Hardware

Sensor Networks

Prof. Dr. Kay Römer

Motes

Rene (1999)

Mica (2001)

Telos (2004)

- Originally developed at UC Berkeley
 - Numerous versions: Rene, MICA, MICADot, MICAz, Telos, ...
- Other mote platforms
 - BTnode, Eyes nodes, MANTIS, XYZ, Scatterweb, OpenWSN, ...

OpenWSN (2014)

Motes: Components

- Microcontroller
 - CPU including RAM (1-10 KB) and I/O
- Communications
 - 10-500 kbps, 10-1000 meters
- Sensors
- Energy supply
 - Battery, harvesting (light, vibrations, ...)
 - Power stabilization
- Additional memory
 - RAM (10-100 KB), Flash (100-1000 KB)
- Real-time clock

Component Selection

- Many different variants for each component
- Criteria for component selection
 - Lifetime (energy consumption)
 - Performance
 - Robustness
 - Size
 - Costs
- Strongly application-dependent

Processor

Alternatives

- Microcontroller
 - Integrated CPU, program memory, RAM, I/O, ADC
- DSP
 - Signal processing, typically as co-processor
- FPGA
 - Reconfigurable logic, typically as co-processor
- ASIC
 - Only high-volume products, rarely used

Examples

- Texas Instruments MSP430
 - 16-bit RISC core, up to 8 MHz, up to 16 KB RAM, multiple ADC
- Atmel ATMega 128
 - 8-bit RISC core, up to 16 MHz, up to 16 KB RAM, multiple ADC

Communication

- Medium
 - Radio, light, acoustics
- Properties
 - Frequency band?
 - Narrow / wide / ultra wide band?
 - Multiple channels?
 - Data rate?
 - Range?
 - Interface: bit, byte, packet?
 - Received signal strength indicator?
- Energy
 - Energy consumption for sending/receiving/listening?
 - Time and energy required for state changes?
 - Controllable transmit power?

Example Radios

RFM TR1000

- Frequency: 916 / 868 MHz
- Bandwidth: up to 115,2 kbps (in practice: 19.2 kbps)
- Receive / transmit power consumption: 12 / 36 mW
- Range: 10 20 m
- Interface: bits

Chipcon / Texas Instruments CC 1000

- Frequency: 300 1000 MHz, programmable in 250 Hz steps
- Bandwidth: up to 76 kbps
- Receive / transmit power consumption: 29 / 42 mW
- Range: 10 100 m
- Interface: bytes
- Chipcon / Texas Instruments CC 2420
 - IEEE 802.15.4 ("Zigbee")
 - Frequency: 2.4 GHz and others
 - Bandwidth: up to 250 kbps
 - Receive / transmit power consumption: 38 / 35 mW
 - Range: 50 125 m
 - Interface: packets

Sensors

Categories

- Passive vs. active
- Directional vs. omnidirectional
- Examples
 - Passive, omnidirectional
 - Temperature, microphone, humidity, ...
 - Chemical substances, gases (high energy consumption)
 - Passive, directional
 - Light, movement detector, camera
 - Active, directional
 - Radar, laser range finder
- Further properties
 - Analog vs. digital
 - Calibrated vs. uncalibrated

Example: Acceleration

- Mass suspended on springs
 - Displacement ~ acceleration
 - One axis per mass
- Measurement of displacement
 - Piezo electric
 - Capacitive

Example: CO₂

- Solution of C0₂ in water releases ions
 - Change of conductivity
 - Measurement of changes of electric potential between two electrodes

Energy Supply

Options

- Primary battery
- Secondary battery
- Goldcaps, supercaps: capacitors with very high capacity (1-1000 F)
- Energy harvesting
- Hybrid approaches

- Requirements on primary / secondary batteries
 - Low self discharge
 - Recharge parameters (charging time, number of charging cycles)
 - Relevant when used with energy harvesting
 - Recovery properties
 - Voltage stability under load and during discharge
 - Avoid voltage stabilization
 - Charge state estimation

Energy

- 1 J = 1 Nm = 1 kg m² / s²
- 1 J = 1 Ws
- 1 cal ~ 4.2 J
 - Energy to heat 1 g water by 1 Kelvin

