inside diame-

ter of these bearings is 1.4975 inches. Bearing diameter is known 

to be normally distributed with standard deviation σ = 0.01 inch.

(a)  Test the hypothesis H0 1 5:μ = .  versus H1 1 5:μ ≠ .  using  

α = 0.01.

(b) What is the P-value for the test in part (a)?

(c)  Compute the power of the test if the true mean diameter is 

1.495 inches.

(d)  What sample size would be required to detect a true mean 

diameter as low as 1.495 inches if you wanted the power of 

the test to be at least 0.9?

(e)  Explain how the question in part (a) could be answered by 

constructing a two-sided confidence interval on the mean 

diameter.

9-49.  Medical researchers have developed a new arti-

ficial heart constructed primarily of titanium and plastic. 

The heart will last and operate almost indefinitely once it is 

implanted in the patient’s body, but the battery pack needs 

to be recharged about every four hours. A random sample of 

50 battery packs is selected and subjected to a life test. The 

average life of these batteries is 4.05 hours. Assume that 

battery life is normally distributed with standard deviation 

σ = 0.2 hour.

(a)  Is there evidence to support the claim that mean battery life 

exceeds 4 hours? Use α = 0.05.

(b) What is the P-value for the test in part (a)?

(c)  Compute the power of the test if the true mean battery life 

is 4.5 hours.

(d)  What sample size would be required to detect a true mean 

battery life of 4.5 hours if you wanted the power of the test 

to be at least 0.9?

(e)  Explain how the question in part (a) could be answered 

by constructing a one-sided confidence bound on the 

mean life.

9-50. Humans are known to have a mean gestation period of 

280 days (from last menstruation) with a standard deviation 

of about 9 days. A hospital wondered whether there was any 

evidence that their patients were at risk for giving birth prema-

turely. In a random sample of 70 women, the average gestation 

time was 274.3 days. 

(a) Is the alternative hypothesis one- or two-sided?

(b) Test the null hypothesis at α = 0.05.

(c) What is the P-value of the test statistic?

9-51. The bacterial strain Acinetobacter has been tested 

for its adhesion properties. A sample of five measurements 

gave readings of 2.69, 5.76, 2.67, 1.62 and 4.12 dyne-cm2. 

Assume that the standard deviation is known to be 0.66 

dyne-cm2 and that the scientists are interested in high adhe-

sion (at least 2.5 dyne-cm2).

(a) Should the alternative hypothesis be one-sided or two-sided?

(b) Test the hypothesis that the mean adhesion is 2.5 dyne-cm2.

(c) What is the P-value of the test statistic?
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T
X

S n
= − μ

has a t distribution with n – 1 degrees of freedom. Recall that we used this result in Section 8-2 

to devise the t-confidence interval for μ. Now consider testing the hypotheses

H H0 0 1 0: :μ = μ μ ≠ μ

We will use the test statistic:

 T
X

S n
0

0= − μ
 (9-26)

Test Statistic

If the null hypothesis is true, T0 has a t distribution with n – 1 degrees of freedom. When we 

know the distribution of the test statistic when H
0
 is true (this is often called the reference 

distribution or the null distribution), we can calculate the P-value from this distribution, or, 

if we use a fixed significance level approach, we can locate the critical region to control the 

type I error probability at the desired level.

To test H
0
: μ = μ

0
 against the two-sided alternative H1 0:μ ≠ μ , the value of the test statistic 

t
0
 in Equation 9-26 is calculated, and the P-value is found from the t distribution with n − 1 

degrees of freedom. Because the test is two-tailed, the P-value is the sum of the probabilities 

in the two tails of the t distribution. Refer to Fig. 9-13(a). The P-value is the probability above 

|t
0
| plus the probability below. Because the t distribution is symmetric around zero, a simple 

way to write this is

 P P T tn= ( )−2 1 0.  (9-27)

A small P-value is evidence against H0, so if P is of sufficiently small value (typically 
< 0.05), reject the null hypothesis.

For the one-sided alternative hypotheses

H H0 0 1 0: : μ = μ  μ > μ
  (9-28)

we calculate the test statistic t0 from Equation 9-26 and calculate the P-value as

 P P T tn= ( )−1 0.   (9-29)

For the other one-sided alternative

H H0 0 1 0: : μ = μ  μ < μ
  (9-30)

we calculate the P-value as

 P P T < tn= ( )−1 0   (9-31)

Figure 9-13(b) and (c) show how these P-values are calculated.

(a)

0–t0 t0t0 t0

(c)

0

(b)

0

P-value =

probability in

both tails

Two-tailed test One-tailed test One-tailed test

P-value

tn – 1 tn – 1 tn – 1tn – 1 tn – 1

FIGURE 9-13 Calculating the P-value for a t-test: (a) H1 0:μ ≠ μ , (b) H1 0 μ μ: . , (c) H1 0: μ μ< .
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Statistics software packages calculate and display P-values. However, in working problems 

by hand, it is useful to be able to find the P-value for a t-test. Because the t-table in Appendix 

A Table V contains only 10 critical values for each t distribution, determining the exact P-value 

from this table is usually impossible. Fortunately, it is easy to find lower and upper bounds on 

the P-value by using this table.

To illustrate, suppose that we are conducting an upper-tailed t-test (so H1 0:μ μ> ) with 14 

degrees of freedom. The relevant critical values from Appendix A Table II are as follows:

Critical value: 0.258 0.692 1.345 1.761 2.145 2.624 2.977 3.326 3.787 4.140

Tail area: 0.40 0.25 0.10 0.05 0.025 0.01 0.005 0.0025 0.001 0.0005

After calculating the test statistic, we find that t
0
 = 2.8. Now t

0
 = 2.8 is between two tabulated 

values, 2.624 and 2.977. Therefore, the P-value must be between 0.01 and 0.005. Refer to 

Fig. 9-14. These are effectively the upper and lower bounds on the P-value.

This illustrates the procedure for an upper-tailed test. If the test is lower-tailed, just change 

the sign on the lower and upper bounds for t
0
 and proceed in the same way. Remember that 

for a two-tailed test, the level of significance associated with a particular critical value is twice 

the corresponding tail area in the column heading. This consideration must be taken into 

account when we compute the bound on the P-value. For example, suppose that t0 = 2.8 for a 

two-tailed alternative based on 14 degrees of freedom. The value of the test statistic t0 > 2.624 

(corresponding to α = 2 × 0.01 = 0.02) and t
0
 < 2.977 (corresponding to α = 2 × 0.005 = 0.01), 

so the lower and upper bounds on the P-value would be 0.01 < P < 0.02 for this case.

Some statistics software packages can calculate P-values. For example, many software 

packages have the capability to find cumulative probabilities from many standard prob-

ability distributions, including the t distribution. Simply enter the value of the test statistic 

t0 along with the appropriate number of degrees of freedom. Then the software will display 

the probability P T tv ≤( )o  where ν is the degrees of freedom for the test statistic t0. From the 

cumulative probability, the P-value can be determined.

The single-sample t-test we have just described can also be conducted using the fixed 
significance level approach. Consider the two-sided alternative hypothesis. The null hypoth-

esis would be rejected if the value of the test statistic t
0
 falls in the critical region defined 

FIGURE 9-14 P-value 
for t0 = 2.8; an upper-
tailed test is shown to be 
between 0.005 and 0.01.

0

t distribution
with 14 degrees
of freedom

t0 = 2.8

2.624

2.977

P(T14 > 2.624) = 0.01 

P(T14 > 2.977) = 0.005 

(a)

0

tn – 1

–t   /2, n – 1a  –t   , n – 1a  T0t   /2, n – 1a  t   , n – 1a  

   /2a     /2a  

(c)

0

a  

(b)

0

a  

tn – 1 tn – 1

FIGURE 9-15 The distribution of T
0
 when H0 0:μ = μ  is true with critical region for (a) H ,1:μ ≠ μ0  (b) H > ,1 0:μ μ  and  

(c) H <1 0:μ μ .
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Testing Hypotheses on the Mean of a Normal Distribution, Variance Unknown
Null hypothesis: H0 0:μ = μ

Test statistic: T
X

S n
0

0= − μ

Alternative Hypotheses P-Value Rejection Criterion 
for Fixed-Level Tests

H1 0:μ ≠ μ Probability above t0  and 

probability below − t0  

t > t t < t/ ,n / ,n0 2 1 0 2 1α − α −  −or

H >1 0:μ μ Probability above t0 t > t ,n0 1α −

H <1 0:μ μ Probability below t0 t < t ,n0 1− α −

The calculations of the P-values and the locations of the critical regions for these 

situations are shown in Figs. 9-13 and 9-15, respectively.

Summary for the One-
Sample t-test

by the lower and upper α / 2 percentage points of the t distribution with n – 1 degrees of 

freedom. That is, reject H
0
 if

t > t t < t/ ,n / ,n0 2 1 0 2 1α − α −−or  

For the one-tailed tests, the location of the critical region is determined by the direction to which 

the inequality in the alternative hypothesis “points.” So, if the alternative is H > ,1 0: μ μ  reject H
0
 if

t > t ,n0 1α −

and if the alternative is H <1 0:μ μ , reject H
0
 if

t < t ,n0 1− α −

Figure 9-15 provides the locations of these critical regions.

Golf Club Design The increased availability of light materials with high strength has revolution-

ized the design and manufacture of golf clubs, particularly drivers. Clubs with hollow heads and 

very thin faces can result in much longer tee shots, especially for players of modest skills. This is due partly to the 

“spring-like effect” that the thin face imparts to the ball. Firing a golf ball at the head of the club and measuring the 

ratio of the ball’s outgoing velocity to the incoming velocity can quantify this spring-like effect. The ratio of veloci-

ties is called the coeffi cient of restitution of the club. An experiment was performed in which 15 drivers produced by a 

particular club maker were selected at random and their coeffi cients of restitution measured. In the experiment, the golf 

balls were fi red from an air cannon so that the incoming velocity and spin rate of the ball could be precisely controlled. 

It is of interest to determine whether there is evidence (with α = 0.05) to support a claim that the mean coeffi cient of 

restitution exceeds 0.82. The observations follow:

 0.8411  0.8191  0.8182  0.8125  0.8750

 0.8580  0.8532  0.8483  0.8276  0.7983

 0.8042  0.8730  0.8282  0.8359  0.8660

The sample mean and sample standard deviation are x = .0 83725 and s = 0.02456. The normal probability plot of 

the data in Fig. 9-16 supports the assumption that the coeffi cient of restitution is normally distributed. Because the 

experiment’s objective is to demonstrate that the mean coeffi cient of restitution exceeds 0.82, a one-sided alternative 

hypothesis is appropriate.

Example 9-6
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Normality and the t-Test
The development of the t-test assumes that the population from which the random sample is 

drawn is normal. This assumption is required to formally derive the t distribution as the refer-

ence distribution for the test statistic in Equation 9-26. Because it can be diffi cult to identify 

the form of a distribution based on a small sample, a logical question to ask is how important 

this assumption is. Studies have investigated this. Fortunately, studies have found that the 

t-test is relatively insensitive to the normality assumption. If the underlying population is 

reasonably symmetric and unimodal, the t-test will work satisfactorily. The exact signifi cance 

level will not match the “advertised” level; for instance, the results may be signifi cant at the 

6% or 7% level instead of the 5% level. This is usually not a serious problem in practice. A 

normal probability plot of the sample data as illustrated for the golf club data in Figure 9-16 

is usually a good way to verify the adequacy of the normality assumption. Only severe depar-

tures from normality that are evident in the plot should be a cause for concern.

The solution using the seven-step procedure for hypothesis testing is as follows:

1.   Parameter of interest: The parameter of interest is the mean coeffi cient of restitution, μ.

2.  Null hypothesis: H0 0 82:μ = .

3.   Alternative hypothesis: H >1 0 82: μ .  We want to reject H
0
 if the mean coeffi cient of restitution exceeds 0.82.

4.  Test statistic: The test statistic is

t
x

S n
0

0= − μ

5.  Reject H0 if: Reject H
0
 if the P-value is less than 0.05.

6.  Computations: Because x  = 0.83725, s = 0.02456, μ
0
 = 0.82, and n = 15, we have

t0

0 83725 0 82

0 02456 15
2 72= − =. .

.
.

/
7.  Conclusions: From Appendix A Table II we fi nd for a t distribution with 14 degrees of freedom that t

0
 = 2.72 

falls between two values: 2.624, for which α = 0.01, and 2.977, for which α = 0.005. Because this is a one-tailed 

test, we know that the P-value is between those two values, that is, 0 005 0 01. < <P . . Therefore, because P < 0 05. , 

we reject H
0
 and conclude that the mean coeffi cient of restitution exceeds 0.82. 

Practical Interpretation: There is strong evidence to conclude that the mean coefficient of restitution 

exceeds 0.82.

FIGURE 9-16. Normal 
probability plot of the 
coeffi cient of restitution 
data from Example 9-6.
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Many software packages conduct the one-sample t-test. Typical computer output for Example 9-6 

is shown in the following display:

One-Sample T

Test of mu = 0.82 vs mu > 0.82   95.0% Lower

Variable    N    Mean    StDev    SE Mean    confidence bound    T    P-value

COR      15    0.83725  0.02456   0.00634     0.82608           2.72   0.008

Notice that the software computes both the test statistic T
0
 and a 95% lower confidence bound 

for the coefficient of restitution. The reported P-value is 0.008. Because the 95% lower confi-

dence bound exceeds 0.82, we would reject the hypothesis that H
0
: μ = 0.82 and conclude that 

the alternative hypothesis H >1 0 82: μ .  is true.

9-3.2 TYPE II ERROR AND CHOICE OF SAMPLE SIZE

The type II error probability for the t-test depends on the distribution of the test statistic in 

Equation 9-26 when the null hypothesis H
0
: μ = μ

0
 is false. When the true value of the mean 

is μ = μ
0
 + δ, the distribution for T

0
 is called the noncentral t distribution with n – 1 degrees 

of freedom and noncentrality parameter δ σn . Note that if δ = 0, the noncentral t distribu-

tion reduces to the usual central t distribution. Therefore, the type II error of the two-sided 

alternative (for example) would be

b = − ≤ ≤ ≠
= − ≤ ′ ≤

α − α −

α − −

P t T t

P t T t
/ ,n / ,n

/ ,n / ,n

( )

( )

2 1 0 2 1

2 1 0 2 1

⏐δ

α

0

where T ′0 denotes the noncentral t random variable. Finding the type II error probability β 

for the t-test involves finding the probability contained between two points of the noncentral 

t distribution. Because the noncentral t-random variable has a messy density function, this 

integration must be done numerically.

Fortunately, this ugly task has already been done, and the results are summarized in a series 

of O.C. curves in Appendix Charts VIIe, VIIf, VIIg, and VIIh that plot β for the t-test against 

a parameter d for various sample sizes n. Curves are provided for two-sided alternatives on 

Charts VIIe and VIIf. The abscissa scale factor d on these charts is defined as

 d =
−

=
μ μ

σ
δ
σ

0
  (9-32)

For the one-sided alternative μ μ> 0 or μ μ< 0, we use charts VIIg and VIIh with

 d =
−

=
μ μ

σ
δ
σ

0
  (9-33)

We note that d depends on the unknown parameter σ2. We can avoid this difficulty in sev-

eral ways. In some cases, we may use the results of a previous experiment or prior information 

to make a rough initial estimate of σ2. If we are interested in evaluating test performance after 

the data have been collected, we could use the sample variance s2 to estimate σ2. If there is no 

previous experience on which to draw in estimating σ2, we then define the difference in the 

mean d that we wish to detect relative to σ. For example, if we wish to detect a small differ-

ence in the mean, we might use a value of d = δ σ ≤/ 1 (for example), whereas if we are inter-

ested in detecting only moderately large differences in the mean, we might select d = δ σ =/ 2 

(for example). That is, the value of the ratio δ σ/  is important in determining sample size, and 

if it is possible to specify the relative size of the difference in means that we are interested in 

detecting, then a proper value of d can usually be selected.
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Some software packages can also perform power and sample size computations for the one-

sample t-test. Several calculations based on the golf club testing problem follow:

Power and Sample Size

1-Sample t-test

Testing mean = null (versus > null)

Calculating power for mean = null + difference

Alpha = 0.05 Sigma = 0.02456

Difference  Sample Size  Power

0.02    15   0.9117

Power and Sample Size

1-Sample t-test

Testing mean = null (versus > null)

Calculating power for mean = null + difference

Alpha = 0.05 Sigma = 0.02456

Difference  Sample Size  Power

  0.01    15   0.4425

Power and Sample Size

1-Sample t-test

Testing mean = null (versus > null)

Calculating power for mean = null + difference

Alpha = 0.05 Sigma = 0.02456

   Sample Size  Target  Actual

Difference     Power  Power

  0.01    39   0.8000  0.8029

In the fi rst portion of the computer output, the software reproduces the solution to Example 

9-7, verifying that a sample size of n = 15 is adequate to give power of at least 0.8 if the 

mean coeffi cient of restitution exceeds 0.82 by at least 0.02. In the middle section of the 

output, we used the software to compute the power to detect the difference between μ and 

μ = .0 0 82 of 0.01. Notice that with n = 15, the power drops considerably to 0.4425. The 

fi nal portion of the output is the sample size required for a power of at least 0.8 if the dif-

ference between μ and μ
0
 of interest is actually 0.01. A much larger n is required to detect 

this smaller difference.

Golf Club Design Sample Size Consider the golf club testing problem from Example 9-6. If the 

mean coeffi cient of restitution exceeds 0.82 by as much as 0.02, is the sample size n = 15 adequate 

to ensure that H
0
: μ = 0.82 will be rejected with probability at least 0.8?

To solve this problem, we will use the sample standard deviation s = 0.02456 to estimate σ. Then d = δ σ =/  

0 02 0 02456 0 81. . = ./ . By referring to the operating characteristic curves in Appendix Chart VIIg (for α = 0.05) with d 

= 0.81 and n = 15, we fi nd that β = 0.10, approximately. Thus, the probability of rejecting H
0
: μ = 0.82 if the true mean 

exceeds this by 0.02 is approximately 1 – β = 1 – 0.10 = 0.90, and we conclude that a sample size of n = 15 is adequate 

to provide the desired sensitivity.

Example 9-7
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9-52.  A hypothesis will be used to test that a population 

mean equals 7 against the alternative that the population mean 

does not equal 7 with unknown variance. What are the criti-

cal values for the test statistic T
0
 for the following significance 

levels and sample sizes?

(a) α = .0 01 and n = 20 (b) α = .0 05 and n = 12

(c) α = .0 10 and n = 15

9-53. A hypothesis will be used to test that a population 

mean equals 10 against the alternative that the population 

mean is greater than 10 with unknown variance. What is the 

critical value for the test statistic T
0
 for the following signifi-

cance levels?

(a) α = .0 01 and n = 20 (b) α = .0 05 and n = 12

(c) α = .0 10 and n = 15

9-54. A hypothesis will be used to test that a population mean 

equals 5 against the alternative that the population mean is less 

than 5 with unknown variance. What is the critical value for the 

test statistic T
0
 for the following significance levels?

(a) α = .0 01   and n = 20 (b) α = .0 05  and n = 12

(c) α = .0 10   and n = 15

9-55. For the hypothesis test H
0
: μ = 7 against H

1
: μ ≠ 7 with 

variance unknown and n = 20, approximate the P-value for 

each of the following test statistics.

(a) t0 2 05= .       (b) t0 1 84= − .       (c) t0 0.4=
9-56.  For the hypothesis test H

0
: μ = 10 against H

1
: μ > 10 

with variance unknown and n = 15, approximate the P-value 

for each of the following test statistics.

(a) t0 2 05= .       (b) t0 1 84= − .       (c) t0 0 4= .
9-57.  For the hypothesis test H

0
: μ = 5 against H

1
: μ < 5 

with variance unknown and n = 12, approximate the P-value for 

each of the following test statistics.

(a) t0 2 05= .       (b) t0 1 84= − .       (c) t0 0 4= .
9-58. Consider the following computer output.

One-Sample T:

Test of mu = 91 vs > 91

95% 
Lower

Variable N Mean StDev SE Mean Bound T P

x 20 92.379 0.717 ? ? ? ?

(a)  Fill in the missing values. You may calculate bounds on the 

P-value. What conclusions would you draw?

(b) Is this a one-sided or a two-sided test?

(c)  If the hypothesis had been H
0
: μ = 90 versus H

1
: μ > 90, 

would your conclusions change?

9-59. Consider the following computer output.

One-Sample T:

Test of mu = 12 vs not = 12

Variable N Mean StDev SE Mean T P

x 10 12.564 ? 0.296 ? ?

(a)  How many degrees of freedom are there on the t-test statistic?

(b)  Fill in the missing values. You may calculate bounds on the 

P-value. What conclusions would you draw?

(c) Is this a one-sided or a two-sided test?

(d) Construct a 95% two-sided CI on the mean.

(e)  If the hypothesis had been H
0
: μ = 12 versus H

1
: μ > 12, 

would your conclusions change?

(f)  If the hypothesis had been H
0
: μ = 11.5, versus H1 11 5: μ ≠ . ,  

would your conclusions change? Answer this question by 

using the CI computed in part (d).

9-60. Consider the following computer output.

One-Sample T:

Test of mu = 34 vs not = 34

Variable N Mean StDev SE Mean 95% CI T P

x 16 35.274 1.783 ? (34.324, 36.224) ? 0.012

(a)  How many degrees of freedom are there on the t-test 

statistic?

(b) Fill in the missing quantities.

(c)  At what level of significance can the null hypothesis be 

rejected?

(d)  If the hypothesis had been H
0
: μ = 34 versus H

1
: μ > 34, 

would the P-value have been larger or smaller?

(e)  If the hypothesis had been H
0
: μ = 34.5 versus H1 34 5: μ ≠ . ,  

would you have rejected the null hypothesis at the 0.05 level?

9-61. An article in Growth: A Journal Devoted to Problems 
of Normal and Abnormal Growth [“Comparison of Measured 

and Estimated Fat-Free Weight, Fat, Potassium and Nitrogen 

of Growing Guinea Pigs” (1982, Vol. 46(4), pp. 306–321)] 

reported the results of a study that measured the body weight 

(in grams) for guinea pigs at birth.

 421.0 452.6 456.1 494.6 373.8

  90.5 110.7  96.4  81.7 102.4

 241.0 296.0 317.0 290.9 256.5

 447.8 687.6 705.7 879.0  88.8

 296.0 273.0 268.0 227.5 279.3

 258.5 296.0

(a)  Test the hypothesis that mean body weight is 300 grams. 

Use α = 0.05.

FOR SECTION 9-3Exercises 
 Problem available in WileyPLUS at instructor’s discretion. 

 Tutoring problem available in WileyPLUS at instructor’s discretion.
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(b)  What is the smallest level of significance at which you 

would be willing to reject the null hypothesis?

(c)  Explain how you could answer the question in part (a) with 

a two-sided confidence interval on mean body weight.

9-62. An article in the ASCE Journal of Energy Engineering 

(1999, Vol. 125, pp. 59–75) describes a study of the thermal 

inertia properties of autoclaved aerated concrete used as a 

building material. Five samples of the material were tested in 

a structure, and the average interior temperatures (°C) reported 

were as follows: 23.01, 22.22, 22.04, 22.62, and 22.59.

(a)  Test the hypotheses H
0
: μ = 22.5 versus H

1
: μ ≠ 22.5, using 

α = 0.05. Find the P-value.

(b)  Check the assumption that interior temperature is normally 

distributed.

(c)  Compute the power of the test if the true mean interior 

temperature is as high as 22.75.

(d)  What sample size would be required to detect a true mean 

interior temperature as high as 22.75 if you wanted the 

power of the test to be at least 0.9?

(e)  Explain how the question in part (a) could be answered by 

constructing a two-sided confidence interval on the mean 

interior temperature.

9-63.  A 1992 article in the Journal of the American Medical 
Association (“A Critical Appraisal of 98.6 Degrees F, the Upper 

Limit of the Normal Body Temperature, and Other Legacies of 

Carl Reinhold August Wunderlich”) reported body temperature, 

gender, and heart rate for a number of subjects. The body tem-

peratures for 25 female subjects follow: 97.8, 97.2, 97.4, 97.6, 

97.8, 97.9, 98.0, 98.0, 98.0, 98.1, 98.2, 98.3, 98.3, 98.4, 98.4, 

98.4, 98.5, 98.6, 98.6, 98.7, 98.8, 98.8, 98.9, 98.9, and 99.0.

(a)  Test the hypothesis H
0
: μ = 98.6 versus H1 98 6: μ ≠ . , using 

α = 0.05. Find the P-value.

(b)  Check the assumption that female body temperature is nor-

mally distributed.

(c)  Compute the power of the test if the true mean female body 

temperature is as low as 98.0.

(d)  What sample size would be required to detect a true mean 

female body temperature as low as 98.2 if you wanted the 

power of the test to be at least 0.9?

(e)  Explain how the question in part (a) could be answered by 

constructing a two-sided confidence interval on the mean 

female body temperature.

9-64.  Cloud seeding has been studied for many decades as 

a weather modification procedure (for an interesting study of this 

subject, see the article in Technometrics, “A Bayesian Analysis of a 

Multiplicative Treatment Effect in Weather Modification,” Vol. 17, 

pp. 161–166). The rainfall in acre-feet from 20 clouds that were 

selected at random and seeded with silver nitrate follows: 18.0, 

30.7, 19.8, 27.1, 22.3, 18.8, 31.8, 23.4, 21.2, 27.9, 31.9, 27.1, 25.0, 

24.7, 26.9, 21.8, 29.2, 34.8, 26.7, and 31.6.

(a)  Can you support a claim that mean rainfall from seeded 

clouds exceeds 25 acre-feet? Use α = 0.01. Find the P-value.

(b) Check that rainfall is normally distributed.

(c)  Compute the power of the test if the true mean rainfall is 

27 acre-feet.

(d)  What sample size would be required to detect a true mean 

rainfall of 27.5 acre-feet if you wanted the power of the test 

to be at least 0.9?

(e)  Explain how the question in part (a) could be answered by 

constructing a one-sided confidence bound on the mean 

diameter.

9-65.  The sodium content of twenty 300-gram boxes of 

organic cornflakes was determined. The data (in milligrams) 

are as follows: 131.15, 130.69, 130.91, 129.54, 129.64, 

128.77, 130.72, 128.33, 128.24, 129.65, 130.14, 129.29, 

128.71, 129.00, 129.39, 130.42, 129.53, 130.12, 129.78, 

130.92.

(a)  Can you support a claim that mean sodium content of this 

brand of cornflakes differs from 130 milligrams? Use α = 

0.05. Find the P-value.

(b) Check that sodium content is normally distributed.

(c)  Compute the power of the test if the true mean sodium 

content is 130.5 milligrams.

(d)  What sample size would be required to detect a true mean 

sodium content of 130.1 milligrams if you wanted the 

power of the test to be at least 0.75?

(e)  Explain how the question in part (a) could be answered by 

constructing a two-sided confidence interval on the mean 

sodium content.

9-66. Consider the baseball coefficient of restitution data first 

presented in Exercise 8-103.

(a)  Do the data support the claim that the mean coefficient 

of restitution of baseballs exceeds 0.635? Use α = 0.05. 

Find the P-value.

(b) Check the normality assumption.

(c)  Compute the power of the test if the true mean coefficient 

of restitution is as high as 0.64.

(d)  What sample size would be required to detect a true mean 

coefficient of restitution as high as 0.64 if you wanted the 

power of the test to be at least 0.75?

(e)  Explain how the question in part (a) could be answered 

with a confidence interval.

9-67. Consider the dissolved oxygen concentration at TVA 

dams first presented in Exercise 8-105.

(a)  Test the hypothesis H
0
 : μ = 4 versus H1 4: μ ≠ . Use α = 0.01.  

Find the P-value.

(b) Check the normality assumption.

(c)  Compute the power of the test if the true mean dissolved 

oxygen concentration is as low as 3.

(d)  What sample size would be required to detect a true mean 

dissolved oxygen concentration as low as 2.5 if you wanted 

the power of the test to be at least 0.9?

(e)  Explain how the question in part (a) could be answered 

with a confidence interval.

9-68.  Reconsider the data from Medicine and Science in 
Sports and Exercise described in Exercise 8-32. The sample 

size was seven and the sample mean and sample standard devi-

ation were 315 watts and 16 watts, respectively.

(a)  Is there evidence that leg strength exceeds 300 watts at 

significance level 0.05? Find the P-value.
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(b)  Compute the power of the test if the true strength is  

305 watts.

(c)  What sample size would be required to detect a true 

mean of 305 watts if the power of the test should be at 

least 0.90?

(d)  Explain how the question in part (a) could be answered 

with a confidence interval.

9-69. Reconsider the tire testing experiment described in 

Exercise 8-29.

(a)  The engineer would like to demonstrate that the mean life 

of this new tire is in excess of 60,000 kilometers. Formulate 

and test appropriate hypotheses, and draw conclusions 

using α = 0.05.

(b)  Suppose that if the mean life is as long as 61,000 kilom-

eters, the engineer would like to detect this difference with 

probability at least 0.90. Was the sample size n = 16 used 

in part (a) adequate?

9-70. Reconsider the Izod impact test on PVC pipe described 

in Exercise 8-30. Suppose that you want to use the data from 

this experiment to support a claim that the mean impact 

strength exceeds the ASTM standard (one foot-pound per 

inch). Formulate and test the appropriate hypotheses using 
α = 0.05.

9-71.  Reconsider the television tube brightness experi-

ment in Exercise 8-37. Suppose that the design engineer 

claims that this tube will require at least 300 microamps of 

current to produce the desired brightness level. Formulate 

and test an appropriate hypothesis to confirm this claim 

using α = 0.05. Find the P-value for this test. State any nec-

essary assumptions about the underlying distribution of the 

data.

9-72. Exercise 6-38 gave data on the heights of female engi-

neering students at ASU.

(a)  Can you support a claim that the mean height of female 

engineering students at ASU is at least 65 inches? Use α = 

0.05. Find the P-value.

(b) Check the normality assumption.

(c)  Compute the power of the test if the true mean height is 

68 inches.

(d)  What sample size would be required to detect a true mean 

height of 66 inches if you wanted the power of the test to 

be at least 0.8?

9-73. Exercise 6-41 describes testing golf balls for an overall 

distance standard.

(a)  Can you support a claim that mean distance achieved by 

this particular golf ball exceeds 280 yards? Use α = 0.05. 

Find the P-value.

(b) Check the normality assumption.

(c)  Compute the power of the test if the true mean distance is 

290 yards.

(d)  What sample size would be required to detect a true mean 

distance of 290 yards if you wanted the power of the test 

to be at least 0.8?

9-74. Exercise 6-40 presented data on the concentration of 

suspended solids in lake water.

(a)  Test the hypothesis H
0
 : μ = 55 versus H1 55: μ ≠ ; use α = 0.05. 

Find the P-value.

(b) Check the normality assumption.

(c)  Compute the power of the test if the true mean concentra-

tion is as low as 50.

(d)  What sample size would be required to detect a true mean 

concentration as low as 50 if you wanted the power of the 

test to be at least 0.9?

9-75. Human oral normal body temperature is believed to be 

98.6° F, but there is evidence that it actually should be 98.2° F 

[Mackowiak, Wasserman, Steven and Levine, JAMA (1992, Vol. 

268(12), pp. 1578–1580)]. From a sample of 52 healthy adults, 

the mean oral temperature was 98.285 with a standard deviation 

of 0.625 degrees. 

(a) What are the null and alternative hypotheses?

(b) Test the null hypothesis at α = 0.05.

(c)  How does a 95% confidence interval answer the same 

question?

9-76. In a little over a month, from June 5, 1879, to July 2, 

1879, Albert Michelson measured the velocity of light in air 

100 times (Stigler, Annals of Statistics, 1977). Today we know 

that the true value is 299,734.5 km/sec. Michelson’s data 

have a mean of 299,852.4 km/sec with a standard deviation 

of 79.01. 

(a)  Find a two-sided 95% confidence interval for the true mean 

(the true value of the speed of light).

(b)  What does the confidence interval say about the accuracy 

of Michelson’s measurements? 

9-4  Tests on the Variance and Standard  
Deviation of a Normal Distribution

Sometimes hypothesis tests on the population variance or standard deviation are needed. 

When the population is modeled by a normal distribution, the tests and intervals described in 

this section are applicable.
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9-4.1 HYPOTHESIS TESTS ON THE VARIANCE

Suppose that we wish to test the hypothesis that the variance of a normal population σ2 equals 

a specified value, say σ0
2, or equivalently, that the standard deviation σ is equal to σ

0
. Let X

1
, 

X
2
, …, X

n
 be a random sample of n observations from this population. To test

 H H0
2

0
2

1
2

0
2: : σ = σ  σ = σ    (9-34)

we will use the test statistic:

 X
n S

0
2

2

0
2

1
=

−( )
σ

 (9-35)

Test Statistic

If the null hypothesis H0
2

0
2: σ = σ  is true, the test statistic χ0

2
 defined in Equation 9-35 follows 

the chi-square distribution with n – 1 degrees of freedom. This is the reference distribution for 

this test procedure. To perform a fixed significance level test, we would take a random sample 

from the population of interest, calculate χ0
2
, the value of the test statistic χ0

2
, and the null hypoth-

esis H0
2

0
2:σ = σ  would be rejected if

χ χ χ χα − −α −0

2
2 1

2
0
2

1 2 1
2> >n n/ /, ,or if

where χα −/ ,n2 1
2

 and χ −α −1 2 1
2

/ ,n  are the upper and lower 100α/2 percentage points of the chi-square 

distribution with n–1 degrees of freedom, respectively. Figure 9-17(a) shows the critical region.

The same test statistic is used for one-sided alternative hypotheses. For the one-sided hypotheses

 H H >0
2

0
2

1
2

0
2: : σ = σ  σ σ   (9-36)

we would reject H
0
 if χ χα −0

2
1

2> ,,n  whereas for the other one-sided hypotheses

 H H <0
2

0
2

1
2

0
2: : σ = σ  σ σ  (9-37)

we would reject H
0
 if χ χ .−α −0

2
1 1
2< ,n  The one-sided critical regions are shown in Fig. 9-17(b) and (c).

Null hypothesis:    H
0
: σ2 = σ2

0

Test statistic:  χ =
−( )
σ0

2
2

0
2

1n S

Alternative Hypothesis Rejection Criteria

H1
2

0
2: σ ≠ σ χ χ χ χ

α − −α −0

2

2 1

2

0

2

1 2 1

2> <
/ ,n / ,n

or

H >1
2

0
2: σ σ χ χ

α −0

2

1

2>
,n

H <1
2

0
2: σ σ χ χ −α −0

2

1 1

2<
,n

Tests on the Variance  
of a Normal 
Distribution

(a)

/2, n – 1    a

a

x2

n – 1x2

/2, n – 1    ax20

f (x)

x
1 –

/2
a /2

(b)

, n – 1    ax2

n – 1x2

0

f (x)

x

(c)

n – 1x2

, n – 1    ax20

f (x)

x
1 –

a
a

FIGURE 9-17 Reference distribution for the test of H0
2

0
2: σ = σ  with critical region values for (a) H1

2
0
2: σ ≠ σ .  

(b) H1
2

0
2: σ σ. . (c) H1

2
0
2: σ σ, .
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We can also use the P-value approach. Using Appendix Table III, it is easy to place bounds 

on the P-value of a chi-square test. From inspection of the table, we fi nd that χ = ..0 10 19
2

27 20,

and χ = . ..0 05 19
2

30 14,  Because 27 20 29 07 30 14. . .< < , we conclude that the P-value for the test 

in Example 9-8 is in the interval 0 05 0 10. . .< P-value <

The P-value for a lower-tailed test would be found as the area (probability) in the lower 

tail of the chi-square distribution to the left of (or below) the computed value of the test sta-

tistic χ0
2
. For the two-sided alternative, fi nd the tail area associated with the computed value 

of the test statistic and double it to obtain the P-value.

Some software packages perform the test on a variance of a normal distribution described 

in this section. Typical computer output for Example 9-8 is as follows:

Test and CI for One Variance

Null hypothesis    Sigma-squared = 0.01

Alternative hypothesis   Sigma-squared > 0.01

Statistics

N   StDev  Variance

20  0.124  0.0153

95% One-Sided Confi dence Intervals

 Lower Confi dence Bound  Lower Confi dence Bound 

 for StDev    for Variance

 0.098     0.0096

Tests

Chi-Square  DF  P-Value

29.07   19  0.065

Recall that we said that t-test is relatively robust to the assumption that we are sampling 

from a normal distribution. The same is not true for the chi-square test on variance. Even 

moderate departures from normality can result in the test statistic in Equation 9-35 having a 

distribution that is very different from chi-square.

Automated Filling An automated fi lling machine is used to fi ll bottles with liquid detergent. 

A random sample of 20 bottles results in a sample variance of fi ll volume of s2 = 0.0153 (fl uid 

ounces)2. If the variance of fi ll volume exceeds 0.01 (fl uid ounces)2, an unacceptable proportion of bottles will be 

underfi lled or overfi lled. Is there evidence in the sample data to suggest that the manufacturer has a problem with 

underfi lled or overfi lled bottles? Use α = 0.05, and assume that fi ll volume has a normal distribution.

Using the seven-step procedure results in the following:

1. Parameter of interest: The parameter of interest is the population variance σ2.

2. Null hypothesis: H
0
: σ2 = 0.01

3. Alternative hypothesis: H
0

2 0 01: .σ .

4. Test statistic: The test statistic is χ =
−( )
σ0

2
2

0
2

1n s

5. Reject H0 if: Use α = 0.05, and reject H
0
 if χ χ =0

2 2

0 05 19 30 14>
. , .

6. Computations: χ = .( )
.

= .0

2 19 0 0153

0 01
29 07

7.  Conclusions: Because χ = . χ = ..0
2

0 05 19
2

29 07 30 14< ,,  we conclude that there is no strong evidence that the variance of 

fi ll volume exceeds 0.01 (fl uid ounces)2. So there is no strong evidence of a problem with incorrectly fi lled bottles.

Example 9-8
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9-4.2 TYPE II ERROR AND CHOICE OF SAMPLE SIZE

Operating characteristic curves for the chi-square tests in Section 9-4.1 are in Appendix Charts 

VIi through VIn for α = 0.05 and α = 0.01. For the two-sided alternative hypothesis of Equation 

9-34, Charts VIIi and VIIj plot β against an abscissa parameter

 λ σ
σ

=
0

 (9-38)

for various sample sizes n, where σ denotes the true value of the standard deviation. Charts 

VIk and VIl are for the one-sided alternative H > ,1
2

0
2: σ σ  and Charts VIIm and VIIn are for the 

other one-sided alternative H <1
2

0
2: σ σ . In using these charts, we think of σ as the value of the 

standard deviation that we want to detect.

These curves can be used to evaluate the β-error (or power) associated with a particular 

test. Alternatively, they can be used to design a test—that is, to determine what sample size is 

necessary to detect a particular value of σ that differs from the hypothesized value σ
0
.

Automated Filling Sample Size Consider the bottle-fi lling problem from Example 9-8. If the 

variance of the fi lling process exceeds 0.01 (fl uid ounces)2, too many bottles will be underfi lled. 

Thus, the hypothesized value of the standard deviation is σ
0
 = 0.10. Suppose that if the true standard deviation of 

the fi lling process exceeds this value by 25%, we would like to detect this with probability at least 0.8. Is the sample 

size of n = 20 adequate?

To solve this problem, note that we require
λ = = =s

s 0

0.125

0.10
1 25.

This is the abscissa parameter for Chart VIIk. From this chart, with n = 20 and λ = 1.25, we fi nd that β −~ 0.6. Therefore, 

there is only about a 40% chance that the null hypothesis will be rejected if the true standard deviation is really as large as 

σ = 0.125 fl uid ounce.

To reduce the β-error, a larger sample size must be used. From the operating characteristic curve with β = 0.20 and 

λ = 1.25, we fi nd that n = 75, approximately. Thus, if we want the test to perform as required, the sample size must be 

at least 75 bottles.

Example 9-9

9-77.  Consider the test of H H0
2

1
27 7: :σ =   σ ≠ .against  

What are the critical values for the test statistic χ0

2
 for the fol-

lowing signifi cance levels and sample sizes?

(a) α = .   =0 01 20and n
(b) α = .   =0 05 12and n  (c) α = .   =0 10 15and n

9-78.  Consider the test of H H >0
2

1
210 10: :σ =   σ .against  

What are the critical values for the test statistic χ0
2
 for the fol-

lowing signifi cance levels and sample sizes?

(a) α = .0 01 and n = 20 (b) α = .0 05 and n = 12

(c) α = .0 10 and n = 15

9-79. Consider the test of H H <0
2

1
25 5: :σ =   σ .against  What 

are the critical values for the test statistic χ0
2
 for the following 

signifi cance levels and sample sizes?

(a) α = .0 01 and n = 20 (b) α = .0 05 and n = 12

(c) α = .0 10 and n = 15

9-80. Consider the hypothesis test of H0
2 7:σ =   against  

H1
2 7:σ ≠ . Approximate the P-value for each of the following 

test statistics.

(a) x0
2 25 2= .  and n = 20 (b) x0

2 15 2= .  and n = 12

(c) x0
2 23 0= .  and n = 15

9-81.  Consider the test of H H <0
2

1
25 5: :σ =   σ .against  

Approximate the P-value for each of the following test statistics.

(a) x0
2 25 2= .  and n = 20 (b) x0

2 15 2= .  and n = 12

(c) x0
2 4 2= .  and n = 15

9-82.  Consider the hypothesis test of H0
2 10:σ =  against  

H >1
2 10:σ . Approximate the P-value for each of the following 

test statistics.

(a) x0
2 25 2= .  and n = 20 (b) x0

2 15 2= .  and n = 12

(c) x0
2 4 2= .  and n = 15

9-83. The data from Medicine and Science in Sports and 
Exercise described in Exercise 8-53 considered ice hockey 

FOR SECTION 9-4Exercises 

 Problem available in WileyPLUS at instructor’s discretion. 

 Tutoring problem available in WileyPLUS at instructor’s discretion.
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9-5 Tests on a Population Proportion
It is often necessary to test hypotheses on a population proportion. For example, suppose that 

a random sample of size n has been taken from a large (possibly infinite) population and that 

X n≤( ) observations in this sample belong to a class of interest. Then P̂ X / n=  is a point esti-

mator of the proportion of the population p that belongs to this class. Note that n and p are the 

parameters of a binomial distribution. Furthermore, from Chapter 7, we know that the sampling 

distribution of P̂ is approximately normal with mean p and variance p(1 – p) / n if p is not too close 

to either 0 or 1 and if n is relatively large. Typically, to apply this approximation we require that 

np and n(1 – p) be greater than or equal to 5. We will give a large-sample test that use the normal 

approximation to the binomial distribution.

9-5.1 LARGE-SAMPLE TESTS ON A PROPORTION

Many engineering problems concern a random variable that follows the binomial distribu-

tion. For example, consider a production process that manufactures items that are classified 

as either acceptable or defective. Modelling the occurrence of defectives with the binomial 

distribution is usually reasonable when the binomial parameter p represents the proportion 

of defective items produced. Consequently, many engineering decision problems involve 

hypothesis testing about p.

player performance after electrostimulation training. In sum-

mary, there were 17 players, and the sample standard deviation 

of performance was 0.09 seconds.

(a)  Is there strong evidence to conclude that the standard devi-

ation of performance time exceeds the historical value of 

0.75 seconds? Use α = .0 05. Find the P-value for this test.

(b) Discuss how part (a) could be answered by constructing a 

95% one-sided confidence interval for σ.

9-84. The data from Technometrics described in Exercise 8-56 

considered the variability in repeated measurements of the weight 

of a sheet of paper. In summary, the sample standard deviation 

from 15 measurements was 0.0083 grams.

(a)  Does the measurement standard deviation differ from 0.01 

grams at α = .0 05? Find the P-value for this test.

(b)  Discuss how part (a) could be answered by constructing a 

confidence interval for σ.

9-85.  Reconsider the percentage of titanium in an alloy 

used in aerospace castings from Exercise 8-52. Recall that s = 

0.37 and n = 51.

(a)  Test the hypothesis H
0
: σ = 0.25 versus H

1
: σ ≠ 0.25 using α 

= 0.05. State any necessary assumptions about the underly-

ing distribution of the data. Find the P-value.

(b)  Explain how you could answer the question in part (a) by con-

structing a 95% two-sided confidence interval for σ.

9-86. Data from an Izod impact test was described in Exer-

cise 8-30. The sample standard deviation was 0.25 and n = 20 

specimens were tested.

(a)  Test the hypothesis that σ = 0.10 against an alternative 

specifying that σ ≠ 0.10, using α = 0.01, and draw a con-

clusion. State any necessary assumptions about the under-

lying distribution of the data.

(b) What is the P-value for this test?

(c)  Could the question in part (a) have been answered by con-

structing a 99% two-sided confidence interval for σ2?

9-87.  Data for tire life was described in Exercise 8-29. The 

sample standard deviation was 3645.94 kilometers and n = 16.

(a)  Can you conclude, using α = 0.05, that the standard devia-

tion of tire life is less than 4000 kilometers? State any nec-

essary assumptions about the underlying distribution of the 

data. Find the P-value for this test.

(b) Explain how you could answer the question in part (a) by 

constructing a 95% one-sided confidence interval for σ.

9-88.  If the standard deviation of hole diameter exceeds 

0.01 millimeters, there is an unacceptably high probability that 

the rivet will not fit. Suppose that n = 15 and s = 0.008 millimeter.

(a)  Is there strong evidence to indicate that the standard devia-

tion of hole diameter exceeds 0.01 millimeter? Use α = 

0.01. State any necessary assumptions about the underly-

ing distribution of the data. Find the P-value for this test.

(b)  Suppose that the actual standard deviation of hole diam-

eter exceeds the hypothesized value by 50%. What is the 

probability that this difference will be detected by the test 

described in part (a)?

(c) If σ is really as large as 0.0125 millimeters, what sam-

ple size will be required to detect this with power of at 

least 0.8?

9-89. Recall the sugar content of the syrup in canned peaches 

from Exercise 8-51. Suppose that the variance is thought to be 

σ2 = 18 (milligrams)2. Recall that a random sample of n = 10 

cans yields a sample standard deviation of s = 4.8 milligrams.

(a)  Test the hypothesis H
0
: σ2 = 18 versus H

1
: σ2 ≠ 18 using 

α = 0.05. Find the P-value for this test.

(b)  Suppose that the actual standard deviation is twice as large 

as the hypothesized value. What is the probability that this 

difference will be detected by the test described in part (a)?

(c)  Suppose that the true variance is σ2 = 40. How large a 

sample would be required to detect this difference with 

probability at least 0.90?
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We will consider testing

H p p H p p0 0 1 0: := =  (9-39)

An approximate test based on the normal approximation to the binomial will be given. As noted 

earlier, this approximate procedure will be valid as long as p is not extremely close to 0 or 1, 

and if the sample size is relatively large. Let X be the number of observations in a random sam-

ple of size n that belongs to the class associated with p. Then if the null hypothesis H
0
: p = p

0
 is 

true, we have X ~ N[np
0
, np

0
(1 – p

0
)], approximately. To test H

0
: p = p

0
, calculate the test statistic

 Z
X np

np p
0

0

0 01
= −

−( )
 (9-40)

Test Statistic

and determine the P-value. Because the test statistic follows a standard normal distribution 

if H
0
 is true, the P-value is calculated exactly like the P-value for the z-tests in Section 9-2. 

So for the two-sided alternative hypothesis, the P-value is the sum of the probability in the 

standard normal distribution above |z
0
| and the probability below the negative value –|z

0
|, or

P z= − Φ( )⎡⎣ ⎤⎦2 1 0

For the one-sided alternative hypothesis H
0
: p > p

0
, the P-value is the probability above z

0
, or

P z= − Φ( )1 0

and for the one-sided alternative hypothesis H
0
: p < p

0
, the P-value is the probability below z

0
, or

P z= Φ( )0

We can also perform a fi xed-signifi cance-level test. For the two-sided alternative hypothesis, 

we would reject H p p0 0: ≠  if

z > z z < z/ /0 2 0 2α α−or

Critical regions for the one-sided alternative hypotheses would be constructed in the usual manner.

Testing Hypotheses on a Binomial Proportion
Null hypotheses:  H

0
: p = p

0

Test statistic:  Z
X np

np p
0

0

0 01
= −

−( )
Alternative 
Hypotheses

P-Value Rejection Criterion for 
Fixed-Level Tests

H1 0: ≠p p Probability above z0  and 

probability below − z0 , P z= − Φ[ ]2 1 0( )

z > z z < z/ /0 2 0 2α α  −or  

H p > p1 0: Probability above z0, P z= − Φ( )1 0  z z0 > α

H p < p1 0: Probability below z0, P z= Φ( )0 z z0 < − a

Summary of 
Approximate Tests on a 

Binomial Proportion

Automobile Engine Controller A semiconductor manufacturer produces controllers used in 

automobile engine applications. The customer requires that the process fallout or fraction defec-

tive at a critical manufacturing step not exceed 0.05 and that the manufacturer demonstrate process capability at this 

level of quality using α = 0.05. The semiconductor manufacturer takes a random sample of 200 devices and fi nds that 

four of them are defective. Can the manufacturer demonstrate process capability for the customer?

We may solve this problem using the seven-step hypothesis-testing procedure as follows:

Example 9-10
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Another form of the test statistic Z
0
 in Equation 9-40 is occasionally encountered. Note that if 

X is the number of observations in a random sample of size n that belongs to a class of interest, 

then ˆ /P X n=  is the sample proportion that belongs to that class. Now divide both numerator and 

denominator of Z
0
 in Equation 9-40 by n, giving

 Z
X n p

p p n
Z

P p

p p / n
0

0

0 0

0
0

0 01 1
= −

−( )
= −

−( )
/

/
or

ˆ
 (9-41)

This presents the test statistic in terms of the sample proportion instead of the number of 

items X in the sample that belongs to the class of interest.

Computer software packages can be used to perform the test on a binomial proportion. 

The following output shows typical results for Example 9-10.

Test and CI for One Proportion

Test of p = 0.05 vs p < 0.05

Sample X N Sample p 95% Upper Confi dence Bound Z-Value P-Value

1 4 200 0.020000 0.036283 –1.95 0.026

This output also shows a 95% one-sided upper-confi dence bound on P. In Section 8-4, we showed 

how CIs on a binomial proportion are computed. This display shows the result of using the nor-

mal approximation for tests and CIs. When the sample size is small, this may be inappropriate.

Small Sample Tests on a Binomial Proportion
Tests on a proportion when the sample size n is small are based on the binomial distribution, not 

the normal approximation to the binomial. To illustrate, suppose that we wish to test H
0
: p < p

0
. 

Let X be the number of successes in the sample. The P-value for this test would be found from the 

lower tail of a binomial distribution with parameters n and p
0
. Specifi cally, the P-value would be 

the probability that a binomial random variable with parameters n and p
0
 is less than or equal to X. 

P-values for the upper-tailed one-sided test and the two-sided alternative are computed similarly.

Many software packages calculate the exact P-value for a binomial test. The following 

output contains the exact P-value results for Example 9-10.

1. Parameter of interest: The parameter of interest is the process fraction defective p.

2. Null hypothesis: H
0
: p = 0.05

3. Alternative hypothesis: H p1 0 05: .,

This formulation of the problem will allow the manufacturer to make a strong claim about process capability if the 

null hypothesis H
0
: p = 0.05 is rejected.

4. Test statistic: The test statistic is (from Equation 9-40): z
x np

np p
0

0

0 01
= −

−( )
where x = 4, n = 200, and p

0
 = 0.05.

5. Reject H0 if: Reject H
0
: p = 0.05 if the p-value is less than 0.05.

6. Computation: The test statistic is

z0

4 200 0 05

200 0 05 0 95
1 95=

− ( )
( )( )

= −
.

. .
.

7.  Conclusions: Because z
0
 = –1.95, the P-value is Φ(–1.95) = 0.0256, so we reject H

0
 and conclude that the process 

fraction defective p is less than 0.05.

Practical Interpretation: We conclude that the process is capable.
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Test of p = 0.05 vs p < 0.05

Sample X N Sample p 95% Upper Confi dence Bound Exact P-Value

1 4 200 0.020000 0.045180 0.026

The P-value is the same as that reported for the normal approximation because the sample size is 

fairly large. Notice that the CI is different from the one found using the normal approximation.

9-5.2 TYPE II ERROR AND CHOICE OF SAMPLE SIZE

It is possible to obtain closed-form equations for the approximate β-error for the tests in Sec-

tion 9-5.1. Suppose that p is the true value of the population proportion. The approximate 

β-error for the two-sided alternative H p p1 0: ≠  is

β = Φ
− + −( )

−( )
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

− Φ
− − −( )α αp p z p p / n

p p / n

p p z p p // /0 2 0 0 0 2 0 01

1

1 nn

p p / n1−( )
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 (9-42)

If the alternative is H p < p1 0: ,

β = − Φ
− − −( )

−( )
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

α
1

1

1

0 0 0p p z p p / n

p p / n
 (9-43)

whereas if the alternative is H p > p1 0: ,

β = Φ
− + −( )

−( )
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

αp p z p p / n

p p / n

0 0 01

1
 (9-44)

These equations can be solved to fi nd the approximate sample size n that gives a test of level 

α that has a specifi ed β risk. The sample size equations are

 n
z p p z p p

p p

/=
−( ) + −( )

−

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

α β2 0 0

0

2

1 1
 (9-45)

Approximate Sample 
Size for a Two-Sided 

Test on a Binomial 
Proportion

for a two-sided alternative and for a one-sided alternative:

 n
z p p z p p

p p
=

−( ) + −( )
−

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

α β0 0

0

2

1 1
 (9-46)

Approximate Sample 
Size for a One-Sided 

Test on a Binomial 
Proportion 

Automobile Engine Controller Type II Error Consider the semiconductor manufacturer from 

Example 9-10. Suppose that its process fallout is really p = 0.03. What is the β-error for a test of 

process capability that uses n = 200 and α = 0.05?

The β-error can be computed using Equation 9-43 as follows:

β = − Φ
− − ( ) ( )

−( )
⎡

⎣
⎢
⎢

⎤

⎦
1

0 05 0 03 1 645 0 05 0 95 200

0 03 1 0 03 200

. . . . .

. .

/

/
⎥⎥
⎥

= − Φ −( ) =1 0 44 0 67. .

Thus, the probability is about 0.7 that the semiconductor manufacturer will fail to conclude that the process is capable 

if the true process fraction defective is p = 0.03 (3%). That is, the power of the test against this particular alternative is 

Example 9-11
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Some software packages also perform power and sample size calculations for the one-

sample Z-test on a proportion. Typical computer output for the engine controllers tested in 

Example 9-10 follows.

Power and Sample Size

Test for One Proportion
Testing proportion = 0.05 (versus < 0.05)
Alpha = 0.05

Alternative  Sample
Proportion   Size  Power

3.00E-02   200  0.3287

Power and Sample Size
Test for One Proportion
Testing proportion = 0.05 (versus < 0.05)
Alpha = 0.05

Alternative  Sample  Target  Actual
Proportion   Size  Power  Power
3.00E-02   833  0.9000  0.9001

Power and Sample Size

Test for One Proportion
Testing proportion = 0.05 (versus < 0.05)
Alpha = 0.05

Alternative  Sample  Target  Actual
Proportion   Size  Power  Power
3.00E-02   561  0.7500  0.75030

The fi rst part of the output shows the power calculation based on the situation described 

in Example 9-11 where the true proportion is really 0.03. The computer power calculation 

agrees with the results from Equation 9-43 in Example 9-11. The second part of the output 

computes the sample size necessary for a power of 0.9 (β = 0.1) if p = 0.03. Again, the results 

agree closely with those obtained from Equation 9-46. The fi nal portion of the display shows 

the sample size that would be required if p = 0.03 and the power requirement is relaxed to 

0.75. Notice that the sample size of n = 561 is still quite large because the difference between 

p = 0.05 and p = 0.03 is fairly small.

only about 0.3. This appears to be a large β-error (or small power), but the difference between p = 0.05 and p = 0.03 is 

fairly small, and the sample size n = 200 is not particularly large.

Suppose that the semiconductor manufacturer was willing to accept a β-error as large as 0.10 if the true value of the 

process fraction defective was p = 0.03. If the manufacturer continues to use α = 0.05, what sample size would be required?

The required sample size can be computed from Equation 9-46 as follows:

n =
. . .( ) + . . .( )

. − .

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1 645 0 05 0 95 1 28 0 03 0 97

0 03 0 05
832

2

.

where we have used p = 0.03 in Equation 9-46.

Conclusion: Note that n = 832 is a very large sample size. However, we are trying to detect a fairly small deviation 

from the null value p
0
 = 0.05.
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9-90. Consider the following computer output

Test and Cl for One Proportion

Test of p = 0.4 vs p not = 0.4

X N Sample p 95% CI Z-Value P-Value

98 275 ? (0.299759, 0.412968) ? ?

Using the normal approximation.

(a) Is this a one-sided or a two-sided test?

(b) Complete the missing items.

(c) The normal approximation was used in the problem. Was 

that appropriate?

9-91. Consider the following computer output

Test and Cl for One Proportion

Test of p = 0.6 vs p < 0.6

X N Sample p 95% Upper Bound Z-Value P-Value

287 500 ? ? ? ?
(a) Is this a one-sided or a two-sided test?

(b) Is this a test based on the normal approximation? Is that 

appropriate?

(c) Complete the missing items.

(d) Suppose that the alternative hypothesis was two-sided. 

What is the P-value for this situation?

9-92.  Suppose that of 1000 customers surveyed, 850 are sat-

isfied or very satisfied with a corporation’s products and services.

(a)  Test the hypothesis H p0 0 9: = .  against H p1 0 9: ≠ .  at α = .0 05.  

Find the P-value.

(b)  Explain how the question in part (a) could be answered by 

constructing a 95% two-sided confidence interval for p.

9-93.  Suppose that 500 parts are tested in manufacturing 

and 10 are rejected.

(a)  Test the hypothesis H p0 0 03: = .  against H p <1 0 03: .  at 

α = .0 05. Find the P-value.

(b)  Explain how the question in part (a) could be answered by 

constructing a 95% one-sided confidence interval for p.

9-94.  A random sample of 300 circuits generated 13 

defectives.

(a)  Use the data to test H p0 0 05: = .  versus H p1 0 05: ≠ . . Use α 
= 0.05. Find the P-value for the test.

(b)  Explain how the question in part (a) could be answered 

with a confidence interval.

9-95. An article in the British Medical Journal [“Compari-

son of Treatment of Renal Calculi by Operative Surgery, 

Percutaneous Nephrolithotomy, and Extra-Corporeal Shock 

Wave Lithotrips” (1986, Vol. 292, pp. 879–882)] repeated 

that percutaneous nephrolithotomy (PN) had a success rate 

in removing kidney stones of 289 of 350 patients. The tradi-

tional method was 78% effective.

(a)  Is there evidence that the success rate for PN is greater than 

the historical success rate? Find the P-value.

(b)  Explain how the question in part (a) could be answered 

with a confidence interval.

9-96.  A manufacturer of interocular lenses will qualify 

a new grinding machine if there is evidence that the percent-

age of polished lenses that contain surface defects does not 

exceed 2%. A random sample of 250 lenses contains 6 defec-

tive lenses.

(a)  Formulate and test an appropriate set of hypotheses to 

determine whether the machine can be qualified. Use α = 

0.05. Find the P-value.

(b)  Explain how the question in part (a) could be answered 

with a confidence interval.

9-97.  A researcher claims that at least 10% of all football 

helmets have manufacturing flaws that could potentially cause 

injury to the wearer. A sample of 200 helmets revealed that 16 

helmets contained such defects.

(a)  Does this finding support the researcher’s claim? Use α = 

0.01. Find the P-value.

(b)  Explain how the question in part (a) could be answered 

with a confidence interval.

9-98.  An article in Fortune (September 21, 1992) 

claimed that nearly one-half of all engineers continue aca-

demic studies beyond the B.S. degree, ultimately receiving 

either an M.S. or a Ph.D. degree. Data from an article in 

Engineering Horizons (Spring 1990) indicated that 117 of 

484 new engineering graduates were planning graduate study.

(a)  Are the data from Engineering Horizons consistent with 

the claim reported by Fortune? Use α = 0.05 in reaching 

your conclusions. Find the P-value for this test.

(b)  Discuss how you could have answered the question in part 

(a) by constructing a two-sided confidence interval on p.

9-99.  The advertised claim for batteries for cell phones 

is set at 48 operating hours with proper charging procedures. 

A study of 5000 batteries is carried out and 15 stop operat-

ing prior to 48 hours. Do these experimental results support 

the claim that less than 0.2 percent of the company’s batter-

ies will fail during the advertised time period, with proper 

charging procedures? Use a hypothesis-testing procedure 

with α = 0.01.

9-100.  A random sample of 500 registered voters in 

Phoenix is asked if they favor the use of oxygenated fuels year-

round to reduce air pollution. If more than 315 voters respond 

positively, we will conclude that at least 60% of the voters 

favor the use of these fuels.

(a)  Find the probability of type I error if exactly 60% of the 

voters favor the use of these fuels.

(b)  What is the type II error probability β if 75% of the voters 

favor this action?

FOR SECTION 9-5Exercises 
 Problem available in WileyPLUS at instructor’s discretion. 

 Tutoring problem available in WileyPLUS at instructor’s discretion.
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9-101. In a random sample of 85 automobile engine crank-

shaft bearings, 10 have a surface finish roughness that exceeds 

the specifications. Do these data present strong evidence that 

the proportion of crankshaft bearings exhibiting excess surface 

roughness exceeds 0.10?

(a)  State and test the appropriate hypotheses using α = 0.05.

(b)  If it is really the situation that p = 0.15, how likely is it that the 

test procedure in part (a) will not reject the null hypothesis?

(c)  If p = 0.15, how large would the sample size have to be 

for us to have a probability of correctly rejecting the null 

hypothesis of 0.9?

9-102. A computer manufacturer ships laptop computers with 

the batteries fully charged so that customers can begin to use 

their purchases right out of the box. In its last model, 85% of 

customers received fully charged batteries. To simulate arriv-

als, the company shipped 100 new model laptops to various 

company sites around the country. Of the 105 laptops shipped, 

96 of them arrived reading 100% charged. Do the data provide 

evidence that this model’s rate is at least as high as the previous 

model? Test the hypothesis at α = 0.05.

9-103. In a random sample of 500 handwritten zip code 

digits, 466 were read correctly by an optical character rec-

ognition (OCR) system operated by the U.S. Postal Service 

(USPS). USPS would like to know whether the rate is at 

least 90% correct. Do the data provide evidence that the rate 

is at least 90% at α  = 0.05?

9-104. Construct a 90% confidence interval for the proportion 

of handwritten zip codes that were read correctly using the data 

provided in Exercise 9-103. Does this confidence interval support 

the claim that at least 90% of the zip codes can be correctly read?

9-105.  Construct a 95% lower confidence interval for the pro-

portion of patients with kidney stones successfully removed in 

Exercise 9-95. Does this confidence interval support the claim 

that at least 78% of procedures are successful?

9-6  Summary Table of Inference Procedures  
for a Single Sample

The table in the end papers of this book (inside back cover) presents a summary of all the 

single-sample inference procedures from Chapters 8 and 9. The table contains the null hypoth-

esis statement, the test statistic, the various alternative hypotheses and the criteria for rejecting 

H0, and the formulas for constructing the 100(1 – α)% two-sided confidence interval. It would 

also be helpful to refer to the roadmap table in Chapter 8 that provides guidance to match the 

problem type to the information inside the back cover.

9-7 Testing for Goodness of Fit
The hypothesis-testing procedures that we have discussed in previous sections are designed 

for problems in which the population or probability distribution is known and the hypotheses 

involve the parameters of the distribution. Another kind of hypothesis is often encountered: 

We do not know the underlying distribution of the population, and we wish to test the hypoth-

esis that a particular distribution will be satisfactory as a population model. For example, we 

might wish to test the hypothesis that the population is normal.

We have previously discussed a very useful graphical technique for this problem called prob-
ability plotting and illustrated how it was applied in the case of a normal distribution. In this sec-

tion, we describe a formal goodness-of-fit test procedure based on the chi-square distribution.

The test procedure requires a random sample of size n from the population whose prob-

ability distribution is unknown. These n observations are arranged in a frequency histogram, 

having k bins or class intervals. Let O
i
 be the observed frequency in the ith class interval. From 

the hypothesized probability distribution, we compute the expected frequency in the ith class 

interval, denoted E
i
. The test statistic is

 χ
0

2

2

1

=
−( )

=
∑

O E

E
i i

ii

k
 (9-47)

Goodness-of-Fit Test 
Statistic

It can be shown that, if the population follows the hypothesized distribution, χ
0

2
 has, approxi-

mately, a chi-square distribution with k – p – 1 degrees of freedom, when p represents the 

number of parameters of the hypothesized distribution estimated by sample statistics. This 
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approximation improves as n increases. We should reject the null hypothesis that the popula-

tion is the hypothesized distribution if the test statistic is too large. Therefore, the P-value 

would be the probability under the chi-square distribution with k – p – 1 degrees of freedom 

above the computed value of the test statistic χ0

2
 or P P >

k p= χ χ( )− −1

2

0

2
. For a fi xed-level test, 

we would reject the hypothesis that the distribution of the population is the hypothesized dis-

tribution if the calculated value of the test statistic χ χ .α − −0

2

1

2>
,k p

One point to be noted in the application of this test procedure concerns the magnitude of 

the expected frequencies. If these expected frequencies are too small, the test statistic X0
2  

will not refl ect the departure of observed from expected but only the small magnitude of 

the expected frequencies. There is no general agreement regarding the minimum value of 

expected frequencies, but values of 3, 4, and 5 are widely used as minimal. Some writers sug-

gest that an expected frequency could be as small as 1 or 2 so long as most of them exceed 5. 

Should an expected frequency be too small, it can be combined with the expected frequency 

in an adjacent class interval. The corresponding observed frequencies would then also be 

combined, and k would be reduced by 1. Class intervals are not required to be of equal width.

We now give two examples of the test procedure.

Printed Circuit Board Defects-Poisson Distribution The number of defects in printed circuit 

boards is hypothesized to follow a Poisson distribution. A random sample of n = 60 printed circuit 

boards has been collected, and the following number of defects observed.

Number of Defects Observed Frequency
0 32

1 15

2  9

3  4

The mean of the assumed Poisson distribution in this example is unknown and must be estimated from the sample data. The 

estimate of the mean number of defects per board is the sample average, that is, 32 0⋅ ⋅ ⋅ ⋅ / ⋅+ + +( ) =15 1 9 2 4 3 60 0 75. From 

the Poisson distribution with parameter 0.75, we may compute p
i
, the theoretical, hypothesized probability associated with 

the ith class interval. Because each class interval corresponds to a particular number of defects, we may fi nd the p
i
 as follows:

p P X
e

p P X
e

1

0 75 0

2

0 75 1

0
0 75

0
0 472

1
0 75

1
0

= =( ) =
.( )

!
= .

= =( ) =
.( )

!
=

− .

− .

..

= =( ) =
.( )

!
= .

= ≥( ) = − + +( )

− .

354

2
0 75

2
0 133

3 1

3

0 75 2

4 1 2 3

p P X
e

p P X p p p == .0 041

The expected frequencies are computed by multiplying the sample size n = 60 times the probabilities p
i
. That is, 

E
i
 = n

pi
. The expected frequencies follow:

Number of Defects Probability Expected Frequency
0 0.472 28.32

1 0.354 21.24

2 0.133  7.98

3 (or more) 0.041  2.46

Because the expected frequency in the last cell is less than 3, we combine the last two cells:

Example 9-12
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Number of Defects Observed Frequency Expected Frequency
0 32 28.32

1 15 21.24

2 (or more) 13 10.44

The seven-step hypothesis-testing procedure may now be applied, using α = 0.05, as follows:

1.   Parameter of interest: The variable of interest is the form of the distribution of defects in printed circuit boards.

2.  Null hypothesis: H
0
: The form of the distribution of defects is Poisson.

3.  Alternative hypothesis: H
1
: The form of the distribution of defects is not Poisson.

4.  Test statistic: The test statistic is χ =
−( )

=
∑0

2

2

1

O E

E
i i

ii

k

5.  Reject H0 if: Because the mean of the Poisson distribution was estimated, the preceding chi-square statistic will 

have k − p − 1 = 3 − 1 − 1 = 1 degree of freedom. Consider whether the P-value is less than 0.05.

6.  Computations:

χ =
− .( )

.
+

− .( )
.

+
−( ) =

0

2

2 2 2
32 28 32

28 32

15 21 24

21 24

13 10 44

10 44
2 9

.

.
. 44

7.   Conclusions:  We fi nd from Appendix Table III that χ = ..0 10 1

2
2 71,

 and χ = . ..0 05 1

2
3 84,  Because χ = .0

2
2 94 lies 

between these values, we conclude that the P-value is between 0.05 and 0.10. Therefore, because the P-value 

exceeds 0.05, we are unable to reject the null hypothesis that the distribution of defects in printed circuit 

boards is Poisson. The exact P-value computed from software is 0.0864.

Power Supply Distribution-Continuous Distribution A manufacturing engineer is testing a 

power supply used in a notebook computer and, using α = 0.05, wishes to determine whether output 

voltage is adequately described by a normal distribution. Sample estimates of the mean and standard deviation of x = .5 04 

V and s = 0.08 V are obtained from a random sample of n = 100 units.

A common practice in constructing the class intervals for the frequency distribution used in the chi-square good-

ness-of-fi t test is to choose the cell boundaries so that the expected frequencies E
i
 = np

i
 are equal for all cells. To use 

this method, we want to choose the cell boundaries a
0
, a

1
, …, a

k
 for the k cells so that all the probabilities

p P a X a f x dxi i i
a

a

i

i

= ≤ ≤( ) = ( ) −
−
∫1

1

are equal. Suppose that we decide to use k = 8 cells. For the standard normal distribution, the intervals that divide the scale 

into eight equally likely segments are (0, 0.32), (0.32, 0.675), (0.675, 1.15), (1.15, ∞), and their four “mirror image” 

intervals on the other side of zero. For each interval p
i
 = 1/8 = 0.125, so the expected cell frequencies are E

i
 = n

pi
 = 

100(0.125) = 12.5. The complete table of observed and expected frequencies is as follows:

Class Interval Observed Frequency oi Expected Frequency Ei

x < 4 948.  12 12.5

4 948 4 986. .≤ x <  14 12.5

4 986 5 014. .≤ x <  12 12.5

5 014. ≤ x < 5.040  13 12.5

5 040 5 066. .≤ x <  12 12.5

5 066 5 094. .≤ x <  11 12.5

5 094 5 132. .≤ x <  12 12.5

5 132. ≤ x  14 12.5

Totals 100 100

Example 9-13
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The boundary of the fi rst class interval is x s− . = .1 15 4 948. The second class interval is x s, x s− .  − .[ ]1 15 0 675  and so 

forth. We may apply the seven-step hypothesis-testing procedure to this problem.

1.   Parameter of interest: The variable of interest is the form of the distribution of power supply voltage.

2.  Null hypothesis: H
0
: The form of the distribution is normal.

3.  Alternative hypothesis: H
1
: The form of the distribution is nonnormal.

4.  Test statistic: The test statistic is

χ =
−( )

=
∑

0

2

2

1

O E

E
i i

ii

k

5.   Reject H0 if: Because two parameters in the normal distribution have been estimated, the preceding chi-square sta-

tistic will have k – p – 1 = 8 – 2 – 1 = 5 degrees of freedom. We will use a fi xed signifi cance level test with α = . .0 05  

Therefore, we will reject H
0
 if χ χ

0

2

0.05,5

2> = 11 07. .

6.  Computations:

  
χ =

−( )
=

− .( )
.

+
− .( )

.
+ +

− .
=
∑

0

2

2

1

2 2
12 12 5

12 5

14 12 5

12 5

14 12
o E

E
i i

i
i

k

…
55

12 5
0 64

2( )
.

= .

7.   Conclusions: Because χ χ
0

2

0.05,5

2= < =0 64 11 07. . , we are unable to reject H
0
, and no strong evidence indi-

cates that output voltage is not normally distributed. The P-value for the chi-square statistic χ
0

2 = 0 64.  is 

P = 0.9861.

9-106.  Consider the following frequency table of obser-

vations on the random variable X.

Values  0  1  2  3 4

Observed frequency 24 30 31 11 4
(a)  Based on these 100 observations, is a Poisson distribution 

with a mean of 1.2 an appropriate model? Perform a good-

ness-of-fi t procedure with α = 0.05.

(b) Calculate the P-value for this test.

9-107.  Let X denote the number of fl aws observed on a 

large coil of galvanized steel. Of 75 coils inspected, the follow-

ing data were observed for the values of X:

Values 
Observed

1  2  3  4  5  6  7 8

frequency 1 11 8 13 11 12 10 9
(a)  Does the assumption of the Poisson distribution seem appro-

priate as a probability model for these data? Use α = 0.01.

(b) Calculate the P-value for this test.

9-108.  The number of calls arriving at a switchboard 

from noon to 1:00 p.m. during the business days Monday 

through Friday is monitored for six weeks (i.e., 30 days). Let X
be defi ned as the number of calls during that one-hour period. 

The relative frequency of calls was recorded and reported as

Value 
Relative

5 6 8 9 10

frequency 0.067 0.067 0.100 0.133 0.200

Value 11  12 13 14 15

Relative 
frequency

0.133 0.133 0.067 0.033 0.067

(a)  Does the assumption of a Poisson distribution seem appro-

priate as a probability model for this data? Use α = 0.05.

(b) Calculate the P-value for this test.

FOR SECTION 9-7EXERCISES 
 Problem available in WileyPLUS at instructor’s discretion. 

 Tutoring problem available in WileyPLUS at instructor’s discretion.
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9-8 Contingency Table Tests
Many times the n elements of a sample from a population may be classified according to two 

different criteria. It is then of interest to know whether the two methods of classification are 

statistically independent; for example, we may consider the population of graduating engi-

neers and may wish to determine whether starting salary is independent of academic disci-

plines. Assume that the first method of classification has r levels and that the second method 

has c levels. We will let O
ij
 be the observed frequency for level i of the first classification 

method and level j of the second classification method. The data would, in general, appear as 

shown in Table 9-2. Such a table is usually called an r × c contingency table.

9-109.  Consider the following frequency table of obser-

vations on the random variable X:

Values 0  1  2  3 4

Frequency 4 21 10 13 2

(a)  Based on these 50 observations, is a binomial distribution 

with n = 6 and p = 0.25 an appropriate model? Perform a 

goodness-of-fit procedure with α = 0.05.

(b) Calculate the P-value for this test.

9-110.  Define X as the number of underfilled bottles 

from a filling operation in a carton of 24 bottles. Of 75 cartons 

inspected, the following observations on X are recorded:

Values  0  1  2 3

Frequency 39 23 12 1

(a)  Based on these 75 observations, is a binomial distribution 

an appropriate model? Perform a goodness-of-fit proce-

dure with α = 0.05.

(b) Calculate the P-value for this test.

9-111. A group of civil engineering students has tabulated the 

number of cars passing eastbound through the intersection of 

Mill and University Avenues. They obtained the data in the fol-

lowing table.

(a)  Does the assumption of a Poisson distribution seem appro-

priate as a probability model for this process? Use α = 0.05.

(b) Calculate the P-value for this test.

Vehicles per 
Minute

Observed 
Frequency

Vehicles per 
Minute

Observed 
Frequency

40  14 53 102

41  24 54  96

42  57 55  90

43 111 56  81

44 194 57  73

45 256 58  64

46 296 59  61

47 378 60  59

48 250 61  50

49 185 62  42

50 171 63  29

51 150 64  18

52 110 65  15

9-112.  Reconsider Exercise 6-87. The data were the number 

of earthquakes per year of magnitude 7.0 and greater since 1900.

(a)  Use computer software to summarize these data into a fre-

quency distribution. Test the hypothesis that the number of 

earthquakes of magnitude 7.0 or greater each year follows 

a Poisson distribution at α = .0 05.

(b) Calculate the P-value for the test.

9-2 An r × c Contingency Table

Columns

1 2 � c

1 O
11

O
12

� O
1c

Rows 2 O
21

O
22

� O
2c


 
 
 
 

r O

r1
O

r2
� O

rc

We are interested in testing the hypothesis that the row-and-column methods of classification 

are independent. If we reject this hypothesis, we conclude some interaction exists between the two 

criteria of classification. The exact test procedures are difficult to obtain, but an approximate test 

statistic is valid for large n. Let p
ij
 be the probability that a randomly selected element falls in the ijth 

cell given that the two classifications are independent. Then p
ij
 = u

i
v
j
, where u

i
 is the probability that 

a randomly selected element falls in row class i and v
j
 is the probability that a randomly selected 

element falls in column class j. Now by assuming independence, the estimators of u
i
 and v

j
 are

 ˆ ˆu
n

O v
n

Oi ij
j

c

j ij
i

r

=  =   
= =
∑ ∑1 1

1 1

 (9-48)
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Therefore, the expected frequency of each cell is

E nu v
n

O Oij i j ij
j

c

ij
i

r

= =
= =
∑ ∑ˆ ˆ

1

1 1

 (9-49)

Then, for large n, the statistic

χ =
−( )

==
∑∑0

2

2

11

O E

E
ij ij

ijj

c

i

r
 (9-50)

has an approximate chi-square distribution with (r – 1)(c – 1) degrees of freedom if the null 

hypothesis is true. We should reject the null hypothesis if the value of the test statistic χ0

2
 is too 

large. The P-value would be calculated as the probability beyond χ0

2
 on the χ( )( )r c- -1 1

2
 distribution, 

or P P r c= χ > χ( )( )( )- -1 1

2

0

2
. For a fi xed-level test, we would reject the hypothesis of independence if 

the observed value of the test statistic χ0

2
 exceeded χα,( )( )r c− −1 1

2
.

Health Insurance Plan Preference A company has to choose among three health insurance 

plans. Management wishes to know whether the preference for plans is independent of job clas-

sifi cation and wants to use α = 0.05. The opinions of a random sample of 500 employees are shown in Table 9-3.

  9-3 Observed Data for Example 9-14

To fi nd the expected frequencies, we must fi rst compute û1 = (340/500) = 0.68, û2 = (160/500) = 0.32, 

v̂1 = (200/500) = 0.40, v̂2 = (200/500) = 0.40, and v̂3 = (100/500) = 0.20. The expected frequencies may now be com-

puted from Equation 9-49. For example, the expected number of salaried workers favoring health insurance plan 1 is

E nu v11 1 1 500 0 68 0 40 136= = =ˆ ˆ ( . ( . )

The expected frequencies are shown in Table 9-4.

9-4 Expected Frequencies for Example 9-14

The seven-step hypothesis-testing procedure may now be applied to this problem.

1.  Parameter of interest: The variable of interest is employee preference among health insurance plans.

2.  Null hypothesis: H
0
: Preference is independent of salaried versus hourly job classifi cation.

3.  Alternative hypothesis: H
1
: Preference is not independent of salaried versus hourly job classifi cation.

4. Test statistic: The test statistic is

χ =
−

==
∑∑0

2
2

11

( )O E

E
ij ij

ijj

c

i

r

Example 9-14

Health Insurance Plan

Job Classifi cation 1 2 3 Totals

Salaried workers 160 140  40 340

Hourly workers  40  60  60 160

Totals 200 200 100 500

Health Insurance Plan

Job Classifi cation 1 2 3 Totals

Salaried workers 136 136  68 340

Hourly workers  64  64  32 160

Totals 200 200 100 500
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Using the two-way contingency table to test independence between two variables of classifi ca-

tion in a sample from a single population of interest is only one application of contingency table 

methods. Another common situation occurs when there are r populations of interest and each 

population is divided into the same c categories. A sample is then taken from the ith population, 

and the counts are entered in the appropriate columns of the ith row. In this situation, we want to 

investigate whether or not the proportions in the c categories are the same for all populations. The 

null hypothesis in this problem states that the populations are homogeneous with respect to the 

categories. For example, with only two categories, such as success and failure, defective and non-

defective, and so on, the test for homogeneity is really a test of the equality of r binomial param-

eters. Calculation of expected frequencies, determination of degrees of freedom, and computation 

of the chi-square statistic for the test for homogeneity are identical to the test for independence.

5.  Reject H0 if:  We will use a fi xed-signifi cance level test with α = . .0 05  Therefore, because r = 2 and c = 3, the degrees 

of freedom for chi-square are (r – 1)(c – 1) = (1)(2) = 2, and we would reject H
0
 if χ = χ = ..0

2

0 05 5

2
5 99,

.

6. Computations:

χ =
−

= − + − +
==
∑∑

0

2
2

1

3

1

2 2 2160 136

136

140 136

136

4( ) ( ) ( ) (O E

E
ij ij

ijji

00 68

68

40 64

64

60 64

64

60 32

32

49 63

2 2 2 2− + − + − + −

= .

) ( ) ( ) ( )

7.  Conclusions: Because χ = . χ = ..0

2

0 05 2

2
49 63 5 99> , , we reject the hypothesis of independence and conclude that the pref-

erence for health insurance plans is not independent of job classifi cation. The P-value for χ = .0

2
49 63 is P = . −1 671 10 113 . 

(This value was computed by computer software.) Further analysis would be necessary to explore the nature 

of the association between these factors. It might be helpful to examine the table of observed minus expected 

frequencies.

9-113 The Hopkins Forest is a 2600-acre forest reserve located 

at the intersection of three states: New York, Vermont, and 

Massachusetts. Researchers monitor forest resources to study 

long-term ecological changes. They have conducted surveys of 

existing trees, shrubs, and herbs at various sites in the forest for 

nearly 100 years. Following are some data from surveys of three 

species of maple trees at the same location over three very dif-

ferent time periods. 

Species (Acre)

Y
ea

r

Pensylvanicum Rubrum Saccharum Total
1936 12 27 94 133

1972 22 40 52 114

2011 97 25 18 140

Total 131 92 164 387

Does the species distribution seem to be independent of year?

Test the hypothesis at α = 0.05. Find the P-value of the test 

statistic.

9-114 Did survival rate for passengers on the Titanic really 

depend on the type of ticket they had? Following are the data 

for the 2201 people on board listed by whether they survived 

and what type of ticket they had. Does survival appear to be 

independent of ticket class? (Test the hypothesis at α = 0.05.) 

What is the P-value of the test statistic?

Crew First Second Third Total
Alive 212 202 118 178  710

Dead 673 123 167 528 1491

Total 885 325 285 706 2201

9-115.  A company operates four machines in three shifts 

each day. From product ion records, the following data on the 

number of breakdowns are collected:

Machines
Shift A B C D

1 41 20 12 16

2 31 11  9 14

3 15 17 16 10

Test the hypothesis (using α = 0.05) that breakdowns are inde-

pendent of the shift. Find the P-value for this test.

FOR SECTION 9-8EXERCISES 
 Problem available in WileyPLUS at instructor’s discretion. 

 Tutoring problem available in WileyPLUS at instructor’s discretion.
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9-116.  Patients in a hospital are classified as surgical 

or medical. A record is kept of the number of times patients 

require nursing service during the night and whether or not 

these patients are on Medicare. The data are presented here:

Patient Category
Medicare Surgical Medical

Yes 46 52

No 36 43

Test the hypothesis (using α = 0.01) that calls by surgical-

medical patients are independent of whether the patients are 

receiving Medicare. Find the P-value for this test.

9-117.  Grades in a statistics course and an operations 

research course taken simultaneously were as follows for a 

group of students.

Operation Research Grade
Statistics Grade A B C Other

A 25  6 17 13

B 17 16 15  6

C 18  4 18 10

Other 10  8 11 20

Are the grades in statistics and operations research related? 

Use α = 0.01 in reaching your conclusion. What is the P-value 

for this test?

9-118.  An experiment with artillery shells yields the fol-

lowing data on the characteristics of lateral deflections and 

ranges. Would you conclude that deflection and range are inde-

pendent? Use α = 0.05. What is the P-value for this test?

Lateral Deflection
Range (yards) Left Normal Right

0–1,999 6 14 8

2,000–5,999 9 11 4

6,000–11,999 8 17 6

9-119.  A study is being made of the failures of an elec-

tronic component. There are four types of failures possible and 

two mounting positions for the device. The following data have 

been taken:

Failure Type
Mounting Position A B C D

1 22 46 18 9

2  4 17  6 12

Would you conclude that the type of failure is independent of the 

mounting position? Use α = 0.01. Find the P-value for this test.

9-120.  A random sample of students is asked their opinions 

on a proposed core curriculum change. The results are as follows.

Opinion
Class Favoring Opposing
Freshman 120  80

Sophomore  70 130

Junior  60  70

Senior  40  60

Test the hypothesis that opinion on the change is independ-

ent of class standing. Use α = 0.05. What is the P-value for 

this test?

9-121.  An article in the British Medical Journal [“Com-

parison of Treatment of Renal Calculi by Operative Surgery, 

Percutaneous Nephrolithotomy, and Extracorporeal Shock Wave 

Lithotripsy” (1986, Vol. 292, pp. 879–882)] reported that percuta-

neous nephrolithotomy (PN) had a success rate in removing kidney 

stones of 289 out of 350 (83%) patients. However, when the stone 

diameter was considered, the results looked different. For stones 

of < ,2cm  87% (234/270) of cases were successful. For stones of 

≥2cm, a success rate of 69% (55/80) was observed for PN.

(a)  Are the successes and size of stones independent? Use 

α = .0 05.

(b) Find the P-value for this test.

9-9 Nonparametric Procedures
Most of the hypothesis-testing and confidence interval procedures discussed previously are 

based on the assumption that we are working with random samples from normal populations. 

Traditionally, we have called these procedures parametric methods because they are based on 

a particular parametric family of distributions—in this case, the normal. Alternately, sometimes 

we say that these procedures are not distribution free because they depend on the assump-

tion of normality. Fortunately, most of these procedures are relatively insensitive to moderate 

departures from normality. In general, the t- and F-tests and the t-confidence intervals will have 

actual levels of significance or confidence levels that differ from the nominal or advertised 

levels chosen by the experimenter, although the difference in the actual and advertised levels is 

usually fairly small when the underlying population is not too different from the normal.

In this section, we describe procedures called nonparametric and distribution-free meth-
ods, and we usually make no assumptions about the distribution of the underlying population 

other than that it is continuous. These procedures have an accurate level of significance α or 

confidence level 100(1 – α)% for many different types of distributions. These procedures have 

some appeal. One of their advantages is that the data need not be quantitative but can be cat-

egorical (such as yes or no, defective or nondefective) or rank data. Another advantage is that 

nonparametric procedures are usually very quick and easy to perform.
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The procedures described in this section are alternatives to the parametric t- and F-pro-

cedures described earlier. Consequently, it is important to compare the performance of both 

parametric and nonparametric methods under the assumptions of both normal and nonnormal 

populations. In general, nonparametric procedures do not utilize all the information provided 

by the sample. As a result, a nonparametric procedure will be less efficient than the corre-

sponding parametric procedure when the underlying population is normal. This loss of effi-

ciency is reflected by a requirement of a larger sample size for the nonparametric procedure 

than would be required by the parametric procedure to achieve the same power. On the other 

hand, this loss of efficiency is usually not large, and often the difference in sample size is very 

small. When the underlying distributions are not close to normal, nonparametric methods may 

have much to offer. They often provide improvement over the normal-theory parametric meth-

ods. Generally, if both parametric and nonparametric methods are applicable to a particular 

problem, we should use the more efficient parametric procedure.

Another approach is to transform the original data, say, by taking logarithms, square roots, 

or a reciprocal, and then analyze the transformed data using a parametric technique. A normal 

probability plot often works well to see whether the transformation has been successful. When 

this approach is successful, it is usually preferable to using a nonparametric technique. However, 

sometimes transformations are not satisfactory. That is, no transformation makes the sample 

observations look very close to a sample from a normal distribution. One situation in which is 

happens is when the data are in the form of ranks. These situations frequently occur in practice. 

For instance, a panel of judges may be used to evaluate 10 different formulations of a soft-drink 

beverage for overall quality with the “best” formulation assigned rank 1, the “next-best” formu-

lation assigned rank 2, and so forth. It is unlikely that rank data satisfy the normality assumption. 

Transformations may not prove satisfactory either. Many nonparametric methods involve the 

analysis of ranks and consequently are directly suited to this type of problem.

9-9.1 THE SIGN TEST

The sign test is used to test hypotheses about the median μ of a continuous distribution. The 

median of a distribution is a value of the random variable X such that the probability is 0.5 

that an observed value of X is less than or equal to the median, and the probability is 0.5 that 

an observed value of X is greater than or equal to the median. That is, P X P X( ) ( )~ ~≤ μ = ≥ μ = .0 5.

Because the normal distribution is symmetric, the mean of a normal distribution equals the 

median. Therefore, the sign test can be used to test hypotheses about the mean of a normal 

distribution. This is the same problem for which we previously used the t-test. We will briefly 

discuss the relative merits of the two procedures in Section 9-9.3. Note that, although the t-test 

was designed for samples from a normal distribution, the sign test is appropriate for samples 

from any continuous distribution. Thus, the sign test is a nonparametric procedure.

Suppose that the hypotheses are

 H H0 0 1 0: :	 	 	 	μ = μ μ μ<  (9-51)

The test procedure is easy to describe. Suppose that X
1
, X

2
, ..., X

n
 is a random sample from the 

population of interest. Form the differences

 X ii − =	 …μ0 1 2, , , ,n (9-52)

Now if the null hypothesis H0 0: 	 	μ = μ  is true, any difference Xi − 	μ0 is equally likely to be 

positive or negative. An appropriate test statistic is the number of these differences that are 

positive, say, R+. Therefore, to test the null hypothesis, we are really testing that the number of 

plus signs is a value of a binomial random variable that has the parameter p = 1/2. A P-value 

for the observed number of plus signs r+ can be calculated directly from the binomial distri-

bution. For instance, in testing the hypotheses in Equation 9-51, we will reject H
0
 in favor of 

H
1
 only if the proportion of plus signs is sufficiently less than 1/2 (or equivalently, when the 

observed number of plus signs r+ is too small). Thus, if the computed P-value
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P P R r p= ≤   =⎛
⎝⎜

⎞
⎠⎟

+ + when
1

2

is less than or equal to some preselected signifi cance level α, we will reject H
0
 and conclude 

that H
1
 is true.

To test the other one-sided hypotheses

 H H0 0 1 0: :	 	 	 	μ = μ μ > μ  (9-53)

we will reject H
0
 in favor of H

1
 only if the observed number of plus signs, say, r+, is large or, 

equivalently, when the observed fraction of plus signs is signifi cantly greater than 1/2. Thus, 

if the computed P-value

P P R r p= ≥   =⎛
⎝⎜

⎞
⎠⎟

+ + when
1

2
is less than α, we will reject H0 and conclude that H1 is true.

The two-sided alternative may also be tested. If the hypotheses are

 H H0 0 1 0: :	 	 	 	μ = μ μ μ≠  (9-54)

we should reject H0 0: 	 	μ = μ  if the proportion of plus signs is signifi cantly different from (either 

less than or greater than) 1/2. This is equivalent to the observed number of plus signs r+ being 

either suffi ciently large or suffi ciently small. Thus, if r < n / ,+ 2  the P-value is

P P R r p= ≤   =⎛
⎝⎜

⎞
⎠⎟

+ +2
1

2
when

and if r n / ,+ > 2  the P-value is

P P R r p= ≥   =⎛
⎝⎜

⎞
⎠⎟

+ +2
1

2
when

If the P-value is less than some preselected level α, we will reject H
0
 and conclude that H

1
 is true.

Propellant Shear Strength Sign Test Montgomery, Peck, and Vining (2012) reported on a study 

in which a rocket motor is formed by binding an igniter propellant and a sustainer propellant 

together inside a metal housing. The shear strength of the bond between the two propellant types is an important 

characteristic. The results of testing 20 randomly selected motors are shown in Table 9-5. We would like to test the 

hypothesis that the median shear strength is 2000 psi, using α = 0.05.

This problem can be solved using the seven-step hypothesis-testing procedure:

1.   Parameter of interest: The parameter of interest is the median of the distribution of propellant shear strength.

2.  Null hypothesis: H0 : 	μ = 2000 psi

3.  Alternative hypothesis: H1 2000: 	μ ≠ psi

4.   Test statistic: The test statistic is the observed number of plus differences in Table 9-5, or r+ = 14.

5.   Reject H0 if: We will reject H
0
 if the P-value corresponding to r+ = 14 is less than or equal to α = 0.05.

6.   Computations: Because r+ = 14 is greater than n/2 = 20/2 = 10, we calculate the P-value from

P P R= ≥   =⎛
⎝⎜

⎞
⎠⎟

=  
⎛
⎝⎜

⎞
⎠⎟

.( ) .( )

+

−

=

2 14
1

2

2
20

0 5 0 5
20

14

20

when p

r

r r

r
∑∑ = .0 1153

7.   Conclusions: Because P = 0.1153 is not less than α = 0.05, we cannot reject the null hypothesis that the median 

shear strength is 2000 psi. Another way to say this is that the observed number of plus signs r+ = 14 was not 

large or small enough to indicate that median shear strength is different from 2000 psi at the α = 0.05 level of 

signifi cance.

Example 9-15
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It is also possible to construct a table of critical values for the sign test. This table is shown 

as Appendix Table VIII. Its use for the two-sided alternative hypothesis in Equation 9-54 is 

simple. As before, let R+ denote the number of the differences (Xi − 	μ0) that are positive and 

let R– denote the number of these differences that are negative. Let R = min (R+, R–). Appendix 

Table VIII presents critical values r*α for the sign test that ensure that P (type I error) = P (reject 

H
0
 when H

0
 is true) = α for α = 0.01, α = 0.05 and α = 0.10. If the observed value of the test 

statistic r r≤ *
α the null hypothesis H0 0:  =	 	μ μ  should be rejected.

To illustrate how this table is used, refer to the data in Table 9-5 that were used in 

Example 9-15. Now r+ = 14 and r– = 6; therefore, r = min (14, 6) = 6. From Appendix 

Table VIII with n = 20 and α = 0.05, we fi nd that r*
0.05 

= 5. Because r = 6 is not less than 

or equal to the critical value r*
0.05

 = 5, we cannot reject the null hypothesis that the median 

shear strength is 2000 psi.

We can also use Appendix Table VIII for the sign test when a one-sided alternative hypoth-

esis is appropriate. If the alternative is H1 0: 	 	μ > μ  reject H0 0: 	 	μ μ=  if r r− ≤ a
*; if the alternative 

is H1 0:  	 	μ > μ  reject H0 0: 	 	μ μ=  if r r+ ≤ a
*. The level of signifi cance of a one-sided test is one-half 

the value for a two-sided test. Appendix Table VIII shows the one-sided signifi cance levels in 

the column headings immediately following the two-sided levels.

Finally, note that when a test statistic has a discrete distribution such as R does in the sign 

test, it may be impossible to choose a critical value ra
* that has a level of signifi cance exactly 

equal to α. The approach used in Appendix Table VIII is to choose ra
* to yield an α that is as 

close to the advertised signifi cance level α as possible.

9-5 Propellant Shear Strength Data

Observation
i

Shear Strength
x

i

Differences
x

i
 – 2000 Sign

 1 2158.70 +158.70 +

 2 1678.15 –321.85 –

 3 2316.00 +316.00 +

 4 2061.30 +61.30 +

 5 2207.50 +207.50 +

 6 1708.30 –291.70 –

 7 1784.70 –215.30 –

 8 2575.10 +575.10 +

 9 2357.90 +357.90 +

10 2256.70 +256.70 +

11 2165.20 +165.20 +

12 2399.55 +399.55 +

13 1779.80 –220.20 –

14 2336.75 +336.75 +

15 1765.30 –234.70 –

16 2053.50 +53.50 +

17 2414.40 +414.40 +

18 2200.50 +200.50 +

19 2654.20 +654.20 +

20 1753.70 –246.30 –
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Ties in the Sign Test
Because the underlying population is assumed to be continuous, there is a zero probability that 

we will find a “tie”—that is, a value of X
i
 exactly equal to 	μ0. However, this may sometimes 

happen in practice because of the way the data are collected. When ties occur, they should be 

set aside and the sign test applied to the remaining data.

The Normal Approximation
When p = 0.5, the binomial distribution is well approximated by a normal distribution when n is at 

least 10. Thus, because the mean of the binomial is np and the variance is np(1 – p), the distribu-

tion of R+ is approximately normal with mean 0.5n and variance 0.25n whenever n is moderately 

large. Therefore, in these cases, the null hypothesis H0 0: 	 	μ μ=  can be tested using the statistic

   Z
R n

n
0

0 5

0 5
= − .

.

+

 (9-55)

Normal Approximation  
for Sign Test Statistic

A P-value approach could be used for decision making. The fixed significance level approach 

could also be used.

The two-sided alternative would be rejected if the observed value of the test statistic 

z > z /0 2α , and the critical regions of the one-sided alternative would be chosen to reflect the 

sense of the alternative. (If the alternative is H1 0: 	 	μ > μ , reject H
0
 if z z0 > a, for example.)

Type II Error for the Sign Test
The sign test will control the probability of a type I error at an advertised level α for testing the null 

hypothesis H0 0: 	 	μ μ=  for any continuous distribution. As with any hypothesis-testing procedure, 

it is important to investigate the probability of a type II error, β. The test should be able to effec-

tively detect departures from the null hypothesis, and a good measure of this effectiveness is the 

value of β for departures that are important. A small value of β implies an effective test procedure.

In determining β, it is important to realize not only that a particular value of 	μ, say, 
	μ0 + D, must be used but also that the form of the underlying distribution will affect the 

calculations. To illustrate, suppose that the underlying distribution is normal with σ = 1 

and we are testing the hypothesis H0 2: 	μ =  versus H1 2: 	μ > . (Because 	μ = μ in the normal 

distribution, this is equivalent to testing that the mean equals 2.) Suppose that it is impor-

tant to detect a departure from 	μ = 2 to 	μ = 3. The situation is illustrated graphically in 

Fig. 9-18(a). When the alternative hypothesis is true (H1 3: 	μ = ), the probability that the 

random variable X is less than or equal to the value 2 is

P X P Z≤( ) = ≤ −( ) = −( ) =2 1 1 0 1587F .

Suppose that we have taken a random sample of size 12. At the α = 0.05 level, Appendix 

Table VIII indicates that we would reject H0 2: =	μ  if r r− ≤ =0 05 2.
* . Therefore, β is the prob-

ability that we do not reject H0 :μ when in fact 	μ = 3, or

β = −
⎛
⎝⎜

⎞
⎠⎟

.( ) .( ) = .−

=
∑1

12
0 1587 0 8413 0 2944

12

0

2

x

x x

x

If the distribution of X had been exponential rather than normal, the situation would be as 

shown in Fig. 9-18(b), and the probability that the random variable X is less than or equal to 

the value x = 2 when 	μ = 3 (note that when the median of an exponential distribution is 3, the 

mean is 4.33) is

P X e dx
x

≤( ) =
.

 = .
−

∫2
1

4 33
0 3699

1

4 33

0

2
.
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In this case,

β = −
⎛
⎝⎜

⎞
⎠⎟

.( ) .( ) = .−

=
∑1

12
0 3699 0 6301 0 8794

12

0

2

x

x x

x

Thus, β for the sign test depends not only on the alternative value of 	μ but also on the area 

to the right of the value specified in the null hypothesis under the population probability 

distribution. This area depends highly on the shape of that particular probability distribu-

tion. In this example, β is large, so the ability of the test to detect this departure from the 

null hypothesis with the current sample size is poor.

9-9.2 THE WILCOXON SIGNED-RANK TEST

The sign test uses only the plus and minus signs of the differences between the observations 

and the median 	μ0 (or the plus and minus signs of the differences between the observations in 

the paired case). It does not take into account the size or magnitude of these differences. Frank 

Wilcoxon devised a test procedure that uses both direction (sign) and magnitude. This proce-

dure, now called the Wilcoxon signed-rank test, is discussed and illustrated in this section.

The Wilcoxon signed-rank test applies to the case of symmetric continuous distribu-
tions. Under these assumptions, the mean equals the median, and we can use this proce-

dure to test the null hypothesis μ = μ
0
.

The Test Procedure
We are interested in testing H

0
: μ = μ

0
 against the usual alternatives. Assume that X

1
, X

2
, 

…, X
n
 is a random sample from a continuous and symmetric distribution with mean (and 

median) μ. Compute the differences X
i
 – μ

0
, i = 1, 2, …, n. Rank the absolute differences 

X ,i , , , ni − μ  =   . . .  0 1 2  in ascending order, and then give the ranks the signs of their corre-

sponding differences. Let W+ be the sum of the positive ranks and W– be the absolute value of 

the sum of the negative ranks, and let W = min(W+, W−). Appendix Table IX contains critical 

values of W, say, Wa
*. If the alternative hypothesis is H1 0: μ ≠ μ , then if the observed value of 

FIGURE 9-18  
Calculation of β for 
the sign test. (a) 
Normal distribu-
tions. (b) Exponential 
distributions.
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Propellant Shear Strength-Wilcoxon Signed-Rank Test We will illustrate the Wilcoxon signed-

rank test by applying it to the propellant shear strength data from Table 9-5. Assume that the under-

lying distribution is a continuous symmetric distribution. The seven-step procedure is applied as follows:

1.  Parameter of interest: The parameter of interest is the mean (or median) of the distribution of propellant shear 

strength.

2. Null hypothesis: H0 2000: μ = psi

3. Alternative hypothesis: H0 2000: m ≠ psi

4. Test statistic: The test statistic is w w w= ( )+ −min ,

5. Reject H0 if: We will reject H
0
 if w w≤ =0 05 52.

*  from Appendix Table IX.

6.  Computations: The signed ranks from Table 9-5 are shown in the following display:

The sum of the positive ranks is w+ = (1 + 2 + 3 + 4 + 5 + 6 + 11 + 13 + 15 + 16 + 17 + 18 + 19 + 20) = 150, and 

the sum of the absolute values of the negative ranks is w- = (7 + 8 + 9 + 10 + 12 + 14) = 60. Therefore,

w = ( ) =min ,150 60 60

7. Conclusions: Because w = 60 is not less than or equal to the critical value w
0.05

 = 52, we cannot reject the null hypoth-

esis that the mean (or median, because the population is assumed to be symmetric) shear strength is 2000 psi.

Example 9-16

Observation Difference x
i
 – 2000 Signed Rank

16  +53.50  +1

 4  +61.30  +2

 1 +158.70  +3

11 +165.20  +4

18 +200.50  +5

 5 +207.50  +6

 7 –215.30  –7

13 –220.20  –8

15 –234.70  –9

20 –246.30 –10

10 +256.70 +11

 6 –291.70 –12

 3 +316.00 +13

 2 –321.85 –14

14 +336.75 +15

 9 +357.90 +16

12 +399.55 +17

17 +414.40 +18

 8 +575.10 +19

19 +654.20 +20

the statistic w w≤ a
* , the null hypothesis H0 0: μ = μ  is rejected. Appendix Table IX provides 

signifi cance levels of α = 0.10, α = 0.05, α = 0.02 and α = 0.01 for the two-sided test.

For one-sided tests, if the alternative is H1 0: μ μ> , reject H0 0: μ = μ  if w w− ≤ a
* ; and if 

the alternative is H1 0: μ μ< , reject H0 : μ = μ if w w+ ≤ a
* . The signifi cance levels for one-

sided tests provided in Appendix Table IX are α = 0.05, 0.025, 0.01, and 0.005.
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An appropriate critical region for either the two-sided or one-sided alternative hypotheses can 

be chosen from a table of the standard normal distribution.

9-9.3 COMPARISON TO THE T-TEST

If the underlying population is normal, either the sign test or the t-test could be used to 

test a hypothesis about the population median. The t-test is known to have the smallest 

value of β possible among all tests that have significance level α for the one-sided alter-

native and for tests with symmetric critical regions for the two-sided alternative, so it is 

superior to the sign test in the normal distribution case. When the population distribution 

is symmetric and non-normal (but with finite mean), the t-test will have a smaller β (or 

a higher power) than the sign test unless the distribution has very heavy tails compared 

with the normal. Thus, the sign test is usually considered a test procedure for the median 

rather than as a serious competitor for the t-test. The Wilcoxon signed-rank test is prefer-

able to the sign test and compares well with the t-test for symmetric distributions. It can 

be useful for situations in which a transformation on the observations does not produce a 

distribution that is reasonably close to the normal.

 Problem available in WileyPLUS at instructor’s discretion. 

 Tutoring problem available in WileyPLUS at instructor’s discretion.

9-122.  Ten samples were taken from a plating bath used 

in an electronics manufacturing process, and the bath pH of 

the bath was determined. The sample pH values are 7.91, 7.85, 

6.82, 8.01, 7.46, 6.95, 7.05, 7.35, 7.25, and 7.42. Manufactur-

ing engineering believes that pH has a median value of 7.0.

(a)  Do the sample data indicate that this statement is correct? 

Use the sign test with α = 0.05 to investigate this hypoth-

esis. Find the P-value for this test.

(b)  Use the normal approximation for the sign test to test H0 : 	μ = 7.0  

versus H0 : 	μ ≠ 7.0. What is the P-value for this test?

FOR SECTION 9-9EXERCISES 

Normal Approximation 
for Wilcoxon Signed-

Rank Statistic  Z
W n n /

n n n /
0

1 4

1 2 1 24
=

− +( )
+( ) +( )

+

 (9-56)

Ties in the Wilcoxon Signed-Rank Test
Because the underlying population is continuous, ties are theoretically impossible, although 

they will sometimes occur in practice. If several observations have the same absolute magni-

tude, they are assigned the average of the ranks that they would receive if they differed slightly 

from one another.

Large Sample Approximation
If the sample size is moderately large, say, n > 20, it can be shown that W+ (or W-) has approxi-

mately a normal distribution with mean

μ =
+( )+w

n n 1

4
and variance

σ =
+( ) +( )

+w

n n n2 1 2 1

24

Therefore, a test of H0 0: μ = μ  can be based on the statistic:
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9-10 Equivalence Testing
Statistical hypothesis testing is one of the most useful techniques of statistical inference. How-

ever, it works in only one direction; that is, it starts with a statement that is assumed to be 

true (the null hypothesis H0) and attempts to disprove this claim in favor of the alternative 

hypothesis H1. The strong statement about the alternative hypothesis is made when the null 

hypothesis is rejected. This procedure works well in many but not all situations.

To illustrate, consider a situation in which we are trying to qualify a new supplier of a 

component that we use in manufacturing our product. The current supplier produces these 

components with a standard mean resistance of 80 ohms. If the new supplier can provide com-

ponents with the same mean resistance, we will qualify them. Having a second source for this 

component is considered to be important because demand for our product is expected to grow 

rapidly in the near future, and the second supplier will be necessary to meet the anticipated 

increase in demand. The traditional formulation of the hypothesis test 

H H0 180 80: :μ μ= ≠
really is not satisfactory. Only if we reject the null hypothesis do we have a strong conclusion. 

We actually want to state the hypotheses as follows:

H H0 180 80: :μ μ≠ =
This type of hypothesis statement is called an equivalence test. We assume that the new supplier 

is different from the standard unless we have strong evidence to reject that claim. The way that this 

equivalence test is carried out is to test the following two sets of one-sided alternative hypotheses:

H H0 180 80: :μ δ μ δ= + ≤ +
and

H H0 180 80: :μ δ μ δ= − ≥ −

9-123.  The titanium content in an aircraft-grade alloy is 

an important determinant of strength. A sample of 20 test cou-

pons reveals the following titanium content (in percent):

8.32, 8.05, 8.93, 8.65, 8.25, 8.46, 8.52, 8.35, 8.36, 8.41, 8.42, 

8.30, 8.71, 8.75, 8.60, 8.83, 8.50, 8.38, 8.29, 8.46

The median titanium content should be 8.5%.

(a)  Use the sign test with α = 0.05 to investigate this hypoth-

esis. Find the P-value for this test.

(b)  Use the normal approximation for the sign test to test 

H0 8 5: μ = .~  versus H1 8 5: μ ≠ .~  with α = 0.05. What is the 

P-value for this test?

9-124.  The impurity level (in ppm) is routinely measured 

in an intermediate chemical product. The following data were 

observed in a recent test:

2.4, 2.5, 1.7, 1.6, 1.9, 2.6, 1.3, 1.9, 2.0, 2.5, 2.6, 2.3, 2.0, 1.8, 

1.3, 1.7, 2.0, 1.9, 2.3, 1.9, 2.4, 1.6

Can you claim that the median impurity level is less than 

2.5 ppm?

(a)  State and test the appropriate hypothesis using the sign test 

with α = 0.05. What is the P-value for this test?

(b)  Use the normal approximation for the sign test to test 

H0 2 5: μ = .~  versus H <1 2 5: μ .~ . What is the P-value for 

this test?

9-125.  Consider the margarine fat content data in 

Exercise 8-36. Use the sign test to test H0 17 0:μ = .~  versus 

H1 17 0:μ ≠ .~  with α = 0.05.

(a)  Find the P-value for the test statistic and use this quantity 

to make your decision.

(b)  Use the normal approximation to test the same hypothesis that 

you formulated in part (a). What is the P-value for this test?

9-126.  Consider the compressive strength data in 

Exercise 8-62.

(a)  Use the sign test to investigate the claim that the median 

strength is at least 2250 psi. Use α = 0.05.

(b)  Use the normal approximation to test the same hypothesis that 

you formulated in part (a). What is the P-value for this test?

9-127.  An inspector are measured the diameter of a ball 

bearing using a new type of caliper. The results were as follows  

(in mm): 0.265, 0.263, 0.266, 0.267, 0.267, 0.265, 0.267,0.267, 

0.265, 0.268, 0.268, and 0.263.

(a)  Use the Wilcoxon signed-rank test to evaluate the claim that 

the mean ball diameter is 0.265 mm. Use α = 0.05.

(b)  Use the normal approximation for the test. With α = 0.05, 

what conclusions can you draw?

9-128.  A new type of tip can be used in a Rockwell 

hardness tester. Eight coupons from test ingots of a nickel-

based alloy are selected, and each coupon is tested using the 

new tip. The Rockwell C-scale hardness readings are 63, 65, 

58, 60, 55, 57, 53, and 59. Do the results support the claim 

that the mean hardness exceeds 60 at a 0.05 level?

9-129.  A primer paint can be used on aluminum panels. 

The primer’s drying time is an important consideration in the 

manufacturing process. Twenty panels are selected, and the dry-

ing times are as follows: 1.6, 1.3, 1.5, 1.6, 1.7, 1.9, 1.8, 1.6, 1.4, 

1.8, 1.9, 1.8, 1.7, 1.5, 1.6, 1.4, 1.3, 1.6, 1.5, and 1.8. Is there evi-

dence that the mean drying time of the primer exceeds 1.5 hr?
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where δ is called the equivalence band, which is a practical threshold or limit within which 

the mean performance (here the resistance) is considered to be the same as the standard. The 

interval 80 ± δ is called an equivalence interval. The fi rst set of hypotheses is a test of the 

mean that shows that the difference between the mean and the standard is signifi cantly less 

than the upper equivalence limit of the interval, and the second set of hypotheses is a test of 

the mean that shows that the difference between the mean and the standard is signifi cantly 

greater than the lower equivalence limit. We are going to apply both tests to the same sample 

of data, leading to a test of equivalence that is sometimes called two one-sided tests (TOST).

Suppose that we have a random sample of n = 50 components from the new supplier. Resistance 

is approximately normally distributed, and the sample mean and standard deviation (in ohms) are 

x s= =79 98 0 10. . . and  The sample mean is close to the standard of 80 ohms. Suppose that our error of measurement is 

approximately 0.01 ohm. We will decide that if the new supplier has a mean resistance that is within 0.05 of the standard 

of 80, there is no practical difference in performance. Therefore, δ = 0 05. . Notice that we have chosen the equivalence 

band to be greater than the usual or expected measurement error for the resistance. We now want to test the hypotheses

H H0 180 05 80 05: . : .μ μ= ≤
and

H H0 179 95 79 95: . : .μ μ= ≥
Consider testing the fi rst set of hypotheses. It is straightforward to show that the value of the test statistic is t

0
 = −4.95, and 

the P-value is less than 0.01. Therefore, we conclude that the mean resistance is less than 80.05. For the second set of hypoth-

eses, the test statistic is t
0
 = 2.12, and the P-value is less than 0.025, so the mean resistance is signifi cantly greater than 79.95 

and signifi cantly less than 80.05. Thus, we have enough evidence to conclude that the new supplier produces components that 

are equivalent to those produced by the current supplier because the mean is within the ±0 05.  ohm interval.

Example 9-17

9-130 In developing a generic drug, it is necessary for a man-

ufacturer of biopharmaceutical products to show equivalence 

to the current product. The variable of interest is the absorp-

tion rate of the product. The current product has an absorption 

rate of 18 mg/hr. If the new generic product has an absorp-

tion rate that is within 0.50 mg/hr of this value, it will be con-

sidered equivalent. A random sample of 20 units of product 

is available, and the sample mean and standard deviation of 

absorption rate are 18.22 mg/hr and 0.92 mg/hr, respectively. 

(a)  State the appropriate hypotheses that must be tested to 

demonstrate equivalence.

(b) What are your conclusions using α = 0 05. ?

9-131 A chemical products manufacturer must identify a new sup-

plier for a raw material that is an essential component of a particular 

FOR SECTION 9-10Exercises
 Problem available in WileyPLUS at instructor’s discretion. 

 Tutoring problem available in WileyPLUS at instructor’s discretion.

Equivalence testing has many applications, including the supplier qualifi cation problem illus-

trated here, generic drug manufacturing, and new equipment qualifi cation. The experimenter 

must decide what defi nes equivalence. Issues that should be considered include these:

1. Specifying the equivalence band. The parameter δ should be larger than the typical meas-

urement error. A good rule of thumb is that δ should be at least three times the typical 

measurement error.

2. The equivalence band should be much smaller than the usual process variation. 

3. The equivalence band should be much smaller than the product or process specifi cations. 

Specifi cations typically defi ne fi tness for use.

4. The equivalence band should be related to actual functional performance; that is, how 

much of a difference can be tolerated before performance is degraded?
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9-11 Combining P-Values
Testing several sets of hypotheses that relate to a problem of interest occurs fairly often in 

engineering and many scientific disciplines. For example, suppose that we are developing a 

new synthetic fiber to be used in manufacturing body armor for the military and law enforce-

ment agencies. This fiber needs to exhibit a high breaking strength (at least 100 lb/in2) for the 

new product to work properly. The engineering development lab produced several batches or 

lots of this fiber, a random sample of three fiber specimens from each lot has been taken, and 

the sample specimens tested. For each lot, the hypotheses of interest are

H H0 1100 100: :μ μ= >

The development lots are small, and the testing is destructive, so the sample sizes are also 

small. After six lots have been produced, the P-values from these six independent tests of hypoth-

eses are 0.105, 0.080, 0.250, 0.026, 0.650, and 0.045. Given the size of these P-values, we suspect 

that the new material is going to be satisfactory, but the sample sizes are small, and it would be 

helpful if we could combine the results from all six tests to determine whether the new material 

will be acceptable. Combining results from several studies or experiments is sometimes called 

meta-analysis, a technique that has been used in many fields including public health monitoring, 

clinical trials of new medical devices or treatments, ecology, and genetics. One method that can 

be used to combine these results is to combine all of the individual P-values into a single statistic 

for which one P-value can be computed. This procedure was developed by R. A. Fisher.

Let P
i
 be the P-value for the ith set of hypotheses, i = 1, 2, …, m. The test statistic is

χ
0

2

1

2= −
=
∑ ln( )Pi
i

m

The test statistic χ0
2
 follows a chi-square distribution with 2m degrees of freedom. A P-value 

can be computed for the observed value of this statistic. A small P-value would lead to rejection 

of the shared null hypotheses and a conclusion that the combined data support the alternative.

As an example, the test statistic χ0
2
 for the six tests described is 

χ
0

2
2 0 105 0 080 0 250 0 026 0 650= − + + + + +[ln( . ) ln( . ) ln( . ) ln( . ) ln( . ) lnn( . )] .0 045 26 6947=

with 2m = 2(6) = 12 degrees of freedom. The P-value for this statistic is 0.005 < P < 0.01, a 

very small value, which leads to rejection of the null hypothesis. In other words, the combined 

information from all six tests provides evidence that the mean fiber strength exceeds 100 lb/in2.

Fisher’s method does not require all the null hypotheses be the same. Some applica-

tions involve many sets of hypotheses that do not have the same null. In these situations, 

product. The previous supplier was able to deliver material with a 

mean molecular weight of 3500. The new supplier must show equiv-

alence to this value of molecular weight. If the new supplier can 

deliver material that has a molecular weigh that is within 50 units 

of this value, it will be considered equivalent. A random sample of 

10 lots of product is available, and the sample mean and standard 

deviation of molecular weight are 3550 and 25, respectively. 

(a)  State the appropriate hypotheses that must be tested to 

demonstrate equivalence.

(b) What are your conclusions using α = 0 05. ?

9-132 The mean breaking strength of a ceramic insulator must 

be at least 10 psi. The process by which this insulator is manu-

factured must show equivalence to this standard. If the process 

can manufacture insulators with a mean breaking strength of at 

least 9.5 psi, it will be considered equivalent to the standard. 

A random sample of 50 insulators is available, and the sample 

mean and standard deviation of breaking strength are 9.31 psi 

and 0.22 psi, respectively. 

(a)  State the appropriate hypotheses that must be tested to 

demonstrate equivalence.

(b) What are your conclusions using α = 0 05. ?

9-133 The mean bond strength of a cement product must be 

at least 1000 psi. The process by which this material is manu-

factured must show equivalence to this standard. If the process 

can manufacture cement for which the mean bond strength is at 

least 9750 psi, it will be considered equivalent to the standard. 

A random sample of six observations is available, and the sam-

ple mean and standard deviation of bond strength are 9360 psi 

and 42.6 psi, respectively. 

(a)  State the appropriate hypotheses that must be tested to 

demonstrate equivalence.

(b) What are your conclusions using α = 0 05. ?
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the alternative hypothesis is taken to be that at least one of the null hypotheses is false. Fish-

er’s method was developed in the 1920s. Since then, a number of other techniques has been 

proposed. For a good discussion of these alternative methods along with comments on their 

appropriateness and power, see the article by Piegorsch and Bailer [“Combining Information,” 

Wiley Interdiscip Rev Comput Stat, 2009, Vol. 1(3), pp. 354–360].

9-134 Suppose that 10 sets of hypotheses of the form 

H H0 0 1 0: :μ μ μ μ= ≠

have been tested and that the P-values for these tests are 0.12, 

0.08. 0.93, 0.02, 0.01, 0.05, 0.88, 0.15, 0.13, and 0.06. Use 

Fisher’s procedure to combine all of these P-values. What con-

clusions can you draw about these hypotheses?

9-135 Suppose that eight sets of hypotheses about a popula-

tion proportion of the form 

H p H p0 10 3 0 3: . : .= >

have been tested and that the P-values for these tests are 0.15, 0.83, 

0.103, 0.024, 0.03, 0.07, 0.09, and 0.13. Use Fisher’s procedure to 

combine all of these P-values. Is there sufficient evidence to con-

clude that the population proportion exceeds 0.30?

9-136 The standard deviation of fill volume of a container of 

a pharmaceutical product must be less than 0.2 oz to ensure 

that the container is accurately filled. Six independent samples 

were selected, and the statistical hypotheses about the standard 

deviation were tested. The P-values that resulted were 0.15, 

0.091, 0.075, 0.02, 0.04, and 0.06. Is there sufficient evidence 

to conclude that the standard deviation of fill volume is less 

than 0.2 oz?

9-137 The mean weight of a package of frozen fish must 

equal 22 oz. Five independent samples were selected, and 

the statistical hypotheses about the mean weight were 

tested. The P-values that resulted from these tests were 

0.065, 0.0924, 0.073, 0.025, and 0.021. Is there sufficient 

evidence to conclude that the mean package weight is not 

equal to 22 oz?

FOR SECTION 9-10Exercises
 Problem available in WileyPLUS at instructor’s discretion. 

 Tutoring problem available in WileyPLUS at instructor’s discretion.

 Problem available in WileyPLUS at instructor’s discretion. 

 Tutoring problem available in WileyPLUS at instructor’s discretion.

9-138. Consider the following computer output.

One-Sample Z:

Test of mu = 26 vs > 26

The assumed standard deviation = 1.5

Variable N Mean StDev SE Mean Z P

X ? 26.541 2.032 0.401 ? ?

(a) Fill in the missing information.

(b) Is this a one-sided or a two-sided test?

(c) What are your conclusions if α = 0.05?

(d) Find a 95% two-sided CI on the mean.

9-139.  Consider the following computer output.

One-Sample T:

Test of mu = 100 vs not = 100

Variable N Mean StDev SE Mean 95% CI T P

X 16 98.33 4.61 ? (?, ?) ? ?

(a)  How many degrees of freedom are there on the t-statistic?

(b)  Fill in the missing information. You may use bounds on 

the P-value.

(c) What are your conclusions if α = 0.05?

(d)  What are your conclusions if the hypothesis is H
0
: μ = 100 

versus H0 100: μ > ?

9-140. Consider the following computer output.

One-Sample T:
Test of mu = 85 85vs <
Variable N Mean StDev SE Mean T P

X 25 84.331 ? 0.631 ? ?

(a)  How many degrees of freedom are there on the t-statistic?

(b)  Fill in the missing information. You may use bounds on 

the P-value.

(c) What are your conclusions if α = 0.05?

(d) Find a 95% upper-confidence bound on the mean.

(e)  What are your conclusions if the hypothesis is H0 100:μ =  

versus H0 100: μ > ?

9-141. An article in Transfusion Science [“Early Total White 

Blood Cell Recovery Is a Predictor of Low Number of Apheresis 

Supplemental Exercises
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and Good CD34+ Cell Yield” (2000, Vol. 23, pp. 91–100)] stud-

ied the white blood cell recovery of patients with haematological  

malignancies after a new chemotherapy treatment. Data (in 

days) on white blood cell recovery (WBC) for 19 patients con-

sistent with summary data reported in the paper follow: 18, 16, 

13, 16, 15, 12, 9, 14, 12, 8, 16, 12, 10, 8, 14, 9, 5, 18, and 12.

(a)  Is there sufficient evidence to support a claim that the mean 

WBC recovery exceeds 12 days?

(b) Find a 95% two-sided CI on the mean WBC recovery.

9-142. An article in Fire Technology [“An Experimental Exam-

ination of Dead Air Space for Smoke Alarms” (2009, Vol. 45, pp. 

97–115)] studied the performance of smoke detectors installed 

not less than 100 mm from any adjoining wall if mounted on a 

flat ceiling, and not closer than 100 mm and not farther than 300 

mm from the adjoining ceiling surface if mounted on walls. The 

purpose of this rule is to avoid installation of smoke alarms in the 

“dead air space,” where it is assumed to be difficult for smoke to 

reach. The paper described a number of interesting experiments. 

Results on the time to signal (in seconds) for one such experi-

ment with pine stick fuel in an open bedroom using photoelectric 

smoke alarms are as follows: 220, 225, 297, 315, 282, and 313.

(a)  Is there sufficient evidence to support a claim that the mean 

time to signal is less than 300 seconds?

(b)  Is there practical concern about the assumption of a normal 

distribution as a model for the time-to-signal data?

(c) Find a 95% two-sided CI on the mean time to signal.

9-143. Suppose that we wish to test the hypothesis H0 :μ = 85 

versus the alternative H1: μ > 85 where σ = 16. Suppose that the 

true mean is μ = 86 and that in the practical context of the problem, 

this is not a departure from μ
0
 = 85 that has practical significance.

(a)  For a test with α = 0.01, compute β for the sample sizes n = 

25, 100, 400, and 2500 assuming that μ = 86.

(b)  Suppose that the sample average is x = 86. Find the 

P-value for the test statistic for the different sample sizes 

specified in part (a). Would the data be statistically signifi-

cant at α = 0.01?

(c)  Comment on the use of a large sample size in this problem.

9-144. A manufacturer of semiconductor devices takes a random 

sample of size n of chips and tests them, classifying each chip as 

defective or nondefective. Let X
i
 = 0 if the chip is nondefective 

and X
i
 = 1 if the chip is defective. The sample fraction defective is

p̂
X X X

n
n= + + +1 2 …

What are the sampling distribution, the sample mean, and sam-

ple variance estimates of p̂ when

(a) The sample size is n = 50?

(b) The sample size is n = 80?

(c) The sample size is n = 100?

(d)  Compare your answers to parts (a)–(c) and comment on 

the effect of sample size on the variance of the sampling 

distribution.

9-145. Consider the situation of Exercise 9-144. After collect-

ing a sample, we are interested in testing H p0 0 10: = .  versus 

H p1 0 10: ≠ .  with α = 0.05. For each of the following situations, 

compute the p-value for this test:

(a) n = 50, p̂ = 0.095 (b) n = 100, p̂ = 0.095

(c) n = 500, p̂ = 0.095 (d) n = 1000, p̂ = 0.095

(e)  Comment on the effect of sample size on the observed 

P-value of the test.

9-146. An inspector of flow metering devices used to admin-

ister fluid intravenously will perform a hypothesis test to deter-

mine whether the mean flow rate is different from the flow rate 

setting of 200 milliliters per hour. Based on prior information, 

the standard deviation of the flow rate is assumed to be known 

and equal to 12 milliliters per hour. For each of the following 

sample sizes, and a fixed α = 0.05, find the probability of a type 

II error if the true mean is 205 milliliters per hour.

(a) n = 20 (b) n = 50 (c) n = 100

(d)  Does the probability of a type II error increase or decrease 

as the sample size increases? Explain your answer.

9-147. Suppose that in Exercise 9-146, the experimenter had 

believed that σ = 14. For each of the following sample sizes, 

and a fixed α = 0.05, find the probability of a type II error if the 

true mean is 205 milliliters per hour.

(a) n = 20 (b) n = 50 (c) n = 100

(d)  Comparing your answers to those in Exercise 9-146, does 

the probability of a type II error increase or decrease with 

the increase in standard deviation? Explain your answer.

9-148. The marketers of shampoo products know that cus-

tomers like their product to have a lot of foam. A manufacturer 

of shampoo claims that the foam height of its product exceeds 

200 millimeters. It is known from prior experience that the 

standard deviation of foam height is 8 millimeters. For each of 

the following sample sizes and with a fixed α = 0.05, find the 

power of the test if the true mean is 204 millimeters.

(a) n = 20 (b) n = 50 (c) n = 100

(d)  Does the power of the test increase or decrease as the sam-

ple size increases? Explain your answer.

9-149. Suppose that you are testing H p0 0 5: = .  versus 

H p0 0 5: ≠ . . Suppose that p is the true value of the population 

proportion.

(a)  Using α = 0.05, find the power of the test for n = 100, 150, 

and 300 assuming that p = 0.6. Comment on the effect of 

sample size on the power of the test.

(b)  Using α = 0.01, find the power of the test for n = 100, 150, 

and 300 assuming that p = 0.6. Compare your answers to 

those from part (a) and comment on the effect of α on the 

power of the test for different sample sizes.

(c)  Using α = 0.05, find the power of the test for n = 100, 

assuming p = 0.08. Compare your answer to part (a) and 

comment on the effect of the true value of p on the power 

of the test for the same sample size and α level.

(d)  Using α = 0.01, what sample size is required if p = 0.6 

and we want β = 0.05? What sample is required if p = 0.8  

and we want β = 0.05? Compare the two sample sizes and 

comment on the effect of the true value of p on a sample 

size required when β is held approximately constant.

9-150. The cooling system in a nuclear submarine consists of 

an assembly of welded pipes through which a coolant is circu-

lated. Specifications require that weld strength must meet or 

exceed 150 psi.
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(a)  Suppose that the design engineers decide to test the hypoth-

esis H0 : μ = 150 versus H1 : μ > 150. Explain why this 

choice of alternative hypothesis is better than H1 : μ < 150.

(b)  A random sample of 20 welds results in x = .153 7 psi and 

s = 11.3 psi. What conclusions can you draw about the 

hypothesis in part (a)? State any necessary assumptions 

about the underlying distribution of the data.

9-151. The mean pull-off force of an adhesive used in manu-

facturing a connector for an automotive engine application 

should be at least 75 pounds. This adhesive will be used unless 

there is strong evidence that the pull-off force does not meet 

this requirement. A test of an appropriate hypothesis is to be 

conducted with sample size n = 10 and α = 0.05. Assume that 

the pull-off force is normally distributed, and σ is not known.

(a)  If the true standard deviation is σ = 1, what is the risk that 

the adhesive will be judged acceptable when the true mean 

pull-off force is only 73 pounds? Only 72 pounds?

(b)  What sample size is required to give a 90% chance of 

detecting that the true mean is only 72 pounds when σ = 1?

(c)  Rework parts (a) and (b) assuming that σ = 2. How much 

impact does increasing the value of σ have on the answers 

you obtain?

9-152. A manufacturer of precision measuring instruments 

claims that the standard deviation in the use of the instruments 

is at most 0.00002 millimeter. An analyst who is unaware of 

the claim uses the instrument eight times and obtains a sample 

standard deviation of 0.00001 millimeter.

(a)  Confirm using a test procedure and an α level of 0.01 that 

there is insufficient evidence to support the claim that the 

standard deviation of the instruments is at most 0.00002. 

State any necessary assumptions about the underlying dis-

tribution of the data.

(b)  Explain why the sample standard deviation, s = 0.00001, is 

less than 0.00002, yet the statistical test procedure results 

do not support the claim.

9-153. A biotechnology company produces a therapeutic drug 

whose concentration has a standard deviation of 4 grams per liter. 

A new method of producing this drug has been proposed, although 

some additional cost is involved. Management will authorize 

a change in production technique only if the standard deviation 

of the concentration in the new process is less than 4 grams per 

liter. The researchers chose n = 10 and obtained the following data 

in grams per liter. Perform the necessary analysis to determine 

whether a change in production technique should be implemented.

16.628 16.630

16.622 16.631

16.627 16.624

16.623 16.622

16.618 16.626

9-154. Consider the 40 observations collected on the number 

of nonconforming coil springs in production batches of size 50 

given in Exercise 6-114.

(a)  Based on the description of the random variable and these 

40 observations, is a binomial distribution an appropriate 

model? Perform a goodness-of-fit procedure with α = 0.05.

(b) Calculate the P-value for this test.

9-155. Consider the 20 observations collected on the number 

of errors in a string of 1000 bits of a communication channel 

given in Exercise 6-115.

(a)  Based on the description of the random variable and these 

20 observations, is a binomial distribution an appropriate 

model? Perform a goodness-of-fit procedure with α = 0.05.

(b) Calculate the P-value for this test.

9-156. Consider the spot weld shear strength data in Exercise 

6-39. Does the normal distribution seem to be a reasonable 

model for these data? Perform an appropriate goodness-of-fit 

test to answer this question.

9-157. Consider the water quality data in Exercise 9-157.

(a)  Do these data support the claim that the mean concentra-

tion of suspended solids does not exceed 50 parts per mil-

lion? Use α = 0.05.

(b) What is the P-value for the test in part (a)?

(c)  Does the normal distribution seem to be a reasonable 

model for these data? Perform an appropriate goodness-of-

fit test to answer this question.

9-158. Consider the golf ball overall distance data in 

Exercise 6-41.

(a)  Do these data support the claim that the mean overall distance 

for this brand of ball does not exceed 270 yards? Use α = 0.05.

(b) What is the P-value for the test in part (a)?

(c)  Do these data appear to be well modeled by a normal dis-

tribution? Use a formal goodness-of-fit test in answering 

this question.

9-159. Consider the baseball coefficient of restitution data in 

Exercise 8-103. If the mean coefficient of restitution exceeds 

0.635, the population of balls from which the sample has been 

taken will be too “lively” and considered unacceptable for play.

(a)  Formulate an appropriate hypothesis testing procedure to 

answer this question.

(b)  Test these hypotheses and draw conclusions, using α = 0.01.

(c) Find the P-value for this test.

(d)  In Exercise 8-103(b), you found a 99% confidence interval 

on the mean coefficient of restitution. Does this interval or 

a one-sided CI provide additional useful information to the 

decision maker? Explain why or why not.

9-160. Consider the dissolved oxygen data in Exercise 8-105. 

Water quality engineers are interested in knowing whether 

these data support a claim that mean dissolved oxygen concen-

tration is 2.5 milligrams per liter.

(a)  Formulate an appropriate hypothesis testing procedure to 

investigate this claim.

(b)  Test these hypotheses and draw conclusions, using α = 0.05.

(c) Find the P-value for this test.

(d)  In Exercise 8-105(b), you found a 95% CI on the mean 

dissolved oxygen concentration. Does this interval provide 

useful additional information beyond that of the hypothesis 

testing results? Explain your answer.

9-161. An article in Food Testing and Analysis [“Improving 

Reproducibility of Refractometry Measurements of Fruit Juices” 

(1999, Vol. 4(4), pp. 13–17)] measured the sugar concentration 

(Brix) in clear apple juice. All readings were taken at 20°C:
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 11.48 11.45 11.48 11.47 11.48

 11.50 11.42 11.49 11.45 11.44

 11.45 11.47 11.46 11.47 11.43

 11.50 11.49 11.45 11.46 11.47

(a)  Test the hypothesis H0 11 5: μ = .  versus H1 11 5: μ ≠ .  using 

α = .0 05. Find the P-value.

(b) Compute the power of the test if the true mean is 11.4.

(c)  What sample size would be required to detect a true mean 

sugar concentration of 11.45 if we wanted the power of the 

test to be at least 0.9?

(d)  Explain how the question in part (a) could be answered by 

constructing a two-sided confidence interval on the mean 

sugar concentration.

(e)  Is there evidence to support the assumption that the sugar 

concentration is normally distributed?

9-162. Consider the computer output below

Test and Cl for One Proportion

Test of p = 0.25 vs p < 0.25
X N Sample p Bound Z-Value P-Value

53 225 0.235556 0.282088 ? ?

Using the normal approximation:

(a) Fill in the missing information.

(b) What are your conclusions if α = 0.05?

(c)  The normal approximation to the binomial was used here. 

Was that appropriate?

(d)  Find a 95% upper-confidence bound on the true proportion.

(e)  What are the P-value and your conclusions if the alterna-

tive hypothesis is H p1 0 25: ≠ . ?

9-163. An article in Food Chemistry [“A Study of Factors 

Affecting Extraction of Peanut (Arachis Hypgaea L.) Solids 

with Water” (1991, Vol. 42(2), pp. 153–165)] reported that the 

percent protein extracted from peanut milk as follows:

78.3 77.1 71.3 84.5 87.8 75.7 64.8 72.5

78.2 91.2 86.2 80.9 82.1 89.3 89.4 81.6

(a)  Can you support a claim that the mean percent protein 

extracted exceeds 80 percent? Use α = .0 05.

(b)  Is there evidence that the percent protein extracted is nor-

mally distributed?

(c)  What is the P-value of the test statistic computed in  

part (a)?

9-164. An article in Biological Trace Element Research [“Inter-

action of Dietary Calcium, Manganese, and Manganese Source 

(Mn Oxide or Mn Methionine Complex) or Chick Performance 

and Manganese Utilization” (1991, Vol. 29(3), pp. 217–228)] 

showed the following results of tissue assay for liver manganese 

(ppm) in chicks fed high Ca diets.

6.02 6.08 7.11 5.73 5.32 7.10

5.29 5.84 6.03 5.99 4.53 6.81

(a)  Test the hypothesis H0
2 0 6: σ = .  versus H1

2 0 6: σ ≠ .  using 

α = .0 01.

(b) What is the P-value for this test?

(c)  Discuss how part (a) could be answered by constructing a 

99% two-sided confidence interval for σ.

9-165. An article in Experimental Brain Research [“Synapses 

in the Granule Cell Layer of the Rat Dentate Gyrus: Serial-

Sectionin Study” (1996, Vol. 112(2), pp. 237–243)] showed the 

ratio between the numbers of symmetrical and total synapses 

on somata and azon initial segments of reconstructed granule 

cells in the dentate gyrus of a 12-week-old rat:

0.65 0.90 0.78 0.94 0.40 0.94

0.91 0.86 0.53 0.84 0.42 0.50

0.50 0.68 1.00 0.57 1.00 1.00

0.84 0.9 0.91 0.92 0.96

0.96 0.56 0.67 0.96 0.52

0.89 0.60 0.54

(a)  Use the data to test H0
2 0 02:σ = .  versus H1

2 0 02:σ ≠ .  

using α = .0 05.

(b) Find the P-value for the test.

9-166. An article in the Journal of Electronic Material 
[“Progress in CdZnTe Substrate Producibility and Critical 

Drive of IRFPA Yield Originating with CdZnTe Substrates” 

(1998, Vol. 27(6), pp. 564–572)] improved the quality of 

CdZnTe substrates used to produce the HgCdTe infrared focal 

plane arrays (IRFPAs) also defined as sensor chip assemblies 

(SCAs). The cut-on wavelength μ( )m  on 11 wafers was meas-

ured and follows:

6.06 6.16 6.57 6.67 6.98 6.17 6.17 6.93 6.73 6.87 6.76

(a)  Is there evidence that the mean of cut-on wavelength is not 

6 50.  μm?

(b) What is the P-value for this test?

(c)  What sample size would be required to detect a true mean 

cut-on wavelength of 6 25.  μm with probability 95%?

(d)  What is the type II error probability if the true mean cut-on 

wavelength is 6 95.  μm?

9-167. Consider the fatty acid measurements for the diet mar-

garine described in Exercise 8-38.

(a)  For the sample size n = 6, using a two-sided alternative 

hypothesis and α = 0.01, test H
0
: σ2 = 1.0.

(b)  Suppose that instead of n = 6, the sample size was n = 51. 

Repeat the analysis performed in part (a) using n = 51.

(c)  Compare your answers and comment on how sample size 

affects your conclusions drawn in parts (a) and (b).

9-168. Consider the television picture tube brightness experi-

ment described in Exercise 8-37.

(a)  For the sample size n = 10, do the data support the claim that 

the standard deviation of current is less than 20 microamps?

(b)  Suppose that instead of n = 10, the sample size was 51. 

Repeat the analysis performed in part (a) using n = 51.

(c)  Compare your answers and comment on how sample size 

affects your conclusions drawn in parts (a) and (b).

9-169.  A manufacturer of a pharmaceutical product is develop-

ing a generic drug and must show its the equivalence to the current 

product. The variable of interest is the activity level of the active 

ingredient. The current product has an activity level of 100. If the 

new generic product has an activity level that is within 2 units of 

this value, it will be considered equivalent. A random sample of 

c09.indd   371 9/24/2013   7:15:34 PM



372   Chapter 9/Tests of Hypotheses for a Single Sample

FOR SECTION 1-7Important Terms and Concepts
Alternative hypothesis

Acceptance region 

α and β
Chi-square tests

Combining P-values

Confidence interval

Contingency table

Critical values

Connection between 

hypothesis tests and 

confidence intervals

Critical region for a test 

statistic

Equivalence testing

Fixed significance level

Goodness-of-fit test

Homogeneity test

Hypotheses

Hypothesis testing

Inference

Independence test

Median

Nonparametric and 

distribution-free methods

Normal approximation to 

nonparametric  

tests

Null distribution

Null hypothesis

Observed significance level

One- and two-sided 

alternative hypotheses

Operating characteristic (OC) 

curves

Parametric

Power of a statistical test

P-value

Ranks

Reference distribution for a 

test statistic

Rejection region

Sampling distribution

Sample size determination for 

hypothesis tests

Significance level of a test

Sign test

Statistical hypothesis

Statistical versus practical 

significance

Symmetric continuous 

distributions

t-test

Test statistic

Transform

Type I and type II errors

Wilcoxon signed-rank test

z-test

Mind-Expanding Exercises

9-171. Suppose that we wish to test H0 0:μ = μ  versus 

H1 0:μ ≠ μ  where the population is normal with known σ. Let 

0 < <e α, and define the critical region so that we will reject 

H
0
 if z > z0 ε or if z z ,0,− α −ε  where z

0
 is the value of the usual 

test statistic for these hypotheses.

(a)  Show that the probability of type I error for this test is α.

(b)  Suppose that the true mean is μ = μ + δ1 0 . Derive an 

expression for β for the above test.

9-172. Derive an expression for β for the test on the variance 

of a normal distribution. Assume that the two-sided alterna-

tive is specified.

9-173. When X
1
, X

2
, …, X

n
 are independent Poisson random 

variables, each with parameter λ, and n is large, the sample 

mean X  has an approximate normal distribution with mean λ 

and variance λ n. Therefore,

Z
X

n
= − λ

λ
has approximately a standard normal distribution. Thus, we 

can test H
0
: λ = λ

0
 by replacing λ in Z by λ

0
. When X

i
 are 

Poisson variables, this test is preferable to the large-sample test 

of Section 9-2.3, which would use S n  in the denominator 

because it is designed just for the Poisson distribution. Suppose 

that the number of open circuits on a semiconductor wafer has 

a Poisson distribution. Test data for 500 wafers indicate a total 

of 1038 opens. Using α = 0.05, does this suggest that the mean 

number of open circuits per wafer exceeds 2.0?

9-174. When X
1
, X

2
, …, X

n
 is a random sample from a nor-

mal distribution and n is large, the sample standard deviation 

has approximately a normal distribution with mean σ and 

variance σ2 2( )n . Therefore, a large-sample test for H
0
: σ = 

σ
0
 can be based on the statistic

Z
S= − σ
σ

0

0
2 (2 )n

(a)  Use this result to test H0 10:s =  versus H1 10:s ,  for the 

golf ball overall distance data in Exercise 6-41.

(b)  Find an approximately unbiased estimator of the 95th 

percentile θ = μ + 1.645σ. From the fact that X  and S are 

independent random variables, find the standard error of 

the estimator of θ. How would you estimate the standard 

error?

(c)  Consider the golf ball overall distance data in Exercise 

6-41. We wish to investigate a claim that the 95th per-

centile of overall distance does not exceed 285 yards. 

Construct a test statistic that can be used for testing the 

appropriate hypotheses. Apply this procedure to the data 

from Exercise 6-41. What are your conclusions?

9-175. Let X
1
, X

2
, …, X

n
 be a sample from an exponential dis-

tribution with parameter λ. It can be shown that 2 1λ Σ =i
n

iX  has 

a chi-square distribution with 2n degrees of freedom. Use this 

fact to devise a test statistic and critical region for H
0
: λ = λ

0
  

versus the three usual alternatives.

10 units of product is available, and the sample mean and standard 

deviation of absorption rate are 96 and 1.5, respectively. 

(a)  State the appropriate hypotheses that must be used to dem-

onstrate equivalence.

(b) What are your conclusions using α = 0 05. ?

9-170. Suppose that eight sets of hypotheses of the form 

H H0 0 1 0: :μ μ μ μ= ≠

have been tested and that the P-values for these tests are 0.15, 

0.06. 0.67, 0.01, 0.04, 0.08, 0.78, and 0.13. Use Fisher’s proce-

dure to combine all of the P-values. What conclusions can you 

draw about these hypotheses?
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The safety of drinking water is a serious public health issue. An article in the Arizona Republic 

on May 27, 2001, reported on arsenic contamination in the water sampled from 10 communi-

ties in the metropolitan Phoenix area and 10 communities from rural Arizona. The data showed 

dramatic differences in the arsenic concentration, ranging from 3 parts per billion (ppb) to 48 

ppb. This article suggested some important questions. Does real difference in the arsenic con-

centrations in the Phoenix area and in the rural communities in Arizona exist? How large is this 

difference? Is it large enough to require action on the part of the public health service and other 

state agencies to correct the problem? Are the levels of reported arsenic concentration large 

enough to constitute a public health risk?

Some of these questions can be answered by statistical methods. If we think of the met-

ropolitan Phoenix communities as one population and the rural Arizona communities as a 

second population, we could determine whether a statistically significant difference in the 

mean arsenic concentration exists for the two populations by testing the hypothesis that the 

two means, say, μ1 and μ2, are different. This is a relatively simple extension to two samples 

of the one-sample hypothesis testing procedures of Chapter 9. We could also use a confidence 

interval to estimate the difference in the two means, say, μ μ1 2− .

The arsenic concentration problem is very typical of many problems in engineering and 

science that involve statistics. Some of the questions can be answered by the application of 

appropriate statistical tools, and other questions require using engineering or scientific knowl-

edge and expertise to answer satisfactorily.

 Learning Objectives

After careful study of this chapter, you should be able to do the following:

1. Structure comparative experiments involving two samples as hypothesis tests

2. Test hypotheses and construct confidence intervals on the difference in means of two normal distributions

3. Test hypotheses and construct confidence intervals on the ratio of the variances or standard devia-
tions of two normal distributions

4. Test hypotheses and construct confidence intervals on the difference in two population proportions

5. Use the P-value approach for making decisions in hypotheses tests

6. Compute power, and type II error probability, and make sample size decisions for two-sample tests on 
means, variances, and proportions

7. Explain and use the relationship between confidence intervals and hypothesis tests

10-1  Inference on the Difference in Means of Two 
Normal Distributions, Variances Known

The previous two chapters presented hypothesis tests and confidence intervals for a single 

population parameter (the mean μ, the variance σ2, or a proportion p). This chapter extends 

those results to the case of two independent populations.

The general situation is shown in Fig. 10-1. Population 1 has mean μ1 and variance σ 1
2, and 

population 2 has mean μ2 and variance σ 2
2. Inferences will be based on two random samples of 

sizes n1 and n2, respectively. That is, X X X11 12 1 1
, , ,… n  is a random sample of n1 observations from 

population 1, and X X X21 22 2 2
, , ,… n  is a random sample of n2 observations from population 2. 

Most of the practical applications of the procedures in this chapter arise in the context of simple 
comparative experiments in which the objective is to study the difference in the parameters of 

the two populations.

Engineers and scientists are often interested in comparing two different conditions to deter-

mine whether either condition produces a significant effect on the response that is observed. 
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A logical point estimator of μ − μ1 2 is the difference in sample means X X1 2− . Based on the 

properties of expected values,

E X X E X E X1 2 1 2 1 2−( ) = ( ) − ( ) = μ − μ

and the variance of X X1 2−  is

V X X V X V X
n n

1 2 1 2
1
2

1

2
2

2

−( ) = ( ) + ( ) = σ + σ

These conditions are sometimes called treatments. Example 10-1 described such an experi-

ment; the two different treatments are two paint formulations, and the response is the drying 

time. The purpose of the study is to determine whether the new formulation results in a signifi-

cant effect—reducing drying time. In this situation, the product developer (the experimenter) 

randomly assigned 10 test specimens to one formulation and 10 test specimens to the other 

formulation. Then the paints were applied to the test specimens in random order until all 20 

specimens were painted. This is an example of a completely randomized experiment.
When statistical significance is observed in a randomized experiment, the experimenter 

can be confident in the conclusion that the difference in treatments resulted in the difference 

in response. That is, we can be confident that a cause-and-effect relationship has been found.

Sometimes the objects to be used in the comparison are not assigned at random to the treat-

ments. For example, the September 1992 issue of Circulation (a medical journal published 

by the American Heart Association) reports a study linking high iron levels in the body with 

increased risk of heart attack. The study, done in Finland, tracked 1931 men for five years 

and showed a statistically significant effect of increasing iron levels on the incidence of heart 

attacks. In this study, the comparison was not performed by randomly selecting a sample of 

men and then assigning some to a “low iron level” treatment and the others to a “high iron 

level” treatment. The researchers just tracked the subjects over time. Recall from Chapter 1 

that this type of study is called an observational study.
It is difficult to identify causality in observational studies because the observed statistically 

significant difference in response for the two groups may be due to some other underlying 

factor (or group of factors) that was not equalized by randomization and not due to the treat-

ments. For example, the difference in heart attack risk could be attributable to the difference in 

iron levels or to other underlying factors that form a reasonable explanation for the observed 

results—such as cholesterol levels or hypertension.

In this section, we consider statistical inferences on the difference in means μ − μ1 2 of two 

normal distributions where the variances σ 1
2 and σ 2

2 are known. The assumptions for this sec-

tion are summarized as follows.

m1 m2

Population 1 Population 2

Sample 1:

x11, x12,…, x1n1
 

Sample 2:

x21, x22,…, x2n2
 

s1 s2

2 2

FIGURE 10-1 Two 
independent 
populations.

(1) X X X11 12 1 1
, , . . . , n  is a random sample from population 1.

(2) X X X21 22 2 2
, , ,… n  is a random sample from population 2.

(3) The two populations represented by X1 and X2 are independent.

(4) Both populations are normal.

Assumptions for Two-
Sample Inference
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Based on the assumptions and the preceding results, we may state the following.

The quantity

 Z
X X

n n

=
− − μ − μ( )

σ + σ
1 2 1 2

1
2

1

2
2

2

 (10-1)

has a N(0, 1) distribution.

Null hypothesis: H0 1 2 0:  μ − μ = Δ

Test statistic: Z
X X

n n

0
1 2 0

1
2

1

2
2

2

= − − Δ
σ + σ

 (10-2)

Alternative Hypotheses P-Value
Rejection Criterion for 

Fixed-Level Tests

H1 1 2 0: μ − μ ≠ Δ Probability above | |z0   

and probability  

below − | |z0 , 

P z= − Φ ( )⎡⎣ ⎤⎦2 1 0| |

z > z z < z0 2 0 2α α/ / or −

H >1 1 2 0: μ − μ Δ Probability above z0, 

P z= − Φ( )1 0

z > z0 α

H <1 1 2 0: μ − μ Δ Probability below z0, 

P z= Φ( )0

z < z0 − α

Tests on the Difference 
in Means, Variances 

Known

This result will be used to develop procedures for tests of hypotheses and to construct 

confidence intervals on μ − μ .1 2  Essentially, we may think of μ − μ1 2 as a parameter θ where 

estimator is Θ̂ = −X X1 2 with variance σ = σ + σ .Θ̂ / /2
1
2

1 2
2

2n n  If θ0 is the null hypothesis value 

specified for θ, the test statistic will be (Θ ) / σΘ
ˆ

ˆ− u0 . Notice how similar this is to the test sta-

tistic for a single mean used in Equation 9-8 of Chapter 9.

10-1.1 HYPOTHESIS TESTS ON THE DIFFERENCE IN MEANS, VARIANCES KNOWN

We now consider hypothesis testing on the difference in the means μ − μ1 2 of two normal 

populations. Suppose that we are interested in testing whether the difference in means μ − μ1 2 

is equal to a specified value Δ0. Thus, the null hypothesis will be stated as H0 1 2 0: μ − μ = Δ  

Obviously, in many cases, we will specify Δ =0 0 so that we are testing the equality of two 

means (i.e., H0 1 2: μ = μ ). The appropriate test statistic would be found by replacing μ − μ1 2 

in Equation 10-1 by Δ0: this test statistic would have a standard normal distribution under H0.  

That is, the standard normal distribution is the reference distribution for the test statistic. Sup-

pose that the alternative hypothesis is H1 1 2 0: μ − μ ≠ Δ . A sample value of x x1 2−  that is con-

siderably different from Δ0 is evidence that H1 is true. Because Z0 has the N( , )0 1  distribution 

when H0 is true, we would calculate the P-value as the sum of the probabilities beyond the test 

statistic value z0 and −z0 in the standard normal distribution. That is, P z= − Φ2 1 0[ (| |)]. This is 

exactly what we did in the one-sample z-test of Section 4-4.1. If we wanted to perform a fixed-

significance-level test, we would take − αz / 2 and z /α 2 as the boundaries of the critical region 

just as we did in the single-sample z-test. This would give a test with level of significance α.  

P-values or critical regions for the one-sided alternatives would be determined similarly. For-

mally, we summarize these results in the following display.
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10-1.2 TYPE II ERROR AND CHOICE OF SAMPLE SIZE

Use of Operating Characteristic Curves
The operating characteristic (OC) curves in Appendix Charts VIIa, VIIb, VIIc, and VIId may 

be used to evaluate the type II error probability for the hypotheses in the display (10-2). 

These curves are also useful in determining sample size. Curves are provided for α = 0.05 and 

α = 0.01. For the two-sided alternative hypothesis, the abscissa scale of the operating charac-

teristic curve in charts VIIa and VIIb is d, where

 d =
μ − μ − Δ

σ + σ
=

Δ − Δ

σ + σ
1 2 0

1
2

2
2

0

1
2

2
2

 (10-3)

and one must choose equal sample sizes, say, n n n= =1 2. The one-sided alternative hypoth-

eses require the use of Charts VIIc and VIId. For the one-sided alternatives H1 0: μ μ1 2− > Δ
or H1 0: μ μ1 2− < Δ , the abscissa scale is also given by

d =
μ − μ − Δ

σ + σ
=

Δ − Δ

σ + σ
1 2 0

1
2

2
2

0

1
2

2
2

When the population variances are unknown, the sample variances s1
2 and s2

2 can be substi-

tuted into the test statistic Equation 10-2 to produce a large-sample test for the difference in 

means. This procedure will also work well when the populations are not necessarily normally 

distributed. However, both n1 and n2 should exceed 40 for this large-sample test to be valid.

Paint Drying Time A product developer is interested in reducing the drying time of a primer paint. 

Two formulations of the paint are tested; formulation 1 is the standard chemistry, and formulation 2 

has a new drying ingredient that should reduce the drying time. From experience, it is known that the standard deviation 

of drying time is 8 minutes, and this inherent variability should be unaffected by the addition of the new ingredient. Ten 

specimens are painted with formulation 1, and another 10 specimens are painted with formulation 2; the 20 specimens 

are painted in random order. The two sample average drying times are x 1 121=  minutes and x2 112=  minutes, respec-

tively. What conclusions can the product developer draw about the effectiveness of the new ingredient, using α = 0.05?

We apply the seven-step procedure to this problem as follows:

1.  Parameter of interest: The quantity of interest is the difference in mean drying times, μ − μ1 2, and Δ 00 = .

2.  Non hypothesis: H H0 2 0 1 21 0: or : μ − μ =  μ = μ, .

3.  Alternative hypothesis: H1 1 2: μ > μ . We want to reject H0 if the new ingredient reduces mean drying time.

4.  Test statistic: The test statistic is

 

z
x x

n n

0
1 2

1
2

1

2
2

2

0= − −
σ + σ   where σ σ2 2

1 2
28 64= = =( )  and n n1 2= = 10.

5.  Reject H0 if: Reject H0 1 2: μ = μ  if the P-value is less than 0.05.

6.  Computations: Because x1 121=  minutes and x2 112=  minutes, the test statistic is

z0
2 2

121 112

8

10

8

10

2 52= −

+
= .

( ) ( )

7. Conclusion: Because z0 2.52= , the P-value is P = − Φ . = .1 2 52 0 0059( ) , so we reject H0 at the α = 0 05.  level.

Practical Interpretation: We conclude that adding the new ingredient to the paint signifi cantly reduces the drying 

time. This is a strong conclusion.

Example 10-1
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Sample Size Formulas
It is also possible to obtain formulas for calculating the sample sizes directly. Suppose 

that the null hypothesis H0 0: μ μ1 2− = Δ  is false and that the true difference in means is 

l - l D1 2 =  where Δ > Δ0. One may fi nd formulas for the sample size required to obtain 

a specifi c value of the type II error probability β for a given difference in means Δ  and 

level of signifi cance α.

For example, we fi rst write the expression for the β-error for the two-sided alternative, 

which is

β = Φ − Δ − Δ
σ + σ

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

− Φ − − Δ − Δ
σ + σ

α αz

n n

z

n n

/ /2
0

1
2

1

2
2

2

2
0

1
2

1

2
2

2

⎛⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

The derivation for sample size closely follows the single-sample case in Section 9-2.2.

It is not unusual to encounter problems where the costs of collecting data differ substan-

tially for the two populations or when the variance for one population is much greater than the 

other. In those cases, we often use unequal sample sizes. If n n1 2≠ , the operating characteristic 

curves may be entered with an equivalent value of n computed from

n
n n

= σ + σ
σ + σ

1
2

2
2

1
2

1 2
2

2/ /
 (10-4)

If n n1 2≠  and their values are fi xed in advance, Equation 10-4 is used directly to calculate n, 

and the operating characteristic curves are entered with a specifi ed d to obtain β. If we are 

given d and it is necessary to determine n1 and n2 to obtain a specifi ed β, say, β*, we guess at 

trial values of n1 and n2, calculate n in Equation 10-4, and enter the curves with the specifi ed 

value of d to fi nd β. If β β∗= , the trial values of n1 and n2 are satisfactory. If β β∗≠ , adjustments 

to n1 and n2  are made and the process is repeated.

Paint Drying Time, Sample Size from OC Curves Consider the paint drying time experiment 

from Example 10-1. If the true difference in mean drying times is as much as 10 minutes, fi nd the 

sample sizes required to detect this difference with probability at least 0.90.

The appropriate value of the abscissa parameter is (because Δ =0 0, and Δ = 10)

d = μ − μ
σ + σ

=
+

= .| |1 2

1
2

2
2 2 2

10

8 8
0 88

and because the detection probability or power of the test must be at least 0.9, with α = 0.05, we fi nd from Appendix 

Chart VIIc that n n n= =1 2 11� .

Example 10-2

For the two-sided alternative hypothesis with signifi cance level α, the sample size 

n n n1 2= =  required to detect a true difference in means of Δ  with power at least 

1 − β is

 n
z z

�
α β+( ) σ + σ( )

Δ − Δ( )
/2

2

1
2

2
2

0

2
 

 (10-5)

Sample Size for a 
Two-Sided Test on 

the Difference in 
Means with n n1 2= , 

Variances Known

This approximation is valid when Φ − − Δ − Δ( ) σ + σ( )αz n/ /2 0 1
2

2
2  is small compared 

to β.
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10-1.3  CONFIDENCE INTERVAL ON THE DIFFERENCE IN MEANS, 
VARIANCES KNOWN

The 100 1( )%− α  confi dence interval on the difference in two means μ μ1 2−  when the vari-

ances are known can be found directly from results given previously in this section. Recall 

that X X X n11 12 1, , ,…
1
 is a random sample of n1 observations from the fi rst population and 

X X X n21 22, , ,… 2 2
 is a random sample of n2 observations from the second population. The 

difference in sample means X X1 2−  is a point estimator of μ − μ1 2, and

Z
X X

n n

=
− − μ − μ( )

σ + σ
1 2 1 2

1
2

1

2
2

2

has a standard normal distribution if the two populations are normal or is approximately stand-

ard normal if the conditions of the central limit theorem apply, respectively. This implies that 

P z Z z− ≤ ≤( ) = − αα α/ /2 2 1 , or

P z
X X

n n

z− ≤
− − μ − μ( )

σ + σ
≤

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

= − αα α/2
1 2 1 2

1
2

1

2
2

2

2 1/

This can be rearranged as

P X X z
n n

X X z
n n

1 2 2
1
2

1

2
2

2

1 2 1 2 2
1
2

1

2
2

2

1− − σ + σ ≤ μ − μ ≤ − + σ + σ⎛

⎝
⎜

⎞

⎠
⎟ =α α/ / −− α

where Δ  is the true difference in means of interest. Then by following a procedure similar 

to that used to obtain Equation 9-17, the expression for β can be obtained for the case where 

n n n= = .1 2

For a one-sided alternative hypothesis with signifi cance level α, the sample size 

n n n1 2= =  required to detect a true difference in means of Δ ≠ Δ( )0  with power at 

least 1− β is

 n
z z

=
+( ) σ + σ( )

Δ − Δ( )
α β

2

1
2

2
2

0

2
 (10-6)

Sample Size for a 
One-Sided Test on 

the Difference in 
Means with n n1 2= , 

Variances Known

Paint Drying Time Sample Size To illustrate the use of these sample size equations, consider the 

situation described in Example 10-1, and suppose that if the true difference in drying times is as 

much as 10 minutes, we want to detect this with probability at least 0.90. Under the null hypothesis, Δ =0 0. We have a 

one-sided alternative hypothesis with Δ =10, α = 0.05 (so z zα = =0 05 1 645. . ), and because the power is 0.9, β = 0.10 (so 
z zβ = =0 10 1 28. . ). Therefore, we may fi nd the required sample size from Equation 10-6 as follows:

n
z z

=
+( ) σ + σ( )

Δ − Δ( )
=

. + .( ) +

−( )
α β

2

1
2

2
2

0

2

2 2 21 645 1 28 8 8

10 0 

[( ) ( ) ]
22

11≈

This is exactly the same as the result obtained from using the OC curves.

Example 10-3

c10.indd   379 9/24/2013   7:03:50 PM



380   Chapter 10/Statistical Inference for Two Samples

Choice of Sample Size
If the standard deviations σ1 and σ2 are known (at least approximately) and the two sample 

sizes n1 and n2 are equal (n n n1 2= = , say), we can determine the sample size required so that 

the error in estimating μ − μ1 2 
by x x1 2−  will be less than E  at 100 1( )%− α  confi dence. The 

required sample size from each population is

Therefore, the 100 1( )%− α  confi dence interval for μ μ1 2−  is defi ned as follows.

The confi dence level 1 − α  is exact when the populations are normal. For nonnormal popula-

tions, the confi dence level is approximately valid for large sample sizes.

Equation 10-7 can also be used as a large sample CI on the difference in mean when σ1
2

and σ2
2 are unknown by substituting s1

2 and s2
2 for the population variances. For this to be a 

valid procedure, both sample sizes n1 and n2 should exceed 40.

If x1 and x2 are the means of independent random samples of sizes n1 and n2 from two 

independent normal populations with known variances σ1
2 and σ2

2, respectively, a 
100(1 )%− α  confi dence interval (CI) for l l1 2−  is

 x x z
n n

x x z
n n

1 2 2
1
2

1

2
2

2

1 2 1 2 2
1
2

1

2
2

2

− − σ + σ ≤ μ − μ ≤ − + σ + σ
α α/ /  (10-7)

where zα /2 is the upper α / 2 percentage point of the standard normal distribution.

Confi dence Interval 
on the Difference in 

Means, Variances 
Known

Aluminum Tensile Strength Tensile strength tests were performed on two different grades of 

aluminum spars used in manufacturing the wing of a commercial transport aircraft. From past 

experience with the spar manufacturing process and the testing procedure, the standard deviations of tensile strengths 

are assumed to be known. The data obtained are as follows: n1 10= , x1 87 6= . , σ =1 1, n2 12= , x2 74 5= . , and σ = .2 1 5. 

If μ1 and μ2 denote the true mean tensile strengths for the two grades of spars, we may fi nd a 90% on the difference in 

mean strength μ − μ1 2 as follows:

x x z
n n

x x z
n n

1 2 2
1
2

1

2
2

2

1 2 1 2 2
1
2

1

2
2

2

87 6 74

− − σ + σ ≤ μ − μ ≤ − + σ + σ

. −

α  α  / /

.. − .  ( ) +
.( ) ≤ μ − μ ≤ . − . + .  

( )
+

.
5 1 645

1

10

1 5

12
87 6 74 5 1 645

1

10

1 5
2 2

1 2

2 (( )2

12

Therefore, the 90% confi dence interval on the difference in mean tensile strength (in kilograms per square millimeter) is

12 22 13 981 2. ≤ μ − μ ≤ .  (in kilograms per square millimeter)

Practical Interpretation: Notice that the confi dence interval does not include zero, implying that the mean strength 

of aluminum grade 1 ( )μ1  exceeds the mean strength of aluminum grade 2 ( )μ2 . In fact, we can state that we are 90% 

confi dent that the mean tensile strength of aluminum grade 1 exceeds that of aluminum grade 2 by between 12.22 and 

13.98 kilograms per square millimeter.

Example 10-4

 n
z

E
= ⎛

⎝⎜
⎞
⎠⎟

 σ + σ( )α /2

2

1
2

2
2  (10-8)

Sample Size for a 
 Confi dence Interval 
on the Difference in 

Means, Variances 
Known

Remember to round up if n is not an integer. This ensures that the level of confi dence does not 

drop below 100 1( )%− α .
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and a 100 1( )%− α  lower-confi dence bound is

One-Sided Confi dence Bounds
One-sided confi dence bounds on μ − μ1 2 may also be obtained. A 100 1( )%− α  upper-confi -

dence bound on μ − μ1 2 is

x x z
n n

1 2
1
2

1

2
2

2

1 2− − σ + σ ≤ μ − μα   (10-10)

One-Sided 
 Lower-Confi dence 

Bound

 μ − μ ≤ − + σ + σ
α1 2 1 2

1
2

1

2
2

2

x x z
n n

 (10-9)

One-Sided 
 Upper-Confi dence 

Bound

10-1.  Consider the hypothesis test H0 1 2: μ = μ  against 

H1 1 2: μ ≠ μ  with known variances σ =1 10 and σ = .2 5  Sup-

pose that sample sizes n1 10=  and n2 15=  and that x1 4 7= .  and 
x2 7 8= . . Use α = .0 05.

(a) Test the hypothesis and fi nd the P-value.

(b) Explain how the test could be conducted with a confi dence 

interval.

(c) What is the power of the test in part (a) for a true difference 

in means of 3?

(d) Assume that sample sizes are equal. What sample size 

should be used to obtain β = .0 05 if the true difference in 

means is 3? Assume that α = .0 05.

10-2.  Consider the hypothesis test H0 1 2: μ = μ  against 

H <1 1 2: μ μ  with known variances σ =1 10 and σ = .2 5  Suppose 

that sample sizes n1 10=  and n2 15=  and that x1 14 2= .  and 
x2 19 7= . . Use α = .0 05.

(a) Test the hypothesis and fi nd the P-value.

(b) Explain how the test could be conducted with a confi -

dence interval.

(c) What is the power of the test in part (a) if μ1 is 4 units less 

than μ2?

(d) Assume that sample sizes are equal. What sample size 

should be used to obtain β = .0 05 if μ1 is 4 units less than μ2? 

Assume that α = .0 05.

10-3.  Consider the hypothesis test H0 1 2  μ = μ:  against 

H >1 1 2: μ μ  with known variances σ =1 10 and σ = .2 5  Suppose 

that sample sizes n1 10=  and n2 15=  and that x1 24 5= .  and 
x2 21 3= . . Use α = .0 01.

(a) Test the hypothesis and fi nd the P-value.

(b) Explain how the test could be conducted with a confi dence 

interval.

(c) What is the power of the test in part (a) if μ1 is 2 units 

greater than μ2?

(d) Assume that sample sizes are equal. What sample size 

should be used to obtain β = .0 05 if μ1 is 2 units greater 

than μ2? Assume that α = .0 05.

10-4. Two machines are used for fi lling plastic bottles with a 

net volume of 16.0 ounces. The fi ll volume can be assumed to 

be normal with standard deviation σ1 = 0 020.  and σ = 0.0252
ounces. A member of the quality engineering staff suspects that 

both machines fi ll to the same mean net volume, whether or not 

this volume is 16.0 ounces. A random sample of 10 bottles is 

taken from the output of each machine.

(a) Do you think the engineer is correct? Use α = 0.05. What is 

the P-value for this test?

(b) Calculate a 95% confi dence interval on the difference in 

means. Provide a practical interpretation of this interval.

(c) What is the power of the test in part (a) for a true difference 

in means of 0.04?

(d) Assume that sample sizes are equal. What sample size 

should be used to ensure that β = 0.05 if the true differ-

ence in means is 0.04? Assume that α = 0.05.

10-5.  Two types of plastic are suitable for an electronics 

component manufacturer to use. The breaking strength of this 

plastic is important. It is known that σ σ1 2= = 1 0.  psi. From a 

random sample of size n1 10=  and n2 12= , you obtain x1 162 5= .
and x2 155 0= . . The company will not adopt plastic 1 unless its 

mean breaking strength exceeds that of plastic 2 by at least 10 psi.

(a) Based on the sample information, should it use plastic 1? 

Use α = 0.05 in reaching a decision. Find the P-value.

(b) Calculate a 95% confi dence interval on the difference in means. 

Suppose that the true difference in means is really 12 psi.

(c) Find the power of the test assuming that α = 0.05.

Machine 1 Machine 2

16.03 16.01 16.02 16.03

16.04 15.96 15.97 16.04

16.05 15.98 15.96 16.02

16.05 16.02 16.01 16.01

16.02 15.99 15.99 16.00

FOR SECTION 10-1Exercises
 Problem available in WileyPLUS at instructor’s discretion. 

 Tutoring problem available in WileyPLUS at instructor’s discretion.
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(d) If it is really important to detect a difference of 12 psi, 

are the sample sizes employed in part (a) adequate in your 

opinion?

10-6.  The burning rates of two different solid-fuel pro-

pellants used in air crew escape systems are being studied. It 

is known that both propellants have approximately the same 

standard deviation of burning rate; that is σ σ1 2= = 3 centim-

eters per second. Two random samples of n1 20=  and n2 20=  

specimens are tested; the sample mean burning rates are x1 18=  

centimeters per second and x2 24=  centimeters per second.

(a) Test the hypothesis that both propellants have the same 

mean burning rate. Use α = 0.05. What is the P-value?

(b) Construct a 95% confidence interval on the difference 

in means μ μ1 2− . What is the practical meaning of this 

interval?

(c) What is the β-error of the test in part (a) if the true differ-

ence in mean burning rate is 2.5 centimeters per second?

(d) Assume that sample sizes are equal. What sample size is 

needed to obtain power of 0.9 at a true difference in means of 

14 cm/s?

10-7.  Two different formulations of an oxygenated motor 

fuel are being tested to study their road octane numbers. The 

variance of road octane number for formulation 1 is σ =1
2 1 5. , 

and for formulation, 2 it is σ =2
2 1 2. . Two random samples of size 

n1 15=  and n2 20=  are tested, and the mean road octane num-

bers observed are x1 89 6= .  and x2 92 5= . . Assume normality.

(a) If formulation 2 produces a higher road octane number 

than formulation 1, the manufacturer would like to detect 

it. Formulate and test an appropriate hypothesis using 

α = 0.05. What is the P-value?

(b) Explain how the question in part (a) could be answered 

with a 95% confidence interval on the difference in mean 

road octane number.

(c) What sample size would be required in each popula-

tion if you wanted to be 95% confident that the error in 

estimating the difference in mean road octane number is 

less than 1?

10-8. A polymer is manufactured in a batch chemical process. 

Viscosity measurements are normally made on each batch, and 

long experience with the process has indicated that the vari-

ability in the process is fairly stable with σ = 20. Fifteen batch 

viscosity measurements are given as follows:

724, 718, 776, 760, 745, 759, 795, 756, 742, 740, 761, 

749, 739, 747, 742

A process change that involves switching the type of catalyst 

used in the process is made. Following the process change, 

eight batch viscosity measurements are taken:

735, 775, 729, 755, 783, 760, 738, 780

Assume that process variability is unaffected by the catalyst 

change. If the difference in mean batch viscosity is 10 or 

less, the manufacturer would like to detect it with a high 

probability.

(a) Formulate and test an appropriate hypothesis using 

α = 0.10. What are your conclusions? Find the P-value.

(b) Find a 90% confidence interval on the difference in mean 

batch viscosity resulting from the process change.

(c) Compare the results of parts (a) and (b) and discuss your 

findings.

10-9.  The concentration of active ingredient in a liquid 

laundry detergent is thought to be affected by the type of 

catalyst used in the process. The standard deviation of active 

concentration is known to be 3 grams per liter regardless of 

the catalyst type. Ten observations on concentration are taken 

with each catalyst, and the data follow:

Catalyst 1:  57.9, 66.2, 65.4, 65.4, 65.2, 62.6, 67.6, 63.7, 

67.2, 71.0

Catalyst 2:  66.4, 71.7, 70.3, 69.3, 64.8, 69.6, 68.6, 69.4, 

65.3, 68.8

(a) Find a 95% confidence interval on the difference in mean 

active concentrations for the two catalysts. Find the 

P-value.

(b) Is there any evidence to indicate that the mean active con-

centrations depend on the choice of catalyst? Base your 

answer on the results of part (a).

(c) Suppose that the true mean difference in active concentra-

tion is 5 grams per liter. What is the power of the test to 

detect this difference if α = 0.05?

(d) If this difference of 5 grams per liter is really important, 

do you consider the sample sizes used by the experimenter 

to be adequate? Does the assumption of normality seem 

reasonable for both samples?

10-10. An article in Industrial Engineer (September 2012) 

reported on a study of potential sources of injury to equine 

veterinarians conducted at a university veterinary hospital.  

Forces on the hand were measured for several common activi-

ties that veterinarians engage in when examining or treating 

horses. We will consider the forces on the hands for two tasks, 

lifting and using ultrasound.  Assume that both sample sizes 

are 6, the sample mean force for lifting was 6.0 pounds with 

standard deviation 1.5 pounds, and the sample mean force for 

using ultrasound was 6.2 pounds with standard deviation 0.3 

pounds (data read from graphs in the article).  Assume that the 

standard deviations are known.  Is there evidence to conclude 

that the two activities result in significantly different forces on 

the hands?

10-11. Reconsider the data from Exercise 10-10.  Find a 95% 

confidence interval on the difference in mean force on the 

hands for the two activities. How would you interpret this CI?  

Is the value zero in the CI?  What connection does this have 

with the conclusion that you reached in Exercise 10-10?

10-12. Reconsider the study described in Exercise 10-10.  

Suppose that you wanted to detect a true difference in mean 

force of 0.25 pounds on the hands for these two activities.  

What level of type II error would you recommend here?  What 

sample size would be required?

10-13. In their book Statistical Thinking (2nd ed.), Roger Hoerl 

and Ron Snee provide data on the absorbency of paper towels 

that were produced by two different manufacturing processes. 

From process 1, the sample size was 10 and had a mean and 

standard deviation of 190 and 15, respectively. From process 2, 

the sample size was 4 with a mean and standard deviation of 310 

and 50, respectively.  Is there evidence to support a claim that the 

mean absorbency of the towels from process 2 have higher mean 

absorbency than the towels from process 1?  Assume that the 

standard deviations are known.  What level of type I error would 

you consider appropriate for this problem?
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10-2  Inference on the Difference in Means of two 
Normal Distributions, Variances Unknown

We now extend the results of the previous section to the difference in means of the two distribu-

tions in Fig. 10-1 when the variances of both distributions σ1
2 and σ2

2 are unknown. If the sample 

sizes n1 and n2 exceed 40, the normal distribution procedures in Section 10-1 could be used. 

However, when small samples are taken, we will assume that the populations are normally 

distributed and base our hypotheses tests and confidence intervals on the t distribution. This 

nicely parallels the case of inference on the mean of a single sample with unknown variance.

10-2.1 HYPOTHESES TESTS ON THE DIFFERENCE IN MEANS, VARIANCES UNKNOWN

We now consider tests of hypotheses on the difference in means μ μ1 2−  of two normal dis-

tributions where the variances σ1
2 and σ2

2 are unknown. A t-statistic will be used to test these 

hypotheses. As noted earlier and in Section 9-3, the normality assumption is required to 

develop the test procedure, but moderate departures from normality do not adversely affect 

the procedure. Two different situations must be treated. In the first case, we assume that the 

variances of the two normal distributions are unknown but equal; that is, σ = σ = σ1
2

2
2 2. In the 

second, we assume that σ1
2 and σ2

2 are unknown and not necessarily equal.

Case 1: r r r1
2

2
2 2= =

Suppose that we have two independent normal populations with unknown means μ1 and μ2, 

and unknown but equal variances, σ = σ = σ1
2

2
2 2. We wish to test

 H

H
0 1 2 0

1 1 2 0

:

:

 μ − μ = Δ
 μ − μ Δ≠  (10-11)

Let X X X n11 12, , ,… 1 1
 be a random sample of n1 observations from the first population and 

 X , X , , 21 22 … X n2 2
 be a random sample of n2 observations from the second population. Let 

X1, X2, S1
2, and S2

2 be the sample means and sample variances, respectively. Now the expected 

value of the difference in sample means X X1 2−  is E X X ,1 2 1 2−( ) = μ − μ  so X X1 2−  is an unbi-

ased estimator of the difference in means. The variance of X X1 2−  is

 V X X
n n n n

1 2

2

1

2

2

2

1 2

1 1−( ) = σ + σ = σ +⎛
⎝⎜

⎞
⎠⎟

It seems reasonable to combine the two sample variances S1
2 and S2

2 to form an estimator of 

σ2. The pooled estimator of σ2 is defined as follows.

It is easy to see that the pooled estimator Sp
2
 can be written as

S
n

n n
S

n

n n
S wS w Sp

2 1

1 2

1
2 2

1 2

2
2

1
2

2
21

2

1

2
1= −

+ −
+ −

+ −
= + −( )

where 0 1< w ≤ . Thus, Sp
2
 is a weighted average of the two sample variances S1

2 and S2
2 where 

the weights w and 1 − w depend on the two sample sizes n1 and n2. Obviously, if n n n1 2= = , 

w = 0 5. , Sp
2
 is just the arithmetic average of S1

2 and S2
2. If n1 10=  and n2 20=  (say), w = 0 32.  

and 1 0 68− =w . . The first sample contributes n1 1−  degrees of freedom to Sp
2 and the second 

sample contributes n2 1−  degrees of freedom. Therefore, Sp
2 has n n1 2 2+ −  degrees of freedom.

The pooled estimator of σ2, denoted by S p
2
, is defined by

  S
n S n S

n n
p

2 1 1
2

2 2
2

1 2

1 1

2
=

−( ) + −( )
+ −

   (10-12)

Pooled Estimator of 
Variance
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Now we know that

Z
X X

n n

=
− − μ − μ( )
σ +

1 2 1 2

1 2

1 1

has a N(0, 1) distribution. Replacing σ by Sp gives the following.

Null hypothesis: H0 1 2 0: μ − μ = Δ .
Test statistic:     

T
X X

S
n n

p

0
1 2 0

1 2

1 1
= − − Δ

+

 (10-14)

Tests on the  Difference 
in Means of Two 

Normal Distributions,  
Variances Unknown 

and Equal* 

Given the assumptions of this section, the quantity

 T
X X

S
n n

p

=
− − μ − μ( )

+

1 2 1 2

1 2

1 1
 (10-13)

has a t distribution with n n1 2 2+ −  degrees of freedom.

The use of this information to test the hypotheses in Equation 10-11 is now straightfor-

ward: Simply replace μ − μ1 2 by Δ0 , and the resulting test statistic has a t distribution with 

n n1 2 2+ −  degrees of freedom under H0 1 2 0: μ − μ = Δ . Therefore, the reference distribution 

for the test statistic is the t distribution with n n1 2 2+ −  degrees of freedom. The calculation 

of P-values and the location of the critical region for fi xed-signifi cance-level testing for both 

two- and one-sided alternatives parallels those in the one-sample case. Because a pooled esti-

mate of variance is used, the procedure is often called the pooled t-test.

Alternative Hypotheses P-Value
Rejection Criterion for 

Fixed-Level Tests

H1 1 2 0: μ − μ ≠ Δ Probability above | |t0  and 

probability below − | |t0

t > t ,n n0 2 21 2α + −  / or

t < t ,n n0 2 21 2
− α + −/

H >1 1 2 0: μ − μ Δ Probability above t0 t > t ,n n0 21 2α + −

H1 1 2 0: μ − μ < Δ Probability below t0 t < t ,n n0 21 2
− α + −

Yield from a Catalyst Two catalysts are being analyzed to determine how they affect the mean 

yield of a chemical process. Specifi cally, catalyst 1 is currently used; but catalyst 2 is acceptable. 

Because catalyst 2 is cheaper, it should be adopted, if it does not change the process yield. A test is run in the pilot plant 

and results in the data shown in Table 10-1. Figure 10-2 presents a normal probability plot and a comparative box plot 

of the data from the two samples. Is there any difference in the mean yields? Use α = 0.05, and assume equal variances.

Example 10-5

∗While we have given the development of this procedure for the case in which the sample sizes could be different, 

there is an advantage to using equal sample sizes n n n1 2= = . When the sample sizes are the same from both popula-

tions, the t-test is more robust to the assumption of equal variances.
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10-1 Catalyst Yield Data, Example 10-5

The solution using the seven-step hypothesis-testing procedure is as follows:

1.  Parameter of interest: The parameters of interest are μ1 and μ2, the mean process yield using catalysts 1 

and 2, respectively, and we want to know if μ μ1 2 0− = .

2. Null hypothesis: H0 1 2 0: μ μ− = , or H0 1 2: μ μ=
3. Alternative hypothesis: H1 1 2: μ μ≠
4. Test statistic: The test statistic is

 t
x x

s
n n

p

0
1 2

1 2

0

1 1
= − −

+

5. Reject H0 if: Reject H0 if the P-value is less than 0.05.

6.  Computations: From Table 10-1, we have x1 92 255= . , s1 2 39= . , n1 8= , x2 92 733= . , s2 2 98= . , and n2 8= . Therefore

s
n s n s

n n
p
2 1 1

2
2 2

2

1 2

2 2
1 1

2

7 2 39 7 2 98

8 8 2
7=

−( ) + −( )
+ −

= ( ) .( ) + .( )
+ −

= .330

sp = . = .7 30 2 70

and

t
x x

n n

0
1 2

1 2

2 70
1 1

92 255 92 733

2 70
1

8

1

8

0 35= −

. +
= . − .

. +
= − .

7.  Conclusions: Because |t0| = 0.35,we fi nd from Appendix Table V that t0 40 14 0 258. , .=  and t0 25 14 0 692. , .= . Therefore, 

because 0 258 0 35 0 692. . .< < , we conclude that lower and upper bounds on the P-value are 0 50 0 80. .< <P . There-

fore, because the P-value exceeds α = 0 05. , the null hypothesis cannot be rejected.

Practical Interpretation: At the 0.05 level of signifi cance, we do not have strong evidence to conclude that catalyst 2 

results in a mean yield that differs from the mean yield when catalyst 1 is used.

Observation 
Number

Catalyst 1 Catalyst 2

1 91.50 89.19

2 94.18 90.95

3 92.18 90.46

4 95.39 93.21

5 91.79 97.19

6 89.07 97.04

7 94.72 91.07

8 89.21 92.75

x1 = 92.255 x2 = 92.733 

s1 2 39= . s2 2 98= .
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Typical computer output for the two-sample t-test and confidence interval procedure for  Example 

10-5 follows:

Notice that the numerical results are essentially the same as the manual computations in Example 

10-5. The P-value is reported as P = 0 73. . The two-sided CI on μ μ1 2−  is also reported. We will 

give the computing formula for the CI in Section 10-2.3. Figure 10-2 shows the normal prob-

ability plot of the two samples of yield data and comparative box plots. The normal probability 

plots indicate that there is no problem with the normality assumption or with the assumption of 

equal variances. Furthermore, both straight lines have similar slopes, providing some verifica-

tion of the assumption of equal variances. The comparative box plots indicate that there is no 

obvious difference in the two catalysts although catalyst 2 has slightly more sample variability.

