Medium Access

Sensor Networks

Prof. Dr. Kay Römer

Medium Access (MAC)

- Control of access of multiple nodes on shared communication medium
 - Avoidance of collisions
 - Part of link layer
- Strong impact on energy consumption
 - Radio dominates energy consumption

Radio Energy Consumption

- Radio energy consumption facts
 - Send / receive = 1 ... 2
 - Receive / listen = 1 ... 2
 - Listen / sleep >> 100
 - Mode switch takes time
 - 10us 2ms
- Implications
 - Sleep most of the time (but then "deaf + dumb")
 - Minimize number of mode switches

Energy Saving Potential

- Useless listening
 - ... for packets while nothing is sent
- Collisions
 - Transmission of packets by multiple nodes at same time
- Overhearing
 - ... of packets addressed to other nodes
- Protocol overhead
 - Headers
 - Control packets

Collisions

 Receiver in range of multiple simultaneous transmissions

- Sender may not detect collisions
 - Not within range of other sender
 - Half duplex: cannot send and receive simultaneously

Capture Effect

 Reception of the stronger of two simultaneous transmissions

- Cf. Sharp transition between FM radio stations instead of overlay of stations on AM radio
- Depends on modulation scheme and implementation details of the radio

OR Channel

- Multiple bitsynchronized transmissions result in reception of bitwise OR
 - For OOK

Tradeoffs

- Saving energy typically implies other drawbacks
 - Latency, esp. across multiple hops
 - Bandwidth (bits per second)
 - Fairness (some nodes prioritized over others)

Traffic Patterns

- Exploit knowledge about traffic patterns for energy saving
- Message flow
 - Convergecast: All sensors to sink (potentially with aggregation)
 - Broadcast: Sink to all nodes
 - Local interactions among neighbors
 - Geo routing: send to nodes at certain position
- Message generation
 - Streams
 - Periodic sensor readout / sending
 - Bursts
 - Most of the time idle
 - Event triggers transmission at multiple nearby nodes
- Application-specific properties
 - Cross layer!

MAC Protocols

Contention

- Random access to medium
- Avoidance of (most) collisions
 - Clear channel assessment (CSMA), random delays, channel reservation
- Retransmission in case of collision
- Scheduling
 - Exclusive assignment of medium to nodes
 - Time slices (TDMA), frequency bands (FDMA)
 - Node only active in assigned time slot
 - No collisions, idle listening, overhearing
 - But: time synchronization, adaptivity?

CSMA/CA

 CSMA: Listen, send when channel clear

- Problem: "hidden terminals"
- CA: Channel reservation
 - RTS (Request to send): Request including duration T of planned transmission
 - CTS (Clear to send): Ack with T
 - DATA: After receipt of CTS
 - ACK: After receipt of DATA
 - All other nodes overhearing RTS/CTS delay all transmissions by T

CSMA/CA: Collisions

12

- Still collisions possible
 - Detected by missing ACK
 - Retransmit after random delay
- Delay strategies
 - Random uniform selection of a time slot from a time window
 - Problem: many nodes -> many collisions
 - Note: traffic bursts!

Binary Exponential Backoff (BEB)

- Double time window after each successive collision
- Adapt to number of nodes
- Problem: long delays

Sift

BEB alternative

- Fixed time window, but non-uniform probability of slot selection
- Few nodes select early slot
- Collision probability of first transmission small

- Limited delay until first transmission(s)

CSMA/CA for Sensor Nets

- Useless listening
 - Switch off radio during T
 - Problem: miss other RTS/CTS
 - Additional collisions
 - Bandwidth reduced by about 25%
- Protocol overhead
 - RTS/CTS/ACK for each payload packet!
 - Very inefficient for small messages
 - Reserve channel for multiple packets
 - Fairness vs. energy!

S-MAC

CSMA/CA with duty cycling

- Short active phase followed by long sleep phase
- Nodes synchronized to wakeup simultaneously
- RTS/CTS only during active phase
- Transmission of data into sleep phase
- SYNCH/RTS/CTS
 - CSMA phases with slotted random delays
 - If collision retry in next active phase

S-MAC: Synchronization

- Nodes transmit schedule packets during SYNCH
- New node
 - Listen and sync to schedule
 - If no neighbor define own schedule
- Problem: Merging islands with different schedules
 - Follow all neighboring schedules

S-MAC: Latency

- Expected per-hop latency = sleep duration / 2
 - Problem with long paths!
- Improvements:
 - Path: 1 -> 2 -> 3
 - Node 3: hears CTS, after T additional active phase
 - Node 2: After ACK send RTS immediately

S-MAC: Fragmentation

- High BER: Split long packets into many small ones
 - Problem: RTS/CTS/ACK for each fragment induces high overhead
- Solution in S-MAC
 - One RTS/CTS for all fragments
 - One ACK per fragment, retransmit if lost
 - All packets contain remaining duration T for transmission of all remaining fragments
- Fairness?

