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Routing in Sensor Networks
 Traditional Networks

– Typically based on addresses
– Unicast, multicast

 Sensor Networks
– Convergecast (all nodes to sink)

• Data collection
– Local interaction
– Flooding (sink to all nodes)

• Code/task distribution
– Geo routing
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Convergecast

 Typically based on spanning tree 
rooted at the sink

Remote nodes 
with few hops: 

fragile!

Closeby nodes 
with many hops: 

energy!
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Good Spanning Trees
 How to build a good spanning tree?

– Good neighbors: low packet loss
– Stable neighbors: infrequent changes

Neighbor management

Route selection

Link quality
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Link Quality
 Estimation of packet delivery rate

– Cf. Chapter „Physical Layer“
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EWMA
1-PER

Pn α=0.1

Pn α=0.9

Pn α=0.98

Pn(t) = α Pn-1 + (1- α) (1 – PER)
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Neighbor Management
 Dense sensor networks

– Many neighbors (>200)
– Many bad (grey)
– Few good (blue)

 How to pick out good 
neighbors?
– Appears to require 

state information for 
each neighbor

• Memory!
– Typically neighbor 

table with fixed size T

 How to efficiently find 
best T neighbors with 
small memory?
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T?
 What should be the size of the neighbor table?

– Connected network!
 Xue and Kumar (2002 und 2004)

– For almost certainly connected network Θ(log n) 
neighbors necessary and sufficient

• T < 0.074 log n: almost certainly not connected
• T > 5.1774 log n: almost certainly connected

– In practical networks (n < 1000): T = 6-10
 Penrose (1999)

– With T neighbors, there are T disjoint paths 
between any pair of nodes with high
probability

• P -> 1 for n -> ∞
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Picking Good Neighbors
 Assumptions

– Unknown number N of neighbors
– Neighbor table with size T
– Nodes periodically broadcast «hello» beacons with sender 

address
 Approach

– Table should contain nodes from which most «hellos» have 
been received

 Upon reception of «hello» from node n
– n already in table?

• Reinforce
– Else, should we insert n?

• Insertion criteria
– If yes, which other node should be removed?

• Removal criteria
– Cf. cache management

• FIFO, LRU, ...
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Insertion, Removal, Reinforcement

 Goal: table should always contain 
nodes from which most «hellos» have 
been received
– Doesn’t this require O(N) memory?!
– How to pick the T most frequent senders 

with memory O(T)?
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Picking Frequent Neighbors
 Candidate n, counter C=0
 Upon reception of «hello» from “sender“

– If C>0 and n=sender
• C++

– If C=0
• n := sender; C := 1

– Else
• C--

 Result: Majority candidate
– C=0: For each increment there is a decrement – there is no 

majority element with frequency > ½
– C>0: n only majority candidate (!)

 Works only if one node dominates all others!
– Practically n is a good approximation of the most frequent 

element

Reinforce

Insertion

Removal
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Picking Frequent Neighbors
 T counters <n, C>, initially <0, 0>
 Upon reception of «hello» from «sender»

– Does counter <sender, C> exist with C>0?
• Increment C by 1

– Otherwise, free counter <x, 0>?
• Set to <sender, 1>

– Else
• Decrement ALL counters by 1

 Result: All candidates for > P/(T+1) received 
«hellos» out of P «hellos»
– All entries <n, C> with C>0
– Cf. „Frequency Estimation of Internet Packet 

Streams with Limited Space“, E.D. Demaine et al
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Stable Neighbors
 Table does now contain at any point in time 

neighbors with many received «hellos»
– These neighbors are probably good
– But: neighbors may change frequently -> not 

stable

 Modified insertion
– Insert new neighbor only with probability P = T/N

• Why does this help?

– N is unknown!
• Counting appears to require memory O(N)?!
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Estimating Number of Neighbors
 Algorithm

– Stream of hellos with sender s
– Uniform hash function h: s -> [1, M]
– r(i) = Number of 0’s at end of bin(i)
– R = max { r(h(s)) }
– N = 2R+1

 Why does this work?
– r(h(n)) = k expected for 1/2k+1 of all neighbors

• Prob[r(h(n))=k] = 1/2k+1

– As R is the maximum of all k, we can expect 2R+1

neighbors
– It can be shown that

• E[1.2928... x 2R+1] = true number of neighbors
– Cf. „Probabilistic Counting Algorithms for Data 

Base Applications“, P. Flajolet et al

...1 – ½ of all integers

...10 – ¼ of all integers

...100 – 1/8 of all integers

... – ...