Case 2: r ñ r1
2

2
2

In some situations, we cannot reasonably assume that the unknown variances σ1
2 and σ2

2 are 

equal. There is not an exact t-statistic available for testing H0 0: μ μ1 2− = Δ  in this case. How-

ever, an approximate result can be applied.

Two-Sample T-Test and CI for Catalyst 1 vs. Catalyst 2

N Mean StDev SE Mean

Cat 1 8 92.26 2.39 0.84

Cat 2 8 92.73 2.99 1.1

Difference = mu Cat 1 – mu Cat 2
Estimate for difference: –0.48
95% CI for difference: (–3.37, 2.42)
T-test of difference = 0 (vs not = ): T-value = –0.35 P-value = 0.730 DF = 14
Pooled StDev = 2.70

FIGURE 10-2 Normal probability plot and comparative box plot for the catalyst yield data in 
Example 10-5. (a) Normal probability plot. (b) Box plots.
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If H0 1 2 0: μ − μ = Δ  is true, the statistic

 T
X X

S

n

S

n

0
1 2 0

1
2

1

2
2

2

∗ = − − Δ

+
 (10-15)

Case 2: Test Statistic 
for the Difference 

in Means, Variances 
Unknown and Not 

Assumed Equal
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Therefore, if σ σ2
1

2
2≠ , the hypotheses on differences in the means of two normal  distributions 

are tested as in the equal variances case except that T *
0  is used as the test statistic and n n1 2 2+ −  

is replaced by v in determining the degrees of freedom for the test.

The pooled t-test is very sensitive to the assumption of equal variances (so is the CI pro-

cedure in section 10-2.3). The two-sample t-test assuming that σ σ1
2 2

2≠  is a safer procedure 

unless one is very sure about the equal variance assumption.

is distributed approximately as t with degrees of freedom given by

 v

s

n

s

n

s n

n

s n

n

=
+

⎛
⎝⎜

⎞
⎠⎟

( )
−

+
( )

−

1
2

1

2
2

2

2

1
2

1

2

1

2
2

2

2

21 1

/ /
 (10-16)

If v is not an integer, round down to the nearest integer.

Arsenic in Drinking Water Arsenic concentration in public drinking water supplies is a potential 

health risk. An article in the Arizona Republic (May 27, 2001) reported drinking water arsenic con-

centrations in parts per billion (ppb) for 10 metropolitan Phoenix communities and 10 communities in rural Arizona. 

The data follow:

We wish to determine whether any difference exists in mean arsenic concentrations for metropolitan Phoenix 

communities and for communities in rural Arizona. Figure 10-3 shows a normal probability plot for the two samples 

of arsenic concentration. The assumption of normality appears quite reasonable, but because the slopes of the two 

straight lines are very different, it is unlikely that the population variances are the same.

Applying the seven-step procedure gives the following:

1.  Parameter of interest: The parameters of interest are the mean arsenic concentrations for the two geographic 

regions, say, μ1 and μ2, and we are interested in determining whether μ μ1 2− = 0.

2. Null hypothesis: H0 0: ,μ μ1 2− =  or H0: μ μ1 2−
3. Alternative hypothesis: H1: μ μ1 2≠
4. Test statistic: The test statistic is

t
x x

s

n

s

n

0
1 2

1
2

1

2
2

2

0∗ = − −

+

Example 10-6

Metro Phoenix 

( 12.5, 7.63)1 1x s= =
Rural Arizona

( 27.5, 15.3)2 2x s= =

Phoenix, 3 Rimrock, 48

Chandler, 7 Goodyear, 44

Gilbert, 25 New River, 40

Glendale, 10 Apache Junction, 38

Mesa, 15 Buckeye, 33

Paradise Valley, 6 Nogales, 21

Peoria, 12 Black Canyon City, 20

Scottsdale, 25 Sedona, 12

Tempe, 15 Payson, 1

Sun City, 7 Casa Grande, 18
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Typical computer output for this example follows:

5. Reject H0 if: The degrees of freedom on t0
∗ are found from Equation 10-16 as

v

s

n

s

n

s n

n

s n

n

=
+

⎛
⎝⎜

⎞
⎠⎟

−
+

−

=

.( ) +1
2

1

2
2

2

2

1
2

1
2

1

2
2

1
2

2

2

1 1

7 63

10

( / ) ( / )

115 3

10

7 63 10

9

15 3 10

9

13 2

2
2

2
2

2
2

.( )⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎡⎣ ⎤⎦ +
⎡⎣ ⎤⎦

= .
( . ) / ( . ) /

� 113

Therefore, using α = 0.05 and a fi xed-signifi cance-level test, we would reject H0: μ μ1 2=  if t t0 0 025 13 2 160∗ > =. , .  or if 

t t0 0 025 13 2 160∗ < − = −. , . .

6. Computations: Using the sample data, we fi nd

t
x x

s

n

s

n

0
1 2

1
2

1

2
2

2

2 2

12 5 27 5

7 63

10

15 3

10

2 77∗ = −

+
= . − .

.( ) +
.( )

= − .

7. Conclusion: Because t t0 0 025 132 77 2 160∗ = − < = −. . ,. ,  we reject the null hypothesis.

Practical Interpretation:  There is strong evidence to conclude that mean arsenic concentration in the drinking water in 

rural Arizona is different from the mean arsenic concentration in metropolitan Phoenix drinking water. Furthermore, the 

mean arsenic concentration is higher in rural Arizona communities. The P-value for this test is approximately P = 0 016. .
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FIGURE 10-3 Normal probability plot of the arsenic 
concentration data from Example 10-6.

Two-Sample T-Test and CI: PHX vs RuralAZ

N Mean StDev

PHX 10 12.50  7.63

RuralAZ 10 27.50 15.3

Difference = mu PHX – mu RuralAZ
Estimate for difference: –15.00
95% CI for difference: (–26.71, –3.29)
T-test of difference = 0 (vs. not = ): T-value = –2.77    P-value = 0.016 DF = 13
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10-2.2 TYPE II ERROR AND CHOICE OF SAMPLE SIZE

The operating characteristic curves in Appendix Charts VIIe, VIIf, VIIg, and VIIh are used to 

evaluate the type II error for the case in which s s s1
2

2
2 2= = . Unfortunately, when s s1

2
2
2ñ , the 

distribution of T0
∗ is unknown if the null hypothesis is false, and no operating characteristic 

curves are available for this case.

For the two-sided alternative H1 0:μ μ1 2− = Δ ≠ Δ , when s s s1
2

2
2 2= =  and n n n1 2= = , 

Charts VIIe and VIIf are used with

d =
Δ − Δ

σ
 0

2
 (10-17)

where Δ  is the true difference in means that is of interest. To use these curves, they must be 

entered with the sample size n∗ = −2 1n . For the one-sided alternative hypothesis, we use 

The computer-generated numerical results exactly match the calculations from Example 10-6. 

Note that a two-sided 95% CI on μ μ1 2−  is also reported. We will discuss its computation 

in Section 10-2.3; however, note that the interval does not include zero. Indeed, the upper 

95% of confi dence limit is –3.29 ppb, well below zero, and the mean observed difference is 
x x1 2 12 5 27 5 15− = . − . = −  ppb.

Chocolate and Cardiovascular Health An article in Nature (2003, Vol. 48, p. 1013) described an 

experiment in which subjects consumed different types of chocolate to determine the effect of eating 

chocolate on a measure of cardiovascular health.  We will consider the results for only dark chocolate and milk chocolate.  

In the experiment, 12 subjects consumed 100 grams of dark chocolate and 200 grams of milk chocolate, one type of choco-

late per day, and after one hour, the total antioxidant capacity of their blood plasma was measures in an assay.  The subjects 

consisted of seven women and fi ve men with an average age range of 32.2 ±1 years, an average weight of 65.8 ± 3.1 kg, and 

average body mass index of 21.9 ± 0.4 kg/m2.  Data similar to that reported in the article follows.

Dark Chocolate Milk Chocolate

118.8, 122.6, 115.6, 113.6, 119.5, 115.9, 
115.8, 115.1, 116.9, 115.4, 115.6, 107.9

102.1, 105.8, 99.6, 102.7, 98.8, 100.9,  
102.8, 98.7, 94.7, 97.8, 99.7, 98.6

Is there evidence to support the claim that consuming dark chocolate produces a higher mean level of total blood 

plasma antioxidant capacity than consuming milk chocolate? Let μ1 be the mean blood plasma antioxidant capacity 

resulting from eating dark chocolate and μ2 be the mean blood plasma antioxidant capacity resulting from eating milk 

chocolate. The hypotheses that we wish to test are

H

H
0 1 2

1 1 2

:

:

μ μ
μ μ

=
>

The results of applying the pooled t-test to this experiment are as follows:

Two-sample T for Dark vs. Milk

N Sample Mean StDev  

Dark 12 116.06 3.53

Milk 12 100.19 2.89

Difference = mu (Dark) − mu (Milk) = 15.87
T-test of difference in means = 0 (vs. mu(Dark) > mu (Milk)): T-value = 12.05 P-Value < 0.001  
DF = 22 Pooled StDev = 3.2257

Because the P-value is so small (< 0.001), the null hypothesis would be rejected. Strong evidence supports the claim 

that consuming dark chocolate produces a higher mean level of total blood plasma antioxidant capacity than consum-

ing milk chocolate.

Example 10-7
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Many software packages perform power and sample size calculations for the two-sample t-test

(equal variances). Typical output from Example 10-8 is as follows:

Power and Sample Size

2-Sample T-test

Testing mean 1 = mean 2 (versus not =)
Calculating power for mean 1 = mean 2 + difference
Alpha = 0.05 Sigma = 2.7

Difference
Sample

Size
Target
Power

Actual
Power

4 10 0.8500 0.8793

The results agree fairly closely with the results obtained from the OC curve.

10-2.3  CONFIDENCE INTERVAL ON THE DIFFERENCE IN MEANS, 
VARIANCES UNKNOWN

Case 1: r r r1
2

2
2 2= =

To develop the confi dence interval for the difference in means μ μ1 2−  when both variances are 

equal, note that the distribution of the statistic

T
X X

S
n n

p

=
− − μ − μ( )

+

1 2 1 2

1 2

1 1
 (10-18)

is the t distribution with n n1 2 2+ −  degrees of freedom. Therefore P t n n− ≤( α + −/2 21 2,

T t n n≤ ) = − αα + −/2 21 2
1, . Now substituting Equation 10-18 for T  and manipulating the quan- tit-

ies inside the probability statement will lead to the 100 1( )%− α  confi dence interval on μ − μ1 2.

Charts VIIg and VIIh and defi ne d and Δ  as in Equation 10-17. It is noted that the parameter d
is a function of σ, which is unknown. As in the single-sample t-test, we may have to rely on a 

prior estimate of σ or use a subjective estimate. Alternatively, we could defi ne the differences 

in the mean that we wish to detect relative to σ.

Yield from Catalyst Sample Size Consider the catalyst experiment in Example 10-5. Suppose 

that, if catalyst 2 produces a mean yield that differs from the mean yield of catalyst 1 by 4.0%, we 

would like to reject the null hypothesis with probability at least 0.85. What sample size is required?

Using sp = 2 70.  as a rough estimate of the common standard deviation σ, we have d = Δ σ = . .[ ] =/ / ( )( ) .2 4 0 2 2 70 0 74.

From Appendix Chart VIIe with d = .0 74 and β = .0 15, we fi nd n* = 20, approximately. Therefore, because n* = −2 1n ,

n
n= + = + = .

∗ 1

2

20 1

2
10 5 11� ( )say

and we would use sample sizes of n n n1 2 11= = = .

Example 10-8
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If x , x s1 2 1
2 , , and s2

2 are the sample means and variances of two random samples of 

sizes n1 and n2, respectively, from two independent normal populations with unknown 

but equal variances, a 100(1 )%− α  confi dence interval on the difference in means 
l - l1 2 is

x x t s
n n

x x t s
n

,n n p ,n n p1 2 2 2

1 2

1 2 1 2 2 2

1
1 2 1 2

1 1 1− − + ≤ μ − μ ≤ − +α + − α + −  / / ++ 1

2n
 (10-19)

where s n s n s n np = − + − + −[( ) ( ) /( )]1 1
2

2 2
2

1 21 1 2  is the pooled estimate of the com-

mon population standard deviation, and t ,n nα + −/2 21 2
 is the upper α / 2 percentage point 

of the t distribution with n n1 2 2+ −  degrees of freedom.

Case 1: Confi dence 
Interval on the 

Difference in Means, 
Variances Unknowns 

and Equal

Cement Hydration An article in the journal Hazardous Waste and Hazardous Materials 

(1989, Vol. 6) reported the results of an analysis of the weight of calcium in standard cement 

and cement doped with lead. Reduced levels of calcium would indicate that the hydration mechanism in the 

cement is blocked and would allow water to attack various locations in the cement structure. Ten samples of 

standard cement had an average weight percent calcium of x1 90 0= .  with a sample standard deviation of s1 5 0= . , 

and 15 samples of the lead-doped cement had an average weight percent calcium of x2 87 0= .  with a sample 

standard deviation of s2 4 0= . .

We will assume that weight percent calcium is normally distributed and fi nd a 95% confi dence interval on the 

difference in means, μ − μ1 2, for the two types of cement. Furthermore, we will assume that both normal populations 

have the same standard deviation.

The pooled estimate of the common standard deviation is found using Equation 10-12 as follows:

s
n s n s

n n
p
2 1 1

2
2 2

2

1 2

2 21 1

2

9 5 0 14 4 0

10 15 2
19= − + −

+ −
= . + .

+ −
= .( ) ( ) ( ) ( )

552

Therefore, the pooled standard deviation estimate is sp = . = . .19 52 4 4  The 95% confi dence interval is found using 

Equation 10-19:

x x t s
n n

x x t s
n n

p p1 2 0 025 23

1 2

1 2 1 2 0 025 23

1 2

1 1 1 1− − + ≤ μ − μ ≤ − + +.  .  , ,

or upon substituting the sample values and using t0 025 23 2 069. , . ,=

90 0 87 0 2 069 4 4
1

10

1

15
90 0 87 0 2 069 4 4

1

10
1 2. − . − . .( ) + ≤ μ − μ ≤ . − . + . .( ) + 11

15

which reduces to

− . ≤ μ − μ ≤ .0 72 6 721 2

Practical Interpretation: Notice that the 95% confi dence interval includes zero; therefore, at this level of confi dence 

we cannot conclude that there is a difference in the means. Put another way, there is no evidence that doping the cement 

with lead affected the mean weight percent of calcium; therefore, we cannot claim that the presence of lead affects this 

aspect of the hydration mechanism at the 95% level of confi dence.

Example 10-9
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Case 2: r = r1
2

2
2

In many situations, assuming that s s1
2 = 2

2 is not reasonable. When this assumption is unwar-

ranted, we may still find a 100 1( )%− α  confidence interval on μ μ1 2−  using the fact that 

T X X S n S n∗ = − − μ − μ( )⎡⎣ ⎤⎦ +1 2 1 2 1
2

1 2
2

2/ / /  is distributed approximately as t with degrees of 

freedom v given by Equation 10-16. The CI expression follows.

If x , x , s ,1 2 1
2   and s2

2 are the means and variances of two random samples of sizes n1 

and n2, respectively, from two independent normal populations with unknown and 

unequal variances, an approximate 100 1( )%− α  confidence interval on the differ-

ence in means μ μ1 2−  is

 x x t
s

n

s

n
x x t

s

n

s

n
, ,1 2 2

1
2

1

2
2

2

1 2 1 2 2
1
2

1

2
2

2

− − + ≤ μ − μ ≤ − + +α ν α ν/ /  (10-20)

where v is given by Equation 10-16 and t ,α ν/2  is the upper α / 2 percentage point of 

the t distribution with v degrees of freedom.

Case 2: Approximate
Confidence Interval 
on the Difference in 

Means, Variances 
Unknown and not 

Assumed Equal

10-14. Consider the following computer output.

Two-Sample T-Test and CI
Sample N Mean StDev SE Mean

1 12 10.94 1.26 0.36
2 16 12.15 1.99 0.50

Difference = mu (1) – mu (2)
Estimate for difference: –1.210
95% CI for difference: (–2.560, 0.140)
T-test of difference = 0 (vs not =) : 
T-value = ? P-value = ? DF = ?
Both use Pooled StDev = ?

(a) Fill in the missing values. Is this a one-sided or a two-sided 

test? Use lower and upper bounds for the P-value.

(b) What are your conclusions if α = 0.05? What if α = 0.01?

(c) This test was done assuming that the two population vari-

ances were equal. Does this seem reasonable?

(d) Suppose that the hypothesis had been H0 : μ μ1 2=  versus 

H0 : μ μ1 2< . What would your conclusions be if α = 0.05?

10-15. Consider the computer output below.

Two-Sample T-Test and Cl
Sample N Mean StDev SE Mean

1 15 54.73 2.13 0.55
2 20 58.64 5.28 1.2

Difference = mu (1) – mu (2)
Estimate for difference: –3.91
95% upper bound for difference: ?
T-test of difference = 0(vs <): T-value = 
–3.00 P-value = ? DF = ?

(a) Fill in the missing values. Is this a one-sided or a two-sided 

test? Use lower and upper bounds for the P-value.

(b) What are your conclusions if α = 0.05? What if α = 0.01?

(c) This test was done assuming that the two population vari-

ances were different. Does this seem reasonable?

(d) Suppose that the hypotheses had been H0 : μ μ1 2=  versus 

H0 1 2: μ ≠ μ . What would your conclusions be if α = 0.05?

10-16.  Consider the hypothesis test H0 1 2: μ = μ  against 

H1 1 2: μ ≠ μ . Suppose that sample sizes are n1 15=  and n2 15= , 

that x1 4 7= .  and x2 7 8= . , and that s1
2 4=  and s2

2 6 25= . . Assume 

that σ = σ1
2

2
2 and that the data are drawn from normal distribu-

tions. Use α = .0 05.

(a) Test the hypothesis and find the P-value.

(b) Explain how the test could be conducted with a confidence 

interval.

(c) What is the power of the test in part (a) for a true differ-

ence in means of 3?

(d) Assume that sample sizes are equal. What sample size 

should be used to obtain β = .0 05 if the true difference in 

means is −2? Assume that α = .0 05.

10-17.  Consider the hypothesis test H0 1 2: μ = μ  against 

H1 1 2: μ μ .=  Suppose that sample sizes n1 15=  and n2 15= , that 
x1 6 2= .  and x2 7 8= . , and that s1

2 4=  and s2
2 6 25= . . Assume 

that σ = σ1
2

2
2 and that the data are drawn from normal distribu-

tions. Use α = .0 05.

(a) Test the hypothesis and find the P-value.

(b) Explain how the test could be conducted with a confidence 

interval.

(c) What is the power of the test in part (a) if μ1 is 3 units less than μ2?

FOR SECTION 10-2Exercises
 Problem available in WileyPLUS at instructor’s discretion. 

 Tutoring problem available in WileyPLUS at instructor’s discretion.
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(d) Assume that sample sizes are equal. What sample size 

should be used to obtain β = .0 05 if μ1 is 2.5 units less than 

μ2? Assume that α = .0 05.

10-18.  Consider the hypothesis test H0 1 2: μ = μ  against 

H1 1 2: μ μ .≠  Suppose that sample sizes n1 10=  and n2 10= , that 

x1 7 8= .  and x2 5 6= . , and that s1
2 4=  and s2

2 9= . Assume that 

σ = σ1
2

2
2 and that the data are drawn from normal distributions. 

Use α = .0 05.

(a) Test the hypothesis and fi nd the P-value.

(b) Explain how the test could be conducted with a confi dence 

interval.

(c) What is the power of the test in part (a) if μ1 is 3 units 

greater than μ2?

(d) Assume that sample sizes are equal. What sample size 

should be used to obtain β = .0 05 if μ1 is 3 units greater 

than μ2? Assume that α = .0 05.

10-19.  The diameter of steel rods manufac-

tured on two different extrusion machines is being investigated. 

Two random samples of sizes n1 15=  and n1 17=  are selected, 

and the sample means and sample variances are x1 8 73= . , 

s1
2 0 35= . , x2 8 68= . , and s2

2 0 40= . , respectively. Assume that 

σ = σ1
2

2
2  and that the data are drawn from a normal distribution.

(a) Is there evidence to support the claim that the two machines 

produce rods with different mean diameters? Use α = .0 05

in arriving at this conclusion. Find the P-value.

(b) Construct a 95% confi dence interval for the difference in 

mean rod diameter. Interpret this interval.

10-20. An article in Fire Technology investigated two different 

foam-expanding agents that can be used in the nozzles of fi re-

fi ghting spray equipment. A random sample of fi ve observa-

tions with an aqueous fi lm-forming foam (AFFF) had a sample 

mean of 4.7 and a standard deviation of 0.6. A random sample 

of fi ve observations with alcohol-type concentrates (ATC) had 

a sample mean of 6.9 and a standard deviation 0.8.

(a) Can you draw any conclusions about differences in mean foam 

expansion? Assume that both populations are well represented 

by normal distributions with the same standard deviations.

(b) Find a 95% confi dence interval on the difference in mean 

foam expansion of these two agents.

10-21.  Two catalysts may be used in a batch chemical 

process. Twelve batches were prepared using catalyst 1, result-

ing in an average yield of 86 and a sample standard deviation 

of 3. Fifteen batches were prepared using catalyst 2, and they 

resulted in an average yield of 89 with a standard deviation 

of 2. Assume that yield measurements are approximately nor-

mally distributed with the same standard deviation.

(a) Is there evidence to support a claim that catalyst 2 produces 

a higher mean yield than catalyst 1? Use α = 0.01.

(b) Find a 99% confi dence interval on the difference in mean 

yields that can be used to test the claim in part (a).

10-22. The defl ection temperature under load for two dif-

ferent types of plastic pipe is being investigated. Two random 

samples of 15 pipe specimens are tested, and the defl ection 

temperatures observed are as follows (in °F):

Type 1:  206, 188, 205, 187, 194, 193, 207, 185, 189, 213, 192, 

210, 194, 178, 205

Type 2:  177, 197, 206, 201, 180, 176, 185, 200, 197, 192, 198, 

188, 189, 203, 192

(a) Construct box plots and normal probability plots for the 

two samples. Do these plots provide support of the assump-

tions of normality and equal variances? Write a practical 

interpretation for these plots.

(b) Do the data support the claim that the defl ection temperature 

under load for type 1 pipe exceeds that of type 2? In reaching 

your conclusions, use α = 0.05. Calculate a P-value.

(c) If the mean defl ection temperature for type 1 pipe exceeds 

that of type 2 by as much as 5°F, it is important to detect 

this difference with probability at least 0.90. Is the choice 

of n n1 2 15= =  adequate? Use α = 0.05.

10-23.  In semiconductor manufacturing, wet chemical 

etching is often used to remove silicon from the backs of wafers 

prior to metallization. The etch rate is an important characteris-

tic in this process and known to follow a normal distribution. 

Two different etching solutions have been compared using two 

random samples of 10 wafers for each solution. The observed 

etch rates are as follows (in mils per minute):

(a) Construct normal probability plots for the two samples. Do 

these plots provide support for the assumptions of normal-

ity and equal variances? Write a practical interpretation for 

these plots.

(b) Do the data support the claim that the mean etch rate is 

the same for both solutions? In reaching your conclusions, 

use α = 0.05 and assume that both population variances are 

equal. Calculate a P-value.

(c) Find a 95% confi dence interval on the difference in mean 

etch rates.

10-24.  Two suppliers manufacture a plastic gear used in 

a laser printer. The impact strength of these gears measured in 

foot-pounds is an important characteristic. A random sample 

of 10 gears from supplier 1 results in x1 290=  and s1 12= , and 

another random sample of 16 gears from the second supplier 

results in x2 321=  and s2 22= .

(a) Is there evidence to support the claim that supplier 2 provides 

gears with higher mean impact strength? Use α = 0.05, and 

assume that both populations are normally distributed but the 

variances are not equal. What is the P-value for this test?

(b) Do the data support the claim that the mean impact strength 

of gears from supplier 2 is at least 25 foot-pounds higher 

than that of supplier 1? Make the same assumptions as in 

part (a).

(c) Construct a confi dence interval estimate for the difference 

in mean impact strength, and explain how this interval could 

Solution 1 Solution 2

 9.9 10.6 10.2 10.0

 9.4 10.3 10.6 10.2

 9.3 10.0 10.7 10.7

 9.6 10.3 10.4 10.4

10.2 10.1 10.5 10.3

c10.indd   393 9/24/2013   7:05:41 PM



394   Chapter 10/Statistical Inference for Two Samples

be used to answer the question posed regarding supplier-to-

supplier differences.

10-25.  The melting points of two alloys used in formu-

lating solder were investigated by melting 21 samples of each 

material. The sample mean and standard deviation for alloy 

1 was x1 420= °F and s1 4= °F, and for alloy 2, they were 

x2 426= °F and s2 3= °F.

(a) Do the sample data support the claim that both alloys have 

the same melting point? Use α = 0.05 and assume that both 

populations are normally distributed and have the same 

standard deviation. Find the P-value for the test.

(b) Suppose that the true mean difference in melting points is 

3°F. How large a sample would be required to detect this 

difference using an α = 0.05 level test with probability at 

least 0.9? Use σ σ1 2= = 4 as an initial estimate of the com-

mon standard deviation.

10-26.  A photoconductor film is manufactured at a nomi-

nal thickness of 25 mils. The product engineer wishes to increase 

the mean speed of the film and believes that this can be achieved 

by reducing the thickness of the film to 20 mils. Eight samples 

of each film thickness are manufactured in a pilot production 

process, and the film speed (in microjoules per square inch) is 

measured. For the 25-mil film, the sample data result is x1 1 15= .  

and s1 0 11= . , and for the 20-mil film the data yield x2 1 06= .  and 

s2 0 09= . . Note that an increase in film speed would lower the 

value of the observation in microjoules per square inch.

(a) Do the data support the claim that reducing the film thick-

ness increases the mean speed of the film? Use σ = 0.10,  

and assume that the two population variances are equal and 

the underlying population of film speed is normally distrib-

uted. What is the P-value for this test?

(b) Find a 95% confidence interval on the difference in the two 

means that can be used to test the claim in part (a).

10-27.  Two companies manufacture a rubber material 

intended for use in an automotive application. The part will be 

subjected to abrasive wear in the field application, so you decide 

to compare the material produced by each company in a test. 

Twenty-five samples of material from each company are tested 

in an abrasion test, and the amount of wear after 1000 cycles is 

observed. For company 1, the sample mean and standard devia-

tion of wear are x1 20=  milligrams/1000 cycles and s1 2=  mil-

ligrams/1000 cycles, and for company 2, you obtain x2 15=  

milligrams/1000 cycles and s2 8=  milligrams/1000 cycles.

(a) Do the data support the claim that the two companies pro-

duce material with different mean wear? Use α = 0.05, and 

assume that each population is normally distributed but 

that their variances are not equal. What is the P-value for 

this test?

(b) Do the data support a claim that the material from company 

1 has higher mean wear than the material from company 2? 

Use the same assumptions as in part (a).

(c) Construct confidence intervals that will address the ques-

tions in parts (a) and (b) above.

10-28.  The thickness of a plastic film (in mils) on a sub-

strate material is thought to be influenced by the temperature 

at which the coating is applied. In completely randomized 

experiment, 11 substrates are coated at 125°F, resulting in a 

sample mean coating thickness of x1 103 5= .  and a sample 

standard deviation of s1 10 2= . . Another 13 substrates are coated 

at 150°F for which x2 99 7= .  and s2 20 1= .  are observed. It was 

originally suspected that raising the process temperature would 

reduce mean coating thickness.

(a) Do the data support this claim? Use α = 0.01 and assume 

that the two population standard deviations are not equal. 

Calculate an approximate P-value for this test.

(b) How could you have answered the question posed regard-

ing the effect of temperature on coating thickness by using 

a confidence interval? Explain your answer.

10-29.  An article in Electronic Components and Tech-
nology Conference (2001, Vol. 52, pp. 1167–1171) compared 

single versus dual spindle saw processes for copper metallized 

wafers. A total of 15 devices of each type were measured for the 

width of the backside chipouts, x ,glesin = .66 385  s glesin = .7 895 

and x ,double = .45 278  sdouble = .8 612.

(a) Do the sample data support the claim that both processes have 

the same chip outputs? Use α = .0 05 and assume that both 

populations are normally distributed and have the same vari-

ance. Find the P-value for the test.

(b) Construct a 95% two-sided confidence interval on the mean 

difference in spindle saw process. Compare this interval to 

the results in part (a).

(c) If the β-error of the test when the true difference in chip 

outputs is 15 should not exceed 0.1, what sample sizes 

must be used? Use α = .0 05.

10-30. An article in IEEE International Symposium on Elec-
tromagnetic Compatibility (2002, Vol. 2, pp. 667–670) quanti-

fied the absorption of electromagnetic energy and the resulting 

thermal effect from cellular phones. The experimental results 

were obtained from in vivo experiments conducted on rats. The 

arterial blood pressure values (mmHg) for the control group (8 

rats) during the experiment are x1 90= , s1 5=  and for the test 

group (9 rats) are x2 115= , s2 10= .

(a) Is there evidence to support the claim that the test group 

has higher mean blood pressure? Use α = .0 05, and assume 

that both populations are normally distributed but the vari-

ances are not equal. What is the P-value for this test?

(b) Calculate a confidence interval to answer the question in part (a).

(c) Do the data support the claim that the mean blood pressure 

from the test group is at least 15 mmHg higher than the con-

trol group? Make the same assumptions as in these part (a).

(d) Explain how the question in part (c) could be answered 

with a confidence interval.

10-31.  An article in Radio Engineering and Electronic 
Physics [1984, Vol. 29 No. (3), pp. 63–66] investigated the 

behavior of a stochastic generator in the presence of external 

noise. The number of periods was measured in a sample of 100 

trains for each of two different levels of noise voltage, 100 and 

150 mV. For 100 mV, the mean number of periods in a train 

was 7.9 with s = .2 6 For 150 mV, the mean was 6.9 with s = .2 4.

(a) It was originally suspected that raising noise voltage would 

reduce the mean number of periods. Do the data support 

this claim? Use α = .0 01 and assume that each population 
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is normally distributed and the two population variances 

are equal. What is the P-value for this test?

(b) Calculate a confi dence interval to answer the question in 

part (a).

10-32. An article in Technometrics (1999, Vol. 41, pp. 

202–211) studied the capability of a gauge by measuring the 

weights of two sheets of paper. The data follow.

(a) Check the assumption that the data from each sheet are 

from normal distributions.

(b) Test the hypothesis that the mean weight of the two sheets 

is equal against the alternative that it is not (and assume 

equal variances). Use α = .0 05 and assume equal vari-

ances. Find the P-value.

(c) Repeat the previous test with α = . .0 10

(d) Compare your answers for parts (b) and (c) and explain 

why they are the same or different.

(e) Explain how the questions in parts (b) and (c) could be 

answered with confi dence intervals.

10-33.  The overall distance traveled by a golf ball is tested by 

hitting the ball with Iron Byron, a mechanical golfer with a swing 

that is said to emulate the distance hit by the legendary champion, 

Byron Nelson. Ten randomly selected balls of two different brands 

are tested and the overall distance measured. The data follow:

Brand 1:  275, 286, 287, 271, 283, 271, 279, 275, 263, 267

Brand 2:  258, 244, 260, 265, 273, 281, 271, 270, 263, 268

(a) Is there evidence that overall distance is approximately 

normally distributed? Is an assumption of equal variances 

justifi ed?

(b) Test the hypothesis that both brands of ball have equal 

mean overall distance. Use α = . .0 05  What is the P-value?

(c) Construct a 95% two-sided CI on the mean difference in 

overall distance for the two brands of golf balls.

(d) What is the power of the statistical test in part (b) to detect 

a true difference in mean overall distance of 5 yards?

(e) What sample size would be required to detect a true dif-

ference in mean overall distance of 3 yards with power of 

approximately 0.75?

10-34. The “spring-like effect” in a golf club could be deter-

mined by measuring the coeffi cient of restitution (the ratio of 

the outbound velocity to the inbound velocity of a golf ball 

fi red at the clubhead). Twelve randomly selected drivers pro-

duced by two clubmakers are tested and the coeffi cient of res-

titution measured. The data follow:

Club 1:  0.8406, 0.8104, 0.8234, 0.8198, 0.8235, 0.8562, 

0.8123, 0.7976, 0.8184, 0.8265, 0.7773, 0.7871

Club 2:  0.8305, 0.7905, 0.8352, 0.8380, 0.8145, 0.8465, 

0.8244, 0.8014, 0.8309, 0.8405, 0.8256, 0.8476

(a) Is there evidence that coeffi cient of restitution is approxi-

mately normally distributed? Is an assumption of equal 

variances justifi ed?

(b) Test the hypothesis that both brands of clubs have equal 

mean coeffi cient of restitution. Use α = 0.05. What is the 

P-value of the test?

(c) Construct a 95% two-sided CI on the mean difference in 

coeffi cient of restitution for the two brands of golf clubs.

(d) What is the power of the statistical test in part (b) to detect 

a true difference in mean coeffi cient of restitution of 0.2?

(e) What sample size would be required to detect a true differ-

ence in mean coeffi cient of restitution of 0.1 with power of 

approximately 0.8?

10-35. Reconsider the paper towel absorbency data from Exer-

cise 10-13. Find a 95% confi dence interval on the difference in 

the towels’ mean absorbency produced by the two processes. 

Assume the standard deviations are estimated from the data. 

How would you interpret this CI? Is the value zero in the CI?

10-36. European scientists sampled rivers in various seasons for 

chemical composition and algae growth (http://archive.ics.uci.

edu/ml/datasets/Coil+1999+Competition+Data). The following is 

a random sample of 15 measurements from high-fl ow rivers and 

13 from low-fl ow rivers of a total algae content (units are mg/L).

(a) Test the null hypothesis at α = 0.05, that the amount of 

algae content is the same in both high- and low-fl ow rivers. 

Is the alternative one or two sided?

(b) Find a 95% confi dence interval for the difference in the 

mean algae content for the two fl ow rates.

(c) Is the value zero contained in the 95% confi dence interval? 

Explain the connection with the conclusion you reached in 

part (a).

(d) Do box plots of algae content by fl ow rate show any viola-

tions of the assumptions for the tests and confi dence inter-

val that you performed?

10-37. Olympic swimmers are seeded according to their previ-

ous 12-month performances with faster swimmers going into the 

later heats. The last 24 swimmers, however, are distributed among 

the last three heats more evenly. So we should see large differences 

in times of heats one–fi ve but not among the last three heats. The 

data of times from heats fi ve–seven are in seconds for the 100m 

Paper Observations

1 3.481 3.448 3.485 3.475 3.472

3.477 3.472 3.464 3.472 3.470

3.470 3.470 3.477 3.473 3.474

2 3.258 3.254 3.256 3.249 3.241

3.254 3.247 3.257 3.239 3.250

3.258 3.239 3.245 3.240 3.254

High Low

23.3 18.4

23.8 59.6

33.6 35.8

41.5 47.3

56.0 34.1

78.8 33.3

17.8 55.0

High Low

31.0 43.1

23.4 26.0

49.5 41.8

65.0 38.7

75.8 11.8

43.9 16.4

48.9

56.4
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swim. NA indicates that the swimmer did not swim. Is there a 

statistically significant difference in the mean time of swimmers in 

heats 6 and 7 and the mean time of swimmers in heat 5?

Time Heat Time Heat

49.02 5 48.67 6

49.49 5 49.18 6

49.6 5 49.2 6

49.78 5 NA 6

49.95 5 48.54 7

50.08 5 48.67 7

NA 5 48.93 7

NA 5 48.93 7

48.19 6 48.97 7

48.29 6 49.03 7

48.54 6 49.29 7

48.6 6

Is there evidence to suggest that the means of the heats dif-

fer for slower swimmers in heat five and the faster swimmers 

in heat seven? What about the means of the two sets of elite 

swimmers in heats six and seven? Use α = 0.05.

10-38. A paper in Quality Engineering [2013, Vol. 25(1)] 

presented data on cycles to failure of solder joints at differ-

ent temperatures for different types of printed circuit boards 

(PCB).  Failure data for two temperatures (20 and 60ºC) for 

a copper-nickel-gold PCB follow.

20ºC 218, 265, 279, 282, 336, 469, 496, 507, 685, 685

60ºC 185, 242, 254, 280, 305, 353, 381, 504, 556, 697

(a) Test the null hypothesis at α = 0.05 that the cycles to failure 

are the same at both temperatures. Is the alternative one or 

two sided?

(b) Find a 95% confidence interval for the difference in the 

mean cycles to failure for the two temperatures. 

(c) Is the value zero contained in the 95% confidence interval? 

Explain the connection with the conclusion you reached in 

part (a).

(d) Do normal probability plots of part cycles to failure indicate 

any violations of the assumptions for the tests and confi-

dence interval that you performed?

10-39. An article in Polymer Degradation and Stability (2006, 

Vol. 91) presented data from a nine-year aging study on S537 

foam.  Foam samples were compressed to 50% of their original 

thickness and stored at different temperatures for nine years. At 

the start of the experiment as well as during each year, sample 

thickness was measured, and the thicknesses of the eight sam-

ples at each storage condition were recorded. The data for two 

storage conditions follow.

50ºC 0.047, 0.060, 0.061, 0.064, 0.080, 0.090, 0.118, 
0.165, 0.183

60ºC 0.062, 0.105, 0.118, 0.137, 0.153, 0.197, 0.210, 
0.250, 0.375

(a) Is there evidence to support the claim that mean com-

pression increases with the temperature at the storage 

condition?

(b) Find a 95% confidence interval for the difference in the 

mean compression for the two temperatures.

(c) Is the value zero contained in the 95% confidence interval? 

Explain the connection with the conclusion you reached in 

part (a).

(d) Do normal probability plots of compression indicate any 

violations of the assumptions for the tests and confidence 

interval that you performed?

10-40. An article in Quality Engineering [2012, Vol. 24(1)] 

described an experiment on a grinding wheel. The following 

are some of the grinding force data (in N) from this experiment 

at two different vibration levels.

Low 242, 249, 235, 250, 254, 244, 258, 311, 237, 261, 
314, 252

High 302, 421, 419, 399, 317, 311, 350, 363, 392, 367, 
301, 302

(a) Is there evidence to support the claim that the mean grind-

ing force increases with the vibration level?

(b) Find a 95% confidence interval for the difference in the 

mean grinding force for the two vibration levels. 

(c) Is the value zero contained in the 95% confidence interval? 

Explain the connection with the conclusion you reached in 

part (a).

(d) Do normal probability plots of grinding force indicate any 

violations of the assumptions for the tests and confidence 

interval that you performed?

10-3  A Nonparametric Test for the Difference  
in Two Means

Suppose that we have two independent continuous populations X1 and X2 with means μ1 and 

μ2, but we are unwilling to assume that they are (approximately) normal. However, we can 

assume that the distributions of X1 and X2 are continuous and have the same shape and spread, 

and differ only (possibly) in their locations. The Wilcoxon rank-sum test can be used to 

test the hypothesis H0: μ μ1 2= . This procedure is sometimes called the Mann-Whitney test, 

although the Mann-Whitney test statistic is usually expressed in a different form.
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10-3.1 DESCRIPTION OF THE WILCOXON RANK-SUM TEST

Let X X X n11 12 1 1
, , . . . ,  and X X X n21 22 2 2

, , . . . ,  be two independent random samples of sizes n n1 2≤
from the continuous populations X1 and X2 described earlier. We wish to test the hypotheses

H H0 1 2 1 1 2: : μ = μ  μ ≠ μ

The test procedure is as follows. Arrange all n n1 2+  observations in ascending order of 

magnitude and assign ranks to them. If two or more observations are tied (identical), use 

the mean of the ranks that would have been assigned if the observations differed.

Let W1 be the sum of the ranks in the smaller sample (1), and defi ne W2 to be the sum of the 

ranks in the other sample. Then,

 W
n n n n

W2
1 2 1 2

1

1

2
=

+( ) + +( ) −  (10-21)

Now if the sample means do not differ, we will expect the sum of the ranks to be nearly equal 

for both samples after adjusting for the difference in sample size. Consequently, if the sums of 

the ranks differ greatly, we will conclude that the means are not equal.

Appendix Table X contains the critical value of the rank sums for α = 0.05 and α = 0.01
assuming the preceding two-sided alternative. Refer to Appendix Table X with the appropri-

ate sample sizes n1 and n2, and the critical value wα can be obtained. The null H0:μ μ1 2=  is 

rejected in favor of H1: ,μ μ1 2<  if either of the observed values w1 or w2 is less than or equal 

to the tabulated critical value wα.

The procedure can also be used for one-sided alternatives. If the alternative is H1 : ,μ μ1 2<
reject H0 if w w1 ≤ α; for H1: ,μ μ1 2>  reject H0 if w w2 ≤ α. For these one-sided tests, the tabu-

lated critical values wα correspond to levels of signifi cance of α = 0.025 and α = 0.005.

Axial Stress The mean axial stress in tensile members used in an aircraft structure is being studied. 

Two alloys are being investigated. Alloy 1 is a traditional material, and alloy 2 is a new aluminum-

lithium alloy that is much lighter than the standard material. Ten specimens of each alloy type are tested, and the axial 

stress is measured. The sample data are assembled in Table 10-2. Using α = 0.05, we wish to test the hypothesis that the 

means of the two stress distributions are identical.

10-2 Axial Stress for Two Aluminum-Lithium Alloys

We will apply the seven-step hypothesis-testing procedure to this problem:

1. Parameter of interest: The parameters of interest are the means of the two distributions of axial stress.

2. Null hypothesis: H0: μ μ1 2=
3. Alternative hypothesis: H1: μ μ1 2≠
4. Test statistic: We will use the Wilcoxon rank-sum test statistic in Equation 10-21.

w
n n n n

w2
1 2 1 2

1

1

2
=

+( ) + +( ) −

Alloy 1 Alloy 2

3238 psi 3254 psi 3261 psi 3248 psi

3195 3229 3187 3215

3246 3225 3209 3226

3190 3217 3212 3240

3204 3241 3258 3234

Example 10-10
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10-3.2 LARGE-SAMPLE APPROXIMATION

When both n1 and n2 are moderately large, say, more than eight, the distribution of w1 can be 

well approximated by the normal distribution with mean

μ =
+ +( )

W

n n n
1

1 1 2 1

2

and variance

σ =
+ +( )

W

n n n n
1

2 1 2 1 2 1

12

5. Reject H0 if: Because α = 0.05 and n n1 2 10= = , Appendix Table X gives the critical value as w0 05 78. = . If either w
1
 

or w2 is less than or equal to w0 05 78. = , we will reject H0: μ μ1 2= .

6. Computations: The data from Table 10-2 are arranged in ascending order and ranked as follows:

The sum of the ranks for alloy 1 is

w1 2 3 4 8 9 11 13 15 16 18 99= + + + + + + + + + =

and for alloy 2

w
n n n n

w2
1 2 1 2

1

1

2

10 10 10 10 1

2
99 111=

+( ) + +( ) − =
+( ) + +( ) − =

7. Conclusion: Because neither w
1
 nor w

2
 is less than or equal to w0 05 78. ,=  we cannot reject the null hypothesis that 

both alloys exhibit the same mean axial stress.

Practical Interpretation: The data do not demonstrate that there is a superior alloy for this particular application.

Alloy Number Axial Stress Rank

2 3187 psi 1

1 3190 2

1 3195 3

1 3204 4

2 3209 5

2 3212 6

2 3215 7

1 3217 8

1 3225 9

2 3226 10

1 3229 11

2 3234 12

1 3238 13

2 3240 14

1 3241 15

1 3246 16

2 3248 17

1 3254 18

2 3258 19

2 3261 20
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Therefore, for n1 and n2 > 8, we could use

 
Z

W W

W
0

1 1

1

= − μ
σ  (10-22)

Normal Approximation 
for Wilcoxon Rank-

Sum Test Statistic

as a statistic, and the appropriate critical region is z z z z z z0 2 0 0> >α α α/ , , ,or < −  depending on 

whether the test is a two-tailed, upper-tailed, or lower-tailed test.

10-3.3 COMPARISON TO THE t-TEST

In Chapter 9, we discussed the comparison of the t-test with the Wilcoxon signed-rank test. 

The results for the two-sample problem are similar to the one-sample case. That is, when the 

normality assumption is correct, the Wilcoxon rank-sum test is approximately 95% as efficient 

as the t-test in large samples. On the other hand, regardless of the form of the distributions, 

the Wilcoxon rank-sum test will always be at least 86% as efficient. The efficiency of the 

Wilcoxon test relative to the t-test is usually high if the underlying distribution has heavier 

tails than the normal, because the behavior of the t-test is very dependent on the sample mean, 

which is quite unstable in heavy-tailed distributions.

10-41.  An electrical engineer must design a circuit to 

deliver the maximum amount of current to a display tube to 

achieve sufficient image brightness. Within her allowable 

design constraints, she has developed two candidate circuits 

and tests prototypes of each. The resulting data (in microam-

peres) are as follows:

Circuit 1: 251, 255, 258, 257, 250, 251, 254, 250, 248

Circuit 2: 250, 253, 249, 256, 259, 252, 260, 251

(a) Use the Wilcoxon rank-sum test to test H0 : μ μ1 2=  against 

the alternative H1: μ μ1 2> . Use α = 0.025.

(b) Use the normal approximation for the Wilcoxon rank-sum 

test. Assume that α = 0.05. Find the approximate P-value 

for this test statistic.

10-42.  One of the authors travels regularly to Seattle, 

Washington. He uses either Delta or Alaska airline. Flight 

delays are sometimes unavoidable, but he would be willing to 

give most of his business to the airline with the best on-time 

arrival record. The number of minutes that his flight arrived late 

for the last six trips on each airline follows. Is there evidence 

that either airline has superior on-time arrival performance? 

Use α = 0.01 and the Wilcoxon rank-sum test.

Delta: 13, 10, 1, –4,  0, 9 (minutes late)

Alaska: 15,  8, 3, –1, –2, 4 (minutes late)

10-43.  The manufacturer of a hot tub is interested in testing 

two different heating elements for its product. The element that 

produces the maximum heat gain after 15 minutes would be pref-

erable. The manufacturer obtains 10 samples of each heating unit 

and tests each one. The heat gain after 15 minutes (in °F) follows.

Unit 1: 25, 27, 29, 31, 30, 26, 24, 32, 33, 38

Unit 2: 31, 33, 32, 35, 34, 29, 38, 35, 37, 30

(a) Is there any reason to suspect that one unit is superior 

to the other? Use α = 0.05 and the Wilcoxon rank-

sum test.

(b) Use the normal approximation for the Wilcoxon rank-

sum test. Assume that α = 0.05. What is the approximate 

P-value for this test statistic?

10-44.  Consider the chemical etch rate data 

in Exercise 10-23.

(a) Use the Wilcoxon rank-sum test to investigate the claim 

that the mean etch rate is the same for both solutions. If 

α = 0.05, what are your conclusions?

(b) Use the normal approximation for the Wilcoxon rank-sum 

test. Assume that α = 0.05. Find the approximate P-value 

for this test.

10-45.  Consider the pipe deflection data in Exercise 10-22.

(a) Use the Wilcoxon rank-sum test for the pipe deflection tem-

perature experiment. If α = 0.05, what are your conclusions?

FOR SECTION 10-3Exercises
 Problem available in WileyPLUS at instructor’s discretion. 

 Tutoring problem available in WileyPLUS at instructor’s discretion.

c10.indd   399 9/24/2013   7:06:26 PM



400   Chapter 10/Statistical Inference for Two Samples

(b) Use the normal approximation for the Wilcoxon rank-sum 

test. Assume that α = 0.05. Find the approximate P-value 

for this test.

10-46. Consider the distance traveled by a golf ball in 

Exercise 10-33.

(a) Use the Wilcoxon rank-sum test to investigate if the means 

differ. Use α = 0.05.

(b) Use the normal approximation for the Wilcoxon rank-sum test 

with α = 0.05. Find the approximate P-value for this test.

10-47. Another nonparametric test known as Tukey’s quick 
test can be useful with two groups when one group has the 

minimum value overall (which we call the lower group) and 

the other (which we call the upper group) has the maximum. 

The Tukey test works by counting the “exceedences,” the num-

ber of observations in the lower group that are less than all the 

observations in the upper group plus the number in the upper 

group that are greater than all the observations in the lower 

group (count ties as 0.5). Call this number E. Then the test 

rejects the null hypothesis of equal means at α = 0.05 if E ≥ 7, 

at α = 0.01 if E ≥ 10, and at α = 0.001 if E ≥ 13.

Using the data from Exercise 10-36, see whether you come 

to the same conclusion about the null hypothesis.

10-48. Using the data from Exercise 10-37, test the hypoth-

eses using Tukey’s quick test and see whether you reach the 

same conclusions as you did for Exercise 10-37.

10-4 Paired t-Test
A special case of the two-sample t-tests of Section 10-2 occurs when the observations 

on the two populations of interest are collected in pairs. Each pair of observations, say 

( , )X Xj j1 2 , is taken under homogeneous conditions, but these conditions may change from 

one pair to another. For example, suppose that we are interested in comparing two differ-

ent types of tips for a hardness-testing machine. This machine presses the tip into a metal 

specimen with a known force. By measuring the depth of the depression caused by the 

tip, the hardness of the specimen can be determined. If several specimens were selected 

at random, half tested with tip 1, half tested with tip 2, and the pooled or independent 

t-test in Section 10-2 was applied, the results of the test could be erroneous. The metal 

specimens could have been cut from bar stock that was produced in different heats, or 

they might not be homogeneous in some other way that might affect hardness. Then the 

observed difference in mean hardness readings for the two tip types also includes hard-

ness differences in specimens.

A more powerful experimental procedure is to collect the data in pairs—that is, to make 

two hardness readings on each specimen, one with each tip. The test procedure would then 

consist of analyzing the differences in hardness readings on each specimen. If there is no dif-

ference between tips, the mean of the differences should be zero. This test procedure is called 

the paired t-test.
Let ( , ), ( , ), , ( , )X X X X X Xn n11 21 12 22 1 2…  be a set of n paired observations for which we 

assume that the mean and variance of the population represented by X1 are μ1 and σ1
2, and the 

mean and variance of the population represented by X2 are μ2 and σ2
2.  Define the difference 

for each pair of observations as D X Xj j j= −1 2 , j n= 1 2, , ,… . The Dj ’s are assumed to be 

normally distributed with mean

μ = −( ) = ( ) − ( ) = μ − μD E X X E X E X1 2 1 2 1 2

and variance σ2
D , so testing hypotheses about the difference for μ1 and μ2 can be accom-

plished by performing a one-sample t-test on μD. Specifically, testing H0 0: μ μ1 2− = Δ  against 

H1 0: μ μ1 2− ≠ Δ  is equivalent to testing

 

H

H
D

D

0: 

:

μ = Δ
μ Δ

0

1 0≠  (10-23)

The test statistic and decision procedure follow.
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Null hypothesis: H D0: μ = Δ0

Test statistic: T
D

S nD
0

0= − Δ
/

 (10-24)

Alternative Hypotheses P-Value
Rejection Criterion 

for Fixed-Level Tests

H D1 0: μ ≠ Δ Probability above t0  

and probability below − t0

t > t

t < t

,n

,n

0 2 1

0 2 1

α −

α −−
/ or

/

H >D1 0: μ Δ Probability above t0 t > t ,n0 1α −

H <D1 0: μ Δ Probability below t0 t < t ,n0 1− α −

Paired t-Test

In Equation 10-24, D is the sample average of the n differences D D Dn1 2, , , ,…  and SD is the 

sample standard deviation of these differences.

Software can perform the paired t-test. Typical output for Example 10-10 follows:

Paired T for Karlsruhe–Lehigh

N Mean StDev SE Mean

Karlsruhe 9 1.34011 0.14603 0.04868

Lehigh 9 1.06322 0.05041 0.01680

Difference 9 0.276889 0.135027 0.045009

95% CI for mean difference: (0.173098, 0.380680)
T-test of mean difference = 0 (vs. not = 0): T-value = 6.15, P-value = 0.000

Shear Strength of Steel Girder An article in the Journal of Strain Analysis [1983, Vol. 18(2)] 

reports a comparison of several methods for predicting the shear strength for steel plate girders. 

Data for two of these methods, the Karlsruhe and Lehigh procedures, when applied to nine specifi c girders, are shown 

in Table 10-3. We wish to determine whether there is any difference (on the average) for the two methods.

The seven-step procedure is applied as follows:

1.  Parameter of interest: The parameter of interest is the difference in mean shear strength for the two methods—say, 

μ μ μD = − =1 2 0.

2. Null hypothesis: H D0 0: μ =
3. Alternative hypothesis: H D1 0: μ ≠
4. Test statistic: The test statistic is

t
d

s nd
0 =

/

5. Reject H0 if: Reject H0 if the P-value <0 05. .

6.  Computations: The sample average and standard deviation of the differences dj are t0 6 08= .  and sd = 0 1350. , and 

so the test statistic is

t
d

s nd
0

0 2739

0 1350 9
6 08= = .

.
= .

/ /

7.  Conclusion: Because t0 0005 8 5 041. . .=  and the value of the test statistic t0 6 15= .  exceeds this value, the P-value is less than 

2 0 0005 0 001( . ) .= . Therefore, we conclude that the strength prediction methods yield different results.

Practical Interpretation: Specifi cally, the data indicate that the Karlsruhe method produces, on the average, greater 

strength predictions than does the Lehigh method. This is a strong conclusion.

Example 10-11
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TABLE  10-3  Strength Predictions for Nine Steel Plate Girders 
(Predicted Load/Observed Load)

The results essentially agree with the manual calculations. In addition to the hypothesis test 

results. Most computer software report a two-sided CI on the difference in means. This Cl was 

found by constructing a single-sample CI on μD. We provide the details later.

Paired Versus Unpaired Comparisons
In performing a comparative experiment, the investigator can sometimes choose between the 

paired experiment and the two-sample (or unpaired) experiment. If n measurements are to be 

made on each population, the two-sample t-statistic is

T
X X

S
n n

p

0
1 2 0

1 1
= − − Δ

+

which would be compared to t n2 2− , and of course, the paired t-statistic is

T
D

S nD
0

0= − Δ
/

which is compared to tn−1. Notice that because

D
D

n

X X

n

X

n

X

n
X Xj

j

n
j j

j

n
j

j

n
j

j

n

=  =
−

 =  − = −  
= = = =
∑ ∑ ∑ ∑

1

1 2

1

1

1

2
1 2

1

( )

the numerators of both statistics are identical. However, the denominator of the two-sample 

t-test is based on the assumption that X1 and X2 are independent. In many paired experiments, 

a strong positive correlation ρ exists for X1 and X2. Then it can be shown that

V D V X X V X V X X , X
n

( ) ( ) ( ) ( ) ( )
( )= − − Δ  = + −    = σ − ρ

1 2 0 1 2 1 2

2

2
2 1

cov

assuming that both populations X1 and X2 have identical variances σ2. Furthermore, S nD
2  esti-

mates the variance of D. Whenever a positive correlation exists within the pairs, the denomi-

nator for the paired t-test will be smaller than the denominator of the two-sample t-test. This 

can cause the two-sample t-test to considerably understate the signifi cance of the data if it is 

incorrectly applied to paired samples.

Although pairing will often lead to a smaller value of the variance of X X1 2− , it does 

have a disadvantage—namely, the paired t-test leads to a loss of n −1 degrees of freedom in 

Girder Karlsruhe Method Lehigh Method Difference d
j

S1/1 1.186 1.061 0.125

S2/1 1.151 0.992 0.159

S3/1 1.322 1.063 0.259

S4/1 1.339 1.062 0.277

S5/1 1.200 1.065 0.135

S2/1 1.402 1.178 0.224

S2/2 1.365 1.037 0.328

S2/3 1.537 1.086 0.451

S2/4 1.559 1.052 0.507
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comparison to the two-sample t-test. Generally, we know that increasing the degrees of free-

dom of a test increases the power against any fi xed alternative values of the parameter.

So how do we decide to conduct the experiment? Should we pair the observations or not? 

Although this question has no general answer, we can give some guidelines based on the pre-

ceding discussion.

1.  If the experimental units are relatively homogeneous (small σ) and the correlation within 

pairs is small, the gain in precision attributable to pairing will be offset by the loss of 

degrees of freedom, so an independent-sample experiment should be used.

2.  If the experimental units are relatively heterogeneous (large σ) and there is large positive 

correlation within pairs, the paired experiment should be used. Typically, this case occurs 

when the experimental units are the same for both treatments; as in Example 10-11, the 

same girders were used to test the two methods.

Implementing the rules still requires judgment because σ and ρ are never known precisely. 

Furthermore, if the number of degrees of freedom is large (say, 40 or 50), the loss of n − 1 of 

them for pairing may not be serious. However, if the number of degrees of freedom is small 

(say, 10 or 20), losing half of them is potentially serious if not compensated for by increased 

precision from pairing.

Confi dence Interval for lD

To construct the confi dence interval for μ μ μ1 2D = − , note that

T
D

S n
D

D

= − μ
/

follows a t distribution with n − 1 degrees of freedom. Then, because P t T tn n( )− ≤ ≤ =− −α/2, α/2,1 1  
1 − α, we can substitute for T in the preceding expression and perform the necessary steps to 

isolate μ μ μ1 2D = −  for the inequalities. This leads to the following 100 1( )%− α  confi dence 

interval on μ μ1 2− .

If d  and sD are the sample mean and standard deviation of the difference of n random 

pairs of normally distributed measurements, a 100 1( − α)% confi dence interval on the 
difference in means l l lD = −1 2 is

 d t s n d t s n,n D D ,n D− ≤ μ ≤ +α − α −/ // /2 1 2 1  (10-25)

where t na / ,2 1−  is the upper α / 2% point of the t distribution with n − 1 degrees of 

freedom.

Confi dence Interval 
for lD  from Paired 

Samples

Parallel Park Cars The journal Human Factors (1962, pp. 375–380) reported a study in which 

n = 14 subjects were asked to parallel park two cars having very different wheel bases and turn-

ing radii. The time in seconds for each subject was recorded and is given in Table 10-4. From the column of observed 

Example 10-12

This confi dence interval is also valid for the case in which σ σ1
2

2
2≠  because sD

2  estimates 

σD V X X2
1 2= −( ) . Also, for large samples (say, n ≥ 30 pairs), the explicit assumption of nor-

mality is unnecessary because of the central limit theorem.
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differences, we calculate d = .1 21 and sD = 12 68. . The 90% confi dence interval for μ μ μ1 2D = −  is found from 

Equation 10-25 as follows:

d t s n d t s n, D D , D

D

−  ≤ μ ≤ +

. − . .( )  ≤ μ ≤

. .0 05 13 0 05 13

1 21 1 771 12 68 14

/ /

/ 11 21 1 771 12 68 14

4 79 7 21

. + . .( )
− .  ≤ μ ≤ .

/

D

Notice that the confi dence interval on μD includes zero. This implies that, at the 90% level of confi dence, the data do 

not support the claim that the two cars have different mean parking times μ
1
 and μ

2
. That is, the value μ = μ μ1 2D − = 0 

is not inconsistent with the observed data.

Nonparametric Approach to Paired Comparisons
Both the sign test and the Wilcoxon signed-rank test discussed in Section 9-9 can be applied 

to paired observations. In the case of the sign test, the null hypothesis is that the median of the 

differences is equal to zero (that is, H D0 0: μ =∼
). The Wilcoxon signed-rank test is for the null 

hypothesis that the mean of the differences is equal to zero. The procedures are applied to the 

observed differences as described in Sections 9-9.1 and 9-9.2.

10-49.  Consider the shear strength experiment described 

in Example 10-11.

(a) Construct a 95% confi dence interval on the difference in 

mean shear strength for the two methods. Is the result you 

obtained consistent with the fi ndings in Example 10-11? 

Explain why.

(b) Do each of the individual shear strengths have to be nor-

mally distributed for the paired t-test to be appropriate, 

FOR SECTION 10-4Exercises
 Problem available in WileyPLUS at instructor’s discretion. 

 Tutoring problem available in WileyPLUS at instructor’s discretion.

Subject

Automobile Difference

1(x1j
) 2(x2j

) (d
j
)

1 37.0 17.8 19.2

2 25.8 20.2 5.6

3 16.2 16.8 –0.6

4 24.2 41.4 –17.2

5 22.0 21.4 0.6

6 33.4 38.4 –5.0

7 23.8 16.8 7.0

8 58.2 32.2 26.0

9 33.6 27.8 5.8

10 24.4 23.2 1.2

11 23.4 29.6 –6.2

12 21.2 20.6 0.6

13 36.2 32.2 4.0

14 29.8 53.8 –24.0

10-4 Time in Seconds to Parallel Park Two Automobiles
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or is it only the difference in shear strengths that must be 

normal? Use a normal probability plot to investigate the 

normality assumption.

10-50.  Consider the parking data in Example 10-12.

(a) Use the paired t-test to investigate the claim that the two 

types of cars have different levels of diffi culty to parallel 

park. Use α = 0.10.

(b) Compare your results with the confi dence interval con-

structed in Example 10-12 and comment on why they are 

the same or different.

(c) Investigate the assumption that the differences in parking 

times are normally distributed.

10-51.  The manager of a fl eet of automobiles is testing 

two brands of radial tires and assigns one tire of each brand at 

random to the two rear wheels of eight cars and runs the cars 

until the tires wear out. The data (in kilometers) follow. Find a 

99% confi dence interval on the difference in mean life. Which 

brand would you prefer based on this calculation?

10-52.  A computer scientist is investigating the usefulness 

of two different design languages in improving programming 

tasks. Twelve expert programmers who are familiar with both 

languages are asked to code a standard function in both lan-

guages and the time (in minutes) is recorded. The data follow:

(a) Is the assumption that the difference in coding time is nor-

mally distributed reasonable?

(b) Find a 95% confi dence interval on the difference in mean 

coding times. Is there any indication that one design lan-

guage is preferable?

10-53. Fifteen adult males between the ages of 35 and 50 par-

ticipated in a study to evaluate the effect of diet and exercise on 

blood cholesterol levels. The total cholesterol was measured in 

each subject initially and then three months after participating 

in an aerobic exercise program and switching to a low-fat diet. 

The data are shown in the following table.

(a) Do the data support the claim that low-fat diet and aero-

bic exercise are of value in producing a mean reduction in 

blood cholesterol levels? Use α = 0.05. Find the P-value.

(b) Calculate a one-sided confi dence limit that can be used to 

answer the question in part (a).

10-54.  An article in the Journal of Aircraft (1986, Vol. 23, 

pp. 859–864) described a new equivalent plate analysis method 

formulation that is capable of modeling aircraft structures such 

as cranked wing boxes and that produces results similar to the 

more computationally intensive fi nite element analysis method. 

Natural vibration frequencies for the cranked wing box struc-

ture are calculated using both methods, and results for the fi rst 

seven natural frequencies follow:

Car Brand 1 Brand 2

1 36,925 34,318

2 45,300 42,280

3 36,240 35,500

4 32,100 31,950

5 37,210 38,015

6 48,360 47,800

7 38,200 37,810

8 33,500 33,215

Programmer

Time

Design Language
1

Design Language
2

1 17 18

2 16 14

3 21 19

4 14 11

5 18 23

6 24 21

7 16 10

8 14 13

9 21 19

10 23 24

11 13 15

12 18 20

Blood Cholesterol Level

Subject Before After

 1 265 229

 2 240 231

 3 258 227

 4 295 240

 5 251 238

 6 245 241

 7 287 234

 8 314 256

 9 260 247

10 279 239

11 283 246

12 240 218

13 238 219

14 225 226

15 247 233

Freq.

Finite 
Element 
Cycle/s

Equivalent 
Plate, 

Cycle/s

1 14.58 14.76

2 48.52 49.10

3 97.22 99.99

4 113.99 117.53

5 174.73 181.22

6 212.72 220.14

7 277.38 294.80
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(a) Do the data suggest that the two methods provide the same 

mean value for natural vibration frequency? Use α = 0.05. 

Find the P-value.

(b) Find a 95% confi dence interval on the mean difference 

between the two methods.

10-55.  Ten individuals have participated in a diet-modifi -

cation program to stimulate weight loss. Their weight both 

before and after participation in the program is shown in the 

following list.

(a) Is there evidence to support the claim that this particular 

diet-modifi cation program is effective in producing a mean 

weight reduction? Use α = 0.05.

(b) Is there evidence to support the claim that this particular diet-

modifi cation program will result in a mean weight loss of at 

least 10 pounds? Use α = 0.05.

(c) Suppose that, if the diet-modifi cation program results in 

mean weight loss of at least 10 pounds, it is important to 

detect this with probability of at least 0.90. Was the use of 10 

subjects an adequate sample size? If not, how many subjects 

should have been used?

10-56.  Two different analytical tests can be used to deter-

mine the impurity level in steel alloys. Eight specimens are 

tested using both procedures, and the results are shown in the 

following tabulation.

(a) Is there suffi cient evidence to conclude that tests differ in 

the mean impurity level, using α = 0.01?

(b) Is there evidence to support the claim that test 1 generates a 

mean difference 0.1 units lower than test 2? Use α = .0 05.

(c) If the mean from test 1 is 0.1 less than the mean from test 2, 

it is important to detect this with probability at least 0.90. 

Was the use of eight alloys an adequate sample size? If not, 

how many alloys should have been used?

10-57. An article in Neurology (1998, Vol. 50, pp. 1246–

1252) discussed that monozygotic twins share numerous phys-

ical, psychological, and pathological traits. The investigators 

measured an intelligence score of 10 pairs of twins, and the 

data follow:

(a) Is the assumption that the difference in score is normally 

distributed reasonable? Show results to support your answer.

(b) Find a 95% confi dence interval on the difference in mean 

score. Is there any evidence that mean score depends on 

birth order?

(c) It is important to detect a mean difference in score of one 

point with a probability of at least 0.90. Was the use of 

10 pairs an adequate sample size? If not, how many pairs 

should have been used?

10-58. In Biometrics (1990, Vol. 46, pp. 673–87), the authors 

analyzed the circumference of fi ve orange trees (labeled as 

A–E) measured on seven occasions (x
i
).

(a) Compare the mean increase in circumference in periods 

1 to 2 to the mean increase in periods 2 to 3. The increase 

is the difference in circumference in the two periods. 

Are these means signifi cantly different at α = .0 10?

(b) Is there evidence that the mean increase in period 1 to 

period 2 is greater than the mean increase in period 6 to 

period 7 at α = .0 05?

(c) Are the assumptions of the test in part (a) violated because 

the same data (period 2 circumference) are used to calcu-

late both mean increases?

Subject Before After

1 195 187

2 213 195

3 247 221

4 201 190

5 187 175

6 210 197

7 215 199

8 246 221

9 294 278

10 310 285

Specimen Test 1 Test 2

1 1.2 1.4

2 1.3 1.7

3 1.5 1.5

4 1.4 1.3

5 1.7 2.0

6 1.8 2.1

7 1.4 1.7

8 1.3 1.6

Pair Birth order: 1 Birth order: 2

1 6.08 5.73

2 6.22 5.80

3 7.99 8.42

4 7.44 6.84

5 6.48 6.43

6 7.99 8.76

7 6.32 6.32

8 7.60 7.62

9 6.03 6.59

10 7.52 7.67

Tree x1 x2 x3 x4 x5 x6 x7

A 30 58  87 115 120 142 145

B 33 69 111 156 172 203 203

C 30 51  75 108 115 139 140

D 32 62 112 167 179 209 214

E 30 49  81 125 142 174 177
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10-59. Use the sign test on the blood cholesterol data in Exer-

cise 10-53. Is there evidence that diet and exercise reduce the 

median cholesterol level?

10-60. Repeat Exercise 10-59 using the Wilcoxon signed-

rank test. State carefully what hypothesis is being tested and 

how it differs from the one tested in Exercise 10-59.

10-61. Neuroscientists conducted research in a Canadian 

prison to see whether solitary confi nement affects brain wave 

activity [“Changes in EEG Alpha Frequency and Evoked 

Response Latency During Solitary Confi nement,” Journal of 
Abnormal Psychology 1972, Vol. 7, pp. 54–59]. They randomly 

assigned 20 inmates to two groups, assigning half to solitary 

confi nement and the other half to regular confi nement. The 

data follow:

(a) Is a paired t -test appropriate for testing whether the mean 

alpha wave frequencies are the same in the two groups? 

Explain. 

(b) Perform an appropriate test.

10-62. In a series of tests to study the effi cacy of ginkgo 

biloba on memory, Solomon et al. fi rst looked at differences 

in memory tests of people six weeks before and after joining 

the study [“Ginkgo for Memory Enhancement: A Randomized 

Controlled Trial,” Journal of the American Medical Association
(2002, Vol. 288, pp. 835–840)]. For 99 patients receiving no 

medication, the average increase in category fl uency (number of 

words generated in one minute) was 1.07 words with a standard 

deviation of 3.195 words. Researchers wanted to know whether 

the mean number of words recalled was positive.

(a) Is this a one- or two-sided test? 

(b) Perform a hypothesis test to determine whether the mean 

increase is zero.

(c) Why can this be viewed as a paired t-test? 

(d) What does the conclusion say about the importance of 

including placebos in such tests?

10-5  Inference on the Variances of Two Normal 
Distributions

We now introduce tests and confi dence intervals for the two population variances shown in 

Fig. 10-1. We will assume that both populations are normal. Both the hypothesis-testing and 

confi dence interval procedures are relatively sensitive to the normality assumption.

10-5.1 F DISTRIBUTION

Suppose that two independent normal populations are of interest when the population means 

and variances, say, μ1, s1
2, μ2, and s2

2, are unknown. We wish to test hypotheses about the equal-

ity of the two variances, say, H0 1 2: σ σ2 2= . Assume that two random samples of size n1 from 

population 1 and of size n2 from population 2 are available, and let S1
2 and S2

2 be the sample 

variances. We wish to test the hypotheses

 

H

H

0 1
2

2
2

1 1
2

2
2

:

:

 σ = σ

 σ σ≠  (10-26)

The development of a test procedure for these hypotheses requires a new probability distribu-

tion, the F  distribution. The random variable F  is defi ned to be the ratio of two independent 

chi-square random variables, each divided by its number of degrees of freedom. That is,

F
W u

Y v
= /

/

where W  and Y  are independent chi-square random variables with u and v degrees of freedom, 

respectively. We now formally state the sampling distribution of F .

Nonconfi ned Confi ned

10.7 9.6

10.7 10.4

10.4 9.7

10.9 10.3

10.5 9.2

10.3 9.3

9.6 9.9

11.1 9.5

11.2 9.0

10.4 10.9
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Let W  and Y  be independent chi-square random variables with u and v degrees of 

freedom, respectively. Then the ratio

 F
W u

Y v
= /

/  (10-27)

has the probability density function

 f x

u v u

v
x

u v u

u
u

( ) =
Γ +⎛

⎝⎜
⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

 

Γ ⎛
⎝⎜

⎞
⎠⎟
 Γ ⎛

⎝⎜
⎞
⎠⎟
  

( )−

2

2 2

2

2 1

/
/

vv
x

, < x <
u v

⎛
⎝⎜

⎞
⎠⎟
 +

⎡

⎣
⎢

⎤

⎦
⎥

∞+( )
1

0
2/

 (10-28)

and is said to follow the F  distribution with u degrees of freedom in the numerator 

and v degrees of freedom in the denominator. It is usually abbreviated as Fu v, .

The mean and variance of the F  distribution are μ = v v/ ( )− 2  for v > 2, and

 σ =
+ −( )

−( ) −( )
2

2

2

2 2

2 4
4

v u v

u v v
, v >  (10-29)

Two F  distributions are shown in Fig. 10-4. The F  random variable is non-negative, and the 

distribution is skewed to the right. The F  distribution looks very similar to the chi-square 

distribution; however, the two parameters u and v  provide extra flexibility regarding shape.

The percentage points of the F  distribution are given in Table VI of the Appendix. Let f u vα, ,  

be the percentage point of the F  distribution with numerator degrees of freedom u and denom-

inator degrees of freedom v such that the probability that the random variable F  exceeds this 

value is

P F > f f x dx,u,v
f ,u,v

α

∞

( ) = ( ) = α
α

∫

0 2 4 6 8 10 x

u = 5, v = 15

f (x)

u = 5, v = 5

0 2 4 6 8 10 x

u = 5, v = 15

f (x)

u = 5, v = 5

FIGURE 10-4 Probability density functions 
of two F  distributions.

x

a
a

f1 – a, , f a, ,u v u v

f (x)

FIGURE 10-5 Upper and lower  
percentage points of the F  distribution.
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This is illustrated in Fig. 10-5. For example, if u = 5 and v = 10, we find from Table V of the 

Appendix that

P F > f P F >, , ,0 05 5 10 5 10 3 33 0 05.( ) = .( ) = .
That is, the upper 5 percentage point of F5 10,  is f0 05 5 10 3 33. , , .= .

Table VI contains only upper-tailed percentage points (for selected values of f u vα, ,  for α 0.25≤ )  

of the F  distribution. The lower-tailed percentage points f u v1−α, ,  can be found as follows.

Let X X X n11 12 1 1
, , ,…  be a random sample from a normal population with mean μ1 

and variance s1
2, and let X X X n21 22 2 2

, , ,…  be a random sample from a second normal 

population with mean μ2 and variance s2
2. Assume that both normal populations are 

independent. Let S1
2 and S2

2 be the sample variances. Then the ratio

F
S

S
= σ

σ
1
2

1
2

2
2

2
2

/
/

has an F  distribution with n1 1−  numerator degrees of freedom and n2 1−  denominator 

degrees of freedom.

Distribution  
of the Ratio  

of Sample  
Variances from  

Two Normal 
Distributions

This result is based on the fact that ( )n1 1−  S1
2

1
2s  is a chi-square random variable with n1 1−  

degrees of freedom, that ( )n2 1−  S2
2

2
2s  is a chi-square random variable with n2 1−  degrees of 

freedom, and that the two normal populations are independent. Clearly, under the null hypothesis 

H0 1
2

2
2: σ = σ , the ratio F S S0 1

2
2
2= /  has an Fn ,n1 21 1− −  distribution. This is the basis of the following 

test procedure.

For example, to find the lower-tailed percentage point f0 95 5 10. , , , note that

f
f

, ,
, ,

0 95 5 10

0 05 10 5

1 1

4 74
0 211.

.
= =

.
= .

10-5.2 HYPOTHESIS TESTS ON THE RATIO OF TWO VARIANCES

A hypothesis-testing procedure for the equality of two variances is based on the following 

result.

Null hypothesis: H0 1
2

2
2: σ = σ

Test statistic: F
S

S
0

1
2

2
2

=  (10-31)

Alternative Hypotheses Rejection Criterion

H1 1
2

2
2: σ σ≠ f > f f < f,n ,n ,n ,n0 2 1 1 0 1 2 1 11 2 1 2α − − −α − −  / /or

H >1 1
2

2
2: σ σ f > f ,n ,n0 1 11 2α − −

H <1 1
2

2
2: σ σ f < f ,n ,n0 1 1 11 2−α  − −

Tests on the  
Ratio of  

Variances from  
Two Normal 

Distributions

 f
f

,u,v
,v,u

1

1
−α

α
=  (10-30)

Finding Lower 
Tail Points of the 

F-Distribution
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(a)

/2, n – 1    a

a

x2

n – 1x2

/2, n – 1    ax20

f (x)

x
1 –

/2
a /2

(b)

, n – 1    ax2

n – 1x2

0

f (x)

x

(c)

n – 1x2

, n – 1    ax20

f (x)

x
1 –

a
a

FIGURE 10-6 The F distribution for the test of H0 1
2

2
2: σ = σ  with critical region values for (a) H1 1

2
2
2: σ σ≠ . (b) 

H >1 1
2

2
2: σ σ . and (c) H <1 1

2
2
2: σ σ .

The critical regions for these fi xed-signifi cance-level tests are shown in Figure 10-6. Remem-

ber that this procedure is relatively sensitive to the normality assumption.

Semiconductor Etch Variability Oxide layers on semiconductor wafers are etched in a mixture 

of gases to achieve the proper thickness. The variability in the thickness of these oxide layers is a 

critical characteristic of the wafer, and low variability is desirable for subsequent processing steps. Two different mix-

tures of gases are being studied to determine whether one is superior in reducing the variability of the oxide thickness. 

Sixteen wafers are etched in each gas. The sample standard deviations of oxide thickness are s1 1 96= .  angstroms and 

s2 2 13= .  angstroms, respectively. Is there any evidence to indicate that either gas is preferable? Use a fi xed-level test 

with α = 0.05.

The seven-step hypothesis-testing procedure may be applied to this problem as follows:

1.  Parameter of interest: The parameters of interest are the variances of oxide thickness σ2
1  and σ2

2 . We will assume 

that oxide thickness is a normal random variable for both gas mixtures.

2. Null hypothesis: H0 1
2

2
2: σ σ=

3. Alternative hypothesis: H1 1
2

2
2: σ ≠ σ

4. Test statistic: The test statistic is given by Equation 10-31:

f
s

s
0

1
2

2
2

=

5.  Reject H0 if: Because n n1 2 16= =  and α = 0.05, we will reject H f > f , ,0 1
2

2
2

0 0 025 15 15 2 86: ifσ = σ   = ..  or if f < f , ,0 0 975 15 15.

= = . = ..1 1 2 86 0 350 025 15 15/ /f , , . Refer to Figure 10-6(a).

6. Computations: Because s2
1

21 96 3 84= =( . ) .  and s2
2

22 13 4 54= =( . ) . , the test statistic is

f
s

s
0

1
2

2
2

3 84

4 54
0 85= = .

.
= .

7.  Conclusion: Because f f0 975 15 15 0 025 15 150 35 0 85 2 86. , , . , ,. . . ,= < < =  we cannot reject the null hypothesis H0 1
2

2
2: σ = σ  at 

the 0.05 level of signifi cance.

Practical Interpretation: There is no strong evidence to indicate that either gas results in a smaller variance of oxide 

thickness.

Example 10-13

P -Values for the F -Test
The P-value approach can also be used with F-tests. To show how to do this, consider the 

upper-tailed one-tailed test. The P-value is the area (probability) under the F  distribution with 

n1 1−  and n2 1−  degrees of freedom that lies beyond the computed value of the test statistic  

f0. Appendix A Table IV can be used to obtain upper and lower bounds on the P-value. For 

example, consider an F-test with 9 numerator and 14 denominator degrees of freedom for 

which f0 3 05= . . From Appendix A Table IV, we fi nd that f0 05 9 14 2 65. , , .=  and f0 025 9 14 3 21. , , . ,=  
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so because f0 3 05= .  lies between these two values, the P-value is between 0.05 and 0.025; that 

is, 0 025 0 05. .< <P . The P-value for a lower-tailed test would be found similarly, although 

Appendix A Table IV contains only upper-tailed points of the F  distribution, Equation 10-30 

would have to be used to fi nd the necessary lower-tail points. For a two-tailed test, the bounds 

obtained from a one-tailed test would be doubled to obtain the P-value.

To illustrate calculating bounds on the P-value for a two-tailed F-test, reconsider 

Example 10-13. The computed value of the test statistic in this example is f0 0 85= . . This 

value falls in the lower tail of the F15 15,  distribution. The lower-tailed point that has 0.25 

probability to the left of it is f f0 75 15 15 0 25 15 151 1 1 43 0 70. , , . , ,/ / . .= = = , and because 0 70 0 85. . ,<
the probability that lies to the left of 0.85 exceeds 0.25. Therefore, we would conclude 

that the P-value for f0 0 85= .  is greater than 2 0 25 0 5( . ) . ,=  so there is insuffi cient evidence 

to reject the null hypothesis. This is consistent with the original conclusions from Exam-

ple 10-13. The actual P-value is 0.7570. This value was obtained from a calculator from 

which we found that P F( . ) .,15 15 0 85 0 3785≤ =  and 2 0 3785 0 7570( . ) .= . Computer software 

can also be used to calculate the required probabilities.

Some computer packages will perform the F-test on the equality of two variances of inde-

pendent normal distributions. The output from the computer package follows.

Test for Equal Variances

95% Bonferroni confidence intervals for standard deviations

Sample N Lower StDev Upper

1 16 1.38928 1.95959 3.24891

2 16 1.51061 2.13073 3.53265

F-test (normal distribution)
Test statistic = 0.85, P-value = 0.750

Computer software also gives confi dence intervals on the individual variances. These are the 

confi dence intervals originally given in Equation 8-19 except that a Bonferroni “adjustment” 

has been applied to make the confi dence level for both intervals simultaneously equal to at 

least 95%. This consists of using α / 2 = 0.05 / 2 = 0.025 to construct the individual intervals. 

That is, each individual confi dence interval is a 97.5% CI. In Section 10-5.4, we will show 

how to construct a CI on the ratio of the two variances.

10-5.3 TYPE II ERROR AND CHOICE OF SAMPLE SIZE

Appendix Charts VIIo, VIIp, VIIq, and VIIr provide operating characteristic curves for the F-test 

given in Section 10-5.1 for α = 0.05 and α = 0.01, assuming that n n n1 2= = . Charts VIIo and 

VIIp are used with the two-sided alternate hypothesis. They plot β against the abscissa parameter

 λ = σ
σ

1

2

 (10-32)

for various n n n1 2= = . Charts VIIq and VIIr are used for the one-sided alternative hypotheses.

Finding the 
P-Value for 

Example 10-13

Semiconductor Etch Variability Sample Size For the semiconductor wafer oxide etching 

problem in Example 10-13, suppose that one gas resulted in a standard deviation of oxide thick-

ness that is half the standard deviation of oxide thickness of the other gas. If we wish to detect such a situation with 

probability at least 0.80, is the sample size n n1 2 20= =  adequate?

Note that if one standard deviation is half the other,

λ = σ
σ

=1

2

2

Example 10-14
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10-5.4 CONFIDENCE INTERVAL ON THE RATIO OF TWO VARIANCES

To fi nd the confi dence interval on σ σ1
2

2
2/ , recall that the sampling distribution of

F
S

S
= σ

σ
2
2

2
2

1
2

1
2

/
/

is an F  with n2 1−  and n1 1−  degrees of freedom. Therefore, P f F,n ,n( 1 2 1 12 1−α − − ≤/  ≤ f ,n ,nα − −/2 1 12 1
)

= − α.1  Substitution for F  and manipulation of the inequalities will lead to the 100 1( )− α % 

confi dence interval for σ σ .1
2

2
2/

By referring to Appendix Chart VIIo with n n1 2 20= =  and λ = 2, we fi nd that β . .� 0 20  Therefore, if β .� 0 20, the 

power of the test (which is the probability that the difference in standard deviations will be detected by the test) is 0.80, 

and we conclude that the sample sizes n n1 2 20= =  are adequate.

If s1
2 and s2

2 are the sample variances of random samples of sizes n1 and n2, respec-

tively, from two independent normal populations with unknown variances σ1
2 and σ2

2 , 
then a 100(1 )%− α  confi dence interval on the ratio σ /σ1

2
2
2  is

 
s

s
f

s

s
f,n ,n ,n ,n

1
2

2
2 1 2 1 1

1
2

2
2

1
2

2
2 2 1 12 1 2 1

 ≤ σ
σ

≤  −α − − α − −/ /  (10-33)

where f ,n ,nα − −/2 1 12 1
 and f ,n ,n1 2 1 12 1−α − −/  are the upper and lower α / 2 percentage points 

of the F  distribution with n2 1−  numerator and n1 1−  denominator degrees of free-

dom, respectively. A confi dence interval on the ratio of the standard deviations can 

be obtained by taking square roots in Equation 10-33.

Confi dence 
Interval on 

the Ratio of 
Variances from 

Two Normal 
Distributions

Just as in the hypothesis testing procedure, this CI is relatively sensitive to the normality 

assumption.

Surface Finish for Titanium Alloy A company manufactures impellers for use in jet-turbine 

engines. One of the operations involves grinding a particular surface fi nish on a titanium alloy 

component. Two different grinding processes can be used, and both processes can produce parts at identical mean 

surface roughness. The manufacturing engineer would like to select the process having the least variability in surface 

roughness. A random sample of n1 11=  parts from the fi rst process results in a sample standard deviation s1 5 1= .  micro-

inches, and a random sample of n2 16=  parts from the second process results in a sample standard deviation of s2 4 7= .  

microinches. We will fi nd a 90% confi dence interval on the ratio of the two standard deviations, σ σ .1 2/
Assuming that the two processes are independent and that surface roughness is normally distributed, we can use 

Equation 10-33 as follows:

s

s
f

s

s
f, , , ,

1
2

2
2 0 95 15 10

1
2

2
2

1
2

2
2 0 05 15 10 ≤ σ

σ
≤  . .

5 1

4 7
0 39

5 1

4 7
2 85

2

2

1
2

2
2

2

2

.( )

.( )
 . ≤ σ

σ
≤

.( )

.( )
 .

Example 10-15
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or upon completing the implied calculations and taking square roots,

0 678 1 8321

2

. ≤ σ
σ

≤ .

Notice that we have used Equation 10-30 to fi nd f f0 95 15 10 0 05 10 151 1 2 54 0 39. , , . , ,/ / . .= = = .

Practical Interpretation: Because this confi dence interval includes unity, we cannot claim that the standard devia-

tions of surface roughness for the two processes are different at the 90% level of confi dence.

10-63. For an F distribution, fi nd the following:

(a) f0 25 5 10. , ,  (b) f0 10 24 9. , ,

(c) f0 05 8 15. , ,  (d) f0 75 5 10. , ,

(e) f0 90 24 9. , ,  (f) f0 95 8 15. , ,

10-64. For an F distribution, fi nd the following:

(a) f0 25 7 15. , ,  (b) f0 10 10 12. , ,

(c) f0 01 20 10. , ,  (d) f0 75 7 15. , ,

(e) f0 90 10 12. , ,  (f) f0 99 20 10. , ,

10-65. Consider the hypothesis test H0: 1
2

2
2s s=  against 

H1: 1
2

2
2s s<  respectively. Suppose that the sample sizes are 

n1 5=  and n2 10= , and that s1
2 23 2= .  and s2

2 28 8= . . Use 

α = .0 05. Test the hypothesis and explain how the test could be 

conducted with a confi dence interval on  σ σ1 2/ .

10-66. Consider the hypothesis test H0: 1
2

2
2s s=  against 

H1: 1
2

2
2s s> . Suppose that the sample sizes are n1 20=  and 

n2 8= , and that s1
2 4 5= .  and s2

2 2 3= . . Use α = .0 01. Test the 

hypothesis and explain how the test could be conducted with a 

confi dence interval on σ σ1 2/ .

10-67. Consider the hypothesis test H0: 1
2

2
2s s=  against 

H1: 1
2

2
2s sñ . Suppose that the sample sizes are n1 15=  and 

n2 15= , and the sample variances are s1
2 2 3= .  and s2

2 1 9= . . Use 

α = .0 05.

(a) Test the hypothesis and explain how the test could be con-

ducted with a confi dence interval on σ σ1 2/ .

(b) What is the power of the test in part (a) if σ1 is twice as 

large as σ2?

(c) Assuming equal sample sizes, what sample size should be 

used to obtain β = .0 05 if the σ2 is half of σ1?

10-68.  Two chemical companies can supply a raw material. 

The concentration of a particular element in this material is impor-

tant. The mean concentration for both suppliers is the same, but 

you suspect that the variability in concentration may differ for the 

two companies. The standard deviation of concentration in a ran-

dom sample of n1 10=  batches produced by company 1 is s1 4 7= .  

grams per liter, and for company 2, a random sample of n2 16=  

batches yields s2 5 8= .  grams per liter. Is there suffi cient evidence 

to conclude that the two population variances differ? Use α = 0.05.

10-69.  A study was performed to determine whether men 

and women differ in repeatability in assembling components 

on printed circuit boards. Random samples of 25 men and 21 

women were selected, and each subject assembled the units. 

The two sample standard deviations of assembly time were 

smen = 0 98.  minutes and swomen = 1 02.  minutes.

(a) Is there evidence to support the claim that men and women 

differ in repeatability for this assembly task? Use α = 0.02
and state any necessary assumptions about the underlying 

distribution of the data.

(b) Find a 98% confi dence interval on the ratio of the two vari-

ances. Provide an interpretation of the interval.

10-70. Consider the foam data in Exercise 10-20. Construct 

the following:

(a)  A 90% two-sided confi dence interval on 

s s1
2

2
2 .

(b)  A 95% two-sided confi dence interval on s s1
2

2
2 . 

Comment on the comparison of the width of this interval 

with the width of the interval in part (a).

(c)  A 90% lower-confi dence bound on σ σ1 2/ .

10-71. Consider the diameter data in Exercise 10-19. Construct 

the following:

(a) A 90% two-sided confi dence interval on σ σ1 2/ .

(b) A 95% two-sided confi dence interval on σ σ1 2/ . Comment 

on the comparison of the width of this interval with the 

width of the interval in part (a).

(c) A 90% lower-confi dence bound on σ σ1 2/ .

10-72.  Consider the gear impact strength data in Exercise 

10-24. Is there suffi cient evidence to conclude that the variance of 

impact strength is different for the two suppliers? Use α = 0.05.

10-73. Consider the melting-point data in Exercise 10-25. Do the 

sample data support a claim that both alloys have the same vari-

ance of melting point? Use α = 0.05 in reaching your conclusion.

10-74. Exercise 10-28 presented measurements of plastic coat-

ing thickness at two different application temperatures. Test 

H0 1 2: σ σ2 2=  against H1 1
2

2
2: σ σñ  using α = 0.01.

10-75.  Reconsider the overall distance data for golf balls 

in Exercise 10-33. Is there evidence to support the claim that 

the standard deviation of overall distance is the same for both 

brands of balls (use α = 0.05)? Explain how this question can 

be answered with a 95% confi dence interval on σ σ1 2/ .

FOR SECTION 10-5Exercises
 Problem available in WileyPLUS at instructor’s discretion. 

 Tutoring problem available in WileyPLUS at instructor’s discretion.
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10-76. Reconsider the coefficient of restitution data in Exer-

cise 10-34. Do the data suggest that the standard deviation is the 

same for both brands of drivers (use α = 0.05)? Explain how to 

answer this question with a confidence interval on σ σ1 2/ .

10-77. Consider the weight of paper data from Technomet-
rics in Exercise 10-32. Is there evidence that the variance of the 

weight measurement differs for the sheets of paper? Use α = .0 05. 

Explain how this test can be conducted with a confidence interval.

10-78. Consider the film speed data in Exercise 10-26.

(a) Test H0: 1
2

2
2s s=  versus H1 1

2
2
2: σ σñ  using α = .0 02.

(b) Suppose that one population standard deviation is 50% 

larger than the other. Is the sample size n n1 2 8= =  ade-

quate to detect this difference with high probability? Use 

α = .0 01 in answering this question.

10-79. Consider the etch rate data in Exercise 10-23.

(a) Test the hypothesis H0: 1
2

2
2s s=  against H1 1

2
2
2: σ σñ  using 

α = .0 05, and draw conclusions.

(b) Suppose that if one population variance is twice as large as 

the other, you want to detect this with probability at least 

0.90 (using α = .0 05). Are the sample sizes n n1 2 10= =  

adequate?

10-80. Consider the swimming data in Exercise 10-37.  

Is there evidence to suggest that the standard deviations of 

the heats differ for slower swimmers in heat five and the 

faster swimmers in heat seven? What about the standard 

deviations of the two sets of elite swimmers in heats six and 

seven? Use α = 0.05.

10-81. Is there evidence to suggest that the standard devia-

tions of the algae concentrations in the two types of rivers (flow 

rates) in Exercise 10-36 differ? Use α = 0.05.

10-6 Inference on Two Population Proportions
We now consider the case with two binomial parameters of interest, say, p1 and p2, and 

we wish to draw inferences about these proportions. We will present large-sample hypoth-

esis testing and confidence interval procedures based on the normal approximation to the 

binomial.

10-6.1 LARGE-SAMPLE TESTS ON THE DIFFERENCE IN POPULATION PROPORTIONS

Suppose that two independent random samples of sizes n1 and n2 are taken from two popula-

tions, and let X1 and X2 represent the number of observations that belong to the class of inter-

est in samples 1 and 2, respectively. Furthermore, suppose that the normal approximation to 

the binomial is applied to each population, so the estimators of the population proportions  

P X n1 1 1=  and P X n2 2 2=  have approximate normal distributions. We are interested in testing 

the hypotheses

H p p H p p0 1 2 1 1 2: := ≠
The statistic

 Z
P P p p

p p

n

p p

n

=
− − −( )
−( ) +

−( )
ˆ ˆ
1 2 1 2

1 1

1

2 2

2

1 1
 (10-34)

Test Statistic  
for the  

Difference of  
Two Population  

Proportions

is distributed approximately as standard normal and is the basis of a test for H p p0 1 2: = . 

Specifically, if the null hypothesis H p p0 1 2: =  is true, by using the fact that p p p1 2= = , the 

random variable

 
Z

P P

p p
n n

= −

−( ) +⎛
⎝⎜

⎞
⎠⎟

ˆ ˆ
1 2

1 2

1
1 1
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is distributed approximately N(0, 1). A pooled estimator of the common parameter p is

 P̂
X X

n n
= +

+
1 2

1 2

The test statistic for H p p0 1 2: =  is then

 Z
P P

P P
n n

0
1 2

1 2

1
1 1

= −

−( ) +⎛
⎝⎜

⎞
⎠⎟

ˆ ˆ

ˆ ˆ

This leads to the test procedures described as follows.

Null hypothesis: H p p0 1 2: =

Test statistic: Z
P P

P P
n n

0
1 2

1 2

1
1 1

= −

−( ) +⎛
⎝⎜

⎞
⎠⎟

ˆ ˆ

ˆ ˆ
 (10-35)

Alternative Hypothesis P-Value
Rejection Criterion 
for Fixed-Level Tests

H p p1 1 2: ≠ Probability above | |z0  and 

probability below –| |z0 .

P z= − Φ( )⎡⎣ ⎤⎦2 1 0

z > z z < z0 2 0 2α  α −/ /or

H p p1 1 2: > Probability above z
0
. 

P z= − Φ( )1 0

z z0 > α

H p p1 1 2: < Probability below z0. 

P z= Φ( )0

z z0 < − α

Approximate
Tests on the

Difference of
Two Population

Proportions

St. John's Wort Extracts of St. John’s Wort are widely used to treat depression. An article in 

the April 18, 2001, issue of the Journal of the American Medical Association (“Effectiveness of 

St. John’s Wort on Major Depression: A Randomized Controlled Trial”) compared the effi cacy of a standard extract 

of St. John’s Wort with a placebo in 200 outpatients diagnosed with major depression. Patients were randomly assigned 

to two groups; one group received the St. John’s Wort, and the other received the placebo. After eight weeks, 19 of 

the placebo-treated patients showed improvement, and 27 of those treated with St. John’s Wort improved. Is there any 

reason to believe that St. John’s Wort is effective in treating major depression? Use α = 0.05.

The seven-step hypothesis testing procedure leads to the following results:

1.  Parameter of interest: The parameters of interest are p1 and p2, the proportion of patients who improve 

following treatment with St. John’s Wort ( )p1  or the placebo ( )p2 .

2. Null hypothesis: H p p0 1 2: =
3. Alternative hypothesis: H p p1 1 2: ≠
4. Test statistic: The test statistic is

z
p p

p p
n n

0
1 2

1 2

1
1 1

= −

−( ) +⎛
⎝⎜

⎞
⎠⎟

ˆ ˆ

ˆ ˆ

Example 10-16
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where ˆ ˆp , p ,n n1 2 1 227 100 0 27 19 100 0 19= = .  = = .  = =/ /  100, and

p̂
x x

n n
= +

+
= +

+
= .1 2

1 2

19 27

100 100
0 23

5. Reject H0 if: Reject H
0
: p1 2= p  if the P-value is less than 0.05.

6. Computation: The value of the test statistic is

z0

0 27 0 19

0 23 0 77
1

100

1

100

1 34= . − .

. .( ) +⎛
⎝⎜

⎞
⎠⎟

= .

7. Conclusion: Because z0 1 34= . , the P-value is P = 2 1 1 34 0 18− Φ .( )⎡⎣ ⎤⎦ = . , so, we cannot reject the null hypothesis.

Practical Interpretation: There is insuffi cient evidence to support the claim that St. John’s Wort is effective in treat-

ing major depression.

The following display shows a typical computer output for the two-sample hypothesis test 

and CI procedure for proportions. Notice that the 95% CI on p p1 2−  includes zero. The equa-

tion for constructing the CI will be given in Section 10-6.3.

Test and CI for Two Proportions

Sample X N Sample p

1 27 100 0.270

2 19 100 0.190

Estimate for p p( ) ( ) : .1 2 0 08−
95% CI for p p( ) ( : ( . , . ))1 2 0 0361186 0 196119− −
Test for p(1) p(2)− = 0 (vs not = 0): Z = 1 35.  P-Value = 0.177

10-6.2 TYPE II ERROR AND CHOICE OF SAMPLE SIZE

The computation of the β-error for the large-sample test of H p p0 1 2: =  is somewhat more 

involved than in the single-sample case. The problem is that the denominator of the test statis-

tic Z0 is an estimate of the standard deviation of ˆ ˆP P1 2−  under the assumption that p p p1 2= = . 

When H p p0 1 2: =  is false, the standard deviation of ˆ ˆP P1 2−  is

σ =
−( ) +

−( )
−ˆ ˆP P

p p

n

p p

n1 2

1 1

1

2 2

2

1 1
 (10-36)

If the alternative hypothesis is two sided, the β-error is

 

β = Φ
+( ) − −( )

σ

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

− Φ
−

α

−

α

z pq n n p p

z pq n

P P

/

/

/ /

/

2 1 2 1 2

2 1

1 1

1

1 2
ˆ ˆ

++( ) − −( )
σ

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥−

1 2 1 2

1 2

/ n p p

P Pˆ ˆ
 

(10-37)

Approximate 
Type II Error 

for a Two-Sided 
Test on the 

Difference of 
Two Population 

Proportions
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where

p
n p n p

n n
q

n p n p

n n
= +

+
=

−( ) + −( )
+

1 1 2 2

1 2

1 1 2 2

1 2

1 1
and

and σ −ˆ ˆP P1 2
 is given by Equation 10-36.

If the alternative hypothesis is H p p1 1 2: ,>

 β = Φ
+( ) − −( )
σ

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

α

−

z pq n n p p

P P

1 11 2 1 2

1 2

/ /

ˆ ˆ

 (10-38)

and if the alternative hypothesis is H p p1 1 2: ,<

 β = − Φ
− +( ) − −( )

σ

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

α

−

1
1 11 2 1 2

1 2

z pq n n p p

P P

/ /

ˆ ˆ

 (10-39)

Approximate  
Type II Error  

for a One-Sided  
Test on the  

Difference of  
Two Population 

Proportions

For the two-sided alternative, the common sample size is

 n
z p p q q z p q p q

p p
=

+( ) +( ) + +⎡
⎣

⎤
⎦

−( )
α β/ /2 1 2 1 2 1 1 2 2

2

1 2

2

2
 (10-40)

where q p1 11= −  and q p2 21= − .

Approximate  
Sample Size  

for a Two-Sided  
Test on the  

Difference in  
Population  

Proportions

For a specified pair of values p1 and p2, we can find the sample sizes n n n1 2= =  required to 

give the test of size α that has specified type II error β.

For a one-sided alternative, replace zα/2 in Equation 10-40 by zα.

10-6.3  CONFIDENCE INTERVAL ON THE DIFFERENCE IN  
POPULATION PROPORTIONS

The traditional confidence interval for p p1 2−  can be found directly because we know that

 Z
P P p p

p p

n

p p

n

=
− − −( )
−( ) +

−( )
ˆ ˆ
1 2 1 2

1 1

1

2 2

2

1 1

is approximately a standard normal random variable. Thus P z Z z( )− ≤ ≤ −α/2 α/2 α,� 1  so we 

can substitute for Z  in this last expression and use an approach similar to the one employed 

previously to find an approximate 100 1( )%− α  two-sided confidence interval for p p1 2− .
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418   Chapter 10/Statistical Inference for Two Samples

If p̂1 and p̂2 are the sample proportions of observations in two independent random 

samples of sizes n1 and n2 that belong to a class of interest, an approximate two-sided 
100 1( - `)% confi dence interval on the difference in the true proportions p p1 2−  is

  ˆ ˆ
ˆ ˆ ˆ ˆ

ˆ ˆ
ˆ

p p z
p p

n

p p

n

p p p p z
p

1 2 2
1 1

1

2 2

2

1 2 1 2 2

1 1
− −

−( ) +
−( )

≤ − ≤ − +

α

α

/

/
11 1

1

2 2

2

1 1−( ) +
−( )ˆ ˆ ˆp

n

p p

n

 (10-41)

where Zα/2 is the upper α / 2 percentage point of the standard normal distribution.

Approximate 
Confi dence 

Interval on the 
Difference in 

Population 
Proportions

Defective Bearings Consider the process of manufacturing crankshaft bearings described in 

Example 8-8. Suppose that a modifi cation is made in the surface fi nishing process and that, subse-

quently, a second random sample of 85 bearings is obtained. The number of defective bearings in this second sample 

is 8. Therefore, because n1 85= , ˆ / .p1 10 85 0 1176= = , n2 85= , and p̂2 8 85 0 0941= = ./ , we can obtain an approximate 

95% confi dence interval on the difference in the proportion of defective bearings produced under the two processes 

from Equation 10-41 as follows:

ˆ ˆ
ˆ ˆ ˆ ˆ

ˆ ˆp p z
p p

n

p p

n
p p p p z1 2 0 025

1 1

1

2 2

2

1 2 1 2 0

1 1
− −  

−( ) +
−( ) ≤ − ≤ − +. .0025

1 1

1

2 2

2

1 1
 

−( ) +
−( )ˆ ˆ ˆ ˆp p

n

p p

n

or

0 1176 0 0941 1 96
0 1176 0 8824

85

0 0941 0 9059

85

1 2

. − . − .  
. .( ) +

. .( )

≤ −p p ≤≤ . − . + .  
. .( ) +

. .( )
0 1176 0 0941 1 96

0 1176 0 8824

85

0 0941 0 9059

85

This simplifi es to

− . ≤ − ≤ .0 0685 0 11551 2p p

Practical Interpretation: This confi dence interval includes zero, so, based on the sample data, it seems unlikely that 

the changes made in the surface fi nish process have reduced the proportion of defective crankshaft bearings being 

produced.

Example 10-17

The CI in Equation 10-41 is the traditional one usually given for a difference in two binomial 

proportions. However, the actual confi dence level for this interval can deviate substantially 

from the nominal or advertised value. So when we want a 95% CI (for example) and use z
0.025

 = 

1.96 in Equation 10-41, the actual confi dence level that we experience may differ from 95%. 

This situation can be improved by a very simple adjustment to the procedure: Add one success 

and one failure to the data from each sample and then calculate

	 	

	 	

p
x

n
n n

p
x

n
n n

1
1

1

1 1

2
2

2

2 2

1

1
2

1

1
2

= +
+

= +

= +
+

= +

   and  

   and  
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Then replace ˆ , ˆ , , ,p p n n p p n n1 2 1 2 1 2 1 2 and  by  and 	 	 	 	  in Equation 10-41.

To illustrate how this works, reconsider the crankshaft bearing data from Example 10-17.  

Using the preceding procedure, we find that

	 	

	

p
x

n
n n

p
x

1
1

1

1 1

2

1

1

10 1

85 2
2 85 2 87= +

+
= +

+
= + = + =

=

= 0.1264   and  

22

2

2 2

1

1

8 1

85 2
2 85 2 87

+
+

= +
+

= + = + =
n

n n= 0.1034   and  	

If we now replace ˆ , ˆ , , ,p p n n p p n n1 2 1 2 1 2 1 2 and  by  and 	 	 	 	  in Equation 10-41, we find that 

the new improved CI is − ≤ − ≤0 0730 0 11901 2. .p p , which is similar to the traditional CI 

found in Example 10-17. The length of the traditional interval is 0.1840, and the length 

of the new and improved interval is 0.1920. The slightly longer interval is likely a reflec-

tion of the fact that the coverage of the improved interval is closer to the advertised level 

of 95%. However, because this CI also includes zero, the conclusions would be the same 

regardless of which CI is used.

 Problem available in WileyPLUS at instructor’s discretion. 

 Tutoring problem available in WileyPLUS at instructor’s discretion.

10-82. Consider the following computer output.

Test and Cl for Two Proportions

Sample X N Sample p

1 54 250 0.216000

2 60 290 0.206897

Difference = p(1) - p(2)
Estimate for difference: 0.00910345
95% CI for difference: (-0.0600031, 
0.0782100)
Test for difference
=0(vs not = 0): Z = ? P-Value = ?

(a) Is this a one-sided or a two-sided test?

(b) Fill in the missing values.

(c) Can the null hypothesis be rejected?

(d) Construct an approximate 90% CI for the difference in the 

two proportions.

10-83. Consider the following computer output.

Test and CI for Two Proportions

Sample X N Sample p

1 188 250 0.752000

2 245 350 0.700000

Difference = p(1)-p(2)
Estimate for difference: 0.052
95% lower bound for difference: ?
Test for difference 
= 0 (vs >0) : Z = ? P-Value = ?

(a) Is this one-sided or a two-sided test?

(b) Fill in the missing values.

(c)  Can the null hypothesis be rejected if = 0.10?  

What if = 0.05?

10-84.  An article in Knee Surgery, Sports Traumatology, 
Arthroscopy (2005, Vol. 13, pp. 273–279) considered arthro-

scopic meniscal repair with an absorbable screw. Results 

showed that for tears greater than 25 millimeters, 14 of 18 

(78%) repairs were successful, but for shorter tears, 22 of 30 

(73%) repairs were successful.

(a) Is there evidence that the success rate is greater for longer 

tears? Use α = .0 05. What is the P-value?

(b) Calculate a one-sided 95% confidence bound on the differ-

ence in proportions that can be used to answer the question 

in part (a).

10-85.  In the 2004 presidential election, exit polls from 

the critical state of Ohio provided the following results: For 

respondents with college degrees, 53% voted for Bush and 

46% voted for Kerry. There were 2020 respondents.

(a) Is there a significant difference in these proportions? Use 

α = .0 05. What is the P-value?

(b) Calculate a 95% confidence interval for the difference in 

the two proportions and comment on the use of this interval 

to answer the question in part (a).

10-86. Two different types of injection-molding machines are 

used to form plastic parts. A part is considered defective if it 

has excessive shrinkage or is discolored. Two random samples, 

each of size 300, are selected, and 15 defective parts are found 

in the sample from machine 1, and 8 defective parts are found 

in the sample from machine 2.

(a) Is it reasonable to conclude that both machines produce the 

same fraction of defective parts, using α = .0 05? Find the 

P-value for this test.

FOR SECTION 10-6Exercises
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420   Chapter 10/Statistical Inference for Two Samples

(b) Construct a 95% confidence interval on the difference in 

the two fractions defective.

(c) Suppose that p1 0 05= .  and p2 0 01= . . With the sample 

sizes given here, what is the power of the test for this two-

sided alternate?

(d) Suppose that p1 0 05= .  and p2 0 01= . . Determine the sam-

ple size needed to detect this difference with a probability 

of at least 0.9.

(e) Suppose that p1 0 05= .  and p2 0 02= . . With the sample 

sizes given here, what is the power of the test for this two-

sided alternate?

(f) Suppose that p1 0 05= .  and p2 0 02= . . Determine the sam-

ple size needed to detect this difference with a probability 

of at least 0.9.

10-87. Two different types of polishing solutions are being 

evaluated for possible use in a tumble-polish operation for 

manufacturing interocular lenses used in the human eye fol-

lowing cataract surgery. Three hundred lenses were tumble 

polished using the first polishing solution, and of this number, 

253 had no polishing-induced defects. Another 300 lenses were 

tumble-polished using the second polishing solution, and 196 

lenses were satisfactory upon completion.

(a) Is there any reason to believe that the two polishing solu-

tions differ? Use α = .0 01. What is the P-value for this test?

(b) Discuss how this question could be answered with a confi-

dence interval on p p1 2− .

10-88. A random sample of 500 adult residents of Maricopa 

County indicated that 385 were in favor of increasing the high-

way speed limit to 75 mph, and another sample of 400 adult 

residents of Pima County indicated that 267 were in favor of 

the increased speed limit.

(a) Do these data indicate that there is a difference in the support 

for increasing the speed limit for the residents of the two 

counties? Use α = .0 05. What is the P-value for this test?

(b) Construct a 95% confidence interval on the difference in 

the two proportions. Provide a practical interpretation of this 

interval.

10-89. Air pollution has been linked to lower birthweight 

in babies. In a study reported in the Journal of the Ameri-
can Medical Association, researchers examined the propor-

tion of low-weight babies born to mothers exposed to heavy 

doses of soot and ash during the World Trade Center attack of 

September 11, 2001. Of the 182 babies born to these moth-

ers, 15 were classified as having low weight. Of 2300 babies 

born in the same time period in New York in another hospital, 

92 were classified as having low weight. Is there evidence to 

suggest that the exposed mothers had a higher incidence of 

low-weight babies?

10-90. The New England Journal of Medicine reported an 

experiment to judge the efficacy of surgery on men diag-

nosed with prostate cancer. The randomly assigned half of 

695 (347) men in the study had surgery, and 18 of them 

eventually died of prostate cancer compared with 31 of the 

348 who did not have surgery. Is there any evidence to sug-

gest that the surgery lowered the proportion of those who 

died of prostate cancer? 

10-91. Rework the election data reported in Exercise 10-85 

using the alternate CI procedure described in this section.  

Compare the lengths of the CI from Exercise 10-85 with this 

one. Discuss the possible causes of any differences that you 

observe.

10-92 Consider the highway speed limit data introduced in 

Exercise 10-88. Find a 99% CI on the difference in the two 

proportions using the alternate CI procedure described in this 

section. Compare the lengths of the CI from Exercise 10-88 

with these in this one.  Discuss the possible causes of any dif-

ferences that you observe.

10-7  Summary Table and Road Map for Inference 
Procedures for Two Samples

The table in the end pages of the book summarizes all of the two-sample parametric inference 

procedures given in this chapter. The table contains the null hypothesis statements, the test 

statistics, the criteria for rejection of the various alternative hypotheses, and the formulas for 

constructing the 100 1( )%− α  confidence intervals.

The road map to select the appropriate parametric confidence interval formula or why-

pothesis test method for one-sample problems was presented in Table 8-1. In Table 10-5, we 

extend the road map to two-sample problems. The primary comments 

stated previously also apply here (except that we usually apply conclusions to a function of 

the parameters from each sample, such as the difference in means):

1. Determine the function of the parameters (and the distribution of the data) that is to be 

bounded by the confidence interval or tested by the hypothesis.

2. Check whether other parameters are known or need to be estimated (and whether any 

assumptions are made).
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Function of the Parameters 
to be Bounded by the Con-
fi dence Interval or Tested 
with a Hypothesis Symbol Other Parameters?

Confi dence 
Interval 
Section

Hypothesis 
Test 

Section Comments
Difference in means from
 two normal distributions

μ − μ1 2 Standard deviations σ1 
and σ2 known

10-1.3 10-1.1

Difference in means from two 
arbitrary distributions with 
large sample sizes

μ − μ1 2
Sample sizes large 
enough that σ1 and σ2 
are essentially known

10-1.3 10-1.1 Large sample size is 
often taken to be n1 and 

n2 40≥

Difference in means from 
two normal distributions

μ − μ1 2 Standard deviations σ1  
and σ2 are unknown and 
assumed equal

10-2.3 10-2.1 Case 1 1 2:  σ = σ  

Difference in means from 
two symmetric distributions

μ − μ1 2
10-3 The Wilcoxon rank-sum 

test is a nonparametric 
procedure

Difference in means from 
two normal distributions

μ − μ1 2 Standard deviations σ1 
and σ2 are unknown and 
NOT assumed equal

10-2.3 10-2.1 Case 2 1 2:  σ ≠ σ

Difference in means from 
two normal distributions 
in a paired analysis

μ = μ − μD 1 2
Standard deviation 
of differences are 
unknown

10-4 10-4 Paired analysis calculates 
differences and uses a 
one-sample method for 
inference on the mean 
difference

Ratio of variances of 
two normal distributions

σ σ1
2

2
2/ Means μ1 and μ2 

unknown and estimated

10-5.4 10-5.2

Difference in two population 
proportions

p p1 2− None 10-6.3 10-6.1 Normal approximation 
to the binomial distribu-
tion used for the tests and 
confi dence intervals

10-5 Roadmap to Construct Confi dence Intervals and Hypothesis Tests, Two-Sample Case

10-93. Consider the following computer output.

Two-Sample T-Test and Cl

Sample N Mean StDev SE Mean

1 20 11.87 2.23 ?

2 20 12.73 3.19

0.71 Difference  = mu (1)-mu (2)
Estimate for difference: -0.860
95% CI for difference: (?, ?)
T-Test of difference = 0(vs not =): 
T-Value = ? P-Value = ? DF = ?
Both use Pooled StDev = ?

(a) Fill in the missing values. You may use bounds for the P-value.

(b) Is this a two-sided test or a one-sided test?

(c) What are your conclusions if α = 0.05? What if α = 0.10?
10-94. Consider the following computer output.

Two-Sample T-Test CI

Sample N Mean StDev SE Mean

1 16 22.45 2.98 0.75

2 25 24.61 5.36 1.1

Difference = mu (1) – mu (2)
Estimate for difference: –2.16
T-Test of difference = 0 (vs <): 
T-Value = –1.65 P-Value = ? DF = ?

(a) Is this a one-sided or a two-sided test?

(b) Fill in the missing values. You may use bounds for the 

P-value.

Supplemental Exercises
 Problem available in WileyPLUS at instructor’s discretion. 

 Tutoring problem available in WileyPLUS at instructor’s discretion.
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(c) What are your conclusions if α = 0.05? What if α = 0.10?
(d) Find a 95% upper-confi dence bound on the difference in 

the two means.

10-95. An article in the Journal of Materials Engineer-
ing [1989, Vol. 11(4), pp. 275–282] reported the results of 

an experiment to determine failure mechanisms for plasma-

sprayed thermal barrier coatings. The failure stress for one par-

ticular coating (NiCrAlZr) under two different test conditions 

is as follows:

Failure stress (× 106 Pa) after nine 1-hour cycles: 19.8, 

18.5, 17.6, 16.7, 16.7, 14.8, 15.4, 14.1, 13.6

Failure stress (× 106 Pa) after six 1-hour cycles: 14.9, 

12.7, 11.9, 11.4, 10.1, 7.9

(a) What assumptions are needed to construct confi dence 

intervals for the difference in mean failure stress under the 

two different test conditions? Use normal probability plots 

of the data to check these assumptions.

(b) Find a 99% confi dence interval on the difference in mean 

failure stress under the two different test conditions.

(c) Using the confi dence interval constructed in part (b), does 

the evidence support the claim that the fi rst test condi-

tions yield higher results, on the average, than the second? 

Explain your answer.

(d) Construct a 95% confi dence interval on the ratio of the 

variances, σ σ1
2

2
2/ , of failure stress under the two different 

test conditions.

(e) Use your answer in part (d) to determine whether there is a 

signifi cant difference in the variances of the two different 

test conditions. Explain your answer.

10-96. A procurement specialist has purchased 25 resistors 

from vendor 1 and 35 resistors from vendor 2. Each resistor’s 

resistance is measured with the following results (ohm):

Vendor 1
96.8 100.0 100.3 98.5 98.3 98.2

99.6 99.4 99.9 101.1 103.7 97.7

99.7 101.1 97.7 98.6 101.9 101.0

99.4 99.8 99.1 99.6 101.2 98.2

98.6

Vendor 2

106.8 106.8 104.7 104.7 108.0 102.2

103.2 103.7 106.8 105.1 104.0 106.2

102.6 100.3 104.0 107.0 104.3 105.8

104.0 106.3 102.2 102.8 104.2 103.4

104.6 103.5 106.3 109.2 107.2 105.4

106.4 106.8 104.1 107.1 107.7

(a) What distributional assumption is needed to test the claim 

that the variance of resistance of the product from vendor 1 

is not signifi cantly different from the variance of resistance 

of the product from vendor 2? Perform a graphical proce-

dure to check this assumption.

(b) Perform an appropriate statistical hypothesis-testing proce-

dure to determine whether the procurement specialist can 

claim that the variance of resistance of the product from ven-

dor 1 is signifi cantly different from the variance of resistance 

of the product from vendor 2.

10-97. A liquid dietary product implies in its advertising that 

using the product for one month results in an average weight loss 

of at least 3 pounds. Eight subjects use the product for one 

month, and the resulting weight loss data follow. Use hypothe-

sis-testing procedures to answer the following questions.

(a) Do the data support the claim of the dietary product’s pro-

ducer with the probability of a type I error set to 0.05?

(b) Do the data support the claim of the dietary product’s pro-

ducer with the probability of a type I error set to 0.01?

(c) In an effort to improve sales, the producer is considering 

changing its claim from “at least 3 pounds” to “at least 5 

pounds.” Repeat parts (a) and (b) to test this new claim.

10-98.  The breaking strength of yarn supplied by two 

manufacturers is being investigated. You know from experi-

ence with the manufacturers’ processes that σ1 = 5 psi and 

σ2 = 4 psi. A random sample of 20 test specimens from each 

manufacturer results in x1 88=  psi and x2 91=  psi, respectively.

(a) Using a 90% confi dence interval on the difference in mean 

breaking strength, comment on whether or not there is evi-

dence to support the claim that manufacturer 2 produces 

yarn with higher mean breaking strength.

(b) Using a 98% confi dence interval on the difference in mean 

breaking strength, comment on whether or not there is evi-

dence to support the claim that manufacturer 2 produces 

yarn with higher mean breaking strength.

(c) Comment on why the results from parts (a) and (b) are dif-

ferent or the same. Which would you choose to make your 

decision and why?

10-99. The Salk polio vaccine experiment in 1954 focused on 

the effectiveness of the vaccine in combating paralytic polio. 

Because it was believed that without a control group of chil-

dren, there would be no sound basis for evaluating the effi cacy 

of the Salk vaccine, the vaccine was administered to one group, 

and a placebo (visually identical to the vaccine but known to 

have no effect) was administered to a second group. For ethi-

cal reasons and because it was suspected that knowledge of 

Subject Initial
Weight (lb)

Final
Weight (lb)

1 165 161

2 201 195

3 195 192

4 198 193

5 155 150

6 143 141

7 150 146

8 187 183
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vaccine administration would affect subsequent diagnoses, the 

experiment was conducted in a double-blind fashion. That is, 

neither the subjects nor the administrators knew who received 

the vaccine and who received the placebo. The actual data for 

this experiment are as follows:

Placebo group:  n = 201 299 110, :  cases of polio observed

Vaccine group:  n = 200 745 33, :  cases of polio observed

(a) Use a hypothesis-testing procedure to determine whether 

the proportion of children in the two groups who contracted 

paralytic polio is statistically different. Use a probability of 

a type I error equal to 0.05.

(b) Repeat part (a) using a probability of a type I error equal 

to 0.01.

(c) Compare your conclusions from parts (a) and (b) and 

explain why they are the same or different.

10-100. Consider Supplemental Exercise 10-98. Suppose that 

prior to collecting the data, you decide that you want the error 

in estimating μ1 – μ2 by x x1 2−  to be less than 1.5 psi. Specify 

the sample size for the following percentage confidence:

(a) 90%

(b) 98%

(c) Comment on the effect of increasing the percentage confi-

dence on the sample size needed.

(d) Repeat parts (a)–(c) with an error of less than 0.75 psi 

instead of 1.5 psi.

(e) Comment on the effect of decreasing the error on the sam-

ple size needed.

10-101.  A random sample of 1500 residential tele-

phones in Phoenix in 1990 indicated that 387 of the numbers 

were unlisted. A random sample of 1200 telephones in the 

same year in Scottsdale indicated that 310 were unlisted.

(a) Find a 95% confidence interval on the difference in the two 

proportions and use this confidence interval to determine 2010 

whether there is a statistically significant difference in propor-

tions of unlisted numbers between the two cities.

(b) Find a 90% confidence interval on the difference in the two 

proportions and use this confidence interval to determine if 

there is a statistically significant difference in proportions 

of unlisted numbers for the two cities.

(c) Suppose that all the numbers in the problem description 

were doubled. That is, 774 residents of 3000 sampled 

in Phoenix and 620 residents of 2400 in Scottsdale had 

unlisted phone numbers. Repeat parts (a) and (b) and 

comment on the effect of increasing the sample size with-

out changing the proportions on your results.

10-102.  In a random sample of 200 Phoenix 

residents who drive a domestic car, 165 reported wearing their seat 

belt regularly, and another sample of 250 Phoenix residents who 

drive a foreign car revealed 198 who regularly wore their seat belt.

(a) Perform a hypothesis-testing procedure to determine whether 

there is a statistically significant difference in seat belt usage 

for domestic and foreign car drivers. Set your probability of a 

type I error to 0.05.

(b) Perform a hypothesis-testing procedure to determine whether 

there is a statistically significant difference in seat belt usage 

for domestic and foreign car drivers. Set your probability of a 

type I error to 0.1.

(c) Compare your answers for parts (a) and (b) and explain 

why they are the same or different.

(d) Suppose that all the numbers in the problem description 

were doubled. That is, in a random sample of 400 Phoenix 

residents who drive a domestic car, 330 reported wearing 

their seat belt regularly, and another sample of 500 Phoenix 

residents who drive a foreign car revealed 396 who regu-

larly wore their seat belt. Repeat parts (a) and (b) and com-

ment on the effect of increasing the sample size without 

changing the proportions on your results.

10-103. Consider the previous exercise, which summarized 

data collected from drivers about their seat belt usage.

(a) Do you think there is a reason not to believe these data? 

Explain your answer.

(b) Is it reasonable to use the hypothesis-testing results from 

the previous problem to draw an inference about the differ-

ence in proportion of seat belt usage

(i)  of the spouses of these drivers of domestic and foreign 

cars? Explain your answer.

(ii)  of the children of these drivers of domestic and for-

eign cars? Explain your answer.

(iii)  of all drivers of domestic and foreign cars? Explain 

your answer.

(iv)  of all drivers of domestic and foreign trucks? Explain 

your answer.

10-104. The manufacturer of a new pain relief tablet would like 

to demonstrate that its product works twice as fast as the compet-

itor’s product. Specifically, the manufacturer would like to test

H

H >
0 1 2

1 1 2

2

2

:

:

μ = μ
μ μ

where μ1 is the mean absorption time of the competitive prod-

uct and μ2 is the mean absorption time of the new product. 

Assuming that the variances σ1
2 and σ2

2 are known, develop a 

procedure for testing this hypothesis.

10-105.  Two machines are used to fill plastic 

bottles with dishwashing detergent. The standard deviations of fill 

volume are known to be σ1 = 0 10.  fluid ounces and σ2 = 0 15.  fluid 

ounces for the two machines, respectively. Two random samples of 

n1 12=  bottles from machine 1 and n2 10=  bottles from machine 2 

are selected, and the sample mean fill volumes are x1 30 87= .  fluid 

ounces and x2 30 68= .  fluid ounces. Assume normality.

(a) Construct a 90% two-sided confidence interval on the mean 

difference in fill volume. Interpret this interval.

(b) Construct a 95% two-sided confidence interval on the mean 

difference in fill volume. Compare and comment on the 

width of this interval to the width of the interval in part (a).

(c) Construct a 95% upper-confidence interval on the mean 

difference in fill volume. Interpret this interval.

(d) Test the hypothesis that both machines fill to the same 

mean volume. Use α = 0.05. What is the P-value?

(e) If the β-error of the test when the true difference in fill vol-

ume is 0.2 fluid ounces should not exceed 0.1, what sample 

sizes must be used? Use α = 0.05.
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10-106.  Suppose that you are testing H0 : μ μ1 2=  versus 

H1: μ μ1 2≠ , and you plan to use equal sample sizes from the 

two populations. Both populations are assumed to be normal 

with unknown but equal variances. If you use α = 0.05 and if 

the true mean μ μ σ,1 2= +  what sample size must be used for 

the power of this test to be at least 0.90?

10-107.  Consider the situation described in Exercise 10-87.

(a) Redefi ne the parameters of interest to be the proportion of 

lenses that are unsatisfactory following tumble polishing 

with polishing fl uids 1 or 2. Test the hypothesis that the two 

polishing solutions give different results using α = 0.01.

(b) Compare your answer in part (a) with that for Exercise 

10-87. Explain why they are the same or different.

(c) You wish to use α = 0.01. Suppose that if p1 0 9= .  and 

p2 0 6= . , you wish to detect this with a high probability, 

say, at least 0.9. What sample sizes are required to meet this 

objective?

10-108. Consider the fi re-fi ghting foam-expanding agents 

investigated in Exercise 10-20, in which fi ve observations of 

each agent were recorded. Suppose that if agent 1 produces a 

mean expansion that differs from the mean expansion of agent 

1 by 1.5, you would like to reject the null hypothesis with prob-

ability at least 0.95.

(a) What sample size is required?

(b) Do you think that the original sample size in Exercise 10-20 

was appropriate to detect this difference? Explain your answer.

10-109.  A fuel-economy study was conducted for two 

German automobiles, Mercedes and Volkswagen. One vehicle 

of each brand was selected, and the mileage performance was 

observed for 10 tanks of fuel in each car. The data are as fol-

lows (in miles per gallon):

(a) Construct a normal probability plot of each of the data sets. 

Based on these plots, is it reasonable to assume that they 

are each drawn from a normal population?

(b) Suppose that it was determined that the lowest observa-

tion of the Mercedes data was erroneously recorded and 

should be 24.6. Furthermore, the lowest observation of the 

Volkswagen data was also mistaken and should be 39.6. 

Again construct normal probability plots of each of the 

data sets with the corrected values. Based on these new 

plots, is it reasonable to assume that each is drawn from a 

normal population?

(c) Compare your answers from parts (a) and (b) and comment 

on the effect of these mistaken observations on the normal-

ity assumption.

(d) Using the corrected data from part (b) and a 95% confi -

dence interval, is there evidence to support the claim that 

the variability in mileage performance is greater for a 

Volkswagen than for a Mercedes?

(e) Rework part (d) of this problem using an appropriate 

hypothesis-testing procedure. Did you get the same answer 

as you did originally? Why?

10-110.  An experiment was conducted to compare the 

fi lling capability of packaging equipment at two different win-

eries. Ten bottles of pinot noir from Ridgecrest Vineyards were 

randomly selected and measured, as were 10 bottles of pinot 

noir from Valley View Vineyards. The data are as follows (fi ll 

volume is in milliliters):

Ridgecrest Valley View

755 751 752 753 756 754 757 756

753 753 753 754 755 756 756 755

752 751 755 756

(a) What assumptions are necessary to perform a hypoth-

esis-testing procedure for equality of means of these 

data? Check these assumptions.

(b) Perform the appropriate hypothesis-testing procedure to 

determine whether the data support the claim that both 

wineries will fi ll bottles to the same mean volume.

(c) Suppose that the true difference in mean fi ll volume is as 

much as 2 fl uid ounces; did the sample sizes of 10 from 

each vineyard provide good detection capability when 

α = 0.05? Explain your answer.

10-111.  A Rockwell hardness-testing machine presses a 

tip into a test coupon and uses the depth of the resulting depres-

sion to indicate hardness. Two different tips are being com-

pared to determine whether each provides the same Rockwell 

C-scale hardness readings. Nine coupons are tested with both 

tips being tested on each coupon. The data are shown in the 

following table.

(a) State any assumptions necessary to test the claim that each tip 

produces the same Rockwell C-scale hardness readings. 

Check those assumptions for which you have the 

information.

(b) Apply an appropriate statistical method to determine 

whether the data support the claim that the difference in 

Rockwell C-scale hardness readings of the two tips differ 

signifi cantly from zero.

(c) Suppose that if the two tips differ in mean hardness 

readings by as much as 1.0, you want the power of the 

Mercedes Volkswagen

24.7 24.9 41.7 42.8

24.8 24.6 42.3 42.4

24.9 23.9 41.6 39.9

24.7 24.9 39.5 40.8

24.5 24.8 41.9 29.6

Coupon Tip 1 Tip 2 Coupon Tip 1 Tip 2

1 47 46 6 41 41

2 42 40 7 45 46

3 43 45 8 45 46

4 40 41 9 49 48

5 42 43
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test to be at least 0.9. For an α = 0.01, how many cou-

pons should have been used in the test?

10-112. Two different gauges can be used to measure the 

depth of bath material in a Hall cell used in smelting aluminum. 

Each gauge is used once in 15 cells by the same operator.

(a) State any assumptions necessary to test the claim that both 

gauges produce the same mean bath depth readings. Check 

those assumptions for which you have the information.

(b) Apply an appropriate statistical procedure to determine 

whether the data support the claim that the two gauges pro-

duce different mean bath depth readings.

(c) Suppose that if the two gauges differ in mean bath depth 

readings by as much as 1.65 inch, you want the power of 

the test to be at least 0.8. For α = 0.01, how many cells 

should have been used?

10-113.  An article in the Journal of the Environmental 
Engineering Division [“Distribution of Toxic Substances in Riv-

ers” (1982, Vol. 108, pp. 639 – 649)] investigated the concentra-

tion of several hydrophobic organic substances in the Wolf River 

in Tennessee. Measurements on hexachlorobenzene (HCB) in 

nanograms per liter were taken at different depths downstream 

of an abandoned dump site. Data for two depths follow:

Surface: 3.74, 4.61, 4.00, 4.67, 4.87, 5.12, 4.52, 5.29, 5.74, 5.48

Bottom: 5.44, 6.88, 5.37, 5.44, 5.03, 6.48, 3.89, 5.85, 6.85, 7.16

(a) What assumptions are required to test the claim that mean 

HCB concentration is the same at both depths? Check 

those assumptions for which you have the information.

(b) Apply an appropriate procedure to determine whether the 

data support the claim in part a.

(c) Suppose that the true difference in mean concentrations is 

2.0 nanograms per liter. For α = 0.05, what is the power of 

a statistical test for H0 : μ μ1 2=  versus H1 : μ μ1 2≠ ?

(d) What sample size would be required to detect a difference 

of 1.0 nanograms per liter at α = 0.05 if the power must be 

at least 0.9?

10-114. Consider the foam thickness data from Exercise 

10-39.  Is there any indication that the variances of foam thick-

ness are different at the two different levels of temperature?

10-115. Consider the grinding force data in Exercise 10-40. Is 

there any indication that the variances of grinding force are dif-

ferent at the two different levels of temperature?

10-116. Consider the seat belt usage data in Exercise 

10-102.  Find 95% CIs on the difference in the proportions 

of seat belt usage for drivers of foreign and domestic cars 

using both procedures described in this chapter. Compare the 

lengths of these two intervals and comment on any difference 

you may observe.

10-117. Consider the unlisted telephone number data in Exer-

cise 10-101. Find 95% CIs on the difference in the proportions 

of unlisted telephone numbers for Phoenix and Scottsdale resi-

dents using both procedures described in this chapter. Compare 

the lengths of these two intervals and comment on any differ-

ence you may observe.

Cell Gauge 1 Gauge 2 Cell Gauge 1 Gauge 2

1 46 in. 47 in.  9 52 in. 51 in.

2 50 53 10 47 45

3 47 45 11 49 51

4 53 50 12 45 45

5 49 51 13 47 49

6 48 48 14 46 43

7 53 54 15 50 51

8 56 53

Mind-Expanding Exercises

10-118. Three different pesticides can be used to control 

pest infestation of grapes. It is suspected that pesticide 3 is 

more effective than the other two. In a particular vineyard, 

three different plantings of pinot noir grapes are selected for 

study. The following results on yield are obtained:

Pesticide
xi (bushels/ 

plant) s
i

n
i
 (number of 

plants)

1 4.6 0.7 100

2 5.2 0.6 120

3 6.1 0.8 130

If μi is the true mean yield after treatment with the ith pesti-

cide, you are interested in the quantity

μ = μ + μ( ) − μ1

2
1 2 3

which measures the difference in mean yields for pesti-

cides 1 and 2 and pesticide 3. If the sample sizes ni are 

large, the estimator (say, μ̂) obtained by replacing each 

individual μi by Xi is approximately normal.

(a) Find an approximate 100 1( )%− x  large-sample confi -

dence interval for μ.

(b) Do these data support the claim that pesticide 3 is more 

effective than the other two? Use α = 0.05 in determin-

ing your answer.

10-119. Suppose that you wish to test H0 :l l1 2=  versus 

H1 : μ μ1 2≠ , where σ1
2 and σ2

2 are known. The total sample 

size N  is to be determined, and the allocation of observa-

tions to the two populations such that n n N1 1+ =  is to be 

made on the basis of cost. If the cost of sampling for popu-

lations 1 and 2 are C1 and C2, respectively, fi nd the mini-

mum cost sample sizes that provide a specifi ed variance for 

the difference in sample means.
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Comparative experiments

Confidence intervals on 

differences and ratios

Critical region for a test 

statistic

Identifying cause and  

effect

Null and alternative 

hypotheses

One-sided and two-sided 

alternative hypotheses

Operating characteristic 

curves

Paired t-test

Pooled t-test

P-value

Reference distribution for a 

test statistic

Sample size determination 

for hypothesis tests and 

confidence intervals

Statistical hypothesis

Test statistic

Wilcoxon rank-sum test

Sample comparative 

experiments

Treatments

Randomized experiment

Important Terms and Concepts

10-120. Suppose that you wish to test the hypothesis 

H0 : μ μ1 2=  versus H1 : μ μ1 2≠ , where both variances σ2
1

 

and σ2
2 are known. A total of n n N1 2+ =  observations can 

be taken. How should these observations be allocated to the 

two populations to maximize the probability that H0 will be 

rejected if H1 is true and μ μ1 2− = Δ ≠ 0?

10-121. Suppose that you wish to test H0 : μ = μ0 versus 

H1: μ μ0≠ , where the population is normal with known σ. 

Let 0 < <ε α, and define the critical region so that you will 

reject H0 if z z0 > ε or if z z0 < − α −ε where z0 is the value of 

the usual test statistic for these hypotheses.

(a) Show that the probability of type I error for this test is 

α.

(b) Suppose that the true mean is μ = μ + Δ1 0 . Derive an 

expression for β for the above test.

10-122. Construct a data set for which the paired t-test 

statistic is very large, indicating that when this analysis is 

used, the two population means are different, but t0  for the 

two-sample t-test is very small so that the incorrect analysis 

would indicate that there is no significant difference for the 

means.

10-123. In some situations involving proportions, you are 

interested in the ratio θ = p p1 2/  rather than the difference 

p p1 2− . Let ˆ ˆ / ˆθ = p p1 2. It can be shown that ln(θ̂) has an 

approximate normal distribution with the mean (n / θ) and 

variance ( ) / ( ) ( ) / ( )n x n x n x n x1 1 1 1 2 2 2 2

1 2− + −⎡⎣ ⎤⎦
/

.

(a) Use the preceding information to derive a large-sample 

confidence interval for ln θ.

(b) Show how to find a large-sample CI for θ.

(c) Use the data from the St. John’s Wort study in Example 

10-16, and find a 95% CI on θ = p p1 2/ . Provide a prac-

tical interpretation for this CI.

10-124. Derive an expression for β for the test of the 

equality of the variances of two normal distributions. 

Assume that the two-sided alternative is specified.
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The space shuttle Challenger accident in January 1986 was 

the result of the failure of O-rings used to seal fi eld joints in 

the solid rocket motor because of the extremely low ambi-

ent temperatures at the time of launch. Prior to the launch, 

there were data on the occurrence of O-ring failure and the 

corresponding temperature on 24 prior launches or static 

fi rings of the motor. In this chapter, we will see how to build 

a statistical model relating the probability of O-ring failure 

to temperature. This model provides a measure of the risk 

associated with launching the shuttle at the low temperature 

when Challenger was launched.

11
Simple Linear 
Regression and 
Correlation
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 Learning Objectives

After careful study of this chapter, you should be able to do the following:

1. Use simple linear regression for building empirical models to engineering and scientific data

2. Understand how the method of least squares is used to estimate the parameters in a linear regression 
model

3. Analyze residuals to determine whether the regression model is an adequate fit to the data or whether 
any underlying assumptions are violated

4. Test statistical hypotheses and construct confidence intervals on regression model parameters

5. Use the regression model to predict a future observation and ctoonstruct an appropriate prediction 
interval on the future observation

6. Apply the correlation model

7. Use simple transformations to achieve a linear regression model

11-1 Empirical Models
Many problems in engineering and the sciences involve a study or analysis of the relationship 

between two or more variables. For example, the pressure of a gas in a container is related to the 

temperature, the velocity of water in an open channel is related to the width of the channel, and 

the displacement of a particle at a certain time is related to its velocity. In this last example, if we 

let d0 be the displacement of the particle from the origin at time t = 0 and v be the velocity, the 

displacement at time t is d d vtt = +0 . This is an example of a deterministic linear relationship 

because (apart from measurement errors) the model predicts displacement perfectly.

However, in many situations, the relationship between variables is not deterministic. For 

example, the electrical energy consumption of a house ( )y  is related to the size of the house (x,  

in square feet), but it is unlikely to be a deterministic relationship. Similarly, the fuel usage of 

an automobile ( )y  is related to the vehicle weight x, but the relationship is not a deterministic 

one. In both of these examples, the value of the response of interest y (energy consumption, fuel 

usage) cannot be predicted perfectly from knowledge of the corresponding x. It is possible for  

different automobiles to have different fuel usage even if they weigh the same, and it is pos-

sible for different houses to use different amounts of electricity even if they are the same size.

The collection of statistical tools that are used to model and explore relationships between 

variables that are related in a nondeterministic manner is called regression analysis. Because 

problems of this type occur so frequently in many branches of engineering and science, regres-

sion analysis is one of the most widely used statistical tools. In this chapter, we present the 

situation in which there is only one independent or predictor variable x and the relationship 

with the response y is assumed to be linear. Although this seems to be a simple scenario, many 

practical problems fall into this framework.

For example, in a chemical process, suppose that the yield of the product is related to the 

process-operating temperature. Regression analysis can be used to build a model to predict 

yield at a given temperature level. This model can also be used for process optimization, such 

as finding the level of temperature that maximizes yield, or for process control purposes.

As an illustration, consider the data in Table 11-1. In this table, y is the purity of oxygen pro-

duced in a chemical distillation process, and x is the percentage of hydrocarbons present in the 

main condenser of the distillation unit. Figure 11-1 presents a scatter diagram of the data in Table 

11-1. This is just a graph on which each ( , )x yi i  pair is represented as a point plotted in a two-

dimensional coordinate system. This scatter diagram was produced by a computer, and we selected 

an option that shows dot diagrams of the x and y variables along the top and right margins of the 
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graph, respectively, making it easy to see the distributions of the individual variables (box plots or 

histograms could also be selected). Inspection of this scatter diagram indicates that, although no 

simple curve will pass exactly through all the points, there is a strong indication that the points lie 

scattered randomly around a straight line. Therefore, it is probably reasonable to assume that the 

mean of the random variable Y  is related to x by the following straight-line relationship:

E Y x xY x( ) |= μ = β + β0 1

where the slope and intercept of the line are called regression coeffi cients. Although the mean 

of Y  is a linear function of x, the actual observed value y does not fall exactly on a straight 

line. The appropriate way to generalize this to a probabilistic linear model is to assume that the 

expected value of Y  is a linear function of x but that for a fi xed value of x, the actual value of 

Y  is determined by the mean value function (the linear model) plus a random error term, say,

Y x= β + β +0 1 e (11-1)

where e is the random error term. We will call this model the simple linear regression model
because it has only one independent variable or regressor. Sometimes a model like this arises from 

a theoretical relationship. At other times, we will have no theoretical knowledge of the relationship 

between x and y and will base the choice of the model on inspection of a scatter diagram, such as 

we did with the oxygen purity data. We then think of the regression model as an empirical model.
To gain more insight into this model, suppose that we can fi x the value of x and observe the 

value of the random variable Y . Now if x is fi xed, the random component e  on the right-hand 

side of the model in Equation 11-1 determines the properties of Y . Suppose that the mean and 

variance of e  are 0 and σ2, respectively. Then,

E Y x E x x E x|( ) = β + β +( ) = β + β + ( ) = β + β0 1 0 1 0 1e e

Simple Linear 
Regression Model

FIGURE 11-1 Scatter diagram of oxygen purity versus 
hydrocarbon level from Table 11-1.
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TABLE 11-1 Oxygen and Hydrocarbon Levels

Observation 
Number

Hydrocarbon Level 
x(%)

Purity 
y(%)

 1 0.99 90.01

 2 1.02 89.05

 3 1.15 91.43

 4 1.29 93.74

 5 1.46 96.73

 6 1.36 94.45

 7 0.87 87.59

 8 1.23 91.77

 9 1.55 99.42

10 1.40 93.65

11 1.19 93.54

12 1.15 92.52

13 0.98 90.56

14 1.01 89.54

15 1.11 89.85

16 1.20 90.39

17 1.26 93.25

18 1.32 93.41

19 1.43 94.98

20 0.95 87.33
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Notice that this is the same relationship that we initially wrote down empirically from inspec-

tion of the scatter diagram in Fig. 11-1. The variance of Y  given x is

V Y x V x V x V|( ) = β + β +( ) = β + β( ) + ( ) = + σ = σ0 1 0 1
2 20∈ ∈

Thus, the true regression model μ = β + β|Y x x0 1  is a line of mean values; that is, the height 

of the regression line at any value of x is just the expected value of Y  for that x. The slope, 

β1 , can be interpreted as the change in the mean of Y  for a unit change in x. Furthermore, the 

variability of Y  at a particular value of x is determined by the error variance σ2. This implies 

that there is a distribution of Y-values at each x and that the variance of this distribution is the 

same at each x.

For example, suppose that the true regression model relating oxygen purity to hydrocarbon 

level is μ = +|Y x x,75 15  and suppose that the variance is σ2 2= . Figure 11-2 illustrates this 

situation. Notice that we have used a normal distribution to describe the random variation in 
σ2. Because σ2 is the sum of a constant β β0 1+ x (the mean) and a normally distributed random 

variable, Y  is a normally distributed random variable. The variance σ2 determines the variabil-

ity in the observations Y  on oxygen purity. Thus, when σ2 is small, the observed values of Y  

will fall close to the line, and when σ2 is large, the observed values of Y  may deviate consider-

ably from the line. Because σ2 is constant, the variability in Y  at any value of x is the same.

The regression model describes the relationship between oxygen purity Y  and hydro-

carbon level x. Thus, for any value of hydrocarbon level, oxygen purity has a normal  

distribution with mean 75 15+ x  and variance 2. For example, if x = 1 25. , Y  has mean value 

 = 75 + 15(1.25) = 93.75μ ⏐Y x  and variance 2.

In most real-world problems, the values of the intercept and slope ( , )β β0 1  and the error vari-

ance σ2 will not be known and must be estimated from sample data. Then this fitted regression 

equation or model is typically used in prediction of future observations of Y , or for estimating 

the mean response at a particular level of x. To illustrate, a chemical engineer might be interested 

in estimating the mean purity of oxygen produced when the hydrocarbon level is x = 1 25. %. 

This chapter discusses such procedures and applications for the simple linear regression model. 

Chapter 12 will discuss multiple linear regression models that involve more than one regressor.

Historical Note
Sir Francis Galton first used the term regression analysis in a study of the heights of fathers 

( )x  and sons ( )y . Galton fit a least squares line and used it to predict the son’s height from the 

father’s height. He found that if a father’s height was above average, the son’s height would 

also be above average but not by as much as the father’s height was. A similar effect was 

observed for below average heights. That is, the son’s height “regressed” toward the average. 

Consequently, Galton referred to the least squares line as a regression line.

 0 +   1 (1.25)

x = 1.25x = 1.00

bb

  0 +   1 (1.00)bb

 True regression line

   mY|x = b0 + b1x
            = 75 + 15x

          y
(Oxygen

  purity)

  x (Hydrocarbon level)

FIGURE 11-2 The distribution of Y  for a given value of x  
for the oxygen purity-hydrocarbon data.
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Abuses of Regression
Regression is widely used and frequently misused; we mention several common abuses of 

regression briefly here. Care should be taken in selecting variables with which to construct 

regression equations and in determining the form of the model. It is possible to develop sta-

tistically significant relationships among variables that are completely unrelated in a causal 
sense. For example, we might attempt to relate the shear strength of spot welds with the 

number of empty parking spaces in the visitor parking lot. A straight line may even appear to 

provide a good fit to the data, but the relationship is an unreasonable one on which to rely. We 

cannot increase the weld strength by blocking off parking spaces. A strong observed associa-

tion between variables does not necessarily imply that a causal relationship exists between 

them. This type of effect is encountered fairly often in retrospective data analysis and even in 

observational studies. Designed experiments are the only way to determine cause-and-effect 

relationships.

Regression relationships are valid for values of the regressor variable only within the range 

of the original data. The linear relationship that we have tentatively assumed may be valid over 

the original range of x, but it may be unlikely to remain so as we extrapolate—that is, if we use 

values of x beyond that range. In other words, as we move beyond the range of values of R2 for 

which data were collected, we become less certain about the validity of the assumed model. 

Regression models are not necessarily valid for extrapolation purposes.

Now this does not mean do not ever extrapolate. For many problem situations in science and 

engineering, extrapolation of a regression model is the only way to even approach the problem. 

However, there is a strong warning to be careful. A modest extrapolation may be perfectly all 

right in many cases, but a large extrapolation will almost never produce acceptable results.

11-2 Simple Linear Regression
The case of simple linear regression considers a single regressor variable or predictor  

variable x and a dependent or response variable Y . Suppose that the true relationship between 

Y  and x is a straight line and that the observation Y  at each level of x is a random variable. As 

noted previously, the expected value of Y  for each value of x is

E Y x x|( ) = β + β0 1

where the intercept β0 and the slope β1 are unknown regression coefficients. We assume that 

each observation, Y , can be described by the model

    Y x= β + β +0 1 e (11-2)

where e is a random error with mean zero and (unknown) variance σ2. The random errors cor-

responding to different observations are also assumed to be uncorrelated random variables.

Suppose that we have n pairs of observations ( , ), ( , ), , ( , )x y x y x yn n1 1 2 2 … . Figure 11-3 is 

a typical scatter plot of observed data and a candidate for the estimated regression line. The 

estimates of β0 and β1 should result in a line that is (in some sense) a “best fit” to the data. 

The German scientist Karl Gauss (1777–1855) proposed estimating the parameters β0 and β1 

in Equation 11-2 to minimize the sum of the squares of the vertical deviations in Fig. 11-3.

We call this criterion for estimating the regression coefficients the method of least squares. 

Using Equation 11-2, we may express the n observations in the sample as

   y x , i , , , ni i i= β + β + =   0 1 1 2e …  (11-3)

and the sum of the squares of the deviations of the observations from the true regression 

line is

 L y xi
i

n

i i
i

n

= = − β − β( )
= =
∑ ∑e2

1
0 1

2

1

 (11-4)
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The least squares estimators of β0 and β1, say, β̂0 and β̂1 , must satisfy

 

∂
∂β

= −  − β − β( ) =

∂
∂β

= −  − β

β β =

β β

∑L
y x

L
y

i i
i

n

,
i

0

0 1
1

1

0 1

0 1

2 0

2

ˆ , ˆ

ˆ ˆ

ˆ ˆ

ˆ
00 1

1

0− β( ) =
=
∑ ˆ x xi i
i

n

 (11-5)

Simplifying these two equations yields

 

n x y

x x y x

i
i

n

i
i

n

i
i

n

i

n

i i
i

n

i

ˆ ˆ

ˆ ˆ

β + β  =

β  + β  =

= =

= = =

∑ ∑

∑ ∑ ∑

0 1
1 1

0 1
1

2

1 1

 

  (11-6)

Equations 11-6 are called the least squares normal equations. The solution to the normal 

equations results in the least squares estimators β̂0 and β̂ .1

FIGURE 11-3  
Deviations of the data 
from the estimated 
regression model. x

y

Observed value

Data (y)

Estimated

regression line

The least squares estimates of the intercept and slope in the simple linear regression 

model are

 ˆ ˆβ = − β0 1y x  (11-7)

 β̂ =
−

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

−

⎛
=

= =

=

=

∑
∑ ∑

∑
∑

1
1

1 1

2

1

1

y x
y x

n

x
x

i

n
i

n

i

n

i

n
i

n

i i

i i

i

i⎝⎝⎜
⎞
⎠⎟

2

n

 (11-8)

where y n y x n xii
n

ii
n= ( )    = ( ) .= =∑ ∑1 1

1 1
/ /and

Least Squares 
Estimates

The fitted or estimated regression line is therefore

 ˆ ˆ ˆy x= β + β0 1  (11-9)

Note that each pair of observations satisfies the relationship

y x e , i , , , ni i i= β + β + =  …  ˆ ˆ
0 1 1 2

where e y yi i i= − ˆ  is called the residual. The residual describes the error in the fit of the model 

to the ith observation yi. Later in this chapter, we will use the residuals to provide information 

about the adequacy of the fitted model.
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Notationally, it is occasionally convenient to give special symbols to the numerator and 

denominator of Equation 11-8. Given data ( , ), ( , ), , ( , ),x y x y x yn n1 1 2 2 …  let

S x x x
x

n
xx i

i

n

i
i

n i
i

n

= −( )  = −

⎛
⎝⎜

⎞
⎠⎟

= =

=∑ ∑
∑

2

1

2

1

1

2

 (11-10)

and

S y y x x x y
x y

n
xy i i i i

i
i

n

i
i

n

i

n

i

n

= − − = −

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟= =

==

∑ ∑
∑( )( ) 1 1

11

∑∑  
(11-11)

Oxygen Purity We will fi t a simple linear regression model to the oxygen purity data in Table 11-1. 

The following quantities may be computed:

n x y

x y

i i
ii

= = =

= =
==
∑∑20 23 92 1 843 21

1 1960 92 1605

1

20

1

20

. , .

. .

y , xi
i

i
i

2

1

20
2

1

20

170 044 5321 29 2892= . = .
= =
∑ ∑

x y ,i i
i

= .
=
∑ 2 214 6566

1

20

S x
x

xx i
i

i
i= −

⎛
⎝⎜

⎞
⎠⎟

= . −
.( )

=

=∑
∑

2

1

20
1

20
2

2

20
29 2892

23 92

20
= 0.680888

and

S x y
x y

,

xy i i
i

i
i

i
i= −

⎛
⎝⎜

⎞
⎠⎟
 ⎛
⎝⎜

⎞
⎠⎟

= . −

=

= =∑
∑ ∑

1

20
1

20

1

20

20

2 214 6566
223 92 1 843 21

20
10 17744

.( ) .( ) = .
,

Therefore, the least squares estimates of the slope and intercept are

β̂ = = .
.

= .1

10 17744

0 68088
14 94748

S

S
xy

xx

and
ˆ ˆβ = − β = . − .( ) . = .0 1 92 1605 14 94748 1 196 74 28331y x

The fi tted simple linear regression model (with the coeffi cients reported to three decimal places) is

ŷ x= . + .74 283 14 947

This model is plotted in Fig. 11-4, along with the sample data.

Practical Interpretation: Using the regression model, we would predict oxygen purity of ˆ . %y = 89 23  when the 

hydrocarbon level is x = 1 00. %. The 89.23% purity may be interpreted as an estimate of the true population mean 

purity when x = 1 00. %, or as an estimate of a new observation when x = 1 00. %. These estimates are, of course, subject 

to error; that is, it is unlikely that a future observation on purity would be exactly 89.23% when the hydrocarbon level 

is 1.00%. In subsequent sections, we will see how to use confi dence intervals and prediction intervals to describe the 

error in estimation from a regression model.

Example 11-1
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Computer software programs are widely used in regression modeling. These programs 

typically carry more decimal places in the calculations. See Table 11-2 for a portion of 

typical output from a software package for this problem. The estimates β̂0 and β̂1 are high-

lighted. In subsequent sections, we will provide explanations for the information provided 

in this computer output.

11-2 Software Output for the Oxygen Purity Data in Example 11-1

Purity = 74.3 + 14.9 HC Level

Predictor Coef SE Coef T P

Constant 74.283 1.593 46.62 0.000

HC level 14.947 1.317 11.35 0.000

S = 1.087 R-Sq = 87.7% R-Sq (adj) = 87.1%

Analysis of Variance

Source DF SS MS F P

Regression  1 152.13 152.13 128.86 0.000

Residual error 18 21.25 1.18 

Total 19 173.38

Predicted Values for New Observations

New obs Fit SE Fit 95.0% CI 95.0% PI

1 89.231 0.354 (88.486, 89.975) (86.830, 91.632)

Values of Predictors for New Observations

New obs HC Level

1 1.00

90

87

93

96

99

102

0.87 1.07 1.27 1.47 1.67

Hydrocarbon level (%)

O
xy

g
e
n
 p

u
ri

ty
 y

 (
%

)

x

FIGURE 11-4 Scatter plot of oxygen purity y  versus hydrocarbon 
level x  and regression model ŷ x= 74.283 +14.947 .
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Estimating r2

There is actually another unknown parameter in our regression model, σ2 (the variance of the error 

term e). The residuals e y yi i i= − ˆ  are used to obtain an estimate of σ2. The sum of squares of the 

residuals, often called the error sum of squares, is

 SS e y yE i
i

n

i i
i

n

= = −( )
= =
∑ ∑2

1

2

1

ˆ  (11-12)

We can show that the expected value of the error sum of squares is E SS nE( ) ( )= − 2 σ2.  

Therefore, an unbiased estimator of σ2 is

 
σ2

2
=

−
SS

n
E

 
(11-13)

Estimator of Variance

Computing SSE using Equation 11-12 would be fairly tedious. A more convenient computing 

formula can be obtained by substituting ˆ ˆ ˆy xi i= β + β0 1  into Equation 11-12 and simplifying. 

The resulting computing formula is

 SS SS SE T xy= − β̂1  (11-14)

where SS y y y nyT ii
n

ii
n= − = −= =∑ ∑( )2

1

2 2

1
 is the total sum of squares of the response vari-

able y. Formulas such as this are presented in Section 11-4. The error sum of squares and the 

estimate of σ2 for the oxygen purity data, σ̂ = .2 1 18, are highlighted in the computer output in 

Table 11-2.

11-1. Diabetes and obesity are serious health concerns in the 

United States and much of the developed world. Measuring 

the amount of body fat a person carries is one way to monitor 

weight control progress, but measuring it accurately involves 

either expensive X-ray equipment or a pool in which to dunk 

the subject. Instead body mass index (BMI) is often used as a 

proxy for body fat because it is easy to measure: BMI = mass 

(kg)/(height (m))2 = 703 mass(lb)/(height(in))2. In a study of 

250 men at Bingham Young University, both BMI and body 

fat were measured. Researchers found the following summary 

statistics:

x x

y y

i
i

n

i
i

n

i
i

n

i
i

n

= =

= =

∑ ∑

∑ ∑

= =

= =

1

2

1

1

2

1

6322 28 162674 18

4757 90 1

. .

. 007679 27

125471 10
1

.

.x yi i
i

n

=
∑ =

(a)  Calculate the least squares estimates of the slope and 

intercept. Graph the regression line.

(b)  Use the equation of the fitted line to predict what body fat 

would be observed, on average, for a man with a BMI of 30.

(c) Suppose that the observed body fat of a man with a BMI of 

25 is 25%. Find the residual for that observation.

(d) Was the prediction for the BMI of 25 in part (c) an overes-

timate or underestimate? Explain briefly.

11-2. On average, do people gain weight as they age? Using 

data from the same study as in Exercise 11-1, we provide some 

summary statistics for both age and weight. 

x x

y y

i
i

n

i
i

n

i
i

n

i
i

n

= =

= =

∑ ∑

∑ ∑

= =

=

1

2

1

1

2

1

11211 00 543503 00

44520 80

. .

. ==

=
=
∑

8110405 02

1996904 15
1

.

.x yi i
i

n

FOR SECTION 11-2Exercises
 Problem available in WileyPLUS at instructor’s discretion. 

 Tutoring problem available in WileyPLUS at instructor’s discretion.
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(a) Calculate the least squares estimates of the slope and inter-

cept. Graph the regression line.

(b) Use the equation of the fi tted line to predict the weight that 

would be observed, on average, for a man who is 25 years old.

(c) Suppose that the observed weight of a 25-year-old man is 

170 lbs. Find the residual for that observation.

(d) Was the prediction for the 25-year-old in part (c) an overes-

timate or underestimate? Explain briefl y.

11-3.  An article in Concrete Research [“Near Surface 

Characteristics of Concrete: Intrinsic Permeability” (1989, Vol. 

41)] presented data on compressive strength x and intrinsic 

permeability y of various concrete mixes and cures. Summary 

quantities are n y y xi i i = 14, = 572, = 23,530,  = 43,∑ ∑ ∑2

xi
2 157 42∑ = . , and x yi i∑ = 1697 80. . Assume that the two vari-

ables are related according to the simple linear regression model.

(a) Calculate the least squares estimates of the slope and inter-

cept. Estimate σ2 . Graph the regression line.

(b) Use the equation of the fi tted line to predict what permeability 

would be observed when the compressive strength is x = 4 3. .

(c) Give a point estimate of the mean permeability when com-

pressive strength is x = 3 7. .

(d) Suppose that the observed value of permeability at x = 3 7.  is 

y = 46 1. . Calculate the value of the corresponding residual.

11-4.  Regression methods were used to analyze the data 

from a study investigating the relationship between roadway 

surface temperature ( )x  and pavement defl ection ( )y . Summary 

quantities were n y y xi i i= = = =∑ ∑ ∑20 12 75 8 86 14782, . , . , ,

x i
2 143 215 8=∑ , . , and  = 1083.67i ix y∑ .

(a) Calculate the least squares estimates of the slope and inter-

cept. Graph the regression line. Estimate σ2 .

(b) Use the equation of the fi tted line to predict what pavement 

defl ection would be observed when the surface temperature 

is 85°F.

(c) What is the mean pavement defl ection when the surface 

temperature is 90°F?

(d) What change in mean pavement defl ection would be 

expected for a 1°F change in surface temperature?

11-5.  See Table E11-1 for data on the ratings of quarter-

backs for the 2008 National Football League season (The Sports 
Network). It is suspected that the rating ( )y  is related to the aver-

age number of yards gained per pass attempt ( )x .

(a) Calculate the least squares estimates of the slope and inter-

cept. What is the estimate of σ2? Graph the regression 

model.

(b) Find an estimate of the mean rating if a quarterback aver-

ages 7.5 yards per attempt.

(c) What change in the mean rating is associated with a 

decrease of one yard per attempt?

(d) To increase the mean rating by 10 points, how much increase 

in the average yards per attempt must be generated?

(e) Given that x = 7 21.  yards, fi nd the fi tted value of x  and the 

corresponding residual.

11-6.  An article in Technometrics by S. C. Narula and 

J. F. Wellington [“Prediction, Linear Regression, and a Mini-

mum Sum of Relative Errors” (1977, Vol. 19)] presents data 

on the selling price and annual taxes for 24 houses. The data 

are in the Table E11-2.

(a) Assuming that a simple linear regression model is appro-

priate, obtain the least squares fi t relating selling price to 

taxes paid. What is the estimate of σ2?

(b) Find the mean selling price given that the taxes paid are 

x = 7 50. .

E11-1 NFL Data

Player Team
Yards per 
Attempt

Rating 
Points

Philip Rivers SD 8.39 105.5

Chad Pennington MIA 7.67 97.4

Kurt Warner ARI 7.66 96.9

Drew Brees NO 7.98 96.2

Peyton Manning IND 7.21 95

Aaron Rodgers GB 7.53 93.8

Matt Schaub HOU 8.01 92.7

Tony Romo DAL 7.66 91.4

Jeff Garcia TB 7.21 90.2

Matt Cassel NE 7.16 89.4

Matt Ryan ATL 7.93 87.7

Shaun Hill SF 7.10 87.5

Seneca Wallace SEA 6.33 87

Eli Manning NYG 6.76 86.4

Donovan McNabb PHI 6.86 86.4

Jay Cutler DEN 7.35 86

Trent Edwards BUF 7.22 85.4

Jake Delhomme CAR 7.94 84.7

Jason Campbell WAS 6.41 84.3

David Garrard JAC 6.77 81.7

Brett Favre NYJ 6.65 81

Joe Flacco BAL 6.94 80.3

Kerry Collins TEN 6.45 80.2

Ben Roethlis-
berger

PIT 7.04 80.1

Kyle Orton CHI 6.39 79.6

JaMarcus Russell OAK 6.58 77.1

Tyler Thigpen KC 6.21 76

Gus Freotte MIN 7.17 73.7

Dan Orlovsky DET 6.34 72.6

Marc Bulger STL 6.18 71.4

Ryan Fitzpatrick CIN 5.12 70

Derek Anderson CLE 5.71 66.5
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Sale 
Price/
1000

Taxes 
(local, school), 
county)/1000

Sale 
Price/
1000

Taxes 
(local, school), 
county)/1000

25.9 4.9176 30.0 5.0500

29.5 5.0208 36.9 8.2464

27.9 4.5429 41.9 6.6969

25.9 4.5573 40.5 7.7841

29.9 5.0597 43.9 9.0384

29.9 3.8910 37.5 5.9894

30.9 5.8980 37.9 7.5422

28.9 5.6039 44.5 8.7951

35.9 5.8282 37.9 6.0831

31.5 5.3003 38.9 8.3607

31.0 6.2712 36.9 8.1400

30.9 5.9592 45.8 9.1416

E11-2 House Data

(c) Calculate the fi tted value of y  corresponding to x = 5 8980. . 

Find the corresponding residual.

(d) Calculate the fi tted ŷi for each value of xi used to fi t the 

model. Then construct a graph of ŷi versus the correspond-

ing observed value yi and comment on what this plot would 

look like if the relationship between y  and x  was a deter-

ministic (no random error) straight line. Does the plot 

actually obtained indicate that taxes paid is an effective 

regressor variable in predicting selling price?

11-7. The number of pounds of steam used per month by a 

chemical plant is thought to be related to the average ambient 

temperature (in °F) for that month. The past year’s usage and 

temperatures are in the following table:

Month Temp.
Usage/
1000 Month Temp.

Usage/
1000

Jan. 21 185.79 July. 68 621.55

Feb. 24 214.47 Aug. 74 675.06

Mar. 32 288.03 Sept. 62 562.03

Apr. 47 424.84 Oct. 50 452.93

May 50 454.58 Nov. 41 369.95

June 59 539.03 Dec. 30 273.98

(a) Assuming that a simple linear regression model is appro-

priate, fi t the regression model relating steam usage ( )y  to 

the average temperature ( )x . What is the estimate of σ2? 

Graph the regression line.

(b) What is the estimate of expected steam usage when the 

average temperature is 55°F?

(c) What change in mean steam usage is expected when the 

monthly average temperature changes by 1°F?

(d) Suppose that the monthly average temperature is 47°F. 

Calculate the fi tted value of y and the corresponding residual.

11-8.  Table E11-3 presents the highway 

gasoline mileage performance and engine displacement for 

DaimlerChrysler vehicles for model year 2005 (U.S. Environ-

mental Protection Agency).

(a) Fit a simple linear model relating highway miles per gallon ( )y
to engine displacement ( )x  in cubic inches using least squares.

(b) Find an estimate of the mean highway gasoline mile-

age performance for a car with 150 cubic inches engine 

displacement.

(c) Obtain the fi tted value of y  and the corresponding residual 

for a car, the Neon, with an engine displacement of 122 

cubic inches.

11-9. An article in the Tappi Journal (March 1986) presented 

data on green liquor Na2S concentration (in grams per liter) 

and paper machine production (in tons per day). The data (read 

from a graph) follow:

y 40 42 49 46 44 48

x 825 830 890 895 890 910

y 46 43 53 52 54 57 58

x 915 960 990 1010 1012 1030 1050

(a) Fit a simple linear regression model with y = green liquor 

Na
2
S concentration and x = production. Find an estimate 

of σ2
. Draw a scatter diagram of the data and the resulting 

least squares fi tted model.

(b) Find the fi tted value of y  corresponding to x = 910 and the 

associated residual.

(c) Find the mean green liquor Na
2
S concentration when the 

production rate is 950 tons per day.

11-10. An article in the Journal of Sound and Vibration (1991, 

Vol. 151, pp. 383–394) described a study investigating the rela-

tionship between noise exposure and hypertension. The follow-

ing data are representative of those reported in the article.

y 1 0 1 2 5 1 4 6 2 3

x 60 63 65 70 70 70 80 90 80 80

y 5 4 6 8 4 5 7 9 7 6

x 85 89 90 90 90 90 94 100 100 100

(a) Draw a scatter diagram of y (blood pressure rise in milli

 meters of mercury) versus x (sound pressure level in decibels). 

Does a simple linear regression model seem reasonable in this 

situation?

(b) Fit the simple linear regression model using least squares. 

Find an estimate of σ2.

(c) Find the predicted mean rise in blood pressure level associ-

ated with a sound pressure level of 85 decibels.

11-11. An article in Wear (1992, Vol. 152, pp. 171–181) pre-

sents data on the fretting wear of mild steel and oil viscosity. 

Representative data follow with x = oil viscosity and y = wear 

volume (10 4−  cubic millimeters).
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y 240 181 193 155 172

x 1.6 9.4 15.5 20.0 22.0

y 110 113 75 94

x 35.5 43.0 40.5 33.0

(a) Construct a scatter plot of the data. Does a simple linear 

regression model appear to be plausible?

(b) Fit the simple linear regression model using least squares. 

Find an estimate of σ2.

(c) Predict fretting wear when viscosity x = 30.

(d) Obtain the fi tted value of y  when x = 22 0.  and calculate the 

corresponding residual.

11-12.  An article in the Journal of Environmental Engi-
neering (1989, Vol. 115(3), pp. 608–619) reported the results 

of a study on the occurrence of sodium and chloride in surface 

streams in central Rhode Island. The following data are chlo-

ride concentration y (in milligrams per liter) and roadway 

area in the watershed x  (in percentage).

y 4.4 6.6 9.7 10.6 10.8 10.9

x 0.19 0.15 0.57 0.70 0.67 0.63

y 11.8 12.1 14.3 14.7 15.0 17.3

x 0.47 0.70 0.60 0.78 0.81 0.78

y 19.2 23.1 27.4 27.7 31.8 39.5

x 0.69 1.30 1.05 1.06 1.74 1.62

(a) Draw a scatter diagram of the data. Does a simple linear 

regression model seem appropriate here?

(b) Fit the simple linear regression model using the method of 

least squares. Find an estimate of σ2.

(c) Estimate the mean chloride concentration for a watershed 

that has 1% roadway area.

(d) Find the fi tted value corresponding to x = 0 47.  and the 

associated residual.

11-13. A rocket motor is manufactured by bonding together 

two types of propellants, an igniter and a sustainer. The shear 

strength of the bond y  is thought to be a linear function of the 

age of the propellant x  when the motor is cast. Table E11-4 

provides 20 observations.

(a) Draw a scatter diagram of the data. Does the straight-line 

regression model seem to be plausible?

(b) Find the least squares estimates of the slope and inter-

cept in the simple linear regression model. Find an 

estimate of σ2.

(c) Estimate the mean shear strength of a motor made from 

propellant that is 20 weeks old.

(d) Obtain the fi tted values ŷi that correspond to each observed 

value yi. Plot ŷi versus yi and comment on what this plot 

would look like if the linear relationship between shear 

strength and age were perfectly deterministic (no error). 

Does this plot indicate that age is a reasonable choice of 

regressor variable in this model?

11-14.  An article in the Journal of the Ameri-
can Ceramic Society [“Rapid Hot-Pressing of Ultrafi ne PSZ 

Powders” (1991, Vol. 74, pp. 1547–1553)] considered the 

microstructure of the ultrafi ne powder of partially stabilized 

zirconia as a function of temperature. The data follow:

x = Temperature (°C): 1100 1200 1300 1100 1500

1200 1300

y = Porosity (%): 30.8 19.2 6.0 13.5 11.4

7.7 3.6

Carline
Engine 

Displacement (in3)
MPG 

(highway)

300C/SRT-8 215 30.8

CARAVAN 2WD 201 32.5

CROSSFIRE 
ROADSTER

196 35.4

DAKOTA PICKUP 2WD 226 28.1

DAKOTA PICKUP 4WD 226 24.4

DURANGO 2WD 348 24.1

GRAND 
CHEROKEE 2WD

226 28.5

GRAND 
CHEROKEE 4WD

348 24.2

LIBERTY/
CHEROKEE 2WD

148 32.8

LIBERTY/
CHEROKEE 4WD

226 28

NEON/SRT-4/SX 2.0 122 41.3

PACIFICA 2WD 215 30.0

PACIFICA AWD 215 28.2

PT CRUISER 148 34.1

RAM 1500 PICKUP 
2WD

500 18.7

RAM 1500 PICKUP 
4WD

348 20.3

SEBRING 4-DR 165 35.1

STRATUS 4-DR 148 37.9

TOWN & COUNTRY 
2WD

148 33.8

VIPER CONVERTIBLE 500 25.9

WRANGLER/TJ 4WD 148 26.4

E11-3 Gasoline Mileage Data
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(a) Fit the simple linear regression model using the method of 

least squares. Find an estimate of σ2
.

(b) Estimate the mean porosity for a temperature of 1400 °C.

(c) Find the fi tted value corresponding to y = .11 4 and the 

associated residual.

(d) Draw a scatter diagram of the data. Does a simple linear 

regression model seem appropriate here? Explain.

11-15.  An article in the Journal of the Environmental Engi-
neering Division [“Least Squares Estimates of BOD Param-

eters” (1980, Vol. 106, pp. 1197–1202)] took a sample from the 

Holston River below Kingport, Tennessee, during August 1977. 

The biochemical oxygen demand (BOD) test is conducted over 

a period of time in days. The resulting data follow:

Time (days):  1  2 4 6 8 10 12 14 16

18 20

BOD (mg/liter): 0.6 0.7 1.5 1.9 2.1 2.6 2.9 3.7 3.5

3.7 3.8

(a) Assuming that a simple linear regression model is appro-

priate, fi t the regression model relating BOD ( )y  to the time 
( )x . What is the estimate of σ2?

(b) What is the estimate of expected BOD level when the time 

is 15 days?

(c) What change in mean BOD is expected when the time 

changes by three days?

(d) Suppose that the time used is six days. Calculate the fi tted 

value of y  and the corresponding residual.

(e) Calculate the fi tted ŷi for each value of xi used to fi t the 

model. Then construct a graph of ŷi versus the correspond-

ing observed values yi and comment on what this plot 

would look like if the relationship between y  and x  was a 

deterministic (no random error) straight line. Does the plot 

actually obtained indicate that time is an effective regressor 

variable in predicting BOD?

11-16. An article in Wood Science and Technology [“Creep 

in Chipboard, Part 3: Initial Assessment of the Infl uence of 

Moisture Content and Level of Stressing on Rate of Creep 

and Time to Failure” (1981, Vol. 15, pp. 125–144)] reported 

a study of the defl ection (mm) of particleboard from stress 

levels of relative humidity. Assume that the two variables are 

related according to the simple linear regression model. The 

data follow:

x = Stress level (%): 54 54 61 61 68

y = Defl ection (mm): 16.473 18.693 14.305 15.121 13.505

x = Stress level (%): 68 75 75 75

y = Defl ection (mm): 11.640 11.168 12.534 11.224

(a) Calculate the least square estimates of the slope and inter-

cept. What is the estimate of σ2? Graph the regression 

model and the data.

(b) Find the estimate of the mean defl ection if the stress level 

can be limited to 65%.

(c) Estimate the change in the mean defl ection associated with 

a 5% increment in stress level.

(d) To decrease the mean defl ection by one millimeter, how 

much increase in stress level must be generated?

(e) Given that the stress level is 68%, fi nd the fi tted value of 

defl ection and the corresponding residual.

11-17. In an article in Statistics and Computing [“An Iterative 

Monte Carlo Method for Nonconjugate Bayesian Analysis” 

(1991, pp. 119–128)], Carlin and Gelfand investigated the age 

( )x  and length ( )y  of 27 captured dugongs (sea cows).

x = 1.0, 1.5, 1.5, 1.5, 2.5, 4.0, 5.0, 5.0, 7.0, 8.0, 8.5, 9.0, 9.5, 

9.5, 10.0, 12.0, 12.0, 13.0, 13.0, 14.5, 15.5, 15.5, 16.5, 

17.0, 22.5, 29.0, 31.5

y = 1.80, 1.85, 1.87, 1.77, 2.02, 2.27, 2.15, 2.26, 2.47, 2.19, 

2.26, 2.40, 2.39, 2.41, 2.50, 2.32, 2.32, 2.43, 2.47, 2.56, 

2.65, 2.47, 2.64, 2.56, 2.70, 2.72, 2.57

(a) Find the least squares estimates of the slope and the 

intercept in the simple linear regression model. Find an 

estimate of σ2 .

(b) Estimate the mean length of dugongs at age 11.

Observation
Number

Strength y
(psi)

Age x
(weeks)

 1 2158.70 15.50

 2 1678.15 23.75

 3 2316.00  8.00

 4 2061.30 17.00

 5 2207.50  5.00

 6 1708.30 19.00

 7 1784.70 24.00

 8 2575.00  2.50

 9 2357.90  7.50

10 2277.70 11.00

11 2165.20 13.00

12 2399.55  3.75

13 1779.80 25.00

14 2336.75  9.75

15 1765.30 22.00

16 2053.50 18.00

17 2414.40  6.00

18 2200.50 12.50

19 2654.20  2.00

20 1753.70 21.50

E11-4 Propellant Data
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(c) Obtain the fitted values ŷi that correspond to each 

observed value yi. Plot ŷi versus yi, and comment on 

what this plot would look like if the linear relationship 

between length and age were perfectly deterministic (no 

error). Does this plot indicate that age is a reasonable 

choice of regressor variable in this model?

11-18. Consider the regression model developed in Exercise 11-4.

(a) Suppose that temperature is measured in °C rather than °F. 

Write the new regression model.

(b) What change in expected pavement deflection is associated 

with a 1°C change in surface temperature?

11-19.  Consider the regression model developed in Exer-

cise 11-8. Suppose that engine displacement is measured in 

cubic centimeters instead of cubic inches.

(a) Write the new regression model.

(b) What change in gasoline mileage is associated with a 1 cm3 

change is engine displacement?

11-20. Show that in a simple linear regression model the point 

(x, y ) lies exactly on the least squares regression line.

11-21.  Consider the simple linear regression model 

Y = +β0  β1x + e. Suppose that the analyst wants to use 

z x x= −  as the regressor variable.

(a) Using the data in Exercise 11-13, construct one scatter plot 

of the (x , yi i ) points and then another of the (z x x, yi i i= −  )  

points. Use the two plots to intuitively explain how the two 

models, Y x= + +β β0 1 e and Y z= + +β β0 1
* * e, are related.

(b) Find the least squares estimates of β0* and β1* in the model 

Y z= + +β β0 1
* * e. How do they relate to the least squares esti-

mates β̂0 and β̂1?

11-22. Suppose that we wish to fit a regression model for 

which the true regression line passes through the point (0, 0). 

The appropriate model is Y x= +β e. Assume that we have n 

pairs of data ( , ), ( , ), . . . , ( , )x y x y x yn n1 1 2 2 .

(a) Find the least squares estimate of β.

(b) Fit the model Y x= +β e to the chloride concentration-

roadway area data in Exercise 11-12. Plot the fitted model 

on a scatter diagram of the data and comment on the appro-

priateness of the model.

11-3 Properties of the Least Squares Estimators
The statistical properties of the least squares estimators β̂0 and β̂1 may be easily described. Recall 

that we have assumed that the error term e in the model Y x= + +β β0 1 e  is a random variable with 

mean zero and variance σ2. Because the values of x are fixed, Y  is a random variable with mean 

μ = +|Y x xβ β0 1  and variance σ2. Therefore, the values of β̂0 and β̂1 depend on the observed y’s; 

thus, the least squares estimators of the regression coefficients may be viewed as random variables. 

We will investigate the bias and variance properties of the least squares estimators β̂0 and β̂1.

Consider first β̂1. Because β̂1 is a linear combination of the observations Yi, we can use 

properties of expectation to show that the expected value of β̂1 is

 E β̂( ) = β1 1 (11-15)

Thus, β̂1 is an unbiased estimator in simple linear regression of the true slope β1.

Now consider the variance of β̂1. Because we have assumed that V ( ) 2ei = σ , it follows that 

V Yi( ) = σ2. Because β̂1 is a linear combination of the observations Yi, the results in Section 5-5 

can be applied to show that

 V
Sxx

β̂( ) = σ
1

2

 (11-16)

For the intercept, we can show in a similar manner that

 E V
n

x

Sxx

ˆ ˆβ( ) = β β( ) = σ  +
⎡

⎣
⎢

⎤

⎦
⎥0 0 0

2
21

and  (11-17)

Thus, β̂0 is an unbiased estimator of the intercept β0. The covariance of the random 

variables β̂0 and β̂1 is not zero. It can be shown (see Exercise 11-110) that cov(ˆ ˆβ  β0 1, ) 
= −σ2x Sxx/ .

The estimate of σ2 could be used in Equations 11-16 and 11-17 to provide estimates of 

the variance of the slope and the intercept. We call the square roots of the resulting variance 

estimators the estimated standard errors of the slope and intercept, respectively.
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In simple linear regression, the estimated standard error of the slope and the esti-
mated standard error of the intercept are

se
S

se
n

x

Sxx xx

ˆ ˆ ˆ ˆβ1

2

0
2

2
1( ) = σ β( ) = σ +

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

and

respectively, where σ̂2 is computed from Equation 11-13.

Estimated Standard 
Errors

The computer output in Table 11-2 reports the estimated standard errors of the slope and inter-

cept under the column heading SE coeff.

11-4 Hypothesis Tests in Simple Linear Regression
An important part of assessing the adequacy of a linear regression model is testing statistical 

hypotheses about the model parameters and constructing certain confidence intervals. Hypoth-

esis testing in simple linear regression is discussed in this section, and Section 11-5 presents 

methods for constructing confidence intervals. To test hypotheses about the slope and intercept 

of the regression model, we must make the additional assumption that the error component in 

the model, e, is normally distributed. Thus, the complete assumptions are that the errors are nor-

mally and independently distributed with mean zero and variance σ2, abbreviated NID (0, )2σ .

11-4.1 USE OF t-TESTS

Suppose that we wish to test the hypothesis that the slope equals a constant, say, β1,0. The 

appropriate hypotheses are

 H H, ,0 1 1 0 1 1 1 0: :β = β β β≠  (11-18)

where we have assumed a two-sided alternative. Because the errors e
i
 are NID ( , )0 σ2 , it fol-

lows directly that the observations Yi are NID( + , )β β σ2
0 1xi . Now β̂1 is a linear combination 

of independent normal random variables, and consequently, β̂1 is N Sxx( , )β σ1
2 , using the bias 

and variance properties of the slope discussed in Section 11-3. In addition, n −( )σ σ2 2 2ˆ /  has a 

chi-square distribution with n − 2 degrees of freedom, and β̂1 is independent of σ̂2. As a result 

of those properties, the statistic

Test Statistic for 
the Slope

    T
S

,

xx

0
1 1 0

2
= β − β

σ

ˆ

ˆ /
 (11-19)

follows the t distribution with n − 2 degrees of freedom under H0: β β1 = 1,0. We would reject 
H0:β β1 = 1,0  if

 t > t ,n0 2 2α −/  (11-20)

where t0 is computed from Equation 11-19. The denominator of Equation 11-19 is the stand-

ard error of the slope, so we could write the test statistic as

T
se

,
0

1 1 0

1

= β − β
β( )

ˆ

ˆ

A similar procedure can be used to test hypotheses about the intercept. To test

 H H, ,0 0 0 0 1 0 0 0: :β = β β β≠  (11-21)
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we would use the statistic

T

n

x

S

se

,

xx

,
0

0 0 0

2

2

0 0 0

01

= β − β

σ +
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= β − β
β( )

ˆ

ˆ

ˆ

ˆ

 
(11-22)

and reject the null hypothesis if the computed value of this test statistic, t0, is such that 

t > t ,n0 2 2α −/ . Note that the denominator of the test statistic in Equation 11-22 is just the stand-

ard error of the intercept.

A very important special case of the hypotheses of Equation 11-18 is

H H0 1 1 10 0: :β = β ≠  (11-23)

These hypotheses relate to the signifi cance of regression. Failure to reject H0 0:β1 =  is equivalent 

to concluding that there is no linear relationship between x and Y . This situation is illustrated in 

Fig. 11-5. Note that this may imply either that x is of little value in explaining the variation in Y  and 

that the best estimator of Y  for any x is ŷ Y=  [Fig. 11-5(a)] or that the true relationship between 

x and Y  is not linear [Fig. 11-5(b)]. Alternatively, if H0 0: β1 =  is rejected, this implies that x is of 

value in explaining the variability in Y  (see Fig. 11-6). Rejecting H0 0: β1 =  could mean either that 

the straight-line model is adequate [Fig. 11-6(a)] or that, although there is a linear effect of x, better 

results could be obtained with the addition of higher order polynomial terms in x [Fig. 11-6(b)].

Test Statistic for the 
Intercept

x

y

(a)
x

y

(b)

FIGURE 11-5 The 
hypothesis H0 1: 0β =  is 
not rejected.

Oxygen Purity Tests of Coeffi cients We will test for signifi cance of regression using the model 

for the oxygen purity data from Example 11-1. The hypotheses are

H H0 1 1 10 0: :β = β ≠
and we will use α = 0.01. From Example 11-1 and Table 11-2 we have

ˆ ˆβ = . = = . σ = .1
214 947 20 0 68088 1 18n , S ,xx

so the t-statistic in Equation 10-20 becomes

t
S sexx

0
1

2

1

1

14 947

1 18 0 68088
11 35= β

σ
= β

β( ) = .
. .

= .
ˆ

ˆ

ˆ

ˆ/ /

Practical Interpretation: Because the reference value of t is t0 005 18 2 88. , . ,=  the value of the test statistic is very far 

into the critical region, implying that H0 0: β1 =  should be rejected. There is strong evidence to support this claim. The 

P-value for this test is P − . × −~ 1 23 10 9. This was obtained manually with a calculator.

Table 11-2 presents the typical computer output for this problem. Notice that the t-statistic value for the slope is 

computed as 11.35 and that the reported P-value is P = 0 000. . The computer also reports the t-statistic for testing the 

hypothesis H0 0: β0= . This statistic is computed from Equation 11-22, with β0.0 = 0, as t0 46 62= . . Clearly, then, the 

hypothesis that the intercept is zero is rejected.

