Physical + Link Layers

Sensor Networks

Prof. Dr. Kay Römer

Physical Layer

Radio-based wireless communication

- Transmission of bits using radio
- Layer 1 in ISO OSI model
- Not focus of this lecture, but summary of important aspects

- Important for medium access control

Frequencies

Properties are a function of frequency

- Penetration, attenuation (walls, ice, air, ...)
- Reflection
- Energy consumption
- Antennas (size, complexity, ...)

License-Free Frequencies

- Frequencies are assigned to applications
 - Usually a license is needed
- License-free bands most relevant for sensor networks
 - ISM: Industrial, Scientific, Medical

Some typical ISM bands	
Frequency	Comment
13,553-13,567 MHz	
26,957 - 27,283 MHz	
40,66 - 40,70 MHz	
433 - 464 MHz	Europe
863 - 870 MHz	SRD
900 - 928 MHz	America
2,4 - 2,5 GHz	WLAN/WPAN
5,725 - 5,875 GHz	WLAN
24 - 24,25 GHz	

Modulation

- Transmission of information (Bits) using an EM wave
 - Presence of EM wave (carrier)
 - Parameters (amplitude, phase, frequency)
- Modulation: encoding bits onto EM wave
 - Different variants to change above parameters over time
 - Bandwidth, robustness, ...
- Modulation vs. keying
 - Modulation: arbitrary parameter values
 - Keying: finite "alphabet" of parameters values

Modulation

- ASK (Amplitude Shift Keying)
 - Change of carrier amplitude
 - Special case OOK (On-Off Keying)
- FSK (Frequency Shift Keying)
 - Change of carrier frequency

- PSK (Phase Shift Keying)
 - Change of carrier phase

Demodulation

- Reconstruction of bit sequence from received EM wave
 - Sampling EM wave (amplitude) in receiver
- Problems
 - Received wave != transmitted wave
 - Synchronization
 - When do bit, byte, packet start?

Distortion

- Received wave != transmitted wave
 - Attenuation distribution of energy over increasing volume
 - Reflection, refraction, diffraction, scattering
- Impact
 - Communication without free line-of-sight
 - Constructive or destructive interference of multiple reflected and direct signals at receiver
 - Echoes: longer reflected paths

Received Signal Strength

- Amplitude of received wave
 - Function of channel and distance d from sender to receiver
 - Simplified model: $P_r = P_s K / d^n$
 - Typical values for path loss exponent n
 - Free space: 2
 - Close to ground: 4
 - Buildings: 2 ... 6, typically 2.5 ... 4 (smaller values for long corridors)

SNIR

- P_{noise} white noise generated by electronics
- P_{inf} interference from other transmitters / technologies in range
- Signal-to-noise-and-interference-ratio (SNIR)
 - SINR = $P_r / (P_{noise} + P_{inf})$
- SNIR and modulation scheme define bit error rate (BER)
 - Fraction of incorrectly received bits
 - Typical value: 10⁻³ (10⁻² ... 10⁻⁴)
 - BER ~ e^{-SNIR}

Synchronization

Preambles

- Bit stream before message starts, 0101010101010101 (typically very long!)
- Allows detection of transmission vs. noise
- Allows synchronization of transmitter and receiver

Link Layer

- Reliable transmission of bits over erroneous channel
 - Layer 2 in ISO OSI model
 - Also in this layer: medium access control (MAC), see next chapter

 Not focus of lecture, summary of important concepts

Error Control

- Mechanisms to detect and correct incorrect bits
- Option 1: Backward Error Control
 - Detect error and retransmit
- Option 2: Forward Error Control
 - Redundant coding to allow detection and correction of certain bit errors without retransmission

Backward Error Control

Approach

- Group bits into blocks, add check sum
- Verify check sum, retransmit if incorrect
 - Positive ACKs: Acknowledge correct message, retransmit after timeout
 - Negative ACKs: Request retransmission after incorrect message

Examples

- Alternating bit protocol
- Sliding window protocol

Forward Error Control

Approach

- Group bits to symbols
- Injective mapping («coding») of symbols to transmission symbols
 - More bits per symbol
- Correct inverse mapping also possible when given number of bit errors not exceeded

Example

- Triple redundancy (one bit error)
- Hamming code (one bit error)

Backward vs. Forward

- Backward
 - Overhead for retransmission in case of error
 - Favor if low BER
- Forward
 - Always overhead for redundant code
 - Favor if high BER
- Note: BER ~ 1 / transmit power!
 - Transmit power can be changed with many radios!
- Adaptive and hybrid variants
 - Measure/estimate BER -> select approach
 - Low BER: forward, else backward

Framing

- Grouping of bits / symbols into packets
- Long packets
 - High probability for >= 1 bit error
 - Low header overhead
- Short packets
 - Low probability for >= 1 bit error
 - High header overhead
- Note: optimal packet size for given BER and header size
 - Measure/estimate BER, adapt packet length

Optimal Packet Size

BER = 0.001

Header = 10 Bytes

Plot of y = 10/x + 1/pow(1 - 0.001, x*8) - 1≻ 5 Ø Ø х

Link Management

- Knowledge of neighbor nodes often needed
- When is a node a neighbor?
 - SNIR >= min
 - BER, PER <= max
- Irregular
 - Not isotropic
 - Not a circle!
 - Asymmetric links
 - Changes over time

Link Quality

- Estimation of link quality (BER, PER, SINR) needed for neighbor management
 - Accurate, adaptive, stable, efficient
- Example
 - Exponentially weighted moving average over packet loss per time interval

21

Reference

- Slides contain material by the following authors
 - Holger Karl Uni Paderborn
 - Randy Katz, Alec Woo UC Berkeley
 - Jochen Schiller FU Berlin
 - Deepak Ganesan Amherst