Prob[h(s)=i] = 1/M 

14



Stable Neighbors
 We can decide with memory O(1) if a 

new neighbor should be inserted
– Throw asymmetric coin with P[heads] = 

T/N
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Conclusion
 Each node does now have a stable set 

of good neighbors
– Note: the link quality (packet reception 

rate) is only estimated for the nodes in the 
table

 How to construct a spanning tree?
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Routing: Good Links
 Foundation for Routing: good links

– „good“ link = link with low packet loss
– Both directions relevant: packet + ACK!
– Routing metric: m(L) = 1 / Qin(L)  x  1 / Qout(L)

• Number of expected transmissions (ETX)
• Small values are better

 Links often asymmetric: Qin(L) != Qout(L)
– Each node only knows quality of incoming links
– Broadcast link qualities to neighbors periodically

Qin

Qout
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Spanning Tree
 Good tree = good path from each node to sink

– „Good“ path = sequence of good links L1, ..., Li

– Formally: find shortest path w.r.t routing metric
• min  Σ m(Li)

 Approach: Distance Vector Routing
– Each node records shortest distance D to sink and current 

parent V
• D: At sink initially 0, otherwise ∞
• V: Initially «-»

– Update: Nodes periodically broadcast beacon P containing 
their distance to sink

• Also sink with D=0
– Neighbor receives P from node S via link L
– If P.D + m(L) < D

• D = P.D + m(L)
• V = S
• Broadcast update

3

1

1

B

C

A

(-, ∞)

(-, ∞)(A, 1)

(A, 3)(C, 2)

18



Stability, Cycles, Fairness
 Tree should be stable -> change parent 

infrequently
– Periodic updates rather than immediately after 

receiving new information
 Cycle detection

– Node receives packet it sent earlier
– Change parent

 Fairness
– Separation of locally generated and forwarded 

packets
– Locally generated packets have priority
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System Architecture

 Good spanning trees are hard to obtain!
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Path Quality
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Path Stability
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Local Interaction
 Flooding with limited hop distance r

– Sender: broadcast packet with distance r
– receiver: If r > 0 and message not 

forwarded earlier:
• Rebroadcast with distance r-1
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Flooding: Problems
 Implosion

– Same message received 
over multiple paths

 Overlap
– Different messages 

containing overlapping 
sensor data (multiple 
nodes observing same 
phenomenon)
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SPIN
 Assumption

– Large payload

 Advertisements
– ADV: „Have X“
– REQ: „Want  X“
– DATA: „Data X“

B

A

 Variants
– SPIN-PP: Point-to-Point
– SPIN-BC: Broadcast
– SPIN-EC: Energy-aware
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SPIN Performance
 Setup

– 25 nodes
– Every node has 3 data items, randomly chosen 

from 25 possible items
– ADV/REQ: 16 Bytes
– DATA: 500 Bytes

-- SPIN-PP
-- Ideal
-- Flooding
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Network Flooding
 Sink to all nodes

– New task / program

 Multiple options
– Reverse spanning tree

• Reliability?

– Global flooding
• Efficiency?
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Fire Cracker
 Combination of spanning tree and flooding

– Route message to some (remote) nodes
– Flood from there

 Efficiency of spanning tree and reliability of 
flooding
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Flooding
 Trickle

– Flooding with advertisements (cf. SPIN)
– CSMA + BEB
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Flooding from 3 Corners
 Including routing to the corners!
 Nodes overhearing packet during routing start 

flooding after fixed time

31



Opposite Corners
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All Corners
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Latency / Transmissions

20835 19544 18275 6665
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Random Nodes

One from corner Three from corner

Three from center Three remote from center
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Geo Routing
 Send to node at position (x,y)

– Avoiding keeping state in nodes
– Few bytes in message headers

 Greedy Routing
– Send to neighbors closest to (x,y)
– Problem: holes in the networks

?
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Face Routing
 Walk along polygons („Face“) crossed by 

line L between start and dest position
– Select first edge left of L
– If edge crosses L

• Select first edge left of edge
– Traverse edge
– Stop if destination reached
– Select first edge left of old edge

left

right
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Face Routing
 Requires planar network graph

– No crossing edges in 2D
– Example: Gabriel Graph

• Two nodes are connected only if 
enclosing circle does not contain other 
node

 Many possible improvements
– GPSR: Greedy + Face Routing

 Addressing variants
– Node close(st) to destination position 
– All nodes in region
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