Example 11-2
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FIGURE 11-6 The 
hypothesis H0 1: 0β =  is 
rejected.

x

y

(a)
x

y

(b)

11-4.2  ANALYSIS OF VARIANCE APPROACH TO TEST  
SIGNIFICANCE OF REGRESSION

A method called the analysis of variance can be used to test for significance of regres-

sion. The procedure partitions the total variability in the response variable into meaning-

ful components as the basis for the test. The analysis of variance identity is as follows:

 y y y y y yi
i

n

i
i

n

i i
i

n

−( ) = −( ) + −( )
= = =
∑ ∑ ∑2

1

2

1

2

1

ˆ ˆ  (11-24)

Analysis of Variance 
Identity

The two components on the right-hand-side of Equation 11-24 measure, respectively, the 

amount of variability in yi accounted for by the regression line and the residual variation 

left unexplained by the regression line. We usually call SS y yE ii
n

i
= −=∑ ( )ˆ

1

2 the error sum 
of squares and SS y yE ii

n= −=∑ ( )ˆ 2

1
 the regression sum of squares. Symbolically, Equation 

11-24 may be written as

 SS SS SST R E= +  (11-25)

where SS y yT ii
n

 = ( )−=∑ 2

1
 is the total corrected sum of squares of y. In Section 11-2, we 

noted that  SS SSE T= − β̂1Sxy (see Equation 11-14), so because SS SST E=  +1
ˆ ,β Sxy  we note that 

the regression sum of squares in Equation 11-25 is SSR  = 1β̂ Sxy. The total sum of squares SST  has 

n − 1 degrees of freedom, and SSR and SSE have 1 and n − 2 degrees of freedom, respectively.

We may show that E SS nE[ / ( )]− = σ2 2 and E SS SR x x( ) = σ + β2
1
2

 and that SSE /σ2 and 

SSR /σ2 are independent chi-square random variables with n − 2 and 1 degrees of freedom, 

respectively. Thus, if the null hypothesis H0 0: β1 =  is true, the statistic

 F
SS

SS n

MS

MS
R

E

R

E
0

1

2
=

−( ) =/
/

 (11-26)

Test for Significance of 
Regression

follows the F n1 2, −  distribution, and we would reject H0 if f f n0 1 2> −α, , . The quantities 

MS SSR R= /1 and MS SS nE E= −/ ( )2  are called mean squares. In general, a mean square is 

always computed by dividing a sum of squares by its number of degrees of freedom. The test 

procedure is usually arranged in an analysis of variance table, such as Table 11-3.
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TABLE 11-3 Analysis of Variance for Testing Signifi cance of Regression

Source of Variation Sum of Squares
Degrees of 
Freedom

Mean 
Square F0

Regression SS SR x y= β̂1 1 MSR MS MSR E

Error SS SS SE T xy= − β̂1
n − 2 MSE

Total SST n − 1

Note that MSE = σ̂2
.

Note that the analysis of variance procedure for testing for signifi cance of regression is 

equivalent to the t-test in Section 11-4.1. That is, either procedure will lead to the same con-

clusions. This is easy to demonstrate by starting with the t-test statistic in Equation 11-19 with 

β1,0 = 0, say

 T
Sxx

0
1

2
=

ˆ

ˆ /

β
σ

 (11-27)

Squaring both sides of Equation 11-27 and using the fact that σ̂ =2 MSE results in

 T
S

MS

S

MS

MS

MS
x x

E

xy

E

R

E
0
2 1

2
1=

β
=

β
=

ˆ ˆ
 (11-28)

Note that T 0
2 in Equation 11-28 is identical to F0 in Equation 11-26. It is true, in general, that 

the square of a t random variable with v degrees of freedom is an F  random variable with 1 

and v degrees of freedom in the numerator and denominator, respectively. Thus, the test using 

T0 is equivalent to the test based on F0. Note, however, that the t-test is somewhat more fl ex-

ible in that it would allow testing against a one-sided alternative hypothesis, while the F-test 

is restricted to a two-sided alternative.

Oxygen Purity ANOVA We will use the analysis of variance approach to test for signifi cance 

of regression using the oxygen purity data model from Example 11-1. Recall that SST = 173 38. , 

β̂ = .1 14 947, Sxy = 10 17744. , and n = 20. The regression sum of squares is

SS SR x y= β = .( ) . = .ˆ
1 14 947 10 17744 152 13

and the error sum of squares is

SS SS SSE T R= − = . − . = .173 38 152 13 21 25

The analysis of variance for testing H0 0: β1 =  is summarized in the computer output in Table 11-2. The test statistic 

is f MS MSR E0 = /  = 152.13 /1.18 = 128.86, for which we fi nd that the P-value is P − × −~ . ,1 23 10 9  so we conclude that 

β1 is not zero.

Frequently computer packages have minor differences in terminology. For example, sometimes the regression 

sum of squares is called the “model” sum of squares, and the error sum of squares is called the “residual” sum 

of squares.

Example 11-3
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11-23.  Recall the regression of percent body fat on BMI 

from Exercise 11-1.

(a) Estimate the error standard deviation.

(b) Estimate the standard deviation of the slope. 

(c) What is the value of the t-statistic for the slope?

(d) Test the hypothesis that β1 0=  at α = 0 05. . What is the 

P-value for this test?

11-24.  Recall the regression of weight on age from  

Exercise 11-2.

(a) Estimate the error standard deviation. 

(b) Estimate the standard deviation of the slope. 

(c) What is the value of the t-statistic for the slope?

(d) Test the hypothesis that β1 0=  at α = 0 05. . What is the 

P-value for this test?

11-25. Suppose that in Exercise 11-24 weight is measured in 

kg instead of lbs.

(a) How will the estimates of the slope and intercept change?

(b) Estimate the error standard deviation.

(c) Estimate the standard deviation of the slope.

(d) What is the value of the t-statistic for the slope? Compare 

your answer to the one for Exercise 11-24(c).

(e) Test the hypothesis that β1 0=  at α = 0 05. . What is the 

P-value for this test? Compare your answer to the one for 

Exercise 11-24(d). Comment briefly.

11-26. Consider the simple linear regression model y = 

10 25+ +x ε where the random error term is normally and 

independently distributed with mean zero and standard  

deviation 2. Use software to generate a sample of eight 

observations, one each at the levels x = 10, 12, 14, 16, 18, 

20, 22, and 24.

(a) Fit the linear regression model by least squares and find the 

estimates of the slope and intercept.

(b) Find the estimate of σ2.

(c) Find the standard errors of the slope and intercept.

(d) Now use software to generate a sample of 16 observations, 

two each at the same levels of x used previously. Fit the 

model using least squares.

(e) Find the estimate of σ2  for the new model in part (d). 

Compare this to the estimate obtained in part (b). 

What impact has the increase in sample size had on the 

estimate?

(f) Find the standard errors of the slope and intercept using the 

new model from part (d). Compare these standard errors 

to the ones that you found in part (c). What impact has 

the increase in sample size had on the estimated standard 

errors?

11-27.  Consider the following computer output.

The regression equation is

Y = 12.9 + 2.34 x

Predictor Coef SE Coef T P

Constant 12.857 1.032 ? ?

X  2.3445  0.1150 ? ?

S = 1.48111    R-sq = 98.1%    R-sq(adj) = 97.9%

Analysis of Variance

Source DF SS MS F P

Regression 1 912.43 912.43 ? ?

Residual error 8  17.55 ?

Total 9 929.98

(a) Fill in the missing information. You may use bounds for the 

P-values.

(b) Can you conclude that the model defines a useful linear 

relationship?

(c) What is your estimate of σ2?

11-28.  Consider the following computer output.

The regression equation is
Y = 26.8 + 1.48 x

Predictor Coef SE Coef T P

Constant 26.753 2.373 ? ?

X 1.4756 0.1063 ? ?

S = 2.70040        R-sq = 93.7%        R-sq (adj) = 93.2%

Analysis of Variance

Source DF SS MS F P

Regression 1 ? ? ? ?

Residual error ? 94.8 7.3

Total 15 1500.0

(a) Fill in the missing information. You may use bounds for the 

P-values.

(b) Can you conclude that the model defines a useful linear 

relationship?

(c) What is your estimate of σ2
?

11-29. Consider the data from Exercise 11-3 on x = compres-

sive strength and y = intrinsic permeability of concrete.

(a) Test for significance of regression using α = 0.05. Find 

the P-value for this test. Can you conclude that the model 

specifies a useful linear relationship between these two 

variables?

(b) Estimate σ2  and the standard deviation of β̂ .1

(c) What is the standard error of the intercept in this model?

FOR SECTION 11-4Exercises
 Problem available in WileyPLUS at instructor’s discretion. 

 Tutoring problem available in WileyPLUS at instructor’s discretion.
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446   Chapter 11/Simple Linear Regression and Correlation

11-30.  Consider the data from Exercise 11-4 

on x = roadway surface temperature and y = pavement deflection.

(a) Test for significance of regression using α = 0.05. Find the 

P-value for this test. What conclusions can you draw?

(b) Estimate the standard errors of the slope and intercept.

11-31.  Consider the National Football League data in 

Exercise 11-5.

(a) Test for significance of regression using α = .0 01. Find the 

P-value for this test. What conclusions can you draw?

(b) Estimate the standard errors of the slope and intercept.

(c) Test H0 1 10: β =  versus H1 1 10: β ≠  with α = .0 01. Would 

you agree with the statement that this is a test of the 

hypothesis that a one-yard increase in the average yards 

per attempt results in a mean increase of 10 rating points?

11-32. Consider the data from Exercise 11-6 on y = sales 

price and x = taxes paid.

(a) Test H0 0: β1 =  using the t-test; use α = .0 05.

(b) Test H0 0: β1 =  using the analysis of variance with α = .0 05. 

Discuss the relationship of this test to the test from part (a).

(c) Estimate the standard errors of the slope and intercept.

(d) Test the hypothesis that β0 = 0.

11-33. Consider the data from Exercise 11-7 on y = steam 

usage and x = average temperature.

(a) Test for significance of regression using α = .0 01. What is 

the P-value for this test? State the conclusions that result 

from this test.

(b) Estimate the standard errors of the slope and intercept.

(c) Test the hypothesis H0 10: β1 =  versus H1 10: β1 ≠  using 

α = 0.01. Find the P-value for this test.

(d) Test H0 0: β0 =  versus H0 0: β0 ≠  using α = 0.01. Find the 

P-value for this test and draw conclusions.

11-34.  Consider the data from Exercise 11-8 on y = high-

way gasoline mileage and x = engine displacement.

(a) Test for significance of regression using α = 0.01. Find the 

P-value for this test. What conclusions can you reach?

(b) Estimate the standard errors of the slope and intercept.

(c) Test H0 0 05: .β1 = −  versus H1 0 05: .β1 < −  using α = 0.01 

and draw conclusions. What is the P-value for this test?

(d) Test the hypothesis H0 0: β0 =  versus H1 0: β0 ≠  using 

α = 0.01. What is the P-value for this test?

11-35. Consider the data from Exercise 11-9 on y = green liq-

uor Na
2
S concentration and x = production in a paper mill.

(a) Test for significance of regression using α = .0 05. Find the 

P-value for this test.

(b) Estimate the standard errors of the slope and intercept.

(c) Test H0 0: β0 =  versus H1 0: β0 ≠  using α = 0.05. What is the 

P-value for this test?

11-36. Consider the data from Exercise 11-10 on y = blood 

pressure rise and x = sound pressure level.

(a) Test for significance of regression using α = 0.05. What is 

the P-value for this test?

(b) Estimate the standard errors of the slope and intercept.

(c) Test H0 0: β0 =  versus H1 0: β0 ≠  using α = .0 05. Find the 

P-value for this test.

11-37.  Consider the data from Exercise 11-13, on y = shear  

strength of a propellant and x = propellant age.

(a) Test for significance of regression with α = 0.01. Find the 

P-value for this test.

(b) Estimate the standard errors of β̂0 and β̂ .1

(c) Test H0 30: β1 = −  versus H1 30: β1 ≠ −  using α = 0.01. What 

is the P-value for this test?

(d) Test H0 0: β0 =  versus H1 0: β0 ≠  using α = 0.01. What is 

the P-value for this test?

(e) Test H0 2500: β0 =  versus H1 2500: β0 >  using α = 0.01. 

What is the P-value for this test?

11-38. Consider the data from Exercise 11-12 on y = chloride 

concentration in surface streams and x = roadway area.

(a) Test the hypothesis H0 0: β1 =  versus H1 0: β1 ≠  using the 

analysis of variance procedure with α = 0.01.

(b) Find the P-value for the test in part (a).

(c) Estimate the standard errors of β̂1 and β̂ .0

(d) Test H0 0: β1 =  versus H1 0: β0 ≠  using α = 0.01. What con-

clusions can you draw? Does it seem that the model might 

be a better fit to the data if the intercept were removed?

11-39.  Consider the data in Exercise 11-15 on 

y = oxygen demand and x = time.

(a) Test for significance of regression using α = .0 01. Find the 

P-value for this test. What conclusions can you draw?

(b) Estimate the standard errors of the slope and intercept.

(c) Test the hypothesis that β =0 0.

11-40.  Consider the data in Exercise 11-16 on 

y = deflection and x =  stress level.

(a) Test for significance of regression using α = .0 01. What is 

the P-value for this test? State the conclusions that result 

from this test.

(b) Does this model appear to be adequate?

(c) Estimate the standard errors of the slope and intercept.

11-41.  An article in The Journal of Clinical 
Endocrinology and Metabolism [“Simultaneous and Continuous 

24-Hour Plasma and Cerebrospinal Fluid Leptin Measurements: 

Dissociation of Concentrations in Central and Peripheral Com-

partments” (2004, Vol. 89, pp. 258–265)] reported on a study of 

the demographics of simultaneous and continuous 24-hour plasma 

and cerebrospinal fluid leptin measurements. The data follow:

y = BMI (kg/m2): 19.92 20.59 29.02 20.78 25.97

20.39 23.29 17.27 35.24

x = Age (yr): 45.5 34.6 40.6 32.9 28.2 30.1

52.1 33.3 47.0

(a) Test for significance of regression using α = .0 05. Find 

the P-value for this test. Can you conclude that the model 

specifies a useful linear relationship between these two 

variables?

(b) Estimate σ2 and the standard deviation of β̂1.

(c) What is the standard error of the intercept in this model?

11-42.  Suppose that each value of xi is multiplied by 

a positive constant a, and each value of yi is multiplied by 
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11-5 Confi dence Intervals

11-5.1 CONFIDENCE INTERVALS ON THE SLOPE AND INTERCEPT

In addition to point estimates of the slope and intercept, it is possible to obtain confi dence 
interval estimates of these parameters. The width of these confi dence intervals is a measure 

of the overall quality of the regression line. If the error terms, ei, in the regression model are 

normally and independently distributed,

ˆ ˆ ˆ ˆβ − β( ) σ β − β( ) σ +
⎡

⎣
⎢

⎤

⎦
⎥1 1

2
0 0

2
21

S
n

x

S
xx

xx

and

are both distributed as t random variables with n − 2 degrees of freedom. This leads to the fol-

lowing defi nition of 100 1( )%− α  confi dence intervals on the slope and intercept.

another positive constant b. Show that the t-statistic for testing 

H0 0: β1 =  versus H1 0: β1 ≠  is unchanged in value.

11-43.  The type II error probability for the t-test for 

H0: β β1 1,0=  can be computed in a similar manner to the 

t-tests of Chapter 9. If the true value of β1 is β′
1 , the value 

d n S, xx= β − β ′ σ −1 0 1 1/ ( /  is calculated and used as the hor-

izontal scale factor on the operating characteristic curves for 

the t-test (Appendix Charts VIIe through VIIh) and the type II 

error probability is read from the vertical scale using the curve 

for n − 2 degrees of freedom. Apply this procedure to the foot-

ball data in Exercise 11-3, using σ = 5.5 and β′1 12 5= .  where 

the hypotheses are H0 10: β1 =  versus H0 10: β1 ≠ .

11-44.  Consider the no-intercept model Y = βx + e

with the e’s NID ( , )0 σ2
. The estimate of σ2  is s2 =

( )y x ni it

n − β −=∑ ˆ / ( )2

1
1  and V xii

n( ) = σβ̂ =∑2 2

1  
.

(a) Devise a test statistic for H0: β = 0 versus H1: β 0≠ .

(b) Apply the test in (a) to the model from Exercise 11-22.

Under the assumption that the observations are normally and independently distrib-

uted, a 100 1( )%− α  confi dence interval on the slope β1 in simple linear regression is

 ˆ ˆ ˆ ˆ
β − σ ≤ β ≤ β + σ

α − α −1 2 2

2

1 1 2 2

2

t
S

t
S

,n
x x

,n
x x

/ /  (11-29)

Similarly, a 100 1( )%− α  confi dence interval on the intercept β0 is

 ˆ ˆ ˆ ˆβ − σ +
⎡

⎣
⎢

⎤

⎦
⎥ ≤ β ≤ β + σ +

⎡

⎣
α − α −0 2 2

2
2

0 0 2 2
2

21 1
t

n

x

S
t

n

x

S
,n

x x
,n

x x
/ / ⎢⎢

⎤

⎦
⎥  (11-30)

Confi dence Intervals on 
Parameters

Oxygen Purity  Confi dence Interval on the Slope We will fi nd a 95% confi dence interval on the 

slope of the regression line using the data in Example 11-1. Recall that β̂ = .1 14 947, Sxx = 0 68088. , 

and σ̂ = .2 1 18 (see Table 11-2). Then, from Equation 11-29, we fi nd

ˆ ˆ ˆ ˆ
β − σ ≤ β ≤ β + σ

. .1 0 025 18

2

1 1 0 025 18

2

t
S

t
S

,
xx

,
xx

or

14 947 2 101
1 18

0 68088
14 947 2 101

1 18

0 68088
1. − . .

.
≤ β ≤ . + . .

.
This simplifi es to

12 181 17 7131. ≤ β ≤ .
Practical Interpretation: This CI does not include zero, so there is strong evidence (at α = 0.05) that the slope is not 

zero. The CI is reasonably narrow ( . )± 2 766  because the error variance is fairly small.

Example 11-4
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448   Chapter 11/Simple Linear Regression and Correlation

A 100 1( )%− α  confi dence interval on the mean response at the value of x x= 0, say 

μ |Y x0
, is given by

ˆ , ˆμ − α − σ +
−( )⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥Y x

x x

t n
n

x x

S⏐ 0
2 2

12 0

2

 ≤ μ ≤ μ + σ +
−( )⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

| | α −Y x Y x ,n
x x

t
n

x x

S0 0 2 2
2 0

2
1ˆ ˆ/  (11-31)

where ˆ ˆ ˆμ = β + β|Y x x
0 0 1 0 is computed from the fi tted regression model.

Confi dence Interval on 
the Mean Response

11-5.2 CONFIDENCE INTERVAL ON THE MEAN RESPONSE

A confi dence interval may be constructed on the mean response at a specifi ed value of x, say, 

x0. This is a confi dence interval about E Y x Y x( )0 0
= μ  and is sometimes referred to as a confi -

dence interval about the regression line. Because E Y x xY x( ) ,0 00
= = +μ β β0 1  we may obtain a 

point estimate of the mean of Y  at x x= 0( )μY x0
 from the fi tted model as

ˆ ˆ ˆμ = β + β|Y x x
0 0 1 0

Now μ̂ |Y x0
 is an unbiased point estimator of μY x0

 because β̂0 and β̂1 are unbiased estimators of 

β0 and β1. The variance of μ̂ |Y x0
 is

V
n

x x

S
Y x

x x

ˆ ( )μ( ) = σ + −⎡

⎣
⎢

⎤

⎦
⎥| 0

2 0
21

This last result follows from the fact that ˆ ˆ ( )μ = + β −|Y x y x x
0 1 0  and cov ( )Y, β = .ˆ

1 0  The zero 

covariance result is left as a mind-expanding exercise. Also, μ̂ |Y x0
 is normally distributed because 

β̂1 and β̂0 are normally distributed, and if we use σ̂2 as an estimate of σ2, it is easy to show that

ˆ

ˆ ( )

μ

σ + −⎡

⎣
⎢

⎤

⎦
⎥

Y x Y x

x xn

x x

S

⏐ ⏐− μ
0 0

2 0
21

has a t distribution with n − 2 degrees of freedom. This leads to the following confi dence 

interval defi nition.

Note that the width of the CI for μ |Y x0
 is a function of the value specifi ed for x0. The interval 

width is a minimum for x x0 =  and widens as x x0 −  increases.

Oxygen Purity  Confi dence Interval on the Mean Response We will construct a 95% 

confi dence interval about the mean response for the data in Example 11-1. The fi tted model is 

μ̂ = . + .|Y x x ,
0

74 283 14 947 0  and the 95% confi dence interval on μ |Y x0
 is found from Equation 11-31 as

μ̂ ± . . +
− .( )
.

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

|Y x

x
0

2 101 1 18
1

20

1 1960

0 68088

0

2

Suppose that we are interested in predicting mean oxygen purity when x0 1 00= . %. Then

μ̂ = . + . .( ) = .| .Y x1 00
74 283 14 947 1 00 89 23

Example 11-5
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and the 95% confi dence interval is

89 23 2 101 1 18
1

20

1 00 1 1960

0 68088

2

. ± . . +
. − .( )

.

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

or

89 23 0 75. ± .
Therefore, the 95% CI on μ | .Y 1 00 is

88 48 89 981 00. ≤ μ ≤ .Y | .

This is a reasonably narrow CI.

Most computer software will also perform these calculations. Refer to Table 11-2. The predicted value of y at 

x = 1 00.  is shown along with the 95% CI on the mean of y at this level of x.

By repeating these calculations for several different values for x
0
, we can obtain confi dence limits for each correspond-

ing value of μ |Y x0
. Figure 11-7 is a display of the scatter diagram with the fi tted model and the corresponding 95% confi -

dence limits plotted as the upper and lower lines. The 95% confi dence level applies only to the interval obtained at one value 

of x, not to the entire set of x-levels. Notice that the width of the confi dence interval on μ |Y x0
 increases as x x0 −  increases.

11-6 Prediction of New Observations
An important application of a regression model is predicting new or future observations Y  

corresponding to a specifi ed level of the regressor variable x. If x0 is the value of the regressor 

variable of interest,

 ˆ ˆ ˆY x0 0 1 0= β + β  (11-32)

is the point estimator of the new or future value of the response Y0.

Now consider obtaining an interval estimate for this future observation Y0. This new obser-

vation is independent of the observations used to develop the regression model. Therefore, the 

confi dence interval for μ |Y x0
 in Equation 11-31 is inappropriate because it is based only on 

the data used to fi t the regression model. The confi dence interval about μ |Y x0
 refers to the true 

mean response at x x= 0 (that is, a population parameter), not to future observations.

FIGURE 11-7 Scatter 
diagram of oxygen purity 
data from Example 11-1 
with fi tted regression 
line and 95 percent con-
fi dence limits on μ |Y x0

.
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A 100 1( )%− α  prediction interval on a future observation Y0 at the value x0 is given by

ˆ ˆy t
n

x x

S
,n

x x
0 2 2

2 0

2

1
1− σ + +

−( )⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

α −/

 ≤ ≤ + σ + +
−( )⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

α −Y y t
n

x x

S
,n

xx
0 0 2 2

2 0

2

1
1

ˆ ˆ/  (11-33)

The value ŷ0 is computed from the regression model ˆ ˆ ˆy x0 0 1 0= β + β .

Prediction Interval

Notice that the prediction interval is of minimum width at x x0 =  and widens as x x0 −
increases. By comparing Equation 11-33 with Equation 11-31, we observe that the prediction 

interval at the point x0 is always wider than the confi dence interval at x0. This results because 

the prediction interval depends on both the error from the fi tted model and the error associated 

with future observations.

Oxygen Purity  Prediction Interval To illustrate the construction of a prediction interval, suppose 

that we use the data in Example 11-1 and fi nd a 95% prediction interval on the next observation of 

oxygen purity at x0 1 00= . %. Using Equation 11-33 and recalling from Example 11-5 that ŷ0 89 23= . , we fi nd that the 

prediction interval is

89 23 2 101 1 18 1
1

20

1 00 1 1960

0 68088

89 23

2

0

. − . . + + . − .
.

⎡

⎣
⎢

⎤

⎦
⎥

≤ ≤ . +

( )

Y 22 101 1 18 1
1

20

1 00 1 1960

0 68088

2

. . + + . − .
.

⎡

⎣
⎢

⎤

⎦
⎥

( )

which simplifi es to

86 83 91 630. ≤ ≤ .y

This is a reasonably narrow prediction interval.

Example 11-6

Let Y0 be the future observation at x x= 0, and let Ŷ0 given by Equation 11-32 be the estima-

tor of Y0. Note that the error in prediction

ep̂
ˆ= Y Y0 − 0

is a normally distributed random variable with mean zero and variance

V( ) ( − ) α +e V Y Y
n

x x

S
p

xx
ˆ

ˆ ( )= = + −⎡

⎣
⎢

⎤

⎦
⎥0 0

2 0
2

1
1

because Y0 is independent of Ŷ0. If we use σ̂2 to estimate σ2, we can show that

Y Y

n

x x

Sx x

0 0

2 0
2

1
1

−

σ + + −⎡

⎣
⎢

⎤

⎦
⎥

ˆ

ˆ ( )

has a t distribution with n − 2 degrees of freedom. From this, we can develop the following 

prediction interval defi nition.
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Typical computer software will also calculate prediction intervals. Refer to the output in Table 11-2. The 95% PI on 

the future observation at x0 1 00= .  is shown in the display.

By repeating the foregoing calculations at different levels of x0, we may obtain the 95% prediction intervals shown 

graphically as the lower and upper lines about the fi tted regression model in Fig. 11-8. Notice that this graph also shows 

the 95% confi dence limits on μ |Y x0
 calculated in Example 11-5. It illustrates that the prediction limits are always wider 

than the confi dence limits.
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FIGURE 11-8  Scatter diagram of oxygen purity data from Example 11-1 with fi tted 
regression line, 95% prediction limits (outer lines), and 95% confi dence limits on μY x| 0

.

11-45.  Using the regression from Exercise 11-1, 

(a) Find a 95% confi dence interval for the slope.

(b) Find a 95% confi dence interval for the mean percent body 

fat for a man with a BMI of 25.

(c) Find a 95% prediction interval for the percent body fat for 

a man with a BMI of 25.

(d) Which interval is wider, the confi dence interval or the pre-

diction interval? Explain briefl y.

11-46.  Using the regression from Exercise 11-2, 

(a) Find a 95% confi dence interval for the slope.

(b) Find a 95% confi dence interval for the mean weight for a 

man 25 years old.

(c) Find a 95% prediction interval for the weight of a 25 year 

old man.

(d) Which interval is wider, the confi dence interval or the pre-

diction interval? Explain briefl y.

(e) Without using age, fi nd a 95% confi dence interval for the 

mean weight of all men. Compare this to the interval in 

part (b). 

11-47.  Refer to the data in Exercise 11-3 on y = intrinsic 

permeability of concrete and x = compressive strength. Find a 

95% confi dence interval on each of the following:

(a) Slope   (b) Intercept

(c) Mean permeability when x = 2 5.

(d) Find a 95% prediction interval on permeability when 

x = 2 5. . Explain why this interval is wider than the interval 

in part (c).

11-48.  Exercise 11-4 presented data on roadway surface 

temperature x  and pavement defl ection y . Find a 99% confi -

dence interval on each of the following:

(a) Slope   (b) Intercept

(c) Mean defl ection when temperature x = °85 F

FOR SECTIONS 11-5 AND 11-6Exercises
 Problem available in WileyPLUS at instructor’s discretion. 

 Tutoring problem available in WileyPLUS at instructor’s discretion.
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11-7 Adequacy of the Regression Model
Fitting a regression model requires making several assumptions. Estimating the model 

parameters requires assuming that the errors are uncorrelated random variables with mean 

zero and constant variance. Tests of hypotheses and interval estimation require that the errors 

be normally distributed. In addition, we assume that the order of the model is correct; that 

is, if we fit a simple linear regression model, we are assuming that the phenomenon actually 

behaves in a linear or first-order manner.

The analyst should always consider the validity of these assumptions to be doubtful and 

conduct analyses to examine the adequacy of the model that has been tentatively entertained. 

In this section, we discuss methods useful in this respect.

(d) Find a 99% prediction interval on pavement deflection 

when the temperature is 90°F.

11-49. Refer to the NFL quarterback ratings data in Exer-

cise 11-5. Find a 95% confidence interval on each of the 

following:

(a) Slope  (b) Intercept

(c) Mean rating when the average yards per attempt is 8.0

(d) Find a 95% prediction interval on the rating when the aver-

age yards per attempt is 8.0.

11-50.  Refer to the data on y = house selling price and 
x = taxes paid in Exercise 11-6. Find a 95% confidence interval 

on each of the following:

(a) β1  (b) β0

(c) Mean selling price when the taxes paid are x = 7 50.
(d) Compute the 95% prediction interval for selling price when 

the taxes paid are x = 7 50. .

11-51. Exercise 11-7 presented data on y = steam usage and 

x = monthly average temperature.

(a) Find a 99% confidence interval for β1.

(b) Find a 99% confidence interval for β0.

(c) Find a 95% confidence interval on mean steam usage when 

the average temperature is 55°F.

(d) Find a 95% prediction interval on steam usage when tem-

perature is 55°F. Explain why this interval is wider than the 

interval in part (c).

11-52. Exercise 11-8 presented gasoline mileage performance 

for 21 cars along with information about the engine displacement. 

Find a 95% confidence interval on each of the following:

(a) Slope          (b) Intercept

(c) Mean highway gasoline mileage when the engine displace-

ment is x = 150 in3

(d) Construct a 95% prediction interval on highway gasoline 

mileage when the engine displacement is x = 150 in3.

11-53.  Consider the data in Exercise 11-9 on y = green 

liquor Na
2
S concentration and x = production in a paper mill. 

Find a 99% confidence interval on each of the following:

(a) β1  (b) β0

(c) Mean Na
2
S concentration when production x = 910  

tons/day

(d) Find a 99% prediction interval on Na
2
S concentration when 

x = 910 tons/day.

11-54. Exercise 11-10 presented data on y = blood pressure 

rise and x = sound pressure level. Find a 95% confidence inter-

val on each of the following:

(a) β1  (b) β0

(c) Mean blood pressure rise when the sound pressure level is 

85 decibels

(d) Find a 95% prediction interval on blood pressure rise when 

the sound pressure level is 85 decibels.

11-55.  Refer to the data in Exercise 11-11 on y = wear 

volume of mild steel and x = oil viscosity. Find a 95% confi-

dence interval on each of the following:

(a) Intercept (b) Slope

(c) Mean wear when oil viscosity x = 30

11-56. Exercise 11-12 presented data on chloride concen-

tration y and roadway area x on watersheds in central Rhode 

Island. Find a 99% confidence interval on each of the following:

(a) β1  (b) β0

(c) Mean chloride concentration when roadway area x = 1 0. %
(d) Find a 99% prediction interval on chloride concentration 

when roadway area x = 1 0. %.

11-57.  Refer to the data in Exercise 11-13 on rocket 

motor shear strength y and propellant age x . Find a 95% confi-

dence interval on each of the following:

(a) Slope β1 (b) Intercept β0

(c) Mean shear strength when age x = 20 weeks

(d) Find a 95% prediction interval on shear strength when age 

x = 20 weeks.

11-58. Refer to the data in Exercise 11-14 on the microstruc-

ture of zirconia. Find a 95% confidence interval on each of the 

following:

(a) Slope  (b) Intercept

(c) Mean length when x = 1500

(d) Find a 95% prediction interval on length when x = .1500  

Explain why this interval is wider than the interval in 

part (c).

11-59.  Refer to the data in Exercise 11-15 on oxygen 

demand. Find a 99% confidence interval on each of the following:

(a) β1  (b) β0

(c) Find a 95% confidence interval on mean BOD when the 

time is eight days.
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11-7.1 RESIDUAL ANALYSIS

The residuals from a regression model are e y y , i , , , ni i i= −  =  …  ˆ 1 2  where yi is an actual 

observation and ŷi is the corresponding fitted value from the regression model. Analysis of the 

residuals is frequently helpful in checking the assumption that the errors are approximately 

normally distributed with constant variance and in determining whether additional terms in 

the model would be useful.

As an approximate check of normality, the experimenter can construct a frequency histo-

gram of the residuals or a normal probability plot of residuals. Many computer programs 

will produce a normal probability plot of residuals, and because the sample sizes in regression 

are often too small for a histogram to be meaningful, the normal probability plotting method is 

preferred. It requires judgment to assess the abnormality of such plots. (Refer to the discussion 

of the “fat pencil” method in Section 6-6).

We may also standardize the residuals by computing d ei i= σ/ ˆ ,2  i n= …1 2, , , . If the 

errors are normally distributed, approximately 95% of the standardized residuals should fall 

in the interval (–2, +2). Residuals that are far outside this interval may indicate the presence of 

an outlier, that is, an observation that is not typical of the rest of the data. Various rules have 

been proposed for discarding outliers. However, they sometimes provide important informa-

tion about unusual circumstances of interest to experimenters and should not be automatically 

discarded. For further discussion of outliers, see Montgomery, Peck, and Vining (2012).

It is frequently helpful to plot the residuals (1) in time sequence (if known), (2) against  

the ŷi, and (3) against the independent variable x. These graphs will usually look like one of the  

four general patterns shown in Fig. 11-9. Pattern (a) in Fig. 11-9 represents the ideal situa-

tion, and patterns (b), (c), and (d) represent anomalies. If the residuals appear as in (b), the 

variance of the observations may be increasing with time or with the magnitude of yi or xi

. Data transformation on the response y is often used to eliminate this problem. Widely used 

variance-stabilizing transformations include the use of y , ln y, or 1 / y as the response. See 

FIGURE 11-9 Patterns for residual plots. (a) Satisfactory. (b) Funnel. (c) Double bow.  
(d) Nonlinear. [Adapted from  Montgomery, Peck, and Vining (2012).]
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Montgomery, Peck, and Vining (2012) for more details regarding methods for selecting an 

appropriate transformation. Plots of residuals against ŷi and xi that look like (c) also indicate 

inequality of variance. Residual plots that look like (d) indicate model inadequacy; that is, 

higher order terms should be added to the model, a transformation on the x-variable or the 

y-variable (or both) should be considered, or other regressors should be considered.

TABLE 11-4 Oxygen Purity Data from Example 11-1, Predicted ŷ Values, and Residuals

Hydrocarbon 
Level, x

Oxygen 
Purity, y

Predicted 
Value, ŷ

Residual 
e y y= − ˆ

 Hydrocarbon   
Level, x

Oxygen 
Purity, y

Predicted 
Value, ŷ

Residual 
e y y= − ˆ

1 0.99 90.01 89.081 0.929 11 1.19 93.54 92.071 1.469

2 1.02 89.05 89.530 –0.480 12 1.15 92.52 91.473 1.047

3 1.15 91.43 91.473 –0.043 13 0.98 90.56 88.932 1.628

4 1.29 93.74 93.566 0.174 14 1.01 89.54 89.380 0.160

5 1.46 96.73 96.107 0.623 15 1.11 89.85 90.875 –1.025

6 1.36 94.45 94.612 –0.162 16 1.20 90.39 92.220 –1.830

7 0.87 87.59 87.288 0.302 17 1.26 93.25 93.117 0.133

8 1.23 91.77 92.669 –0.899 18 1.32 93.41 94.014 –0.604

9 1.55 99.42 97.452 1.968 19 1.43 94.98 95.658 –0.678

10 1.40 93.65 95.210 –1.560 20 0.95 87.33 88.483 –1.153

11-7.2 COEFFICIENT OF DETERMINATION (R2)

A widely used measure for a regression model is the following ratio of sum of squares.

The coeffi cient of determination is

 R
SS

SS

SS

SS
R

T

E

T

2 1= = −  (11-34)

R2

Oxygen Purity Residuals The regression model for the oxygen purity data in Example 11-1 is 
ŷ 74.283 14.947= + x. Table 11-4 presents the observed and predicted values of y at each value of x 

from this data set along with the corresponding residual. These values were calculated using a computer and show the 

number of decimal places typical of computer output. 

A normal probability plot of the residuals is shown in Fig. 11-10. Because the residuals fall approximately along 

a straight line in the fi gure, we conclude that there is no severe departure from normality. The residuals are also plot-

ted against the predicted value ŷi in Fig. 11-11 and against the hydrocarbon levels xi in Fig. 11-12. These plots do not 

indicate any serious model inadequacies.

Example 11-7

The coeffi cient is often used to judge the adequacy of a regression model. Subsequently, we 

will see that in the case in which X and Y  are jointly distributed random variables, R2 is the 

square of the correlation coeffi cient between X and Y . From the analysis of variance iden-

tity in Equations 11-24 and 11-25, 0 12≤ ≤R . We often refer loosely to R2 as the amount of 

variability in the data explained or accounted for by the regression model. For the oxygen 

purity regression model, we have R SS SSR T
2 152 13 173 38 0 877= = =/ . / . . ; that is, the model 

accounts for 87.7% of the variability in the data.
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FIGURE 11-12 Plot 
of residuals versus 
hydrocarbon level x , 
Example 11-8.
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FIGURE 11-10 Normal probability plot of  
residuals, Example 11-7.
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FIGURE 11-11 Plot of residuals versus predicted 
oxygen purity ŷ , Example 11-7.
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The statistic R2 should be used with caution because it is always possible to make R2 unity 

by simply adding enough terms to the model. For example, we can obtain a “perfect” fit to n 

data points with a polynomial of degree n − 1. In general, R2 will increase if we add a variable 

to the model, but this does not necessarily imply that the new model is superior to the old one. 

Unless the error sum of squares in the new model is reduced by an amount equal to the original  

error mean square, the new model will have a larger error mean square than the old one 

because of the loss of 1 error degree of freedom. Thus, the new model will actually be worse 

than the old one. The magnitude of R2 is also impacted by the dispersion of the variable x.  

The larger the dispersion, the larger the value of R2 will usually be.

There are several misconceptions about R2. In general, R2 does not measure the magnitude 

of the slope of the regression line. A large value of R2 does not imply a steep slope. Further-

more, R2 does not measure the appropriateness of the model because it can be artificially 

inflated by adding higher order polynomial terms in x to the model. Even if y and x are related 

in a nonlinear fashion, R2 will often be large. For example, R2 for the regression equation in 

Fig. 11-6(b) will be relatively large even though the linear approximation is poor. Finally, 

even though R2 is large, this does not necessarily imply that the regression model will provide 

accurate predictions of future observations.
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11-60. Consider the simple linear regression model y = +10  
30x + e where the random error term is normally and indepen-

dently distributed with mean zero and standard deviation 1. 

Use software to generate a sample of eight observations, one 

each at the levels x = 10, 12, 14, 16, 18, 20, 22, and 24.

(a) Fit the linear regression model by least squares and find the 

estimates of the slope and intercept.

(b) Find the estimate of σ2.

(c) Find the value of R2.

(d) Now use software to generate a new sample of eight obser-

vations, one each at the levels of x = 10, 14, 18, 22, 26, 30, 

34, and 38. Fit the model using least squares.

(e) Find R2 for the new model in part (d). Compare this 

to the value obtained in part (c). What impact has the 

increase in the spread of the predictor variable x had on 

the value?

11-61.  Repeat Exercise 11-60 using an error term with a 

standard deviation of 4. What impact has increasing the error 

standard deviation had on the values of R2?

11-62. Refer to the compressive strength data in Exercise 

11-3. Use the summary statistics provided to calculate R2 and 

provide a practical interpretation of this quantity.

11-63. Refer to the NFL quarterback ratings data in Exercise 

11-5.

(a) Calculate R2 for this model and provide a practical inter-

pretation of this quantity.

(b) Prepare a normal probability plot of the residuals from the 

least squares model. Does the normality assumption seem 

to be satisfied?

(c) Plot the residuals versus the fitted values and against x .  

Interpret these graphs.

11-64. Refer to the data in Exercise 11-6 on house-selling 

price y  and taxes paid x.

(a) Find the residuals for the least squares model.

(b) Prepare a normal probability plot of the residuals and inter-

pret this display.

(c) Plot the residuals versus ŷ  and versus x . Does the assump-

tion of constant variance seem to be satisfied?

(d) What proportion of total variability is explained by the 

regression model?

11-65.  Refer to the data in Exercise 11-7 on y = steam 

usage and x = average monthly temperature.

(a) What proportion of total variability is accounted for by the 

simple linear regression model?

(b) Prepare a normal probability plot of the residuals and inter-

pret this graph.

(c) Plot residuals versus ŷ  and x . Do the regression assump-

tions appear to be satisfied?

11-66.  Refer to the gasoline mileage data in Exercise 11-8.

(a) What proportion of total variability in highway gaso-

line mileage performance is accounted for by engine 

displacement?

(b) Plot the residuals versus ŷ  and x , and comment on the 

graphs.

(c) Prepare a normal probability plot of the residuals. Does the 

normality assumption appear to be satisfied?

11-67. Exercise 11-11 presents data on wear volume y  and 

oil viscosity x .

(a) Calculate R2 for this model. Provide an interpretation of 

this quantity.

(b) Plot the residuals from this model versus ŷ  and versus x . 

Interpret these plots.

(c) Prepare a normal probability plot of the residuals. Does 

the normality assumption appear to be satisfied?

11-68.  Refer to Exercise 11-10, which presented data on 

blood pressure rise y  and sound pressure level x .

(a) What proportion of total variability in blood pressure rise is 

accounted for by sound pressure level?

(b) Prepare a normal probability plot of the residuals from this 

least squares model. Interpret this plot.

(c) Plot residuals versus ŷ  and versus x . Comment on these 

plots.

11-69. Refer to Exercise 11-12, which presented data on chlo-

ride concentration y and roadway area x .

(a) What proportion of the total variability in chloride concen-

tration is accounted for by the regression model?

(b) Plot the residuals versus ŷ and versus x. Interpret these plots.

(c) Prepare a normal probability plot of the residuals. Does the 

normality assumption appear to be satisfied?

11-70.  An article in the Journal of the American Statis-
tical Association [“Markov Chain Monte Carlo Methods for 

Computing Bayes Factors: A Comparative Review” (2001, Vol. 

96, pp. 1122–1132)] analyzed the tabulated data on compres-

sive strength parallel to the grain versus resin-adjusted density 

for specimens of radiata pine. The data are in Table E11-5.

(a) Fit a regression model relating compressive strength to 

density.

(b) Test for significance of regression with α = .0 05.

(c) Estimate σ2
 for this model.

(d) Calculate R2 for this model. Provide an interpretation of 

this quantity.

(e) Prepare a normal probability plot of the residuals and inter-

pret this display.

(f) Plot the residuals versus ŷ  and versus x. Does the assump-

tion of constant variance seem to be satisfied?

FOR SECTION 11-7Exercises
 Problem available in WileyPLUS at instructor’s discretion. 

 Tutoring problem available in WileyPLUS at instructor’s discretion.
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Compressive 
Strength Density

Compressive 
Strength Density

3040 29.2 3840 30.7

2470 24.7 3800 32.7

3610 32.3 4600 32.6

3480 31.3 1900 22.1

3810 31.5 2530 25.3

2330 24.5 2920 30.8

1800 19.9 4990 38.9

3110 27.3 1670 22.1

3160 27.1 3310 29.2

2310 24.0 3450 30.1

4360 33.8 3600 31.4

1880 21.5 2850 26.7

3670 32.2 1590 22.1

1740 22.5 3770 30.3

2250 27.5 3850 32.0

2650 25.6 2480 23.2

4970 34.5 3570 30.3

2620 26.2 2620 29.9

2900 26.7 1890 20.8

1670 21.1 3030 33.2

2540 24.1 3030 28.2

E11-5 Strength Data

11-71.  Consider the rocket propellant data in Exercise 11-13.

(a) Calculate R2 for this model. Provide an interpretation of 

this quantity.

(b) Plot the residuals on a normal probability scale. Do any 

points seem unusual on this plot?

(c) Delete the two points identifi ed in part (b) from the sample 

and fi t the simple linear regression model to the remaining 18 

points. Calculate the value of R2 for the new model. Is it larger 

or smaller than the value of R2 computed in part (a)? Why?

(d) Did the value of σ̂2  change dramatically when the two 

points identifi ed above were deleted and the model fi t to 

the remaining points? Why?

11-72.  Consider the data in Exercise 11-9 on y = green 

liquor Na
2
S concentration and x = paper machine production. 

Suppose that a 14th sample point is added to the original data 

where y14 59=  and x14 855= .

(a) Prepare a scatter diagram of y  versus x . Fit the simple lin-

ear regression model to all 14 observations.

(b) Test for signifi cance of regression with α = 0.05.

(c) Estimate σ2  for this model.

(d) Compare the estimate of σ2  obtained in part (c) with the 

estimate of σ2  obtained from the original 13 points. Which 

estimate is larger and why?

(e) Compute the residuals for this model. Does the value of e14

appear unusual?

(f) Prepare and interpret a normal probability plot of the 

residuals.

(g) Plot the residuals versus ŷ  and versus x . Comment on these 

graphs.

11-73. Consider the rocket propellant data in Exercise 11-13. 

Calculate the standardized residuals for these data. Does this 

provide any helpful information about the magnitude of the 

residuals?

11-74. Studentized Residuals. Show that the variance of 

the ith residual is

V e
n

x x

S
i

i

xx

( )
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⎝⎜
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Hint:
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The ith studentized residual is defi ned as

r
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⎥
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(a) Explain why ri has unit standard deviation.

(b) Do the standardized residuals have unit standard deviation?

(c) Discuss the behavior of the studentized residual when the 

sample value xi is very close to the middle of the range of x.

(d) Discuss the behavior of the studentized residual when the 

sample value xi is very near one end of the range of x .

11-75. Show that an equivalent way to defi ne the test for signifi -

cance of regression in simple linear regression is to base the test 

on R2 as follows: to test H0 0: β1 =  versus H0 0: β1 ≠ , calculate

F
R n

R
0

2

2

2

1
= −

−
( )

and to reject H0 0: β1 =  if the computed value f f n0 2> −α,1, . 

Suppose that a simple linear regression model has been fi t to 

n = 25 observations and R2 0 90= . .

(a) Test for signifi cance of regression at α = 0 05. .

(b) What is the smallest value of R2 that would lead to the 

conclusion of a signifi cant regression if α = 0 05. ?

11-8 Correlation
Our development of regression analysis has assumed that x is a mathematical variable, meas-

ured with negligible error, and that Y  is a random variable. Many applications of regression 

analysis involve situations in which both X and Y  are random variables. In these situations, it 
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is usually assumed that the observations ( , ), , , ,X Y i ni i = 1 2 …  are jointly distributed random 

variables obtained from the distribution f x y( , ).

For example, suppose that we wish to develop a regression model relating the shear strength 

of spot welds to the weld diameter. In this example, we cannot control weld diameter. We 

would randomly select n spot welds and observe a diameter ( )Xi  and a shear strength ( )Yi  for 

each. Therefore ( , )X Yi i  are jointly distributed random variables.

We assume that the joint distribution of Xi and Yi is the bivariate normal distribution pre-

sented in Chapter 5, and μY  and σ2
Y  are the mean and variance of Y , μX , σX

2  are the mean and 

variance of X, and ρ is the correlation coefficient between Y  and X. Recall that the correlation 

coefficient is defined as

 ρ = σ
σ σ

XY

X Y

 (11-35)

where σXY  is the covariance between Y  and X.

The conditional distribution of Y  for a given value of X x=  is

 f y
y x

Y x
Y x Y x

|
| |

( ) =
πσ

 − −β −β
σ

⎛

⎝⎜
⎞

⎠⎟
⎡
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⎢

⎤
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2
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2
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exp  (11-36)

where

 β = μ − μ ρ σ
σ0 Y X

Y

X

 (11-37)

 β = σ
σ

ρ1
Y

X

 (11-38)

and the variance of the conditional distribution of Y  given X x=  is

 σ = σ − ρ( )|Y x Y
2 2 21  (11-39)

That is, the conditional distribution of Y  given X x=  is normal with mean

 E Y x x|( ) = β + β0 1  (11-40)

and variance σ .|Y x
2  Thus, the mean of the conditional distribution of Y  given X x=  is a simple 

linear regression model. Furthermore, a relationship exists between the correlation coefficient 

ρ and the slope β1. From Equation 11-38, we see that if ρ = 0, then β1 0= , which implies that 

there is no regression of Y  on X. That is, knowledge of X does not assist us in predicting Y .
The method of maximum likelihood may be used to estimate the parameters β0 and β1. It 

can be shown that the maximum likelihood estimators of those parameters are

 ˆ ˆβ = − β0 1Y X  (11-41)

and

 β̂ =
−( )

−( )
==

=

∑

∑
1

1

2

1

Y X X

X X

S

S

i i
i

n

i
i

n
XY

XX

 (11-42)

We note that the estimators of the intercept and slope in Equations 11-41 and 11-42 are 

identical to those given by the method of least squares in the case in which X was assumed to 

be a mathematical variable. That is, the regression model with Y  and X jointly normally dis-

tributed is equivalent to the model with X considered as a mathematical variable. This follows 

because the random variables Y  given X x=  are independently and normally distributed with 

mean β β0 1+ x and constant variance σ .|Y x
2  These results will also hold for any joint distribu-

tion of Y  and X such that the conditional distribution of Y  given X is normal.
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It is possible to draw inferences about the correlation coefficient ρ in this model. The esti-

mator of ρ is the sample correlation coefficient

 R
Y X X

X X Y Y

S

S SS

i i
i

n

i
i
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i
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n
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TT( )1 2/  (11-43)

Note that

 β̂ = ⎛
⎝⎜

⎞
⎠⎟

 1

1 2
SS

S
RT

XX

/

 (11-44)

so the slope β̂1 is just the sample correlation coefficient R  multiplied by a scale factor that 

is the square root of the “spread” of the Y  values divided by the “spread” of the X  values. 

Thus, β̂1 and R  are closely related, although they provide somewhat different information. 

The sample correlation coefficient R  measures the linear association between Y  and X, 

and β̂1 measures the predicted change in the mean of Y  for a unit change in X . In the case 

of a mathematical variable x, R  has no meaning because the magnitude of R  depends on 

the choice of spacing of x. We may also write, from Equation 11-44,

R
S

SS

S

SS

SS

SS
XX

T

XY

T

R

T

2
1
2 1= β = β =ˆ

ˆ

which is just the coefficient of determination. That is, the coefficient of determination R2 is 

just the square of the correlation coefficient between Y  and X.

It is often useful to test the hypotheses

 H H0 10 0: :ρ = ρ ≠  (11-45)

The appropriate test statistic for these hypotheses is

 T
R n

R
0

2

2

1
= −

−
 (11-46)

Test Statistic for Zero 
Correlation

which has the t distribution with n − 2 degrees of freedom if H0 0: ρ =  is true. Therefore, 

we would reject the null hypothesis if t t n0 > α/2, −2. This test is equivalent to the test of the 

hypothesis H0 1 0: β =  given in Section 11-5.1. This equivalence follows directly from Equa-

tion 11-46.

The test procedure for the hypotheses

 H H0 1: :ρ ρ ρ ρ0 0= ≠  (11-47)

where ρ0 ≠ 0 is somewhat more complicated. For moderately large samples (say, n ≥ 25), the 

statistic

 Z R
R

R
=  = +

−
arctanh ln

1

2

1

1
 (11-48)

is approximately normally distributed with mean and variance

μ =  ρ =   + ρ
− ρ

σ =
−Z Z

n
arctanh ln and

1

2

1

1

1

3
2

respectively. Therefore, to test the hypothesis H0: ,ρ = ρ0  we may use the test statistic
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460   Chapter 11/Simple Linear Regression and Correlation

 Z R n0 0
1 23=  −  ρ −( )( )arctanh arctanh /  (11-49)

and reject H0: ρ = ρ0 if the value of the test statistic in Equation 11-49 is such that z z0 2> α / .

It is also possible to construct an approximate 100 1( )%− α  confi dence interval for ρ using 

the transformation in Equation 11-48. The approximate 100 1( )%− α  confi dence interval is

 tanh arctanh tanh arctanh −
−

⎛
⎝⎜

⎞
⎠⎟

≤ ρ ≤  +
−

⎛
⎝⎜

⎞
⎠⎟

α αr
z

n
r

z

n
/ /2 2

3 3
 (11-50)

Confi dence Interval 
for a Correlation 

Coeffi cient

where tanh ( ) / ( )u e e e eu u u u= − +− − .

Wire Bond Pull Strength Chapter 1 (Section 1-3) describes an application of regression analysis 

in which an engineer at a semiconductor assembly plant is investigating the relationship between 

pull strength of a wire bond and two factors: wire length and die height. In this example, we will consider only one of 

the factors, the wire length. A random sample of 25 units is selected and tested, and the wire bond pull strength and 

wire length are observed for each unit. The data are shown in Table 1-2. We assume that pull strength and wire length 

are jointly normally distributed.

Figure 11-13 shows a scatter diagram of wire bond strength versus wire length. We have displayed box plots of each 

individual variable on the scatter diagram. There is evidence of a linear relationship between the two variables.

Typical computer output for fi tting a simple linear regression model to the data is on the next page.

Now Sxx = 698 56.  and Sxy = 2027 7132. , and the sample correlation coeffi cient is

r
S

S SS

xy

xx T

=
[ ]

= .

.( ) .( )⎡⎣ ⎤⎦
= .

1 2 1 2

2027 7132

698 560 6105 9
0 9818/ /
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FIGURE 11-13 Scatter plot of wire bond strength versus wire length, Example 11-8.

Example 11-8
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Note that r2 20 9818 0 9640= =( . ) .  (which is reported in the computer output), or that approximately 96.40% of the 

variability in pull strength is explained by the linear relationship to wire length.

Now suppose that we wish to test the hypotheses

H H0 10 0: :ρ = ρ ≠

Strength = 5.11 + 2.90 Length

Predictor Coef SE Coef T P

Constant 5.115 1.146  4.46 0.000

Length  2.9027  0.1170 24.80 0.000

S = 3.093      R-sq = 96.4%         R-sq(adj) = 96.2%

PRESS = 272.144     R-sq(pred) = 95.54%

Analysis of Variance

Source DF SS MS F P

Regression  1 5885.9 5885.9 615.08 0.000

Residual Error 23  220.1    9.6

Total 24 6105.9

with α = 0.05. We can compute the t-statistic of Equation 11-46 as

t
r n

r
0

2

2

1

0 9818 23

1 0 9640
24 8= −

−
= .

− .
= .

This statistic is also reported in the computer output as a test of H0 0: β1 = . Because t0 025 23 2 069. , .= , we reject H0 and 

conclude that the correlation coeffi cient ρ 0≠ .

Finally, we may construct an approximate 95% confi dence interval on ρ from Equation 11-50. Because arctanh 

r = arctanh 0.9818 = 2.3452, Equation 11-50 becomes

tanh tanh2 3452
1 96

22
2 3452

1 96

22
. − .⎛

⎝⎜
⎞
⎠⎟

≤ ρ ≤ . + .⎛
⎝⎜

⎞
⎠⎟

which reduces to

0 9585 0 9921. ≤ ρ ≤ .

11-76.  Suppose that data are obtained from 20 pairs of 

( , )x y  and the sample correlation coeffi cient is 0.8.

(a) Test the hypothesis that H0 0: ρ =  against H1 0: ρ ≠  with 

α = .0 05. Calculate the P-value.

(b) Test the hypothesis that H1 0 5: ρ = .  against H1 0 5: ρ ≠ .  with 

α = .0 05. Calculate the P-value.

(c) Construct a 95% two-sided confi dence interval for the cor-

relation coeffi cient. Explain how the questions in parts (a) 

and (b) could be answered with a confi dence interval.

11-77.  Suppose that data are obtained from 20 pairs of 
( , )x y  and the sample correlation coeffi cient is 0.75.

(a) Test the hypothesis that H0 0: ρ =  against H >1 0: ρ  with 

α = .0 05. Calculate the P-value.

(b) Test the hypothesis that H1 0 5: ρ = .  against H >1 0 5: ρ .  with 

α = .0 05. Calculate the P-value.

(c) Construct a 95% one-sided confi dence interval for the cor-

relation coeffi cient. Explain how the questions in parts (a) 

and (b) could be answered with a confi dence interval.

11-78. A random sample of n = 25 observations was made on 

the time to failure of an electronic component and the tempera-

ture in the application environment in which the component 

was used.

FOR SECTION 11–8Exercises
 Problem available in WileyPLUS at instructor’s discretion. 

 Tutoring problem available in WileyPLUS at instructor’s discretion.
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(a) Given that r = 0 83. , test the hypothesis that ρ = 0 using 

α = 0.05. What is the P-value for this test?

(b) Find a 95% confi dence interval on ρ.

(c) Test the hypothesis H0: ρ = 0.8 versus H1: ρ 0.8,≠  using 

α = 0.05. Find the P-value for this test.

11-79. A random sample of 50 observations was made on the 

diameter of spot welds and the corresponding weld shear strength.

(a) Given that r = 0 62. , test the hypothesis that ρ = 0, using 

α = 0.01. What is the P-value for this test?

(b) Find a 99% confi dence interval for ρ.

(c) Based on the confi dence interval in part (b), can you con-

clude that ρ = 0 5.  at the 0.01 level of signifi cance?

11-80. The data in Table E11-6 gave x = the water content of 

snow on April 1 and y = the yield from April to July (in inches) 

on the Snake River watershed in Wyoming for 1919 to 1935. (The 

data were taken from an article in Research Notes, Vol. 61, 1950, 

Pacifi c Northwest Forest Range Experiment Station, Oregon.)

(a) Estimate the correlation between Y  and X .

(b) Test the hypothesis that ρ = 0 using α = 0.05.

(c) Fit a simple linear regression model and test for signifi -

cance of regression using α = 0.05. What conclusions can 

you draw? How is the test for signifi cance of regression 

related to the test on ρ in part (b)?

(d) Analyze the residuals and comment on term list.

11-81.  The fi nal test and exam averages for 

20 randomly selected students taking a course in engineering 

statistics and a course in operations research are in Table E11-7. 

Assume that the fi nal averages are jointly normally distributed.

(a) Find the regression line relating the statistics fi nal average 

to the OR fi nal average. Graph the data.

(b) Test for signifi cance of regression using α = 0.05.

(c) Estimate the correlation coeffi cient.

(d) Test the hypothesis that ρ = 0, using α = 0.05.

(e) Test the hypothesis that ρ = 0.5, using α = 0.05.

(f) Construct a 95% confi dence interval for the correlation 

coeffi cient.

11-82. The weight and systolic blood pressure of 26 ran-

domly selected males in the age group 25 to 30 are shown in 

the Table E11-8. Assume that weight and blood pressure are 

jointly normally distributed.

x y x y

23.1 10.5 37.9 22.8

32.8 16.7 30.5 14.1

31.8 18.2 25.1 12.9

32.0 17.0 12.4  8.8

30.4 16.3 35.1 17.4

24.0 10.5 31.5 14.9

39.5 23.1 21.1 10.5

24.2 12.4 27.6 16.1

52.5 24.9

E11-6 Water Data

Statistics OR Statistics OR Statistics OR

86 80 86 81 83 81

75 81 71 76 75 70

69 75 65 72 71 73

75 81 84 85 76 72

90 92 71 72 84 80

94 95 62 65 97 98

83 80 90 93

E11-7 Exam Grades

(a) Find a regression line relating systolic blood pressure to 

weight.

(b) Test for signifi cance of regression using α = 0.05.

(c) Estimate the correlation coeffi cient.

(d) Test the hypothesis that ρ = 0, using α = 0.05.

(e) Test the hypothesis that ρ = 0, using α = 0.05.

(f) Construct a 95% confi dence interval for the correlation 

coeffi cient.

11-83. In an article in IEEE Transactions on Instrumentation and 
Measurement (2001, Vol. 50, pp. 986–990), researchers reported on 

a study of the effects of reducing current draw in a magnetic core by 

electronic means. They measured the current in a magnetic wind-

ing with and without the electronics in a paired experiment. Data 

for the case without electronics are provided in the Table E11-9.

(a) Graph the data and fi t a regression line to predict current 

without electronics to supply voltage. Is there a signifi cant 

regression at α = .0 05? What is the P-value?

(b) Estimate the correlation coeffi cient.

(c) Test the hypothesis that ρ = 0 against the alternative ρ ≠ 0

with α = .0 05. What is the P-value?

(d) Compute a 95% confi dence interval for the correlation 

coeffi cient.

Subject Weight
Systolic 

BP Subject Weight
Systolic 

BP

 1 165 130 14 172 153

 2 167 133 15 159 128

 3 180 150 16 168 132

 4 155 128 17 174 149

 5 212 151 18 183 158

 6 175 146 19 215 150

 7 190 150 20 195 163

 8 210 140 21 180 156

 9 200 148 22 143 124

10 149 125 23 240 170

11 158 133 24 235 165

12 169 135 25 192 160

13 170 150 26 187 159

E11-8 Weight and Blood Pressure Data
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Supply Voltage
Current Without Electronics 

(mA)

0.66 7.32

1.32 12.22

1.98 16.34

2.64 23.66

3.3 28.06

3.96 33.39

4.62 34.12

3.28 39.21

5.94 44.21

6.6 47.48

E11-9 Voltage and Current Data

11-84. The monthly absolute estimate of global (land and 

ocean combined) temperature indexes (degrees C) in 2000 and 

2001 (www.ncdc.noaa.gov/oa/climate/) are:

2000: 12.28, 12.63, 13.22, 14.21, 15.13, 15.82, 16.05, 16.02, 

15.29, 14.29, 13.16, 12.47

2001: 12.44, 12.55, 13.35, 14.22, 15.28, 15.99, 16.23, 16.17, 

15.44, 14.52, 13.52, 12.61

(a) Graph the data and fi t a regression line to predict 2001 tem-

peratures from those in 2000. Is there a signifi cant regres-

sion at α = .0 05? What is the P-value?

(b) Estimate the correlation coeffi cient.

(c) Test the hypothesis that ρ = .0 9 against the alternative 

ρ ≠ .0 9 with α = .0 05. What is the P-value?

x y x y

−4 0 0 −4

−3 − .2 65 1  3.87

−3  2.65 1 − .3 87

−2 − .3 46 2  3.46

−2  3.46 2 − .3 46

−1 − .3 87 3  2.65

−1  3.87 3 − .2 65

 0 4 4 0

E11-10 Data for Correlation Exercise

(d) Compute a 95% confi dence interval for the correlation 

coeffi cient.

11-85.  Refer to the NFL quarterback ratings data in 

Exercise 11-5.

(a) Estimate the correlation coeffi cient between the ratings and 

the average yards per attempt.

(b) Test the hypothesis H0 0: ρ =  versus H1 0: ρ ≠  using 

α = .0 05. What is the P-value for this test?

(c) Construct a 95% confi dence interval for ρ.

(d) Test the hypothesis H0 0 7: ρ = .  versus H1 0 7: ρ ≠ .  using 

α = .0 05. Find the P-value for this test.

11-86.  Consider the ( , )x y  data in Table E11-10. Calcu-

late the correlation coeffi cient. Graph the data and comment 

on the relationship between x  and y . Explain why the cor-

relation coeffi cient does not detect the relationship between 

x  and y .

11-9 Regression on Transformed Variables
We occasionally fi nd that the straight-line regression model Y x= + +β β0 1 e  is inappropriate 

because the true regression function is nonlinear. Sometimes nonlinearity is visually deter-

mined from the scatter diagram, and sometimes, because of prior experience or underlying 

theory, we know in advance that the model is nonlinear. Occasionally, a scatter diagram will 

exhibit an apparent nonlinear relationship between Y  and x. In some of these situations, a 

nonlinear function can be expressed as a straight line by using a suitable transformation. Such 

nonlinear models are called intrinsically linear.

As an example of a nonlinear model that is intrinsically linear, consider the exponential function

Y e x= β β
0

1 e
This function is intrinsically linear because it can be transformed to a straight line by a 

logarithmic transformation

ln ln ln =  β + β +  Y x0 1 e

This transformation requires that the transformed error terms ln ∈ are normally and indepen-

dently distributed with mean 0 and variance σ2
.

Another intrinsically linear function is

Y
x

= β + β ⎛
⎝⎜

⎞
⎠⎟

+0 1

1
e
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By using the reciprocal transformation z x= 1 / , the model is linearized to

Y z= + +β β0 1 e

Sometimes several transformations can be employed jointly to linearize a function. For exam-

ple, consider the function

Y
x

=
β + β +( )

1

0 1
exp e

letting Y Y∗ = 1 / , we have the linearized form

ln ∗ = β + β +Y x0 1 e

For examples of fi tting these models, refer to Montgomery, Peck, and Vining (2012) or Myers 

(1990).

Transformations can be very useful in many situations in which the true relationship 

between the response Y and the regressor x is not well approximated by a straight line. The 

utility of a transformation is illustrated in the following example.

Windmill Power A research engineer is investigating the use of a windmill to generate electricity and 

has collected data on the DC output from this windmill and the corresponding wind velocity. The data 

are plotted in Figure 11-14 and listed in Table 11-5.

Inspection of the scatter diagram indicates that the relationship between DC output Y  and wind velocity ( )x  may 

be nonlinear. However, we initially fi t a straight-line model to the data. The regression model is

ˆ . .y x= +0 1309 0 2411

The summary statistics for this model are R2 0 8745= . , MSE = σ = .ˆ ,2 0 0557  and F0 160 26= .  (the P-value is <0.0001).

A plot of the residuals versus ŷi is shown in Figure 11-15. This residual plot indicates model inadequacy and implies 

that the linear relationship has not captured all of the information in the wind speed variable. Note that the curvature 

that was apparent in the scatter diagram of Figure 11-14 is greatly amplifi ed in the residual plots. Clearly, some other 

model form must be considered.

Example 11-9

Observation 
Number, i

Wind Velocity 
(mph), xi

DC Output, 
yi

Observation 
Number, i

Wind Velocity 
(mph), xi

DC Output, 
yi

1 5.00 1.582 14 5.80 1.737

2 6.00 1.822 15 7.40 2.088

3 3.40 1.057 16 3.60 1.137

4 2.70 0.500 17 7.85 2.179

5 10.00 2.236 18 8.80 2.112

6 9.70 2.386 19 7.00 1.800

7 9.55 2.294 20 5.45 1.501

8 3.05 0.558 21 9.10 2.303

9 8.15 2.166 22 10.20 2.310

10 6.20 1.866 23 4.10 1.194

11 2.90 0.653 24 3.95 1.144

12 6.35 1.930 25 2.45 0.123

13 4.60 1.562

11-5 Observed Values and Regressor Variable for Example 11-9
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We might initially consider using a quadratic model such as

y x x= + + +β β β0 1 2
2 e

to account for the apparent curvature. However, the scatter diagram of Figure 11-14 suggests that as wind speed increases, 

DC output approaches an upper limit of approximately 2.5. This is also consistent with the theory of windmill operation. 

Because the quadratic model will eventually bend downward as wind speed increases, it would not be appropriate for 

these data. A more reasonable model for the windmill data that incorporates an upper asymptote would be

y
x

= + ⎛
⎝⎜

⎞
⎠⎟

+β β0 1

1
e

Figure 11-16 is a scatter diagram with the transformed variable x x′ = 1 / . This plot appears linear, indicating that the 

reciprocal transformation is appropriate. The fi tted regression model is

ˆ . .y x= − ′2 9789 6 9345

The summary statistics for this model are R2 0 9800= . , MSE = = .σ̂2 0 0089, and F0 1128 43= .  (the P-value is <0.0001).
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u
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1
x

FIGURE 11-16 Plot of DC output versus x x′ = 1/  
for the windmill data.
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FIGURE 11-17 Plot of residuals versus fi tted values 
ŷ i  for the transformed model for the windmill data.

FIGURE 11-15 Plot of residuals ei  versus 
fi tted values ŷ i  for the windmill data.
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FIGURE 11-14 Plot of DC output y  versus wind 
 velocity x  for the windmill data.
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11-87. Determine if the following models are intrinsically lin-

ear. If yes, determine the appropriate transformation to gener-

ate the linear model.

(a) Y x= β β
0

1 e  (b) Y
x

x
= + +3 5

e

(c) Y x= β β0 1 e  (d) Y
x

x x
=

β + β +0 1 e

11-88.  The vapor pressure of water at various tempera-

tures is in Table E11-11:

(a) Draw a scatter diagram of these data. What type of relation-

ship seems appropriate in relating y  to x?

(b) Fit a simple linear regression model to these data.

(c) Test for signifi cance of regression using α = 0.05. What 

conclusions can you draw?

(d) Plot the residuals from the simple linear regression model 

versus ŷi. What do you conclude about model adequacy?

(e) The Clausius–Clapeyron relationship states that ln( )Pv T∝ − 1

where Pv is the vapor pressure of water. Repeat parts ( )a –( )d
using an appropriate transformation.

11-89. An electric utility is interested in developing a 

model relating peak-hour demand (y  in kilowatts) to total 

monthly energy usage during the month (x , in kilowatt 

hours). Data for 50 residential customers are shown in the 

Table E11-12.

(a) Draw a scatter diagram of y  versus x .

(b) Fit the simple linear regression model.

FOR SECTION 11–9Exercises
 Problem available in WileyPLUS at instructor’s discretion. 

 Tutoring problem available in WileyPLUS at instructor’s discretion.

Observation 
Number

Temperature 
(K)

Vapor pressure 
(mm Hg)

1 273 4.6

2 283 9.2

3 293 17.5

4 303 31.8

5 313 55.3

6 323 92.5

7 333 149.4

8 343 233.7

9 353 355.1

10 363 525.8

11 373 760.0

E11-11 Vapor Pressure Data
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–1–2
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0

0.2

0.4

0 21

zi

FIGURE 11-18 Normal probability plot of the residuals 
for the transformed model for the windmill data.

A plot of the residuals from the transformed model versus ŷ is shown in  Figure  11-17. This plot does not 

reveal any serious problem with inequality of variance. The normal probability plot, shown in Figure 11-18, gives 

a mild indication that the errors come from a distribution with heavier tails than the normal (notice the slight 

upward and downward curve at the extremes). This normal probability plot has the z-score value plotted on the 

horizontal axis. Because there is no strong signal of model inadequacy, we conclude that the transformed model is 

satisfactory.
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11-10 Logistic Regression
Linear regression often works very well when the response variable is quantitative. We 

now consider the situation in which the response variable takes on only two possible val-

ues, 0 and 1. These could be arbitrary assignments resulting from observing a qualitative 

response. For example, the response could be the outcome of a functional electrical test on 

a semiconductor device for which the results are either a “success,” which means that the 

device works properly, or a “failure,” which could be due to a short, an open, or some other 

functional problem.

Suppose that the model has the form

 Y xi i i= + +β β0 1 e  (11-51)

and the response variable Yi takes on the values either 0 or 1. We will assume that the response 

variable Yi is a Bernoulli random variable with probability distribution as follows:

Yi
Probability

1 P Yi i=( ) = π1

0 P Yi i=( ) = − π0 1

Now because E i( )e = 0, the expected value of the response variable is

E Yi i i i( ) = π( ) + − π( ) = π1 0 1

This implies that

E Y xi i i( ) = + =β β π0 1

This means that the expected response given by the response function E Y xi i( ) = +β β0 1  is just 

the probability that the response variable takes on the value 1.

Customer x y Customer x y

 1  679 0.79 26 1434  0.31

 2  292 0.44 27  837  4.20

 3 1012 0.56 28 1748  4.88

 4  493 0.79 29 1381  3.48

 5  582 2.70 30 1428  7.58

 6 1156 3.64 31 1255  2.63

 7  997 4.73 32 1777  4.99

 8 2189 9.50 33  370  0.59

 9 1097 5.34 34 2316  8.19

E11-12 Demand and Engery Usage Data

(c) Test for signifi cance of regression using α = 0.05.

(d) Plot the residuals versus ŷi and comment on the underly-

ing regression assumptions. Specifi cally, does it seem that 

the equality of variance assumption is satisfi ed?

(e) Find a simple linear regression model using y  as the 

response. Does this transformation on y stabilize the ine-

quality of variance problem noted in part ( )d ?

Customer x y Customer x y

10 2078 6.85 35 1130  4.79

11 1818 5.84 36  463  0.51

12 1700 5.21 37  770  1.74

13  747 3.25 38  724  4.10

14 2030 4.43 39  808  3.94

15 1643 3.16 40  790  0.96

16  414 0.50 41  783  3.29

17  354 0.17 42  406  0.44

18 1276 1.88 43 1242  3.24

19  745 0.77 44  658  2.14

20  795 3.70 45 1746  5.71

21  540 0.56 46  895  4.12

22  874 1.56 47 1114  1.90

23 1543 5.28 48  413  0.51

24 1029 0.64 49 1787  8.33

25  710 4.00 50 3560 14.94
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There are some substantive problems with the regression model in Equation 11-51. First, 

note that if the response is binary, the error terms ei can only take on two values, namely,

e

e

i i i

i i i

x Y

x Y

= − β + β( ) =

= − β + β( ) =

1 1

0

0 1

0 1

when

when

Consequently, the errors in this model cannot possibly be normal. Second, the error variance 

is not constant, because

σ = − ( )⎡⎣ ⎤⎦

= − π( ) π + − π( ) − π( )
= π − π( )

Y i i

i i i i

i i

i E Y E Y2 2

2 2
1 0 1

1

Notice that this last expression is just

σ = ( ) − ( )⎡⎣ ⎤⎦y i ii E Y E Y2 1

because E Y xi i i( ) = β + β = π0 1 . This indicates that the variance of the observations (which is 

the same as the variance of the errors because ei i iY= − π , and πi is a constant) is a function of 

the mean. Finally, there is a constraint on the response function because

0 1≤ ( ) = π ≤E Yi i

This restriction can cause serious problems with the choice of a linear response  function as 

we have initially assumed in Equation 11-51. It would be possible to fit a model to the data for 

which the predicted values of the response lie outside the 0, 1 interval.

Generally, when the response variable is binary, there is considerable empirical evidence 

indicating that the shape of the response function should be nonlinear. A monotonically 

increasing (or decreasing) S-shaped (or reverse S-shaped) function, such as that shown in 

Figure 11-19, is usually employed. This function is called the logit response function, and 

has the form

 E Y
x

x
( ) =

β + β( )
+ β + β( )
exp

exp

0 1

0 11
 (11-52)

or equivalently,

 E Y
x

( ) =
+ − β + β( )⎡⎣ ⎤⎦

1

1 0 1exp
 (11-53)
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FIGURE 11-19 Examples of the logistic response function. (a) E Y e x( ) / ( ). .= + − −1 1 6 0 1 0 . (b) E Y e x( ) / ( ). .= + − +1 1 6 0 1 0 .

c11.indd   468 9/24/2013   7:20:56 PM



Section 11-10/Logistic Regression   469

In logistic regression, we assume that E Y( ) is related to x by the logit function. It is easy to 

show that

 
E Y

E Y
x

( )

( )1
0 1−

= β + βexp ( ) (11-54)

The quantity in Equation 11-54 is called the odds. It has a straightforward interpretation: If 

the odds is 2 for a particular value of x, it means that a success is twice as likely as a failure at 

that value of the regressor x. Notice that the natural logarithm of the odds is a linear function 

of the regressor variable. Therefore, the slope β1 is the difference in the log odds that results 

from a one-unit increase in x. This means that the odds ratio equals eβ1 when x increases by 

one unit.

The parameters in this logistic regression model are usually estimated by the method of 

maximum likelihood. For details of the procedure, see Montgomery, Peck, and Vining (2012). 

Computer software will fit logistic regression models and provide useful information on the 

quality of the fit.

We will illustrate logistic regression using the data on launch temperature and O-ring fail-

ure for the 24 space shuttle launches prior to the Challenger disaster of January 1986. Six 

O-rings were used to seal field joints on the rocket motor assembly. The following table pre-

sents the launch temperatures. A “1” in the “O-Ring Failure” column indicates that at least one 

O-ring failure had occurred on that launch.

Temperature O-Ring  
Failure

Temperature O-Ring  
Failure

Temperature O-Ring  
Failure

53 1 68 0 75 0

56 1 69 0 75 1

57 1 70 0 76 0

63 0 70 1 76 0

66 0 70 1 78 0

67 0 70 1 79 0

67 0 72 0 80 0

67 0 73 0 81 0

Figure 11-20 is a scatter plot of the data. Note that failures tend to occur at lower temperatures. 

The logistic regression model fit to these data from a computer software package is shown in 

the following boxed display. (Both Minitab and JMP have excellent capability to fit logistic 

regression models.)

The fitted logistic regression model is

ŷ
x

=
+ − . − .( )⎡⎣ ⎤⎦

1

1 10 875 0 17132exp

The standard error of the slope β̂1 is se( )ˆ .β1 0 08344= . For large samples, β̂1 has an approximate  

normal distribution, and so ˆ / (ˆ )β β1 1se  can be compared to the standard normal distribution to test 

H0 0: β1 = . Software performs this test. The P-value is 0.04, indicating that temperature has a sig-

nificant effect on the probability of O-ring failure. The odds ratio is 0.84, so every 1 degree 

increase in temperature reduces the odds of failure by 0.84. Figure 11-21 shows the fitted 

logistic regression model. The sharp increase in the probability of O-ring failure is very evi-

dent in this graph. The actual temperature at the Challenger launch was 31°F. This is well 

outside the range of other launch temperatures, so our logistic regression model is not likely 

to provide highly accurate predictions at that temperature, but it is clear that a launch at 31°F 

is almost certainly going to result in O-ring failure.
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Binary Logistic Regression: O-Ring Failure versus Temperature

Link Function:  Logit
Response Information

Variable Value Count
O-Ring F 1 7 (Event)

0 17
Total 24

Logistic Regression Table

Odds 95% CI
Predictor Coef SE Coef Z P Ratio Lower Upper
Constant 10.875 5.703  1.91 0.057
Temperat  –0.17132  0.08344 –2.05 0.040 0.84 0.72 0.99

Log-Likelihood = –11.515
Test that all slopes are zero: G = 5.944, DF = 1, P-Value = 0.015

It is interesting to note that all of these data were available prior to launch. However, engi-

neers were unable to effectively analyze the data and use them to provide a convincing argu-

ment against launching Challenger to NASA managers. Yet a simple regression analysis of the 

data would have provided a strong quantitative basis for this argument. This is one of the more 

dramatic instances that points out why engineers and scientists need a strong background 
in basic statistical techniques.
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FIGURE 11-20 Scatter plot of O-ring failures 
versus launch temperature for 24 space shuttle 
flights.
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FIGURE 11-21 Probability of O-ring failure 
versus launch temperature (based on a logistic 
regression model).

11-90.  A study was conducted attempting to relate home 

ownership to family income. Twenty households were selected 

and family income was estimated along with information con-

cerning home ownership (y = 1 indicates yes and y = 0 indi-

cates no). The data are shown in Table E11-13.

(a) Fit a logistic regression model to the response variable y. Use 

a simple linear regression model as the structure for the linear 

predictor.

(b) Is the logistic regression model in part (a) adequate?

(c) Provide an interpretation of the parameter β1 in this model.

11-91.  The compressive strength of an alloy fastener 

used in aircraft construction is being studied. Ten loads were 

selected over the range 2500–4300 psi, and a number of fasten-

ers were tested at those loads. The numbers of fasteners failing 

at each load were recorded. The complete test data are shown 

in Table E11-14.

FOR SECTION 11–10Exercises
 Problem available in WileyPLUS at instructor’s discretion. 

 Tutoring problem available in WileyPLUS at instructor’s discretion.
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(a) Fit a logistic regression model to the data. Use a simple lin-

ear regression model as the structure for the linear predictor.

(b) Is the logistic regression model in part (a) adequate?

11-92.  The market research department of a soft drink 

manufacturer is investigating the effectiveness of a price dis-

count coupon on the purchase of a two-liter beverage product. 

A sample of 5500 customers was given coupons for varying 

price discounts between 5 and 25 cents. The response variable 

was the number of coupons in each price discount category 

redeemed after one month. The data follow in Table E11-15.

(a) Fit a logistic regression model to the data. Use a simple lin-

ear regression model as the structure for the linear predictor.

(b) Is the logistic regression model in part ( )a  adequate?

(c) Draw a graph of the data and the fi tted logistic regression 

model.

(d) Expand the linear predictor to include a quadratic term. Is 

there any evidence that this quadratic term is required in 

the model?

Household Income Home Ownership Status
 1 38,000 0

 2 51,200 1

 3 39,600 0

 4 43,400 1

 5 47,700 0

 6 53,000 0

 7 41,500 1

 8 40,800 0

 9 45,400 1

10 52,400 1

11 38,700 1

12 40,100 0

13 49,500 1

14 38,000 0

15 42,000 1

16 54,000 1

17 51,700 1

18 39,400 0

19 40,900 0

20 52,800 1

E11-13 Home Ownership Data

(e) Draw a graph of this new model on the same plot that you pre-

pared in part (c). Does the expanded model visually provide a 

better fi t to the data than the original model from part ( )a ?

11-93.  A study was performed to investigate new automo-

bile purchases. A sample of 20 families was selected. Each fam-

ily was surveyed to determine the age of their oldest vehicle and 

their total family income. A follow-up survey was conducted six 

months later to determine if they had actually purchased a new 

vehicle during that time period (y = 1 indicates yes and y = 0 indi-

cates no). The data from this study are shown in the Table E11-16.

Load, x (psi) Sample Size, n Number Failing, r
2500 50 10

2700 70 17

2900 100 30

3100 60 21

3300 40 18

3500 85 43

3700 90 54

3900 50 33

4100 80 60

4300 65 51

E11-14 Fastener Failure Data

(a) Fit a logistic regression model to the data.

(b) Is the logistic regression model in part ( )a  adequate?

(c) Interpret the model coeffi cients β1 and β2.

(d) What is the estimated probability that a family with an 

income of $45,000 and a car that is fi ve years old will pur-

chase a new vehicle in the next six months?

Discount, x Sample Size, n
Number 

Redeemed, r
 5 500 100

 7 500 122

 9 500 147

11 500 176

13 500 211

15 500 244

17 500 277

19 500 310

21 500 343

23 500 372

25 500 391

E11-15 Coupon Redemption Data

(e) Expand the linear predictor to include an interaction term. 

Is there any evidence that this term is required in the model?

11-94.  The World Health Organization defi nes obesity in 

adults as having a body mass index (BMI) higher than 30. Of the 

250 men in the study mentioned in Exercise 11-1, 23 are by this 

defi nition obese. How good is waist (size in inches) as a predic-

tor of obesity? A logistic regression model was fi t to the data:

log . .
p

p1
41 828 0 9864

−
⎛
⎝⎜

⎞
⎠⎟

= − + waist

where p is the probability of being classifi ed as obese.

(a) Does the probability of being classifi ed as obese increase or 

decrease as a function of waist size? Explain.

(b) What is the estimated probability of being classifi ed as 

obese for a man with a waist size of 36 inches?

(c) What is the estimated probability of being classifi ed as 

obese for a man with a waist size of 42 inches?
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11-96. Show that, for the simple linear regression model, the 

following statements are true:

(a) y yi i−( ) =
=
∑ ˆ 0

1i

n

     (b)  y y xi i i−( ) =
=
∑ ˆ 0

1i

n

(c) 
1

1n
iŷ =

=
∑ y
i

n

11-97.  An article in the IEEE Transactions on Instrumen-
tation and Measurement [“Direct, Fast, and Accurate Measure-

ment of VT  and K  of MOS Transistor Using V
T
-Sift Circuit” 

(1991, Vol. 40, pp. 951–955)] described the use of a simple 

linear regression model to express drain current y  (in milliam-

peres) as a function of ground-to-source voltage x  (in volts). 

The data are as follows:

y x y x

0.734 1.1 1.50 1.6

0.886 1.2 1.66 1.7

1.04 1.3 1.81 1.8

1.19 1.4 1.97 1.9

1.35 1.5 2.12 2.0

(a) Draw a scatter diagram of these data. Does a straight-line 

relationship seem plausible?

(b) Fit a simple linear regression model to these data.

(c) Test for signifi cance of regression using α = 0.05. What is 

the P-value for this test?

(d) Find a 95% confi dence interval estimate on the slope.

(e) Test the hypothesis H0 0: β0 =  versus H1 0: β0 ≠  using 

α = 0.05. What conclusions can you draw?

11-98.  The strength of paper used in the manufacture of 

cardboard boxes ( )y  is related to the percentage of hardwood 

concentration in the original pulp ( )x . Under controlled con-

ditions, a pilot plant manufactures 16 samples, each from a 

different batch of pulp, and measures the tensile strength. The 

data follow:

y 101.4 117.4 117.1 106.2

x 1.0 1.5 1.5 1.5

y 131.9 146.9 146.8 133.9

x 2.0 2.0 2.2 2.4

y 111.0 123.0 125.1 145.2

x 2.5 2.5 2.8 2.8

y 134.3 144.5 143.7 146.9

x 3.0 3.0 3.2 3.3

(a) Fit a simple linear regression model to the data.

(b) Test for signifi cance of regression using α = 0.05.

(c) Construct a 90% confi dence interval on the slope β1.

(d) Construct a 90% confi dence interval on the intercept β0.

(e) Construct a 95% confi dence interval on the mean strength 

at x = 2 5. .
(f) Analyze the residuals and comment on model adequacy.

Supplemental Exercises
 Problem available in WileyPLUS at instructor’s discretion. 

 Tutoring problem available in WileyPLUS at instructor’s discretion.

(d) What is the estimated probability of being classifi ed as 

obese for a man with a waist size of 48 inches?

(e) Make a plot of the estimated probability of being classifi ed 

as obese as a function of waist size.

11-95 Consider the propellant data is Exercise 11-13. 

Assume that strength less than 2100 psi is considered a failure. 

Relate propellant age to the probability of failure with a logis-

tic regression model.

(a) Does age have a signifi cant effect on the probability of 

failure at a = 0.05?

(b) What is the estimated probability of failure when the stor-

age time is 18 weeks?

(c) What is the effect of a one-week increase in storage on the 

odds of failure?

(d) Construct a plot of the estimated probability of failure as a 

function of age.

E11-16 Automobile Purchase Data

Income, x1 Age, x2 y Income, x1 Age, x2 y

45,000 2 0 37,000 5 1

40,000 4 0 31,000 7 1

60,000 3 1 40,000 4 1

50,000 2 1 75,000 2 0

55,000 2 0 43,000 9 1

50,000 5 1 49,000 2 0

35,000 7 1 37,500 4 1

65,000 2 1 71,000 1 0

53,000 2 0 34,000 5 0

48,000 1 0 27,000 6 0
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11-99. Consider the following data. Suppose that the relation -

ship between Y and x is hypothesized to be Y x= + + −( ) .β β0 1 e 1  

Fit an appropriate model to the data. Does the assumed model 

form seem reasonable?

x 10 15 18 12 9 8 11 6

y 0.1 0.13 0.09 0.15 0.20 0.21 0.18 0.24

11-100.  The data in Table E11-17 adapted from Montgomery, 

Peck, and Vining (2012), present the number of certifi ed mental 

defectives per 10,000 of estimated population in the United King-

dom ( )y  and the number of radio receiver licenses issued ( )x  by the 

BBC (in millions) for the years 1924 

E11-17 Data for Correlation Analysis

Year y x Year y x

1924 8 1.350 1931 16 4.620

1925 8 1.960 1932 18 5.497

1926 9 2.270 1933 19 6.260

1927 10 2.483 1934 20 7.012

1928 11 2.730 1935 21 7.618

1929 11 3.091 1936 22 8.131

1930 12 3.674 1937 23 8.593

through 1937. Fit a regression model relating y  and x . Com-

ment on the model. Specifi cally, does the existence of a strong 

correlation imply a cause-and-effect relationship?

11-101. Consider the weight and blood pressure data in 

Exercise 11-82. Fit a no-intercept model to the data, and com-

pare it to the model obtained in Exercise 11-82. Which model 

is superior?

11-102. An article in Air and Waste [“Update on Ozone 

Trends in California’s South Coast Air Basin” (1993, Vol. 43)] 

reported on a study of the ozone levels on the South Coast 

air basin of California for the years 1976–1991. The author 

believes that the number of days that the ozone level exceeds 

0.20 parts per million depends on the seasonal meteorologi-

cal index (the seasonal average 850 millibar temperature). The 

data are in Table E11-18:

(a) Construct a scatter diagram of the data.

(b) Fit a simple linear regression model to the data. Test for 

signifi cance of regression.

(c) Find a 95% CI on the slope β .1

(d) Analyze the residuals and comment on model adequacy.

11-103. An article in the Journal of Applied Polymer Science 

(1995, Vol. 56, pp. 471–476) reported on a study of the effect 

of the mole ratio of sebacic acid on the intrinsic viscosity of 

copolyesters. The data follow:

Mole ratio x 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3

Viscosity y 0.45 0.20 0.34 0.58 0.70 0.57 0.55 0.44

E11-18 Ozone Level Data

Year Days Index Year Days Index

1976  91 16.7 1984 81 18.0

1977 105 17.1 1985 65 17.2

1978 106 18.2 1986 61 16.9

1979 108 18.1 1987 48 17.1

1980  88 17.2 1988 61 18.2

1981  91 18.2 1989 43 17.3

1982  58 16.0 1990 33 17.5

1983  82 17.2 1991 36 16.6

(a) Construct a scatter diagram of the data.

(b) Fit a simple linear repression model.

(c) Test for signifi cance of regression. Calculate R2 for the 

model.

(d) Analyze the residuals and comment on model adequacy.

11-104. Two different methods can be used for measuring 

the temperature of the solution in a Hall cell used in aluminum 

smelting, a thermocouple implanted in the cell and an indirect 

measurement produced from an IR device. The indirect method 

is preferable because the thermocouples are eventually destroyed 

by the solution. Consider the following 10 measurements:

Thermocouple 921 935 916 920 940

IR 918 934 924 921 945

Thermocouple 936 925 940 933 927

IR 930 919 943 932 935

(a) Construct a scatter diagram for these data, letting x = ther-

mocouple measurement and y = IR measurement.

(b) Fit a simple linear regression model.

(c) Test for signifi cance a regression and calculate R2. What 

conclusions can you draw?

(d) Is there evidence to support a claim that both devices pro-

duce equivalent temperature measurements? Formulate 

and test an appropriate hypothesis to support this claim.

(e) Analyze the residuals and comment on model adequacy.

11-105. The grams of solids removed from a material ( )y  

is thought to be related to the drying time. Ten observations 

obtained from an experimental study follow:

y 4.3 1.5 1.8 4.9 4.2 4.8 5.8 6.2 7.0 7.9

x 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0

(a) Construct a scatter diagram for these data.

(b) Fit a simple linear regression model.

(c) Test for signifi cance of regression.

(d) Based on these data, what is your estimate of the mean 

grams of solids removed at 4.25 hours? Find a 95% confi -

dence interval on the mean.
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(e) Analyze the residuals and comment on model adequacy.

11-106.  Cesium atoms cooled by laser light could be used 

to build inexpensive atomic clocks. In a study reported in IEEE 
Transactions on Instrumentation and Measurement (2001, Vol. 

50, pp. 1224–1228), the number of atoms cooled by lasers of 

various powers were counted. The data are in Table E11-19.

E11-19 Number of Atoms

Power (mW)
Number of

Atoms (×10E9)

11 0

12 0.02

18 0.08

21 0.13

22 0.15

24 0.18

28 0.31

32 0.4

37 0.49

39 0.57

41 0.64

46 0.71

48 0.79

50 0.82

51 0.83

(a) Graph the data and fi t a regression line to predict the num-

ber of atoms from laser power. Comment on the adequacy 

of a linear model.

(b) Is there a signifi cant regression at α = .0 05? What is the 

P-value?

(c) Estimate the correlation coeffi cient.

(d) Test the hypothesis that ρ = 0 against the alternative ρ ≠ 0 

with α = .0 05. What is the P-value?

(e) Compute a 95% confi dence interval for the slope coeffi cient.

11-107. The data in Table E11-20 related diamond carats to 

purchase prices. It appeared in Singapore’s Business Times, 

February 18, 2000.

(a) Graph the data. What is the relation between carat and 

price? Is there an outlier?

(b) What would you say to the person who purchased the dia-

mond that was an outlier?

(c) Fit two regression models, one with all the data and the 

other with unusual data omitted. Estimate the slope coef-

fi cient with a 95% confi dence interval in both cases. 

Comment on any difference.

11-108.  Table E11-21 shows the population and the 

average count of wood storks sighted per sample period for 

South Carolina from 1991 to 2004. Fit a regression line with 

population as the response and the count of wood storks as 

the predictor. Such an analysis might be used to evaluate 

the relationship between storks and babies. Is regression 

signifi cant at α = .0 05? What do you conclude about the 

role of regression analysis to establish a cause-and-effect 

relationship?

E11-20 Diamond Price Data

Carat Price Carat Price

0.3 1302 0.33 1327

0.3 1510 0.33 1098

0.3 1510 0.34 1693

0.3 1260 0.34 1551

0.31 1641 0.34 1410

0.31 1555 0.34 1269

0.31 1427 0.34 1316

0.31 1427 0.34 1222

0.31 1126 0.35 1738 

0.31 1126 0.35 1593

0.32 1468 0.35 1447

0.32 1202 0.35 1255

0.36 1635 0.45 1572

0.36 1485 0.46 2942

0.37 1420 0.48 2532

0.37 1420 0.5 3501

0.4 1911 0.5 3501

0.4 1525 0.5 3501

0.41 1956 0.5 3293

0.43 1747 0.5 3016

E11-21 Stork Population Data

Year Population Stork Count

1991 3,559,470 0.342

1992 3,600,576 0.291

1993 3,634,507 0.291 

1994 3,666,456 0.291

1995 3,699,943 0.291

1996 3,738,974 0.509

1997 3,790,066 0.294

1998 3,839,578 0.799

1999 3,885,736 0.542

2000 4,012,012 0.495

2001 4,061,209 0.859

2002 4,105,848 0.364

2003 4,148,744 0.501

2004 4,198,068 0.656
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Mind-Expanding Exercises

11-109. Suppose that we have n pairs of observations 
( , )x yi i  such that the sample correlation coefficient r is unity 

(approximately). Now let z yi i= 2
 and consider the sample 

correlation coefficient for the n-pairs of data ( , )x zi i . Will 

this sample correlation coefficient be approximately unity? 

Explain why or why not.

11-110. Consider the simple linear regression model 

Y x= + +β β ,0 1 e  with E V( ) , ( ) ,e e= =0 σ2  and the errors e 

uncorrelated.

(a) Show that cov ( )ˆ ˆ /β  β = − σ0 1
2, x Sxx.

(b) Show that cov ( )Y, ˆ .β1 0=

11-111. Consider the simple linear regression model 

Y x= + +β β ,0 1 e  with E V( ) , ( ) ,e e= =0 σ2  and the errors e 

uncorrelated.

(a) Show that E( ˆ ) ( )σ σ2 = =E MSE
2.

(b) Show that E MS SR xx( ) = +σ β2
1
2

.

11-112. Suppose that we have assumed the straight-line 

regression model

Y x= β + β +0 1 1 e 

but the response is affected by a second variable x2 such that 

the true regression function is

E Y x x( ) = β + β + β0 1 1 2 2

Is the estimator of the slope in the simple linear regression 

model unbiased?

11-113. Suppose that we are fitting a line and we 

wish to make the variance of the regression coefficient 

β̂1 as small as possible. Where should the observa-

tions x i ni , , , . . . , ,= 1 2  be taken so as to minimize V ( )ˆ ?β1   

Discuss the practical implications of this allocation  

of the xi.

11-114. Weighted Least Squares. Suppose that we are 

fitting the line Y x= + +β β0 1 e, but the variance of Y  

depends on the level of x; that is,

V Y x
w

i , , , ni i i
i

|( ) = σ = σ =  …  2
2

1 2

where the wi  are constants, often called weights. Show that 

for an objective function in which each squared residual is 

multiplied by the reciprocal of the variance of the corre-

sponding observation, the resulting weighted least squares 

normal equations are

ˆ ˆβ + β =
= = =
∑ ∑ ∑0

1
1

1 1

w w x w yi
i

n

i i
i

n

i i
i

n

ˆ ˆβ + β =
= = =
∑ ∑ ∑0

1
1

2

1 1

w x w x w x yi i
i

n

i i
i

n

i i i
i

n

Find the solution to these normal equations. The solutions 

are weighted least squares estimators of β0 and β1.

11-115. Consider a situation in which both Y  and X  are 

random variables. Let sx  and sy  be the sample standard devi-

ations of the observed x ’s and y’s, respectively. Show that 

an alternative expression for the fitted simple linear regres-

sion model ˆ ˆ ˆy x= β + β0 1  is

ˆ ( )y y r
s

s
x xy

x

= +   −

11-116. Suppose that we are interested in fitting a simple 

linear regression model Y x= + +β β0 1 e  where the inter-

cept, β0, is known.

(a) Find the least squares estimator of β1.

(b) What is the variance of the estimator of the slope in part (a)?

(c) Find an expression for a 100 1( )%− α  confidence inter-

val for the slope β1. Is this interval longer than the 

corresponding interval for the case in which both the 

intercept and slope are unknown? Justify your answer.

Analysis of variance table

Coefficient of determination

Confidence interval on the 

intercept

Confidence interval  

on the slope

Confidence interval  

on the mean response

Correlation  

coefficient

Empirical model

Error sum of squares

Intrinsically linear model

Least squares

Logistic regression

Logit response function

Mean squares

Model adequacy checking

Normal probability  

plot of residuals

Odds ratio

Outlier

Prediction interval on a future 

observation

Important Terms and Concepts
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Regression analysis

Regression coefficients

Regression line

Regression sum of squares

Regressor

Residuals

Residual plots

Response variable

Scatter diagram

Significance of regression

Simple linear regression 

model standard 

errors

Statistical tests on model 

parameters

Transformations
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This chapter generalizes the simple linear regression to a situation that has more than one predictor 

or regressor variable. This situation occurs frequently in science and engineering; for example, in 

Chapter 1, we provided data on the pull strength of a wire bond on a semiconductor package and 

illustrated its relationship to the wire length and the die height. Understanding the relationship 

between strength and the other two variables may provide important insight to the engineer when 

the package is designed, or to the manufacturing personnel who assemble the die into the package. 

We used a multiple linear regression model to relate strength to wire length and die height. There 

are many examples of such relationships: The life of a cutting tool is related to the cutting speed 

and the tool angle; patient satisfaction in a hospital is related to patient age, type of procedure per-

formed, and length of stay; and the fuel economy of a vehicle is related to the type of vehicle (car 

versus truck), engine displacement, horsepower, type of transmission, and vehicle weight. Multiple 

regression models give insight into the relationships between these variables that can have impor-

tant practical implications.

In this chapter, we show how to fit multiple linear regression models, perform the statisti-

cal tests and confidence procedures that are analogous to those for simple linear regression, 

and check for model adequacy. We also show how models that have polynomial terms in the 

regressor variables are just multiple linear regression models. We also discuss some aspects of 

building a good regression model from a collection of candidate regressors.

 Learning Objectives

After careful study of this chapter, you should be able to do the following:

1. Use multiple regression techniques to build empirical models to engineering and scientific data

2. Understand how the method of least squares extends to fitting multiple regression models

3. Assess regression model adequacy

4. Test hypotheses and construct confidence intervals on the regression coefficients

5. Use the regression model to estimate the mean response and to make predictions and to construct 
confidence intervals and prediction intervals

6. Build regression models with polynomial terms

7. Use indicator variables to model categorical regressors

8. Use stepwise regression and other model building techniques to select the appropriate set of 
 variables for a regression model

12-1 Multiple Linear Regression Model

12-1.1 INTRODUCTION

Many applications of regression analysis involve situations that have more than one regressor 

or predictor variable. A regression model that contains more than one regressor variable is 

called a multiple regression model.
As an example, suppose that the gasoline mileage performance of a vehicle depends on the 

vehicle weight and the engine displacement. A multiple regression model that might describe 

this relationship is

 Y = + + +β β β0 1 1 2 2x x e (12-1)

where Y  represents the mileage, x1 represents the weight, x2 represents the engine displace-

ment, and e is a random error term. This is a multiple linear regression model with two regres-

sors. The term linear is used because Equation 12-1 is a linear function of the unknown 

parameters β β0 1, , and β2.
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FIGURE 12-1 (a) The regression plane for the model E Y( ) 50 10= + x x1+ 7 2. (b) The contour plot.

The regression model in Equation 12-1 describes a plane in the three-dimensional space of 

Y , x1, and x2. Figure 12-1(a) shows this plane for the regression model

E Y x x( ) = + +50 10 71 2

where we have assumed that the expected value of the error term is zero; that is E( )e = 0. The 

parameter β0 is the intercept of the plane. We sometimes call β1 and β2 partial regression 
coefficients because β1 measures the expected change in Y  per unit change in x1 when x2 is 

held constant, and β2 measures the expected change in Y  per unit change in x2 when x1 is held 

constant. Figure 12-1(b) shows a contour plot of the regression model—that is, lines of con-

stant E Y( ) as a function of x1 and x2. Notice that the contour lines in this plot are straight lines.

In general, the dependent variable or response Y  may be related to k  independent or 

regressor variables. The model

 Y = + + + + +β β β β0 1 1 2 2x x xk k� e  (12-2)

is called a multiple linear regression model with k regressor variables. The parameters β j, 

j k= 0 1, , ,…,  are called the regression coefficients. This model describes a hyperplane in the 

k-dimensional space of the regressor variables { }x j . The parameter β j represents the expected 

change in response Y  per unit change in x j when all the remaining regressors x i ji( )≠  are held 

constant.

Multiple linear regression models are often used as approximating functions. That is, the 

true functional relationship between Y  and x x xk1 2, , ,…  is unknown, but over certain ranges of 

the independent variables, the linear regression model is an adequate approximation.

Models that are more complex in structure than Equation 12-2 may often still be analyzed 

by multiple linear regression techniques. For example, consider the cubic polynomial model 

in one regressor variable.

 Y x x x= β + β + β + β +0 1 2 3
2 3 e (12-3)

If we let x x x x x x1 2
2

3
3= = =, , , Equation 12-3 can be written as

 Y x x x= β + β + β + β +0 1 1 2 2 3 3 e (12-4)

which is a multiple linear regression model with three regressor variables.

Models that include interaction effects may also be analyzed by multiple linear regres-

sion methods. Interaction effects are very common. For example, a vehicle’s mileage may be 

impacted by an interaction between vehicle weight and engine displacement. An interaction 

between two variables can be represented by a cross-product term in the model, such as

 Y x x x x= β + β + β + β +0 1 1 2 2 12 1 2 e (12-5)
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FIGURE 12-2 (a) Three-dimensional plot of the  regression 
model . (b) The  contour plot.

If we let x x x3 1 2=  and β β3 12= , Equation 12-5 can be written as

Y x x x= β + β + β + β +0 1 1 2 2 3 3 e

which is a linear regression model.

Figure 12-2(a) and (b) shows the three-dimensional plot of the regression model

Y x x x x= + + +50 10 7 51 2 1 2

and the corresponding two-dimensional contour plot. Notice that, although this model is a 

linear regression model, the shape of the surface that is generated by the model is not linear. In 

general, any regression model that is linear in parameters (the β’s) is a linear regression 
model, regardless of the shape of the surface that it generates.

Figure 12-2 provides a nice graphical interpretation of an interaction. Generally, interaction 

implies that the effect produced by changing one variable ( , )x1 say  depends on the level of the 

other variable ( )x2 . For example, Fig. 12-2 shows that changing x1 from 2 to 8 produces a much 

smaller change in E Y( ) when x2 2=  than when x2 10= . Interaction effects occur frequently in 

the study and analysis of real-world systems, and regression methods are one of the techniques 

that we can use to describe them.

As a final example, consider the second-order model with interaction

 Y x x x x x x= β + β + β + β + β + β +0 1 1 2 2 11 1
2

22 2
2

12 1 2 e (12-6)

If we let x x x x x x x3 1
2

4 2
2

5 1 2= = = = =, , , , ,β β β β3 11 4 22  and β β5 12= , Equation 12-6 can be writ-

ten as a multiple linear regression model as follows:

Y x x x x x= β + β + β + β + β + β +0 1 1 2 2 3 3 4 4 5 5 e
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FIGURE 12-3 (a) Three-dimensional plot of the regression  
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(b) The contour plot.
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Figure 12-3 parts (a) and (b) show the three-dimensional plot and the corresponding contour 

plot for

E Y x x x x x x( ) = + + − . − +800 10 7 8 5 5 41 2 1
2

2
2

1 2

These plots indicate that the expected change in Y  when xi is changed by one unit (say) is a func-

tion of and x2. The quadratic and interaction terms in this model produce a mound-shaped function. 

Depending on the values of the regression coefficients, the second-order model with interaction is 

capable of assuming a wide variety of shapes; thus, it is a very flexible regression model.

12-1.2 LEAST SQUARES ESTIMATION OF THE PARAMETERS

The method of least squares may be used to estimate the regression coefficients in the multiple 

regression model, Equation 12-2. Suppose that n k.  observations are available, and let xij  

denote the ith observation or level of variable x j. The observations are

x x x y i ni i ik i1 2 1 2, , , , , , ,… … >( ) = and n k

It is customary to present the data for multiple regression in a table such as Table 12-1.

Each observation ( , , ..., , )x x x yi i ik i1 2 , satisfies the model in Equation 12-2, or

 

y x x x

x i , , , n

i i i k ik i

j ij i
j

k

= β + β + β + + β +

= β + β +  = … 
=
∑

0 1 1 2 2

0
1

1 2

… e

e  (12-7)

The least squares function is

 L y xi
i

n

i ij
j

k

i

n

= = − −
⎛
⎝⎜

⎞
⎠⎟= ==

∑ ∑∑e b b2

1 11

2

0 j  (12-8)

We want to minimize L with respect to β β β0 1, , ... , k. The least squares estimates of 

β β β0 1, , ... , k  must satisfy

 
∂
∂
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⎛
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⎞
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=
==
∑∑L

y x
j

i ij
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∧ ∧ ∧

…

∧ ∧
β β

0 1
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, , , k
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11

 (12-9a)

and

 
∂
∂
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⎛
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∑∑L

y x xi ij
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i
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ij
b
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0 j

0 1

∧ ∧ ∧
β β
∧ ∧

, ,..... k

2 0
11

jj k= 1 2, , ....,  (12-9b)

Simplifying Equation 12-9, we obtain the least squares normal equations
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 (12-10)

TABLE 12-1 Data for Multiple Linear Regression

y x1 x2
� xk

y1 x11 x12
� x k1

y2 x21 x22
� x k2


 
 
 

yn xn1 xn2

� xnk
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Wire Bond Strength In Chapter 1, we used data on pull strength of a wire bond in a semi-

conductor manufacturing process, wire length, and die height to illustrate building an empirical 

model. We will use the same data, repeated for convenience in Table 12-2, and show the details of estimating the 

model parameters. A three-dimensional scatter plot of the data is presented in Fig. 1-15. Figure 12-4 is a matrix of 

two-dimensional scatter plots of the data. These displays can be helpful in visualizing the relationships among vari-

ables in a multivariable data set. For example, the plot indicates that there is a strong linear relationship between 

strength and wire length.

Specifi cally, we will fi t the multiple linear regression model

Y x x= β + β + β +0 1 1 2 2 e

where Y = pull strength, x1 = wire length, and x2 = die height. From the data in Table 12-2, we calculate

n y x x

x

i i i
iii

i

= = = =

=

===
∑∑∑25 725 82 206 8 294

2 3

1 2
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For the model Y x x= + + +β β β0 1 21 2 e, the normal Equations 12-10 are
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Example 12-1

Note that there are p k= + 1 normal equations, one for each of the unknown regression 

coeffi cients. The solution to the normal equations will be the least squares estimators of the 

regression coeffi cients, ˆ ˆ ˆβ  β …  β .0 1, , , k  The normal equations can be solved by any method 

appropriate for solving a system of linear equations.

Observation 
Number

Pull Strength 
y

Wire Length 
x1

Die Height 
x2

Observation 
Number

Pull Strength 
y

Wire Length 
x1

Die Height 
x2

1 9.95 2 50 14 11.66  2 360

2 24.45 8 110 15 21.65  4 205

3 31.75 11 120 16 17.89  4 400

4 35.00 10 550 17 69.00 20 600

5 25.02 8 295 18 10.30  1 585

6 16.86 4 200 19 34.93 10 540

7 14.38 2 375 20 46.59 15 250

8  9.60 2 52 21 44.88 15 290

9 24.35 9 100 22 54.12 16 510

10 27.50 8 300 23 56.63 17 590

11 17.08 4 412 24 22.13  6 100

12 37.00 11 400 25 21.15  5 400

13 41.95 12 500

TABLE 12-2 Wire Bond Data for Example 12-1
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FIGURE 12-4 Matrix of computer-generated scatter plots for the 
wire bond pull strength data in Table 12-2.

Inserting the computed summations into the normal equations, we obtain

  

 

25 206 8294 725 82

206 2396 77 177 8 0

0 1 2

0 1 2

ˆ ˆ ˆ

ˆ ˆ ˆ

β + β + β = .

β + β + β =, , 008 47

8294 77 177 3 531 848 274 816 710 1 2

.

β + β + β = .ˆ ˆ ˆ, , , ,

The solution to this set of equations is

ˆ ˆ ˆβ = . β = . β = .0 1 22 26379 2 74427 0 01253, ,

Therefore, the fi tted regression equation is

ŷ x x= . + . + .2 26379 2 74427 0 012531 2

Practical Interpretation: This equation can be used to predict pull strength for pairs of values of the regressor 

variables wire length ( )x1  and die height ( )x2 . This is essentially the same regression model given in Section 1-3. Figure 

1-16 shows a three-dimensional plot of the plane of predicted values ŷ generated from this equation.

12-1.3 MATRIX APPROACH TO MULTIPLE LINEAR REGRESSION

In fi tting a multiple regression model, it is much more convenient to express the mathematical 

operations using matrix notation. Suppose that there are k regressor varibles and n observations, 

( , , ..., , ), , , ...,x x x y i ni i ik i1 2 1 2=  and that the model relating the regressors to the response is

y x x x i , , , ni i i k ik i= β + β + β + + β + = …0 1 1 2 2 1 2… e

This model is a system of n equations that can be expressed in matrix notation as

 y X= +b e (12-11)

where
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In general, y is an ( )n × 1  vector of the observations, X is an ( )n p×  matrix of the levels 

of the independent variables (assuming that the intercept is always multiplied by a constant 

value—unity), b is a ( )p × 1  vector of the regression coefficients, and e is a ( )n × 1  vector of 

random errors. The X matrix is often called the model matrix.

We wish to find the vector of least squares estimators, b̂, that minimizes

L i
i

n

= = ′ = −( )′ −( )
=
∑ e e e2

1

y X y Xb b

The least squares estimator b̂ is the solution for b in the equations

∂
∂

=L

b
0

We will not give the details of taking the preceding derivatives; however, the resulting 

equations that must be solved are

 X X X y� = �b̂  (12-12)

Normal 
Equations

 b̂ = � �-
X X X y

1( )  (12-13)

Least Squares  
Estimate of b

Equations 12-12 are the least squares normal equations in matrix form. They are identical to 

the scalar form of the normal equations given earlier in Equations 12-10. To solve the normal 

equations, multiply both sides of Equations 12-12 by the inverse of X X� . Therefore, the least 

squares estimate of b is

Note that there are p k= + 1 normal equations in p k= + 1 unknowns (the values of ˆ ˆ ˆβ β  β0 1, , , k… ).  

Furthermore, the matrix X X�  is always nonsingular, as was assumed previously, so the methods 

described in textbooks on determinants and matrices for inverting these matrices can be used  

to find X X�( )−1
. In practice, multiple regression calculations are almost always performed using  

a computer.

It is easy to see that the matrix form of the normal equations is identical to the scalar form. 

Writing out Equation 12-12 in detail, we obtain
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If the indicated matrix multiplication is performed, the scalar form of the normal equations (that is, 

Equation 12-10) will result. In this form, it is easy to see that X X�  is a ( )p p×  symmetric matrix 

and X y�  is a ( )p × 1  column vector. Note the special structure of the X X�  matrix. The diagonal  

elements of X X�  are the sums of squares of the elements in the columns of X, and the off-diagonal  

elements are the sums of cross-products of the elements in the columns of X. Furthermore, note that 

the elements of X y�  are the sums of cross-products of the columns of X and the observations { }yi .
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Wire Bond Strength With Matrix Notation In Example 12-1, we illustrated fi tting the multiple 

regression model

y = + + +β β β0 1 1 2 2x x e

where y is the observed pull strength for a wire bond, x1 is the wire length, and x2 is the die height. The 25 observations 

are in Table 12-2. We will now use the matrix approach to fi t the previous regression model to these data. The model 

matrix X and y vector for this model are

X =

1 2 50

1 8 110

1 11 120

1 10 550

1 8 295

1 4 200

1 2 375

1 2 52

1 9 100

1 8 300

1 4 412

1 111 400

1 12 500

1 2 360

1 4 205

1 4 400

1 20 600

1 1 585

1 10 540

1 15 250

1 15 290

1 166 510

1 17 590

1 6 100

1 5 400

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

=

.
.
.

y

9 95

24 45

31 775

35 00

25 02

16 86

14 38

9 60

24 35

27 50

17 08

37 00

41 95

11 66

2

.

.

.

.
.
.
.
.
.
.
.

11 65

17 89

69 00

10 30

34 93

46 59

44 88

54 12

56 63

22 13

21 15

.

.

.

.

.

.

.

.

.

.

.

⎡

⎣

⎢
⎢⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

The fi tted regression model is

ˆ ˆ ˆ , , ,y x i ni j ij
j

k

= β + β =  …  
=
∑0

1

1 2  (12-14)

In matrix notation, the fi tted model is

y X^ = b̂

The difference between the observation yi and the fi tted value ŷi is a residual, say, e y yi i i= − .ˆ

The ( )n × 1  vector of residuals is denoted by

e y y= - ˆ (12-15)

Example 12-2
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The X X�  matrix is

X X� =
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥

1

2

50

1

8

110

1

5

400

1 2 50

1 8 110

1 5 400

�
�
�


 
 
 ⎥⎥
⎥

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

25 206 8 294

206 2 396 77 177

8 294 77 177 3 531 848

,

, ,

, , , ,

and the X y�  vector is

X y� =
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

.
.

.

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

1 1 1

2 8 5

50 110 400

9 95

24 45

21 15

�
�
�



==

.
.

.

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

725 82

8 008 47

274 816 71

,

,

The least squares estimates are found from Equation 12-13 as

b̂ = �-
X’X X y

1( )  

or
ˆ

ˆ

ˆ

β

β

β

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=
0

1

2

25 206 8 294

206 2 396 77 177

8 294 77 177 3

,

, ,

, , ,, ,531 848

725 82

8 008 37

274 11 31

0 2

1
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
.

−
.

, .

, .

114653 0 007491 0 000340

0 007491 0 001671 0 000019

0 00034

− . − .
− . . − .
− . 00 0 000019 0 0000015

725 82

8 008 47

274 811 31− . + .

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

.
.
.

⎡

⎣

⎢ ,

,
⎢⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
.
.
.

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

2 26379143

2 74426964

0 01252781

Therefore, the fi tted regression model with the regression coeffi cients rounded to fi ve decimal places is

ŷ x x1 1 22 26379 2 74427 0 01253= . + . + .
This is identical to the results obtained in Example 12-1.

This regression model can be used to predict values of pull strength for various values of wire length ( )x1  and die 

height ( )x2 . We can also obtain the fi tted values ŷi by substituting each observation ( , ), , , ... , ,x x i ni i1 2 1 2=  into the 

equation. For example, the fi rst observation has x11 2=  and x12 50= , and the fi tted value is

ŷ x x1 11 122 26379 2 74427 0 01253 2 26379 2 74427 2 0 012= . + . + . = . + . ( ) + . 553 50 8 38( ) = .

Observation 
Number

yi ŷi e y yi i i= - ˆ Observation 
Number

yi ŷi e y yi i i= - ˆ

1  9.95  8.38 1.57 14 11.66 12.26 –0.60

2 24.45 25.60 –1.15 15 21.65 15.81 5.84

3 31.75 33.95 –2.20 16 17.89 18.25 –0.36

4 35.00 36.60 –1.60 17 69.00 64.67 4.33

5 25.02 27.91 –2.89 18 10.30 12.34 –2.04

6 16.86 15.75 1.11 19 34.93 36.47 –1.54

7 14.38 12.45 1.93 20 46.59 46.56 0.03

8  9.60  8.40 1.20 21 44.88 47.06 –2.18

9 24.35 28.21 –3.86 22 54.12 52.56 1.56

10 27.50 27.98 –0.48 23 56.63 56.31 0.32

11 17.08 18.40 –1.32 24 22.13 19.98 2.15

12 37.00 37.46 –0.46 25 21.15 21.00 0.15

13 41.95 41.46 0.49

TABLE 12-3 Observations, Fitted Values, and Residuals for Example 12-2
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Computers are almost always used in fi tting multiple regression models. See Table 12-4 

for some annotated computer output for the least squares regression model for the wire bond 

pull strength data. The upper part of the table contains the numerical estimates of the regres-

sion coeffi cients. The computer also calculates several other quantities that refl ect important 

information about the regression model. In subsequent sections, we will defi ne and explain 

the quantities in this output.

Estimating r2

Just as in simple linear regression, it is important to estimate σ2, the variance of the error term 

e, in a multiple regression model. Recall that in simple linear regression the estimate of σ2 was 

obtained by dividing the sum of the squared residuals by n − 2. Now there are two parameters 

in the simple linear regression model, so in multiple linear regression with p parameters, a 

logical estimator for σ2 is

The corresponding observed value is y1 9 95= . . The residual corresponding to the fi rst observation is

e y y1 1 1 9 95 8 38 1 57= − = . − . = .ˆ

Table 12-3 displays all 25 fi tted values ŷi and the corresponding residuals. The fi tted values and residuals are calculated 

to the same accuracy as the original data.

 σ̂  =
−

=
−

=
∑

2

2

1

e

n p

SS

n p

i
i

n

E  (12-16)

Estimator of 
Variance

TABLE 12-4 Multiple Regression Output from Software for the Wire Bond Pull Strength Data

Regression Analysis: Strength versus Length, Height

Strength = 2.26 + 2.74 Length + 0.0125 Height

Predictor Coef SE Coef T P VIF

Constant β̂0  2.264 1.060 2.14 0.044

Length β̂1  2.74427 0.09352 29.34 0.000 1.2

Height β̂2  0.012528 0.002798 4.48 0.000 1.2

S = 2.288 R-Sq = 98.1% R-Sq (adj) = 97.9%
PRESS = 156.163         R-Sq (pred) = 97.44%

Analysis of Variance

Source DF SS MS F P
Regression 2 5990.8 2995.4 572.17 0.000
Residual error 22 115.2 5.2  σ̂2

Total 24 6105.9

Source DF Seq SS
Length 1 5885.9
Height 1 104.9

Predicted Values for New Observations

New Obs Fit SE Fit     95.0% CI      95.0% PI
1 27.663 0.482   (26.663, 28.663)   (22.814, 32.512)

Values of Predictors for New Observations

New Obs Length Height
1 8.00 275
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This is an unbiased estimator of σ2. Just as in simple linear regression, the estimate of σ2 

is usually obtained from the analysis of variance for the regression model. The numerator of 

Equation 12-16 is called the error or residual sum of squares, and the denominator n p−  is 

called the error or residual degrees of freedom.

We can find a computing formula for SS
E
 as follows:

SS y y eE i
i

n

i
i

n

= −( ) = =
= =
∑ ∑ˆ

2

1

2

1

e e�

Substituting e y y y X= - = -ˆ b̂ into the equation, we obtain

 SSE = − =y y X y� - �ˆ , . , . .b = 27 178 5316 27 063 3581 115 174 (12-17)

Table 12-4 shows that the estimate of σ2 for the wire bond pull strength regression model 

is σ̂2  = 115.2/22 = 5.2364. The computer output rounds the estimate to σ̂2  = 5.2.

12-1.4 PROPERTIES OF THE LEAST SQUARES ESTIMATORS

The statistical properties of the least squares estimators ˆ ˆ ˆβ  β …  β0 1, , , k  may be easily found 

under certain assumptions on the error terms ε ε ε1 2, , ... , n, in the regression model. Paralleling 

the assumptions made in Chapter 11, we assume that the errors εi are statistically independ-

ent with mean zero and variance σ2. Under these assumptions, the least squares estimators 
ˆ ˆ ˆβ β … β0 1, , , k  are unbiased estimators of the regression coefficients β β β0 1, , ..., k. This property 

may be shown as follows:

E Eb̂

b e

b

( ) = ( )⎡
⎣

⎤
⎦

= ( ) +( )⎡
⎣

⎤
⎦

= ( ) +

−

−

−

X X X Y

X X X X

X X X X X

� �

� �

� � �

1

1

1

E

E XX X( )⎡
⎣

⎤
⎦

=

−1 �e

b

because E( )e = 0 and X X X X I� � =( )−1
, the identity matrix. Thus, â is an unbiased estimator of a.

The variances of the â’s are expressed in terms of the elements of the inverse of the 

X X�  matrix. The inverse of X X�  times the constant σ2 represents the covariance matrix of 

the regression coefficients â. The diagonal elements of σ  ( )−2 1
X X�  are the variances of β̂0 , 

ˆ ˆβ …  β1 , , ,k  and the off-diagonal elements of this matrix are the covariances. For example, if we 

have k = 2 regressors, such as in the pull strength problem,

C = ( ) =
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

−
X X� 1

00 01 02

10 11 12

20 21 22

C C C

C C C

C C C

which is symmetric ( , ,C C C C10 01 20 02= =  and C C21 12= ) because X X�( )−1
 is symmetric, and 

we have
V C , j , ,

, C , i j

j jj

i j ij

ˆ

ˆ ˆ

β( ) = σ =   

β  β( ) = σ ≠

2

2

0 1 2

cov

In general, the covariance matrix of b̂ is a ( )p p×  symmetric matrix whose jjth element is the 

variance of β̂ j and whose i j, th element is the covariance between β̂i and β̂ j , that is,

cov b̂( ) = σ ( ) = σ−2 1 2X X C�
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The estimates of the variances of these regression coefficients are obtained by replacing 

σ2 with an estimate. When σ2 is replaced by its estimate σ̂2, the square root of the estimated 

variance of the jth regression coefficient is called the estimated standard error of β̂ j or 

se Cj jj( )ˆ ˆβ = σ .2  These standard errors are a useful measure of the precision of estimation 

for the regression coefficients; small standard errors imply good precision.

Multiple regression computer programs usually display these standard errors. For 

example, the computer output in Table 12-4 reports se , se ,( ) ( )ˆ ˆβ = .  β = .0 11 060 0 09352  and 

se ( )β̂ = . .2 0 002798  The intercept estimate is about twice the magnitude of its standard error, 

and β̂   β1 and  are considerably larger than se( )β̂1  and se( )β̂ .2  This implies reasonable precision 

of estimation, although the parameters β1 and β2 are much more precisely estimated than the 

intercept (this is not unusual in multiple regression).

12.1. Exercise 11.1 described a regression model between 

percent of body fat (%BF) as measured by immersion and BMI 

from a study on 250 male subjects. The researchers also meas-

ured 13 physical characteristics of each man, including his age 

(yrs), height (in), and waist size (in).

A regression of percent of body fat with both height and 

waist as predictors shows the following computer output:

 Estimate Std. Error   t-value  Pr(>|t|)
(Intercept) −3.10088 7.68611 −0.403 0.687
Height −0.60154 0.10994 −5.472 1.09e−07 
Waist 1.77309 0.07158 24.770 < 2e−16 
Residual standard error: 4.46 on 247 degrees of freedom
Multiple R-squared: 0.7132, Adjusted R-squared: 0.7109 
F-statistic: 307.1 on 2 and 247 DF, p-value: < 2.2e-16

(a) Write out the regression model if

 

 

( )

. . .

. . .X X� − =
− − − −

− − −1

2 9705 4 0042 2 4 1679 2

0 04004 6 0774 4 7 3875

E E

E EE

E E

−
− − − −

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

5

0 00417 7 3875 5 2 5766 4. . .

 

 and 

( )

.

.

.

X y� =
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

4757 9

334335 8

179706 7

(b) Verify that the model found from technology is correct to at 

least 2 decimal places.

(c) What is the predicted body fat of a man who is 6-ft tall with 

a 34-in waist?

12.2.  A class of 63 students has two hourly exams and a 

final exam. How well do the two hourly exams predict perfor-

mance on the final?

The following are some quantities of interest:

( )

. . .

. .X X� − =
− −

−1

0 9129168 9 815022 03 7 11238

0 00981502 1 497

e- e-04

2241 4 4 15806 5

0 00071123 4 158056 5 5 81235 05

e- 0 e- 0

e- 0 e-

−
− −

⎡

⎣

⎢
.

. . .
⎢⎢
⎢

⎤

⎦

⎥
⎥
⎥

( )

.

.

.

X y� =
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

4871 0

426011 0

367576 5

(a) Calculate the least squares estimates of the slopes for 

hourly 1 and hourly 2 and the intercept. 

(b) Use the equation of the fitted line to predict the final 

exam score for a student who scored 70 on hourly 1 and 

85 on hourly 2.

(c) If a student who scores 80 on hourly 1 and 90 on hourly 2 

gets an 85 on the final, what is her residual?

12.3. Can the percentage of the workforce who are engineers 

in each U.S. state be predicted by the amount of money spent 

in on higher education (as a percent of gross domestic prod-

uct), on venture capital (dollars per $1000 of gross domestic 

product) for high-tech business ideas, and state funding (in 

dollars per student) for major research universities? Data for 

all 50 states and a software package revealed the following 

results:

 Estimate    Std. Error t value Pr(>|t|)
(Intercept) 1.051e+00 1.567e-01 6.708 2.5e-08 ***
Venture cap 9.514e-02 3.910e-02 2.433 0.0189 *  
State funding 4.106e-06 1.437e-05 0.286 0.7763    
Higher.eD -1.673e-01 2.595e-01 -0.645 0.5223    

Residual standard error: 0.3007 on 46 degrees of 
freedom
Multiple R-squared: 0.1622,  Adjusted R-squared: 0.1075 
F-statistic: 2.968 on 3 and 46 DF,p-value: 0.04157 

(a) Write the equation predicting the percent of  engineers in 

the workforce.

(b) For a state that has $1 per $1000 in venture capital, spends 

$10,000 per student on funding for major research universi-

ties, and spends 0.5% of its GDP on higher education, what 

percent of engineers do you expect to see in the workforce?

(c) If the state in part (b) actually had 1.5% engineers in the 

workforce, what would the residual be?

FOR SECTION 12-1Exercises
 Problem available in WileyPLUS at instructor’s discretion. 

 Tutoring problem available in WileyPLUS at instructor’s discretion
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12-4. Hsuie, Ma, and Tsai (‘‘Separation and Characterizations 

of Thermotropic Copolyesters of p-Hydroxybenzoic Acid, 

Sebacic Acid, and Hydroquinone,’’ (1995, Vol. 56) studied the 

effect of the molar ratio of sebacic acid (the regressor) on the 

intrinsic viscosity of copolyesters (the response). The follow-

ing display presents the data.

Ratio Viscosity
1.0 0.45

0.9 0.20

0.8 0.34

0.7 0.58

0.6 0.70

0.5 0.57

0.4 0.55

0.3 0.44

(a) Construct a scatterplot of the data.

(b) Fit a second-order prediction equa tion.

12-5. A study was performed to investigate the shear strength of 

soil ( )y  as it related to depth in feet ( )x1  and percent of moisture 

content ( )x2 . Ten observations were collected, and the following 

summary quantities obtained: n = 10, x ,i1 223∑ =  x ,i2 553∑ =  

y , ,i∑ = 1 916  x , ,i1
2 5 200 9∑ = .  x , ,i2

2 31 729∑ =  x x , ,i i1 2 12 352∑ =  

x y , ,i i1 43 550 8∑ = .  x y , ,i i2 104 736 8∑ = .  and y ,i
2 371 595 6∑ = . .

(a) Set up the least squares normal equations for the model 

Y x x= + + +β β β0 1 21 2 e.

(b) Estimate the parameters in the model in part (a).

(c) What is the predicted strength when x1 18=  feet and x2 43= %?

12-6.  A regression model is to be developed for predicting 

the ability of soil to absorb chemical contaminants. Ten obser-

vations have been taken on a soil absorption index ( )y  and two 

regressors: x1 =  amount of extractable iron ore and x2 =  amount 

of bauxite. We wish to fi t the model y = + + +b b b0 1 1 2 2x x e. 

Some necessary quantities are:

X X�( ) =
. − .  .  

− .  .  −1

1 17991 7 30982 3 7 3006 4

7 30982 3 7 9799

E- E-

E- E-55 1 23713 4

7 3006 4 1 23713 4 4 6576 4

− .  
.  − .  .  

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

E-

E- E- E-

,

  X y� =
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

220

36 768

9 965

,

,

(a) Estimate the regression coeffi cients in the model specifi ed.

(b) What is the predicted value of the absorption index y  when 

x1 200=  and x2 50= ?

12-7. A chemical engineer is investigating how the amount 

of conversion of a product from a raw material ( )y  depends on 

reaction temperature ( )x1  and the reaction time ( )x2 . He has 

developed the following regression models:

 1. ŷ x x= + +100 2 41 2

 2. ŷ x x x x= + . + +95 1 5 3 21 2 1 2

Both models have been built over the range 0 5 102. ≤ ≤x .

(a) What is the predicted value of conversion when x2 2= ? 

Repeat this calculation for x2 8= . Draw a graph of the pre-

dicted values for both conversion models. Comment on the 

effect of the interaction term in model 2.

(b) Find the expected change in the mean conversion for a unit 

change in temperature x1 for model 1 when x2 5= . Does 

this quantity depend on the specifi c value of reaction time 

selected? Why?

(c) Find the expected change in the mean conversion for a unit 

change in temperature x1 for model 2 when x2 5= . Repeat 

this calculation for x2 2=  and x2 8= . Does the result 

depend on the value selected for x2? Why?

12-8. You have fi t a multiple linear regression model and the 

X X�( )−1
 matrix is:

X X�( ) =
. − . − .

− . . .−1

0 893758 0 0282448 0 0175641

0 028245 0 0013329 0 00001547

0 017564 0 0001547 0 0009108− . . .

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

(a) How many regressor variables are in this model?

(b) If the error sum of squares is 307 and there are 15 observa-

tions, what is the estimate of σ2?

(c) What is the standard error of the regression coeffi cient β̂1?

12-9. The data from a patient satisfaction survey in a hospi-

tal are in Table E12-1.

TABLE E12-1 Patient Satisfaction Data

Obser -
vation Age Severity Surg-Med Anxiety

Satis-
faction

 1 55 50 0 2.1 68

 2 46 24 1 2.8 77

 3 30 46 1 3.3 96

 4 35 48 1 4.5 80

 5 59 58 0 2.0 43

 6 61 60 0 5.1 44

 7 74 65 1 5.5 26

 8 38 42 1 3.2 88

 9 27 42 0 3.1 75

10 51 50 1 2.4 57

11 53 38 1 2.2 56

12 41 30 0 2.1 88

13 37 31 0 1.9 88

14 24 34 0 3.1 102

15 42 30 0 3.0 88

16 50 48 1 4.2 70

17 58 61 1 4.6 52

18 60 71 1 5.3 43

19 62 62 0 7.2 46

20 68 38 0 7.8 56

21 70 41 1 7.0 59

22 79 66 1 6.2 26

23 63 31 1 4.1 52

24 39 42 0 3.5 83

25 49 40 1 2.1 75

The regressor variables are the patient’s age, an illness sever-

ity index (higher values indicate greater severity), an indicator 

variable denoting whether the patient is a medical patient (0) 

or a surgical patient (1), and an anxiety index (higher values 

indicate greater anxiety).
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(a) Fit a multiple linear regression model to the satisfaction 

response using age, illness severity, and the anxiety index 

as the regressors.

(b) Estimate σ2 .

(c) Find the standard errors of the regression coeffi cients.

(d) Are all of the model parameters estimated with nearly the 

same precision? Why or why not?

12-10. The electric power consumed each month by a chemi-

cal plant is thought to be related to the average ambient tem-

perature ( )x1 , the number of days in the month ( )x2 , the average 

product purity ( )x3 , and the tons of product produced ( )x4 . The 

past year’s historical data are available and are presented in 

Table E12-2.

(a) Fit a multiple linear regression model to these data.

(b) Estimate σ2 .

(c) Compute the standard errors of the regression coeffi cients. 

Are all of the model parameters estimated with the same 

precision? Why or why not?

(d) Predict power consumption for a month in which x ,1 75= °F  

x x2 324 90= =days, %, and x4 98= tons.

TABLE E12-2 Power Consumption Data

y x1 x2 x3 x4

240 25 24 91 100

236 31 21 90  95

270 45 24 88 110

274 60 25 87  88

301 65 25 91  94

316 72 26 94  99

300 80 25 87  97

296 84 25 86  96

267 75 24 88 110

276 60 25 91 105

288 50 25 90 100

261 38 23 89  98

12-11. Table E12-3 provides the highway gasoline mileage 

test results for 2005 model year vehicles from DaimlerChrysler. 

The full table of data (available on the book’s Web site) contains 

TABLE E12-3 DaimlerChrysler Fuel Economy and Emissions

mfr carline
car/

truck cid rhp trns drv od etw cmp axle n/v a/c hc co co2 mpg

20 300C/SRT-8 C 215 253 L5  4 2 4500 9.9 3.07 30.9 Y 0.011 0.09 288 30.8

20 CARAVAN 2WD T 201 180 L4 F 2 4500 9.3 2.49 32.3 Y 0.014 0.11 274 32.5

20 CROSSFIRE ROADSTER C 196 168 L5 R 2 3375 10 3.27 37.1 Y 0.001 0.02 250 35.4

20 DAKOTA PICKUP 2WD T 226 210 L4 R 2 4500 9.2 3.55 29.6 Y 0.012 0.04 316 28.1

20 DAKOTA PICKUP 4WD T 226 210 L4  4 2 5000 9.2 3.55 29.6 Y 0.011 0.05 365 24.4

20 DURANGO 2WD T 348 345 L5 R 2 5250 8.6 3.55 27.2 Y 0.023 0.15 367 24.1

20 GRAND CHEROKEE 2WD T 226 210 L4 R 2 4500 9.2 3.07 30.4 Y 0.006 0.09 312 28.5

20 GRAND CHEROKEE 4WD T 348 230 L5  4 2 5000  9 3.07 24.7 Y 0.008 0.11 369 24.2

20 LIBERTY/CHEROKEE 2WD T 148 150 M6 R 2 4000 9.5 4.1  41 Y 0.004 0.41 270 32.8

20 LIBERTY/CHEROKEE 4WD T 226 210 L4  4 2 4250 9.2 3.73 31.2 Y 0.003 0.04 317 28

20 NEON/SRT-4/SX 2.0 C 122 132 L4 F 2 3000 9.8 2.69 39.2 Y 0.003 0.16 214 41.3

20 PACIFICA 2WD T 215 249 L4 F 2 4750 9.9 2.95 35.3 Y 0.022 0.01 295 30

20 PACIFICA AWD T 215 249 L4  4 2 5000 9.9 2.95 35.3 Y 0.024 0.05 314 28.2

20 PT CRUISER T 148 220 L4 F 2 3625 9.5 2.69 37.3 Y 0.002 0.03 260 34.1

20 RAM 1500 PICKUP 2WD T 500 500 M6 R 2 5250 9.6 4.1 22.3 Y 0.01 0.1 474 18.7

20 RAM 1500 PICKUP 4WD T 348 345 L5  4 2 6000 8.6 3.92  29 Y 0 0  0 20.3

20 SEBRING 4-DR C 165 200 L4 F 2 3625 9.7 2.69 36.8 Y 0.011 0.12 252 35.1

20 STRATUS 4-DR C 148 167 L4 F 2 3500 9.5 2.69 36.8 Y 0.002 0.06 233 37.9

20 TOWN & COUNTRY 2WD T 148 150 L4 F 2 4250 9.4 2.69 34.9 Y 0 0.09 262 33.8

20 VIPER CONVERTIBLE C 500 501 M6 R 2 3750 9.6 3.07 19.4 Y 0.007 0.05 342 25.9

20 WRANGLER/TJ 4WD T 148 150 M6  4 2 3625 9.5 3.73 40.1 Y 0.004 0.43 337 26.4

mfr-mfr code

carline-car line name (test vehicle model name)

car/truck-‘C’ for passenger vehicle and ‘T’ for truck

cid-cubic inch displacement of test vehicle

rhp-rated horsepower

trns-transmission code

drv-drive system code

od-overdrive code

etw-equivalent test weight

cmp-compression ratio

axle-axle ratio

n/v-n/v ratio (engine speed versus vehicle speed at 50 mph)

a/c-indicates air conditioning simulation

hc-HC(hydrocarbon emissions) Test level composite results

co-CO(carbon monoxide emissions) Test level composite results

co2-CO2(carbon dioxide emissions) Test level composite results

mpg-mpg(fuel economy, miles per gallon)
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the same data for 2005 models from over 250 vehicles from 

many manufacturers (Environmental Protection Agency Web 

site www.epa.gov/ otaq/cert/mpg/testcars/database).

(a) Fit a multiple linear regression model to these data to esti-

mate gasoline mileage that uses the following regressors:

cid, rhp, etw, cmp, axle, n/v
(b) Estimate σ2  and the standard errors of the regression 

coeffi cients.

(c) Predict the gasoline mileage for the fi rst vehicle in the table.

12-12.  The pull strength of a wire bond is an important 

characteristic. Table E12-4 gives information on pull strength ( )y , 

die height ( )x1 , post height ( )x2 , loop height ( )x3 , wire length ( )x4 , 

bond width on the die ( )x5 , and bond width on the post ( )x6 .

(a) Fit a multiple linear regression model using x x x2 3 4, , , and 

x5 as the regressors

(b) Estimate σ2 .

(c) Find the se j( )β̂ . How precisely are the regression coeffi -

cients estimated in your opinion?

(d) Use the model from part ( )a  to predict pull strength when 

x x x2 3 420 30 90= = =, , , and x5 2 0= . .

TABLE E12-4 Wire Bond Data

y x1 x2 x3 x4 x5 x6

 8.0 5.2 19.6 29.6 94.9 2.1 2.3

 8.3 5.2 19.8 32.4 89.7 2.1 1.8

 8.5 5.8 19.6 31.0 96.2 2.0 2.0

 8.8 6.4 19.4 32.4 95.6 2.2 2.1

 9.0 5.8 18.6 28.6 86.5 2.0 1.8

 9.3 5.2 18.8 30.6 84.5 2.1 2.1

 9.3 5.6 20.4 32.4 88.8 2.2 1.9

 9.5 6.0 19.0 32.6 85.7 2.1 1.9

 9.8 5.2 20.8 32.2 93.6 2.3 2.1

10.0 5.8 19.9 31.8 86.0 2.1 1.8

10.3 6.4 18.0 32.6 87.1 2.0 1.6

10.5 6.0 20.6 33.4 93.1 2.1 2.1

10.8 6.2 20.2 31.8 83.4 2.2 2.1

11.0 6.2 20.2 32.4 94.5 2.1 1.9

11.3 6.2 19.2 31.4 83.4 1.9 1.8

11.5 5.6 17.0 33.2 85.2 2.1 2.1

11.8 6.0 19.8 35.4 84.1 2.0 1.8

12.3 5.8 18.8 34.0 86.9 2.1 1.8

12.5 5.6 18.6 34.2 83.0 1.9 2.0

12-13. An engineer at a semiconductor company wants to 

model the relationship between the device HFE ( )y  and three 

parameters: Emitter-RS ( )x1 , Base-RS ( )x2 , and Emitter-to-

Base RS ( )x3 . The data are shown in the Table E12-5.

(a) Fit a multiple linear regression model to the data.

(b) Estimate σ2 .

(c) Find the standard errors se(β
∧
j
).

 
Are all of the model parameters 

estimated with the same precision? Justify your answer.

(d) Predict HFE when x x1 214 5 220= =. , , and x3 5 0= . .

TABLE E12-5 Semiconductor Data

x1 
Emitter-RS

x2 
Base-RS

x3 
E-B-RS

y 
HFE-1M-5V

14.620 226.00 7.000 128.40

15.630 220.00 3.375 52.62

14.620 217.40 6.375 113.90

15.000 220.00 6.000 98.01

14.500 226.50 7.625 139.90

15.250 224.10 6.000 102.60

16.120 220.50 3.375 48.14

15.130 223.50 6.125 109.60

15.500 217.60 5.000 82.68b

15.130 228.50 6.625 112.60

15.500 230.20 5.750 97.52

16.120 226.50 3.750 59.06

15.130 226.60 6.125 111.80

15.630 225.60 5.375 89.09

15.380 229.70 5.875 101.00

14.380 234.00 8.875 171.90

15.500 230.00 4.000 66.80

14.250 224.30 8.000 157.10

14.500 240.50 10.870 208.40

14.620 223.70 7.375 133.40

12-14. Heat treating is often used to carburize metal parts 

such as gears. The thickness of the carburized layer is consid-

ered a crucial feature of the gear and contributes to the overall 

reliability of the part. Because of the critical nature of this fea-

ture, two different lab tests are performed on each furnace load. 

One test is run on a sample pin that accompanies each load. 

The other test is a destructive test that cross-sections an actual 

part. This test involves running a carbon analysis on the surface 

of both the gear pitch (top of the gear tooth) and the gear root 

(between the gear teeth). Table E12-6 shows the results of the 

pitch carbon analysis test for 32 parts.

TABLE E12-6 Heat Treating Test

TEMP SOAKTIME SOAKPCT DIFFTIME DIFFPCT PITCH

1650 0.58 1.10 0.25 0.90 0.013

1650 0.66 1.10 0.33 0.90 0.016

1650 0.66 1.10 0.33 0.90 0.015

1650 0.66 1.10 0.33 0.95 0.016

1600 0.66 1.15 0.33 1.00 0.015

1600 0.66 1.15 0.33 1.00 0.016

1650 1.00 1.10 0.50 0.80 0.014

1650 1.17 1.10 0.58 0.80 0.021

1650 1.17 1.10 0.58 0.80 0.018

1650 1.17 1.10 0.58 0.80 0.019

1650 1.17 1.10 0.58 0.90 0.021

1650 1.17 1.10 0.58 0.90 0.019
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The regressors are furnace temperature (TEMP), carbon 

concentration and duration of the carburizing cycle (SOAK-

PCT, SOAKTIME), and carbon concentration and duration of 

the diffuse cycle (DIFFPCT, DIFFTIME).

(a) Fit a linear regression model relating the results of the pitch 

carbon analysis test (PITCH) to the fi ve regressor variables.

(b) Estimate σ2 .

(c) Find the standard errors se j( )β̂
(d) Use the model in part (a) to predict PITCH when TEMP = 

1650, SOAKTIME = 1.00, SOAKPCT = 1.10, DIFFTIME = 

1.00, and DIFFPCT = 0.80.

12-15. An article in Electronic Packaging and Production
(2002, Vol. 42) considered the effect of X-ray inspection of 

integrated circuits. The rads (radiation dose) were studied as a 

function of current (in milliamps) and exposure time (in min-

utes). The data are in Table E12-7.

(a) Fit a multiple linear regression model to these data with 

rads as the response.

(b) Estimate σ2  and the standard errors of the regression 

coeffi cients.

(c) Use the model to predict rads when the current is 15 mil-

liamps and the exposure time is 5 seconds.

12-16.  An article in Cancer Epidemiology, Biomarkers and 
Prevention (1996, Vol. 5, pp. 849–852) reported on a pilot study 

to assess the use of toenail arsenic concentrations as an indicator 

of ingestion of arsenic-containing water. Twenty-one participants 

were interviewed regarding use of their private (unregulated) wells 

for drinking and cooking, and each provided a sample of water and 

toenail clippings. Table E12-8 showed the data of age (years), sex of 

person (1 = male, 2 = female), proportion of times household well 

used for drinking ( / , / , / , / , / )1 1 4 2 1 4 3 1 2 4 3 4 5 3 4≤ = = = ≥ , 

proportion of times household well used for cooking (1 1/4,≤
2 = 1/4, 3 = 1/2, 4 = 3/4, 5 3/4)≥ , arsenic in water (ppm), and 

arsenic in toenails (ppm) respectively.

(a) Fit a multiple linear regression model using arsenic con-

centration in nails as the response and age, drink use, cook 

use, and arsenic in the water as the regressors.

(b) Estimate σ2  and the standard errors of the regression 

coeffi cients.

(c) Use the model to predict the arsenic in nails when the age 

is 30, the drink use is category 5, the cook use is category 

5, and arsenic in the water is 0.135 ppm.

TEMP SOAKTIME SOAKPCT DIFFTIME DIFFPCT PITCH

1650  1.17 1.15 0.58 0.90 0.021

1650  1.20 1.15 1.10 0.80 0.025

1650  2.00 1.15 1.00 0.80 0.025

1650  2.00 1.10 1.10 0.80 0.026

1650  2.20 1.10 1.10 0.80 0.024

1650  2.20 1.10 1.10 0.80 0.025

1650  2.20 1.15 1.10 0.80 0.024

1650  2.20 1.10 1.10 0.90 0.025

1650  2.20 1.10 1.10 0.90 0.027

1650  2.20 1.10 1.50 0.90 0.026

1650  3.00 1.15 1.50 0.80 0.029

1650  3.00 1.10 1.50 0.70 0.030

1650  3.00 1.10 1.50 0.75 0.028

1650  3.00 1.15 1.66 0.85 0.032

1650  3.33 1.10 1.50 0.80 0.033

1700  4.00 1.10 1.50 0.70 0.039

1650  4.00 1.10 1.50 0.70 0.040

1650  4.00 1.15 1.50 0.85 0.035

1700 12.50 1.00 1.50 0.70 0.056

1700 18.50 1.00 1.50 0.70 0.068

TABLE E12-7 X-ray Inspection Data

Rads mAmps Exposure Time
7.4 10 0.25

14.8 10 0.5

29.6 10 1

59.2 10 2

88.8 10 3

296 10 10

444 10 15

592 10 20

11.1 15 0.25

22.2 15 0.5

44.4 15 1

88.8 15 2

Rads mAmps Exposure Time
133.2 15 3

444 15 10

666 15 15

888 15 20

14.8 20 0.25

29.6 20 0.5

59.2 20 1

118.4 20 2

177.6 20 3

592 20 10

888 20 15

1184 20 20

22.2 30 0.25

44.4 30 0.5

88.8 30 1

177.6 30 2

266.4 30 3

888 30 10

1332 30 15

1776 30 20

29.6 40 0.25

59.2 40 0.5

118.4 40 1

236.8 40 2

355.2 40 3

1184 40 10

1776 40 15

2368 40 20
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Age Sex
Drink 
Use

Cook 
Use

Arsenic 
Water

Arsenic 
Nails

44 2 5 5 0.00087 0.119

45 2 4 5 0.00021 0.118

44 1 5 5 0 0.099

66 2 3 5 0.00115 0.118

37 1 2 5 0 0.277

45 2 5 5 0 0.358

47 1 5 5 0.00013 0.08

38 2 4 5 0.00069 0.158

41 2 3 2 0.00039 0.31

49 2 4 5 0 0.105

72 2 5 5 0 0.073

45 2 1 5 0.046 0.832

53 1 5 5 0.0194 0.517

86 2 5 5 0.137 2.252

 8 2 5 5 0.0214 0.851

32 2 5 5 0.0175 0.269

44 1 5 5 0.0764 0.433

63 2 5 5 0 0.141

42 1 5 5 0.0165 0.275

62 1 5 5 0.00012 0.135

36 1 5 5 0.0041 0.175

TABLE E12-8 Arsenic Data

12-17. An article in IEEE Transactions on Instrumentation 
and Measurement (2001, Vol. 50, pp. 2033–2040) reported on 

a study that had analyzed powdered mixtures of coal and lime-

stone for permittivity. The errors in the density measurement 

was the response. The data are reported in Table E12-9.

TABLE E12-9 Density Data

Density Dielectric Constant Loss Factor

0.749 2.05 0.016

0.798 2.15 0.02

0.849 2.25 0.022

0.877 2.3 0.023

0.929 2.4 0.026

0.963 2.47 0.028

0.997 2.54 0.031

1.046 2.64 0.034

1.133 2.85 0.039

1.17 2.94 0.042

1.215 3.05 0.045

(a) Fit a multiple linear regression model to these data with the 

density as the response.

(b) Estimate σ2  and the standard errors of the regression 

coeffi cients.

(c) Use the model to predict the density when the dielectric 

constant is 2.5 and the loss factor is 0.03.

12-18. An article in Biotechnology Progress (2001, Vol. 17, pp. 

366–368) reported on an experiment to investigate and optimize 

nisin extraction in aqueous two-phase systems (ATPS). The nisin 

recovery was the dependent variable ( )y . The two regressor vari-

ables were concentration (%) of PEG 4000 (denoted as x1 and 

concentration (%) of Na SO2 4 (denoted as x2). The data are in 

Table E12-10.

TABLE E12-10 Nisin Extraction Data

x1 x2
y

13 11 62.8739

15 11 76.1328

13 13 87.4667

15 13 102.3236

14 12 76.1872

14 12 77.5287

14 12 76.7824

14 12 77.4381

14 12 78.7417

(a) Fit a multiple linear regression model to these data.

(b) Estimate σ2  and the standard errors of the regression 

coeffi cients.

(c) Use the model to predict the nisin recovery when x1 14 5= .
and x2 12 5= . .

12-19.  An article in Optical Engineering [“Operating 

Curve Extraction of a Correlator’s Filter” (2004, Vol. 43, pp. 

2775–2779)] reported on the use of an optical correlator to per-

form an experiment by varying brightness and contrast. The 

resulting modulation is characterized by the useful range of 

gray levels. The data follow:

Brightness (%): 54 61 65 100 100 100  50  57  54

Contrast (%): 56 80 70  50  65 80  25  35  26

Useful range (ng): 96 50 50 112  96 80 155 144 255

(a) Fit a multiple linear regression model to these data.

(b) Estimate σ .2

(c) Compute the standard errors of the regression coeffi cients.

(d) Predict the useful range when brightness = 80 and contrast 

= 75.

12-20. An article in Technometrics (1974, Vol. 16, pp. 523–531) 

considered the following stack-loss data from a plant oxidizing 

ammonia to nitric acid. Twenty-one daily responses of stack loss 

(the amount of ammonia escaping) were measured with air fl ow 

x ,1  temperature x2, and acid concentration x3.
y =  42, 37, 37, 28, 18, 18, 19, 20, 15, 14, 14, 13, 11, 12, 8, 7, 

8, 8, 9, 15, 15

x
1
 =  80, 80, 75, 62, 62, 62, 62, 62, 58, 58, 58, 58, 58, 58, 50, 50, 

50, 50, 50, 56, 70

x
2
 =  27, 27, 25, 24, 22, 23, 24, 24, 23, 18, 18, 17, 18, 19, 18, 18, 

19, 19, 20, 20, 20

x
3
 =  89, 88, 90, 87, 87, 87, 93, 93, 87, 80, 89, 88, 82, 93, 89, 86, 

72, 79, 80, 82, 91

(a) Fit a linear regression model relating the results of the stack 

loss to the three regressor varilables.

(b) Estimate σ .2

(c) Find the standard error se j( )β̂ .
(d) Use the model in part (a) to predict stack loss when x ,1 60=

x2 26= , and x3 85= .
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TABLE E12-11 Quarterback Ratings for the 2008 National Football League Season

Player Team Att Comp
Pct 

Comp Yds
Yds per 

Att TD
Pct 
TD Lng Int

Pct 
Int

Rating 
Pts

Philip Rivers SD 478 312 65.3 4,009 8.39 34 7.1 67 11 2.3 105.5

Chad Pennington MIA 476 321 67.4 3,653 7.67 19 4.0 80  7 1.5 97.4

Kurt Warner ARI 598 401 67.1 4,583 7.66 30 5.0 79 14 2.3 96.9

Drew Brees NO 635 413 65 5,069 7.98 34 5.4 84 17 2.7 96.2

Peyton Manning IND 555 371 66.8 4,002 7.21 27 4.9 75 12 2.2 95

Aaron Rodgers GB 536 341 63.6 4,038 7.53 28 5.2 71 13 2.4 93.8

Matt Schaub HOU 380 251 66.1 3,043 8.01 15 3.9 65 10 2.6 92.7

Tony Romo DAL 450 276 61.3 3,448 7.66 26 5.8 75 14 3.1 91.4

Jeff Garcia TB 376 244 64.9 2,712 7.21 12 3.2 71  6 1.6 90.2

Matt Cassel NE 516 327 63.4 3,693 7.16 21 4.1 76 11 2.1 89.4

Matt Ryan ATL 434 265 61.1 3,440 7.93 16 3.7 70 11 2.5 87.7

Shaun Hill SF 288 181 62.8 2,046 7.10 13 4.5 48  8 2.8 87.5

Seneca Wallace SEA 242 141 58.3 1,532 6.33 11 4.5 90  3 1.2 87

Eli Manning NYG 479 289 60.3 3,238 6.76 21 4.4 48 10 2.1 86.4

Donovan McNabb PHI 571 345 60.4 3,916 6.86 23 4.0 90 11 1.9 86.4

Jay Cutler DEN 616 384 62.3 4,526 7.35 25 4.1 93 18 2.9 86

Trent Edwards BUF 374 245 65.5 2,699 7.22 11 2.9 65 10 2.7 85.4

Jake Delhomme CAR 414 246 59.4 3,288 7.94 15 3.6 65 12 2.9 84.7

Jason Campbell WAS 506 315 62.3 3,245 6.41 13 2.6 67  6 1.2 84.3

David Garrard JAC 535 335 62.6 3,620 6.77 15 2.8 41 13 2.4 81.7

Brett Favre NYJ 522 343 65.7 3,472 6.65 22 4.2 56 22 4.2 81

Joe Flacco BAL 428 257 60 2,971 6.94 14 3.3 70 12 2.8 80.3

Kerry Collins TEN 415 242 58.3 2,676 6.45 12 2.9 56  7 1.7 80.2

Ben Roethlisberger PIT 469 281 59.9 3,301 7.04 17 3.6 65 15 3.2 80.1

Kyle Orton CHI 465 272 58.5 2,972 6.39 18 3.9 65 12 2.6 79.6

JaMarcus Russell OAK 368 198 53.8 2,423 6.58 13 3.5 84  8 2.2 77.1

Tyler Thigpen KC 420 230 54.8 2,608 6.21 18 4.3 75 12 2.9 76

Gus Frerotte MIN 301 178 59.1 2,157 7.17 12 4.0 99 15 5.0 73.7

Dan Orlovsky DET 255 143 56.1 1,616 6.34  8 3.1 96  8 3.1 72.6

Marc Bulger STL 440 251 57 2,720 6.18 11 2.5 80 13 3.0 71.4

Ryan Fitzpatrick CIN 372 221 59.4 1,905 5.12  8 2.2 79  9 2.4 70

Derek Anderson CLE 283 142 50.2 1,615 5.71  9 3.2 70  8 2.8 66.5

Att Attempts (number of pass attempts) 

Comp Completed passes

Pct Comp Percentage of completed passes

Yds Yards gained passing

Yds per Att Yards gained per pass attempt

TD Number of touchdown passes

Pct TD Percentage of attempts that are touchdowns

Long Longest pass completion

Int Number of interceptions

Pct Int Percentage of attempts that are interceptions

Rating Pts Rating points

12-21. Table E12-11 presents quarterback ratings for the 2008 National Football League season (The Sports Network).

(a) Fit a multiple regression model to relate the quarterback 

rating to the percentage of completions, the percentage of 

TDs, and the percentage of interceptions.

(b) Estimate σ .2

(c) What are the standard errors of the regression coeffi cients?

(d) Use the model to predict the rating when the percentage of 

completions is 60%, the percentage of TDs is 4%, and the 

percentage of interceptions is 3%.
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12-22. Table E12-12 presents statistics for the National 

Hockey League teams from the 2008–2009 season (The 
Sports Network). Fit a multiple linear regression model 

that relates wins to the variables GF through FG Because 

teams play 82 game, W L T OTL,= − − −82  but such a 

model does not help build a better team. Estimate σ2  and 

find the standard errors of the regression coefficients for 

your model.

Team W L OTL PTS GF GA ADV PPGF PCTG PEN BMI AVG SHT PPGA PKPCT SHGF SHGA FG

Anaheim 42 33  7 91 238 235 309 73 23.6 1418 8 17.4 385 78 79.7 6 6 43

Atlanta 35 41  6 76 250 279 357 69 19.3 1244 12 15.3 366 88 76 13 9 39

Boston 53 19 10 116 270 190 313 74 23.6 1016 12 12.5 306 54 82.4 8 7 47

Buffalo 41 32  9 91 242 229 358 75 21 1105 16 13.7 336 61 81.8 7 4 44

Carolina 45 30  7 97 236 221 374 70 18.7 786 16 9.8 301 59 80.4 8 7 39

Columbus 41 31 10 92 220 223 322 41 12.7 1207 20 15 346 62 82.1 8 9 41

Calgary 46 30  6 98 251 246 358 61 17 1281 18 15.8 349 58 83.4 6 13 37

Chicago 46 24 12 104 260 209 363 70 19.3 1129 28 14.1 330 64 80.6 10 5 43

Colorado 32 45  5 69 190 253 318 50 15.7 1044 18 13 318 64 79.9 4 5 31

Dallas 36 35 11 83 224 251 351 54 15.4 1134 10 14 327 70 78.6 2 2 38

Detroit 51 21 10 112 289 240 353 90 25.5 810 14 10 327 71 78.3 6 4 46

Edmonton 38 35  9 85 228 244 354 60 17 1227 20 15.2 338 76 77.5 3 8 39

Florida 41 30 11 93 231 223 308 51 16.6 884 16 11 311 54 82.6 7 6 39

Los Angeles 34 37 11 79 202 226 360 69 19.2 1191 16 14.7 362 62 82.9 4 7 39

Minnesota 40 33  9 89 214 197 328 66 20.1 869 20 10.8 291 36 87.6 9 6 39

Montreal 41 30 11 93 242 240 374 72 19.2 1223 6 15 370 65 82.4 10 10 38

New Jersey 51 27  4 106 238 207 307 58 18.9 1038 20 12.9 324 65 79.9 12 3 44

Nashville 40 34  8 88 207 228 318 50 15.7 982 12 12.1 338 59 82.5 9 8 41

NY Islanders 26 47  9 61 198 274 320 54 16.9 1198 18 14.8 361 73 79.8 12 5 37

NY Rangers 43 30  9 95 200 212 346 48 13.9 1175 24 14.6 329 40 87.8 9 13 42

Ottawa 36 35 11 83 213 231 339 66 19.5 1084 14 13.4 346 64 81.5 8 5 46

Philadelphia 44 27 11 99 260 232 316 71 22.5 1408 26 17.5 393 67 83 16 1 43

Phoenix 36 39  7 79 205 249 344 50 14.5 1074 18 13.3 293 68 76.8 5 4 36

Pittsburgh 45 28  9 99 258 233 360 62 17.2 1106 8 13.6 347 60 82.7 7 11 46

San Jose 53 18 11 117 251 199 360 87 24.2 1037 16 12.8 306 51 83.3 12 10 46

St. Louis 41 31 10 92 227 227 351 72 20.5 1226 22 15.2 357 58 83.8 10 8 35

Tampa Bay 24 40 18 66 207 269 343 61 17.8 1280 26 15.9 405 89 78 4 8 34

Toronto 34 35 13 81 244 286 330 62 18.8 1113 12 13.7 308 78 74.7 6 7 40

Vancouver 45 27 10 100 243 213 357 67 18.8 1323 28 16.5 371 69 81.4 7 5 47

Washington 50 24  8 108 268 240 337 85 25.2 1021 20 12.7 387 75 80.6 7 9 45

TABLE E12-12 Team Statistics for the 2008–2009 National Hockey League Season

W Wins

L Losses during regular time

OTL Overtime losses

PTS  Points. Two points for winning a game, one point for a tie or 

losing in overtime, zero points for losing in regular time.

GF Goals for

GA Goals against

ADV Total advantages. Power-play opportunities.

PPGF Power-play goals for. Goals scored while on power play.

PCTG  Power-play percentage. Power-play goals divided by total 

advantages.

PEN Total penalty minutes including bench minutes

BMI Total bench minor minutes

AVG Average penalty minutes per game

SHT Total times short-handed. Measures opponent opportunities.

PPGA Power-play goals against

PKPCT  Penalty killing percentage. Measures a team’s ability to prevent 

goals while its opponent is on a power play. Opponent opportuni-

ties minus power-play goals divided by opponent’s opportunities.

SHGF Short-handed goals for

SHGA Short-handed goals against

FG Games scored fi rst
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12-23. A study was performed on wear of a bearing and its 

relationship to x1 = oil viscosity and x2 = load. The following 

data were obtained.

y x1 x2

293  1.6  851

230 15.5  816

172 22.0 1058

 91 43.0 1201

113 33.0 1357

125 40.0 1115

(a) Fit a multiple linear regression model to these data.

(b) Estimate σ2  and the standard errors of the regression 

coefficients.

(c) Use the model to predict wear when x1 25=  and x2 1000= .

(d) Fit a multiple linear regression model with an interaction 

term to these data.

(e) Estimate σ2  and se(β
∧
j
) for this new model. How did these 

quantities change? Does this tell you anything about the 

value of adding the interaction term to the model?

(f) Use the model in part (d) to predict when x1 25=  and 

x2 1000= . Compare this prediction with the predicted 

value from part ( )c .

12-24. Consider the linear regression model

Y x x x xi i i i= β′ + β − + β − +0 1 1 1 2 2 2( ) ( ) e

where x x ni1 1= ∑ /  and x x ni2 2= ∑ / .

(a) Write out the least squares normal equations for this model.

(b) Verify that the least squares estimate of the intercept in this 

model is β̂′ = = .∑0 y n yi /
(c) Suppose that we use y yi −  as the response variable in this 

model. What effect will this have on the least squares esti-

mate of the intercept?

12-2 Hypothesis Tests In Multiple Linear Regression
In multiple linear regression problems, certain tests of hypotheses about the model param-

eters are useful in measuring model adequacy. In this section, we describe several impor-

tant hypothesis-testing procedures. As in the simple linear regression case, hypothesis testing 

requires that the error terms ei in the regression model are normally and independently distrib-

uted with mean zero and variance σ2.

12-2.1 TEST FOR SIGNIFICANCE OF REGRESSION

The test for significance of regression is a test to determine whether a linear relationship 

exists between the response variable y and a subset of the regressor variables x x xk1 2, , ..., . The 

appropriate hypotheses are

H k0 1 2 0: = = = =b b b....

 H j0 0: ≠b  for at least one j (12-18)

Hypotheses for 
ANOVA Test

Rejection of H k0 1 2 0: b b b= = = =…  implies that at least one of the regressor variables 

x x xk1 2, , ,…  contributes significantly to the model.

The test for significance of regression is a generalization of the procedure used in simple 

linear regression. The total sum of squares SST  is partitioned into a sum of squares due to the 

model or to regression and a sum of squares due to error, say,

SS SS SST R E= +

Now if H k0 1 2 0: b b b= = = =…  is true, SSR / σ2 is a chi-square random variable with k 

degrees of freedom. Note that the number of degrees of freedom for this chi-square random 

variable is equal to the number of regressor variables in the model. We can also show that the 

SSE / σ2 is a chi-square random variable with n p−  degrees of freedom, and that SS
E
 and SSR 

are independent. The test statistic for H k0 1 2 0: b b b= = = =…  is
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We should reject H0 if the computed value of the test statistic in Equation 12-19, f0, is greater 

than f k n pα, , − . The procedure is usually summarized in an analysis of variance table such as 

Table 12-5.

A computational formula for SSR may be found easily. Now because SS yT ii
n= −=∑ 2

1

y n y nii
n

ii
n

= =∑ ∑( ) = − ( )1

2

1

2

/ /y y� , we may rewrite Equation 12-19 as

SS

y

n

y

n

i
i

n

i
i

n

E = −

⎛
⎝⎜

⎞
⎠⎟

− −

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

= =
∑ ∑

y y X y� � �1

2

1

2

b̂

⎥⎥
⎥

or

SS SS SSE T R= −  (12-20)

Therefore, the regression sum of squares is

SS

y

n

i
i

n

R = −

⎛
⎝⎜

⎞
⎠⎟=

∑
b̂� �X y

1

2

 (12-21)

 F
SS k

SS n p

MS

MS
R

E

R

E
0 =

−( ) =/

/
 (12-19)

Test Statistic for 
ANOVA

TABLE 12-5  Analysis of Variance for Testing Signifi cance of Regression in Multiple 
Regression

Wire Bond Strength ANOVA We will test for signifi cance of regression (with α = 0.05) using the 

wire bond pull strength data from Example 12-1. The total sum of squares is

SS

y

n
,T

i
i

n

= −

⎛
⎝⎜

⎞
⎠⎟

= . −
.( ) = .=

∑
y y� 1

2

2

27 178 5316
725 82

25
6105 9447

The regression or model sum of squares is computed from Equation 12-21 as follows:

SS

y

n
,R

i
i

n

= −

⎛
⎝⎜

⎞
⎠⎟

= . −
.( ) = .=

∑
b̂� �X y

1

2

2

27 063 3581
725 82

25
5990 77112

and by subtraction

SS SS SSE T R= − = = .y y X y� - � �b̂ 115 1716

The analysis of variance is shown in Table 12-6. To test H :0 1 2b b= = 0 we calculate the statistic

f
MS

MS
R

E
0

2995 3856

5 2352
572 17= = =.

.
.

Example 12-3

Source of Variation Sum of Squares Degrees of Freedom Mean Square F0

Regression SSR k MSR MS MSR E/

Error or residual SSE
n p− MSE

Total SST n − 1
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 R
SS n p

SS n
E

T
adj
2 1

1
= −

−( )
−( )

/

/
 (12-23)

Adjusted R2

TABLE 12-6 Test for Signifi cance of Regression for Example 12-3

Source of 
Variation Sum of Squares

Degrees of 
Freedom

Mean 
Square f0 P-value

Regression 5990.7712  2 2995.3856 572.17 1.08E-19

Error or residual  115.1735 22 5.2352

Total 6105.9447 24

Because f f0 0 05 2 22 3 44> =. , , .  (or because the P-value is considerably smaller than α = 0.05), we reject the null hypoth-

esis and conclude that pull strength is linearly related to either wire length or die height, or both.

Practical Interpretation: Rejection of H0 does not necessarily imply that the relationship found is an appropriate 

model for predicting pull strength as a function of wire length and die height. Further tests of model adequacy are 

required before we can be comfortable using this model in practice.

Most multiple regression computer programs provide the test for signifi cance of regres-

sion in their output display. The middle portion of Table 12-4 is the computer output for this 

example. Compare Tables 12-4 and 12-6 and note their equivalence apart from rounding. The 

P-value is rounded to zero in the computer output.

R2 and Adjusted R2

We may also use the coeffi cient of multiple determination R2 as a global statistic to assess 

the fi t of the model. Computationally,

R
SS

SS

SS

SS
R

T

E

T

2 1= = −  (12-22)

For the wire bond pull strength data, we fi nd that R SS SSR T
2 5990 7712 6105 9447= =/ . / . =

0.9811. Thus, the model accounts for about 98% of the variability in the pull strength response 

(refer to the computer software output in Table 12-4). The R2 statistic is somewhat problem-

atic as a measure of the quality of the fi t for a multiple regression model because it never 

decreases when a variable is added to a model.

To illustrate, consider the model fi t to the wire bond pull strength data in Example 11-8. 

This was a simple linear regression model with x1 = wire length as the regressor. The value 

of R2 for this model is R2 0 9640= . . Therefore, adding x2 = die height to the model increases 

R2 by 0 9811 0 9640 0 0171. . .− = , a very small amount. Because R2 can never decrease when a 

regressor is added, it can be diffi cult to judge whether the increase is telling us anything useful 

about the new regressor. It is particularly hard to interpret a small increase, such as observed 

in the pull strength data.

Many regression users prefer to use an adjusted R2 statistic:

Because SS n pE / −( ) is the error or residual mean square and SS n pT / −( ) is a constant, 

R2
adj  will only increase when a variable is added to the model if the new variable reduces 

the error mean square. Note that for the multiple regression model for the pull strength data 

R2 0 979adj = .  (see the output in Table 12-4), whereas in Example 11-8, the adjusted R2 for 

the one-variable model is R2 0 962adj = . . Therefore, we would conclude that adding x2 =
die height to the model does result in a meaningful reduction in unexplained variability in 

the response.
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The adjusted R2 statistic essentially penalizes the analyst for adding terms to the model. It 

is an easy way to guard against overfi tting, that is, including regressors that are not really use-

ful. Consequently, it is very useful in comparing and evaluating competing regression models. 

We will use R2
adj for this when we discuss variable selection in regression in Section 12-6.3.

12-2.2  TESTS ON INDIVIDUAL REGRESSION COEFFICIENTS AND 
SUBSETS OF COEFFICIENTS

We are frequently interested in testing hypotheses on the individual regression coeffi cients. 

Such tests would be useful in determining the potential value of each of the regressor variables 

in the regression model. For example, the model might be more effective with the inclusion 

of additional variables or perhaps with the deletion of one or more of the regressors presently 

in the model.

The hypothesis to test if an individual regression coeffi cient, say β j equals a value β j0 is

 H Hj j j j0 0 1 0: :β = β β ≠ β  (12-24)

The test statistic for this hypothesis is

Wire Bond Strength Coeffi cient Test Consider the wire bond pull strength data, and suppose 

that we want to test the hypothesis that the regression coeffi cient for x2 (die height) is zero. The 

hypotheses are

H H0 2 0 20 0: :β = β ≠

The main diagonal element of the X X�( )−1
 matrix corresponding to β̂2 is C22 0 0000015= . , so the t-statistic in 

Equation 12-25 is

t
C

0
2

2
22

0 01253

5 2352 0 0000015
4 477= β

σ
= .

.( ) .( )
= .

ˆ

ˆ

Example 12-4

 T
C se

j j

jj

j j

j

0
0

2

0=
β − β

σ
=

β − β

β( )
ˆ ˆ

ˆ
 (12-25)

where C jj is the diagonal element of X X�( )−1
 corresponding to β̂ j Notice that the denominator 

of Equation 12-24 is the standard error of the regression coeffi cient β̂ j. The null hypothesis 

H j j0 0: β β=  is rejected if t t n p0 2. α − ./ ,  This is called a partial or marginal test because the 

regression coeffi cient β̂ j depends on all the other regressor variables x i ji ≠( ) that are in the 

model. More will be said about this in the following example.

An important special case of the previous hypothesis occurs for β =j 0. If H j0 0: β =  is not rejected, 

this indicates that the regressor x
j
 can be deleted from the model. Adding a variable to a regression 

model always causes the sum of squares for regression to increase and the error sum of squares to 

decrease (this is why R2 always increases when a variable is added). We must decide whether the 

increase in the regression sum of squares is large enough to justify using the additional variable 

in the model. Furthermore, adding an unimportant variable to the model can actually increase the 

error mean square, indicating that adding such a variable has actually made the model a poorer fi t 

to the data (this is why R2
adj is a better measure of global model fi t then the ordinary R2).
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There is another way to test the contribution of an individual regressor variable to the 

model. This approach determines the increase in the regression sum of squares obtained by 

adding a variable x j ( )say  to the model, given that other variables x i ji ( )≠  are already included 

in the regression equation.

The procedure used to do this is called the general regression signifi cance test, or the extra 
sum of squares method. This procedure can also be used to investigate the contribution of a subset 
of the regressor variables to the model. Consider the regression model with k regressor variables

 y X= +b e (12-26)

where y is ( 1),n ×  X is ( ),n p×  a is ( 1),p ×  e is ( 1),n ×  and p k= + 1. We would like to deter-

mine whether the subset of regressor variables x x x r kr1 2, , ..., ( )<  as a whole contributes 

signifi cantly to the regression model. Let the vector of regression coeffi cients be partitioned 

as follows:

 a
a
a

=
⎡

⎣
⎢

⎤

⎦
⎥

1

2

 (12-27)

where a1 is ( )r × 1  and a2 is [( ) ]p r− × 1 . We wish to test the hypotheses

Wire Bond Strength One-Sided Coeffi cient Test There is an interest in the effect of die height 

on strength. This can be evaluated by the magnitude of the coeffi cient for die height. To conclude 

that the coeffi cient for die height exceeds 0.01, the hypotheses become

H0 2 0 01: β = .     H >1 2 0 01: β .

For such a test, computer software can complete much of the hard work. We need only to assemble the pieces. From 

the output in Table 12-4, β̂ = .2 0 012528, and the standard error of β̂ = . .2 0 002798  Therefore, the t-statistic is

t0

0 012528 0 01

0 002798
0 9035= . − .

.
= .

with 22 degrees of freedom (error degrees of freedom). From Table IV in Appendix A, t ,0 25 22 0 686.  = .  and t ,0 1 22 1 321.  = . . 
Therefore, the P-value can be bounded as 0 1 0 25. . .< P <-value  One cannot conclude that the coeffi cient exceeds 0.01 

at common levels of signifi cance.

Example 12-5

Note that we have used the estimate of σ2 reported to four decimal places in Table 12-6. Because t0 025 22 2 074. , . ,=  

we reject H0 0: β2 =  and conclude that the variable x2 (die height) contributes signifi cantly to the model. We could also 

have used a P-value to draw conclusions. The P-value for t0 4 477= .  is P = 0 0002. , so with α = 0.05, we would reject 

the null hypothesis.

Practical Interpretation: Note that this test measures the marginal or partial contribution of x2 given that x1 is in the 

model. That is, the t-test measures the contribution of adding the variable x2 = die height to a model that already con-

tains x1 = wire length. Table 12-4 shows the computer-generated value of the t-test computed. The computer software 

reports the t-test statistic to two decimal places. Note that the computer produces a t-test for each regression coeffi cient 

in the model. These t-tests indicate that both regressors contribute to the model.

Hypotheses for 
General Regression 

Test
H0 1 1 1: Ha a= ≠0 0:  (12-28)

where 0 denotes a vector of zeroes. The model may be written as

 y X= + = + +a a ae eX X1 1 2 2  (12-29)
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where X1 represents the columns of X associated with a1 and X2 represents the columns of X
associated with a2.

For the full model (including both a1 and a2), we know that â �= ( )  ′−
X X y

1
X . In addition, 

the regression sum of squares for all variables including the intercept is

SS p kR a a� �( ) = = +    ( )ˆ X y 1degrees of freedom

and

MS
n p

E = −
−

y y X y� a �ˆ

SSR( )a  is called the regression sum of squares due to a. To fi nd the contribution of the terms in 

a1 to the regression, fi t the model assuming that the null hypothesis H0 0:a1 =  to be true. The 

reduced model is found from Equation 12-29 as

y X= +2 2a e (12-30)

The least squares estimate of a2 is a2 = ( )−
X X X y′ ′2 2

1

2 , and

SSR a a2 y r degrees of freedom( ) = ′ −( )ˆ
2 2X p  (12-31)

The regression sum of squares due to a1 given that a2 is already in the model is

This sum of squares has r degrees of freedom. It is sometimes called the extra sum of squares 

due to a1. Note that SSR a a1 2|( ) is the increase in the regression sum of squares due to includ-

ing the variables x x xr1 2, , ...,  in the model. Now SSR a a1 2|( ) is independent of MSE, and the 

null hypothesis a1 = 0 may be tested by the statistic.

The Extra Sum of 
Squares

 F0

1 2=
|( )SS r

MS
R

E

a a /
 (12-33)

F Statistic for 
General Regres-

sion Tests

If the computed value of the test statistic f f r n p0 > −α, , , we reject H0, concluding that at least one 

of the parameters in a1 is not zero and, consequently, at least one of the variables x x xr1 2, , ,…
in X1 contributes signifi cantly to the regression model. Some authors call the test in Equation 

12-33 a partial F-test.
The partial F-test is very useful. We can use it to measure the contribution of each indi-

vidual regressor x j as if it were the last variable added to the model by computing

 SS , , , , , , , j , , , kR j j j kβ β β β β β|  ( ) =   − +0 1 1 1 1 2. . . . . . . . .  

This is the increase in the regression sum of squares due to adding x j to a model that already 

includes x x x xj j k1 1 1, . . . , , , . . . ,− + . The partial F-test is a more general procedure in that we can 

measure the effect of sets of variables. In Section 12-6.3, we show how the partial F-test plays 

a major role in model building—that is, in searching for the best set of regressor variables to 

use in the model.

Wire Bond Strength General Regression Test Consider the wire bond pull-strength data in 

Example 12-1. We will investigate the contribution of two new variables, x3 and x ,4  to the model 

using the partial F-test approach. The new variables are explained at the end of this example. That is, we wish to test

Example 12-6

    SS SS SSR R Ra a a a1 2 2|( ) = ( ) − ( ) (12-32)
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H0 3 4 0: β = β =           H1 3 0: β ≠  or β ≠4 0

To test this hypothesis, we need the extra sum of squares due to β3 and β4 or

SS , , , SS , , , , SS , ,R R Rβ  β | β  β  β( ) = β  β  β  β β( ) − β  β4 3 2 1 0 4 3 2 1 0 2 1  ββ( )
= β  β  β  β β( ) − β  β β( )

0

4 3 2 1 0 2 1 0SS , , , SS ,R R, ,

In Example 12-3, we calculated

 SS ,

y

n
R

i
i

n

β  β β( ) = −

⎛
⎝⎜

⎞
⎠⎟

= .=
∑

2 1 0

1

2

5990 7712, a� �X y  (2 degrees of freedom)

Also, Table 12-4 shows the computer output for the model with only x1 and x2 as predictors. In the analysis of variance 

table, we can see that SSR = .5990 8, and this agrees with our calculation. In practice, the computer output would be 

used to obtain this sum of squares.

If we fi t the model Y x x x= β + β + β + β +0 1 1 2 2 3 3  β4 4x , we can use the same matrix formula. Alternatively, we can 

look at SSR from computer output for this model. The analysis of variance table for this model is shown in Table 12-7 

and we see that

 SS , , ,R β  β  β  β | β( ) =4 3 2 1 0 6024 0.  (4 degrees of freedom)

Therefore,

 SS , , ,R β  β | β  β  β( ) = . − . = .4 3 2 1 0 6024 0 5990 8 33 2 (2 degrees of freedom)

This is the increase in the regression sum of squares due to adding x3 and x4 to a model already containing x1 and x2. 
To test H ,0  calculate the test statistic

f
SS , , ,

MS
R

E
0

4 3 2 1 0 2 33 2 2

4 1
4 05=

β  β | β β  β( )
= .

.
= .

 / /

Note that MSE from the full model using x ,1  x ,2  x3 and x4 is used in the denominator of the test statistic. Because 

f ,, ,0 05 2 20 3 49.  = .  we reject H0 and conclude that at least one of the new variables contributes signifi cantly to the model. 

Further analysis and tests will be needed to refi ne the model and determine whether one or both of x3 and x4 are important.

The regression equation is y = 5.00 1.90 x1 0.0151 x2 0.0460 x3 0.000008 x4+ + + −
Predictor Coef SE Coef T P

Constant 4.996 1.655 3.02 0.007

x1 1.9049 0.3126 6.09 0.000

x2 0.01513 0.01051 1.44 0.165

x3 0.04595 0.01666 2.76 0.012

x4 − .0 00000766 0.00001641 − .0 47 0.646

S 2.02474= R Sq = 98.75− % R Sq(adj) 98.4− = %
Analysis of Variance

Source DF SS MS F P

Regression 4 6024.0 1506.0 367.35 0.000

Residual error 20 82.0 4.1

Total 24 6105.9

Source DF Seq SS

x1 1 5885.9

x2 1 104.9

x3 1 32.3

x4 1 0.9

TABLE 12-7 Regression Analysis: y versus x1, x2, x3, x4
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If a partial F-test is applied to a single variable, it is equivalent to a t-test. To see this, con-

sider the computer software regression output for the wire bond pull strength in Table 12-4. Just 

below the analysis of variance summary in this table, the quantity labeled “‘SeqSS”’ shows 

the sum of squares obtained by fi tting x1 alone (5885.9) and the sum of squares obtained by fi t-

ting x2 after x1 (104.9). In out notation, these are referred to as SSR β | β( )1 0  and SS , ,R β  β | β( )2 1 0

respectively. Therefore, to test H0 2 0: β = , H1 2 0: β ≠ , the partial F-test is

f
SS ,

MS
R

E
0

2 1 0 1 104 92

5 24
20 2=

β | β β( )
= .

.
= .

 /
 

where MSE is the mean square for residual in the computer output in Table 12.4. This statistic 

should be compared to an F-distribution with 1 and 22 degrees of freedom in the numerator 

and denominator, respectively. From Table 12-4, the t-test for the same hypothesis is t0 4 48= . .
Note that t f ,0

2 2
04 48 20 07= . = . =  except for round-off error. Furthermore, the square of a 

t-random variable with ν degrees of freedom is an F-random variable with 1 and v degrees of 

freedom. Consequently, the t-test provides an equivalent method to test a single variable for 

contribution to a model. Because the t-test is typically provided by computer output, it is the 

preferred method to test a single variable.

The mystery of the new variables can now be explained. These are quadratic powers of the original predictors of 

wire length and wire height. That is, x x3 1
2=  and x x4 2

2= . A test for quadratic terms is a common use of partial F-tests. 

With this information and the original data for x1 and x ,2  we can use computer software to reproduce these calculations. 

Multiple regression allows models to be extended in such a simple manner that the real meaning of x3 and x4 did not 

even enter into the test procedure. Polynomial models such as this are discussed further in Section 12-6.

12-25. Recall the regression of percent of body fat on height 

and waist from Exercise 12-1. The simple regression model of 

percent of body fat on height alone shows the following:

 Estimate Std. Error t value Pr(>|t|)
(Intercept) 25.58078 14.15400 1.807 0.0719
Height −0.09316 0.20119 −0.463 0.6438

(a) Test whether the coeffi cient of height is statistically 

signifi cant.

(b) Looking at the model with both waist and height in the model, 

test whether the coeffi cient of height is signifi cant in this model.

(c) Explain the discrepancy in your two answers.

12-26. Exercise 12-2 presented a regression model to predict 

fi nal grade from two hourly tests.

(a) Test the hypotheses that each of the slopes is zero. 

(b) What is the value of R2 for this model?

(c) What is the residual standard deviation? 

(d) Do you believe that the professor can predict the fi nal grade 

well enough from the two hourly tests to consider not giv-

ing the fi nal exam? Explain.

