Localization

Sensor Networks

Prof. Dr. Kay Römer

Localization of Sensor Nodes

- Estimation of node coordinates (x,y,z) in (Euclidean) coordinate system
- Why needed?
 - Interpretation of sensor data
 - Data fusion
 - Geo routing
 - ...
- Large design space
 - Intern vs. extern
 - always vs. sometimes
 - All nodes vs. some
 - Points vs. intervals

Уı $(x_2, y_2)?$ $(x_4, y_4)?$ (x₁, y₁)? $(x_3, y_3)?$ Χ

GPS?

- GPS for sensor nodes?
- Example: U-blox ZOE-M8B SiP
 - Very small (4.5 x 4.5 x 1.0 mm)
 - Accuracy: 2.5m
 - Energy: 12-72 mW, 1.8 V
 - Startup time: 26 sec

 But: some nodes with GPS may act as anchor nodes for localization of others

- < 10% of nodes

 Localization task: Estimation of positions of remaining nodes

Localization Algorithms

- Distributed localization algorithms with three phases
 - Measure relations between nodes
 - Distance (range)
 - Angle
 - ...
 - Initial positioning
 - Lateration
 - Angulation
 - ..
 - Refinement
 - Iterative refinement of initial positions

Node Relations

- Mostly distance-based
 - Why not angles?
- Signals
 - Radio
 - (Ultra) sound
 - Light
- Indicators
 - Amplitude (signal strength)
 - Time of arrival
 - Frequency
 - Phase

Sound: Propagation Time

- Measurement of propagation time of ultrasound from sender to receiver
 - Synchronization via radio
 - $s = t v_{sound}$
- Coding of sound signal
 - Robustness
 - Pseudo noise
- Receiver finds earliest occurrence of sound pattern
 - Echoes!

Accuracy: Best Case

- Accuracy ~ 1 cm
- Range ~ 10m
- Conditions
 - Free line of sight
 - Speaker and microphone facing each other

Accuracy: Temperature

- Sound propagation speed depends on air temperature
 - ~ 10% error per 50 K
 - Countermeasure: temperature sensor!

Accuracy: Orientation

- Relative orientation of speaker and microphone has big impact
 - Countermeasure: Scattering reflectors, multiple speakers / micros

Accuracy: Obstacles

- Light obstacles (e.g., card box)
 - Sound travels through / around obstacle
 - Small offset
- Massive obstacles (e.g., mattrass)
 - Multipath
 - Big offset
- Countermeasure: Test for free LOS (e.g., using light)

BeepBeep

- Idea: both devices beep with a constant known delay and they record their own as well as the other's beep
- Time is measured by sample counting since continuous sampling is utilized
- No time sync needed!

Received Signal Strength

 RSS is function of distance and channel between sender and receiver

- Radio outputs P_r as RSS indicator
 - Received Signal Strength Indicator [dBm] $\sim RSSI = 10 \log_{10}(P_r / 1mW)$

$$RSSI = 10\log_{10} P_s - 10n\log_{10} d$$

 $0 \, dBm =$

 $-10 \, dBm =$

 $-20 \, dBm =$

-30 dBm = 0.001 mW

1 mW

0.1 mW

0.01 mW

n=2

RSS

Transmitted Signal Strength

- Indirect measurement of transmitted signal strength at reference distance d₀
 - Dependent on antenna gain

$$P_r(d_0) \approx P_s \frac{1}{d_0^n} \qquad P_s \approx P_r(d_0) d_0^n$$

 $\left| \text{RSSI} = 10 \log_{10} P_r(d_0) + 10n \log_{10} d_0 / d \right|$

- P_r(d₀) typically given in the data sheet
 - cc2420: $10\log_{10}P_r(2m) = -46dbm$ at transmit power 0dBm

Accuracy: Best Case

- Accuracy of 2-3m possible
- Range 10-100m
- Conditions
 - Free space, no walls, buildings, objects etc.
 - Nodes at equal height above ground
 - Large distance from ground
 - Aligned antennas

Accuracy: Orientation

- Relative orientation of antennas has big impact
- Distance above ground has big impact

Accuracy: Indoor In buildings strong multipath effects - Distance and RSSI almost uncorrelated Can be exploited for detecting moving obstacles and changing environments Distance Vs Average RSSI at the maximum power level 6.17ft -105.65ft -15

-20

Why is RF Ranging Challenging?

Two nodes 30m apart at varying heights

- At low angles, reflection has a phase shift of PI, distance difference between LOS and ground reflected signal is minimal: destructive interference
- Any additional even weak multipath can affect amplitude and phase significantly

Connectivity

- RSS often not useful
- Binary distance measure?
 - d=1: Within communication range
 - $d=\infty$: Outside communication range
- Distance measured by number of hops

Radio Interferometry

- A and B transmit carrier signal at slightly different frequencies
 - Few 100 Hz
- Phase of interfered signal depends on receiver location
- Measurement of d_{ABCD}
 - Measure phase offset at multiple frequencies

- Solve equation system

Radio Interferometry

- Very accurate outdoors
 - Few cm
- Range up to 160 m
- Requires
 - Accurate time sync of C and D: 1 us
 - Accurate tuning of transmitter frequencies
- "Strange" distance measure
 - Solve complex optimization problem
 - Find node locations that minimize difference from measured values