T-MAC

- S-MAC: Fixed duration of active phase
 - Waste when low traffic
 - Too short for high traffic
- T-MAC: adapt duration of active phase to traffic
 - Go to sleep early if no activity during timeout period TA
 - How does a node detect "no activity"
 - No messages received
 - No messages received at neighbors (implicitly known from overheard RTS/CTS)

T-MAC: Early Sleeping

- Problem: D sleeps to early
 - Node C has data for D, but cannot send RTS to D as medium blocked by CTS

Solution: Future RTS

- Upon receipt of CTS, node C sends FRTS to D
- Contains T from CTS
- Dummy packet DS

T-MAC: Buffer Overrun

- Problem: nodes forced to receive
 - RTS/CTS can force node to receive many packets without chance to forward them
 - Limited buffer space!
- Solution: RTS instead of CTS
 - Upon receipt of RTS node C sends RTS to D instead CTS
 - Only when C's buffers full and C has "lost" contention multiple times

21

Wakeup Preambles

- Problem: Both S-MAC and T-MAC need synchronization
 - Multiple schedules per node ...
- Other approach
 - Unsynchronized short active phases
 - Sender transmits long wakeup preamble before message
 - Duration?
 - If node overhears preamble during active phase: stay awake to receive packet
- Shift load to sender
 - S-MAC / T-MAC: Useless active phases

Preamble Optimizations

- Problem: Transmit full preamble even if receiver already awake
 - Waste of energy
- Send repeated data instead of preamble
- Send repeated wakeup packet instead of preamble
 - Contains time until data

B-MAC

- Basic preambles
- Philosophy: minimum functionality with simple interface (TinyOS)
 - Configurable duration of sleep phase
 - Configurable preamble length
 - Fixed active phase with clear channel assessment
 - CSMA with simple random backoff
 - Optional ACKs
- Other functions have to implemented on top

- RTS/CTS, ...

 Standard MAC for radios with byte interface (CC1000)

B-MAC: Clear Channel?

- Preamble detection
 - Reliable detection to avoid useless listening

Estimate noise level

- Measure signal strength when no transmission (when?)
- Low pass filter: Median M of last 5 measurements
- Noise level R: exponentially weighted moving average over M
 - $R = \alpha R + (1 \alpha)M$
- Clear channel?
 - Measure signal strength multiple times
 - Outlier < R? -> Channel clear!

X-MAC

- Variant of preambles for packet-based radios
- Sender sends sequence of strobes and waits for ack from destination before transmitting data

WiseMAC

- Preambles AND synchronization (!)
 - Initially long preamble
 - ACK contains wakeup schedule
 - Sender knows when receiver will wakeup next
 - Only approximately!
 - Short preamble
 - Does not work for broadcast
- Other features
 - "More!" bit in header for packet bursts
 - Repeated data instead of long preamble
 - Sensitive clear channel assessment instead of RTS/CTS

Receiver-Initiated MAC

- Receivers periodically wake up and broadcast beacon message
- Transmitter waits to receive beacon from destination and then transmits data
- Minimized channel occupation for rendezvous
- Example: RI-MAC

MAC with Scheduling

- N time slots per time frame
 - Each node is assigned one or more time slots per frame
- Many variants how to assign slots
 - Centralized vs. distributed
 - Static vs. on demand

LMAC

- 32 slots per frame
- Each node is assigned one slot
- Node can send packet to neighbors during its slot
 - Neighbors overhear TC and synchronize
 - Only addressed neighbors receive data
- No ACKS, no retransmission in original LMAC!