12-27. Consider the regression model of Exercise 12-3 attempt-

ing to predict the percent of engineers in the workforce from 

various spending variables. 

(a) Are any of the variables useful for prediction? (Test an 

appropriate hypothesis).

(b) What percent of the variation in the percent of engineers is 

accounted for by the model?

(c) What might you do next to create a better model?

12-28. Consider the linear regression model from Exercise 

12-4. Is the second-order term necessary in the regression model?

12-29. Consider the following computer output.

The regression equation is Y = 254 + 2.77 x1 – 3.58 x2

Predictor Coef SE Coef T P

Constant 253.810 4.781 ? ?

x1 2.7738 0.1846 15.02 ?

x2 –3.5753 0.1526 ? ?

S = 5.05756 R-Sq = ? R-Sq (adj) = 98.4%

Analysis of Variance

Source DF SS MS F P

Regression 2 22784 11392 ? ?

Residual error ? ? ?

Total 14 23091

FOR SECTION 12-2Exercises
 Problem available in WileyPLUS at instructor’s discretion. 

 Tutoring problem available in WileyPLUS at instructor’s discretion.
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(a) Fill in the missing quantities. You may use bounds for the 

P-values.

(b) What conclusions can you draw about the significance of 

regression?

(c) What conclusions can you draw about the contributions of 

the individual regressors to the model?

12-30. You have fit a regression model with two regressors to 

a data set that has 20 observations. The total sum of squares is 

1000 and the model sum of squares is 750.

(a) What is the value of R2 for this model?

(b) What is the adjusted R2 for this model?

(c) What is the value of the F-statistic for testing the signifi-

cance of regression? What conclusions would you draw 

about this model if α = 0.05? What if α = 0.01?
(d) Suppose that you add a third regressor to the model and as 

a result, the model sum of squares is now 785. Does it seem 

to you that adding this factor has improved the model?

12-31. Consider the regression model fit to the soil shear 

strength data in Exercise 12-5.

(a) Test for significance of regression using α = 0.05. What is 

the P-value for this test?

(b) Construct the t-test on each regression coefficient. What 

are your conclusions, using α = 0.05? Calculate P-values.

12-32. Consider the absorption index data in Exercise 12-6. 

The total sum of squares for y  is SST = 742 00. .

(a) Test for significance of regression using α = 0.01. What is 

the P-value for this test?

(b) Test the hypothesis H0 0: β1 =  versus H1 0:β1 ≠  using 

α = 0.01. What is the P-value for this test?

(c) What conclusion can you draw about the usefulness of x1 as 

a regressor in this model?

12-33.  A regression model Y 0 1 2 3= β + β + β + β +x x x1 2 3 e 

as been fit to a sample of n = 25 observations. The calculated 

t-ratios ˆ ˆβ β  =   j jse , j , ,/ ( ) 1 2 3 are as follows: for β1, . ,t0 4 82=  

for β2, .t0 8 21= , and for β3, .t0 0 98= .

(a) Find P-values for each of the t-statistics.

(b) Using α = 0.05, what conclusions can you draw about the 

regressor x3? Does it seem likely that this regressor contrib-

utes significantly to the model?

12-34. Consider the electric power consumption data in  

Exercise 12-10.

(a) Test for significance of regression using α = 0.05. What is 

the P-value for this test?

(b) Use the t-test to assess the contribution of each regressor 

to the model. Using α = 0.05, what conclusions can you 

draw?

12-35. Consider the gasoline mileage data in Exercise 12-11.

(a) Test for significance of regression using α = . .0 05 . What 

conclusions can you draw?

(b) Find the t-test statistic for each regressor. Using α = . .0 05 , 

what conclusions can you draw? Does each regressor con-

tribute to the model?

12-36. Consider the wire bond pull strength data in Exercise 12-12.

(a) Test for significance of regression using α = . .0 05  Find the 

P-value for this test. What conclusions can you draw?

(b) Calculate the t-test statistic for each regression coefficient. 

Using α = .0 05, what conclusions can you draw? Do all 

variables contribute to the model?

12-37. Reconsider the semiconductor data in Exercise 12-13.

(a) Test for significance of regression using α = .0 05. What 

conclusions can you draw?

(b) Calculate the t-test statistic and P-value for each regression 

coefficient. Using α = .0 05, what conclusions can you draw?

12-38. Consider the regression model fit to the arsenic data in 

Exercise 12-16. Use arsenic in nails as the response and age, 

drink use, and cook use as the regressors.

(a) Test for significance of regression using α = . .0 05  What is 

the P-value for this test?

(b) Construct a t-test on each regression coefficient. What con-

clusions can you draw about the variables in this model? 

Use α = . .0 05

12-39. Consider the regression model fit to the X-ray inspec-

tion data in Exercise 12-15. Use rads as the response.

(a) Test for significance of regression using α = . .0 05  What is 

the P-value for this test?

(b) Construct a t-test on each regression coefficient. What con-

clusions can you draw about the variables in this model? 

Use α = . .0 05

12-40. Consider the regression model fit to the nisin extrac-

tion data in Exercise 12-18. Use nisin extraction as the response.

(a) Test for significance of regression using α = . .0 05  What is 

the P-value for this test?

(b) Construct a t-test on each regression coefficient. What con-

clusions can you draw about the variables in this model? 

Use α = . .0 05

(c) Comment on the effect of a small sample size to the tests in 

the previous parts.

12-41. Consider the regression model fit to the gray range modu-

lation data in Exercise 12-19. Use the useful range as the response.

(a) Test for significance of regression using α = . .0 05  What is 

the P-value for this test?

(b) Construct a t-test on each regression coefficient. What con-

clusions can you draw about the variables in this model? 

Use α = . .0 05

12-42. Consider the regression model fit to the stack loss data 

in Exercise 12-20. Use stack loss as the response.

(a) Test for significance of regression using α = . .0 05  What is 

the P-value for this test?

(b) Construct a t-test on each regression coefficient. What con-

clusions can you draw about the variables in this model? 

Use α = . .0 05

12-43. Consider the NFL data in Exercise 12-21.

(a) Test for significance of regression using α = .0 05. What is 

the P-value for this test?

(b) Conduct the t-test for each regression coefficient. Using 

α = .0 05, what conclusions can you draw about the vari-

ables in this model?

(c) Find the amount by which the regressor x2 (TD percentage) 

increases the regression sum of squares, and conduct an 

F-test for H0 0: β2 =  versus H1 0: β2 ≠  using α = 0.05. What 

is the P-value for this test? What conclusions can you draw?
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12-44.  Exercise 12-14 presents data on heat-

treating gears.

(a) Test the regression model for significance of regression. Using 

α = .0 05, find the P-value for the test and draw conclusions.

(b) Evaluate the contribution of each regressor to the model 

using the t-test with α = .0 05.

(c) Fit a new model to the response PITCH using new regr essors 

x x1 2SOAKTIME SOAKPCT and DIFFTIME= × = × 

DIFFPCT.

(d) Test the model in part (c) for significance of regression 

using α = .0 05. Also calculate the t-test for each regressor 

and draw conclusions.

(e) Estimate σ2  for the model from part ( )c  and compare this to 

the estimate of σ2  for the model in part (a). Which estimate 

is smaller? Does this offer any insight regarding which 

model might be preferable?

12-45. Consider the bearing wear data in Exercise 12-23.

(a) For the model with no interaction, test for significance of 

regression using α = .0 05. What is the P-value for this test? 

What are your conclusions?

(b) For the model with no interaction, compute the t-statistics 

for each regression coefficient. Using α = .0 05, what con-

clusions can you draw?

(c) For the model with no interaction, use the extra sum of 

squares method to investigate the usefulness of adding x2 = 

load to a model that already contains x1 =  oil viscosity. Use 

α = .0 05.

(d) Refit the model with an interaction term. Test for signifi-

cance of regression using α = .0 05.

(e) Use the extra sum of squares method to determine whether 

the interaction term contributes significantly to the model. 

Use α = .0 05.

(f) Estimate σ2  for the interaction model. Compare this to the 

estimate of σ2  from the model in part ( )a .

12-46. Data on National Hockey League team performance 

were presented in Exercise 12-22.

(a) Test the model from this exercise for significance of regres-

sion using α = .0 05. What conclusions can you draw?

(b) Use the t-test to evaluate the contribution of each regressor 

to the model. Does it seem that all regressors are neces-

sary? Use α = .0 05.

(c) Fit a regression model relating the number of games won to 

the number of goals for and the number of power play goals 

for. Does this seem to be a logical choice of regressors, 

considering your answer to part (b)? Test this new model 

for significance of regression and evaluate the contribution 

of each regressor to the model using the t-test. Use α = .0 05.

12-47. Data from a hospital patient satisfaction survey were 

presented in Exercise 12-9.

(a) Test the model from this exercise for significance of regres-

sion. What conclusions can you draw if α = .0 05? What if 

α = .0 01?

(b) Test the contribution of the individual regressors using the 

t-test. Does it seem that all regressors used in the model are 

really necessary?

12-48. Data from a hospital patient satisfaction survey were 

presented in Exercise 12-9.

(a) Fit a regression model using only the patient age and 

severity regressors. Test the model from this exercise for  

significance of regression. What conclusions can you draw 

if α = .0 05? What if α = .0 01?

(b) Test the contribution of the individual regressors using the 

t-test. Does it seem that all regressors used in the model are 

really necessary?

(c) Find an estimate of the error variance σ2. Compare this estimate 

of σ2 with the estimate obtained from the model containing  

the third regressor, anxiety. Which estimate is smaller? Does 

this tell you anything about which model might be preferred?

12-3  Confidence Intervals In Multiple  
Linear Regression

12-3.1 CONFIDENCE INTERVALS ON INDIVIDUAL REGRESSION COEFFICIENTS

In multiple regression models, is often useful to construct confidence interval estimates for the 

regression coefficients { }β .j  The development of a procedure for obtaining these confidence 

intervals requires that the errors { }ei  are normally and independently distributed with mean 

zero and variance σ2. This is the same assumption required in hypothesis testing. Therefore, 

the observations
 
{ }Yi  are normally and independently distributed with mean β0 + =∑ bjj

k
ijx

1
 and 

variance σ2. Because the least squares estimator â is a linear combination of the observations, 

it follows that â is normally distributed with mean vector β and covariance atrix σ ( )−2 1
X X� . 

Then each of the statistics

 T
C

=
β − β

σ
=

ˆ

ˆ

j j

jj

j , k
2

0 1, , …  (12-34)

has a t distribution with n p−  degrees of freedom where C jj is the jjth element of the X X�( )−1
 

matrix, and σ̂2 is the estimate of the error variance, obtained from Equation 12-16. This leads 

to the following 100 1( )%− α  confidence interval for the regression coefficient β j j k, , , ...,= 0 1 .
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Because σ̂2C jj  is the standard error of the regression coeffi cient β̂ j, we would also write the 

CI formula as ˆ ˆβ − β( ) ≤ β ≤ β + β( )α − α −j n p j j j n p jt se t se/ /2 2, , .

A 100 1( )%− α  confi dence interval on the regression coeffi cient β j j k, , , ...,= 0 1  in 

the multiple linear regression model is given by

 ˆ ˆ ˆ ˆβ − σ ≤ β ≤ β + σα − α −j n p jj j j n p jjt C t C/ /2
2

2
2

, ,  (12-35)

Confi dence 
Interval on 

a Regression 
Coeffi cient

Wire Bond Strength Confi dence Interval We will construct a 95% confi dence interval on the 

parameter β1 in the wire bond pull strength problem. The point estimate of β1 is β̂ = .1 2 74427, 

and the diagonal element of X X�( )−1
 corresponding to β1 is C11 0 001671= . . The estimate of σ2 is σ̂ = .2 5 2352, and 

t0 025 22 2 074. , .= . Therefore, the 95% CI on β1 is computed from Equation 12-35 as

2 74427 2 074 5 2352 001671 2 74427 2 074 5 2352. .− .( ) .( ) .( ) ≤ β ≤ + .( ) .(1 )) .( )001671

which reduces to
2 55029 2 938251. ≤ β ≤ .

Also, computer software can be used to help calculate this confi dence interval. From the regression output in 

Table 10-4, β̂ = .1 2 74427 and the standard error of β̂ = . .1 0 0935  This standard error is the multiplier of the t-table 

constant in the confi dence interval. That is, 0 0935 5 2352 0 001671. = .( ) .( ). Consequently, all the numbers are 

available from the computer output to construct the interval, which is the typical method used in practice.

Example 12-7

12-3.2 CONFIDENCE INTERVAL ON THE MEAN RESPONSE

We may also obtain a confi dence interval on the mean response at a particular point, say, 

x x x k01 02 0, , ..., . To estimate the mean response at this point, defi ne the vector

x
0

1
01

02

0

=

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

x
x

x k




The mean response at this point is E Y ,x xx0 0
( ) = =μY � a0  which is estimated by

ˆ ˆμ = ′Y 0x x0a (12-36)

This estimator is unbiased, because E E Yx x x x′( ) = ′ = ( ) =0 0â a 0 Y 0
μ  and the variance of  ̂μY 0x  is

 V μ̂( ) = ′ ( )−
Y 00x x xσ2

0

1
X X�  (12-37)

A 100 1( )%− α  CI on μY 0x  can be constructed from the statistic

 
ˆ ˆ

ˆ

μ − μ

σ ′ ′( )−

Y Y0 0

x

x x

x2
0

1

0X X
 (12-38)

For the multiple linear regression model, a 100 1( )%− α  confi dence interval on the 
mean response at the point x x x k01 02 0, , ,…  is

ˆ ˆ ˆ ˆμ − σ ′ ′( ) ≤ μ ≤ μ + σ ′| α −
−

α −Y Yx x xx x x X
0 0 02

2
0

1

0 2
2

0t t,n p Y ,n p/ /X X �XX x( ) −1
0  (12-39)

Confi dence 
Interval on the 

Mean Response
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12-4 Prediction of New Observations
A regression model can be used to predict new or future observations on the response vari-

able Y  corresponding to particular values of the independent variables, say, x x x k01 02 0, , ..., . If 

x′ =   …  [ ]0 01 02 01, x , x , , x k , a point estimate of the future observation Y0 at the point x x x k01 02 0, , ...,  is

 ˆ ˆy0 0= ′x a (12-40)

Equation 12-39 is a CI about the regression plane (or hyperplane). It is the multiple regression 

generalization of Equation 11-32.

Prediction 
Interval A 100 1( )%− α  prediction interval on a future observation is

ˆ ˆ ( ( ) )y t ,n p0 2
2

0
1

01− σ + ′α −
−

/ x X X x�  

 ≤ ≤ + σ + ′α −
−Y y t ,n p0 0 2

2
0

1
01ˆ ˆ ( ( ) )/ x X X x�  (12-41)

Wire Bond Strength Confi dence Interval on the Mean Response The engineer in Example 

12-1 would like to construct a 95% CI on the mean pull strength for a wire bond with wire length 

x1 8=  and die height x2 275= . Therefore,

x0

1

8

275

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

The estimated mean response at this point is found from Equation 12-36 as

ˆ ˆ
.

.

.

.μ = ′ β = [ ]
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=Y x x
0 0 1 8 275

2 26379

2 74427

0 01253

27 66

The variance of μ̂ |Y x0
 is estimated by

σ̂ ′ ′( ) = .  [ ]
. −. −.

−.−2
0

1

0 5 2352 1 8 275

214653 007491 000340

007x X X x 4491 001671 000019

000340 000019 0000015

1

8

27

. −.
−. −. .

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
 

55

5 2352 0 0444 0 23244

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

= .  .( ) = .

Therefore, a 95% CI on the mean pull strength at this point is found from Equation 12-39 as

27 66 2 074 0 23244 27 66 2 074 0 23244. . . .− ≤ ≤ + .  .μ
Y x0

which reduces to

26 66 28 66
0

. ≤ μ ≤ .|Y x

Some computer software will provide estimates of the mean for a point of interest x0 and the associated CI. Table 12-4 

shows the computer output for Example 12-8. Both the estimate of the mean and the 95% CI are provided.

EXAMPLE 12-8

This prediction interval is a generalization of the prediction interval given in Equation 11-33 

for a future observation in simple linear regression. If we compare the prediction interval 

Equation 12-41 with the expression for the confi dence interval on the mean, Equation 12-39, 
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you will observe that the prediction interval is always wider than the confi dence interval. 

The confi dence interval expresses the error in estimating the mean of a distribution, and the 

prediction interval expresses the error in predicting a future observation from the distribution 

at the point x0. This must include the error in estimating the mean at that point as well as the 

inherent variability in the random variable Y  at the same value x x = 0.

Also, we might want to predict the mean of several values of Y , say m, all at the same value 

x x = 0. Because the variance of a sample mean is σ2 /m, Equation 12-41 is modifi ed as fol-

lows. Replace the constant 1 under the square root with 1 / m to refl ect the lower variability in 

the mean of m observations. This results in a narrower interval.

In predicting new observations and in estimating the mean response at a given point 

x x x k01 02, , , ,… 0  we must be careful about extrapolating beyond the region containing the 

original observations. It is very possible that a model that fi ts well in the region of the origi-

nal data will no longer fi t well outside of that region. In multiple regression, inadvertently 

extrapolating is often easy because the levels of the variables ( , , , )1 2x x xi i ik… , i n= 1 2, , ,… , 

jointly defi ne the region containing the data. As an example, consider Fig. 12-5, which illus-

trates the region containing the observations for a two-variable regression model. Note that 

the point ( , )x x01 02  lies within the ranges of both regressor variables x1 and x2, but it is outside 

the region that is actually spanned by the original observations. This is sometimes called a 

hidden extrapolation. Either predicting the value of a new observation or estimating the 

mean response at this point is an extrapolation of the original regression model.

x01

x02

x2

Joint region

of original area

Original range for x1

x1

O
ri

g
in

a
l 
ra

n
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o
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FIGURE 12-5 An example of extrapolation in multiple regression

Wire Bond Strength Confi dence Interval Suppose that the engineer in Example 12-1 wishes to 

construct a 95% prediction interval on the wire bond pull strength when the wire length is x1 8=  and 

the die height is x2 275= . Note that x′ = [ ]0 1 8 275 , and the point estimate of the pull strength is ˆ ˆy0 0 27 66= ′ β = . .x  

Also, in Example 12-8, we calculated x X X x′ ′( ) = . .−
0

1

0 0 04444  Therefore, from Equation 12-41 we have

27 66 2 074 5 2352 1 0 0444 27 66 2 074 5 2352 1 0 04440. .− .  . + .( ) ≤ ≤ + .  . + .Y (( )
and the 95% prediction interval is

22 81 32 510. .≤ ≤Y

Notice that the prediction interval is wider than the confi dence interval on the mean response at the same point, calcu-

lated in Example 12-8. The computer output in Table 12-4 also displays this prediction interval.

Example 12-9
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12-49 Using the regression model from Exercise 12-1, 

(a) Find a 95% confidence interval for the coefficient of height.

(b) Find a 95% confidence interval for the mean percent  

of body fat for a man with a height of 72in and waist 

of 34in.

(c) Find a 95% prediction interval for the percent of body fat 

for a man with the same height and waist as in part (b).

(d) Which interval is wider, the confidence interval or the pre-

diction interval? Explain briefly.

(e) Given your answer to part (c), do you believe that this is a 

useful model for predicting body fat? Explain briefly.

12-50 Using the regression from Exercise 12-2, 

(a) Find a 95% confidence interval for the coefficient of hourly 

1 test.

(b) Find a 95% confidence interval for the mean final grade for 

students who score 80 on the first test and 85 on the second. 

(c) Find a 95% prediction interval for a student with the same 

grades as in part (b).

12-51 Referring to the regression model from Exercise 12-3,

(a) Find a 95% confidence interval for the coefficient of spend-

ing on higher education.

(b) Is zero in the confidence interval you found in part (a)? What 

does that fact imply about the coefficient of higher education?

(c) Find a 95% prediction interval for a state that has $1 per 

$1000 in venture capital, spends $10,000 per student on 

funding for major research universities, and spends 0.5% 

of its GDP on higher education.

12-52 Use the second-order polynomial regression model 

from Exercise 12-4,

(a) Find a 95% confidence interval on both the first-order and 

the second-order term in this model.

(b) Is zero in the confidence interval you found for the  

second-order term in part (a)? What does that fact tell 

you about the contribution of the second-order term to 

the model?

(c) Refit the model with only the first-order term. Find a 95% 

confidence interval on this term. Is this interval longer or 

shorter than the confidence interval that you found on this 

term in part (a)?

12-53. Consider the regression model fit to the shear strength 

of soil in Exercise 12-5.

(a) Calculate 95% confidence intervals on each regression 

coefficient.

(b) Calculate a 95% confidence interval on mean strength 

when x1 18=  ft and x2 43= .%

(c) Calculate 95% prediction interval on strength for the same 

values of the regressors used in the previous part.

12-54. Consider the soil absorption data in Exercise 12-6.

(a) Find 95% confidence intervals on the regression coefficients.

(b) Find a 95% confidence interval on mean soil absorption 

index when x1 200=  and x2 50= .

(c) Find a 95% prediction interval on the soil absorption index 

when x1 200=  and x2 50= .

12-55. Consider the semiconductor data in Exercise 12-13.

(a) Find 99% confidence intervals on the regression coefficients.

(b) Find a 99% prediction interval on HFE when x1 14 5= . ,

x2 220= , and x3 5 0= .

(c) Find a 99% confidence interval on mean HFE when 

x x1 214 5 220= =. , , and x3 5 0= . .

12-56.  Consider the electric power consumption data in 

Exercise 12-10.

(a) Find 95% confidence intervals on β β β1 2 3, , , and β4.

(b) Find a 95% confidence interval on the mean of Y  when 

x x x1 2 375 24 90= = =, , ,  and x4 98= .

(c) Find a 95% prediction interval on the power consumption 

when x x x1 2 375 24 90= = =, , ,  and x4 98= .

12-57. Consider the bearing wear data in Exercise 12-23.

(a) Find 99% confidence intervals on β1 and β2.

(b) Recompute the confidence intervals in part ( )a  after the inter-

action term x x1 2 is added to the model. Compare the lengths 

of these confidence intervals with those computed in part ( )a

. Do the lengths of these intervals provide any information 

about the contribution of the interaction term in the model?

12-58.  Consider the wire bond pull strength data in  

Exercise 12-12.

(a) Find 95% confidence interval on the regression coefficients.

(b) Find a 95% confidence interval on mean pull strength 

when x x x2 3 420 30 90= = =, , ,  and x5 2 0= . .

(c) Find a 95% prediction interval on pull strength when 

x x x2 3 420 30 90= = =, , ,  and x5 2 0= . .

12-59. Consider the regression model fit to the X-ray inspection 

data in Exercise 12-15. Use rads as the response.

(a) Calculate 95% confidence intervals on each regression 

coefficient.

(b) Calculate a 99% confidence interval on mean rads at 15 

milliamps and 1 second on exposure time.

(c) Calculate a 99% prediction interval on rads for the same 

values of the regressors used in the part (b).

12-60.  Consider the regression model fit to the arsenic 

data in Exercise 12-16. Use arsenic in nails as the response and 

age, drink use, and cook use as the regressors.

(a) Calculate 99% confidence intervals on each regression 

coefficient.

(b) Calculate a 99% confidence interval on mean arsenic con-

centration in nails when age = 30, drink use = 4, and cook 

use = .4

(c) Calculate a prediction interval on arsenic concentration in 

nails for the same values of the regressors used in part (b).

FOR SECTION 12-3 AND 12-4EXERCISES
 Problem available in WileyPLUS at instructor’s discretion. 

 Tutoring problem available in WileyPLUS at instructor’s discretion.
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12-61.  Consider the regression model fit to 

the coal and limestone mixture data in Exercise 12-17. Use 

density as the response.

(a) Calculate 90% confidence intervals on each regression 

coefficient.

(b) Calculate a 90% confidence interval on mean density when 

the dielectric constant = .2 3 and the loss factor = 0 025. .
(c) Calculate a prediction interval on density for the same 

values of the regressors used in part (b).

12-62.  Consider the regression model fit to the nisin 

extraction data in Exercise 12-18.

(a) Calculate 95% confidence intervals on each regression 

coefficient.

(b) Calculate a 95% confidence interval on mean nisin extrac-

tion when x1 15 5= .  and x2 16= .
(c) Calculate a prediction interval on nisin extraction for the 

same values of the regressors used in part (b).

(d) Comment on the effect of a small sample size to the widths 

of these intervals.

12-63. Consider the regression model fit to the gray range 

modulation data in Exercise 12-19. Use the useful range as the 

response.

(a) Calculate 99% confidence intervals on each regression 

coefficient.

(b) Calculate a 99% confidence interval on mean useful range 

when brightness = 70 and contrast = .80

(c) Calculate a prediction interval on useful range for the same 

values of the regressors used in part (b).

(d) Calculate a 99% confidence interval and a 99% a predic-

tion interval on useful range when brightness = 50 and 

contrast = .25  Compare the widths of these intervals to 

those calculated in parts (b) and (c). Explain any differ-

ences in widths.

12-64. Consider the stack loss data in Exercise 12-20.

(a) Calculate 95% confidence intervals on each regression 

coefficient.

(b) Calculate a 95% confidence interval on mean stack loss 

when x ,1 80=  x2 25=  and x3 90= .
(c) Calculate a prediction interval on stack loss for the same 

values of the regressors used in part (b).

(d) Calculate a 95% confidence interval and a 95% prediction 

interval on stack loss when x ,1 80=  x2 19= , and x3 93= . 
Compare the widths of these intervals to those calculated in 

parts (b) and (c). Explain any differences in widths.

12-65.  Consider the NFL data in Exercise 12-21.

(a) Find 95% confidence intervals on the regression coefficients.

(b) What is the estimated standard error of μ̂ |Y x0
 when the per-

centage of completions is 60%, the percentage of TDs is 

4%, and the percentage of interceptions is 3%.

(c) Find a 95% confidence interval on the mean rating when 

the percentage of completions is 60%, the percentage of 

TDs is 4%, and the percentage of interceptions is 3%.

12-66.  Consider the heat-treating data from Exercise 12-14.

(a) Find 95% confidence intervals on the regression coefficients.

(b) Find a 95% confidence interval on mean PITCH when 

TEMP = 1650, SOAKTIME = 1.00, SOAKPCT = 1.10, 

DIFFTIME = 1.00, and DIFFPCT = 0.80.

(c) Fit a model to PITCH using regressors x1 = SOAKTIME ×  

SOAKPCT and x2 = DIFFTIME × DIFFPCT. Using the 

model with regressors x1 and x2, find a 95% confidence inter-

val on mean PITCH when SOAKTIME = 1.00, SOAKPCT =  

1.10, DIFFTIME = 1.00, and DIFFPCT = 0.80.

(d) Compare the length of this confidence interval with the 

length of the confidence interval on mean PITCH at the 

same point from part (b), which used an additive model 

in SOAKTIME, SOAKPCT, DIFFTIME, and DIFFPCT. 

Which confidence interval is shorter? Does this tell you 

anything about which model is preferable?

12-67.  Consider the gasoline mileage data in Exercise 12-11.

(a) Find 99% confidence intervals on the regression coefficients.

(b) Find a 99% confidence interval on the mean of Y  for the 

regressor values in the first row of data.

(c) Fit a new regression model to these data using cid, etw, and 

axle as the regressors. Find 99% confidence intervals on 

the regression coefficients in this new model.

(d) Compare the lengths of the confidence intervals from part 

(c) with those found in part (a). Which intervals are longer? 

Does this offer any insight about which model is preferable?

12-68. Consider the NHL data in Exercise 12-22.

(a) Find a 95% confidence interval on the regression coeffi-

cient for the variable GF.

(b) Fit a simple linear regression model relating the response 

variable to the regressor GF.

(c) Find a 95% confidence interval on the slope for the simple 

linear regression model from part (b).

(d) Compare the lengths of the two confidence intervals com-

puted in parts (a) and (c). Which interval is shorter? Does 

this tell you anything about which model is preferable?

12-5 Model Adequacy Checking
12-5.1 RESIDUAL ANALYSIS

The residuals from the multiple regression model, defined by e y yi i i= − ˆ , play an important 

role in judging model adequacy just as they do in simple linear regression. As noted in Sec-

tion 11-7.1, several residual plots are often useful; these are illustrated in Example 12-10. It is 

also helpful to plot the residuals against variables not presently in the model that are possible 

candidates for inclusion. Patterns in these plots may indicate that the model may be improved 

by adding the candidate variable.
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Wire Bond Strength Residuals The residuals for the model from Example 12-1 are shown in 

Table 12-3. A normal probability plot of these residuals is shown in Fig. 12-6. No severe devia-

tions from normality are obviously apparent, although the two largest residuals (e15 5 84= .  and e17 4 33= . ) do not fall 

extremely close to a straight line drawn through the remaining residuals.

Example 12-10

 d
e

MS

e
i

i

E

i= =
σ̂2

 (12-42)

The standardized residuals

Standardized 
Residual

are often more useful than the ordinary residuals when assessing residual magnitude. For 

the wire bond strength example, the standardized residuals corresponding to e15 and e17 are 

d15 5 84 5 2352 2 55= . . = ./  and d17 4 33 5 2352 1 89= . . = ./ , and they do not seem unusually 

large. Inspection of the data does not reveal any error in collecting observations 15 and 17, nor 

does it produce any other reason to discard or modify these two points.

The residuals are plotted against ŷ in Fig. 12-7, and against x1 and x2 in Figs. 12-8 and 12-9, 

respectively.* The two largest residuals, e15 and e17, are apparent. Figure 12-8 gives some indica-

tion that the model underpredicts the pull strength for assemblies with short wire length x1 6≤( )
and long wire length x1 15≥( ) and overpredicts the strength for assemblies with intermediate 

wire length 7 141≤ ≤( )x . The same impression is obtained from Fig. 12-7. Either the relation-

ship between strength and wire length is not linear (requiring that a term involving x1
2, say, be 

added to the model) or other regressor variables not presently in the model affected the response.

In the wire bond strength example, we used the standardized residuals d ei i= σ/ ˆ 2  as a 

measure of residual magnitude. Some analysts prefer to plot standardized residuals instead of 

ordinary residuals because the standardized residuals are scaled so that their standard devia-

tion is approximately unity. Consequently, large residuals (that may indicate possible outliers 

or unusual observations) will be more obvious from inspection of the residual plots.

FIGURE 12-6 Normal probability plot of residuals.
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FIGURE 12-7 Plot of residuals against ŷ .
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*There are other methods, such as those described in Montgomery, Peck, and Vining (2012) and Myers (1990), that 

plot a modifi ed version of the residual, called a partial residual, against each regressor. These partial residual plots 

are useful in displaying the relationship between the response y and each individual regressor.
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1 2  (12-43)

 hii i i= ′ ′( )−
x xX X

1
 (12-44)

Many regression computer programs compute other types of scaled residuals. One of the 

most popular are the studentized residuals

Studentized Residual

where hii is the ith diagonal element of the matrix

H = ′( ) ′−
X X X X

1

The H matrix is sometimes called the “hat” matrix, because

ˆ ˆy y Hy= = ′( ) ′ =−
X X X X Xa 1

Thus, H transforms the observed values of y into a vector of fitted values ŷ.

Because each row of the matrix X corresponds to a vector, say x′ =   …  [ ]i i i ik, x , x , , x1 1 2 , 

another way to write the diagonal elements of the hat matrix is

Diagonal Elements 
of Hat Matrix

1
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FIGURE 12-8 Plot of residuals against x1. FIGURE 12-9 Plot of residuals against x 2.
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Note that apart from σ2, hii is the variance of the fitted value ŷi. The quantities hii were used in 

the computation of the confidence interval on the mean response in Section 12-3.2.

Under the usual assumptions that the model errors are independently distributed with mean 

zero and variance σ2, we can show that the variance of the ith residual ei is

V e h i ni ii( ) = −( ) =σ2 1 1 2, , , ,…

Furthermore, the hii elements must fall in the interval 0 1, hii ≤ . This implies that the stand-

ardized residuals understate the true residual magnitude; thus, the studentized residuals would 

be a better statistic to examine in evaluating potential outliers.

To illustrate, consider the two observations identified in the wire bond strength data 

(Example 12-10) as having residuals that might be unusually large, observations 15 and 17. 

The standardized residuals are

d
e

d
e

MSE
17

15

2
17

175 84

5 2352
2 55

4 33

5 2352
1 89=

σ
=

.
= . = = .

.
=

ˆ

.
.and
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Now h15 15 0 0737, .=  and h17 17 0 2593, . ,=  so the studentized residuals are

r
e

h ,

15
15

2
15 151

5 84

5 2352 1 0 0737
2 65=

σ −( )
=

. − .( )
= .

ˆ

.

and

r
e

h ,

17
17

2
17 171

4 33

5 2352 1 0 2593
2 20=

σ −( )
= .

. − .( )
= .

ˆ

Notice that the studentized residuals are larger than the corresponding standardized residuals. 

However, the studentized residuals are still not so large as to cause us serious concern about 

possible outliers.

12-5.2 INFLUENTIAL OBSERVATIONS

When using multiple regression, we occasionally find that some subset of the observations is 

unusually influential. Sometimes these influential observations are relatively far away from 

the vicinity where the rest of the data were collected. A hypothetical situation for two vari-

ables is depicted in Fig. 12-10 in which one observation in x-space is remote from the rest of 

the data. The disposition of points in the x-space is important in determining the properties of 

the model. For example, point ( , )x xi i1 2  in Fig. 12-10 may be very influential in determining 

R2, the estimates of the regression coefficients, and the magnitude of the error mean square.

We would like to examine the influential points to determine whether they control many 

model properties. If these influential points are “bad” points, or erroneous in any way, they 

should be eliminated. On the other hand, there may be nothing wrong with these points, but 

at least we would like to determine whether or not they produce results consistent with the 

rest of the data. In any event, even if an influential point is a valid one, if it controls important 

model properties, we would like to know this, because it could have an impact on the use of 

the model.

Montgomery, Peck, and Vining (2012) and Myers (1990) describe several methods for 

detecting influential observations. An excellent diagnostic is the distance measure devel-

oped by Dennis R. Cook. This is a measure of the squared distance between the usual least 

squares estimate of a based on all n observations and the estimate obtained when the th point 

is removed, say, â i( ). The Cook’s distance measure is

FIGURE 12-10 A point that is remote in x-space.
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Cook’s 
Distance 

Clearly, if the ith point is infl uential, its removal will result in â i( ) changing considerably from 

the value â. Thus, a large value of Di implies that the ith point is infl uential. The statistic Di is 

actually computed using

Cook’s Distance 
Formula

Wire Bond Strength Cook’s Distances Table 12-8 lists the values of the hat matrix diagonals hii 

and Cook’s distance measure Di for the wire bond pull strength data in Example 12-1. To illustrate 

the calculations, consider the fi rst observation:
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The Cook distance measure Di does not identify any potentially infl uential observations in the data, for no value of 

Di exceeds unity.

Example 12-11

From Equation 12-45, we see that Di consists of the squared studentized residual, which 

refl ects how well the model fi ts the ith observation y
i
 [recall that r e hi i ii= σ − ]/ ˆ ( )2 1  and 

a component that measures how far that point is from the rest of the data [ −( )h hii ii/ 1  is a 

measure of the distance of the ith point from the centroid of the remaining n − 1 points]. A 

value of Di > 1 would indicate that the point is infl uential. Either component of Di (or both) 

may contribute to a large value.
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12-69. Consider the gasoline mileage data in Exercise 12-11.

(a) What proportion of total variability is explained by this model?

(b) Construct a normal probability plot of the residuals and 

comment on the normality assumption.

(c) Plot residuals versus ŷ  and versus each regressor. Discuss 

these residual plots.

(d) Calculate Cook’s distance for the observations in this data 

set. Are any observations infl uential?

12-70. Consider the electric power consumption data in 

Exercise 12-10.

(a) Calculate R2 for this model. Interpret this quantity.

(b) Plot the residuals versus ŷ  and versus each regressor. 

Interpret this plot.

(c) Construct a normal probability plot of the residuals and 

comment on the normality assumption.

12-71. Consider the regression model for the NFL data in 

Exercise 12-21.

(a) What proportion of total variability is explained by this model?

(b) Construct a normal probability plot of the residuals. What 

conclusion can you draw from this plot?

(c) Plot the residuals versus ŷ  and versus each regressor, and 

comment on model adequacy.

(d) Are there any infl uential points in these data?

12-72.  Consider the regression model for the heat-treat-

ing data in Exercise 12-14.

(a) Calculate the percent of variability explained by this model.

(b) Construct a normal probability plot for the residuals. 

Comment on the normality assumption.

(c) Plot the residuals versus ŷ  and interpret the display.

(d) Calculate Cook’s distance for each observation and pro-

vide an interpretation of this statistic.

12-73.  Consider the regression model fi t to the X-ray 

inspection data in Exercise 12-15. Use rads as the response.

(a) What proportion of total variability is explained by this model?

(b) Construct a normal probability plot of the residuals. What 

conclusion can you draw from this plot?

(c) Plot the residuals versus ŷ  and versus each regressor, and 

comment on model adequacy.

(d) Calculate Cook’s distance for the observations in this data 

set. Are there any infl uential points in these data?

12-74.  Consider the regression model fi t to the arsenic 

data in Exercise 12-16. Use arsenic in nails as the response and 

age, drink use, and cook use as the regressors.

(a) What proportion of total variability is explained by this model?

(b) Construct a normal probability plot of the residuals. What 

conclusion can you draw from this plot?

(c) Plot the residuals versus ŷ  and versus each regressor, and 

comment on model adequacy.

(d) Calculate Cook’s distance for the observations in this data 

set. Are there any infl uential points in these data?

12-75.  Consider the regression model fi t to the coal and lime-

stone mixture data in Exercise 12-17. Use density as the response.

(a) What proportion of total variability is explained by this 

model?

(b) Construct a normal probability plot of the residuals. What 

conclusion can you draw from this plot?

(c) Plot the residuals versus ŷ  and versus each regressor, and 

comment on model adequacy.

FOR SECTION 12-5EXERCISES
 Problem available in WileyPLUS at instructor’s discretion. 

 Tutoring problem available in WileyPLUS at instructor’s discretion.

TABLE 12-8 Infl uence Diagnostics for the Wire Bond Pull Strength Data

Observations i hii Cook’s Distance Measure Di Observations i hii Cook’s Distance Measure Di

1 0.1573 0.035 14 0.1129 0.003

 2 0.1116 0.012 15 0.0737 0.187

 3 0.1419 0.060 16 0.0879 0.001

 4 0.1019 0.021 17 0.2593 0.565

 5 0.0418 0.024 18 0.2929 0.155

 6 0.0749 0.007 19 0.0962 0.018

 7 0.1181 0.036 20 0.1473 0.000

 8 0.1561 0.020 21 0.1296 0.052

 9 0.1280 0.160 22 0.1358 0.028

10 0.0413 0.001 23 0.1824 0.002

11 0.0925 0.013 24 0.1091 0.040

12 0.0526 0.001 25 0.0729 0.000

13 0.0820 0.001

c12.indd   516 9/24/2013   7:24:46 PM



Section 12-6/Aspects of Multiple Regression Modeling   517

(d) Calculate Cook’s distance for the observations in this data 

set. Are there any influential points in these data?

12-76. Consider the regression model fit to the nisin extrac-

tion data in Exercise 12-18.

(a) What proportion of total variability is explained by this model?

(b) Construct a normal probability plot of the residuals. What 

conclusion can you draw from this plot?

(c) Plot the residuals versus ŷ  and versus each regressor, and 

comment on model adequacy.

(d) Calculate Cook’s distance for the observations in this data 

set. Are there any influential points in these data?

12-77. Consider the regression model fit to the gray range 

modulation data in Exercise 12-19. Use the useful range as 

the response.

(a) What proportion of total variability is explained by this model?

(b) Construct a normal probability plot of the residuals. What 

conclusion can you draw from this plot?

(c) Plot the residuals versus ŷ  and versus each regressor, and 

comment on model adequacy.

(d) Calculate Cook’s distance for the observations in this data 

set. Are there any influential points in these data?

12-78. Consider the stack loss data in Exercise 12-20.

(a) What proportion of total variability is explained by this model?

(b) Construct a normal probability plot of the residuals. What 

conclusion can you draw from this plot?

(c) Plot the residuals versus ŷ  and versus each regressor, and 

comment on model adequacy.

(d) Calculate Cook’s distance for the observations in this data 

set. Are there any influential points in these data?

12-79. Consider the bearing wear data in Exercise 12-23.

(a) Find the value of R2 when the model uses the regressors 

x1 and x2.

(b) What happens to the value of R2 when an interaction term 

x x1 2 is added to the model? Does this necessarily imply that 

adding the interaction term is a good idea?

12-80. Fit a model to the response PITCH in the heat-treating 

data of Exercise 12-14 using new regressors x1 =  SOAKTIME ×  

SOAKPCT and x2 = DIFFTIME × DIFFPCT.

(a) Calculate the R2 for this model and compare it to the 

value of R2 from the original model in Exercise 12-14. 

Does this provide some information about which model 

is preferable?

(b) Plot the residuals from this model versus ŷ  and on a normal 

probability scale. Comment on model adequacy.

(c) Find the values of Cook’s distance measure. Are any obser-

vations unusually influential?

12-81. Consider the semiconductor HFE data in Exercise 12-13.

(a) Plot the residuals from this model versus ŷ . Comment on 

the information in this plot.

(b) What is the value of R2 for this model?

(c) Refit the model using log HFE as the response variable.

(d) Plot the residuals versus predicted log HFE for the model 

in part (c). Does this give any information about which 

model is preferable?

(e) Plot the residuals from the model in part (d) versus the 

regressor x3. Comment on this plot.

(f) Refit the model to log HFE using x x1 2, , and 1 3/ x , as the 

regressors. Comment on the effect of this change in the model.

12-82. Consider the regression model for the NHL data from 

Exercise 12-22.

(a) Fit a model using as the only regressor.

(b) How much variability is explained by this model?

(c) Plot the residuals versus ŷ and comment on model adequacy.

(d) Plot the residuals from part (a) versus PPGF, the points 

scored while in power play. Does this indicate that the 

model would be better if this variable were included?

12-83. The diagonal elements of the hat matrix are often used to 

denote leverage—that is, a point that is unusual in its location in the 

x-space and that may be influential. Generally, the ith point is called 

a leverage point if its hat diagonal hii exceeds 2p n/ , which is twice 

the average size of all the hat diagonals. Recall that p k= + 1.

(a) Table 12-9 contains the hat diagonal for the wire bond pull 

strength data used in Example 12-5. Find the average size 

of these elements.

(b) Based on the preceding criterion, are there any observa-

tions that are leverage points in the data set?

12-6 Aspects of Multiple Regression Modeling
In this section, we briefly discuss several other aspects of building multiple regression 

models. For more extensive presentations of these topics and additional examples refer to 

Montgomery, Peck, and Vining (2012) and Myers (1990).

12-6.1 POLYNOMIAL REGRESSION MODELS

The linear model Y = +Xa e is a general model that can be used to fit any relationship that 

is linear in the unknown parameters a. This includes the important class of polynomial 
regression models. For example, the second-degree polynomial in one variable

 Y x x= β + β + β +0 1 11
2 e (12-46)

and the second-degree polynomial in two variables

 Y x x x x x x= β + β + β + β + β + β +0 1 1 2 2 11 1
2

22 2
2

12 1 2 e (12-47)

are linear regression models.
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Polynomial regression models are widely used when the response is curvilinear because 

the general principles of multiple regression can be applied. Example 12-12 illustrates some 

of the types of analyses that can be performed.

Airplane Sidewall Panels Sidewall panels for the interior of an airplane are formed in a 1500-

ton press. The unit manufacturing cost varies with the production lot size. The following data 

give the average cost per unit (in hundreds of dollars) for this product ( )y  and the production lot size ( )x . The scatter 

diagram, shown in Fig. 12-11, indicates that a second-order polynomial may be appropriate.

y 1.81 1.70 1.65 1.55 1.48 1.40

x 20 25 30 35 40 50

y 1.30 1.26 1.24 1.21 1.20 1.18

x 60 65 70 75 80 80

We will fi t the model

Y x x= β + β + β +0 1 11
2 e

The y vector, the model matrix X, and the a vector are as follows:

y =

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
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Example 12-12

FIGURE 12-11 
Data for Example 12-11.
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Solving the normal equations X X X′ = ′â y gives the fi tted model

y x x^ . . .= − +2 19826629 0 02252236 0 00012507 2

Conclusions: The test for signifi cance of regression is shown in Table 12-9. Because f0 1762 3= .  is signifi cant at 

1%, we conclude that at least one of the parameters β1 and β11 is not zero. Furthermore, the standard tests for model 

adequacy do not reveal any unusual behavior, and we would conclude that this is a reasonable model for the sidewall 

panel cost data.

In fi tting polynomials, we generally like to use the lowest-degree model consistent with 

the data. In this example, it would seem logical to investigate the possibility of dropping the 

quadratic term from the model. That is, we would like to test

H1 11 0: β = H1 11 0: β ≠

The general regression signifi cance test can be used to test this hypothesis. We need to deter-

mine the “extra sum of squares” due to β11, or

SS SS SSR R Rβ |β β( ) = β β | β( ) − β | β( )11 1 0 1 11 0 1 0, ,  

The sum of squares SSR β β | β( ) = .1 11 0 0 52516,  from Table 12-10. To fi nd SSR β |β( )1 0 , we fi t a 

simple linear regression model to the original data, yielding

 ŷ = . − .1 90036313 0 00910056x 

It can be easily verifi ed that the regression sum of squares for this model is

 SSR β |β( ) = .1 0 0 4942 

Therefore, the extra sum of the squares due to β11, given that β1 and β0 are in the model, is

 SS SS SSR R Rβ | β β( ) = β β | β( ) − β | β( )
= . − . = .

11 1 0 1 11 0 1 0

0 5252 0 4942 0 0

, ,

331

 

The analysis of variance with the test of H0 0: β11 =  incorporated into the procedure is dis-

played in Table 12-10. Note that the quadratic term contributes signifi cantly to the model.

Source of 
Variation Sum of Squares

Degrees of 
Freedom Mean Square f0 P-value

Regression SS ,R β β |β( ) = .1 11 0 0 52516  2 0.26258 1767.40 2.09E-12

Linear SSR β |β( ) = .1 0 0 49416  1 0.49416 2236.12 7.13E-13

Quadratic SS ,R β |β β( ) = .11 0 1 0 03100  1 0.03100  208.67 1.56E-7

Error 0.00133  9 0.00015

Total 0.5265 11

12-10 Analysis of  Variance for Example 12-12, Showing the Test for H0 0: β =11

12-9  Test for Signifi cance of Regression for the Second-Order Model in 
Example 12-12

Source of 
Variation Sum of Squares Degrees of Freedom Mean Square f0 P-value

Regression 0.52516  2 0.26258 1762.28 2.12E-12

Error 0.00134  9 0.00015

Total 0.5265 11
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12-6.2 CATEGORICAL REGRESSORS AND INDICATOR VARIABLES

The regression models presented in previous sections have been based on quantitative vari-

ables, that is, variables that are measured on a numerical scale. For example, variables such 

as temperature, pressure, distance, and voltage are quantitative variables. Occasionally, we 

need to incorporate categorical, or qualitative, variables in a regression model. For example, 

suppose that one of the variables in a regression model is the operator who is associated with 

each observation yi. Assume that only two operators are involved. We may wish to assign dif-

ferent levels to the two operators to account for the possibility that each operator may have a 

different effect on the response.

The usual method of accounting for the different levels of a qualitative variable is to use 

indicator variables. For example, to introduce the effect of two different operators into a 

regression model, we could defi ne an indicator variable as follows:

 x =
0 if the observation is from operator 1

1 if the observation is from opperator 2

⎧
⎨
⎩

 

In general, a qualitative variable with r-levels can be modeled by r − 1 indicator variables, 

which are assigned the value of either 0 or 1. Thus, if there are three operators, the different 

levels will be accounted for by the indicator variables defi ned as follows:

x
1
  x

2

 0  0 if the observation is from operator 1

 1  0 if the observation is from operator 2

 0  1 if the observation is from operator 3

Indicator variables are also referred to as dummy variables. The following example [from 

Montgomery, Peck, and Vining (2012)] illustrates some of the uses of indicator variables.

Surface Finish A mechanical engineer is investigating the surface fi nish of metal parts pro-

duced on a lathe and its relationship to the speed (in revolutions per minute) of the lathe. The data 

are shown in Table 12-11. Note that the data have been collected using two different types of cutting tools. Because the 

type of cutting tool likely affects the surface fi nish, we will fi t the model

Y x x= β + β + β +0 1 1 2 2 e

Example 12-13

Observation 
Number, i

Surface Finish 
yi

RPM Type of 
Cutting Tool

Observation 
Number, i

Surface Finish 
yi

RPM Type of 
Cutting Tool

 1 45.44 225 302 11 33.50 224 416

 2 42.03 200 302 12 31.23 212 416

 3 50.10 250 302 13 37.52 248 416

 4 48.75 245 302 14 37.13 260 416

 5 47.92 235 302 15 34.70 243 416

 6 47.79 237 302 16 33.92 238 416

 7 52.26 265 302 17 32.13 224 416

 8 50.52 259 302 18 35.47 251 416

 9 45.58 221 302 19 33.49 232 416

10 44.78 218 302 20 32.29 216 416

12-11 Surface Finish Data for Example 12-13

c12.indd   520 9/24/2013   7:24:56 PM



Section 12-6/Aspects of Multiple Regression Modeling   521

12-12 Analysis of  Variance for Example 12-13

Source of Variation Sum of Squares Degrees of Freedom Mean Square f0 P-value

Regression 1012.0595  2 506.0297 1103.69 1.02E-18

SSR β β1 0|( ) 130.6091  1 130.6091 284.87 4.70E-12

SS ,R β |β β( )2 1 0 881.4504  1 881.4504 1922.52 6.24E-19

Error 7.7943 17 0.4585

Total 1019.8538 19

where Y  is the surface fi nish, x1 is the lathe speed in revolutions per minute, and x2 is an indicator variable denoting the 

type of cutting tool used; that is,

x2

0, for tool type 302

1, for tool type 416
=

⎧
⎨
⎩

The parameters in this model may be easily interpreted. If x2 0= , the model becomes

Y x= β + β +0 1 1 e

which is a straight-line model with slope β1 and intercept β0. However, if x2 1= , the model becomes

Y x x= β + β + β + = β + β + β +0 1 1 2 0 2 1 11( ) ( )e e

which is a straight-line model with slope β1 and intercept β + β0 2. Thus, the model Y x x= β + β + β +0 1 2 2 e implies that 

surface fi nish is linearly related to lathe speed and that the slope β1 does not depend on the type of cutting tool used. 

However, the type of cutting tool does affect the intercept, and β2 indicates the change in the intercept associated with 

a change in tool type from 302 to 416.

The model matrix X and y vector for this problem are as follows:

x =

1

1

1

1

1

1

1

1

1

1

1
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It is also possible to use indicator variables to investigate whether tool type affects both the 

slope and intercept. Let the model be

Y x x x x= β + β + β + β +0 1 1 2 2 3 1 2 e 

where x
2
 is the indicator variable. Now if tool type 302 is used, x2 0=  and the model is

 Y x= β + β +0 1 1 e

If tool type 416 is used, x2 1=  and the model becomes

 Y x x x= β + β + β + β + = β + β( ) + β + β( ) +0 1 1 2 3 1 0 2 1 3 1e e

Note that β2 is the change in the intercept and that β3 is the change in slope produced by a 

change in tool type.

Another method of analyzing these data is to fi t separate regression models to the data for 

each tool type. However, the indicator variable approach has several advantages. First, only 

one regression model must be fi t. Second, by pooling the data on both tool types, more degrees 

of freedom for error are obtained. Third, tests of both hypotheses on the parameters β2 and β3

are just special cases of the extra sum of squares method.

12-6.3 SELECTION OF VARIABLES AND MODEL BUILDING

An important problem in many applications of regression analysis involves selecting the set 

of regressor variables to be used in the model. Sometimes previous experience or underlying 

theoretical considerations can help the analyst specify the set of regressor variables to use in a 

particular situation. Usually, however, the problem consists of selecting an appropriate set of 

regressors from a set that quite likely includes all the important variables, but we are sure that 

not all these candidate regressors are necessary to adequately model the response Y .

In such a situation, we are interested in variable selection; that is, screening the candidate 

variables to obtain a regression model that contains the “best” subset of regressor variables. We 

would like the fi nal model to contain enough regressor variables so that in the intended use of 

the model (prediction, for example), it will perform satisfactorily. On the other hand, to keep 

model maintenance costs to a minimum and to make the model easy to use, we would like the 

model to use as few regressor variables as possible. The compromise between these confl icting 

objectives is often called fi nding the “best” regression equation. However, in most problems, 

no single regression model is “best” in terms of the various evaluation criteria that have been 

proposed. A great deal of judgment and experience with the system being modeled is usually 

necessary to select an appropriate set of regressor variables for a regression equation.

No single algorithm will always produce a good solution to the variable selection problem. 

Most of the currently available procedures are search techniques, and to perform satisfactorily, 

they require interaction with judgment by the analyst. We now briefl y discuss some of the 

more popular variable selection techniques. We assume that there are K  candidate regressors, 

x x xk1 2, , ,… , and a single response variable y. All models will include an intercept term β0, 

so the model with all variables included would have K + 1 terms. Furthermore, the functional 

form of each candidate variable (for example, x x x x1 21= =/ , ln , etc.) is assumed to be correct.

The fi tted model is

y x x^ = . + . − .14 27620 0 14115 13 280201 2

Conclusions: The analysis of variance for this model is shown in Table 12-12. Note that the hypothesis H0 1 2 0: β = β =
(signifi cance of regression) would be rejected at any reasonable level of signifi cance because the P-value is very small. 

This table also contains the sums of squares

SS SS , SS SS ,R R R R= β β | β( ) = β β + β( )β β( )1 2 0 1 0 2 1 0

so a test of the hypothesis H0 2 0: β =  can be made. Because this hypothesis is also rejected, we conclude that tool type 

has an effect on surface fi nish.
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All Possible Regressions
This approach requires that the analyst fit all the regression equations involving one candi-

date variable, all regression equations involving two candidate variables, and so on. Then 

these equations are evaluated according to some suitable criteria to select the “best” regres-

sion model. If there are K  candidate regressors, there are 2K total equations to be examined. 

For example, if K = 4, there are 2 164 =  possible regression equations; if K = 10, there are 
2 102410 =  possible regression equations. Hence, the number of equations to be examined 

increases rapidly as the number of candidate variables increases. However, there are some 

very efficient computing algorithms for all possible regressions available and they are widely 

implemented in statistical software, so it is a very practical procedure unless the number of 

candidate regressors is fairly large. Look for a menu choice such as “Best Subsets” regression.

Several criteria may be used for evaluating and comparing the different regression models 

obtained. A commonly used criterion is based on the value of R2 or the value of the adjusted R2,  

Radj
2 . Basically, the analyst continues to increase the number of variables in the model until 

the increase in R2 or the adjusted Radj
2  is small. Often, we will find that the R

adj

2  will stabilize 

and actually begin to decrease as the number of variables in the model increases. Usually, the 

model that maximizes Radj
2  is considered to be a good candidate for the best regression equa-

tion. Because we can write R MS SS nE Tadj

2 1 1= − −{ / [ / ( )]} and SS nT / ( )−1  is a constant, the 

model that maximizes the R
adj

2  value also minimizes the mean square error, so this is a very 

attractive criterion.

Another criterion used to evaluate regression models is the Cp statistic, which is a measure 

of the total mean square error for the regression model. We define the total standardized mean 

square error for the regression model as
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We use the mean square error from the full K +1 term model as an estimate of σ2; that is, 

σ̂ = +( ).2 1MS KE  Then an estimator of Γ p is [see Montgomery, Peck, and Vining (2012) or 

Myers (1990) for the details]:

 C
SS p

n pp
E= ( )
σ

− +
ˆ 2

2  (12-48)

C
p
 Statistic

If the P-term model has negligible bias, it can be shown that

 E C pp |  ( ) =zero bias  

Therefore, the values of Cp for each regression model under consideration should be evaluated 

relative to p. The regression equations that have negligible bias will have values of Cp that are 

close to p, and those with significant bias will have values of Cp that are significantly greater 

than p. We then choose as the “best” regression equation either a model with minimum Cp or a 

model with a slightly larger Cp, that does not contain as much bias (i.e., C pp ≅ ).

The PRESS statistic can also be used to evaluate competing regression models. PRESS is 

an acronym for prediction error sum of squares, and it is defined as the sum of the squares 

of the differences between each observation yi and the corresponding predicted value based on 

a model fit to the remaining n − 1 points, say ŷ i( ). So PRESS provides a measure of how well 

the model is likely to perform when predicting new data or data that were not used to fit the 

regression model. The computing formula for PRESS is
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Prediction Error Sum 
of Squares (PRESS)

where e y yi i i= − ˆ  is the usual residual. Thus PRESS is easy to calculate from the standard least 

squares regression results. Models that have small values of PRESS are preferred.

Wine Quality Table 12-13 presents data on taste-testing 38 brands of pinot noir wine (the data 

were fi rst reported in an article by Kwan, Kowalski, and Skogenboe in an article in the Journal 
Agricultural and Food Chemistry (1979, Vol. 27), and it also appears as one of the default data sets in the Minitab 

software package). The response variable is y = quality, and we wish to fi nd the “best” regression equation that relates 

quality to the other fi ve parameters.

Figure 12-12 is the matrix of scatter plots for the wine quality data. We notice that there are some indications of 

possible linear relationships between quality and the regressors, but there is no obvious visual impression of which 

regressors would be appropriate. Table 12-14 lists all possible regressions output from the software. In this analysis, 

we asked the computer software to present the best three equations for each subset size. Note that the computer soft-

ware reports the values of R R Cp
2 2, , ,adj  and S MSE=  for each model. From Table 12-14 we see that the three-variable 

equation with x2 = aroma, x4 = fl avor, and x5 = oakiness produces the minimum Cp equation whereas the four-variable 

model, which adds x1 = clarity to the previous three regressors, results in maximum Radj
2  (or minimum MSE). The three-

variable model is

ŷ x x x= . + . + . − .6 47 0 580 1 20 0 6022 4 5

and the four-variable model is

ŷ x x x x= . + . + . + . − .4 99 1 79 0 530 1 26 0 6591 2 4 5

Example 12-14

12-13 Wine Quality Data

x1 
Clarity

x2
Aroma

x3
Body

x4
Flavor

x5
Oakiness

y
Quality

x1 
Clarity

x2
Aroma

x3
Body

x4
Flavor

x5
Oakiness

y
Quality

 1 1.0 3.3 2.8 3.1 4.1  9.8 20 .9 3.4 5.0 3.4 3.4  7.9

 2 1.0 4.4 4.9 3.5 3.9 12.6 21 0.9 6.4 5.4 6.6 4.8 15.1

 3 1.0 3.9 5.3 4.8 4.7 11.9 22 1.0 5.5 5.3 5.3 3.8 13.5

 4 1.0 3.9 2.6 3.1 3.6 11.1 23 0.7 4.7 4.1 5.0 3.7 10.8

 5 1.0 5.6 5.1 5.5 5.1 13.3 24 0.7 4.1 4.0 4.1 4.0  9.5

 6 1.0 4.6 4.7 5.0 4.1 12.8 25 1.0 6.0 5.4 5.7 4.7 12.7

 7 1.0 4.8 4.8 4.8 3.3 12.8 26 1.0 4.3 4.6 4.7 4.9 11.6

 8 1.0 5.3 4.5 4.3 5.2 12.0 27 1.0 3.9 4.0 5.1 5.1 11.7

 9 1.0 4.3 4.3 3.9 2.9 13.6 28 1.0 5.1 4.9 5.0 5.1 11.9

10 1.0 4.3 3.9 4.7 3.9 13.9 29 1.0 3.9 4.4 5.0 4.4 10.8

11 1.0 5.1 4.3 4.5 3.6 14.4 30 1.0 4.5 3.7 2.9 3.9  8.5

12 0.5 3.3 5.4 4.3 3.6 12.3 31 1.0 5.2 4.3 5.0 6.0 10.7

13 0.8 5.9 5.7 7.0 4.1 16.1 32 0.8 4.2 3.8 3.0 4.7  9.1

14 0.7 7.7 6.6 6.7 3.7 16.1 33 1.0 3.3 3.5 4.3 4.5 12.1

15 1.0 7.1 4.4 5.8 4.1 15.5 34 1.0 6.8 5.0 6.0 5.2 14.9

16 0.9 5.5 5.6 5.6 4.4 15.5 35 0.8 5.0 5.7 5.5 4.8 13.5

17 1.0 6.3 5.4 4.8 4.6 13.8 36 0.8 3.5 4.7 4.2 3.3 12.2

18 1.0 5.0 5.5 5.5 4.1 13.8 37 0.8 4.3 5.5 3.5 5.8 10.3

19 1.0 4.6 4.1 4.3 3.1 11.3 38 0.8 5.2 4.8 5.7 3.5 13.2
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FIGURE 12-12 A matrix of scatter plots from computer software for the wine quality data.

12-14 All Possible Regressions Computer Output for the Wine Quality Data

Best Subsets Regression: Quality versus Clarity, Aroma, . . .
Response is quality

O

C a

l F k

a A l i

r r B a n

i o o v e

t m d o s

Vars R-Sq R-Sq (adj) C–p S y a y r s

1 62.4 61.4 9.0 1.2712 X

1 50.0 48.6 23.2 1.4658 X

1 30.1 28.2 46.0 1.7335 X

2 66.1 64.2 6.8 1.2242 X X

2 65.9 63.9 7.1 1.2288 X X

2 63.3 61.2 10.0 1.2733 X X

3 70.4 67.8 3.9 1.1613 X X X

3 68.0 65.2 6.6 1.2068 X X X

3 66.5 63.5 8.4 1.2357 X X X

4 71.5 68.0 4.7 1.1568 X X X X

4 70.5 66.9 5.8 1.1769 X X X X

4 69.3 65.6 7.1 1.1996 X X X X

5 72.1 67.7 6.0 1.1625 X X X X X
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Stepwise Regression
Stepwise regression is probably the most widely used variable selection technique. The pro-

cedure iteratively constructs a sequence of regression models by adding or removing variables 

at each step. The criterion for adding or removing a variable at any step is usually expressed 

in terms of a partial F-test. Let fin be the value of the F-random variable for adding a variable 

to the model, and let fout be the value of the F-random variable for removing a variable from 

the model. We must have f fin out ,≥  and usually f fin out = .

Stepwise regression begins by forming a one-variable model using the regressor variable that 

has the highest correlation with the response variable Y . This will also be the regressor producing 

the largest F-statistic. For example, suppose that at this step, x1 is selected. At the second step, the 

remaining K −1 candidate variables are examined, and the variable for which the partial F-statistic

 F
SS ,

MS x , x
j

R j

E j

=
β | β β( )

 ( )
1 0

1

 (12-49)

is a maximum is added to the equation provided that f fj > in. In Equation 12-49, MS x xE j( , )1  

denotes the mean square for error for the model containing both x1 and x j. Suppose that this 

procedure indicates that x2 should be added to the model. Now the stepwise regression algo-

rithm determines whether the variable x1 added at the fi rst step should be removed. This is 

done by calculating the F-statistic

 F
SS ,

MS x , x
R

E
1

1 2 0

1 2

=
β | β β( )

 ( )  (12-50)

If the calculated value f f1 < out , the variable x1 is removed; otherwise it is retained, and we 

would attempt to add a regressor to the model containing both x1 and x2.

In general, at each step the set of remaining candidate regressors is examined, and the 

regressor with the largest partial F-statistic is entered provided that the observed value of f  

exceeds fin. Then the partial F-statistic for each regressor in the model is calculated, and the 

regressor with the smallest observed value of F  is deleted if the observed f f< out. The proce-

dure continues until no other regressors can be added to or removed from the model.

Stepwise regression is almost always performed using a computer program. The analyst exer-

cises control over the procedure by the choice of fin  and fout . Some stepwise regression computer 

programs require that numerical values be specifi ed for fin  and fout . Because the number of 

degrees of freedom on MSE depends on the number of variables in the model, which changes 

from step to step, a fi xed value of fin  and fout  causes the type I and type II error rates to vary. 

Some computer programs allow the analyst to specify the type I error levels for fin  and fout . 

However, the “advertised” signifi cance level is not the true level because the variable selected is 

the one that maximizes (or minimizes) the partial F-statistic at that stage. Sometimes it is useful 

to experiment with different values of fin  and fout  (or different advertised type I error rates) in 

several different runs to see whether this substantially affects the choice of the fi nal model.

Wine Quality Stepwise Regression Table 12-15 gives the software stepwise regression output 

for the wine quality data. The software uses fi xed values of a for entering and removing vari-

ables. The default level is α = 0.15 for both decisions. The output in Table 12-15 uses the default value. Notice that 

Example 12-15

These models should now be evaluated further using residual plots and the other techniques discussed earlier in the 

chapter to see whether either model is satisfactory with respect to the underlying assumptions and to determine whether 

one of them is preferable. It turns out that the residual plots do not reveal any major problems with either model. The 

value of PRESS for the three-variable model is 56.0524, and for the four-variable model, it is 60.3327. Because PRESS 

is smaller in the model with three regressors, and because it is the model with the smallest number of predictors, it 

would likely be the preferred choice.
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the variables were entered in the order fl avor (step 1), oakiness (step 2), and aroma (step 3) and that no variables were 

removed. No other variable could be entered, so the algorithm terminated. This is the three-variable model found by all 

possible regressions that results in a minimum value of Cp.

12-15  Stepwise Regression Output for the 
Wine Quality Data

Stepwise Regression: Quality versus Clarity, Aroma, . . .

Alpha-to-Enter: 0.15 Alpha-to-Remove: 0.15

Response is Quality on 5 predictors, with N = 38

Step 1 2 3

Constant 4.941 6.912 6.467

Flavor 1.57 1.64 1.20

T-Value 7.73 8.25 4.36

P-Value 0.000 0.000 0.000

Oakiness –0.54 –0.60

T-Value –1.95 –2.28

P-Value 0.059 0.029

Aroma 0.58

T-Value 2.21

P-Value 0.034

S 1.27 1.22 1.16

R-Sq 62.42 66.11 70.38

R-Sq(adj) 61.37 64.17 67.76

C–p 9.0 6.8 3.9

Forward Selection
The forward selection procedure is a variation of stepwise regression and is based on the 

principle that regressors should be added to the model one at a time until there are no remain-

ing candidate regressors that produce a signifi cant increase in the regression sum of squares. 

That is, variables are added one at a time as long as their partial F-value exceeds fin . Forward 

selection is a simplifi cation of stepwise regression that omits the partial F-test for deleting 

variables from the model that have been added at previous steps. This is a potential weakness 

of forward selection; that is, the procedure does not explore the effect that adding a regressor 

at the current step has on regressor variables added at earlier steps. Notice that if we were to 

apply forward selection to the wine quality data, we would obtain exactly the same results as 

we did with stepwise regression in Example 12-15, because stepwise regression terminated 

without deleting a variable.

Backward Elimination
The backward elimination algorithm begins with all K  candidate regressors in the model. Then 

the regressor with the smallest partial F-statistic is deleted if this F-statistic is insignifi cant, that 

is, if f f< out. Next, the model with K −1 regressors is fi t, and the next regressor for potential 

elimination is found. The algorithm terminates when no further regressor can be deleted.

Table 12-16 shows the computer software package output for backward elimination applied 

to the wine quality data. The α value for removing a variable is α = 0.10. Notice that this pro-

cedure removes body at step 1 and then clarity at step 2, terminating with the three-variable 

model found previously.

c12.indd   527 9/24/2013   7:25:21 PM



528   Chapter 12/Multiple Linear Regression

Some Comments on Final Model Selection
We have illustrated several different approaches to the selection of variables in multiple linear 

regression. The final model obtained from any model-building procedure should be subjected 

to the usual adequacy checks, such as residual analysis, lack-of-fit testing, and examination 

of the effects of influential points. The analyst may also consider augmenting the original 

set of candidate variables with cross-products, polynomial terms, or other transformations of 

the original variables that might improve the model. A major criticism of variable selection 

methods such as stepwise regression is that the analyst may conclude that there is one “best” 

regression equation. Generally, this is not the case because several equally good regression 

models can often be used. One way to avoid this problem is to use several different model-

building techniques and see whether different models result. For example, we have found 

the same model for the wine quality data using stepwise regression, forward selection, and 

backward elimination. The same model was also one of the two best found from all possible 

regressions. The results from variable selection methods frequently do not agree, so this is a 

good indication that the three-variable model is the best regression equation.

If the number of candidate regressors is not too large, the all-possible regressions method 

is recommended. We usually recommend using the minimum MS
E
 and C

p
 evaluation criteria 

in conjunction with this procedure. The all-possible regressions approach can find the “best” 

12-16  Backward Elimination Output for the Wine 
Quality Data

Stepwise Regression: Quality versus Clarity, Aroma,  . . .

Backward elimination. Alpha-to-Remove: 0.1

Response is Quality on 5 predictors, with N = 38

Step 1 2 3

Constant 3.997 4.986 6.467

Clarity 2.3 1.8

T-Value 1.35 1.12

P-Value 0.187 0.269

Aroma 0.48 0.53 0.58

T-Value 1.77 2.00 2.21

P-Value 0.086 0.054 0.034

Body 0.27

T-Value 0.82

P-Value 0.418

Flavor 1.17 1.26 1.20

T-Value 3.84 4.52 4.36

P-Value 0.001 0.000 0.000

Oakiness –0.68 –0.66 –0.60

T-Value –2.52 –2.46 –2.28

P-Value 0.017 0.019 0.029

S 1.16 1.16 1.16

R-Sq 72.06 71.47 70.38

R-Sq(adj) 67.69 68.01 67.76

C-p 6.0 4.7 3.9
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regression equation with respect to these criteria, but stepwise-type methods offer no such 

assurance. Furthermore, the all-possible regressions procedure is not distorted by dependen-

cies among the regressors as stepwise-type methods are.

12-6.4 MULTICOLLINEARITY

In multiple regression problems, we expect to find dependencies between the response vari-

able Y  and the regressors x j. In most regression problems, however, we find that there are also 

dependencies among the regressor variables x j. In situations in which these dependencies are 

strong, we say that multicollinearity exists. Multicollinearity can have serious effects on the 

estimates of the regression coefficients and on the general applicability of the estimated model.

The effects of multicollinearity may be easily demonstrated. The diagonal elements of the 

matrix C X X = ( ) 1� -  can be written as

 C j kjj

jR
=

−( ) =1

1
1 2

2
, , ,…  

where R j
2  is the coefficient of multiple determination resulting from regressing x j on the other 

k −1 regressor variables. We can think of R j
2 as a measure of the correlation between x j and 

the other regressors. Clearly, the stronger the linear dependency of x j on the remaining regres-

sor variables and hence the stronger the multicollinearity, the greater the value of R j
2 will be. 

Recall that V Cj jj( )β̂ = σ2 . Therefore, we say that the variance of β̂ j is “inflated’’ by the quan-

tity 1 2
1

−( ) −
R j . Consequently, we define the variance inflation factor for β j as

 VIF
R

j , , , kj

j

β( ) =
−( ) =1

1
1 2

2
  …  (12-51)

Variance Inflation-
Factor (VIF)

These factors are important measures of the extent to which multicollinearity is present. If 

the columns of the model matrix X are orthogonal, then the regressors are completely uncor-

related, and the variance inflation factors will all be unity. So, any VIF that exceeds 1 indicates 

some level of multicollinearity in the data.

Although the estimates of the regression coefficients are very imprecise when multicol-

linearity is present, the fitted model equation may still be useful. For example, suppose that 

we wish to predict new observations on the response. If these predictions are interpolations in 

the original region of the x-space where the multicollinearity is in effect, satisfactory predic-

tions will often be obtained because while individual β j may be poorly estimated, the function 

β=∑ j ijj
k x

1
 may be estimated quite well. On the other hand, if the prediction of new observa-

tions requires extrapolation beyond the original region of the x-space where the data were col-

lected, generally we would expect to obtain poor results. Extrapolation usually requires good 

estimates of the individual model parameters.

Multicollinearity arises for several reasons. It will occur when the analyst collects data 

such that a linear constraint holds approximately among the columns of the X matrix. For 

example, if four regressor variables are the components of a mixture, such a constraint will 

always exist because the sum of the components is always constant. Usually, these constraints 

do not hold exactly, and the analyst might not know that they exist.

The presence of multicollinearity can be detected in several ways. Two of the more easily 

understood of these will be discussed briefly.

1. The variance inflation factors, defined in Equation 12-51, are very useful measures of 

multicollinearity. The larger the variance inflation factor, the more severe the multicol-

linearity. Some authors have suggested that if any variance inflation factor exceeds 10, 
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multicollinearity is a problem. Other authors consider this value too liberal and suggest that 

the variance inflation factors should not exceed 4 or 5. Computer software will calculate the 

variance inflation factors. Table 12-4 presents the computer-generated multiple regression 

output for the wire bond pull strength data. Because both VIF1 and VIF2 are small, there is 

no problem with multicollinearity.

2. If the F-test for significance of regression is significant but tests on the individual regres-

sion coefficients are not significant, multicollinearity may be present.

Several remedial measures have been proposed for solving the problem of multicollinear-

ity. Augmenting the data with new observations specifically designed to break up the approxi-

mate linear dependencies that currently exist is often suggested. However, this is sometimes 

impossible because of economic reasons or because of the physical constraints that relate to 

the x j. Another possibility is to delete certain variables from the model, but this approach has 

the disadvantage of discarding the information contained in the deleted variables.

Because multicollinearity primarily affects the stability of the regression coefficients, it 

would seem that estimating these parameters by some method that is less sensitive to multicol-

linearity than ordinary least squares would be helpful. Several methods have been suggested. 

One alternative to ordinary least squares, ridge regression, can be useful in combating mul-

ticollinearity. For more details on ridge regression, there are more extensive presentations in 

Montgomery, Peck, and Vining (2012) and Myers (1990).

12-84. An article entitled “A Method for Improving the 

Accuracy of Polynomial Regression Analysis’’ in the Journal 
of Quality Technology (1971, pp. 149–155) reported the fol-

lowing data on y =  ultimate shear strength of a rubber com-

pound (psi) and x = cure temperature (°F).

y 770 800 840 810

x 280 284 292 295

y 735 640 590 560

x 298 305 308 315

(a) Fit a second-order polynomial to these data.

(b) Test for significance of regression using α = 0.05.

(c) Test the hypothesis that β11 = 0 using α = 0.05.

(d) Compute the residuals from part (a) and use them to evalu-

ate model adequacy.

12-85. Consider the following data, which result from an 

experiment to determine the effect of x = test time in hours at a 

particular temperature on y =  change in oil viscosity:

(a) Fit a second-order polynomial to the data.

y –1.42 –1.39 –1.55 –1.89 –2.43

x .25 .50 .75 1.00 1.25

y –3.15 –4.05 –5.15 –6.43 –7.89

x 1.50 1.75 2.00 2.25 2.50

(b) Test for significance of regression using α = 0.05.

(c) Test the hypothesis that β11 = 0 using α = 0.05.

(d) Compute the residuals from part (a) and use them to evaluate 

model adequacy.

12-86. The following data were collected during an experi-

ment to determine the change in thrust efficiency (y , in percent) 

as the divergence angle of a rocket nozzle ( )x  changes:

y 24.60 24.71 23.90 39.50 39.60 57.12

x 4.0 4.0 4.0 5.0 5.0 6.0

y 67.11 67.24 67.15 77.87 80.11 84.67

x 6.5 6.5 6.75 7.0 7.1 7.3

(a) Fit a second-order model to the data.

(b) Test for significance of regression and lack of fit using 

α = 0.05.

(c) Test the hypothesis that β11 = 0, using α = 0.05.

(d) Plot the residuals and comment on model adequacy.

(e) Fit a cubic model, and test for the significance of the cubic 

term using α = 0.05.

12-87. An article in the Journal of Pharmaceuticals Sciences 

(1991, Vol. 80, pp. 971–977) presents data on the observed 

mole fraction solubility of a solute at a constant temperature 

and the dispersion, dipolar, and hydrogen-bonding Hansen par-

tial solubility parameters. The data are as shown in the Table 

E12-13, where y  is the negative logarithm of the mole fraction 

solubility, x1 is the dispersion partial solubility, x2 is the dipo-

lar partial solubility, and x3 is the hydrogen-bonding partial 

solubility.

(a) Fit the model Y x x x x x= β + β + β + β + β +0 1 1 2 2 3 3 12 1 2

β + β + β + β + β + .13 1 3 23 2 3 11 1
2

22 2
2

33 3
2x x x x x x x e

(b) Test for significance of regression using α = 0.05.

(c) Plot the residuals and comment on model adequacy.

 FOR SECTION 12-6Exercises
 Problem available in WileyPLUS at instructor’s discretion. 

 Tutoring problem available in WileyPLUS at instructor’s discretion.
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(d) Use the extra sum of squares method to test the contribu-

tion of the second-order terms using α = 0.05.

Observation 
Number y x1 x2 x3

 1 0.22200  7.3 0.0  0.0

 2 0.39500  8.7 0.0  0.3

 3 0.42200  8.8 0.7  1.0

 4 0.43700  8.1 4.0  0.2

 5 0.42800  9.0 0.5  1.0

 6 0.46700  8.7 1.5  2.8

 7 0.44400  9.3 2.1  1.0

 8 0.37800  7.6 5.1  3.4

 9 0.49400 10.0 0.0  0.3

10 0.45600  8.4 3.7  4.1

11 0.45200  9.3 3.6  2.0

12 0.11200  7.7 2.8  7.1

13 0.43200  9.8 4.2  2.0

14 0.10100  7.3 2.5  6.8

15 0.23200  8.5 2.0  6.6

16 0.30600  9.5 2.5  5.0

17 0.09230  7.4 2.8  7.8

18 0.11600  7.8 2.8  7.7

19 0.07640  7.7 3.0  8.0

20 0.43900 10.3 1.7  4.2

21 0.09440  7.8 3.3  8.5

22 0.11700  7.1 3.9  6.6

23 0.07260  7.7 4.3  9.5

24 0.04120  7.4 6.0 10.9

25 0.25100  7.3 2.0  5.2

26 0.00002  7.6 7.8 20.7

E12-13 Solubility Data

12-88. Consider the arsenic concentration data in Exercise 12-16.

(a) Discuss how you would model the information about the 

person’s sex.

(b) Fit a regression model to the arsenic in nails using age, 

drink use, cook use, and the person’s sex as the regressors.

(c) Is there evidence that the person’s sex affects arsenic in the 

nails? Why?

12-89. Consider the gasoline mileage data in Exercise 12-11.

(a) Discuss how you would model the information about the 

type of transmission in the car.

(b) Fit a regression model to the gasoline mileage using cid, 

etw and the type of transmission in the car as the regressors.

(c) Is there evidence that the type of transmission (L4, L5, or 

M6) affects gasoline mileage performance?

12-90.  Consider the surface fi nish data in Example 12-13. 

Test the hypothesis that two different regression models (with 

different slopes and intercepts) are required to adequately model 

the data. Use indicator variables in answering this question.

12-91. Consider the X-ray inspection data in Exercise 12-15. 

Use rads as the response. Build regression models for the data 

using the following techniques:

(a) All possible regressions.

(b) Stepwise regression.

(c) Forward selection.

(d) Backward elimination.

(e) Comment on the models obtained. Which model would 

you prefer? Why?

12-92.  Consider the electric power data in Exercise 

12-10. Build regression models for the data using the fol-

lowing techniques:

(a) All possible regressions. Find the minimum Cp and mini-

mum MSE equations.

(b) Stepwise regression.

(c) Forward selection.

(d) Backward elimination.

(e) Comment on the models obtained. Which model would 

you prefer?

12-93.  Consider the regression model fi t to the coal and 

limestone mixture data in Exercise 12-17. Use density as the 

response. Build regression models for the data using the fol-

lowing techniques:

(a) All possible regressions.

(b) Stepwise regression.

(c) Forward selection.

(d) Backward elimination.

(e) Comment on the models obtained. Which model would 

you prefer? Why?

12-94. Consider the wire bond pull strength data in Exercise 

12-12. Build regression models for the data using the following 

methods:

(a) All possible regressions. Find the minimum Cp and mini-

mum MSE equations.

(b) Stepwise regression.

(c) Forward selection.

(d) Backward elimination.

(e) Comment on the models obtained. Which model would 

you prefer?

12-95. Consider the gray range modulation data in Exercise 

12-19. Use the useful range as the response. Build regression 

models for the data using the following techniques:

(a) All possible regressions.

(b) Stepwise regression.

(c) Forward selection.

(d) Backward elimination.

(e) Comment on the models obtained. Which model would 

you prefer? Why?

12-96.  Consider the nisin extraction data in Exercise 

12-18. Build regression models for the data using the follow-

ing techniques:

(a) All possible regressions.

(b) Stepwise regression.

(c) Forward selection.

(d) Backward elimination.

(e) Comment on the models obtained. Which model would 

you prefer? Why?

12.97. Consider the stack loss data in Exercise 12-20. Build 

regression models for the data using the following techniques:
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(a) All possible regressions.

(b) Stepwise regression.

(c) Forward selection.

(d) Backward elimination.

(e) Comment on the models obtained. Which model would 

you prefer? Why?

(f) Remove any influential data points and repeat the model 

building in the previous parts? Does your conclusion in 

part (e) change?

12-98.  Consider the NHL data in Exercise 12-22. Build 

regression models for these data with regressors GF through 

FG using the following methods:

(a) All possible regressions. Find the minimum Cp and mini-

mum MSE equations.

(b) Stepwise regression.

(c) Forward selection.

(d) Backward elimination.

(e) Which model would you prefer?

12-99.  Use the football data in Exercise 12-21 to build 

regression models using the following techniques:

(a) All possible regressions. Find the equations that minimize 

MSE and that minimize Cp.

(b) Stepwise regression.

(c) Forward selection.

(d) Backward elimination.

(e) Comment on the various models obtained. Which model 

seems “best,’’ and why?

12-100.  Consider the arsenic data in Exercise 12-16. Use 

arsenic in nails as the response and age, drink use, and cook use 

as the regressors. Build regression models for the data using the 

following techniques:

(a) All possible regressions.

(b) Stepwise regression.

(c) Forward selection.

(d) Backward elimination.

(e) Comment on the models obtained. Which model would 

you prefer? Why?

(f) Now construct an indicator variable and add the person’s 

sex to the list of regressors. Repeat the model building in the 

previous parts. Does your conclusion in part (e) change?

12-101. Consider the gas mileage data in Exercise 12-11. 

Build regression models for the data from the numerical regres-

sors using the following techniques:

(a) All possible regressions.

(b) Stepwise regression.

(c) Forward selection.

(d) Backward elimination.

(e) Comment on the models obtained. Which model would 

you prefer? Why?

(f) Now construct indicator variable for trns and drv and add 

these to the list of regressors. Repeat the model building in 

the previous parts. Does your conclusion in part (e) change?

12-102.  When fitting polynomial regression models, we 

often subtract x  from each x  value to produce a “centered’’ 

regressor x x x′ = − . This reduces the effects of dependen-

cies among the model terms and often leads to more accurate 

estimates of the regression coefficients. Using the data from 

Exercise 12-84, fit the model Y x x= β + β ′ + β ′ + .∗ ∗ ∗
0 1 11

2( ) e
(a) Use the results to estimate the coefficients in the  

uncentered model Y x x= β + β + β +0 1 11
2 e . Predict y  when  

x = °285 F. Suppose that you use a standardized variable 

x x sx′ = −( )x /  where sx  is the standard deviation of x  in  

constructing a polynomial regression model. Fit the 

model Y = β + β ′ + β ′( ) +∗ ∗ ∗
0 1 11

2
x x e.

(b) What value of y  do you predict when x F= °285 ?

(c) Estimate the regression coefficients in the unstandardized 

model Y x x= β + β + β +0 1 11
2 e.

(d) What can you say about the relationship between SSE and 

R2 for the standardized and unstandardized models?

(e) Suppose that y y sy′ = −( )y /  is used in the model along 

with x′. Fit the model and comment on the relationship 

between SSE and R2 in the standardized model and the 

unstandardized model.

12-103.  Consider the data in Exercise 12-87. Use all the 

terms in the full quadratic model as the candidate regressors.

(a) Use forward selection to identify a model.

(b) Use backward elimination to identify a model.

(c) Compare the two models obtained in parts (a) and (b). 

Which model would you prefer and why?

12-104. We have used a sample of 30 observations to fit a 

regression model. The full model has nine regressors, the vari-

ance estimate is σ̂ = =2 100MS ,E  and R2 0 92= . .

(a) Calculate the F-statistic for testing significance of regres-

sion. Using α = 0.05, what would you conclude?

(b) Suppose that we fit another model using only four of the 

original regressors and that the error sum of squares for 

this new model is 2200. Find the estimate of σ2  for this 

new reduced model. Would you conclude that the reduced 

model is superior to the old one? Why?

(c) Find the value of Cp for the reduced model in part (b). 

Would you conclude that the reduced model is better than 

the old model?

12-105.  A sample of 25 observations is used to fit a 

regression model in seven variables. The estimate of σ2  for this 

full model is MSE = 10.

(a) A forward selection algorithm has put three of the original 

seven regressors in the model. The error sum of squares 

for the three-variable model is SSE = 300. Based on Cp, 

would you conclude that the three-variable model has any 

remaining bias?

(b) After looking at the forward selection model in part (a), 

suppose you could add one more regressor to the model. 

This regressor will reduce the error sum of squares 

to 275. Will the addition of this variable improve the 

model? Why?
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12-106.  Consider the following computer output.

The regression equation is

Y = 517 + 11.5 x1 – 8.14 x2 + 10.9 x3

Predictor Coef SE Coef T P

Constant 517.46 11.76 ? ?

x1 11.4720 ? 36.50 ?

x2 –8.1378 0.1969 ? ?

x3 10.8565 0.6652 ? ?

S = 10.2560    R-Sq = ?    R-Sq (adj) = ?

Analysis of Variance

Source DF SS MS F P

Regression ? 347300 115767 ? ?

Residual error 16 ? 105

Total 19 348983

(a) Fill in the missing values. Use bounds for the P-values.

(b) Is the overall model significant at α = 0.05? Is it significant 

at α = 0.01?

(c) Discuss the contribution of the individual regressors to the 

model.

12-107.  Consider the following inverse of the model matrix:

X X�( ) =
. − . − .

− . . .−1

0 893758 0 028245 0 0175641

0 028245 0 0013329 0 00011547

0 017564 0 0001547 0 0009108− . . .

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

(a) How many variables are in the regression model?

(b) If the estimate of σ2  is 50, what is the estimate of the vari-

ance of each regression coefficient?

(c) What is the standard error of the intercept?

12-108.  The data shown in Table E12-14 represent the 

thrust of a jet-turbine engine ( )y  and six candidate regressors: 

x1 =  primary speed of rotation, x2 = secondary speed of rotation, 

x3 = fuel flow rate, x4 =  pressure, x5 = exhaust temperature, and 

x6 = ambient temperature at time of test.

(a) Fit a multiple linear regression model using x3 = fuel flow 

rate, x4 =  pressure, and x5 = exhaust temperature as the 

regressors.

(b) Test for significance of regression using α = 0.01. Find the 

P-value for this test. What are your conclusions?

(c) Find the t-test statistic for each regressor. Using α = 0.01, 

explain carefully the conclusion you can draw from these 

statistics.

(d) Find R2 and the adjusted statistic for this model.

(e) Construct a normal probability plot of the residuals and 

interpret this graph.

(f) Plot the residuals versus ŷ. Are there any indications of 

inequality of variance or nonlinearity?

(g) Plot the residuals versus x3. Is there any indication of 

nonlinearity?

(h) Predict the thrust for an engine for which x
2
 = 28900,

x4 170= , and x5 1589= .

12-109. Consider the engine thrust data in Exercise 12-108. 

Refit the model using y y∗ = ln  as the response variable and  

x3
* = ln

3
 as the regressor (along with x4 and x5).

(a) Test for significance of regression using α = 0.01. Find the 

P-value for this test and state your conclusions.

(b) Use the t-statistic to test H j0 0: β =  versus H j1 0: β ≠  for 

each variable in the model. If α = 0.01, what conclusions 

can you draw?

(c) Plot the residuals versus ŷ∗ and versus x3
*. Comment on 

these plots. How do they compare with their counterparts 

obtained in Exercise 12-108 parts (f) and (g)?

12-110.  Transient points of an electronic inverter are 

influenced by many factors. Table E12-15 gives data on the 

transient point (y, in volts) of PMOS-NMOS inverters and five 

candidate regressors: x1 =  width of the NMOS device, x2 = 

length of the NMOS device, x3 = width of the PMOS device, 

x4 =  length of the PMOS device, and x5 = temperature (°C).

(a) Fit a multiple linear regression model that uses all regressors to 

these data. Test for significance of regression using α = 0.01. 

Find the P-value for this test and use it to draw your conclusions.

(b) Test the contribution of each variable to the model using 

the t-test with α = 0.05. What are your conclusions?

(c) Delete x5 from the model. Test the new model for signifi-

cance of regression. Also test the relative contribution of 

each regressor to the new model with the t-test. Using 

α = 0.05, what are your conclusions?

(d) Notice that the MSE for the model in part (c) is smaller than 

the MSE for the full model in part (a). Explain why this has 

occurred.

(e) Calculate the studentized residuals. Do any of these seem 

unusually large?

(f) Suppose that you learn that the second observation was 

recorded incorrectly. Delete this observation and refit the 

model using x x x1 2 3, , , and x4 as the regressors. Notice that 

the R2 for this model is considerably higher than the R2 for 

either of the models fitted previously. Explain why the R2 

for this model has increased.

(g) Test the model from part (f) for significance of regression 

using α = 0.05. Also investigate the contribution of each 

regressor to the model using the t-test with α = 0.05. What 

conclusions can you draw?

Supplemental Exercises
 Problem available in WileyPLUS at instructor’s discretion. 

 Tutoring problem available in WileyPLUS at instructor’s discretion.
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Observation 
Number y x1 x2 x3 x4 x5 x6

 1 4540 2140 20640 30250 205 1732 99

 2 4315 2016 20280 30010 195 1697 100

 3 4095 1905 19860 29780 184 1662 97

 4 3650 1675 18980 29330 164 1598 97

 5 3200 1474 18100 28960 144 1541 97

 6 4833 2239 20740 30083 216 1709 87

 7 4617 2120 20305 29831 206 1669 87

 8 4340 1990 19961 29604 196 1640 87

 9 3820 1702 18916 29088 171 1572 85

10 3368 1487 18012 28675 149 1522 85

11 4445 2107 20520 30120 195 1740 101

12 4188 1973 20130 29920 190 1711 100

13 3981 1864 19780 29720 180 1682 100

14 3622 1674 19020 29370 161 1630 100

15 3125 1440 18030 28940 139 1572 101

16 4560 2165 20680 30160 208 1704 98

17 4340 2048 20340 29960 199 1679 96

18 4115 1916 19860 29710 187 1642 94

19 3630 1658 18950 29250 164 1576 94

20 3210 1489 18700 28890 145 1528 94

21 4330 2062 20500 30190 193 1748 101

22 4119 1929 20050 29960 183 1713 100

23 3891 1815 19680 29770 173 1684 100

24 3467 1595 18890 29360 153 1624 99

25 3045 1400 17870 28960 134 1569 100

26 4411 2047 20540 30160 193 1746 99

27 4203 1935 20160 29940 184 1714 99

28 3968 1807 19750 29760 173 1679 99

29 3531 1591 18890 29350 153 1621 99

30 3074 1388 17870 28910 133 1561 99

31 4350 2071 20460 30180 198 1729 102

32 4128 1944 20010 29940 186 1692 101

33 3940 1831 19640 29750 178 1667 101

34 3480 1612 18710 29360 156 1609 101

35 3064 1410 17780 28900 136 1552 101

36 4402 2066 20520 30170 197 1758 100

37 4180 1954 20150 29950 188 1729 99

38 3973 1835 19750 29740 178 1690 99

39 3530 1616 18850 29320 156 1616 99

40 3080 1407 17910 28910 137 1569 100

E12-14 Thrust of a Jet-Turbine Engine
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(h) Plot the residuals from the model in part (f) versus ŷ  and 

versus each of the regressors x x x1 2 3, , , and x4. Comment 

on the plots.

12-111.  Consider the inverter data in Exercise 12-110. 

Delete observation 2 from the original data. Defi ne new varia-

bles as follows: y y, x x ,* *=   =ln 1 11 /  x x , x x ,2 2 3 31* *=  = /

and x x4 4
* = .

(a) Fit a regression model using these transformed regressors 

(do not use x5 
or x6).

(b) Test the model for signifi cance of regression using α = 0.05. 

Use the t-test to investigate the contribution of each vari-

able to the model (α = 0.05). What are your conclusions?

(c) Plot the residuals versus ŷ∗ and versus each of the trans-

formed regressors. Comment on the plots.

12-112.  Following are data on y =  green liquor (g/l) and 

x = paper machine speed (feet per minute) from a Kraft paper 

machine. (The data were read from a graph in an article in the 

Tappi Journal, March 1986.)

y 16.0 15.8 15.6 15.5 14.8

x 1700 1720 1730 1740 1750

y 14.0 13.5 13.0 12.0 11.0

x 1760 1770 1780 1790 1795

(a) Fit the model Y x x= β + β + β +0 1 2
2 e using least squares.

(b) Test for signifi cance of regression using α = 0.05. What are 

your conclusions?

(c) Test the contribution of the quadratic term to the model, 

over the contribution of the linear term, using an F-statistic. 

If α = 0.05, what conclusion can you draw?

(d) Plot the residuals from the model in part (a) versus ŷ . Does 

the plot reveal any inadequacies?

(e) Construct a normal probability plot of the residuals. 

Comment on the normality assumption.

12-113. Consider the jet engine thrust data in Exercises 

12-108 and 12-109. Defi ne the response and regressors as in 

Exercise 12-109.

(a) Use all possible regressions to select the best regression 

equation, where the model with the minimum value of MS
E

is to be selected as “best.’’

(b) Repeat part (a) using the Cp criterion to identify the best 

equation.

(c) Use stepwise regression to select a subset regression model.

(d) Compare the models obtained in parts (a), (b), and (c).

(e) Consider the three-variable regression model. Calculate the 

variance infl ation factors for this model. Would you con-

clude that multicollinearity is a problem in this model?

12-114. Consider the electronic inverter data in Exercises 

12-110 and 12-111. Defi ne the response and regressors vari-

ables as in Exercise 12-111, and delete the second observation 

in the sample.

(a) Use all possible regressions to fi nd the equation that mini-

mizes Cp.

(b) Use all possible regressions to fi nd the equation that mini-

mizes MSE.

(c) Use stepwise regression to select a subset regression model.

(d) Compare the models you have obtained.

12-115.  A multiple regression model was used to relate 

y =  viscosity of a chemical product to x1 =  temperature and x2 =
reaction time. The data set consisted of n = 15 observations.

(a) The estimated regression coeffi cients were β̂ = .0 300 00,
β̂ = .1 0 85, and β̂ = .2 10 40. Calculate an estimate of mean 

viscosity when x1 100= °F and x2 2=  hours.

(b) The sums of squares were SST = 1230 50.  and SSE = 120 30. . 

Test for signifi cance of regression using α = 0.05. What 

conclusion can you draw?

(c) What proportion of total variability in viscosity is accounted 

for by the variables in this model?

(d) Suppose that another regressor, x3 = stirring rate, is added 

to the model. The new value of the error sum of squares 

is SSE = 117 20. . Has adding the new variable resulted 

in a smaller value of MSE? Discuss the signifi cance of 

this result.

(e) Calculate an F-statistic to assess the contribution of x
3
 to 

the model. Using α = 0.05, what conclusions do you reach?

12-116. Tables E12-16 and E12-17 present statistics for the 

Major League Baseball 2005 season (The Sports Network).

(a) Consider the batting data. Use model-building methods 

to predict wins from the other variables. Check that the 

assumptions for your model are valid.

Observation 
Number x1 x2 x3 x4 x5 y

 1  3  3  3  3  0 0.787

 2  8 30  8  8  0 0.293

 3  3  6  6  6  0 1.710

 4  4  4  4 12  0 0.203

 5  8  7  6  5  0 0.806

 6 10 20  5  5  0 4.713

 7  8  6  3  3 25 0.607

 8  6 24  4  4 25 9.107

 9  4 10 12  4 25 9.210

10 16 12  8  4 25 1.365

11  3 10  8  8 25 4.554

12  8  3  3  3 25 0.293

13  3  6  3  3 50 2.252

14  3  8  8  3 50 9.167

15  4  8  4  8 50 0.694

16  5  2  2  2 50 0.379

17  2  2  2  3 50 0.485

18 10 15  3  3 50 3.345

19 15  6  2  3 50 0.208

20 15  6  2  3 75 0.201

21 10  4  3  3 75 0.329

22  3  8  2  2 75 4.966

23  6  6  6  4 75 1.362

24  2  3  8  6 75 1.515

25  3  3  8  8 75 0.751

E12-15  Transient Point of an 
Electronic Inverter
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Batting
W Wins

AVG Batting average

R Runs

H Hits

2B Doubles

3B Triples

HR Home runs

RBI Runs batted in

BB Walks

SO Strikeouts

SB Stolen bases

GIDP Grounded into double play

LOB Left on base

OBP On-base percentage

Pitching
ERA Earned run average

SV Saves

H Hits

R Runs

ER Earned runs

HR Home runs

BB Walks

SO Strikeouts

AVG Opponent batting average

E12-16 Major League Baseball 2005 Season

American League Batting

Team W AVG R H 2B 3B HR RBI BB SO SB GIDP LOB OBP
Chicago 99 0.262 741 1450 253 23 200 713 435 1002 137 122 1032 0.322

Boston 95 0.281 910 1579 339 21 199 863 653 1044 45 135 1249 0.357

LA Angels 95 0.27 761 1520 278 30 147 726 447 848 161 125 1086 0.325

New York 95 0.276 886 1552 259 16 229 847 637 989 84 125 1264 0.355

Cleveland 93 0.271 790 1522 337 30 207 760 503 1093 62 128 1148 0.334

Oakland 88 0.262 772 1476 310 20 155 739 537 819 31 148 1170 0.33

Minnesota 83 0.259 688 1441 269 32 134 644 485 978 102 155 1109 0.323

Toronto 80 0.265 775 1480 307 39 136 735 486 955 72 126 1118 0.331

Texas 79 0.267 865 1528 311 29 260 834 495 1112 67 123 1104 0.329

Baltimore 74 0.269 729 1492 296 27 189 700 447 902 83 145 1103 0.327

Detroit 71 0.272 723 1521 283 45 168 678 384 1038 66 137 1077 0.321

Seattle 69 0.256 699 1408 289 34 130 657 466 986 102 115 1076 0.317

Tampa Bay 67 0.274 750 1519 289 40 157 717 412 990 151 133 1065 0.329

Kansas City 56 0.263 701 1445 289 34 126 653 424 1008 53 139 1062 0.32

National League Batting

Team W AVG R H 2B 3B HR RBI BB SO SB GIDP LOB OBP

St. Louis 100 0.27 805 1494 287 26 170 757 534 947 83 127 1152 0.339

Atlanta 90 0.265 769 1453 308 37 184 733 534 1084 92 146 1114 0.333

Houston 89 0.256 693 1400 281 32 161 654 481 1037 115 116 1136 0.322

Philadelphia 88 0.27 807 1494 282 35 167 760 639 1083 116 107 1251 0.348

Florida 83 0.272 717 1499 306 32 128 678 512 918 96 144 1181 0.339

New York 83 0.258 722 1421 279 32 175 683 486 1075 153 103 1122 0.322

San Diego 82 0.257 684 1416 269 39 130 655 600 977 99 122 1220 0.333

Milwaukee 81 0.259 726 1413 327 19 175 689 531 1162 79 137 1120 0.331

Washington 81 0.252 639 1367 311 32 117 615 491 1090 45 130 1137 0.322

Chicago 79 0.27 703 1506 323 23 194 674 419 920 65      131 1133 0.324

Arizona 77 0.256 696 1419 291 27 191 670 606 1094 67 132 1247 0.332

San Francisco 75 0.261 649 1427 299 26 128 617 431 901 71 147 1093 0.319

Cincinnati 73 0.261 820 1453 335 15 222 784 611 1303 72 116 1176 0.339

Los Angeles 71 0.253 685 1374 284 21 149 653 541 1094 58 139 1135 0.326

Colorado 67 0.267 740 1477 280 34 150 704 509 1103 65 125 1197 0.333

Pittsburgh 67 0.259 680 1445 292 38 139 656 471 1092 73 130 1193 0.322

(b) Repeat part (a) for the pitching data.

(c) Use both the batting and pitching data to build a model to 

predict wins. What variables are most important? Check 

that the assumptions for your model are valid.

12-117.  An article in the Journal of the American 
Ceramics Society (1992, Vol. 75, pp. 112–116) described 

a process for immobilizing chemical or nuclear wastes in 

soil by dissolving the contaminated soil into a glass block. 
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American League Pitching

Team W ERA SV H R ER HR BB SO AVG

Chicago 99 3.61 54 1392 645 592 167 459 1040 0.249

Boston 95 4.74 38 1550 805 752 164 440 959 0.276

LA Angels 95 3.68 54 1419 643 598 158 443 1126 0.254

New York 95 4.52 46 1495 789 718 164 463 985 0.269

Cleveland 93 3.61 51 1363 642 582 157 413 1050 0.247

Oakland 88 3.69 38 1315 658 594 154 504 1075 0.241

Minnesota 83 3.71 44 1458 662 604 169 348 965 0.261

Toronto 80 4.06 35 1475 705 653 185 444 958 0.264

Texas 79 4.96 46 1589 858 794 159 522 932 0.279

Baltimore 74 4.56 38 1458 800 724 180 580 1052 0.263

Detroit 71 4.51 37 1504 787 719 193 461 907 0.272

Seattle 69 4.49 39 1483 751 712 179 496 892 0.268

Tampa Bay 67 5.39 43 1570 936 851 194 615 949 0.28

Kansas City 56 5.49 25 1640 935 862 178 580 924 0.291

National League Pitching

Team W ERA SV H R ER HR BB SO AVG
St. Louis 100 3.49 48 1399 634 560 153 443 974 0.257

Atlanta 90 3.98 38 1487 674 639 145 520 929 0.268

Houston 89 3.51 45 1336 609 563 155 440 1164 0.246

Philadelphia 88 4.21 40 1379 726 672 189 487 1159 0.253

Florida 83 4.16 42 1459 732 666 116 563 1125 0.266

New York 83 3.76 38 1390 648 599 135 491 1012 0.255

San Diego 82 4.13 45 1452 726 668 146 503 1133 0.259

Milwaukee 81 3.97 46 1382 697 635 169 569 1173 0.251

Washington 81 3.87 51 1456 673 627 140 539 997 0.262

Chicago 79 4.19 39 1357 714 671 186 576 1256 0.25

Arizona 77 4.84 45 1580 856 783 193 537 1038 0.278

San Francisco 75 4.33 46 1456 745 695 151 592 972 0.263

Cincinnati 73 5.15 31 1657 889 820 219 492 955 0.29

Los Angeles 71 4.38 40 1434 755 695 182 471 1004 0.263

Colorado 67 5.13 37 1600 862 808 175 604 981 0.287

Pittsburgh 67 4.42 35 1456 769 706 162 612 958 0.267

E12-17 Major League Baseball 2005 

Batting
W Wins

AVG Batting average

R Runs

H Hits

2B Doubles

3B Triples

HR Home runs

RBI Runs batted in

BB Walks

SO Strikeouts

SB Stolen bases

GID Grounded into double play

LOB Left on base

OBP On-base percentage

Pitching
ERA Earned run average

SV Saves

H Hits

R Runs

ER Earned runs

HR Home runs

BB Walks

SO Strikeouts

AVG Opponent batting average

The authors mix CaO and Na
2
O with soil and model viscos-

ity and electrical conductivity. The electrical conductivity 

model involves six regressors, and the sample consists of 

n = 14 observations.

(a) For the six-regressor model, suppose that SST = 0 50.  and 

R2 0 94= . . Find SSE and SSR, and use this information to 

test for signifi cance of regression with α = 0.05. What are 

your conclusions?
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(b) Suppose that one of the original regressors is deleted from 

the model, resulting in R2 0 92= . . What can you conclude 

about the contribution of the variable that was removed? 

Answer this question by calculating an F-statistic.

(c) Does deletion of the regressor variable in part (b) result 

in a smaller value of MSE for the five-variable model, in 

comparison to the original six-variable model? Comment 

on the significance of your answer.

12-118. Exercise 12-9 introduced the hospital patient satis-

faction survey data. One of the variables in that data set is a 

categorical variable indicating whether the patient is a medical 

patient or a surgical patient. Fit a model including this indicator 

variable to the data using all three of the other regressors. Is 

there any evidence that the service the patient is on (medical 

versus surgical) has an impact on the reported satisfaction?

12-119. Consider the following inverse model matrix.

X X�( ) =

.
.

.
.

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

−1

0 125 0 0 0

0 0 125 0 0

0 0 0 125 0

0 0 0 0 125

(a) How many regressors are in this model?

(b) What was the sample size?

(c) Notice the special diagonal structure of the matrix. What 

does that tell you about the columns in the original X matrix?

Mind-Expanding Exercises

12-120. Consider a multiple regression model with k 

regressors. Show that the test statistic for significance of 

regression can be written as

F
R k

R n k
0

2

21 1
=

−( ) − −( )
/

/

Suppose that n k= =20 4, , and R2 0 90= . . If α = 0.05, what 

conclusion would you draw about the relationship between 

and the four regressors?

12-121. A regression model is used to relate a response 

to k = 4 regressors with n = 20. What is the smallest value 

of R2 that will result in a significant regression if α = 0.05? 

Use the results of the previous exercise. Are you surprised 

by how small the value of R2 is?

12-122. Show that can express the residuals from a multiple 

regression model as e = −(I H y)  where H X X X X = ( ) 1− �.
12-123. Show that the variance of the ith residual ei in a 

multiple regression model is σ −( )2 1 hii  and that the covari-

ance between ei and ej is −σ2hij  where the h’s are the ele-

ments of H X X X X = ( ) 1− �.
12-124. Consider the multiple linear regression model 

y X =   + a e. If â denotes the least squares estimator of a,  

show that â a= + Re, where R X X X= ( )−� �1
.

12-125. Constrained Least Squares. Suppose we wish to 

find the least squares estimator of a in the model y X= +a e 

subject to a set of equality constraints, say, T ca = .

(a) Show that the estimator is

ˆ ˆ ˆa a � � � � ac = + ( ) ( )( )⎡
⎣⎢

⎤
⎦⎥

−( )− −
−

X X X X
1 1

1

3T T T c T

where ˆ ( )a � �= −X X X y1 .

(b) Discuss situations where this model might be appropriate.

12-126. Piecewise Linear Regression. Suppose that y is 

piecewise linearly related to x . That is, different linear rela-

tionships are appropriate over the intervals −∞ ≤ ∗< x x  and 

x < x <∗ ∞.

(a) Show how indicator variables can be used to fit such a 

piecewise linear regression model, assuming that the 

point x∗ is known.

(b) Suppose that at the point x∗ a discontinuity occurs 

in the regression function. Show how indicator vari-

ables can be used to incorporate the discontinuity into  

the model.

(c) Suppose that the point x∗ is not known with certainty 

and must be estimated. Suggest an approach that could 

be used to fit the piecewise linear regression model.

All possible regressions

Analysis of variance test  

in multiple regression

Backward elimination

Categorical variables

Confidence interval on the 

mean response

C
p
 statistic

Extra sum of squares method

Forward selection

Hat matrix

Hidden extrapolation

Indicator variables

Inference (test and intervals) 

on individual model 

parameters

Influential observations

Model parameters and their 

interpretation in multiple 

regression

Multicollinearity

Multiple regression model

Outliers

Polynomial regression model

Prediction interval on a future 

observation

PRESS statistic

Residual analysis and model 

adequacy checking

R2

Significance of regression

Stepwise regression and 

related methods

Studentized residuals

Variable selection

Variance inflation factor 

(VIF)

Important Terms and Concepts
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Experiments are a natural part of the engineering and scien-

tifi c decision-making process. Suppose, for example, that a 

civil engineer is investigating the effects of different curing 

methods on the mean compressive strength of concrete. The 

experiment would consist of making up several test speci-

mens of concrete using each of the proposed curing methods 

and then testing the compressive strength of each specimen. 

The data from this experiment could be used to determine 

which curing method should be used to provide maximum 

mean compressive strength.

If there are only two curing methods of interest, this experi-

ment could be designed and analyzed using the statistical 

hypothesis methods for two samples introduced in Chapter 10. 

That is, the experimenter has a single factor of interest—

curing methods—and there are only two levels of the factor. 

If the experimenter is interested in determining which cur-

ing method produces the maximum compressive strength, the 

number of specimens to test can be determined from the oper-

ating characteristic curves in Appendix Chart VII, and the t-test 

can be used to decide if the two means differ.

Many single-factor experiments require that more than 

two levels of the factor be considered. For example, the civil 

engineer may want to investigate fi ve different curing meth-

ods. In this chapter, we show how the analysis of variance
(frequently abbreviated ANOVA) can be used for compar-

ing means when there are more than two levels of a single 

factor. We also discuss randomization of the experimental 

runs and the important role this concept plays in the overall 

experimentation strategy. In the next chapter, we show how 

to design and analyze experiments with several factors.

13
Design and Analysis 
of Single-Factor 
Experiments: The 
Analysis of Variance

Chapter Outline

13-1 Designing Engineering Experiments

13-2 Completely Randomized Single-Factor 
Experiment
13-2.1 Example: Tensile Strength
13-2.2 Analysis of Variance
13-2.3 Multiple Comparisons Following 

the ANOVA
13-2.4 Residual Analysis and Model 

Checking
13-2.5 Determining Sample Size

13-3 The Random-Effects Model
13-3.1 Fixed Versus Random Factors
13-3.2 ANOVA and Variance Components

13-4 Randomized Complete Block Design
13-4.1 Design and Statistical Analysis
13-4.2 Multiple Comparisons
13-4.3 Residual Analysis and Model 

Checking
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Learning Objectives

After careful study of this chapter, you should be able to do the following:

1. Design and conduct engineering experiments involving a single factor with an arbitrary number of levels

2. Understand how the analysis of variance is used to analyze the data from these experiments

3. Assess model adequacy with residual plots

4. Use multiple comparison procedures to identify specific differences between means

5. Make decisions about sample size in single-factor experiments

6. Understand the difference between fixed and random factors

7. Estimate variance components in an experiment involving random factors

8. Understand the blocking principle and how it is used to isolate the effect of nuisance factors

9. Design and conduct experiments involving the randomized complete block design

13-1 Designing Engineering Experiments
Statistically based experimental design techniques are particularly useful in the engineering 

world for solving many important problems: discovery of new basic phenomena that can lead 

to new products and commercialization of new technology including new product develop-

ment, new process development, and improvement of existing products and processes. For 

example, consider the development of a new process. Most processes can be described in 

terms of several controllable variables, such as temperature, pressure, and feed rate. By using 

designed experiments, engineers can determine which subset of the process variables has the 

greatest influence on process performance. The results of such an experiment can lead to

Improved process yield

Reduced variability in the process and closer conformance to nominal or target requirements

Reduced design and development time

Reduced cost of operation

Experimental design methods are also useful in engineering design activities during which 

new products are developed and existing ones are improved. Some typical applications of 

statistically designed experiments in engineering design include

Evaluation and comparison of basic design configurations

Evaluation of different materials

Selection of design parameters so that the product will work well under a wide variety of 

field conditions (or so that the design will be robust)

Determination of key product design parameters that affect product performance

The use of experimental design in the engineering design process can result in products that 

are easier to manufacture, products that have better field performance and reliability than their 

competitors, and products that can be designed, developed, and produced in less time.

Designed experiments are usually employed sequentially. That is, the first experiment with 

a complex system (perhaps a manufacturing process) that has many controllable variables 

is often a screening experiment designed to determine those variables are most important. 

Subsequent experiments are used to refine this information and determine which adjustments 

to these critical variables are required to improve the process. Finally, the objective of the 

experimenter is optimization, that is, to determine those levels of the critical variables that 

result in the best process performance.
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Every experiment involves a sequence of activities:

1. Conjecture—the original hypothesis that motivates the experiment.

2. Experiment—the test performed to investigate the conjecture.

3. Analysis—the statistical analysis of the data from the experiment.

4. Conclusion—what has been learned about the original conjecture from the experiment. 

Often the experiment will lead to a revised conjecture, a new experiment, and so forth.

The statistical methods introduced in this chapter and Chapter 14 are essential to good experi-

mentation. All experiments are designed experiments; unfortunately, some of them are 

poorly designed, and as a result, valuable resources are used ineffectively. Statistically designed 

experiments permit effi ciency and economy in the experimental process, and the use of statisti-

cal methods in examining the data results in scientifi c objectivity when drawing conclusions.

13-2  Completely Randomized Single-Factor 
Experiment

13-2.1 EXAMPLE: TENSILE STRENGTH

A manufacturer of paper used for making grocery bags is interested in improving the prod-

uct’s tensile strength. Product engineering believes that tensile strength is a function of the 

hardwood concentration in the pulp and that the range of hardwood concentrations of practi-

cal interest is between 5 and 20%. A team of engineers responsible for the study decides to 

investigate four levels of hardwood concentration: 5%, 10%, 15%, and 20%. They decide to 

make up six test specimens at each concentration level by using a pilot plant. All 24 specimens 

are tested on a laboratory tensile tester in random order. The data from this experiment are 

shown in Table 13-1.

This is an example of a completely randomized single-factor experiment with four levels of 

the factor. The levels of the factor are sometimes called treatments, and each treatment has six 

observations or replicates. The role of randomization in this experiment is extremely important. 

By randomizing the order of the 24 runs, the effect of any nuisance variable that may infl uence 

the observed tensile strength is approximately balanced out. For example, suppose that there is a 

warm-up effect on the tensile testing machine; that is, the longer the machine is on, the greater the 

observed tensile strength. If all 24 runs are made in order of increasing hardwood concentration 

(that is, all six 5% concentration specimens are tested fi rst, followed by all six 10% concentration 

specimens, etc.), any observed differences in tensile strength could also be due to the warm-up 

effect. The role of randomization to identify causality was discussed in Section 10-1.

It is important to graphically analyze the data from a designed experiment. Figure 13-1(a) 

presents box plots of tensile strength at the four hardwood concentration levels. This 

fi gure indicates that changing the hardwood concentration has an effect on tensile strength; 

specifi cally, higher hardwood concentrations produce higher observed tensile strength. 

13-1 Tensile Strength of Paper (psi)

Hardwood 
Concentration (%)

Observations

1 2 3 4 5 6 Totals Averages

 5  7  8 15 11 9 10  60 10.00

10 12 17 13 18 19 15  94 15.67

15 14 18 19 17 16 18 102 17.00

20 19 25 22 23 18 20 127 21.17

383 15.96
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Furthermore, the distribution of tensile strength at a particular hardwood level is reasonably 

symmetric, and the variability in tensile strength does not change dramatically as the hard-

wood concentration changes.

Graphical interpretation of the data is always useful. Box plots show the variability of the 

observations within a treatment (factor level) and the variability between treatments. We now 

discuss how the data from a single-factor randomized experiment can be analyzed statistically.

13-2.2 ANALYSIS OF VARIANCE

Suppose that we have a different levels of a single factor that we wish to compare. Sometimes, 

each factor level is called a treatment, a very general term that can be traced to the early appli-

cations of experimental design methodology in the agricultural sciences. The response for each 

of the a treatments is a random variable. The observed data would appear as shown in Table 

13-2. An entry in Table 13-2, say yij, represents the jth observation taken under treatment i.  
We initially consider the case that has an equal number of observations, n, on each treatment.

We may describe the observations in Table 13-2 by the linear statistical model

 Y
i , , , a

j , , , n
ij i ij= μ + τ +

=  …  
=  …  

⎧
⎨
⎩

e
1 2

1 2
 (13-1)

where yij is a random variable denoting the ( )ij th observation, μ is a parameter common to all 

treatments called the overall mean, τi is a parameter associated with the ith treatment called 

the ith treatment effect, and eij is a random error component. Notice that the model could 

have been written as

 Y
i , , , a

j , , , n
ij i ij= μ +

=  …  
=  …  

⎧
⎨
⎩

e
1 2

1 2
 

where μ μ + τi i=  is the mean of the ith treatment. In this form of the model, we see that each 

treatment defines a population that has mean μi consisting of the overall mean μ plus an 

effect τi that is due to that particular treatment. We assume that the errors eij are normally and 

independently distributed with mean zero and variance σ2. Therefore, each treatment can be 

thought of as a normal population with mean μi and variance σ2. See Fig. 13-1(b).

FIGURE 13-1 (a) Box plots of hardwood concentration data. (b) Display of the model in Equation 13-1  
for the completely randomized single-factor experiment.
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Equation 13-1 is the underlying model for a single-factor experiment. Furthermore, because 

we require that the observations are taken in random order and that the environment (often 

called the experimental units) in which the treatments are used is as uniform as possible, this 

experimental design is called a completely randomized design (CRD).
The a factor levels in the experiment could have been chosen in two different ways. First, the 

experimenter could have specifi cally chosen the a treatments. In this situation, we wish to test 

hypotheses about the treatment means, and conclusions cannot be extended to similar treatments 

that were not considered. In addition, we may wish to estimate the treatment effects. This is 

called the fi xed-effects model. Alternatively, the a treatments could be a random sample from a 

larger population of treatments. In this situation, we would like to be able to extend the conclu-

sions (which are based on the sample of treatments) to all treatments in the population whether 

or not they were explicitly considered in the experiment. Here the treatment effects τi are ran-

dom variables, and knowledge about the particular ones investigated is relatively unimportant. 

Instead, we test hypotheses about the variability of the τi and try to estimate this variability. This 

is called the random-effects, or components of variance model.
In this section, we develop the analysis of variance for the fi xed-effects model. The analy-

sis of variance is not new to us; it was used previously in the presentation of regression analy-

sis. However, in this section, we show how it can be used to test for equality of treatment 

effects. In the fi xed-effects model, the treatment effects τi are usually defi ned as deviations 

from the overall mean μ, so that

τ =
=
∑ i
i

a

0
1

 (13-2)

Let yi. represent the total of the observations under the ith treatment and yi . represent the aver-

age of the observations under the ith treatment. Similarly, let y.. represent the grand total of all 

observations and y.. represent the grand mean of all observations. Expressed mathematically,

y y y y n i , , , a

y y y y

i ij
j

n

i i

ij
j

n

i

a

. = . = . =  ...  

.. =   .. =

=

==

∑

∑∑

1

11

1 2/

... / N  (13-3)

where N an=  is the total number of observations. Thus, the “dot” subscript notation implies 

summation over the subscript that it replaces.

We are interested in testing the equality of the a treatment means μ μ μ1 2, , . . . , a. Using 

Equation 13-2, we fi nd that this is equivalent to testing the hypotheses

H Ha i0 1 2 10 0: : forat least one τ = τ = ⋅ ⋅ ⋅ = τ =  τ ≠ i (13-4)

Thus, if the null hypothesis is true, each observation consists of the overall mean μ  plus 

a realization of the random error component eij. This is equivalent to saying that all N
observations are taken from a normal distribution with mean μ  and variance σ2. Therefore, 

if the null hypothesis is true, changing the levels of the factor has no effect on the mean 

response.

13-2 Typical Data for a Single-Factor Experiment

Treatment Observations Totals Averages

1 y11 y12
… y n1 y1. y1.

2 y21 y22
… y n2 y2. y2.


  
  
 


  
  
 

a ya1 ya2

… yan ya . ya .
y.. y1..
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The ANOVA partitions the total variability in the sample data into two component parts. 

Then, the test of the hypothesis in Equation 13-4 is based on a comparison of two independent 

estimates of the population variance. The total variability in the data is described by the total 
sum of squares

 SS y yT ij
j

n

i

a

= − ..( )  
==
∑∑

2

11

 

The partition of the total sum of squares is given in the following definition.

The sum of squares identity is

y y n y y y yij
j

n

i

a

i
i

a

ij i
j

n

i

− ..( )  = . − ..( )  + − .( )
== = ==
∑∑ ∑ ∑

2

11

2

1

2

11

aa

∑   (13-5)

or symbolically

SS SS SST E= +Treatments  (13-6)

ANOVA Sum of 
Squares Identity: 

Single Factor 
Experiment

The expected value of the treatment sum of squares is

 E SS a n i
i

a

Treatments( ) = −( )σ + τ
=
∑1 2 2

1

 

and the expected value of the error sum of squares is

 E SS a nE( ) = −( )σ1 2 

Expected Values of 
Sums of Squares: Sin-
gle Factor Experiment

The identity in Equation 13-5 shows that the total variability in the data, measured by the 

total corrected sum of squares SST, can be partitioned into a sum of squares of differences 

between treatment means and the grand mean called the treatment sum of squares, and denoted 

SSTreatments and a sum of squares of differences of observations within a treatment from the treat-

ment mean called the error sum of squares, and denoted SSE. Differences between observed 

treatment means and the grand mean measure the differences between treatments, and differences 

of observations within a treatment from the treatment mean can be due only to random error.

We can gain considerable insight into how the analysis of variance works by examining the 

expected values of SSTreatments and SSE. This will lead us to an appropriate statistic for testing 

the hypothesis of no differences among treatment means (or all τ =i 0).

There is also a partition of the number of degrees of freedom that corresponds to the sum of 

squares identity in Equation 13-5. That is, there are an N=  observations; thus, SST  has an − 1 

degrees of freedom. There are a levels of the factor, so SSTreaments has a − 1 degrees of freedom. 

Finally, within any treatment, there are n replicates providing n − 1 degrees of freedom with 

which to estimate the experimental error. Because there are a treatments, we have a n( )− 1  

degrees of freedom for error. Therefore, the degrees of freedom partition is

 an a a n− = − + −( )1 1 1  

The ratio

 MS SS aTreatments Treatments= −( )/ 1  

is called the mean square for treatments. Now if the null hypothesis H0 1 2: τ = τ  = ⋅ ⋅ ⋅ = τ =a 0 

is true, MSTreatments is an unbiased estimator of σ2 because τ ==∑ ii
a

0
1

. However, if H1 is true, 

MSTreatments estimates σ2 plus a positive term that incorporates variation due to the systematic 

difference in treatment means.
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Note that the mean square for error

MS SS a nE E= −( )⎡⎣ ⎤⎦/ 1  

is an unbiased estimator of σ2 regardless of whether or not H0 is true. We can also show that 

MSTreatments and MSE are independent. Consequently, we can show that if the null hypothesis 

H0 is true, the ratio

 F
SS a

SS a n

MS

MSE E
0

1

1
=

−( )
−( )⎡⎣ ⎤⎦

=Treatments Treatments/

/
 (13-7)

ANOVA F-Test

The sums of squares computing formulas for the ANOVA with equal sample sizes 

in each treatment are

 SS y
y

N
T ij

j

n

i

a

= − ..  
==
∑∑ 2

2

11

 (13-8)

and

 SS
y

n

y

N
i

i

a

Treatments = . − ..
=
∑

2 2

1

 (13-9)

The error sum of squares is obtained by subtraction as

 SS SS SSE T= − Treatments (13-10)

Computing Formulas 
for ANOVA: Single 
Factor with Equal 

Sample Sizes

has an F-distribution with a − 1 and a n( )−1  degrees of freedom. Furthermore, from the 

expected mean squares, we know that MSE is an unbiased estimator of σ2. Also, under the 

null hypothesis, MSTreatments is an unbiased estimator of σ2. However, if the null hypothesis 

is false, the expected value of MSTreatments is greater than σ2. Therefore, under the alternative 

hypothesis, the expected value of the numerator of the test statistic (Equation 13-7) is greater 

than the expected value of the denominator. Consequently, we should reject H0 if the statistic 

is large. This implies an upper-tailed, one-tailed critical region. Therefore, we would reject H0

if f > f ,a ,a n0 1 1α − −( ) where f0 is the computed value of F0 from Equation 13-7.

Effi cient computational formulas for the sums of squares may be obtained by expanding 

and simplifying the defi nitions of SSTreatments and SST . This yields the following results.

The computations for this test procedure are usually summarized in tabular form as shown in 

Table 13-3. This is called an analysis of variance (or ANOVA) table.

Tensile Strength ANOVA Consider the paper tensile strength experiment described in Section 13-2.1. 

This experiment is a completely randomized design. We can use the analysis of variance to test the 

hypothesis that different hardwood concentrations do not affect the mean tensile strength of the paper. The hypotheses are

Example 13-1

13-3 Analysis of Variance for a Single-Factor Experiment, Fixed-Effects Model

Source of Variation Sum of Squares Degrees of Freedom Mean Square F0

Treatments SS
Treatments

a–1 MS
Treatments

MS

MSE

Treatments

Error SS
E

a(n–1) MS
E

Total SS
T

an–1
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Computer Output
Many software packages have the capability to analyze data from designed experiments using 

the analysis of variance. See Table 13-5 for computer output for the paper tensile strength 

experiment in Example 13-1. The results agree closely with the manual calculations reported 

previously in Table 13-4.

The computer output also presents 95% confi dece intervals (CIs) on each individual treat-

ment mean. The mean of the ith treatment is defi ned as

μ = μ + τ =   i i i , , , a1 2 . . .  

A point estimator of μi is μ̂ = .i iY  . Now if we assume that the errors are normally distrib-

uted, each treatment average is normally distributed with mean μi and variance σ2/ n. Thus, 

if σ2 were known, we could use the normal distribution to construct a CI. Using MSE as an 

H H ii0 1 2 3 4 10 0: : τ = τ = τ = τ =  τ ≠      for at least one

We use α = .0 01. The sums of squares for the analysis of variance are computed from Equations 13-8, 13-9, and 13-10 

as follows:

SS y
y

N
T ij

ji

= − ..  

= ( ) + ( ) + ⋅ ⋅ ⋅ + ( ) − ( ) =

==
∑∑ 2

2

1

6

1

4

2 2 2
2

7 8 20
383

24
512..

= . − .. 

= ( ) + ( ) + ( ) + (
=
∑

96

60 94 102 127

2 2

1

4

2 2 2

SS
y

n

y

N
i

i
Treatments

)) − ( ) = .

= −
= . − . =

2 2

6

383

24
382 79

512 96 382 79 130

SS SS SSE T Treatments

..17

The ANOVA is summarized in Table 13-4. Because f0 01 3 20 4 94. , , . ,=  we reject H0 and conclude that hardwood concen-

tration in the pulp signifi cantly affects the mean strength of the paper. We can also fi nd a P-value for this test statistic 

as follows:

13-4 ANOVA for the Tensile Strength Data

Source of Variation Sum of Squares Degrees of Freedom Mean Square f0 P-value

Hardwood

concentration 382.79  3 127.60 19.60 3.59 E-6

Error 130.17 20   6.51

Total 512.96 23

P P F >,= .( ) . −
3 20

619 60 3 59 10� ×

Computer software is used here to obtain the probability. Because P � 3 59 10 6. × −  is considerably smaller than α = 0.01, 

we have strong evidence to conclude that H0 is not true.

Practical Interpretation: There is strong evidence to conclude that hardwood concentration has an effect on 

tensile strength. However, the ANOVA does not tell as which levels of hardwood concentration result in different tensile 

strength means. We see how to answer this question in Section 13-2.3.
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estimator of σ2 (the square root of MSE is the “Pooled StDev” referred to in the computer out-

put), we would base the CI on the t distribution, because

 T
Y

MS n
i i

E

= . − μ
y

 

has a t distribution with a n( )− 1  degrees of freedom. This leads to the following definition of 

the confidence interval.

A 100 1( )%− α  confidence interval on the mean of the ith treatment μi is

 y t
MS

n
y t

MS

n
i ,a n

E
i i ,a n

E. −  ≤ μ ≤ . +  α −( ) α −( )/ /2 1 2 1  (13-11)

Confidence Interval 
on a Treatment Mean

Analysis of Variance for Strength

Source DF SS MS F P
Conc  3 382.79 127.60 19.61 0.000
Error 20 130.17   6.51
Total 23 512.96

Level N Mean StDev
 5 6 10.000 2.828
10 6 15.667 2.805
15 6 17.000 1.789
20 6 21.167 2.639

 

Individual 95% CIs For Mean  
Based on Pooled StDev
---------------  + ---------------------- + ----------------------- + ——— + -------- 
(—∗—)
    (—∗—)
     (—∗—)
       (—∗—)
---------------  + ---------------------------- + -------------------------------- + ---------------------------- + ---

Pooled StDev = 2.551 10.0 15.0 20.0 25.0
Fisher’s pairwise comparisons

Family error rate = 0.192
Individual error rate = 0.0500

Critical value = 2.086

Intervals for (column level mean) – (row level mean)

5 10 15
10 –8.739

–2.594
15 –10.072 –4.406

–3.928 1.739
20 –14.239 –8.572 –7.239

–8.094 –2.428 –1.094

13-5 Computer Output for the Completely Randomized Design in Example 13-1

Equation 13-11 is used to calculate the 95% CIs shown graphically in the computer output of 

Table 13-5. For example, at 20% hardwood, the point estimate of the mean is y4 21 167. = . , 

MSE = 6 51. , and t0 025 20 2 086. , .= , so the 95% CI is

[ ]

[ / ]

y t MS n, E4 0 025 20

21 167 2 086 6 51 6

. ±

. ± .( ) .
. y

or
19 00 23 344.  ≤ μ ≤ .  psi psi

It can also be interesting to find confidence intervals on the difference in two treatment means, 

say, μ μi j− . The point estimator of μ μi j−  is Y Yi j. − ., and the variance of this estimator is

V Y Y
n n n

i j. − .( ) = σ + σ = σ2 2 22
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Now if we use MSE to estimate σ2,

 T
Y Y

MS n

i j i j

E

=
. − . − μ − μ( )

2 y
 

has a t distribution with a n( )− 1  degrees of freedom. Therefore, a CI on μ μi j−  may be based 

on the t distribution.

A 100 1( )− α  percent confidence interval on the difference in two treatment means 

μ μi j−  is

y y t
MS

n
y y t

MS

n
i j ,a n

E
i j i j ,a n

E. − . −  ≤ μ − μ ≤ . − . +  α −( ) α −( )/ /2 1 2 1

2 2
 (13-12)

Confidence Interval 
on a Difference in 
Treatment Means

A 95% CI on the difference in means μ μ3 2−  is computed from Equation 13-12 as follows:

   

y y t MS nE3 2 0 025 20 2

17 00 15 67 2 086 2 6 51 6

. − . ±  ⎡
⎣

⎤
⎦

. − . ± .( ) .( )⎡

 . , /

/⎣⎣
⎤
⎦

or

   − . ≤ μ − μ ≤ .1 74 4 403 2

Because the CI includes zero, we would conclude that there is no difference in mean tensile 

strength at these two particular hardwood levels.

The bottom portion of the computer output in Table 13-5 provides additional infor-

mation concerning which specific means are different. We discuss this in more detail in  

Section 13-2.3.

Unbalanced Experiment
In some single-factor experiments, the number of observations taken under each treatment 

may be different. We then say that the design is unbalanced. In this situation, slight modi-

fications must be made in the sums of squares formulas. Let ni observations be taken under 

treatment i i a( , , . . . , ),= 1 2  and let the total number of observations N i
a= . =∑ ni1

 The compu-

tational formulas for SST  and SSTreatments are as shown in the following definition.

The sums of squares computing formulas for the ANOVA with unequal sample sizes 

ni in each treatment are

 SS y
y

N
T ij

j

n

i

a i

= − ..  
==
∑∑ 2

2

11

 (13-13)

 SS
y

n

y

N
i

ii

a

Treatments = . − ..  
=
∑

2 2

1

 (13-14)

and

 SS SS SSE T= − Treatments (13-15)

Computing Formulas 
for ANOVA: Single 

Factor with Unequal 
Sample Sizes

Choosing a balanced design has two important advantages. First, the ANOVA is relatively 

insensitive to small departures from the assumption of equality of variances if the sample 

sizes are equal. This is not the case for unequal sample sizes. Second, the power of the test is 

maximized if the samples are of equal size.
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13-2.3 MULTIPLE COMPARISONS FOLLOWING THE ANOVA

When the null hypothesis H a0 1 2 0:  τ = τ = ⋅ ⋅ ⋅ = τ =  is rejected in the ANOVA, we know that 

some of the treatment or factor-level means are different. However, the ANOVA does not 

identify which means are different. Methods for investigating this issue are called multiple 
comparisons methods. Many of these procedures are available. Here we describe a very 

simple one, Fisher’s least signifi cant difference (LSD) method and a graphical method. 

Montgomery (2012) presents these and other methods and provides a comparative discussion.

The Fisher LSD method compares all pairs of means with the null hypotheses H i j0: μ μ=
(for all i j≠ ) using the t-statistic

t
y y

MS

n

i j

E
0

2
=

. − .
 

Assuming a two-sided alternative hypothesis, the pair of means μi and μ j would be declared 

signifi cantly different if

⏐ ⏐y y >i j. − . LSD 

where LSD, the least signifi cant difference, is

 LSD =  α −( )t
MS

n,a n
E

/2 1

2
 (13-16)

Least Signifi cant 
Difference for 

Multiple 
Comparisons

If the sample sizes are different in each treatment, the LSD is defi ned as

LSD =  +
⎛
⎝⎜

⎞
⎠⎟

α −t MS
n n

,N a E
i j

/2

1 1

We apply the Fisher LSD method to the hardwood concentration experiment. There are a = 4 

means, n = 6, MSE = 6 51. , and t0 025 20 2 086. , .= . The treatment means are

y1 10 00. = .  psi  y2 15 67. = .  psi

y3 17 00. = .  psi  y4 21 17. = .  psi

The value of LSD is LSD = = . .( ) = ..t MS n, E0 025 20 2 2 086 2 6 51 6 3 07/ / . Therefore, any pair of treatment averages 

that differs by more than 3.07 implies that the corresponding pair of treatment means are different.

The comparisons among the observed treatment averages are as follows:

4 1 21 17 10 00 11 17 3 07

4 2 21 17 15 67 5 50 3

 . = . − . = . .
 . = . − . = . .
vs

vs

>

> 007

4 3 21 17 17 00 4 17 3 07

3 1 17 00 10 00 7 00

 . = . − . = . .
 . = . − . = .
vs

vs

>

>>

<

3 07

3 2 17 00 15 67 1 33 3 07

2 1 15 67 10 00 5

.
 . = . − . = . .
 . = . − . = 
vs

vs .. .67 3 07>

0 5 10 15 20 25 psi

5% 10% 15% 20%

FIGURE 13-2 Results of Fisher’s LSD method in Example 13-2.

Example 13-2
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The computer output in Table 13-5 shows the Fisher LSD method under the heading “Fisher’s 

pairwise comparisons.” The critical value reported is actually the value of t0 025 20 2 086. , .= . The 

computer output presents Fisher’s LSD method by computing confi dence intervals on all pairs 

of treatment means using Equation 13-12. The lower and upper 95% confi dence limits are at the 

bottom of the table. Notice that the only pair of means for which the confi dence interval includes 

zero is for μ10 and μ15. This implies that μ10 and μ15 are not signifi cantly different, the same result 

found in Example 13-2.

Table 13-5 also provides a “family error rate,” equal to 0.192 in this example. When all 

possible pairs of means are tested, the probability of at least one type I error can be much 

higher than for a single test. We can interpret the family error rate as follows. The probability 

is 1 0 192 0 808− =. .  that there are no type I errors in the six comparisons. The family error rate 

in Table 13-5 is based on the distribution of the range of the sample means. See Montgomery 

(2012) for details. Alternatively, computer software often allows specifi cation of a family error 

rate and then calculates an individual error rate for each comparison.

Graphical Comparison of Means
It is easy to compare treatment means graphically following the analysis of variance. Suppose 

that the factor has a levels and that y ,1.  y ,2.  …, ya . are the observed averages for these factor 

levels. Each treatment average has standard deviation σy n , where σ is the standard deviation 

of an individual observation. If all treatment means are equal, the observed means yi . would 

behave as if they were a set of observations drawn at random from a normal distribution with 

mean μ and standard deviation σ .y n
Visualize this normal distribution capable of being slid along an axis below which the treat-

ment means y ,1.  y ,2.  …, ya . are plotted. If all treatment means are equal, there should be some 

position for this distribution that makes it obvious that the yi . values were drawn from the same 

distribution. If this is not the case, the yi . values that do not appear to have been drawn from 

this distribution are associated with treatments that produce different mean responses.

The only fl aw in this logic is that σ is unknown. However, we can use MSE  from the analy-

sis of variance to estimate σ. This implies that a t distribution should be used instead of a normal 

distribution in making the plot, but because the t looks so much like the normal, sketching a 

normal curve that is approximately 6 MS nEy  units wide will usually work very well.

Figure 13-3 shows this arrangement for the hardwood concentration experiment in 

Example 13-1. The standard deviation of this normal distribution is

 MS nEy y= . = .6 51 6 1 04 

If we visualize sliding this distribution along the horizontal axis, we note that there is no location 

for the distribution that would suggest that all four observations (the plotted means) are typical, 

randomly selected values from that distribution. This, of course, should be expected because 

the analysis of variance has indicated that the means differ, and the display in Fig. 13-3 is just a 

graphical representation of the analysis of variance results. The fi gure does indicate that treatment 

4 (20% hardwood) produces paper with higher mean tensile strength than do the other treatments, 

and treatment 1 (5% hardwood) results in lower mean tensile strength than do the other treat-

ments. The means of treatments 2 and 3 (10% and 15% hardwood, respectively) do not differ.

This simple procedure is a rough but very effective multiple comparison technique. It 

works well in many situations.

Conclusions: From this analysis, we see that there are signifi cant differences between all pairs of means except 

2 and 3. This implies that 10% and 15% hardwood concentration produce approximately the same tensile strength 

and that all other concentration levels tested produce different tensile strengths. It is often helpful to draw a graph of 

the treatment means, such as in Fig. 13-2 with the means that are not different underlined. This graph clearly reveals 

the results of the experiment and shows that 20% hardwood produces the maximum tensile strength.
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0 5 10 15 20 25 30

s /  n = 1.04

1 2 3 4

FIGURE 13-3 Tensile strength averages from the hardwood concentration 
experiment in relation to a normal distribution with standard deviation 
MS nEy y= . = . .6 51 6 1 04

13-2.4 RESIDUAL ANALYSIS AND MODEL CHECKING

The analysis of variance assumes that the observations are normally and independently dis-

tributed with the same variance for each treatment or factor level. These assumptions should 

be checked by examining the residuals. A residual is the difference between an observation 

yij and its estimated (or fi tted) value from the statistical model being studied, denoted as ŷij. 

For the completely randomized design ŷ yij i= . and each residual is e y yij ij i= − . This is the 

difference between an observation and the corresponding observed treatment mean. The 

residuals for the paper tensile strength experiment are shown in Table 13-6. Using yi . to cal-

culate each residual essentially removes the effect of hardwood concentration from the data; 

consequently, the residuals contain information about unexplained variability.

The normality assumption can be checked by constructing a normal probability plot
of the residuals. To check the assumption of equal variances at each factor level, plot the 

residuals against the factor levels and compare the spread in the residuals. It is also useful to 

plot the residuals against yi . (sometimes called the fi tted value); the variability in the residu-

als should not depend in any way on the value of yi . Most statistical software packages can 

construct these plots on request. A pattern that appears in these plots usually suggests the 

need for a transformation, that is, analyzing the data in a different metric. For example, if 

the variability in the residuals increases with yi ., a transformation such as log y or y  should 

be considered. In some problems, the dependency of residual scatter on the observed mean 

yi . is very important information. It may be desirable to select the factor level that results 

in maximum response; however, this level may also cause more variation in response from 

run to run.

The independence assumption can be checked by plotting the residuals against the time or 

run order in which the experiment was performed. A pattern in this plot, such as sequences of 

positive and negative residuals, may indicate that the observations are not independent. This 

suggests that time or run order is important or that variables that change over time are impor-

tant and have not been included in the experimental design.

A normal probability plot of the residuals from the paper tensile strength experiment is 

shown in Fig. 13-4. Figures 13-5 and 13-6 present the residuals plotted against the factor 

levels and the fi tted value yi ., respectively. These plots do not reveal any model inadequacy or 

unusual problem with the assumptions.

13-6 Residuals for the Tensile Strength Experiment

Hardwood 
Concentration (%) Residuals

 5 –3.00 –2.00  5.00 1.00 –1.00  0.00

10 –3.67  1.33 –2.67 2.33  3.33 –0.67

15 –3.00  1.00  2.00 0.00 –1.00  1.00

20 –2.17 3.83 0.83 1.83 –3.17 –1.17
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13-2.5 DETERMINING SAMPLE SIZE

In any experimental design problem, the choice of the sample size or number of replicates 

to use is important. Operating characteristic (OC) curves can be used to provide guidance 

here. Recall that an OC curve is a plot of the probability of a type II error ( )β  for various sam-

ple sizes against values of the parameters under test. The OC curves can be used to determine 

how many replicates are required to achieve adequate sensitivity.

The power of the ANOVA test is

 

1 0 0

0 1 1 0

− β =  |   
= |   α − −( )

P H H

P F > f H,a ,a n

( )

(

Reject is false

is falsee) (13-17)

To evaluate this probability statement, we need to know the distribution of the test statistic F0 if 

the null hypothesis is false. Because ANOVA compares several means, the null hypothesis can be 

false in different ways. For example, possibly τ1 0> , τ =2 0, τ3 0< , and so forth. It can be shown 

that the power for ANOVA in Equation 13-17 depends on the τi s’  only through the function
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τ
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FIGURE 13-4 Normal probability plot of residuals 
from the hardwood concentration experiment.
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FIGURE 13-5 Plot of residuals versus factor 
levels (hardwood concentration).
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FIGURE 13-6 Plot of residuals versus yi .
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Therefore, an alternative hypotheses for the τi s’  can be used to calculate Φ2 and this in turn 

can be used to calculate the power. Specifically, it can be shown that if H0 is false, the statistic 

F MS MSE0 = Treatments /  has a noncentral F-distribution with a −1 and n a −( )1  degrees of free-

dom and a noncentrality parameter that depends on Φ .2  Instead of tables for the noncentral  

F-distribution, OC curves are used to evaluate β defined in Equation 13-17. These curves plot 

β against Φ.
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FIGURE 13-7 Operating characteristic curves for the fixed-effects model analysis of  
variance. Top curves for four treatments and bottom curves for five treatments.
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Suppose that fi ve means are being compared in a completely randomized experiment with α = 0 01. . 

The experimenter would like to know how many replicates to run if it is important to reject H0 with 

probability at least 0.90 if τ σ = .=∑ ii
2 2

1

5
5 0/ . The parameter Φ2 is, in this case,

Φ =
τ

σ
= ( ) ==

∑
2

2

1
2 5

5

n

a

n
n

i
i

a

and for the OC curve with v a1 1 5 1 4= − = − = , and v a n n2 1 5 1= − = −( ) ( ) error degrees of freedom refer to the lower 

curve in Figure 13-7. As a fi rst guess, try n = 4 replicates. This yields Φ Φ2 4 2= =, , and v2 5 3 15= =( )  error degrees 

of freedom. Consequently, from Figure 13-7, we fi nd that β � 0 38. . Therefore, the power of the test is approximately 

1 − β = 1 − 0.38 = 0.62, which is less than the required 0.90, so we conclude that n = 4 replicates is not suffi cient. Pro-

ceeding in a similar manner, we can construct the following table:

n Φ2 Φ a n( )− 1 β Power )= −(1 β

4 4 2.00 15 0.38 0.62

5 5 2.24 20 0.18 0.82

6 6 2.45 25 0.06 0.94

Example13-3

Conclusions: At least n = 6 replicates must be run in order to obtain a test with the required power.

OC curves are available for α = 0.05 and α = 0.01 and for several values of the number of 

degrees of freedom for numerator (denoted v1) and denominator (denoted v2). Figure 13-7 

gives representative OC curves, one for a v= =4 31( ) and one for a v= =5 41( ) treatments. 

Notice that for each value of a, there are curves for α = 0.05 and α = 0.01.

In using the curves, we must defi ne the difference in means that we wish to detect in terms 

of τ=∑ ii
a 2

1
. Also, the error variance σ2 is usually unknown. In such cases, we must choose 

ratios of τ σ=∑ ii
a 2 2

1
/  that we wish to detect. Alternatively, if an estimate of σ2 is available, 

one may replace σ2 with this estimate. For example, if we were interested in the sensitivity 

of an experiment that has already been performed, we might use MSE as the estimate of σ2.

13-1. Consider the following computer output.

Source DF SS MS F P-value

Factor ? 117.4 39.1 ? ?

Error 16 396.8 ?

Total 19 514.2

(a) How many levels of the factor were used in this experiment?

(b) How many replicates did the experimenter use?

(c) Fill in the missing information in the ANOVA table. Use 

bounds for the P-value.

(d) What conclusions can you draw about differences in the 

factor-level means?

13-2. Consider the following computer output for an experi-

ment. The factor was tested over four levels.

Source DF SS MS F P-value

Factor ? ? 330.4716 4.42 ?

Error ? ? ? 

Total 31 ? 

(a) How many replicates did the experimenter use? 

(b) Fill in the missing information in the ANOVA table. Use 

bounds for the P-value. 

(c) What conclusions can you draw about differences in the 

factor-level means? 

FOR SECTION 13-2Exercises
 Problem available in WileyPLUS at instructor’s discretion. 

 Tutoring problem available in WileyPLUS at instructor’s discretion.
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13-3. Consider the following computer output for an experiment. 

Source DF SS MS F P-value 

Factor 5 ? ? ? ?

Error ? 27.38 ? 

Total 29 66.34

(a) How many replicates did the experimenter use? 

(b) Fill in the missing information in the ANOVA table. Use 

bounds for the P-value. 

(c) What conclusions can you draw about differences in the 

factor-level means? 

(d) Compute an estimate for σ2. 

13-4. An article in Nature describes an experiment to inves-

tigate the effect on consuming chocolate on cardiovascular 

health (“Plasma Antioxidants from Chocolate,” 2003, Vol. 424, 

pp. 1013). The experiment consisted of using three different 

types of chocolates: 100 g of dark chocolate, 100 g of dark 

chocolate with 200 ml of full-fat milk, and 200 g of milk choc-

olate. Twelve subjects were used, seven women and fi ve men 

with an average age range of 32 2 1. ±  years, an average weight 

of 65 8 3 1. ± .  kg, and body-mass index of 21 9 0 4 2. ± . − kg m . On 

different days, a subject consumed one of the chocolate-factor 

levels, and one hour later total antioxidant capacity of that 

person’s blood plasma was measured in an assay. Data similar 

to those summarized in the article follow.

(a) Construct comparative box plots and study the data. What 

visual impression do you have from examining these plots?

(b) Analyze the experimental data using an ANOVA. If α = .0 05, 

what conclusions would you draw? What would you conclude 

if α = .0 01?

(c) Is there evidence that the dark chocolate increases the mean 

antioxidant capacity of the subjects’ blood plasma?

(d) Analyze the residuals from this experiment.

13-5.  In Design and Analysis of Experiments, 8th edition 

(John Wiley & Sons, 2012), D. C. Montgomery described an 

experiment in which the tensile strength of a synthetic fi ber 

was of interest to the manufacturer. It is suspected that strength 

is related to the percentage of cotton in the fi ber. Five levels of 

cotton percentage were used, and fi ve replicates were run in 

random order, resulting in the following data.

Cotton 
Percentage

Observations

1 2 3 4 5

15  7  7 15 11  9

20 12 17 12 18 18

25 14 18 18 19 19

30 19 25 22 19 23

35  7 10 11 15 11

(a) Does cotton percentage affect breaking strength? Draw 

comparative box plots and perform an analysis of variance. 

Use α = .0 05.

(b) Plot average tensile strength against cotton percentage and 

interpret the results.

(c) Analyze the residuals and comment on model adequacy.

13-6.  In “Orthogonal Design for Process Optimization 

and Its Application to Plasma Etching” (Solid State Tech-
nology, May 1987), G. Z. Yin and D. W. Jillie described 

an experiment to determine the effect of C
2
F

6
 fl ow rate on 

the uniformity of the etch on a silicon wafer used in inte-

grated circuit manufacturing. Three fl ow rates are used in 

the experiment, and the resulting uniformity (in percent) for 

six replicates follows.

C2F6 Flow 
(SCCM)

Observations

1 2 3 4 5 6

125 2.7 4.6 2.6 3.0 3.2 3.8

160 4.9 4.6 5.0 4.2 3.6 4.2

200 4.6 3.4 2.9 3.5 4.1 5.1

(a) Does C
2
F

6
 fl ow rate affect etch uniformity? Construct box 

plots to compare the factor levels and perform the analysis 

of variance. Use α = 0.05.

(b) Do the residuals indicate any problems with the underlying 

assumptions?

13-7.  The compressive strength of concrete is being stud-

ied, and four different mixing techniques are being investi-

gated. The following data have been collected.

(a) Test the hypothesis that mixing techniques affect the strength 

of the concrete. Use α = 0.05.

(b) Find the P-value for the F-statistic computed in part (a).

(c) Analyze the residuals from this experiment.

Mixing
Technique Compressive Strength (psi)

1 3129 3000 2865 2890

2 3200 3300 2975 3150

3 2800 2900 2985 3050

4 2600 2700 2600 2765

13-8.  The response time in milliseconds was determined 

for three different types of circuits in an electronic calculator. 

The results are recorded here.

Factor Subjects (Observations)

1 2 3 4 5 6 7 8 9 10 11 12

DC 118.8 122.6 115.6 113.6 119.5 115.9 115.8 115.1 116.9 115.4 115.6 107.9

DC + MK 105.4 101.1 102.7 97.1 101.9 98.9 100.0 99.8 102.6 100.9 104.5 93.5

MC 102.1 105.8 99.6 102.7 98.8 100.9 102.8 98.7 94.7 97.8 99.7 98.6
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(a) Using α = 0.01, test the hypothesis that the three circuit 

types have the same response time.

(b)  Analyze the residuals from this experiment.

(c) Find a 95% confidence interval on the response time for 

circuit 3.

Circuit Type Response

1 19 22 20 18 25

2 20 21 33 27 40

3 16 15 18 26 17

13-9.  An electronics engineer is interested in 

the effect on tube conductivity of five different types of coating 

for cathode ray tubes in a telecommunications system display 

device. The following conductivity data are obtained.

Coating Type Conductivity
1 143 141 150 146

2 152 149 137 143

3 134 133 132 127

4 129 127 132 129

5 147 148 144 142

(a) Is there any difference in conductivity due to coating type? 

Use α = 0.01.

(b) Analyze the residuals from this experiment.

(c) Construct a 95% interval estimate of the coating type 1 

mean. Construct a 99% interval estimate of the mean dif-

ference between coating types 1 and 4.

13-10.   An article in Environment International [1992, Vol. 

18(4)] described an experiment in which the amount of radon 

released in showers was investigated. Radon-enriched water 

was used in the experiment, and six different orifice diameters 

were tested in shower heads. The data from the experiment are 

shown in the following table. 

Orifice Diameter Radon Released (%)
0.37 80 83 83 85

0.51 75 75 79 79

0.71 74 73 76 77

1.02 67 72 74 74

1.40 62 62 67 69

1.99 60 61 64 66

(a) Does the size of the orifice affect the mean percentage of 

radon released? Use α = 0.05.

(b) Find the P-value for the F-statistic in part (a).

(c) Analyze the residuals from this experiment.

(d) Find a 95% confidence interval on the mean percent of 

radon released when the orifice diameter is 1.40.

13-11.  An article in the ACI Materials Journal (1987, Vol. 

84, pp. 213–216) described several experiments investigating the 

rodding of concrete to remove entrapped air. A 3-inch × 6-inch cyl-

inder was used, and the number of times this rod was used is the 

design variable. The resulting compressive strength of the concrete 

specimen is the response. The data are shown in the following table.

Rodding Level Compressive Strength

10 1530 1530 1440

15 1610 1650 1500

20 1560 1730 1530

25 1500 1490 1510

(a) Is there any difference in compressive strength due to the 

rodding level?

(b) Find the P-value for the F-statistic in part (a).

(c) Analyze the residuals from this experiment. What conclu-

sions can you draw about the underlying model assumptions?

13-12. An article in the Materials Research Bulletin [1991, 

Vol. 26(11)] investigated four different methods of preparing 

the superconducting compound PbMo
6
S

8
. The authors contend 

that the presence of oxygen during the preparation process 

affects the material’s superconducting transition temperature Tc.  

Preparation methods 1 and 2 use techniques that are designed 

to eliminate the presence of oxygen, and methods 3 and 4 allow 

oxygen to be present. Five observations on Tc (in °K) were 

made for each method, and the results are as follows:

Preparation Method Transition Temperature T
c
(°K)

1 14.8 14.8 14.7 14.8 14.9

2 14.6 15.0 14.9 14.8 14.7

3 12.7 11.6 12.4 12.7 12.1

4 14.2 14.4 14.4 12.2 11.7

(a) Is there evidence to support the claim that the presence of 

oxygen during preparation affects the mean transition tem-

perature? Use α = 0.05.

(b) What is the P-value for the F-test in part (a)?

(c) Analyze the residuals from this experiment.

(d) Find a 95% confidence interval on mean T
c
 when method 1 

is used to prepare the material.

13-13. A paper in the Journal of the Association of Asphalt 
Paving Technologists (1990, Vol. 59) described an experiment 

to determine the effect of air voids on percentage retained 

strength of asphalt. For purposes of the experiment, air voids 

are controlled at three levels; low (2–4%), medium (4–6%), 

and high (6–8%). The data are shown in the following table.

Air Voids Retained Strength (%)

Low 106 90 103 90 79 88 92 95

Medium  80 69 94 91 70 83 87 83

High  78 80 62 69 76 85 69 85

(a) Do the different levels of air voids significantly affect mean 

retained strength? Use α = 0.01.

(b) Find the P-value for the F-statistic in part (a).

(c) Analyze the residuals from this experiment.

(d) Find a 95% confidence interval on mean retained strength 

where there is a high level of air voids.

(e) Find a 95% confidence interval on the difference in mean 

retained strength at the low and high levels of air voids.

13-14. An article in Quality Engineering [“Estimating Sources 

of Variation: A Case Study from Polyurethane Product Research”  
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(1999–2000, Vol. 12, pp. 89–96)] reported a study on the 

effects of additives on final polymer properties. In this case, 

polyurethane additives were referred to as cross-linkers. The 

average domain spacing was the measurement of the polymer 

property. The data are as follows:

Cross-
Linker Level Domain Spacing (nm)

−1 8.2 8 8.2 7.9 8.1 8

−0.75 8.3 8.4 8.3 8.2 8.3 8.1

−0.5 8.9 8.7 8.9 8.4 8.3 8.5

0 8.5 8.7 8.7 8.7 8.8 8.8

0.5 8.8 9.1 9.0 8.7 8.9 8.5

1 8.6 8.5 8.6 8.7 8.8 8.8

(a) Is there a difference in the cross-linker level? Draw com-

parative box plots and perform an analysis of variance. Use 

α = . .0 05

(b) Find the P-value of the test. Estimate the variability due to 

random error.

(c) Plot average domain spacing against cross-linker level and 

interpret the results.

(d) Analyze the residuals from this experiment and comment 

on model adequacy.

13-15. In the book Analysis of Longitudinal Data, 2nd ed., 

(2002, Oxford University Press), by Diggle, Heagerty, Liang, 

and Zeger, the authors analyzed the effects of three diets on the 

protein content of cow’s milk. The data shown here were col-

lected after one week and include 25 cows on the barley diet 

and 27 cows each on the other two diets:

Diet Protein Content of Cow’s Milk

Barley 3.63 3.24 3.98 3.66 4.34 4.36 4.17 4.4 3.4 3.75 4.2 4.02 4.02 3.9

Barley lupins+ 3.38 3.8 4.17 4.59 4.07 4.32 3.56 3.67 4.15 3.51 4.2 4.12 3.52 4.08

Lupins 3.69 4.2 3.31 3.13 3.73 4.32 3.04 3.84 3.98 4.18 4.2 4.1 3.25 3.34

Diet (continued)

Barley 3.81 3.62 3.66 4.44 4.23 3.82 3.53 4.47 3.93 3.27 3.3

Barley lupins+ 4.02 3.18 4.11 3.27 3.27 3.97 3.31 4.12 3.92 3.78 4 4.37 3.79

Lupins 3.5 4.13 3.21 3.9 3.5 4.1 2.69 4.3 4.06 3.88 4 3.67 4.27

(a) Does diet affect the protein content of cow’s milk? Draw 

comparative box plots and perform an analysis of variance. 

Use α = . .0 05

(b) Find the P-value of the test. Estimate the variability due to 

random error.

(c) Plot average protein content against diets and interpret the 

results.

(d) Analyze the residuals and comment on model adequacy.

13-16.  An article in Journal of Food Science [2001, Vol. 

66(3), pp. 472–477] reported on a study of potato spoilage based 

on different conditions of acidified oxine (AO), which is a mix-

ture of chlorite and chlorine dioxide. The data follow:

AO Solution (ppm) % Spoilage

 50 100 50 60

100  60 30 30

200  60 50 29

400  25 30 15

(a) Do the AO solutions differ in the spoilage percentage? Use 

α = . .0 05

(b) Find the P-value of the test. Estimate the variability due to 

random error.

(c) Plot average spoilage against AO solution and interpret the 

results. Which AO solution would you recommend for use 

in practice?

(d) Analyze the residuals from this experiment.

13-17.  An experiment was run to determine whether four 

specific firing temperatures affect the density of a certain type 

of brick. The experiment led to the following data.

Temperature 
(°F) Density

100 21.8 21.9 21.7 21.6 21.7 21.5 21.8

125 21.7 21.4 21.5 21.5 — — —

150 21.9 21.8 21.8 21.6 21.5 — —

175 21.9 21.7 21.8 21.7 21.6 21.8 —

(a) Does the firing temperature affect the density of the bricks? 

Use α = 0.05.

(b) Find the P-value for the F-statistic computed in part (a).

(c) Analyze the residuals from the experiment.

13-18. An article in Scientia Iranica [“Tuning the Param-

eters of an Artificial Neural Network (ANN) Using Central  

Composite Design and Genetic Algorithm” (2011, Vol. 18(6), 

pp. 1600–608)], described a series of experiments to tune 

parameters in artificial neural networks. One experiment con-

sidered the relationship between model fitness [measured by 

the square root of mean square error (RMSE) on a separate test 

set of data] and model complexity that were controlled by the 

number of nodes in the two hidden layers. The following data 

table (extracted from a much larger data set) contains three dif-

ferent ANNs: ANN1 has 33 nodes in layer 1 and 30 nodes in 

layer 2, ANN2 has 49 nodes in layer 1 and 45 nodes in layer 2,  

and ANN3 has 17 nodes in layer 1 and 15 nodes in layer 2.
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(a) Construct a box plot to compare the different ANNs. 

(b) Perform the analysis of variance with α = .0 05. What is the 

P-value? 

(c) Analyze the residuals from the experiment. 

(d) Calculate a 95% confi dence interval on RMSE for ANN2.

13-19. An article in Fuel Processing Technology (“Applica-

tion of the Factorial Design of Experiments to Biodiesel Pro-

duction from Lard,” 2009, Vol. 90, pp. 1447–1451) described 

an experiment to investigate the effect of potassium hydroxide 

in synthesis of biodiesel. It is suspected that potassium hydrox-

ide (PH) is related to fatty acid methyl esters (FAME) which 

are key elements in biodiesel. Three levels of PH concentration 

were used, and six replicates were run in a random order. Data 

are shown in the following table. 

PH concentration 
(wt. %) FAME concentration (wt. %) 

0.6 84.3 84.5 86.5 86.7 86.9 86.9 

0.9 89.3 89.4 88.5 88.7 89.2 89.3 

1.2 90.2 90.3 88.9 89.2 90.7 90.9

(a) Construct box plots to compare the factor levels. 

(b) Construct the analysis of variance. Are there any differences 

in PH concentrations at α = .0 05? Calculate the P-value. 

(c) Analyze the residuals from the experiment. 

(d) Plot average FAME against PH concentration and interpret 

your results. 

(e) Compute a 95% confi dence interval on mean FAME when 

the PH concentration is 1.2.

For each of the following exercises, use the previous 

data to complete these parts.

(a) Apply Fisher’s LSD method with α = .0 05 and deter-

mine which levels of the factor differ. 

(b) Use the graphical method to compare means described 

in this section and compare your conclusions to those 

from Fisher’s LSD method. 

13-20. Chocolate type in Exercise 13-4. Use α = .0 05. 

13-21. Cotton percentage in Exercise 13-5. Use α = .0 05. 

13-22.  Flow rate in Exercise 13-6. Use α = .0 01. 

13-23.  Mixing technique in Exercise 13-7. Use α = .0 05. 

13-24. Circuit type in Exercise 13-8. Use α = .0 01. 

13-25. Coating type in Exercise 13-9. Use α = .0 01. 

13-26. Preparation method in Exercise 13-12. Use α = .0 05. 

13-27. Air voids in Exercise 13-13. Use α = .0 05. 

13-28. Cross-linker Exercise 13-14. Use α = .0 05. 

13-29. Diets in Exercise 13-15. Use α = .0 01.

13-30.  Suppose that four normal populations have com-

mon variance σ2 = 25 and means μ μ μ1 2 3= = =50 60 50, , ,  and 

μ4 = 60. How many observations should be taken on each popu-

lation so that the probability of rejecting the hypothesis of equal-

ity of means is at least 0.90? Use α = .0 05.

13-31. Suppose that fi ve normal populations have common vari-

ance σ2 = 100 and means μ μ μ μ1 2 3 4= = =175 190 160, , ,  = 200, 

and μ5 = 215. How many observations per population must be 

taken so that the probability of rejecting the hypothesis of equal-

ity of means is at least 0.95? Use α = .0 01.

13-32.  Suppose that four normal populations with common 

variance σ2 are to be compared with a sample size of eight obser-

vations from each population. Determine the smallest value for 

i i=∑ /
1

4 2 2τ σ  that can be detected with power 90%. Use α = .0 05. 

13-33. Suppose that fi ve normal populations with common 

variance σ2 are to be compared with a sample size of seven 

observations from each. Suppose that τ τ1 4 0= ⋅ ⋅ ⋅ = = . What is 

the smallest value for τ σ5
2 2/  that can be detected with power 

90% and α = .0 01?

ANN type RMSE 

ANN1 0.0121 0.0132 0.0011 0.0023 0.0391 0.0054 0.0003 0.0014  

ANN2 0.0031 0.0006 0 0 0.022 0.0019 0.0007 0  

ANN3 0.1562 0.2227 0.0953 0.8911 1.3892 0.0154 1.7916 0.1992  

13-3 The Random-Effects Model
13-3.1 FIXED VERSUS RANDOM FACTORS

In many situations, the factor of interest has a large number of possible levels. The analyst is 

interested in drawing conclusions about the entire population of factor levels. If the experimenter 

randomly selects a of these levels from the population of factor levels, we say that the factor is 

a random factor. Because the levels of the factor actually used in the experiment are chosen 

randomly, the conclusions reached are valid for the entire population of factor levels. We assume 

that the population of factor levels is either of infi nite size or is large enough to be consid-

ered infi nite. Notice that this is a very different situation than the one we encountered in the 

fi xed-effects case in which the conclusions apply only for the factor levels used in the experiment.
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13-3.2 ANOVA AND VARIANCE COMPONENTS

The linear statistical model is

 Y
i , , , a

j , , , n
ij i ij= μ + τ +  

=  …
=  …

⎧
⎨
⎩

e
1 2

1 2
 (13-18)

where the treatment effects τi and the errors εij are independent random variables. Note that 

the model is identical in structure to the fixed-effects case, but the parameters have a different 

interpretation. If the variance of the treatment effects τi is στ
2, by independence the variance 

of the response is

 V Yij( ) = σ + στ
2 2 (13-19)

The variances στ
2 and σ2 are called variance components, and the model, Equation 13-19, is 

called the components of variance model or the random-effects model. To test hypotheses 

in this model, we assume that the errors eij are normally and independently distributed with 

mean zero and variance σ2 and that the treatment effects τi are normally and independently 

distributed with mean zero and variance στ
2.*

For the random-effects model, testing the hypothesis that the individual treatment effects 

are zero is meaningless. It is more appropriate to test hypotheses about στ
2. Specifically,

   H H >0
2

1
20 0: :σ = στ τ

If σ =τ
2 0, all treatments are identical; but if σ >τ

2 0, there is variability between treatments.

The ANOVA decomposition of total variability is still valid; that is,

 SS SS SST E= +Treatments  (13-20)

However, the expected values of the mean squares for treatments and error are somewhat dif-

ferent than in the fixed-effects case.

In the random-effects model for a single-factor, completely randomized experiment, 

the expected mean square for treatments is

  
E MS E

SS

a
nTreatments

Treatments( ) =
−

⎛
⎝⎜

⎞
⎠⎟

= σ + στ
1

2 2

 (13-21)

and the expected mean square for error is

  E MS E
SS

a n
E

E( ) =
−( )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= σ
1

2  (13-22)

Expected Values of 
Mean Squares: Ran-

dom Effects

*The assumption that the { }τi  are independent random variables implies that the usual assumption of 

τ ==∑ ii

n
0

1
 from the fixed-effects model does not apply to the random-effects model.

From examining the expected mean squares, it is clear that both MSE and MSTreatments estimate 
σ2 when H0 0: σ2

τ =  is true. Furthermore, MSE and MSTreatments are independent. Consequently, 

the ratio

 F
MS

MSE
0 = Treatments  (13-23)

is an F random variable with a − 1 and a n( )− 1  degrees of freedom when H0 is true. The null 

hypothesis would be rejected at the a-level of significance if the computed value of the test 

statistic f f a a n0 1 1> − −α, , ( ).
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The computational procedure and construction of the ANOVA table for the random-effects 

model are identical to the fi xed-effects case. The conclusions, however, are quite different 

because they apply to the entire population of treatments.

Usually, we also want to estimate the variance components (σ2 and στ
2) in the model. The 

procedure that we use to estimate σ2 and στ
2 is called the analysis of variance method because 

it uses the information in the analysis of variance table. It does not require the normality 

assumption on the observations. The procedure consists of equating the expected mean squares 

to their observed values in the ANOVA table and solving for the variance components. When 

equating observed and expected mean squares in the one-way classifi cation random-effects 

model, we obtain

MS n MSETreatments and= σ + σ = στ
2 2 2 

Therefore, the estimators of the variance components are

 σ̂ =2 MSE  (13-24)

and

 σ̂ = −
τ
2 MS MS

n
ETreatments  (13-25)

ANOVA Variance 
Components 

Estimates

Sometimes the analysis of variance method produces a negative estimate of a variance com-

ponent. Because variance components are by defi nition non-negative, a negative estimate of a 

variance component is disturbing. One course of action is to accept the estimate and use it as 

evidence that the true value of the variance component is zero, assuming that sampling varia-

tion led to the negative estimate. Although this approach has intuitive appeal, it will disturb the 

statistical properties of other estimates. Another alternative is to reestimate the negative variance 

component with a method that always yields non-negative estimates. Still another possibility is 

to consider the negative estimate as evidence that the assumed linear model is incorrect, requir-

ing that a study of the model and its assumptions be made to fi nd a more appropriate model.

Textile Manufacturing In Design and Analysis of Experiments, 8th edition (John Wiley, 2012), 

D. C. Montgomery describes a single-factor experiment involving the random-effects model in 

which a textile manufacturing company weaves a fabric on a large number of looms. The company is interested in 

loom-to-loom variability in tensile strength. To investigate this variability, a manufacturing engineer selects four looms 

at random and makes four strength determinations on fabric samples chosen at random from each loom. The data are 

shown in Table 13-7 and the ANOVA is summarized in Table 13-8.

13-7 Strength Data for Example 13-4

Loom

Observations

1 2 3 4 Total Average

1 98 97 99 96  390 97.5

2 91 90 93 92  366 91.5

3 96 95 97 95  383 95.8

4 95 96 99 98  388 97.0

1527 95.45    

13-8 Analysis of Variance for the Strength Data

Source of 
Variation

Sum of 
Squares

Degrees of 
Freedom

Mean 
Square f0 P-value

Looms  89.19  3 29.73 15.68 1.88 E-4

Error  22.75 12  1.90

Total 111.94 15

From the analysis of variance, we conclude that the looms in the plant differ signifi cantly in their ability to produce 

fabric of uniform strength. The variance components are estimated by σ̂ = .2 1 90 and

σ̂ = . − . = .τ
2 29 73 1 90

4
6 96

Example 13-4

c13.indd   560 9/24/2013   7:27:11 PM



Section 13-3/The Random-Effects Model   561

This example illustrates an important application of the analysis of variance—the isola-

tion of different sources of variability in a manufacturing process. Problems of excessive 

variability in critical functional parameters or properties frequently arise in quality-improve-

ment programs. For example, in the previous fabric strength example, the process mean is 

estimated by y = .95 45 psi, and the process standard deviation is estimated by ˆ ˆ ( )σ =y ijV Y
= 8 86 2 98. = .  psi. If strength is approximately normally distributed, the distribution 

of strength in the outgoing product would look like the normal distribution shown in Fig. 

13-8(a). If the lower specifi cation limit (LSL) on strength is at 90 psi, a substantial propor-

tion of the process output is fallout—that is, scrap or defective material that must be sold as 

second quality, and so on. This fallout is directly related to the excess variability resulting 

from differences between looms. Variability in loom performance could be caused by faulty 

setup, poor maintenance, inadequate supervision, poorly trained operators, and so forth. The 

engineer or manager responsible for quality improvement must identify and remove these 

sources of variability from the process. If this can be done, strength variability will be greatly 

reduced, perhaps as low as ˆ ˆσ = σ = . = .Y
2 1 90 1 38 psi, as shown in Fig. 13-8(b). In this 

improved process, reducing the variability in strength has greatly reduced the fallout, result-

ing in lower cost, higher quality, a more satisfi ed customer, and an enhanced competitive 

position for the company.

Therefore, the variance of strength in the manufacturing process is estimated by

     V Yij( ) . . .� � �σ στ + = + =2 2 6 96 1 90 8 86 

Conclusion: Most of the variability in strength in the output product is attributable to differences between looms.

80 85 90 95 100 105 110    psi

LSL

(a)

Process

fallout

80 85 90 95 100 105 110     psi

LSL

(b)

FIGURE 13-8 The distribution of fabric strength. (a) Current process, (b) Improved process.

13-34.  An article in the Journal of the Electrochemical 
Society [1992, Vol. 139(2), pp. 524–532)] describes an experi-

ment to investigate the low-pressure vapor deposition of polysili-

con. The experiment was carried out in a large-capacity reactor 

at Sematech in Austin, Texas. The reactor has several wafer posi-

tions, and four of these positions were selected at random. The 

response variable is fi lm thickness uniformity. Three replicates 

of the experiment were run, and the data are as follows:

(a) Is there a difference in the wafer positions? Use α = 0.05.

(b) Estimate the variability due to wafer positions.

(c) Estimate the random error component.

(d) Analyze the residuals from this experiment and comment 

on model adequacy.

Wafer Position Uniformity

1 2.76 5.67 4.49

2 1.43 1.70 2.19

3 2.34 1.97 1.47

4 0.94 1.36 1.65

13-35.  A textile mill has a large number of looms. Each 

loom is supposed to provide the same output of cloth per 

FOR SECTION 13-3Exercises
 Problem available in WileyPLUS at instructor’s discretion. 

 Tutoring problem available in WileyPLUS at instructor’s discretion.
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minute. To investigate this assumption, five looms are chosen 

at random, and their output is measured at different times. The 

following data are obtained:

Loom Output (lb/min)
1 4.0 4.1 4.2 4.0 4.1

2 3.9 3.8 3.9 4.0 4.0

3 4.1 4.2 4.1 4.0 3.9

4 3.6 3.8 4.0 3.9 3.7

5 3.8 3.6 3.9 3.8 4.0

(a) Are the looms similar in output? Use α = 0.05.

(b) Estimate the variability between looms.

(c) Estimate the experimental error variance.

(d) Analyze the residuals from this experiment and check for 

model adequacy.

13-36. In the book Bayesian Inference in Statistical Analysis 

(1973, John Wiley and Sons) by Box and Tiao, the total product 

yield for five samples was determined randomly selected from 

each of six randomly chosen batches of raw material.

Batch Yield (in grams)
1 1545 1440 1440 1520 1580

2 1540 1555 1490 1560 1495

3 1595 1550 1605 1510 1560

4 1445 1440 1595 1465 1545

5 1595 1630 1515 1635 1625

6 1520 1455 1450 1480 1445

(a) Do the different batches of raw material significantly affect 

mean yield? Use α = . .0 01

(b) Estimate the variability between batches.

(c) Estimate the variability between samples within batches.

(d) Analyze the residuals from this experiment and check for 

model adequacy.

13-37.  An article in the Journal of Quality Technology [1981, 

Vol. 13(2), pp. 111–114)] described an experiment that investigated 

the effects of four bleaching chemicals on pulp brightness. These 

four chemicals were selected at random from a large population of 

potential bleaching agents. The data are as follows:

(a) Is there a difference in the chemical types? Use α = 0.05.

(b) Estimate the variability due to chemical types.

(c) Estimate the variability due to random error.

(d) Analyze the residuals from this experiment and comment 

on model adequacy.

Chemical Pulp Brightness

1 77.199 74.466 92.746 76.208 82.876

2 80.522 79.306 81.914 80.346 73.385

3 79.417 78.017 91.596 80.802 80.626

4 78.001 78.358 77.544 77.364 77.386

13-38.  Consider the vapor-deposition experiment described 

in Exercise 13-34.

(a) Estimate the total variability in the uniformity response.

(b) How much of the total variability in the uniformity response 

is due to the difference between positions in the reactor?

(c) To what level could the variability in the uniformity response 

be reduced if the position-to-position variability in the reac-

tor could be eliminated? Do you believe this is a substantial 

reduction?

13-39. Consider the cloth experiment described in Exercise 13-35.

(a) Estimate the total variability in the output response.

(b) How much of the total variability in the output response is 

due to the difference between looms? 

(c) To what level could the variability in the output response 

be reduced if the loom-to-loom variability could be elimi-

nated? Do you believe this is a significant reduction? 

13-40. Reconsider Exercise 13-8 in which the effect of differ-

ent circuits on the response time was investigated. Suppose that 

the three circuits were selected at random from a large number 

of circuits.

(a) How does this change the interpretation of the experiment? 

(b) What is an appropriate statistical model for this experiment?

(c) Estimate the parameters of this model. 

13-41. Reconsider Exercise 13-15 in which the effect of differ-

ent diets on the protein content of cow’s milk was investigated. 

Suppose that the three diets reported were selected at random from 

a large number of diets. To simplify, delete the last two observa-

tions in the diets with n = 27 (to make equal sample sizes).

(a) How does this change the interpretation of the experiment?

(b) What is an appropriate statistical model for this experiment?

(c) Estimate the parameters of this model.

13-4 Randomized Complete Block Design
13-4.1 DESIGN AND STATISTICAL ANALYSIS

In many experimental design problems, it is necessary to design the experiment so that the vari-

ability arising from a nuisance factor can be controlled. For example, consider the situation of 

Example 10-10 in which two different methods were used to predict the shear strength of steel 

plate girders. Because each girder has different strength (potentially), and this variability in 

strength was not of direct interest, we designed the experiment by using the two test methods 

on each girder and then comparing the average difference in strength readings on each girder to 

zero using the paired t-test. The paired t-test is a procedure for comparing two treatment means 

when all experimental runs cannot be made under homogeneous conditions. Alternatively, we 

c13.indd   562 9/24/2013   7:27:14 PM



Section 13-4/Randomized Complete Block Design   563

can view the paired t-test as a method for reducing the background noise in the experiment by 

blocking out a nuisance factor effect. The block is the nuisance factor, and in this case, the nui-

sance factor is the actual experimental unit—the steel girder specimens used in the experiment.

The randomized block design is an extension of the paired t-test to situations where the 

factor of interest has more than two levels; that is, more than two treatments must be com-

pared. For example, suppose that three methods could be used to evaluate the strength read-

ings on steel plate girders. We may think of these as three treatments, say t1, t2, and t3. If we 

use four girders as the experimental units, a randomized complete block design (RCBD)
would appear as shown in Fig. 13-9. The design is called a RCBD because each block is large 

enough to hold all the treatments and because the actual assignment of each of the three treat-

ments within each block is done randomly. Once the experiment has been conducted, the data 

are recorded in a table, such as is shown in Table 13-9. The observations in this table, say, yij, 

represent the response obtained when method i is used on girder j .
The general procedure for a RCBD consists of selecting b blocks and running a complete 

replicate of the experiment in each block. The data that result from running a RCBD for 

investigating a single factor with a levels and b blocks are shown in Table 13-10. There are a
observations (one per factor level) in each block, and the order in which these observations are 

run is randomly assigned within the block.

We now describe the statistical analysis for the RCBD. Suppose that a single factor with a
levels is of interest and that the experiment is run in b blocks. The observations may be repre-

sented by the linear statistical model

Y
i , , , a

j , , ,b
ij i j ij= μ + τ + β +

=  …  
=  …  

⎧
⎨
⎩

e
1 2

1 2
 (13-26)

where μ is an overall mean, τi is the effect of the ith treatment, β j is the effect of the jth block, 

and eij is the random error term, which is assumed to be normally and independently distrib-

uted with mean zero and variance σ2. Furthermore, the treatment and block effects are defi ned 

as deviations from the overall mean, so τ ==  ∑ ij
a

0
1

 and β ==∑ jj
b

0
1

. This was the same type of 

defi nition used for completely randomized experiments in Section 13-2. We also assume that 

treatments and blocks do not interact. That is, the effect of treatment i is the same regardless 

of which block (or blocks) in which it is tested. We are interested in testing the equality of the 

treatment effects. That is,

13-9 A Randomized Complete Block Design

Treatments 
(Method)

Block (Girder)

1 2 3 4
1 y

11
y

12
y

13
y

14

2 y
21

y
22

y
23

y
24

3 y
31

y
32

y
33

y
34

Block 1

t2

t1

t3

Block 2

t1

t3

t2

Block 3

t3

t2

t1

Block 4

t2

t1

t3

FIGURE 13-9 A randomized complete block design.

Treatments

Blocks

Totals Averages1 2 … b

1 y11 y12
… y b1 y1. y1.

2 y21 y22
… y b2 y2. y2.


 
 
 
 
 

a ya1 ya2

… yab ya . ya .

Totals y.1 y.2 … y b. y..

Averages y.1 y.2 … y b. y..

13-10 A Randomized Complete Block Design with a Treatments and b Blocks
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 H H ia i0 1 2 10 0: : τ = τ = ⋅ ⋅ ⋅ = τ =  τ ≠     at least one

The analysis of variance can be extended to the RCBD. The procedure uses a sum of 

squares identity that partitions the total sum of squares into three components.

ANOVA Sums 
of Squares Iden-

tity: Randomized 
Complete Block 

Experiment

The sum of squares identity for the randomized complete block design is

y y b y y a y yij i
i

a

j
j

b

j

b

i

a

− ..( ) = . − ..( ) + . − ..( )

+

=  
 

=  ==
∑ ∑∑∑

2 2

1

2

111

yy y y yij j i
j

b

i

a

− . − . + ..( )
==  
∑∑

2

11

 (13-27)

or symbolically

SS SS SS SST E= + +Treatments Blocks

Furthermore, the degrees of freedom corresponding to these sums of squares are

ab a b a b− = −( ) + −( ) + −( ) −( )1 1 1 1 1

For the randomized block design, the relevant mean squares are

MS
SS

a

MS
SS

b

MS
SS

a
E

E

Treatments
Treatments

Blocks
Blocks

=
−

=
−

=
−

1

1

1(( ) −( )b 1

The expected values of these mean squares can be shown to be as follows:

Expected Mean 
Squares: Randomized 

Complete Block 
Experiment E MS

b

a

E MS
a

b

i
i

a

j
j

b

Treatments

Blocks

( ) = σ +
τ

−

( ) = σ +
β

−

=

=

∑

∑

2

2

1

2

2

1

1

1

EE MSE( ) = σ2

Therefore, if the null hypothesis H0 is true so that all treatment effects τi = 0, MSTreatments is an 

unbiased estimator of σ2, and if H0 is false, MSTreatments overestimates σ2. The mean square for 

error is always an unbiased estimate of σ2. To test the null hypothesis that the treatment effects 

are all zero, we use the ratio

 F
MS

MSE
0 = Treatments  (13-28)

which has an F-distribution with a − 1 and ( )( )a b− −1 1  degrees of freedom if the null hypoth-

esis is true. We would reject the null hypothesis at the a-level of significance if the computed 

value of the test statistic in Equation 13-28 is f f0 > α − − −,a a b1,( 1)( 1).

In practice, we compute SST , SSTreatments and SSBlocks and then obtain the error sum of squares 

SSE by subtraction. The appropriate computing formulas are as follows.

c13.indd   564 9/24/2013   7:27:49 PM



Section 13-4/Randomized Complete Block Design   565

Computing 
Formulas for 

ANOVA: 
Randomized Block 

Experiment

The computing formulas for the sums of squares in the analysis of variance for a 

RCBD are

SS y
y

ab
T ij

j

b

i

a

= − ..
==  
∑∑ 2

2

11

 (13-29)

SS
b

y
y

ab
i

i

a

Treatments = . − ..
=  
∑1 2

2

1

 (13-30)

SS
a

y
y

ab
j

j

b

Blocks = . − ..
=  
∑1 2

2

1

 (13-31)

and

SS SS SS SSE T= − −Treatments Blocks (13-32)

The computations are usually arranged in an ANOVA table, such as is shown in Table 13-11. 

Generally, computer software is used to perform the analysis of variance for a RCBD.

Fabric Strength An experiment was performed to determine the effect of four different chemicals 

on the strength of a fabric. These chemicals are used as part of the permanent press fi nishing process. 

Five fabric samples were selected, and a RCBD was run by testing each chemical type once in random order on each 

fabric sample. The data are shown in Table 13-12. We test for differences in means using an ANOVA with α = 0.01.

The sums of squares for the analysis of variance are computed as follows:

SS y
y

ab
T ij

ji

= − .. = .( ) + .( ) + ⋅ ⋅ ⋅ + .( ) −
.( )

==  
∑∑ 2

2

1

5

1

4
2 2 2

1 3 1 6 3 4
39 2

22

2 2

1

4
2 2

20
25 69

5 7 8 8 6

= .

