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Localization of Sensor Nodes
 Estimation of node coordinates (x,y,z) in 

(Euclidean) coordinate system
 Why needed?

– Interpretation of sensor data
– Data fusion
– Geo routing
– ...

 Large design space
– Intern vs. extern
– always vs. sometimes
– All nodes vs. some
– Points vs. intervals
– ...
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GPS?
 GPS for sensor nodes?
 Example: U-blox ZOE-M8B SiP

– Very small (4.5 x 4.5 x 1.0 mm)
– Accuracy: 2.5m
– Energy: 12-72 mW, 1.8 V
– Startup time: 26 sec

 But: some nodes with GPS may act as anchor 
nodes for localization of others
– < 10% of nodes

 Localization task: Estimation of
positions of remaining nodes ?
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Localization Algorithms
 Distributed localization algorithms with 

three phases
– Measure relations between nodes

• Distance (range)
• Angle
• ...

– Initial positioning
• Lateration
• Angulation
• ...

– Refinement
• Iterative refinement of initial positions

d

α

4



Node Relations
 Mostly distance-based

– Why not angles?

 Signals
– Radio
– (Ultra) sound
– Light

 Indicators
– Amplitude (signal strength)
– Time of arrival
– Frequency
– Phase
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Sound: Propagation Time
 Measurement of propagation time of ultrasound from 

sender to receiver
– Synchronization via radio
– s = t vsound

 Coding of sound signal
– Robustness
– Pseudo noise

 Receiver finds earliest occurrence of sound pattern 
– Echoes!
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Accuracy: Best Case
 Accuracy ~ 1 cm
 Range ~ 10m
 Conditions

– Free line of sight
– Speaker and microphone facing each other

1cm
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Accuracy: Temperature
 Sound propagation speed depends on 

air temperature
– ~ 10% error per 50 K
– Countermeasure: temperature sensor!

2cm
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Accuracy: Orientation
 Relative orientation of speaker and 

microphone has big impact
– Countermeasure: Scattering reflectors, 

multiple speakers / micros

10cm
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Accuracy: Obstacles
 Light obstacles (e.g., card box)

– Sound travels through / around obstacle
– Small offset

 Massive obstacles (e.g., mattrass)
– Multipath
– Big offset

 Countermeasure: Test for free LOS (e.g., using light)

6cm

140cm
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BeepBeep
 Idea: both devices beep with a constant known delay 

and they record their own as well as the other’s beep
 Time is measured by sample counting since continuous 

sampling is utilized
 No time sync needed!
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Received Signal Strength
 RSS is function of distance and channel 

between sender and receiver

 Radio outputs Pr as RSS indicator
– Received Signal Strength Indicator [dBm]

nsr d
PdP 1)( ≈

)mW1/(log10RSSI 10 rP=

n = 2 ... 6?

dnPs 1010 log10log10RSSI −=

d

RSSI
0 dBm =         1 mW

-10 dBm =      0.1 mW
-20 dBm =    0.01 mW
-30 dBm =  0.001 mW
-40 dBm = 0.0001 mW
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Transmitted Signal Strength
 Indirect measurement of transmitted 

signal strength at reference distance d0

– Dependent on antenna gain

 Pr(d0) typically given in the data sheet
– cc2420: 10log10Pr(2m) = -46dbm at transmit 

power 0dBm
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Accuracy: Best Case
 Accuracy  of 2-3m possible
 Range 10-100m
 Conditions

– Free space, no walls, buildings, objects etc.
– Nodes at equal height above ground
– Large distance from ground
– Aligned antennas
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Accuracy: Orientation
 Relative orientation of 

antennas has big impact
 Distance above ground 

has big impact
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Accuracy: Indoor
 In buildings strong multipath effects

– Distance and RSSI almost uncorrelated
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Why is RF Ranging Challenging?

 Multipath including ground 
reflection
– At low angles, reflection has a 

phase shift of PI, distance 
difference between LOS and 
ground reflected signal is 
minimal: destructive interference

– Any additional even weak 
multipath can affect amplitude 
and phase significantlyTwo nodes 30m apart at varying heights
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Connectivity
 RSS often not useful
 Binary distance measure?