James Prescott Joule 1818 - 1889

Energy Density

Energy stored in a volume (Joule per cm³):

Primary batteries						
Chemistry	Zinc-air	Lithium	Alkaline			
Energy (J/cm ³)	3780	2880	1200			
Secondary batteries						
Chemistry	Lithium	NiMH	NiCd			
Energy (J/cm ³)	1080	860	650			

- Supercaps: up to about 17 J/cm³
 - $E = \frac{1}{2} C U^2$

Energy Harvesting

- Convert other forms of energy into electrical energy
- Examples
 - (Fuel cells: 10 100 mW / cm²)
 - Solar cells: 10 μ W/cm² 15 mW/cm²
 - Temperature gradients: 80 μ W/cm^2 @ 1 V at 5K gradient
 - Vibrations: 0.1 10000 μ W/cm^3
 - Pressure (piezo-electric): 330 μ W/cm² (shoe)
- Other candidates
 - Air/water flow (MEMS turbines): 0.1-10 W/cm³ expected
 - Radio nuclide battery: up to 150 W/g, but only 3-8% efficiency (?)

Example: Vibrations

- Different approaches, cf. accelerometer
 - Piezo electric
 - Electrostatic
 - Electromagnetic
- Example: electrostatic
 - U = Q / C ~ Q x d / A
 - Area large
 - Charge with Q
 - Area small
 - Discharge
 - Why is this effective?
 - Charge Q, distance constant, area shrinks
 - Increase of voltage

Energy Consumption

- Typical energy consumption figures (Telos mote)
 - Energy per instruction: 1 nJ (duration ~ 100ns)
 - Send one byte: 1 uJ (duration ~ 30 us)
 - Write one byte to Flash: 3 uJ (duration ~ 80 us)
- Compute vs. communicate
 - 1000 instructions ~ 1 byte transmission
 - Compute to reduce communication (data reduction)
- Expected lifetime
 - Li battery some cm³: 10000 J
 - CPU: ~ 12 days
 - Radio: ~ 4 days
 - Flash: ~ 4 days
- Too short!

Duty Cycling

- Duty cycling
 - Long sleep phase (typically > 99%)
 - Hardware switched to low-power sleep mode
 - Quick wakeup
 - Activate all components (takes time and energy!)
 - Short wake time
 - Sense, process, send and go back to sleep
- Minimize integral over power consumption
 - Radio, processor, ...
- Achievable lifetime: years

Wakeup

Example: Telos Tmote

- Micro controller
 - Texas Instruments MSP 430
 - 2 KB RAM, 60 KB Flash
- Radio

- Chipcon CC2420 (IEEE 802.15.4, "Zigbee")
- 250 kbps, 50-125 m
- Sensors
 - Temperature, humidity, photosynthetic active light, visible light
 - Expansion slot

Example: Telos Tmote

Example: Telos

Motes Compared

Mote Type	WeC	René	René 2	Dot	Mica	Mica2Dot	Mica 2	Telos
Year	1998	1999	2000	2000	2001	2002	2002	2004
	400		4	(CAR)	(St	100	and the second second	
						1 A A		1907
		_		der.				
Microcontroller	. Tool of			1.4			477 100	TILIODIAN
Туре	AT90LS8535		ATmega163		0		ATmega128	TI MSP430 60
Program memory (KB)	8 16			128				
RAM (KB)	0.5			1		4		2
Active Power (mW)		15 15			8 33			3
Sleep Power (µW)	45		45 7		5 75		6	
Wakeup Time (µs)	1000			36	180		180	6
Nonvolatile storage								
Chip	24LC256			AT45DB041B			ST M24M01	
Connection type	I ² C			SPI			I^2C	
Size (KB)	32			512			128	
Communication								
Radio	TR1000			TR1000	CC1000		CC2420	
Data rate (kbps)	10			40	3	250		
Modulation type	OOK			ASK	FSK		O-QPSK	
Receive Power (mW)	9			12	29		38	
Transmit Power at 0dBm (mW)	36			36	42		35	
Power Consumption								
Minimum Operation (V)	2.7 2.7		2.7			1.8		
Total Active Power (mW)		24			27	44	89	41
Programming and Sensor Interfac	e							
Expansion	none	51-pin	51-pin	none	51-pin	19-pin	51-pin	10-pin
Communication	IEEI			g) and RS2	232 (requires additional hardware)			USB
Integrated Sensors	no	no	no	yes	no	no	no	yes