= . − ..  =
.( ) + .( ) + .

=
∑SS

y

b

y

ab
i

i
Treatments

99 17 8

5

39 2

20
18 04

2 2 2

2 2

1

5

( ) + .( ) −
.( ) = .

=
.

− ..  =
=
∑SS

y

a

y

ab
j

j
Blocks

99 2 10 1 3 5 8 8 7 6

4

39 2

20
6 69

2 2 2 2 2 2.( ) + .( ) + .( ) + .( ) + .( ) −
.( ) = .

=SS SSE TT SS SS− − = . − . − . = .Blocks Treatments 25 69 6 69 18 04 0 96

The ANOVA is summarized in Table 13-13. Because f f0 0 01 3 1275 13= > = 5.95. . , ,  (the P-value is 4 79 10 8. × −  from 

computer software), we conclude that there is a signifi cant difference in the chemical types so far as their effect on 

strength is concerned.

Example 13-5

Source of 
Variation Sum of Squares

Degrees of 
Freedom Mean Square F0

Treatments SSTreatments a − 1
SS

a
Treatments

−1

MS

MSE

Treatments

Blocks SSBlocks b − 1
SS

b
Blocks

−1

Error SSE (by subtraction) ( )( )a b− − 11  
SS

a b
E

( )( )− −1 1

Total SST ab − 1

13-11 ANOVA for a Randomized Complete Block Design
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When Is Blocking Necessary?
Suppose that an experiment is conducted as a RCBD and blocking was not really necessary. 

There are ab observations and ( ) ( )a b− − 11  degrees of freedom for error. If the experiment had 

been run as a completely randomized single-factor design with b replicates, we would have had 

a b( )− 1  degrees of freedom for error. Therefore, blocking has cost a b a b b( )− − ( − 1)( − 1) = − 11

degrees of freedom for error. This loss in degrees of freedom increases the critical value from 

the F-distribution in Equation 13-28. Consequently, to detect a treatment effect, greater differ-

ences in treatment means are needed. However, because the loss in error degrees of freedom is 

usually small, if there is a reasonable chance that block effects may be important, the experi-

menter should use the RCBD.

For example, consider the experiment described in Example 13-5 as a single-factor experi-

ment with no blocking. We would then have 16 degrees of freedom for error. In the RCBD, 

there are 12 degrees of freedom for error. Therefore, blocking has cost only 4 degrees of 

freedom, which is a very small loss considering the possible gain in information that would 

be achieved if block effects are really important. The block effect in Example 13-5 is large, 

and if we had not blocked, SSBlocks would have been included in the error sum of squares for 

the completely randomized analysis. This would have resulted in a much larger MSE, mak-

ing it more diffi cult to detect treatment differences. As a general rule, when in doubt as to the 

importance of block effects, the experimenter should block and gamble that the block effect 

does exist. If the experimenter is wrong, the slight loss in the degrees of freedom for error will 

have a negligible effect unless the number of degrees of freedom is very small.

Computer Solution
Table 13-14 presents computer output for the RCBD in Example 13-5. The results agree 

closely with the hand calculations from Table 13-13.

Notice that the software computes an F-statistic for the blocks (the fabric samples). The 

validity of this ratio as a test statistic for the null hypothesis of no block effects is doubtful 

because the blocks represent a restriction on randomization; that is, we have only randomized 

within the blocks. If the blocks are not chosen at random, or if they are not run in random 

order, the F-ratio for blocks may not provide reliable information about block effects. For 

more discussion see Montgomery (2012).

13-12 Fabric Strength Data—Randomized Complete Block Design

Fabric Sample Treatment Totals Treatment Averages

Chemical Type 1 2 3 4 5 yi . yi .
1 1.3  1.6 0.5 1.2 1.1  5.7 1.14

2 2.2  2.4 0.4 2.0 1.8  8.8 1.76

3 1.8  1.7 0.6 1.5 1.3  6.9 1.38

4 3.9  4.4 2.0 4.1 3.4 17.8 3.56

Block totals y j.
Block averages y. j

9.2 
2.30

10.1 
 2.53

3.5 
0.88

8.8 
2.20

7.6 
1.90

   39.2(y..)
1.96(y..)

13-13 Analysis of Variance for the Randomized Complete Block Experiment

Source of Variation Sum of Squares Degrees of Freedom Mean Square f0 P-value

Chemical types (treatments) 18.04  3 6.01 75.13 4.79 E-8

Fabric samples (blocks)  6.69  4 1.67

Error  0.96 12 0.08

Total 25.69 19
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13-4.2 MULTIPLE COMPARISONS

When the ANOVA indicates that a difference for the treatment means exists the treatment 

means, we may need to perform some follow-up tests to isolate the specific differences. Any 

multiple comparison method, such as Fisher’s LSD method, could be used for this purpose.

Table 13-14 Computer Output for the Randomized Complete Block Design in Example 13-5

Factor Type Levels Values

Chemical fixed 4 1 2 3 4

Fabric S fixed 5 1 2 3 4 5

Analysis of Variance for Strength

Source DF SS MS F P

Chemical  3 18.0440 6.0147 75.89 0.000

Fabric  4 6.6930 1.6733 21.11 0.000

Error 12 0.9510 0.0792

Total 19 25.6880

F-test with denominator: Error

Denominator MS = 0.079250 with 12 degrees of freedom

Numerator DF MS F P

Chemical 3 6.015 75.89 0.000

Fabric S 4 1.673 21.11 0.000

We illustrate Fisher’s LSD method. The four chemical type averages from Example 13-5 are:

y y y y1 2 3 41 14 1 76 1 38 3 56. = . . = . . = . . = .
Each treatment average uses b = 5 observations (one from each block). We use α = 0.05, so 

t0 025 12 2 179. , .= . Therefore, the value of the LSD is

LSD = = .
.( ) = ..t

MS

b
,

E
0 025 12

2
2 179

2 0 08

5
0 39

Any pair of treatment averages that differ by 0.39 or more indicates that this pair of treatment 

means is significantly different. The comparisons follow:

4 3 56 1 14 2 42 0 39

4 3 3 56 1

4 1

4 3

 vs  1

 vs  

. = . − . = . − . = . .

. = . − . = . − .
y y >

y y 338 2 18 0 39

4 2 3 56 1 76 1 80 0 39

2 1

4 2

2

= . .
. = . − . = . − . = . .
. =

>

y y >

y

 vs  

 vs  .. − . = . − . = . .
. = . − . = . − . = .

y >

y y <
1

2 3

1 76 1 14 0 62 0 39

2 3 1 76 1 38 0 38 0 vs  ..
. = . − . = . − . = . .

39

3 1 1 38 1 14 0 24 0 393 1 vs  y y <

Figure 13-10 presents the results graphically. The underlined pairs of means are not different. 

The LSD procedure indicates that chemical type 4 results in significantly different strengths 

than the other three types do. Chemical types 2 and 3 do not differ, and types 1 and 3 do not 

differ. There may be a small difference in strength for types 1 and 2.

FIGURE 13-10 Results of Fisher’s LSD method.

0 1 2 3 4 6

2 41 3

5

Chemical type
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FIGURE 13-11 Normal probability 
plot of residuals from the randomized 
complete block design.
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FIGURE 13-12 Residuals by 
treatment from the randomized 
complete block design.
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FIGURE 13-13 Residuals by block from the randomized 
complete block design.

1

0.5

0

–0.5

2 3 4

eij

5

FIGURE 13-14 Residuals versus ŷij from the 
randomized complete block design.
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13-4.3 RESIDUAL ANALYSIS AND MODEL CHECKING

In any designed experiment, it is always important to examine the residuals and to check for 

violation of basic assumptions that could invalidate the results. As usual, the residuals for the 

RCBD are simply the differences in the observed and estimated (or fitted) values from the 

statistical model,

 e y yij ij ij= − ˆ  (13-33)

and the fitted values are

ŷ y y yij i j= . + . − ..

The fitted value represents the estimate of the mean response when the ith treatment is run 

in the jth block. The residuals from the chemical type experiment are shown in Table 13-15.

Figures 13-11, 13-12, 13-13, and 13-14 present the important residual plots for the experi-

ment. These residual plots are usually constructed by computer software. When treated with 

the four chemicals, there is some indication that fabric sample (block) 3 has greater variability 

in strength than the other samples. Chemical type 4, which provides the greatest strength, 

also has somewhat more variability in strength. Follow-up experiments may be necessary to 

confirm these findings if they are potentially important.
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Chemical 
Type

Fabric Sample

1 2 3 4 5

1 –0.18 –0.10  0.44 –0.18  0.02

2  0.10  0.08 –0.28  0.00  0.10

3  0.08 –0.24  0.30 –0.12 –0.02

4  0.00  0.28 –0.48  0.30 –0.10

13-15 Residuals from the Randomized Complete Block Design

13-42.  Consider the following computer output from a RCBD.

Source DF SS MS F P

Factor ? 193.800 64.600 ? ?

Block 3 464.218 154.739

Error ? ? 4.464

Total 15 698.190

(a) How many levels of the factor were used in this experiment?

(b) How many blocks were used in this experiment?

(c) Fill in the missing information. Use bounds for the P-value.

(d) What conclusions would you draw if α = 0.05? What would 

you conclude if α = 0.01?

13-43. Consider the following computer output from a RCBD. 

There are four levels of the factor and fi ve blocks.

Source DF SS MS F P 

Factor ? ? 115.2067 3.49809 ? 

Block ? ? 71.9775 

Error ? ? ? 

Total ? ? 

(a) Fill in the missing information. Use bounds for the P-value. 

(b) What conclusions would you draw if α = .0 05? What would 

you conclude if α = .0 01? 

13-44. Exercise 13-4 introduced you to an experiment to inves-

tigate the potential effect of consuming chocolate on cardiovas-

cular health. The experiment was conducted as a completely 

randomized design, and the exercise asked you to use the ANOVA 

to analyze the data and draw conclusions. Now assume that the 

experiment had been conducted as an RCBD with the subjects 

considered as blocks. Analyze the data using this assumption. 

What conclusions would you draw (using α = 0.05) about the 

effect of the different types of chocolate on cardiovascular health? 

Would your conclusions change if α = 0.01?

13-45. Reconsider the experiment of Exercise 13-5. Suppose 

that the experiment was conducted as a RCBD with blocks 

formed by days (denoted as columns in the data table). In the 

experiment, the primary interest is still in the effect of cotton 

percentage and day is considered a nuisance factor. 

(a) Consider day as a block, and re-estimate the ANOVA. 

(b) Does cotton percentage still affect strength at α = .0 05? 

(c) Compare the conclusions here with those obtained from the 

analysis without blocks.

13-46.  An article in Quality Engineering [“Designed 

Experiment to Stabilize Blood Glucose Levels” (1999–2000, 

Vol. 12, pp. 83–87)] described an experiment to minimize vari-

ations in blood glucose levels. The treatment was the exercise 

time on a Nordic Track cross-country skier (10 or 20 min). 

The experiment was blocked for time of day. The data were 

as follows:

Exercise (min) Time of Day Average Blood Glucose

10 pm  71.5

10 am 103.0

20 am  83.5

20 pm 126.0

10 am 125.5

10 pm 129.5

20 pm  95.0

20 am  93.0

(a) Is there an effect of exercise time on the average blood 

glucose? Use α = . .0 05

(b) Find the P-value for the test in part (a).

(c) Analyze the residuals from this experiment.

13-47.  In “The Effect of Nozzle Design on the Stability 

and Performance of Turbulent Water Jets” (Fire Safety Journal, 
August 1981, Vol. 4), C. Theobald described an experiment in 

which a shape measurement was determined for several differ-

ent nozzle types at different levels of jet effl ux velocity. Interest 

in this experiment focuses primarily on nozzle type, and veloc-

ity is a nuisance factor. The data are as follows:

(a) Does nozzle type affect shape measurement? Compare the 

nozzles with box plots and the analysis of variance.

(b) Use Fisher’s LSD method to determine specifi c differ-

ences among the nozzles. Does a graph of the average 

FOR SECTION 13-4EXERCISES
 Problem available in WileyPLUS at instructor’s discretion. 

 Tutoring problem available in WileyPLUS at instructor’s discretion.
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(or standard deviation) of the shape measurements versus 

nozzle type assist with the conclusions?

(c) Analyze the residuals from this experiment.

Nozzle Type

Jet Effl ux Velocity (m/s)

11.73 14.37 16.59 20.43 23.46 28.74

1  0.78  0.80  0.81  0.75  0.77  0.78

2  0.85  0.85  0.92  0.86  0.81  0.83

3  0.93  0.92  0.95  0.89  0.89  0.83

4  1.14  0.97  0.98  0.88  0.86  0.83

5  0.97  0.86  0.78  0.76  0.76  0.75

13-48. In Design and Analysis of Experiments, 8th edition 

(John Wiley & Sons, 2012), D. C. Montgomery described an 

experiment that determined the effect of four different types 

of tips in a hardness tester on the observed hardness of a metal 

alloy. Four specimens of the alloy were obtained, and each tip 

was tested once on each specimen, producing the following data:

Type of Tip

Specimen

1 2 3 4

1 9.3 9.4 9.6 10.0

2 9.4 9.3 9.8  9.9

3 9.2 9.4 9.5  9.7

4 9.7 9.6 10.0 10.2

(a) Is there any difference in hardness measurements between 

the tips?

(b) Use Fisher’s LSD method to investigate specifi c differ-

ences between the tips.

(c) Analyze the residuals from this experiment.

13-49.  An article in the American Industrial Hygiene 
Association Journal (1976, Vol. 37, pp. 418–422) described a 

fi eld test for detecting the presence of arsenic in urine samples. 

The test has been proposed for use among forestry workers 

because of the increasing use of organic arsenics in that indus-

try. The experiment compared the test as performed by both a 

trainee and an experienced trainer to an analysis at a remote 

laboratory. Four subjects were selected for testing and are 

considered as blocks. The response variable is arsenic content 

(in ppm) in the subject’s urine. The data are as follows:

(a) Is there any difference in the arsenic test procedure?

(b) Analyze the residuals from this experiment.

Test

Subject

1 2 3 4

Trainee 0.05 0.05 0.04 0.15

Trainer 0.05 0.05 0.04 0.17

Lab 0.04 0.04 0.03 0.10

13-50. An article in the Food Technology Journal (1956, Vol. 10, 

pp. 39–42) described a study on the protopectin content of 

tomatoes during storage. Four storage times were selected, and 

samples from nine lots of tomatoes were analyzed. The proto-

pectin content (expressed as hydrochloric acid soluble fraction 

mg/kg) is in Table 13E-1.

(a) The researchers in this study hypothesized that mean pro-

topectin content would be different at different storage 

times. Can you confi rm this hypothesis with a statistical 

test using α = 0.05?

(b) Find the P-value for the test in part (a).

(c) Which specifi c storage times are different? Would you 

agree with the statement that protopectin content decreases 

as storage time increases?

(d) Analyze the residuals from this experiment.

13-51. An experiment was conducted to investigate leaking 

current in a SOS MOSFETS device. The purpose of the experi-

ment was to investigate how leakage current varies as the chan-

nel length changes. Four channel lengths were selected. For each 

channel length, fi ve different widths were also used, and width 

is to be considered a nuisance factor. The data are as follows:

Channel 
Length

Width

1 2 3 4 5

1 0.7 0.8 0.8 0.9  1.0

2 0.8 0.8 0.9 0.9  1.0

3 0.9 1.0 1.7 2.0  4.0

4 1.0 1.5 2.0 3.0 20.0

(a) Test the hypothesis that mean leakage voltage does not 

depend on the channel length using α = 0.05.

(b) Analyze the residuals from this experiment. Comment on 

the residual plots.

(c) The observed leakage voltage for channel length 4 and 

width 5 was erroneously recorded. The correct observation 

is 4.0. Analyze the corrected data from this experiment. 

Is there evidence to conclude that mean leakage voltage 

increases with channel length?

Storage 
Time

Lot

1 2 3 4 5 6 7 8 9

 0 days 1694.0 989.0  917.3 346.1 1260.0 965.6 1123.0 1106.0 1116.0

 7 days 1802.0 1074.0  278.8 1375.0  544.0 672.2  818.0  406.8  461.6

14 days 1568.0  646.2 1820.0 1150.0  983.7 395.3  422.3  420.0  409.5

21 days  415.5  845.4  377.6  279.4  447.8 272.1  394.1  356.4  351.2

13E-1 Protopectin Content of Tomatoes in Storage
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13-52.  Consider the following computer output.

 Source DF SS MS F P

 Factor ? ? ? ? ?

 Error 15 167.5 ?  

 Total 19 326.2

S = 3.342    R – Sq = ?    R – Sq(adj) = 34.96%

(a) How many levels of the factor were used in this experiment?

(b) How many replicates were used?

(c) Fill in the missing information. Use bounds for the P-value.

(d) What conclusions would you draw if α = 0.05? What if 

α = 0.01?

13-53.  Consider the following computer output.

Source DF SS MS F P

Factor  ? 126.880 63.4401 ? ?

Block  ? 54.825 18.2751  

Error  6 ? 2.7403

Total  11 198.147

(a) How many levels of the factor were used in this experiment?

(b) How many blocks were used?

(c) Fill in the missing information. Use bounds for the P-value.

(d) What conclusions would you draw if α = 0.05? What if 

α = 0.01?

13-54.  An article in Lubrication Engineering (December 

1990) described the results of an experiment designed to inves-

tigate the effects of carbon material properties on the progres-

sion of blisters on carbon face seals. The carbon face seals are 

used extensively in equipment such as air turbine starters. Five 

different carbon materials were tested, and the surface rough-

ness was measured. The data are as follows:

Carbon  
Material Type Surface Roughness

EC10 0.50 0.55 0.55 0.36

EC10A 0.31 0.07 0.25 0.18 0.56 0.20

EC4 0.20 0.28 0.12

EC1 0.10 0.16

(a) Does carbon material type have an effect on mean surface 

roughness? Use α = 0.05.

(b) Find the residuals for this experiment. Does a normal prob-

ability plot of the residuals indicate any problem with the 

normality assumption?

(c) Plot the residuals versus ŷij . Comment on the plot.

(d) Find a 95% confidence interval on the difference between 

mean surface roughness for the EC10 and the EC1 carbon 

grades.

(e) Apply the Fisher LSD method to this experiment. Summarize 

your conclusions regarding the effect of material type on  

surface roughness.

13-55.  An article in the IEEE Transactions on Components, 
Hybrids, and Manufacturing Technology [(1992, Vol. 15(2), pp. 

146–153)] described an experiment in which the contact resist-

ance of a brake-only relay was studied for three different materi-

als (all were silver-based alloys). The data are as follows.

Alloy Contact Resistance

1  95
 99

 97
 99

 99
 94

 98
 95

 99
 98

2 104
102

102
111

102
103

105
100

 99
103

3 119
172

130
145

132
150

136
144

141
135

(a) Does the type of alloy affect mean contact resistance? Use 

α = 0.01.

(b) Use Fisher’s LSD method to determine which means differ.

(c) Find a 99% confidence interval on the mean contact resist-

ance for alloy 3.

(d) Analyze the residuals for this experiment.

13-56. An article in the Journal of Quality Technology [(1982, 

Vol. 14(2), pp. 80–89)] described an experiment in which three 

different methods of preparing fish were evaluated on the basis 

of sensory criteria, and a quality score was assigned. Assume that 

these methods have been randomly selected from a large popula-

tion of preparation methods. The data are in the following table:

Method Score

1 24.4
22.2

23.2
24.4

25.0
23.8

19.7
18.0

2 22.1
22.3

19.5
23.2

17.3
21.4

19.7
22.6

3 23.3
20.4

22.8
23.5

22.4
20.8

23.7
24.1

(a) Is there any difference in preparation methods? Use α = 0.05.

(b) Calculate the P-value for the F-statistic in part (a).

(c) Analyze the residuals from this experiment and comment 

on model adequacy.

(d) Estimate the components of variance.

13-57.  An article in the Journal of Agricultural Engineer-
ing Research (1992, Vol. 52, pp. 53–76) described an experi-

ment to investigate the effect of drying temperature of wheat 

grain on baking quality bread. Three temperature levels were 

used, and the response variable measured was the volume of 

the loaf of bread produced. The data are as follows:

Temperature (°C) Volume (CC)

70.0 1245 1235 1285 1245 1235

75.0 1235 1240 1200 1220 1210

80.0 1225 1200 1170 1155 1095

Supplemental Exercises
 Problem available in WileyPLUS at instructor’s discretion. 

 Tutoring problem available in WileyPLUS at instructor’s discretion.
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(a) Does drying temperature affect mean bread volume? Use 

α = 0.01.

(b) Find the P-value for this test.

(c) Use the Fisher LSD method to determine which means are 

different.

(d) Analyze the residuals from this experiment and comment 

on model adequacy.

13-58. An article in Agricultural Engineering (December 1964, 

pp. 672–673) described an experiment in which the daily weight 

gain of swine is evaluated at different levels of housing tempera-

ture. The mean weight of each group of swine at the start of the 

experiment is considered to be a nuisance factor. The data from 

this experiment are as follows:

Mean Weight 
(lbs)

Housing Air Temperatures (°F)

50 60 70 80 90 100

100 1.37 1.58 2.00 1.97 1.40  0.39

150 1.47 1.75 2.16 1.82 1.14 –0.19

200 1.19 1.91 2.22 1.67 0.88 –0.77

(a) Does housing air temperature affect mean weight gain? 

Use α = 0.05.

(b) Use Fisher’s LSD method to determine which temperature 

levels are different.

(c) Analyze the residuals from this experiment and comment 

on model adequacy.

13-59.  An article in Communications of the ACM [(1987, 

Vol. 30(5), pp. 53–76] reported on a study of different algorithms 

for estimating software development costs. Six algorithms were 

applied to eight software development projects and the percent 

error in estimating the development cost was observed. The data 

are in Table 13E-2.

(a) Do the algorithms differ in mean cost estimation accuracy? 

Use α = 0.05.

(b) Analyze the residuals from this experiment.

(c) Which algorithm would you recommend for use in practice?

13-60. An article in Nature Genetics [(2003, Vol. 34(1), pp. 

85–90)], “Treatment-Specifi c Changes in Gene Expression Dis-

criminate in vivo Drug Response in Human Leukemia Cells,” 

reported the results of a study of gene expression as a function 

of different treatments for leukemia. Three treatment groups are 

mercaptopurine (MP) only, low-dose methotrexate (LDMTX) 

and MP, and high-dose methotrexate (HDMTX) and MP. Each 

group contained ten subjects. The responses from a specifi c 

gene are shown in Table 13E-3.

(a) Check the normality of the data. Can you assume that these 

samples are from normal populations?

(b) Take the logarithm of the raw data and check the normality 

of the transformed data. Is there evidence to support the 

claim that the treatment means differ for the transformed 

data? Use α = . .0 1

(c) Analyze the residuals from the transformed data and com-

ment on model adequacy.

13-61.  Consider an ANOVA situation with a = 5 treat-

ments. Let σ =2 9 and α = 0.05, and suppose that n = 4.

(a) Find the power of the ANOVA F-test when μ = μ = μ =1 2 3 1,

μ = 34 , and μ =5 2.

(b) What sample size is required if you want the power of the 

F-test in this situation to be at least 0.90?

13-62.  Consider an ANOVA situation with a = 4 means 

μ = 1, μ = μ =1 2 35 8, , and μ =5 4. Suppose that σ = = 4,2 4, n
and α = 0.05.

(a) Find the power of the ANOVA F-test.

(b) How large would the sample size have to be if you want the 

power of the F-test for detecting this difference in means to 

be at least 0.90?

13-63. An article in Marine Biology [“Allozymes an Morpho-

metric Characters of Three Species of Mytilus in the Northern and 

Southern Hemispheres” (1991, Vol. 111, pp. 323–333)] discussed 

the ratio of the anterior adductor muscle scar length to shell length 

for shells from fi ve different geographic locations. The following 

table is part of a much larger data set from their research. 

Location Ratio 

Tillamook, 
Oregon

0.057 0.081 0.083 0.097 0.081 0.086 

Newport, 
Oregon

0.087 0.066 0.067 0.081 0.074 0.065 

Petersburg, 
Alaska

0.097 0.135 0.081 0.101 0.096 0.106 

Magadan, 
Quebec 

0.103 0.091 0.078 0.068 0.067 0.070 

Tvarminne, 
Finland

0.070 0.102 0.095 0.097 0.103 0.105 

Algorithm

Project

1 2 3 4 5 6 7 8

1(SLIM) 1244  21  82 2221 905 839 527 122

2(COCOMO-A)  281 129 396 1306 336 910 473 199

3(COCOMO-R)  220  84 458  543 300 794 488 142

4(COCOMO-C)  225  83 425  552 291 826 509 153

5(FUNCTION POINTS)  19  11 –34  121  15 103  87 –17

6(ESTIMALS) –20  35 –53  170 104 199 142  41

13E-2 Software Development Costs
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(a)   Are there differences in the mean ratios due to different 

locations at α = .0 05? Calculate the P-value. 

(b)  Analyze the residuals from the experiment. In particular, 

comment on the normality assumption. 

13-64. An article in Bioresource Technology [“Preliminary 

Tests on Nisin and Pediocin Production Using Waste Protein 

Sources: Factorial and Kinetic Studies” (2006, Vol. 97(4), pp. 

605–613)] described an experiment in which pediocin was pro-

duced from waste protein. Nisin and pediocin are bacteriocins 

(compounds produced by bacteria that inhibit related strains) 

used for food preservation. Three levels of protein (g/L) from 

trout viscera extracts were compared.

Protein 
(g/L)

Pediocin production (ratio to baseline) 

1 2 3 4 5 6 7 8 9 10 

1.67 2.90 3.42 3.18 3.25 - - - - - - 

2.50 2.64 4.52 2.95 4.35 4.65 4.54 4.29 4.42 4.47 3.98 

3.33 3.77 4.5 4.62 4.87 - - - - - - 

(a) Construct box plots of the data. What visual impression do 

you have from these plots? 

(b) Does the level of protein have an effect on mean pediocin 

production? Use α = .0 05. 

(c) Would you draw a different conclusion if α = .0 01 had 

been used? 

(d) Plot the residuals from the experiment and comment. In 

particular, comment on the normality of the residuals. 

(e) Find a 95% confi dence interval on mean pediocin produc-

tion when the level of protein is 2.50 g/L.

13-65. Reconsider Exercise 13-9 in which the effect of dif-

ferent coating types on conductivity was investigated. Suppose 

that the fi ve coating types were selected at random from a 

large number of types.

(a) How does this change the interpretation of the experiment?

(b) What is an appropriate statistical model for this experiment?

(c) Estimate the parameters of this model. 

13-66. An article in Journal of Hazardous Materials [“Toxic-

ity Assessment from Electro-Coagulation Treated-Textile Dye 

Waste Waters by Bioassays,” 2009, Vol. 172(1), pp. 330–337] 

discussed a study of pollutant removal from textile dyeing waste 

water with an electro-coagulation technique. Chemical oxygen 

demand (COD) (a common measure of water pollution) was 

used as the response, and three different values for electroly-

sis time were considered. The following data were extracted 

from a larger study. Suppose that a randomized complete block 

experiment was conducted with three blocks based on initial 

pH values.

Electrolysis 
time (min)

Initial pH 

3 7 11 

15 77.1 75.2 42.2 

30 80.1 76.8 45.0 

45 82.8 75.2 46.8 

(a) Is there an effect of electrolysis time at α = .0 05? Calculate 

the P-value. 

(b) Analyze the residuals from the experiment. 

(c) Calculate a 95% confi dence interval on mean COD removal 

when the electrolysis time is 15 minutes. 

(d) Perform an ANOVA assuming that all data are collected at 

a single pH value. Comment on differences from part (a). 

Mind-Expanding Exercises

13-67. Show that in the fi xed-effects model analysis of var-

iance E MSE( ) = σ2. How would your development change if 

the random-effects model had been specifi ed?

13-68. Consider testing the equality of the means of two 

normal populations for which the variances are unknown 

but are assumed to be equal. The appropriate test proce-

dure is the two-sample t-test. Show that the two-sample 

t-test is equivalent to the single-factor analysis of variance 

F-test.

13-69. Consider the ANOVA with a = 2 treatments. Show 

that the MSE in this analysis is equal to the pooled variance 

estimate used in the two-sample t-test.

13-70. Show that the variance of the linear combination

c Y n ci i
i

a

i i
i

a

. σ
= =
∑ ∑is 2

1

2

1

13-71. In a fi xed-effects model, suppose that there are n
observations for each of four treatments. Let Q Q2

1
2
2, , and Q2

3

Treatments Observations

MP ONLY 334.5  31.6 701  41.2 61.2 69.6  67.5  66.6 120.7 881.9

MP HDMTX+ 919.4 404.2 1024.8  54.1 62.8 671.6 882.1 354.2 321.9  91.1

MP LDMTX+ 108.4  26.1 240.8 191.1 69.7 242.8 62.7 396.9  23.6 290.4

13E-3 Treatment-Specifi c Changes in Gene Expression

c13.indd   573 9/24/2013   7:28:11 PM
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be single-degree-of-freedom sums of squares for orthogonal 

contrasts. A contrast is a linear combination of the treatment 

means with coefficients that sum to zero. The coefficient 

vectors of orthogonal contrasts are orthogonal vectors. 

Prove that SS Q Q QTreatments = + +1
2

2
2

3
2.

13-72. Consider the single-factor completely randomized 

design with a treatments and n replicates. Show that if the 

difference between any two treatment means is as large as 

D, the minimum value that the OC curve parameter Φ2 can 

take is

Φ =
σ

2
2

22

nD

a

13-73. Consider the single-factor completely randomized 

design. Show that a 100 1( )− α  percent confidence interval 

for σ2 is
N a MS N a MSE

, N a

E

, N a

−( )
χ

≤ σ ≤
−( )

χα − −α −/ /2
2

2

1 2
2

where N  is the total number of observations in the 

experimental design.

13-74. Consider the random-effects model for the single- 

factor completely randomized design. Show that a 100 1( )− α % 

confidence interval on the ratio of variance components σ στ
2 2y  

is given by

L U≤ σ
σ

≤τ
2

2

where

L
n

MS

MS fE ,a ,N a

=
⎛
⎝⎜

⎞
⎠⎟

−
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥α − −

1 1
1

2 1

Treatments

/

and

U
n

MS

MS fE ,a ,N a

=
⎛
⎝⎜

⎞
⎠⎟

−
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥−α − −

1 1
1

1 2 1

Treatments

/

13-75. Consider a random-effects model for the single-

factor completely randomized design. 

(a) Show that a 100 1( )− α % confidence interval on the ratio 

σ σ + στ τ
2 2 2/ ( ) is

L

L

U

U1 1

2

2 2+
≤ σ

σ + σ
≤

+
τ

τ

where L and U are as defined in Exercise 13-74.

(b) Use the results of part (a) to find a 100 1( )− α % confi-

dence interval for σ σ + στ
2 2 2/ ( ).

13-76. Consider the fixed-effects model of the completely 

randomized single-factor design. The model parameters are  

restricted by the constraint τ ==∑ ii

a
0

1
. (Actually, other 

restrictions could be used, but this one is simple and 

results in intuitively pleasing estimates for the model 

parameters.) For the case of unequal sample size 

n n na1 2, , . . . , , the restriction is ni i
i

a

τ =  
=
∑ 0

1

. Use this to 

show that

E MS
n

a

i i
i

a

Treatments( ) = σ +
τ  

−
=
∑

2

2

1

1

Does this suggest that the null hypothesis in this model is 

H n n na a0 1 1: τ = τ = = τ = 0?1 2 ⋅ ⋅ ⋅
13-77. Sample Size Determination. In the single-factor 

completely randomized design, the accuracy of a100 1( )− α % 

confidence interval on the difference in any two treatment 

means is t MS n,a n Eα −( ) ./2 1 2 y
(a) Show that if A is the desired accuracy of the interval, 

the sample size required is

n
F MS

A
, ,a n E

= α −( )2 2 1 1

2

/

(b) Suppose that in comparing a = 5 means you have a 

preliminary estimate of σ2  of 4. If you want the 95% 

confidence interval on the difference in means to 

have an accuracy of 2, how many replicates should 

you use?

Analysis of variance (ANOVA)

Blocking

Completely randomized 

design (CRD)

Error mean square

Fisher’s least significant 

difference (LSD) method

Fixed-effects model

Graphical comparison of 

means

Least significant difference

Levels of a factor

Linear statistical model

Mean squares

Multiple comparisons methods 

Nuisance factor

Operating characteristic curve

Random factor-effects model

Randomization

Randomized complete block 

design (RCBD)

Replicates 

Residual analysis and model 

checking

Sample size and replication in 

an experiment

Treatment

Treatment sum of squares

Variance component

Important Terms and Concepts
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14
Design of Experiments 
with Several Factors

Chapter Outline

14-1 Introduction

14-2 Factorial Experiments

14-3 Two-Factor Factorial Experiments
14-3.1  Statistical Analysis of the Fixed-

Effects Model
14-3.2 Model Adequacy Checking
14-3.3 One Observation per Cell

14-4 General Factorial Experiments

14-5 2k Factorial Designs
14-5.1 22 DESIGN
14-5.2 2k Design for k ≥ 3 Factors
14-5.3 Single Replicate of the 2k Design
14-5.4  Addition of Center Points to a 2k 

Design

14-6  Blocking and Confounding in the 2k 
Design

14-7 Fractional Replication of the 2k Design
14-7.1  One-Half Fraction of the 2k 

Design
14-7.2  Smaller Fractions: The 2k p−  Frac-

tional Factorial

14-8 Response Surface Methods and Designs

Carotenoids are fat-soluble pigments that occur naturally in 

fruits in vegetables and are recommended for healthy diets. 

A well-known carotenoid is beta-carotene. Astaxanthin is 

another carotenoid that is a strong antioxidant and commer-

cially produced. An exercise later in this chapter describes 

an experiment in Biotechnology Progress to promote astax-

anthin production. Seven variables were considered impor-

tant to production: photon fl ux density and concentrations 

of nitrogen, phosphorous, magnesium, acetate, ferrous, and 

NaCl. It was important to study the effects of these factors as 

well as the effects of combinations on the production. Even 

with only a high and low setting for each variable, an experi-

ment that uses all possible combinations requires 2 1287 =
tests. Such a large experiment has a number of disadvan-

tages, and a question is whether a fraction of the full set of 

tests can be selected to provide the most important informa-

tion in many fewer runs. The example used a surprisingly 

small set of 16 runs ( / / )16 128 1 8= fraction . The design and 

analysis of experiments of this type is the focus of this chap-

ter. Such experiments are widely used throughout modern 

engineering development and scientifi c studies.
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576  Chapter 14/Design of Experiments with Several Factors

 Learning Objectives

After careful study of this chapter, you should be able to do the following:

1. Design and conduct engineering experiments involving several factors using the factorial design 
approach

2. Know how to analyze and interpret main effects and interactions

3. Understand how to use the ANOVA to analyze the data from these experiments

4. Assess model adequacy with residual plots

5. Know how to use the two-level series of factorial designs

6. Understand how to run two-level factorial design in blocks

7. Design and conduct two-level fractional factorial designs

8. Use center points to test for curvature in two-level factorial designs

9. Use response surface methodology for process optimization experiments

14-1 Introduction
An experiment is just a test or series of tests. Experiments are performed in all engineering 

and scientific disciplines and are important parts of the way we learn about how systems and 

processes work. The validity of the conclusions that are drawn from an experiment depends to 

a large extent on how the experiment was conducted. Therefore, the design of the experiment 

plays a major role in the eventual solution to the problem that initially motivated the experiment.

In this chapter, we focus on experiments that include two or more factors that the experi-

menter thinks may be important. A factorial experiment is a powerful technique for this type 

of problem. Generally, in a factorial experimental design, experimental trials (or runs) are per-

formed at all combinations of factor levels. For example, if a chemical engineer is interested in 

investigating the effects of reaction time and reaction temperature on the yield of a process, and 

if two levels of time (1.0 and 1.5 hours) and two levels of temperature (125 and 150°F) are con-

sidered important, a factorial experiment would consist of making experimental runs at each of 

the four possible combinations of these levels of reaction time and reaction temperature.

Experimental design is an extremely important tool for engineers and scientists who are 

interested in improving the performance of a manufacturing process. It also has extensive 

application in the development of new processes and in new product design. We now give 

some examples.

Process Characterization Experiment
In an article in IEEE Transactions [“Electronics Packaging Manufacturing” (2001, Vol. 24(4), 

pp. 249–254)], the authors discussed the change to lead-free solder in surface mount technol-

ogy (SMT). SMT is a process to assemble electronic components to a printed circuit board. 

Solder paste is printed through a stencil onto the printed circuit board. The stencil-printing 

machine has squeegees; the paste rolls in front of the squeegee and fills the apertures in the 

stencil. The squeegee shears off the paste in the apertures as it moves over the stencil. Once 

the print stroke is completed, the board is separated mechanically from the stencil. Electronic 

components are placed on the deposits, and the board is heated so that the paste reflows to form 

the solder joints.

The current SMT soldering process is based on tin–lead solders, and it has been well devel-

oped and refined over the years to operate at a competitive cost. The process has several (per-

haps many) variables, and all of them are not equally important. The initial list of candidate 

variables to be included in an experiment is constructed by combining the knowledge and 

information about the process from all team members. For example, engineers would conduct 
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a brainstorming session and invite manufacturing personnel with SMT experience to partici-

pate. SMT has several variables that can be controlled. These include

(1) squeegee speed, (2) squeegee pressure, (3) squeegee angle, (4) metal or polyurethane 

squeegee, (5) squeegee vibration, (6) delay time before the squeegee lifts from the stencil, 

(7) stencil separation speed, (8) print gap, (9) solder paste alloy, (10) paste pretreatment 

(11) paste particle size, (12) flux type, (13) reflow temperature, (14) reflow time, and so forth.

In addition to these controllable factors, several other factors cannot be easily controlled 

during routine manufacturing, including

(1) thickness of the printed circuit board, (2) types of components used on the board and 

aperture width and length, (3) layout of the components on the board, (4) paste density 

variation, (5) environmental factors, (6) squeegee wear, (7) cleanliness, and so forth.

Sometimes we call the uncontrollable factors noise factors. A schematic representation of the 

process is shown in Fig. 14-1. In this situation, the engineer wants to characterize the SMT 

process, that is, to determine the factors (both controllable and uncontrollable) that affect the 

occurrence of defects on the printed circuit boards. To determine these factors, an experiment 

can be designed to estimate the magnitude and direction of the factor effects. Sometimes we 

call such an experiment a screening experiment. The information from this characterization 

study, or screening experiment, can help determine the critical process variables as well as 

the direction of adjustment for these factors to reduce the number of defects. It also assists in 

determining which process variables should be carefully controlled during manufacturing to 

prevent high defect levels and erratic process performance.

Optimization Experiment
In a characterization experiment, we are interested in determining which factors affect the 

response. A logical next step is to determine the region in the important factors that leads to 

an optimum response. For example, if the response is cost, we look for a region of minimum 

cost. This leads to an optimization experiment.
As an illustration, suppose that the yield of a chemical process is influenced by the operat-

ing temperature and the reaction time. We are currently operating the process at 155°F and 1.7 

hours of reaction time, and the current process yield is around 75%. See Figure 14-2 for a view 

of the time–temperature space from above. In this graph, we have connected points of constant 

yield with lines. These lines are yield contours, and we have shown the contours at 60, 70, 80, 

90, and 95% yield. To locate the optimum, we might begin with a factorial experiment such as 

we describe here, with the two factors, time and temperature, run at two levels each at 10°F and 

0.5 hours above and below the current operating conditions. This two-factor factorial design is 

shown in Fig. 14-2. The average responses observed at the four points in the experiment (145°F, 

1.2 hours; 145°F, 2.2 hours; 165°F, 1.2 hours; and 165°F, 2.2 hours) indicate that we should move 

in the general direction of increased temperature and lower reaction time to increase yield. A few 

additional runs could be performed in this direction to locate the region of maximum yield.

OutputInput

. . .

Controllable factors
x2x1 xp

z1 z2 zq
Uncontrollable (noise) factors

. . .

(printed circuit boards) (defects, y)
SMT Process

FIGURE 14-1
The flow solder 
experiment.
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578  Chapter 14/Design of Experiments with Several Factors

Product Design Example
We can also use experimental design in developing new products. For example, suppose 

that a group of engineers are designing a door hinge for an automobile. The product char-

acteristic is the check effort, or the holding ability, of the latch that prevents the door from 

swinging closed when the vehicle is parked on a hill. The check mechanism consists of a 

leaf spring and a roller. When the door is opened, the roller travels through an arc caus-

ing the leaf spring to be compressed. To close the door, the spring must be forced aside, 

creating the check effort. The engineering team thinks that check effort is a function of the 

following factors:

(1) roller travel distance, (2) spring height from pivot to base, (3) horizontal distance from 

pivot to spring, (4) free height of the reinforcement spring, (5) free height of the main spring.

The engineers can build a prototype hinge mechanism in which all these factors can be 

varied over certain ranges. Once appropriate levels for these five factors have been identified, 

the engineers can design an experiment consisting of various combinations of the factor levels 

and can test the prototype at these combinations. This produces information concerning which 

factors are most influential on the latch check effort, and through analysis of this information, 

the latch design can be improved.

Most of the statistical concepts introduced in Chapter 13 for single-factor experiments can 

be extended to the factorial experiments of this chapter. The analysis of variance (ANOVA),
in particular, continues to be used as a tool for statistical data analysis. We also introduce 

several graphical methods that are useful in analyzing the data from designed experiments.

14-2 Factorial Experiments
When several factors are of interest in an experiment, a factorial experiment should be used. 

As noted previously, in these experiments factors are varied together.

FIGURE 14-2
Contour plot of yield 
as a function of 
reaction time and 
reaction temperature, 
illustrating an 
optimization
experiment.
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Thus, if there are two factors A and B with a levels of factor A and b levels of factor B, each 

replicate contains all ab treatment combinations.

The effect of a factor is defi ned as the change in response produced by a change in the level 

of the factor. It is called a main effect because it refers to the primary factors in the study. For 

example, consider the data in Table 14-1. This is a factorial experiment with two factors, A 

and B, each at two levels ( , , )A A B Blow high low highand . The main effect of factor A is the differ-

ence between the average response at the high level of A and the average response at the low 

level of A, or

A = + − + =30 40

2

10 20

2
20

That is, changing factor A from the low level to the high level causes an average response 

increase of 20 units. Similarly, the main effect of B is

B = + − + =20 40

2

10 30

2
10

In some experiments, the difference in response between the levels of one factor is 

not the same at all levels of the other factors. When this occurs, there is an interaction 

between the factors. For example, consider the data in Table 14-2. At the low level of 

factor B, the A effect is

A = − =30 10 20

and at the high level of factor B, the A effect is

A = − = −0 20 20

Because the effect of A depends on the level chosen for factor B, there is interaction between 

A and B.

When an interaction is large, the corresponding main effects have very little practical 

meaning. For example, by using the data in Table 14-2, we fi nd the main effect of A as

A = + − + =30 0

2

10 20

2
0

and we would be tempted to conclude that there is no factor A effect. However, when we 

examined the effects of A at different levels of factor B, we saw that this was not the case. 

The effect of factor A depends on the levels of factor B. Thus, knowledge of the AB interac-

tion is more useful than knowledge of the main effect. A signifi cant interaction can mask the 

signifi cance of main effects. Consequently, when interaction is present, the main effects of the 

factors involved in the interaction may not have much meaning.

It is easy to estimate the interaction effect in factorial experiments such as those illustrated 

in Tables 14-1 and 14-2. In this type of experiment, when both factors have two levels, the AB 

By factorial experiment, we mean that in each complete trial or replicate of the 

experiment, all possible combinations of the levels of the factors are investigated.

Factorial Experiment

14-1  A Factorial Experiment 
with Two Factors

Factor A

Factor B

Blow Bhigh

Alow 10 20

Ahigh 30 40

14-2  A Factorial Experiment 
with Interaction

Factor A

Factor B

Blow Bhigh

Alow 10 20

Ahigh 30 0
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interaction effect is the difference in the diagonal averages. This represents one-half the dif-

ference between the A effects at the two levels of B. For example, in Table 14-1, we find the 

AB interaction effect to be

AB = + − + =20 30

2

10 40

2
0

Thus, there is no interaction between A and B. In Table 14-2, the AB interaction effect is

AB = + − + =20 30

2

10 0

2
20

As we noted before, the interaction effect in these data is very large.

The concept of interaction can be illustrated graphically in several ways. See Figure 14-3, 

which plots the data in Table 14-1 against the levels of A for both levels of B. Note that the 

Blow and Bhigh lines are approximately parallel, indicating that factors A and B do not interact 

significantly. Figure 14-4 presents a similar plot for the data in Table 14-2. In this graph, the 

Blow and Bhigh lines are not parallel, indicating the interaction between factors A and B. Such 

graphical displays are called two-factor interaction plots. They are often useful in present-

ing the results of experiments, and many computer software programs used for analyzing data 

from designed experiments construct these graphs automatically.

Figures 14-5 and 14-6 present two other graphical illustrations of the data from Tables 14-1 and 

14-2. In Fig. 14-3, we have shown a three-dimensional surface plot of the data from Table 14-1. 

These data contain no interaction, and the surface plot is a plane lying above the A B-  space. The 

slope of the plane in the A and B directions is proportional to the main effects of factors A and B, 

respectively. Figure 14-6 is a surface plot of the data from Table 14-2. Notice that the effect of the 
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FIGURE 14-3 Factorial experiment, no 
interaction.
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FIGURE 14-4 Factorial experiment, with 
interaction.
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FIGURE 14-5 Three-dimensional surface plot of the 
data from Table 14-1, showing the main effects of the 
two factors A  and B.
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FIGURE 14-6 Three-dimensional surface plot of the 
data from Table 14-2 showing the effect of the A  and B 
interaction.
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interaction in these data is to “twist” the plane so that there is curvature in the response function. 

Factorial experiments are the only way to discover interactions between variables.
An alternative to the factorial design that is (unfortunately) used in practice is to change the 

factors one at a time rather than to vary them simultaneously. To illustrate this one-factor-at-a-

time procedure, suppose that an engineer is interested in finding the values of temperature and 

pressure that maximize yield in a chemical process. Suppose that we fix temperature at 155°F (the 

current operating level) and perform five runs at different levels of time, say, 0.5, 1.0, 1.5, 2.0, and 

2.5 hours. The results of this series of runs are shown in Fig. 14-7. This figure indicates that maxi-

mum yield is achieved at about 1.7 hours of reaction time. To optimize temperature, the engineer 

then fixes time at 1.7 hours (the apparent optimum) and performs five runs at different tempera-

tures, say, 140, 150, 160, 170, and 180°F. The results of this set of runs are plotted in Fig. 14-8. 

Maximum yield occurs at about 155°F. Therefore, we would conclude that running the process 

at 155°F and 1.7 hours is the best set of operating conditions, resulting in yields of around 75%.

FIGURE 14-7 Yield versus reaction time with 
temperature constant at 155°F.
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FIGURE 14-8 Yield versus temperature with 
reaction time constant at 1.7 hours.
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Optimization
experiment using the 
one-factor-at-a-time 
method.
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Figure 14-9 displays the contour plot of actual process yield as a function of temperature 

and time with the one-factor-at-a-time experiments superimposed on the contours. Clearly, 

this one-factor-at-a-time approach has failed dramatically here because the true optimum is at 

least 20 yield points higher and occurs at much lower reaction times and higher temperatures. 

The failure to discover the importance of the shorter reaction times is particularly important 

because this could have signifi cant impact on production volume or capacity, production plan-

ning, manufacturing cost, and total productivity.

The one-factor-at-a-time approach has failed here because it cannot detect the interaction 

between temperature and time. Factorial experiments are the only way to detect interactions. 

Furthermore, the one-factor-at-a-time method is ineffi cient. It requires more experimentation than 

a factorial, and as we have just seen, there is no assurance that it will produce the correct results.

14-3 Two-Factor Factorial Experiments
The simplest type of factorial experiment involves only two factors, say A, and B. There are a
levels of factor A and b levels of factor B. This two-factor factorial is shown in Table 14-3. The 

experiment has n replicates, and each replicate contains all ab treatment combinations. The 

observation in the ijth cell for the kth replicate is denoted by yijk. In performing the experiment, 

the abn observations would be run in random order. Thus, like the single-factor experiment 

studied in Chapter 13, the two-factor factorial is a completely randomized design.

The observations may be described by the linear statistical model

 Y

i , , , a

j , , ,b

k , , , n
ijk i j ij ijk= μ + τ + β + τβ( ) +

=  …  
=  …  
=  …  

⎧
e

1 2

1 2

1 2

⎨⎨
⎪

⎩⎪
 (14-1)

where μ is the overall mean effect, τi is the effect of the ith level of factor A, β j is the effect 

of the jth level of factor B, (τβ)ij is the effect of the interaction between A and B, and eijk is a 

random error component having a normal distribution with mean 0 and variance σ2. We are 

interested in testing the hypotheses of no main effect for factor A, no main effect for B, and 

no AB interaction effect. As with the single-factor experiments of Chapter 13, the analysis of 
variance (ANOVA) is used to test these hypotheses. Because the experiment has two factors, 

the test procedure is sometimes called the two-way analysis of variance.

14-3.1 STATISTICAL ANALYSIS OF THE FIXED-EFFECTS MODEL

Suppose that A and B are fi xed factors. That is, the a levels of factor A and the b levels of fac-

tor B are specifi cally chosen by the experimenter, and inferences are confi ned to these levels 

only. In this model, it is customary to defi ne the effects τ βi j, , and ( )τβ ij as deviations from the 

mean, so that τ = β = τβ( ) == = =∑ ∑ ∑ii
a

jj
b

iji
a, , ,

1 1 1
0 0 0  and τβ( ) = .=∑ ijj

b
1

0

14-3 Data Arrangement for a Two-Factor Factorial Design

Factor B

1 2 � b Totals Averages

1 y111, y112, … , y n11  y121, y122, … , y n12 y b1 1, y b1 2, … , y bn1 y1.. y1..

Factor A 2 y211, y212, …, y n21 y221, y222, … , y n22 y b2 1, y b2 2, … , y bn2 y2.. y2..




a ya11, ya12, … , ya n1 ya21, ya22, … , ya n2 yab1, yab2, … , yabn ya .. ya ..
Totals y. .1 y. .2 y b. . y…

Averages y. .1 y. .2 y b. . y...
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The analysis of variance can be used to test hypotheses about the main factor effects of A 

and B and the AB interaction. To present the ANOVA, we need some symbols, some of which 

are illustrated in Table 14-3. Let yi.. denote the total of the observations taken at the ith level 

of factor A; y j. . denote the total of the observations taken at the jth level of factor B; yij. denote 

the total of the observations in the ijth cell of Table 14-3; and y... denote the grand total of 

all the observations. Define y , y , y ,i j ij..  . .  .  and y… as the corresponding row, column, cell, and 

grand averages. That is,

y yi ijk
k

n

j

b

.. =
==

∑∑
11

 y
y

bn
i

i.. = ..
 i , , , a=  …  1 2

y yj ijk
k

n

i

a

.. =
==

∑∑
11

 y
y

an
j

j. . =
. .

 j , , ,b=  …  1 2

y yij ijk
k

n

... =
=

∑
1

 y
y

n
ij

ij. =
.
 i , , , a j , , ,b=  …  =  …  1 2 1 2,

y yijk
k

n

j

b

i

a

... =
===

∑∑∑
111

   y
y

abn
... = ...

 i , , , a=  …  1 2

Notation for Totals 
and Means

The hypotheses that we will test are as follows:

H a0 1 2: = = = = 0τ τ … τ     (no main effect of factor A)  

H1: at least one τi ≠ 0

H b0 1 2: = = = = 0β β … β     (no main effect of factor B) (14-2)

H1: at least one β j ≠ 0

H ab0: = = = ( = 0( ) ( )τβ τβ … τβ11 12 )     (no interaction) 

H1: at least one ( )τβ ij ≠ 0

As before, the ANOVA tests these hypotheses by decomposing the total variability in the data 

into component parts and then comparing the various elements in this decomposition. Total 

variability is measured by the total sum of squares of the observations

SS y yT ijk
k

n

j

b

i

a

= −( )
===

∑∑∑ …
111

2

and the definition of the sum of squares decomposition follows.

The sum of squares identity for a two-factor ANOVA is

y y bn y y an y yijk
k

n

j

b

i

a

i
i

a

j− ...( ) = .. − ...( ) + . . − ..
=== =

∑∑∑ ∑2

111

2

1

..( )

+ . − .. − . . + ...( ) + −( )
=

== =

∑

∑∑

2

1

2

11

j

b

ij i j
j

b

i

a

ijk ij
k

n y y y y y y .
1111

2n

j

b

i

a

∑∑∑
==

 (14-3)

or symbolically,

 SS SS SS SS SST A B AB E= + + +  (14-4)

ANOVA Sum of 
Squares Identity:  

Two Factors

Equations 14-3 and 14-4 state that the total sum of squares SST  is partitioned into a sum of 

squares for the row factor A ( )SSA , a sum of squares for the column factor B ( )SSB , a sum of 

squares for the interaction between A and B ( )SSAB , and an error sum of squares ( )SSE . There 

are abn − 1 total degrees of freedom. The main effects A and B have a − 1 and b − 1 degrees 
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of freedom, and the interaction effect AB has ( )( )a b− −1 1  degrees of freedom. Within each 

of the ab cells in Table 14-3, there are n − 1 degrees of freedom between the n replicates, and 

observations in the same cell can differ only because of random error. Therefore, there are 

ab n( )− 1  degrees of freedom for error, so the degrees of freedom are partitioned according to

 abn a b a b ab n− = −( ) + −( ) + −( ) −( ) + −( )1 1 1 1 1 1

If we divide each of the sum of squares on the right-hand side of Equation 14-4 by the cor-

responding number of degrees of freedom, we obtain the mean squares for A, B, the interac-

tion, and error:

 MS
SS

a
MS

SS

b
MS

SS

a b
MS

SS

ab n
A

A
B

B
AB

AB
E

E=
−

=
−

=
−( ) −( ) =

−( )1 1 1 1 1

Assuming that factors A and B are fixed factors, it is not difficult to show that the expected 
values of these mean squares are

E MS E
SS

a

bn

a
A

A
i

i

a

( ) =
−

⎛
⎝⎜

⎞
⎠⎟

= σ +
τ

−
=
∑

1 1
2

2

1
  E MS E

SS

b

an

b
B

B
j

j

a

( ) =
−

⎛
⎝⎜

⎞
⎠⎟

= σ +
β

−
=  
∑

1 1
2

2

1

E MS E
SS

a b

n

a b
AB

AB
ij

j

b

i

a

( ) =
−( ) −( )

⎛

⎝⎜
⎞

⎠⎟
= σ +

τβ( )
−( )

==  
∑∑

1 1 1
2

2

11

−−( )1

E MS E
SS

ab n
E

E( ) =
−( )

⎛

⎝⎜
⎞

⎠⎟
= σ

1
2

Expected Values of 
Mean Squares:  

Two Factors

From examining these expected mean squares, it is clear that if the null hypotheses about main 

effects H Hi j0: =τ β0 00, : = , and the interaction hypothesis H ij0 0: ( )τβ =  are all true, all four 

mean squares are unbiased estimates of σ2.

To test that the row factor effects are all equal to zero ( ),H i0: =τ 0  we would use the ratio

F
MS

MS
A

E
0 =

F Test for Factor A

F
MS

MS
B

E
0 =

F Test for Factor A

which has an F distribution with a − 1 and ab n( )− 1  degrees of freedom if H i0 0: τ =  is true. This 

null hypothesis is rejected at the α level of significance if f f a ab n0 1 1> − −α, , ( ). Similarly, to test the 

hypothesis that all the column factor effects are equal to 0 ( : )H j0 0β = , we would use the ratio

which has an F  distribution with b − 1 and ab n( )− 1  degrees of freedom if H j0 0: β =  is true. 

This null hypothesis is rejected at the α level of significance if f f b ab n0 1 1> − −α, , ( ). Finally, to 

test the hypothesis H ij0 0: ( )τβ = , which is the hypothesis that all interaction effects are 0, we 

use the ratio
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which has an F  distribution with ( )( )a b− −1 1  and ab n( )− 1  degrees of freedom if the 

null hypothesis H ij0 0: ( )τβ = . This hypothesis is rejected at the a level of signifi cance if 

f f a b ab n0 1 1 1> − − −α, ( )( ), ( ).

It is usually best to conduct the test for interaction fi rst and then to evaluate the main effects. 

If interaction is not signifi cant, interpretation of the tests on the main effects is straightforward. 

However, as noted in Section 14-3, when interaction is signifi cant, the main effects of the fac-

tors involved in the interaction may not have much practical interpretative value. Knowledge 

of the interaction is usually more important than knowledge about the main effects.

Computational formulas for the sums of squares are easily obtained.

F
MS

MS
AB

E
0 =

F Test for AB
Interaction

Computing formulas for the sums of squares in a two-factor analysis of variance:

 SS y
y

abn
T ijk

k

n

j

b

i

a

= −
===

∑∑∑ 2
2

111

�  (14-5)

 SS
y

bn

y

abn
A

i

i

a

= −
=
∑ ..

2 2

1

…  (14-6)

 SS
y

an

y

abn
B

j

j

b

=
. .

− ...

=
∑

2 2

1

 (14-7)

 SS
y

n

y

abn
SS SSAB

ij
A B

j

b

i

a

=
.
− − −...

==
∑∑

2 2

11

 (14-8)

 SS SS SS SS SSE T AB A B= − − −  (14-9)

Computing Formulas 
for ANOVA: Two 

Factors

The computations are usually displayed in an ANOVA table, such as Table 14-4.

Aircraft Primer Paint Aircraft primer paints are applied to aluminum surfaces by two methods: 

dipping and spraying. The purpose of using the primer is to improve paint adhesion, and some 

parts can be primed using either application method. The process engineering group responsible for this operation is 

Example 14-1

Source of 
Variation

Sum of 
Squares

Degrees of 
Freedom

Mean Square F0

A treatments SSA a − 1 MS
SS

a
A

A=
− 1

MS

MS
A

E

B treatments SSB b − 1 MS
SS

b
B

B=
− 1

MS

MS
B

E

Interaction SSAB ( )( )a b− −1 1 MS
SS

a b
AB

AB=
−( ) −( )1 1

MS

MS
AB

E

Error SSE ab n( )− 1 MS
SS

ab n
E

E=
−( )1

Total SST abn − 1

14-4 ANOVA Table for a Two-Factor Factorial, Fixed-Effects Model
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interested in learning whether three different primers differ in their adhesion properties. A factorial experiment was 

performed to investigate the effect of paint primer type and application method on paint adhesion. For each combina-

tion of primer type and application method, three specimens were painted, then a fi nish paint was applied, and the 

adhesion force was measured. The data from the experiment are shown in Table 14-5. The circled numbers in the cells 

are the cell totals yij .. The sums of squares required to perform the ANOVA are computed as follows:

SS y
y

abn
T ijk

k

n

j

b

i
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= − = .( ) + .( ) + + .( ) −
.

===
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2 2 2
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89�
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40 2 49 6

9

89 8
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== .4 91

SS
y

n

y

abn
SS SSij

j

b

i

a

interaction types methods=
.
− ... − − =

==
∑∑

2 2

11

112 8 15 9 11 5 15 9 18 2 15 5

3

89 8

1

2 2 2 2 2 2

2

.( ) + .( ) + .( ) + .( ) + .( ) + .( )

−
.( )
88

4 58 4 91 0 24− . − . = .

and
SS SS SS SS SSE T= − − − = − − −types methods interaction 10 72 4 58 4 91 0. . . .224 0 99= .

The ANOVA is summarized in Table 14-6. The experimenter has decided to use α = 0.05. Because f0 05 2 12 3 89. , , .=  and 
f
0 05 1 12 4. , , = .75, we conclude that the main effects of primer type and application method affect adhesion force. Further-

more, because 1 5 0 05 2 12. ,. , ,< f  there is no indication of interaction between these factors. The last column of Table 14-6 

shows the P-value for each F-ratio. Notice that the P-values for the two test statistics for the main effects are consider-

ably less than 0.05, and the P-value for the test statistic for the interaction is more than 0.05.

Practical Interpretation: See a graph of the cell adhesion force averages { }yij .  versus levels of primer type for each 

application method in Fig. 14-10. The no-interaction conclusion is obvious in this graph, because the two lines are 

nearly parallel. Furthermore, because a large response indicates greater adhesion force, we conclude that spraying is 

the best application method and that primer type 2 is most effective.

Source of 
Variation

Sum of 
Squares

Degrees of 
Freedom

Mean 
Square f0 P-Value

Primer types 4.58 2 2.29 27.86 2.7 × E-5

Application 
methods

4.91 1 4.91 59.70 4.7 × E-6

Interaction 0.24 2 0.12 1.47 0.2621

Error 0.99 12 0.08

Total 10.72 17

14-6  ANOVA for Aircraft Primer Paint Experiment 
in Example 14-1

FIGURE 14-10 Graph of average adhesion force 
versus primer types for both application methods.

1
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6.0

7.0

2 3

Spraying

Dipping

Primer type

yij

14-5 Adhesion Force Data for Example 14-1

Primer Type Dipping Spraying yi..

1 4.0, 4.5, 4.3 12.8 5.4, 4.9, 5.6 15.9 28.7

2 5.6, 4.9, 5.4 15.9 5.8, 6.1, 6.3 18.2 34.1

3 3.8, 3.7, 4.0 11.5 5.5, 5.0, 5.0 15.5 27.0

y j. . 40.2 49.6 89.8 = y...
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Tests on Individual Means
When both factors are fi xed, comparisons between the individual means of either factor may 

be made using any multiple comparison technique such as Fisher’s LSD method (described 

in Chapter 13). When there is no interaction, these comparisons may be made using either the 

row averages yi .. or the column averages y. .j . However, when interaction is signifi cant, com-

parisons between the means of one factor (say, A) may be obscured by the AB interaction. In 

this case, we could apply a procedure such as Fisher’s LSD method to the means of factor A, 

with factor B set at a particular level.

Computer Output
Table 14-7 shows some computer output from the analysis of variance procedure for the air-

craft primer paint experiment in Example 14-1. The upper portion of the table gives factor 

name and level information, and the lower portion presents the analysis of variance for the 

adhesion force response. The results are identical to the manual calculations displayed in 

Table 14-6 apart from rounding.

14-3.2 MODEL ADEQUACY CHECKING

Just as in the single-factor experiments discussed in Chapter 13, the residuals from a factorial 

experiment play an important role in assessing model adequacy. The residuals from a two-

factor factorial are

e y yijk ijk ij= − .

That is, the residuals are just the difference between the observations and the corresponding 

cell averages.

Refer to Table 14-8 for the residuals for the aircraft primer paint data in Example 14-1. See 

Fig. 14-11 for the normal probability plot of these residuals. This plot has tails that do not fall 

exactly along a straight line passing through the center of the plot, indicating some potential 

14-7 Analysis of Variance from Computer Software for the Aircraft Primer Paint Experiment in Example 14-1

ANOVA 

Factor Type Levels Values

Primer fi xed 3 1 2 3

Method fi xed 2 Dip Spray

Analysis of Variance for Adhesion

Source DF SS MS F P

Primer 2  4.5811 2.2906 27.86 0.000

Method 1  4.9089 4.9089 59.70 0.000

Primer*Method 2  0.2411 0.1206  1.47 0.269

Error 12  0.9867 0.0822

Total 17 10.7178

Application Method

Primer Type Dipping Spraying
1 –0.27,    0.23,  0.03 0.10,  –0.40,    0.30

2 0.30,  –0.40,  0.10 –0.27,    0.03,    0.23

3 –0.03,  –0.13,  0.17 0.33,  –0.17,  –0.17

14-8 Residuals for the Aircraft Primer Paint Experiment in Example 14-1
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problems with the normality assumption, but the deviation from normality does not appear 

severe. Figures 14-12 and 14-13 plot the residuals versus the levels of primer types and appli-

cation methods, respectively. There is some indication that primer type 3 results in slightly 

lower variability in adhesion force than the other two primers. The graph of residuals versus 

fitted values in Fig. 14-14 does not reveal any unusual or diagnostic pattern.

14-3.3 ONE OBSERVATION PER CELL

In some cases involving a two-factor factorial experiment, we may have only one replicate—

that is, only one observation per cell. In this situation, there are exactly as many param-

eters in the analysis of variance model as observations, and the error degrees of freedom 

are zero. Thus, we cannot test hypotheses about the main effects and interactions unless we 

make some additional assumptions. One possible assumption is to assume that the interaction 

effect is negligible and use the interaction mean square as an error mean square. Thus, the 

analysis is equivalent to the analysis used in the randomized block design. This no-interac-

tion assumption can be dangerous, and the experimenter should carefully examine the data 

and the residuals for indications of whether or not interaction is present. For more details, 

see Montgomery (2012).

FIGURE 14-11 Normal probability plot of 
the residuals from the aircraft primer paint 
experiment in Example 14-1.
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FIGURE 14-12 Plot of residuals from the aircraft 
primer paint experiment versus primer type.
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FIGURE 14-13 Plot of residuals from the  
aircraft primer paint experiment versus  
application method.
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FIGURE 14-14 Plot of residuals from the aircraft primer 
paint experiment versus predicted values y ijk

^ .
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14-1.  An article in Industrial Quality Control (1956, pp. 

5–8) describes an experiment to investigate the effect of two 

factors (glass type and phosphor type) on the brightness of a 

television tube. The response variable measured is the current 

(in microamps) necessary to obtain a specified brightness level. 

The data are shown in the following table:

(a) State the hypotheses of interest in this experiment.

(b) Test the hypotheses in part (a) and draw conclusions using 

the analysis of variance with α = 0.05.

(c) Analyze the residuals from this experiment.

Glass  
Type

Phosphor Type

1 2 3

1 280 300 290

290 310 285

285 295 290

2 230 260 220

235 240 225

240 235 230

14-2. An engineer suspects that the surface finish of metal 

parts is influenced by the type of paint used and the drying time. 

He selected three drying times—20, 25, and 30 minutes—and 

used two types of paint. Three parts are tested with each com-

bination of paint type and drying time. The data are as follows:

Paint

Drying Time (min)

20 25 30

1 74 73 78

64 61 85

50 44 92

2 92 98 66

86 73 45

68 88 85

(a) State the hypotheses of interest in this experiment.

(b) Test the hypotheses in part (a) and draw conclusions using 

the analysis of variance with α = 0.05.

(c) Analyze the residuals from this experiment.

14-3.  In the book Design and Analysis of Experiments, 
8th edition (2012, John Wiley & Sons), the results of an experi-

ment involving a storage battery used in the launching mecha-

nism of a shoulder-fired ground-to-air missile were presented. 

Three material types can be used to make the battery plates. 

The objective is to design a battery that is relatively unaffected 

by the ambient temperature. The output response from the 

battery is effective life in hours. Three temperature levels are 

selected, and a factorial experiment with four replicates is run. 

The data are as follows:

Material

Temperature (°F)

Low Medium High

1 130 155 34 40 20 70

74 180 80 75 82 58

2 150 188 136 122 25 70

159 126 106 115 58 45

3 138 110 174 120 96 104

168 160 150 139 82 60

(a) Test the appropriate hypotheses and draw conclusions 

using the analysis of variance with α = 0.05.

(b) Graphically analyze the interaction.

(c) Analyze the residuals from this experiment.

14-4. An experiment was conducted to determine whether 

either firing temperature or furnace position affects the baked 

density of a carbon anode. The data are as follows:

Position

Temperature (°C)

800 825 850

1 570 1063 565

565 1080 510

583 1043 590

2 528 988 526

547 1026 538

521 1004 532

(a) State the hypotheses of interest.

(b) Test the hypotheses in part (a) using the analysis of vari-

ance with α = 0.05. What are your conclusions?

(c) Analyze the residuals from this experiment.

(d) Using Fisher’s LSD method, investigate the differences 

between the mean baked anode density at the three differ-

ent levels of temperature. Use α = 0.05.

14-5. An article in Technometrics [“Exact Analysis of 

Means with Unequal Variances” (2002, Vol. 44, pp. 152–160)] 

described the technique of the analysis of means (ANOM) and 

presented the results of an experiment on insulation. Four insu-

lation types were tested at three different temperatures. The data 

are as follows:

(a) Write a model for this experiment.

(b) Test the appropriate hypotheses and draw conclusions 

using the analysis of variance with α = 0.05
(c) Graphically analyze the interaction.

(d) Analyze the residuals from the experiment.

(e) Use Fisher’s LSD method to investigate the differences 

between mean effects of insulation type. Use α = . .0 05

FOR SECTION 14-3Exercises
 Problem available in WileyPLUS at instructor’s discretion. 

 Tutoring problem available in WileyPLUS at instructor’s discretion.
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14-6. Johnson and Leone (Statistics and Experimental Design 
in Engineering and the Physical Sciences, John Wiley, 1977) 

described an experiment conducted to investigate warping of 

copper plates. The two factors studied were temperature and 

the copper content of the plates. The response variable is the 

amount of warping. The data are as follows:

Temperature
(°C)

Copper Content (%)

40 60 80 100

 50 17, 20 16, 21 24, 22 28, 27

 75 12, 9 18, 13 17, 12 27, 31

100 16, 12 18, 21 25, 23 30, 23

125 21, 17 23, 21 23, 22 29, 31

(a) Is there any indication that either factor affects the amount 

of warping? Is there any interaction between the factors? 

Use α = 0.05.

(b) Analyze the residuals from this experiment.

(c) Plot the average warping at each level of copper con-

tent and compare the levels using Fisher’s LSD method. 

Describe the differences in the effects of the different levels 

of copper content on warping. If low warping is desirable, 

what level of copper content would you specify?

(d) Suppose that temperature cannot be easily controlled in 

the environment in which the copper plates are to be used. 

Does this change your answer for part (c)?

14-7.  An article in the IEEE Transactions on Electron 
Devices (November 1986, p. 1754) described a study on the 

effects of two variables—polysilicon doping and anneal condi-

tions (time and temperature)—on the base current of a bipolar 

transistor. The data from this experiment follow.

(a) Is there any evidence to support the claim that either poly-

silicon doping level or anneal conditions affect base cur-

rent? Do these variables interact? Use α = 0.05.

(b) Graphically analyze the interaction.

(c) Analyze the residuals from this experiment.

(d) Use Fisher’s LSD method to isolate the effects of anneal 

conditions on base current, with α = 0.05.

Anneal (temperature/time)

900 900 950 1000 1000

60 180 60 15 30

Polysilicon 
doping

1 1020× 4.40 8.30 10.15 10.29 11.01

4.60 8.90 10.20 10.30 10.58

2 1020× 3.20 7.81 9.38 10.19 10.81

3.50 7.75 10.02 10.10 10.60

14-8. An article in the Journal of Testing and Evaluation 

(1988, Vol. 16, pp. 508–515) investigated the effects of cyclic 

loading frequency and environment conditions on fatigue crack 

growth at a constant 22 MPa stress for a particular material. The 

data follow. The response variable is fatigue crack growth rate.

Environment

Frequency

Air H O2 Salt H O2

10 2.29 2.06 1.90
2.47 2.05 1.93
2.48 2.23 1.75
2.12 2.03 2.06

1 2.65 3.20 3.10
2.68 3.18 3.24
2.06 3.96 3.98
2.38 3.64 3.24

 0.1 2.24 11.00 9.96
2.71 11.00 10.01
2.81 9.06 9.36
2.08 11.30 10.40

(a) Is there indication that either factor affects crack growth 

rate? Is there any indication of interaction? Use α = 0.05.

(b) Analyze the residuals from this experiment.

(c) Repeat the analysis in part (a) using ln( )y  as the response. 

Analyze the residuals from this new response variable and 

comment on the results.

14-9. Consider a two-factor factorial experiment. Develop a 

formula for finding a 100 1( )%− α  confidence interval on the 

difference between any two means for either a row or column 

factor. Apply this formula to find a 95% CI on the difference 

in mean warping at the levels of copper content 60 and 80% in 

Exercise 14-6.

Insulation

Temperature (°F)

1 2 3

6.6 4 4.5 2.2 2.3 0.9

2.7 6.2 5.5 2.7 5.6 4.9

1 6 5 4.8 5.8 2.2 3.4

3 3.2 3 1.5 1.3 3.3

2.1 4.1 2.5 2.6 0.5 1.1

2 5.9 2.5 0.4 3.5 1.7 0.1

5.7 4.4 8.9 7.7 2.6 9.9

3.2 3.2 7 7.3 11.5 10.5

3 5.3 9.7 8 2.2 3.4 6.7

7 8.9 12 9.7 8.3 8

7.3 9 8.5 10.8 10.4 9.7

4 8.6 11.3 7.9 7.3 10.6 7.4

Carbon(%) 

Temperature (ºC) 

25  30 37

2 25.84 51.86 32.59 51.86 131.33 41.11 41.11 104.11 32.59 

5 20.48 25.84 12.87 41.11 104.11 32.59 32.59 82.53 25.84 

7.5 20.48 25.84 10.2 65.42 82.53 51.86 51.86 65.42 41.11 

E14-1 Data for Antifungal Activities
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14-10. An article in Journal of Chemical Technology and 
Biotechnology [“A Study of Antifungal Antibiotic Production 

by Thermomonospora sp MTCC 3340 Using Full Factorial 

Design” (2003, Vol. 78, pp. 605-610)] considered the effects 

of several factors on antifungal activities. The antifungal yield 

was expressed as Nystatin international units per cm3. The 

results from carbon source concentration (glucose) and incuba-

tion temperature factors follow. See Table E14-1.

(a) State the hypotheses of interest.

(b) Test your hypotheses with α = .0 5. 

(c) Analyze the residuals and plot the residuals versus the pre-

dicted yield. 

(d) Using Fisher’s LSD method, compare the means of antifun-

gal activity for the different carbon source concentrations. 

14-11. An article in Bioresource Technology [“Quantita-

tive Response of Cell Growth and Tuber Polysaccharides 

Biosynthesis by Medicinal Mushroom Chinese Truffl e Tuber 

Sinense to Metal Ion in Culture Medium” (2008, Vol. 99(16), 

pp. 7606–7615)] described an experiment to investigate 

the effect of metal ion concentration to the production of 

extracellular polysaccharides (EPS). It is suspected that Mg2+

and K+ (in millimolars) are related to EPS. The data from a full 

factorial design follow.  

(a) State the hypotheses of interest. 

(b) Test the hypotheses with α = .0 5. 

(c) Analyze the residuals and plot residuals versus the pre-

dicted production. 

Run Mg2+ (mM) K +  (mM) EPS (g/L) 

1 40 5 3.88

2 50 15 4.23

3 40 10 4.67

4 30 5 5.86

5 50 10 4.50

6 50 5 3.62

7 30 15 3.84

8 40 15 3.25

9 30 10 4.18

14-4 General Factorial Experiments
Many experiments involve more than two factors. In this section, we introduce the case in 

which there are a levels of factor A, b levels of factor B, c levels of factor C , and so on, 

arranged in a factorial experiment. In general, there are a b c n× × ×...  total observations if 

there are n replicates of the complete experiment.

For example, consider the three-factor-factorial experiment, with underlying model

Yijkl i j k ij ik jk
= + + + + ( ) + ( ) + ( )m t b g tb tg bg

+ ( ) +

=
=
=
=

⎧

⎨
⎪⎪

⎩
⎪
⎪

tbg e
ijk ijkl

i a

j b

k c

l n

1 2

1 2

1 2

1 2

, , ,

, , ,

, , ,

, , ,

…
…
…
…

 (14-10)

Notice that the model contains three main effects, three two-factor interactions, a three-factor 

interaction, and an error term. Assuming that A, B, and C  are fi xed factors, the analysis of 

variance is shown in Table 14-9. Note that there must be at least two replicates ( )n ≥ 2  to 

compute an error sum of squares. The F-test on main effects and interactions follows directly 

from the expected mean squares. These ratios follow F-distributions under the respective 

null hypotheses.

Surface Roughness A mechanical engineer is studying the surface roughness of a part pro-

duced in a metal-cutting operation. Three factors, feed rate ( )A , depth of cut ( )B , and tool angle ( )C , 

are of interest. All three factors have been assigned two levels, and two replicates of a factorial design are run. The 

coded data are in Table 14-10.

The ANOVA is summarized in Table 14-11. Because manual ANOVA computations are tedious for three-factor 

experiments, we have used computer software for the solution of this problem. The F-ratios for all three main effects 

and the interactions are formed by dividing the mean square for the effect of interest by the error mean square. Because 

Example 14-2
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Obviously, factorial experiments with three or more factors can require many runs, particu-

larly if some of the factors have several (more than two) levels. This point of view leads us to 

the class of factorial designs considered in Section 14-5 with all factors at two levels. These 

designs are easy to set up and analyze, and they may be used as the basis of many other useful 

experimental designs.

Source of Variation Sum of Squares Degrees of Freedom Mean Square Expected Mean Squares F0

A SSA a − 1 MSA σ τ2 +
−
∑bcn

a
i
2

1

MS

MS
A

E

B SSB b − 1 MSB σ
β2 +

−
∑acn

b
j
2

1

MS

MS
B

E

C SSC c − 1 MSC σ γ2 +
−
∑abn

c
k
2

1

MS

MS
C

E

AB SSAB ( )( )a b− −1 1 MSAB
σ

(τβ)2 +
− −

∑∑cn

a b
ij
2

1 1( )( )

MS

MS
AB

E

AC SSAC ( )( )a c− −1 1 MSAC σ (τγ)2 +
− −

∑∑bn

a c
ik
2

1 1( )( )

MS

MS
AC

E

BC SSBC ( )( )b c− −1 1 MSBC σ
(βγ)2 +

− −
∑∑cn

b c
jk
2

1 1( )( )

MS

MS
BC

E

ABC SSABC ( )( )( )a b c− − −1 1 1 MSABC σ
(τβγ)2 +

− − −
∑∑∑n n

a b c
ijk
2

1 1 1( )( )( )

MS

MS
ABC

E

Error SSE abc n( )− 1 MSE σ2

Total SST abcn − 1

14-9 Analysis of Variance Table for the Three-Factor Fixed Effects Model

the experimenter has selected α = 0.05, the critical value for each of these F-ratios is f0 05 1 8 5 32. , , .= . Alternately, we 

could use the P-value approach. The P-values for all the test statistics are shown in the last column of Table 14-11. 

Inspection of these P-values is revealing. There is a strong main effect of feed rate, because the F-ratio is well into the 

critical region. However, there is some indication of an effect due to the depth of cut because P = 0 0710.  is not much 

greater than α = 0 05. . The next largest effect is the AB or feed rate × depth of cut interaction. Most likely, both feed 

rate and depth of cut are important process variables.

Practical Interpretation: Further experiments could study the important factors in more detail to improve the surface 

roughness.

14-10 Coded Surface Roughness Data for Example 14-2

Feed Rate (A)

Depth of Cut ( )B

yi …

0.025 inch 0.040 inch

Tool Angle ( )C Tool Angle ( )C

15° 25° 15° 25°

 9 11  9 10

20 inches per minute  7 10 11  8 75

10 10 12 16

30 inches per minute 12 13 15 14 102
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14-11 ANOVA for Example 14-2

ANOVA

Factor Type Levels Values

Feed fixed 2 20 30

Depth fixed 2 0.025 0.040

Angle fixed 2 15 25

Analysis of Variance for Roughness

Source DF SS MS F P

Feed 1 45.563 45.563 18.69 0.003

Depth 1 10.563 10.563 4.33 0.071

Angle 1 3.063 3.063 1.26 0.295

Feed*Depth 1 7.563 7.563 3.10 0.116

Feed*Angle 1 0.062 0.062 0.03 0.877

Depth*Angle 1 1.563 1.563 0.64 0.446

Feed*Depth*Angle 1 5.062 5.062 2.08 0.188

Error 8 19.500 2.437

Total 15 92.938

14-12. The quality control department of a fabric finishing 

plant is studying the effects of several factors on dyeing for 

a blended cotton/synthetic cloth used to manufacture shirts. 

Three operators, three cycle times, and two temperatures were 

selected, and three small specimens of cloth were dyed under 

each set of conditions. The finished cloth was compared to a 

standard, and a numerical score was assigned. The results are 

shown in the following table.

(a) State and test the appropriate hypotheses using the analysis 

of variance with α = 0.05.

(b) The residuals may be obtained from e y yijkl ijkl ijk= − .. 
Graphically analyze the residuals from this experiment.

14-13.  The percentage of hardwood concentration in raw 

pulp, the freeness, and the cooking time of the pulp are being 

investigated for their effects on the strength of paper. The data 

from a three-factor factorial experiment are shown in the fol-

lowing table.

(a) Analyze the data using the analysis of variance assuming 

that all factors are fixed. Use α = 0.05.

(b) Compute approximate P-values for the F-ratios in part (a).

(c) The residuals are found from e y yijkl ijkl ijk= − .. Graphically 

analyze the residuals from this experiment.

FOR SECTION 14-4Exercises
 Problem available in WileyPLUS at instructor’s discretion. 

 Tutoring problem available in WileyPLUS at instructor’s discretion

Cycle Time

Temperature

300ç 350ç
Operator Operator

1 2 3 1 2 3

23 27 31 24 38 34

40 24 28 32 23 36 36

25 26 28 28 35 39

36 34 33 37 34 34

50 35 38 34 39 38 36

36 39 35 35 36 31

28 35 26 26 36 28

60 24 35 27 29 37 26

27 34 25 25 34 34

Hardwood 
Concentration 

%

Cooking  
Time  

1.5 hours

Cooking  
Time  

2.0 hours

Freeness Freeness

350 500 650 350 500 650

10

96.6 97.7 99.4 98.4  99.6 100.6

96.0 96.0 99.8 98.6 100.4 100.9

15

98.5 96.0 98.4 97.5  98.7  99.6

97.2 96.9 97.6 98.1  96.0  99.0

20

97.5 95.6 97.4 97.6  97.0  98.5

96.6 96.2 98.1 98.4  97.8  99.8
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14-5 2k Factorial Designs
Factorial designs are frequently used in experiments involving several factors where it is nec-

essary to study the joint effect of the factors on a response. However, several special cases of 

the general factorial design are important because they are widely employed in research work 

and because they form the basis of other designs of considerable practical value.

The most important of these special cases is that of k factors, each at only two levels. These 

levels may be quantitative, such as two values of temperature, pressure, or time; or they may 

be qualitative, such as two machines, two operators, the “high’’ and “low’’ levels of a factor, 

or perhaps the presence and absence of a factor. A complete replicate of such a design requires 

2 2 2 2× × ×… = k  observations and is called a 2k factorial design.

The 2k design is particularly useful in the early stages of experimental work when many 

factors are likely to be investigated. It provides the smallest number of runs for which k factors 

can be studied in a complete factorial design. Because each factor has only two levels, we must 

assume that the response is approximately linear over the range of the factor levels chosen.

14-5.1 22 DESIGN

The simplest type of 2k  design is the 22—that is, two factors A and B, each at two levels. We 

usually think of these levels as the factor’s low and high levels. The 22 design is shown in Fig. 

14-15. Note that the design can be represented geometrically as a square with the 22 = 4 runs, 

or treatment combinations, forming the corners of the square. In the 22 design, it is customary 

to denote the low and high levels of the factors A and B by the signs − and +, respectively. This 

is sometimes called the geometric notation for the design.

A special notation is used to label the treatment combinations. In general, a treatment 

combination is represented by a series of lowercase letters. If a letter is present, the corre-

sponding factor is run at the high level in that treatment combination; if it is absent, the factor 

is run at its low level. For example, treatment combination a indicates that factor A is at the 

high level and factor B is at the low level. The treatment combination with both factors at 

the low level is represented by (1). This notation is used throughout the 2k design series. For 

example, the treatment combination in a 24 with A and C  at the high level and B and D at the 

low level is denoted by ac .

The effects of interest in the 22 design are the main effects A and B and the two-factor inter-

action AB. Let the symbols (1), a b, , and ab also represent the totals of all n observations taken 

at these design points. It is easy to estimate the effects of these factors. To estimate the main 

effect of A, we would average the observations on the right side of the square in Fig. 14-15 

where A is at the high level, and subtract from this the average of the observations on the left 

side of the square where A is at the low level, or

FIGURE 14-15 The 22 factorial design.

Low

(–)

High

(+)

(1)

A

B

b

a

ab

Low

(–) High

(+)

Treatment

(1)

a
b

ab

A
–

+

–

+

B
–

–

+

+
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Similarly, the main effect of B is found by averaging the observations on the top of the square, 

where B is at the high level, and subtracting the average of the observations on the bottom of 

the square, where B is at the low level:

 A y y
a ab

n

b

n n
a ab bA A= − = + −

+ ( ) = + − − ( )⎡⎣ ⎤⎦+ −
2

1

2

1

2
1  (14-11)

Main Effect of Factor 
A:22 Design

 Effect
Contrast= −n k2 1

 (14-14)

Relationship Between 
a Contrast and an 

Effect

 AB
ab

n

a b

n n
ab a b=

+ ( ) − + = + ( ) − −⎡⎣ ⎤⎦
1

2 2

1

2
1  (14-13)

Interaction Effect 
AB:22 Design

 B y y
b ab

n

a

n n
b ab aB B= − = + −

+ ( ) = + − − ( )⎡⎣ ⎤⎦+ −
2

1

2

1

2
1  (14-12)

Main Effect of Factor 
B:22 Design

Finally, the AB interaction is estimated by taking the difference in the diagonal averages in 

Fig. 14-15, or

The quantities in brackets in Equations 14-11, 14-12, and 14-13 are called contrasts. For 

example, the A contrast is

Contrast A a ab b= + − − ( )1

In these equations, the contrast coeffi cients are always either +1 or −1. A table of plus and 

minus signs, such as Table 14-12, can be used to determine the sign on each treatment com-

bination for a particular contrast. The column headings for Table 14-12 are the main effects 

A and B, the AB interaction, and I, which represents the total. The row headings are the 

treatment combinations. Note that the signs in the AB column are the product of signs from 

columns A and B. To generate a contrast from this table, multiply the signs in the appropriate 

column of Table 14-12 by the treatment combinations listed in the rows and add. For example, 

contrast [(1)] + [ ] + [ ] + [ ] (1)AB a b ab ab + a b= =− − − − .

Contrasts are used in calculating both the effect estimates and the sums of squares for 

A B, , and the AB interaction. For any 2k  design with n replicates, the effect estimates are 

computed from

Treatment 
Combination

Factorial Effect

I A B AB

(1) + – – +

a + + – –

b + – + –

ab + + + +

14-12 Signs for Effects in the 22 Design
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and the sum of squares for any effect is

 SS
Contrast

= ( )2

2n k  (14-15)

Sum of Squares for an 
Effect

One degree of freedom is associated with each effect (two levels minus one) so that the mean 

squared error of each effect equals the sum of squares. The analysis of variance is completed by 

computing the total sum of squares SST  (with 4 1n −  degrees of freedom) as usual, and obtain-

ing the error sum of squares SSE (with 4 1( )n −  degrees of freedom) by subtraction.

Epitaxial Process An article in the AT&T Technical Journal (March/April 1986, Vol. 65, 

pp. 39–50) describes the application of two-level factorial designs to integrated circuit manufac-

turing. A basic processing step in this industry is to grow an epitaxial layer on polished silicon wafers. The wafers 

are mounted on a susceptor and positioned inside a bell jar. Chemical vapors are introduced through nozzles near the 

top of the jar. The susceptor is rotated, and heat is applied. These conditions are maintained until the epitaxial layer is 

thick enough.

Refer to Table 14-13 for the results of a 22 factorial design with n = 4 replicates using the factors A = deposition time 

and B = arsenic fl ow rate. The two levels of deposition time are − = short and + = long, and the two levels of arsenic 

fl ow rate are − = 55% and + = 59%. The response variable is epitaxial layer thickness ( )μm . We may fi nd the estimates 

of the effects using Equations 14-11, 14-12, and 14-13 as follows:

A
n

a ab b= + − − ( )⎡⎣ ⎤⎦ = ( ) . + . − . − .[ ] = .1

2
1

1

2 4
59 299 59 156 55 686 56 081 0 8336

B
n

b ab a= + − − ( )⎡⎣ ⎤⎦ = ( ) . + . − . − .[ ] = − .1

2
1

1

2 4
55 686 59 156 59 299 56 081 0 0067

AB
n

ab a b

AB

= + ( ) − −⎡⎣ ⎤⎦

= ( ) . + . − . − .[ ] =

1

2
1

1

2 4
59 156 56 081 59 299 55 686 00 032.

The numerical estimates of the effects indicate that the effect of deposition time is large and has a positive direction 

(increasing deposition time increases thickness), because changing deposition time from low to high changes the mean 

epitaxial layer thickness by 0 836. μm. The effects of arsenic fl ow rate ( )B  and the AB interaction appear small.

The importance of these effects may be confi rmed with the analysis of variance. The sums of squares for A B, ,  and 

AB are computed as follows:

SS
a ab b

A =
+ − − ( )⎡⎣ ⎤⎦ =

.[ ] = .
1

16

6 688

16
2 7956

2 2

Example 14-3

14-13 The 22 Design for the Epitaxial Process Experiment

Treatment 
Combination

Design Factors Thickness ( )lm

A B AB Thickness ( )lm Total Average

(1) – – + 14.037 14.165 13.972 13.907 56.081 14.020

a + – – 14.821 14.757 14.843 14.878 59.299 14.825

b – + – 13.880 13.860 14.032 13.914 55.686 13.922

ab + + + 14.888 14.921 14.415 14.932 59.156 14.789
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Models and Residual Analysis
It is easy to obtain a model for the response and residuals from a 2k design by fi tting a 

regression model to the data. For the epitaxial process experiment, the regression model is

Y = + +β β0 1x1 e

because the only active variable is deposition time, which is represented by a coded variable x1. 

The low and high levels of deposition time are assigned values x1 1= −  and x1 1= + , respec-

tively. The least squares fi tted model is

ˆ .y x= + .⎛
⎝⎜

⎞
⎠⎟

14 389
0 836

2
1

where the intercept β̂0 is the grand average of all 16 observations (y ) and the slope β̂1 is one-

half the effect estimate for deposition time. The regression coeffi cient is one-half the effect 

estimate because regression coeffi cients measure the effect of a unit change in x1 on the mean 

of Y , and the effect estimate is based on a two-unit change from −1 to +1.

A coeffi cient relates a factor to the response and, similar to regression analysis, interest 

centers on whether or not a coeffi cient estimate is signifi cantly different from zero. Each 

effect estimate in Equations 14-11 through 14-13 is the difference between two averages (that 

we denote in general as y y+ −− ). In a 2k experiment with n replicates, half the observations 

appear in each average so that there are n k2 1−  observations in each. The associated coeffi cient 

estimate, say β̂, equals half the associated effect estimate so that

SS
b ab a

B =
+ − − ( )⎡⎣ ⎤⎦ =

− .[ ] = .
1

16

0 538

16
0 0181

2 2

SS
ab a b

AB =
+ ( ) − −⎡⎣ ⎤⎦ =

.[ ] = .
1

16

0 252

16
0 0040

2 2

SST = . + + . −
. + + .( ) = .14 037 14 932

56 081 59 156

16
3 06722 2

2

…
…

Practical Interpretation: The analysis of variance is summarized in the bottom half of Table 14-14 and confi rms 

our conclusions obtained by examining the magnitude and direction of the effects. Deposition time is the only factor 

that signifi cantly affects epitaxial layer thickness, and from the direction of the effect estimates, we know that longer 

deposition times lead to thicker epitaxial layers.

Source of Variation
Sum of 
Squares

Degrees of 
Freedom

Mean 
Square f0 P-Value

A (deposition time) 2.7956  1 2.7956 134.40 7.07 E-8

B (arsenic fl ow) 0.0181  1 0.0181  0.87 0.38

AB 0.0040  1 0.0040  0.19 0.67

Error 0.2495 12 0.0208

Total 3.0672 15

14-14 Analysis for the Epitaxial Process Experiment

Term Effect Coeffi cient SE Coeffi cient t P-Value

Constant 14.3889 0.03605 399.17 0.000

A 0.8360 0.4180  0.03605 11.60 0.000

B −0.0672 −0.0336  0.03605 −0.93 0.369

AB 0.0315 0.0157  0.03605 0.44 0.670
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598   Chapter 14/Design of Experiments with Several Factors

with degrees of freedom equal to those associated with mean square error. This statistic is 

similar to a two-sample t-test, but σ is estimated from root mean square error. The estimate σ̂ 

accounts for the multiple treatments in an experiment and generally differs from the estimate 

used in a two-sample t-test.

For example, for the epitaxial process experiment in Example 14-3, the effect of A is 

0.836. Therefore, the coefficient for A is 0.836/2  = 0.418. Furthermore, ˆ .σ =2 0 0 0 2 8 from 

the mean squared error in the ANOVA table. Therefore, the standard error of a coefficient is 

0 0 0 0 0 02. / [ ] .2 8 4(2 ) 36 5= , and the t-statistic for factor A is 0.418 / 0.03605 = 11.60. The 

upper half of Table 14-14 shows the results for the other coefficients. Notice that the P-values 

obtained from the t-tests equal those in the ANOVA table (aside from rounding). The analy-

sis of a 0k design through coefficient estimates and t-tests is similar to the approach used in 

regression analysis. Consequently, it might be easier to interpret results from this perspective. 

Computer software often generates output in this format.

Some algebra can be used to show that for a 2k experiment, the square of the t-statistic for 

the coefficient test equals the F-statistic used for the effect test in the analysis of variance. In 

Table 14-14, the square of the t-statistic for factor A is 11 596   134 47. .2 = , and this equals the 

F-statistic for factor A in the ANOVA. Also, the square of a t random variable with d degrees 

of freedom is an F  random variable with 1 numerator and d denominator degrees of freedom. 

Thus, the test that compares the absolute value of the t-statistic to the t distribution is equiva-

lent to the F-test, and either method may be used to test an effect.

The least squares fitted model can also be used to obtain the predicted values at the four 

points that form the corners of the square in the design. For example, consider the point with 

low deposition time ( )x1 1= −  and low arsenic flow rate. The predicted value is

ŷ = . + .⎛
⎝⎜

⎞
⎠⎟

−( ) = .  μ14 389
0 836

2
1 13 971 m

 β̂ = =
−+ −effect

2 2

y y
 (14-16)

Coefficient  
and Effect

 Standard error  β = σ + = σ− −
ˆ ˆ

ˆ
2

1

2

1

2

1

21 1n n nk k k  (14-17)

Standard  
Error of a  

Coefficient

The standard error of β̂ equals half the standard error of the effect, and an effect is simply the 

difference between two averages. Therefore,

where σ̂ is estimated from the square root of mean square error. A t-test for a coefficient can 

also be used to test the significance of an effect. The t-statistic to test H0 : β = 0 in a 2k  experi-

ment is

 t
y y

n k

= β
  β

=
−( )

σ

+ −
ˆ

ˆ
ˆStandard error

/ 2

1

2

 (14-18)

t-statistic for a 
Coefficient
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and the residuals for the four runs at that design point are

e

e

e

1 = − =
−
−

14.037 13.971 0.066

14.165 13.971 0.194

13.972 13.9

2

3

= =

= 771

13.907 13.971

= 0.001

= = .064e4 − − 0

The remaining predicted values and residuals at the other three design points are calculated 

in a similar manner.

A normal probability plot of these residuals is shown in Fig. 14-16. This plot indicates that 

one residual e15 0.392= −  is an outlier. Examining the four runs with high deposition time 

and high arsenic flow rate reveals that observation y15 14.415=  is considerably smaller than 

the other three observations at that treatment combination. This adds some additional evidence 

to the tentative conclusion that observation 15 is an outlier. Another possibility is that some 

process variables affect the variability in epitaxial layer thickness. If we could discover which 

variables produce this effect, we could perhaps adjust these variables to levels that would 

minimize the variability in epitaxial layer thickness. This could have important implications 

in subsequent manufacturing stages. Figures 14-17 and 14-18 are plots of residuals versus 

–0.392
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FIGURE 14-16 Normal probability plot of residuals  
for the epitaxial process experiment.

0.5

0

–0.5

e

Low High Deposition time, A

FIGURE 14-17 Plot of residuals versus  
deposition time.
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FIGURE 14-18 Plot of residuals versus arsenic 
flow rate.
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600   Chapter 14/Design of Experiments with Several Factors

deposition time and arsenic flow rate, respectively. Except for the unusually large residual 

associated with y15, there is no strong evidence that either deposition time or arsenic flow rate 

influences the variability in epitaxial layer thickness.

Figure 14-19 shows the standard deviation of epitaxial layer thickness at all four runs 

in the 22  design. These standard deviations were calculated using the data in Table 14-13. 

Notice that the standard deviation of the four observations with A and B at the high level 

is considerably larger than the standard deviations at any of the other three design points. 

Most of this difference is attributable to the unusually low thickness measurement associ-

ated with y15. The standard deviation of the four observations with A and B at the low level 

is also somewhat larger than the standard deviations at the remaining two runs. This could 

indicate that other process variables not included in this experiment may affect the vari-

ability in epitaxial layer thickness. Another experiment to study this possibility, involving 

other process variables, could be designed and conducted. (The original paper in the AT&T 
Technical Journal shows that two additional factors not considered in this example affect 

process variability.)

14-5.2  2k  DESIGN FOR k ≥ 3 FACTORS

The methods presented in the previous section for factorial designs with k = 2 factors each 

at two levels can be easily extended to more than two factors. For example, consider k = 3 

factors, each at two levels. This design is a 23 factorial design, and it has eight runs or treat-

ment combinations. Geometrically, the design is a cube as shown in Fig. 14-20(a) with the 

eight runs forming the corners of the cube. Figure 14-20(b) lists the eight runs in a table 

with each row representing one of the runs and the − and +  settings indicating the low and 

high levels for each of the three factors. This table is sometimes called the design matrix. 

This design allows three main effects ( ,A B and )C  to be estimated along with three two-

factor interactions ( , , )AB AC BCand  and a three-factor interaction ( )ABC .

The main effects can easily be estimated. Remember that the lowercase letters (1), a b ab, , , 
c ac bc, , , and abc represent the total of all n replicates at each of the eight runs in the design. As 

in Fig. 14-21(a), the main effect of A can be estimated by averaging the four treatment combi-

nations on the right-hand side of the cube where A is at the high level and by subtracting from 

this quantity the average of the four treatment combinations on the left-hand side of the cube 

where A is at the low level. This gives

A y y
a ab ac abc

n

b c bc

n
A A= − = + + + − + + +

+ −
4

1

4

( )

0.110 A

B

0.051

0.2500.077

(1) a

b ab

+–

–

+

FIGURE 14-19 The standard deviation 
of epitaxial layer thickness at the four 
runs in the 22 design.
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+
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–

+
b

(a) Geometric view (b) 23 design matrix
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1

2

3

4

5

6

7

8

A

–

+

–

+

–
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+
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–

–
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C
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+ 
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FIGURE 14-20 The 23 design.
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This equation can be rearranged as

A B C

AB AC BC

(a)

(b)

ABC

(c)

A

C

B

+–
+

–

+

–

+

–

–

+

–
+

+
–

–

= + runs
= – runs

Main effects

Two-factor interactions

Three-factor interaction

+

FIGURE 14-21 Geometric presentation of contrasts corresponding  
to the main effects and interaction in the 23 design. (a) Main effects.  
(b) Two-factor interactions. (c) Three-factor interaction.

A y y
n

a ab ac abc b c bcA A= − = + + + − − − −[ ]+ −
1

4
1( )

Main Effect of Factor 
A:23 Design

In a similar manner, the effect of B is the difference in averages between the four treatment 

combinations in the back face of the cube [Fig. 14-19(a)], and the four in the front. This yields

B y y
n

b ab bc abc a c acB B= − = + + + − − − −[ ]+ −
1

4
1( )

Main Effect of Factor 
B:23 Design

The effect of C  is the difference in average response between the four treatment combinations 

in the top face of the cube in Figure 14-19(a) and the four in the bottom, that is,

C y y
n

c ac bc abc a b abC C= − = + + + − − − −[ ]+ −
1

4
1( )

Main Effect of Factor 
C :23 Design
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602   Chapter 14/Design of Experiments with Several Factors

The two-factor interaction effects may be computed easily. A measure of the AB interaction 

is the difference between the average A effects at the two levels of B. By convention, one-half 

of this difference is called the AB interaction. Symbolically,

B Average  Effect A

High ( )+ ( ) ( )abc bc ab b

n

− + −[ ]
2

Low ( )− ( ) ( )ac c a

n

− + −[ ]{ }1

2

Difference abc bc ab b ac c a

n

− + − − + − +[ ]( )1

2

Because the AB interaction is one-half of this difference,

AB
n

abc bc ab b ac c a= − + − − + − +[ ]1

4
1( )

Two-Factor  
Interaction  

Effects:  
23 Design

We could write the AB effect as follows:

AB
abc ab c

n

bc b ac a

n
= + + + − + + +( )1

4 4

In this form, the AB interaction can easily be seen to be the difference in averages between 

runs on two diagonal planes in the cube in Fig. 14-19(b). Using similar logic and referring to 

Fig. 14-19(b), we find that the AC  and BC  interactions are

AC
n

a b ab c ac bc abc

BC
n

a b ab c ac bc abc

= − + − − + − +[ ]

= + − − − − + +

1

4
1

1

4
1

( )

( )[[ ]

Two-Factor  
Interaction  

Effect:  
23 Design

The ABC interaction is defined as the average difference between the AB interaction for the 

two different levels of C . Thus,

ABC abc bc ac c ab b a=  −[ ] − −[ ] − −[ ] + −[ ]{ }1

4
1

n
( )

or

ABC
n

abc bc ac c ab b a= − − + − + + −[ ]1

4
1( )

Three-Factor  
Interaction  

Effect:  
23 Design

As before, we can think of the ABC interaction as the difference in two averages. If the runs 

in the two averages are isolated, they define the vertices of the two tetrahedra that comprise 

the cube in Fig. 14-21(c).
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In the equations for the effects, the quantities in brackets are contrasts in the treatment com-

binations. A table of plus and minus signs can be developed from the contrasts and is shown in 

Table 14-15. Signs for the main effects are determined directly from the test matrix in Figure 

14-20(b). Once the signs for the main effect columns have been established, the signs for the 

remaining columns can be obtained by multiplying the appropriate main effect row by row. 

For example, the signs in the AB column are the products of the A and B column signs in each 

row. The contrast for any effect can easily be obtained from this table.

Table 14-15 has several interesting properties:

1. Except for the identity column I, each column has an equal number of plus and minus 

signs.

2. The sum of products of signs in any two columns is zero; that is, the columns in the table 

are orthogonal.

3. Multiplying any column by column I leaves the column unchanged; that is, I is an identity 
element.

4. The product of any two columns yields a column in the table, for example A B AB× = , and  

AB ABC A B C C× = =2 2  because any column multiplied by itself is the identity column.

The estimate of any main effect or interaction in a 2k design is determined by multiplying 

the treatment combinations in the fi rst column of the table by the signs in the corresponding 

main effect or interaction column, by adding the result to produce a contrast, and then by 

dividing the contrast by one-half the total number of runs in the experiment.

14-15 Algebraic Signs for Calculating Effects in the 23 Design

Treatment 
Combination

Factorial Effect

I A B AB C AC BC ABC
(1) + − − + − + + −
a + + − − − − + +
b + − + − − + − +

ab + + + + − − − −
c + − − + + − − +

ac + + − − + + − −
bc + − + − + − + −

abc + + + + + + + +

Surface Roughness Consider the surface roughness experiment originally described in Exam-

ple 14-2. This is a 23 factorial design in the factors feed rate ( )A , depth of cut ( )B , and tool angle 

( )C , with n = 2 replicates. Table 14-16 presents the observed surface roughness data.

The effect of A, for example, is

A
n

a ab ac abc b c bc= + + + − − − −[ ]

= + + + − − − −

1

4
1

1

4 2
22 27 23 30 16 20 21 18

( )

( )
[[ ] = [ ] =1

8
27 3 375.

EXAMPLE 14-4
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604   Chapter 14/Design of Experiments with Several Factors

Treatment 
Combinations

Design Factors
Surface 

Roughness TotalsA B C

(1) –1 –1 –1 9,   7 16

a 1 –1 –1 10, 12 22

b –1 1 –1 9, 11 20

ab 1 1 –1 12, 15 27

c –1 –1 1 11, 10 21

ac 1 –1 1 10, 13 23

bc –1 1 1 10,   8 18

abc 1 1 1 16, 14 30

14-16 Surface Roughness Data for Example 14-4

and the sum of squares for A is found using Equation 14-15:

SS
n

A k= ( ) = ( )
( ) =

contrastA

2 2

2

27

2 8
45 5625.

It is easy to verify that the other effects are

B
C

AB
AC
BC

ABC

=
=
=
=
= −
=

1 625

0 875

1 375

0 125

0 625

1 125

.

.

.

.

.

.

Examining the magnitude of the effects clearly shows that feed rate (factor A) is dominant, followed by depth of cut 

( )B  and the AB interaction, although the interaction effect is relatively small. The analysis, summarized in Table 14-17, 

confi rms our interpretation of the effect estimates.

The output from the computer software for this experiment is shown in Table 14-18. The upper portion of the table 

displays the effect estimates and regression coeffi cients for each factorial effect. To illustrate, for the main effect of 

feed, the computer output reports t = 4.32 (with 8 degrees of freedom), and t2 = =( )4.32 18.662 , which is approxi-

mately equal to the F-ratio for feed reported in Table 14-18 ( )F = 18.69 . This F-ratio has one numerator and 8 denomi-

nator degrees of freedom.

The lower panel of the computer output in Table 14-18 is an analysis of variance summary focusing on the types 

of terms in the model. A regression model approach is used in the presentation. You might fi nd it helpful to review 

Section 12-2.2, particularly the material on the partial F-test. The row entitled “main effects’’ under source refers to 

the three main effects feed, depth, and angle, each having a single degree of freedom, giving the total 3 in the column 

headed “DF.’’ The column headed “Seq SS’’ (an abbreviation for sequential sum of squares) reports how much the 

model sum of squares increases when each group of terms is added to a model that contains the terms listed above the 

groups. The fi rst number in the “Seq SS’’ column presents the model sum of squares for fi tting a model having only the 

three main effects. The row labeled “2-Way Interactions’’ refers to AB, AC , and BC , and the sequential sum of squares 

reported here is the increase in the model sum of squares if the interaction terms are added to a model containing only 

the main effects. Similarly, the sequential sum of squares for the three-way interaction is the increase in the model sum 

of squares that results from adding the term ABC to a model containing all other effects.

The column headed “Adj SS’’ (an abbreviation for adjusted sum of squares) reports how much the model sum of 

squares increases when each group of terms is added to a model that contains all the other terms. Now because any 2k 

design with an equal number of replicates in each cell is an orthogonal design, the adjusted sum of squares equals the 
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Source of 
Variation

Sum of 
Squares

Degrees of 
Freedom Mean Square f0 P-Value

A 45.5625  1 45.5625 18.69 0.0025

B 10.5625  1 10.5625  4.33 0.0709

C  3.0625  1 3.0625  1.26 0.2948

AB  7.5625  1 7.5625  3.10 0.1162

AC  0.0625  1 0.0625  0.03 0.8784

BC  1.5625  1 1.5625  0.64 0.4548

ABC  5.0625  1 5.0625  2.08 0.1875

Error 19.5000  8 2.4375

Total 92.9375 15

14-17 Analysis for the Surface Roughness Experiment

Term Effect Coeffi cient SE Coeffi cient t P-Value

Constant 11.0625 0.3903 28.34 0.000

A 3.3750 1.6875 0.3903 4.32 0.003

B 1.6250 0.8125 0.3903 2.08 0.071

C 0.8750 0.4375 0.3903 1.12 0.295

AB 1.3750 0.6875 0.3903 1.76 0.116

AC 0.1250 0.0625 0.3903 0.16 0.877

BC −0.6250 −0.3125 0.3903 −0.80 0.446

ABC 1.1250 0.5625 0.3903 1.44 0.188

14-18 Computer Analysis for the Surface Roughness Experiment in Example 14-4

Estimated Effects and Coeffi cients for Roughness

Term Effect Coef StDev Coef T P

Constant 11.0625 0.3903 28.34 0.000

Feed 3.3750 1.6875 0.3903 4.32 0.003

Depth 1.6250 0.8125 0.3903 2.08 0.071

Angle 0.8750 0.4375 0.3903 1.12 0.295

Feed*Depth 1.3750 0.6875 0.3903 1.76 0.116

Feed*Angle 0.1250 0.0625 0.3903 0.16 0.877

Depth*Angle –0.6250 –0.3125 0.3903 –0.80 0.446

Feed*Depth*Angle 1.1250 0.5625 0.3903 1.44 0.188

Analysis of Variance for Roughness

Source DF Seq SS Adj SS Adj MS F P

Main effects 3 59.188 59.188 19.729 8.09 0.008

2-Way interactions 3 9.187 9.187 3.062 1.26 0.352

3-Way interactions 1 5.062 5.062 5.062 2.08 0.188

Residual error 8 19.500 19.500 2.437

Pure error 8 19.500 19.500 2.437

Total 15 92.938
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606   Chapter 14/Design of Experiments with Several Factors

Models and Residual Analysis
We may obtain the residuals from a 2k design by using the method demonstrated earlier for the 

22 design. As an example, consider the surface roughness experiment. The three largest effects 

are A, B, and the AB interaction. The regression model used to obtain the predicted values is

Y = + + + +β β β β0 1 2 12x x x x1 2 1 2 e

where x1 represents factor A, x2 represents factor B, and x x1 2 represents the AB interaction. 

The regression coefficients β1, β2, and β12 are estimated by one-half the corresponding effect 

estimates, and β0 is the grand average. Thus,

ŷ x x x= . + .⎛
⎝⎜

⎞
⎠⎟
 + .⎛

⎝⎜
⎞
⎠⎟
 + .⎛

⎝⎜
⎞
⎠⎟
 11 0625

3 375

2

1 625

2

1 375

2
1 2 1xx

x x x x

2

1 2 1 211 0625 1 6875 0 8125 0 6875= . + . + . + .

Note that the regression coefficients are presented in the upper panel of Table 14-18. The pre-

dicted values would be obtained by substituting the low and high levels of A and B into this 

equation. To illustrate this, at the treatment combination where A B, , and C  are all at the low 

level, the predicted value is

ˆ . . ( ) . ( ) . ( )( ) .y = + − + − + − − =11 0625 1 6875 1 0 8125 1 0 6875 1 1 9 25

Because the observed values at this run are 9 and 7, the residuals are 9 9 25− = − 0.25.  and 

7 9 25 2 25− = −. . . Residuals for the other 14 runs are obtained similarly.

See a normal probability plot of the residuals in Fig. 14-22. Because the residuals lie 

approximately along a straight line, we do not suspect any problem with normality in the data. 

sequential sum of squares. Therefore, the F-tests for each row in the computer analysis of variance in Table 14-18 are 

testing the significance of each group of terms (main effects, two-factor interactions, and three-factor interactions) as 

if they were the last terms to be included in the model. Clearly, only the main effect terms are significant. The t-tests 

on the individual factor effects indicate that feed rate and depth of cut have large main effects, and there may be some 

mild interaction between these two factors. Therefore, the computer output agrees with the results given previously.
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FIGURE 14-22  
Normal probability 
plot of residuals from 
the surface rough-
ness experiment.

c14.indd   606 9/24/2013   10:17:55 PM



There are no indications of severe outliers. It would also be helpful to plot the residuals versus 

the predicted values and against each of the factors A B, ,  and C .

Projection of 2k Designs
Any 2k design collapses or projects into another 2k design in fewer variables if one or more 

of the original factors are dropped. Sometimes this can provide additional insight into the 

remaining factors. For example, consider the surface roughness experiment. Because factor 

C and all its interactions are negligible, we could eliminate factor C from the design. The 

result is to collapse the cube in Fig. 14-20 into a square in the A B−  plane; therefore, each of 

the four runs in the new design has four replicates. In general, if we delete h factors so that 

r k h= −  factors remain, the original 2k design with n replicates projects into a 2r design with 

n h2  replicates.

14-5.3 SINGLE REPLICATE OF THE 2k DESIGN

As the number of factors in a factorial experiment increases, the number of effects that can 

be estimated also increases. For example, a 24 experiment has 4 main effects, 6 two-factor 

interactions, 4 three-factor interactions, and 1 four-factor interaction, and a 26 experiment has 

6 main effects, 15 two-factor interactions, 20 three-factor interactions, 15 four-factor interac-

tions, 6 five-factor interactions, and 1 six-factor interaction. In most situations, the sparsity 
of effects principle applies; that is, the system is usually dominated by the main effects and 

low-order interactions. The three-factor and higher order interactions are usually negligible. 

Therefore, when the number of factors is moderately large, say, k ≥ 4 or 5, a common practice 

is to run only a single replicate of the 2k design and then pool or combine the higher order 

interactions as an estimate of error. Sometimes a single replicate of a 2k design is called an 

unreplicated 2k factorial design.

When analyzing data from unreplicated factorial designs, occasionally real high-order 

interactions occur. The use of an error mean square obtained by pooling high-order interac-

tions is inappropriate in these cases. A simple method of analysis can be used to overcome 

this problem. Construct a plot of the estimates of the effects on a normal probability scale. The 

effects that are negligible are normally distributed with mean zero and variance σ2  and tend to 

fall along a straight line on this plot, whereas significant effects has nonzero means and will 

not lie along the straight line. We illustrate this method in Example 14-5.

  Plasma Etch An article in Solid State Technology [“Orthogonal Design for Process Optimiza-

tion and Its Application in Plasma Etching” (May 1987, pp. 127–132)] describes the application 

of factorial designs in developing a nitride etch process on a single-wafer plasma etcher. The process uses C
2
F

6
 as the 

reactant gas. It is possible to vary the gas flow, the power applied to the cathode, the pressure in the reactor chamber, 

and the spacing between the anode and the cathode (gap). Several response variables would usually be of interest in 

this process, but in this example, we concentrate on etch rate for silicon nitride.

We use a single replicate of a 24 design to investigate this process. Because it is unlikely that the three- and four-

factor interactions are significant, we tentatively plan to combine them as an estimate of error. The factor levels used 

in the design follow:

Design Factor

Level Gap 
(cm)

Pressure 
(mTorr)

C F2 6 Flow 
(SCCM)

Power  
(w)

Low (–) 0.80 450 125 275

High (+) 1.20 550 200 325

Example 14-5

Section 14-5/2k Factorial Designs   607

c14.indd   607 9/24/2013   10:17:57 PM



608   Chapter 14/Design of Experiments with Several Factors

Refer to Table 14-19 for the data from the 16 runs of the 24 design. Table 14-20 is the table of plus and minus signs 

for the 24 design. The signs in the columns of this table can be used to estimate the factor effects. For example, the 

estimate of factor A is

A a ab ac abc ad abd acd abcd b c bc d bd cd bcd= + + + + + + + − − − − − − − −[ ]

=

1

8
1

1

( )

88
669 650 642 635 749 868 860 729 550 604 633 601 1037 10[ + + + + + + + − − − − − − 552 1075 1063

101 625

− − ]

= − .

Thus, the effect of increasing the gap between the anode and the cathode from 0.80 to 1.20 centimeters is to decrease 

the etch rate by 101.625 angstroms per minute.

It is easy to verify (using computer software, for example) that the complete set of effect estimates is

A

B

AB

C

AC

BC

ABC

= −
= −
= −
=
= −
= −
=

101 625

1 625

7 875

7 375

24 875

43 875

.

.

.

.

.

.

−−
=

= −
= −
=
= −

15 625

306 125

153 625

0 625

4 125

2 125

.

.

.

.

.

.

D

AD

BD

ABD

CD

ACD ==
= −
= −

5 625

25 375

40 125

.

.

.

BCD

ABCD

The normal probability plot of these effects from the plasma etch experiment is shown in Fig. 14-23. Clearly, the main 

effects of A and D and the AD interaction are signifi cant because they fall far from the line passing through the other 

points. The analysis, summarized in Table 14-21, confi rms these fi ndings. Notice that in the analysis of variance we 

have pooled the three- and four-factor interactions to form the error mean square. If the normal probability plot had 

indicated that any of these interactions were important, they would not have been included in the error term.

TABLE 14-19 The 24 Design for the Plasma Etch Experiment

A 
(Gap)

B 
(Pressure)

C 
(C2F6 Flow)

D 
(Power)

Etch Rate 
(Å/min)

–1 –1 –1 –1 550

1 –1 –1 –1 669

–1 1 –1 –1 604

1 1 –1 –1 650

–1 –1 1 –1 633

1 –1 1 –1 642

–1 1 1 –1 601

1 1 1 –1 635

–1 –1 –1 1 1037

1 –1 –1 1 749

–1 1 –1 1 1052

1 1 –1 1 868

–1 –1 1 1 1075

1 –1 1 1 860

–1 1 1 1 1063

1 1 1 1 729
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Practical Interpretation: Because A = −101.625, the effect of increasing the gap between the cathode and anode 

is to decrease the etch rate. However, D = 306.125; thus, applying higher power levels increase the etch rate. 

Figure 14-24 is a plot of the AD interaction. This plot indicates that the effect of changing the gap width at low power 

settings is small but that increasing the gap at high power settings dramatically reduces the etch rate. High etch rates 

are obtained at high power settings and narrow gap widths.

TABLE 14-20 Contrast Constants for the 24 Design

A B AB C AC BC ABC D AD BD ABD CD ACD BCD ABCD
(1) – – + – + + – – + + – + – – +

a + – – – – + + – – + + + + – –

b – + – – + – + – + – + + – + –

ab + + + – – – – – – – – + + + +

c – – + + – – + – + + – – + + –

ac + – – + + – – – – + + – – + +

bc – + – + – + – – + – + – + – +

abc + + + + + + + – – – – – – – –

d – – + – + + – + – – + – + + –

ad + – – – – + + + + – – – – + +

bd – + – – + – + + – + – – + – +

abd + + + – – – – + + + + – – – –

cd – – + + – – + + – – + + – – +

acd + – – + + – – + + – – + + – –

bcd – + – + – + – + – + – + – + –

abcd + + + + + + + + + + + + + + +
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TABLE 14-21 Analysis for the Plasma Etch Experiment

Term Effect Coeffi cient SE Coeffi cient t P -Value
Constant 776.06 11.28 68.77 0.000

A -101.62 -50.81 11.28 -4.50 0.006

B -1.62 -0.81 11.28 -0.07 0.945

C 7.37 3.69 11.28 0.33 0.757

D 306.12 153.06 11.28 13.56 0.000

AB -7.88 -3.94 11.28 -0.35 0.741

AC -24.88 -12.44 11.28 -1.10 0.321

AD -153.62 -76.81 11.28 -6.81 0.001

BC -43.87 -21.94 11.28 -1.94 0.109

BD -0.63 -0.31 11.28 -0.03 0.979

CD -2.13 -1.06 11.28 -0.09 0.929

Source of Variation Sum of Squares Degrees of Freedom Mean Square f0 P-Value

A 41,310.563 1 41,310.563 20.28 0.0064

B 10.563 1 10.563 ,1 —

C 217.563 1 217.563 ,1 —

D 374,850.063 1 374,850.063 183.99 0.0000

AB 248.063 1 248.063 ,1 —

AC 2,475.063 1 2,475.063 1.21 0.3206

AD 94,402.563 1 94,402.563 46.34 0.0010

BC 7,700.063 1 7,700.063 3.78 0.1095

BD 1.563 1 1.563 ,1 —

CD 18.063 1 18.063 ,1 —

Error 10,186.813 5 2,037.363

Total 531,420.938 15
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The residuals from the experiment in Example 14-5 can be obtained from the regression model

ŷ x x= . − .⎛
⎝⎜

⎞
⎠⎟

+ .⎛
⎝⎜

⎞
⎠⎟

− .⎛
⎝

776 0625
101 625

2

306 125

2

153 625

2
1 4  ⎜⎜

⎞
⎠⎟
 x x1 4

For example, when both A and D are at the low level, the predicted value is

ˆ ( ) ( )y = . − .⎛
⎝⎜

⎞
⎠⎟

− + .⎛
⎝⎜

⎞
⎠⎟

− − .
776 0625

101 625

2
1

306 125

2
1

153 625

2

⎛⎛
⎝⎜

⎞
⎠⎟

− − =( )( )1 1 597

and the four residuals at this treatment combination are

e e
e e

1 2

3 4

550 597 47 604 597 7

633 597 36 601 597 4

= − = − = − =
= − = = − =

The residuals at the other three treatment combinations (A high, D low), (A low, D high), and 

(A high, D high) are obtained similarly. A normal probability plot of the residuals is shown in 

Fig. 14-25. The plot is satisfactory.

FIGURE 14-23 Normal probability plot of 
effects from the plasma etch experiment.
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FIGURE 14-24 AD (gap-power) interaction from 
the plasma etch experiment.
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plot of residuals from 
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14-5.4 ADDITION OF CENTER POINTS TO A 2k DESIGN

A potential concern in the use of two-level factorial designs is the assumption of linearity in 

the factor effects. Of course, perfect linearity is unnecessary, and the 2k system works quite 

well even when the linearity assumption holds only approximately. However, a method of 

replicating certain points in the 2k factorial provides protection against curvature and allows 

an independent estimate of error to be obtained. The method consists of adding center 
points to the 2k design. These consist of n

C
 replicates run at the point x

i
 = 0 (i = 1, 2, . . . ,  

k). One important reason for adding the replicate runs at the design center is that center 

points do not affect the usual effects estimates in a 2k design. We assume that the k factors 

are quantitative.

To illustrate the approach, consider a 22 design with one observation at each of the facto-

rial points (–, –), (+, –), (–, +), and (+, +) and n
C
 observations at the center points (0, 0). Fig-

ure 14-26 illustrates the situation. Let yF be the average of the four runs at the four factorial 

points, and let yC be the average of the n
C
 run at the center point. If the difference y yF C−  is 

small, the center points lie on or near the plane passing through the factorial points, and there 

is no curvature. On the other hand, if y yF C−  is large, curvature is present. 

Similar to factorial effects, a test for curvature can be based on a F-statistic or an equiva-

lent t-statistic. A single degree-of-freedom sum of squares for curvature is compared to MSE 

to produce the F-statistic. Alternatively, a t-statistic  similar to the one used to compare two 

means can be computed. A coefficient for curvature is defined to be y yF C − , and σ is estimated 

by the square root of MSE. This leads to the following formulas:

FIGURE 14-26 A 22 design with center points.
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 (14-19)

Curvature Sum of 
Squares and t-Statistic
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612   Chapter 14/Design of Experiments with Several Factors

where, in general, n
F
 is the number of factorial design points. The SSCurvature may be compared 

to the error mean square to produce the F-test for curvature. Notice that, similar to the test for 

other effects, the square of the t-statistic equals the F-statistic. 

When points are added to the center of the 2k design, the model we may entertain is

Y x x x xj
j

k

i
i j

j j
j

k

ij jj= + + + +
= =
∑ ∑∑ ∑b b b b e

,
0 0

1

2

1

where the β
jj
 are pure quadratic effects. The test for curvature actually tests the hypotheses

H jj
j

k

0
1

0: β =
=
∑ H jj

j

k

1
1

0: β ≠
=
∑

Furthermore, if the factorial points in the design are unreplicated, we may use the n
C
 center 

points to construct an estimate of error with n
C
 – 1 degrees of freedom.

Process Yield A chemical engineer is studying the percentage of conversion or yield of a process. 

There are two variables of interest, reaction time and reaction temperature. Because she is uncertain 

about the assumption of linearity over the region of exploration, the engineer decides to conduct a 22 design (with a single 

replicate of each factorial run) augmented with fi ve center points. The design and the yield data are shown in Fig. 14-27.

Table 14-22 summarizes the analysis for this experiment. The mean square error is calculated from the center points 

as follows:

MS
SS

n

y y

n

y

E
E
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i C
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−
=
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=
− .( )
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∑ ∑
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FIGURE 14-27 
The 22 design with 
fi ve center points 
for the process 
yield experiment in 
Example 14-6.
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TABLE 14-22 Analysis for the Process Yield Experiment with Center Points

Term Effect Coeffi cient SE Coeffi cient t P-Value
Constant 40.4250 0.1037 389.89 0.000

A 1.5500 0.7750 0.1037 7.47 0.002

B 0.6500 0.3250 0.1037 3.13 0.035

AB −0.0500 −0.0250 0.1037 −0.24 0.821

Ct Pt −0.0350 0.1391 −0.25 0.814

Source of Variation Sum of Squares Degrees of Freedom Mean Square f0 P-Value
A (Time) 2.4025 1 2.4025 55.87 0.0017

B (Temperature) 0.4225 1 0.4225 9.83 0.0350

AB 0.0025 1 0.0025 0.06 0.8237

Curvature 0.0027 1 0.0027 0.06 0.8163

Error 0.1720 4 0.0430

Total 3.0022 8
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The average of the points in the factorial portion of the design is yF = .40 425, and the average of the points at the center 

is yC = .40 46. The difference y yF C−  = 40.425 – 40.46 = –0.035 appears to be small. The curvature sum of squares in 

the analysis of variance table is computed from Equation 14-19 as follows:

SS
n n y y

n n
F C F C

F C
Curvature =

−( )
+

= ( )( ) − .( )
+

= .
2 2

4 5 0 035

4 5
0 0027

The coeffi cient for curvature is y   y  F C− −= 0.035, and the t-statistic to test for curvature is 

t   
35

43
1

4

25= −

+⎛
⎝⎜

⎞
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= −0 0

0 0
1

5

0
.

.

.

Practical Interpretation: The analysis of variance indicates that both factors exhibit signifi cant main effects, that 

there is no interaction, and that there is no evidence of curvature in the response over the region of exploration. That is, 

the null hypothesis H jjj
k

0 1
0: β ==∑  cannot be rejected.

14-14.  An engineer is interested in the effect of cutting 

speed (A), metal hardness (B), and cutting angle (C) on the life 

of a cutting tool. Two levels of each factor are chosen, and two 

replicates of a 23 factorial design are run. The tool life data (in 

hours) are shown in the following table.

Treatment 
Combination

Replicate

I II
(1) 221 311

a 325 435

b 354 348

ab 552 472

c 440 453

ac 406 377

bc 605 500

abc 392 419

(a) Analyze the data from this experiment.

(b) Find an appropriate regression model that explains tool life 

in terms of the variables used in the experiment.

(c) Analyze the residuals from this experiment.

14-15. Four factors are thought to infl uence the taste of a 

soft-drink beverage: type of sweetener (A), ratio of syrup to 

water (B), carbonation level (C), and temperature (D). Each 

factor can be run at two levels, producing a 24 design. At each 

run in the design, samples of the beverage are given to a test 

panel consisting of 20 people. Each tester assigns the beverage 

a point score from 1 to 10. Total score is the response variable, 

and the objective is to fi nd a formulation that maximizes total 

score. Two replicates of this design are run, and the results are 

shown in the table. Analyze the data and draw conclusions. Use 

a = 0.05 in the statistical tests.

Treatment 
Combination

Replicate

I II
(1) 159 163

a 168 175

b 158 163

ab 166 168

c 175 178

ac 179 183

bc 173 168

abc 179 182

d 164 159

ad 187 189

bd 163 159

abd 185 191

cd 168 174

acd 197 199

bcd 170 174

abcd 194 198

14-16. The following data represent a single replicate of a 25 

design that is used in an experiment to study the compressive 

strength of concrete. The factors are mix (A), time (B), labora-

tory (C), temperature (D), and drying time (E).

(1) = 700 e   =   800
a = 900 ae   =  1200
b = 3400 be   =  3500
ab = 5500 abe   =  6200
c = 600 ce   =   600
ac = 1000 ace   =  1200

FOR SECTION 14-5Exercises
 Problem available in WileyPLUS at instructor’s discretion. 

 Tutoring problem available in WileyPLUS at instructor’s discretion.
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bc = 3000 bce = 3006
abc = 5300 abce = 5500
d = 1000 de = 1900
ad = 1100 ade = 1500
bd = 3000 bde = 4000
abd = 6100 abde = 6500
cd = 800 cde = 1500
acd = 1100 acde = 2000
bcd = 3300 bcde = 3400
abcd = 6000 abcde = 6800

(a) Estimate the factor effects.

(b) Which effects appear important? Use a normal probabil-

ity plot.

(c) If it is desirable to maximize the strength, in which direc-

tion would you adjust the process variables?

(d) Analyze the residuals from this experiment.

14-17.  An article in IEEE Transactions on Semiconduc-
tor Manufacturing (1992, Vol. 5, pp. 214–222) described an 

experiment to investigate the surface charge on a silicon wafer. 

The factors thought to influence induced surface charge are 

cleaning method (spin rinse dry or SRD and spin dry or SD) 

and the position on the wafer where the charge was measured. 

The surface charge (×1011 q / cm3) response data follow:

Test Position
L R

Cleaning 
Method

SD
1.66 1.84

1.90 1.84

1.92 1.62

SRD
–4.21 –7.58

–1.35 –2.20

–2.08 –5.36

(a) Estimate the factor effects.

(b) Which factors appear important? Use α = 0.05.

(c) Analyze the residuals from this experiment.

14-18.  An article in Oikos: A Journal of Ecology [“Regu-

lation of Root Vole Population Dynamics by Food Supply and 

Predation: A Two-Factor Experiment” (2005, Vol. 109, pp. 

387–395)] investigated how food supply interacts with preda-

tion in the regulation of root vole (Microtus oeconomus Pallas) 

population dynamics. A replicated two-factor field experiment 

manipulating both food supply and predation condition for root 

voles was conducted. Four treatments were applied: −P, +F 

(no-predator, food-supplemented); +P, +F (predator-access, 

food-supplemented); −P, −F (no-predator, nonsupplemented); 

+P, −F (predator-access, food-supplemented). The population 

density of root voles (voles ha −1) for each treatment combina-

tion follows.

Food Supply 
(F)

Predation 
(P) Replicates

+1 −1 88.589 114.059 200.979

+1 +1 56.949 97.079 78.759

−1 −1 65.439 89.089 172.339

−1 +1 40.799 47.959 74.439

(a) What is an appropriate statistical model for this experiment?

(b) Analyze the data and draw conclusions.

(c) Analyze the residuals from this experiment. Are there any 

problems with model adequacy?

14-19.  An experiment was run in a semiconductor fab-

rication plant in an effort to increase yield. Five factors, each 

at two levels, were studied. The factors (and levels) were A = 

aperture setting (small, large), B = exposure time (20% below 

nominal, 20% above nominal), C = development time (30 and 

45 seconds), D = mask dimension (small, large), and E = etch 

time (14.5 and 15.5 minutes). The following unreplicated 25 

design was run:

(1) = 7 e = 8
a = 9 ae = 12
b = 34 be = 35
ab = 55 abe = 52
c = 16 ce = 15
ac = 20 ace = 22
bc = 40 bce = 45
abc = 60 abce = 65
d = 8 de = 6
ad = 10 ade = 10
bd = 32 bde = 30
abd = 50 abde = 53
cd = 18 cde = 15
acd = 21 acde = 20
bcd = 44 bcde = 41
abcd = 61 abcde = 63

(a) Construct a normal probability plot of the effect estimates. 

Which effects appear to be large?

(b) Conduct an analysis of variance to confirm your findings 

for part (a).

(c) Construct a normal probability plot of the residuals. Is the 

plot satisfactory?

(d) Plot the residuals versus the predicted yields and versus 

each of the five factors. Comment on the plots.

(e) Interpret any significant interactions.

(f) What are your recommendations regarding process operat-

ing conditions?

(g) Project the 25 design in this problem into a 2r for r < 5 

design in the important factors. Sketch the design and 

show the average and range of yields at each run. Does this 

sketch aid in data interpretation?

14-20. An experiment described by M. G. Natrella in the 

National Bureau of Standards’ Handbook of Experimental Sta-
tistics (1963, No. 91) involves flame-testing fabrics after apply-

ing fire-retardant treatments. The four factors considered are 

type of fabric (A), type of fire-retardant treatment (B), launder-

ing condition (C—the low level is no laundering, the high level 

is after one laundering), and method of conducting the flame 

test (D). All factors are run at two levels, and the response vari-

able is the inches of fabric burned on a standard size test sample.  

The data are:

(1) = 42 d = 40
a = 31 ad = 30
b = 45 bd = 50
ab = 29 abd = 25
c = 39 cd = 40
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ac = 28 acd = 25
bc = 46 bcd = 50
abc = 32 abcd = 23

(a) Estimate the effects and prepare a normal plot of the effects.

(b) Construct an analysis of variance table based on the model 

tentatively identified in part (a).

(c) Construct a normal probability plot of the residuals and 

comment on the results.

14-21.  Consider the data from Exercise 14-14. Suppose 

that the data from the second replicate were not available. Ana-

lyze the data from replicate I only and comment on your findings.

14-22. A 24 factorial design was run in a chemical process. The 

design factors are A = time, B = concentration, C = pressure, and 

D = temperature. The response variable is yield. The data follow:

Yield 
(pounds)

Factor Levels

Run A B C D – +
 1 – – – – 12 A (hours)   2   3

 2 + – – – 18 B (%)  14  18

 3 – + – – 13 C (psi)  60  80

 4 + + – – 16 D (°C) 200 250

 5 – – + – 17

 6 + – + – 15

 7 – + + – 20

 8 + + + – 15

 9 – – – + 10

10 + – – + 25

11 – + – + 13

12 + + – + 24

13 – – + + 19

14 + – + + 21

15 – + + + 17

16 + + + + 23

(a) Estimate the factor effects. Based on a normal probability 

plot of the effect estimates, identify a model for the data 

from this experiment.

(b) Conduct an ANOVA based on the model identified in part 

(a). What are your conclusions?

(c) Analyze the residuals and comment on model adequacy.

(d) Find a regression model to predict yield in terms of the 

actual factor levels.

(e) Can this design be projected into a 23 design with two rep-

licates? If so, sketch the design and show the average and 

range of the two yield values at each cube corner. Discuss 

the practical value of this plot.

14-23.  An experiment has run a single replicate of a 24 

design and calculated the following factor effects:

A = 80.25 AB = 53.25 ABC = –2.95
B = –65.50 AC = 11.00 ABD = –8.00
C = –9.25 AD = 9.75 ACD = 10.25
D = –20.50 BC = 18.36 BCD = –7.95
   BD = 15.10 ABCD = –6.25
   CD = –1.25

(a) Construct a normal probability plot of the effects.

(b) Identify a tentative model, based on the plot of effects in 

part (a).

(c) Estimate the regression coefficients in this model, assum-

ing that y = .400

14-24. A two-level factorial experiment in four factors was 

conducted by Chrysler and described in the article “Sheet 

Molded Compound Process Improvement” by P. I. Hsieh and  

D. E. Goodwin (Fourth Symposium on Taguchi Methods, American 

Supplier Institute, Dearborn, MI, 1986, pp. 13–21). The purpose 

was to reduce the number of defects in the finish of sheet-molded 

grill opening panels. A portion of the experimental design, and the 

resulting number of defects, y
i
 observed on each run is shown in 

the following table. This is a single replicate of the 24 design.

(a) Estimate the factor effects and use a normal probability 

plot to tentatively identify the important factors.

(b) Fit an appropriate model using the factors identified in  

part (a).

(c) Plot the residuals from this model versus the predicted 

number of defects. Also prepare a normal probability plot 

of the residuals. Comment on the adequacy of these plots.

(d) The following table also shows the square root of the num-

ber of defects. Repeat parts (a) and (c) of the analysis using 

the square root of the number of defects as the response. 

Does this change the conclusions?

Run

Grill Defects Experiment

A B C D y y

 1 – – – – 56 7.48

 2 + – – – 17 4.12

 3 – + – –  2 1.41

 4 + + – –  4 2.00

 5 – – + –  3 1.73

 6 + – + –  4 2.00

 7 – + + – 50 7.07

 8 + + + –  2 1.41

 9 – – – +  1 1.00

10 + – – +  0 0.00

11 – + – +  3 1.73

12 + + – + 12 3.46

13 – – + +  3 1.73

14 + – + +  4 2.00

15 – + + +  0 0.00

16 + + + +  0 0.00

14-25.  Consider a 22 factorial experiment with four center 

points. The data are 1 21( ) = , a ,= 125  b ,= 154  ab ,= 352  and 

the responses at the center point are 92, 130, 98, 152. Compute 

an ANOVA with the sum of squares for curvature and conduct 

an F-test for curvature. Use α = . .0 05

14-26.  Consider the experiment in Exercise 14-16. Sup-

pose that a center point with five replicates is added to the fac-

torial runs and the responses are 2800, 5600, 4500, 5400, 3600. 

Compute an ANOVA with the sum of squares for curvature and 

conduct an F-test for curvature. Use α = . .0 05
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616   Chapter 14/Design of Experiments with Several Factors

14-27. Consider the experiment in Exercise 14-19. Suppose 

that a center point with five replicates is added to the factorial 

runs and the responses are 45, 40, 41, 47, and 43.

(a) Estimate the experimental error using the center points. 

Compare this to the estimate obtained originally in Exercise 

14-19 by pooling apparently nonsignificant effects.

(b) Test for curvature with α = . .0 05

14-28. An article in Talanta (2005, Vol. 65, pp. 895–899) pre-

sented a 23 factorial design to find lead level by using flame 

atomic absorption spectrometry (FAAS). The data are in the 

following table.

Factors Lead Recovery 
(%)

Run ST pH RC R1 R2
1 – – – 39.8 42.1
2 + – – 51.3 48
3 – + – 57.9 58.1
4 + + – 78.9 85.9
5 – – + 78.9 84.2
6 + – + 84.2 84.2
7 – + + 94.4 90.9
8 + + + 94.7 105.3

The factors and levels are in the following table.

Factor Low (–) High (+)
Reagent concentration (RC) 
(mol 1–1)

5 × 10–6 5 × 10–5

pH 6.0 8.0

Shaking time (ST) (min) 10 30

(a) Construct a normal probability plot of the effect estimates. 

Which effects appear to be large?

(b) Conduct an analysis of variance to confirm your findings 

for part (a).

(c) Analyze the residuals from this experiment. Are there any 

problems with model adequacy?

14-29. An experiment to study the effect of machining factors 

on ceramic strength was described at www.itl.nist.gov/div898/

handbook/. Five factors were considered at two levels each: A = 

Table Speed, B = Down Feed Rate, C = Wheel Grit, D = Direc-

tion, E = Batch. The response is the average of the ceramic 

strength over 15 repetitions. The following data are from a sin-

gle replicate of a 25 factorial design.

A B C D E Strength
–1 –1 –1 –1 –1 680.45

1 –1 –1 –1 –1 722.48
–1 1 –1 –1 –1 702.14

1 1 –1 –1 –1 666.93
–1 –1 1 –1 –1 703.67

1 –1 1 –1 –1 642.14
–1 1 1 –1 –1 692.98

1 1 1 –1 –1 669.26
–1 –1 –1 1 –1 491.58

1 –1 –1 1 –1 475.52
–1 1 –1 1 –1 478.76

1 1 –1 1 –1 568.23
–1 –1 1 1 –1 444.72

1 –1 1 1 –1 410.37
–1 1 1 1 –1 428.51

1 1 1 1 –1 491.47
–1 –1 –1 –1 1 607.34

1 –1 –1 –1 1 620.8
–1 1 –1 –1 1 610.55

1 1 –1 –1 1 638.04
–1 –1 1 –1 1 585.19

1 –1 1 –1 1 586.17
–1 1 1 –1 1 601.67

1 1 1 –1 1 608.31
–1 –1 –1 1 1 442.9

1 –1 –1 1 1 434.41
–1 1 –1 1 1 417.66

1 1 –1 1 1 510.84
–1 –1 1 1 1 392.11

1 –1 1 1 1 343.22
–1 1 1 1 1 385.52

1 1 1 1 1 446.73

(a) Estimate the factor effects and use a normal probability 

plot of the effects. Identify which effects appear to be large.

(b) Fit an appropriate model using the factors identified in part (a).

(c) Prepare a normal probability plot of the residuals. Also, 

plot the residuals versus the predicted ceramic strength. 

Comment on the adequacy of these plots.

(d) Identify and interpret any significant interactions.

(e) What are your recommendations regarding process operat-

ing conditions?

14-30. Consider the following computer output for a 23 facto-

rial experiment.

(a) How many replicates were used in the experiment?

(b) Use the appropriate equation to calculate the standard error 

of a coefficient.

(c) Calculate the entries marked with “?” in the output.

Estimated Effects and Coefficients
Term Effect Coef SE Coef t P
Constant 583.57 ? 115.40 0.000
A 5.40 ? ? ? ?
B 20.94 10.47 ? 2.07 0.072
C –41.73 –20.86 ? –4.13 0.003
A*B 26.93 13.46 ? 2.66 0.029
A*C –20.41 –10.20 ? –2.02 0.078
B*C 3.91 1.96 ? 0.39 0.709
A*B*C –12.07 –6.04 ? –1.19 0.267

S = 20.2279
Analysis of Variance
Source DF SS MS F P

A ? ? ? ? ?
B ? 1753.4 1753.40 4.29 0.072
C ? 6965.0 6964.95 17.02 0.003
A*B ? 2900.8 2900.76 7.09 0.029
A*C ? 1665.9 1665.93 4.07 0.078
B*C ? 61.3 61.25 0.15 0.709
A*B*C ? 583.1 583.06 1.42 0.267
Re sidual 

error
? 3273.4 409.17

Total 15 17319.5
14-31. Consider the following computer output for one repli-

cate of a 24 factorial experiment. 

(a) What effects are used to estimate error? 
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(b) Calculate the entries marked with “?” in the output.

Estimated Effects and Coefficients
Term Effect Coef SE Coef t P

Constant 35.250 ? 39.26 0.000
A 2.250 ? ? ? ?
B 24.75012.375 ? 13.78 0.000
C 1.000 0.500 ? 0.56 0.602
D 10.750 5.375 ? 5.99 0.002
A*B -10.500-5.250 ? -5.85 0.002
A*C 4.250 2.125 ? 2.37 0.064
A*D -5.000-2.500 ? -2.78 0.039
B*C 5.250 2.625 ? 2.92 0.033
B*D 4.000 2.000 ? 2.23 0.076
C*D -0.750-0.375 ? -0.42 0.694
S = 3.59166

Analysis of Variance
Source DF SS MS F P

A ? ? ? ? 0.266
B 1 2450.252450.25189.940.000
C 1 4.00 4.00 0.310.602
D 1 462.25 462.25 35.830.002
AB 1 441.00 441.00 34.190.002
AC 1 72.25 72.25 5.600.064
AD 1 100.00 100.00 7.750.039
BC 1 110.25 110.25 8.550.033
BD 1 64.00 64.00 4.960.076
CD 1 2.25 2.25 0.170.694
Residual Error ? 64.50 ?
Total ? 3791.00

14-32. An article in Bioresource Technology (“Influence of 

Vegetable Oils Fatty-Acid Composition on Biodiesel Opti-

mization,” (2011, Vol. 102(2), pp. 1059–1065)] described an 

experiment to analyze the influence of the fatty-acid composi-

tion on biodiesel. Factors were the concentration of catalyst, 

amount of methanol, reaction temperature and time, and the 

design included three center points. Maize oil methyl ester 

(MME) was recorded as the response. Data follow.

Run Temperature 
(�C) 

Time 
(min) 

Catalyst 
(wt.%) 

Methanol 
to oil 

molar ratio 

 MME  
(wt.%)  

 1 45 40 0.8 5.4 88.30 
 2 25 40 1.2 5.4 90.50 
 3 45 10 0.8 4.2 77.96  
 4 25 10 1.2 5.4 85.59  
 5 45 40 1.2 5.4 97.14  
 6 45 10 1.2 4.2 90.64  

 7 45 40 1.2 4.2 89.86  
 8 25 40 0.8 4.2 82.35  
 9 25 10 0.8 5.4 80.31  
10 25 40 0.8 5.4 85.51  
11 25 10 0.8 4.2 76.21  
12 45 40 0.8 4.2 86.86  
13 25 10 1.2 4.2 86.35  
14 45 10 0.8 5.4 84.58  
15 25 40 1.2 4.2 89.37  
16 45 10 1.2 5.4 90.51  
17 35 25 1 4.8 91.40  
18 35 25 1 4.8 91.96  
19 35 25 1 4.8 91.07  

(a) Identify the important effects from a normal probability plot. 

(b) Compare the results in the previous part with results that 

use an error term based on the center points.

(c) Test for curvature.

(d) Analyze the residuals from the model. 

14-33. An article in Analytica Chimica Acta [“Design-of-

Experiment Optimization of Exhaled Breath Condensate 

Analysis Using a Miniature Differential Mobility Spectrom-

eter (DMS)” (2008, Vol. 628(2), pp. 155–161)] examined 

four parameters that affect the sensitivity and detection of the 

analytical instruments used to measure clinical samples. They 

optimized the sensor function using exhaled breath condensate 

(EBC)  samples spiked with acetone, a known clinical biomarker 

in breath. The following table shows the results for a single rep-

licate of a 24 factorial experiment for one of the outputs, the 

average amplitude of acetone peak over three repetitions.

Configuration A B C D y
 1 + + + + 0.12

 2 + + + – 0.1193

 3 + + – + 0.1196

 4 + + – – 0.1192
 5 + – + + 0.1186
 6 + – + – 0.1188
 7 + – – + 0.1191
 8 + – – – 0.1186
 9 – + + + 0.121
10 – + + – 0.1195

11 – + – + 0.1196

12 – + – – 0.1191
13 – – + + 0.1192
14 – – + – 0.1194
15 – – – + 0.1188
16 – – – – 0.1188

The factors and levels are shown in the following table.

A RF voltage of the DMS sensor (1200 or 1400 V)
B Nitrogen carrier gas flow rate (250 or 500 mL  min–1)
C Solid phase microextraction (SPME) filter type 

(polyacrylate or PDMS–DVB)
D GC cooling profile (cryogenic and noncryogenic)

(a) Estimate the factor effects and use a normal probability 

plot of the effects. Identify which effects appear to be large, 

and identify a model for the data from this experiment.

(b) Conduct an ANOVA based on the model identified in part 

(a). What are your conclusions?

(c) Analyze the residuals from this experiment. Are there any 

problems with model adequacy?

(d) Project the design in this problem into a 2r design for r < 4  

in the important factors. Sketch the design and show the 

average and range of yields at each run. Does this sketch 

aid in data representation?

14-34. An article in Journal of Construction Engineering 
and Management (“Analysis of Earth-Moving Systems Using 

Discrete—Event Simulation,” 1995, Vol. 121(4), pp. 388–396) 

considered a replicated two-level factorial experiment to study 

the factors most important to output in an earth-moving sys-

tem. Handle the experiment as four replicates of a 24 factorial 
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618   Chapter 14/Design of Experiments with Several Factors

design with response equal to production rate (m3 / h). The data 

are shown in the following table.

(a) Estimate the factor effects. Based on a normal probability 

plot of the effect estimates, identify a model for the data 

from this experiment. 

(b) Conduct an ANOVA based on the model identified in part 

(a). What are the conclusions? 

(c) Analyze the residuals and plot residuals versus the pre-

dicted production. 

(d) Comment on model adequacy.

Row 
Number  
of Trucks 

Passes 
per Load 

Load-pass 
Time 

Travel 
Time 

Production (m3/h) 

1 2 3 4 
 1 − − − − 179.6 179.8 176.3 173.1  
 2 + − − − 373.1 375.9 372.4 361.1  
 3 − + − − 153.2 153.6 150.8 148.6  
 4 + + − − 226.1 220.0 225.7 218.5  
 5 − − + − 156.9 155.4 154.2 152.2  
 6 + − + − 242.0 233.5 242.3 233.6  
 7 − + + − 122.7 119.6 120.9 118.6  
 8 + + + − 135.7 130.9 135.5 131.6  
 9 − − − + 44.2 44.0 43.5 43.6  
10 + − − + 124.2 123.3 122.8 121.6  

11 − + − + 42.0 42.4 42.5 41.0  
12 + + − + 116.3 117.3 115.6 114.7  
13 − − + + 42.1 42.6 42.8 42.9  
14 + − + + 119.1 119.5 116.9 117.2  
15 − + + + 39.6 39.7 39.5 39.2  
16 + + + + 107.0 105.3 104.2 103.0 

Level −1 1  

Number of trucks   2 6  

Passes per load   4 7  

Load pass time  12 s 22 s  

Travel time 100 s 800 s  

Row 
Payer 
Type

Number 
of Visits Disciplines 

Length 
of Stay

Case 
Manager

Length of  Account 
Receivable (days)

 1 − − − − −  17 

 2 + − − − −  28 
 3 − + − − −  40 

 4 + + − − −  31 
 5 − − + − −   5 
 6 + − + − −  28 
 7 − + + − −  43 
 8 + + + − −  47 
 9 − − − + −  26  
10 + − − + −  29  
11 − + − + −  60 

12 + + − + −  47 
13 − − + + −  18 

14 + − + + −  32
15 − + + + −  64  

16 + + + + −  49 
17 − − − − +  33 

(continued )

14-35. The book Using Designed Experiments to Shrink 
Health Care Costs [1997, ASQ Quality Press] presented a case 

study of an unreplicated 25 factorial design to investigate the 

effect of five factors on the length of accounts receivable meas-

ured in days. A summary of the investigated factors and the 

results of the study follows.  
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14-6 Blocking and Confounding in the 2k Design
Running all the observations in a 2k factorial design under homogeneous conditions is often impos-

sible. Blocking is the appropriate design technique for this general situation. However, in many 

situations, the block size is smaller than the number of runs in the complete replicate. In these 

cases, confounding is a useful procedure for running the 2k design in 2p blocks where the number 

of runs in a block is less than the number of treatment combinations in one complete replicate. The 

technique causes certain interaction effects to be indistinguishable from blocks or confounded 
with blocks. We illustrate confounding in the 2k factorial design in 2p blocks where p < k.

Consider a 22 design. Suppose that each of the 22 = 4 treatment combinations requires 

four hours of laboratory analysis. Thus, two days are required to perform the experiment. 

b
+

(1)
–

– +
a

ab

A
Geometric view

(a)

Assignment of the four

runs to two blocks

(b)

(1)

Block 1

ab

a

Block 2

b

= Run in block 1

= Run in block 2

FIGURE 14-28 A 22 design in two blocks. (a) Geometric view. (b) Assignment 
of the four runs to two blocks.

Row 
Payer 
Type

Number 
of Visits Disciplines 

Length 
of Stay

Case 
Manager

Length of  Account 
Receivable (days)

18 + − − − +  31 

19 − + − − +  67 
20 + + − − +  79 
21 − − + − +  32 
22 + − + − +  46 
23 − + + − +  86 
24 + + + − +  55 
25 − − − + +  41 
26 + − − + +  63 
27 − + − + +  77 
28 + + − + + 197 
29 − − + + +  62 
30 + − + + +  52 
31 − + + + + 143 
32 + + + + +  68 

Level −1 1
Payer type Medicare Risk Medicare

Number of visits 9 10

Disciplines 2 3c

Length of stay 30 31

Case manager Registered Nurses Physical Therapists

(a) Construct the normal probability plot of the effects and interpret the plot.

(b)  Pool the negligible higher-order interactions to obtain an estimate of the error and  

construct the ANOVA accordingly.

(c) Analyze the residuals and comment on model adequacy.
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620   Chapter 14/Design of Experiments with Several Factors

If days are considered as blocks, we must assign two of the four treatment combinations to 

each day.

See this design in Fig. 14-28. Notice that block 1 contains the treatment combinations (1) 

and ab and that block 2 contains a and b. The contrasts for estimating the main effects of fac-

tors A and B are

Contrast A ab a b= + − − ( )1   ContrastB ab b a= + − − ( )1

Note that these contrasts are unaffected by blocking because in each contrast there is one plus 

and one minus treatment combination from each block. That is, any difference between block 

1 and block 2 that increases the readings in one block by an additive constant cancels out. The 

contrast for the AB interaction is

Contrast AB ab b a b= + ( ) − −1

Because the two treatment combinations with the plus signs, ab and (1), are in block 1 and the 

two with the minus signs, a and b, are in block 2, the block effect and the AB interaction are 

identical. That is, the AB interaction is confounded with blocks.

The reason for this is apparent from the table of plus and minus signs for the 22 design in 

Table 14-12. From the table, we see that all treatment combinations that have a plus on AB 

are assigned to block 1 whereas all treatment combinations that have a minus sign on AB are 

assigned to block 2.

This scheme can be used to confound any 2k design in two blocks. As a second example, 

consider a 23 design, run in two blocks. From the table of plus and minus signs in Table 14-15, 

we assign the treatment combinations that are minus in the ABC column to block 1 and those 

that are plus in the ABC column to block 2. The resulting design is shown in Fig. 14-29.

There is a more general method of constructing the blocks. The method employs a defining 
contrast, say,

 L x x xn n= + + +a a a1 1 2 2 �  (14-20)

where x
i
 is the level of the ith factor appearing in a treatment combination and α

i
 is the expo-

nent appearing on the ith factor in the effect that is to be confounded with blocks. For the 2k 

system, we have either α
i
 = 0 or 1, and either x

i
 = 0 (low level) or x

i
 = 1 (high level). Treatment 

combinations that produce the same value of L (modulus 2) are placed in the same block. 

Because the only possible values of L (mod 2) are 0 and 1, this assigns the 2k treatment com-

binations to exactly two blocks.

As an example, consider the 23 design with ABC confounded with blocks. Here x
1
 corre-

sponds to A, x
2
 to B, x

3
 to C, and α

1
 = α

2
 = α

3
 = 1. Thus, the defining contrast that would be 

used to confound ABC with blocks is

L x x x= + +1 2 3

= Run in block 1

= Run in block 2

A

C

B

abcbc

c

b

ac

a

ab

(1)

(a)

Geometric view

Assignment of the eight

runs to two blocks

(b)

(1)

Block 1

ab

a

Block 2

b

ac

bc

c

abc

FIGURE 14-29  
The 23 design in two 
blocks with ABC 
confounded.  
(a) Geometric view. 
(b) Assignment of 
the eight runs to two 
blocks.

c14.indd   620 9/24/2013   10:18:22 PM



To assign the treatment combinations to the two blocks, we substitute the treatment combina-

tions into the defi ning contrast as follows:

1 1 0 1 0 1 0 0 0( ) = ( ) + ( ) + ( ) = =:  L  (mod 2)

 a L: = ( ) + ( ) + ( ) = =1 1 1 0 1 0 1 1 (mod 2)

   b L: = ( ) + ( ) + ( ) = =1 0 1 1 1 0 1 1 (mod 2)

 ab L: = ( ) + ( ) + ( ) = =1 1 1 1 1 0 2 0 (mod 2)

  c L: = ( ) + ( ) + ( ) = =1 0 1 0 1 1 1 1 (mod 2)

   ac L: = ( ) + ( ) + ( ) = =1 1 1 0 1 1 2 0 (mod 2)

 bc L: = ( ) + ( ) + ( ) = =1 0 1 1 1 1 2 0 (mod 2)

abc L: = ( ) + ( ) + ( ) = =1 1 1 1 1 1 3 1 (mod 2)

Thus (1), ab, ac, and bc are run in block 1, and a, b, c, and abc are run in block 2. This same 

design is shown in Fig. 14-29.

A shortcut method is useful in constructing these designs. The block containing the treat-

ment combination (1) is called the principal block. Any element [except (1)] in the principal 

block may be generated by multiplying two other elements in the principal block modulus 2 

on the exponents. For example, consider the principal block of the 23 design with ABC con-

founded, shown in Fig. 14-29. Note that

ab ac a bc bc

ab bc ab c ac

ac bc abc ab

¥
¥
¥

= =

= =

= =

2

2

2

Treatment combinations in the other block (or blocks) may be generated by multiplying one 

element in the new block by each element in the principal block modulus 2 on the exponents. 

For the 23 with ABC confounded, because the principal block is (1), ab, ac, and bc, we know 

that the treatment combination b is in the other block. Thus, elements of this second block are

b b

b ab ab a

b ac abc

b bc b c c

¥

¥
¥
¥

1

2

2

( ) =

= =
 =

= =

Missile Miss Distance An experiment is performed to investigate the effect of four factors on 

the terminal miss distance of a shoulder-fi red ground-to-air missile. The four factors are target type 

(A), seeker type (B), target altitude (C), and target range (D). Each factor may be conveniently run at two levels, and 

the optical tracking system allows terminal miss distance to be measured to the nearest foot. Two different operators or 

gunners are used in the fl ight test and, because there may be differences between operators, the test engineers decided 

to conduct the 24 design in two blocks with ABCD confounded. Thus, the defi ning contrast is

L x x x x= + + +1 2 3 3

The experimental design and the resulting data are shown in Fig. 14-30. The effect estimates obtained from com-

puter software are shown in Table 14-23. A normal probability plot of the effects in Fig. 14-31 reveals that A (target 

type), D (target range), AD, and AC have large effects. A confi rming analysis, pooling the three-factor interactions as 

error, is shown in Table 14-24.

Practical Interpretation: Because the AC and AD interactions are signifi cant, it is logical to conclude that A (target 

type), C (target altitude), and D (target range) all have important effects on the miss distance and that there are inter-

actions between target type and altitude and target type and range. Notice that the ABCD effect is treated as blocks 

in this analysis.

Example 14-7
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= Run in block 1

= Run in block 2
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FIGURE 14-30 The 24 design in two blocks for example 14-7. (a) Geometric view. (b) Assignment of 
the 16 runs to two blocks.
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FIGURE 14-31 Normal probability plot of 
the effects for the Missile Miss Distance 
Experiment.

TABLE 14-23 Effect Estimates from Computer 
Output for the Missile Miss Distance 
Experiment in Example 14-7

Term Effect Coefficient

Constant 6.938

Block 0.063

A 2.625 1.312

B 0.625 0.313

C 0.875 0.438

D 1.875 0.938

AB –0.125 –0.063

AC –2.375 –1.187

AD 1.625 0.813

BC –0.375 –0.188

BD –0.375 –0.187

CD –0.125 –0.062

ABC –0.125 –0.063

ABD 0.875 0.438

ACD –0.375 –0.187

BCD –0.375 –0.187

Estimated Effects and Coefficients for Distance

It is possible to confound the 2k design in four blocks of 2k–2 observations each. To construct 

the design, two effects are chosen to confound with blocks, and their defining contrasts are 

obtained. A third effect, the generalized interaction of the two effects initially chosen, is also 

confounded with blocks. The generalized interaction of two effects is found by multiplying 

their respective letters and reducing the exponents modulus 2.
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For example, consider the 24 design in four blocks. If AC and BD are confounded with 

blocks, their generalized interaction is (AC)(BD) = ABCD. The design is constructed by using 

the defi ning contrasts for AC and BD:

L x x1 1 3= +   L x x2 2 4= +

It is easy to verify that the four blocks are

(1)
ac
bd

abcd

Block 1
L1 = 0, L2 = 0

a
c

abd
bcd

Block 2
L1 = 1, L2 = 0

b
abc
d

acd

Block 3
L1 = 0, L2 = 1

ab
bc
ad
cd

Block 4
L1 = 1, L2 = 1

This general procedure can be extended to confounding the 2k design in 2p blocks where 

p < k. Start by selecting p effects to be confounded such that no effect chosen is a generalized 

interaction of the others. Then the blocks can be constructed from the p defi ning contrasts 

Source of Variation
Sum of 
Squares

Degrees of 
Freedom

Mean 
Square f0 P-Value

Blocks (ABCD) 0.0625 1 0.0625 0.06 —

A 27.5625 1 27.5625 25.94 0.0070

B 1.5625 1 1.5625 1.47 0.2920

C 3.0625 1 3.0625 2.88 0.1648

D 14.0625 1 14.0625 13.24 0.0220

AB 0.0625 1 0.0625 0.06 —

AC 22.5625 1 22.5625 21.24 0.0100

AD 10.5625 1 10.5625 9.94 0.0344

BC 0.5625 1 0.5625 0.53 —

BD 0.5625 1 0.5625 0.53 —

CD 0.0625 1 0.0625 0.06 —

Error (ABC + ABD + ACD + BCD) 4.2500 4 1.0625

Total 84.9375 15

TABLE 14-24 Analysis for the Missile Miss Distance Experiment

Term Effect Coeffi cient SE Coeffi cient t P−Value

Constant 6.938 0.2577  26.92 0.000

Blocks 0.063 0.2577  0.24 0.820

A 2.625 1.312 0.2577 5.09 0.007

B 0.625  0.313 0.2577  1.21 0.292

C 0.875  0.437 0.2577  1.70 0.165

D 1.875 0.938 0.2577 3.64 0.022

AB −0.125 −0.062 0.2577 −0.24 0.820

AC −2.375 −1.188 0.2577 −4.61 0.010

AD 1.625 0.813 0.2577 3.15 0.034

BC −0.375  −0.187 0.2577 −0.73 0.507

BD −0.375  −0.188 0.2577  −0.73 0.507

CD −0.125 −0.063 0.2577 −0.24 0.820
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L
1
, L

2
, …, L

p
 that are associated with these effects. In addition to the p effects chosen to be 

confounded, exactly 2p – p – 1 additional effects are confounded with blocks; these are the 

generalized interactions of the original p effects chosen. Care should be taken so as not to 

confound effects of potential interest.

For more information on confounding in the 2k factorial design, refer to Montgomery 

(2012) for guidelines on selecting factors to confound with blocks so that main effects and 

low-order interactions are not confounded. In particular, that book has a table of suggested 

confounding schemes for designs with up to seven factors and a range of block sizes, some of 

which are as small as two runs.

14-36. Consider the data from the first replicate of 

Exercise 14-14.

(a) Suppose that these observations could not all be run under 

the same conditions. Set up a design to run these observa-

tions in two blocks of four observations each with ABC
confounded.

(b) Analyze the data.

14-37. Consider the data from the first replicate of 

Exercise 14-15.

(a) Construct a design with two blocks of eight observations 

each with ABCD confounded.

(b) Analyze the data.

14-38. Consider the data from Exercise 14-20.

(a) Construct the design that would have been used to run this 

experiment in two blocks of eight runs each.

(b) Analyze the data and draw conclusions.

14-39. Construct a 25 design in two blocks. Select the ABCDE
interaction to be confounded with blocks.

14-40. Consider the data from the first replicate of Exercise 

14-15, assuming that four blocks are required. Confound ABD
and ABC (and consequently CD) with blocks.

(a) Construct a design with four blocks of four observa-

tions each.

(b) Analyze the data.

14-41. Construct a 25 design in four blocks. Select the 

appropriate effects to confound so that the highest possible 

interactions are confounded with blocks.

14-42. Consider the 26 factorial design. Set up a design to be 

run in four blocks of 16 runs each. Show that a design that 

confounds three of the four-factor interactions with blocks is 

the best possible blocking arrangement.

14-43. An article in Quality Engineering [“Designed Experi-

ment to Stabilize Blood Glucose Levels” (1999–2000, Vol. 12, 

pp. 83–87)] reported on an experiment to minimize variations 

in blood glucose levels. The factors were volume of juice intake 

before exercise (4 or 8 oz), amount of exercise on a Nordic 

Track cross-country skier (10 or 20 min), and delay between 

the time of juice intake (0 or 20 min) and the beginning of the 

exercise period. The experiment was blocked for time of day. 

The data follow.

(a) What effects are confounded with blocks? Comment on 

any concerns with the confounding in this design.

(b) Analyze the data and draw conclusions.

Run
Juice 
(oz)

Exercise 
(min)

Delay
(min)

Time 
of Day

Average Blood 
Glucose

1 4 10 0 pm 71.5

2 8 10 0 am 103

3 4 20 0 am 83.5

4 8 20 0 pm 126

5 4 10 20 am 125.5

6 8 10 20 pm 129.5

7 4 20 20 pm 95

8 8 20 20 am 93

14-44. An article in Industrial and Engineering Chem-
istry [“Factorial Experiments in Pilot Plant Studies” (1951, 

pp. 1300–1306)] reports on an experiment to investigate the 

effect of temperature (A), gas throughput (B), and concentra-

tion (C) on the strength of product solution in a recirculation 

unit. Two blocks were used with ABC confounded, and the 

experiment was replicated twice. The data follow.

(a) Analyze the data from this experiment.

(1) = 99
ab = 52
ac = 42
bc = 95

Block 1

    a = 18
    b = 51
    c = 108
abc = 35

Block 2

Replicate 1

FOR SECTION 14-6Exercises
 Problem available in WileyPLUS at instructor’s discretion. 

 Tutoring problem available in WileyPLUS at instructor’s discretion.
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    a = 18
    b = 62
    c = 104
abc = 36

Block 3

(1) = 46
ab = 47
ac = 22
bc = 67

Block 4

Replicate 2

(b) Analyze the residuals and comment on model adequacy.

(c) Comment on the efficiency of this design. Note that we 

have replicated the experiment twice, yet we have no infor-

mation on the ABC interaction.

(d) Suggest a better design, specifically one that would provide 

some information on all interactions.

14-45. Consider the following computer output from a sin-

gle replicate of a 24 experiment in two blocks with ABCD 

confounded.

(a) Comment on the value of blocking in this experiment.

(b) What effects were used to generate the residual error in the 

ANOVA?

(c) Calculate the entries marked with “?” in the output.

Factorial Fit: y Versus Block, A, B, C, D

Estimated Effects and Coefficients

Term Effect Coef SE Coef t P

Constant 579.33 9.928 58.35 0.000

Block 105.68 9.928 10.64 0.000

A –15.41 –7.70 9.928 –0.78 0.481

B 2.95 1.47 9.928 0.15 0.889

C 15.92 7.96 9.928 0.80 0.468

D –37.87 –18.94 9.928 –1.91 0.129

A*B –8.16 –4.08 9.928 –0.41 0.702

A*C 5.91 2.95 9.928 0.30 0.781

A*D 30.28 ? 9.928 ? 0.202

B*C 20.43 10.21 9.928 1.03 0.362

B*D –17.11 –8.55 9.928 –0.86 0.437

C*D 4.41 2.21 9.928 0.22 0.835

S = 39.7131  R-Sq = 96.84%  R-Sq (adj) = 88.16%

14-46. An article in Advanced Semiconductor Manufacturing 
Conference (ASMC) (May 2004, pp. 325–29) stated that dis-

patching rules and rework strategies are two major operational 

elements that impact productivity in a semiconductor fabrica-

tion plant (fab). A four-factor experiment was conducted to 

determine the effect of dispatching rule time (5 or 10 min), 

rework delay (0 or 15 min), fab temperature (60 or 80°F), 

and rework levels (level 0 or level 1) on key fab performance 

measures. The performance measure that was analyzed was the 

average cycle time. The experiment was blocked for the fab 

temperature. Data modified from the original study are in the 

following table.

Run

Dispatching 
Rule Time 

(min)

Rework 
Delay 
(min)

Rework 
Level

Fab 
Temperature 

(°F)

Average 
Cycle 

TimeRun 
(min)

1  5  0 0 60 218

2 10  0 0 80 256.5

3  5  0 1 80 231

4 10  0 1 60 302.5

5  5 15 0 80 298.5

6 10 15 0 60 314

7  5 15 1 60 249

8 10 15 1 80 241

(a) What effects are confounded with blocks? Do you find 

any concerns with confounding in this design? If so, 

comment on it.

(b) Analyze the darta and draw conclusions.

14-47. Consider the earth-moving experiment in Exercise 

14-34. The experiment actually used two different operators 

with the production in columns 1 and 3 from operator 1 and 

2, respectively. Analyze the results from only columns 1 and 3 

handled as blocks. 

(a) Assuming that the operator is a nuisance factor, estimate 

the factor effects. 

(b) Based on a normal probability plot of the effect estimates, 

identify a model for the data from this experiment. 

(c) Conduct an ANOVA based on the model identified in part 

(a). What are the conclusions? 

(d) Analyze the residuals and plot residuals versus the pre-

dicted production. 

(e) Compare the results from this analysis to the previous anal-

ysis that did not use blocking. 

14-48. An article in Journal of Hazardous Materials [“Biosorp-

tion of Reactive Dye Using Acid-Treated Rice Husk: Fac-

torial Design Analysis” (2007, Vol. 142(1), pp. 397–403)] 

described an experiment using biosorption to remove red 

color from water. A 24 full factorial design was used to study 

the effect of factors pH, temperature, adsorbent dosage, and 

initial concentration of the dye. Handle columns 1 and 2 of 

the output as blocks.

(a) Estimate the factor effects. Based on a normal probability 

plot of the effect estimates, identify a model for the data 

from this experiment. 

(b) Conduct an ANOVA based on the model identified in part 

(a). What are the conclusions? 

(c) Analyze the residuals and plot residuals versus the pre-

dicted removal efficiency. 

(d) Construct a regression model to predict removal efficiency 

in terms of the actual factor levels. 

Section 14-6/Blocking and Confounding in the 2K Design   625

c14.indd   625 9/24/2013   10:18:26 PM
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Run pH Dosage 
(g/L) 

Concentration 
(mg/L) 

Temperature 
(°C) 

Removal Effi ciency (%)  

1 2 

 1 2  5  50 20 89.36 95.78  

 2 7  5  50 20 53.67 52.02  

 3 2 50  50 20 86.97 93.76  

 4 7 50  50 20 72.39 80.55  

 5 2  5 250 20 68.46 64.99  

 6 7  5 250 20 32.44 28.44  

 7 2 50 250 20 93.19 93.69  

 8 7 50 250 20 88.17 91.41  

 9 2  5  50 40 97.25 95.41  

10 7  5  50 40 76.42 56.51  

11 2 50  50 40 76.24 90.83  

12 7 50  50 40 79.54 73.21  

13 2  5 250 40 84.31 82.84  

14 7  5 250 40 53.32 44.96  

15 2 50 250 40 94.77 96.53  

16 7 50 250 40 89.32 90.75  

14-7 FRACTIONAL REPLICATION OF THE 2k DESIGN
As the number of factors in a 2k factorial design increases, the number of runs required 

increases rapidly. For example, a 25 requires 32 runs. In this design, only 5 degrees of 

freedom correspond to main effects, and 10 degrees of freedom correspond to two-factor 

interactions. Sixteen of the 31 degrees of freedom are used to estimate high-order interac-

tions—that is, three-factor and higher order interactions. Often there is little interest in these 

high-order interactions, particularly when we fi rst begin to study a process or system. If we 

can assume that certain high-order interactions are negligible, a fractional factorial design 
involving fewer than the complete set of 2k runs can be used to obtain information on the 

main effects and low-order interactions. In this section, we introduce fractional replications 

of the 2k design.

A major use of fractional factorials is in screening experiments. These are experiments 

in which many factors are considered with the purpose of identifying those factors (if any) 

that have large effects. Screening experiments are usually performed in the early stages of a 

project when it is likely that many of the factors initially considered have little or no effect on 

the response. The factors that are identifi ed as important are then investigated more thoroughly 

in subsequent experiments.

14-7.1 ONE-HALF FRACTION OF THE 2K DESIGN

A one-half fraction of the 2k design contains 2k–1 runs and is often called a 2k–1 fractional 

factorial design. As an example, consider the 23–1 design—that is, a one-half fraction of 

the 23. This design has only four runs in contrast to the full factorial that would require 

eight runs. The table of plus and minus signs for the 23 design is shown in Table 14-25. 

Suppose that we select the four treatment combinations a, b, c, and abc as our one-half 

fraction. These treatment combinations are shown in the top half of Table 14-25 and in 

Fig. 14-32(a).
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Notice that the 23–1 design is formed by selecting only those treatment combinations that 

yield a plus on the ABC effect. Thus, ABC is called the generator of this particular fraction. 

Furthermore, the identity element I is also plus for the four runs, so we call

I ABC=

the defi ning relation for the design.

The treatment combinations in the 23–1 design yields three degrees of freedom associated 

with the main effects. From the upper half of Table 14-25, we obtain the estimates of the main 

effects as linear combinations of the observations, say,

A a b c abc

B a b c abc

C a b c abc

= − − +[ ]
= − + − +[ ]
= − − + +[ ]

1
2

1
2

1
2

/

/

/

It is also easy to verify that the estimates of the two-factor interactions should be the following 

linear combinations of the observations:

BC a b c abc

AC a b c abc

AB a b c abc

= − − +[ ]
= − + − +[ ]
= − − + +[ ]

1
2

1
2

1
2

/

/

/

 

Thus, the linear combination of observations in column A,  A estimates both the main effect of A
and the BC interaction. That is, the linear combination  A estimates the sum of these two effects 

A

C

B

abc

c

b

a

(a)

The principal fraction, I = +ABC

bc

ac

ab

(1)

(b)

The alternate fraction, I = –ABC

FIGURE 14-32 The 
one-half fractions of 
the 23 design. (a) The 
principal fraction, 
I = +ABC. (b) The 
alternate fraction, 
I = −ABC.

14-25 Plus and Minus Signs for the 23 Factorial Design

Treatment 
Combination

Factorial Effect

I A B C AB AC BC ABC

a + + − − − − + +
b + − + − − + − +
c + − − + + − − +

abc + + + + + + + +
ab + + + − + − − −
ac + + − + − + − −
bc + − + + − − + −
(1) + − − − + + + −
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A + BC. Similarly, B estimates B + AC, and C estimates C + AB. Two or more effects that have 

this property are called aliases. In our 23–1 design, A and BC are aliases, B and AC are aliases, 

and C and AB are aliases. Aliasing is the direct result of fractional replication. In many practical 

situations, it is possible to select the fraction so that the main effects and low-order interactions 

that are of interest are aliased only with high-order interactions (which are probably negligible).

The alias structure for this design is found by using the defining relation I = ABC. Multi-

plying any effect by the defining relation yields the aliases for that effect. In our example, the 

alias of A is

A A ABC A BC BC= = =¥ 2

because A I A¥ =  and A I2 = . The aliases of B and C are

B B ABC AB C AC C C ABC ABC AB= = = = = =¥ ¥2 2and

Now suppose that we had chosen the other one-half fraction, that is, the treatment combina-

tions in Table 14-25 associated with minus on ABC. See these four runs in the lower half of Table 

14-25 and in Fig. 14-32(b). The defining relation for this design is I = –ABC. The aliases are A 

= –BC, B = –AC, and C = –AB. Thus, estimates of A, B, and C that result from this fraction really 

estimate A – BC, B – AC, and C – AB. In practice, it usually does not matter which one-half 

fraction we select. The fraction with the plus sign in the defining relation is usually called the 

principal fraction, and the other fraction is usually called the alternate fraction.

Note that if we had chosen AB as the generator for the fractional factorial A A AB B= =¥  and 

the two main effects of A and B would be aliased. This typically loses important information.

Sometimes we use sequences of fractional factorial designs to estimate effects. For example,  

suppose that we had run the principal fraction of the 23–1 design with generator ABC. From this 

design, we have the following effect estimates:

  A B CA BC B AC C AB= + = + = +

Suppose that we are willing at this point to assume that the two-factor interactions are negli-

gible. If they are, the 23–1 design has produced estimates of the three main effects A, B, and C. 

However, if after running the principal fraction, we are uncertain about the interactions, it is 

possible to estimate them by running the alternate fraction. The alternate fraction produces 

the following effect estimates:

  A B CA BC B AC C AB′ ′ ′= − = − = −

We may now obtain de-aliased estimates of the main effects and two-factor interactions 

by adding and subtracting the linear combinations of effects estimated in the two individual 

fractions. For example, suppose that we want to de-alias A from the two-factor interaction BC. 

Because  A A BC= +  and  A A BC′ = − , we can combine these effect estimates as follows:

1

2

1

2
 A A A BC A BC A−( ) = + + −( ) =′

and

1

2

1

2
 A A A BC A BC BC−( ) = + − +( ) =′

For all three pairs of effect estimates, we would obtain the following results:

Effect, i from ½ (l
i
 + l'i  ) from ½ (l

i
 – l'i  )

i = A 1
2/ A BC A BC A+ + −( ) = 1

2/ A BC A BC BC+ − −( )⎡⎣ ⎤⎦ =

i = B 1
2/ B AC B AC B+ + −( ) = 1

2/ B AC B AC AC+ − −( )⎡⎣ ⎤⎦ =

i = C 1
2/ C AB C AB C+ + −( ) = 1

2/ C AB C AB AB+ − −( )⎡⎣ ⎤⎦ =

c14.indd   628 9/24/2013   10:18:30 PM



Thus, by combining a sequence of two fractional factorial designs, we can isolate both the 

main effects and the two-factor interactions. This property makes the fractional factorial 

design highly useful in experimental problems because we can run sequences of small, effi -

cient experiments, combine information across several experiments, and take advantage of 

learning about the process we are experimenting with as we go along. This is an illustration of 

the concept of sequential experimentation.

A 2k–1 design may be constructed by writing down the treatment combinations for a full 

factorial with k – 1 factors, called the basic design, and then adding the kth factor by identify-

ing its plus and minus levels with the plus and minus signs of the highest order interaction. 

Therefore, a 23–1 fractional factorial is constructed by writing down the basic design as a full 

22 factorial and then equating factor C with the ±AB interaction. Thus, to construct the princi-

pal fraction, we would use C = +AB as follows:

Basic Design Fractional Design

Full 22 23–1, I = +ABC

A B A B C = AB

− − − − +

+ − + − −

− + − + −

+ + + + +

To obtain the alternate fraction, we would equate the last column to C = –AB.

Plasma Etch To illustrate the use of a one-half fraction, consider the plasma etch experiment 

described in Example 14-5. Suppose that we decide to use a 24–1 design with I = ABCD to investi-

gate the four factors gap (A), pressure (B), C
2
F

6
 fl ow rate (C), and power setting (D). This design would be constructed 

by writing as the basic design a 23 in the factors A, B, and C and then setting the levels of the fourth factor D = ABC. 

The design and the resulting etch rates are shown in Table 14-26. The design is shown graphically in Fig. 14-33.

In this design, the main effects are aliased with the three-factor interactions; note that the alias of A is

A I A ABCD A A BCD BCD¥ ¥= = =or 2

and similarly, B = ACD, C = ABD, and D = ABC.

The two-factor interactions are aliased with each other. For example, the alias of AB is CD:

AB I A ABCD AB A B CD CD¥ ¥= = =or 2 2

Example 14-8

TABLE 14-26 The 24–1 Design with Defi ning Relation I = ABCD

A B C D = ABC
Treatment 
Combination

Etch 
Rate

− − − − (1)  550

+ − − + ad  749

− + − + bd 1052

+ + − − ab  650

− − + + cd 1075

+ − + − ac  642

− + + − bc  601

+ + + + abcd  729
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The other aliases are AC = BD and AD = BC.

The estimates of the main effects and their aliases are found using the four columns of signs in Table 14-26. For 

example, from column A, we obtain the estimated effect

 A A BCD= + = − + − + − + − +( ) = −1

4
550 749 1052 650 1075 642 601 729 127 0.

The other columns produce

 B CB ACD C ABD= + = = + =4 0 11 5. .

and

D D ABC= + = 290 5.

Clearly,  A and D are large, and if we believe that the three-factor interactions are negligible, the main effects A (gap) 

and D (power setting) signifi cantly affect etch rate.

The interactions are estimated by forming the AB, AC, and AD columns and adding them to the table. For example, 

the signs in the AB column are +, –, –, +, +, –, –, +, and this column produces the estimate

 AB AB CD= + = − − + + − − +( ) = −1

4
550 749 1052 650 1075 642 601 729 10

From the AC and AD columns we fi nd

 AC AC BD= + = − 25 50.

and

 AD AD BC= + = −197 50.

The  AD estimate is large; the most straightforward interpretation of the results is that because A and D are large, this is 

the AD interaction. Thus, the results obtained from the 24–1 design agree with the full factorial results in Example 14-5.

Practical Interpretation: Often a fraction of a 2k design is satisfactory when an experiment uses four or more factors.

abcd = 729

cd = 1075

bd = 1052

ad = 749

bc = 601

ac = 642

ab = 650

(1) = 550

A

C

B

D– +

FIGURE 14-33 The 24–1 design for the plasma etch experiment of Example 14-8.

Computer Solution
Fractional factorial designs are usually analyzed with a software package. Table 14-27 shows 

the effect estimates obtained from computer software for the plasma etch experiment in 

Example 14-8. They are in agreement with the hand calculation reported earlier.

Normal Probability Plot of Effects
The normal probability plot is very useful in assessing the signifi cance of effects from a frac-

tional factorial design, particularly when many effects are to be estimated. We strongly rec-

ommend examining this plot. Figure 14-34 presents the normal probability plot of the effects 
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from computer software for the plasma etch experiment in  Example 14-8. Notice that the A, 

D, and AD interaction effects stand out clearly in this graph.

Residual Analysis
The residuals can be obtained from a fractional factorial by the regression model method 

shown previously. Note that the computer output for Example 14-8 in Table 14-27 shows the 

regression coefficients. The residuals should be graphically analyzed as we have discussed 

before, both to assess the validity of the underlying model assumptions and to gain additional 

insight into the experimental situation.

Center Points
Center points can be added to fractional factorial designs for the same reasons as before; that 

is, to assess curvature and provide an error estimate. The curvature analysis compares y yF C−  

to its standard error with the same calculation as for full factorial experiments. The error 

estimate can be based on the replicated center points and supplemented with sums of squares 

from effects determined to be unimportant from the normal probability plot.

Projection of the 2k–1 Design
If one or more factors from a one-half fraction of a 2k can be dropped, the design projects into 

a full factorial design. For example, Fig. 14-35 presents a 23–1 design. Notice that this design 

projects into a full factorial in any two of the three original factors. Thus, if we think that at 

most two of the three factors are important, the 23–1 design is an excellent design for identi-

fying the significant factors. This projection property is highly useful in factor screening 

because it allows negligible factors to be eliminated, resulting in a stronger experiment in the 

active factors that remain.

In the 24–1 design used in the plasma etch experiment in Example 14-8, we found that two 

of the four factors (B and C) could be dropped. If we eliminate these two factors, the remain-

ing columns in Table 14-26 form a 22 design in the factors A and D with two replicates. This 

design is shown in Fig. 14-36. The main effects of A and D and the strong two-factor AD 

interaction are clearly evident from this graph.

Design Resolution
The concept of design resolution is a useful way to catalog fractional factorial designs accord-

ing to the alias patterns they produce. Designs of resolution III, IV, and V are particularly 

important. The definitions of these terms and an example of each follow.

TABLE 14-27  Effect Estimates from Computer Software for 
the Plasma Etch Experiment in Example 14-8
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FIGURE 14-34 Normal probability 
plot of the effects for the plasma etch 
experiment in Example 14-8.

