
Prof. Dr. Kay Römer

Routing
Sensor Networks

Routing in Sensor Networks
 Traditional Networks

– Typically based on addresses
– Unicast, multicast

 Sensor Networks
– Convergecast (all nodes to sink)

• Data collection
– Local interaction
– Flooding (sink to all nodes)

• Code/task distribution
– Geo routing

2

Convergecast

 Typically based on spanning tree
rooted at the sink

Remote nodes
with few hops:

fragile!

Closeby nodes
with many hops:

energy!

3

Good Spanning Trees
 How to build a good spanning tree?

– Good neighbors: low packet loss
– Stable neighbors: infrequent changes

Neighbor management

Route selection

Link quality

4

Link Quality
 Estimation of packet delivery rate

– Cf. Chapter „Physical Layer“

1-PER

∆t

r1
f1

r2
f2

r3
f3

∆t ∆t

5

EWMA
1-PER

Pn α=0.1

Pn α=0.9

Pn α=0.98

Pn(t) = α Pn-1 + (1- α) (1 – PER)

6

Neighbor Management
 Dense sensor networks

– Many neighbors (>200)
– Many bad (grey)
– Few good (blue)

 How to pick out good
neighbors?
– Appears to require

state information for
each neighbor

• Memory!
– Typically neighbor

table with fixed size T

 How to efficiently find
best T neighbors with
small memory?

7

T?
 What should be the size of the neighbor table?

– Connected network!
 Xue and Kumar (2002 und 2004)

– For almost certainly connected network Θ(log n)
neighbors necessary and sufficient

• T < 0.074 log n: almost certainly not connected
• T > 5.1774 log n: almost certainly connected

– In practical networks (n < 1000): T = 6-10
 Penrose (1999)

– With T neighbors, there are T disjoint paths
between any pair of nodes with high
probability

• P -> 1 for n -> ∞

8

Picking Good Neighbors
 Assumptions

– Unknown number N of neighbors
– Neighbor table with size T
– Nodes periodically broadcast «hello» beacons with sender

address
 Approach

– Table should contain nodes from which most «hellos» have
been received

 Upon reception of «hello» from node n
– n already in table?

• Reinforce
– Else, should we insert n?

• Insertion criteria
– If yes, which other node should be removed?

• Removal criteria
– Cf. cache management

• FIFO, LRU, ...

9

Insertion, Removal, Reinforcement

 Goal: table should always contain
nodes from which most «hellos» have
been received
– Doesn’t this require O(N) memory?!
– How to pick the T most frequent senders

with memory O(T)?

10

Picking Frequent Neighbors
 Candidate n, counter C=0
 Upon reception of «hello» from “sender“

– If C>0 and n=sender
• C++

– If C=0
• n := sender; C := 1

– Else
• C--

 Result: Majority candidate
– C=0: For each increment there is a decrement – there is no

majority element with frequency > ½
– C>0: n only majority candidate (!)

 Works only if one node dominates all others!
– Practically n is a good approximation of the most frequent

element

Reinforce

Insertion

Removal

11

Picking Frequent Neighbors
 T counters <n, C>, initially <0, 0>
 Upon reception of «hello» from «sender»

– Does counter <sender, C> exist with C>0?
• Increment C by 1

– Otherwise, free counter <x, 0>?
• Set to <sender, 1>

– Else
• Decrement ALL counters by 1

 Result: All candidates for > P/(T+1) received
«hellos» out of P «hellos»
– All entries <n, C> with C>0
– Cf. „Frequency Estimation of Internet Packet

Streams with Limited Space“, E.D. Demaine et al

12

Stable Neighbors
 Table does now contain at any point in time

neighbors with many received «hellos»
– These neighbors are probably good
– But: neighbors may change frequently -> not

stable

 Modified insertion
– Insert new neighbor only with probability P = T/N

• Why does this help?

– N is unknown!
• Counting appears to require memory O(N)?!

13

Estimating Number of Neighbors
 Algorithm

– Stream of hellos with sender s
– Uniform hash function h: s -> [1, M]
– r(i) = Number of 0’s at end of bin(i)
– R = max { r(h(s)) }
– N = 2R+1

 Why does this work?
– r(h(n)) = k expected for 1/2k+1 of all neighbors

• Prob[r(h(n))=k] = 1/2k+1

– As R is the maximum of all k, we can expect 2R+1

neighbors
– It can be shown that

• E[1.2928... x 2R+1] = true number of neighbors
– Cf. „Probabilistic Counting Algorithms for Data

Base Applications“, P. Flajolet et al

...1 – ½ of all integers

...10 – ¼ of all integers

...100 – 1/8 of all integers

... – ...

Prob[h(s)=i] = 1/M

14

Stable Neighbors
 We can decide with memory O(1) if a

new neighbor should be inserted
– Throw asymmetric coin with P[heads] =

T/N

15

Conclusion
 Each node does now have a stable set

of good neighbors
– Note: the link quality (packet reception

rate) is only estimated for the nodes in the
table

 How to construct a spanning tree?

