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Localization of Sensor Nodes

= Estimation of node coordinates (X,y,z) in
(Euclidean) coordinate system

= Why needed?

- Interpretation of sensor data

- Data fusion
- Geo routing
oo Y4 (X2, ¥2)?
= [arge design space @ Yo Va
- Intern vs. extern ©
- always vs. sometimes ®
- All nodes vs. some (X1, ¥1)? (X3, ¥3)?

Points vs. intervals d




GPS?

= GPS for sensor nodes?

= Example: U-blox ZOE-M8B SiP

- Very small (4.5 x4.5x 1.0 mm) '
- Accuracy: 2.5m
- Energy: 12-72 mW, 1.8V
- Startup time: 26 sec

= But: some nodes with GPS may act as anchor
nodes for localization of others

- < 10% of nodes 4
= Localization task: Estimation of | g )
@

positions of remaining nodes




Localization Algorithms

= Distributed localization algorithms with
three phases

- Measure relations between nodes

» Distance (range) PN d PN
e Angle

- Initial positioning

e Lateration C \
v

e Angulation

- Refinement
e [terative refinement of initial positions
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Node Relations

* Mostly distance-based
- Why not angles?
= Sighals
- Radio
- (Ultra) sound
- Light
= Indicators
Amplitude (signal strength)
Time of arrival

Frequency
Phase




Sound: Propagation Time

* Measurement of propagation time of ultrasound from
sender to receiver

- Synchronization via radio

- s=tv

sound

= Coding of sound signal
- Robustness
- Pseudo noise

= Receiver finds earliest occurrence of sound pattern

- Echoes!
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Accuracy:

Best Case

= Accuracy ~ 1 cm
= Range ~ 10m
= Conditions

- Free line of sight

- Speaker and microphone facing each other
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Speed of sound, mis
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Accuracy: Temperature

= Sound propagation speed depends on
air temperature

- ~ 10% error per 50 K
- Countermeasure: temperature sensor!

Effect of Atmospheric Parameters on the Speed of Sound
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Accuracy: Orientation

= Relative orientation of speaker and
microphone has big impact

- Countermeasure: Scattering reflectors,
multiple speakers / micros

Effect of rotation of emitter and sensar
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Accuracy: Obstacles

= Light obstacles (e.g., card box)
- Sound travels through / around obstacle

- Small offset

= Massive obstacles (e.g., mattrass)

- Multipath
- Big offset

= Countermeasure: Test for free LOS (e.g., using light)

Effect of Heavy Obstructions o LOS
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BeepBeep

» |dea: both devices beep with a constant known delay
and they record their own as well as the other’s beep

= Time is measured by sample counting since continuous
sampling is utilized
= No time sync needed!

A issues a play-

Sound is physically
sound command OURa is prysicatry
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Received Signal Strength

= RSS is function of distance and channel
between sender and receiver

pyep L Tnzee”

= Radio outputs P, as RSS indicator

- Received Sighal Strength Indicator [dBm]

o° RSSI=10log,, (£, /ImW)
Q) RSSI

RSSI=10log,, P, —10nlog,, d n=2
n=4

0dBm = 1 mW
-10 dBm = 0.1 mW
-20dBm = 0.01 mW
-30 dBm = 0.001 mW
-40 dBm = 0.0001 mW
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Transmitted Signal Strength

* |ndirect measurement of transmitted
signal strength at reference distance d,

- Dependent on antenna gain

P~ P P~ P(dy)d]

0

RSSI=10log,, P.(d,)+10nlog,, d,/d

= P (dy) typically given in the data sheet

- ¢c2420: 10log,P.(2m) = -46dbm at transmit
power 0dBm
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Accuracy: Best Case

= Accuracy of 2-3m possible

= Range 10-100m
= Conditions

- Free space, no walls, buildings, objects etc.
- Nodes at equal height above ground
- Large distance from ground

- Aligned antennas

=201

*  Averaged RSSI values
— log-fit

=25
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Accuracy: Orientation

= Relative orientation of
antennas has big impact

= Distance above ground
has big impact
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RSSI (dbm)

Accuracy: Indoor

= |n buildings strong multipath effects
- Distance and RSSI almase uncorrelated

Can be exploited for
detecting moving obstacles
and changing environments

Distance Vs Average RS5I at the maximum power level
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Why is RF Ranging Challenging?

