

Sensor Networks

Prof. Dr. Kay Römer

Sensor Nodes

Applications

- Scientific instrument ("Macroscope")
 - Animals, plants environmental phenomena
- Industry
 - Infrastructure (pipes, machines)
 - Energy management
- Agriculture
 - Plants (growth, ripeness, soil quality)
 - Animals (diseases, fertility, virtual fences)
- Health ("Body Sensor Networks")
 - Wireless intensive care
 - Elderly care
 - Medical research
- Military / police
 - Detection, classification, localization of hostile activities

Lecture Course

- Fr, 10.00-12.00
- 11 Lectures (See TUGonline)
- Slides in TeachCenter
 - https://tc.tugraz.at/main/course/view.php?id=371
- Regular attendance required (VU)
 - 15 min repetition at begin of lecture
- Literature:
 - Holger Karl, Andreas Willig: Protocols and Architecture for Wireless Sensor Networks, Wiley, Chichester, 2005, ISBN 0-470-09510-5

Lecture Course

- Foundations and some advanced topics in wireless sensor networks
 - Applications, hardware, operating systems
 - Networking, localization, synchronization
 - Sensor data processing
- Goals
 - Overview of research area
 - Opportunities and limitations of sensor networks
 - Understanding key concepts
 - Hands-on experience with selected concepts

Lecture Course

- Multidisciplinary area
 - Application, modification, and integration of concepts already known in computer science and information technology
 - But also fundamentally new aspects
- Basic knowledge in relevant areas helpful, but I will summarize most important aspects

Exams

- Written exam at end of semester
 - 60 min
 - No utilities
 - Questions checking knowledge and ability to apply knowledge to simple problems
 - Two parts, separately graded, both positive

Lab Exercises

- Lab exercises based on concepts taught in lecture
 - Sensor nodes, Contiki operating system
 - Programming
 - Communication
 - Ranging
 - Position estimation

¹⁰ Organization of the lab

- Two main parts
 - 1st part: Wireless sensor networks programming
 - 2nd part: Indoor localization techniques

WSN programming

The Contiki operating system

Measuring data from sensors

Wireless communication (unicast/broadcast)

Relevant chapters from lecture:

- Chapter 2
- Chapter 3
- Chapter 6

Indoor localization

RSSI ranging distance measurement

Localization using min-max algorithm

Localization using Geo-n algorithm

Relevant chapters from lecture:

• Chapter 8