Fractional Factorial Fit

Estimated Effects and Coefficients for Etch Rate

Term Effect Coef

Constant 756.00

Gap –127.00 –63.50

Pressure 4.00 2.00

F 11.50 5.75

Power 290.50 145.25

Gap*Pressure –10.00 –5.00

Gap*F –25.50 –12.75

Gap*Power –197.50 –98.75
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1.    Resolution III Designs. These are designs in which no main effects are aliased with 

any other main effect, but main effects are aliased with two-factor interactions, and some 

two-factor interactions may be aliased with each other. The 23–1 design with I = ABC is a 

resolution III design. We usually employ a Roman numeral subscript to indicate design 

resolution; thus, this one-half fraction is a III
3 − 1

2  design.

2.  Resolution IV Designs. These are designs in which no main effect is aliased with any other 

main effect or two-factor interactions, but two-factor interactions are aliased with each 

other. The 24–1 design with I = ABCD used in Example 14-8 is a resolution IV design ( III
4 1

2
− ).

3.  Resolution V Designs. These are designs in which no main effect or two-factor interaction 

is aliased with any other main effect or two-factor interaction, but two-factor interactions 

are aliased with three-factor interactions. The 25–1 design with I = ABCDE is a resolution 

V design ( III
5 1

2
− ).

Resolution III and IV designs are particularly useful in factor screening experiments. A reso-

lution IV design provides good information about main effects and some information about 

all two-factor interactions.

14-7.2 SMALLER FRACTIONS: THE 2k–p FRACTIONAL FACTORIAL

Although the 2k–1 design is valuable in reducing the number of runs required for an experi-

ment, we frequently find that smaller fractions provide almost as much useful information 

at even greater economy. In general, a 2k design may be run in a 1 /  2p fraction called a 2k–p 

fractional factorial design. Thus, a 1 / 4 fraction is called a 2k–2 design, a 1 / 8 fraction is called 

a 2k–3 design, a 1 / 16 fraction a 2k–4 design, and so on.

To illustrate the 1 / 4 fraction, consider an experiment with six factors and suppose that the 

engineer is primarily interested in main effects but would also like to get some information 

about the two-factor interactions. A 26–1 design would require 32 runs and would have 31 

degrees of freedom for estimating effects. Because there are only six main effects and 15 two-

factor interactions, the one-half fraction is inefficient—it requires too many runs. Suppose that 

we consider a 1 / 4 fraction, or a 26–2 design. This design contains 16 runs and, with 15 degrees 

of freedom, allows all six main effects to be estimated with some capability for examining the 

two-factor interactions.

To generate this design, we would write down a 24 design in the factors A, B, C, and D as 

the basic design and then add two columns, for E and F. To find the new columns, we could 

select the two design generators I = ABCE and I = BCDF. Thus, column E would be found 

FIGURE 14-35  
Projection of a 23–1 
design into three 22 
designs.

A

B

C

a

abc

b

c
FIGURE 14-36 The 22 design obtained  
by dropping factors B and C from the  
plasma etch experiment in Example 14-8.
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from E = ABC, and column F would be F = BCD. That is, columns ABCE and BCDF are equal 

to the identity column. However, we know that the product of any two columns in the table of 

plus and minus signs for a 2k design is just another column in the table; therefore, the product 

of ABCE and BCDF or ABCE(BCDF) = AB2C2DEF = ADEF is also an identity column. Con-

sequently, the complete defi ning relation for the 26–2 design is

I ABCE BCDF ADEF= = =
We refer to each term in a defi ning relation (such as ABCE above) as a word. To fi nd the alias 

of any effect, simply multiply the effect by each word in the foregoing defi ning relation. For 

example, the alias of A is

A BCE ABCDF DEF= = =
The complete alias relationships for this design are in Table 14-28. In general, the resolution 

of a 2k–p design is equal to the number of letters in the shortest word in the complete defi ning 

relation. Therefore, this is a resolution IV design; main effects are aliased with three-factor 

and higher interactions, and two-factor interactions are aliased with each other. This design 

would provide good information on the main effects and would give some idea about the 

strength of the two-factor interactions. The construction and analysis of the design are illus-

trated in Example 14-9.

TABLE 14-28  Alias Structure for the 2IV
6-2 Design 

with I = ABCE = BCDF = ADEF

A = BCE = DEF = ABCDF AB = CE = ACDF = BDEF

B = ACE = CDF = ABDEF AC = BE = ABDF = CDEF

C = ABE = BDF = ACDEF AD = EF = BCDE = ABCF

D = BCF = AEF = ABCDE AE = BC = DF = ABCDEF

E = ABC = ADF = BCDEF AF = DE = BCEF = ABCD

F = BCD = ADE = ABCEF BD = CF = ACDE = ABEF

ABD = CDE = ACF = BEF BF = CD = ACEF = ABDE

ACD = BDE = ABF = CEF

Injection Molding Parts manufactured in an injection-molding process are showing excessive 

shrinkage, which is causing problems in assembly operations upstream from the injection-molding 

area. In an effort to reduce the shrinkage, a quality-improvement team has decided to use a designed experiment to 

study the injection-molding process. The team investigates each of six factors—mold temperature (A), screw speed (B), 

holding time (C), cycle time (D), gate size (E), and holding pressure (F)—at two levels with the objective of learning 

how each factor affects shrinkage and obtaining preliminary information about how the factors interact.

The team decides to use a 16-run two-level fractional factorial design for these six factors. The design is constructed 

by writing a 24 as the basic design in the factors A, B, C, and D and then setting E = ABC and F = BCD as discussed 

previously. Table 14-29 shows the design along with the observed shrinkage (×10) for the test part produced at each of 

the 16 runs in the design.

A normal probability plot of the effect estimates from this experiment is shown in Fig. 14-37. The only large effects 

are A (mold temperature), B (screw speed), and the AB interaction. In light of the alias relationship in Table 14-28, it 

seems reasonable to tentatively adopt these conclusions. The plot of the AB interaction in Fig. 14-38 shows that the 

process is insensitive to temperature if the screw speed is at the low level but sensitive to temperature if the screw speed 

is at the high level. With the screw speed at a low level, the process should produce an average shrinkage of around 10% 

regardless of the temperature level chosen.

Example 14-9
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634   Chapter 14/Design of Experiments with Several Factors

TABLE 14-29 A 2IV
6-2 Design for the Injection-Molding Experiment

Run A B C D E = ABC F = BCD

Observed 
Shrinkage 

(ë10)

1 − − − − − −  6

2 + − − − + − 10

3 − + − − + + 32

4 + + − − − + 60

5 − − + − + +  4

6 + − + − − + 15

7 − + + − − − 26

8 + + + − + − 60

9 − − − + − +  8

10 + − − + + + 12

11 − + − + + − 34

12 + + − + − − 60

13 − − + + + − 16

14 + − + + − −  5

15 − + + + − + 37

16 + + + + + + 52
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FIGURE 14-37 Normal probability plot of 
effects for the injection-molding experiment 
in Example 14-9.
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FIGURE 14-38 Plot of AB (mold 
temperature–screw speed) 
interaction for the injection-molding 
experiment in Example 14-9.

Based on this initial analysis, the team decides to set both the mold temperature and the screw speed at the low level. 

This set of conditions should reduce the mean shrinkage of parts to around 10%. However, the variability in shrinkage 

from part to part is still a potential problem. In effect, the mean shrinkage can be adequately reduced by the preced-

ing  modifi cations; however, the part-to-part variability in shrinkage over a production run could still cause problems 

in assembly. One way to address this issue is to see whether any of the process factors affect the variability in parts 

shrinkage.
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FIGURE 14-39 Normal probability plot of 
residuals for the injection-molding 
experiment in Example 14-9.
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FIGURE 14-40 Residuals versus holding 
time (C) for the injection-molding 
experiment in Example 14-9.
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Figure 14-39 presents the normal probability plot of the residuals. This plot appears satisfactory. The plots of residu-

als versus each factor were then constructed. One of these plots, that for residuals versus factor C (holding time), is 

shown in Fig. 14-40. The plot reveals much less scatter in the residuals at the low holding time than at the high holding 

time. These residuals were obtained in the usual way from a model for predicted shrinkage

ˆ ˆ ˆ ˆ ˆ . . . .y x x x x x x= + + + = + + +β β β β0 1 1 2 2 12 1 2 1 227 3125 6 9375 17 8125 5 93375 1 2x x

where x
1
, x

2
, and x

1
x

2
 are coded variables that correspond to the factors A and B and the AB interaction. The regression 

model used to produce the residuals essentially removes the location effects of A, B, and AB from the data; the residu-

als therefore contain information about unexplained variability. Figure 14-40 indicates that there is a pattern in the 

variability and that the variability in the shrinkage of parts may be smaller when the holding time is at the low level.

Practical Interpretation: Figure 14-41 shows the data from this experiment projected onto a cube in the factors A, B, 

and C. The average observed shrinkage and the range of observed shrinkage are shown at each corner of the cube. From 

inspection of this fi gure, we see that running the process with the screw speed (B) at the low level is the key to reducing 

average parts shrinkage. If B is low, virtually any combination of temperature (A) and holding time (C) results in low 

values of average parts shrinkage. However, from examining the ranges of the shrinkage values at each corner of the 

cube, it is immediately clear that setting the holding time (C) at the low level is the most appropriate choice if we wish 

to keep the part-to-part variability in shrinkage low during a production run.
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FIGURE 14-41 
Average shrinkage 
and range of 
shrinkage in factors 
A, B, and C for 
Example 14-9.
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636   Chapter 14/Design of Experiments with Several Factors

The concepts used in constructing the 26–2 fractional factorial design in Example 14-9 can 

be extended to the construction of any 2k–p fractional factorial design. In general, a 2k fractional 

factorial design containing 2k–p runs is called a 1 / 2p fraction of the 2k design or, more simply, 

a 2k–p fractional factorial design. These designs require the selection of p independent genera-

tors. The defi ning relation for the design consists of the p generators initially chosen and their 

2p – p – 1 generalized interactions.

The alias structure may be found by multiplying each effect column by the defi ning rela-

tion. Care should be exercised in choosing the generators so that effects of potential interest 

are not aliased with each other. Each effect has 2p – 1 aliases. For moderately large values of 

k, we usually assume that higher order interactions (say, third- or fourth-order or higher) to be 

negligible, and this greatly simplifi es the alias structure.

It is important to select the p generators for the 2k–p fractional factorial design in such a way 

that we obtain the best possible alias relationships. A reasonable criterion is to select the gen-

erators so that the resulting 2k–p design has the highest possible design resolution. Montgomery 

(2012) presented a table of recommended generators for 2k–p fractional factorial designs for 

k ≤ 15 factors and up to as many as n ≤ 128 runs. A portion of his table is reproduced here as 

Table 14-30. In this table, the generators are shown with either + or – choices; selection of all 

generators as + provides a principal fraction, and if any generators are – choices, the design 

is one of the alternate fractions for the same family. The suggested generators in this table 

produce a design of the highest possible resolution. Montgomery (2012) also provided a table 

of alias relationships for these designs.

Number of 
Factors k

Fraction Number
of Runs

Design
Generators

3 2
III
3–1 4 C = ±AB

4 2
IV
4–1 8 D = ±ABC

5 2
V
5–1 16 E = ±ABCD

2
III
5–2 8 D = ±AB

E = ±AC

6 2
VI
6–1 32 F = ±ABCDE

2
IV
6–2 16 E = ±ABC

F = ±BCD

2
III
6–3 8 D = ±AB

E = ±AC
F = ±BC

7 2
VII
7–1 64 G = ±ABCDEF

2
IV
7–2 32 F = ±ABCD

G = ±ABDE
2

IV
7–3 16 E = ±ABC

F = ±BCD
G = ±ACD

2
III
7–4 8 D = ±AB

E = ±AC
F = ±BC
G = ±ABC

8 2
V
8–2 64 G = ±ABCD

H = ±ABEF

2
IV
8–3 32 F = ±ABC

Number of 
Factors k

Fraction Number
of Runs

Design
Generators

G = ±ABD
H = ±BCDE

2
IV
8–4 16 E = ±BCD

F = ±ACD
G = ±ABC
H = ±ABD

9 2
VI
9–2 128 H = ±ACDFG

J = ±BCEFG
2

IV
9–3 64 G = ±ABCD

H = ±ACEF
J = ±CDEF

2
IV
9–4 32 F = ±BCDE

G = ±ACDE
H = ±ABDE
J = ±ABCE

2
III
9–5 16 E = ±ABC

F = ±BCD
G = ±ACD

H = ±ABD
J = ±ABCD

10 H = ±ABCG
J = ±ACDE

2
V
10–3 128 K = ±ACDF

G = ±BCDF
H = ±ACDF

TABLE 14-30 Selected 2k–p Fractional Factorial Designs
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Number of 
Factors k

Fraction Number 
of Runs

Design 
Generators

J = ±ABDE
2

IV
10–4 64 K = ±ABCE

F = ±ABCD
G = ±ABCE
H = ±ABDE
J = ±ACDE

2
IV
10–5 32 K = ±BCDE

E = ±ABC
F = ±BCD

G = ±ACD

H = ±ABD
J = ±ABCD

2
III
10–6 16 K = ±AB

11 G = ±CDE
H = ±ABCD

J = ±ABF

Number of 
Factors k

Fraction Number 
of Runs

Design 
Generators

K = ±BDEF
2

IV
11–5 64 L = ±ADEF

F = ±ABC
G = ±BCD
H = ±CDE
J = ±ACD
K = ±ADE

2
IV
11–6 32 L = ±BDE

E = ±ABC
F = ±BCD
G = ±ACD
H = ±ABD

J = ±ABCD
K = ±AB

2
III
11–7 16 L = ±AC

Source: Montgomery (2012).
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Aliases with Seven Factors To illustrate the use of Table 14-30, suppose that we have seven 

factors and that we are interested in estimating the seven main effects and obtaining some insight 

regarding the two-factor interactions. We are  willing to assume that three-factor and higher interactions are negligible. 

This information suggests that a resolution IV design is appropriate.

ExampTable 14-30 shows that two resolution IV fractions are available: the IV
7 2

2
−  with 32 runs and the IV

7 3
2

−  with 16 

runs. The aliases involving main effects and two- and three-factor interactions for the 16-run design are presented in 

Table 14-31. Notice that all seven main effects are aliased with three-factor interactions. All the two-factor interactions 

Example 14-10

Generators and Defi ning Relation

E = ABC,    F = BCD,    G = ACD

I = ABCE = BCDF = ADEF = ACDG = BDEG = ABFG = CEFG

Aliases

A = BCE = DEF = CDG = BFG AB = CE = FG

B = ACE = CDF = DEG = AFG AC = BE = DG

C = ABE = BDF = ADG = EFG AD = EF = CG

D = BCF = AEF = ACG = BEG AE = BC = DF

E = ABC = ADF = BDG = CFG AF = DE = BG

F = BCD = ADE = ABG = CEG AG = CD = BF

G = ACD = BDE = ABF = CEF BD = CF = EG

ABD = CDE = ACF = BEF = BCG = AEG = DFG

TABLE 14-31  Generators, Defi ning Relation, and Aliases for the 
2

IV
7–3 Fractional Factorial Design
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638   Chapter 14/Design of Experiments with Several Factors

For seven factors, we can reduce the number of runs even further. The 27–4 design is an eight-

run experiment accommodating seven variables. This is a 1 / 16th fraction that is obtained by 

fi rst writing a 23 design as the basic design in the factors A, B, and C, and then forming the four 

new columns from I = ABD, I = ACE, I = BCF, and I = ABCG, as suggested in Table 14-30. 

The design is shown in Table 14-33.

The complete defi ning relation is found by multiplying the generators together two, three, 

and fi nally four at a time, producing

I ABD ACE BCF ABCG BCDE ACDF CDG ABEF

BEG AFG DEF ADEG CEF

= = = = = = = =
= = = = = GG BDFG ABCDEFG= =

The alias of any main effect is found by multiplying that effect through each term in the defi n-

ing relation. For example, the alias of A is

A = BD = CE = ABCF = BCG = ABCDE = CDF = ACDG
    = BEF = ABEG = FG = ADEF = DEG = ACEFG = ABDFG = BCDEFG

are aliased in groups of three. Therefore, this design will satisfy our objectives; that is, it will allow the estimation of the 

main effects, and it will give some insight regarding two-factor interactions. It is not necessary to run the IV
7 2

2
−  design, 

which would require 32 runs. The construction of the IV
7 3

2
−   design is shown in Table 14-32.  Notice that it was con-

structed by starting with the 16-run 24 design in A, B, C, and D as the basic design and then adding the three columns E = 

ABC, F = BCD, and G = ACD as suggested in Table 14-30. Thus, the generators for this design are I = ABCE, I = BCDF, 

and I = ACDG. The complete defi ning relation is I = ABCE = BCDF = ADEF = ACDG = BDEG = CEFG = ABFG. This 

defi ning relation was used to produce the aliases in Table 14-31. For example, the alias relationship of A is

A BCE ABCDF DEF CDG ABDEG ACEFG BFG= = = = = = =

which, if we ignore interactions higher than three factors, agrees with Table 14-31.

TABLE 14-32  A IV
7 3

2
−

 Fractional Factorial Design

Run

Basic Design

E = ABC F = BCD G = ACDA B C D

 1 – – – – – – –

 2 + – – – + – +

 3 – + – – + + –

 4 + + – – – + +

 5 – – + – + + +

 6 + – + – – + –

 7 – + + – – – +

 8 + + + – + – –

 9 – – – + – + +

10 + – – + + + –

11 – + – + + – +

12 + + – + – – –

13 – – + + + – –

14 + – + + – – +

15 – + + + – + –

16 + + + + + + +
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This design is of resolution III, because the main effect is aliased with two-factor interactions. 

If we assume that all three-factor and higher interactions are negligible, the aliases of the 

seven main effects are







A

B

C

D

E

A BD CE FG

B AD CF EG

C AE BF DG

D AB CG EF

E A

= + + +
= + + +
= + + +
= + + +
= + CC BG DF

F BC AG DE

G CD BE AF
F

G

+ +
= + + +
= + + +




This 2
III
7–4 design is called a saturated fractional factorial because all the available 

degrees of freedom are used to estimate main effects. It is possible to combine sequences 

of these resolution III fractional factorials to separate the main effects from the two-factor 

interactions. The procedure is illustrated in Montgomery (2012) and in Box, Hunter, and 

Hunter (2005).

TABLE 14-33 A III
7 3

2
−

 Fractional Factorial Design

A B C D = AB E = AC F = BC G = ABC

– – – + + + –

+ – – – – + +

– + – – + – +

+ + – + – – –

– – + + – – +

+ – + – + – –

– + + – – + –

+ + + + + + +

 Problem available in WileyPLUS at instructor’s discretion. 

 Tutoring problem available in WileyPLUS at instructor’s discretion.

14-49.  Consider the problem in Exercise 14-19. Suppose 

that only half of the 32 runs could be made.

(a) Choose the half that you think should be run.

(b) Write out the alias relationships for your design.

(c) Estimate the factor effects.

(d) Plot the effect estimates on normal probability paper and 

interpret the results.

(e) Set up an analysis of variance for the factors identifi ed as 

potentially interesting from the normal probability plot in 

part (d).

(f) Analyze the residuals from the model.

(g) Provide a practical interpretation of the results.

14-50.  Suppose that in Exercise 14-22 it was possible to 

run only a 1
2 fraction of the 24 design. Construct the design and 

use only the data from the eight runs you have generated to 

perform the analysis.

14-51.  An article by L. B. Hare [“In the Soup: A Case Study 

to Identify Contributors to Filling Variability,” Journal of Qual-
ity Technology 1988 (Vol. 20, pp. 36–43)] described a factorial 

experiment used to study fi lling variability of dry soup mix pack-

ages. The factors are A = number of mixing ports through which 

the vegetable oil was added (1, 2), B = temperature surround-

ing the mixer (cooled, ambient), C = mixing time (60, 80 sec), 

D = batch weight (1500, 2000 lb), and E = number of days of 

delay between mixing and packaging (1, 7). Between 125 and 

150 packages of soup were sampled over an eight-hour period 

for each run in the design, and the standard deviation of pack-

age weight was used as the response variable. The design and 

resulting data follow.

(a) What is the generator for this design?

(b) What is the resolution of this design?

(c) Estimate the factor effects. Which effects are large?

FOR SECTION 14-7Exercises
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640   Chapter 14/Design of Experiments with Several Factors

(d) Does a residual analysis indicate any problems with the 

underlying assumptions?

(e) Draw conclusions about this filling process.

Std 
Order

A  
Mixer 
Ports

B 
Temp

C  
Time

D  
Batch 

Weight
E  

Delay

y  
Std 
Dev

 1 − − − − − 1.13

 2 + − − − + 1.25

 3 − + − − + 0.97

 4 + + − − − 1.70

 5 − − + − + 1.47

 6 + − + − − 1.28

 7 − + + − − 1.18

 8 + + + − + 0.98

 9 − − − + + 0.78

10 + − − + − 1.36

11 − + − + − 1.85

12 + + − + + 0.62

13 − − + + − 1.09

14 + − + + + 1.10

15 − + + + + 0.76

16 + + + + − 2.10

14-52.  Montgomery (2012) described a 24–1 fractional 

factorial design used to study four factors in a chemical pro-

cess. The factors are A = temperature, B = pressure, C = con-

centration, and D = stirring rate, and the response is filtration 

rate. The design and the data are as follows:

Run A B C D = ABC
Treatment 

Combination
Filtration 

Rate

1 – – – – (1)  45

2 + – – + ad 100

3 – + – + bd  45

4 + + – – ab  65

5 – – + + cd  75

6 + – + – ac  60

7 – + + – bc  80

8 + + + + abcd  96

(a) Write down the alias relationships.

(b) Estimate the factor effects. Which factor effects appear 

large?

(c) Project this design into a full factorial in the three appar-

ently important factors and provide a practical interpreta-

tion of the results.

14-53.  R. D. Snee (“Experimenting with a Large Number 

of Variables,” in Experiments in Industry: Design, Analysis and 
Interpretation of Results, Snee, Hare, and Trout, eds., ASQC, 

1985) described an experiment in which a 25–1 design with I = 

ABCDE was used to investigate the effects of five factors on 

the color of a chemical product. The factors are A = solvent/

reactant, B = catalyst/reactant, C = temperature, D = reactant 

purity, and E = reactant pH. The results obtained are as follows:

 e = – 0.63 d =  6.79
 a = 2.51 ade =  6.47
 b = – 2.68 bde =  3.45
 abe = 1.66 abd =  5.68
 c = 2.06 cde =  5.22
 ace = 1.22 acd =  4.38
 bce = –2.09 bcd = 4.30
 abc = 1.93 abcde = 4.05 

(a) Prepare a normal probability plot of the effects. Which fac-

tors are active?

(b) Calculate the residuals. Construct a normal probability plot 

of the residuals and plot the residuals versus the fitted val-

ues. Comment on the plots.

(c) If any factors are negligible, collapse the 25–1 design into a 

full factorial in the active factors. Comment on the result-

ing design, and interpret the results.

14-54. An article in Quality Engineering [“A Comparison 

of Multi-Response Optimization: Sensitivity to Parameter 

Selection” (1999, Vol. 11, pp. 405–415)] conducted a half rep-

licate of a 25 factorial design to optimize the retort process 

of beef stew MREs, a military ration. The design factors are  

x
1
 = sauce viscosity, x

2
 = residual gas, x

3
 = solid/liquid ratio, 

x
4
 = net weight, x

5
 = rotation speed. The response variable is 

the heating rate index, a measure of heat penetration, and there 

are two replicates.

Run x1 x2 x3 x4 x5

Heating Rate 
Index

I II

1 –1 –1 –1 –1 1 8.46 9.61

2 1 –1 –1 –1 –1 15.68 14.68

3 –1 1 –1 –1 –1 14.94 13.09

4 1 1 –1 –1 1 12.52 12.71

5 –1 –1 1 –1 –1 17.0 16.36

6 1 –1 1 –1 1 11.44 11.83

7 –1 1 1 –1 1 10.45 9.22

8 1 1 1 –1 –1 19.73 16.94

9 –1 –1 –1 1 –1 17.37 16.36

10 1 –1 –1 1 1 14.98 11.93

11 –1 1 –1 1 1 8.40 8.16

12 1 1 –1 1 –1 19.08 15.40

13 –1 –1 1 1 1 13.07 10.55

14 1 –1 1 1 –1 18.57 20.53

15 –1 1 1 1 –1 20.59 21.19

16 1 1 1 1 1 14.03 11.31

(a) Estimate the factor effects. Based on a normal probability 

plot of the effect estimates, identify a model for the data 

from this experiment.

(b) Conduct an ANOVA based on the model identified in part 

(a). What are your conclusions?
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(c) Analyze the residuals and comment on model adequacy.

(d) Find a regression model to predict yield in terms of the 

coded factor levels.

(e) This experiment was replicated, so an ANOVA could have 

been conducted without using a normal plot of the effects 

to tentatively identify a model. What model would be 

appropriate? Use the ANOVA to analyze this model and 

compare the results with those obtained from the normal 

probability plot approach.

14-55.  An article in Industrial and Engineering Chemis-
try [“More on Planning Experiments to Increase Research Effi-

ciency” (1970, pp. 60–65)] uses a 25–2 design to investigate the 

effect on process yield of A = condensation temperature, B = 

amount of material 1, C = solvent volume, D = condensation 

time, and E = amount of material 2. The results obtained are 

as follows:

 ae = 23.2 cd = 23.8
 ab = 15.5 ace = 23.4
 ad = 16.9 bde = 16.8
 bc = 16.2  abcde = 18.1

(a) Verify that the design generators used were I = ACE and  

I = BDE.

(b) Write down the complete defining relation and the aliases 

from the design.

(c) Estimate the main effects.

(d) Prepare an analysis of variance table. Verify that the AB 

and AD interactions are available to use as error.

(e) Plot the residuals versus the fitted values. Also construct a nor-

mal probability plot of the residuals. Comment on the results.

14-56.  Suppose that in Exercise 14-16 only a ¼ fraction 

of the 25 design could be run. Construct the design and analyze 

the data that are obtained by selecting only the response for the 

eight runs in your design.

14-57.  For each of the following designs, write down the 

aliases, assuming that only main effects and two factor interac-

tions are of interest.

(a)  III
6 − 3

2     (b)  IV
8 4

2
−  

14-58.  Consider the 26–2 design in Table 14-29.

(a) Suppose that after analyzing the original data, we find that 

factors C and E can be dropped. What type of 2k design is left 

in the remaining variables?

(b) Suppose that after the original data analysis, we find that 

factors D and F can be dropped. What type of 2k design is left 

in the remaining variables? Compare the results with part (a). 

Can you explain why the answers are different?

14-59. An article in the Journal of Radioanalytical and Nuclear 
Chemistry (2008, Vol. 276(2), pp. 323–328) presented a 28–4 

fractional factorial design to identify sources of Pu contamina-

tion in the radioactivity material analysis of dried shellfish at the 

National Institute of Standards and Technology (NIST). The data 

are shown in the following table. No contamination occurred at 

runs 1, 4, and 9.

The factors and levels are shown in the following table.

Factor –1 +1

Glassware Distilled water Soap, acid, stored

Reagent New Old

Sample prep Coprecipitation Electrodeposition

Tracer Stock Fresh

Dissolution Without With

Hood B A

Chemistry Without With

Ashing Without With

28–4 Glassware Reagent Sample Prep Tracer Dissolution Hood Chemistry Ashing mBq

Run x
1

x
2

x
3

x
4

x
5

x
6

x
7

x
8

y
 1 –1 –1 –1 –1 –1 –1 –1 –1 0

 2 +1 –1 –1 –1 –1 +1 +1 +1 3.31

 3 –1 +1 –1 –1 +1 –1 +1 +1 0.0373

 4 +1 +1 –1 –1 +1 +1 –1 –1 0

 5 –1 –1 +1 –1 +1 +1 +1 –1 0.0649

 6 +1 –1 +1 –1 +1 –1 –1 +1 0.133

 7 –1 +1 +1 –1 –1 +1 –1 +1 0.0461

 8 +1 +1 +1 –1 –1 –1 +1 –1 0.0297

 9 –1 –1 –1 +1 +1 +1 –1 +1 0

10 +1 –1 –1 +1 +1 –1 +1 –1 0.287

11 –1 +1 –1 +1 –1 +1 +1 –1 0.133

12 +1 +1 –1 +1 –1 –1 –1 +1 0.0476

13 –1 –1 +1 +1 –1 –1 +1 +1 0.133

14 +1 –1 +1 +1 –1 +1 –1 –1 5.75

15 –1 +1 +1 +1 +1 –1 –1 –1 0.0153

16 +1 +1 +1 +1 +1 +1 +1 +1 2.47
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(a) Write down the alias relationships.

(b) Estimate the main effects.

(c) Prepare a normal probability plot for the effects and inter-

pret the results.

14-60. An article in the Journal of Marketing Research (1973, 

Vol. 10(3), pp. 270–276) presented a 27–4 fractional factorial 

design to conduct marketing research:

Runs A B C D E F G

Sales for a 
6-Week Period 

(in $1000)

1 –1 –1 –1 1 1 1 –1  8.7

2 1 –1 –1 –1 –1 1 1 15.7

3 –1 1 –1 –1 1 –1 1  9.7

4 1 1 –1 1 –1 –1 –1 11.3

5 –1 –1 1 1 –1 –1 1 14.7

6 1 –1 1 –1 1 –1 –1 22.3

7 –1 1 1 –1 –1 1 –1 16.1

8 1 1 1 1 1 1 1 22.1

The factors and levels are shown in the following table.

Factor –1 +1

A Television 
advertising

No advertising Advertising

B Billboard 
advertising

No advertising Advertising

C Newspaper 
advertising

No advertising Advertising

D Candy wrapper 
design

Conservative 
design

Flashy 
design

E Display design Normal shelf 
display

Special aisle 
display

F Free sample 
program

No free 
samples

Free samples

G Size of candy bar 1 oz bar 2½ oz bar

(a) Write down the alias relationships.

(b) Estimate the main effects.

(c) Prepare a normal probability plot for the effects and inter-

pret the results.

14-61. An article in Bioresource Technology [“Medium Opti-

mization for Phenazine-1-carboxylic Acid Production by a gacA 

qscR Double Mutant of Pseudomonas sp. M18 Using Response 

Surface Methodology” (Vol. 101(11), 2010, pp. 4089-4095)] 

described an experiment to optimize culture medium factors to 

enhance phenazine-1-carboxylic acid (PCA) production. A 25 1−  

fractional factorial design was conducted with factors soybean 

meal, glucose, corn steep liquor, ethanol, and MgSO4. Rows 

below the horizontal line in the table (coded with zeros) cor-

respond to center points.  

(a) What is the generator of this design? 

(b) What is the resolution of this design? 

(c) Analyze factor effects and comment on important ones. 

(d) Develop a regression model to predict production in terms 

of the actual factor levels. 

(e) Does a residual analysis indicate any problems?

Run X1 X2 X3 X4 X5 Production (g/L) 

 1 − − − − + 1575.5  

 2 + − − − − 2201.4  

 3 − + − − − 1813.9  

 4 + + − − + 2164.1  

 5 − − + − − 1739.6  

 6 + − + − + 2483.2  

 7 − + + − + 2159.1  

 8 + + + − − 2257.7  

 9 − − − + − 1386.3  

10 + − − + + 1967.8  

11 − + − + + 1306.0 

12 + + − + − 2486.9  

13 − − + + + 2374.9  

14 + − + + − 2932.7  

15 − + + + − 2458.9  

16 + + + + + 3204.9  

17 0 0 0 0 0 2630.4  

18 0 0 0 0 0 2571.6  

19 0 0 0 0 0 2734.5  

20 0 0 0 0 0 2480.4  

21 0 0 0 0 0 2662.5  

Variable Component Levels (g/L) 

−1 0 +1 

X1 Soybean meal 30 45 60 

X2 Ethanol 12 18 24 

X3 Corn steep liquor 7 11 14 

X4 Glucose 10 15 20 

X5 MgSO4 0 1 2 

14-62. An article in Journal of Hazardous Materials [“Sta-

tistical Factor-Screening and Optimization in Slurry Phase 

Bioremediation of 2,4,6-trinitrotoluene Contaminated Soil,” 

(2011, Vol. 188(1), pp. 1–9)] described an experiment to opti-

mize the removal of TNT 2,4,6-trinitrotoluene (TNT). TNT 

is a predominant contaminant at ammunition plants, testing 

facilities and military zones. TNT removal (TR) is measured 

by the percentage of the initial concentration removed (mg/

kg-soil).

A 27 3−  fractional factorial design was conducted. The data 

are in the following table. Rows below the horizontal line in the 

table (coded with zeros) correspond to center points.

(a) What is the alias structure of this design? 

(b)  What is the resolution of this design? 

(c) Analyze factor effects and comment on important effects. 

(d) Develop a regression model to predict removal in terms of 

the actual factor levels. 

(e)  Does a residual analysis indicate any problems? 
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14-8 Response Surface Methods and Designs
Response surface methodology, or RSM, is a collection of mathematical and statistical tech-

niques that are useful for modeling and analysis in applications in which a response of interest 

is influenced by several variables and the objective is to optimize this response. For example, 

suppose that a chemical engineer wishes to find the levels of temperature (x
1
) and feed con-

centration (x
2
) that maximize the yield (y) of a process. The process yield is a function of the 

levels of temperature and feed concentration, say,

Y f x x= ( ) +1 2, e

where e represents the noise or error observed in the response Y. If we denote the expected 

response by E Y f x x( ) = ( ) =1 2, h, then the surface represented by

h = ( )f x x1 2,

is called a response surface.

We may represent the response surface graphically as shown in Fig. 14-42, where η is plot-

ted versus the levels of x
1
 and x

2
. Notice that the response is represented as a surface plot in a 

three-dimensional space. To help visualize the shape of a response surface, we often plot the 

contours of the response surface as shown in Fig. 14-43. In the contour plot, lines of constant 

response are drawn in the x
1
, x

2
 plane. Each contour corresponds to a particular height of the 

response surface. The contour plot is helpful in studying the levels of x
1
 and x

2
 that result in 

changes in the shape or height of the response surface.

In most RSM problems, the form of the relationship between the response and the independ-

ent variables is unknown. Thus, the first step in RSM is to find a suitable approximation for the 

true relationship between Y and the independent variables. Usually, a low-order polynomial in 

some region of the independent variables is employed. If the response is well modeled by a linear  

function of the independent variables, the approximating function is the first-order model

Run 

Glucose 
(g/L) 

A 

NH4Cl 
(g/L) 

B 

Tween80 
(g/L) 

C 

Slurry 
(g/ml) 

D 

Temp 
(�C) 
E 

Yeast 
(g/L) 

F 

Inoculum 
(vol.%) 

G TR  

 1 2 0.1 5 20 35 0.2 10 90.5  

 2 8 0.1 5 20 20 0.2 5 80.1  

 3 8 0.1 1 20 35 0 10 92.3  

 4 2 0.1 5 40 35 0 5 82.9  

 5 2 0.1 1 40 20 0.2 10 68.1  

 6 8 0.5 1 20 20 0.2 10 90.4  

 7 2 0.5 1 40 35 0 10 71.6  

 8 8 0.1 1 40 35 0.2 5 79.5  

 9 8 0.5 5 40 35 0.2 10 86.5  

10 2 0.5 5 40 20 0.2 5 84.1  

11 8 0.5 5 20 35 0 5 91.3  

12 2 0.5 1 20 35 0.2 5 89.7  

13 8 0.5 1 40 20 0 5 78.1  

14 2 0.1 1 20 20 0 5 90.4  

15 2 0.5 5 20 20 0 10 91  

16 8 0.1 5 40 20 0 10 83.6  

17 5 0.3 3 30 27.5 0.1 7.5 85.6  

18 5 0.3 3 30 27.5 0.1 7.5 89.7  

19 5 0.3 3 30 27.5 0.1 7.5 88.3  
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 Y x x xk= + + + ⋅ ⋅ ⋅ + +β β β β0 1 2 k1 2 e (14-21)

If there is curvature in the system, then a polynomial of higher degree must be used, such as 

the second-order model

 Y x x x xi i
i

k

ii i
i

k

ij i j
i j

= + + + +
= = <
∑ ∑ ∑∑β β β β0

1

2

1

e (14-22)

Many RSM problems use one or both of these approximating polynomials. Of course, it is 

unlikely that a polynomial model will be a reasonable approximation of the true functional 

relationship over the entire space of the independent variables, but for a relatively small region, 

they usually work quite well.

The method of least squares, discussed in Chapters 11 and 12, is used to estimate the 

parameters in the approximating polynomials. The response surface analysis is then based 

on the fitted surface. If the fitted surface is an adequate approximation of the true response 

function, analysis of the fitted surface will be approximately equivalent to analysis of the 

actual system.

RSM is a sequential procedure. Often, when we are at a point on the response surface that 

is remote from the optimum, such as the current operating conditions in Fig. 14-43, there is 

little curvature in the system and the first-order model is appropriate. Our objective here is 

to lead the experimenter rapidly and efficiently to the general vicinity of the optimum. Once 

the region of the optimum has been found, a more elaborate model such as the second-order 

model may be employed, and an analysis may be performed to locate the optimum. From Fig. 

14-43, we see that the analysis of a response surface can be thought of as “climbing a hill,” 

where the top of the hill represents the point of maximum response. If the true optimum is a 

point of minimum response, we may think of “descending into a valley.”

The eventual objective of RSM is to determine the optimum operating conditions for the 

system or to determine a region of the factor space in which operating specifications are satis-

fied. Also note that the word optimum in RSM is used in a special sense. The “hill-climbing” 

procedures of RSM guarantee convergence to a local optimum only.

Method of Steepest Ascent
Frequently, the initial estimate of the optimum operating conditions for the system is far from 

the actual optimum. In such circumstances, the objective of the experimenter is to move rap-

idly to the general vicinity of the optimum. We wish to use a simple and economically efficient 

experimental procedure. When we are remote from the optimum, we usually assume that a 

first-order model is an adequate approximation to the true surface in a small region of the x’s.

The method of steepest ascent is a procedure for moving sequentially along the path of 

steepest ascent, that is, in the direction of the maximum increase in the response. Of course, 
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FIGURE 14-42 A three-dimensional response surface 
showing the expected yield as a function of temperature and 
feed concentration.
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FIGURE 14-43 A contour plot of the yield 
response surface in Figure 14-42.
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if minimization is desired, we are talking about the method of steepest descent. The fi tted 

fi rst-order model is

ˆ ˆ ˆy xi i
i

k

= β + β
=
∑0

1

 (14-23)

and the fi rst-order response surface, that is, the contours of ŷ, is a series of parallel lines 

such as that shown in Fig. 14-44. The direction of steepest ascent is the direction in which ŷ
increases most rapidly. This direction is normal to the fi tted response surface contours. We 

usually take as the path of steepest ascent the line through the center of the region of interest 

and normal to the fi tted surface contours. Thus, the steps along the path are proportional to the 

regression coeffi cients { }β̂i . The experimenter determines the actual step size based on process 

knowledge or other practical considerations.

Experiments are conducted along the path of steepest ascent until no further increase in 

response is observed. Then a new fi rst-order model may be fi t, a new direction of steepest 

ascent determined, and further experiments conducted in that direction until the experimenter 

believes that the process is near the optimum.

x1

x2

Region of fitted

first-order response

surface

Path of

steepest

ascent

y = 10 y = 20
y = 30

y = 40

y = 50

FIGURE 14-44 
First-order response 
surface and path of 
steepest ascent.

Process Yield Steepest Ascent In Example 14-6, we described an experiment on a chemical 

process in which two factors, reaction time (x
1
) and reaction temperature (x

2
), affect the percent 

conversion or yield (Y). Figure 14-27 shows the 22 design plus fi ve center points used in this study. The engineer found 

that both factors were important, there was no interaction, and there was no curvature in the response surface. There-

fore, the fi rst-order model

Y x x= β + β + β +0 1 1 2 2 e

should be appropriate. Now the effect estimate of time is 1.55 hours and the effect estimate of temperature is 0.65°F, 

and because the regression coeffi cients β̂1 and β̂2 are one-half of the corresponding effect estimates, the fi tted fi rst-order 

model is

y x x^ . . .= + +40 44 0 775 0 3251 2

Figure 14-45(a) and (b) show the contour plot and three-dimensional surface plot of this model. Figure 14-45 also 

shows the relationship between the coded variables x
1
 and x

2
 (that defi ned the high and low levels of the factors) and 

the original variables, time (in minutes), and temperature (in °F).

Example 14-11
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From examining these plots (or the fi tted model), we see that to move away from the design center—the point 

(x
1
 = 0, x

2
 = 0)—along the path of steepest ascent, we would move 0.775 unit in the x

1
 direction for every 0.325 unit in 

the x2 direction. Thus, the path of steepest ascent passes through the point (x
1
 = 0, x

2
 = 0) and has a slope 0.325 / 0.775. 

The engineer decides to use 5 minutes of reaction time as the basic step size. Now, 5 minutes of reaction time is equiva-

lent to a step in the coded variable x
1
 of Δx

1
 = 1. Therefore, the steps along the path of steepest ascent are Δx

1
 = 1.0000 

and Δx
2
 = (0.325 / 0.775)Δx

1
 = 0.42. A change of Δx

2
 = 0.42 in the coded variable x

2
 is equivalent to about 2°F in the 

original variable temperature. Therefore, the engineer moves along the path of steepest ascent by increasing reaction 

time by 5 minutes and temperature by 2°F. An actual observation on yield is determined at each point.

Next Steps: Figure 14-46 shows several points along this path of steepest ascent and the yields actually observed 

from the process at those points. At points A–D, the observed yield increases steadily, but beyond point D, the yield 

decreases. Therefore, steepest ascent terminates in the vicinity of 55 minutes of reaction time and 163°F with an 

observed percent conversion of 67%.
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FIGURE 14-45 Response surface plots for the fi rst-order model in Example 14-11.
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FIGURE 14-46 Steepest ascent experiment for Example 14-11.
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Analysis of a Second-Order Response Surface
When the experimenter is relatively close to the optimum, a second-order model is usually 

required to approximate the response because of curvature in the true response surface. The 

fi tted second-order model is

ˆ ˆ ˆ ˆ ˆy x x x xi i
i

k

ii i
i

k

ij i j
i j

= β + β + β + β
= =
∑ ∑ ∑∑0

1

2

1 ,

where β̂ denotes the least squares estimate of b. In this section, we show how to use this fi tted 

model to fi nd the optimum set of operating conditions for the x’s and to characterize the nature 

of the response surface.

Process Yield Central Composite Design
Continuation of Example 14-11

Consider the chemical process from Example 14-11, where the method of steepest ascent terminated at a reaction time 

of 55 minutes and a temperature of 163°F. The experimenter decides to fi t a second-order model in this region. Table 

14-34 and Fig. 14-47 show the experimental design, which consists of a 22 design centered at 55 minutes and 165°F, 

fi ve center points, and four runs along the coordinate axes called axial runs. This type of design, called a central 
composite design, is a very popular design for fi tting second-order response surfaces.

Two response variables were measured during this phase of the experiment: percentage conversion (yield) and vis-

cosity. The least-squares quadratic model for the yield response is

ŷ x x x x x x= . + . + . − . − . + .69 1 1 633 1 083 0 969 1 219 0 2251 2 1
2

2
2

1 2

The analysis of variance for this model is shown in Table 14-35.

Figure 14-48 shows the response surface contour plot and the three-dimensional surface plot for this model. From 

examination of these plots, the maximum yield is about 70%, obtained at approximately 60 minutes of reaction time 

and 167°F.

The viscosity response is adequately described by the fi rst-order model

ˆ . . .y x x2 1 237 08 3 85 3 10= + +

Table 14-36 summarizes the analysis of variance for this model. The response surface is shown graphically in Fig. 

14-49. Notice that viscosity increases as both time and temperature increase.

Example 14-12

TABLE 14-34 Central Composite Design for Example 14-12

Observation 
Number

Time 
(minutes)

Temperature 
(°F)

Coded Variables
    x

1                                  
x

2

Conversion 
(percent) 

Response 1

Viscosity 
(mPa-sec) 

Response 2

 1 50 160 –1 –1 65.3 35

 2 60 160 1 –1 68.2 39

 3 50 170 –1 1 66.0 36

 4 60 170 1 1 69.8 43

 5 48 165 –1.414 0 64.5 30

 6 62 165 1.414 0 69.0 44

 7 55 158 0 –1.414 64.0 31

 8 55 172 0 1.414 68.5 45

 9 55 165 0 0 68.9 37

10 55 165 0 0 69.7 34

11 55 165 0 0 68.5 35

12 55 165 0 0 69.4 36

13 55 165 0 0 69.0 37
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FIGURE 14-48 Response surface plots for the yield response, Example 14-12.
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TABLE 14-35  Analysis of Variance for the Quadratic 
Model, Yield Response

Source of 
Variation

Sum of 
Squares

Degrees of 
Freedom

Mean 
Square f0 P-Value

Model 45.89  5 9.178 14.93 0.0013

Residual 4.30  7 0.615

Total 50.19 12

Independent 
Variable Coeffi cient 

SE 
Coeffi cient t P-Value

Intercept 69.100 0.351 197.1

x
1

1.633 0.277 5.891 0.0006

x
2

1.083 0.277 3.907 0.0058

x2
1

–0.969 0.297 –3.259 0.0139

x2
2

–1.219 0.297 –4.100 0.0046

x
1
x

2
0.225 0.392 0.574 0.5839

(0, 0)

+2

+2–2

–2

(0, –1.414)

(–1.414, 0) (1.414, 0)

(0, 1.414)

(–1, –1)

(–1, 1)

x2

x1

(1, –1)

(1, 1)

FIGURE 14-47 Central composite design for 
Example 14-12.

TABLE 14-36 Analysis of Variance for the First-Order Model, Viscosity Response

Source of 
Variation

Sum of 
Squares

Degrees of 
Freedom

Mean 
Square f0 P-Value

Model  195.4  2 97.72 15.89 0.0008

Residual  61.5 10  6.15

Total 256.9 12

Independent 
Variable Coeffi cient 

SE 
Coeffi cient t P-Value

Intercept 37.08 0.69 53.910

x
1

 3.85 0.88  4.391 0.0014

x
2

 3.10 0.88  3.536 0.0054
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Example 14-12 illustrates the use of a central composite design (CCD) for fi tting a 

second-order response surface model. These designs are widely used in practice because 

they are relatively effi cient with respect to the number of runs required. In general, a CCD 

Practical Interpretation: As in most response surface problems, the experimenter in this example had confl ict-

ing objectives regarding the two responses. The objective was to maximize yield, but the acceptable range for 

viscosity was 38 ≤ y
2
 ≤ 42. When there are only a few independent variables, an easy way to solve this problem is 

to overlay the response surfaces to fi nd the optimum. Figure 14-50 shows the overlay plot of both responses with 

the contours y
1
 = 69% conversion, y

2
 = 38, and y

2
 = 42 highlighted. The shaded areas on this plot identify unfea-

sible combinations of time and temperature. This graph shows that several combinations of time and temperature 

are satisfactory.
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FIGURE 14-49 Response surface plots for the viscosity response, Example 14-12.
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in k factors requires 2k factorial runs, 2k axial runs, and at least one center point (three 

to five center points are typically used). Designs for k = 2 and k = 3 factors are shown in 

Fig. 14-51.

The central composite design may be made rotatable by proper choice of the axial 

spacing α in Fig. 14-51. If the design is rotatable, the standard deviation of predicted 

response ŷ is constant at all points that are the same distance from the center of the 

design. For rotatability, choose a = (F)1/4 where F is the number of points in the facto-

rial part of the design (usually F = 2k). For the case of k = 2 factors, α = (22)1/4 = 1.414, 

as was used in the design in Example 14-12. Figure 14-52 presents a contour plot and 

a surface plot of the standard deviation of prediction for the quadratic model used for 

the yield response. Notice that the contours are concentric circles, implying that yield is 

predicted with equal precision for all points that are the same distance from the center of 

the design. Also, as one would expect, the precision decreases with increasing distance 

from the design center.

FIGURE 14-52 Plots of constant V ŷ( )  for a rotatable central composite design.
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14-63.  An article in Rubber Age (1961, Vol. 89, pp. 453–

458) describes an experiment on the manufacture of a product 

in which two factors were varied. The factors are reaction time 

(hr) and temperature (°C). These factors are coded as x
1
 = (time 

– 12) / 8 and x
2
 = (temperature – 250) / 30. The following data 

were observed where y is the yield (in percent):

Run Number x1 x2 y
 1 –1 0 83.8

 2 1 0 81.7

 3 0 0 82.4

 4 0 0 82.9

 5 0 –1 84.7

 6 0 1 75.9

 7 0 0 81.2

 8 –1.414 –1.414 81.3

 9 –1.414 1.414 83.1

10 1.414 –1.414 85.3

11 1.414 1.414 72.7

12 0 0 82.0

(a) Plot the points at which the experimental runs were made.

(b) Fit a second-order model to the data. Is the second-order 

model adequate?

(c) Plot the yield response surface. What recommendations would 

you make about the operating conditions for this process?

14-64.  An article in Quality Engineering [“Mean and 

Variance Modeling with Qualitative Responses: A Case Study” 

(1998–1999, Vol. 11, pp. 141–148)] studied how three active 

ingredients of a particular food affect the overall taste of the 

product. The measure of the overall taste is the overall mean lik-

ing score (MLS). The three ingredients are identified by the vari-

ables x ,1  x ,2  and x3. The data are shown in the following table.

Run x1 x2 x3 MLS
 1 1 1 –1 6.3261

 2 1 1 1 6.2444

 3 0 0 0 6.5909

 4 0 –1 0 6.3409

 5 1 –1 1 5.907

 6 1 –1 –1 6.488

 7 0 0 –1 5.9773

 8 0 1 0 6.8605

 9 –1 –1 1 6.0455

10 0 0 1 6.3478

11 1 0 0 6.7609

12 –1 –1 –1 5.7727

13 –1 1 –1 6.1805

14 –1 1 1 6.4894

15 –1 0 0 6.8182

(a) Fit a second-order response surface model to the data.

(b) Construct contour plots and response surface plots for 

MLS. What are your conclusions?

(c) Analyze the residuals from this experiment. Does your 

analysis indicate any potential problems?

(d) This design has only a single center point. Is this a good 

design in your opinion?

14-65.  Consider the first-order model

ŷ x x= + . − .50 1 5 0 81 2

where –1 ≤ x
i
 ≤ 1. Find the direction of steepest ascent.

14-66.  A manufacturer of cutting tools has developed two 

empirical equations for tool life (y
1
) and tool cost (y

2
). Both 

models are functions of tool hardness (x
1
) and manufacturing 

time (x
2
). The equations are

ŷ x x
1

10 5 21 2= + +
ŷ x x2 1 223 3 4= + +

and both are valid over the range –1.5 ≤ x
i
 ≤ 1.5. Suppose  

that tool life must exceed 12 hours and cost must be below 

$27.50.

(a) Is there a feasible set of operating conditions?

(b) Where would you run this process?

14-67.  An article in Tappi (1960, Vol. 43, pp. 38–44) 

describes an experiment that investigated the ash value of paper 

pulp (a measure of inorganic impurities). Two variables, tem-

perature T in degrees Celsius and time t in hours, were studied, 

and some of the results are shown in the following table. The 

coded predictor variables shown are

x
T

, x
t

1 2

775

115

3

1 5
=

−( ) =
−( )
.

and the response y is (dry ash value in %) × 103.

x1 x2
y x1 x2

y

–1 –1 211 0 –1.5 168

 1 –1  92 0  1.5 179

–1 1 216 0 0 122

 1 1  99 0 0 175

–1.5 0 222 0 0 157

1.5 0  48 0 0 146

(a) What type of design has been used in this study? Is the 

design rotatable?

(b) Fit a quadratic model to the data. Is this model satisfactory?

(c) If it is important to minimize the ash value, where would 

you run the process?

14-68.  In their book Empirical Model Building and 
Response Surfaces (John Wiley, 1987), Box and Draper 

described an experiment with three factors. The data in the fol-

lowing table are a variation of the original experiment from their 

SECTION 14-8Exercises
 Problem available in WileyPLUS at instructor’s discretion. 

 Tutoring problem available in WileyPLUS at instructor’s discretion
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652   Chapter 14/Design of Experiments with Several Factors

book. Suppose that these data were collected in a semiconductor 

manufacturing process.

(a) The response y
1
 is the average of three readings on resistiv-

ity for a single wafer. Fit a quadratic model to this response.

(b) The response y
2
 is the standard deviation of the three resis-

tivity measurements. Fit a linear model to this response.

(c) Where would you recommend that we set x
1
, x

2
, and x

3
 if 

the objective is to hold mean resistivity at 500 and mini-

mize the standard deviation?

x1 x2 x3 y1 y2

–1 –1 –1 24.00 12.49

0 –1 –1 120.33 8.39

1 –1 –1 213.67 42.83

–1 0 –1 86.00 3.46

0 0 –1 136.63 80.41

1 0 –1 340.67 16.17

–1 1 –1 112.33 27.57

0 1 –1 256.33 4.62

1 1 –1 271.67 23.63

–1 –1 0 81.00 0.00

0 –1 0 101.67 17.67

1 –1 0 357.00 32.91

–1 0 0 171.33 15.01

0 0 0 372.00 0.00

1 0 0 501.67 92.50

–1 1 0 264.00 63.50

0 1 0 427.00 88.61

1 1 0 730.67 21.08

–1 –1 1 220.67 133.82

0 –1 1 239.67 23.46

1 –1 1 422.00 18.52

–1 0 1 199.00 29.44

0 0 1 485.33 44.67

1 0 1 673.67 158.21

–1 1 1 176.67 55.51

0 1 1 501.00 138.94

1 1 1 1010.00 142.45

14-69. Consider the first-order model

y x x x x= + . − . + . − .12 1 2 2 1 1 6 0 61 2 3 4

where − ≤ ≤1 1xi .

(a) Find the direction of steepest ascent.

(b) Assume that the current design is centered at the point (0, 

0, 0, 0). Determine the point that is three units from the 

current center point in the direction of steepest ascent.

14-70. Suppose that a response y1 is a function of two inputs 

x1 and x2 with y x x x x1 2
2

1
2

1 22 4 4= − − + . 

(a)  Draw the contours of this response function. 

(b)  Consider another response y x x2 1
2

2
22 3= − + −( ) ( ) . 

(c) Add the contours for y2 and discuss how feasible it is to 

minimize both y1 and y2 with values for x1 and x2. 

14-71. Two responses y1 and y2 are related to two inputs x1 and x2 

by the models y x x1 1
2

2
25 2 3= + − + −( ) ( )  and y x x2 2 1 3= − + . 

Suppose that the objectives are y1 9≤  and y2 6≥ . 

(a)  Is there a feasible set of operating conditions for x1 and x2? 

If so, plot the feasible region in the space of x1 and x2. 

(b) Determine the point(s) ( )x x1 2,  that yields y2 6≥  and mini-

mizes y1.

14-72. An article in the Journal of Materials Processing Tech-
nology (1997, Vol. 67, pp. 55–61) used response surface meth-

odology to generate surface roughness prediction models for 

turning EN 24T steel (290 BHN). The data are shown in the 

following table.

Trial

Speed  
(m 

min–1)

Feed  
(mm 
rev–1)

Depth 
of cut 
(mm)

Coding Surface 
roughness,  

(lm)x1    x2    x3

 1  36 0.15 0.50 –1 –1 –1 1.8

 2 117 0.15 0.50 1 –1 –1 1.233

 3  36 0.40 0.50 –1 1 –1 5.3

 4 117 0.40 0.50 1 1 –1 5.067

 5  36 0.15 1.125 –1 –1 1 2.133

 6 117 0.15 1.125 1 –1 1 1.45

 7  36 0.40 1.125 –1 1 1 6.233

 8 117 0.40 1.125 1 1 1 5.167

 9  65 0.25 0.75 0 0 0 2.433

10  65 0.25 0.75 0 0 0 2.3

11  65 0.25 0.75 0 0 0 2.367

12  65 0.25 0.75 0 0 0 2.467

13  28 0.25 0.75 − 2 0 0 3.633

14 150 0.25 0.75 2 0 0 2.767

15  65 0.12 0.75 0 − 2 0 1.153

16  65 0.50 0.75 0 2 0 6.333

17  65 0.25 0.42 0 0 − 2 2.533

18  65 0.25 1.33 0 0 2 3.20

19  28 0.25 0.75 − 2 0 0 3.233

20 150 0.25 0.75 2 0 0 2.967

21  65 0.12 0.75 0 − 2 0 1.21

22  65 0.50 0.75 0 2 0 6.733

23  65 0.25 0.42 0 0 − 2 2.833

24  65 0.25 1.33 0 0 2 3.267

The factors and levels for the experiment are shown in Table E14-3.

(a) Plot the points at which the experimental runs were 

made.

(b) Fit both first-and second-order models to the data. Comment 

on the adequacies of these models.

(c) Plot the roughness response surface for the second-order 

model and comment.
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14-75.  An article in Process Engineering (1992, No. 

71, pp. 46–47) presented a two-factor factorial experiment to 

investigate the effect of pH and catalyst concentration on prod-

uct viscosity (cSt). The data are as follows:

pH

Catalyst Concentration

2.5 2.7

5.6 192, 199, 189, 198 178, 186, 179, 188

5.9 185, 193, 185, 192 197, 196, 204, 204

(a) Test for main effects and interactions using α = 0.05. What 

are your conclusions?

(b) Graph the interaction and discuss the information provided 

by this plot.

(c) Analyze the residuals from this experiment.

14-76.  Heat-treating metal parts is a widely used manu-

facturing process. An article in the Journal of Metals (1989, 

Vol. 41) described an experiment to investigate flatness distor-

tion from heat-treating for three types of gears and two heat-

treating times. The data follow:

Time (minutes)

Gear Type 90 120

20-tooth 0.0265 0.0560

0.0340 0.0650

24-tooth 0.0430 0.0720

0.0510 0.0880

28-tooth 0.0405 0.0620

0.0575 0.0825

Supplemental Exercises
 Problem available in WileyPLUS at instructor’s discretion. 

 Tutoring problem available in WileyPLUS at instructor’s discretion.

14-73. An article in Analytical Biochemistry [“Application of 

Central Composite Design for DNA Hybridization Onto Mag-

netic Microparticles,” (2009, Vol. 391(1), 2009, pp. 17–23)] 

considered the effects of probe and target concentration and 

particle number in immobilization and hybridization on a micro 

particle-based DNA hybridization assay. Mean fluorescence is 

the response. Particle concentration was transformed to surface 

area measurements. Other concentrations were measured in 

micromoles per liter (μM). Data are in Table E14-2.

(a) What type of design is used? 

(b) Fit a second-order response surface model to the data. 

(c) Does a residual analysis indicate any problems?

14-74. An article in Applied Biochemistry and Biotechnology 
(“A Statistical Approach for Optimization of Polyhydroxybu-

tyrate Production by Bacillus sphaericus NCIM 5149 under 

Submerged Fermentation Using Central Composite Design” 

(2010, Vol. 162(4), pp. 996–1007)] described an experiment to 

optimize the production of polyhydroxybutyrate (PHB). Inocu-

lum age, pH, and substrate were selected as factors, and a cen-

tral composite design was conducted. Data follow.

Run
Inoculum age 

(h) pH
Substrate 

(g/L)
PHB 
(g/L) 

 1 12 4 1 0.84  

 2 24 8 1 0.55  

 3 18 6 2.5 1.96  

 4 28 6 2.5 1.2  

 5 12 4 4 0.783  

 6 18 6 2.5 1.66  

 7 18 6 2.5 2.22  

 8 18 6 5 0.8  

 9 12 8 4 0.48  

10 18 6 2.5 1.97  

11 18 6 2.5 2.2  

12 18 6 2.5 2.25  

13 18 2 2.5 0.2  

14 18 6 0 0.22  

15 12 8 1 0.37  

16 24 8 4 0.66  
17 24 4 1 0.28  
18 24 4 4 0.88  
19 18 9 2.5 0.3  
20 7 6 2.5 0.42  

(a)   Plot the points at which the experimental runs were made 

[Hint: Code each variable first.] What type of design is used? 

(b) Fit a second-order response surface model to the data. 

(c)  Does a residual analysis indicate any problems? 

(d)  Construct a contour plot and response surface for PHB 

amount in terms of two factors. 

(e)  Can you recommend values for inoculum age, pH and sub-

strate to maximize production?

Levels Lowest Low Center High Highest
Coding − 2 –1 0 1 2

Speed, V (m min–1) 28 36 65 117 150

Feed, f (mm rev –1) 0.12 0.15 0.25 0.40 0.50

Depth of cut, d (mm) 0.42 0.50 0.75 1.125 1.33

TABLE E14-3 Steel Factors
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(a) Is there any evidence that flatness distortion is different 

for the different gear types? Is there any indication that 

heat-treating time affects the flatness distortion? Do these 

factors interact? Use α = 0.05.

(b) Construct graphs of the factor effects that aid in drawing 

conclusions from this experiment.

(c) Analyze the residuals from this experiment. Comment on 

the validity of the underlying assumptions.

14-77. An article in the Textile Research Institute Journal 
(1984, Vol. 54, pp. 171–179) reported the results of an experi-

ment that studied the effects of treating fabric with selected 

inorganic salts on the flammability of the material. Two appli-

cation levels of each salt were used, and a vertical burn test was 

used on each sample. (This finds the temperature at which each 

sample ignites.) The burn test data follow.

Level

Salt

Untreated MgCl2 NaCl CaCO3 CaCl2 Na2CO3

1 812 752 739 733 725 751

827 728 731 728 727 761

876 764 726 720 719 755

2 945 794 741 786 756 910

881 760 744 771 781 854

919 757 727 779 814 848

Run 
Immobilization 

area (cm2) 
Probe 

area (lM) 
Hybridization 

(cm2) 
Target 
(lM) 

Mean 
Fluorescence 

 1 0.35 0.025 0.35 0.025 4.7 

 2 7 0.025 0.35 0.025 4.7 

 3 0.35 2.5 0.35 0.025 28.0 

 4 7 2.5 0.35 0.025 81.2 

 5 0.35 0.025 3.5 0.025 5.7 

 6 7 0.025 3.5 0.025 3.8 

 7 0.35 2.5 3.5 0.025 12.2 

 8 7 2.5 3.5 0.025 19.5 

 9 0.35 0.025 0.35 5 4.4 

10 7 0.025 0.35 5 2.6 

11 0.35 2.5 0.35 5 83.7 

12 7 2.5 0.35 5 84.7 

13 0.35 0.025 3.5 5 6.8 

14 7 0.025 3.5 5 2.4 

15 0.35 2.5 3.5 5 76 

16 7 2.5 3.5 5 77.9 

17 0.35 5 2 2.5 42.6 

18 7 5 2 2.5 52.3 

19 3.5 0.025 2 2.5 2.6 

20 3.5 2.5 2 2.5 72.8 

21 3.5 5 0.35 2.5 47.7 

22 3.5 5 3.5 2.5 54.4 

23 3.5 5 2 0.025 30.8 

24 3.5 5 2 5 64.8 

25 3.5 5 2 2.5 51.6 

26 3.5 5 2 2.5 52.6 

27 3.5 5 2 2.5 56.1 

TABLE E14-2 Fluorescence Experiment
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(a) Test for differences between salts, application levels, and 

interactions. Use α = 0.01.

(b) Draw a graph of the interaction between salt and applica-

tion level. What conclusions can you draw from this graph?

(c) Analyze the residuals from this experiment.

14-78.  An article in the IEEE Transactions on Compo-
nents, Hybrids, and Manufacturing Technology (1992, Vol. 15) 

described an experiment for aligning optical chips onto circuit 

boards. The method involves placing solder bumps onto the 

bottom of the chip. The experiment used three solder bump 

sizes and three alignment methods. The response variable is 

alignment accuracy (in micrometers). The data are as follows:

Solder Bump Size  
(diameter in mm)

Alignment Method

1 2 3

4.60 1.55 1.05

 75 4.53 1.45 1.00

2.33 1.72 0.82

130 2.44 1.76 0.95

4.95 2.73 2.36

260 4.55 2.60 2.46

(a) Is there any indication that either solder bump size or align-

ment method affects the alignment accuracy? Is there any 

evidence of interaction between these factors? Use a = 

0.05.

(b) What recommendations would you make about this process?

(c) Analyze the residuals from this experiment. Comment on 

model adequacy.

14-79.  An article in Solid State Technology (1984, Vol. 29, 

pp. 281–284) described the use of factorial experiments in pho-

tolithography, an important step in the process of manufacturing 

integrated circuits. The variables in this experiment (all at two lev-

els) are prebake temperature (A), prebake time (B), and exposure 

energy (C), and the response variable is delta line width, the dif-

ference between the line on the mask and the printed line on the 

device. The data are as follows: (1) = –2.30, a = –9.87, b = –18.20, 

ab = –30.20, c = –23.80, ac = –4.30, bc = –3.80, and abc = –14.70.

(a) Estimate the factor effects.

(b) Use a normal probability plot of the effect estimates to 

identity factors that may be important.

(c) What model would you recommend for predicting the delta 

line width response based on the results of this experiment?

(d) Analyze the residuals from this experiment, and comment 

on model adequacy.

14-80.  An article in the Journal of Coatings Technology 

(1988, Vol. 60, pp. 27–32) described a 24 factorial design used for 

studying a silver automobile basecoat. The response variable is dis-

tinctness of image (DOI). The variables used in the experiment are

A =  Percentage of polyester by weight of polyester/melamine 

(low value = 50%, high value = 70%)

B =  Percentage of cellulose acetate butyrate carboxylate (low 

value = 15%, high value = 30%)

C =  Percentage of aluminum stearate (low value = 1%, high 

value = 3%)

D =  Percentage of acid catalyst (low value = 0.25%, high value 

= 0.50%)

The responses are (1) = 63.8, a = 77.6, b = 68.8, ab = 76.5, c = 72.5, 

ac = 77.2, bc = 77.7, abc = 84.5, d = 60.6, ad = 64.9, bd = 72.7, abd 

= 73.3, cd = 68.0, acd = 76.3, bcd = 76.0, and abcd = 75.9.

(a) Estimate the factor effects.

(b) From a normal probability plot of the effects, identify a 

tentative model for the data from this experiment.

(c) Using the apparently negligible factors as an estimate of 

error, test for significance of the factors identified in part 

(b). Use a = 0.05.

(d) What model would you use to describe the process based 

on this experiment? Interpret the model.

(e) Analyze the residuals from the model in part (d) and com-

ment on your findings.

14-81. An article in the Journal of Manufacturing Systems 

(1991, vol. 10, pp. 32–40) described an experiment to investi-

gate the effect of four factors, P = waterjet pressure, F = abrasive 

flow rate, G = abrasive grain size, and V = jet traverse speed, on 

the surface roughness of a waterjet cutter. A 24 design follows.

(a) Estimate the factor effects.

(b) Form a tentative model by examining a normal probability 

plot of the effects.

(c) Is the model in part (b) a reasonable description of the pro-

cess? Is lack of fit significant? Use a = 0.05.

(d) Interpret the results of this experiment.

(e) Analyze the residuals from this experiment.

Run

Factors
Surface 

Roughness 
(lm)

V  
(in/min)

F  
(lb/min)

P  
(kpsi)

G  
(Mesh No.)

1 6 2.0 38 80 104

2 2 2.0 38 80 98

3 6 2.0 30 80 103

4 2 2.0 30 80 96

5 6 1.0 38 80 137

6 2 1.0 38 80 112

7 6 1.0 30 80 143

8 2 1.0 30 80 129

9 6 2.0 38 170 88

10 2 2.0 38 170 70

11 6 2.0 30 170 110

12 2 2.0 30 170 110

13 6 1.0 38 170 102

14 2 1.0 38 170 76

15 6 1.0 30 170 98

16 2 1.0 30 170 68

14-82. Construct a 24 1
IV

−  design for the problem in Exercise 14-80. 

Select the data for the eight runs that would have been required for 

this design. Analyze these runs and compare your conclusions to 

those obtained in Exercise 14-80 for the full factorial.

14-83. Construct a 24 1
IV

−  design for the problem in Exercise 14-81. 

Select the data for the eight runs that would have been required for 
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this design. Analyze these data and compare your conclusions to 

those obtained in Exercise 14-81 for the full factorial.

14-84. Construct a 28 4
IV

−  design in 16 runs. What are the alias 

relationships in this design?

14-85. Construct a 25 2
III

−  design in eight runs. What are the 

alias relationships in this design?

14-86. An article in the Journal of Quality Technology (1985, 

Vol. 17, pp. 198–206) described the use of a replicated frac-

tional factorial to investigate the effect of five factors on the 

free height of leaf springs used in an automotive application. 

The factors are A = furnace temperature, B = heating time,  

C = transfer time, D = hold down time, and E = quench oil tem-

perature. The data are shown in the following table.

(a) What is the generator for this fraction? Write out the alias 

structure.

(b) Analyze the data. What factors influence mean free height?

(c) Calculate the range of free height for each run. Is there any 

indication that any of these factors affect variability in free 

height?

(d) Analyze the residuals from this experiment and comment 

on your findings.

A B C D E Free Height

− − − − − 7.78 7.78 7.81

+ − − + − 8.15 8.18 7.88

− + − + − 7.50 7.56 7.50

+ + − − − 7.59 7.56 7.75

− − + + − 7.54 8.00 7.88

+ − + − − 7.69 8.09 8.06

− + + − − 7.56 7.52 7.44

+ + + + − 7.56 7.81 7.69

− − − − + 7.50 7.56 7.50

+ − − + + 7.88 7.88 7.44

− + − + + 7.50 7.56 7.50

+ + − − + 7.63 7.75 7.56

− − + + + 7.32 7.44 7.44

+ − + − + 7.56 7.69 7.62

− + + − + 7.18 7.18 7.25

+ + + + + 7.81 7.50 7.59

14-87. An article in Rubber Chemistry and Technology (Vol. 

47, 1974, pp. 825–836) described an experiment to study the 

effect of several variables on the Mooney viscosity of rubber, 

including silica filler (parts per hundred) and oil filler (parts per 

hundred). Data typical of that reported in this experiment are 

reported in the following table where

x
silica oil

1 2

60

15

21

15
= − = −

, x

(a) What type of experimental design has been used?

(b) Analyze the data and draw appropriate conclusions.

Coded levels

x1 x2 y
–1 –1 13.71

1 –1 14.15

–1  1 12.87

1  1 13.53

–1 –1 13.90

1 –1 14.88

–1  1 12.25

–1  1 13.35

14-88.  An article in Tropical Science [“Proximate Compo-

sition of the Seeds of Acacia Nilotica var Adansonti (Bagaruwa) 

and Extraction of Its Protein” (1992, Vol. 32(3), pp. 263–268)] 

reported on research extracting and concentrating the proteins 

of the bagaruwa seeds in livestock feeding in Nigeria to elimi-

nate the toxic substances from the seeds. The following are the 

effects of extraction time and flour to solvent ratio on protein 

extractability of the bagaruwa seeds in distilled water:

Flour: Solvent  
Ratio (w/v) (%)

Percentage of Protein  
Extracted at Time (min)

30 60 90 120
 3 30.5 45.7 30.5 31.0

36.9 44.3 29.5 22.1

 7 32.9 42.4 28.2 23.5

37.5 40.9 27.3 34.1

11 29.0 39.5 29.0 29.0

32.7 43.6 30.5 28.4

All values are means of three determinations.

(a) Test the appropriate hypotheses and draw conclusions 

using the analysis of variance with α = . .0 5

(b) Graphically analyze the interaction.

(c) Analyze the residuals from this experiment.

14-89.  An article in Plant Disease [“Effect of Nitrogen 

and Potassium Fertilizer Rates on Severity of Xanthomonas 
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Blight of Syngonium Podophyllum” (1989, Vol. 73(12), pp. 

972–975)] showed the effect of the variable nitrogen and potas-

sium rates on the growth of “White Butterfly” and the mean 

percentage of disease. Data representative of that collected in 

this experiment is provided in the following table.

Nitrogen  
(mg/pot/wk)

Potassium (mg/pot/wk)

30 90 120
50 61.0  61.3 45.5  42.5 59.5  58.2

150 54.5  55.9 53.5  51.9 34.0  35.9

250 42.7  40.4 36.5  37.4 32.5  33.8

(a) State the appropriate hypotheses.

(b) Use the analysis of variance to test these hypotheses with 

α = . .0 05

(c) Graphically analyze the residuals from this experiment.

(d) Estimate the appropriate variance components.

14-90.  An article in Biotechnology Progress (2001, Vol. 17, 

pp. 366–368) reported on an experiment to investigate and opti-

mize the operating conditions of the nisin extraction in aqueous 

two-phase systems (ATPS). A 22 full factorial design with center 

points was used to verify the most significant factors affecting 

the nisin recovery. The factor x1 was the concentration (% w/w) 

of PEG 4000 and x2 was the concentration (% w/w) of Na
2
SO

4
. 

See the following table for the range and levels of the variables 

investigated in this study. Nisin extraction is a ratio representing 

the concentration of nisin, and this was the response y.

Trial x1 x2 y
1 13 11  62.874

2 15 11  76.133

3 13 13  87.467

4 15 13 102.324

5 14 12  76.187

6 14 12  77.523

7 14 12  76.782

8 14 12  77.438

9 14 12  78.742

(a) Compute an ANOVA table for the effects and test for cur-

vature with α = . .0 05  Is curvature important in this region 

of the factors?

(b) Calculate residuals from the linear model and test for ade-

quacy of your model.

(c) In a new region of factor space, a central composite design 

(CCD) was used to perform second-order optimization. 

The results are shown in the following table. Fit a second-

order model to this data and make conclusions.

Trial

Coded Uncoded

yx1 x2 x1 x2

 1 –1 –1 15 14 102.015

 2 1 –1 16 14 106.868

 3 –1 1 15 16 108.13

 4 1 1 16 16 110.176

 5 –1.414 0 14.793 15 105.236

 6 1.414 0 16.207 15 110.289

 7 0 –1.414 15.5 13.586 103.999

 8 0 1.414 15.5 16.414 110.171

 9 0 0 15.5 15 108.044

10 0 0 15.5 15 109.098

11 0 0 15.5 15 107.824

12 0 0 15.5 15 108.978

13 0 0 15.5 15 109.169

14-91. An article in the Journal of Applied Electrochemistry 

(May 2008, Vol. 38(5), pp. 583–590) presented a 27–3 fractional 

factorial design to perform optimization of polybenzimidazole-

based membrane electrode assemblies for H
2
/O

2
 fuel cells. The 

design and data are shown in the following table.

Runs A B C D E F G Current Density 
(CD mA cm2)

1 −1 −1 −1 −1 −1 −1 −1 160

2 +1 −1 −1 −1 +1 +1 +1 20

3 −1 +1 −1 −1 +1 +1 −1 80

4 +1 +1 −1 −1 −1 −1 +1 317

5 −1 −1 +1 −1 +1 −1 +1 19

6 +1 −1 +1 −1 −1 +1 −1 4

7 −1 +1 +1 −1 −1 +1 +1 20

8 +1 +1 +1 −1 +1 −1 −1 88

(continued )
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The factors and levels are shown in the following table.

Factor -1 +1
A Amount of binder in the 

catalyst layer
0.2 mg cm2 1 mg cm2

B Electrocatalyst loading 0.1 mg cm2 1 mg cm2

C Amount of carbon in the 
gas diffusion layer

2 mg cm2 4.5 mg cm2

D Hot compaction time 1 min 10 min

E Compaction temperature 100°C 150°C

F Hot compaction load 0.04 ton cm2 0.2 ton cm2

G Amount of PTFE in the 
gas diffusion layer

0.1 mg cm2 1 mg cm2

(a) Write down the alias relationships.

(b) Estimate the main effects.

(c) Prepare a normal probability plot for the effects and inter-

pret the results.

(d) Calculate the sum of squares for the alias set that con-

tains the ABG interaction from the corresponding effect 

estimate.

14-92. An article in Biotechnology Progress (December 2002, 

Vol. 18(6), pp. 1170–1175) presented a 27–3 fractional factorial 

to evaluate factors promoting astaxanthin production. The data 

are shown in the following table.

Runs A B C D E F G Weight Content 
(mg/g)

Cellular Content 
(pg/cell)

1 –1 –1 –1 1 1 1 –1  4.2 10.8

2 1 –1 –1 –1 –1 1 1  4.4 24.9

3 –1 1 –1 –1 1 –1 1  7.8 27.3

4 1 1 –1 1 –1 –1 –1 14.9 36.3

5 –1 –1 1 1 –1 –1 1 25.3 112.6

6 1 –1 1 –1 1 –1 –1 26.7 159.3

7 –1 1 1 –1 –1 1 –1 23.9 145.2

8 1 1 1 1 1 1 1 21.9 243.2

9 1 1 1 –1 –1 –1 1 24.3 72.1

10 –1 1 1 1 1 –1 –1 20.5 112.2

11 1 –1 1 1 –1 1 –1 10.8 22.5

12 –1 –1 1 –1 1 1 1 20.8 149.7

13 1 1 –1 –1 1 1 –1 13.5 140.1

14 –1 1 –1 1 –1 1 1 10.3 47.3

15 1 –1 –1 1 1 –1 1 23.0 153.2

16 –1 –1 –1 –1 –1 –1 –1 12.1 35.2

Runs A B C D E F G Current Density 
(CD mA cm2)

 9 −1 −1 −1 +1 −1 +1 +1 1100

10 +1 −1 −1 +1 +1 −1 −1 12

11 −1 +1 −1 +1 +1 −1 +1 552

12 +1 +1 −1 +1 −1 +1 −1 880

13 −1 −1 +1 +1 +1 +1 −1 16

14 +1 −1 +1 +1 −1 −1 +1 20

15 −1 +1 +1 +1 −1 −1 −1 8

16 +1 +1 +1 +1 +1 +1 +1 15
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The factors and levels are shown in the following table.

Factor -1 +1
A Nitrogen concentration (mM) 4.06 0

B Phosphorus concentration (mM) 0.21 0

C Photon flux density (μE m–2 s–2) 100 500

D Magnesium concentration (mM) 1 0

E Acetate concentration (mM) 0 15

F Ferrous concentration (mM) 0 0.45

G NaCl concentration (mM) OHM 25

OHM: Optimal Haematococcus Medium

(a) Write down the complete defining relation and the aliases 

from the design.

(b) Estimate the main effects.

(c) Plot the effect estimates on normal probability paper and 

interpret the results.

14-93 The rework time required for a machine was found to 

depend on the speed at which the machine was run (A), the 

lubricant used while working (B), and the hardness of the metal 

used in the machine (C). Two levels of each factor were chosen 

and a single replicate of a 23 experiment was run. The rework 

time data (in hours) are shown in the following table.

Treatment 
Combination

Time 
(in hours)

(1) 27

a 34

b 38

ab 59

c 44

ac 40

bc 63

abc 37

(a) These treatments cannot all be run under the same conditions. 

Set up a design to run these observations in two blocks of four 

observations each, with ABC confounded with blocks.

(b) Analyze the data.

14-94. Consider the following results from a two-factor 

experiment with two levels for factor A and three levels for 

factor B. Each treatment has three replicates.

A B Mean StDev

1 1 21.33333 6.027714

1 2 20 7.549834

1 3 32.66667 3.511885

2 1 31 6.244998

2 2 33 6.557439

2 3 23 10

(a) Calculate the sum of squares for each factor and the 

interaction.

(b) Calculate the sum of squares total and error.

(c) Complete an ANOVA table with F-statistics.

14-95. Consider the following ANOVA table from a two-fac-

tor factorial experiment.

Two-way ANOVA: y Versus A, B

Source DF SS MS F P

A 3 1213770 404590 ? 0.341

B 2 ? 17335441 58.30 0.000

Error ? 1784195 ?

Total 11 37668847

(a) How many levels of each factor were used in the experiment?

(b) How many replicates were used?

(c) What assumption is made in order to obtain an estimate 

of error?

(d) Calculate the missing entries (denoted with “?”) in the 

ANOVA table.

14-96. An article in Process Biochemistry (Dec. 1996, Vol. 

31(8), pp. 773–785) presented a 27–3 fractional factorial to per-

form optimization of manganese dioxide bioleaching media. 

The data are shown in the following table.

Runs A B C D E F G

Manganese
Extraction
Yield (%)

1 –1 –1 –1 –1 –1 –1 –1 99.0

2 1 –1 –1 –1 1 –1 1 97.4

3 –1 1 –1 –1 1 1 1 97.7

4 1 1 –1 –1 –1 1 –1 90.0

5 –1 –1 1 –1 1 1 –1 100.0

6 1 –1 1 –1 –1 1 1 98.0

7 –1 1 1 –1 –1 –1 1 90.0

(continued )
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The factors and levels are shown in the following table.

Factor −1 +1

A Mineral concentration (%) 10 20

B Molasses (g/liter) 100 200

C NH
4
NO

3
 (g/liter) 1.25 2.50

D KH
2
PO

4
 (g/liter) 0.75 1.50

E MgSO
4
 (g/liter) 0.5 1.00

F Yeast extract (g/liter) 0.20 0.50

G NaHCO
3
 (g/liter) 2.00 4.00

(a) Write down the complete defining relation and the aliases 

from the design.

(b) Estimate the main effects.

(c) Plot the effect estimates on normal probability paper and 

interpret the results

(d) Conduct a residual analysis.

14-97. An article in European Food Research and Technology 

[“Factorial Design Optimisation of Grape (Vitis vinifera) Seed 

Polyphenol Extraction” (2009, Vol. 229(5), pp. 731–742)] used 

a central composite design to study the effects of basic factors 

(time, ethanol, and pH) on the extractability of polyphenolic 

phytochemicals from grape seeds. Total ployphenol (TP in mg 

gallic acid equivalents/100 g dry weight) from three types of 

grape seeds (Savatiano, Moschofilero, and Agiorgitiko) were 

recorded. The data follow.  

Run Ethanol (%) pH Time (H) TP Moschofilero Savatiano Agiorgitiko

1 40 2 1 13,320 13,127 8,673  

2 40 2 5 13,596 8,925 4,370  

3 40 6 1 10,714 12,047 8,049  

4 40 6 5 10,730 11,299 5,315  

5 60 2 1 12,149 9,700 9,384  

6 60 2 5 10,910 7,107 8,290  

7 60 6 1 11,620 8,755 7,905  

8 60 6 5 9,757 9,792 9,347  

9 40 4 3 13,593 9,748 7,253  

10 60 4 3 13,459 8,727 8,390  

11 50 2 3 11,980 7,164 7,611  

12 50 6 3 10,338 5,928 7,292  

13 50 4 1 13,992 12,200 8,305  

14 50 4 5 13,450 10,552 8,380  

15 50 4 3 11,745 9,284 8,792  

16 50 4 3 12,267 9,084 8,302 

 8 1 1 1 –1 1 –1 –1 93.5

 9 –1 –1 –1 1 –1 1 1 100.0

10 1 –1 –1 1 1 1 –1 98.6

11 –1 1 –1 1 1 –1 –1 97.1

12 1 1 –1 1 –1 –1 1 92.4

13 –1 –1 1 1 1 –1 1 93.0

14 1 –1 1 1 –1 –1 –1 95.0

15 –1 1 1 1 –1 1 –1 97.0

16 1 1 1 1 1 1 1 98.0

(a) Build a second-order model for each seed type and com-

pare the models. 

(b) Comment on the importance of any interaction terms or 

second-order terms in the models from part (a). 

(c) Analyze the residuals from each model. 

14-98. Consider the data in Exercise 14-97. Use only the first 

eight rows of data from the 23 factorial design and assume that 

the experiment was conducted in blocks based on seed type. 

(a) Analyze the factorial effects and comment on which effects 

are important. 
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(b) Develop a regression model to predict the response in 

terms of the actual factor levels. 

(c) Does a residual analysis indicate any problems? 

14-99. Graphically study the assumption of no interactions 

between blocks and treatments in the previous exercise.

14-100. An article in Journal of Applied Microbiology [“Use 

of Response Surface Methodology to Optimize Protease 

Synthesis by a Novel Strain of Bacillus sp. Isolated from Portu-

guese Sheep Wool” (2012, Vol. 113(1), pp. 36-43)] described a 

fractional factorial design with three center points to study six 

factors (yeast extract, peptone, inoculum concentration, agita-

tion, temperature, and pH) for protease activity. Response units 

were proteolytic activity per ml (U/ml). The data follow. 

Run 
Yeast  
(g/L)

Peptone  
(g/L)

Inoculum  
(vol.%)

Agitation  
(rpm)

Temperature 
 (�C) pH 

Protease Activity  
(U/ml)

 1  5 2 1  0 34 6 29.81  

 2 10 2 1  0 34 8 15.52  

 3  5 4 1  0 34 8 18.23  

 4 10 4 1  0 34 6 27.25  

 5  5 2 3  0 34 8 25.81  

 6 10 2 3  0 34 6 37.21  

 7  5 4 3  0 34 6 22.75  

 8 10 4 3  0 34 8  8.01  

 9  5 2 1 100 34 8 26.01  

10 10 2 1 100 34 6 37.21  

11  5 4 1 100 34 6 26.73  

12 10 4 1 100 34 8  7.4  

13  5 2 3 100 34 6 36.97  

14 10 2 3 100 34 8 16.24  

15  5 4 3 100 34 8 18.15  

16 10 4 3 100 34 6 25.3  

17  5 2 1  0 40 8 32.6  

18 10 2 1  0 40 6 47.33  

19  5 4 1  0 40 6 37.33  

20 10 4 1  0 40 8 12.32  

21  5 2 3  0 40 6 37.7  

22 10 2 3  0 40 8 19.01  

23  5 4 3  0 40 8 36.24  

24 10 4 3  0 40 6 35.88  

25  5 2 1 100 40 6 39.94  

26 10 2 1 100 40 8 20.34  

27  5 4 1 100 40 8 38.19  

28 10 4 1 100 40 6 32.72  

29  5 2 3 100 40 8 52.85  

30 10 2 3 100 40 6 54.61  

31  5 4 3 100 40 6 41.09  

32 10 4 3 100 40 8 21.34  

33   7.5 3 2  50 37 7 25.1  

34   7.5 3 2  50 37 7 25.5  

35   7.5 3 2  50 37 7 25.3 
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Mind-Expanding Exercises

14-101. Consider an unreplicated 2k factorial, and suppose 

that one of the treatment combinations is missing. One logi-

cal approach to this problem is to estimate the missing value 

with a number that makes the highest order interaction esti-

mate zero. Apply this technique to the data in Example 

14-5, assuming that ab is missing. Compare the results of 

the analysis of the application of these data with the results 

in Example 14-5.

14-102. What blocking scheme would you recommend if 

it were necessary to run a 24 design in four blocks of four 

runs each?

14-103. Consider a 22 design in two blocks with AB con-

founded with blocks. Prove algebraically that SS
AB

 = SS
Blocks

.

14-104. Consider a 23 design. Suppose that the largest 

number of runs that can be made in one block is four, but 

you can afford to perform a total of 32 observations.

(a) Suggest a blocking scheme will provides some informa-

tion on all interactions.

(b) Show an outline (source of variability, degrees of 

freedom only) for the analysis of variance for this 

design.

14-105. Construct a 25–1 design. Suppose that it is necessary 

to run this design in two blocks of eight runs each. Show how 

this can be done by confounding a two-factor interaction (and 

its aliased three-factor interaction) with blocks.

14-106. Construct a 27 2
IV

−  design. Show how this design 

may be confounded in four blocks of eight runs each. Are 

any two-factor interactions confounded with blocks?

14-107. Construct a 27 3
IV

−  design. Show how this design 

can be confounded in two blocks of eight runs each without 

losing information on any of the two-factor interactions.

14-108. Set up a 27 4
III

−  design using D = AB, E = AC, F = 

BC, and G = ABC as the design generators. Ignore all inter-

actions above two factors.

(a) Verify that each main effect is aliased with three two-

factor interactions.

(b) Suppose that a second 27 4
III

−  design with generators D = 

–AB, E = –AC, F = –BC, and G = ABC is run. What are 

the aliases of the main effects in this design?

(c) What factors may be estimated if the two sets of factor 

effect estimates above are combined?

14-109. Consider the square root of the sum of squares 

for curvature and divide by the square root of mean square 

error. Explain why the statistic that results has a t distribu-

tion and why it can be used to conduct a t test for curvature 

that is equivalent to the F test in the ANOVA.

Important Terms and Concepts

Aliases 

Analysis of variance 

(ANOVA)

Blocking and nuisance factors

Center points

Central composite design

Confounding

Contrast

Defining relation

Design matrix

Factorial experiment

Fractional  

factorial design

Generator

Interaction

Main effect

Normal probability plot of 

factor effects

Optimization experiment

Orthogonal design

Projection property

Regression model

Residual analysis

Resolution

Response surface

Screening experiment

Steepest ascent (or descent)

2k factorial design  

(Two-level factorial 

design)
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Bowl of beads
The quality guru W. Edwards Deming conducted a simple experiment in his seminars with a 

bowl of beads. Many were colored white but a percentage of red beads was randomly mixed 

in the bowl. A participant from the seminar was provided a paddle made with indentations so 

that 50 beads at a time could be scooped from the bowl. The participant was allowed to use 

only the paddle and instructed to scoop only white beads (repeated multiple times with beads 

replaced). The red beads were considered to be defectives. Of course, this was difficult to do, 

and each scoop resulted in a count of red beads. Deming plotted the fraction of red beads from 

each scoop and used the results to make several points. As was clear from the scenario, this 

process was beyond the participant’s ability to make simple improvements. The process needed 

to be changed (reduce the number of red beads), which is the responsibility of management. 

Furthermore, many business processes have this type of characteristic, and it is important to 

learn from the data whether the variability is common, intrinsic to the process, or is the result 

of some special cause. This distinction is important for the type of process control or improve-

ments to be applied. Refer to the example of control adjustments in Chapter 1. Control charts are 

primary tools to understand process variability, and that is main topic of this chapter.

Learning objectives

After careful study of this chapter, you should be able to do the following:

1. Understand the role of statistical tools in quality improvement

2. Understand the different types of variability, rational subgroups, and use of a control chart to detect 
assignable causes

3. Understand the general form of a Shewhart control chart and how to apply zone rules (such as the 
Western Electric rules) and pattern analysis to detect assignable causes

4. Construct and interpret control charts for variables such as X , R, S, and individuals charts

5. Construct and interpret control charts for attributes such as P and U charts

6. Calculate and interpret process capability ratios

7. Calculate the ARL performance for a Shewhart control chart

8. Construct and interpret a cumulative sum and exponentially weighted moving-average control chart

9. Use other statistical process control problem-solving tools

15-1 Quality Improvement and Statistics
The quality of products and services is a major decision factor in most businesses today. 

Regardless of whether the consumer is an individual, a corporation, a military defense pro-

gram, or a retail store, a consumer making purchase decisions is likely to consider quality 

of equal importance to cost and schedule. Consequently, quality improvement is a major 

concern to many U.S. corporations.

Quality means fitness for use. For example, we purchase automobiles that we expect to be 

free of manufacturing defects and that should provide reliable and economical transportation, a 

retailer buys finished goods with the expectation that they are properly packaged and arranged 

for easy storage and display, or a manufacturer buys raw material and expects to process it with 

no rework or scrap. In other words, all customers expect that the products and services they buy 

meet their requirements. Those requirements define fitness for use.

Quality or fitness for use is determined through the interaction of quality of design and 

quality of conformance. By quality of design, we mean the different grades or levels of per-

formance, reliability, serviceability, and function that are the result of deliberate engineering 
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and management decisions. By quality of conformance, we mean the systematic reduction of 
variability and elimination of defects until every unit produced is identical and defect free.

Some confusion exists in our society about quality improvement; some people still 

think that it means gold-plating a product or spending more money to develop a product or 

process. This thinking is wrong. Quality improvement means better quality of design 

through improved knowledge of customers’ requirements and the systematic elimination 
of waste. Examples of waste include scrap and rework in manufacturing, inspection and 

testing, errors on documents (such as engineering drawings, checks, purchase orders, and 

plans), customer complaint hotlines, warranty costs, and the time required to do things over 

again that could have been done right the first time. A successful quality-improvement effort 

can eliminate much of this waste and lead to lower costs, higher productivity, increased 

customer satisfaction, increased business reputation, higher market share, and ultimately 

higher profits for the company.

Statistical methods play a vital role in quality improvement. Some applications are 

outlined here:

1. In product design and development, statistical methods, including designed experiments, 

can be used to compare different materials, components, or ingredients, and to help deter-

mine both system and component tolerances. This application can significantly lower 

development costs and reduce development time.

2. Statistical methods can be used to determine the capability of a manufacturing process. 

Statistical process control can be used to systematically improve a process by reducing 

variability.

3. Experimental design methods can be used to investigate improvements in the process. 

These improvements can lead to higher yields and lower manufacturing costs.

4. Life testing provides reliability and other performance data about the product. This can 

lead to new and improved designs and products that have longer useful lives and lower 

operating and maintenance costs.

5. Regression methods are often used to determine key process indicators that link with 

customer satisfaction. This enables organizations to focus on the most important process 

measurements.

Some of these applications have been illustrated in earlier chapters of this book. It is essen-

tial that engineers, scientists, and managers have an in-depth understanding of these statistical 

tools in any industry or business that wants to be a high-quality, low-cost producer. In this 

chapter, we provide an introduction to the basic methods of statistical quality control that, 

along with experimental design, form the basis of a successful quality-improvement effort.

15-1.1 STATISTICAL QUALITY CONTROL

This chapter is about statistical quality control, a collection of tools that are essential in 

quality-improvement activities. The field of statistical quality control can be broadly defined 

as the use of those statistical and engineering methods in measuring, monitoring, controlling, 

and improving quality. Statistical quality control is a field that dates back to the 1920s. Dr. 

Walter A. Shewhart of Bell Telephone Laboratories was one of the early pioneers of the field. 

In 1924, he wrote a memorandum showing a modern control chart, one of the basic tools 

of statistical process control. Harold F. Dodge and Harry G. Romig, two other Bell System 

employees, provided much of the leadership in the development of statistically based sam-

pling and inspection methods. The work of these three men forms much of the basis of the 

modern field of statistical quality control. The widespread introduction of these methods to 

U.S. industry occurred during World War II. Dr. W. Edwards Deming and Dr. Joseph M. Juran 

were instrumental in spreading statistical quality-control methods since World War II.
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The Japanese have been particularly successful in deploying statistical quality-control 

methods and have used such methods to gain significant advantage over their competitors. In 

the 1970s, U.S. industry suffered extensively from Japanese (and other foreign) competition; 

that has led, in turn, to renewed interest in statistical quality-control methods in the United 

States. Much of this interest focuses on statistical process control and experimental design.

Many U.S. companies have implemented these methods in their manufacturing, engineering, 

and other business organizations.

15-1.2 STATISTICAL PROCESS CONTROL

It is impractical to inspect quality into a product; the product must be built right the first time. 

The manufacturing process must therefore be stable or repeatable and capable of operating 

with little variability around the target or nominal dimension. Online statistical process con-

trol is a powerful tool for achieving process stability and improving capability through the 

reduction of variability.

It is customary to think of statistical process control (SPC) as a set of problem-solving 
tools that may be applied to any process. The major tools of SPC* are

1. Histogram

2. Pareto chart

3. Cause-and-effect diagram

4. Defect-concentration diagram

5. Control chart

6. Scatter diagram

7. Check sheet

Although these tools are an important part of SPC, they compose only the technical aspect of 

the subject. An equally important element of SPC is attitude—the desire of all individuals in 

the organization for continuous improvement in quality and productivity through the system-

atic reduction of variability. The control chart is the most powerful of the SPC tools.

15-2 Introduction to Control Charts

15-2.1 BASIC PRINCIPLES

In any production process, regardless of how well-designed or carefully maintained it is, 

a certain amount of inherent or natural variability always exists. This natural variability or 

“background noise” is the cumulative effect of many small, essentially unavoidable causes. 

When the background noise in a process is relatively small, we usually consider it an accept-

able level of process performance. In the framework of statistical quality control, this natural 

variability is often called a “stable system of chance causes.” A process that is operating with 

only chance causes of variation present is said to be in statistical control. In other words, the 

chance causes are an inherent part of the process.

Other kinds of variability may occasionally be present in the output of a process. This vari-

ability in key quality characteristics usually arises from three sources: improperly adjusted 

machines, operator errors, or defective raw materials. Such variability is generally large when 

compared to the background noise, and it usually represents an unacceptable level of process 

performance. We refer to these sources of variability that are not part of the chance cause 

*Some prefer to include the experimental design methods discussed previously as part of the SPC tool kit. We did not 

do so because we think of SPC as an online approach to quality improvement using techniques founded on passive 

observation of the process, and design of experiments is an active approach in which deliberate changes are made to 

the process variables. As such, designed experiments are often referred to as offline quality control.
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pattern as assignable causes. A process that is operating in the presence of assignable causes 

is said to be out of control†.

Production processes often operate in the in-control state, producing acceptable product for 

relatively long periods of time. Occasionally, however, assignable causes occur, seemingly at 

random, resulting in a “shift” to an out-of-control state in which a large proportion of the pro-

cess output does not conform to requirements. A major objective of statistical process control 

is to quickly detect the occurrence of assignable causes or process shifts so that investigation 

of the process and corrective action can be undertaken before many nonconforming units are 

manufactured. The control chart is an online process-monitoring technique widely used for 

this purpose.

Recall the following from Chapter 1. Figure 1-11 illustrates that adjustments to common 

causes of variation increase the variation of a process whereas Fig. 1-12 illustrates that actions 

should be taken in response to assignable causes of variation. Control charts may also be 

used to estimate the parameters of a production process and, through this information, to 

determine the capability of a process to meet specifications. The control chart can also provide 

information that is useful in improving the process. Finally, remember that the eventual goal 

of statistical process control is the elimination of variability in the process. Although it may 

not be possible to eliminate variability completely, the control chart helps reduce it as much 

as possible.

A typical control chart is shown in Fig. 15-1, which is a graphical display of a quality 

characteristic that has been measured or computed from a sample versus the sample number 

or time. Often, the samples are selected at periodic intervals such as every few minutes or 

every hour. The chart contains a center line (CL) that represents the average value of the 

quality characteristic corresponding to the in-control state. (That is, only chance causes are 

present.) Two other horizontal lines, called the upper control limit (UCL) and the lower 
control limit (LCL), are also shown on the chart. These control limits are chosen so that if 

the process is in control, nearly all of the sample points fall between them. In general, as 

long as the points plot within the control limits, the process is assumed to be in control, and 

no action is necessary. However, a point that plots outside of the control limits is interpreted 

as evidence that the process is out of control, and investigation and corrective action are 

required to find and eliminate the assignable cause or causes responsible for this behavior. 

The sample points on the control chart are usually connected with straight-line segments so 

that it is easier to visualize how the sequence of points has evolved over time.

Even if all the points plot inside the control limits, if they behave in a systematic or non-

random manner, this is an indication that the process is out of control. For example, if 18 of 

the last 20 points plotted above the center line but below the upper control limit, and only 

two of these points plotted below the center line but above the lower control limit, we would 

†Dr. Walter A. Shewhart developed the terminology chance and assignable causes. Today some writers use common
cause instead of chance cause and special cause instead of assignable cause.

FIGURE 15-1
A typical control chart. Sample number or time
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be very suspicious that something was wrong. If the process is in control, all plotted points 

should have an essentially random pattern. Methods designed to find sequences or nonran-

dom patterns can be applied to control charts as an aid in detecting out-of-control conditions.  

A particular nonrandom pattern usually appears on a control chart for a reason, and if that 

reason can be found and eliminated, process performance can be improved.

A close connection exists between control charts and hypothesis testing. Essentially, the 

control chart is a series of tests of the hypothesis that the process is in a state of statistical con-

trol. A point plotting within the control limits is equivalent to failing to reject the hypothesis 

of statistical control, and a point plotting outside the control limits is equivalent to rejecting 

the hypothesis of statistical control.

We give a general model for a control chart. Let W  be a sample statistic that measures 

some quality characteristic of interest, and suppose that the mean of W is μ
W
 and the standard 

deviation of W  is σ
W
.* Then the center line, the upper control limit, and the lower control limit 

become

 

UCL k

CL

LCL k

W W

W

W W

= μ + σ
= μ
= μ − σ  

(15-1)

Control Chart Model

where k is the “distance” of the control limits from the center line expressed in standard devia-

tion units. A common choice is k = 3. Dr. Walter A. Shewhart first proposed this general theory 

of control charts, and those developed according to these principles are often called Shewhart 
control charts.

The control chart is a device for describing exactly what statistical control means; as such, 

it may be used in a variety of ways. In many applications, the control chart is used for online 

process monitoring. That is, sample data are collected and used to construct the control chart, 

and if the sample values of x  (say) fall within the control limits and do not exhibit any system-

atic pattern, we say the process is in control at the level indicated by the chart. Note that we 

may be interested here in determining both whether the past data came from a process that was 

in control and whether future samples from this process indicate statistical control.

The most important use of a control chart is to improve the process. We have found that, generally

1. Most processes do not operate in a state of statistical control.

2. Consequently, the routine and attentive use of control charts identifies assignable causes. 

If these causes can be eliminated from the process, variability is reduced and the process 

is improved.

This process-improvement activity using the control chart is illustrated in Fig. 15-2. Notice that:

3. The control chart only detects assignable causes. Management, operator, and engineering 

action usually are necessary to eliminate the assignable cause. An action plan for respond-

ing to control chart signals is vital.

In identifying and eliminating assignable causes, it is important to find the underlying root 
cause of the problem and to attack it. A cosmetic solution does not result in any real, long-

term process improvement. Developing an effective system for corrective action is an essential 

component of an effective SPC implementation.

We may also use the control chart as an estimating device. That is, from a control chart 

that exhibits statistical control, we may estimate certain process parameters, such as the mean, 

* Note that “sigma” refers to the standard deviation of the statistic plotted on the chart (i.e., σ
W
), not the standard 

deviation of the quality characteristic.
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standard deviation, and fraction nonconforming or fallout. These estimates may then be used 

to determine the capability of the process to produce acceptable products. Such process capa-
bility studies have considerable impact on many management decision problems that occur 

over the product cycle, including make-or-buy decisions, plant and process improvements that 

reduce process variability, and contractual agreements with customers or suppliers regarding 

product quality. Such estimates are discussed in a later section.

Control charts may be classified into two general types. Many quality characteristics can be 

measured and expressed as numbers on some continuous scale of measurement. In such cases, 

it is convenient to describe the quality characteristic with a measure of central tendency and 

a measure of variability. Control charts for central tendency and variability are collectively 

called variables control charts. The X chart is the most widely used chart for monitoring 

central tendency, and charts based on either the sample range or the sample standard devia-

tion are used to control process variability. Many quality characteristics are not measured on a 

continuous scale or even a quantitative scale. In these cases, we may judge each unit of prod-

uct as either conforming or nonconforming on the basis of whether or not it possesses certain 

attributes, or we may count the number of nonconformities (defects) appearing on a unit of 

product. Control charts for such quality characteristics are called attributes control charts.

Control charts have had a long history of use in industry. There are at least five reasons for 

their popularity:

1. Control charts are a proven technique for improving productivity. A successful control 

chart program reduces scrap and rework, which are the primary productivity killers in any 

operation. If you reduce scrap and rework, productivity increases, cost decreases, and pro-

duction capacity (measured in the number of good parts per hour) increases.

2. Control charts are effective in defect prevention. The control chart helps keep the pro-

cess in control, which is consistent with the “do it right the first time” philosophy. It is 

never cheaper to sort out the “good” units from the “bad” later on than it is to build them 

correctly initially. If you do not have effective process control, you are paying someone to 

make a nonconforming product.

3. Control charts prevent unnecessary process adjustments. A control chart can distin-

guish between background noise and abnormal variation; no other device, including a 

human operator, is as effective in making this distinction. If process operators adjust the 

process based on periodic tests unrelated to a control chart program, they often overreact 

to the background noise and make unneeded adjustments. These unnecessary adjustments 

can result in a deterioration of process performance. In other words, the control chart is 

consistent with the “if it isn’t broken, don’t fix it” philosophy.

OutputInput
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4. Control charts provide diagnostic information. Frequently, the pattern of points on the 

control chart contains information that is of diagnostic value to an experienced operator or 

engineer. This information allows the operator to implement a change in the process that 

improve its performance.

5. Control charts provide information about process capability. The control chart pro-

vides information about the value of important process parameters and their stability over 

time. This allows an estimate of process capability to be made. This information is of tre-

mendous use to product and process designers.

Control charts are among the most effective management control tools, and they are as 

important as cost controls and material controls. Modern computer technology has made it 

easy to implement control charts in any type of process because data collection and analysis 

can be performed in real time, online at the work center.

15-2.2 DESIGN OF A CONTROL CHART

To illustrate these ideas, we give a simplified example of a control chart. In manufacturing 

automobile engine piston rings, the inside diameter of the rings is a critical quality characteris-

tic. The process mean inside ring diameter is 74 millimeters, and it is known that the standard 

deviation of ring diameter is 0.01 millimeters. A control chart for average ring diameter is 

shown in Fig. 15-3. Every few minutes a random sample of five rings is taken, the average ring 

diameter of the sample (say x ) is computed, and x  is plotted on the chart. Because this control  

chart utilizes the sample mean X to monitor the process mean, it is usually called an X  

control chart. Note that all the points fall within the control limits, so the chart indicates that 

the process is in statistical control.

Consider how the control limits were determined. The process average is 74 millimeters, 

and the process standard deviation is σ = 0.01 millimeters. Now if samples of size n = 5 are 

taken, the standard deviation of the sample average X is

σ σ
X n

= = =0 01

5
0 0045

.
.

Therefore, if the process is in control with a mean diameter of 74 millimeters, by using the 

central limit theorem to assume that X is approximately normally distributed, we would expect 

approximately 100(1 – α)% of the sample mean diameters X to fall between 74 + zα/2
(0.0045) 

and 74 – zα/2
(0.0045). As discussed previously, we customarily choose the constant zα/2

 to be 3, 

so the upper and lower control limits become

UCL = + .( ) = .74 3 0 0045 74 0135

and

LCL = − .( ) = .74 3 0 0045 73 9865
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X  control chart for  
piston ring diameter.
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as shown on the control chart. These are the 3-sigma control limits referred to earlier. Note 

that the use of 3-sigma limits implies that α = 0.0027; that is, the probability that the point 

plots outside the control limits when the process is in control is 0.0027. The width of the con-

trol limits is inversely related to the sample size n for a given multiple of sigma. Choosing the 

control limits is equivalent to setting up the critical region for testing the hypotheses

H H0 174 74: : μ =  μ ≠
where σ = 0.01 is known. Essentially, the control chart tests this hypothesis repeatedly at 

different points in time.

In designing a control chart, we must specify both the sample size to use and the frequency 

of sampling. In general, larger samples make it easier to detect small shifts in the process. 

When choosing the sample size, we must keep in mind the size of the shift that we are trying to 

detect. If we are interested in detecting a relatively large process shift, we use smaller sample 

sizes than those that would be employed if the shift of interest were relatively small.

We must also determine the frequency of sampling. The most desirable situation from the of 

view of detecting shifts would be to take large samples very frequently; however, this is usu-

ally not economically feasible. The general problem is one of allocating sampling effort. That 

is, either we take small samples at short intervals or larger samples at longer intervals. Current 

industry practice tends to favor smaller, more frequent samples, particularly in high-volume 

manufacturing processes or when a great many types of assignable causes can occur. Further-

more, as automatic sensing and measurement technology develops, it is becoming possible to 

greatly increase frequencies. Ultimately, every unit can be tested as it is manufactured. This 

capability does not eliminate the need for control charts because the test system cannot prevent 

defects. The increased data expand the effectiveness of process control and improve quality.

When preliminary samples are used to construct limits for control charts, these limits are 

customarily treated as trial values. Therefore, the sample statistics should be plotted on the 

appropriate charts, and any points that exceed the control limits should be investigated. If 

assignable causes for these points are discovered, they should be eliminated and new limits 

for the control charts determined. In this way, the process may be eventually brought into sta-

tistical control and its inherent capabilities assessed. Other changes in process centering and 

dispersion may then be contemplated.

15-2.3 RATIONAL SUBGROUPS

A fundamental idea in the use of control charts is to collect sample data according to what 

Shewhart called the rational subgroup concept. Generally, this means that subgroups or 

samples should be selected so that to the extent possible, the variability of the observa-

tions within a subgroup should include all the chance or natural variability and exclude the 

assignable variability. Then, the control limits represent bounds for all the chance variabil-

ity, not the assignable variability. Consequently, assignable causes tend to generate points 

that are outside of the control limits, and chance variability tends to generate points that are 

within the control limits.

When control charts are applied to production processes, the time order of production is 

a logical basis for rational subgrouping. Even though time order is preserved, it is still pos-

sible to form subgroups erroneously. If some of the observations in the subgroup are taken 

at the end of one eight-hour shift and the remaining observations are taken at the start of the 

next eight-hour shift, any differences between shifts are handled as chance variability when, 

instead, it should be considered as assignable variability. This makes detecting differences 

between shifts more difficult. Still, in general, time order is frequently a good basis for form-

ing subgroups because it allows us to detect assignable causes that occur over time.

Two general approaches to constructing rational subgroups are used. In the first approach, 

each subgroup consists of units that were produced at the same time (or as closely together 

as possible). This approach is used when the primary purpose of the control chart is to detect 
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process shifts. It minimizes variability due to assignable causes within a sample, and it 

maximizes variability between samples if assignable causes are present. It also provides bet-

ter estimates of the standard deviation of the process in the case of variables control charts. 

This approach to rational subgrouping essentially gives a “snapshot” of the process at each 

point in time when a sample is collected.

In the second approach, each sample consists of units of product that are representative of 

all units that have been produced since the last sample was taken. Essentially, each subgroup 

is a random sample of all process output over the sampling interval. This method of rational 

subgrouping is often used when the control chart is employed to make decisions about the 

acceptance of all units of product that have been produced since the last sample. In fact, if the 

process shifts to an out-of-control state and then back in control again between samples, it is 

sometimes argued that the first method of rational subgrouping defined earlier is ineffective 

against these types of shifts, and so the second method must be used.

When the rational subgroup is a random sample of all units produced over the sampling 

interval, considerable care must be taken in interpreting the control charts. If the process mean 

drifts between several levels during the interval between samples, the range of observations 

within the sample may consequently be relatively large. It is the within-sample variability that 

determines the width of the control limits on an X chart, so this practice results in wider limits 

on the X chart. This makes it more difficult to detect shifts in the mean. In fact, we can often 

make any process appear to be in statistical control just by stretching out the interval between 

observations in the sample. It is also possible for shifts in the process average to cause points 

on a control chart for the range or standard deviation to plot out of control even though no shift 

in process variability has taken place.

Other bases for forming rational subgroups can be used. For example, suppose that a pro-

cess consists of several machines that pool their output into a common stream. If we sample 

from this common stream of output, it is very difficult to detect whether or not some of the 

machines are out of control. A logical approach to rational subgrouping here is to apply con-

trol chart techniques to the output for each individual machine. Sometimes this concept needs 

to be applied to different heads on the same machine, different workstations, different opera-

tors, and so forth.

The rational subgroup concept is very important. The proper selection of samples requires 

careful consideration of the process with the objective of obtaining as much useful informa-

tion as possible from the control chart analysis.

15-2.4 ANALYSIS OF PATTERNS ON CONTROL CHARTS

A control chart may indicate an out-of-control condition either when one or more points fall 

beyond the control limits, or when the plotted points exhibit some nonrandom pattern of 

behavior. For example, consider the X chart shown in Fig. 15-4. Although all 25 points fall 

within the control limits, the points do not indicate statistical control because their pattern is 

very nonrandom in appearance. Specifically, we note that 19 of the 25 points plot below the 

center line, but only 6 of them plot above. If the points are truly random, we should expect a 

more even distribution of points above and below the center line. We also observe that follow-

ing the fourth point, five points in a row increase in magnitude. This arrangement of points is 

called a run. Because the observations are increasing, we could call it a run up; similarly, a 

sequence of decreasing points is called a run down. This control chart has an unusually long 

run up (beginning with the 4th point) and an unusually long run down (beginning with the  

18th point).

In general, we define a run as a sequence of observations of the same type. In addition to 

runs up and runs down, we could define the types of observations as those above and below 

the center line, respectively, so two points in a row above the center line would be a run of 

length 2.
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A run of length 8 or more points has a very low probability of occurrence in a random 

sample of points. Consequently, any type of run of length 8 or more is often taken as a signal 

of an out-of-control condition. For example, 8 consecutive points on one side of the center line 

indicate that the process is out of control.

Although runs are an important measure of nonrandom behavior on a control chart, other 

types of patterns may also indicate an out-of-control condition. For example, consider the X 

chart in Fig. 15-5. Note that the plotted sample averages exhibit a cyclic behavior, yet they 

all fall within the control limits. Such a pattern may indicate a problem with the process, 

such as operator fatigue, raw material deliveries, and heat or stress buildup. The yield may be 

improved by eliminating or reducing the sources of variability causing this cyclic behavior 

(see Fig. 15-6). In Fig. 15-6, LSL and USL denote the lower and upper specification limits of 

the process, respectively. These limits represent bounds within which acceptable product must 

fall, and they are often based on customer requirements.

The problem is one of pattern recognition, that is, recognizing systematic or nonrandom 

patterns on the control chart and identifying the reason for this behavior. The ability to inter-

pret a particular pattern in terms of assignable causes requires experience and knowledge of 

the process. That is, we must not only know the statistical principles of control charts, but we 

must also have a good understanding of the process.

The Western Electric Handbook (1956) suggests a set of decision rules for detecting non-

random patterns on control charts. Specifically, the Western Electric rules conclude that the 

process is out of control if either

1. One point plots outside 3-sigma control limits.

2. Two of three consecutive points plot beyond a 2-sigma limit.
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3. Four of five consecutive points plot at a distance of 1 sigma or beyond from the center line.

4. Eight consecutive points plot on one side of the center line.

We have found these rules very effective in practice for enhancing the sensitivity of control 

charts. Rules 2 and 3 apply to one side of the center line at a time. That is, a point above the 

upper 2-sigma limit followed immediately by a point below the lower 2-sigma limit would not 

signal an out-of-control alarm.

Figure 15-7 shows an X control chart for the piston ring process with the 1-sigma, 2-sigma, 

and 3-sigma limits used in the Western Electric procedure. Notice that these inner limits 

(sometimes called warning limits) partition the control chart into three zones A, B, and C on 

each side of the center line. Consequently, the Western Electric rules are sometimes called the 

run rules for control charts. Notice that the last four points fall in zone B or beyond. Thus, 

because four of five consecutive points exceed the 1-sigma limit, the Western Electric proce-

dure concludes that the pattern is nonrandom and the process is out of control.

15-3 X  and R or S Control Charts
When dealing with a quality characteristic that can be expressed as a measurement, monitoring 

both the mean value of the quality characteristic and its variability is customary. Control over 

the average quality is exercised by the control chart for averages, usually called the X chart. 
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Process variability can be controlled by either a range chart (R chart) or a standard deviation 

chart (S chart), depending on how the population standard deviation is estimated.

Suppose that the process mean and standard deviation μ and σ are known and that we can 

assume that the quality characteristic has a normal distribution. Consider the X chart. As dis-

cussed previously, we can use μ as the center line for the control chart, and we can place the 

upper and lower 3-sigma limits at

 

UCL n

LCL n

CL

= μ + σ

= μ − σ
= μ

3

3

/

/

 (15-2)

An unbiased estimator of σ is

 σ̂ = R

d2

 (15-6)

where the constant d
2
 is tabulated for various sample sizes in Appendix Table XI.

Estimator of r from  
R Chart

When the parameters μ and σ are unknown, we usually estimate them on the basis of pre-

liminary samples taken when the process is thought to be in control. We recommend the use of 

at least 20 to 25 preliminary samples. Suppose that m preliminary samples are available, each 

of size n. Typically, n is 4, 5, or 6; these relatively small sample sizes are widely used and often 

arise from the construction of rational subgroups. Let the sample mean for the ith sample be 

Xi. Then we estimate the mean of the population, μ, by the grand mean

 μ̂ = =
=
∑X

m
Xi

i

m1

1

 (15-3)

Thus, we may take X as the center line on the X control chart.

We may estimate σ from either the standard deviation or the range of the observations 

within each sample. The sample size is relatively small, so there is little loss in efficiency 

in estimating σ from the sample ranges.

X  and R  Charts
The relationship between the range R of a sample from a normal population with known param-

eters and the standard deviation of that population is needed. Because R is a random variable, the 

quantity W = R / σ, called the relative range, is also a random variable. The mean and standard 

deviation of the distribution of W are called d
2
 and d

3
,
 
respectively. The values for d

2
 and d

3
 depend 

on the subgroup size n. They are computed numerically and available in tables or computer soft-

ware. Because R = σW,

 μ = σ σ = σR Rd d2 3  (15-4)

Let R
i
 be the range of the ith sample, and let

 R
m

Ri
i

m

=  
=
∑1

1

 (15-5)

be the average range. Then R is an estimator of μ
R
 and from Equation 15-4 we obtain the 

following.

Therefore, once we have computed the sample values x  and r , we may use as our upper and 

lower control limits for the X chart
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 UCL x
d n

r LCL x
d n

r= +  = −  3 3

2 2

  (15-7)

Define the constant

 A
d n

2

2

3=  (15-8)

Now, the X control chart may be defined as follows.

The center line and upper and lower control limits for an R chart are

  UCL D r CL r LCL D r= = =4 3  (15-12)

where r  is the sample average range, and the constants D
3
 and D

4
 are tabulated for 

various sample sizes in Appendix Table XI.

R Chart

The center line and upper and lower control limits for an X control chart are 

  UCL x A r CL x LCL x A r= + = = −2 2  (15-9)

where the constant A
2
 is tabulated for various sample sizes in Appendix Table XI.

X  Control Chart  
(from R)

The parameters of the R chart may also be easily determined. The center line is R. To deter-

mine the control limits, we need an estimate of σ
R
, the standard deviation of R. Once again, 

assuming that the process is in control, the distribution of the relative range, W, is useful. We 

may estimate σ
R
 from Equation 15-4 as

 ˆ ˆσ = σ =  R d d
R

d
3 3

2

 (15-10)

and the upper and lower control limits on the R chart are

 

UCL r
d

d
r

d

d
r

LCL r
d

d
r

d

d
r

= +  = +⎛
⎝⎜

⎞
⎠⎟

= −  = −⎛
⎝⎜

⎞
⎠⎟

3
1

3

3
1

3

3

2

3

2

3

2

3

2

 (15-11)

Setting D
3
 = 1 – 3d

3
/d

2
 and D

4
 = 1 + 3d

3 
/ d

2
 leads to the following definition.

The LCL for an R chart can be a negative number. In that case, it is customary to set LCL 

to zero. Because the points plotted on an R chart are non-negative, no points can fall below 

an LCL of zero. Also, we often study the R chart first because if the process variability is not 

constant over time, the control limits calculated for the X chart can be misleading.

X  and S  Charts
Rather than base control charts on ranges, a more modern approach is to calculate the stand-

ard deviation of each subgroup and plot these standard deviations to monitor the process  

standard deviation σ. This is called an S chart. When an S chart is used, it is common to use  

these standard deviations to develop control limits for the X chart. Typically, the sample size used 

for subgroups is small (fewer than 10) and in that case there is usually little difference in the X chart 

generated from ranges or standard deviations. However, because computer software is often used 

to implement control charts, S charts are quite common. Details to construct these charts follow.

Section 7-3 stated that S is a biased estimator of σ. That is, E(S) = c
4
σ where c

4
 is a constant 

that is near, but not equal to, 1. Furthermore, a calculation similar to the one used for E(S) can 

derive the standard deviation of the statistic S with the result σ −1 4
2c . Therefore, the center line 

and 3-sigma control limits for S are
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LCL c c CL c= σ − σ − = σ4 4
2

43 1 UCL c c= σ + σ −4 4
23 1  (15-13)

Assume that there are m preliminary samples available, each of size n, and let S
i
 denote the 

standard deviation of the ith sample. Defi ne

 S
m

Si
i

m

=
=
∑1

1

 (15-14)

Because E S c( ) = σ4 , we obtain the following.

An unbiased estimator of σ
    σ̂ = S c/ 4 (15-15)

where the constant c
4
 is tabulated for various sample sizes in Appendix Table XI.

Estimator of r from 
S Chart

When an S chart is used, the estimate for σ in Equation 15-15 is commonly used to calculate 

the control limits for an X chart. This produces the following control limits for an X chart.

 UCL x
s

c n
CL x LCL x

s

c n
= +  = = −  3 3

4 4

 (15-16)

X  Control Chart 
(from S )

 UCL s
s

c
c CL s LCL s

s

c
c= +  − = = −  −3 1 3 1

4

4
2

4

4
2  (15-17)

S Chart

A control chart for standard deviations follows.

Vane Opening A component part for a jet aircraft engine is manufactured by an investment 

casting process. The vane opening on this casting is an important functional parameter of the part. 

We illustrate the use of X, R, and S control charts to assess the statistical stability of this process. See Table 15-1 for 20 

samples of fi ve parts each. The values given in the table have been coded by using the last three digits of the dimension; 

that is, 31.6 indicates 0.50316 inch.

The quantities x = .33 3 and r = .5 8 appear at the foot of Table 15-1. The value of A
2
 for samples of size 5 is A

2
 = 

0.577 from Appendix Table XI. Then the trial control limits for the X chart are

x A r± = . ± .( ) .( ) = . ± .2 33 32 0 577 5 8 33 32 3 35

or

UCL LCL= . = .36 67 29 97

For the R chart, the trial control limits are

UCL D r

LCL D r

= = .( ) .( ) = .

= = ( ) .( ) =
4

3

2 115 5 8 12 27

0 5 8 0

The X and R control charts with these trial control limits are shown in Fig. 15-8. Notice that samples 6, 8, 11, and 

19 are out of control on the X chart and that sample 9 is out of control on the R chart. (These points are labeled with a 

“1” because they violate the fi rst Western Electric rule.)

Example 15-1

The LCL for an S chart can be a negative number; in that case, it is customary to set LCL
to zero. 
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 15-1 Vane-Opening Measurements

For the S chart, the value of c
4
 = 0.94. Therefore,

3
1

3 2 345

0 94
1 0 94 2 553

4

4
2 2s

c
c− =

.( )

.
− . = .

and the trial control limits are

UCL = 2.345 + 2.553 = 4.898

LCL = 2.345 – 2.553 = –0.208

The LCL is set to zero. If s  is used to determine the control limits for the X chart,

x
s

c n
± = . ±

.( )
.

= . ± .3
33 32

3 2 345

0 94 5
33 32 3 35

4

and this result is nearly the same as from r . The S chart is shown in Fig. 15-9. Because the control limits for the X chart 

calculated from s  are nearly the same as from r , the chart is not shown.

Suppose that all of these assignable causes can be traced to a defective tool in the wax-molding area. We should 

discard these fi ve samples and recompute the limits for the X and R charts. These new revised limits for the X chart are

UCL x A r= + = . + .( ) .( ) = .2 33 21 0 577 5 0 36 10

  LCL x A r= − = . − .( ) .( ) = .2 33 21 0 577 5 0 30 33

Sample Number x1 x2 x3 x4 x5 X r s

 1 33 29 31 32 33 31.6  4 1.67332

 2 33 31 35 37 31 33.4  6 2.60768

 3 35 37 33 34 36 35.0  4 1.58114

 4 30 31 33 34 33 32.2  4 1.64317

 5 33 34 35 33 34 33.8  2 0.83666

 6 38 37 39 40 38 38.4  3 1.14018

 7 30 31 32 34 31 31.6  4 1.51658

 8 29 39 38 39 39 36.8 10 4.38178

 9 28 33 35 36 43 35.0 15 5.43139

10 38 33 32 35 32 34.0  6 2.54951

11 28 30 28 32 31 29.8  4 1.78885

12 31 35 35 35 34 34.0  4 1.73205

13 27 32 34 35 37 33.0 10 3.80789

14 33 33 35 37 36 34.8  4 1.78885

15 35 37 32 35 39 35.6  7 2.60768

16 33 33 27 31 30 30.8  6 2.48998

17 35 34 34 30 32 33.0  5 2.00000

18 32 33 30 30 33 31.6  3 1.51658

19 25 27 34 27 28 28.2  9 3.42053

20 35 35 36 33 30 33.8  6 2.38747

x = .33 32 r = .5 8 s = .2 345
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and for the R chart,

UCL D r= = .( ) .( ) = .4 2 115 5 0 10 57

LCL D r= = ( ) .( ) =3 0 5 0 0

The revised control charts are shown in Fig. 15-10.

Practical Interpretation: Notice that we have treated the fi rst 20 preliminary samples as estimation data with which 

to establish control limits. These limits can now be used to judge the statistical control of future production. As each 

new sample becomes available, the values of x  and r should be computed and plotted on the control charts. It may be 

desirable to revise the limits periodically even if the process remains stable. The limits should always be revised when 

process improvements are made.
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a
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UCL = 4.899

LCL = 0.00

S = 2.345

FIGURE 15-9 The S control chart for vane opening.
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FIGURE 15-8 The X  and R control charts for vane opening.
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FIGURE 15-10 The X  and R control charts for vane opening, revised limits.
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CL = 33.21
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2

r

Revised UCL = 10.57

CL = 5.0

Estimation of limits

= not used in computing

   control limits

Estimation of limits

= not used in computing

   control limits

Computer Construction of X  and R Control Charts
Many computer programs construct X and R control charts. Figures 15-8 and 15-10 show charts 

similar to those produced by computer software for the vane-opening data. Software usually 

allow the user to select any multiple of sigma as the width of the control limits and use the West-

ern Electric rules to detect out-of-control points. The software also prepares a summary report as 

in Table 15-2 and excludes subgroups from the calculation of the control limits.

15-1.  Control charts for X and R are to be set up for an impor-

tant quality characteristic. The sample size is n = 5, and x and r are 

computed for each of 35 preliminary samples. The summary data are

(a) Calculate trial control limits for X  and R charts.

(b) Assuming that the process is in control, estimate the pro-

cess mean and standard deviation.

FOR SECTION 15-3Exercises
 Problem available in WileyPLUS at instructor’s discretion. 

 Tutoring problem available in WileyPLUS at instructor’s discretion.

15-2 Summary Report from Computer Software for the Vane-Opening Data

Test Results for Xbar Chart

TEST 1. One point more than 3.00 sigmas from center line.

Test Failed at points: 6 8 11 19

Test Results for R Chart

TEST 1. One point more than 3.00 sigmas from center line.

Test Failed at points: 9
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x ri
i

i
i

= =
= =
∑ ∑7805 1200

1

35

1

35

15-2.  Twenty-five samples of size 5 are drawn from a pro-

cess at one-hour intervals, and the following data are obtained:

x r si
i

i
i

i
i

= . = . = .
= = =
∑ ∑ ∑362 75 8 60 3 64

1

25

1

25

1

25

(a) Calculate trial control limits for X  and R charts.

(b) Repeat part (a) for X  and S charts.

15-3.  Control charts are to be constructed for samples of 

size n = 4, and x  and s are computed for each of 20 prelimi-

nary samples as follows:

x si
i

i
i

= = .
= =
∑ ∑4460 271 6

1

20

1

20

(a) Calculate trial control limits for X  and S charts.

(b) Assuming the process is in control, estimate the process 

mean and standard deviation.

15-4.  Samples of size n = 6 are collected from a pro-

cess every hour. After 20 samples have been collected, we 

calculate x = .20 0 and r d/ 2 1 4= . .
(a) Calculate trial control limits for X  and R charts.

(b) If s c/ 4 1 5= . , calculate trial control limits for X  and  

S charts.

15-5.  The level of cholesterol (in mg/dL) is an important 

index for human health. The sample size is n = 5. The following 

summary statistics are obtained from cholesterol measurements:

x , r , si
i

i
i

i
i

= .  = .  = .
= = =
∑ ∑ ∑140 03 13 63 5 10

1

30

1

30

1

30

    

(a) Find trial control limits for X  and R charts.

(b) Repeat part (a) for X  and S charts.

15-6. An X  control chart with three-sigma control limits has 

UCL = 48.75 and LCL = 42.71. Suppose that the process stand-

ard deviation is σ = 2.25. What subgroup size was used for the 

chart?

15-7.  An extrusion die is used to produce aluminum rods. 

The diameter of the rods is a critical quality characteristic. The 

following table shows x  and r values for 20 samples of five 

rods each. Specifications on the rods are 0.5035 ± 0.0010 inch. 

The values given are the last three digits of the measurement; 

that is, 34.2 is read as 0.50342.

Sample x r

 1 34.2  3

 2 31.6  4

 3 31.8  4

 4 33.4  5

 5 35.0  4

 6 32.1  2

 7 32.6  7

 8 33.8  9

 9 34.8 10

10 38.6  4

11 35.4  8

12 34.0  6

13 36.0  4

14 37.2  7

15 35.2  3

16 33.4 10

17 35.0  4

18 34.4  7

19 33.9  8

20 34.0  4

(a) Using all the data, find trial control limits for X  and R 

charts, construct the chart, and plot the data.

(b) Use the trial control limits from part (a) to identify out-

of-control points. If necessary, revise your control limits, 

assuming that any samples that plot outside the control lim-

its can be eliminated. Estimate σ.

15-8.  The copper content of a plating bath is measured 

three times per day, and the results are reported in ppm. The x  

and r values for 25 days are shown in the following table:

Day x r Day x r

 1 5.45 1.21 14 7.01 1.45

 2 5.39 0.95 15 5.83 1.37

 3 6.85 1.43 16 6.35 1.04

 4 6.74 1.29 17 6.05 0.83

 5 5.83 1.35 18 7.11 1.35

 6 7.22 0.88 19 7.32 1.09

 7 6.39 0.92 20 5.90 1.22

 8 6.50 1.13 21 5.50 0.98

 9 7.15 1.25 22 6.32 1.21

10 5.92 1.05 23 6.55 0.76

11 6.45 0.98 24 5.90 1.20

12 5.38 1.36 25 5.95 1.19

13 6.03 0.83

(a) Using all the data, find trial control limits for X  and R 

charts, construct the chart, and plot the data. Is the process 

in statistical control?

(b) If necessary, revise the control limits computed in part (a), 

assuming that any samples that plot outside the control lim-

its can be eliminated.

15-9.  The pull strength of a wire-bonded lead for an inte-

grated circuit is monitored. The following table provides data 

for 20 samples each of size 3.
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Sample 
Number x1 x2 x3

 1 15.4 15.6 15.3

 2 15.4 17.1 15.2

 3 16.1 16.1 13.5

 4 13.5 12.5 10.2

 5 18.3 16.1 17.0

 6 19.2 17.2 19.4

 7 14.1 12.4 11.7

 8 15.6 13.3 13.6

 9 13.9 14.9 15.5

10 18.7 21.2 20.1

11 15.3 13.1 13.7

12 16.6 18.0 18.0

13 17.0 15.2 18.1

14 16.3 16.5 17.7

15  8.4  7.7  8.4

16 11.1 13.8 11.9

17 16.5 17.1 18.5

18 18.0 14.1 15.9

19 17.8 17.3 12.0

20 11.5 10.8 11.2

(a) Use all the data to determine trial control limits for X  and 

R charts, construct the control limits, and plot the data.

(b) Use the control limits from part (a) to identify out-of-con-

trol points. If necessary, revise your control limits assum-

ing that any samples that plot outside of the control limits 

can be eliminated.

(c) Repeat parts (a) and (b) for X  and S charts.

15-10. The following data were considered in Quality Engi-
neering [“An SPC Case Study on Stabilizing Syringe Lengths” 

(1999–2000, Vol. 12(1))]. The syringe length is measured during 

a pharmaceutical manufacturing process. The following table 

provides data (in inches) for 20 samples each of size 5.

Sample x1 x2 x3 x4 x5

 1 4.960 4.946 4.950 4.956 4.958

 2 4.958 4.927 4.935 4.940 4.950

 3 4.971 4.929 4.965 4.952 4.938

 4 4.940 4.982 4.970 4.953 4.960

 5 4.964 4.950 4.953 4.962 4.956

 6 4.969 4.951 4.955 4.966 4.954

 7 4.960 4.944 4.957 4.948 4.951

 8 4.969 4.949 4.963 4.952 4.962

 9 4.984 4.928 4.960 4.943 4.955

10 4.970 4.934 4.961 4.940 4.965

11 4.975 4.959 4.962 4.971 4.968

12 4.945 4.977 4.950 4.969 4.954

13 4.976 4.964 4.970 4.968 4.972

14 4.970 4.954 4.964 4.959 4.968

15 4.982 4.962 4.968 4.975 4.963

16 4.961 4.943 4.950 4.949 4.957

17 4.980 4.970 4.975 4.978 4.977

18 4.975 4.968 4.971 4.969 4.972

19 4.977 4.966 4.969 4.973 4.970

20 4.975 4.967 4.969 4.972 4.972

(a) Using all the data, find trial control limits for X  and R 

charts, construct the chart, and plot the data. Is this process 

in statistical control?

(b) Use the trial control limits from part (a) to identify out-

of-control points. If necessary, revise your control limits 

assuming that any samples that plot outside the control lim-

its can be eliminated.

(c) Repeat parts (a) and (b) for X  and S charts.

15-11.  The thickness of a metal part is an important qual-

ity parameter. Data on thickness (in inches) are given in the 

following table, for 25 samples of five parts each.

Sample 
Number x1 x2 x3 x4 x5

 1 0.0629 0.0636 0.0640 0.0635 0.0640

 2 0.0630 0.0631 0.0622 0.0625 0.0627

 3 0.0628 0.0631 0.0633 0.0633 0.0630

 4 0.0634 0.0630 0.0631 0.0632 0.0633

 5 0.0619 0.0628 0.0630 0.0619 0.0625

 6 0.0613 0.0629 0.0634 0.0625 0.0628

 7 0.0630 0.0639 0.0625 0.0629 0.0627

 8 0.0628 0.0627 0.0622 0.0625 0.0627

 9 0.0623 0.0626 0.0633 0.0630 0.0624

10 0.0631 0.0631 0.0633 0.0631 0.0630

11 0.0635 0.0630 0.0638 0.0635 0.0633

12 0.0623 0.0630 0.0630 0.0627 0.0629

13 0.0635 0.0631 0.0630 0.0630 0.0630

14 0.0645 0.0640 0.0631 0.0640 0.0642

15 0.0619 0.0644 0.0632 0.0622 0.0635

16 0.0631 0.0627 0.0630 0.0628 0.0629

17 0.0616 0.0623 0.0631 0.0620 0.0625

18 0.0630 0.0630 0.0626 0.0629 0.0628

19 0.0636 0.0631 0.0629 0.0635 0.0634

20 0.0640 0.0635 0.0629 0.0635 0.0634

21 0.0628 0.0625 0.0616 0.0620 0.0623

22 0.0615 0.0625 0.0619 0.0619 0.0622

23 0.0630 0.0632 0.0630 0.0631 0.0630

24 0.0635 0.0629 0.0635 0.0631 0.0633

25 0.0623 0.0629 0.0630 0.0626 0.0628
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(a) Using all the data, find trial control limits for X  and R 
charts, construct the chart, and plot the data. Is the process 

in statistical control?

(b) Use the trial control limits from part (a) to identify out-

of-control points. If necessary, revise your control limits 

assuming that any samples that plot outside the control lim-

its can be eliminated.

(c) Repeat parts (a) and (b) for X  and S charts.

15-12. Apply the Western Electric Rules to the following X  

control chart. The warning limits are shown as dotted lines. 

Describe any rule violations.

Observation

2018161412108642

UCL=16

6

8

12

14

LCL=4

X=10
_

15-13. Apply the Western Electric Rules to the following 

control chart. The warning limits are shown as dotted lines. 

Describe any rule violations.

252321191715131197531

32.5

30.0

27.5

25.0

22.5

20.0

17.5

15.0

Observation

_
X = 22.98

UCL = 30.82

LCL = 15.15

28.21

17.76

25.60

20.37

15-14. Web traffic can be measured to help highlight security 

problems or indicate a potential lack of bandwidth. Data on Web 

traffic (in thousand hits) from http://en.wikipedia.org/wiki/Web_

traffic are given in the following table for 25 samples each of size 4.

Sample x1 x2 x3 x4

1 163.95 164.54 163.87 165.10

2 163.30 162.85 163.18 165.10

3 163.13 165.14 162.80 163.81

4 164.08 163.43 164.03 163.77

5 165.44 163.63 163.95 164.78

6 163.83 164.14 165.22 164.91

7 162.94 163.64 162.30 163.78

8 164.97 163.68 164.73 162.32

9 165.04 164.06 164.40 163.69

10 164.74 163.74 165.10 164.32

11 164.72 165.75 163.07 163.84

12 164.25 162.72 163.25 164.14

13 164.71 162.63 165.07 162.59

14 166.61 167.07 167.41 166.10

15 165.23 163.40 164.94 163.74

16 164.27 163.42 164.73 164.88

17 163.59 164.84 164.45 164.12

18 164.90 164.20 164.32 163.98

19 163.98 163.53 163.34 163.82

20 164.08 164.33 162.38 164.08

21 165.71 162.63 164.42 165.27

22 164.03 163.36 164.55 165.77

23 160.52 161.68 161.18 161.33

24 164.22 164.27 164.35 165.12

25 163.93 163.96 165.05 164.52

(a) Use all the data to determine trial control limits for X  and 

R charts, construct the chart, and plot the data.

(b) Use the trial control limits from part (a) to identify out-

of-control points. If necessary, revise your control limits, 

assuming that any samples that plot outside the control lim-

its can be eliminated.

15-15. Consider the data in Exercise 15-9. Calculate the sam-

ple standard deviation of all 60 measurements and compare this 

result to the estimate of σ obtained from your revised X  and R 
charts. Explain any differences.

15-16. Consider the data in Exercise 15-10. Calculate the 

sample standard deviation of all 100 measurements and com-

pare this result to the estimate of σ obtained from your revised 

X  and R charts. Explain any differences.

15-17. An X  control chart with 3-sigma control limits and sub-

group size n = 4 has control limits UCL = 48.75 and LCL = 40.55.

(a) Estimate the process standard deviation.

(b) Does the response to part (a) depend on whether r  or s  was 

used to construct the X  control chart?

15-18. An article in Quality & Safety in Health Care  

[“Statistical Process Control as a Tool for Research and 

Healthcare Improvement,” (2003)Vol. 12, pp. 458–464] con-

sidered a number of control charts in healthcare. The follow-

ing approximate data were used to construct X S−  charts for 

the turn around time (TAT) for complete blood counts (in 

minutes). The subgroup size is n = 3 per shift, and the mean 

standard deviation is 21. Construct the X  chart and comment 

on the control of the process. If necessary, assume that assign-

able causes can be found, eliminate suspect points, and revise 

the control limits.

t 1 2 3 4 5 6 7 8 9 10 11 12 13 14

TAT 51 73 28 52 65 49 51 50 25 39 40 30 49 31

Section 15-3/ X  and R or S Control Charts   683
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15-4 Control Charts for Individual Measurements
In many situations, the sample size used for process control is n = 1; that is, the sample con-

sists of an individual unit. Some examples of these situations follow:

1. Automated inspection and measurement technology is used, and every unit manufac-

tured is analyzed.

2. The production rate is very slow, and it is inconvenient to allow sample sizes of n > 1 to 

accumulate before being analyzed.

3. Repeat measurements on the process differ only because of laboratory or analysis error as 

in many chemical processes.

4. In process plants, such as papermaking, measurements on some parameters such as coating 

thickness across the roll differ very little and produce a standard deviation that is much too 

small if the objective is to control coating thickness along the roll.

In such situations, the individuals control chart (also called an X chart) is useful. The 

control chart for individuals uses the moving range of two successive observations to estimate 

the process variability. The moving range is defi ned as MR
i
 = ⎥Xi

 – X
i–1⎟ and for m observations 

the average moving range is m

MR
m

X Xi i
i

m

=
−

− −
=
∑1

1
1

2

An estimator of σ is

 σ̂ = =
.

MR

d

MR

2 1 128
 (15-18)

where the value for d2 corresponds to n = 2 because each moving range is the range between 

two consecutive observations. Note that there are only m – 1 moving ranges. It is also possible 

to establish a control chart on the moving range using D
3
 and D

4
 for n = 2. The parameters for 

these charts are defi ned as follows.

The center line and upper and lower control limits for a control chart for 

individuals are

 

UCL x
mr

d
x

mr

CL x

LCL x
mr

d
x

mr

= +  = +  
.

=

= −  = −  
.

3 3
1 128

3 3
1 1

2

2

__ __

__ __

228
 

(15-19)

and for a control chart for moving ranges

 

UCL D mr mr

CL mr

LCL D mr

= = .
=
= =

4

3

3 267

0

__ __

__

__

Individuals Control 
Chart

Note that LCL for this moving range chart is always zero because D
3
 = 0 for n = 2.  The pro-

cedure is illustrated in the following example.

Chemical Process Concentration Table 15-3 has 20 observations on concentration for the out-

put of a chemical process. The observations are taken at one-hour intervals. If several observations 

are taken at the same time, the observed concentration readings differ only because of measurement error. Because the 

measurement error is small, only one observation is taken each hour.

Example 15-2
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To set up the control chart for individuals, note that the sample average of the 20 concentration readings is x = .99 1 

and that the average of the moving ranges of two observations shown in the last column of Table 15-3 is mr
__

= .2 59. 

To set up the moving-range chart, we note that D
3
 = 0 and D

4
 = 3.267 for n = 2. Therefore, the moving-range chart has 

center line mr
__

= .2 59, LCL = 0, and UCL D mr= =4 3 267 2 59
__

( . )( . ) = . .8 46  The control chart is shown in Fig. 15-11, 

which was constructed by computer software. Because no points exceed the upper control limit, we may now set up the 

control chart for individual concentration measurements. If a moving range of n = 2 observations is used, d
2
 = 1.128. 

For the data in Table 15-3, we have

UCL x
mr

d

CL x

LCL x
mr

d

= +  = . +  .
.

= .

= = .

= −  =

3 99 1 3
2 59

1 128
105 99

99 1

3

2

2

999 1 3
2 59

1 128
92 21. −  .

.
= .

The control chart for individual concentration measurements is shown as the upper control chart in Fig. 15-11. There 

is no indication of an out-of-control condition.

Practical Interpretation: These calculated control limits are used to monitor future production.

Observation
Concentration

 x
Moving Range

 mr

 1 102.0

 2 94.8 7.2

 3 98.3 3.5

 4 98.4 0.1

 5 102.0 3.6

 6 98.5 3.5

 7 99.0 0.5

 8 97.7 1.3

 9 100.0 2.3

10 98.1 1.9

11 101.3 3.2

12 98.7 2.6

13 101.1 2.4

14 98.4 2.7

15 97.0 1.4

16 96.7 0.3

17 100.3 3.6

18 101.4 1.1

19 97.2 4.2

20 101.0 3.8

x = .99 1 mr = .2 59

15-3 Chemical Process Concentration Measurements
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The chart for individuals can be interpreted much like an ordinary X control chart. A shift 

in the process average results in either a point (or points) outside the control limits or a pattern 

consisting of a run on one side of the center line.

Some care should be exercised in interpreting patterns on the moving-range chart. The 

moving ranges are correlated, and this correlation may often induce a pattern of runs or cycles 

on the chart. The individual measurements are assumed to be uncorrelated, however, and any 

apparent pattern on the individuals’ control chart should be carefully investigated.

The control chart for individuals is not very sensitive to small shifts in the process mean. 

For example, if the size of the shift in the mean is 1 standard deviation, the average number 

of points to detect this shift is 43.9. This result is shown later in the chapter. Although the per-

formance of the control chart for individuals is much better for large shifts, in many situations 

the shift of interest is not large and more rapid shift detection is desirable. In these cases, we 

recommend time-weighted charts such as the cumulative sum control chart or an exponen-
tially weighted moving-average chart (discussed in Section 15-8).

Some individuals have suggested that limits narrower than 3-sigma be used on the chart 

for individuals to enhance its ability to detect small process shifts. This is a dangerous sugges-

tion, for narrower limits dramatically increase false alarms and the charts may be ignored and 

become useless. If you are interested in detecting small shifts, consider the time-weighted charts.
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FIGURE 15-11 Control charts for individuals and the moving range from computer software for the chemical  
process concentration data.

15-19.  Twenty successive hardness measurements are made 

on a metal alloy, and the data are shown in the following table.

Observation Hardness Observation Hardness

 1 51 11 51

 2 52 12 57

 3 54 13 58

 4 55 14 50

 5 55 15 53

 6 51 16 52

 7 52 17 54

 8 50 18 50

 9 51 19 56

10 56 20 53

(a) Using all the data, compute trial control limits for individ-

ual observations and moving-range charts. Construct the 

chart and plot the data. Determine whether the process is in 

statistical control. If not, assume that assignable causes can 

FOR SECTION 15-4Exercises
 Problem available in WileyPLUS at instructor’s discretion. 

 Tutoring problem available in WileyPLUS at instructor’s discretion.
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be found to eliminate these samples and revise the control 

limits.

(b) Estimate the process mean and standard deviation for the 

in-control process.

15-20. In a semiconductor manufacturing process, CVD 

metal thickness was measured on 30 wafers obtained over approx-

imately two weeks. Data are shown in the following table.

(a) Using all the data, compute trial control limits for individual 

observations and moving-range charts. Construct the chart 

and plot the data. Determine whether the process is in statisti-

cal control. If not, assume that assignable causes can be found 

to eliminate these samples and revise the control limits.

(b) Estimate the process mean and standard deviation for the 

in-control process.

Wafer x Wafer x

1 16.8 16 15.4

2 14.9 17 14.3

3 18.3 18 16.1

4 16.5 19 15.8

5 17.1 20 15.9

6 17.4 21 15.2

7 15.9 22 16.7

8 14.4 23 15.2

9 15.0 24 14.7

10 15.7 25 17.9

11 17.1 26 14.8

12 15.9 27 17.0

13 16.4 28 16.2

14 15.8 29 15.6

15 15.4 30 16.3

15-21. An automatic sensor measures the diameter of 

holes in consecutive order. The results of measuring 25 holes 

are in the following table.

Sample Diameter Sample Diameter

1 9.94 14 9.99

2 9.93 15 10.12

3 10.09 16 9.81

4 9.98 17 9.73

5 10.11 18 10.14

6 9.99 19 9.96

7 10.11 20 10.06

8 9.84 21 10.11

9 9.82 22 9.95

10 10.38 23 9.92

11 9.99 24 10.09

12 10.41 25 9.85

13 10.36

(a) Using all the data, compute trial control limits for indi-

vidual observations and moving-range charts. Construct 

the control chart and plot the data. Determine whether the 

process is in statistical control. If not, assume that assign-

able causes can be found to eliminate these samples and 

revise the control limits.

(b) Estimate the process mean and standard deviation for the 

in-control process.

15-22. The viscosity of a chemical intermediate is meas-

ured every hour. Twenty samples each of size n = 1 are in the 

following table.

Sample Viscosity Sample Viscosity

1 495 11 493

2 491 12 507

3 501 13 503

4 501 14 475

5 512 15 497

6 540 16 499

7 492 17 468

8 504 18 486

9 542 19 511

10 508 20 487

(a) Using all the data, compute trial control limits for indi-

vidual observations and moving-range charts. Determine 

whether the process is in statistical control. If not, assume 

that assignable causes can be found to eliminate these sam-

ples and revise the control limits.

(b) Estimate the process mean and standard deviation for the 

in-control process.

15-23. The following table of data was analyzed in Qual-
ity Engineering [1991–1992, Vol. 4(1)]. The average particle 

size of raw material was obtained from 25 successive samples.

Observation Size Observation Size

1 96.1 14 100.5

2 94.4 15 103.1

3 116.2 16 93.1

4 98.8 17 93.7

5 95.0 18 72.4

6 120.3 19 87.4

7 104.8 20 96.1

8 88.4 21 97.1

9 106.8 22 95.7

10 96.8 23 94.2

11 100.9 24 102.4

12 117.7 25 131.9

13 115.6

(a) Using all the data, compute trial control limits for individ-

ual observations and moving-range charts. Construct the 
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chart and plot the data. Determine whether the process is in 

statistical control. If not, assume that assignable causes can 

be found to eliminate these samples and revise the control 

limits.

(b) Estimate the process mean and standard deviation for the 

in-control process.

15-24. Pulsed laser deposition technique is a thin film deposi-

tion technique with a high-powered laser beam. Twenty-five 

films were deposited through this technique. The thicknesses of 

the films obtained are shown in the following table.

Film Thickness (nm) Film Thickness (nm)

 1 28  8 51

 2 45  9 23

 3 34 10 35

 4 29 11 47

 5 37 12 50

 6 52 13 32

 7 29 14 40

15 46 21 21

16 59 22 62

17 20 23 34

18 33 24 31

19 56 25 98

20 49

(a) Using all the data, compute trial control limits for indi-

vidual observations and moving-range charts. Determine 

whether the process is in statistical control. If not, assume 

that assignable causes can be found to eliminate these sam-

ples, and revise the control limits.

(b) Estimate the process mean and standard deviation for the 

in-control process.

15-25. The production manager of a soap manufacturing com-

pany wants to monitor the weights of the bars produced on the 

line. Twenty bars are taken during a stable period of the process. 

The weights of the bars are shown in the following table.

Bar Weight (g) Bar Weight (g)

 1 74 11 99

 2 82 12 75

 3 97 13 77

 4 86 14 82

 5 71 15 93

 6 68 16 70

 7 83 17 87

 8 90 18 76

 9 88 19 84

10 64 20 94

(a) Using all the data, compute trial control limits for indi-

vidual observations and moving-range charts. Determine 

whether the process is in statistical control. If not, assume 

that assignable causes can be found to eliminate these sam-

ples, and revise the control limits.

(b) Estimate the process mean and standard deviation for the 

in-control process.

15-26. An article in Quality & Safety in Health Care [“Statistical 

Process Control as a Tool for Research and Healthcare Improve-

ment,” (2003 Vol. 12, pp. 458–464)] considered a number of 

control charts in healthcare. An X chart was constructed for the 

amount of infectious waste discarded each day (in pounds). The 

article mentions that improperly classified infectious waste (actu-

ally not hazardous) adds substantial costs to hospitals each year. 

The following tables show approximate data for the average daily 

waste per month before and after process changes, respectively. 

The process change included an education campaign to provide 

an operational definition for infectious waste.

Before Process Change

Month 1 2 3 4 5 6 7 8 9 

Waste 6.9 6.8 6.9 6.7 6.9 7.5 7 7.4 7 

Month 13 14 15 16 17 18 19 20 21 

Waste 7.5 7.4 6.5 6.9 7.0 7.2 7.8 6.3 6.7 

After Process Change

Month 1 2 3 4 5 6 7 8 9 10 11 12

Waste 5.0 4.8 4.4 4.3 4.6 4.3 4.5 3.5 4.0 4.1 3.8 5.0

Month 13 14 15 16 17 18 19 20 21 22 23 24

Waste 4.6 4.0 5.0 4.9 4.9 5.0 6.0 4.5 4.0 5.0 4.5 4.6

Month 25 26 27 28 29 30

Waste 4.6 3.8 5.3 4.5 4.4 3.8

(a) Handle the data before and after the process change sepa-

rately and construct individuals and moving-range charts 

for each set of data. Assume that assignable causes can 

be found and eliminate suspect observations. If necessary, 

revise the control limits.

(b) Comment on the control of each chart and differences 

between the charts. Was the process change effective?

15-27. An article in Journal of the Operational Research Soci-
ety [“A Quality Control Approach for Monitoring Inventory 

Stock Levels,” (1993, pp. 1115–1127)] reported on a control 

chart to monitor the accuracy of an inventory management sys-

tem. Inventory accuracy at time t, AC t( ), is defined as the dif-

ference between the recorded and actual inventory (in absolute 

value) divided by the recorded inventory. Consequently, AC t( ) 
ranges between 0 and 1 with lower values better. Extracted data 

are shown in the following table.

(a) Calculate individuals and moving-range charts for these data.

(b) Comment on the control of the process. If necessary, 

assume that assignable causes can be found, eliminate sus-

pect points, and revise the control limits.
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t 1 2 3 4 5 6 7 8 9 10 11

AC t( ) 0.190 0.050 0.095 0.055 0.090 0.200 0.030 0.105  0.115 0.103 0.121

t 12 13 14 15 16 17 18 19 20 21 22

AC t( ) 0.089 0.180 0.122 0.098 0.173 0.298 0.075 0.083  0.115 0.147 0.079

15-5 Process Capability
It is usually necessary to obtain some information about the process capability, that is, the 

performance of the process when it is operating in control. Two graphical tools, the tolerance 
chart (or tier chart) and the histogram, are helpful in assessing process capability. The toler-

ance chart for all 20 samples from the vane-manufacturing process is shown in Fig. 15-12. The 

specifications on vane opening are 0 5030 0 0010. ± .  in. In terms of the coded data, the upper 

specification limit is USL = 40 and the lower specification limit is LSL = 20, and these limits 

are shown on the chart in Fig. 15-12. Each measurement is plotted on the tolerance chart. 

Measurements from the same subgroup are connected with lines. The tolerance chart is useful 

in revealing patterns over time in the individual measurements, or it may show that a particular 

value of x  or r was produced by one or two unusual observations in the sample. For example, 

note the two unusual observations in sample 9 and the single unusual observation in sample 8. 

Note also that it is appropriate to plot the specification limits on the tolerance chart because it 

is a chart of individual measurements. It is never appropriate to plot specification limits on 
a control chart or to use the specifications in determining the control limits. Specification 

limits and control limits are unrelated. Finally, note from Fig. 15-12 that the process is running 

off-center from the nominal dimension of 30 (or 0.5030 in).

The histogram for the vane-opening measurements is shown in Fig. 15-13. The observations 

from samples 6, 8, 9, 11, and 19 (corresponding to out of-control points on either the X or R 

chart) have been deleted from this histogram. The general impression from examining this his-

togram is that the process is capable of meeting the specification but that it is running off-center.

Another way to express process capability is in terms of an index that is defined as follows.

The process capability ratio (PCR) is

 PCR
USL LSL= −

σ6
 (15-20)

Process Capability 
Ratio

The numerator of PCR is the width of the specifications. The limits 3σ on either side of 

the process mean are sometimes called natural tolerance limits, for these represent limits 

that an in-control process should meet with most of the units produced. Consequently, 6σ is 

often referred to as the width of the process. For the vane opening, where our sample size 

is 5, we could estimate σ as

σ̂ = = .
.

= .r

d2

5 0

2 326
2 15

Therefore, the PCR is estimated to be

PCR
USL LSL= − = − =

6

40 20

6 2 15
1 55

σΛ ( . )
.

The PCR has a natural interpretation: (1 / PCR)100% is just the percentage of the spec-

ifications’ width used by the process. Thus, the vane-opening process uses approximately 

(1 / 1.55)100% = 64.5% of the specifications’ width.
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FIGURE 15-12
Tolerance diagram 
of vane openings. 

Figure 15-14(a) shows a process for which the PCR exceeds unity. Because the process 

natural tolerance limits lie inside the specifications, very few defective or nonconforming 

units are produced. If PCR = 1, as shown in Fig.15-14(b), more nonconforming units result. 

In fact, for a normally distributed process, if PCR = 1, the fraction nonconforming is 0.27%, 

or 2700 parts per million. Finally, when the PCR is less than unity, as in Fig. 15-14(c), the 

process is very yield-sensitive and a large number of nonconforming units is be produced.
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The definition of the PCR given in Equation 15-20 implicitly assumes that the process is 

centered at the nominal dimension. If the process is running off-center, its actual capability 

is less than indicated by the PCR. It is convenient to think of PCR as a measure of potential 
capability, that is, capability with a centered process. If the process is not centered, a measure 

of actual capability is often used. This ratio, called PCR
k
, is defined next.

FIGURE 15-14  
Process fallout and 
the process  
capability ratio (PCR).
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PCR
USL

,
LSL

k = − μ
σ

 μ −
σ

⎡
⎣⎢

⎤
⎦⎥

min
3 3

 (15-21)

PCR
k

In effect, PCR
k
 is a one-sided process capability ratio that is calculated relative to the speci-

fication limit nearest to the process mean. For the vane-opening process, we find that the 

estimate of the process capability ratio PCR
k
 (after deleting the samples corresponding to 

out-of-control points) is

PCR
USL x x LSL

,

k = −⎡
⎣⎢

⎤
⎦⎥

= − .
.( ) = .

min ,
3 3

40 33 21

3 2 15
1 06

33

σ σ� �
−

min
.. −

.( ) = .
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= .21 20

3 2 15
2 04 1 05

Note that if PCR = PCR
k
, the process is centered at the nominal dimension. Because PCRk = 

1.05 for the vane-opening process and PCR ,= .1 55  the process is obviously running off-center, 
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as was fi rst noted in Figs. 15-10 and 15-13. This off-center operation was ultimately traced to an 

oversized wax tool. Changing the tooling resulted in a substantial improvement in the process.

The fractions of nonconforming output (or fallout) below the lower specifi cation limit and 

above the upper specifi cation limit are often of interest. Suppose that the output from a normally 

distributed process in statistical control is denoted as X. The fractions are determined from

P X < LSL P Z <
LSL

P X >USL P Z >
USL( ) = − μ⎛

⎝⎜
⎞
⎠⎟ ( ) = − μ⎛

⎝⎜
⎞
⎠⎟σ σ

Electrical Current For an electronic manufacturing process a current has specifi cations of 

100 10±  milliamperes. The process mean μ and standard deviation σ are 107.0 and 1.5, respec-

tively. The process mean is nearer to the USL. Consequently,

PCR = −
.( ) = .110 90

6 1 5
2 22

and

 PCRk = −
.( ) = .110 107

3 1 5
0 67

The small PCR
k
 indicates that the process is likely to produce currents outside the specifi cation limits. From the normal 

distribution in Appendix Table II,

P X < LSL P Z <

P Z <

P X >USL P Z >

( ) = −( ) .( )
= .( ) ≅

( ) = −

90 107 1 5

11 33 0

110 10

/

−

77 1 5

2 0 023

( ) .( )
= ( ) = .

/

P Z >

Practical Interpretation: The probability a current is less than the LSL is nearly zero. However, the relatively large 

probability of exceeding the USL is a warning of potential problems with this criterion even if none of the measured 

observations in a preliminary sample exceeds this limit. The PCR
k
 would improve if the process mean were centered in 

the specifi cations at 100 milliamperes.

Example 15-3

We emphasize that the fraction-nonconforming calculation assumes that the observations 

are normally distributed and the process is in control. Departures from normality can seriously 

affect the results. The calculation should be interpreted as an approximate guideline for process 

performance. To make matters worse, μ and σ need to be estimated from the data available, and 

a small sample size can result in poor estimates that further degrade the calculation.

Table 15-4 relates fallout in parts per million (PPM) for a normally-distributed process 

in statistical control to the value of PCR. The table shows PPM for a centered process and for 

one with a 1 5. σ shift in the process mean. Many U.S. companies use PCR = 1.33 as a mini-

mum acceptable target and PCR = 1.66 as a minimum target for strength, safety, or critical 

characteristics.

Some companies require that internal processes and those at suppliers achieve a PCR
k
 = 

2.0. Figure 15-15 illustrates a process with PCR = PCR
k
 = 2.0. Assuming a normal distribu-

tion, the calculated fallout for this process is 0.0018 parts per million. A process with PCR
k
 

= 2.0 is referred to as a 6-sigma process because the distance from the process mean to the 

nearest specifi cation is 6 standard deviations. The reason that such a large process capability 

is often required is that maintaining a process mean at the center of the specifi cations for 

long periods of time is diffi cult. A common model that is used to justify the importance of a 

6-sigma process is illustrated by referring to Fig. 15-15. If the process mean shifts off-center 

by 1.5 standard deviations, the PCR
k
 decreases to 
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PCR

PPM

Mean Centered Mean Shifted 1.5r
0.5 133,614.4 501,349.9

 0.67  44,431.2 305,249.8

 0.75  24,448.9 226,715.8

1   2,699.8  66,810.6

 1.25    176.8  12,224.5

 1.33     66.1   6,387.2

1.5      6.8   1,349.9

 1.67      0.5    224.1

 1.75      0.2    88.4

2      0.0     3.4

FIGURE 15-15 Mean of a 6-sigma process shifts by 1.5 standard deviations.
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Assuming a normally distributed process, the fallout of the shifted process is 3.4 parts per 
million. Consequently, the mean of a 6-sigma process can shift 1.5 standard deviations from 

the center of the specifi cations and still maintain a minimal fallout.

In addition, some U.S. companies, particularly the automobile industry, have adopted the 

terminology C
p
 = PCR and C

pk
 = PCR

k
. Because C

p
 has another meaning in statistics (in mul-

tiple regression), we prefer the traditional notation PCR and PCR
k
.

We repeat that process capability calculations are meaningful only for stable processes; 

that is, processes that are in control. A process capability ratio indicates whether or not the 

natural or chance variability in a process is acceptable relative to the specifi cations.

FOR SECTION 15-5Exercises

15-28.  Suppose that a quality characteristic is normally 

distributed with specifi cations at 100 20± . The process stand-

ard deviation is 6.

(a) Suppose that the process mean is 100. What are the natural 

tolerance limits? What is the fraction defective? Calculate 

PCR and PCR
k
 and interpret these ratios.

(b) Suppose that the process mean is 106. What are the natural 

tolerance limits? What is the fraction defective? Calculate 

PCR and PCR
k
 and interpret these ratios.

15-29.  Suppose that a quality characteristic is normally 

distributed with specifi cations from 20 to 32 units.

(a) What value is needed for σ to achieve a PCR of 1.5?

 Problem available in WileyPLUS at instructor’s discretion. 

 Tutoring problem available in WileyPLUS at instructor’s discretion.
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(b) What value for the process mean minimizes the fraction 

defective? Does this choice for the mean depend on the 

value of σ?

15-30.  Suppose that a quality characteristic is normally 

distributed with specifications from 10 to 30 units. The process 

standard deviation is 2 units.

(a) Calculate the natural tolerance limits, fraction defective, 

PCR, and PCR
k
 when the process mean is 20.

(b) Suppose that the process mean shifts higher by 1.5 standard 

deviations. Recalculate the quantities in part (b).

(c) Compare the results in parts (a) and (b) and comment on 

any differences.

15-31.  A normally distributed process uses 66.7% of 

the specification band. It is centered at the nominal dimen-

sion, located halfway between the upper and lower specifi-

cation limits.

(a) Estimate PCR and PCR
k
. Interpret these ratios.

(b) What fallout level (fraction defective) is produced?

15-32.  A normally distributed process uses 85% of the 

specification band. It is centered at the nominal dimension, 

located halfway between the upper and lower specification 

limits.

(a) Estimate PCR and PCR
k
. Interpret these ratios.

(b) What fallout level (fraction defective) is produced?

15-33. Reconsider Exercise 15-1. Suppose that the quality 

characteristic is normally distributed with specification at 220 

± 40. What is the fallout level? Estimate PCR and PCR
k
 and 

interpret these ratios.

15-34. Reconsider Exercise 15-2 in which the specification 

limits are 14.50 ± 0.50.

(a) What conclusions can you draw about the ability of the 

process to operate within these limits? Estimate the per-

centage of defective items that is produced.

(b) Estimate PCR and PCR
k
. Interpret these ratios.

15-35.  Reconsider Exercise 15-3. Suppose that the vari-

able is normally distributed with specifications at 220 ± 50. 

What is the proportion out of specifications? Estimate and 

interpret PCR and PCR
k
.

15-36. Reconsider Exercise 15-4(a). Assuming that both 

charts exhibit statistical control and that the process specifica-

tions are at 20 ± 5, estimate PCR and PCR
k
 and interpret these 

ratios.

15-37. Reconsider the diameter measurements in Exercise 

15-7. Use the revised control limits and process estimates.

(a) Estimate PCR and PCR
k
. Interpret these ratios.

(b) What percentage of defectives is being produced by this 

process?

15-38. Reconsider the copper-content measurements in Exercise 

15-8. Given that the specifications are at 6.0 ± 1.0, estimate PCR 

and PCR
k
 and interpret these ratios.

15-39. Reconsider the pull-strength measurements in Exercise 

15-9. Estimate the fallout level if the specifications are 16 ± 5. 

Estimate PCR and interpret this ratio.

15-40. Reconsider the syringe lengths in Exercise 15-10.  

Suppose that the specifications are set at 4.90 and 5.00. 

(a) Estimate the process standard deviation.

(b) Calculate PCR and PCRk for the process.

15-41. Reconsider the hardness measurements in Exercise 

15-19. Suppose that the specifications are 45 to 60. 

(a) Estimate the process standard deviation.

(b) Calculate PCR and PCRk for the process.

15-42.  Reconsider the viscosity measurements in Exercise 

15-22. The specifications are 500 ± 25. Calculate estimates of 

the process capability ratios PCR and PCR
k
 for this process and 

provide an interpretation.

15-43. Suppose that a quality characteristic is normally dis-

tributed with specifications at 120 ± 20. The process standard 

deviation is 6.5.

(a) Suppose that the process mean is 120. What are the natural 

tolerance limits? What is the fraction defective? Calculate 

PCR and PCR
k
 and interpret these ratios.

(b) Suppose that the process mean shifts off-center by 1.5 

standard deviations toward the upper specification limit. 

Recalculate the quantities in part (a).

(c) Compare the results in parts (a) and (b) and comment on 

any differences.

15-44. Suppose that a quality characteristic is normally distrib-

uted with specifications at 150 ± 20. Natural tolerance limits for 

the process are 150 ± 18.

(a) Calculate the process standard deviation.

(b) Calculate PCR and PCR
k
 of the process. Calculate 

the percentage of the specification width used by the 

process.

(c) What fallout level (fraction defective) is produced?

15-45. An X  control chart with 3-sigma control limits and 

subgroup size n = 4 has control limits UCL = 28.8 and LCL = 

24.6. The process specification limits are (24, 32).

(a) Estimate the process standard deviation.

(b) Calculate PCR and PCR
k
 for the process.

15-46. A control chart for individual observations has 3-sigma 

control limits UCL = 1.80 and LCL = 1.62. The process speci-

fication limits are (1.64, 1.84).

(a) Estimate the process standard deviation.

(b) Calculate PCR and PCR
k
 for the process.

15-47. A process mean is centered between the specifica-

tion limits and PCR = 1 33. . Assume that the process mean 

increases by 1 5. σ.

(a) Calculate PCR and PCRk for the shifted process.

(b) Calculate the estimated fallout from the shifted process and 

compare your result to those in Table 15-4. Assume a nor-

mal distribution for the measurement.

15-48. The PCR for a measurement is 1.5 and the control  

limits for an X  chart with n = 4 are 24.6 and 32.6.

(a) Estimate the process standard deviation σ.

(b) Assume that the specification limits are centered around 

the process mean. Calculate the specification limits.
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15-6 Attribute Control Charts

15-6.1 P CHART (CONTROL CHART FOR PROPORTIONS)

Often it is desirable to classify a product as either defective or nondefective on the basis of 

comparison with a standard. This classification is usually done to achieve economy and sim-

plicity in the inspection operation. For example, the diameter of a ball bearing may be checked 

by determining whether it passes through a gauge consisting of circular holes cut in a tem-

plate. This kind of measurement would be much simpler than directly measuring the diameter 

with a device such as a micrometer. Control charts for attributes are used in these situations. 

Attribute control charts often require a considerably larger sample size than do their variable 

measurements counterparts. In this section, we discuss the fraction-defective control chart, 
or P chart. Sometimes the P chart is called the control chart for fraction nonconforming.

At each sample time, a random sample of n units is selected. Suppose that D is the num-

ber of defective units in the sample. We assume that D is a binomial random variable with 

unknown parameter p. The fraction defective

P
D

n
=

of each sample is plotted on the chart. Furthermore, the binomial distribution, the variance of 

the statistic P , is

σ =
−( )2 1

P

p p

n
Therefore, a P chart for fraction defective could be constructed using p as the center line and 

control limits at

 UCL p
p p

n
LCL p

p p

n
= +

−( ) = −
−( )

3
1

3
1

 (15-22)

However, the true process fraction defective is almost always unknown and must be estimated 

using the data from preliminary samples.

Suppose that m preliminary samples each of size n are available, and let D
i
 be the number of defec-

tives in the ith sample. Then P D ni i= /  is the sample fraction defective in the ith sample. The average 

fraction defective is

 P
m

P
mn

D
i

m

i i
i

m

= =
= =
∑ ∑1 1

1 1

 (15-23)

Now P  may be used as an estimator of p in the center line and control limit formulas.

The center line and upper and lower control limits for the P chart are

 UCL p
p p

n
CL p LCL p

p p

n
= +  

−( ) = = −  
−( )

3
1

3
1

 (15-24)

where p is the observed value of the average fraction defective.

P Chart

These control limits are based on the normal approximation to the binomial distribution. 

When p is small, the normal approximation may not always be adequate. In such cases, we 

may use control limits obtained directly from a table of binomial probabilities. If p is small, 

the lower control limit obtained from the normal approximation may be a negative number. If 

this should occur, it is customary to consider zero as the lower control limit.
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Ceramic Substrate We wish to construct a fraction-defective control chart for a ceramic sub-

strate production line. We have 20 preliminary samples, each of size 100; the number of defectives 

in each sample is shown in Table 15-5. Assume that the samples are numbered in the sequence of production. Note that 

p = (800 / 2000) = 0.40; therefore, the trial parameters for the control chart are

UCL CL

LCL

= . +  
.( ) .( ) = . =

= . −  
.( ) .

0 40 3
0 40 0 60

100
0 55 0 40

0 40 3
0 40 0 6

.

00

100
0 25

( ) = .

The control chart is shown in Fig. 15-16. All samples are in control. If they were not, we would search for assignable 

causes of variation and revise the limits accordingly. This chart can be used for controlling future production.

Practical Interpretation: Although this process exhibits statistical control, its defective rate (p = .0 40) is very poor. 

We should take appropriate steps to investigate the process to determine why such a large number of defective units 

is being produced. Defective units should be analyzed to determine the specifi c types of defects present. Once the 

defect types are known, process changes should be investigated to determine their impact on defect levels. Designed 

experiments may be useful in this regard.

    15-5  Number of Defectives in Samples of 
100 Ceramic Substrates

Example 15-4 

FIGURE 15-16 P Chart for a ceramic substrate.
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Computer software also produces an NP chart. This is just a control chart of nP D= , the 

number of defectives in a sample. The points, center line, and control limits for this chart are 

simply multiples (times n) of the corresponding elements of a P chart. The use of an NP chart 

avoids the fractions in a P chart, but it is otherwise equivalent.

Sample No. of Defectives Sample
No. of 

Defectives

 1 44 11 36

 2 48 12 52

 3 32 13 35

 4 50 14 41

 5 29 15 42

 6 31 16 30

 7 46 17 46

 8 52 18 38

 9 44 19 26

10 48 20 30
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15-6.2 U CHART (CONTROL CHART FOR DEFECTS PER UNIT)

It is sometimes necessary to monitor the number of defects in a unit of product rather than 

the fraction defective. For example, a hospital might record the number of cases of infection 

per month, or a semiconductor manufacturer might record the number of large contamination 

particles per wafer. In these situations, we may use the defects-per-unit chart or U chart. If 
each subgroup consists of n units and there are C total defects in the subgroup, then,

U
C

n
=

is the average number of defects per unit. A U chart may be constructed for such data.

Many defects-per-unit situations can be modeled by the Poisson distribution. Suppose that 

the number of defects in a unit is a Poisson random variable with mean λ. The variance also 

equals λ. Each point on the chart is an observed value of U, the average number of defects per 

unit from a sample of n units. The mean of U is λ, and the variance of U is λ / n. Therefore, the 

control limits for the U chart with known λ are:

 UCL
n

LCL
n

= λ + λ = λ − λ
3 3  (15-25)

If there are m preliminary samples, and the number of defects per unit in these samples are 

U
1
, U

2
, . . . , U

m
, the estimator of the average number of defects per unit is

 U
m

Ui
i

m

=
=
∑1

1

 (15-26)

Now U is used as an estimator of λ in the center line and control limit formulas.

The center line and upper and lower control limits on the U chart are

 UCL u
u

n
CL u LCL u

u

n
= + = = −3 3  (15-27)

where u  is the average number of defects per unit.

U Chart

Printed Circuit Boards Printed circuit boards are assembled by a combination of manual 

assembly and automation. Surface mount technology (SMT) is used to make the mechanical 

and electrical connections of the components to the board. Every hour, fi ve boards are selected and inspected for 

process-control purposes. The number of defects in each sample of fi ve boards is noted. Results for 20 samples 

are shown in Table 15-6.

The center line for the U chart is

u ui
i

= = . = .
=
∑1

20

32 0

20
1 6

1

20

Example 15-5

These control limits are based on the normal approximation to the Poisson distribution. 

When λ is small, the normal approximation may not always be adequate. In such cases, we 

may use control limits obtained directly from a table of Poisson probabilities. If u  is small, the 

lower control limit obtained from the normal approximation may be a negative number. If this 

should occur, it is customary to use zero as the lower control limit.
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and the upper and lower control limits are

UCL u
u

n

LCL u
u

n
<

= +  = . +  . = .

= −  = . −  .

3 1 6 3
1 6

5
3 3

3 1 6 3
1 6

5
0

The control chart is plotted in Fig. 15-17. Because LCL is negative, it is set to 0. From the control chart in Fig. 15-17, 

we see that the process is in control.

Practical Interpretation: Eight defects per group of fi ve circuit boards are too many (about 8 / 5 = 1.6 defects/board), 

and the process needs improvement. An investigation of the specifi c types of defects found on the printed circuit board 

needs to be made. This usually suggests potential avenues for process improvement.

FIGURE 15-17 U chart of defects per unit on printed circuit boards.
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Computer software also produces a C chart. This is just a control chart of C, the total of 

defects in a sample. The points, center line, and control limits for this chart are simply mul-

tiples (times n) of the corresponding elements of a U chart. The use of a C chart avoids the 

fractions that can occur in a U chart, but it is otherwise equivalent.

Sample
Number of 

Defects
Defects per

Unit u
i

Sample
Number of

Defects
Defects per

Unit u
i

 1  6 1.2 11  9 1.8

 2  4 0.8 12 15 3.0

 3  8 1.6 13  8 1.6

 4 10 2.0 14 10 2.0

 5  9 1.8 15  8 1.6

 6 12 2.4 16  2 0.4

 7 16 3.2 17  7 1.4

 8  2 0.4 18  1 0.2

 9  3 0.6 19  7 1.4

10 10 2.0 20 13 2.6

15-6 Number of Defects in Samples of Five Printed Circuit Boards
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FOR SECTION 15-6Exercises

15-49.  An early example of SPC was described in 

Industrial Quality Control [“The Introduction of Quality 

Control at Colonial Radio Corporation” (1944, Vol. 1(1), 

pp. 4–9)]. The following are the fractions defective of shaft 

and washer assemblies during the month of April in samples 

of n = 1500 each:

Sample
Fraction
Defective Sample

Fraction
Defective

 1 0.11 11 0.03

 2 0.06 12 0.03

 3 0.1 13 0.04

 4 0.11 14 0.07

 5 0.14 15 0.04

 6 0.11 16 0.04

 7 0.14 17 0.04

 8 0.03 18 0.03

 9 0.02 19 0.06

10 0.03 20 0.06

(a) Set up a P chart for this process. Is this process in statistical 

control?

(b) Suppose that instead of n ,n=  = .1500 100  Use the data 

given to set up a P chart for this process. Revise the control 

limits if necessary.

(c) Compare your control limits for the P charts in parts (a) and 

(b). Explain why they differ. Also, explain why your assess-

ment about statistical control differs for the two sizes of n.

15-50.  Suppose that the following fraction defective has 

been found in successive samples of size 100 (read down):

(a) Using all the data, compute trial control limits for a frac-

tion-defective control chart, construct the chart, and plot 

the data.

0.09 0.03 0.12

0.10 0.05 0.14

0.13 0.13 0.06

0.08 0.10 0.05

0.14 0.14 0.14

0.09 0.07 0.11

0.10 0.06 0.09

0.15 0.09 0.13

0.13 0.08 0.12

0.06 0.11 0.09

(b) Determine whether the process is in statistical control. If 

not, assume that assignable causes can be found and out-

of-control points eliminated. Revise the control limits.

15-51.  The following are the numbers of defective solder 

joints found during successive samples of 500 solder joints:

Day No. of Defectives Day No. of Defectives

 1 106 12  37

 2 116 13  25

 3 164 14  88

 4  89 15 101

 5  99 16  64

 6  40 17  51

 7 112 18  74

 8  36 19  71

 9  69 20  43

10  74 21  80

11  42

(a) Using all the data, compute trial control limits for a frac-

tion-defective control chart, construct the chart, and plot 

the data.

(b) Determine whether the process is in statistical control. If 

not, assume that assignable causes can be found and out-

of-control points eliminated. Revise the control limits.

15-52.  The following represent the number of defects per 

1000 feet in rubber-covered wire: 1, 1, 3, 7, 8, 10, 5, 13, 0, 19, 

24, 6, 9, 11, 15, 8, 3, 6, 7, 4, 9, 20, 11, 7, 18, 10, 6, 4, 0, 9, 7, 3, 

1, 8, 12. Do the data come from a controlled process?

15-53.  The following represent the number of solder defects 

observed on 24 samples of five printed circuit boards: 7, 6, 8, 10, 

24, 6, 5, 4, 8, 11, 15, 8, 4, 16, 11, 12, 8, 6, 5, 9, 7, 14, 8, 21.

(a) Using all the data, compute trial control limits for a U con-

trol chart, construct the chart, and plot the data.

(b) Can we conclude that the process is in control using a U 

chart? If not, assume that assignable causes can be found, 

and list points and revise the control limits.

15-54. Consider the data on the number of earthquakes of 

magnitude 7.0 or greater by year in Exercise 6-87.

(a) Construct a U chart for this data with a sample size of n = .1

(b) Do the data appear to be generated by an in-control pro-

cess? Explain.

15-55. In a semiconductor manufacturing company, sam-

ples of 200 wafers are tested for defectives in the lot. See 

the number of defectives in 20 such samples in the follow-

ing table.

 Problem available in WileyPLUS at instructor’s discretion. 

 Tutoring problem available in WileyPLUS at instructor’s discretion.
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Sample
No. of 

Defectives Sample
No. of 

Defectives

1 44 11 52

2 63 12 74

3 40 13 43

4 35 14 50

5 29 15 60

6 56 16 38

7 40 17 36

8 38 18 65

9 74 19 41

10 66 20 95

(a) Set up a P chart for this process. Is the process in statisti-

cal control?

(b) Suppose that instead of samples of size 200, we have sam-

ples of size 100. Use the data to set up a P chart for this 

process. Revise the control limits if necessary.

(c) Compare the control limits in parts (a) and (b). Explain 

why they differ.

15-56. The following data are the number of spelling errors 

detected for every 1000 words on a news Web site over 20 weeks.

Week
No. of Spelling 

Errors Week
No. of Spelling 

Errors

1 3 11 1

2 6 12 6

3 0 13 9

4 5 14 8

5 9 15 6

6 5 16 4

7 2 17 13

8 2 18 3

9 3 19 0

10 2 20 7

(a) What control chart is most appropriate for these data?

(b) Using all the data, compute trial control limits for the chart 

in part (a), construct the chart, and plot the data.

(c) Determine whether the process is in statistical control. If 

not, assume that assignable causes can be found and out-

of-control points eliminated. Revise the control limits.

15-57. A article of Epilepsy Research [“Statistical Process 

Control (SPC): A Simple Objective Method for Monitoring 

Seizure Frequency and Evaluating Effectiveness of Drug Inter-

ventions in Refractory Childhood Epilepsy,” (2010, Vol 91, 

pp. 205–213)] used control charts to monitor weekly seizure 

changes in patients with refractory childhood epilepsy. The fol-

lowing table shows representative data of weekly observations 

of seizure frequency (SF).

Week 1 2 3 4 5 6 7 8 9 10

SF 13 10 17 10 18 14 10 12 16 13

Week 11 12 13 14 15 16 17 18 19 20

SF 14 11 8 11 10 3 2 13 15 21

Week 21 22 23 24 25

SF 15 12 14 18 12

(a) What type of control chart is appropriate for these data? 

Construct this chart.

(b) Comment on the control of the process.

(c) If necessary, assume that assignable causes can be found, 

eliminate suspect points, and revise the control limits.

(d) In the publication, the weekly SFs were approximated as 

normally distributed and an individuals chart was con-

structed. Construct this chart and compare it to the attribute 

chart you built in part (a).

15-58. A article in Graefe’s Archive for Clinical and Experi-
mental Ophthalmology [“Statistical Process Control Charts for 

Ophthalmology,” (2011, Vol. 249, pp. 1103–1105)] considered 

the number of cataract surgery cases by month. The data are 

shown in the following table.

(a) What type of control chart is appropriate for these data? 

Construct this chart.

(b) Comment on the control of the process.

(c) If necessary, assume that assignable causes can be found, 

eliminate suspect points, and revise the control limits.

(d) In the publication, the data were approximated as nor-

mally distributed and an individuals chart was constructed. 

Construct this chart and compare it to the attribute chart 

you built in part (a). Why might an individuals chart be 

reasonable?

January February March April May June July

61 88 80 68 80 70 60

August September October November December

56 72 118  106 60

15-7 Control Chart Performance
Specifying the control limits is one of the critical decisions that must be made in designing a 

control chart. By moving the control limits farther from the center line, we decrease the risk 

c15.indd   700 9/24/2013   8:29:21 PM



Section 15-7/Control Chart Performance   701

of a type I error—that is, the risk of a point falling beyond the control limits, indicating an 

out-of-control condition when no assignable cause is present. However, widening the control 

limits also increases the risk of a type II error—that is, the risk of a point falling between the 

control limits when the process is really out of control. If we move the control limits closer to 

the center line, the opposite effect is obtained: The risk of type I error increases, and the risk 

of type II error decreases.

The control limits on a Shewhart control chart are customarily located a distance of plus 

or minus 3 standard deviations of the statistic plotted on the chart from the center line. That 

is, the constant k in Equation 15-1 should be set equal to 3. These limits are called 3-sigma 
control limits.

A way to evaluate decisions regarding sample size and sampling frequency is through the 

average run length (ARL) of the control chart. Essentially, the ARL is the average number of 

points plotted to signal an out-of-control condition. For any Shewhart control chart, the ARL 

can be calculated from the mean of a geometric random variable. Suppose that p is the prob-

ability that any point exceeds the control limits. Then

 ARL = 1

p
 (15-28)

Average
 Run 

Length

Thus, for an X chart with 3-sigma limits, p = 0.0027 is the probability that a normally distrib-

uted point falls outside the limits when the process is in control, so

ARL = =
.