Miniaturization

Miniaturization

- So far: motes using commercial components
 - "COTS Dust"
- Vision "smart dust"
 - Sensor node as small as a dust grain?
- Different strategies
 - Efficient packaging
 - System on chip
 - MEMS

Packaging

- 3D instead 2D
 - Stackable PCBs
 - Flexible PCBs
- Other chips
 - Chip area << package size
 - Multi chip module
 - "naked" dies (Flip Chips)
 - One package for whole sensor node
 - Reduction by factor 2.5 5

Wire Bond

Si Chip Moulded Plasti

Multi Chip Module

	Components square [mm ²]						Total	
Version	Sensors	Passives (RLC)	IC	LED	Quartz	Others	Square	Total Surface [mm ²]
SMD	19,10	60,64	333,79	43,20	19,80	292,16	768,69	3x52 ² =4056
MCM	15,51	30,92	22,01	14,28	10,00	155,76	248,48	2x40 ² =1600
Reduction Factor	1,2	2,0	15,2	3,0	2,0	1,9	3,1	2,5

System on Chip

 Almost all electronics on a single chip

- Minimal external components

WiseNet SoC

SoC = Smart Dust?

- Antennas
 - Mono pole: length $\lambda/4$
 - At 1 GHz -> 10 cm
 - Higher frequencies -> more energy
- Batteries
 - Energy consumption does not scale with size!
- Main challenge: radio
 - Complex signal processing
 - Relatively high transmit power

Alternatives to Radio?

Laser

- Focus: large range with small transmit power
 - Several km at 5 mW transmit power
- Optical receiver simple: low energy consumption
- Optical receiver ("antenna") very small
 - Photo diode integrated into SoC
- Passive laser communication
 - Base station to/from sensor node

Passive Laser Communication

Modulation + Reflection

- Corner Cube Retroreflector (CCR)
 - Reflex reflector: light reflected to source
 - Third mirror can be deflected electrostatically
 - ~ 1-10 kbps
 - ~ 150 m at 5 mW

Smart Dust: Architecture

Smart Dust Prototype

- Smart Dust Prototype
 - Volume: 16mm³
 - Transmit energy: 16 pJ/bit
 - Receive energy: 69 pJ/bit
 - Energy supply

- Battery (1 J) + capacitor (1 mJ) + solar cell
- Cf. radio-based mote
 - Volume: some cm³
 - Transmit energy (min): > 1 nJ/bit
 - Transmit energy (real): > 100 nJ/bit

Base Station

Transmit

- Defocussed laser
- Raster scanning (cf. tv tube)
- Receive
 - Video camera with high frame rate
 - Simultaneous reception from many nodes
 - One node per pixel
 - Space division multiplexing

Base Station

Mobile Smart Dust?

- Flying, crawling
- MEMS (cf. CCR) for mobility

Mobile Smart Dust?

Smart Dust: Holy Grail?

- So far only prototypes
- Free line of sight
- Orientation of nodes important
- No direct communication among nodes
- Many applications don't need dust size

Future?

- Moore's law: Number of transistors per area doubles every 18 months
 - Will continue for another 10+ years
 - Intel's 3D transistor
 - Implies
 - Cost reduction
 - Lower energy consumption
- New technologies
 - New energy sources
 - Tiny fuel cells
 - More efficient radios
 - Electro mechanical resonators instead of complex signal processing
 - FBAR: Film Bulk Acoustic Resonator
 - Cf. crystal radio
 - Goal: < 100 uW

References

- Slides contain material by the following authors:
 - Joe Polastre, Chris Pister, Brett Warneke, Jason Hill, Jan Rabaey - UC Berkeley
 - Jan Beutel ETH Zurich
 - Christian Enz CSEM
 - Herbert Shea EPFL
 - David Polityko Fraunhofer IZM
 - Tom Torfs IMEC
 - Holger Karl Uni Paderborn
 - Marc Madou UC Irvine