16

Routing: Good Links
 Foundation for Routing: good links

– „good“ link = link with low packet loss
– Both directions relevant: packet + ACK!
– Routing metric: m(L) = 1 / Qin(L) x 1 / Qout(L)

• Number of expected transmissions (ETX)
• Small values are better

 Links often asymmetric: Qin(L) != Qout(L)
– Each node only knows quality of incoming links
– Broadcast link qualities to neighbors periodically

Qin

Qout

17

Spanning Tree
 Good tree = good path from each node to sink

– „Good“ path = sequence of good links L1, ..., Li

– Formally: find shortest path w.r.t routing metric
• min Σ m(Li)

 Approach: Distance Vector Routing
– Each node records shortest distance D to sink and current

parent V
• D: At sink initially 0, otherwise ∞
• V: Initially «-»

– Update: Nodes periodically broadcast beacon P containing
their distance to sink

• Also sink with D=0
– Neighbor receives P from node S via link L
– If P.D + m(L) < D

• D = P.D + m(L)
• V = S
• Broadcast update

3

1

1

B

C

A

(-, ∞)

(-, ∞)(A, 1)

(A, 3)(C, 2)

18

Stability, Cycles, Fairness
 Tree should be stable -> change parent

infrequently
– Periodic updates rather than immediately after

receiving new information
 Cycle detection

– Node receives packet it sent earlier
– Change parent

 Fairness
– Separation of locally generated and forwarded

packets
– Locally generated packets have priority

19

System Architecture

 Good spanning trees are hard to obtain!

20

Path Quality

21

Path Stability

22

Local Interaction
 Flooding with limited hop distance r

– Sender: broadcast packet with distance r
– receiver: If r > 0 and message not

forwarded earlier:
• Rebroadcast with distance r-1

24

Flooding: Problems
 Implosion

– Same message received
over multiple paths

 Overlap
– Different messages

containing overlapping
sensor data (multiple
nodes observing same
phenomenon)

A

B C

D

(a)

(a)

(a)

(a)

A B

C (r,s)(q,r)

q sr

25

SPIN
 Assumption

– Large payload

 Advertisements
– ADV: „Have X“
– REQ: „Want X“
– DATA: „Data X“

B

A

 Variants
– SPIN-PP: Point-to-Point
– SPIN-BC: Broadcast
– SPIN-EC: Energy-aware

26

SPIN Performance
 Setup

– 25 nodes
– Every node has 3 data items, randomly chosen

from 25 possible items
– ADV/REQ: 16 Bytes
– DATA: 500 Bytes

-- SPIN-PP
-- Ideal
-- Flooding

27

Network Flooding
 Sink to all nodes

– New task / program

 Multiple options
– Reverse spanning tree

• Reliability?

– Global flooding
• Efficiency?

28

Fire Cracker
 Combination of spanning tree and flooding

– Route message to some (remote) nodes
– Flood from there

 Efficiency of spanning tree and reliability of
flooding

29

Flooding
 Trickle

– Flooding with advertisements (cf. SPIN)
– CSMA + BEB

30

Flooding from 3 Corners
 Including routing to the corners!
 Nodes overhearing packet during routing start

flooding after fixed time

31

Opposite Corners

32

All Corners

33

Latency / Transmissions

20835 19544 18275 6665

34

Random Nodes

One from corner Three from corner

Three from center Three remote from center
35

Geo Routing
 Send to node at position (x,y)

– Avoiding keeping state in nodes
– Few bytes in message headers

 Greedy Routing
– Send to neighbors closest to (x,y)
– Problem: holes in the networks

?

36

Face Routing
 Walk along polygons („Face“) crossed by

line L between start and dest position
– Select first edge left of L
– If edge crosses L

• Select first edge left of edge
– Traverse edge
– Stop if destination reached
– Select first edge left of old edge

left

right

37

Face Routing
 Requires planar network graph

– No crossing edges in 2D
– Example: Gabriel Graph

• Two nodes are connected only if
enclosing circle does not contain other
node

 Many possible improvements
– GPSR: Greedy + Face Routing

 Addressing variants
– Node close(st) to destination position
– All nodes in region

38

References
 Slides contain material by the following

authors
– Prabal Dutta, Alec Woo – UC Berkeley
– Phil Levis – Stanford
– Li Huan, Junning Liu – Amherst
– Ten-Hwang Lai – Ohio
– Roger Wattenhofer – ETH Zurich

39

	Routing
	Routing in Sensor Networks
	Convergecast
	Good Spanning Trees
	Link Quality
	EWMA
	Neighbor Management
	T?
	Picking Good Neighbors
	Insertion, Removal, Reinforcement
	Picking Frequent Neighbors
	Picking Frequent Neighbors
	Stable Neighbors
	Estimating Number of Neighbors
	Stable Neighbors
	Conclusion
	Routing: Good Links
	Spanning Tree
	Stability, Cycles, Fairness
	System Architecture
	Path Quality
	Path Stability
	Local Interaction
	Flooding: Problems
	SPIN
	SPIN Performance
	Network Flooding
	Fire Cracker
	Flooding
	Flooding from 3 Corners
	Opposite Corners
	All Corners
	Latency / Transmissions
	Random Nodes
	Geo Routing
	Face Routing
	Face Routing
	References