Radio Interferometric AOA

- Motivation: Measure AOA with motes without any additional hardware
- Group 3 nodes to form an anchor array
 - Orthogonal antennas to minimize parasitic effects
 - Array uses radio interferometry to estimate bearing to target node

Initial Positions

Input

- Anchors with known locations
- Relations among nodes
- Output
 - Position of non-anchor nodes
- Challenges
 - Inaccurate relations
 - Relations only among neighbors
 - Sparse anchors
 - Arrangement of anchor nodes

Centroid

 Position node at centroid of all anchors within communication range

$$x = \frac{1}{n} \sum_{i=1}^{n} x_i$$
 $y = \frac{1}{n} \sum_{i=1}^{n} y_i$

Bounding Box

- Position node at center point of intersection of bounding boxes around anchors i=1..N with position (x_i, y_i) and distance d_i x = ¹/₂(min_i(x_i + d_i) + max_i(x_i - d_i))
 - $y = \frac{1}{2}(\min_{i}(y_{i} + d_{i}) + \max_{i}(y_{i} d_{i}))$
- Variant: Weighted sum of corners j

$$W(j) = \frac{1}{\sum_{i=1..N} (D_{ij} - d_i)^2}$$

Lateration

Position node at intersection of circles around anchors

$$(x - x_{1})^{2} + (y - y_{1})^{2} = d_{1}^{2}$$

$$(x - x_{2})^{2} + (y - y_{2})^{2} = d_{2}^{2}$$

$$(x - x_{3})^{2} + (y - y_{3})^{2} = d_{3}^{2}$$

$$2(x_{1} - x_{2})x + 2(y_{1} - y_{2})y = d_{2}^{2} - d_{1}^{2} + (x_{1}^{2} + y_{1}^{2}) - (x_{2}^{2} + y_{2}^{2})$$

$$2(x_{1} - x_{3})x + 2(y_{1} - y_{3})y = d_{3}^{2} - d_{1}^{2} + (x_{1}^{2} + y_{1}^{2}) - (x_{3}^{2} + y_{3}^{2})$$

$$\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} b_{1} \\ b_{2} \end{pmatrix}$$

$$\boxed{A\begin{pmatrix} x \\ y \end{pmatrix} = b}$$

$$27$$

Lateration

- Problem: inaccurate distances
 - No common intersection point
 - Equation system does not have a solution!
- Approach: formulate optimization problem

Multilateration

- Same approach, but n instead of 3 anchors
 - A has n-1 rows
 - A^TA still 2x2 matrix
 - A^Tb still vector of length 2
- Similar for 3D

$$\left[\left(A^T \cdot A \right) \begin{pmatrix} x \\ y \end{pmatrix} = A^T b \right]$$

Intersecting Circle Pairs

- Pairwise intersection of circles around anchors
 - If no intersection use midpoint of shortest line connecting the circles
- Remove outlier intersections
 - Not contained in most (< N-2) circles around anchors
 - Sum of distances to other intersections larger than median
- Compute centroid of remaining intersections

Bounding Box vs. Lateration

- Bounding Box better as inaccuracy of ranging grows
- Anchor arrangement important

Lateration

Bounding Box

100

Multi-Hop Localization

- Up to now: every node needs 3 anchor neighbors
 - Or even more for high accuracy
- Approaches
 - Dense anchors
 - Multi-Hop relations
 - Distance to anchors that are not neighbors
 - Recursion
 - Positioned nodes as additional anchors

Multi-Hop Relations

 Compute shortest paths (Euclidean) to anchors

 d_3

 d_2

d₁

- $D = d_1 + d_2 + d_3$
- Never smaller than true distance
- Zigzag paths lead to error
- Implementation
 - Anchors flood network
 - Nodes compute and rebroadcast shortest distance to anchor

Multi-Hop Relations

- Estimate average hop distance
 L = X / (1+1)
- Compute shortest paths (Hops) to anchors
 - D = (1+1+1) x L
 - No bounds
 - Zigzag
- Implementation
 - Anchors flood network
 - Anchors compute hop-distance among each other and flood again

Recursion

- Use newly positioned nodes as additional anchors
 - Errors accumulate
 - May get stuck

Multi-Hop: Accuracy

Multi-Hop: Coverage

37

Iterative Improvement

- Nodes have initial positions
- Iterative improvement
 - Each node recomputes position using all neighbors as anchors
 - Iterate until positions converge to a fixed point
- May not converge

Iterative Improvement

Other Approaches

- Centralized algorithms
 - Mass-spring models (cf. graph layout)
 - Convex optimization
 - Genetic optimization
- Probabilistic algorithms
- Optimizing anchor locations
- Anchor-free approaches
- Support for mobility
 - I ••

References

- Slides contain material by following authors
 - Lewis Girod UCLA
 - Dimitrios Lymberopoulos Yale
 - Branislav Kusy Vanderbilt
 - Alec Woo Berkeley
 - Nirupama Bulusu Portland State
 - Koen Langendoen TU Delft
 - Akos Ledeczi Vanderbilt