M M
AN | | = Multipath including ground

reflection

- At low angles, reflection has a
phase shift of PI, distance
difference between LOS and
ground reflected signal is
minimal: destructive interference

=
o
A)

Composite Signal Amplitude (S)
o
ey

Reflected Amplitude Coefficient (

I
Q
N

0. . . - Jo - Any additional even weak
Andle offneidence (begrees) multipath can affect amplitude
Two nodes 30m apart at varying heights and phase significantly
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Connectivity

= RSS often not useful

» Binary distance measure?
- d=1: Within communication range
- d=c0: Outside communication range

= Distance measured by number of hops

I

02 /)
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Radio Interferometry

= Aand B transmit carrier
signal at slightly different
frequencies .
- Few 100 Hz B

= Phase of interfered signal
depends on receiver location

= Measurement of d,gp
- Measure phase offset at multiple

VARV R YA EVINIRVE

frequencies C /D\

- Solve equation system :
E 600 i
% 500 : : /
% 400
g 300 I |
‘E 200 1 Ocm : :
é 100 R :.._..:

o E 0 u - phase offset =21t s _dB?[z Hd =i (mod 27)

-2 -1.8-16-14-12 -1 08-06-04-02 0 02040608 1 12 14 16 1. g S

error (m)




Radio Interferometry

Very accurate outdoors
- Few cm

Range up to 160 m

Requires
- Accurate time sync of C and D: 1 us
- Accurate tuning of transmitter frequencies

,otrange® distance measure

- Solve complex optimization problem

- Find node locations that minimize
difference from measured values
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Radio Interferometric AOA

Motivation: Measure AOA with motes
without any additional hardware

= Group 3 nodes to form an anchor array

- Orthogonal antennas to minimize
parasitic effects

- Array uses radio interferometry to
estimate bearing to target node

21




Initial Positions

* [nput
- Anchors with known locations S
- Relations among nodes .

= Qutput
- Position of non-anchor nodes

= Challenges
- Inaccurate relations

- Relations only among
neighbors

- Sparse anchors
- Arrangement of anchor nodes

23




entroid

= Position node at centroid of all anchors
within communication range
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Bounding Box

= Position node at center point of intersection
of bounding boxes around anchors i=1..N
with position (x;, y;) and distance d.

X = %(mini (x; +d;) +max,(x, —d,))

Y= %(mini (v, +d;)+max, (y, —d,))

= Variant: Weighted sum
of corners j
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Lateration

= Position node at intersection of circles around anchors

(x—=x)" +(y=») =d;
‘(x_xz)z +(y—y2)2 :dz2
(=3 + (=) =d?

2(x, = X%,)Xx+2(y, =¥,y = d d2+(x1f|'Y1) (x2+y2)
2(x, = x,)x+2(y, = yy)y =d; — d2+(xi+y1) (x3+y3)’

Eall alz jEx] ) [bl j /:::":\~
Ay Ay \YV b,
X /
A =bh E
y
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Lateration

= Problem: inaccurate distances
- No common intersection point
- Equation system does not have a solution!

» Approach: formulate optimization problem

X €, . 2 n o)
A — b= mlnx’y el 62 P
y €, N
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Multilateration

= Same approach, but n instead of 3 anchors
- A has n-1 rows
- ATA still 2x2 matrix
- A'b still vector of length 2

= Similar for 3D

(A" - A)[ ) A"b
y
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Intersecting Circle Pairs

= Pairwise intersection of circles around ancho
- If no intersection use midpoint of shortest line
connecting the circles
= Remove outlier intersections

- Not contained in most (< N-2) .-
circles around anchors '

- Sum of distances to other';’"
intersections larger than
median

= Compute centroid of e
remaining intersections /

30




Position error
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Bounding Box vs. Lateration

= Bounding Box better as
inaccuracy of ranging grows

= Anchor arrangement important
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Multi-Hop Localization

= Up to now: every node needs 3 anchor
neighbors

- Or even more for high accuracy

= Approaches
- Dense anchors

- Multi-Hop relations

e Distance to anchors that are
not neighbors

- Recursion

e Positioned nodes as additional
anchors

32




Multi-Hop Relations

= Compute shortest paths (Euclidean) to
anchors

- D - d1 + dz + d3
- Never smaller than true distance

- Zigzag paths lead to error d,
» Implementation "%‘

- Anchors flood network

- Nodes compute and rebroadcas
shortest distance to anchor

33




Multi-Hop Relations

= Estimate average hop distance
- L=X/ (1+1)

= Compute shortest paths (Hops) to
anchors
- D= (1+1+1) x L
- No bounds 1
- [igzag

* Implementation
- Anchors flood network

- Anchors compute hop-distance
among each other and flood again
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Recursion

= Use newly positioned nodes as
additional anchors

- Errors accumulate
- May get stuck
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Multi-Hop: Accuracy
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Coverage

1

Multi-Hop: Coverage
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Iterative Improvement

»= Nodes have initial positions

» [terative improvement

- Each node recomputes position using all
neighbors as anchors

- Iterate until positions converge to a fixed
point

= May not converge
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Iterative Improvement

Position error
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Other Approaches

» Centralized algorithms
- Mass-spring models (cf. graph layout)
- Convex optimization
- Genetic optimization

= Probabilistic algorithms
= Optimizing anchor locations

= Anchor-free approaches
= Support for mobility
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