LMAC: Slot Assignment

- TC.Slots contains bit vector with assigned slots
 - From sender's perspective
- New node
 - Overhears complete frame with TC.Slots of all neighbors
 - Chooses free slot
- Mobility and link fluctuation can lead to collisions (slot assigned to multiple neighbors)
 - Sender selected random new free slot

LMAC: Limitations

- Network density limited by number of slots per frame
 - 2 hop neighborhood must not reuse slot
- Bandwidth per node limited
 - Channel bandwidth / number of slots
 - Problematic when nodes generate different amount of traffic

Bluetooth

- Physical Layer
 - 79 Channels
 - Pseudo-random frequency hopping
 - How to discover neighbors?
 - Bandwidth about 1 mbps
 - Energy efficient for high traffic load
- Scheduling-based MAC
 - Piconet: 1 master + max. 7 slaves
 - Master synchronizes slaves and defines hopping sequence

- Time slot assigned to each slave for communication with master
- Scatternets: overlapping piconets
 - Bridge: node participating in >= 2 piconets
 - Periodic switching between piconets

IEEE 802.15.4 ("Zigbee")

- Physical layer
 - 20 250 kbps in different ISM bands (868 kHz, 926 kHz, 2.4 GHz)
 - In some bands multiple channels with dynamic selection
- Node roles
 - PAN coordinator
 - Coordinator
 - Device
- Node types
 - Full Function Device
 - Reduced Function Device
 - Only "device" role
- Network topologies
 - Star (MAC: Beacon Mode = CSMA/CA + time slots)
 - Peer-to-Peer (MAC: Non-Beacon-Mode = CSMA/CA)

Beacon Mode

Coordinator and devices form star network

- Coordinator broadcasts Beacon periodically
 - Synchronization
 - Frame organization
 - Allocation of GTS
- Active period
 - CAP: CSMA
 - GTS: TDMA
- Inactive period
 - Sleep

Beacon Mode: Data Transfer

- Device to coordinator
 - GTS only when slot allocated and data packet fits into GTS
 - CSMA otherwise
- Coordinator to device
 - GTS only when slot allocated and data packet fits into GTS
 - Announcement of receivers in Beacon
 - Receivers send request during CAP
 - Coordinator sends packet

Beacon Mode: CSMA

- Using during CAP
 - BEB before transmission
 - Send if channel clear
 - No RTS/CTS

Other Approaches

- Large number of other MAC protocols
 - Shown principles / protocols most relevant
- MACs exploiting further physical layer features
 - Concurrent use of multiple channels
 - Multiple radio modules per node
 - Wakeup radio
 - Ultra wideband radios
 - Directional antennas
 - Light, sound, ...

- ...

Which MAC is best?

Is there a MAC which is always the best?

- Resource consumption
- Energy consumption
- Throughput
- Packet loss
- Traffic scenarios
 - Point to point
 - Convergecast
 - Local interaction
- Protocols
 - 802.11: plain CSMA/CA
 - S-MAC
 - T-MAC
 - LPL: preambles (B-MAC)
 - LMAC

Resource Consumption

	LMAC	LPL	802.11	S-MAC	T-MAC
code size (lines)	250+75	325	400	625	825
RAM usage (bytes)	15+40	49	51	78	80

- LMAC: without / with ACK and retransmissions
- 802.11: RTS/CTS
- S-MAC: synchronization
- T-MAC: adaptation

Idle Energy Consumption

	802.11	LPL	S-MAC	T-MAC	LMAC
energy					
consumption [mW]	11.4	1.14	1.21	0.37	0.75
effective					
duty cycle [%]	100	10	11	3.2	6.6

S-MAC / T-MAC: synchronization

Throughout on 3x3 Grid

- T-MAC: fixed backoff time window
- LMAC: 1 slot per node and frame
- S-MAC: Fixed duty cycle
- LPL: hidden terminals

Energy for Point to Point

- T-MAC: early sleeping
- LPL: hidden terminal collisions
- S-MAC: fixed duty cycle

Energy for Local Interactions

Similar trends, but less extreme

Energy for Convergecast

 Similar trends, but more pronounced again

Conclusions

- "Winner" regarding energy consumptions
 - Low traffic load: T-MAC
 - Adaption
 - High traffic load: LMAC
 - No collisions
- Further observations
 - 802.11 competitive at high traffic loads
 - There is no best MAC, depends on application
 - Choice often non-trivial

References

- Slides contain material by the following authors
 - Holger Karl Uni Paderborn
 - Koen Langendoen TU Delft
 - Kyle Jamieson MIT
 - Matthias Ringwald ETH Zürich