– d=1: Within communication range
– d=∞: Outside communication range

 Distance measured by number of hops
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Radio Interferometry
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 A and B transmit carrier 
signal at slightly different 
frequencies
– Few 100 Hz

 Phase of interfered signal 
depends on receiver location

 Measurement of dABCD
– Measure phase offset at multiple 

frequencies
– Solve equation system

10cm

19



Radio Interferometry
 Very accurate outdoors

– Few cm

 Range up to 160 m
 Requires

– Accurate time sync of C and D: 1 us
– Accurate tuning of transmitter frequencies

 „Strange“ distance measure
– Solve complex optimization problem
– Find node locations that minimize 

difference from measured values
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Radio Interferometric AOA
 Motivation: Measure AOA with motes 

without any additional hardware
 Group 3 nodes to form an anchor array

– Orthogonal antennas to minimize 
parasitic effects

– Array uses radio interferometry to 
estimate bearing to target node

R
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Initial Positions
 Input

– Anchors with known locations
– Relations among nodes

 Output
– Position of non-anchor nodes

 Challenges
– Inaccurate relations
– Relations only among

neighbors
– Sparse anchors
– Arrangement of anchor nodes
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Centroid
 Position node at centroid of all anchors 

within communication range
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Bounding Box
 Position node at center point of intersection 

of bounding boxes around anchors i=1..N 
with position (xi, yi) and distance di

 Variant: Weighted sum
of corners j
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Lateration
 Position node at intersection of circles around anchors

2
3

2
3

2
3

2
2

2
2

2
2

2
1

2
1

2
1

)()(

)()(

)()(

dyyxx
dyyxx
dyyxx

=−+−

=−+−

=−+−

)()()(2)(2

)()()(2)(2
2
3

2
3

2
1

2
1

2
1

2
33131

2
2

2
2

2
1

2
1

2
1

2
22121

yxyxddyyyxxx
yxyxddyyyxxx

+−++−=−+−

+−++−=−+−









=

















2

1

2221

1211

b
b

y
x

aa
aa

––

b
y
x

A =








1

2

3

27



Lateration
 Problem: inaccurate distances

– No common intersection point
– Equation system does not have a solution!

 Approach: formulate optimization problem
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Multilateration
 Same approach, but n instead of 3 anchors

– A has n-1 rows
– ATA still 2x2 matrix
– ATb still vector of length 2

 Similar for 3D

bA
y
x

AA TT =







⋅ )(

29



Intersecting Circle Pairs
 Pairwise intersection of circles around anchors

– If no intersection use midpoint of shortest line 
connecting the circles

 Remove outlier intersections
– Not contained in most (< N-2)

circles around anchors
– Sum of distances to other

intersections larger than
median

 Compute centroid of
remaining intersections
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Bounding Box vs. Lateration
 Bounding Box better as 

inaccuracy of ranging grows
 Anchor arrangement important

Lateration

Bounding Box

Lateration
BBox
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Multi-Hop Localization
 Up to now: every node needs 3 anchor 

neighbors
– Or even more for high accuracy

 Approaches
– Dense anchors
– Multi-Hop relations

• Distance to anchors that are
not neighbors

– Recursion
• Positioned nodes as additional

anchors
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Multi-Hop Relations
 Compute shortest paths (Euclidean) to 

anchors
– D = d1 + d2 + d3

– Never smaller than true distance
– Zigzag paths lead to error

 Implementation
– Anchors flood network
– Nodes compute and rebroadcast

shortest distance to anchor
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Multi-Hop Relations
 Estimate average hop distance

– L = X / (1+1)
 Compute shortest paths (Hops) to 

anchors
– D = (1+1+1) x L
– No bounds
– Zigzag

 Implementation
– Anchors flood network
– Anchors compute hop-distance

among each other and flood again
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Recursion
 Use newly positioned nodes as 

additional anchors
– Errors accumulate
– May get stuck
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Multi-Hop: Accuracy
Hops
Dist

Recursion
Lateration

BBox
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Multi-Hop: Coverage

Hops
Dist

Recursion
Lateration

BBox
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Iterative Improvement
 Nodes have initial positions
 Iterative improvement

– Each node recomputes position using all 
neighbors as anchors

– Iterate until positions converge to a fixed 
point

 May not converge
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Iterative Improvement
Hops + Lateration

Dist + BBox
Recursion + Lateration

Without refinement
With refinement
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Other Approaches
 Centralized algorithms

– Mass-spring models (cf. graph layout)
– Convex optimization
– Genetic optimization
– ...

 Probabilistic algorithms
 Optimizing anchor locations
 Anchor-free approaches
 Support for mobility
 ...
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