≅1 1

0 0027
370

p

is the average run length of the X chart when the process is in control. That is, even if the process 

remains in control, an out-of-control signal is generated every 370 points on average.

Consider the piston ring process discussed in Section 15-2.2, and suppose that we are sam-

pling every hour. Thus, we have a false alarm about every 370 hours on average. Suppose that 

we are using a sample size of n = 5 and that when the process goes out of control, the mean 

shifts to 74.0135 millimeters. Then, the probability that X falls between the control limits of 

Fig. 15-3 is equal to

P X

P

73 9865 74 0135 74 0135

73 9865 74 0135

0 00

. ≤ ≤ .  μ = .⎡⎣ ⎤⎦

= . − .
.

when 

445

74 0135 74 0135

0 0045

6 0 0 5

≤ ≤ . − .
.

⎡
⎣⎢

⎤
⎦⎥

= − ≤ ≤[ ] = .

Z

P Z

Therefore, p in Equation 15-28 is 0.50, and the out-of-control ARL is

ARL = =
.

=1 1

0 5
2

p
That is, the control chart will require two samples to detect the process shift, on the average, 

so two hours will elapse between the shift and its detection (again, on the average). Suppose 

that this approach is unacceptable because production of piston rings with a mean diameter 

of 74.0135 millimeters results in excessive scrap costs and delays final engine assembly. How 

can we reduce the time needed to detect the out-of-control condition? One method is to sam-

ple more frequently. For example, if we sample every half hour, only one hour elapses (on the 

average) between the shift and its detection. The second possibility is to increase the sample 

size. For example, if we use n = 10, the control limits in Fig. 15-3 narrow to 73.9905 and 

74.0095. The probability of X falling between the control limits when the process mean is 

74.0135 millimeters is approximately 0.1, so p = 0.9, and the out-of-control ARL is
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ARL = =
.

= .1 1

0 9
1 11

p

Thus, the larger sample size would allow the shift to be detected about twice as quickly as the 

smaller one. If it became important to detect the shift in approximately the fi rst hour after it 

occurred, two control chart designs would work:

Design 1 Design 2

Sample size: n = 5 Sample size: n = 10

Sampling frequency: every half hour Sampling frequency: every hour

Table 15-7 provides average run lengths for an X chart with 3-sigma control limits. The average 

run lengths are calculated for shifts in the process mean from 0 to 3.0σ and for sample sizes of 

n = 1 and n = 4 by using 1 / p, where p is the probability that a point plots outside of the control 

limits (based on a normal distribution). Figure 15-18 illustrates a shift in the process mean of 2σ.

Magnitude of 
Process Shift

ARL
n = 1

ARL
n = 4

0 370.4 370.4

0.5σ 155.2  43.9

1.0σ  43.9  6.3

1.5σ  15.0  2.0

2.0σ  6.3  1.2

3.0σ  2.0  1.0

15-7 Average Run Length (ARL) for an X  Chart with 3-SigmaControl Limits

FIGURE 15-18 Process mean shift of 2σ.

m m s+ 2

15-59.  An X chart uses samples of size 1. The center line 

is at 100, and the upper and lower 3-sigma limits are at 112 and 

88, respectively.

(a) What is the process σ?

(b) Suppose that the process mean shifts to 96. Find the prob-

ability that this shift is detected on the next sample.

(c) Find the ARL to detect the shift in part (b).

15-60.  An X  chart uses samples of size 4. The center line 

is at 100, and the upper and lower 3-sigma control limits are at 

106 and 94, respectively.

(a) What is the process σ?

(b) Suppose that the process mean shifts to 96. Find the prob-

ability that this shift is detected on the next sample.

(c) Find the ARL to detect the shift in part (b).

15-61.  Consider the X  control chart in Fig. 15-3. Suppose 

that the mean shifts to 74.010 millimeters.

(a) What is the probability that this shift is detected on the next 

sample?

(b) What is the ARL after the shift?

15-62.  Consider an X  control chart with r = .0 344, UCL
= 14.708, LCL = 14.312, and n = 5. Suppose that the mean 

shifts to 14.6.

(a) What is the probability that this shift is detected on the next 

sample?

(b) What is the ARL after the shift?

FOR SECTION 15-7Exercises
 Problem available in WileyPLUS at instructor’s discretion. 

 Tutoring problem available in WileyPLUS at instructor’s discretion.
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15-63.  Consider an X  control chart with r = .34 286, UCL 

= 242.780, LCL = 203.220, and n = 5. Suppose that the mean 

shifts to 210.

(a) What is the probability that this shift is detected on the next 

sample?

(b) What is the ARL after the shift?

15-64.  Consider an X  control chart with σ̂ = .1 40, UCL 

= 21.71, LCL = 18.29, and n = 6. Suppose that the mean 

shifts to 17.

(a) What is the probability that this shift is detected on the next 

sample?

(b) What is the ARL after the shift?

15-65.  Consider an X  control chart with σ̂ = .2 466, UCL 

= 37.404, LCL = 30.780, and n = 5. Suppose that the mean 

shifts to 36.

(a) What is the probability that this shift is detected on the next 

sample?

(b) What is the ARL after the shift?

15-66.  Consider an X  control chart with r = .2 25, UCL = 

17.40, LCL = 12.79, and n = 3. Suppose that the mean shifts to 13.

(a) What is the probability that this shift is detected on the next 

sample?

(b) What is the ARL after the shift?

15-67. Consider an X  control chart with r = .0 000924, UCL 

= 0.0635, LCL = 0.0624, and n = 5. Suppose that the mean 

shifts to 0.0625.

(a) What is the probability that this shift is detected on the next 

sample?

(b) What is the ARL after the shift?

15-68. Consider the revised X  control chart in Exercise 15-8 

with σ̂ = .0 669, UCL = 7.443, LCL = 5.125, and n = 3. Suppose 

that the mean shifts to 5.5.

(a) What is the probability that this shift is detected on the next 

sample?

(b) What is the ARL after the shift?

15-69. An X  chart uses a sample of size 3. The center line is at 

200, and the upper and lower 3-sigma control limits are at 212 

and 188, respectively.

(a) Estimate the process σ.

(b) Suppose that the process mean shifts to 195. Determine the 

probability that this shift is detected on the next sample.

(c) Find the ARL to detect the shift in part (b).

15-70. Consider an X  control chart with UCL = 24.802, LCL 

= 23.792, and n = 3. Suppose that the mean shifts to 24.2.

(a) What is the probability that this shift is detected on the next 

sample?

(b) What is the ARL after the shift?

15-71. Consider a P-chart with subgroup size n = 50 and 

center line at 0.12.

(a) Calculate the LCL  and UCL.

(b) Suppose that the true proportion defective changes from 

0.12 to 0.18. What is the ARL after the shift? Assume 

that the sample proportions are approximately normally 

distributed.

(c) Rework part (a) and (b) with n = 100 and comment on the 

difference in ARL. Does the increased sample size change 

the ARL substantially?

15-72. Consider the U chart for printed circuit boards in Exam-

ple 15-5. The center line = 1.6, UCL = 3 3. , and n = 5.

(a) Calculate the LCL  and UCL.

(b) Suppose that the true mean defects per unit shifts from 1.6 to 

2.4. What is the ARL after the shift? Assume that the average 

defects per unit are approximately normally distributed.

(c) Rework part (b) if the true mean defects per unit shifts from 

1.6 to 2.0 and comment on the difference in ARL.

15-8 Time-Weighted Charts
In Sections 15-3 and 15-4 we presented basic types of Shewhart control charts. A major 

disadvantage of any Shewhart control chart is that it is relatively insensitive to small shifts 

in the process, say, on the order of about 1.5σ or less. One reason for this relatively poor 

performance in detecting small process shifts is that the Shewhart chart uses only the infor-

mation in the last plotted point and ignores the information in the sequence of points. This 

problem can be addressed to some extent by adding criteria such as the Western Electric 

rules to a Shewhart chart, but the use of these rules reduces the simplicity and ease of inter-

pretation of the chart. These rules would also cause the in-control average run length of a 

Shewhart chart to drop below 370. This increase in the false alarm rate can have serious 

practical consequences.

15-8.1 CUMULATIVE SUM CONTROL CHART

A very effective alternative to the Shewhart control chart is the cumulative sum control chart 
(CUSUM). This chart has much better performance (in terms of ARL) for detecting small 

shifts than the Shewhart chart, but it does not cause the in-control ARL to drop significantly. 

This section illustrates the use of the CUSUM for sample averages and individual measure-

ments. CUSUM charts for other sample statistics are also available.
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The CUSUM chart plots the cumulative sums of the deviations of the sample values from a 

target value. For example, suppose that samples of size n ≥ 1 are collected, and X j is the aver-

age of the jth sample. Then if μ
0
 is the target for the process mean, the cumulative sum control 

chart is formed by plotting the quantity

 S Xi j
j

i

= − μ( )
=
∑ 0

1

 (15-29)

against the sample number i. Now S
i
 is called the cumulative sum up to and including 

the ith sample. Because they combine information from several samples, cumulative sum 

charts are more effective than Shewhart charts for detecting small process shifts. Further-

more, they are particularly effective with samples of n = 1. This makes the cumulative 

sum control chart a good candidate for use in the chemical and process industries in which 

rational subgroups are frequently of size 1, as well as in discrete parts manufacturing with 

automatic measurement of each part and online control using a computer directly at the 

work center.

If the process remains in control at the target value μ
0
, the cumulative sum defined in 

Equation 15-29 should fluctuate around zero. However, if the mean shifts upward to some 

value μ
1
 > μ

0
, for example, an upward or positive drift develops in the cumulative sum S

i
. 

Conversely, if the mean shifts downward to some μ
1 
< μ

0
, a downward or negative drift in 

S
i
 develops. Therefore, if a trend develops in the plotted points either upward or downward, 

we should consider this as evidence that the process mean has shifted, and a search for the 

assignable cause should be performed.

This theory can easily be demonstrated by applying the CUSUM to the chemical process 

concentration data in Table 15-3. Because the concentration readings are individual measure-

ments, we would take X Xj j=  in computing the CUSUM. Suppose that the target value for the 

concentration is μ
0
 = 99. Then the CUSUM is

S X X X

X S

i j
j

i

i j
j

i

i i

= −( ) = −( ) + −( )
= −( ) +

= =

−

−

∑ ∑99 99 99

99

1 1

1

1

Table 15-8 shows the computing values, si’s for this CUSUM, for which the starting value 

of the CUSUM, s
0
, is taken to be zero. Figure 15-19 plots the CUSUM from the last column 

of Table 15-8. Notice that the CUSUM fluctuates around the value of 0.

The graph in Fig. 15-19 is not a control chart because it lacks control limits. There 

are two general approaches to devising control limits for CUSUMs. The older of these 

two methods is the V-mask procedure. A typical V mask is shown in Fig. 15-20(a). It is a 

V-shaped notch in a plane that can be placed at different locations on the CUSUM chart. 

The decision procedure consists of placing the V mask on the cumulative sum control chart 

with the point O on the last value of s
i
 and the line OP parallel to the horizontal axis. If all 

the previous cumulative sums, s
1
, s

2
, . . . , s

i–1
, lie within the two arms of the V mask, the 

process is in control. The arms are the lines that make angles θ with segment OP in Figure 

15-20(a) and are assumed to extend infinitely in length. However, if any s
i
 lies outside the 

arms of the mask, the process is considered to be out of control. In actual use, the V mask 

would be applied to each new point on the CUSUM chart as soon as it was plotted. The 

example in Fig. 15-20(b) indicates an upward shift in the mean because at least one of the 

points that occurred earlier than sample 22 now lies below the lower arm of the mask when 

the V mask is centered on sample 30. If the point lies above the upper arm, a downward shift 

in the mean is indicated. Thus, the V mask forms a visual frame of reference similar to the 

control limits on an ordinary Shewhart control chart. For the technical details of designing 

the V mask, see Montgomery (2013).
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15-8  CUSUM Computations for the Chemical Process 
Concentration Data in Table 15-3

Observation, i x
i x

i
– 99 s

i
 = (x

i
– 99) + s

i–1

 1 102.0 3.0 3.0

 2 94.8 –4.2 –1.2

 3 98.3 –0.7 –1.9

 4 98.4 –0.6 –2.5

 5 102.0 3.0 0.5

 6 98.5 –0.5 0.0

 7 99.0 0.0 0.0

 8 97.7 –1.3 –1.3

 9 100.0 1.0 –0.3

10 98.1 –0.9 –1.2

11 101.3 2.3 1.1

12 98.7 –0.3 0.8

13 101.1 2.1 2.9

14 98.4 –0.6 2.3

15 97.0 –2.0 0.3

16 96.7 –2.3 –2.0

17 100.3 1.3 –0.7

18 101.4 2.4 1.7

19 97.2 –1.8 –0.1

20 101.0 2.0 1.9

FIGURE 15-19 Plot of the cumulative sums for the concentration data.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Observation, i

–2

+4

–4

0

+2

si

Although some computer programs plot CUSUMs with the V-mask control scheme, we 

believe that the other approach to CUSUM control, the tabular CUSUM, is superior. The 

tabular procedure is particularly attractive when the CUSUM is implemented on a computer.
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Let S
H
(i) be an upper one-sided CUSUM for period i and S

L
(i) be a lower one-sided 

CUSUM for period i. These quantities are calculated from

FIGURE 15-20 The cumulative sum control chart. (a) The V-mask and scaling. (b) The cumulative sum 
control chart in operation.

1

3A

2 3 4
... i

(a)

2A

A

si

u

O

L

U

Pd

1
–4

si

5 10 15 20 25 30

–2

0

+2

+4

+6

(b)

Observation, i

K

 s i ,x K s iH i H( ) = − μ +( ) + −( )⎡⎣ ⎤⎦max 0 10  (15-30)

and

 s i , K x s iL i L( ) =  μ −( ) −  + −( )⎡⎣ ⎤⎦max 0 10  (15-31)

where the starting values s
H
(0) = s

L
(0) = 0.

CUSUM Control Chart

In Equations 15-30 and 15-31, K is called the reference value, which is usually chosen about 

halfway between the target μ
0
 and the value of the mean corresponding to the out-of-control 

state, μ
1
 = μ

0
 + Δ. That is, K is about one-half the magnitude of the shift we are interested in, or

K = Δ
2

Notice that S
H
(i) and S

L
(i) accumulate deviations from the target value that are greater than 

K with both quantities reset to zero upon becoming negative. If either S
H
(i) or S

L
(i) exceeds a 

constant H, the process is out of control. This constant H is usually called the decision interval.

Chemical Process Concentration CUSUM Tabular Cusum We illustrate the tabular CUSUM 

with the chemical process concentration data in Table 15-8. The process target is μ
0
 = 99, and we 

use K = 1 as the reference value and H = 10 as the decision interval. The reasons for these choices are explained later.

Table 15-9 shows the tabular CUSUM scheme for the chemical process concentration data. To illustrate the calcula-

tions, note that
s i , x K s i

, x s i

H i H

i H

( ) =  − μ +( ) + −( )⎡⎣ ⎤⎦
=  − +( ) + −( )⎡

max

max

0 1

0 99 1 1

0

⎣⎣ ⎤⎦
=  − + −( )⎡⎣ ⎤⎦max 0 100 1, x s ii H

Example 15-6
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s i , K x s i

, x s i

L i L

i L

( ) =  μ −( ) − + −( )⎡⎣ ⎤⎦
=  −( ) − + −( )⎡

max

max

0 1

0 99 1 1

0

⎣⎣ ⎤⎦
=  − + −( )⎡⎣ ⎤⎦max 0 98 1, x s ii L

Therefore, for observation 1, the CUSUMs are

s , x s

,

H H1 0 100 0

0 102 0 100 0 2 0

1( ) =  − + ( )⎡⎣ ⎤⎦
=  . − +[ ] = .

max

max

and
s , x s

,

L L1 0 98 0

0 98 102 0 0 0

1( ) =  − + ( )⎡⎣ ⎤⎦
=  − . +[ ] =

max

max

as shown in Table 15-9. The quantities n
H
 and n

L
 in Table 15-9 indicate the number of periods in which the CUSUM 

s
H
(i) or s

L
(i) have been nonzero. Notice that the CUSUMs in this example never exceed the decision interval H = 10. 

We would therefore conclude that the process is in control.

Next Steps: The limits for the CUSUM charts may be used to continue to operate the chart in order to monitor future 

productions.

Observation
i

Upper CUSUM Lower CUSUM

x
i

x
i
 – 100 s

H
 (i) n

H
98 – x

i
s

L
(i) n

L

 1 102.0 2.0 2.0 1 –4.0 0.0 0

 2 94.8 –5.2 0.0 0 3.2 3.2 1

 3 98.3 –1.7 0.0 0 –0.3 2.9 2

 4 98.4 –1.6 0.0 0 –0.4 2.5 3

 5 102.0 2.0 2.0 1 –4.0 0.0 0

 6 98.5 –1.5 0.5 2 –0.5 0.0 0

 7 99.0 –1.0 0.0 0 –1.0 0.0 0

 8 97.7 –2.3 0.0 0 0.3 0.3 1

 9 100.0 0.0 0.0 0 –2.0 0.0 0

10 98.1 –1.9 0.0 0 –0.1 0.0 0

11 101.3 1.3 1.3 1 –3.3 0.0 0

12 98.7 –1.3 0.0 0 –0.7 0.0 0

13 101.1 1.1 1.1 1 –3.1 0.0 0

14 98.4 –1.6 0.0 0 –0.4 0.0 0

15 97.0 –3.0 0.0 0 1.0 1.0 1

16 96.7 –3.3 0.0 0 1.3 2.3 2

17 100.3 0.3 0.3 1 –2.3 0.0 0

18 101.4 1.4 1.7 2 –3.4 0.0 0

19 97.2 –2.8 0.0 0 0.8 0.8 1

20 101.0 1.0 1.0 1 –3.0 0.0 0

15-9 Tabular CUSUM for the Chemical Process Concentration Data
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When the tabular CUSUM indicates that the process is out of control, we should search for the 

assignable cause, take any corrective actions indicated, and restart the CUSUMs at zero. It may be 

helpful to have an estimate of the new process mean following the shift. This can be computed from

 ˆ

( )
( )

( )
( )

μ =
+ +     

− −  

⎧

⎨
⎪⎪

⎩

μ

μ

0

0

K
s i

n
s i > H

K
s i

n
s i > H

H

H
H

L

L
L

,

,

 if

if⎪⎪
⎪

 (15-32)

Also, an estimate of the time at which the assignable cause occurred is often taken as the sample 

time at which the upper or lower CUSUM (whichever one signaled) was last equal to zero. 

It is also useful to present a graphical display of the tabular CUSUMs, which are some-

times called CUSUM status charts. They are constructed by plotting s
H
(i) and s

L
(i) versus 

the sample number. Figure 15-21 shows the CUSUM status chart for the data in Example 

15-6. Each vertical bar represents the value of s
H
(i) and s

L
(i) in period i. With the decision  

interval plotted on the chart, the CUSUM status chart resembles a Shewhart control  

chart. We have also plotted the sample statistics x
i
 for each period on the CUSUM  

status chart as the solid dots. This frequently helps the user of the control chart to visualize  

the actual process performance that has led to a particular value of the CUSUM.

The tabular CUSUM is designed by choosing values for the reference value K and the deci-

sion interval H. We recommend that these parameters be selected to provide good average run-

length values. There have been many analytical studies of CUSUM ARL performance. Based on 

them, we may give some general recommendations for selecting H and K. Define H h X= σ  and 

K k X= σ  where σX is the standard deviation of the sample variable used in forming the CUSUM 

(if n = 1, σ = σX X). Using h = 4 or h = 5 and k = 1 / 2 generally provide a CUSUM that has good 

ARL properties against a shift of about 1σX  (or 1σ
X
) in the process mean. If much larger or smaller 

shifts are of interest, set k = δ / 2 where δ is the size of the shift in standard deviation units.

To illustrate how well the recommendations of h = 4 or h = 5 with k = 1 / 2 work, consider 

these average run lengths in Table 15-10. Notice that a shift of 1σX  would be detected in either 

8.38 samples (with k = 1 / 2 and h = 4) or 10.4 samples (with k = 1 / 2 and h = 5). By comparison, 

Table 15-7 shows that an X chart would require approximately 43.9 samples, on the average, 

to detect this shift. 

FIGURE 15-21 The 
CUSUM status chart 
for Example 15-6.
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These design rules were used for the CUSUM in Example 15-6. We assumed that the process 

standard deviation σ = 2. (This is a reasonable value; see Example 15-2.) Then with k = 1 / 2 and 

h = 5, we would use

K k H h= σ = ( ) = = σ = ( ) =1

2
2 1 5 2 10and  

in the tabular CUSUM procedure.

Finally, we should note that supplemental procedures such as the Western Electric 

rules cannot be safely applied to the CUSUM because successive values of S
H
(i) and S

L
(i) 

are not independent. In fact, the CUSUM can be thought of as a weighted average, where 

the weights are stochastic or random. In effect, all CUSUM values are highly correlated, 

thereby causing the Western Electric rules to produce too many false alarms.

15-8.2 EXPONENTIALLY WEIGHTED MOVING-AVERAGE CONTROL CHART

Data collected in time order are often averaged over several time periods. For example, economic 

data are often presented as an average over the last four quarters. That is, at time t, the average of 

the last four measurements can be written as

x x x x xt t t t t=  +  +  +  − − −
1

4

1

4

1

4

1

4
1 2 3

This average places weight of 1 / 4 on each of the most recent observations and zero weight on 

older observations. It is called a moving average and in this, case a window of size 4 is used. An 

average of the recent data is used to smooth the noise in the data to generate a better estimate of the 

process mean than only the most recent observation. However, in a dynamic environment in which 

the process mean may change, the number of observations used to construct the average is kept 

to a modest size so that the estimate can adjust to any change in the process mean. Therefore, the 

window size is a compromise between a better statistical estimate from an average and a response 

to a mean change. If a window of size 10 were used in a moving average, the statistic xt ( )10  would 

have lower variability, but it would not adjust as well to a mean change.

For statistical process control rather than use a fi xed window size it is useful to place the 

most weight on the most recent observation or subgroup average and then gradually decrease 

the weights on older observations. An average of this type can be constructed by a multiplica-

tive decrease in the weights. Let 0 1< λ ≤  denote a constant and μ0 denote the process target 

or historical mean. Suppose that samples of size n ≥ 1 are collected and xt is the average of the 

sample at time t. The exponentially weighted moving-average (EWMA) is

z x x x xt t t t
t t= λ + λ − λ( ) + λ − λ( ) + ⋅ ⋅ ⋅ + λ − λ( ) + − λ( ) μ

= λ −

− −
−

1 1 1 1

1

1

2

2

1

1 0

λλ( ) + − λ( ) μ−
=

−

∑ k
t k

t

k

t

x 1 0
0

1

Shift in Mean (multiple of rX) h = 4 h = 5

0 168 465

0.25  74.2 139

0.50  26.6  38

0.75  13.3  17

1.00    8.38  10.4

1.50    4.75    5.75

2.00    3.34    4.01

2.50    2.62    3.11

3.00    2.19    2.57

4.00    1.71    2.01

15-10 Average Run Lengths for a CUSUM Control Chart with k = 1 / 2
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Each older observation has its weight decreased by the factor 1 − λ( ). The weight on the start-

ing value μ0 is selected so that the weights sum to 1. An EWMA is also sometimes called a 

geometric average.

The value of λ determines the compromise between noise reduction and response to a 

mean change. For example, the series of weights when λ = .0 8 are

0.8, 0.16, 0.032, 0.0064, 0.00128, . . .

and when λ = .0 2, the weights are

0.2, 0.16, 0.128, 0.1024, 0.0819, . . .

When λ = .0 8, the weights decrease rapidly. Most of the weight is placed on the most recent 

observation with modest contributions to the EWMA from older measurements. In this case, the 

EWMA does not average noise much, but it responds quickly to a mean change. However, when 

λ = .0 2, the weights decrease much more slowly and the EWMA has substantial contributions 

from the more recent observations. In this case, the EWMA averages noise more, but it responds 

more slowly to a change in the mean. Fig. 15-22 displays a series of observations with a mean 

shift in the middle on the series. Notice that the EWMA with λ = .0 2 smooths the data more but 

that the EWMA with λ = .0 8 adjusts the estimate to the mean shift more quickly.

It appears that it is difficult to calculate an EWMA because at every time t a new weighted 

average of all previous data is required. However, there is an easy method to calculate zt based on 

a simple recursive equation. Let z0 0= μ . Then it can be shown that

FIGURE 15-22 EWMAs with λ = 0.8 and λ = 0.2 show a compromise 
between a smooth curve and a response to a shift.
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z x zt t t= λ + − λ( ) −1 1   (15-33)

EWMA Update 
Equation

Consequently, only a brief computation is needed at each time t.
To develop a control chart from an EWMA, control limits are needed for Zt . The control 

limits are defined in a straightforward manner. They are placed at 3 standard deviations around 

the mean of the plotted statistic Zt . This follows the general approach for a control chart in 

Equation 15-1. An EWMA control chart may be applied to individual measurements or to 

subgroup averages. Formulas here are developed for the more general case with an average 

from a subgroup of size n. For individual measurements, n = .1

Because Zt is a linear function of the independent observations X ,X , ,Xt1 2  . . .  (and μ0), the 

results from Chapter 5 can be used to show that

E Zt( ) = μ0    and    V Z
n

t
t( ) = σ λ

− λ
− − λ( )⎡

⎣
⎤
⎦

2
2

2
1 1
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where n is the subgroup size. Therefore, an EWMA control chart uses estimates of μ0 and σ
in the following formulas:

LCL
n

t= μ − σ λ
− λ

− − λ( )⎡
⎣

⎤
⎦0

2
3

2
1 1

CL = μ0 (15-34)

UCL
n

t= μ + σ λ
− λ

− − λ( )⎡
⎣

⎤
⎦0

2
3

2
1 1

EWMA Control Chart

Note that the control limits are not of equal width about the center line. The control limits are 

calculated from the variance of Zt and that changes with time. However, for large t, the vari-

ance of Zt converges to

lim
t

tV Z
n→∞

 ( ) = σ  λ
− λ

⎛
⎝⎜

⎞
⎠⎟

2

2

so that the control limits tend to be parallel lines about the center line as t increases.

The parameters μ0 and σ are estimated by the same statistics used in X or X charts. That 

is, for subgroups

μ̂ =0 X    and    σ̂ = R d/ 2    or    σ̂ = S c/ 4

and for n = 1

μ̂ =0 X    and    σ̂ = .MR / 1 128

Chemical Process Concentration EWMA Consider the concentration data shown in Table 15-3. 

Construct an EWMA control chart with λ = .0 2 with n = .1  It was determined that x = .99 1 and mr
__

= .2 59. 

Therefore, μ̂ = .0 99 1 and σ̂ = . . = . .2 59 1 128 2 30/  The control limits for z1 are

LCL = . − .( ) .
− .

− − .( )⎡
⎣⎢

⎤
⎦⎥ = .99 1 3 2 30

0 2

2 0 2
1 1 0 2 98 19

2

LCL = . + .( ) .
− .

− − .( )⎡
⎣⎢

⎤
⎦⎥ = .99 1 3 2 30

0 2

2 0 2
1 1 0 2 100 01

2

The fi rst few values of zt  along with the corresponding control limits are

t 1 2 3 4 5

xt
102 94.8 98.3  98.4 102

zt
  99.68 98.7  98.62  98.58  99.26

LCL   97.72  97.33  97.12 97  96.93

UCL     100.48 100.87 101.08 101.2     101.27

The chart generated by computer software is shown in Figure 15-23. Notice that the control limits widen as time 

increases but quickly stabilize. Each point is within its set of corresponding control limits so there are no signals from 

the chart.

Example 15-7
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10

Sample

UCL = 101.390

X = 99.095

LCL = 96.800

EWMA Chart of X

E
W

M
A

98

2 4 6 8 12 14 16 18 20

99

100

101

102

97

=

FIGURE 15-23 EWMA control chart for the chemical process concentration data from computer software.

Similar to a CUSUM chart, the points plotted on an EWMA control chart are not independent. 

Therefore, run rules should not be applied to an EWMA control chart. Information in the his-

tory of the data that is considered by run rules is to a large extent incorporated into the EWMA 

that is calculated at each time t.
The value of λ is usually chosen from the range 0 1 0 5. λ . .< <  A common choice is λ = . .0 2

Smaller values for λ provide more sensitivity for small shifts and larger values better tune 

the chart for larger shifts. This performance can be seen in the (ARLs) in Table 15-11. These 

calculations are more diffi cult than those used for Shewhart charts, and details are omitted. 

Here, λ = .0 1 and 0.5 are compared. The multiplier of the standard deviation, denoted L in 

the table, is adjusted so that the ARL equals 500 for both choices for λ. That is, the control 

limits are placed at E Z L V Zt t( ) ± ( ) , and L is chosen so the ARL without a mean shift is 500 

in both cases.

The EWMA ARLs in the table indicate that the smaller value for λ is preferred when 

the magnitude of the shift is small. Also, the EWMA performance is in general much better 

than results for a Shewhart control chart (in Table 15-7), and the results are comparable to a 

CUSUM control chart (in Table 15-10). However, these are average results. At the time of an 

increase in the process mean, zt  might be negative, and there would be some performance pen-

alty to fi rst increase zt  to near zero and then further increase it to a signal above the UCL. Such 

a penalty provides an advantage to CUSUM control charts that is not accounted for in these 

ARL tables. A more refi ned analysis can be used to quantify this penalty, but the conclusion is 

that the EWMA penalty is moderate to small in most applications.

Shift in Mean
(multiple of rX

)
k = 0.5

L = 3.07
k = 0.1

L = 2.81

0 500 500

0.25 255 106

0.5    88.8    31.3

0.75    35.9    15.9

1    17.5    10.3

1.5     6.53     6.09

2     3.63     4.36

3     1.93     2.87

15-11 Average Run Lengths for an EWMA Control Chart     
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FOR SECTION 15-8Exercises

15-73. The following data were considered in Quality 
Engineering [“Parabolic Control Limits for The Exponen-

tially Weighted Moving Average Control Charts in Quality 

Engineering” (1992, Vol. 4(4)]. In a chemical plant, the data 

for one of the quality characteristics (viscosity) were obtained 

for each 12-hour batch’s at the batch completion. The results 

of 15 consecutive measurements are shown in the following 

table.

Batch Viscosity Batch Viscosity

1 13.3 9 14.6

2 14.5 10 14.1

3 15.3 11 14.3

4 15.3 12 16.1

5 14.3 13 13.1

6 14.8 14 15.5

7 15.2 15 12.6

8 14.9

(a) Set up a CUSUM control chart for this process. Assume 

that the desired process target is 14.1. Does the process 

appear to be in control?

(b) Suppose that the next five observations are 14.6, 15.3, 15.7, 

16.1, and 16.8. Apply the CUSUM in part (a) to these new 

observations. Is there any evidence that the process has 

shifted out of control?

15-74. The purity of a chemical product is measured every 

two hours. The results of 20 consecutive measurements are as 

follows:

Sample Purity Sample Purity

1 89.11 11 88.55

2 90.59 12 90.43

3 91.03 13 91.04

4 89.46 14 88.17

5 89.78 15 91.23

6 90.05 16 90.92

7 90.63 17 88.86

8 90.75 18 90.87

9 89.65 19 90.73

10 90.15 20 89.78

(a) Set up a CUSUM control chart for this process. Use σ = 

0.8 in setting up the procedure, and assume that the desired 

process target is 90. Does the process appear to be in 

control?

(b) Suppose that the next five observations are 90.75, 90.00, 

91.15, 90.95, and 90.86. Apply the CUSUM in part (a) to 

these new observations. Is there any evidence that the pro-

cess has shifted out of control?

15-75. An automatic senson measures the diameter of 

holes in consecutive order. The results of measuring 25 holes 

follow.

Sample Diameter Sample Diameter

1 9.94 14 9.99

2 9.93 15 10.12

3 10.09 16 9.81

4 9.98 17 9.73

5 10.11 18 10.14

6 9.99 19 9.96

7 10.11 20 10.06

8 9.84 21 10.11

9 9.82 22 9.95

10 10.38 23 9.92

11 9.99 24 10.09

12 10.41 25 9.85

13 10.36

(a) Estimate the process standard deviation.

(b) Set up a CUSUM control procedure, assuming that the tar-

get diameter is 10.0 millimeters. Does the process appear 

to be operating in a state of statistical control at the desired 

target level?

15-76. The concentration of a chemical product is meas-

ured by taking four samples from each batch of material. The 

average concentration of these measurements for the last 20 

batches is shown in the following table:

Batch Concentration Batch Concentration

1 104.5 11 95.4

2 99.9 12 94.5

3 106.7 13 104.5

4 105.2 14 99.7

5 94.8 15 97.7

6 94.6 16 97

7 104.4 17 95.8

 Problem available in WileyPLUS at instructor’s discretion. 

 Tutoring problem available in WileyPLUS at instructor’s discretion.
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 8  99.4 18  97.4

 9 100.3 19 99

10 100.3 20 102.6

(a) Suppose that the process standard deviation is σ = 8 and 

that the target value of concentration for this process is 

100. Design a CUSUM scheme for the process. Does the 

process appear to be in control at the target?

(b) How many batches would you expect to be produced with 

off-target concentration before it would be detected by the 

CUSUM control chart if the concentration shifted to 104? 

Use Table 15-10.

15-77.  Consider a CUSUM with h = 5 and k = 1 / 2. Sam-

ples are taken every two hours from the process. The target 

value for the process is μ
0
 = 50 and σ = 2. Use Table 15-10.

(a) If the sample size is n = 1, how many samples would be 

required to detect a shift in the process mean to μ = 51 on 

average?

(b) How does increasing the sample size to n = 4 affect the 

average run length to detect the shift to μ = 51 that you 

determined in part (a)?

15-78. Consider the purity data in Exercise 15-74. Use σ = .0 8 

and assume that the desired process target is 90.

(a) Construct an EWMA control chart with λ = . .0 2  Does the 

process appear to be in control?

(b) Construct an EWMA control chart with λ = . .0 5  Compare 

your results to part (a).

(c) Suppose that the next five observations are 90.75, 90.00, 

91.15, 90.95, and 90.86. Apply the EWMAs in part (a) and 

(b) to these new observations. Is there any evidence that the 

process has shifted out of control?

15-79.  Consider the diameter data in Exercise 15-75. 

Assume that the desired process target is 10.0 millimeters.

(a) Estimate the process standard deviation.

(b) Construct an EWMA control chart with λ = . .0 2  Does the 

process appear to be in control?

(c) Construct an EWMA control chart with λ = . .0 5  Compare 

your results to part (a).

15-80.  Consider the concentration data in Exercise 

15-76. Use σ = 8 and assume that the desired process target 

is 100.

(a) Construct an EWMA control chart with λ = . .0 2  Does the 

process appear to be in control?

(b) Construct an EWMA control chart with λ = . .0 5  Compare 

your results to part (a).

(c) If the concentration shifted to 104, would you prefer the 

chart in part (a) or (b)? Explain.

15-81. Consider an EMWA control chart. The target value for 

the process is μ =0 50 and σ = .2  Use Table 15-11.

(a) If the sample size is n ,= 1  would you prefer an EWMA chart 

with λ = .0 1 and L = .2 81 or λ = .0 5 and L = .3 07 to detect a 

shift in the process mean to μ = 52 on average? Why?

(b) If the sample size is increased to n ,= 4  which chart in part 

(a) do you prefer? Why?

(c) If an EWMA chart with λ = .0 1 and L = .2 81 is used, what 

sample size is needed to detect a shift to μ = 52 in approxi-

mately three samples on average?

15-82. A process has a target of μ
0
 = 100 and a standard devi-

ation of σ = 4. Samples of size n = 1 are taken every two hours. 

Use Table 15-10.

(a) Suppose that the process mean shifts to μ = 102. How 

many hours of production occur before the process shift is 

detected by a CUSUM with h = 5 and k = 1 / 2?

(b) It is important to detect the shift defined in part (a) more 

quickly. A proposal to reduce the sampling frequency 

to 0.5 hour is made. How does this affect the CUSUM 

control procedure? How much more quickly is the shift 

detected?

(c) Suppose that the 0.5 hour sampling interval in part (b) is 

adopted. How often do false alarms occur’s with this new 

sampling interval? How often did they occur with the old 

interval of two hours?

(d) A proposal is made to increase the sample size to n = 4 

and retain the two-hour sampling interval. How does this 

suggestion compare in terms of average detection time 

to the suggestion of decreasing the sampling interval  

to 0.5 hour?

15-83. Heart rate (in counts/minute) is measured every 30 

minutes. The results of 20 consecutive measurements are as 

follows:

Sample Heart Rate Sample Heart Rate

 1 68 11 79

 2 71 12 79

 3 67 13 78

 4 69 14 78

 5 71 15 78

 6 70 16 79

 7 69 17 79

 8 67 18 82

 9 70 19 82

10 70 20 81

Suppose that the standard deviation of the heart rate is σ = 3 

and the target value is 70.

(a) Design a CUSUM scheme for the heart rate process. Does 

the process appear to be in control at the target?

(b) How many samples on average would be required to detect 

a shift of the mean heart rate to 80?

15-84. The number of influenza patients (in thousands) visit-

ing hospitals weekly is shown in the following table. Suppose 

that the standard deviation is σ = 2 and the target value is 160.
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Sample Number of Patients Sample
Number of 

Patients

 1 162.27 13 159.989

 2 157.47 14 159.09

 3 157.065 15 162.699

 4 160.45 16 163.89

 5 157.993 17 164.247

 6 162.27 18 162.7

 7 160.652 19 164.859

 8 159.09 20 163.65

 9 157.442 21 165.99

10 160.78 22 163.22

11 159.138 23 164.338

12 161.08 24 164.83

(a) Design a CUSUM scheme for the process. Does the pro-

cess appear to be in control at the target?

(b) How many samples on average would be required to detect 

a shift of the mean to 165?

15-85. Consider the heart rate data in Exercise 15-83. Use 

μ = 70 and σ = 3. 

(a) Construct an EWMA control chart with λ = 0 1. . Use 

L = 2 81. . Does the process appear to be in control?

(b) Construct an EWMA control chart with λ = 0 5. . Use 

L = 3 07. . Compare your results to those in part (a).

(c) If the heart rate mean shifts to 76, approximate the ARLs 

for the charts in parts (a) and (b). 

15-86. Consider the influenza data in Exercise 15-84. Use 

μ = 160 and σ = 2.

(a) Construct an EWMA control chart with λ = 0 1. . Use

L = 2 81. . Does the process appear to be in control?

(b) Construct an EWMA control chart with λ = 0 5. . Use 

L = 3 07. . Compare your results to those in part (a).

15-9 Other SPC Problem-Solving Tools
Although the control chart is a very powerful tool for investigating the causes of variation in a 

process, it is most effective when used with other SPC problem-solving tools. In this section, 

we illustrate some of these tools, using the printed circuit board defect data in Example 15-5.

Figure 15-17 shows a U chart for the number of defects in samples of five printed circuit 

boards. The chart exhibits statistical control, but the number of defects must be reduced. The 

average number of defects per board is 8 / 5 = 1.6, and this level of defects would require 

extensive rework.

FIGURE 15-24 Pareto diagram for printed circuit board defects.
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The first step in solving this problem is to construct a Pareto diagram of the individual 

defect types. The Pareto diagram shown in Fig. 15-24, indicates that insufficient solder and 

solder balls are the most frequently occurring defects, accounting for (109 /160)100 = 68% 

of the observed defects. Furthermore, the first five defect categories on the Pareto chart are 

all solder-related defects. This points to the flow solder process as a potential opportunity for 

improvement.

To improve the surface mount process, a team consisting of the operator, the shop supervi-

sor, the manufacturing engineer responsible for the process, and a quality engineer meets to 

study potential causes of solder defects. They conduct a brainstorming session and produce 

the cause-and-effect diagram in Fig. 15-25. The cause-and-effect diagram is widely used to 

display the various potential causes of defects in products and their interrelationships. They 

are useful in summarizing knowledge about the process.

As a result of the brainstorming session, the team tentatively identifies the following variables 

as potentially influential in creating solder defects:

1. Flux specific gravity

2. Reflow temperature

3. Squeegee speed

4. Squeegee angle

5. Paste height

6. Reflow temperature

7. Board loading method

A statistically designed experiment could be used to investigate the effect of these seven 

variables on solder defects.

In addition, the team constructed a defect concentration diagram for the product; it is 

just a sketch or drawing of the product with the most frequently occurring defects shown 

on the part. This diagram is used to determine whether defects occur in the same loca-

tion on the part. The defect concentration diagram for the printed circuit board is shown 

in Fig. 15-26. This diagram indicates that most of the insufficient solder defects are near 

the front edge of the board. Further investigation showed that one of the pallets used to 

carry the boards was bent, causing the front edge of the board to make poor contact with 

the squeegee.

FIGURE 15-25 Cause-and-effect diagram for the printed circuit board flow solder process.
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When the defective pallet was replaced, a designed experiment was used to investigate the 

seven variables discussed earlier. The results of this experiment indicated that several of these 

factors were influential and could be adjusted to reduce solder defects. After the results of the 

experiment were implemented, the percentage of solder joints requiring rework was reduced 

from 1% to under 100 parts per million (0.01%).

15-10 Decision Theory
Quality improvement requires decision making in the presence of uncertainty as do many 

other management and engineering decisions. Consequently, a framework to characterize the 

decision problem in terms of actions, possible states, and associated probabilities is useful 

to quantitatively compare alternatives. Decision theory is the study of mathematical models 

for decision making. Actions are evaluated and selected based on the model and quantitative 

criteria.

15-10.1 DECISION MODELS

A simple way to characterize decisions is in terms of actions, states with probabilities, and 

outcomes as costs (or profits). A decision usually involves a set of possible actions

A a a aK= { , , . . . , }1 2

For example, one might purchase an extended warranty with the purchase of a vehicle (action a1)  

or not (action a2).

The possible future situations are represented with a collection of states

S s s sM= { , , . . . , }1 2

One state occurs, but we are not certain of the future state at the time of our decision. For example, 

a possible state is that a major repair is required during the extended warranty; another is that no 

repair is required.

We often associate a probability, for example, pm with each state sm, so that p p pM1 2 1+ + ⋅ ⋅ ⋅ + = .  

The probabilities are important and can be difficult to estimate. Sometimes we have historical 

data from past performance and can derive estimates. In other cases, we might have to rely on 

the subjective belief of a collection of experts.

The outcome is often expressed in terms of economic cost (or profit) that depends on the 

actions and the state that occurs. That is, let

C a skm k m=  cost when action  is selected and state  occurs 

For example, if we purchases an extended warranty and no repair is required, our loss is only 

the cost of the warranty. Clearly, if we do not purchase the warranty and a major repair is 

required, our loss is the cost of the repair.

Front

Region of insufficient solder

Back

FIGURE 15-26 Defect concentration  
diagram for a printed circuit board.
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15-10.2 DECISION CRITERIA

The numerical summary of the decision problem is presented with actions, states, and probabili-

ties as illustrated in Example 15-8. However, the question regarding the “best” action still needs 

to be answered. Because the state is not known at the time of the decision, different costs are 

possible. Different criteria based on these costs (and the associated probabilities) can be used to 

select an action, but, as we show, these criteria do not always lead to the same action.

We might be pessimistic and focus on the worst-possible state for each action. In this 

approach, we compares actions based on the maximum cost that can occur. For example, from 

Table 15-12, the maximum cost that occurs for action a1 is max $m mC1 200=  (regardless of the 

state). For action a2, we have max max{ , , } $m mC2 1200 300 0 1200= = . A reasonable criterion 

is to select the action that minimizes this maximum cost, and in this case, the choice is a1. In 

general, this approach selects the action ak to minimize maxm kmC .

Extended Warranty Decision Problem For deciding whether to purchase an extended warranty 

on a vehicle, we use the following model. The actions are

a a1 2= =purchase extended warranty do not purchase extended waarranty

Assume that one of three states corresponding to a major, minor, or no repair can occur during the warranty period. We 

obtain probability estimates for each state. The states and associated probabilities are

 
s

s
1

2

=
=

major repair, probability 0.1

minor repair, probabilitty 0.5

no repair, probability 0.4s3 =
Finally, the costs Ckm can be presented in a decision evaluation table in which each row is an action and each column is 

a state. We assume that the extended warranty coverage costs $200. Table 15-12 formally relates the cost of each action 

and possible future state.

Example 15-8 

The minimin criterion select the action ak that corresponds to 

    min mink m kmC  (15-36)

Minimin Criterion

The minimax criterion selects the action ak that corresponds to 

    min maxk m kmC  (15-35)

The name clearly follows from the minimum and maximum that are computed.

Minimax Criterion

The minimax criterion focuses on the worst-case (pessimistic) scenario and ignores the prob-

abilities associated with the states. A state with a high cost for a specifi c action, even if the 

state is very unlikely, can penalize and eliminate the action.

An alternative criterion is to focus on the best-case (optimistic) scenario among the states 

and order the actions based on minimum cost minm kmC .

Probabilities  0.1  0.5 0.4 

States s1 s2 s3

Actions a1 $200 $200 $200

a2 $1,200 $300 $0

15-12 Decision Evaluation Table for Example 15-8     

For the warranty example, minm mC1 200=  and minm mC2 0=  so that a2 is selected with this 

criterion.
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The previous criteria ignore the probabilities associated with the states. The most probable 

criterion evaluates an action based on the cost of the state with the most likely probability.

The most probable criterion selects the action to minimize the cost of the 

most probable state. (15-37)

Most Probable 
Criterion

The expected cost criterion selects that state to minimize the expected cost. (15-38)
Expected Cost 

Criterion

For the warranty example, the most probable state is a minor repair. Based on this state 

alone, the cost associated with a1 is $200, and the cost associated with a2 is $300. Conse-

quently, a1 is chosen with this criterion.

An obvious criterion is the expected cost. Here we associate a random variable Xk with each 

action ak. The distribution of the discrete random variable Xk consists of the costs and the associated 

probabilities for action ak. The expected cost of ak is defined simply as the expected value E Xk( ).

For the warranty example, E X1 200( ) =  and E X2 1200 0 1 300 0 5( ) = ( ) + +. ( . ) 0 0 4 270.( ) = . 

Consequently, the minimum expected cost is produced by action a1.

A decision problem is often represented with a graph known as a decision tree. See Fig. 15-27 

for a decision tree of the warranty example. A square denotes a decision node where an action is 

selected. Each arc from a decision node represents an action. Each action arc terminates with a 

circular node to indicate that a state has been chosen (outside the control of the decision maker), 

and the states are represented by the arcs from the circular nodes. Each arc is labeled with the 

probability of the state. The cost is shown at the end of these arcs. This is the basic structure of 

the decision problem. Fig. 15-27 computed from Equation 15-38 also shows the expected cost 

above each circle. Based on the expected costs, action a1 is clearly preferred. We could replace the 

expected cost with other criterion discussed in this section to summarize the alternative actions.

In more complex problems, there is a series of actions and states (represented as rectangles 

and circles, respectively, in the decision tree). Probabilities are associated with each state, and 

a cost is associated with each path through the tree. Fig 15-28 provides an illustration. Given 

a criterion, we start at the end of a path and apply the criterion to determine the action. We 

continue the analysis from the end of a path until we reach the initial action node of the tree. 

This is illustrated in the following example.
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–

+

–
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–

–
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Unique
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High
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Low

No

No

0.7

0.7
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0.7

0.3

0.8

0.2

0.2

0.8

0.3

0.7

0.3
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$4M

$3M

Sales

$3M

$1M

Sales

$2.5M

$2M

Sales

$3M

$1M

Sales

$2M

$1.5M

FIGURE 15-28 Decision tree for the develop or 
contract example.
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No

Repair
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Minor

$270 0.1

0.5

0.4

No
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FIGURE 15-27 Decision tree for extended 
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15-87. Suppose that the cost of a major repair without the 

extended warranty in Example 15-8 is changed to $1000. 

Determine the decision selected based on the minimax, most 

probable, and expected cost criteria.

15-88. Reconsider the extended warranty decision in Exam-

ple 15-8. Suppose that the probabilities of the major, minor, 

and no repair states are changed to 0.2, 0.4, and 0.4, respec-

tively. Determine the decision selected based on the minimax, 

most probable, and expected cost criteria.

15-89. Analyze Example 15-9 based on the most probable 

criterion and determine the actions that are selected at each 

decision node. Do any actions differ from those selected in the 

example?

15-90. Analyze Example 15-9 based on the expected profi t 

criterion and determine the actions that are selected at each 

decision node. Do any actions differ from those selected in the 

example?

FOR SECTION 15-9Exercises
 Problem available in WileyPLUS at instructor’s discretion. 

 Tutoring problem available in WileyPLUS at instructor’s discretion.

15-11 Implementing SPC
The methods of statistical process control can provide signifi cant payback to those companies 

that can successfully implement them. Although SPC seems to be a collection of statistically 

based problem-solving tools, there is more to its successful use than simply learning and using 

these tools. Management involvement and commitment to the quality-improvement process is 

the most vital component of SPC’s potential success. Management is a role model, and others 

Develop or Contract Decision Problem In this example, the basic decision task is extended to 

several decisions. The decision tree is shown in Fig. 15-26. The fi rst decision is whether to develop 

a new product or contract with a supplier. This is indicated by the box labeled Develop? If a new product is developed, 

it may be unique, but it may be more typical of what is currently available on the market. This is indicated by the circle 

labeled Unique? For either a new product or a contracted one, the price needs to be set. Here the decision is indicated 

by Price? boxes. The choices are either high or low. Finally, the market conditions when the product is available may 

be favorable or unfavorable to sales as indicated by the circle labeled Sales. Favorable and unfavorable markets are 

indicated by the arcs labeled + and –, respectively.

The probability of an arc is denoted by the number below it. For example, the probability that a unique product is developed 

is 0.7. Similarly, the probabilities of favorable or unfavorable markets are shown with the corresponding probabilities. Note 

that a lower price decision leads to the higher probability of a favorable market. Furthermore, the dollar amount shown in the 

fi gure indicates the profi t to the corporation for the corresponding path through the decision tree. As mentioned previously, one 

might base a decision on profi ts (more generally, gains) rather than costs. In such a case, the objective is to maximize profi ts.

We can extend the procedure for a single decision node as follows. Start with the dollar amounts at the terminal nodes 

and work backward through the tree to evaluate a decision based on one of the criteria. Because we work with profi ts in this 

example, the pessimistic approach is to select the decision to maximize the minimum profi t. For example, suppose that a 

new product is developed, the result is unique, and the price is set high. The two possible dollar values are $6M and $2M. 

The pessimistic approach is to value the decision to set the price high in this path as $2M. Similarly, the decision to set the 

price low is valued at $3M. Consequently, the decision along this path is to set the price low with a worst-case profi t of $3M.

Similarly, suppose that a new product is developed, the result is not unique, and the price is set high. The two possible dol-

lar values are $3M and $1M. The pessimistic approach is to value the decision to set the price high in this path as $1M. The 

decision to set the price low is pessimistically valued at $2M. Consequently, the decision to develop a new product can result 

in a unique product (which is pessimistically evaluated as $2M with probability 0.7) or a nonunique product (which is pes-

simistically evaluated at $1M). The pessimistic view is that the decision to develop a new product generates a profi t of $1M.

Furthermore, suppose that the product is not developed (but contracted) and the price is set high with the pessimistic 

profi t of $1M. If the price is set low, the pessimistic profi t is $1.5M. Consequently, the price decision based on this criterion 

is to set the price low with a pessimistic profi t of $1.5M. Finally, the pessimistic profi t from the decision to develop or not 

develop a new product is $1M and $1.5M, respectively. Therefore, based on this criterion, a new product is not developed.

Note that the probabilities do not enter into this decision. This was mentioned previously as one of the disadvantages 

of the pessimistic criterion. Alternative criteria are left as exercises.

Example 15-9 
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in the organization look to management for guidance and as an example. A team approach is 

also important, for it is usually difficult for one person alone to introduce process improve-

ments. Many of the “magnificent seven’’ problem-solving tools are helpful in building an 

improvement team, including cause-and-effect diagrams, Pareto charts, and defect concentra-

tion diagrams. The basic SPC problem-solving tools must become widely known and widely 

used throughout the organization. Continuous training in SPC and quality improvement is 

necessary to achieve this widespread knowledge of the tools.

The objective of an SPC-based quality-improvement program is continuous improvement 

on a weekly, quarterly, and annual basis. SPC is not a one-time program to be applied when 

the business is in trouble and later abandoned. Quality improvement must become part of the 

organization's culture.

The control chart is an important tool for process improvement. Processes do not naturally 

operate in an in-control state, and the use of control charts is an important step that must be 

taken early in an SPC program to eliminate assignable causes, reduce process variability, and 

stabilize process performance. To improve quality and productivity, we must begin to man-

age with facts and data, not just rely on judgment. Control charts are an important part of this 

change in management approach.

In implementing a companywide SPC program, we have found that the following elements 

are usually present in all successful efforts:

1. Management leadership

2. Team approach

3. Education of employees at all levels

4. Emphasis on continuous improvement

5. Mechanism for recognizing success

We cannot overemphasize the importance of management leadership and the team approach. 

Successful quality improvement is a “top-down” management-driven activity. It is also impor-

tant to measure progress and success and to spread knowledge of this success throughout the 

organization. Communicating successful improvements throughout the company can provide 

motivation and incentive to improve other processes and to make continuous improvement a 

normal part of the way of doing business.

The philosophy of W. Edwards Deming provides an important framework for implement-

ing quality and productivity improvement. Deming’s philosophy is summarized in his 14 

points for management. The adherence to these management principles has been an important 

factor in Japan’s industrial success and continues to be the catalyst in that nation’s quality- and 

productivity-improvement efforts. This philosophy has also now spread rapidly in the West. 

Deming’s 14 points are as follows.

1. Create a constancy of purpose focused on the improvement of products and services.
Constantly try to improve product design and performance. Investment in research, devel-

opment, and innovation will have a long-term payback to the organization.

2. Adopt a new philosophy of rejecting poor workmanship, defective products, or bad 
service. It costs as much to produce a defective unit as it does to produce a good one 

(and sometimes more). The cost of dealing with scrap, rework, and other losses created by 

defectives is an enormous drain on company resources.

3. Do not rely on mass inspection to “control quality.” All inspection can do is sort out defec-

tives, and at this point, it is too late because we have already paid to produce these defectives. 

Inspection occurs too late in the process, is expensive, and is often ineffective. Quality results 

from the prevention of defectives through process improvement, not inspection.

4. Do not award business to suppliers on the basis of price alone, but also consider quality.
Price is a meaningful measure of a supplier’s product only if it is considered in relation to a 

measure of quality. In other words, the total cost of the item, not jus the purchase price must 

c15.indd   721 9/24/2013   8:30:23 PM



722  Chapter 15/Statistical Quality Control

be considered. When quality is considered, the lowest bidder is frequently not the low-cost 

supplier. Preference should be given to suppliers who use modern methods of quality improve-

ment in their business and who can demonstrate process control and capability.

5.Focus on continuous improvement. Constantly try to improve the production and service 

system. Involve the workforce in these activities and use statistical methods, particularly 

the SPC problem-solving tools discussed previously.

6.Practice modern training methods and invest in training for all employees. All employ-

ees should be trained in the technical aspects of their job, as well as in modern quality- and 

productivity-improvement methods. The training should encourage all employees to prac-

tice these methods every day.

7.Practice modern supervision methods. Supervision should not consist merely of passive 

surveillance of workers but also should be focused on helping the employees improve the 

system in which they work. The first goal of supervision should be to improve the work 

system and the product.

8.Drive out fear. Many workers are afraid to ask questions, report problems, or point out 

conditions that are barriers to quality and effective production. In many organizations, the 

economic loss associated with fear is large; only management can eliminate fear.

9.Break down the barriers between functional areas of the business. Teamwork among 

different organizational units is essential for effective quality and productivity improve-

ment to take place.

10.Eliminate targets, slogans, and numerical goals for the workforce. A target such as 

“zero defects” is useless without a plan as to how to achieve it. In fact, these slogans and 

“programs” are usually counterproductive. Work to improve the system and provide infor-

mation on that.

11.Eliminate numerical quotas and work standards. These standards have historically 

been set without regard to quality. Work standards are often symptoms of management’s 

inability to understand the work process and to provide an effective management system 

focused on improving this process.

12.Remove the barriers that discourage employees from doing their jobs. Management 

must listen to employee suggestions, comments, and complaints. The person who is doing 

the job is the one who knows the most about it, and usually has valuable ideas about how to 

make the process work more effectively. The workforce is an important participant in the 

business, not just an opponent in collective bargaining.

13.Institute an ongoing program of training and education for all employees. Education in 

simple, powerful statistical techniques should be mandatory for all employees. Use of the basic 

SPC problem-solving tools, particularly the control chart, should become widespread in the 

business. As these charts become widespread, and as employees understand their uses, they are 

more likely to look for the causes of poor quality and to identify process improvements. Educa-

tion is a way of making everyone partners in the quality-improvement process.

14.Create a structure in top management that vigorously advocates the first 13 points.

As we read Deming’s 14 points, we notice two things. First, there is a strong emphasis 

on change. Second, the role of management in guiding this change process is of dominating 

importance. But what should be changed, and how should this change process be started? 

For example, if we want to improve the yield of a semiconductor manufacturing process, 

what should we do? It is in this area that statistical methods most frequently come into play. 

To improve the semiconductor process, we must determine which controllable factors in the 

process influence the number of defective units produced. To answer this question, we must 

collect data on the process and see how the system reacts to changes in the process variables. 

Statistical methods, including the SPC and experimental design techniques in this book, can 

contribute to this knowledge.
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15-91. The diameter of fuse pins used in an aircraft engine 

application is an important quality characteristic. Twenty-five 

samples of three pins each are shown as follows:

Sample  
Number

Diameter

 1 64.030 64.002 64.019

 2 63.995 63.992 64.001

 3 63.988 64.024 64.021

 4 64.002 63.996 63.993

 5 63.992 64.007 64.015

 6 64.009 63.994 63.997

 7 63.995 64.006 63.994

 8 63.985 64.003 63.993

 9 64.008 63.995 64.009

10 63.998 74.000 63.990

11 63.994 63.998 63.994

12 64.004 64.000 64.007

13 63.983 64.002 63.998

14 64.006 63.967 63.994

15 64.012 64.014 63.998

16 64.000 63.984 64.005

17 63.994 64.012 63.986

18 64.006 64.010 64.018

19 63.984 64.002 64.003

20 64.000 64.010 64.013

21 63.988 64.001 64.009

22 64.004 63.999 63.990

23 64.010 63.989 63.990

24 64.015 64.008 63.993

25 63.982 63.984 63.995

(a) Set up X  and R charts for this process. If necessary, revise 

limits so that no observations are out of control.

(b) Estimate the process mean and standard deviation.

(c) Suppose that the process specifications are at 64 ± 0.02. 

Calculate an estimate of PCR. Does the process meet a 

minimum capability level of PCR ≥ 1.33?

(d) Calculate an estimate of PCR
k
. Use this ratio to draw con-

clusions about process capability.

(e) To make this process a 6-sigma process, the variance σ2 

would have to be decreased such that PCR
k
 = 2.0. What 

should this new variance value be?

(f) Suppose that the mean shifts to 64.01. What is the prob-

ability that this shift is detected on the next sample? What 

is the ARL after the shift?

15-92. Rework Exercise 15-91 with X  and S charts.

15-93.  Plastic bottles for liquid laundry detergent are 

formed by blow molding. Twenty samples of n = 100 bottles 

are inspected in time order of production, and the fraction 

defective in each sample is reported. The data are as follows:

Sample Fraction Defective

 1 0.12

 2 0.15

 3 0.18

 4 0.10

 5 0.12

 6 0.11

 7 0.05

 8 0.09

 9 0.13

10 0.13

11 0.10

12 0.07

13 0.12

14 0.08

15 0.09

16 0.15

17 0.10

18 0.06

19 0.12

20 0.13

(a) Set up a P chart for this process. Is the process in statisti-

cal control?

(b) Suppose that instead of n = 100, n = 200. Use the data given 

to set up a P chart for this process. Revise the control limits 

if necessary.

(c) Compare your control limits for the P charts in parts (a) and 

(b). Explain why they differ. Also, explain why your assess-

ment about statistical control differs for the two sizes of n.

15-94. Cover cases for a personal computer are manufactured 

by injection molding. Samples of five cases are taken from 

the process periodically, and the number of defects is noted. 

Twenty-five samples follow:

Supplemental Exercises

 Problem available in WileyPLUS at instructor’s discretion. 

 Tutoring problem available in WileyPLUS at instructor’s discretion.
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Sample No. of Defects Sample No. of Defects

 1 3 14 8

 2 2 15 0

 3 0 16 2

 4 1 17 4

 5 4 18 3

 6 3 19 5

 7 2 20 0

 8 4 21 2

 9 1 22 1

10 0 23 9

11 2 24 3

12 3 25 2

13 2

(a) Using all the data, find trial control limits for a U chart for 

the process.

(b) Use the trial control limits from part (a) to identify out-of-

control points. If necessary, revise your control limits.

(c) Suppose that instead of samples of five cases, the sample 

size was 10. Repeat parts (a) and (b). Explain how this 

change alters your responses to parts (a) and (b).

15-95.  An article in Quality Engineering [“Is the Process 

Capable? Tables and Graphs in Assessing C
pm

” (1992, Vol. 4(4)]. 

Considered manufacturing data. Specifications for the outer diam-

eter of the hubs were 60 3265 0 001. ± .  mm. A random sample with 

size n = 20 was taken and the data are shown in the following table:

Sample x Sample x

1 60.3262 11 60.3262

2 60.3262 12 60.3262

3 60.3262 13 60.3269

4 60.3266 14 60.3261

5 60.3263 15 60.3265

6 60.3260 16 60.3266

7 60.3262 17 60.3265

8 60.3267 18 60.3268

9 60.3263 19 60.3262

10 60.3269 20 60.3266

(a) Construct a control chart for individual measurements. 

Revise the control limits if necessary.

(b) Compare your chart in part (a) to one that uses only the last 

(least significant) digit of each diameter as the measure-

ment. Explain your conclusion.

(c) Estimate μ and σ from the moving range of the revised 

chart and use this value to estimate PCR and PCR
k
 and 

interpret these ratios.

15-96. The following data from the U.S. Department of 

Energy Web site (www.eia.doe.gov) reported the total U.S. 

renewable energy consumption by year (trillion BTU) from 

1973 to 2004.

Year

Total Renewable 
Energy  

Consumption 
(Trillion BTU) Year

Total Renewable 
Energy  

Consumption 
(Trillion BTU) 

1973 4433.121 1989 6294.209

1974 4769.395 1990 6132.572

1975 4723.494 1991 6158.087

1976 4767.792 1992 5907.147

1977 4249.002 1993 6155.959

1978 5038.938 1994 6064.779

1979 5166.379 1995 6669.261

1980 5494.420 1996 7136.799

1981 5470.574 1997 7075.152

1982 5985.352 1998 6560.632

1983 6487.898 1999 6598.630

1984 6430.646 2000 6158.232

1985 6032.728 2001 5328.335

1986 6131.542 2002 5835.339

1987 5686.932 2003 6081.722

1988 5488.649 2004 6116.287

(a) Using all the data, find calculate control limits for a control 

chart for individual measurements, construct the chart, and 

plot the data.

(b) Do the data appear to be generated from an in-control pro-

cess? Comment on any patterns on the chart.

15-97. The following dataset was considered in Quality Engi-
neering [“Analytic Examination of Variance Components” 

(1994–1995, Vol. 7(2)]. A quality characteristic for cement 

mortar briquettes was monitored. Samples of size n = 6 were 

taken from the process, and 25 samples from the process are 

shown in the following table:

(a) Using all the data, calculate trial control limits for X  and S 

charts. Is the process in control?

Batch X s

 1 572.00  73.25

 2 583.83  79.30

 3 720.50  86.44

 4 368.67  98.62

 5 374.00  92.36

 6 580.33  93.50

 7 388.33 110.23

 8 559.33  74.79

 9 562.00  76.53

10 729.00  49.80

11 469.00  40.52
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12 566.67 113.82

13 578.33 58.03

14 485.67 103.33

15 746.33 107.88

16 436.33 98.69

17 556.83 99.25

18 390.33 117.35

19 562.33 75.69

20 675.00 90.10

21 416.50 89.27

22 568.33 61.36

23 762.67 105.94

24 786.17 65.05

25 530.67 99.42

(b) Suppose that the specifications are at 580 250± . What state-

ments can you make about process capability? Compute 

estimates of the appropriate process capability ratios.

(c) To make this process a “6-sigma process,” the variance σ2 

would have to be decreased such that PCRk = . .2 0  What 

should this new variance value be?

(d) Suppose the mean shifts to 600. What is the probability that 

this shift is detected on the next sample? What is the ARL 

after the shift?

15-98.  Suppose that an X  control chart with 2-sigma 

limits is used to control a process. Find the probability that 

a false out-of-control signal is produced on the next sample. 

Compare this with the corresponding probability for the chart 

with 3-sigma limits and discuss. Comment on when you would 

prefer to use 2-sigma limits instead of 3-sigma limits.

15-99. Consider the diameter data in Exercise 15-91.

(a) Construct an EWMA control chart with λ = .0 2 and L = .3  

Comment on process control.

(b) Construct an EWMA control chart with λ = .0 5 and L = 3 

and compare your conclusion to part (a).

15-100. Consider the renewable energy data in Exercise 15-96.

(a) Construct an EWMA control chart with λ = .0 2 and L = .3  

Do the data appear to be generated from an incontrol 

process?

(b) Construct an EWMA control chart with λ = .0 5 and L = 3 

and compare your conclusion to part (a).

15-101.  Consider the hub data in Exercise 15-95.

(a) Construct an EWMA control chart with λ = .0 2 and L = .3  

Comment on process control.

(b) Construct an EWMA control chart with λ = .0 5 and L = 3 

and compare your conclusion to part (a).

15-102. Consider the data in Exercise 15-20. Set up a CUSUM 

scheme for this process assuming that μ = 16 is the process tar-

get. Explain how you determined your estimate of σ and the 

CUSUM parameters K and H.

15-103.  Consider the hardness measurement data in Exer-

cise 15-19. Set up a CUSUM scheme for this process using μ = 

50 and σ = 2 so that K = 1 and H = 10. Is the process in control?

15-104. Reconsider the viscosity data in Exercise 15-22. Con-

struct a CUSUM control chart for this process using μ
0
 = 500 as 

the process target. Explain how you determined your estimate 

of σ and the CUSUM parameters H and K.

15-105. The following data were considered in Quality Progress 
[“Digidot Plots for Process Surveillance” (1990, May, pp. 66–68)]. 

Measurements of center thickness (in mils) from 25 contact lenses 

sampled from the production process at regular intervals are shown 

in the following table.

Sample x Sample x

 1 0.3978 14 0.3999

 2 0.4019 15 0.4062

 3 0.4031 16 0.4048

 4 0.4044 17 0.4071

 5 0.3984 18 0.4015

 6 0.3972 19 0.3991

 7 0.3981 20 0.4021

 8 0.3947 21 0.4009

 9 0.4012 22 0.3988

10 0.4043 23 0.3994

11 0.4051 24 0.4016

12 0.4016 25 0.4010

13 0.3994

(a) Construct a CUSUM scheme for this process with the target 

μ = . .0 0 4  Explain how you determined your estimate of σ and 

the CUSUM parameters H and K. Is the process in control?

(b) Construct an EWMA control chart with λ = .0 5 and L = 3 

and compare your conclusions to part (a).

15-106. Suppose that a process is in control and an X  chart is 

used with a sample size of 4 to monitor the process. Suddenly 

there is a mean shift of 1.5σ.

(a) If 3-sigma control limits are used on the X  chart, what is 

the probability that this shift remains undetected for three 

consecutive samples?

(b) If 2-sigma control limits are in use on the X  chart, what is 

the probability that this shift remains undetected for three 

consecutive samples?

(c) Compare your answers to parts (a) and (b) and explain why 

they differ. Also, which limits you would recommend using 

and why?

15-107.  Consider the control chart for individuals with 

3-sigma limits.

(a) Suppose that a shift in the process mean of magnitude σ occurs. 

Verify that the ARL for detecting the shift is ARL = 43.9.

(b) Find the ARL for detecting a shift of magnitude 2σ in the 

process mean.

(c) Find the ARL for detecting a shift of magnitude 3σ in the 

process mean.

(d) Compare your responses to parts (a), (b), and (c) and 

explain why the ARL for detection is decreasing as the 

magnitude of the shift increases.
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15-108. Consider a control chart for individuals applied to a 

continuous 24-hour chemical process with observations taken 

every hour.

(a) If the chart has 3-sigma limits, verify that the in-control ARL 

is 370. How many false alarms would occur each 30-day 

month, on the average, with this chart?

(b) Suppose that the chart has 2-sigma limits. Does this reduce 

the ARL for detecting a shift in the mean of magnitude σ? 

(Recall that the ARL for detecting this shift with 3-sigma 

limits is 43.9.)

(c) Find the in-control ARL if 2-sigma limits are used on the 

chart. How many false alarms would occur each month 

with this chart? Is this in-control ARL performance satis-

factory? Explain your answer.

15-109.  The depth of a keyway is an important part quality 

characteristic. Samples of size n = 5 are taken every four hours from 

the process, and 20 samples are summarized in the following table.

(a) Using all the data, find trial control limits for X  and R 

charts. Is the process in control?

(b) Use the trial control limits from part (a) to identify out-

of-control points. If necessary, revise your control limits. 

Then estimate the process standard deviation.

(c) Suppose that the specifications are at 140 ± 2. Using the 

results from part (b), what statements can you make about 

process capability? Compute estimates of the appropriate 

process capability ratios.

(d) To make this a 6-sigma process, the variance σ2 would have 

to be decreased such that PCR
k
 = 2.0. What should this new 

variance value be?

(e) Suppose that the mean shifts to 139.7. What is the prob-

ability that this shift is detected on the next sample? What 

is the ARL after the shift?

Sample X r

 1 139.7 1.1

 2 139.8 1.4

 3 140.0 1.3

 4 140.1 1.6

 5 139.8 0.9

 6 139.9 1.0

 7 139.7 1.4

 8 140.2 1.2

 9 139.3 1.1

10 140.7 1.0

11 138.4 0.8

12 138.5 0.9

13 137.9 1.2

14 138.5 1.1

15 140.8 1.0

16 140.5 1.3

17 139.4 1.4

18 139.9 1.0

19 137.5 1.5

20 139.2 1.3

15-110.  Consider a control chart for individuals with 

3-sigma limits. What is the probability that there is not a signal 

in 3 samples? In 6 samples? In 10 samples?

15-111.  Suppose that a process has a PCR = 2, but the 

mean is exactly 3 standard deviations above the upper specifi-

cation limit. What is the probability of making a product out-

side the specification limits?

15-112. A process is controlled by a P chart using samples of 

size 100. The center line on the chart is 0.05.

(a) What is the probability that the control chart detects a shift 

to 0.08 on the first sample following the shift?

(b) What is the probability that the control chart does not 

detect a shift to 0.08 on the first sample following the shift, 

but does detect it on the second sample?

(c) Suppose that instead of a shift in the mean to 0.08, the 

mean shifts to 0.10. Repeat parts (a) and (b).

(d) Compare your answers for a shift to 0.08 and for a shift to  

0.10. Explain why they differ. Also, explain why a shift  

to 0.10 is easier to detect.

15-113.  Suppose that the average number of defects in a 

unit is known to be 8. If the mean number of defects in a unit 

shifts to 16, what is the probability that it is detected by a U 

chart on the first sample following the shift

(a) if the sample size is n = 4?

(b) if the sample size is n = 10?

Use a normal approximation for U.

15-114. Suppose that the average number of defects in a unit 

is known to be 10. If the mean number of defects in a unit shifts 

to 14, what is the probability that it is detected by a U chart on 

the first sample following the shift

(a) if the sample size is n = 1?

(b) if the sample size is n = 4?

Use a normal approximation for U.

15-115. An EWMA chart with λ = .0 5 and L = .3 07 is to be 

used to monitor a process. Suppose that the process mean is 

μ =0 10 and σ = .2

(a) Assume that n = .1  What is the ARL without any shift in 

the process mean? What is the ARL to detect a shift to 

μ = .12

(b) Assume that n = .4  Repeat part (a) and comment on your 

conclusions.

15-116. The following table provides the costs for gasoline by 

month in the United States over recent years and the percentage 

of the cost due to refining, distribution and marketing, taxes, 

and crude oil. The table is from the U.S. Department of Energy 

Web site (http://tonto.eia.doe.gov/oog/info/gdu/gaspump.html). 

There is some concern that the refining or distribution and 

marketing percentages of the retail price have shown pat-

terns over time.
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(a) Construct separate control charts for the refi ning percent-

age of the retail price and the distribution and marketing 

percentage of the retail price. Use control charts for indi-

vidual measurements. Comment on any signs of assignable 

causes on these charts.

(b) Construct a control chart for the crude oil percentage of the 

retail price. Use a control chart for individual measurements. 

Comment on any signs of assignable causes on this chart.

(c) Another way to study the data is to calculate refi ning, 

distribution and marketing, and tax as costs directly. 

The costs of these categories might not depend strongly 

on the crude oil cost. Use the percentages provided in 

the table to calculate the cost associated with refi ning 

and distribution and marketing each month. Construct 

separate control charts for refi ning and distribution 

and marketing costs each month. Use control charts 

for individual measurements. Comment on any signs 

of assignable causes on these charts and comment on 

any differences between these charts and the ones con-

structed in part (a).

What We Pay for in a Gallon of Regular Gasoline

Mo/Year
Retail Price 

(dollars per gallon) Refi ning (%)
Distribution & 
Marketing (%) Taxes (%) Crude Oil (%)

Jan-00 1.289 7.8 13.0 32.1 47.1

Feb-00 1.377 17.9 7.5 30.1 44.6

Mar-00 1.517 15.4 12.8 27.3 44.6

Apr-00 1.465 10.1 20.2 28.3 41.4

May-00 1.485 20.2 9.2 27.9 42.7

Jun-00 1.633 22.2 8.8 25.8 43.1

Jul-00 1.551 13.2 15.8 27.2 43.8

Aug-00 1.465 15.8 7.5 28.8 47.8

Sep-00 1.550 15.4 9.0 27.2 48.3

Oct-00 1.532 13.7 10.1 27.5 48.6

Nov-00 1.517 10.4 11.8 27.8 50.0

Dec-00 1.443 8.0 17.9 29.2 44.8

Jan-01 1.447 17.8 10.4 29.2 42.7

Feb-01 1.450 17.3 11.0 29.1 42.6

Mar-01 1.409 18.8 9.7 30.0 41.5

Apr-01 1.552 31.6 4.6 27.1 36.7

May-01 1.702 26.4 14.0 24.7 35.0

Jun-01 1.616 13.2 24.1 26.0 36.7

Jul-01 1.421 10.0 20.0 30.0 40.0

Aug-01 1.421 20.0 9.0 30.0 41.0

Sep-01 1.522 18.0 17.0 28.0 37.0

Oct-01 1.315 10.0 20.8 31.9 37.2

Nov-01 1.171 10.0 18.0 36.0 36.0

Dec-01 1.086 11.7 12.7 38.7 36.9

Jan-02 1.107 13.0 11.8 37.9 37.2

Feb-02 1.114 12.1 11.2 37.7 39.1

Mar-02 1.249 19.4 6.1 33.6 40.9

Apr-02 1.397 15.5 13.0 30.1 41.4

May-02 1.392 11.9 14.2 30.2 43.7

Jun-02 1.382 15.0 13.0 30.4 41.6

Jul-02 1.397 15.0 12.6 30.1 42.3

Aug-02 1.396 11.4 13.4 30.0 45.0

Sep-02 1.400 10.8 12.6 30.0 46.7
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What We Pay for in a Gallon of Regular Gasoline

Mo/Year
Retail Price 

(dollars per gallon) Refi ning (%)
Distribution & 
Marketing (%) Taxes (%) Crude Oil (%)

Oct-02 1.445 13.9 11.7 29.1 45.3

Nov-02 1.419 11.1 18.0 29.6 41.3

Dec-02 1.386 11.7 12.3 30.3 45.7

Jan-03 1.458 11.5 10.3 28.8 49.4

Feb-03 1.613 15.0 9.5 26.0 49.5

Mar-03 1.693 14.8 14.8 24.8 45.5

Apr-03 1.589 13.2 19.8 26.4 40.5

May-03 1.497 15.3 16.3 28.1 40.4

Jun-03 1.493 15.1 12.3 28.1 44.5

Jul-03 1.513 15.3 11.9 27.8 44.9

Aug-03 1.620 22.5 8.2 25.9 43.3

Sept-03 1.679 13.9 22.7 25.0 38.3

Oct-03 1.564 14.9 16.1 26.9 42.2

Nov-03 1.512 11.7 15.3 27.8 45.2

Dec-03 1.479 11.5 12.6 28.4 47.5

Jan-04 1.572 15.9 9.9 26.7 47.5

Feb-04 1.648 19.1 9.2 25.5 46.2

Mar-04 1.736 19.0 11.3 24.2 45.5

Apr-04 1.798 22.0 9.9 23.4 44.6

May-04 1.983 30.6 7.8 21.2 40.4

Jun-04 1.969 21.3 16.7 21.3 40.7

Jul-04 1.911 20.9 11.3 21.9 45.8

Aug-04 1.878 13.9 12.2 22.4 51.5

Sep-04 1.870 14.8 9.1 22.5 53.6

Oct-04 2.000 13.0 9.3 21.0 56.7

Nov-04 1.979 10.7 14.6 21.2 53.6

Dec-04 1.841 8.9 18.1 23.9 49.1

Jan-05 1.831 17.7 7.3 24.0 50.9

Feb-05 1.910 16.1 9.3 23.0 51.6

Mar-05 2.079 19.3 6.2 21.2 53.4

Apr-05 2.243 20.9 9.6 19.6 49.8

May-05 2.161 17.9 12.8 20.4 49.0

Jun-05 2.156 18.5 6.9 20.4 54.2

Jul-05 2.290 17.9 8.0 19.2 54.9

Aug-05 2.486 24.3 2.1 17.7 55.9

Sep-05 2.903 27.3 7.5 15.2 50.0

Oct-05 2.717 15.1 17.8 16.2 50.9

Nov-05 2.257 8.3 13.1 19.5 57.1

Dec-05 2.185 13.5 7.9 20.1 58.4

Jan-06 2.316 13.4 6.6 19.8 60.1

Feb-06 2.280 9.8 11.4 20.1 58.6

Mar-06 2.425 21.7 4.5 18.9 54.8
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What We Pay for in a Gallon of Regular Gasoline

Mo/Year
Retail Price 

(dollars per gallon) Refi ning (%)
Distribution & 
Marketing (%) Taxes (%) Crude Oil (%)

Apr-06 2.742 25.8 3.1 16.7 54.2

May-06 2.907 21.9 8.8 15.8 53.4

Jun-06 2.885 22.0 7.9 15.9 54.1

Jul-06 2.981 26.3 6.3 15.4 52.0

Aug-06 2.952 15.2 13.5 15.9 55.4

Sep-06 2.555 6.3 18.8 18.3 56.7

Oct-06 2.245 10.9 10.6 20.8 57.7

Nov-06 2.229 14.6 7.5 20.4 57.5

Dec-06 2.313 12.9 9.4 19.7 58.0

Jan-07 2.240 10.6 15.2 20.3 53.9

Feb-07 2.278 18.0 5.8 20.0 56.3

Mar-07 2.563 23.6 8.5 15.5 52.3

Apr-07 2.845 28.1 7.6 14.0 50.3

May-07 3.146 27.9 13.3 12.7 46.1

Jun-07 3.056 22.7 13.7 13.0 50.5

Jul-07 2.965 18.4 11.4 13.4 56.8

Aug-07 2.786 13.5 11.8 14.3 60.4

Sep-07 2.803 12.8 8.6 14.2 64.3

Oct-07 2.803 10.1 8.1 14.2 67.6

Nov-07 3.080 10.0 8.7 13.0 68.3

Dec-07 3.018 8.1 10.5 13.2 68.1

Jan-08 3.043 7.8 11.1 13.1 67.9

Feb-08 3.028 9.9 7.2 13.2 69.7

Mar-08 3.244 8.0 7.9 12.3 71.8

Apr-08 3.458 10.0 5.8 11.5 72.7

May-08 3.766 10.0 4.7 10.6 74.7

Jun-08 4.054 8.5 6.8 9.8 74.8

Jul-08 4.062 3.2 11.2 9.8 75.8

Aug-08 3.779 6.1 10.2 10.6 73.1

Sep-08 3.703 14.2 8.2 10.8 66.8

Oct-08 3.051 3.3 25.0 13.1 58.6

Nov-08 2.147 –3.7 24.7 18.6 60.4

Dec-08 1.687 0.7 19.5 23.6 56.2

Jan-09 1.788 13.4 10.7 22.3 53.6

Feb-09 1.923 16.8 14.9 20.7 47.6

Mar-09 1.959 12.0 12.3 20.4 55.3

Apr-09 2.049 12.0 12.1 19.5 56.4

May-09 2.266 17.6 –3.9 19.5 66.8

Jun-09 2.631 13.7 10.3 15.1 60.9

Jul-09 2.527 10.1 14.0 15.8 60.1

Aug-09 2.616 11.0 9.7 15.4 63.9

Sep-09 2.554 6.7 13.5 15.7 64.0
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What We Pay for in a Gallon of Regular Gasoline

Mo/Year
Retail Price 

(dollars per gallon) Refi ning (%)
Distribution & 
Marketing (%) Taxes (%) Crude Oil (%)

Oct-09 2.551 6.5 9.1 15.7 68.6

Nov-09 2.651 4 11.7 15.1 69

Dec-09 2.607 6.6 11.2 15.4 66.6

Jan-10 2.715 5 10.9 14.7 69.1

Feb-10 2.644 5.9 9.8 15.1 69

Mar-10 2.772 9.3 7.5 14.4 68.5

Apr-10 2.848 10.4 6.9 14.1 68.4

May-10 2.836 8.4 13.3 14.2 63.9

Jun-10 2.732 9.4 10 14.7 65.6

Jul-10 2.729 9.4 9.5 14.8 66.1

Aug-10 2.73 5.7 11.9 14.8 67.4

Sep-10 2.705 6.5 11.3 14.9 67.1

Oct-10 2.801 5.3 9.7 14.4 70.5

Nov-10 2.859 4.4 10.2 14.1 71.1

Dec-10 2.993 9.9 8.4 13.5 68.1

Jan-11 3.095 10.6 9.1 13 67

Feb-11 3.211 14.2 7.9 12.5 65.2

Mar-11 3.561 13.1 7.2 11.3 68.3

Apr-11 3.8 15.7 4.8 10.6 68.7

May-11 3.906 14.1 10.2 10.3 65.2

Jun-11 3.68 11.5 10.9 10.9 66.5

Jul-11 3.65 14.8 6.3 11 67.7

Aug-11 3.639 15.9 10.4 11.1 62.5

Sep-11 3.611 14 12.2 11.1 62.5

Oct-11 3.448 10.9 8.7 11.7 68.5

Nov-11 3.384 –0.5 11.8 11.9 76.7

Dec-11 3.266 –1.5 9 12.3 80

Jan-12 3.38 6 6.4 11.9 75.5

Feb-12 3.579 11.8 5.2 11.2 71.5

Mar-12 3.852 15.7 5.9 10.8 67.4

Apr-12 3.9 14.6 8.4 10.6 66.1

May-12 3.732 13 10.3 11.1 65.4

Jun-12 3.539 11.8 14.4 11.7 61.9

Jul-12 3.439 14.9 7.9 12.1 64.9

Aug-12 3.722 17.5 7.1 11.2 64

Sep-12 3.849 17.9 8.8 10.8 62.2

Oct-12 3.746 12 12.8 11.1 64

Nov-12 3.452 9.2 11.9 12.1 66.6

Dec-12 3.31 8 11.3 12.6 68

Jan-13 3.319 8.5 6.9 12.6 71.8

Feb-13 3.67 15 6.8 11.4 66.7
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15-117. The following table shows the number of e-mails a 

student received each hour from 8:00 a.m. to 6:00 p.m. The 

samples are collected for five days from Monday to Friday.

Hour M T W Th F

 1 2 2 2 3 1

 2 2 4 0 1 2

 3 2 2 2 1 2

 4 4 4 3 3 2

 5 1 1 2 2 1

 6 1 3 2 2 1

 7 3 2 1 1 0

 8 2 3 2 3 1

 9 1 3 3 2 0

10 2 3 2 3 0

(a) Use the rational subgrouping principle to comment on why 

an X  chart that plots one point each hour with a subgroup 

of size 5 is not appropriate.

(b) Construct an appropriate attribute control chart. Use all the 

data to find trial control limits, construct the chart, and plot 

the data.

(c) Use the trial control limits from part (b) to identify out-

of-control points. If necessary, revise your control limits, 

assuming that any samples that plot outside the control lim-

its can be eliminated.

15-118. The following are the number of defects observed on 

15 samples of transmission units in an automotive manufactur-

ing company. Each lot contains five transmission units.

(a) Using all the data, compute trial control limits for a U con-

trol chart, construct the chart, and plot the data.

(b) Determine whether the process is in statistical control. If 

not, assume assignable causes can be found and out-of-

control points eliminated. Revise the control limits.

Sample No. of Defects Sample No. of Defects

 1  8 11  6

 2 10 12 10

 3 24 13 11

 4  6 14 17

 5  5 15  9

 6 21

 7 10

 8  7

 9  9

10 15

15-119. Consider an X  control chart with UCL = 32.802, 

UCL = 24.642, and n = 5. Suppose that the mean shifts to 30.

(a) What is the probability that this shift is detected on the next 

sample?

(b) What is the ARL to detect the shift?

15-120. The number of visits (in millions) on a Web site is 

recorded every day. The following table shows the samples for 25 

consecutive days.

(a) Estimate the process standard estimation.

(b) Set up a CUSUM control chart for this process, assuming the 

target is 10. Does the process appear to be in control?

Sample Number of Visits Sample Number of Visits

 1 10.12 16  9.66

 2  9.92 17 10.42

 3  9.76 18 11.30

 4  9.35 19 12.53

 5  9.60 20 10.76

 6  8.60 21 11.92

 7 10.46 22 13.24

 8 10.58 23 10.64

 9  9.95 24 11.31

10  9.50 25 11.26

11 11.26 26 11.79

12 10.02 27 10.53

13 10.95 28 11.82

14  8.99 29 11.47

15  9.50 30 11.76

15-121. An article in Microelectronics Reliability [“Advanced 

Electronic Prognostics through System Telemetry and Pattern 

Recognition Methods,” (2007, 47(12), pp. 1865–1873)] presented 

an example of electronic prognostics (a technique to detect faults 

in order to decrease the system downtime and the number of 

unplanned repairs in high-reliability and high-availability systems). 

Voltage signals from enterprise servers were monitored over time. 

The measurements are provided in the following table.

Observation
Voltage 
Signal Observation

Voltage 
Signal

 1 1.498 26 1.510

 2 1.494 27 1.521

 3 1.500 28 1.507

 4 1.495 29 1.493

 5 1.502 30 1.499

 6 1.509 31 1.509

 7 1.480 32 1.491

 8 1.490 33 1.478

 9 1.486 34 1.495

10 1.510 35 1.482

11 1.495 36 1.488

12 1.481 37 1.480

13 1.529 38 1.519

14 1.479 39 1.486
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15 1.483 40 1.517

16 1.505 41 1.517

17 1.536 42 1.490

18 1.493 43 1.495

19 1.496 44 1.545

20 1.587 45 1.501

21 1.610 46 1.503

22 1.592 47 1.486

23 1.585 48 1.473

24 1.587 49 1.502

25 1.482 50 1.497

(a) Using all the data, compute trial control limits for individual 

observations and moving-range charts. Construct the chart 

and plot the data. Determine whether the process is in statisti-

cal control. If not, assume that assignable causes can be found 

to eliminate these samples and revise the control limits.

(b) Estimate the process mean and standard deviation for the 

in-control process.

(c) The report in the article assumed that the signal is nor-

mally distributed with a mean of 1.5 V and a standard 

deviation of 0.02 V. Do your results in part (b) support this 

assumption?

15-122. A article in the Journal of Quality in Clinical Prac-
tice [“The Application of Statistical Process Control Charts 

to the Detection and Monitoring of Hospital-Acquired Infec-

tions,” (2001, Vol. 21, pp. 112–117)] reported the use of  SPC 

methods to monitor hospital-acquired infections. The authors 

applied Shewhart, CUSUM, and EWMA charts to the monitor 

ESBL Klebsiella pneumonia infections. The monthly number 

of infections from June 1994 to April 1998 are shown in the 

following table.

(a) What distribution might be expected for these data? What 

type of control chart might be appropriate?

(b) Construct the chart you selected in part (a).

(c) Construct a CUSUM chart for these data with k = 0 5.  

and h = 4. The article included a similarly construced 

CUSUM chart. What is assumed for the distribution of 

the data in this chart? Can your CUSUM chart perform 

adequately?

(d) Repeat part (c) for an EWMA chart with λ = 0 2. .

15-123. The control limits for an X  chart with n = 4 are 12.8 

and 24.8, and the PCR for a measurement is 1.33.

(a) Estimate the process standard deviation σ.

(b) Calculate the specification limits. Assume that they are 

centered around the process mean.

15-124. Consider the turnaround time (TAT) for complete 

blood counts in Exercise 15-18. Suppose that the specifications 

for TAT are set at 20 and 80 minutes. Use the control chart 

summary statistics for the following.

(a) Estimate the process standard deviation.

(b) Calculate PCR and PCRk for the process.

15-125. Consider the inventory accuracy in Exercise 15-27. 

Because lower values are better, only the UCL = 0 3.  is speci-

fied. Use the revised control chart to calculate PCRk.

15-126. Consider the TAT data in Exercise 15-18.

(a) Construct an CUSUM control chart with the target equal 

to the estimated process mean, k = 0 5. , and h = 4. Does the 

process appear to be in control at the target?

(b) If the mean increases by 5 minutes, approximate the 

chart's ARL.

15-127. An article in Electric Power Systems Research [“On 

the Self-Scheduling of a Power Producer in Uncertain Trading 

Environments” (2008, 78(3), pp. 311–317)] considered a self-

scheduling approach for a power producer. The following table 

shows the forecasted prices of energy for a 24-hour time period 

according to a base case scenario.

Hour Price Hour Price Hour Price

1 38.77  9 48.75 17 52.07

2 37.52 10 51.18 18 51.34

3 37.07 11 51.79 19 52.55

4 35.82 12 55.22 20 53.11

5 35.04 13 53.48 21 50.88

6 35.57 14 51.34 22 52.78

7 36.23 15 45.8 23 42.16

8 38.93 16 48.14 24 42.16

(a) Construct individuals and moving-range charts. Determine 

whether the energy prices fluctuate in statistical control.

(b) Is the assumption of independent observations reasonable 

for these data?

15-128. Consider the infectious-waste data in Exercise 15-26. 

Use the data after the process change only.

(a) Construct an CUSUM control chart with the target equal 

to the estimated process mean, k = 0 5. , and h = 4. Does the 

process appear to be in control at the target?

(b) If the mean increases by 1.0 lb, approximate the ARL of the 

chart.

Jan Feb Mar April May Jun Jul Aug Sep Oct Nov Dec

1994 5 0 0 2 2 3 1

1995 1 3 2 6 4 1 2 4 3 2 8 7

1996 10 6 10 11 5 6 3 0 3 3 1 3

1997 0 2 0 4 1 1 4 2 6 7 1 5

1998 3 0 1 0 2
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15-129. Reconsider the extended warranty decision in Exam-

ple 15-8. Determine the cost of the extended warranty so that 

the expected costs of the actions to either purchase the war-

ranty or not are equal.

15-130. Analyze the develop or contract decision problem in 

Example 15-9 based on the best-case (optimistic) criterion and 

determine the actions selected at each decision node. Do any 

actions differ from those selected in the example?

Mind-Expanding Exercises

15-131. Suppose that a process is in control, and 3-sigma 

control limits are in use on an X  chart. The subgroup size 

is 4. Let the mean shift by 1.5σ. What is the probability 

that this shift remains undetected for three consecutive 

samples? What would its probability be if 2-sigma control 

limits were used?

15-132. Consider an X  control chart with k-sigma control 

limits and subgroup size n. Develop a general expression 

for the probability that a point plots outside the control lim-

its when the process mean has shifted by δ units from the 

center line.

15-133. Suppose that an X  chart is used to control a nor-

mally distributed process and that samples of size n are 

taken every n hours and plotted on the chart, which has 

k-sigma limits.

(a) Find a general expression for the expected number of 

samples and time that is taken until a false signal is 

generated.

(b) Suppose that the process mean shifts to an out-of-con-

trol state, say μ = μ + δσ1 0 . Find an expression for the 

expected number of samples that is taken until a false 

action is generated.

(c) Evaluate the in-control ARL for k = 3. How does this 

change if k = 2? What do you think about the use of 

2-sigma limits in practice?

(d) Evaluate the out-of-control ARL for a shift of 1 sigma, 

given that n = 5.

15-134. Suppose that a P chart with center line at p  with 

k-sigma control limits is used to control a process. There 

is a critical fraction defective p
c
 that must be detected with 

probability 0.50 on the first sample following the shift to 

this state. Derive a general formula for the sample size that 

should be used on this chart.

15-135. Suppose that a P chart with center line at p  and 

k-sigma control limits is used to control a process. What 
is the smallest sample size that can be used on this control 

chart to ensure that the lower control limit is positive?

15-136. A process is controlled by a P chart using samples 

of size 100. The center line on the chart is 0.05. What is the 

probability that the control chart detects a shift to 0.08 on 

the first sample following the shift? What is the probability 

that the shift is detected by at least the third sample follow-

ing the shift?

15-137. Consider a process whose specifications on a quality 

characteristic are 100 ± 15. You know that the standard devia-

tion of this normally distributed quality characteristic is 5. 

Where should you center the process to minimize the fraction 

defective produced? Now suppose that the mean shifts to 105, 

and you are using a sample size of 4 on an X  chart. 

(a) What is the probability that such a shift is detected on 

the first sample following the shift? 

(b) What is the average number of samples until an out-of-

control point occurs? Compare this result to the average 

number of observations until a defective occurs (assum-

ing normality).

15-138. NP Control Chart. An alternative to the control 

chart for fraction defective is a control chart based on the 

number of defectives or the NP control chart. The chart has 

center line at np
_
, the control limits are

UCL np np p= + −( )3 1

 LCL np np p= − −( )3 1

and the number of defectives for each sample is plotted on 

the chart.

(a) Verify that the control limits provided are correct.

(b) Apply this control, chart to the data in Example 15-4.

(c) Will this chart always provide results that are equivalent 

to the usual P chart?

15-139. C Control Chart. An alternative to the U chart is 

a chart based on the number of defects. The chart has center 

line at nu, and the control limits are

UCL nu nu= + 3

 LCL nu nu= − 3

(a) Verify that the control limits provided are correct.

(b) Apply this chart to the data in Example 15-5.

(c) Will this chart always provide results equivalent to the 

U chart?

15-140. Standardized Control Chart. Consider the P 

chart with the usual 3-sigma control limits. Suppose that we 

define a new variable

Z
P P

P P

n

i
i= −

−( )
ˆ

 1

as the quantity to plot on a control chart. It is proposed that 

this new chart has a center line at 0 with the upper and lower 

control limits at ±3. Verify that this standardized control 

chart is equivalent to the original P chart.

c15.indd   733 9/24/2013   8:30:42 PM



734   Chapter 15/Statistical Quality Control

15-141. Unequal Sample Sizes. One application of 

the standardized control chart introduced in Exercise 

15-140 is to allow unequal sample sizes on the control 

chart. Provide details concerning how this procedure 

would be implemented and illustrate using the follow-

ing data:

Sample, i 1 2 3 4 5 6 7 8 9 10

n
i

20 25 20 25 50 30 25 25 25 20

p
i

   0.2     0.16     0.25     0.08     0.3     0.1     0.12     0.16     0.12     0.15

FOR SECTION 1-7Important Terms and Concepts

Assignable causes

Attributes control charts

Average run length (ARL)

C chart

Cause-and-effect diagram

Center line

Chance causes

Control chart

Control limits

Cumulative sum control chart 

(CUSUM)

Decision theory

Decision tree

Defect concentration diagram

Defects-per-unit chart

Deming’s 14 points

Exponentially weighted 

moving-average control 

chart (EWMA)

False alarm

Fraction-defective control 

chart

Implementing SPC

Individuals control chart  

(X chart)

Moving range

NP chart

Natural tolerance limits

P chart

Pareto diagram

Problem-solving tools

Process capability

Process capability ratio  

(PCR, PCRk)

Quality improvement

R chart

Rational subgroup

Run rules

S chart

Shewhart control chart

6-sigma process

Specification limits

Statistical process control 

(SPC)

Statistical quality control

U chart

Variables control charts

Warning limits

Western Electric rules

X  chart
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Name
Probability 
Distribution Mean Variance

Section 
in Book

Discrete

Uniform
1

n
a b, ≤

b a+( )
2

b a− +( ) −1 1

12

2

3-5

Binomial
n

x
p px n x⎛

⎝⎜
⎞
⎠⎟

−( ) −
 1 np np p1 −( ) 3-6

x n p= ≤ ≤0 1 0 1, , , ,…

Geometric ( )

, , ,

1

1 2 0 1

1−
= ≤ ≤

−p p

x p

x

…
1 / p 1 2−( )p p/ 3-7

Negative binomial
x

r
p p

x r r r p

x r r−
−

⎛
⎝⎜

⎞
⎠⎟

−( )
= + + ≤ ≤

−1

1
1

1 2 0 1, , , ,…

r p/ r p p1 2−( ) / 3-7

Hypergeometric

K

x

N K

n x

N

n

⎛
⎝⎜

⎞
⎠⎟

−
−

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

 

x n N K= − +( )max ,0 1, ,…

min ,K n K N n N, ,( ) ≤ ≤

np

where p
K

N
=

np p
N n

N
1

1
−( ) −

−
⎛
⎝⎜

⎞
⎠⎟

3-8

Poisson
e

x
x <

x−λλ
!

= λ, 0 1 2 0, , , ,… λ λ 3-9

Continuous

Uniform
1

b a
a x b

−
≤ ≤,

b a+( )
2

b a−( )2

12
4-5

Normal
1

2

1
2

2

σ π
 − −μ

σe
x

( )

−∞ ∞ −∞ μ ∞< x < < < <, , 0 σ

μ σ2 4-6

Exponential λ ≤ λ−λe x <x , ,0 0 1/ λ 1 2/ λ 4-8

Erlang
λ

−( )! =
− −λr r xx e

r
< x r

1

1
0 1 2, , , ,… r / λ r / λ2 4-9.1

Gamma
λ

Γ( ) < < < λ
− −λx e

r
x r

r x1

0 0 0, , , r / λ r / λ2 4-9.2

Weibull
β
δ δ

⎛
⎝⎜

⎞
⎠⎟

β−
− δ( )βx

e x /
1

0 0 0< < β < δx, ,

δΓ +
β

⎛
⎝⎜

⎞
⎠⎟

1
1

δ Γ +
β

⎛
⎝⎜

⎞
⎠⎟

2 1
2

 −δ Γ +
β

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2

2

1
1 4-10

Lognormal
1

2 2

2

2x

x

ω π

− ( ) − θ⎡⎣ ⎤⎦
ω

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

exp
ln

e /θ+ω2 2 e e2 2 2

1θ+ ω ω −( ) 4-11

Beta
Γ α + β( )

Γ α( )Γ β( ) −( )α− β−
 x x1 1

1

0 1 0 0≤ ≤ α βx < <, ,

α
α + β

αβ
α + β( ) α + β +( )2

1
4-12
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P

n x 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.99

1 0 0.9000 0.8000 0.7000 0.6000 0.5000 0.4000 0.3000 0.2000 0.1000 0.0500 0.0100

2 0 0.8100 0.6400 0.4900 0.3600 0.2500 0.1600 0.0900 0.0400 0.0100 0.0025 0.0001

1 0.9900 0.9600 0.9100 0.8400 0.7500 0.6400 0.5100 0.3600 0.1900 0.0975 0.0199

3 0 0.7290 0.5120 0.3430 0.2160 0.1250 0.0640 0.0270 0.0080 0.0010 0.0001 0.0000

1 0.9720 0.8960 0.7840 0.6480 0.5000 0.3520 0.2160 0.1040 0.0280 0.0073 0.0003

2 0.9990 0.9920 0.9730 0.9360 0.8750 0.7840 0.6570 0.4880 0.2710 0.1426 0.0297

4 0 0.6561 0.4096 0.2401 0.1296 0.0625 0.0256 0.0081 0.0016 0.0001 0.0000 0.0000

1 0.9477 0.8192 0.6517 0.4752 0.3125 0.1792 0.0837 0.0272 0.0037 0.0005 0.0000

2 0.9963 0.9728 0.9163 0.8208 0.6875 0.5248 0.3483 0.1808 0.0523 0.0140 0.0006

3 0.9999 0.9984 0.9919 0.9744 0.9375 0.8704 0.7599 0.5904 0.3439 0.1855 0.0394

5 0 0.5905 0.3277 0.1681 0.0778 0.0313 0.0102 0.0024 0.0003 0.0000 0.0000 0.0000

1 0.9185 0.7373 0.5282 0.3370 0.1875 0.0870 0.0308 0.0067 0.0005 0.0000 0.0000

2 0.9914 0.9421 0.8369 0.6826 0.5000 0.3174 0.1631 0.0579 0.0086 0.0012 0.0000

3 0.9995 0.9933 0.9692 0.9130 0.8125 0.6630 0.4718 0.2627 0.0815 0.0226 0.0010

4 1.0000 0.9997 0.9976 0.9898 0.6988 0.9222 0.8319 0.6723 0.4095 0.2262 0.0490

6 0 0.5314 0.2621 0.1176 0.0467 0.0156 0.0041 0.0007 0.0001 0.0000 0.0000 0.0000

1 0.8857 0.6554 0.4202 0.2333 0.1094 0.0410 0.0109 0.0016 0.0001 0.0000 0.0000

2 0.9842 0.9011 0.7443 0.5443 0.3438 0.1792 0.0705 0.0170 0.0013 0.0001 0.0000

3 0.9987 0.9830 0.9295 0.8208 0.6563 0.4557 0.2557 0.0989 0.0159 0.0022 0.0000

4 0.9999 0.9984 0.9891 0.9590 0.9806 0.7667 0.5798 0.3446 0.1143 0.0328 0.0015

5 1.0000 0.9999 0.9993 0.9959 0.9844 0.9533 0.8824 0.7379 0.4686 0.2649 0.0585

7 0 0.4783 0.2097 0.0824 0.0280 0.0078 0.0016 0.0002 0.0000 0.0000 0.0000 0.0000

1 0.8503 0.5767 0.3294 0.1586 0.0625 0.0188 0.0038 0.0004 0.0000 0.0000 0.0000

2 0.9743 0.8520 0.6471 0.4199 0.2266 0.0963 0.0288 0.0047 0.0002 0.0000 0.0000

3 0.9973 0.9667 0.8740 0.7102 0.5000 0.2898 0.1260 0.0333 0.0027 0.0002 0.0000

4 0.9998 0.9953 0.9712 0.9037 0.7734 0.5801 0.3529 0.1480 0.0257 0.0038 0.0000

5 1.0000 0.9996 0.9962 0.9812 0.9375 0.8414 0.6706 0.4233 0.1497 0.0444 0.0020

6 1.0000 1.0000 0.9998 0.9984 0.9922 0.9720 0.9176 0.7903 0.5217 0.3017 0.0679

8 0 0.4305 0.1678 0.0576 0.0168 0.0039 0.0007 0.0001 0.0000 0.0000 0.0000 0.0000

1 0.8131 0.5033 0.2553 0.1064 0.0352 0.0085 0.0013 0.0001 0.0000 0.0000 0.0000

2 0.9619 0.7969 0.5518 0.3154 0.1445 0.0498 0.0113 0.0012 0.0000 0.0000 0.0000

3 0.9950 0.9437 0.8059 0.5941 0.3633 0.1737 0.0580 0.0104 0.0004 0.0000 0.0000

4 0.9996 0.9896 0.9420 0.8263 0.6367 0.4059 0.1941 0.0563 0.0050 0.0004 0.0000

5 1.0000 0.9988 0.9887 0.9502 0.8555 0.6846 0.4482 0.2031 0.0381 0.0058 0.0001

6 1.0000 0.9999 0.9987 0.9915 0.9648 0.8936 0.7447 0.4967 0.1869 0.0572 0.0027

7 1.0000 1.0000 0.9999 0.9993 0.9961 0.9832 0.9424 0.8322 0.5695 0.3366 0.0773

9 0 0.3874 0.1342 0.0404 0.0101 0.0020 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000

1 0.7748 0.4362 0.1960 0.0705 0.0195 0.0038 0.0004 0.0000 0.0000 0.0000 0.0000

2 0.9470 0.7382 0.4628 0.2318 0.0889 0.0250 0.0043 0.0003 0.0000 0.0000 0.0000

3 0.9917 0.9144 0.7297 0.4826 0.2539 0.0994 0.0253 0.0031 0.0001 0.0000 0.0000

4 0.9991 0.9804 0.9012 0.7334 0.5000 0.2666 0.0988 0.0196 0.0009 0.0000 0.0000

5 0.9999 0.9969 0.9747 0.9006 0.7461 0.5174 0.2703 0.0856 0.0083 0.0006 0.0000

6 1.0000 0.9997 0.9957 0.9750 0.9102 0.7682 0.5372 0.2618 0.0530 0.0084 0.0001

7 1.0000 1.0000 0.9996 0.9962 0.9805 0.9295 0.8040 0.5638 0.2252 0.0712 0.0034

8 1.0000 1.0000 1.0000 0.9997 0.9980 0.9899 0.9596 0.8658 0.6126 0.3698 0.0865

II Cumulative Binomial Probabilities P X x( )≤

(Continued)
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P

n x 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.99

10 0 0.3487 0.1074 0.0282 0.0060 0.0010 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000

1 0.7361 0.3758 0.1493 0.0464 0.0107 0.0017 0.0001 0.0000 0.0000 0.0000 0.0000

2 0.9298 0.6778 0.3828 0.1673 0.0547 0.0123 0.0016 0.0001 0.0000 0.0000 0.0000

3 0.9872 0.8791 0.6496 0.3823 0.1719 0.0548 0.0106 0.0009 0.0000 0.0000 0.0000

4 0.9984 0.9672 0.8497 0.6331 0.3770 0.1662 0.0473 0.0064 0.0001 0.0000 0.0000

5 0.9999 0.9936 0.9527 0.8338 0.6230 0.3669 0.1503 0.0328 0.0016 0.0001 0.0000

6 1.0000 0.9991 0.9894 0.9452 0.8281 0.6177 0.3504 0.1209 0.0128 0.0010 0.0000

7 1.0000 0.9999 0.9984 0.9877 0.9453 0.8327 0.6172 0.3222 0.0702 0.0115 0.0001

8 1.0000 1.0000 0.9999 0.9983 0.9893 0.9536 0.8507 0.6242 0.2639 0.0861 0.0043

9 1.0000 1.0000 1.0000 0.9999 0.9990 0.9940 0.9718 0.8926 0.6513 0.4013 0.0956

11 0 0.3138 0.0859 0.0198 0.0036 0.0005 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

1 0.6974 0.3221 0.1130 0.0302 0.0059 0.0007 0.0000 0.0000 0.0000 0.0000 0.0000

2 0.9104 0.6174 0.3127 0.1189 0.0327 0.0059 0.0006 0.0000 0.0000 0.0000 0.0000

3 0.9815 0.8389 0.5696 0.2963 0.1133 0.0293 0.0043 0.0002 0.0000 0.0000 0.0000

4 0.9972 0.9496 0.7897 0.5328 0.2744 0.0994 0.0216 0.0020 0.0000 0.0000 0.0000

5 0.9997 0.9883 0.9218 0.7535 0.5000 0.2465 0.0782 0.0117 0.0003 0.0000 0.0000

6 1.0000 0.9980 0.9784 0.9006 0.7256 0.4672 0.2103 0.0504 0.0028 0.0001 0.0000

7 1.0000 0.9998 0.9957 0.9707 0.8867 0.7037 0.4304 0.1611 0.0185 0.0016 0.0000

8 1.0000 1.0000 0.9994 0.9941 0.9673 0.8811 0.6873 0.3826 0.0896 0.0152 0.0002

9 1.0000 1.0000 1.0000 0.9993 0.9941 0.9698 0.8870 0.6779 0.3026 0.1019 0.0052

10 1.0000 1.0000 1.0000 1.0000 0.9995 0.9964 0.9802 0.9141 0.6862 0.4312 0.1047

12 0 0.2824 0.0687 0.0138 0.0022 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

1 0.6590 0.2749 0.0850 0.0196 0.0032 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000

2 0.8891 0.5583 0.2528 0.0834 0.0193 0.0028 0.0002 0.0000 0.0000 0.0000 0.0000

3 0.9744 0.7946 0.4925 0.2253 0.0730 0.0153 0.0017 0.0001 0.0000 0.0000 0.0000

4 0.9957 0.9274 0.7237 0.4382 0.1938 0.0573 0.0095 0.0006 0.0000 0.0000 0.0000

5 0.9995 0.9806 0.8822 0.6652 0.3872 0.1582 0.0386 0.0039 0.0001 0.0000 0.0000

6 0.9999 0.9961 0.9614 0.8418 0.6128 0.3348 0.1178 0.0194 0.0005 0.0000 0.0000

7 1.0000 0.9994 0.9905 0.9427 0.8062 0.5618 0.2763 0.0726 0.0043 0.0002 0.0000

8 1.0000 0.9999 0.9983 0.9847 0.9270 0.7747 0.5075 0.2054 0.0256 0.0022 0.0000

9 1.0000 1.0000 0.9998 0.9972 0.9807 0.9166 0.7472 0.4417 0.1109 0.0196 0.0002

10 1.0000 1.0000 1.0000 0.9997 0.9968 0.9804 0.9150 0.7251 0.3410 0.1184 0.0062

11 1.0000 1.0000 1.0000 1.0000 0.9998 0.9978 0.9862 0.9313 0.7176 0.4596 0.1136

13 0 0.2542 0.0550 0.0097 0.0013 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

1 0.6213 0.2336 0.0637 0.0126 0.0017 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000

2 0.8661 0.5017 0.2025 0.0579 0.0112 0.0013 0.0001 0.0000 0.0000 0.0000 0.0000

3 0.9658 0.7473 0.4206 0.1686 0.0461 0.0078 0.0007 0.0000 0.0000 0.0000 0.0000

4 0.9935 0.9009 0.6543 0.3530 0.1334 0.0321 0.0040 0.0002 0.0000 0.0000 0.0000

5 0.9991 0.9700 0.8346 0.5744 0.2905 0.0977 0.0182 0.0012 0.0000 0.0000 0.0000

6 0.9999 0.9930 0.9376 0.7712 0.5000 0.2288 0.0624 0.0070 0.0001 0.0000 0.0000

7 1.0000 0.9988 0.9818 0.9023 0.7095 0.4256 0.1654 0.0300 0.0009 0.0000 0.0000

8 1.0000 0.9988 0.9960 0.9679 0.8666 0.6470 0.3457 0.0991 0.0065 0.0003 0.0000

9 1.0000 1.0000 0.9993 0.9922 0.9539 0.8314 0.5794 0.2527 0.0342 0.0031 0.0000

10 1.0000 1.0000 0.9999 0.9987 0.9888 0.9421 0.7975 0.4983 0.1339 0.0245 0.0003

11 1.0000 1.0000 1.0000 0.9999 0.9983 0.9874 0.9363 0.7664 0.3787 0.1354 0.0072

12 1.0000 1.0000 1.0000 1.0000 0.9999 0.9987 0.9903 0.9450 0.7458 0.4867 0.1225

14 0 0.2288 0.0440 0.0068 0.0008 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

II Cumulative Binomial Probabilities P X x( )≤  (Continued)
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P

n x 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.99

1 0.5846 0.1979 0.0475 0.0081 0.0009 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000

2 0.8416 0.4481 0.1608 0.0398 0.0065 0.0006 0.0000 0.0000 0.0000 0.0000 0.0000

3 0.9559 0.6982 0.3552 0.1243 0.0287 0.0039 0.0002 0.0000 0.0000 0.0000 0.0000

4 0.9908 0.8702 0.5842 0.2793 0.0898 0.0175 0.0017 0.0000 0.0000 0.0000 0.0000

5 0.9985 0.9561 0.7805 0.4859 0.2120 0.0583 0.0083 0.0004 0.0000 0.0000 0.0000

6 0.9998 0.9884 0.9067 0.6925 0.3953 0.1501 0.0315 0.0024 0.0000 0.0000 0.0000

7 1.0000 0.9976 0.9685 0.8499 0.6047 0.3075 0.0933 0.0116 0.0002 0.0000 0.0000

8 1.0000 0.9996 0.9917 0.9417 0.7880 0.5141 0.2195 0.0439 0.0015 0.0000 0.0000

9 1.0000 1.0000 0.9983 0.9825 0.9102 0.7207 0.4158 0.1298 0.0092 0.0004 0.0000

10 1.0000 1.0000 0.9998 0.9961 0.9713 0.8757 0.6448 0.3018 0.0441 0.0042 0.0000

11 1.0000 1.0000 1.0000 0.9994 0.9935 0.9602 0.8392 0.5519 0.1584 0.0301 0.0003

12 1.0000 1.0000 1.0000 0.9999 0.9991 0.9919 0.9525 0.8021 0.4154 0.1530 0.0084

13 1.0000 1.0000 1.0000 1.0000 0.9999 0.9992 0.9932 0.9560 0.7712 0.5123 0.1313

15 0 0.2059 0.0352 0.0047 0.0005 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

1 0.5490 0.1671 0.0353 0.0052 0.0005 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

2 0.8159 0.3980 0.1268 0.0271 0.0037 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000

3 0.9444 0.6482 0.2969 0.0905 0.0176 0.0019 0.0001 0.0000 0.0000 0.0000 0.0000

4 0.9873 0.8358 0.5155 0.2173 0.0592 0.0093 0.0007 0.0000 0.0000 0.0000 0.0000

5 0.9978 0.9389 0.7216 0.4032 0.1509 0.0338 0.0037 0.0001 0.0000 0.0000 0.0000

6 0.9997 0.9819 0.8689 0.6098 0.3036 0.0950 0.0152 0.0008 0.0000 0.0000 0.0000

7 1.0000 0.9958 0.9500 0.7869 0.5000 0.2131 0.0500 0.0042 0.0000 0.0000 0.0000

8 1.0000 0.9992 0.9848 0.9050 0.6964 0.3902 0.1311 0.0181 0.0003 0.0000 0.0000

9 1.0000 0.9999 0.9963 0.9662 0.8491 0.5968 0.2784 0.0611 0.0022 0.0001 0.0000

10 1.0000 1.0000 0.9993 0.9907 0.9408 0.7827 0.4845 0.1642 0.0127 0.0006 0.0000

11 1.0000 1.0000 0.9999 0.9981 0.9824 0.9095 0.7031 0.3518 0.0556 0.0055 0.0000

12 1.0000 1.0000 1.0000 0.9997 0.9963 0.9729 0.8732 0.6020 01841 0.0362 0.0004

13 1.0000 1.0000 1.0000 1.0000 0.9995 0.9948 0.9647 0.8329 0.4510 0.1710 0.0096

14 1.0000 1.0000 1.0000 1.0000 1.0000 0.9995 0.9953 0.9648 0.7941 0.5367 0.1399

20 0 0.1216 0.0115 0.0008 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

1 0.3917 0.0692 0.0076 0.0005 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

2 0.6769 0.2061 0.0355 0.0036 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

3 0.8670 0.4114 0.1071 0.0160 0.0013 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

4 0.9568 0.6296 0.2375 0.0510 0.0059 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000

5 0.9887 0.8042 0.4164 0.1256 0.0207 0.0016 0.0000 0.0000 0.0000 0.0000 0.0000

6 0.9976 0.9133 0.6080 0.2500 0.0577 0.0065 0.0003 0.0000 0.0000 0.0000 0.0000

7 0.9996 0.9679 0.7723 0.4159 0.1316 0.0210 0.0013 0.0000 0.0000 0.0000 0.0000

8 0.9999 0.9900 0.8867 0.5956 0.2517 0.0565 0.0051 0.0001 0.0000 0.0000 0.0000

9 1.0000 0.9974 0.9520 0.7553 0.4119 0.1275 0.0171 0.0006 0.0000 0.0000 0.0000

10 1.0000 0.9994 0.9829 0.8725 0.5881 0.2447 0.0480 0.0026 0.0000 0.0000 0.0000

11 1.0000 0.9999 0.9949 0.9435 0.7483 0.4044 0.1133 0.0100 0.0001 0.0000 0.0000

12 1.0000 1.0000 0.9987 0.9790 0.8684 0.5841 0.2277 0.0321 0.0004 0.0000 0.0000

13 1.0000 1.0000 0.9997 0.9935 0.9423 0.7500 0.3920 0.0867 0.0024 0.0000 0.0000

14 1.0000 1.0000 1.0000 0.9984 0.9793 0.8744 0.5836 0.1958 0.0113 0.0003 0.0000

15 1.0000 1.0000 1.0000 0.9997 0.9941 0.9490 0.7625 0.3704 0.0432 0.0026 0.0000

16 1.0000 1.0000 1.0000 1.0000 0.9987 0.9840 0.8929 0.5886 0.1330 0.0159 0.0000

17 1.0000 1.0000 1.0000 1.0000 0.9998 0.9964 0.9645 0.7939 0.3231 0.0755 0.0010

18 1.0000 1.0000 1.0000 1.0000 1.0000 0.9995 0.9924 0.9308 0.6083 0.2642 0.0169

19 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9992 0.9885 0.8784 0.6415 0.1821

II Cumulative Binomial Probabilities P X x( )≤  (Continued)
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Φ( ) ( )z P Z z e du
u

z

= ≤ = −

−∞

⌠

⌡
⎮⎮

1

2

1
2

2

π

z 0

F (z)

III Cumulative Standard Normal Distribution

z −0.09 −0.08 −0.07 −0.06 −0.05 −0.04 −0.03 −0.03 −0.01 −0.00

−3 9. 0.000033 0.000034 0.000036 0.000037 0.000039 0.000041 0.000042 0.000044 0.000046 0.000048

−3 8. 0.000050 0.000052 0.000054 0.000057 0.000059 0.000062 0.000064 0.000067 0.000069 0.000072

−3 7. 0.000075 0.000078 0.000082 0.000085 0.000088 0.000092 0.000096 0.000100 0.000104 0.000108

−3 6. 0.000112 0.000117 0.000121 0.000126 0.000131 0.000136 0.000142 0.000147 0.000153 0.000159

−3 5. 0.000165 0.000172 0.000179 0.000185 0.000193 0.000200 0.000208 0.000216 0.000224 0.000233

−3 4. 0.000242 0.000251 0.000260 0.000270 0.000280 0.000291 0.000302 0.000313 0.000325 0.000337

−3 3. 0.000350 0.000362 0.000376 0.000390 0.000404 0.000419 0.000434 0.000450 0.000467 0.000483

−3 2. 0.000501 0.000519 0.000538 0.000557 0.000577 0.000598 0.000619 0.000641 0.000664 0.000687

−3 1. 0.000711 0.000736 0.000762 0.000789 0.000816 0.000845 0.000874 0.000904 0.000935 0.000968

−3 0. 0.001001 0.001035 0.001070 0.001107 0.001144 0.001183 0.001223 0.001264 0.001306 0.001350

−2 9. 0.001395 0.001441 0.001489 0.001538 0.001589 0.001641 0.001695 0.001750 0.001807 0.001866

−2 8. 0.001926 0.001988 0.002052 0.002118 0.002186 0.002256 0.002327 0.002401 0.002477 0.002555

−2 7. 0.002635 0.002718 0.002803 0.002890 0.002980 0.003072 0.003167 0.003264 0.003364 0.003467

−2 6. 0.003573 0.003681 0.003793 0.003907 0.004025 0.004145 0.004269 0.004396 0.004527 0.004661

−2 5. 0.004799 0.004940 0.005085 0.005234 0.005386 0.005543 0.005703 0.005868 0.006037 0.006210

−2 4. 0.006387 0.006569 0.006756 0.006947 0.007143 0.007344 0.007549 0.007760 0.007976 0.008198

−2 3. 0.008424 0.008656 0.008894 0.009137 0.009387 0.009642 0.009903 0.010170 0.010444 0.010724

−2 2. 0.011011 0.011304 0.011604 0.011911 0.012224 0.012545 0.012874 0.013209 0.013553 0.013903

−2 1. 0.014262 0.014629 0.015003 0.015386 0.015778 0.016177 0.016586 0.017003 0.017429 0.017864

−2 0. 0.018309 0.018763 0.019226 0.019699 0.020182 0.020675 0.021178 0.021692 0.022216 0.022750

−1 9. 0.023295 0.023852 0.024419 0.024998 0.025588 0.026190 0.026803 0.027429 0.028067 0.028717

−1 8. 0.029379 0.030054 0.030742 0.031443 0.032157 0.032884 0.033625 0.034379 0.035148 0.035930

−1 7. 0.036727 0.037538 0.038364 0.039204 0.040059 0.040929 0.041815 0.042716 0.043633 0.044565

−1 6. 0.045514 0.046479 0.047460 0.048457 0.049471 0.050503 0.051551 0.052616 0.053699 0.054799

−1 5. 0.055917 0.057053 0.058208 0.059380 0.060571 0.061780 0.063008 0.064256 0.065522 0.066807

−1 4. 0.068112 0.069437 0.070781 0.072145 0.073529 0.074934 0.076359 0.077804 0.079270 0.080757

−1 3. 0.082264 0.083793 0.085343 0.086915 0.088508 0.090123 0.091759 0.093418 0.095098 0.096801

−1 2. 0.098525 0.100273 0.102042 0.103835 0.105650 0.107488 0.109349 0.111233 0.113140 0.115070

−1 1. 0.117023 0.119000 0.121001 0.123024 0.125072 0.127143 0.129238 0.131357 0.133500 0.135666

−1 0. 0.137857 0.140071 0.142310 0.144572 0.146859 0.149170 0.151505 0.153864 0.156248 0.158655

−0 9. 0.161087 0.163543 0.166023 0.168528 0.171056 0.173609 0.176185 0.178786 0.181411 0.184060

−0 8. 0.186733 0.189430 0.192150 0.194894 0.197662 0.200454 0.203269 0.206108 0.208970 0.211855

−0 7. 0.214764 0.217695 0.220650 0.223627 0.226627 0.229650 0.232695 0.235762 0.238852 0.241964

−0 6. 0.245097 0.248252 0.251429 0.254627 0.257846 0.261086 0.264347 0.267629 0.270931 0.274253

−0 5. 0.277595 0.280957 0.284339 0.287740 0.291160 0.294599 0.298056 0.301532 0.305026 0.308538

−0 4. 0.312067 0.315614 0.319178 0.322758 0.326355 0.329969 0.333598 0.337243 0.340903 0.344578

−0 3. 0.348268 0.351973 0.355691 0.359424 0.363169 0.366928 0.370700 0.374484 0.378281 0.382089

−0 2. 0.385908 0.389739 0.393580 0.397432 0.401294 0.405165 0.409046 0.412936 0.416834 0.420740

−0 1. 0.424655 0.428576 0.432505 0.436441 0.440382 0.444330 0.448283 0.452242 0.456205 0.460172

0.0 0.464144 0.468119 0.472097 0.476078 0.480061 0.484047 0.488033 0.492022 0.496011 0.500000
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Φ( ) ( )z P Z z e du
z u= ≤ =
−∞

−
∫

1

2

1
2

2

π

z0

F (z)

III Cumulative Standard Normal Distribution (Continued)

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.500000 0.503989 0.507978 0.511967 0.515953 0.519939 0.532922 0.527903 0.531881 0.535856

0.1 0.539828 0.543795 0.547758 0.551717 0.555760 0.559618 0.563559 0.567495 0.571424 0.575345

0.2 0.579260 0.583166 0.587064 0.590954 0.594835 0.598706 0.602568 0.606420 0.610261 0.614092

0.3 0.617911 0.621719 0.625516 0.629300 0.633072 0.636831 0.640576 0.644309 0.648027 0.651732

0.4 0.655422 0.659097 0.662757 0.666402 0.670031 0.673645 0.677242 0.680822 0.684386 0.687933

0.5 0.691462 0.694974 0.698468 0.701944 0.705401 0.708840 0.712260 0.715661 0.719043 0.722405

0.6 0.725747 0.729069 0.732371 0.735653 0.738914 0.742154 0.745373 0.748571 0.751748 0.754903

0.7 0.758036 0.761148 0.764238 0.767305 0.770350 0.773373 0.776373 0.779350 0.782305 0.785236

0.8 0.788145 0.791030 0.793892 0.796731 0.799546 0.802338 0.805106 0.807850 0.810570 0.813267

0.9 0.815940 0.818589 0.821214 0.823815 0.826391 0.828944 0.831472 0.833977 0.836457 0.838913

1.0 0.841345 0.843752 0.846136 0.848495 0.850830 0.853141 0.855428 0.857690 0.859929 0.862143

1.1 0.864334 0.866500 0.868643 0.870762 0.872857 0.874928 0.876976 0.878999 0.881000 0.882977

1.2 0.884930 0.886860 0.888767 0.890651 0.892512 0.894350 0.896165 0.897958 0.899727 0.901475

1.3 0.903199 0.904902 0.906582 0.908241 0.909877 0.911492 0.913085 0.914657 0.916207 0.917736

1.4 0.919243 0.920730 0.922196 0.923641 0.925066 0.926471 0.927855 0.929219 0.930563 0.931888

1.5 0.933193 0.934478 0.935744 0.936992 0.938220 0.939429 0.940620 0.941792 0.942947 0.944083

1.6 0.945201 0.946301 0.947384 0.948449 0.949497 0.950529 0.951543 0.952540 0.953521 0.954486

1.7 0.955435 0.956367 0.957284 0.958185 0.959071 0.959941 0.960796 0.961636 0.962462 0.963273

1.8 0.964070 0.964852 0.965621 0.966375 0.967116 0.967843 0.968557 0.969258 0.969946 0.970621

1.9 0.971283 0.971933 0.972571 0.973197 0.973810 0.974412 0.975002 0.975581 0.976148 0.976705

2.0 0.977250 0.977784 0.978308 0.978822 0.979325 0.979818 0.980301 0.980774 0.981237 0.981691

2.1 0.982136 0.982571 0.982997 0.983414 0.983823 0.984222 0.984614 0.984997 0.985371 0.985738

2.2 0.986097 0.986447 0.986791 0.987126 0.987455 0.987776 0.988089 0.988396 0.988696 0.988989

2.3 0.989276 0.989556 0.989830 0.990097 0.990358 0.990613 0.990863 0.991106 0.991344 0.991576

2.4 0.991802 0.992024 0.992240 0.992451 0.992656 0.992857 0.993053 0.993244 0.993431 0.993613

2.5 0.993790 0.993963 0.994132 0.994297 0.994457 0.994614 0.994766 0.994915 0.995060 0.995201

2.6 0.995339 0.995473 0.995604 0.995731 0.995855 0.995975 0.996093 0.996207 0.996319 0.996427

2.7 0.996533 0.996636 0.996736 0.996833 0.996928 0.997020 0.997110 0.997197 0.997282 0.997365

2.8 0.997445 0.997523 0.997599 0.997673 0.997744 0.997814 0.997882 0.997948 0.998012 0.998074

2.9 0.998134 0.998193 0.998250 0.998305 0.998359 0.998411 0.998462 0.998511 0.998559 0.998605

3.0 0.998650 0.998694 0.998736 0.998777 0.998817 0.998856 0.998893 0.998930 0.998965 0.998999

3.1 0.999032 0.999065 0.999096 0.999126 0.999155 0.999184 0.999211 0.999238 0.999264 0.999289

3.2 0.999313 0.999336 0.999359 0.999381 0.999402 0.999423 0.999443 0.999462 0.999481 0.999499

3.3 0.999517 0.999533 0.999550 0.999566 0.999581 0.999596 0.999610 0.999624 0.999638 0.999650

3.4 0.999663 0.999675 0.999687 0.999698 0.999709 0.999720 0.999730 0.999740 0.999749 0.999758

3.5 0.999767 0.999776 0.999784 0.999792 0.999800 0.999807 0.999815 0.999821 0.999828 0.999835

3.6 0.999841 0.999847 0.999853 0.999858 0.999864 0.999869 0.999874 0.999879 0.999883 0.999888

3.7 0.999892 0.999896 0.999900 0.999904 0.999908 0.999912 0.999915 0.999918 0.999922 0.999925

3.8 0.999928 0.999931 0.999933 0.999936 0.999938 0.999941 0.999943 0.999946 0.999948 0.999950

3.9 0.999952 0.999954 0.999956 0.999958 0.999959 0.999961 0.999963 0.999964 0.999966 0.999967
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xa, n
2

a

IV Percentage Points χα , v
2  of the Chi-Squared Distribution

v
α

.995 .990 .975 .950 .900 .500 .100 .050 .025 .010 .005

 1    .00 +    .00 +    .00 +    .00 + .02 .45 2.71 3.84 5.02 6.63 7.88

 2   .01 .02 .05 .10 .21 1.39 4.61 5.99 7.38 9.21 10.60

 3   .07 .11 .22 .35 .58 2.37 6.25 7.81 9.35 11.34 12.84

 4   .21 .30 .48 .71 1.06 3.36 7.78 9.49 11.14 13.28 14.86

 5   .41 .55 .83 1.15 1.61 4.35 9.24 11.07 12.83 15.09 16.75

 6   .68 .87 1.24 1.64 2.20 5.35 10.65 12.59 14.45 16.81 18.55

 7   .99 1.24 1.69 2.17 2.83 6.35 12.02 14.07 16.01 18.48 20.28

 8  1.34 1.65 2.18 2.73 3.49 7.34 13.36 15.51 17.53 20.09 21.96

 9  1.73 2.09 2.70 3.33 4.17 8.34 14.68 16.92 19.02 21.67 23.59

10 2.16 2.56 3.25 3.94 4.87 9.34 15.99 18.31 20.48 23.21 25.19

11  2.60 3.05 3.82 4.57 5.58 10.34 17.28 19.68 21.92 24.72 26.76

12  3.07 3.57 4.40 5.23 6.30 11.34 18.55 21.03 23.34 26.22 28.30

13  3.57 4.11 5.01 5.89 7.04 12.34 19.81 22.36 24.74 27.69 29.82

14  4.07 4.66 5.63 6.57 7.79 13.34 21.06 23.68 26.12 29.14 31.32

15  4.60 5.23 6.27 7.26 8.55 14.34 22.31 25.00 27.49 30.58 32.80

16  5.14 5.81 6.91 7.96 9.31 15.34 23.54 26.30 28.85 32.00 34.27

17  5.70 6.41 7.56 8.67 10.09 16.34 24.77 27.59 30.19 33.41 35.72

18  6.26 7.01 8.23 9.39 10.87 17.34 25.99 28.87 31.53 34.81 37.16

19  6.84 7.63 8.91 10.12 11.65 18.34 27.20 30.14 32.85 36.19 38.58

20  7.43 8.26 9.59 10.85 12.44 19.34 28.41 31.41 34.17 37.57 40.00

21  8.03 8.90 10.28 11.59 13.24 20.34 29.62 32.67 35.48 38.93 41.40

22  8.64 9.54 10.98 12.34 14.04 21.34 30.81 33.92 36.78 40.29 42.80

23  9.26 10.20 11.69 13.09 14.85 22.34 32.01 35.17 38.08 41.64 44.18

24  9.89 10.86 12.40 13.85 15.66 23.34 33.20 36.42 39.36 42.98 45.56

25 10.52 11.52 13.12 14.61 16.47 24.34 34.28 37.65 40.65 44.31 46.93

26 11.16 12.20 13.84 15.38 17.29 25.34 35.56 38.89 41.92 45.64 48.29

27 11.81 12.88 14.57 16.15 18.11 26.34 36.74 40.11 43.19 46.96 49.65

28 12.46 13.57 15.31 16.93 18.94 27.34 37.92 41.34 44.46 48.28 50.99

29 13.12 14.26 16.05 17.71 19.77 28.34 39.09 42.56 45.72 49.59 52.34

30 13.79 14.95 16.79 18.49 20.60 29.34 40.26 43.77 46.98 50.89 53.67

40 20.71 22.16 24.43 26.51 29.05 39.34 51.81 55.76 59.34 63.69 66.77

50 27.99 29.71 32.36 34.76 37.69 49.33 63.17 67.50 71.42 76.15 79.49

60 35.53 37.48 40.48 43.19 46.46 59.33 74.40 79.08 83.30 88.38 91.95

70 43.28 45.44 48.76 51.74 55.33 69.33 85.53 90.53 95.02 100.42 104.22

80 51.17 53.54 57.15 60.39 64.28 79.33 96.58 101.88 106.63 112.33 116.32

90 59.20 61.75 65.65 69.13 73.29 89.33 107.57 113.14 118.14 124.12 128.30

100 67.33 70.06 74.22 77.93 82.36 99.33 118.50 124.34 129.56 135.81 140.17

v = degrees of freedom.
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0

a

a,nt

V Percentage Points tα ,v of the t  Distribution

v
α

.40 .25 .10 .05 .025 .01 .005 .0025 .001 .0005

1 .325 1.000 3.078 6.314 12.706 31.821 63.657 127.32 318.31 636.62

2 .289 .816 1.886 2.920 4.303 6.965 9.925 14.089 23.326 31.598

3 .277 .765 1.638 2.353 3.182 4.541 5.841 7.453 10.213 12.924

4 .271 .741 1.533 2.132 2.776 3.747 4.604 5.598 7.173 8.610

5 .267 .727 1.476 2.015 2.571 3.365 4.032 4.773 5.893 6.869

6 .265 .718 1.440 1.943 2.447 3.143 3.707 4.317 5.208 5.959

7 .263 .711 1.415 1.895 2.365 2.998 3.499 4.029 4.785 5.408

8 .262 .706 1.397 1.860 2.306 2.896 3.355 3.833 4.501 5.041

9 .261 .703 1.383 1.833 2.262 2.821 3.250 3.690 4.297 4.781

10 .260 .700 1.372 1.812 2.228 2.764 3.169 3.581 4.144 4.587

11 .260 .697 1.363 1.796 2.201 2.718 3.106 3.497 4.025 4.437

12 .259 .695 1.356 1.782 2.179 2.681 3.055 3.428 3.930 4.318

13 .259 .694 1.350 1.771 2.160 2.650 3.012 3.372 3.852 4.221

14 .258 .692 1.345 1.761 2.145 2.624 2.977 3.326 3.787 4.140

15 .258 .691 1.341 1.753 2.131 2.602 2.947 3.286 3.733 4.073

16 .258 .690 1.337 1.746 2.120 2.583 2.921 3.252 3.686 4.015

17 .257 .689 1.333 1.740 2.110 2.567 2.898 3.222 3.646 3.965

18 .257 .688 1.330 1.734 2.101 2.552 2.878 3.197 3.610 3.922

19 .257 .688 1.328 1.729 2.093 2.539 2.861 3.174 3.579 3.883

20 .257 .687 1.325 1.725 2.086 2.528 2.845 3.153 3.552 3.850

21 .257 .686 1.323 1.721 2.080 2.518 2.831 3.135 3.527 3.819

22 .256 .686 1.321 1.717 2.074 2.508 2.819 3.119 3.505 3.792

23 .256 .685 1.319 1.714 2.069 2.500 2.807 3.104 3.485 3.767

24 .256 .685 1.318 1.711 2.064 2.492 2.797 3.091 3.467 3.745

25 .256 .684 1.316 1.708 2.060 2.485 2.787 3.078 3.450 3.725

26 .256 .684 1.315 1.706 2.056 2.479 2.779 3.067 3.435 3.707

27 .256 .684 1.314 1.703 2.052 2.473 2.771 3.057 3.421 3.690

28 .256 .683 1.313 1.701 2.048 2.467 2.763 3.047 3.408 3.674

29 .256 .683 1.311 1.699 2.045 2.462 2.756 3.038 3.396 3.659

30 .256 .683 1.310 1.697 2.042 2.457 2.750 3.030 3.385 3.646

40 .255 .681 1.303 1.684 2.021 2.423 2.704 2.971 3.307 3.551

60 .254 .679 1.296 1.671 2.000 2.390 2.660 2.915 3.232 3.460

120 .254 .677 1.289 1.658 1.980 2.358 2.617 2.860 3.160 3.373

∞ .253 .674 1.282 1.645 1.960 2.326 2.576 2.807 3.090 3.291

v = degrees of freedom.
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Chart VII Operating Characteristic Curves (Continued)
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(a) O.C. curves for different values of n for the two-sided normal test for a level of  

significance α = 0 05. .
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(b) O.C. curves for different values of n for the two-sided normal test for a level of  

significance α = 0 01. .

Source: Charts VIa, e, f , k, m, and q are reproduced with permission from “Operating Charac-

teristics for the Common Statistical Tests of Significance,” by C. L. Ferris, F. E. Grubbs, and 

C. L. Weaver, Annals of Mathematical Statistics, June 1946.

Charts VIb, c, d, g, h, i, j , l, n, o, p, and r are reproduced with permission from Engineering 
Statistics, 2nd Edition, by A. H. Bowker and G. J. Lieberman, Prentice-Hall, 1972.
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Chart VII Operating Characteristic Curves (Continued)
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(c) O.C. curves for different values of n for the one-sided normal test for a level of  

significance α = 0 05. .
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(d) O.C. curves for different values of n for the one-sided normal test for a level of  

significance α = 0 01. .
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Chart VII Operating Characteristic Curves (Continued)
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(e) O.C. curves for different values of n for the two-sided t-test for a level of significance 

α = 0 05. .
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(f) O.C. curves for different values of n for the two-sided t-test for a level of significance 

α = 0 01. .
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Chart VII Operating Characteristic Curves (Continued)
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(h) O.C. curves for different values of n for the one-sided t-test for a level of significance 

α = 0 01. .
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Chart VII Operating Characteristic Curves (Continued)
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(i) O.C. curves for different values of n for the two-sided chi-square test for a level of significance α = 0 05. .
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(j) O.C. curves for different values of n for the two-sided chi-square test for a level of significance α = 0 01. .

appA.indd   755 9/24/2013   6:28:50 PM



756  Appendix A/Statistical Tables and Charts

Chart VII Operating Characteristic Curves (Continued)
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(k) O.C. curves for different values of n for the one-sided (upper-tail) chi-square test for a 

level of significance α = 0 05. .
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(l) O.C. curves for different values of n for the one-sided (upper-tail) chi-square test for a 

level of significance α = 0 01. .
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Chart VII Operating Characteristic Curves (Continued)
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(m) O.C. curves for different values of n for the one-sided (lower-tail) chi-square test for a 

level of significance α = 0 05. .
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(n) O.C. curves for different values of n for the one-sided (lower-tail) chi-square test for a 

level of significance α = 0 01. .
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Chart VII Operating Characteristic Curves (Continued)
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(o) O.C. curves for different values of n for the two-sided F-test for a level of significance α = 0 05. .
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Chart VII Operating Characteristic Curves (Continued)
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VIII Critical Values for the Sign Test

`
n

0.10
0.05

0.05
0.025

0.01
0.005

Two-sided tests
One-sided tests

`
n

0.10
0.05

0.05
0.025

0.01
0.005

Two-sided tests
One-sided tests

 5 0 23  7  6  4

 6 0 0 24  7  6  5

 7 0 0 25  7  7  5

 8 1 0 0 26  8  7  6

 9 1 1 0 27  8  7  6

10 1 1 0 28  9  8  6

11 2 1 0 29  9  8  7

12 2 2 1 30 10  9  7

13 3 2 1 31 10  9  7

14 3 2 1 32 10  9  8

15 3 3 2 33 11 10  8

16 4 3 2 34 11 10  9

17 4 4 2 35 12 11  9

18 5 4 3 36 12 11  9

19 5 4 3 37 13 12 10

20 5 5 3 38 13 12 10

21 6 5 4 39 13 12 11

22 6 5 4 40 14 13 11

rα
∗

α
n∗

0.10
0.05

0.05
0.025

0.02
0.01

0.01
0.005

Two-sided tests
One-sided tests

 4

 5  0

 6  2  0

 7  3  2  0

 8  5  3  1  0

 9  8  5  3  1

10  10  8  5  3

11  13 10  7  5

12  17 13  9  7

13  21 17 12  9

14  25 21 15 12

15  30 25 19 15

16  35 29 23 19

17  41 34 27 23

18  47 40 32 27

19  53 46 37 32

20  60 52 43 37

21  67 58 49 42

22  75 65 55 48

23  83 73 62 54

24  91 81 69 61

25 100 89 76 68

IX Critical Values for the Wilcoxon Signed-Rank Test

wα
*

*If n > 25, W −  (or W −) is approximately normally distributed with mean n n( 1) / 4+   

and variance n n n( 1)(2 1) / 24+ + .
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w0 01.

X Critical Values for the Wilcoxon Rank-Sum Test (Continued)

n1*

n2 4 5 6 7 8 9 10 11 12 13 14 15

 5 15
 6 10 16 23
 7 10 17 24 32
 8 11 17 25 34 43
 9 11 18 26 35 45 56
10 12 19 27 37 47 58 71
11 12 20 28 38 49 61 74  87
12 13 21 30 40 51 63 76  90 106
13 14 22 31 41 53 65 79  93 109 125
14 14 22 32 43 54 67 81  96 112 129 147
15 15 23 33 44 56 70 84  99 115 133 151 171
16 15 24 34 46 58 72 86 102 119 137 155
17 16 25 36 47 60 74 89 105 122 140
18 16 26 37 49 62 76 92 108 125
19 17 27 38 50 64 78 94 111
20 18 28 39 52 66 81 97
21 18 29 40 53 68 83
22 19 29 42 55 70
23 19 30 43 57
24 20 31 44
25 20 32
26 21
27
28

X Critical Values for the Wilcoxon Rank-Sum Test

n1*

n2 4 5 6 7 8 9 10 11 12 13 14 15

 4 10
 5 11 17
 6 12 18 26
 7 13 20 27 36
 8 14 21 29 38 49
 9 15 22 31 40 51 63
10 15 23 32 42 53 65  78
11 16 24 34 44 55 68  81  96
12 17 26 35 46 58 71  85  99 115
13 18 27 37 48 60 73  88 103 119 137
14 19 28 38 50 63 76  91 106 123 141 160
15 20 29 40 52 65 79  94 110 127 145 164 185
16 21 31 42 54 67 82  97 114 131 150 169
17 21 32 43 56 70 84 100 117 135 154
18 22 33 45 58 72 87 103 121 139
19 23 34 46 60 74 90 107 124
20 24 35 48 62 77 93 110
21 25 37 50 64 79 95
22 26 38 51 66 82
23 27 39 53 68
24 28 40 55
25 28 42
26 29
27
28

*For n1 and n2 8> ,  W1 is approximately normally distributed with mean 1
2 1 1 2 1n n n+ +( ) and variance 

n n n n1 2 1 2 1( )+ + /12.

w0 05.
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XI Factors for Constructing Variables Control Charts

Factor for Control Limits

X  Chart R Chart S Chart

n* A1 A2 d2 D3 D4 C4 n

 2 3.760 1.880 1.128 0 3.267 0.7979  2

 3 2.394 1.023 1.693 0 2.575 0.8862  3

 4 1.880 .729 2.059 0 2.282 0.9213  4

 5 1.596 .577 2.326 0 2.115 0.9400  5

 6 1.410 .483 2.534 0 2.004 0.9515  6

 7 1.277 .419 2.704  .076 1.924 0.9594  7

 8 1.175 .373 2.847  .136 1.864 0.9650  8

 9 1.094 .337 2.970  .184 1.816 0.9693  9

10 1.028 .308 3.078  .223 1.777 0.9727 10

11  .973 .285 3.173  .256 1.744 0.9754 11

12  .925 .266 3.258  .284 1.716 0.9776 12

13  .884 .249 3.336  .308 1.692 0.9794 13

14  .848 .235 3.407  .329 1.671 0.9810 14

15  .816 .223 3.472  .348 1.652 0.9823 15

16  .788 .212 3.532  .364 1.636 0.9835 16

17  .762 .203 3.588  .379 1.621 0.9845 17

18  .738 .194 3.640  .392 1.608 0.9854 18

19  .717 .187 3.689  .404 1.596 0.9862 19

20  .697 .180 3.735  .414 1.586 0.9869 20

21  .679 .173 3.778  .425 1.575 0.9876 21

22  .662 .167 3.819  .434 1.566 0.9882 22

23 .647 .162 3.858  .443 1.557 0.9887 23

24  .632 .157 3.895  .452 1.548 0.9892 24

25  .619 .153 3.931  .459 1.541 0.9896 25

*n > A n25 31: /=  where n = number  of observations in sample.
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XII Factors for Tolerance Intervals

Values of k for Two-Sided Intervals

Confi dence Level

0.90 0.95 0.99

Sample
Size

Probability of Coverage

0.90 0.95 0.99 0.90 0.95 0.99 0.90 0.95 0.99

 2 15.978 18.800 24.167 32.019 37.674 48.430 160.193 188.491 242.300

 3 5.847 6.919 8.974 8.380 9.916 12.861 18.930 22.401 29.055

 4 4.166 4.943 6.440 5.369 6.370 8.299 9.398 11.150 14.527

 5 3.949 4.152 5.423 4.275 5.079 6.634 6.612 7.855 10.260

 6 3.131 3.723 4.870 3.712 4.414 5.775 5.337 6.345 8.301

 7 2.902 3.452 4.521 3.369 4.007 5.248 4.613 5.488 7.187

 8 2.743 3.264 4.278 3.136 3.732 4.891 4.147 4.936 6.468

 9 2.626 3.125 4.098 2.967 3.532 4.631 3.822 4.550 5.966

10 2.535 3.018 3.959 2.839 3.379 4.433 3.582 4.265 5.594

11 2.463 2.933 3.849 2.737 3.259 4.277 3.397 4.045 5.308

12 2.404 2.863 3.758 2.655 3.162 4.150 3.250 3.870 5.079

13 2.355 2.805 3.682 2.587 3.081 4.044 3.130 3.727 4.893

14 2.314 2.756 3.618 2.529 3.012 3.955 3.029 3.608 4.737

15 2.278 2.713 3.562 2.480 2.954 3.878 2.945 3.507 4.605

16 2.246 2.676 3.514 2.437 2.903 3.812 2.872 3.421 4.492

17 2.219 2.643 3.471 2.400 2.858 3.754 2.808 3.345 4.393

18 2.194 2.614 3.433 2.366 2.819 3.702 2.753 3.279 4.307

19 2.172 2.588 3.399 2.337 2.784 3.656 2.703 3.221 4.230

20 2.152 2.564 3.368 2.310 2.752 3.615 2.659 3.168 4.161

21 2.135 2.543 3.340 2.286 2.723 3.577 2.620 3.121 4.100

22 2.118 2.524 3.315 2.264 2.697 3.543 2.584 3.078 4.044

23 2.103 2.506 3.292 2.244 2.673 3.512 2.551 3.040 3.993

24 2.089 2.489 3.270 2.225 2.651 3.483 2.522 3.004 3.947

25 2.077 2.474 3.251 2.208 2.631 3.457 2.494 2.972 3.904

30 2.025 2.413 3.170 2.140 2.529 3.350 2.385 2.841 3.733

40 1.959 2.334 3.066 2.052 2.445 3.213 2.247 2.677 3.518

50 1.916 2.284 3.001 1.996 2.379 3.126 2.162 2.576 3.385

60 1.887 2.248 2.955 1.958 2.333 3.066 2.103 2.506 3.293

70 1.865 2.222 2.920 1.929 2.299 3.021 2.060 2.454 3.225

80 1.848 2.202 2.894 1.907 2.272 2.986 2.026 2.414 3.173

90 1.834 2.185 2.872 1.889 2.251 2.958 1.999 2.382 3.130

100 1.822 2.172 2.854 1.874 2.233 2.934 1.977 2.355 3.096
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Values of k for Two-Sided Intervals

Confi dence Level

0.90 0.95 0.99

Sample
Size

Probability of Coverage

0.90 0.95 0.99 0.90 0.95 0.99 0.90 0.95 0.99

2 10.253 13.090 18.500 20.581 26.260 37.094 103.029 131.426 185.617

3 4.258 5.311 7.340 6.155 7.656 10.553 13.995 17.370 23.896

4 3.188 3.957 5.438 4.162 5.144 7.042 7.380 9.083 12.387

5 2.742 3.400 4.666 3.407 4.203 5.741 5.362 6.578 8.939

6 2.494 3.092 4.243 3.006 3.708 5.062 4.411 5.406 7.335

7 2.333 2.894 3.972 2.755 3.399 4.642 3.859 4.728 6.412

8 2.219 2.754 3.783 2.582 3.187 4.354 3.497 4.285 5.812

9 2.133 2.650 3.641 2.454 3.031 4.143 3.240 3.972 5.389

10 2.066 2.568 3.532 2.355 2.911 3.981 3.048 3.738 5.074

11 2.011 2.503 3.443 2.275 2.815 3.852 2.898 3.556 4.829

12 1.966 2.448 3.371 2.210 2.736 3.747 2.777 3.410 4.633

13 1.928 2.402 3.309 2.155 2.671 3.659 2.677 3.290 4.472

14 1.895 2.363 3.257 2.109 2.614 3.585 2.593 3.189 4.337

15 1.867 2.329 3.212 2.068 2.566 3.520 2.521 3.102 4.222

16 1.842 2.299 3.172 2.033 2.524 3.464 2.459 3.028 4.123

17 1.819 2.272 3.137 2.002 2.486 3.414 2.405 2.963 4.037

18 1.800 2.249 3.105 1.974 2.453 3.370 2.357 2.905 3.960

19 1.782 2.227 3.077 1.949 2.423 3.331 2.314 2.854 3.892

20 1.765 2.028 3.052 1.926 2.396 3.295 2.276 2.808 3.832

21 1.750 2.190 3.028 1.905 2.371 3.263 2.241 2.766 3.777

22 1.737 2.174 3.007 1.886 2.349 3.233 2.209 2.729 3.727

23 1.724 2.159 2.987 1.869 2.328 3.206 2.180 2.694 3.681

24 1.712 2.145 2.969 1.853 2.309 3.181 2.154 2.662 3.640

25 1.702 2.132 2.952 1.838 2.292 3.158 2.129 2.633 3.601

30 1.657 2.080 2.884 1.777 2.220 3.064 2.030 2.515 3.447

40 1.598 2.010 2.793 1.697 2.125 2.941 1.902 2.364 3.249

50 1.559 1.965 2.735 1.646 2.065 2.862 1.821 2.269 3.125

60 1.532 1.933 2.694 1.609 2.022 2.807 1.764 2.202 3.038

70 1.511 1.909 2.662 1.581 1.990 2.765 1.722 2.153 2.974

80 1.495 1.890 2.638 1.559 1.964 2.733 1.688 2.114 2.924

90 1.481 1.874 2.618 1.542 1.944 2.706 1.661 2.082 2.883

100 1.470 1.861 2.601 1.527 1.927 2.684 1.639 2.056 2.850

XII Factors for Tolerance Intervals (Continued)
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Introductory Works and Graphical Methods
Chambers, J., Cleveland, W., Kleiner, B., and P. Tukey (1983), Graphical Methods for Data 

Analysis, Wadsworth & Brooks/Cole, Pacific Grove, CA. A very well-written presentation of 

graphical methods in statistics.

Freedman, D., Pisani, R., Purves R., and A. Adbikari (2007), Statistics, 4th ed., Norton, 

New York. An excellent introduction to statistical thinking, requiring minimal mathematical 

background.

Hoaglin, D., Mosteller, F., and J. Tukey (1983), Understanding Robust and Exploratory Data 
Analysis, John Wiley & Sons, New York. Good discussion and illustration of techniques such 

as stem-and-leaf displays and box plots.

Tanur, J., et al. (eds.) (1989), Statistics: A Guide to the Unknown, 3rd edition, Wadsworth & 

Brooks/Cole, Pacific Grove, CA. Contains a collection of short nonmathematical articles 

describing different applications of statistics.

Tukey, J. (1977), Exploratory Data Analysis, Addison-Wesley, Reading, MA. Introduces many 

new descriptive and analytical methods. Not extremely easy to read.

Probability
Hoel, P. G., Port, S. C., and C. J. Stone (1971), Introduction to Probability Theory, Houghton 

Mifflin, Boston. A well-written and comprehensive treatment of probability theory and the 

standard discrete and continuous distributions.

Olkin, I., Derman, C., and L. Gleser (1994), Probability Models and Applications, 2nd ed., 

Macmillan, New York. A comprehensive treatment of probability at a higher mathematical 

level than this book.

Mosteller, F., Rourke, R., and G. Thomas (1970), Probability with Statistical Applications,

2nd ed., Addison-Wesley, Reading, MA. A precalculus introduction to probability with many 

excellent examples.

Ross, S. (2009), A First Course in Probability, 8th ed., Prentice-Hall, Englewood Cliffs, NJ. 

More mathematically sophisticated than this book, but has many excellent examples and 

exercises.

Mathematical Statistics
Efron, B., and R. Tibshirani (1993), An Introduction to the Bootstrap, Chapman and Hall, New 

York. An important reference on this useful but computer-intensive technique.

Hoel, P. G. (1984), Introduction to Mathematical Statistics, 5th ed., John Wiley & Sons, New 

York. An outstanding introductory book, well written, and generally easy to understand.
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Hogg, R., and A. Craig (2004), Introduction to Mathematical Statistics, 6th ed., Prentice-Hall, 

Englewood Cliffs, NJ. Another classic work on the mathematical principles of statistics; higher 

level than the Hoel book, but contains excellent discussions of estimation and hypothesis testing.

Larsen, R., and M. Marx (1986), Introduction to Mathematical Statistics, 2nd ed., Prentice-

Hall, Englewood Cliffs, NJ. Written at a relatively low mathematical level, very readable.

Larson, H. J. (1982), Introduction to Probability Theory and Statistical Inference, 3rd ed., John 

Wiley & Sons, New York. An extremely well-written book that gives broad coverage to many 

aspects of probability and mathematical statistics.

Engineering Statistics
Devore, J. L. (2008), Probability and Statistics for Engineering and the Sciences, 8th ed., 

Duxbury & Brooks/Cole, Pacific Grove, CA. Covers many of the same topics as this text, 

but at a slightly higher mathematical level. Many of the examples and exercises involve 

applications to biological and life sciences.

Hines, W. W., and D. C. Montgomery (1990), Probability and Statistics in Engineering and 
Management Science, 3rd ed., John Wiley & Sons, New York. Covers many of the same top-

ics as this book. More emphasis on probability and a higher mathematical level.

Ross, S. (1987), Introduction to Probability and Statistics for Engineers and Scientists, John 

Wiley & Sons, New York. More tightly written and mathematically oriented than this book, 

but contains some good examples.

Walpole, R. E., Myers, R. H., and S. L. Myers (2002), Probability and Statistics for Engineers 
and Scientists, 7th ed., Prentice-Hall, Inc., Upper Saddle River, New Jersey. A very well-

written book at about the same level as this one.

Regression Analysis
Daniel, C., and F. Wood (1980), Fitting Equations to Data, 2nd ed., John Wiley & Sons, New 

York. An excellent reference containing many insights on data analysis.

Draper, N., and H. Smith (1998), Applied Regression Analysis, 3rd ed., John Wiley & Sons, 

New York. A comprehensive book on regression written for statistically oriented readers.

Kutner, M.H., Nachtsheim, C.J., Neter, j., and W. Li (2005), Applied Linear Statistical Models,

5th ed., McGraw-Hill/Irwin, Columbus, OH. The first part of the book is an introduction to 

simple and multiple linear regression. The orientation is to business and economics.

Montgomery, D. C., Peck, E. A., and G. G. Vining (2012), Introduction to Linear Regression 
Analysis, 5th ed., John Wiley & Sons, New York. A comprehensive book on regression writ-

ten for engineers and physical scientists.

Myers, R. H. (1990), Classical and Modern Regression with Applications, 2nd ed., PWS-Kent, 

Boston. Contains many examples with annotated SAS output. Very well written.

Design of Experiments
Box, G. E. P., Hunter, W. G., and J. S. Hunter (2005), Statistics for Experimenters, 2nd ed., John 

Wiley & Sons, New York. An excellent introduction to the subject for those readers desiring a 

statistically oriented treatment. Contains many useful suggestions for data analysis.

Mason, R. L., Gunst, R. F., and J. F. Hess (2003), Statistical Design and Analysis of Experi-
ments, 2nd ed., John Wiley & Sons, New York. A comprehensive book covering basic statis-

tics, hypothesis testing and confidence intervals, elementary aspects of experimental design, 

and regression analysis.

Montgomery, D. C. (2012), Design and Analysis of Experiments, 8th ed., John Wiley & Sons, 

New York. Written at the same level as the Box, Hunter, and Hunter book, but focused on 

engineering applications.
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Nonparametric Statistics
Conover, W. J. (1998), Practical Nonparametric Statistics, 3rd ed., John Wiley & Sons, New 

York. An excellent exposition of the methods of nonparametric statistics; many good exam-

ples and exercises.

Hollander, M., and D. Wolfe (1999), Nonparametric Statistical Methods, 2nd ed., John Wiley 

& Sons, New York. A good reference book, with a very useful set of tables.

Statistical Quality Controland Related Methods
Duncan, A. J. (1986), Quality Control and Industrial Statistics, 5th ed., Richard D. Irwin, 

Homewood, Illinois. A classic book on the subject.

Grant, E. L., and R. S. Leavenworth (1996), Statistical Quality Control, 7th ed., McGraw-Hill, 

New York. One of the first books on the subject; contains many good examples.

John, P. W. M. (1990), Statistical Methods in Engineering and Quality Improvement, John 

Wiley & Sons, New York. Not a methods book, but a well-written presentation of statistical 

methodology for quality improvement.

Montgomery, D. C. (2013), Introduction to Statistical Quality Control, 7th ed., John Wiley & 

Sons, New York. A modern comprehensive treatment of the subject written at the same level 

as this book.

Nelson, W. (2003), Applied Life Data Analysis, John Wiley & Sons, New York. Contains many 

examples of using statistical methods for the study of failure data; a good reference for the 

statistical aspects of reliability engineering and the special probability distributions used in 

that field.

Ryan, T. P. (2000), Statistical Methods for Quality Improvement, 2nd ed., John Wiley & Sons, 

New York. Gives broad coverage of the field, with some emphasis on newer techniques.

Wadsworth, H. M., Stephens, K. S., and A. B. Godfrey (2001), Modern Methods for Quality 
Control and Improvement, 2nd ed., John Wiley & Sons, New York. A comprehensive treat-

ment of statistical methods for quality improvement at a somewhat higher level than this book.

Western Electric Company (1956), Statistical Quality Control Handbook, Western Electric 

Company, Inc., Indianapolis, Indiana. An oldie but a goodie.
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Chapter 2
Section 2-1
2-1. Let a, b denote a part above, below 

the specification, respectively

 

S aaa aab aba abb baa bab

bba bbb

= { , , , , , ,

, }
2-3. Let a denote an acceptable power 

supply

 Let f , m, c denote a supply with 

a functional, minor, or cosmetic 

error, respectively.

 S a f m c= { , , , }
2-5. Sequences of y  or n of length 24 

with 224 outcomes

2-7. S  is the sample space of 100 

possible two digit integers.

2-9. S E= { , , , , }0 1 2 1 09…  in ppb

2-11. S = { . , . , . , , . }1 0 1 1 1 2 14 0…
2-13. S = { , , , ,}0 1 2 …  in milliseconds

2-17. c = connect,  b = busy, 
S c bc bbc bbbc bbbbc= { , , , , , }…

2-21. (a) S = nonnegative integers from  

0 to the largest integer that can be  

displayed by the scale 
S = { , , , , }0 1 2 3 …

 (b) S (c) { , , , }12 13 14 15

 (d) { , , , , }0 1 2 11…  (e) S
 (f) { , , , , }0 1 2 7…  (g) ∅
 (h) ∅ (i) { , , , }8 9 10 …
2-23. Let d denoted a distorted bit and 

let o denote a bit that is not dis-

torted.

 (a) S

dddd dodd oddd oodd

dddo dodo oddo oodo

ddod dood odod o
=

, , , ,

, , , ,

, , , oood

ddoo dooo odoo oooo

,

, , ,

⎧

⎨
⎪⎪

⎩
⎪
⎪

⎫

⎬
⎪⎪

⎭
⎪
⎪

 (b) No, for example 

A A dddd dddo ddod ddoo1 2∩ = { , , , }

 (c) A

dddd dodd

dddo dodo

ddod dood

ddoo dooo

1 =

⎧

⎨
⎪⎪

⎩
⎪
⎪

⎫

⎬
⎪⎪

⎭
⎪
⎪

, ,

, ,

, ,

,

 (d)  ′ =

⎧

⎨
⎪⎪

⎩
⎪
⎪

⎫

⎬
⎪⎪

⎭
⎪
⎪

A

oddd oodd

oddo oodo

odod oood

odoo oooo

1

, ,

, ,

, ,

,

 (e) A A A A dddd1 2 3 4∩ ∩ ∩ = { }

 (f) ( ) ( ) { ,A A A A dddd1 2 3 4∩ ∪ ∩ =  

dodd dddo oddd ddod oodd, , , , ,
ddoo}

2-25. Let P denote being positive and 

let N  denote being negative. The 

sample space is { , , ,PPP PPN PNP
NPP PNN NPN NNP NNN, , , , }.

 (a) A PPP= { }

 (b) B NNN= { }

 (c) A B∩ = ∅
 (d) A B PPP NNN∪ = { , }
2-27. (a)  ′∩ = ′ = ∪ =A B B A B10 10 92, ,

2-29. (a) A x x′ = | ≥ .{ }72 5

 (b) B x x′ = | ≤ .{ }52 5

 (c) A B x < x∩ = | . <{ . }52 5 72 5

 (d) A B x x >∪ = |{ }0

2-31. Let g denote a good board, m a 

board with minor defects, and j a 

board with major defects.

 (a) S gg gm gj mg mm mj

jg jm jj

= { , , , , , ,

, , }

 (b) S gg gm gj mg mm mj

jg jm

= { , , , , , ,

, }

2-35. 120

2-37. 144

2-39. 14,400

2-41. (a) 416,965,528

 (b) 113,588,800

 (c) 130,721,752

2-43. (a) 21 (b) 2520 (c) 720

2-45. (a) 1000 (b) 160 (c) 720

2-47. (a) 0.416 (b) 0.712 (c) 0.206

2-49.  41,947,059

2-51. 900

2-53. (a) 673 (b) 1672 (c) 6915

 (d) 8399 (b) 1578

2-55. (a) 19 (b) 59 

 (c) 127 (d) 511 

2-57. (a) 21 (b) 16

 (c) 27 (d) 33

Section 2-2
2-59. (a) 0.4 (b) 0.8 (c) 0.6

 (d) 1 (e) 0.2

2-61. (a) 1/10 (b) 5/10

2-63. (a) S = { , , , , , , , }1 2 3 4 5 6 7 8
 (b) 2/8  (c) 6/8

2-65. (a) 0.83  (b) 0.85

2-67. ( )* ( ) .1 1 5 7 103 3 8/10 /26 = × −

2-69. (a) 4 4 3 4 3 3 52+ × + × × =
 (b) 36/52 (c) No

2-71. (a) 0.30 (b) 0.77 (c) 0.70

 (d) 0.22 (e) 0.85 (f) 0.92

2-75. 0.9889

2-77. (a) 0.0792 (b) 0.1969

 (c) 0.8142 (d) 0.9889

 (e) 0.1858

2-79. (a) 0.00202 (b) 
1

3

 (c) 
1

11
  (d) 

1

11

2-81. (a) 0 2448.  (b) 4 58 1 7. × −0

 (c) 0.7551 (d) 0.254

Section 2-3
2-83. (a) 0.9 (b) 0

 (c) 0 (d) 0 

 (e) 0.1

2-85. (a) 0.70 (b) 0.95 (c) No

2-87. (a) 350/370 (b) 362/370

 (c) 358/370 (d) 345/370

2-89. (a) 13/130 (b) 0.90, No

2-91. (a) 0.7255 (b) 0.8235

 (c) 0.7255

2-93. (a) 0.2264 (b) 0.9680

 (c) 0.9891

2-95. (a) 7/10 (b) 3/10

 (c) 0.7  (d) 0.55

2-97. (a) 0.245 (b) 0.755

 (c) 0.630 

Section 2-4
2-99. (a) 86/100 (b) 79/100

 (c) 70/79 (d) 70/86

2-101. (a) 0.903 (b) 0.591

2-103. (a) 12/100 (b) 12/28

 (c) 34/122

2-105. (a) 0.5625 (b) 0.1918

 (c) 0.3333

2-107. (a) 20/100 (b) 19/99

 (c) 0.038 (d) 0.2

2-109. (a) 0.02 (b) 0.000458

 (c) 0.9547

2-111. No

2-113. (a) 0.6087 (b) 0.3913

 (c) 0.5 (d) 0.5

2-115. (a) 0.0987 (b) 0.0650

2-117. (a) 0.25 (b) 2/3

 (c) 0.25

2-119. (a) 0 667.   (b) 0 203.

 (c) 0 413.  (d) 0 797.

  769
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Section 2-5
2-121. (a) 0.2 (b) 0.3

2-123. 0.014

2-125. 0.028

2-127. (a) 0.2376 (b) 0.0078

2-129. (a) 0.2 (b) 0.2

2-133. (a) 0.0109 (b) 0.2264

 (c) 0.9891 (d) 0.1945

2-135. (a) 0.0792 (b) 0.8142

 (c) 0.9208 (d) 0.8031

2-137. 0.2

2-139. (a) 1 126/  (b) 4/9

 (c) 1/6 (d) 1/6

2-141. (a) 0.245 (b) 0.755

 (c) 0.336

Section 2-6
2-143. independent

2-145. (a) not independent.  (b) yes

2-147. (a) not independent.  (b) 0.733

2-149. (a) 0.59  (b) 0.328  (c) 0.41

2-151. (a) 0.00307  (b) 0.04096

2-153. (a) 0.01  (b) 0.49  (c) 0.09

2-155. (a) 0.00003  (b) 0.00024

 (c) 0.00107

2-157. 0.9702

2-159. not independent.

2-161. independent.

2-163. 5 13 10 9. × −

2-165. no change

Section 2-7
2-167. 0.89

2-169. (a) 0.97638 (b) 0.20755

2-171. (a) 0.615 (b) 0.618   (c) 0.052

2-173. (a) 0.9847 (b) 0.1184

2-175. 0.2540

2-177. 0.5

2-179. (a) 0.152 (b) 0.789

 (c) 0 906.

2-181. (a) 0 327.  

 (b) 0.612

Supplemental Exercises
2-185. 0.014

2-187. (a) 0.82 (b) 0.90 (c) 0.18

 (d) 0.80 (e) 0.92 (f) 0.98

2-191. (a) 0.2 (b) 0.202

 (c) 0.638 (d) 0.2

2-193. (a) 0.03 (b) 0.97 (c) 0.40

 (d) 0.05 (e) 0.012 (f) 0.018

 (g) 0.0605

2-195. (a) 0.18143 (b) 0.005976

 (c) 0.86494

2-197. 0.000008

2-199. (a) 50 (b) 37 (c) 93

2-201. S A A D A D A D A D

A D

= ′ ′ ′ ′
′

{ , , , ,

}

1 2 3 4

5

,

2-203. (a) 0.19 (b) 0.15 (c) 0.99

 (d) 0.80 (e) 0.158

2-205. (a) No (b) No

 (c) 40/240 (d) 200/240

 (e) 234/240 (f) 1

2-207. (a) 0.282 (b) 0.718

2-209. 0.996

2-211. (a) 0.0037 (b) 0.8108

2-213. (a) 0.0778 (b) 0.00108

 (c) 0.947

2-215. (a) 0.9764 (b) 0.3159

2-217. (a) 0.207 (b) 0.625

2-219. (a) 0.453 (b) 0.262

 (c) 0.881 (d) 0.547

 (e) 0.783 (f) 0.687

2-221. 1 58 10 7. × −

2-223. (a) 0.67336 (b) 2 646 10 8. × −

 (c) 0.99973

2-225. (a) 367 (b) 70 266( )

 (c) 100 265( )

2-227. (a) 0.994, 0.995

 (b) 0.99, 0.985

 (c) 0.998, 0.9975

2-229. (a) 0 421.  (b) 0 699.

 (c) 0 338.  (d) 0.948

Mind-Expanding Exercises
2-231. (a) n = 3 (b) n = 3

2-233. 0.306, 0.694

Chapter 3
Section 3-1
3-1. { , , , , }0 1 2 1000…
3-3. { , , , , }0 1 2 99999…
3-5. { , , , }1 2 491…
3-7. { , , , }0 1 2 …
3-9. { , , , , }0 1 2 15…
3-11. { , , , , }0 1 2 10000…
3-13. { , , , , }0 1 2 40000…
3-15. {1, 2, …, 100}

Section 3-2
3-17. (a) 1  (b) 7/8  (c) 3/4  (d) 1/2

3-19. (a) 9/25  (b) 4/25  (c) 12/25  (d) 1

3-21. (a) 0.3 (b) 0.6

 (c) 0.4 (d) 0.3

3-23. f ( ) .0 0 033= , f ( ) .1 0 364= , 

f ( ) .2 0 603=
3-25. P X( ) .= =0 0 008,  

P X( ) .= =1 0 096, 

P X( ) .= =3 0 512

3-27. P X( ) .= =50 0 5,  

P X( ) .= =25 0 3,  

P X( ) .= =10 0 2

3-29. P X( ) .= =15 0 6,  

P X( ) .= =5 0 3,  

P X( . ) .= − =0 5 0 1

3-31. P X( ) .= =0 0 00001,  

P X( ) .= =1 0 00167,  

P X( ) .= =2 0 07663, 

P X( ) .= =3 0 92169

Section 3-3

3-33. X = waiting time (hours)

f x

x

x

x

x

x

x( )

. ,

. ,

. ,

. ,

. ,

. ,=

=
=
=
=
=
=

0 038 1

0 102 2

0 172 3

0 204 4

0 174 5

0 124 66

0 080 7

0 036 8

0 028 9

0 022 10

0 020 15

. ,

. ,

. ,

. ,

. ,

x

x

x

x

x

=
=
=
=
=

⎧

⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎩⎩

⎪
⎪
⎪
⎪
⎪
⎪
⎪

3-35. X = Non-failed well depth

 
P X( ) ( )

.

= = +
=

255 1515 1343

0 370

/

7726

 P X( ) .= = =218 26 0 003/7726

 P X( ) .= = =317 3290 0 426/7726

 P X( ) .= = =231 349 0 045/7726

 

P X( ) ( )

.

= = +
=

267 280 887

0 151

/

7726

 P X( ) .= = =217 36 0 005/7726

3-37. P X

P X

P X

=( ) =

=( ) =

=( ) =

0 0

0

0 0

 72

1  26

2  2

.

.

.

3-39. (a) 7/8  (b) 1  (c) 3/4  (d) 3/8

3-41. F x

x

x

x

x

x

( )

,

/

/

/

/

=

<
≤ <
≤ <
≤ <
≤ <

0 0

1 25 0 1

4 25 1 2

9 25 2 3

16 25 3 4

1                4 ≤

⎧

⎨

⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪

⎫

⎬

⎪
⎪
⎪⎪

⎭

⎪
⎪
⎪
⎪x

3-43. F x

x

x

x

x

x

( )

.

. . .

. . .

. .

. .

=

<
≤ <

≤ <
≤ <

≤ <

0 1 25

0 2 1 25 1 5

0 6 1 5 1 75

0 7 1 75 2

0 9 2 2 225

1 2 25             . ≤

⎧

⎨

⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪

⎫

⎬

⎪
⎪
⎪⎪

⎭

⎪
⎪
⎪
⎪x

3-45. F x

x <

x <

x <

x <

x

( ) =
. ≤
. ≤
. ≤

≤

⎧

⎨

0 0

0 008 0 1

0 104 1 2

0 488 2 3

1 3

,

,

,

,

,

  

  

  

  

⎪⎪
⎪⎪

⎩

⎪
⎪
⎪

⎫

⎬

⎪
⎪⎪

⎭

⎪
⎪
⎪

 where fx ( ) .0 0 008= ,  

fx ( ) .1 0 096= ,

  fx ( ) .2 0 384= ,

  fx ( ) .3 0 512=
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3-47. F x

x

x

x <

x

( ) =

<
. ≤ <

≤
≤

⎧

⎨
⎪⎪

⎩
⎪
⎪

⎫

⎬
⎪⎪

⎭
⎪
⎪

0 10

0 2 10 25

0 5 25 50

1 50

,

,

. ,

,

 where P X( .= =50 0 5million) , 

P X( .= =25 0 3million) , 

P X( .= =10 0 2million)
3-49. (a) 1  (b) 0.5  (c) 0.5  (d) 0.5

3-51. (a) 1  (b) 0.75  (c) 0.25  (d) 0.25   

(e) 0  (f) 0

3-53. F x

x

x <

x <

x

( ) =

<
. ≤

≤
≤

⎧

⎨
⎪⎪

⎩
⎪
⎪

⎫

⎬
⎪⎪

0 266

0 24 266 271

0 54 271 274

1 274

,

,

. ,

, ⎭⎭
⎪
⎪

3-55. F x

, x <

x <

x <

x <

x <

( ) =

.
. . ≤
. ≤ .
. . ≤
. ≤

0 1 5

0 05 1 5 3

0 30 3 4 5

0 65 4 5 5

0 85 5 7

,

,

,

,

11 7  ≤

⎧

⎨

⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪

⎫

⎬

⎪
⎪
⎪⎪

⎭

⎪
⎪
⎪
⎪x

Section 3-4
3-57. μ = 2, σ2 2=
3-59. μ = 0, σ2 1 5= .

3-61. μ = 2 8. , σ2 1 36= .

3-63. μ = 1 57. , σ2 0 311= .

3-65. 24

3-67. μ = 0 0004. , σ2 0 00039996= .

3-69. (a)  μ = 18 694. ,  

σ2 735 9644= . , 

σ = 27 1287.

 (b)  μ = 37 172. , 

σ2 2947 996= . , 

σ = 54 2955.

3-71. E X( ) .= 4 808, V X( ) .= 6 147

3-73. E X( ) .= 281 83, V X( ) .= 976 24

3-75. mean = 0.3

Section 3-5
3-77. μ = 2, σ2 0 667= .

3-79. (a)2.40 ë 10-18  (b) 0.9999 

(c) 9.91 ë 10-18  (d) 1.13810-4

3-81. (a) μ = 687 5. , σ2 56 25= .  

(b)  μ = 87 5. , σ2 56 25= .

3-83. E X( ) .= 4 5, E Y( ) .= 22 5, 

σY = 14 36.

3-85. μ = 7, σ = 1 414.

3-87.  0.0001

3-89. No

Section 3-6
3-93. (a) 0.9298  (b) 0(c) 0.0112   

(d) 0.0016

3-95. (a)  2 40 10 18. × −   (b) 0.9999 

(c)  9 91 10 18. × −     (d) 1 138 10 4. × −

3-97. (a) 0  (b) 10

3-101. (a) 0.215  (b) 0.9999 (c) 4

3-103. (a) 0.410  (b) 0.218 (c) 0.37

3-105. (a) 1 (b) 0.999997

 (c) E X( ) .= 12 244, V X( ) .= 2 179

3-107. (a) Binomial, p = 104 9/36 ,

n = 1E09    (b) 0

 (c) E X( ) .= 4593 9, V X( ) .= 4593 9

3-109. (a) 0.9961  (b) 0.9886

3-111. (a) 0.142    (b) 0.322  (c) 0.963

3-113. (a) 0.009    (b) 0.382  (c) 0.972

 (d) 3

3-115. (a)  ( . )1 0 01 01000− ≅  (b)  0 126.

 (c)  0 99.  

3-117. 14

Section 3-7
3-119. (a) 0.5  (b) 0.0625  (c) 0.0039

 (d) 0.75  (e) 0.25

3-121. (a) 5  (b) 5

3-123. (a) 0.0064  (b) 0.9984 (c) 0.008

3-125. (a) 0.0167  (b) 0.9039 (c) 50

3-127. (a) 0.13  (b) 0.098  (c) 7 69 8. ≈
3-129. (a) 3 91 10 19. × −

 (b) 200  (c) 2 56 1018. ×
3-131. (a) 3 108×  (b) 3 1016×
3-135. (a) 10 (b) 0.039

 (c) 0.039 (d) 0.271

3-137. (a)  0 0604.  (b)  0 1808.

 (c) 15

3-139. (a) 0 2273.   (b) 0.185

 (c) 43 99.  

Section 3-8
3-141. (a) 0.4191  (b) 0(c) 0.001236

 (d) E X( ) .= 0 8, V X( ) .= 0 6206

3-145. (a) 0 12.  (b) 0 852.

3-147. (a) 0.087  (b) 0.9934 (c) 0.297  

 (d) 0.9998

3-149. (a) 0.7069  (b) 0.0607 (c) 0.2811

3-151. (a) 0.0041  (b) 0.3091  (c) 0.0165

3-153. (a) 0 25.  (b) 0 72.

 (c) 0 16.   (d) 5

3-155. (a) 0 599.  (b) 0 176.   (c) 18

Section 3-9
3-157. (a) 0.0183  (b) 0.2381

 (c) 0.1954  (d) 0.0298

3-159. E X V X( ) ( ) .= = 2 996

3-161. (a) 0.264  (b) 48

3-163. (a) 0.4566  (b) 0.047

3-165. (a) 0.2  (b) 99.89%

3-167. (a) 0.6065  (b) 0.0067

 (c) P W( ) .= =0 0 0067, 

  P W( ) .= =1 0 0437, 

  P W( ) .≤ =1 0 0504
3-169. (a) 0.026  (b) 0.287 (c) 0.868

3-171. (a) 0 435.  (b) 0 487.

 (c) 13 816.

3-173. (a) 0 010.  (b) 0 005.

 (c) 2.56 (d) 3 15.

Supplemental Exercises

3-175. E X( ) /= 1 4, V X( ) .= 0 0104

3-177. (a) n = 50, p = 0 1.   (b) 0.112

 (c) P X( ) .≥ = × −49 4 51 10 48

3-179. (a) 0.000224  (b) 0.2256

 (c) 0.4189

3-181. (a) 0.1024  (b) 0.1074

3-183. (a) 3000  (b) 1731.18

3-185. (a) P X( ) .= =0 0 0498      (b) 0.5768

 (c) P X x( ) .≤ ≥ 0 9, x = 5

 (d) σ λ2 6= = . Not appropriate.

3-187. (a) 0.1877  (b) 0.4148  (c) 15

3-189. (a) 0.0110  (b) 8/3

3-191. 40000

3-193. 0.1330

3-195. (a) 500  (b) 222.49

3-197. 0.1

3-199. fX ( ) .0 0 16= ,   fX ( ) .1 0 19= , 

fX ( ) .2 0 20= ,   fX ( ) .3 0 31= , 

fX ( ) .4 0 14=
3-201. fx ( ) .2 0 2= ,     fx ( . ) .5 7 0 3= , 

fx ( . ) .6 5 0 3= , fx ( . ) .8 5 0 2=
3-203. (a) 0.0433  (b) 3.58

3-205. (a)  fX ( ) .0 0 2357= ,

  fX ( ) .1 0 3971= ,

  fX ( ) .2 0 2647= ,

  fX ( ) .3 0 0873= ,

  fX ( ) .4 0 01424= ,

  fX ( ) .5 0 00092=
 (b)  fX ( ) .0 0 0546= ,

  fX ( ) .1 0 1866= ,

  fX ( ) .2 0 2837= ,

  fX ( ) .3 0 2528= ,

  fX ( ) .4 0 1463= ,

  fX ( ) .5 0 0574= ,

  fX ( ) .6 0 0155= ,

  fX ( ) .7 0 0028= ,

  fX ( ) .8 0 0003= ,

  fX ( ) .9 0 0000= ,

  fX ( ) .10 0 0000=
3-207. 37.8 seconds

3-209. (a) 2.8 (b) 0 061.

 (c) 13,900

Mind-Expanding Exercises
3-215. (a) 131  (b) 123

Chapter 4
Section 4-2
4-1. (a) 0.3679  (b) 0.2858  (c) 0  

 (d) 0.9817  (e) 0.0498

4-3. (a) 0.5  (b) 0.1464  (c) 0.7072  

 (d) 0.8536  (e) 1.12 radians

4-5. (a) 0.4375  (b) 0.7969  

 (c) 0.5625  (d) 0.7031  (e) 0.5

4-7. (a) 0.5  (b) 0.4375  (c) 0.125  

 (d) 0  (e) 1  (f) 0.9655

4-9. (a) 0.5  (b) 49.8
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4-11. (a) 0.1

4-13. (a) 0.5625 (b) 1.1 (c) 0 

4-15. (a) 0.221 (b)0.368 (c) 5.991

Section 4-3
4-17. (a) 0.56  (b) 0.7  (c) 0  (d) 0

4-19. F x( ) = 0 for x ≤ 0; 1− −e x for x > 0

4-21. F x x( ) = ≤ − π
0

2
 for ,

 0 5 0 5. .sin x +

 for − π ≤ ≤ π
2 2

x ,

 1 for x ≥ π
2

4-23. (a) 0.56 (b) 0.7  

 (c) 0 (d) 0

4-25. 0.2

4-27. F x( ) = 0 for x < 0; 0 25 2. x  for 

0 2≤ <x ; 1 for 2 ≤ x
4-29. f x( ) .= 0 2 for 0 4< <x ; 

f x( ) .= 0 04 for 4 9≤ <x
4-31. F x( ) = 0 for x ≤ 0, x x− 0.25 2 for 

0 < 2x ≤ , 1 for x > 2

4-33. F x( ) = 0 for x ≤ 0, 

1 ( 0.5 )− −exp x  for x > 0 

 P X E(40 < 60) = 2.06 9≤ −
Section 4-4
4-35. E X( ) = 2, V X( ) = 4/3

4-37. E X( ) = 0, V X( ) .= 0 6

4-39. E X( ) = 4, V X( ) .= 3 2

4-41. μ σ= 2 / 3, = 2 / 92  

4-43. μ σ= 2, = 42

4-45. E X( ) = 2

4-47. (a) E X( ) .= 109 39, V X( ) .= 33 19

 (b) 54.70

4-49. (a) E X( ) .= 5 1, V X( ) .= 0 01

 (b) 0.3679

Section 4-5
4-51. (a) E X( ) = 0, V X( ) .= 0 577

 (b) 0.90  (c) F x( ) = 0 for x < −1; 

 0 5 0 5. .x +  for − ≤ <1 1x ; 1 for 1 ≤ x
4-53. (a) F x( ) = 0 for x < 0 95. ; 10 9 5x − .  

for 0 95 1 05. .≤ <x ; 1 for 1 05. ≤ x
 (b) 0.3  (c) 0.96

 (d) E X( ) .= 1 00, V X( ) .= 0 00083

4-55. (a) F x( ) = 0 for x < 0 2050. ; 

100 20 50x − .  for 

0 2050 0 2150. .≤ <x ; 1 for 

0 21 50. . ≤ x
 (b) 0.25  (c) 0.2140

 (d) E X( ) .= 0 2100, 

V X( ) .= × −8 33 10 6

4-57. (a) F X x( ) = /90 for 0 90≤ ≤x
 (b) E X( ) = 45, V X( ) = 675

 (c) 1/3  (d) 0.333

4-59. (a) σx = 34 64.   (b) 1/3   (c) 1/2

4-61. (a) Yes (b) μ = 5 (c) 0.3 

Section 4-6
4-63. (a) 0.90658  (b) 0.99865  

 (c) 0.07353  (d) 0.98422  

 (e) 0.95116

4-65. (a) 0.90    (b) 0.5  (c) 1.28

 (d) −1 28.   (e) 1.33

4-67. (a) 0.93319  (b) 0.69146

 (c) 0.9545   (d) 0.00132

 (e) 0.15866

4-69. (a) 0.93319  (b) 0.89435

 (c) 0.38292  (d) 0.80128

 (e) 0.54674

4-71. (a) 0.99379  (b) 0.13591

 (c) 5835

4-73. (a) 0.0228  (b) 0.019

 (c) 152.028

 (d) small (less than 5%)

4-75. (a) 0.0082  (b) 0.72109

 (c) 0.564

4-77. (a) 12.309  (b) 12.1545

4-79. (a) 0.00621  (b) 0.308538

 (c) 133.33

4-81. (a) 0.1587  (b) 1.3936

 (c) 0.9545

4-83. (a) 0.00043  (b) 6016

 (c) 1/8

4-85. (a) 0.02275  (b) 0.324

 (c) 11.455

4-87. [23.5, 24.5], no effect from stdev

4-89. (a) 0.0248  (b) 0.1501  

 (c) 92.0213

4-91. σ = 0.912

4-93. (a) −1.645  (b)0.5  (c) 0.683 

Section 4-7
4-95. (a) 0.0853  (b) 0.8293 (c) 0.0575

4-97. (a) 0.1446  (b) 0.4761 (c) 0.3823

4-99. (a) 0.2743  (b) 0.8413

4-101. 0.022

4-103. 0.5

4-105. (a) 0  (b) 0.156  (c) 10,233

 (d) 8.3 days/year  (e) 0.0052

4-107. (a) 0.012  (b) 0.9732  (c) 536.78

4-109. (a)0.07     (b) 0.997

4-111. (a) μ σ= 2500, = 50 (b) 0.9778 

 (c) 0.9778  (d) 0.473 

Section 4-8
4-113. (a) 0.3679 (b) 0.1353

 (c) 0.9502 (d) 0.95, x = 29 96.

4-115. (a) 0.3679 (b) 0.2835

 (c) 0.1170

4-117. (a) 0.1353  (b) 0.4866

 (c) 0.2031  (d) 34.54

4-119. (a) 0.0498  (b) 0.8775

4-121. (a) 0.0025  (b) 0.6321

 (c) 23.03  (d) same as part (c)

 (e) 6.93

4-123. (a) 15.625  (b) 0.1629

 (c) 3 10 6× −

4-125. (a) 0.2212  (b) 0.2865

 (c) 0.2212  (d) 0.9179

 (e) 0.2337

4-127. (a) 0.3528  (b) 0.04979

 (c) 46.05  (d) 6 14 10 6. × −

 (e) e−12  (f) same

4-129. (a) 0.3679  (b) 0.1353

 (c) 0.0498

 (d) does not depend on θ
4-131. (a) 0.435  (b) 0.135     (c) 0.369  

 (d) 0.865

4-133. (a) 0.26     (b) 0.51      (c) 0.71 

4-135. (a) 0.544   (b) 0.65      (c) 2.63 

Section 4-9
4-137. (a) 120  (b) 1.32934

 (c) 11.6317

4-139. (a) Erlang λ = 5 calls/min, r = 10    

(b) E X( ) = 2, V X( ) .= 0 4

 (c) 0.2 minute  

 (d) 0.1755      (e) 0.2643

4-141. (a) 50000       (b) 0.6767

4-143. v(a) 5 105×      (b) V X( ) = ×5 1010 

σ = 223607    (c) 0.0803

4-145. (a) 0.1429      (b) 0.1847

4-149. (a) 1.54          (b) 0.632

4-151. (a) 
μ

σ

= 11,494.25,

= 1,321,178.492  

 (b) ≈ 1 

Section 4-10
4-153. E X( ) = 12000, V X( ) .= ×3 61 1010

4-155. 1000

4-157. (a) 803.68 hours

 (b) 85319.64  (c) 0.1576

4-159. (a) 443.11      (b) 53650.5

 (c) 0.2212

4-163. (a) 0.5698      (b) 0.1850  

 (c) 0.4724

4-165. (a) 0.0468      (b) 0.1388

4-167. (a) μ = 300, σ2 = 90000. 

 (b) 0.449        (c) 416 s 

4-169. δ = 40.93, β = 10.13

Section 4-11

4-171. (a) 0.0016  (b) 0.0029

 (c) E X( ) .= 12 1825,

  V X( ) .= 1202455 87

4-173. (a) 0.03593  (b) 1.65

 (c) 2.718312.6965

4-175. (a) θ = 8 4056. , ω2 1 6094= .

 (b) 0.2643  (c) 881.65

4-179. (a) E X( ) .= 4 855, V X( ) .= 4 090  

(b) 0.9263  (c) 0.008

4-181. (a) 0.27      (b) 0.48 

 (c) μ = 4.48, σ2 = 34.5126 

4-183. (a) 0.01963 (b) 0.032

Section 4-12
4-185. (a) 0.0313   (b) 0.4559  

 (c) E X( ) .= 0 7143, V X( ) .= 0 0454
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4-187. (a) Mode = 0 8333. , E X( ) .= 0 6818,  

V X( ) .= 0 0402

 (b) Mode = 0 6316. ,E X( ) .= 0 6154,  

  V X( ) .= 0 0137

4-189. 0.0272

4-191. (a) α = 2.006, β = 4.04 

 (b) σ = 0.178 

Supplemental Exercises

4-193. (a) 0.99379  (b) 0.621%

4-195. (a) 0.15866  (b) 90.0

 (c) 0.9973    (d) ( . )0 9973 10

 (e) 9.973

4-197. (a) 0.0217  (b) 0.9566 

  (c) 229.5

4-199. 0.8488

4-201. (a) 620.4  (b) 105154.9

  (c) 0.4559

4-203. (a) 0.0625  (b) 0.75  (c) 0.5

 (d) F x( ) = 0 for x < 2; x x/4 − +1 

for 2 4≤ <x ; 1 for 4 ≤ x
 (e) E X( ) /= 10 3, V X( ) .= 0 2222

4-205. (a) 0.3935  (b) 0.9933

4-207. (a) θ = 3 43. , ω2 0 96= .

 (b) 0.946301

4-209. (a) 0.6915  (b) 0.683

 (c) 1.86

4-211. (a) 0.0062 (b) 0.012 (c) 5.33

4-215. (a) 0.5633  (b) 737.5

4-217. (a) 0.9906 (b) 0.8790

4-219. (a) μ = 0.167, σ2 = 0.0198 

 (b) 0.03125 (c) 0.021 

4-221. (a) 37.3892 (b) 9.42 

4-223. (a) 0.01  (b) 0.979  (c) 2571 

4-225. μ σ= 1.33, = 430.22−
Mind-Expanding Exercises

4-229. (a) kσ2  (b) k k mσ μ2 2+ −( )
4-233. (a) μ γ λ= 1 /+ , σ λ2 2= 1 /  

 (b) 1 ( 1)− −exp

Chapter 5
Section 5-1

5-1. (a) 3/8  (b) 5/8  (c) 3/8  (d) 1/8

 (e) V X V Y( ) . ( ) .= =0 4961 1 8594
 (f)  f ( )1 1= /4, f ( . )1 5 3= /8, 

f ( . )2 5 1= /4, f ( )3 1= /8

 (g)  f ( )2 1= /3, f ( )3 2= /3

 (h) 1  (i) 2 1/3
 (j) Not independent

5-3. (a) 3/8  (b) 3/8  (c) 7/8

 (d) 5/8  (e) V X( ) .= 0 4219 

V Y( ) .= 1 6875

 (f) f ( )− =1 1 8/ ,   f ( . )− =0 5 1/4, 

f ( . )0 5 1= /2,     f ( )1 1= /8

 (g) 1  (h) 1  (i) 0.5

 (j) Not independent

5-5. (b)  fX ( ) .0 0 970299= ,

fX ( ) .1 0 029403= , 
fX ( ) .2 0 000297= , 
fX ( ) .3 0 000001=

 (c) 0.03  (d)  f ( ) .0 0 920824= , 

f ( ) .1 0 077543= , f ( ) .2 0 001632=
 (e) 0.080807

 (g) Not independent

5-7. (b)  f ( ) .0 2 40 10 9= × − , 

f ( ) .1 1 36 10 6= × − , 

f ( ) .2 2 899 10 4= × − , f ( ) .3 0 0274= , 

f ( ) .4 0 972=
 (c) 3.972  (d) equals f y( )

 (e) 3.988  (f) 0.0120

 (g) Independent

5-9. (b) fX ( ) .0 0 2511= ,

  fX ( ) .1 0 0405= ,

  fX ( ) .2 0 0063= ,

  fX ( ) .3 0 0009= ,

  fX ( ) .4 0 0001=
 (c) 0.0562

 (d) fY | ( )3 0 2= /3, fY | ( )3 1 1= /3, 

f f fY Y Y| | |( ) ( ) ( )3 3 32 3 4 0= = =
 (e) 0.0003  (f) 0.0741

 (g) Not independent

5-11. (c) 0.308    (d) 5.7

5-13. (a) 0.4444  (b) 0.6944

 (c) 0.5833  (d) 0.3733

 (e) 2  (f) 0   (g)  f x xX ( ) = 2 /9; 

0 3< <x       (h)  f y yY | . ( )1 5 2= /9; 

0 3< <y       (i) 2 (j) 4/9 

 (k)  f x xX | ( )2 2= /9; 0 3< <x
5-15. (a) 1/81    (b) 5/27

 (c) 0.790  (d) 16/81

 (e) 12/5    (f) 8/5

 (g)  f x x( ) = 4 3 /81; 0 3< <x
 (h)  f y yY X| ( )= =1 2 ; 0 1< <y
 (i) 1  (j) 0

 (k)  f x xX Y| ( )= =2 2 /5; 2 3< <x
5-17. (a) 0.9879      (b) 0.0067

 (c) 0.000308  (d) 0.9939

 (e) 0.04  (f) 8/15  (g)  f x x( ) = −5 5e ; 

 x > 0 (h)  f yY X
y

| ( )=
−=1

3 33e ; 

  1 < y (i) 4/3 (j) 0.9502, 

fY ( )2 15 6= −e /2; 0 < y
 (k)  f yX Y

x
| ( )=

−=2
22e ; 0 2< <x

5-19. (a) 1/30    (b) 1/12  (c) 19/9  

 (d) 97/45  (g) 1       (h) 0.25

5-21. (a) P X Y( , ) .> > =5 5 0 0439, 

P X Y( , ) .> > =10 10 0 0019

 (b) 0.0655

5-23. (a) 0.25  (b) 0.0625  (c) 1

 (d) 1       (e) 2/3        (f) 0.25

 (g) 0.0625 

 (h)  f y z x xX YZ| ( , ) ;= < <2 0 1 

(i) 0.25

5-25. (a) 0.75    (b) 3/4    (c) 0.875  

 (d) 0.25    (g) 1 for x > 0

5-27. (a) 0.032  (b) 0.0267

5-29 (b) 1

 (c) f x y eXY
y( , ) = −  for 0 < <x y

 (d) f x
y

X y| ( ) = 1
 for 0 < <x y

 (e) 1 1− −e  (f) 2 (g) 1
2−
e

 (h) 1 3 2− −e  (i) 3.9 (j) No

5-31 (a) 0 4352.

 (b) Yes, one solution is x = 1 625.  

and y = 0 703.  

Section 5-2
5-33. 0.8851

5-35. c = 1 36/ , ρ = −0 0435.

5-37 σXY = −0 16. , ρXY = −0 27.

5-39. c = 8 81/ , ρ = 0 4924.

5-41. σ ρXY XY= = 0

5-43. σ ρXY XY= = 0

5-45 σXY = 1, ρXY = 2

2

Section 5-3
5-49. (a) p1 0 05= . , p2 0 85= . , p3 0 10= .

 (d) E X( ) = 1, V X( ) .= 0 95

 (f) 0.07195

 (g) 0.7358

 (h) E Y( ) = 17

 (i) 0

 (j) P X Y( , ) .= = =2 17 0 0540, 

P X Y( | ) .= = =2 17 0 2224

 (k) E X Y( | )= =17 1

5-51. (b) 0.1944 (c) 0.0001

 (e) E X( ) .= 2 4 (f) E Y( ) .= 1 2

 (g) 0.7347 (h) 0

 (i) P X Y( | ) .= = =0 2 0 0204, 

P X Y( | ) .= = =1 2 0 2449, 

P X Y( | ) .= = =2 2 0 7347

 (j) 1.7143

5-53. (a) 0.7887  (b) 0.7887

 (c) 0.6220

5-55. 0.8270

5-57 (a) No  (b) 0 0668.   (c) 6

 (e) ρ =  8940. , σY
2 10= , μY =0

Section 5-4
5-63. (a) 18  (b) 77  (c) 0.5 (d) 0.873

5-65. (a) E T( ) = 4, σT = 0 1414.

5-67. (a) 0  (b) 1

5-69. E X( ) = 1290, V X( ) = 19600

5-71. (a) 0.002  (b) n = 6 (c) 0.9612

5-73. (a) 0.0027  (b) No  (c) 0

5-75 0 36.

5-77 (a) E Z( ) .= 13 2, V Z( ) .= 1 08

 (b) 0 5.   (c) 0 9412.   (d) 15 62.

Section 5-5
5-79. f yY ( ) = 1

4; y = 3 5 7 9, , ,

5-81. (b) 18
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Supplemental Exercises
5-101. (a) 3/8  (b) 3/4  (c) 3/4

 (d) 3/8

 (e) E X( ) /= 7 8, V X( ) /= 39 64, 

E Y( ) /= 7 8, V Y( ) /= 39 64
 (h) 2/3  (i) not independent 

(j) 0.7949

5-103. (a) 0.0560  (b) Z ~Bin(20, 0.1)

 (c) 2  (d) 0.323

 (e) Z X| ∼Bin(4, 0.25)
 (f) 1  (g) not independent

5-105. (a) 1/108  (b) 0.5787

 (c) 3/4  (d) 0.2199

 (e) 9/4  (f) 4/3

5-107. 3/4

5-109. (a) 0.085  (b) Z ~Bin(10, 0.3)   (c) 3

5-111. (a) 0.499  (b) 0.5

5-113. (a) 0.057  (b) 0.057

5-117. (a) E T( ) .= 1 5, V T( ) .= 0 078

 (b) 0.0367

 (c) E P( ) = 4, V P( ) .= 0 568

5-121. (a) p1 0 13= . , p2 0 72= . , p3 0 15= . ,  

x y z+ + = 12

 (b) not possible  

 (c) 0.736  (d) 0  (e) 0.970  

 (f) 0.285  (g) 0.345

5-123 f p e JP

pR

( )
( . )

( )

( . )=
− −

1

0 2 2

200

2 0 2

2

2

π
, 

 where J
R

p
=

2

5-125 202 949.

Chapter 6
Section 6-1
6-1. No, usually not, Ex: { , }2 3
6-3. No, usually not, Ex: { , , , }1 2 3 1000 .

6-5. Yes, Ex: { , , , , , , }5 5 5 5 5 5 5 .

6-7. x = .74 0044, s = 0 00473.

6-9. x = .7068 1, s = 226 5.

6-11. x = .43 975, s = 12 294.

6-13. μ = 5 44.

6-15. x1 287 89= . , s1 160 154= .

 x2 325 01= . , s2 121 20= .

6-17. x = .7 184, s = 0 02066.

6-19. (a) x = .65 86, s = 12 16.  

 (b) x = .66 86, s = 10 74.

6-21. x = 4 7205. , s = 0 6371.

Section 6-2
6-25. x = 5 328. , min = 3.42

6-29. Symmetric with a single mode

6-31. 	x = .1436 5, lower quartile: 

Q1 1097 8= . , and upper quartile: 

Q3 1735 0= .

6-33. 	x = .89 250, lower quartile: 

Q1 86 100= . , and upper quartile: 

Q3 93 125= .

6-35. median: 	x = .1436 5, mode: 1102, 

1315, and 1750, mean: x = .1403 7

6-37. x = .366 57, s = 940 02. , and 
	x = .41 455

6-39. 95th percentile = 5479

6-41. x = .260 3, s = 13 41. , 	x = .260 85, 

and 90th percentile = 277 2.

6-43. x = .89 45, s = 2 8. , 	x = 90, and 
proportion /40= =22 55%

Section 6-4
6-65. (a) 	x  = 5.220, lower quartile:  

Q1 = 4.538, upper quartile:  

Q3 = 6.277

6-67. (a) unseeded, 	x  = 44.2, lower 

quartile: Q1 = 23.7,  

upper quartile: Q3 = 1202.6

 (b) seeded, 	x = 222, lower  

quartile: Q1 = 79, upper quartile:  

Q3 = 445

6-69. (a) x = .2 415, s2 0 285= . , and 

s = 0 543.

6-71. (a) x = .952 44, s2 9 55= . , and 

s = 3 09.

 (b)  	x = 953

6-73. (a) 	x = .67 50, lower quartile: 

Q1 58 50= . , and upper quartile: 

Q3 75 00= .

 (b) 	x = .68 00, lower quartile: 

Q1 60 00= . , and upper quartile: 

Q3 75 00= .

Section 6-6

6-91. r =0.876

Supplemental Exercises

6-107. (a) Sample 1 Range = 4  

Sample 2 Range = 4

 (b) Sample 1: s = 1 604.   

Sample 2: s = 1 852.

6-113. (b) x = .9 325, s = 4 486.

6-125. (a) 34.232.05; 20,414.52

6-127. (b) 21.265; 6.422

Mind-Expanding Exercises
6-129. s old2 50 61( ) .= , s new2 5061 1( ) .=
6-133. y = .431 89, sy  

2 34 028= .
6-135. 	x = 69

6-137. (a) x = .89 29  (b) x = .89 19

 (c) No

Chapter 7
Section 7-2
7-1. 8/103

7-3. 0.8186

7-5. 0.4306

7-7. 0.191

7-9. n = 12

7-11. 0.2312

7-13. (a) 0.5885  (b) 0.1759

7-15. 0.983

7.17. 0.67

7.19. (a) 4958  (b) 3420  (c) 684

 (d) 3360  (e) 16/25

7.21. Sample averages more normally 

distributed

Section 7-3
7-23. (a) N = 25,  Mean = 150 47. , 

S2 105 06= . ,  SS = 2521 5.

 (b) 150.468

7-25. Bias = σ −( )−2 1 1n
c

7-27. V θ̂( ) = σ1
2 7/ 7 is smallest

7-33. Bias = σ2 /n
7-35. (a) 423.33  (b) 9.08

 (c) 1.85  (d) 424  (e) 0.2917

7-39. (d) 0.01  (e) 0.0413

7.41. Results can differ, obtained 2.85

Section 7-4
7-45. x
7-49. unbiased

7-51. (a) θ̂ = Σ ( )x ni
2 2/

 (b) same as part (a)

7-57. (b) λ λ0 01 1( ) / ( )m x m+ + + +
7-59. (a) 5.046  (b) 5.05

Supplemental Exercises
7-65. 0.8664

7-67. 5.6569

7-69. n = 100

7-71. θ̂ = x /3

7-75. ˆ , ˆμ = . θ =21 86 109 3005000 , , p̂ = .0 7

Chapter 8
Section 8-1
8-1. (a) 96.76%    (b) 98.72%

 (c) 93.56%    (d) 97.72%

 (e) 97.50%

8-3. (a) 1.29  (b) 1.65  (c) 2.33

8-5. (a) 1st CI = 50, 2nd CI = 50

 (b) higher confidence implies a 

wider CI

8-7. (a) 4            (b) 7

8-9. (a) Longer  (b) No  (c) Yes

8-11. [87.85, 93.11]

8-13. (a) [74.0353, 74.0367]

 (b) [74.035, ∞)

8-15. (a) [3232.11, 3267.89]

 (b) [3226.4, 3273.6]

8-17. 267

8-19. 22

8-21. (a) [13.383, 14.157]

 (b) [13.521, ∞)     (c) 1  (d) 2

8-23. (a) (26.33, 29.67) (b) 66.4%

Section 8-2
8-25. (a) 2.179     (b) 2.064

 (c) 3.012     (d) 4.073
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8-27. (a) Mean = 25 1848. , 
Variance = 2 5760.

 (b) 24 037 26 333. ≤ μ ≤ .
8-29. [58197.33, 62082.07]

8-31. [1.094, 1.106]

8-33. (−∞, 125.312]

8-35. [443.520, 528.080]

8-37. [301.06, 333.34]

8-39. (b) [2237.3, 2282.5]

 (c) [2241.4, ∞)

8-41. (b) [4.051, 4.575]

 (c) [4.099, ∞)

8-43. (b) [2.813, 2.991]

8-45 (a) (1.98, 2.18) (b) Yes

Section 8-3
8-47. (a) 13.85     (b) 21.67

 (c) 10.12, 30.14

8-49. [0.0055, ∞)

8-51. [0.31, 0.46]

8-53. [0.626, 1.926]

8-55. σ ≤ .0 0122
8-57. (0.514, 0.811)

Section 8-4
8-59. (a) [0.02029, 0.06637]

 (b) ( ]−∞ ., 0 0627
8-61. (a) [0.501, 0.571]

 (b) [0.506, ∞)

8-63. (a) [0.225, 0.575]     (b) 2305

 (c) 2401

8-65. 666

8-67. (a) (0.910, 0.945) (b) 2440

 (c) 9624

8-69. (0.025, 0.073)

8-71. (0.906, 0.951)

Section 8-6
8-73. [52131.1, 68148.3]

8-75. [1.068, 1.13]

8-77. [292.049, 679.551]

8-79. [263.7, 370.7]

8-81. [2193.5, 2326.5]

8-83. 90% PI = [ . , . ]2 71 3 09
 90% CI = [ . , . ]2 85 2 95
 99% CI = 2 81 2 99. , . ]
8-85. [49555.54, 70723.86]

8-87. [1.06, 1.14]

8-89. TI = [ . , . ]237 18 734 42
 CI = 443 42 528 08. , . ]
8-91. TI = [ . , . ]247 60 386 60
 CI = [ . , . ]301 06 333 34
8-93. TI = [ . , . ]2 49 3 31
 CI = [ . , . ]2 84 2 96

Supplemental Exercises
8-97. (a) 0.0997 and 0.064

 (b) 0.044 and 0.014

 (c) 0.0051 and < 0 001.

8-99. (a) Normality

 (b) [16.99, ∞)

 (c) [16.99, 33.25]

 (d) (−∞, 343.74]

 (e) [28.23, 343.74]

 (f) 16 91 29 09. μ .< <
  15 85 192 972. σ .< <
 (g) mean: [16.88, 33.12],  

variance: [28.16, 342.94]

8-101. (a) [13.74, 16.92]

 (b) [13.24, 17.42]

8-103. (a) Yes

 (b) [197.84, 208.56]

 (c) [185.41, 220.99]

 (d) [171.21, 235.19]

8-105. [0.0956, ∞)

8-107. (a) Yes  (b) [1.501, 1.557]

 (c) [1370, 1.688]

 (d) [1.339, 1.719]

8-109. (a) [0.0004505, 0.009549]

 (b) 518  (c) 26002

8-111. (a) Normality

 (c) [18.478, 26.982]

 (e) [19.565, 123.289]

Mind-Expanding Exercises
8-113. (b) [28.62, 101.98]

8-115. (a) 46  (b) [10.19, 10.41], 

p = .0 6004

8-117. 950 of CIs and 0.9963

Chapter 9
Section 9-1

9-1. (a)  Yes  (b) No  (c) No

 (d)  No  (e) No

9-3. (a)  H H <0 120 20: nm, nmμ = μ:   

 (b)  No

9-5. (a)  α = . .0 02275

 (b)  β = .0 15866 

 (c)  β = .0 5

9-7. (a)  11 4175 11 42. ≤ ≤ .Xc

 (b)  11 5875 11 59. ≤ ≤ .Xc

 (c)  11 7087 11 71. ≤ ≤ .Xc

 (d)  11 7937 11 84. ≤ ≤ .Xc

9-9. (a)  P-value = .0 0135

 (b)  P-value ≤ .0 000034
 (c)  P-value = .0 158655

9-11. (a)  0.09296

 (b)  β = .0 04648

 (c)  β = .0 00005

9-13. (a)  β ≅ .0 005543
 (b)  β ≅ .0 082264
 (c)  As n increases, β decreases

9-15. (a)  α = .0 05705  (b) β = .0 5

 (c)  β = . .0 05705

9-17. (a)  μ ≤ .191 40

 (b)  μ ≤ .185 37

 (c)  μ ≤ .186 6

 (d)  μ ≤ .183 2

9-19. (a)  P-value = .0 2148

 (b)  P-value = .0 008894

 (c)  P-value = .0 785236

9-21. (a)  α = .0 0164

 (b)  1 0 21186− β = .
 (c)  α will increase and the power 

will increase with increased sample 

size.

9-23. (a) P-value = .0 238

 (b) P-value = .0 0007

 (c) P-value = .0 2585

9-25. (a) α = .0 29372

 (b) β = .0 25721

9-27. (a) α ≈ 0 (b) β = .0 99506

9-29. (a) 0.02  (b) 0.03 

Section 9-2

9-31. (a) H0 10: μ = , H >1 10: μ
 (b) H0 7: μ = , H1 7: μ ≠
 (c) H0 5: μ = , H <1 5: μ
9-33. (a) a z= ≅ − .α 2 33
 (b) a z= ≅ − .α 1 64
 (c) a z= ≅ − .α 1 29

9-35. (a) P-value ≅ .0 04

 (b) P-value ≅ .0 066

 (c) P-value ≅ .0 69

9-37. (a) P-value ≅ .0 98

 (b) P-value ≅ .0 03

 (c) P-value ≅ .0 65

9-39. (a) StDev = 0 7495. , z0 0 468= − . , 

P-value = 0 68. , fail to reject H0

 (b) one-sided

 (c) 19 42 20 35. ≤ μ ≤ .    

 (d) 0.640

9-41. (a) 0.6827  (b) one-sided

 (c) P-value = 0 002. , reject H0 

 (d) 98 8518. ≤ μ  

 (e) P-value = 0 15. , fail to reject H0

9-43. (a) z > ,0 0 95 1 96= − . − .  fail to 

reject H0

 (b) β = .0 80939

 (c) n ≅ 16
9-45. (a) z <0 1 26 1 65= . .  fail to reject H0

 (b) P-value = .0 1038

 (c) β ≅ .0 000325

 (d) n ≅ 1

 (e) 39 85. ≤ μ
9-47. (a) z >0 1 56 1 65= . − . , fail to  

reject H0

 (b) P-value ≅ .0 94

 (c) Power = .0 97062

 (d) n ≅ 5

 (e) μ ≤ .104 53

9-49. (a) z >0 1 77 1 65= . . , reject H0

 (b) P-value ≅ .0 04
 (c) Power = 1
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 (d) n ≅ 2

 (e) 4 003. ≤ μ
9-51. (a) one-sided 

 (b) z0 = 2.95, reject H0 

 (c) P-value= 0.002 

Section 9-3

9-53. (a) critical value > .2 539
 (b) critical value > .1 796
 (c) critical value > .1 345

9-55. (a) 0 05 0 1. ≤ ≤ .p
 (b) 0 05 0 1. ≤ ≤ .p
 (c) 0 5 0 8. ≤ ≤ .p
9-57. (a) 0 95 0 975. ≤ ≤ .p
 (b) 0 025 0 05. ≤ ≤ .p
 (c) 0 6 0 75. ≤ ≤ .p
9-59. (a) 9

 (b) . .05 0 1< < =P-value , fail to 

reject H0

 (c) two-sided

 (d) 11 89 13 23. ≤ μ ≤ .
 (e) t0 1 905= . , reject H0

 (f) reject H0

9-61. (a)  t0 0 6665= . , fail to reject H0

 
(b)  equal to P-value ≈ .0 5

 (c)  246 84 404 15. ≤ μ ≤ . , fail to 

reject H0

9-63. (a)  t >0 3 48 2 064= . .  reject H0 

P-value = .0 002

 (b)  Yes

 (c)  power ≅ 1

 (d)  n = 20

 (e)  98 065 98 463. ≤ μ ≤ .
9-65. (a) t ,0 1 291= − .  fail to reject H0 at 

α = .0 05, 0 2 0 5. < < .P-value
 (b) Yes

 (c) power = .0 70

 (d) n > 100
 (e) 129 337 130 157. < μ < .
9-67. (a)  t0 1 55 2 861= . < . , fail to reject 

H0; 0 10 0 20. < < .P-value
 (b) Yes, see normal probability 

plot

 (c) power = .0 30

 (d) n = 40

 (e) 1 9 4 62. ≤ μ ≤ .
9-69. (a) t0 0 15 1 753= . < . ., fail to reject 

H0; P-value > . .0 40
 (b) n = .4  Yes

9-71. t ,0 3 46 1 833= . > .  reject H0

 0 0025 0 005. < < .P-value
9-73. (a)  t0 14 69 1 6604= − . < . , fail to 

reject H0; P-value > 0 995.
 (b)  Yes

 (c)  power = 1

 (d)  n = 15

9-75. (a) H0: μ = 98.2, H1: μ ≠ 98.2 

 (b) z0 = 0.98, P-value= 0.327, fail 

to reject H0 

 (c) (98.1151, 98.4549) contains 

98.2, fail to reject H0 

Section 9-4

9-77. (a) critical values 6.84 and 38.58

 (b) critical values 3.82 and 21.92

 (c) critical values 6.57 and 23.68

9-79. (a)   χ = .−α −1 1
2 7 63,n

 (b)  χ = .−α −1 1
2 4 57, n

 (c)  χ = .−α −1 1
2 7 79,n

9-81. (a)  0 5 0 9. < < .P-value
 (b)  0 5 0 9. < < .P-value
 (c)  0 005 0 01. < < .P-value

9-83. (a) χ = . .0
2 0 23 26 30< , fail to reject 

H0; P-value > .0 995
 (b) 0. ≤ σ07
9-85. (a) χ = . > .0

2 109 52 71 42, reject H0; 

P-value < .0 01

 (b) 0 31 0 46. < σ < .
9-87. (a) χ = . > .0

2 12 46 7 26, fail to reject 

H0; 0 1 0 4. < .< P-value
 (b) σ ≤ 5240

9-89. (a) χ = . < .0
2 11 52 19 02, fail to 

reject H0; 0 2. < P-value
 (b) 0.45 (c) n = 30

Section 9-5

9-91. (a) one-sided

 (b) appropriate

 (c)  p̂ z= . = − .0 3564 1 18670,    
P-value = 0 118. , p̂ ≤ .0 6105

 (d) 0.2354

9-93. (a) z0 1 31 1 65= − . > − . , fail to reject 

H0; P-value = .0 095
 (b) p ≤ .0 0303

9-95. (a) z ,0 2 06 1 65= . > .  reject H0; 

P-value = .0 0196

 (b) 0 7969. ≤ p
9-97. (a) z0 0 94 2 33= − . < .  fail to reject 

H0; P-value = .0 826

 (b) 0 035. ≤ p
9-99. z >0 1 58 2 33= . − . , fail to reject H0

9-101. (a)  z ,0 0 54 1 65= . < .  fail to reject 

H0; P-value = .0 295

 (b) β = .0 639, n ≅ 118

9-103. H p H p0 1: = 0.90, : > 0.9, 

z0 = 2.842, P-value =0.002,  

reject H0

9-105. (0.798 < )μ , yes

Section 9-7

9-107. (a) χ = . < .0
2 6 955 15 09, fail to 

reject H0

 (b) P-value = .0 2237

9-109. (a) χ = . > .0
2 10 39 7 81 reject H0

 (b) P-value = .0 0155

9-111. (a) χ = . >> .0
2 769 57 36 42,  

reject H0

 (b) P-value ≅ 0

Section 9-8
9-113. χ0

2 = 146.3648, P-value ≈ 0

9-115. χ > χ .0
2

0 05 6
2/ , , fail to reject H0;

 P-value = .0 070

9-117. χ χ .0
2

0 01 9
2> ,  reject H0;

 P-value = .0 002

9-119. χ > χ .0
2

0 01 3
2/ , , fail to reject H0;

 P-value = .0 013

9-121. (a) χ > χ .0
2

0 05 1
2

,

 (b) P-value < .0 005
Section 9-9
9-123. (a) P P R p-value = ≤ =

=

+2 7 0 5

0 132

( | . )

.
 (b) 0.180

9-125. (a) P P R p-value = ≥ =
≈

+2 3 0 5

1

* ( | . )

 (b) z0 0= , P-value 1≈
9-127. Ignore ties (a) w w n= > ==9 50 05 9. ,

* ,  

fail to reject H0

 (b) 0.110

9-129. Ignore ties

 (a) w w n= < ==27 410 05 17. ,
* , reject 

H0

Section 9-10
9-131. (a) H H0 1: 3550 : 3550μ μ= , ≤  

and H H0 1: = 3450, : 3450μ μ ≥  

 (b) t0 = 0, P-value =0.5 and 

t0 = 12.65 P-value ≈ 0, fail to 

reject H0 : = 3550μ ,  

not equivalent 

9-133. (a) H H0 1: = 9750, : 9750μ μ ≥  

 (b) P-value > 0.5, fail to reject  

H0, not equivalent 

Section 9-11
9-135. χ0

2 = 37.40, P-value = 0.002, 

reject H0

9-137. χ0
2 = 30.57, P-value = 0.0007, 

reject H0

Supplemental Exercises
9-139. (a) 15

 (b) SE Mean = 1 1525. , 

t0 1 449= − . , 0 1 0 2. .< <P-value , 

95 874 100 786. ≤ μ ≤ .
 (c) fail to reject H0

 (d) fail to reject H0

9-141. (a) t0 0 5694= . , 0 25 0 4. .< <P-value

 (b) 10 726 14 222. ≤ μ ≤ .
9-143. (a) n = 25, 0.9783; 

− . ≤ μ −μ0 7495 1 2, 0.9554; n = 400, 

0.8599; n = 2500, 0.2119

 (b) n = 25, 0.3783; n = 100, 0.2643; 

n = 400, 0.1056; n = 2500, 0.0009; 

significant when n = 2500.
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9-145. (a) 0.4522  (b) 0.4404  

 (c) 0.3557  (d) 0.2981

9-147. (a) 0.6406  (b) 0.2877  (c) 0.0537

9-149. (a) n = 100, 0.3632; n = 150, 

0.2119; n = 300, 0.0352

 (b) n = 100, 0.6293; n = 150, 

0.4522; n = 300, 0.1292

 (c) 1 (d) 24, 5

9-151. (a) d = 2, β = 0; d = 3, β = 0  (b) 2

 (c) d = 1, β ≈ 0 1. ; d = 1 5.  β ≈ 0 04. ; 

n = 4

9-153. χ = .0
2 0 000009, reject H0

9-155. (a)

Value 0 1 2 ≥ 3

Observed 3 7 4 6

Expected 3.6484 6.2128 5.2846 4.6954

χ = .0
2 0 8897, fail to reject H0

 (b) 1 86 18 941 2. ≤ μ − μ ≤ .
9-157. (a) normal distribution used 

because sample size is large, 

z0 6 12= . , fail to reject H0

 (b) P-value ≈ 1

 (c)

Obs. Exp.

Interval Frequency. Frequency.

x ≤ 45 50. 9 7.5

45 50 51 43. .< ≤x 5 7.5

51 43 55 87. .< ≤x 7 7.5

55 87 59 87. .< ≤x 11 7.5

59 87 63 87. .< ≤x 4 7.5

63 87 68 31. .< ≤x 9 7.5

68.31 74.24< ≤x 8 7.5

x ≥ 74.24 6 7.5

 χ = .0
2 5 06, fail to reject H0

9-159. (a) H0: μ = 0 635.  vs. H1: μ > 0 635.

   (b) normal distribution used 

because sample size is large, 

z0 5 31= − . , fail to reject H0

   (c) P-value ≈ 1

9-161. (a) t0 6 10= − . , 

P-value<0.001,reject H0

 (b) d = 4 54. , Power ≈ 1

 (c) d = 2 27. , n ≥ 5

 (e) From a normal probability plot, 

assumption is reasonable

9-163. (a)  t0 0 37= . , fail to reject H0  

 (b) From a normal probability 

plot, assumption is reasonable

 (c) 0 25 0 4. .< <P-value
9-165. (a) χ = .0

2 58 81, reject H0

 (b) P-value < 0 01.

9-167. (a) χ = .0
2 0 509, fail to reject H0 

(b) χ = .0
2 0 509, P-value < 0 01. , 

reject H0

9-169. (a) H H0 1: = 102, : 102μ μ ≤  and 

H H0 1: = 98, : 98μ μ ≥  

 (b) Fail to reject H0 : = 98μ , not 

equivalent

Chapter 10
Section 10-1

10-1. (a) − . < = − . < .1 96 0 9 1 960z , do not 

reject H0; P-value = .0 368

 (b) − . ≤ μ − μ ≤ .9 79 3 591 2

 (c) Power = .0 14

 (d) n n1 2 180= =
10-3. (a) z < ,0 0 937 2 325= . .  do not 

reject H0; P-value = .0 174

 (b) μ − μ ≥ − .1 2 4 74
 (c) Power = .0 04

 (d) Use n n1 2 339= =
10-5. (a) z0 5 84 1 645= − . < . , do not reject 

H0; P-value = 1

 (b) μ − μ ≥ .1 2 6 8
 (c) Power = .0 9988

 (d) The sample size is adequate

10-7. (a)  z <0 7 25 1 645= − . − .  reject H0; 

P-value ≅ 0

 (b) − . ≤ μ − μ ≤ − .3 684 2 1161 2

 (c) n n1 2 11= =
10-9. (a) − . ≤ μ − μ ≤ − .5 83 0 571 2 ; 

P-value = .0 0173

 (b) Yes

 (c) Power = .0 9616; n ≅ 10

 (d) Normal

10-11 (−1.42, 1.02)

10-13 z
0
 = −4.716, reject H

0

Section 10-2

10-15. (a) df = ≈26 45 26. ,  

μ − μ ≤ − .1 2 1 688, 

0 0025 0 005. .< <P-value ,  

one-sided

 (b) reject H0  (c) Yes

 (d) 0 005 0 01. .< <P-value ,  

reject H0

10-17. (a) t

P
0 1 94 1 70

0 025 0 05

= − . < − .
. < < .-value

 (b) μ − μ ≤ − .1 2 0 196
 (c) Power = .0 95

 (d) n n n= = =1 2 21

10-19. (a) − . < = .2 042 0 2300t  < .2 042, 
do not reject H0; P-value > .0 80

 (b) − . ≤ μ − μ ≤ .0 394 0 4941 2

10-21. (a) t <0 3 11 2 485= − . − . , reject H0

 (b) − . ≤ μ − μ5 688 1 2 ≤ − .0 3122

10-23. (a) Assumptions verified

 (b) t0 2 83 2 101= − . < − .  reject H0; 

0 010. < P-value < .0 020
 (c) − . ≤ μ − μ0 7495 1 2 ≤ − .0 1105

10-25. (a) t0 5 498 2 021= − . < − .  reject H0;  

P-value < .0 0010
 (b) n n1 2 38= =
10-27. (a) t0 3 03 2 056= . > .  reject H0;

0 005 0 010. < < .P-value
 (b) t0 3 03 1 706= . > . , reject H0

10-29. (a) t ,0 7 0 2 048= . > .  reject 

H P0 0; -value ≅
   (b) 14 93 27 281 2. ≤ μ − μ ≤ .
   (c) n > 8
10-31. (a) t0 2 82 2 326= . > .  reject H0;

P-value ≅ .0 025

 (b) μ − μ ≥ .1 2 0 178
10-33. (a) Normal

 (b) t0 2 558 2 101= . > .  reject H0; 

P-value ≈ .0 02

 (c) 1 86 18 941 2. ≤ μ − μ ≤ .
 (d) Power = .0 05

 (e) n = 51

10-37. Heat 5 vs. 7: t
0
 = 4.28, reject H

0
; 

Heat 6 vs. 7: t
0
 = −1.37, P-value = 

0.194, fail to reject H
0

10-39 (a) t0 2 349= − . , reject H
0

 (b) μ μ1 2 0 021− ≤ − .

 (c) no, reject H
0

Section 10-3
10-41. (a) w w2 0 02575 51= > =.

* , fail to 

reject H0

 (b) P P Z-value = − <
=

2 1 0 58

0 562

[ ( . )]

.

10-43. (a) w w1 0 0177 78= ≤ =.
∗ , reject H0

 (b) P P Z-value = − <
=

2 1 2 19

0 034

[ ( . )]

.

10-45. (a) Min ( , )258 207 1850 05> =.
∗w , 

fail to reject H0

 (b) P-value = 0 0155.

10.47 E = 5, fail to reject H
0

Section 10-4
10-49. (a) 0 1699 0 3776. ≤ μ ≤ .d

 (b) t-test  is appropriate.

10-51. − . ≤ μ ≤ .727 46 2464 21d

10-53. (a) t0 5 465 1 761= . > .  reject H0; 

P-value ≅ 0

 (b) 18 20. ≤ μd

10-55. (a) t0 8 387 1 833= . > .  reject H0

 (b) t0 3 45 1 833= . > .  reject H0

 (c) Yes

10-57. (a) Normal

 (b) − . ≤ μ ≤ .0 379 0 349d

 (c) 6 ≤ n

10-59. (a) P P R r
p

-value = ≥ =
= =

+ +( |

. ) .

14

0 5 0 0005

,  

  reject H0

10.61. (a) No
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 (b) t
0
 = 3.36, P-value = 0.004, 

reject H
0

Section 10-5

10-63. (a)  f0 25 5 10 1 59. , , = .
 (b)  f0 10 24 9 2 28. , , = .
 (c)  f0 05 8 15 2 64. , , = .
 (d)  f0 75 5 10 0 529. = ., ,

 (e)  f0 90 24 9 0 525. = ., ,

 (f)  f0 95 8 15 0 311. = ., ,

10-65. f ,0 0 805 0 166= . > .  fail to reject 

H0; σ σ ≤ .1 2 2 20/

10-67. (a)  f ,0 1 21 0 333= . > .  fail to  

reject H0; 0 403 3 631
2

2
2

. ≤ σ
σ

≤ .

 (b) Power = .0 65

 (c) n ≈ 31

10-69. (a)  f ,0 0 923 0 365= . > .  do not 

reject H0

 (b)  0 323 2 527. .( ),

10-71. (a)  0 607 1 463. .( ),

 (b)  0 557 1 559. .( ),

 (c) 0 669 1

2

. < σ
σ

10-73. 0 4058 1 78 2 460. < = . < .f , do not 

reject H0

10-75. 0 248 0 640 4 040. = . .< f < , do not 

reject H0;

 0 159 2 5791
2

2
2

. ≤ σ
σ

≤ .

10-77. 0 333 1 35 30. < = . <f , do not  

reject H0;

 0 45 4 051
2

2
2

. ≤ σ
σ

≤ .

10-79. (a) 0 248 3 337 4 030. < = . < .f , do 

not reject H0

 (b) No

10-81. f0 1 78= . , fail to reject H
0

Section 10-6

10-83. (a) one-sided

 (b) z0 1 4012= . , P-value = 0 0806. ,  

− . ≤ −0 0085 1 2p p
 (c) reject H0 at α = 0 10. , fail to 

reject H0 at α = 0 05.

10-85. (a) z0 4 45 1 96= . > .  reject H0; 

P-value ≈ 0

 (b) 0 039 0 11 2. ≤ − ≤ .p p
10-87. (a) z0 5 36 2 58= . > .  reject H0; 

P-value ≈ 0

10-89. H
0
:p pWTC Other=  H

1
:p pWTC Other> , 

z0 2 712= . , P-value = 0.003,  

reject H
0

10-91. (0.0383, 0.0997)

Supplemental Exercises

10-93. (a) Confidence interval 

− < μ − μ < .2 622 0 9021 2.
 (b) two-sided

 (c) P-value = 0.329

10-95. (a) normality, equality of  

variance, and independence of 

the observations.

 (b) 1 40 8 361 2. ≤ μ − μ ≤ .
 (c) Yes

 (d)  0 113 3 673. .( ),

 (e) No

10-97. (a) t ,0 2 554 1 895= . > .  reject H0

 (b) t ,0 2 554 2 998= . < .  do not 

reject H0

 (c) t0 1 986 1 895= − . < . , do not 

reject H0

 (d) t0 1 986 2 998= − . < . , do not 

reject H0

10-99. (a) z0 6 55 1 96= . > . , reject H0

 (b) z0 6 55 2 58= . > . , reject H0

 (c) z0 is so large

10-101. (a) − . ≤ −0 0335 1 2p p  ≤ .0 0329
 (b) − . ≤ −0 0282 1 2p p  ≤ .0 0276
   (c) 95% CI: − . ≤ −0 0238 1 2p p  

≤ .0 0232 90% CI: 

− . ≤ −0 0201 1 2p p  ≤ .0 0195
10-103. (a) Yes

 (b) Yes if similar populations

10-105. (a) 0 0987 1 2. ≤ μ − μ  ≤ .0 2813
 (b) 0 0812 1 2. ≤ μ − μ  ≤ .0 299
 (c) μ − μ ≤ .1 2 0 2813
 (d) z ,0 3 42 1 96= . > .  reject H0; 

P-value = .0 00062

 (e) n n1 2 9= =
10-107. (a) z0 5 36 2 58= − . < − . , reject H0

     (b) conclusions are the same

     (c) n = 60

10-109. (a) No

 (b) data appear normal with 

equal variances

 (c) It is more apparent the data 

follow normal distributions.

 (d) One-sided confidence

    interval 
σ
σ

> .
2

2
22 93

V

M
 (e) one-sided test, reject H0,

f0 72 78 3 28= . > .
10-111. (a) Normality appears valid.

 (b) 0 50 0 80. < < .P-value , do not 

reject H0

 (c) n = 30

10-113. (a) It may not be assumed that 

σ = σ1
2

2
2

 (b) t0 2 74 2 131= − . < − . , reject H0

 (c) Power = .0 95

 (d) n = 26

10-115. f0 0 317= . , fail to reject H
0

10-117. Traditional interval: (−0.0335, 

0.0329); Other interval: 

(−0.0337, 0.0327)

Mind-Expanding Exercises

10-123. (c) 0 519 3 887. ≤ θ ≤ .

Chapter 11
Section 11-2
11-1 (a) ˆ . , ˆ .β β1 01 846 27 643= = −
 (b) 27 726.  (c) 6.50

11-3. (a) β̂ = .0 48 013, β̂ = − .1 2 330

 (b) 37.99 (c) 39.39 (d) 6.71

11-5. (a) ˆ ,β = .0 14 195  ˆ ,β = .1 10 092  

σ = .2 27 24

 (b) 89.95 (c) –10.092

 (d) 0.99 (e) − . .7 98 3 13,

11-7. (a) ˆ ,β = − .0 6 3355  ˆ ,β = .1 9 20836  

σ = .2 3 7746

 (b) 500.124 (c) 9.20836

 (d) − .1 618

11-9. (a) ˆ ,β = − .0 16 5093  ˆ ,β = .1 0 0693554  

σ = .2 7 3212

11-11. (b) ˆ ,β = .0 234 071  ˆ ,β = − .1 3 50856  

σ = .2 398 25

 (c) 128.814

 (d) 156.833 and 15.1175

11-13. (b) ˆ ,β = .0 2625 39  ˆ ,β = .1 36 962  

σ = .2 9811 2

 (c) 1886.15

11-15. (a) ˆ ,β = .0 0 658  ˆ ,β = .1 0 178  

σ = .2 0 083

 (b) 3.328  (c) 0.534

 (d) 1.726 and 0.174

11-17. (b) ̂ ,β = .0 2 02  ˆ ,β = .1 0 0287  

σ = .2 0 0253

11-19. (a) ŷ x= . − .39 2 0 0025

 (b) ̂β = − .1 0 0025

11-21. (b) ̂ ,*β = .0 2132 41  ˆ *β = − .1 36 9618

Section 11-4
11-23. (a) ˆ .σ = 5 546  (b) seˆ .β1 0 105=
 (c) 17 58.    (d) P-value ≈ 0

11-25. (a) Divided by 2.20462 pounds, 
ˆ . , ˆ .β β1 00 0046 80 571= =

 (b) ˆ .σ = 12 288

 (c) seˆ .a11 0 061=
 (d) No change, t = 0 076.

 (e) Conclusions do not change, 

P-value ≈ 1

11-27. (a) t0 12 4853= . , P-value < 0 001. ;  

t1 20 387= . , P-value < 0 001. ;  

MSE = 2 194. ; f0 415 91= . , 

P-value ≈ 0
 (b) reject H0: β = 0

 (c) 2.194
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11-29. (a) f ,0 74 63= .  P-value = .0 000002,  

reject H0

 (b) estimate of σ = .2 1 8436

 (c) se β̂( ) = .0 0 9043

11-31. (a)  f0 61 41= . , P-value ≅ 0,  

reject H0

 (b) se β̂( ) = .1 1 288 se β̂( ) = .0 9 059

 (c)  t0 0 072= . , fail to reject H0

11-33. (a)  f0 74334 4= . , P-value ≈ 0, 

reject H0

 (b) se ˆ ,β( ) = .0 1 66765

    se β̂( ) = .1 0 0337744

 (c) t0 23 37= − . , P-value = .0 000, 

reject H0

 (d) t0 3 8= − . , P-value < .0 005, 

reject H0

11-35. (a)  f0 44 0279= . , 

P-value = .0 00004, reject H0

 (b) se ˆ ,β( ) = .0 9 84346

    se β̂( ) = .1 0 0104524

 (c) t0 1 67718= − . , 

P-value = .0 12166, fail to reject H0

11-37. (a) f0 155 2= . , P-value < .0 00001, 

reject H0

 (b) se ˆ ,β( ) = .0 2 96681

    se β̂( ) = .1 45 3468

 (c) t0 2 3466= − . , P-value = .0 0306, 

fail to reject H0

 (d) t0 57 8957= . , 

P-value < .0 00001, reject H0

 (e) t0 2 7651= . , P-value = .0 0064, 

reject H0

11-39. (a) P-Value = .0 0000, reject H0

 (b) σ̂ = .2 0 083 se ˆ ,β( ) = .0 0 1657  

se β̂( ) = .1 0 014

 (c) Reject H0

11-41. (a) P-value = .0 310, No

 (b) σ̂ = .2 30 69

 (c) se β̂( ) = .0 9 141

11-43. 0.55

Sections 11-5 and 11-6

11-45. (a) (1.639, 2.052)

 (b) (17.805, 19.191)

 (c) (7.553, 29.443)

11-47. (a) (− .2 9713, − .1 7423)

 (b) (46.7145, 49.3115)

 (c) (41.3293, 43.0477)

 (d) (39.1275, 45.2513)

11-49. (a) [7.464, 12.720]

 (b) [−4 30. , 32.69]

 (c) [91.698, 98.164]

 (d) [83.801, 106.061]

11-51. (a) Confidence interval 

9 101 9 9320. < β < .
 (b) (− .11 6219, − .1 04911)

 (c) (498.72024, 501.52776)

 (d) (495.57344, 504.67456)

11-53. (a) (0.03689, 0.10183)

 (b) (− .47 0877, 14.0691)

 (c) (44.0897, 49.1185)

 (d) (37.8298, 55.3784)

11-55. (a) (201.552, 266.590)

 (b) (− .4 67015, − .2 34696)

 (c) (111.8339, 145.7941)

11-57. (a) (− .43 1964, − .30 7272)

 (b) (2530.09, 2720.68)

 (c) (1823.7833, 1948.5247)

 (d) (1668.9013, 2103.4067)

11-59. (a) (0.1325, 0.2235)

 (b) (0.119, 1.196)

 (c) (1.87, 2.29)

Section 11-7

11-61. R2 decreases 

11-63. (a) R2 67 2= . %

11-65. (a) R2 99 986= . %

11-67. (a) R2 87 94= . %

11-69. (a) R2 85 22= . %

11-71. (a) R2 89 6081= . %

 (c) R2 95 73= . %

 (d)  ˆ ,σ = .2 9811 21old  

σ̂ = .2 4022 93new

11-75. (a)  f0 207= , reject H0

Section 11-8

11-77. (a) t0 4 81= . , P-value < .0 0005, 

reject H0

 (b) z0 1 747= . , P-value = .0 04, 

reject H0

 (c) ρ ≥ .2 26, reject H0

11-79. (a) t0 5 475= . , P-value = .0 000, 

reject H0

 (b) (0.3358, 0.8007)

 (c) Yes

11-81. (a) ŷ x= − . + .0 0280411 0 990987
 (b)  f0 79 838= . , reject H0

 (c) 0.903

 (d) t0 8 9345= . , reject H0

 (e) z0 3 879= . , reject H0

 (f) (0.7677, 0.9615)

11-83. (a) ŷ x= . + .5 50 6 73
 (b) 0.948

 (c) t0 8 425= . , reject H0

 (d) (0.7898, 0.9879)

11-85. (a) r = 0 82.

 (b) t H0 07 85= . , reject ,  

P-value < 0 005.

 (c) [0.660, 0.909]

 (d) z0 1 56= . , fail to reject H0, 

P-value = 0 119.

Section 11-9
11-87. (a) Yes (b) No (c) Yes

 (d) Yes

11-89. (b) ŷ x= − . + .0 8819 0 00385
 (c)  f0 122 03= . , reject H0

Section 11-10

11-91. (a) ˆ ,β = .0 5 340    β̂ = − .1 0 00155

 (b) Test that all slopes zero: 
P-value ≈ 0

11-93. (a) ˆ ,β = − .0 7 047    ˆ ,β = − .1 0 00074     

β̂ = − .2 0 9879

 (b) Test that all slopes zero: 

P-value = 0 036.

 (d) 0.771

Supplemental Exercises

11-97. (b) ŷ x= − . + .0 966824 1 54376
 (c)  f0 252263 9= . , P-value ≈ 0, 

reject H0

 (d) [1.5367, 1.5509]

 (e) t H0 0199 34= − . , reject
11-99. y x∗ = +1 2232 0 5075. .  where 

y y∗ = 1/
11-101. ŷ x= .0 7916

11-103. (b) ŷ x= . + −0 6714 2964
 (c) R2 21 5= . %

11-105. (b) ŷ x= − . + .0 699 1 66
 (c)  f0 22 75= . , reject H0, 

P-value = 0 001.

 (d) (3.399, 5.114)

11-107. (c) all data: (7741.74, 10956.26), 

outlier removed: (8345.22, 

11272.79)

Chapter 12
Section 12-1
12.1. (a)

 
ˆ . .

.

y x

x

= − −
+

3 10088 0 60154

1 77309

1

2

 

 

(b) ̂ ( )

.

β = =
−
−

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

≅
−
−

−X X X y′ ′1

3 10

3.131708

0.592909

1.7637280

00 60

1 77

.

.−

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

 (c) ˆ .y = 13 87

12.3. (a) 

      

ˆ . .

.

.

y x

x

x

= +
+
−

1 051 0 09514

0 000004106

0 1673

1

2

3

 (b) ˆ .y = 1 08 (c) e = 0 42.

12-5. (b) ŷ = 171.055  +  3.714x
1
−1.126x

2

 (c) 189.49
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12-7. (b) 2

12.9 (a) Satisfaction = 144 - 1.11Age - 

0.585 Severity + 1.30 Anxiety

 (b) 49.5

 (c) 5.90, 0.13, 0.13, 1.06

 (d) No

12-11. (a) ŷ x= . − .49 90 0 01045 1 

− . − .0 0012 0 003242 3x x  

+ . − .0 292 3 8554 5x x  + .0 1897 6x
 (b) σ̂ = .2 4 965 se ˆ ,β( ) = .0 19 67

 se ˆ ,β( ) = .1 0 02338

 se ˆ ,β( ) = .2 0 01631  

 se ˆ ,β( ) = .3 0 0009459  

 se ˆ ,β( ) = .4 1 765  se ˆ ,β( ) = .5 1 329  

 se β̂( ) = .6 0 273

 (c) 29.867

12-13. (a) y x= . − .47 8 9 60 1 

+ . + .0 415 18 32 3x x
 (b) σ̂ =2 12

 (c) se ˆ ,β( ) = .0 49 94  se ˆ ,β( ) = .1 3 723  

 se ˆ ,β( ) = .2 0 2261  and

 se β̂( ) = .3 1 323

 (d) 91.38

12-15. (a) ŷ x= − . + .440 39 19 147 1 

+ .68 080 2x
 (b) σ̂ =2 55563 se ˆ ,β( ) = .0 94 20

 se ˆ ,β( ) = .1 3 460  and se β̂( ) = .2 5 241

 (c) 186.675

12-17. (a) ŷ x= − . + .0 1105 0 4072 1 

+ .2 108 2x
 (b) σ̂ = .2 0 00008 se ˆ ,β( ) = .0 0 2501  

 se ˆ ,β( ) = .1 0 1682  and 

 se β̂( ) = .2 5 834

 (c) 0.97074

12-19. (a) ŷ x= . + .238 56 0 3339 1 

− .2 7167 2x
 (b) σ̂ =2 1321

 (c) se ˆ ,β( ) = .0 45 23

 se ˆ ,β( ) = .1 0 6763  and

 se β̂( ) = .2 0 6887

 (d) 61.5195

12-21. (a) ŷ x= . + .2 99 1 20 3 

+ . − .4 60 3 817 10x x
 (b) σ̂ = .2 4 14

 (c) se ˆ ,β( ) = .0 5 877  se ˆ ,β( ) = .3 0 974  

 se ˆ ,β( ) = .7 0 385  se β̂( ) = .10 0 486

 (d) 81.96

12-23. (a) ŷ x= . − .383 80 3 6381 1 

− .0 1119 2x

 (b)  ˆ ,σ = .2 153 0  se ˆ ,β( ) = .0 36 22

 se ˆ ,β( ) = .1 0 5665  se β̂( ) = .2 0 04338

 (c) 180 95.  (d) ŷ x= . − .484 0 7 656 1 

− . − .0 222 0 00412 12x x
 (e)  ˆ ,σ = .2 147 0  se ˆ ,β( ) = .0 101 3

 se ˆ ,β( ) = .1 3 846  se ˆ ,β( ) = .2 0 113

 se β̂( ) = .12 0 0039 

 (f) 173.1

Section 12-2

12-25. (a) P-value = 0.6438 > 0.05

 (b) P-value = 1.09E-07 < 0.05

12-27. (a) H0 1 2 3 0:β β β= = =  

H jj1 0:β ≠     for at least one 

 P-value = 0.04157 < 0.05, reject H0

 (b) 16.22%

12-29. (a) t
0
=53.087, P-value≈0; 

t
1
=15.02, P-value≈0; t

2
=−23.43, 

P-value≈0; MS
E
=25.582  

df  Residual = 12, SS 

Residual = 307, R Sq- , .= 0 9867
 (b)  f0 445 2899= . , reject H0

 (c) t-test for each regressor is 

significant
12-31. (a)  f0 263 26= . , P-

H
value 0,

reject 0

≈

 (b)

 

t0 1 19 32ˆ ,β( ) = . P-

H

value 0,

reject 0

≈

    

t0 2
13 16ˆ ,β( ) = − . P-

H

value 0,

reject 0

≈

12-33. (a) P-value = .9 18E-5, 5.42E-8, 

and 0.3378

 (b) t0 0 98= . , fail to reject H0

12-35. (a)  f0 19 53= . , reject H0

12-37. (a)  f0 828 31= . , reject H0

 (b) t0 2 58= − . , reject H0 t0 1 84= . , 

fail to reject H0 t0 13 82= . , reject H0

12-39. (a)  f0 99 67= . , reject H0, 

P-value ≈ 0

 (b) t0 5 539= . , reject H0 t0 12 99= . , 

reject H0

12-41. (a)  f0 9 28= . , reject H0, 

P-value = .0 015

 (b) t0 0 49= . , fail to reject H0 

t0 3 94= − . , reject H0

12-43. (a)  f0 191 09= .
 (b) t0 12 30= . , reject H0 t0 11 94= . , 

reject H0 t0 7 84= − . , reject H0

 (c)  f0 142 66= . , reject H0

12-45. (a)  f0 97 59= . , reject H0, 

P-value = .0 002

 (b) t0 6 42= − . , reject H0 

t0 2 57= − . , fail to reject H0

 (c)  f0 6 629= . , fail to reject H0

 (d)  f0 7 714= . , fail to reject H0

 (e)  f0 1 11= . , fail to reject H0

 (f) 147.0

12-47. (a)  f0 65 55= . , P-value ≈ 0,  

reject H0

     (b) Age: t1 8 40= − . , Severity:   

t2 4 43= − . , Anxiety: t3 1 23= . , not 

all necessary

12-49. (a) (− ≤ ≤ −0 818 0 3851. .β )

 (b) (13 1 14 65
0

. .|≤ ≤μY x )

 (c) (5 05 22 690. .≤ ≤Y )

 (d) Prediction interval

12-51. (a) (− ≤ ≤0 690 0 3553. .β ) (b) Yes

Sections 12-3 and 12-4

12-53. (a) ( . . )49 927 292 1830< <β  

( . . )0 033 7 3931< <β  

( . )− . < <2 765 0 5132β
 (b) (158.82, 220.13)

 (c) (126.06, 252.88)

12-55. (a) ( . )− . < <20 477 1 2691β  

( . )− . < <0 245 1 0762β  

( . . )14 428 22 1593< <β
 (b) (77.582, 105.162)

 (c) (82.133, 100.611)

12-57. (a) ( . )− . < < −6 9467 0 32951β   

( . )− . < <0 3651 0 14172β
 (b) ( . )− . < <45 8276 30 51561β  

( . )− . < <1 3426 0 89842β
 ( . )− . < <0 03433 0 042513β
12-59. (a) ( . . )12 1363 26 15771< <β
 (b) ( , . )− .233 4 63 2
 (c) ( , . )− .742 09 571 89
12-61. (a) ( . . )0 0943 0 72011< <β  

( . )− . < <8 743 12 9592β
 (b) (0.861, 0.896)

 (c) (0.855, 0.903)

12-63. (a) ( . )− . < <2 173 2 8411β  

( . )− . < < −5 270 0 1642β
 (b) ( , . )− .36 7 125 8

 (c) ( , . )− .112 8 202 0

 (d) CI: (107.4, 267.2)PI: (30.7, 

344.0)

12-65. (a) − < <10 18 16 620. .β   

( . . )1 00 1 453< <β  

( . . )3 85 5 007< <β  

( . )− . < < −5 11 3 0710β
 (b) 0.3877

 (c) (81.3, 82.9)

12-67. (a) − < β < .8 658 108 4580. ;

  − < <0 08 0 0592. . ;β
  − . < β < .0 05 0 0473 ;
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  − . < β <0 06 07 ;
  − . < β < .4 962 5 5468 ; 

  − . < β < .7 811 0 1019 ;
  − . < β < − .1 102 5 02310 ;
 (b) 25 557 33 863

0
. < < .|μY x

 (c) 50 355 71 1470. < β < . ;

  − . < β < − .0 036 0 0062 ;

  − . < β < − .0 006 0 0017 ;

  − . < β < − .6 485 0 4299 ;

 (d) Intervals in part (c) are narrower 

so that part (c) may be a preferable 

model.

Section 12-5

12-69. (a) 0.893

12-71. (a) 0.95

12-73. (a) 0.843

12-75. (a) 0.997

12-77. (a) 0.756

12-79. (a) 0.985 (b) 0.99

12-81. (b) 0.9937

12-83. (a) 0.12 (b) Yes

Section 12-6

12-85. (a) ŷ x= − . + .1 633 1 232  − .1 495 2x
 (b)  f0 1858 613= , , , reject H0

 (c) t0 601 64= − . , reject H0

12-87. (a) ŷ x= − . + .1 769 0 421 1 

+ . − .0 222 0 1282 3x x  

− . + .0 02 0 00912 13x x  

+ . − .0 003 0 01923 1
2x x  

− . + .0 007 0 0012
2

3
2x x

 (b)  f ,0 19 628= .  reject H0

 (d)  f ,0 1 612= .  fail to reject H0

12-89. (b) ŷ x= . − .56 677 0 1457 1 

− . − .0 00525 0 1382 3x x  − .4 179 4x
12-91. (a) Min C x xp : 1 2,  Cp = .3 0, 

MSE = .55563 92 

ŷ x= − . + .440 39 19 147 1 
+ .68 080 2x  Min MSE is same as 

Min Cp

 (b) Same as part (a)

 (c) Same as part (a)

 (d) Same as part (a)

 (e) All models are the same

12-93. (a) Min C xp : 1 Cp = .1 1, 

MSE = .0 0000705 ŷ = − .0 20052 

+ .0 467864 1x  Min MSE is same as 

Min Cp

 (b) Same as part (a)

 (c) Same as part (a)

 (d) Same as part (a)

 (e) All models are the same

12-95. (a) Min C xp : 2 Cp = .1 2, 

MSE = .1178 55 

ŷ x= . − .253 06 2 5453 2 Min MSE 

is same as Min Cp

 (b) Same as part (a)

 (c) Same as part (a)

 (d) Same as part (a)

 (e) All models are the same

12-97. (a) Min C x xp : ,1 2 

Cp = .2 9, MSE = .10 49 
ŷ x x= − . + . + .50 4 0 671 1 301 2Min 

MSE is same as Min Cp

 (b) Same as part (a)

 (c) Same as part (a)

 (d) Same as part (a)

 (e) All models are the same

12-99. (a) Min. Cp = 5 1. , Att, PctComp, 
Yds, YdsperAtt, TD, PctTD, PctInt

 (b) PctComp, YdsperAtt, PctTD, 
PctInt

 (c) PctComp, YdsperAtt, PctTD, 
PctInt

 (d) Att, PctComp, Yds, YdsperAtt, 
TD, PctInt

12-101. (a) Min Cp = .1 3 : 

ŷ xcid= . − .61 001 0 02076
 − . − .0 00354 3 457x xetw axle

Min MSE = .4 0228 

ŷ xcid= . − .49 5 0 017547  

− . + .0 0034252 1 29x xetw cmp 

− . − .3 184 0 0096 02x xaxle c

 (b) ŷ xcid= . − .63 31 0 0178  

− . − .0 00375 3 3x xetw axle 

− .0 0084 02xc

 (c) Same as Min MSE model in 

part (a)

 (d) ŷ xetw= . − .45 18 0 00321  

− . + .4 4 0 385x xaxle n / v

 (e) Min Cp model is preferred

 (f) Min Cp = .4 0, 

Min MSE = .2 267

ŷ xetw= − .10 0 0038023  

+ . + .3 936 15 216x xcmp co 

− . − .0 011118 7 40102x xc trans 

+ . + .3 6131 2 3421 2x xdrv drv  

Stepwise:ŷ xetw= . − .39 12 0 0044  

+ . − .0 271 4 5x xn / v trns 

+ . + .3 2 1 71 2x xdrv drv  Forward 

selection: ŷ xetw= . − .41 12 0 00377  

+ . − .0 336 2 1x xn / v axle 

− . + .3 4 2 1 1x xtrans drv  + 2 2xdrv   

Backward elimination is same as 

Min Cp and Min MSE

12-103. (a) ŷ x= − . + .0 304 0 083 1 

− . + .0 031 0 0043 2
2x x  

C MSp E= . = .4 04 0 004

 (b) ŷ x= − . + .0 256 0 078 1

 + . − .0 022 0 0422 3x x  + .0 0008 3
2x  

C MSp E= . = .4 66 0 004

 (c) Prefer the model in part (a)

Supplemental Exercises

12-107. (a) 2

 (b) 0.0666, 0.0455

 (c) 6.685

12-109. (a)  f0 1321 39= . , reject H0, 

P-value < .0 00001

 (b) t0 1 45= − . , fail to reject H0 

t0 19 95= . , reject H0 t0 2 53= . , 

fail to reject H0

12-111. (a) y x∗ ∗= − . + .0 908 5 48 1  

+ . − . −∗ ∗ ∗1 3 3 92 1 142 3 4x x x.

 (b)  f0 109 02= . , P-value = 0 000. ; 

x t1 11 27∗ = . , P-value = 0 000. ; 

x t2 14 59∗ = . , P-value = 0 000. ; 

x t3 6 98∗ = − . , P-value = .0 000; 

x t4 8 11∗ = − . , P-value = 0 000.

12-113. (a) ŷ x∗ ∗= . − .21 068 1 404 3 

+ . + .0 0055 0 0004184 5x x  

MSE = .0 013156 Cp = .4 0

 (b) Same as part (a)

 (c) x4, x5 with Cp = .4 1 and 

MSE = .0 0134

 (d) The part (c) model is  

preferable

 (e) Yes

12-115. (a) ŷ x= . + .300 0 0 85 1

 10 4 405 82. + =x ŷ .

 (b)  f0 55 37= . , reject H0

 (c) 0.9022

 (d) MSE = .10 65

 (e)  f0 0 291= . , fail to reject H0

12-117. (a)  f0 18 28= . , reject H0

 (b)  f0 2= , do not reject H0

 (c) MSE reduced( ) = .0 005 

MSE Full( ) = .0 004

Mind-Expanding Exercises

12-121. R2 0 449≥ .

Chapter 13
Section 13-2

13-1. (a) 4

 (b) 5

 (c)  f0 1 58= . , 0 1 0 25. .< <P-value

 (d) fail to reject H0

13-3 (a) 5 

 (b) df
E
 = 24, MS

E 
= 1.1408,  

SS
Treatments

 = 38.96, MS
Treatments

  

= 7.792, F = 6.83, P-value = 

0.0004 

 (c) Significantly different

 (d) 1.1408

13-5. (a)  f0 14 76= . , reject H0
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13-7. (a)  f0 12 73= . , reject H0  

(b) P-value ≅ 0

13-9. (a)  f0 16 35= . , reject H0

 (c) 95%: (140.71, 149.29)99%: 

(7.36, 24.14)

13-11. (a)  f0 1 86= . , fail to reject H0

 (b) P-value = .0 214

13-13. (a)  f0 8 30= . , reject H0  

(b) P-value = .0 002

 (d) (69.17, 81.83)

 (e) (8.42, 26.33)

13-15. (a)  f0 0 72= . , fail to reject H0

 (b) P-value = .0 486, SSE = .0 146

13-17. (a)  f0 2 62= . , fail to reject H0

 (b) P-value = .0 083

13-19. (b) f
0
 = 35.448, P-value = 2.07E-6

 (e) (89.273, 90.794)

13-31. n = 3

13-33. 3.5

Section 13-3

13-35. (a)  f0 5 77= . , reject H0

 (b) 0.01412  (c) 0.0148

13-37. (a)  f0 0 75= . , fail to reject H0  

 (b) 0 (c) 24

13-39. (a) 0.0289 (b) 48.8%

 (c) 48.8%

13-41. (a) H H0
2

1
20 0: :σ = σ ≠τ τ

 (c) Set equal sample sizes, 

σ = .2 0 164, σ =τ
2 0

13-43 (a)f
0
=76.09, reject H

0
 (b) (132.97, 

147.83)

Section 13-4

13-47. (a)  f0 8 92= . , reject H0

13-49. (a)  f0 3 00= . , fail to reject H0

13-51. (a)  f0 1 61= . , fail to reject H0

13-53. (a) 3 (b) 4

 (c)  f0 23 15= . , P-value < 0 01.  

 (d) reject H0

Supplemental Exercises

13-55. (a)  f0 76 09= . , reject H0

 (c) (132.97, 147.83)

13-57. (a)  f0 7 84= . , reject H0 

 (b) P-value = .0 007

13-59. (a)  f0 6 23= . , reject H0

 (c) Algorithm 5

13-61. (a) Power = 0 2.   (b) n = 50

13-63. (a) f
0
 = 4.656, P-value = 0.006 

13-65. (a) Random effects

 (c) ˆ .στ
2 62 227= , ˆ .σ2 16 21667=

Chapter 14
Section 14-3
14-1. (a) H0 1 2 0: τ = τ =  

H i1 0: at least one  τ ≠
 (b) H0 1 2 3 0:β = β = β =  

H j1 0: at least one  β ≠
 (c) H0 11 12: τβ = τβ = …
 τβ =23 10 H : at least one

 τβ ≠ij 0

 (b)  f G( ) = .273 79, f P( ) = .8 84, 

f GP( ) = .1 26 reject H0 for only 

main effects

14-3. (a)  f M( ) = .7 91, f T( ) = .28 97, 

f MT( ) = .3 56 reject H0 for both 

main effects and the interaction

14-5. (a) Yijk i j ij
= μ + τ + β + τβ( )

 + ∈
=
=
=

⎧

⎨
⎪

⎩
⎪

ijk

i

j

k

1 2 3

1 2 3 4

1 2 3 4 5 6

, ,

, , ,

, , , , ,

 (b)  f I( ) = .40 07, f T( ) = .0 32, 

f IT( ) = .1 70 reject H0 for only 

insulation

14-7. (a)  f D( ) = .25 23, f A( ) = .543 52, 

f DA( ) = .3 54 reject H0 for both 

main effects and the interaction

14-9. (− .3 40, 7.64)

14-11. (a) H

H i

0 1 2 3

1

0

0

: ,

:

τ τ τ
τ

= = =
≠at least one

 

H

H i

0 1 2 3

1

0

0

: ,

:

β β β
β

= = =
≠at least one

 (b) Mg+: f
0
 = 0.55,  

P-value = 0.617; K+, f
0
 = 0.65, 

P-value = 0.570

Section 14-4

14-13. (a)  f H( ) = .7 64, f C( ) = .31 66, 

f F( ) = .19 92, f HC( ) = .2 92, 

f HF( ) = .2 97, f CF( ) = .0 96  

H, C, F, HF  are significant at 

α = . .0 05  The P-value for HC is 

0.075.

Section 14-5

14-15. Significant effects:A = .17 00, 

C = .10 875, D = .8 375, AD = .9 125

14-17. (a) Cleaning Method = − .5 593 

Test Position = − .1 280 

Clean test∗ = − .1 220

 (b)  Cleaning Method is the only 

significant factor

14-19. (a) Significant effects: 

A = .11 8125, B = .33 9375, 

C = .9 6875, AB = .7 9375

14-21. None of the effects are  

significant

14-23. (b) A, B and AB
 (c) ŷ x= + .400 40 124 1 

− . + .32 75 26 6252 1 2x x x
14-25. f0 5 11= . , do not reject H0

14-27. (a) For model with A, B, C, AB, 

s = .2 92; s ( ) = .center pts 2 86

 (b) F0 192 71= . , curvature is  

significant

14-29. (a) Large effects: C = −39 79. , 

D = −198 47. , E = −64 86.

 (b) y x

x x
c

D E

= −
− −

546 90 39 79

198 47 64 86

. .

. .
 (d) none

14-31. (a) 3-way and higher interactions

 (b) SE coef = 0.9, t = 1.25,  

p = 0.267, df
A
 = 1, SS

A
 = 20.25,  

MS
A
 = 20.25, F =1.57, df

Error
 = 5,  

MS
Error

 = 12.9

14-33. (a) Large effects: B = −0 000750.

 (b) with all effects in error except 

B the P-value = 0 007.

14-35. (a) Effects: Number of visits = 

38.12, Length of stay = 22.50, 

Case manager = 35.50, 

 (b) df
Error

 = 28, MS
Error

 = 584.8, SE 

Coef = 4.275

Section 14-6

14-37. Significant effects: A = .15 625, 

C = .10 625, D = .8 875, 

AD CD= . = − .8 875 3 125, , 

ACD = .1 875

14-43. (a) Effect JED is confounded 

with blocks

 (b) Marginal significant effects:

J = .19 0, D = .14 75, JD = − .18 0, 

ED = − .25 5,

14-45. (a) Blocking important, SSBlocks 

large relative to SSError

 (b) ABC, ABD, ACD, and BCD
 (c) Coefficient for AD = 15 14. ,  

t-statistic for AD = 1 525. ,  

dfBlocks = 1, MS  for 

interactions = 1165 33.

appC.indd   782 9/24/2013   9:41:12 PM



Appendix C/Answers to Selected Exercises   783

14-47.

Section 14-7
14-49. (a) 25 1−

 (b) E = ABCD
 (c) A = .10 8750, B = .33 6250, 

C = .10 6250, D = − .0 6250, 

E = .0 3750, AB CDE+ = .7 1250,

14-51. (a) E ABCD= −
 (b) Resolution V

 (c) E = − .0 4700, BE = − .0 4050, 

DE = − .0 3150

14-53. (c) A = .1 435, B = − .1 465, 

D = .4 545, AB = .1 15, AD = − .1 23

14-55. (b) Design Generator: D BE= , 

E AC=  Defining Relation: 

I ACE BDE= =  = ABCDE  

Aliases

A CE BCDE ABDE

B DE ACDE ABCE

C AE ABDE BCDE

D BE ABCE ACDE

E

= = =
= = =
= = =
= = =
= AAC BD ABCD= =

 (c) A = − .1 525, B = − .5 175, 

C = .2 275, D = − .0 675, E = .2 275

14-57. (a) Alias Structure: 

I ABD ACE BCF+ + +  

+ + +DEF ABEF ACDF  

+BCDE  A BD CE+ +  

B AD CF+ +  C AE BF+ +  

D AB EF+ +  E AC DF+ +  

F BC DE+ +  AF BE CD+ +
 (b) Alias Structure: I ABCG+  

+ +ABDH ABEF  

 + +ACDF ACEH   

+ +ADEG AFGH 

 + +BCDE BCFH  

+ +BDFG BEGH  

+ +CDGH CEFG  + DEFH
 A
 B
 C
 D
 E
 F
 G
 H
 AB CG DH EF+ + +
 AC BG DF EH+ + +
 AD BH CF EG+ + +
 AE BF CH DG+ + +
 AF BE CD GH+ + +
 AG BC DE FH+ + +

 AH BD CE FG+ + +
14-59. (a) Generators are E BCD= , 

F ACD G ABC= =, , and 

H ABD I BCDE= = =,  

ACDF ABEF ABCG= = =  

ADEG BDFG CEFG= = = 

ABHD ACEH BCFH= = = 

DEFH CDGH= = 

BEGH AFGH=
 (b) Glassware = 1 4497. , 

Reagent = −0 8624. ,  

Prep Tracer= =0 6034 0 6519. , . ,  

Dissolution = −0 8052. , 

Hood = 1 3864. , 

Chemistry = 0 0591. , 

Ashing = −0 0129.

14-61. (a) E=ABCD

 (b) 5 

Section 14-8
14-63. (b) ŷ x= . − .82 024 1 115 1 

− . + .2 408 0 8612 1
2x x  

− . − .1 59 1 8012
2

1 2x x x

14-65. Path of steepest ascent passes 

through the point (0, 0) and has a 

slope − . . = − .0 8 1 5 0 533/

14-67. (a) Central composite design, not 

rotatable

 (b) ŷ x= . − .150 04 58 47 1 

+ . − . + .
+ .

3 35 6 53 10 58

0 50

2 1
2

2
2

1 2

x x x

x x  

The linear terms are significant 

( )P - value = .0 001 , while both the 

square terms and interaction terms 

are insignificant

Term Effect Coef SE Coef T P
Constant 2157.06 25.60 84.26 0.00
Soybean meal 610.56 305.28 25.60 11.93 0.000
Ethanol 148.76 74.38 25.60 2.91 0.014
Corn steep 
liquor

588.64 294.32 25.60 11.50 0.000

Glucose 215.49 107.74 25.60 4.21 0.001
MgSO4 -5.24 -2.62 25.60 -0.10 0.920
Soybean 
meal*Glucose

155.99 77.99 25.60 3.05 0.011

Corn steep 
liquor*Glucose

367.46 183.73 25.60 7.18 0.000

Corn steep 
liquor*MgSO4

213.54 106.77 25.60 4.17 0.002

Ct Pt 416.78 52.59 7.93 0.00

Term Effect Coef 
Constant 138 43
Block 0.56
# Trucks 83.01 41.50
Passes/load -42.19 -21.10
Load-pass time -36.68 -18.34
Travel time -119.07 -59.53
# Trucks*Passes/load -26.14 -13.07
# Trucks*Load-pass time -22.51 -11.25
# Trucks*Travel time -9.27 -4.63
Passes/load*Load-pass time 3.29 1.65
Passes/load*Travel time 36.08 18.04
Load-pass time*Travel time 31.69 15.85
SE Coef = 3.495, df

Error
 = 20, 

MS
Error

 = 391,

(c)
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14-69. (a) along the vector (1.22, −2 13. ,  

1.62, −0 61. )

 (b) (1.22, −2 13.  , 1.62, −0 61. )

14-71. (a) Yes 

 (b) x x1 21 4= =, � with y1 7=
14-73. (a) Central composite design 

with α = 1

 (b)

Supplemental Exercises
14-75. (a) t = .2 54, t = .5 02 The main 

effect of pH and the inter action 

of pH and Catalyst Concentra-

tion (CC) are significant

14-77. (a)  f L( ) = .63 24, f S( ) = .39 75, 

f LS( ) = .5 29 L , S, LS are  

significant

14-79. (a) A = − .2 74, B = − .6 66, 

C = .3 49, AB = − .8 71, AC = .7 04, 

BC = .11 46, ABC = − .6 49, not 

significant

14-81. (a) V = − .15 75, P = .10 75, 

G = − .25 00, PG = − .19 25,

 (b) ŷ = . − .102 75 7 87 1x  

+ . − .5 37 12 503 4x x  − .9 63 34x
14-83. V = 3 25. , F = −10 25. , P = −10 25. , 

G = −23 75. , PG = −11 75.

14-85. Design Generators: D AB=  

E AC=  

 Alias Structure

 I ABD ACE BCDE+ + +
 A BD CE ABCDE+ + +
 B AD CDE ABCE+ + +
 C AE BDE ABCD+ + +
 D AB BCE ACDE+ + +
 E AC BCD ABDE+ + +
 BC DE ABE ACD+ + +
 BE CD ABC ADE+ + +

14-87. (a) 22 factorial with two replicates

 (b) Significant effects:x1 0 795= . , 

x2 1 160= − .
 (c) ŷ x= . + .0 1994 0 07688 1

14-89. (a) H0 1 2 3 0: τ = τ = τ =  

H0 1 2 3 0: β = β = β =  

H0 11 33
0: τβ( ) = = τβ( ) =…

 (b)  f N( ) = .311 71, f P( ) = .119 17, 

f PN( ) = .92 94

 (d) σ̂ = .1 22

14-91. (a) Generators are E ABC= ,  

F ABD= , and G ACD= ; 

I ABCE ABDF CDEF
ACDG BDEG BCFG
AEFG

= = =
= = =
=

 (b) A = −74 9. , B = 76 1. ,  

C = −366 4. , D = 236 9. , 

E = −213 4. , F = 119 9. , G = 101 9.

14-93. (a) Block 1: (1), bc ac ab, , ; Block 

2: a b c abc, , ,
 (b) A = −0 500. , B = 13 000. , 

C = 6 500. , AB = −2 000.  

AC = −14 500. , BC = −5 000.

14-95. (a) A: 4 levels, B: 3 levels

 (b) 1 

 (c) AB interaction not  

significant

 (d) dfError = 6, SSB = 34670882, 

MSE = 29736583, f0 1 36= .

14-97 (a) For seed type  

TP Moschofilero

 

Chapter 15
Section 15-3

15-1. (a) x  chart: UCL = .242 78, 

CL = 223, LCL = .203 22, R 

Term Coef SE Coef T P

Constant 12776.9 312.4 40.896 0.000

Ethanol -405.8 208.7 -1.945 0.100

pH -879.6 208.7 -4.215 0.006

Time -335.2 208.7 -1.606 0.159

Ethanol*Ethanol 363.7 406.4 0.895 0.405

pH*pH -2003.3 406.4 -4.929 0.003

Time*Time 558.7 406.4 1.375 0.218

Ethanol*pH 473.7 233.3 2.031 0.089

Ethanol*Time -424.3 233.3 -1.818 0.119

pH*Time -110.5 233.3 -0.474 0.653

DF SS MS F P

Residual Error  6 2612927 435488

  Lack-of-Fit  5 2476685 495337 3.64 0.378

  Pure Error  1 136242 136242

Total 15 27413889

Term Coef SE Coef T P

Constant 51.9630 3.589 14.479 0.000

Immob area 3.6111 2.295 1.573 0.142

Probe area 27.6833 2.295 12.060 0.000

Hybrid -4.6111 2.295 -2.009 0.068

Target 11.8167       2.295 5.148 0.000

Immob area*Immob area -3.7778 6.073 -0.622 0.546

Probe area*Probe area -13.5278 6.073 -2.227 0.046

Hybrid*Hybrid -0.1778 6.073 -0.029 0.977

Target*Target -3.4278 6.073 -0.564 0.583

Immob area*Probe area 4.4688 2.435 1.835 0.091

Immob area*Hybrid -3.0937 2.435 -1.271 0.228

Immob area*Target -3.8687 2.435 -1.589 0.138

Probe area*Hybrid -5.8938       2.435 -2.421 0.032

Probe area*Target 11.5062 2.435 4.726 0.000

Hybrid*Target 4.0688 2.435 1.671 0.121

DF SS MS

Residual Error 12 1138.1 94.8

Lack-of-Fit 10 1126.9 112.7

Pure Error  2 11.2 5.6

Total 26 23881.8
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chart: UCL = .72 51, CL = .34 286, 

LCL = 0

 (b) μ̂ = 223 σ̂ = .14 74

15-3. (a) x  chart: UCL = .245 11, 

CL = 223, LCL = .200 89S chart: 

UCL = .30 77, CL = .13 58, LCL = 0

 (b) ˆ ,μ = 223  σ̂ = .14 74

15-5. (a) x  chart: UCL = 4 930. , 

CL = 4 668. , LCL = 4 406. ,  

R chart: UCL = 0 961. , CL = 0 454. , 

LCL = 0

 (b) x  chart: UCL = 4 910. , 

CL = 4 668. , LCL = 4 425. , S chart: 

UCL = 0 355. , CL = 0 17. , LCL = 0

15-7. (a) x  chart: UCL = .37 5789, 

CL = .34 32, LCL = .31 0611 R 

chart: UCL = .11 9461, CL = .5 65, 

LCL = 0

 (b) x  chart: UCL = .37 4038, 

CL = .34 0947, LCL = .30 7857

R chart: UCL = .12 1297, 

CL = .5 73684, 

LCL = σ = .0 2 4664ˆ

15-9. (a) x  chart: UCL = .17 4, 

CL = .15 09, LCL = .12 79 R chart: 

UCL = .5 792, CL = .2 25, LCL = 0

 (b) x  chart: UCL = .17 96, 

CL = .15 78, LCL = .13 62 R chart: 

UCL = .5 453, CL = .2 118, LCL = 0

 (c)  x  chart: UCL = .17 42, 

CL = .15 09, LCL = .12 77 S chart: 

UCL = .3 051, CL = .1 188, LCL = 0 

Revised x  chart: UCL = .17 95, 

CL = .15 78, LCL = .13 62 S chart: 

UCL = .2 848, CL = .1 109, LCL = 0

15-11. (a) x  chart: UCL = .0 0635, 

CL = .0 0629, LCL = .0 0624 

R chart: UCL = 0 0020. , 

CL = .0 0009, LCL = 0

 (b) x  chart: UCL = .0 0634, 

CL = .0 0630, LCL = .0 0626 R 

chart: UCL = .0 0014, CL = .0 0007, 

LCL = 0

 (c) x  chart: UCL = .0 0634, 

CL = .0 0630, LCL = .0 0626 

S chart: UCL = .0 00058, 

CL = .0 00027, LCL = 0

 Revised:

  x  chart: UCL = .0 0633, 

CL = .0 0630, LCL = .0 0626

  S chart: UCL = .0 00058, 

CL = .0 00028, LCL = 0

15-13. (a) 2.73 (b) no

15-17. s = 2 956. , r d/ 2 1 251= .

Section 15-4

15-19. (a) Individual chart: 

UCL = .60 889, CL = .53 05, 

LCL = .45 211 MR chart: 

UCL = .9 634, CL = .2 94737, 

LCL = 0 The process appears to 

be in control.

 (b) ˆ ,μ = .53 05  σ̂ = .2 613

15-21. (a) Individual chart: 

UCL = .10 5358, CL = .10 0272, 

LCL = .9 5186 MR chart: 

UCL = .0 625123, CL = .0 19125, 

LCL = 0 The process appears to 

be in control.

 (b) ˆ ,μ = .10 0272  σ̂ = .0 1696

15-23. (a) Initial study: Indi-

vidual chart: UCL = .130 5, 

CL = .100 78, LCL = .71 06 

MR chart: UCL = .36 51, 

CL = .11 18, LCL = 0 Revised: 

Individual chart UCL = .127 08, 

CL = .99 48, LCL = .71 88 MR 

chart: UCL = .33 91, CL = .10 38, 

LCL = 0

 (b) ˆ ,μ = .99 4792  σ̂ = .9 20059

15-25. (a) X  chart: UCL = 116 43. ,  

CL = 82 0. , LCL = 47 57. , R chart: 

UCL = 42 30. , CL = 12 95. ,  

LCL = 0; in control

 (b) 82.0, 11.48

15-27. (a) X  chart: 
UCL CL
LCL

= 0.299, = 0.119,

= 0.061− ,  

MR chart: 
UCL CL
LCL

= 0.221, = 0.068,

= 0
 

 (b) Sample 17 out of  
control, revised X -Chart: 
UCL CL
LCL

= 0.266, = 0.110,
= 0.046− ;   

MR chart: 
UCL CL LCL= 0.192, = 0.059, = 0 

Section 15-5

15-29. (a) 1.3333  (b) 26

15-31. (a) PC PCRK= = .1 5  (b) 0

15-33. Proportion nonconforming is 

0.00779

 PCR = .0 905

 PCRK = .0 837

15-35. 0.0009

 PCR = .1 13

 PCRK = .1 06

15-37. (a) PCR = .1 35 PCRK = .1 217

 (b) 0.00013

15-41. (a) σ̂ = 2.46 

 (b) PCR PCRK= 1.02, = 0.94 

15-43. (a) Fraction defective = 0 002. , 

PCR = 1 03. , PCRK = 1 03.

 (b) Fraction defective = 0 057. , 

PCR = 1 03. , PCRK = 0 526.

15-45. (a) 1.4

 (b) PCR = 0 95. , PCRK = 0 64.

15-47 (a) PCR PCRK= 1.33, = 0.83 

 (b) 0.64% 

Section 15-6
15-49. (a) not in control UCL = .0 0835, 

CL = .0 0645, LCL = .0 0455

 (b) Revised P-chart: 

UCL = .0 1252, CL = .0 0561, 

LCL = 0

15-51. (a) P chart: UCL = .0 1986, 

CL = .0 1506, LCL = .0 1026

 (b) Revised P chart: 

UCL = .0 2062, CL = .0 1573, 

LCL = .0 1085

15-53. (a) The limits need to be revised. 

UCL = .3 811, CL = .1 942, 

LCL ,= .0 072  sample 5 and 24 

exceed limits

 (b) U  chart: UCL = .3 463, 

CL = .1 709, LCL = 0

15-55. (a) UCL = 0 3528. , CL = 0 2598. , 

LCL = 0 1667. , not in control

 (b) UCL = 0 6694. , CL = 0 5195. ,  

LCL = 0 3696. , not in control, 

points 5, 9, 12, 20 exceed the limits

15-57 (a) C chart, 
UCL CL

LCL

= 23.08, = 12.48,

= 1.88
 (b) In control 

 (c) No samples removed. 

 (d) X  chart: 
UCL CL= 23.67, = 12.48,

LCL = 1.29, both X  and C charts 

indicate the process is in control

Section 15-7
15-59. (a) 4  (b) 0.0228.  (c) 43.8596

15-61. (a) 0.2177      (b) ARL = .4 6

15-63. (a) 0.1515      (b) ARL = .6 6

15-65. (a) 0.1020      (b) ARL = .9 8

15-67. (a) 0.2877      (b) ARL = .3 48

15-69. (a) σ̂ = .6 928  (b) 0.0401

 (c) 24.94

15-71 (a) UCL LCL= 0.26, = 0.02−  

 (b) 22.10 

 (c) 
UCL LCL

ARL

= 0.22, = 0.02,

= 8.04
 

Section 15-8
15-73. (a) h k= = .4 0 5, , UCL = .3 875, 

LCL = − .3 875 Yes, this process is 

in-control.

 (b) Observation 20 is out of 

control, CUSUM = 6 08.

15-75. (a) Sigma estimate from 

s ,= .0 1736  estimate from moving 
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range = .0 1695, compare to exer-

cise 15-67 

 (b) h k= = .4 0 5, , UCL = .0 0678, 

LCL = − .0 0678, out of control at 

the specified target level

15-77. (a) ARL = .38 0  (b) ARL = .10 4

15-79. (a) 0.169548

 (b) The process appears to be in 

control. UCL = .10 17, CL = 10, 

LCL = .9 83

 (c) Out of control at observa-

tion 13, UCL = .10 29, CL = 10, 

LCL = .9 71

15-81. (a) prefer λ = .0 1 and L = .2 81

 (b) prefer λ = .0 5 and L = .3 07

 (c) 9

15-83. (a)  UCL = 12, LCL = −12, not in 

control

 (b) For h = .4 2 01, , < <ARL 2 57.

15-85. (a) UCL LCL= 71.94, = 68.07, 

sample 13 is out of control 

 (b) UCL LCL= 75.32, = 64.68, 

sample 19 is out of control 

 (c) ARL ≈ 1 for part (a); 

ARL = 1.53 for part (b) 

Section 15-9

15-87. Minimax criteria: purchase; Most 

probable criteria: no purchase; 

Expected cost criteria: no purchase

Supplemental Exercises

15-91. (a) x  chart: UCL = .64 019,  

CL = 64, LCL = .63 982 R chart: 

UCL = .0 046, CL = .0 018, 

LCL = 0

 (b) ˆ ,μ = 64  σ̂ = .0 011

 (c) PCR = .0 63

 (d) PCRk = .0 63

 (e) σ = .( ) = .2 2
0 0033 0 000011

 (f) ARL = .12 9

15-93. (a) The process appears to be in 

control.

 (b) P chart: UCL = .0 1717, 

CL = .0 1063, LCL = .0 04093

15-95. (a) Individual chart: 

UCL = .60 327362, CL = .60 32641,  

LCL = .60 325458 MR chart: 

UCL = .0 001169, CL = .0 000358,  

LCL = 0

 (b) Individual chart: 

UCL = .0 001362, CL = .00 00041,  

LCL = .0 000542 MR chart: 

UCL = .0 001169, CL = .0 000358,  

LCL = 0

 (c) ˆ .μ = 60 3264 ˆ .σ = 0 0003173 

PCR = .1 0505 PCRk = .0 9455

15-97. (a) Trial control limits 

S chart: UCL = .170 25, 

CL = .86 42, LCL = .2 59 x  chart: 

UCL = .670 00, CL = .558 77, 

LCL = .447 53

 Revised S chart: UCL = .158 93,  

CL = .80 68, LCL = .2 42 x  chart: 

UCL = .655 79, CL = .551 95,  

LCL = .448 10

 (b) PCRK = .0 8725

 (c)  ˆ .σ = 36 9917

 (d) ARL = .18 6

15-107. (a) ARL = .43 9

 (b) ARL = .6 30

 (c) ARL = .2 00

15-109. (a) x  chart: UCL = .140 168,  

CL = .139 49, LCL = .138 812 

R chart: UCL = .2 48437, 

CL = .1 175, 

LCL = 0

 (b) Revised: x  chart: 

UCL = .140 417, CL = .139 709, 

LCL = .139 001

 R chart: UCL = .2 596, 

CL = .1 227, LCL = 0 σ̂ = .0 5276

 (c) PCR = .1 26 PCRk = .1 08

 (d) σ = .2 0 081 (e) ARL = .5 55

15-111. P X USL<( ) = .0 00135

15-113. (a) P U( )

.

> . =
=

12 24 16

0 96995

when λ

 (b) P U( when> . = =10 68 16 1λ )
15-115. (a) ARL = .17 5

 (b) ARL = .3 63

15-119. (a) σ̂ = .3 0411, 

probability = 0 0197.

 (b) 50.8

15-121.  (a) X  chart: 
UCL CL
LCL

= 1.563, = 1.507,
= 1.452,   

samples 20-24 are out 

of control; MR chart: 
UCL CL
LCL

= 0.068, = 0.020,
= 0,   

samples 20 and 25 are out of 

control 

 (b) Revised X  Chart: 
UCL CL
LCL

= 1.546, = 1.498,
= 1.451;   

Revised MR chart: 

UCL CL LCL= 0.058, = 0.018, = 0 

 (c) ˆ ˆμ σ= 1.49 , = 0.0157V V . 

 (d) Results do not support 

σ = 0.02V  

15-123. (a) 4 

 (b) USL LSL= 26.78, = 10.82 

15-125. 1.38

15-127. (a) X  chart: 
UCL CL
LCL

= 52.31, = 45.74,
= 39.16;  

 MR chart: 

UCL CL LCL= 8.08, = 2.47, = 0 

 (b) No 

15-129. $270

Mind-Expanding Exercises

15-131. 0.125, 0.004

15-133. (b) ARL p= 1/  where 

p k n= − Φ − δ( )1  

+ Φ − − δ( )k n

 (c) ARL = .22 0 for k = 2

 (d) ARL = .4 47

15-135. n
k p

p
=

−( )2 1

15-137. (a) C chart CL = 8 UCL = .16 49 

LCL = 0

 (b) Yes
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2k factorial experiment. A full factorial experiment 

with k factors and all factors tested at only two levels 

(settings) each.

2k p-  factorial experiment. A fractional factorial experi-

ment with k factors tested in a 2− p fraction with all factors 

tested at only two levels (settings) each.

Acceptance region. In hypothesis testing, a region in 

the sample space of the test statistic such that if the test 

statistic falls within it, the null hypothesis cannot be 

rejected. This terminology is used because rejection of 

H0 is always a strong conclusion and acceptance of H0 

is generally a weak conclusion.

Addition rule. A formula used to determine the prob-

ability of the union of two (or more) events from the 

probabilities of the events and their intersection(s).

Additivity property of b2
. If two independent random 

variables X1 and X2 are distributed as chi-square with v1 

and v2 degrees of freedom, respectively, Y X X= +1 2 is 

a chi-square random variable with u v v= +1 2 degrees of 

freedom. This generalizes to any number of indepen-

dent chi-square random variables.

Adjusted R2. A variation of the R2 statistic that com-

pensates for the number of parameters in a regression 

model. Essentially, the adjustment is a penalty for 

increasing the number of parameters in the model.

Alias. In a fractional factorial experiment when certain 

factor effects cannot be estimated uniquely, they are 

said to be aliased.

All possible (subsets) regressions. A method of vari-

able selection in regression that examines all possible 

subsets of the candidate regressor variables. Efficient 

computer algorithms have been developed for imple-

menting all possible regressions.

Alternative hypothesis. In statistical hypothesis test-

ing, this is a hypothesis other than the one that is being 

tested. The alternative hypothesis contains feasible 

conditions, whereas the null hypothesis specifies con-

ditions that are under test.

Analysis of variance (ANOVA). A method of decom-

posing the total variability in a set of observations, as 

measured by the sum of the squares of these obser-

vations from their average, into component sums of 

squares that are associated with specific defined sources 

of variation.

Analytic study. A study in which a sample from a pop-

ulation is used to make inference to a future population. 

Stability needs to be assumed. See Enumerative study.

Arithmetic mean. The arithmetic mean of a set of num-

bers x1, x2, …, xn is their sum divided by the number of 

observations, or ( / )1
1

n xit
n
=∑ . The arithmetic mean is 

usually denoted by x , and is often called the average.

Assignable cause. The portion of the variability in a 

set of observations that can be traced to specific causes, 

such as operators, materials, or equipment. Also called 

a special cause.

Asymptotic relative efficiency (ARE). Used to com-

pare hypothesis tests. The ARE of one test relative to 

another is the limiting ratio of the sample sizes neces-

sary to obtain identical error probabilities for the two 

procedures.

Attribute. A qualitative characteristic of an item or 

unit, usually arising in quality control. For example, 

classifying production units as defective or nondefec-

tive results in attributes data.

Attribute control chart. Any control chart for a discrete 

random variable. See Variables control chart.

Average. See Arithmetic mean.

Average run length, or ARL. The average number of 

samples taken in a process monitoring or inspection 

scheme until the scheme signals that the process is oper-

ating at a level different from the level in which it began.

Axioms of probability. A set of rules that probabilities 

defined on a sample space must follow. See Probability.

Backward elimination. A method of variable selec-

tion in regression that begins with all of the candi-

date regressor variables in the model and eliminates 

the insignificant regressors one at a time until only 

significant regressors remain.

Bayes’ estimator. An estimator for a parameter obtained 

from a Bayesian method that uses a prior distribution 

for the parameter along with the conditional distribution 

of the data given the parameter to obtain the posterior 

distribution of the parameter. The estimator is obtained 

from the posterior distribution.

Glossary
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Bayes’ theorem. An equation for a conditional prob-

ability such as P A B( | ) in terms of the reverse condi-

tional probability P B A( | ).

Bernoulli trials. Sequences of independent trials with 

only two outcomes, generally called “success” and 

“failure,” in which the probability of success remains 

constant.

Bias. An effect that systematically distorts a statistical 

result or estimate, preventing it from representing the 

true quantity of interest.

Biased estimator. See Unbiased estimator.

Bimodal distribution. A distribution with two modes.

Binomial random variable. A discrete random vari-

able that equals the number of successes in a fixed 

number of Bernoulli trials.

Bivariate distribution. The joint probability distribu-

tion of two random variables.

Bivariate normal distribution. The joint distribution 

of two normal random variables.

Block. In experimental design, a group of experimental 

units or material that is relatively homogeneous. The 

purpose of dividing experimental units into blocks is 

to produce an experimental design wherein variabil-

ity within blocks is smaller than variability between 

blocks. This allows the factors of interest to be com-

pared in an environment that has less variability than in 

an unblocked experiment.

Box plot (or box and whisker plot). A graphical dis-

play of data in which the box contains the middle 50% 

of the data (the interquartile range) with the median 

dividing it, and the whiskers extend to the smallest and 

largest values (or some defined lower and upper limits).

C chart. An attribute control chart that plots the total 

number of defects per unit in a subgroup. Similar to a 

defects-per-unit or U chart.

Categorical data. Data consisting of counts or obser-

vations that can be classified into categories. The cat-

egories may be descriptive.

Causal variable. When y f x= ( ) and y is considered to 

be caused by x, x is sometimes called a causal variable.

Cause-and-effect diagram. A chart used to organize 

the various potential causes of a problem. Also called a 

fishbone diagram.

Center line. A horizontal line on a control chart at the 

value that estimates the mean of the statistic plotted on 

the chart. See Control chart.

Central composite design (CCD). A second-order 

response surface design in k variables consisting of 

a two-level factorial, 2k axial runs, and one or more 

center points. The two-level factorial portion of a CCD 

can be a fractional factorial design when k is large. The 

CCD is the most widely used design for fitting a sec-

ond-order model.

Central limit theorem. The simplest form of the cen-

tral limit theorem states that the sum of n independently 

distributed random variables will tend to be normally 

distributed as n becomes large. It is a necessary and 

sufficient condition that none of the variances of the 

individual random variables are large in comparison to 

their sum. There are more general forms of the cen-

tral theorem that allow infinite variances and correlated 

random variables, and there is a multivariate version of 

the theorem.

Central tendency. The tendency of data to clus-

ter around some value. Central tendency is usually 

expressed by a measure of location such as the mean, 

median, or mode.

Chance cause. The portion of the variability in a set 

of observations that is due to only random forces and 

which cannot be traced to specific sources, such as 

operators, materials, or equipment. Also called a com-

mon cause.

Chi-square (or chi-squared) random variable. A 

continuous random variable that results from the sum 

of squares of independent standard normal random 

variables. It is a special case of a gamma random 

variable.

Chi-square test. Any test of significance based on the 

chi-square distribution. The most common chi-square 

tests are (1) testing hypotheses about the variance or 

standard deviation of a normal distribution and (2) 

testing goodness of fit of a theoretical distribution to 

sample data.

Coefficient of determination. See R2.

Combination. A subset selected without replacement 

from a set used to determine the number of outcomes 

in events and sample spaces.

Comparative experiment. An experiment in which 

the treatments (experimental conditions) that are to 

be studied are included in the experiment. The data 

from the experiment are used to evaluate the treat-

ments.

Completely randomized design (or experiment). A 

type of experimental design in which the treatments or 

design factors are assigned to the experimental units 

in a random manner. In designed experiments, a com-

pletely randomized design results from running all of 

the treatment combinations in random order.
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Components of variance. The individual components 

of the total variance that are attributable to specific 

sources. This usually refers to the individual variance 

components arising from a random or mixed model 

analysis of variance.

Conditional mean. The mean of the conditional prob-

ability distribution of a random variable.

Conditional probability. The probability of an event 

given that the random experiment produces an outcome 

in another event.

Conditional probability density function. The prob-

ability density function of the conditional probability 

distribution of a continuous random variable.

Conditional probability distribution. The distribution 

of a random variable given that the random experiment 

produces an outcome in an event. The given event might 

specify values for one or more other random variables.

Conditional probability mass function. The probabil-

ity mass function of the conditional probability distri-

bution of a discrete random variable.

Conditional variance. The variance of the conditional 

probability distribution of a random variable.

Confidence coefficient. The probability 1−a  associ-

ated with a confidence interval expressing the prob-

ability that the stated interval will contain the true 

parameter value.

Confidence interval. If it is possible to write a prob-

ability statement of the form

P L U( )≤ ≤ = −θ α1

where L and U are functions of only the sample data 

and θ is a parameter, then the interval between L and 

U is called a confidence interval (or a 100 1( )%− α  con-

fidence interval). The interpretation is that a statement 

that the parameter θ lies in this interval will be true 

100 1( )%− α  of the times that such a statement is made.

Confidence level. Another term for the confidence 

coefficient.

Confounding. When a factorial experiment is run in 

blocks and the blocks are too small to contain a com-

plete replicate of the experiment, one can run a fraction 

of the replicate in each block, but this results in losing 

information on some effects. These effects are linked 

with or confounded with the blocks. In general, when 

two factors are varied such that their individual effects 

cannot be determined separately, their effects are said 

to be confounded.

Consistent estimator. An estimator that converges in 

probability to the true value of the estimated parameter 

as the sample size increases.

Contingency table. A tabular arrangement expressing 

the assignment of members of a data set according to 

two or more categories or classification criteria.

Continuity correction. A correction factor used to 

improve the approximation to binomial probabilities 

from a normal distribution.

Continuous distribution. A probability distribution 

for a continuous random variable.

Continuous random variable. A random variable with 

an interval (either finite or infinite) of real numbers for 

its range.

Continuous uniform random variable. A continuous 

random variable with range of a finite interval and a 

constant probability density function.

Contour plot. A two-dimensional graphic used for a 

bivariate probability density function that displays curves 

for which the probability density function is constant.

Contrast. A linear function of treatment means with 

coefficients that total zero. A contrast is a summary of 

treatment means that is of interest in an experiment.

Control chart. A graphical display used to monitor a 

process. It usually consists of a horizontal center line 

corresponding to the in-control value of the parameter 

that is being monitored and lower and upper control 

limits. The control limits are determined by statisti-

cal criteria and are not arbitrary, nor are they related 

to specification limits. If sample points fall within the 

control limits, the process is said to be in-control, or 

free from assignable causes. Points beyond the control 

limits indicate an out-of-control process; that is, assign-

able causes are likely present. This signals the need to 

find and remove the assignable causes.

Control limits. See Control chart.

Convolution. A method to derive the probability den-

sity function of the sum of two independent random 

variables from an integral (or sum) of probability den-

sity (or mass) functions.

Cook’s distance. In regression, Cook’s distance is a 

measure of the influence of each individual observation 

on the estimates of the regression model parameters. It 

expresses the distance that the vector of model parame-

ter estimates with the ith observation removed lies from 

the vector of model parameter estimates based on all 

observations. Large values of Cook’s distance indicate 

that the observation is influential.

Correction factor. A term used for the quantity 

( / )( )1
1

2n xii
n
=∑  that is subtracted from xii

n 2
1=∑  to give the 

corrected sum of squares defined as ( / ) ( )1
1

2n x x xii
n

i=∑ − .  

The correction factor can also be written as nx 2.
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Correlation. In the most general usage, a measure 

of the interdependence among data. The concept may 

include more than two variables. The term is most com-

monly used in a narrow sense to express the relation-

ship between quantitative variables or ranks.

Correlation coefficient. A dimensionless measure of 

the linear association between two variables, usually 

lying in the interval from −1 to +1, with zero indicat-

ing the absence of correlation (but not necessarily the 

independence of the two variables).

Correlation matrix. A square matrix that contains 

the correlations among a set of random variables, 

say, X X Xk1 2, , ,… . The main diagonal elements of the 

matrix are unity and the off-diagonal elements rij are the 

correlations between Xi and X j.

Counting techniques. Formulas used to determine the 

number of elements in sample spaces and events.

Covariance. A measure of association between two 

random variables obtained as the expected value of 

the product of the two random variables around their 

means; that is, Cov(X Y E X YX Y, ) [( )( )]= − −μ μ .

Covariance matrix. A square matrix that contains the 

variances and covariances among a set of random vari-

ables, say, X1, X Xk2, ,… . The main diagonal elements 

of the matrix are the variances of the random variables 

and the off-diagonal elements are the covariances 

between Xi and X j. Also called the variance-covariance 

matrix. When the random variables are standardized to 

have unit variances, the covariance matrix becomes the 

correlation matrix.

Critical region. In hypothesis testing, this is the por-

tion of the sample space of a test statistic that will lead 

to rejection of the null hypothesis.

Critical value(s). The value of a statistic corre-

sponding to a stated significance level as determined 

from the sampling distribution. For example, if 

P Z z P Z( ) ( . ) ..≥ = ≥ =0 025 1 96 0 025, then z0 025 1 96. .=  is 

the critical value of z at the 0.025 level of significance.

Crossed factors. Another name for factors that are 

arranged in a factorial experiment.

Cumulative distribution function. For a random vari-

able X, the function of X defined as P X x( )≤  that is 

used to specify the probability distribution.

Cumulative normal distribution function. The cumula-

tive distribution of the standard normal distribution, often 

denoted as Φ( )x  and tabulated in Appendix Table II.

Cumulative sum control chart (CUSUM). A control 

chart in which the point plotted at time t is the sum of 

the measured deviations from target for all statistics up 

to time t.

Curvilinear regression. An expression sometimes 

used for nonlinear regression models or polynomial 

regression models.

Decision interval. A parameter in a tabular CUSUM 

algorithm that is determined from a trade-off between 

false alarms and the detection of assignable causes.

Defect. Used in statistical quality control, a defect is 

a particular type of nonconformance to specifications 

or requirements. Sometimes defects are classified 

into types, such as appearance defects and functional 

defects.

Defect concentration diagram. A quality tool that 

graphically shows the location of defects on a part or 

in a process.

Defects-per-unit control chart. See U chart.

Defining relation. A subset of effects in a fractional 

factorial design that define the aliases in the design.

Degrees of freedom. The number of independent com-

parisons that can be made among the elements of a 

sample. The term is analogous to the number of degrees 

of freedom for an object in a dynamic system, which 

is the number of independent coordinates required to 

determine the motion of the object.

Deming. W. Edwards Deming (1900–1993) was a 

leader in the use of statistical quality control.

Deming’s 14 points. A management philosophy pro-

moted by W. Edwards Deming that emphasizes the 

importance of change and quality.

Density function. Another name for a probability den-

sity function.

Dependent variable. The response variable in regres-

sion or a designed experiment.

Design matrix. A matrix that provides the tests that are 

to be conducted in an experiment.

Designed experiment. An experiment in which the 

tests are planned in advance and the plans usually 

incorporate statistical models. See Experiment.

Discrete distribution. A probability distribution for a 

discrete random variable.

Discrete random variable. A random variable with a 

finite (or countably infinite) range.

Discrete uniform random variable. A discrete ran-

dom variable with a finite range and constant probabil-

ity mass function.

Dispersion. The amount of variability exhibited by data.
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Distribution free method(s). Any method of inference 

(hypothesis testing or confidence interval construction) 

that does not depend on the form of the underlying dis-

tribution of the observations. Sometimes called non-

parametric method(s).

Distribution function. Another name for a cumulative 

distribution function.

Efficiency. A concept in parameter estimation that uses 

the variances of different estimators; essentially, an 

estimator is more efficient than another estimator if it 

has smaller variance. When estimators are biased, the 

concept requires modification.

Empirical model. A model to relate a response to one 

or more regressors or factors that is developed from 

data obtained from the system.

Enumerative study. A study in which a sample from a 

population is used to make inference to the population. 

See Analytic study.

Erlang random variable. A continuous random vari-

able that is the sum of a fixed number of independent, 

exponential random variables.

a-error (or a-risk). In hypothesis testing, an error 

incurred by failing to reject a null hypothesis when it is 

actually false (also called a type II error).

`-error (or `-risk). In hypothesis testing, an error 

incurred by rejecting a null hypothesis when it is actu-

ally true (also called a type I error).

Error mean square. The error sum of squares divided 

by its number of degrees of freedom.

Error of estimation. The difference between an esti-

mated value and the true value.

Error propagation. An analysis of how the variance of 

the random variable that represents that output of a sys-

tem depends on the variances of the inputs. A formula 

exists when the output is a linear function of the inputs 

and the formula is simplified if the inputs are assumed 

to be independent.

Error sum of squares. In analysis of variance, this is 

the portion of total variability that is due to the random 

component in the data. It is usually based on replication 

of observations at certain treatment combinations in the 

experiment. It is sometimes called the residual sum of 

squares, although this is really a better term to use only 

when the sum of squares is based on the remnants of a 

model-fitting process and not on replication.

Error variance. The variance of an error term or com-

ponent in a model.

Estimate (or point estimate). The numerical value of 

a point estimator.

Estimator (or point estimator). A procedure for pro-

ducing an estimate of a parameter of interest. An esti-

mator is usually a function of only sample data values, 

and when these data values are available, it results in an 

estimate of the parameter of interest.

Event. A subset of a sample space.

Exhaustive. A property of a collection of events that 

indicates that their union equals the sample space.

Expected value. The expected value of a random 

variable X is its long-term average or mean value. 

In the continuous case, the expected value of X is 

E X xf x dx( ) ( )= −∞
∞∫  where f x( ) is the density function 

of the random variable X.

Experiment. A series of tests in which changes are 

made to the system under study.

Exponential random variable. A continuous random 

variable that is the time between events in a Poisson 

process.

Extra sum of squares method. A method used in regres-

sion analysis to conduct a hypothesis test for the addi-

tional contribution of one or more variables to a model.

Factorial experiment. A type of experimental design 

in which every level of one factor is tested in combina-

tion with every level of another factor. In general, in a 

factorial experiment, all possible combinations of fac-

tor levels are tested.

False alarm. A signal from a control chart when no 

assignable causes are present.

F  distribution. The distribution of the random variable 

defined as the ratio of two independent chi-square ran-

dom variables, each divided by its number of degrees 

of freedom.

Finite population correction factor. A term in the 

formula for the variance of a hypergeometric random 

variable.

First-order model. A model that contains only first-

order terms. For example, the first-order response sur-

face model in two variables is y x x= + + +β β β ε0 1 1 2 2 . 

A first-order model is also called a main effects model.

Fisher’s least significant difference (LSD) method. A 

series of pair-wise hypothesis tests of treatment means 

in an experiment to determine which means differ.

Fixed factor (or fixed effect). In analysis of variance, 

a factor or effect is considered fixed if all the levels of 

interest for that factor are included in the experiment. 

Conclusions are then valid about this set of levels only, 

although when the factor is quantitative, it is custom-

ary to fit a model to the data for interpolating between 

these levels.
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Forward selection. A method of variable selection in 

regression, where variables are inserted one at a time 

into the model until no other variables that contribute 

significantly to the model can be found.

Fraction defective control chart. See P  chart.

Fraction defective. In statistical quality control, that 

portion of a number of units or the output of a process 

that is defective.

Fractional factorial experiment. A type of factorial 

experiment in which not all possible treatment combi-

nations are run. This is usually done to reduce the size 

of an experiment with several factors.

Frequency distribution. An arrangement of the fre-

quencies of observations in a sample or population 

according to the values that the observations take on.

F-test. Any test of significance involving the F  dis-

tribution. The most common F-tests are (1) testing 

hypotheses about the variances or standard deviations 

of two independent normal distributions, (2) testing 

hypotheses about treatment means or variance compo-

nents in the analysis of variance, and (3) testing signifi-

cance of regression or tests on subsets of parameters in 

a regression model.

Gamma function. A function used in the probability 

density function of a gamma random variable that can 

be considered to extend factorials.

Gamma random variable. A random variable that 

generalizes an Erlang random variable to noninteger 

values of the parameter r.

Gaussian distribution. Another name for the normal 

distribution, based on the strong connection of Karl F. 

Gauss to the normal distribution; often used in physics 

and electrical engineering applications.

Generating function. A function that is used to deter-

mine properties of the probability distribution of a ran-

dom variable. See Moment-generating function.

Generator. Effects in a fractional factorial experiment 

that are used to construct the experimental tests used in 

the experiment. The generators also define the aliases.

Geometric mean. The geometric mean of a set of n 

positive data values is the nth root of the product of the 

data values; that is, g xi
n

i
n= =( ) /w 1

1 .

Geometric random variable. A discrete random vari-

able that is the number of Bernoulli trials until a suc-

cess occurs.

Goodness of fit. In general, the agreement of a set of 

observed values and a set of theoretical values that 

depend on some hypothesis. The term is often used in 

fitting a theoretical distribution to a set of observations.

Harmonic mean. The harmonic mean of a set of data 

values is the reciprocal of the arithmetic mean of the 

reciprocals of the data values; that is, h
n x

i
n

i

= ⎛
⎝⎜

⎞
⎠⎟=

−
1 1

1

1

g .

Hat matrix. In multiple regression, the matrix 

H X X X X= ( )′ ′-1 . This a projection matrix that maps the 

vector of observed response values into a vector of fitted 

values by ŷ X X X X y Hy= =′( ) ′−1
.

Hidden extrapolation. An extrapolation is a pre-

diction in a regression analysis that is made at point 

( , , , )x x xk1 2 …  that is remote from the data used to gen-

erate the model. Hidden extrapolation occurs when it 

is not obvious that the point is remote. This can occur 

when multicollinearity is present in the data used to 

construct the model.

Histogram. A univariate data display that uses rectan-

gles proportional in area to class frequencies to visually 

exhibit features of data such as location, variability, and 

shape.

Homogeneity test. In a two-way (r by c) contingency 

table, this tests if the proportions in the c categories are 

the same for all r populations.

Hypergeometric random variable. A discrete random 

variable that is the number of success obtained from a 

sample drawn without replacement from a finite popu-

lations.

Hypothesis (as in statistical hypothesis). A statement 

about the parameters of a probability distribution or a 

model, or a statement about the form of a probability 

distribution.

Hypothesis testing. Any procedure used to test a sta-

tistical hypothesis.

Independence. A property of a probability model and 

two (or more) events that allows the probability of the 

intersection to be calculated as the product of the prob-

abilities.

Independence test. In a two-way (r by c) contingency 

table, this tests if the row and column categories are 

independent.

Independent random variables. Random variables for 

which P X A Y B P X A P Y B( , ) ( ) ( )∈ ∈ = ∈ ∈  for any sets 

A and B in the range of X and Y , respectively. There are 

several equivalent descriptions of independent random 

variables.

Independent variable. The predictor or regressor vari-

ables in a regression model.

Inference. Conclusion from a statistical analysis. It 

usually refers to the conclusion from a hypothesis test 

or an interval estimate.
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Indicator variable(s). Variables that are assigned 

numerical values to identify the levels of a qualitative 

or categorical response. For example, a response with 

two categorical levels (yes and no) could be represented 

with an indicator variable taking on the values 0 and 1.

Individuals control chart. A Shewhart control chart in 

which each plotted point is an individual measurement, 

rather than a summary statistic. See Control chart, 

Shewhart control chart.

Influential observation. An observation in a regression 

analysis that has a large effect on estimated parameters 

in the model. Influence is measured by the change in 

parameters when the influential observation is included 

and excluded in the analysis.

Interaction. In factorial experiments, two factors are 

said to interact if the effect of one variable is differ-

ent at different levels of the other variables. In general, 

when variables operate independently of each other, 

they do not exhibit interaction.

Intercept. The constant term in a regression model.

Interquartile range. The difference between the third 

and first quartiles in a sample of data. The interquartile 

range is less sensitive to extreme data values than the 

usual sample range.

Interval estimation. The estimation of a parameter 

by a range of values between lower and upper limits, 

in contrast to point estimation, where the parameter is 

estimated by a single numerical value. A confidence 

interval is a typical interval estimation procedure.

Intrinsically linear model. In regression analysis, 

a nonlinear function that can be expressed as a linear 

function after a suitable transformation is called intrin-

sically linear.

Jacobian. A matrix of partial derivatives that is used 

to determine the distribution of transformed random 

variables.

Joint probability density function. A function used 

to calculate probabilities for two or more continuous 

random variables.

Joint probability distribution. The probability distri-

bution for two or more random variables in a random 

experiment. See Joint probability mass function, Joint 

probability density function.

Joint probability mass function. A function used to 

calculate probabilities for two or more discrete random 

variables.

Kurtosis. A measure of the degree to which a unimodal 

distribution is peaked.

Lack of memory property. A property of a Pois-

son process. The probability of a count in an interval 

depends only on the length of the interval (and not on 

the starting point of the interval). A similar property 

holds for a series of Bernoulli trials. The probability of 

a success in a specified number of trials depends only 

on the number of trials (and not on the starting trial).

Least significance difference test (or Fisher’s LSD 
test). An application of the t-test to compare pairs of 

means following rejection of the null hypothesis in an 

analysis of variance. The error rate is difficult to calculate 

exactly because the comparisons are not all independent.

Least squares (method of). A method of parameter 

estimation in which the parameters of a system are esti-

mated by minimizing the sum of the squares of the dif-

ferences between the observed values and the fitted or 

predicted values from the system.

Least squares estimator. Any estimator obtained by 

the method of least squares.

Level of significance. If Z  is the test statistic for 

a hypothesis, and the distribution of Z  when the 

hypothesis is true are known, then we can find the 

probabilities P Z zL( )≤  and P Z zU( )≥ . Rejection of 

the hypothesis is usually expressed in terms of the 

observed value of Z  falling outside the interval from 

zL to zU . The probabilities P Z zL( )≤  and P Z zU( )≥  

are usually chosen to have small values, such as 

0.01, 0.025, 0.05, or 0.10, and are called levels of 

significance. The actual levels chosen are somewhat 

arbitrary and are often expressed in percentages, 

such as a 5% level of significance.

Levels of a factor. The settings (or conditions) used for 

a factor in an experiment.

Likelihood function. Suppose that the random vari-

ables X X Xn1 2, , ,…  have a joint distribution given by 

f x x xn p( , , , ; , , , )1 2 1 2… θ θ … θ  where the θs are unknown 

parameters. This joint distribution, considered as a func-

tion of the θs for fixed x’s, is called the likelihood function.

Likelihood principle. This principle states that the 

information about a model given by a set of data is 

completely contained in the likelihood.

Likelihood ratio. Let x x xn1 2, , ,…  be a random sample 

from the population f x( ; )θ . The likelihood function 

for this sample is L f xii
n= =∑ ( ; )θ

1  We wish to test the 

hypothesis H0 : θ ω∈ , where ω is a subset of the pos-

sible values Ω for θ. Let the maximum value of L with 

respect to θ over the entire set of values that the param-

eter can take on be denoted by L Ω̂( ), and let the maxi-

mum value of L with θ restricted to the set of values 
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given by ω be L ω̂( ). The null hypothesis is tested by 

using the likelihood ratio λ = ( ) ( )L Lˆ / ˆω Ω , or a simple 

function of it. Large values of the likelihood ratio are 

consistent with the null hypothesis.

Likelihood ratio test. A test of a null hypothesis versus 

an alternative hypothesis using a test statistic derived 

from a likelihood ratio.

Linear function of random variables. A random vari-

able that is defined as a linear function of several ran-

dom variables.

Linear model. A model in which the observations are 

expressed as a linear function of the unknown parameters. 

For example, y x= + +β β ε0 1  and y x x= + + +β β β ε0 1 2
2  

are linear models.

Location parameter. A parameter that defines a cen-

tral value in a sample or a probability distribution. The 

mean and the median are location parameters.

Logistic regression. A regression model that is used 

to model a categorical response. For a binary (0, 1) 

response, the model assumes that the logarithm of 

the ratio of probabilities (for zero and one) is linearly 

related to the regressor variables.

Lognormal random variable. A continuous random 

variable with probability distribution equal to that of 

exp(W ) for a normal random variable W .

Main effect. An estimate of the effect of a factor (or 

variable) that independently expresses the change in 

response due to a change in that factor, regardless of 

other factors that may be present in the system.

Marginal probability density function. The probabil-

ity density function of a continuous random variable 

obtained from the joint probability distribution of two 

or more random variables.

Marginal probability distribution. The probability dis-

tribution of a random variable obtained from the joint 

probability distribution of two or more random variables.

Marginal probability mass function. The probability 

mass function of a discrete random variable obtained 

from the joint probability distribution of two or more 

random variables.

Maximum likelihood estimation. A method of param-

eter estimation that maximizes the likelihood function 

of a sample.

Mean. The mean usually refers either to the expected 

value of a random variable or to the arithmetic average 

of a set of data.

Mean square. In general, a mean square is determined 

by dividing a sum of squares by the number of degrees 

of freedom associated with the sum of squares.

Mean square(d) error. The expected squared deviation 

of an estimator from the true value of the parameter it 

estimates. The mean square error can be decomposed into 

the variance of the estimator plus the square of the bias; 

that is, MSE E V Eˆ ˆ ˆ ˆΘ Θ Θ Θ( ) = −( ) = ( ) + ( ) −⎡
⎣

⎤
⎦θ θ

2 2

.

Mechanistic model. A model developed from theo-

retical knowledge or experience in contrast to a model 

developed from data. See Empirical model.

Median. The median of a set of data is that value that 

divides the data into two equal halves. When the num-

ber of observations is even, say 2n, it is customary to 

define the median as the average of the nth and ( )n +1 st 

rank-ordered values. The median can also be defined 

for a random variable. For example, in the case of a 

continuous random variable X, the median M can be 

defined as ∫ = ∫ =−∞
∞M
Mf x dx f x dx( ) ( ) /1 2.

Method of steepest ascent. A technique that allows 

an experimenter to move efficiently toward a set of 

optimal operating conditions by following the gradi-

ent direction. The method of steepest ascent is usu-

ally employed in conjunction with fitting a first-order 

response surface and deciding that the current region of 

operation is inappropriate.

Mixed model. In an analysis of variance context, a 

mixed model contains both random and fixed factors.

Mode. The mode of a sample is that observed value 

that occurs most frequently. In a probability distribu-

tion f x( ) with continuous first derivative, the mode is a 

value of x for which df x dx( ) / = 0 and d f x dx2 2 0( ) / < .  

There may be more than one mode of either a sample 

or a distribution.

Moment (or population moment). The expected 

value of a function of a random variable such as 

E X c r( )−  for constants c and r . When c = 0, it is said 

that the moment is about the origin. See Moment-

generating function.

Moment estimator. A method of estimating parameters 

by equating sample moments to population moments. 

Since the population moments will be functions of the 

unknown parameters, this results in equations that may 

be solved for estimates of the parameters.

Moment-generating function. A function that is 

used to determine properties (such as moments) of the 

probability distribution of a random variable. It is the 

expected value of exp(tX). See Generating function, 

Moment.

Moving range. The absolute value of the difference 

between successive observations in time-ordered data. 

Used to estimate chance variation in an individual con-

trol chart.
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Multicollinearity. A condition occurring in multiple 

regression where some of the predictor or regressor 

variables are nearly linearly dependent. This condition 

can lead to instability in the estimates of the regression 

model parameters.

Multinomial distribution. The joint probability distri-

bution of the random variables that count the number of 

results in each of k classes in a random experiment with 

a series of independent trials with constant probability 

of each class on each trial. It generalizes a binomial 

distribution.

Multiplication rule. For probability, a formula used to 

determine the probability of the intersection of two (or 

more) events. For counting techniques, a formula used 

to determine the number of ways to complete an opera-

tion from the number of ways to complete successive 

steps.

Mutually exclusive events. A collection of events 

whose intersections are empty.

Natural tolerance limits. A set of symmetric limits 

that are three times the process standard deviation from 

the process mean.

Negative binomial random variable. A discrete ran-

dom variable that is the number of trials until a speci-

fied number of successes occur in Bernoulli trials.

Nonlinear regression model. A regression model that 

is nonlinear in the parameters. It is sometimes applied 

to regression models that are nonlinear in the regressors 

or predictors, but this is an incorrect usage.

Nonparametric statistical method(s). See Distribution 

free method(s).

Normal approximation. A method to approximate 

probabilities for binomial and Poisson random vari-

ables.

Normal equations. The set of simultaneous linear 

equations arrived at in parameter estimation using the 

method of least squares.

Normal probability plot. A specially constructed 

plot for a variable x (usually on the abscissa) in 

which y (usually on the ordinate) is scaled so that 

the graph of the normal cumulative distribution is a 

straight line.

Normal random variable. A continuous random vari-

able that is the most important one in statistics because 

it results from the central limit theorem. See Central 

limit theorem.

NP chart. An attribute control chart that plots the total 

of defective units in a subgroup. Similar to a fraction-

defective chart or P  chart.

Nuisance factor. A factor that probably influences the 

response variable, but which is of no interest in the cur-

rent study. When the levels of the nuisance factor can 

be controlled, blocking is the design technique that is 

customarily used to remove its effect.

Null distribution. In a hypothesis test, the distribu-

tion of the test statistic when the null hypothesized is 

assumed to be true.

Null hypothesis. This term generally relates to a par-

ticular hypothesis that is under test, as distinct from the 

alternative hypothesis (which defines other conditions 

that are feasible but not being tested). The null hypoth-

esis determines the probability of type I error for the 

test procedure.

Observational study. A system is observed and data 

might be collected, but changes are not made to the sys-

tem. See Experiment.

Odds ratio. The odds equals the ratio of two probabili-

ties. In logistic regression, the logarithm of the odds is 

modeled as a linear function of the regressors. Given 

values for the regressors at a point, the odds can be cal-

culated. The odds ratio is the odds at one point divided 

by the odds at another.

One-way model. In an analysis of variance context, 

this involves a single variable or factor with a different 

levels.

Operating characteristic curves (OC curves). A plot 

of the probability of type II error versus some measure 

of the extent to which the null hypothesis is false. Typi-

cally, one OC curve is used to represent each sample 

size of interest.

Optimization experiment. A experiment conducted 

to improve (or optimize) a system or process. It is 

assumed that the important factors are known.

Orthogonal. There are several related meanings, 

including the mathematical sense of perpendicular, two 

variables being said to be orthogonal if they are statisti-

cally independent, or in experimental design where a 

design is orthogonal if it admits statistically indepen-

dent estimates of effects.

Orthogonal design. See Orthogonal.

Outcome. An element of a sample space.

Outlier(s). One or more observations in a sample that are 

so far from the main body of data that they give rise to the 

question that they may be from another population.

Overcontrol. Unnecessary adjustments made to pro-

cesses that increase the deviations from target.

Overfitting. Adding more parameters to a model than 

is necessary.
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P chart. An attribute control chart that plots the pro-

portion of defective units in a subgroup. Also called a 

fraction-defective control chart. Similar to an NP chart.

Parameter estimation. The process of estimating the 

parameters of a population or probability distribution. 

Parameter estimation, along with hypothesis testing, is 

one of the two major techniques of statistical inference.

Parameter. An unknown quantity that may vary over a 

set of values. Parameters occur in probability distribu-

tions and in statistical models, such as regression models.

Pareto chart. A bar chart used to rank the causes of a 

problem.

PCR. A process capability ratio with numerator equal 

to the difference between the product specification 

limits and denominator equal to six times the process 

standard deviation. Said to measure the potential capa-

bility of the process because the process mean is not 

considered. See Process capability, Process capability 

ratio, Process capability study, and PCRk. Sometimes 

denoted as Cp in other references.

PCRk. A process capability ratio with numerator equal 

to the difference between the product target and the 

nearest specification limit and denominator equal to 

three times the process standard deviation. Said to 

measure the actual capability of the process because 

the process mean is considered. See Process capability, 

Process capability ratio, Process capability study, and 

PCR. Sometimes denoted as Cpk in other references.

Percentage point. A particular value of a random vari-

able determined from a probability (expressed as a per-

centage). For example, the upper 5 percentage point of 

the standard normal random variable is z0 05 1 645. .= .

Percentile. The set of values that divide the sample into 

100 equal parts.

Permutation. An ordered sequence of the elements in a 

set used to determine the number of outcomes in events 

and sample spaces.

Point estimator. See Estimator.

Poisson process. A random experiment with events that 

occur in an interval and satisfy the following assump-

tions. The interval can be partitioned into subintervals 

such that the probability of more than one event in a 

subinterval is zero, the probability of an event in a sub-

interval is proportional to the length of the subinter-

val, and the event in each subinterval is independent of 

other subintervals.

Poisson random variable. A discrete random variable 

that is the number of events that occur in a Poisson 

process.

Pooled t-test. A hypothesis to compare the means of 

two populations with the variances assumed to be equal.

Pooling. When several sets of data can be thought of as 

having been generated from the same model, it is pos-

sible to combine them, usually for purposes of estimat-

ing one or more parameters. Combining the samples 

for this purpose is usually called pooling and it is com-

monly used to estimate a variance.

Population standard deviation. See Standard deviation.

Population variance. See Variance.

Population. Any finite or infinite collection of individ-

ual units or objects.

Posterior distribution. The probability distribution for 

a parameter in a Bayesian analysis calculated from the 

prior distribution and the conditional distribution of the 

data given the parameter.

Power. The power of a statistical test is the probability 

that the test rejects the null hypothesis when the null 

hypothesis is indeed false. Thus, the power is equal to 

one minus the probability of type II error.

Prediction. The process of determining the value of 

one or more statistical quantities at some future point 

in time. In a regression model, predicting the response 

y for some specified set of regressors or predictor vari-

ables also leads to a predicted value, although there 

may be no temporal element to the problem.

Prediction interval. The interval between a set of 

upper and lower limits associated with a predicted 

value designed to show on a probability basis the range 

of error associated with the prediction.

Predictor variable(s). The independent or regressor 

variable(s) in a regression model.

PRESS statistic. In regression analysis, the predicted 

residual sum of squares. Delete each point and estimate 

the parameters of the model from the data that remain. 

Estimate the deleted point from this model. Restore the 

point and then delete the next point. Each point is esti-

mated once and the sum of squares of these errors is 

calculated.

Prior distribution. The initial probability distribution 

assumed for a parameter in a Bayesian analysis.

Probability. A numerical measure between 0 and 1 

assigned to events in a sample space. Higher numbers 

indicate the event is more likely to occur. See Axioms 

of probability.

Probability density function. A function used to cal-

culate probabilities and to specify the probability distri-

bution of a continuous random variable.
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Probability distribution. For a sample space, a 

description of the set of possible outcomes along with 

a method to determine probabilities. For a random vari-

able, a probability distribution is a description of the 

range along with a method to determine probabilities.

Probability mass function. A function that provides 

probabilities for the values in the range of a discrete 

random variable.

Probability plot. A scatter plot used to judge if data 

can reasonably be assumed to follow a particular prob-

ability distribution. A normal probability plot is often 

used to evaluate the normality assumption of data or 

residuals.

Process capability. The capability of a process to pro-

duce product within specification limits. See Process 

capability ratio, Process capability study, PCR, and 

PCRk.

Process capability ratio. A ratio that relates the width 

of the product specification limits to measures of pro-

cess performance. Used to quantify the capability of 

the process to produce product within specifications. 

See Process capability, Process capability study, PCR,  

and PCRk.

Process capability study. A study that collects data 

to estimate process capability. See Process capability, 

Process capability ratio, PCR, and PCRk.

P-Value. The exact significance level of a statistical 

test; that is, the probability of obtaining a value of the 

test statistic that is at least as extreme as that observed 

when the null hypothesis is true.

Qualitative (data). Data derived from nonnumeric 

attributes, such as sex, ethnic origin or nationality, or 

other classification variables.

Quality control. Systems and procedures used by an 

organization to assure that the outputs from processes 

satisfy customers.

Quantiles. The set of n − 1 values of a variable that 

partition it into a number n of equal proportions. For 

example, n − =1 3 values partition data into four quan-

tiles, with the central value usually called the median 

and the lower and upper values usually called the lower 

and upper quartiles, respectively.

Quantitative (data). Data in the form of numerical 

measurements or counts.

Quartiles. The three values of a variable that partition 

it into four equal parts. The central value is usually 

called the median and the lower and upper values are 

usually called the lower and upper quartiles, respec-

tively. See Quantiles.

R2. A quantity used in regression models to measure the 

proportion of total variability in the response accounted for 

by the model. Computationally, R SS SS2 = Regression Total/ , 

and large values of R2 (near unity) are considered good. 

However, it is possible to have large values of R2 and 

find that the model is unsatisfactory. R2 is also called the 

coefficient of determination (or the coefficient of mul-

tiple determination in multiple regression).

R chart. A control chart that plots the range of the 

measurements in a subgroup that is used to monitor the 

variance of the process.

Random. Nondeterministic, occurring purely by chance, 

or independent of the occurrence of other events.

Random effects model. In an analysis of variance con-

text, this refers to a model that involves only random 

factors.

Random error. An error (usually a term in a statistical 

model) that behaves as if it were drawn at random from 

a particular probability distribution.

Random experiment. An experiment that can result 

in different outcomes, even though it is repeated in the 

same manner each time.

Random factor. In analysis of variance, a factor whose 

levels are chosen at random from some population of 

factor levels.

Random order. A sequence or order for a set of objects 

that is carried out in such a way that every possible 

ordering is equally likely. In experimental design, the 

runs of the experiment are typically arranged and car-

ried out in random order.

Random sample. A sample is said to be random if it is 

selected in such a way that every possible sample has 

the same probability of being selected.

Random variable. A function that assigns a real num-

ber to each outcome in the sample space of a random 

experiment.

Randomization. Randomly assign treatments to exper-

imental units or conditions in an experiment. This is 

done to reduce the opportunity for a treatment to be 

favored or disfavored (biased) by test conditions.

Randomized complete block design. A type of exper-

imental design in which treatment or factor levels are 

assigned to blocks in a random manner.

Range. The largest minus the smallest of a set of data 

values. The range is a simple measure of variability and 

is widely used in quality control.

Range (control) chart. A control chart used to monitor 

the variability (dispersion) in a process. See Control chart.
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Rank. In the context of data, the rank of a single obser-

vation is its ordinal number when all data values are 

ordered according to some criterion, such as their mag-

nitude.

Rational subgroup. A sample of data selected in a man-

ner to include chance sources of variation and to exclude 

assignable sources of variation to the extent possible.

Reference distribution. The distribution of a test sta-

tistic when the null hypothesis is true. Sometimes a ref-

erence distribution is called the null distribution of the 

test statistic.

Reference value. A parameter set in a tabular CUSUM 

algorithm that is determined from the magnitude of the 

process shift that should be detected.

Regression. The statistical methods used to investigate 

the relationship between a dependent or response vari-

able y and one or more independent variables x. The 

independent variables are usually called regressor vari-

ables or predictor variables.

Regression coefficient(s). The parameter(s) in a regres-

sion model.

Regression diagnostics. Techniques for examining 

a fitted regression model to investigate the adequacy 

of the fit and to determine if any of the underlying 

assumptions have been violated.

Regression line (or curve). A graphical display of a 

regression model, usually with the response y on the 

ordinate and the regressor x on the abscissa.

Regression sum of squares. The portion of the total 

sum of squares attributable to the model that has been 

fit to the data.

Regressor variable. The independent or predictor vari-

able in a regression model.

Rejection region. In hypothesis testing, this is the 

region in the sample space of the test statistic that leads 

to rejection of the null hypothesis when the test statistic 

falls in this region.

Relative frequency. The relative frequency of an event 

is the proportion of times the event occurred in a series 

of trials of a random experiment.

Reliability. The probability that a specified mission 

will be completed. It usually refers to the probability 

that a lifetime of a continuous random variable exceeds 

a specified time limit.

Replicates. One of the independent repetitions of one 

or more treatment combinations in an experiment.

Replication. The independent execution of an experi-

ment more than once.

Reproductive property of the normal distribution. 
A linear combination of independent, normal random 

variables is a normal random variable.

Residual. Generally this is the difference between the 

observed and the predicted value of some variable. For 

example, in regression a residual is the difference between 

the observed value of the response and the corresponding 

predicted value obtained from the regression model.

Residual analysis (and plots). Any technique that uses 

the residuals, usually to investigate the adequacy of the 

model that was used to generate the residuals.

Residual sum of squares. See Error sum of squares.

Resolution. A measure of severity of aliasing in a frac-

tional factorial design. We commonly consider resolu-

tion III, IV, and V designs.

Response (variable). The dependent variable in a 

regression model or the observed output variable in a 

designed experiment.

Response surface. When a response y depends on a 

function of k quantitative variables x x xk1 2, , ,… , the 

values of the response may be viewed as a surface in 

k + 1 dimensions. This surface is called a response 

surface. Response surface methodology is a subset of 

experimental design concerned with approximating 

this surface with a model and using the resulting model 

to optimize the system or process.

Response surface designs. Experimental designs that 

have been developed to work well in fitting response 

surfaces. These are usually designs for fitting a first- or 

second-order model. The central composite design is a 

widely used second-order response surface design.

Ridge regression. A method for fitting a regression 

model that is intended to overcome the problems associ-

ated with using standard (or ordinary) least squares when 

there is a problem with multicollinearity in the data.

Rotatable design. In a rotatable design, the variance of 

the predicted response is the same at all points that are 

the same distance from the center of the design.

Run rules. A set of rules applied to the points plotted 

on a Shewhart control chart that are used to make the 

chart more sensitized to assignable causes. See Control 

chart, Shewhart control chart.

Runs test. A nonparametric test to compare two distri-

butions or check for independence of measurements.

S chart. A control chart that plots the standard devia-

tion of the measurements in a subgroup that is used to 

monitor the variance of the process.

Sample. Any subset of the elements of a population.
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Sample mean. The arithmetic average or mean of 

the observations in a sample. If the observations are 

x x xn1 2, , ,… , then the sample mean is ( / )1
1

n xii
n
=∑ . 

The sample mean is usually denoted by x .

Sample moment. The quantity ( )1
1

/ n xii
n k
=∑  is called 

the kth sample moment.

Sample range. See Range.

Sample size. The number of observations in a sample.

Sample space. The set of all possible outcomes of a 

random experiment.

Sample standard deviation. The positive square root 

of the sample variance. The sample standard deviation 

is the most widely used measure of variability of sam-

ple data.

Sample variance. A measure of variability of sample 

data, defined as s n x xi
n

i
2

1

21 1= − −=∑[ )] ( )/ ( , where x  

is the sample mean.

Sampling distribution. The probability distribution of 

a statistic. For example, the sampling distribution of the 

sample mean X is the normal distribution.

Scatter diagram. A diagram displaying observations 

on two variables, x and y. Each observation is repre-

sented by a point showing its x y-  coordinates. The scat-

ter diagram can be very effective in revealing the joint 

variability of x and y or the nature of the relationship 

between them.

Screening experiment. An experiment designed and 

conducted for the purpose of screening out or isolat-

ing a promising set of factors for future experimen-

tation. Many screening experiments are fractional 

factorials, such as two-level fractional factorial 

designs.

Second-order model. A model that contains second-

order terms. For example, the second-order response 

surface model in two variables is y x x= + + +β β β0 1 1 2 2

β β β ε12 1 2 11 1
2

22 2
2x x x x+ + + . The second order terms in 

this model are β12 1 2x x , β11 1
2x , and β22 2

2x .

Shewhart control chart. A specific type of control 

chart developed by Walter A. Shewhart. Typically, each 

plotted point is a summary statistic calculated from the 

data in a rational subgroup. See Control chart.

Sign test. A statistical test based on the signs of certain 

functions of the observations and not their magnitudes.

Signed-rank test. A statistical test based on the differ-

ences within a set of paired observations. Each differ-

ence has a sign and a rank, and the test uses the sum of 

the differences with regard to sign.

Significance. In hypothesis testing, an effect is said to 

be significant if the value of the test statistic lies in the 

critical region.

Significance level. See Level of significance.

Six-sigma process. Originally used to describe a pro-

cess with the mean at least six standard deviations from 

the nearest specification limits. It has now been used to 

describe any process with a defect rate of 3.4 parts per 

million.

Skewness. A term for asymmetry usually employed 

with respect to a histogram of data or a probability dis-

tribution.

Specification limits. Numbers that define the region of 

measurement for acceptable product. Usually there is 

an upper and lower limit, but one-sided limits can also 

be used.

Standard deviation. The positive square root of the 

variance. The standard deviation is the most widely 

used measure of variability.

Standard error. The standard deviation of the esti-

mator of a parameter. The standard error is also the 

standard deviation of the sampling distribution of the 

estimator of a parameter.

Standard normal random variable. A normal ran-

dom variable with mean zero and variance one that has 

its cumulative distribution function tabulated in Appen-

dix Table II.

Standardize. The transformation of a normal random 

variable that subtracts its mean and divides by its standard 

deviation to generate a standard normal random variable.

Standardized residual. In regression, the standardized 

residual is computed by dividing the ordinary residual 

by the square root of the residual mean square. This 

produces scaled residuals that have, approximately, a 

unit variance.

Statistic. A summary value calculated from a sample 

of observations. Usually, a statistic is an estimator of 

some population parameter.

Statistical inference. See Inference.

Statistical Process Control (SPC). A set of problem-

solving tools based on data that are used to improve a 

process.

Statistical quality control. Statistical and engineer-

ing methods used to measure, monitor, control, and 

improve quality.

Statistics. The science of collecting, analyzing, inter-

preting, and drawing conclusions from data.
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Steepest ascent (or descent). A strategy for a series of 

tests to optimize a response used along with response 

surface models.

Stem-and-leaf diagram. A method of displaying data 

in which the stem corresponds to a range of data values 

and the leaf represents the next digit. It is an alternative 

to the histogram but displays the individual observa-

tions rather than sorting them into bins.

Stepwise regression. A method of selecting variables 

for inclusion in a regression model. It operates by 

introducing the candidate variables one at a time (as in 

forward selection) and then attempting to remove vari-

ables following each forward step.

Studentized range. The range of a sample divided by 

the sample standard deviation.

Studentized residual. In regression, the studentized 

residual is calculated by dividing the ordinary residual 

by its exact standard deviation, producing a set of scaled 

residuals that have, exactly, unit standard deviation.

Sufficient statistic. An estimator is said to be a suffi-

cient statistic for an unknown parameter if the distribu-

tion of the sample given the statistic does not depend on 

the unknown parameter. This means that the distribu-

tion of the estimator contains all of the useful informa-

tion about the unknown parameter.

Tabular CUSUM. A numerical algorithm used to 

detect assignable causes on a cumulative sum control 

chart. See V  mask.

Tampering. Another name for overcontrol.

t Distribution. The distribution of the random vari-

able defined as the ratio of two independent random 

variables. The numerator is a standard normal random 

variable and the denominator is the square root of a 

chi-square random variable divided by its number of 

degrees of freedom.

Test statistic. A function of a sample of observations 

that provides the basis for testing a statistical hypothesis.

Time series. A set of ordered observations taken at 

points in time.

Tolerance interval. An interval that contains a speci-

fied proportion of a population with a stated level of 

confidence.

Tolerance limits. A set of limits between which some 

stated proportion of the values of a population must fall 

with a specified level of confidence.

Total probability rule. Given a collection of mutually 

exclusive events whose union is the sample space, the 

probability of an event can be written as the sum of the 

probabilities of the intersections of the event with the 

members of this collection.

Treatment. In experimental design, a treatment is a 

specific level of a factor of interest. Thus, if the factor is 

temperature, the treatments are the specific temperature 

levels used in the experiment.

Treatment effect. The mean change to the response 

due to the presence of the treatment.

Treatment sum of squares. In analysis of variance, 

this is the sum of squares that accounts for the variabil-

ity in the response variable due to the different treat-

ments that have been applied.

t-test. Any test of significance based on the t distribu-

tion. The most common t-tests are (1) testing hypotheses 

about the mean of a normal distribution with unknown 

variance, (2) testing hypotheses about the means of two 

normal distributions, and (3) testing hypotheses about 

individual regression coefficients.

Two-level factorial experiment. A full or fractional 

factorial experiment with all factors tested at only two 

levels (settings) each. See 2k factorial experiment.

Type I error. In hypothesis testing, an error incurred 

by rejecting a null hypothesis when it is actually true 

(also called an α-error).

Type II error. In hypothesis testing, an error incurred 

by failing to reject a null hypothesis when it is actually 

false (also called a β-error).

U chart. An attribute control chart that plots the aver-

age number of defects per unit in a subgroup. Also 

called a defects-per-unit control chart. Similar to a C  

chart.

Unbiased estimator. An estimator that has its expected 

value equal to the parameter that is being estimated is 

said to be unbiased.

Uniform random variable. Refers to either a discrete 

or continuous uniform random variable.

Uniqueness property of moment-generating function. 
Refers to the fact that random variables with the same 

moment-generating function have the same distribution.

Universe. Another name for population.

V  mask. A geometrical figure used to detect assignable 

causes on a cumulative sum control chart. With appro-

priate values for parameters, identical conclusions can 

be made from a V  mask and a tabular CUSUM.

Variable selection. The problem of selecting a sub-

set of variables for a model from a candidate list that 

contains all or most of the useful information about the 

response in the data.
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Variables control chart. Any control chart for a con-

tinuous random variable. See Attribute control chart.

Variance. A measure of variability defined as the 

expected value of the square of the random variable 

around its mean.

Variance component. In analysis of variance models 

involving random effects, one of the objectives is to 

determine how much variability can be associated with 

each of the potential sources of variability defined by 

the experimenters. It is customary to define a variance 

associated with each of these sources. These variances 

in some sense sum to the total variance of the response, 

and are usually called variance components.

Variance inflation factors. Quantities used in mul-

tiple regression to assess the extent of multicollinear-

ity (or near linear dependence) in the regressors. The 

variance inflation factor for the ith regressor VIFi can 

be defined as VIF Ri i= −[ / ( )]1 1 2 , where Ri
2 is the coef-

ficient of determination obtained when xi is regressed 

on the other regressor variables. Thus, when xi is nearly 

linearly dependent on a subset of the other regressors, 

Ri
2 will be close to unity and the value of the corre-

sponding variance inflation factor will be large. Values 

of the variance inflation factors that exceed 10 are usu-

ally taken as a signal that multicollinearity is present.

Warning limits. Horizontal lines added to a con-

trol chart (in addition to the control limits) that are 

used to make the chart more sensitive to assignable 

causes.

Weibull random variable. A continuous random vari-

able that is often used to model the time until failure of 

a physical system. The parameters of the distribution 

are flexible enough that the probability density function 

can assume many different shapes.

Western Electric rules. A specific set of run rules that 

were developed at Western Electric Corporation. See 

Run rules.

Wilcoxon rank-sum test. A nonparametric test for the 

equality of means in two populations. This is some-

times called the Mann-Whitney test.

Wilcoxon signed-rank test. A distribution-free test of 

the equality of the location parameters of two otherwise 

identical distributions. It is an alternative to the two-

sample t-test for nonnormal populations.

With replacement. A method to select samples in 

which items are replaced between successive selec-

tions.

Without replacement. A method to select samples 

in which items are not replaced between successive 

selections.

X  chart. A control chart that plots the average of the 

measurements in a subgroup that is used to monitor the 

process mean.

glossary.indd   801 9/24/2013   7:31:01 PM



glossary.indd   802 9/24/2013   7:31:01 PM



803

Index

22 factorial design, 594

23 factorial design example, 603

23 factorial design, 601

2k – 1 fractional factorial design, 626

2k – p fractional factorial designs, 632

2k factorial designs, 594

A

Abuses of regression, 431

Actual process capability, 691

Addition rules of probabilities, 35

Adjusted R2 statistic, 499

Agresti-Coull confidence interval on a binomial proportion, 294

Aliases in a fractional factorial design, 628

All possible regressions, 523

Alternate fraction, 628

Alternative hypothesis, 307

Analysis of a second-order response surface, 647

Analysis of variance (ANOVA), 539, 542, 544, 545

Analysis of variance for factorials, 583

Analysis of variance method of estimating variance compo-

nents, 560

Analysis of variance tests in linear regression, 443, 497

ANOVA with unequal sample sizes, 548

Approximating the P-value, 333

Assignable causes of variability, 667

Assumptions in simple linear regression, 452

Attributes control chart, 669, 695, 697

Average run length, 701, 708

Axioms of probability, 33

B

Backward elimination of predictors in linear regression, 527

Bayes’ theorem, 54

Bayesian estimation of parameters, 264

Bernoulli trials, 80

Beta distribution, 148

Bias of an estimator, 249

Binomial distribution, 80, 81

Binomial expansion, 82

Bins in a histogram, 213

Bivariate normal distribution, 181

Blocking in a 2k design, 619

Blocking in a designed experiment, 562, 563, 566

Bootstrap confidence intervals, 296

Bootstrap sample, 253

Bootstrap standard error, 252

Box plots, 217

C

C chart, 698

Categorical variables as predictors in linear regression, 520

Cause-and-effect, 6, 431

Cause-and-effect diagram, 716

Census, 4

Center line on a control chart, 9, 667

Center points in a 2k design, 611, 631

Central composite design, 647, 649

Central limit theorem, 243

Chance causes of variability, 666

Chi-square goodness-of-fit-test, 350

Chi-square(d) distribution, 142, 287

Choice of sample size for a confidence interval on a mean, 276

Coefficient of determination; see R2
Combinations, 25

Combining P-values, 367

Comparative experiment, 6, 306, 374

Complement of an event, 21

Completely randomized design, 375, 541

Conditional probability distribution, 161, 169, 182

Conditional probability, 40, 42, 54

Confidence coefficient, 273

Confidence interval, 272, 274

Confidence interval on a proportion, 291, 294

Confidence interval on the difference in two proportions, 417

Confidence interval on the mean response in multiple linear 

regression, 507

Confidence interval on the mean response in simple linear 

regression, 448

Confidence interval on the variance and standard deviation 

of a normal distribution, 287

Confidence interval on treatment means in ANOVA, 547, 

548

Confidence intervals on individual regression coefficients, 506

Confidence intervals on means, 273, 279, 282, 284, 379, 

390, 392

Confidence intervals on the ratio of variances of two normal 

distributions, 407

Confidence intervals on the slope and intercept in simple 

linear regression, 447

Confounding, 619

Connection between hypothesis tests and confidence inter-

vals, 316

Contingency table, 354, 356

Continuous probability distribution, 108

Continuous random variable, 58, 107, 110

Continuous sample space, 18
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Continuous uniform distribution, 116

Contour plot, 577

Contrasts, 595

Control chart for defects per unit (U chart), 697

Control chart for proportions (P chart), 695, 696

Control chart performance, 700

Control charts for X
–
, R and S, 674, 675, 676

Control charts for individual measurements, 684

Control charts, 9, 667, 669, 674

Control limits, 9, 667

Cook’s distance, 514

Correlation, 176, 182

Correlation and regression, 457

Correlation coefficient, 458

Counting techniques, 22, 23, 24

Covariance, 174, 175, 182

Covariance matrix, 488

Cp statistic in regression, 523

Critical region, 308

Critical values of a test statistic, 308

Cumulative binomial probabilities, 83

Cumulative distribution function, 71, 112

Cumulative frequency plot, 215

Cumulative sum control charts, 703, 705

Cumulative Weibull distribution, 143

Cycles in data, 219

D

Data versus information, 5

Decision interval on a CUSUM, 706

Decision theory, 717

Defining contrast, 620

Degree of belief interpretation of probability, 30

Degrees of freedom, 204, 283, 287

Deming, W. Edwards, 8, 664, 721

Deming’s 14 points, 721

Deming’s bead experiment, 664

DeMorgan’s laws, 22

Descriptive statistics, 199

Design generator, 627

Design matrix, 600

Design of a control chart, 670

Design resolution, 621

Designed experiment, 6, 431, 539, 575, 576, 591, 626, 632, 643

Digidot plot, 220

Discrete probability distribution; see probability mass function

Discrete random variable, 58, 65, 66, 74

Discrete sample space, 18, 30

Discrete uniform distribution, 78

Dot diagram, 3

Dummy variables, 520

E

Empirical model, 11, 12, 428, 429

Engineering method, 2

Engineering sciences, 2

Equivalence testing, 365

Erlang distribution, 139

Error propagation, 285

Estimated standard error, 252

Estimating variance components, 560

Estimating σ2 in regression, 435, 487

Events, 16, 20

Expected cost decision criterion, 719

Expected mean squares in a random effects model, 559

Expected value of a function of a continuous random variable, 

115

Expected value of a function of a discrete random variable, 76

Expected value of a function of two random variables, 174

Expected values of mean squares in a factorial, 584

Expected values of sums of squares in ANOVA, 544

Experimentation, 2

Exponential distribution, 133

Exponentially weighted moving average (EWMA) control 

chart, 709

Extra sum of squares method, 501

Extrapolation in regression, 509

F

Factor, 5, 6, 539

Factor levels, 5, 539

Factorial experiment, 6, 576, 578, 582, 591, 594, 600, 611

False alarms on control charts, 686, 701

F-distribution, 407

First-order model, 643

Fisher’s LSD method, 549

Fixed factors in an experiment, 543, 582

Fixed significance level test, 314

Forward selection of predictors in linear regression, 527

Fraction defective control chart; see control chart for proportions

Fractional factorial experiment, 7, 626

Frequency distribution, 213

F-test, ANOVA, 545

Full model, 502

G

Gamma distribution, 139, 140

Gamma function, 140

Gauss, Karl, 12, 431

General factorial experiments, 591

General function of a continuous random variable, 189

General function of a discrete random variable, 189

General functions of random variables, 188

General method for deriving a confidence interval, 277

Generalized interaction, 622

Geometric distribution, 86, 87

Graphical comparison of means following ANOVA, 550

H

Hat matrix in regression, 513

Hidden extrapolation in regression, 509

Histogram, 213
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Hypergeometric distribution, 93

Hypothesis, 6, 305

Hypothesis testing, 6, 305, 307, 312, 316, 318, 322, 329, 331, 

340, 344, 346

Hypothesis tests in linear regression, 441, 443, 497

Hypothesis tests on a proportion, 344, 346

Hypothesis tests on the difference in means of two normal 

distributions, 376, 383

Hypothesis tests on the mean of a normal distribution, 322, 

329, 331

Hypothesis tests on the ratio of variances of two normal 

distributions, 407

Hypothesis tests on the variance and standard deviation of a 

normal distribution, 340

I

Importance of blocking, 566

Independence, 49, 50, 51, 165, 182

Independent random variables, 166

Indicator variables, 520

Influential observations in regression, 514

Interaction of factors, 579, 581

Interaction terms in a regression model, 479

Interpreting a confidence interval, 274

Interquartile range, 210

Intersection of events, 21

Intrinsically linear model, 463

J

Joint probability distribution, 156, 157, 158, 167, 179, 181

L

Lack of memory property of the exponential distribution, 

135

Lack of memory property of the geometric distribution, 88

Large-sample confidence interval on a mean, 279

Large-sample test on the difference in two proportions, 414

Large-sample tests on means, 329

Large-sample tests on proportions, 344

Least squares normal equations, 432, 481, 484

Least squares, 12, 452, 481

Likelihood function, 258

Linear function of random variables, 184

Location or central tendency of data, 3

Logistic regression model, 467

Logit response function, 468

Lognormal distribution, 146

M

Main effect of a factor, 579

Marginal probability distribution, 159, 168, 182

Matrix of scatter diagrams, 226, 525

Mean and variance of a continuous random variable, 114

Mean and variance of a discrete uniform distribution, 78

Mean and variance of an average, 186

Mean and variance of the beta distribution, 149

Mean and variance of the binomial distribution, 84

Mean and variance of the continuous uniform distribution, 

117

Mean and variance of the exponential distribution, 134

Mean and variance of the gamma distribution, 141

Mean and variance of the geometric distribution, 88

Mean and variance of the hypergeometric distribution, 95

Mean and variance of the lognormal distribution, 146

Mean and variance of the negative binomial distribution, 90

Mean and variance of the normal distribution, 119

Mean and variance of the Poisson distribution, 101

Mean and variance of the Weibull distribution, 143

Mean of a discrete random variable, 74

Mean of a linear function of random variables, 185

Mean squared error of an estimator, 254

Mean squares, 545

Mechanistic model, 11

Median, 209

Method of least squares, 431, 440, 481

Method of maximum likelihood, 258, 262, 469

Method of moments, 256

Method of steepest ascent, 644

Minimax decision criterion, 718

Minimin decision criterion, 718 

Minimum variance unbiased estimator, 251

Model adequacy checking in ANOVA, 551, 568, 587

Model adequacy checking in regression, 452, 511

Model matrix in regression, 484

Moment generating functions, 191

Moments, 257

Most probable decision criterion, 719

Moving range, 684

Multicollinearity, 529

Multinomial distribution, 179

Multiple comparisons following ANOVA, 549, 550

Multiple comparisons in a randomized complete block 

design, 567

Multiple linear regression model, 478

Multiplication rule (counting technique), 23

Multiplication rule for probabilities, 45

Multivariate data, 216, 225

Mutually exclusive events, 22, 38

N

Natural tolerance limits of a process, 789

Negative binomial distribution, 89

Nonparametric tests, 357, 368, 362, 396

Normal approximation to the binomial distribution, 128, 129

Normal approximation to the Poisson distribution, 128, 130

Normal distribution, 119

Normal probability plot, 231, 551

Normal probability plot of effects in a 2k design, 608, 630

Normality and the t-test, 334

Nuisance factor and blocking, 563

Null hypothesis, 307
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O

Observational study, 5

Odds ratio, 469

Ohm’s law as a mechanistic model, 11

One observation per cell in a factorial experiment; unrepli-

cated design, 588, 607

One-factor-at-a-time (OFAT) experiments, 581

One-half fraction, 7, 626

One-sided alternative hypothesis, 307, 313

Operating characteristic curves, 327

Optimization experiment, 577

Ordered stem-and-leaf diagram, 209

Orthogonal X matrix in regression, 529

Outliers, 5, 217

Overcontrol of a process, 9

P

Paired t-test, 400, 402

Parameter estimation, 239, 249

Pareto chart, 215, 716

Partial F-test, 502

Partial regression coefficients, 489

Patterns on control charts, 672

Pearson correlation coefficient, 227

Percentile, 209

Permutations, 23

Permutations of similar objects, 24

Permutations of subsets, 23

Point estimate of a parameter, 239, 240, 241

Point estimator, 241

Poisson distribution, 98, 99

Polynomial regression model, 479, 517

Pooled estimator of variance, 383

Pooled t-test, 383

Population, 4

Posterior distribution, 265

Potential process capability 691

Power of a statistical test, 313

Prediction interval, 273, 297, 449

Prediction interval on future observations in simple linear 

regression, 449

PRESS statistic in regression, 523

Principal block, 621

Principal fraction, 628

Prior distribution, 265

Probability density function, 108

Probability distribution, 67, 107

Probability mass function, 67, 68

Probability model, 13

Probability of a union, 36

Probability plots, 230

Probability, 13, 15, 30, 32, 35, 40

Process capability, 669, 689

Process capability ratio PCRk, 691

Process capability ratio, PCR, 689

Process characterization experiment, 576

Process design experiment, 578

Process improvement, 10

Process monitoring, control, 10

Projection of fractional factorials, 621

Properties of maximum likelihood estimators, 262

Properties of moment generating functions, 193

Properties of the least squares estimators in linear regression, 

440, 488

P-values, 314, 315, 316, 333, 367

Q

Quality improvement, 664

Quality of conformance, 664

Quality of design, 664

Quartiles, 209

R

R2 in regression models, 454, 455, 499

Random experiment, 16

Random factors in an experiment, 543, 558

Random sample, 42, 242

Random samples and conditional probability 42

Random variable, 57

Randomization, 6, 539

Randomized complete block design, 562, 564

Rational subgroups and control charts, 671

Reduced model, 502

Reference distribution, 323, 332

Reference value on a CUSUM, 706

Regression analysis, 428, 430

Regression model building, 522, 529

Regression model for a factorial experiment, 597, 606

Regression model, 11, 428, 429, 478

Relative efficiency of estimators, 254

Relative frequency interpretation of probability, 30

Reproductive property of the normal distribution, 186

Residual analysis, 453, 511, 551

Residual plots in a 22 factorial design, 599

Residual plots, 453

Residuals, 432, 453

Residuals in a 22 factorial design, 599

Response surface methodology, 643

Response surface plot, 580

Retrospective study, 5

Ridge regression, 530

Rotatable central composite design, 650

Runs rules on control charts, 674

S

Sample, 4

Sample correlation coefficient, 459

Sample mean, 200

Sample range, 204

Sample size for a confidence interval on a binomial propor-

tion, 293

Sample size in hypothesis testing on means, 325, 336
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Sample size in hypothesis testing on proportions, 347

Sample size in single-factor experiments, 552

Sample spaces, 16, 17

Sample variance and standard deviation, 201

Sampling distribution of the mean, 242

Sampling distribution, 240, 242

Sampling with replacement, 49

Sampling without replacement, 25, 72, 93

Saturated fractional factorial, 639

Scatter diagrams, 225, 428

Scatter in data, 3

Science of data, 3

Scientific method, 2

Screening experiment, 540, 577

Second-order model, 64

Sequential experimentation, 644

Shewhart control chart, 668, 674, 684

Sign test, 358, 361

Significance level of a statistical test, 309

Simple linear regression model, 429

Single-factor experiment, 541

Single replicate of a 2k design, 607

Six-sigma process, 692

Size of a test, see significance level

Small-sample tests on a proportion, 346

Sources of variability, 3

SPC problem-solving tools, 715

Standard error of a point estimator, 251

Standard normal random variable, 120

Standardized residuals, 512

Standardizing a normal random variable, 122

Statistic, 240

Statistical inference, 4

Statistical intervals, 271

Statistical process control (SPC), 10, 666, 715, 720

Statistical quality control, 665

Statistical significance versus practical significance, 319

Statistics, 1, 3

Stem-and-leaf diagram, 206

Stepwise regression, 526

Strong versus weak conclusions in hypothesis testing, 312

Studentized residuals, 513

T

Tabular CUSUM, 705

Tampering, 9

t-distribution, 283

Testing for curvature in a 2k design, 611

Testing homogeneity in a contingency table, 356

Testing independence in a contingency table, 355

Testing significance of regression, 442, 444, 497

Tests for goodness of fit, 350

Tests on individual means in a factorial experiment 587

Tests on subsets of parameters in linear regression, 501

Three-factor factorial experiment, 591

Time series, 219

Time series plots, 8, 219

Tolerance interval, 272, 298

Total probability rule, 46

Transformations, 453, 463

Transformations to correct model inadequacy, 453

Tree diagrams, 19

Trends, 219

t-tests, 332, 334, 384, 386

t-tests in linear regression, 441, 500

Two-factor factorial experiments, 582, 588

Two-sample t-test, 386

Two-sided alternative hypothesis, 307, 313

Type I error, 308

Type II error, 308

U

Unbalanced experiments, 548

Unbiased estimators, 249

Union of events, 21, 36

V

Variability, 3

Variables control chart, 669, 674

Variance components, 559

Variance components, 559

Variance inflation factors, 529

Variance of a discrete random variable, 74

Variance of a linear function of random variables, 185

Variance of a point estimator, 251

W

Warning limits on control charts, 674

Weibull distribution, 143

Wilcoxon rank-sum test, 396

Wilcoxon signed-rank test, 362

X

X matrix in regression, 484

X X matrix in regression 484

Z

z-test, 323, 376
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Applications in Examples and Exercises, continued

Bolts in bearing cap and plate Exercises 2-177, 3-170, 5-77

Brake contact resistance Exercises 13-45

Casing for a gear housing Example 2-9

Cast aluminum parts Exercise 2-27

Circular tubes yield strength Exercise 6-10

Cold start ignition time Exercises 6-53, 6-64, 6-98

Connector pull-off force Exercises 6-67, 7-28, 9-4, 9-131

Copper plate warping Exercises 14-6, 14-9

Cycles to failure Exercises 6-23, 6-27, 6-39, 

6-43, 6-79

Deflection temperature for plastic pipe Exercise 10-18

Dot diameter Exercises 4-70, 4-174

Drag coefficient Exercises 6-18, 6-56, 6-105

Electromechanical product Exercise 2-44

F-117A mission duration Exercise 6-13

Fatigue crack growth Exercise 14-8

Flatness distortion Exercise 14-62

Fretting wear Exercises 11-9, 11-47, 11-57, 

11-61, 11-63

Gap width of a magnetic recording head Exercise 4-23

Glass bottle thickness Exercises 8-40, 8-70, 8-72, 8-82

Height of leaf springs Exercise 14-73

Hole diameter Examples 4-2, 4-4, 4-8, 4-31, 

8-39

Exercises 8-10, 9-74, 15-21, 

15-63

Jet-turbine or rocket thrust Exercises 12-74, 12-96, 12-97, 

12-101

Machined dimensions Examples 5-12, 5-13

Mechanical assembly Example 3-27

Missile miss distance Example 14-7

Molded parts Example 2-1

Nonconforming coil springs Exercises 6-91, 9-134

Nozzle velocity Exercise 13-37

Particleboard deflection Exercises 11-14, 11-34

Precision measuring instruments Exercise 9-132

Robotic insertion tool Exercise 2-184

Shaft and washer assemblies Exercise 15-41

Shear strengths Exercise 10-37

of Rubber Exercise 12-72

of Spot weld Exercises 6-31, 6-47, 6-61, 

9-136, 11-69

Sheet metal operation Exercise 2-40

Space shuttle flight control system Exercises 3-22, 3-57

Spindle saw processes Exercise 10-25

Surface roughness Examples 14-2, 14-4, 10-14, 

12-13

Exercises 2-78, 2-109, 2-158, 

5-19, 13-42, 14-22, 14-67, 

14-69

Suspension helmets impact test Exercise 8-58

Suspension rod, piston rings, PVC pipe, 

and other diameters Example 4-16

Exercises 6-7, 6-73, 7-3, 8-13, 

8-34, 8-68, 8-78, 10-15, 10-57, 

15-7, 15-33, 16-77

Temperature of joint for O-rings Exercises 6-19, 6-57, 6-77

Tire life Exercises 8-27, 8-61, 8-73, 

9-65, 9-81, 10-39

Tool life Exercises 14-12, 14-30, 14-56

Wear in auto parts Exercises 9-41, 10-23

Wire bond strength Examples 11-8, 12-1, 12-2, 

12-3, 12-4, 12-5, 12-6, 12-7, 

12-8, 12-9, 12-10, 12-11

Exercises 12-8, 12-28, 12-46, 

12-82, 15-9, 15-15, 15-35, 

12-76, 16-7, 16-11, 16-29

MEDICAL

ACL reconstruction surgery Exercises 4-59, 5-61

Antirheumatoid medication Exercise 5-76

Artificial hearts Exercise 9-47

Bacteria exposure Exercise 4-159

Basal metabolic rate (BMR) Exercise 8-100

Cholesterol level Exercises 4-60, 10-41

Completing a blood sample test Exercise 4-154

Diagnostic kit revenue Exercise 2-200

Diagnostic Example 2-37

Heart failure Exercises 2-112, 3-90, 3-107

Hemoglobin level Exercises 8-86, 8-89

Knee injuries Exercises 2-76, 3-19

Lung cancer Exercise 8-56

Meniscal tear Exercises 8-56, 10-68

Noise exposure and hypertension Exercise 11-58

Pain medication Exercises 3-162, 10-84

Patient satisfaction Exercises 12-5, 12-106

Plasma antioxidants from chocolate Exercises 13-2, 13-25

Radiation dose in X-ray Exercises 12-11, 12-31, 12-44, 

12-61, 12-79

Recovering from an illness Exercise 3-161

Salk polio vaccine trials Exercise 10-79

Sick-leave time Exercise 4-158

Skin desquamation (peeling) Exercise 2-88

Success rates in kidney stone removals Exercise 2-115

Surgical versus medical patients Exercise 9-104

Syringe length Exercises 15-10, 15-16

Therapeutic drugs Exercise 9-133

Tissue assay by liver manganese Exercise 9-144

Treatment of renal 

calculi by operative surgery Exercises 9-89, 9-99

Weight and systolic blood pressure Exercises 11-72, 11-89

PHYSICS

Alignment accuracy of optical chips Exercise 14-64

Atomic clock Exercise 11-94

Current draw in magnetic core Exercise 11-73

Density measurement error Exercises 12-13, 12-49, 12-63, 

12-81

Density of the earth Exercise 6-102

Geiger counts Example 4-23

Exercise 4-93

Laser diode samples Example 2-15

Laser failure time Exercises 4-115, 4-160

Number of stars Exercise 3-133

Optical correlator modulation Exercises 12-15, 12-33, 12-51, 

12-65, 12-83

Oxygen in a superconducting compound Exercises 13-10, 13-22

Porosity of ultrafine powder Exercises 11-12, 11-50

Shortened latencies in dry atmosphere Exercise 8-99

Silver particles in photographic emulsion Exercise 4-164

Solar intensity Exercises 6-12, 6-69, 6-76, 8-34
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Supercavitation for undersea vehicles Exercise 9-45

Thermal conductivity Example 7-5

Transducer calibration Exercise 3-150

Tube conductivity Exercises 13-7, 13-21

Velocity of a particle in a gas Exercise 5-72

Velocity of light Exercise 6-101

Voids in a ferrite slab Exercises 2-12, 6-30, 6-46

Wavelength of radiation Exercise 3-69

SEMICONDUCTOR MANUFACTURING

Examples 2-17, 2-19, 2-20, 2-27, 2-28, 2-33, 3-2, 3-3, 3-5, 3-21, 4-26, 

10-11, 10-13, 14-3

Exercises 2-41, 2-92, 2-95, 2-168, 3-21, 3-84, 4-61, 4-80, 5-83, 6-36, 6-50, 

6-62, 7-29, 7-44, 9-88, 9-124, 12-9, 12-29, 12-43, 12-69, 14-17, 14-25, 

14-41, 14-58, 14-65, 15-18, 15-84

SPORTS

Baseball coefficient of restitution Exercises 9-62, 9-139

Electromyostimulation Exercise 8-48

Football helmets Exercise 9-91

Golf Examples 9-6, 9-7

Exercises 6-9, 6-33, 6-49, 

6-95, 6-99, 9-69, 9-138, 10-29, 

10-30, 10-61, 10-62

Hockey player performance Exercise 9-77

Liveliness of baseballs Exercises 8-92, 8-93

Major League Baseball Exercise 12-104

National Hockey League Exercises 12-18, 12-38, 12-56, 

12-70, 12-86

Quarterback ratings Exercises 11-3, 11-25, 11-41, 

11-53, 11-75, 12-17, 12-35, 

12-53, 12-59, 12-87

TEXTILE MANUFACTURING

Examples 13-4, 13-5 Exercises 6-24, 6-28, 6-40,  

6-44, 13-29, 14-10, 14-18, 

14-32, 14-63

Breaking strength of yarn Exercises 8-10, 10-78, 10-80

Thread elongation of a drapery yarn Exercises 9-5, 9-6, 9-7, 9-8, 9-9

INDUSTRIAL ENGINEERING AND ECONOMICS

Airlines

Overbooking Exercises 3-93, 4-180

Arrival and waiting times Exercises 4-22, 15-15, 15-25, 

7-12

Passenger airline miles flown in UK Exercise 6-70

Automobile features Examples 2-4, 2-5

Exercise 2-14

Bayesian network Example 2-38

Breakdowns by shift Exercise 9-103

Buying tickets by telephone Exercise 2-179

Calculator owners Exercise 7-33

College graduates in Tempe Exercise 9-25

Credit card numbers Exercises 2-62, 2-135

Customer design evaluation Exercise 2-147

Customer sampling Example 3-29

Exercises 2-8, 2-34, 3-173, 

9-86

Cytogenic revenue Exercise 3-25

Diamond prices Exercise 11-95

Disabled population Exercise 4-81

Engineering education Exercises 5-9, 8-105, 8-92, 

9-105, 9-108, 11-71

Fraud detection in phone cards Exercise 2-144

Impact of quality on schedules and costs Exercise 3-94

Inspection of shipments from suppliers Exercise 3-182

Inspection Exercise 9-87

Installation technician service Exercise 3-172

License numbers Exercise 2-63

Lottery Exercise 3-124

Machine schedules Examples 2-11, 2-36

Monthly champagne sales in France Exercise 6-91

Multiple choice exam Exercise 3-88

Optical inspection Exercise 3-20

Orders for computer systems Exercises 2-16, 2-35

Parallel parking Example 10-11

Exercise 10-38

Pension plan preference Example 9-14

Presidential elections Exercises 2-110, 2-146, 8-55, 

10-69

Price of an electronic storage device Exercise 3-23

Prices of houses Exercises 11-4, 11-26, 11-42, 

11-54

Printer orders Exercise 5-94

Product and bar codes Examples 2-12, 3-13

Exercise 3-67

Repeatability in component assembly Exercise 10-55

Revenue potential Example 3-10

Exercise 5-93

Risk analysis Exercise 5-95

Shipment of customers’ orders Exercise 2-174

Soldiers killed by horse kicks Exercise 3-135

Survey favoring toll roads Exercise 9-26

Time between arrivals Exercises 4-45, 4-99, 4-104, 

4-119, 4-162, 5-20, 5-21

Time to

Fill an electronic form Exercise 4-42

Locate a part Exercise 5-87

Make pottery Exercise 5-58

Prepare a micro-array slide Example 4-24

Recharge a battery Exercise 4-58

Unemployment data Exercise 6-85

Unlisted phone numbers Exercise 10-81

DEFECTIVES, FLAWS, ERRORS

Automobile front lights Exercise 2-81

Bearings Example 10-16

Calculators Exercise 8-96

Computers and fans Exercises 2-111, 3-109, 4-97

Connector Exercise 2-107

Cotton rolls Exercise 2-108

Electronic components Exercises 4-8, 6-111, 8-101, 

9-107, 11-68

Contamination Exercise 3-140

Integrated circuits Exercises 7-59, 8-53

Lenses Exercises 9-90, 10-71, 15-87

Machining stages Example 2-26

Optical or magnetic disks Example 3-33

Exercises 3-137, 3-171

Optical alignment Exercise 3-103

Orange juice containers Exercise 2-125

Ovens Exercise 5-45

Oxygen containers Exercise 2-161
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Pareto chart for automobile doors Exercise 6-52

Printed circuit boards Example 9-12

Printing Exercises 4-186, 5-4

Response surface design for yield Example 14-12

Surface flaws in parts, steel, and panels Examples 2-23, 2-30

Exercises 3-7, 3-139, 3-176, 

3-184, 4-106, 9-97, 15-76

Textbook Exercise 3-160

Water meter Exercise 4-82

Wires Examples 3-31, 3-32

Exercise 15-44

Yield Examples 6-5, 10-5, 10-7, 14-6

Exercises 5-26, 6-25, 6-41, 

8-11, 13-30, 14-20, 14-42, 

14-47, 14-53, 14-72

LIFE AND FAILURE TIMES

Assembly and components Example 5-14

Exercises 4-103, 4-83, 5-82

Batteries Example 6-7

Exercises 9-43, 9-93, 14-3

Censored components Exercise 7-76

CPU Example 4-23

Exercises 4-129, 4-167

Door latch Exercise 8-8

Electronic amplifier Exercise 4-184

Light bulb Exercises 8-14, 8-16, 8-17

Machine Exercise 7-50

Magnetic resonance imaging machine Exercise 4-149

Packaged magnetic disk Exercise 4-148

Recirculating pump Exercise 4-163

Semiconductor laser Exercises 4-69, 4-143, 4-176

Voltage regulators Exercise 4-96

Yarn Exercise 6-100

LENGTH OF

Computer cable Exercise 4-34

Door casing Exercise 5-60

Hinge Exercise 4-8

Injection-molded plastic case Exercise 4-157

Keyway depth Exercise 16-91

Metal rod Exercises 4-11, 4-21

Panels Exercise 5-85

Plate glass parts Exercise 3-68

Punched part Exercise 5-56

THICKNESS OF

Aluminum cylinders Exercise 4-57

Coatings Exercises 3-66, 4-35

Flange Exercise 4-41

Halves Exercise

Ink layers Example 5-18

Exercises 5-49, 5-59

Laminated covering Exercise 4-173

Layers and error propagation Examples 5-31, 5-91, 5-92

Parts Exercises 5-66, 15-11, 15-57

Photoconductor and photo resist film Exercises 4-43, 10-22, 10-64

Plastic connector Examples 2-2, 2-7

Wood paneling Exercises 3-10, 3-42

WEIGHT OF

Adobe bricks Exercises 5-27, 5-84

Candy Exercises 5-86, 7-49

Chemical herbicide Exercises 4-9, 4-36, 4-40

Components Exercises 5-65, 5-88

Measured by a digital scale Exercise 2-21

Paper Exercises 8-51, 9-78

Running shoes Exercise 4-71

Sample and measurement error Exercise 4-72
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