University

of Glasgow

i A
%%L'
2
VIA VERITAS VITA

TCP

Networked Systems 3
Lecture 13



Lecture Outline

® The Berkeley Sockets API

® The TCP protocol and stream sockets



The Berkeley Sockets API

e \Widely used low-level C networking API
® Firstintroduced in 4.BSD Unix

e Now available on most platforms: Linux, MacOS X, Windows, FreeBSD,
Solaris, etc.

e | argely compatible cross-platform

e Recommended reading:
Programming

The Sockets Networking Al
THIRD EDITION

e Stevens, Fenner, and Rudoff, “Unix Network Programming
volume 1: The Sockets Networking API”, 3rd Edition,
Addison-Wesley, 2003.




Concepts

- ® Sockets provide a standard
Application interface between network
I and application
e Two types of socket:
[ Socket j ® Stream — provides a virtual circuit service

1 e Datagram — delivers individual packets

® |ndependent of network type:

e Commonly used with TCP/IP and UDP/IP,
but not specific to the Internet protocols

e Discuss TCP/IP sockets today; UDP next
lecture



Creating a socket

#include <sys/types.h>
#include <sys/socket.h>

AF INET for IPv4
_> —_—

e AF INET6 for IPv6
int £d; /

fd = socket (family, type, protocol) ; ~, SOCK_STREAM for TCP
if (fd == -1) { T~ -

SOCK DGRAM for UDP
// Error: unable to create socket -

0 (not used for Internet sockets)

Create an unbound socket, not connected to network;
can be used as either a client or a server



What is a TCP/IP Connection?

e Areliable byte-stream connection between two
computers

e Most commonly used in a client-server fashion:

® The server listens on a well-known port

° The port is a 16-bit number used to distinguish servers
° E.g. web server listens on port 80, email server on port 25

® The client connects to that port

® (Once connection is established, either side can write data into the
connection, where it becomes available for the other side to read

® The Sockets API represents the connection using a
file descriptor



Using TCP Connections

. ) 4 )
Client Server
\§ fd connfd
v
? L Al
Network S —— -"“:: ------
1 ] N 'S‘(‘)C'ket
int fd = socket(...) int fd = socket(...)
bind(fd, ..., ...)
listen(fd, ...)
connect(fd, ..., ...) connfd = accept(fd, ...) ——
write(fd, data, datalen) read(connfd, buffer, buflen)
read(fd, buffer, buflen) write(connfd, data, datalen)

close(£fd) 7 close(connfd)



Implementing a Server: Bind and Listen

® A new socket can become
either client or server

® Jo implement a server:

® Bind to a port on a network interface

e Specify a well-known port for the service, and
INADDR _ANY to indicate any available network
interface

e Listen for new connections on that port

® The backlog is the maximum number of
connections the socket will queue up, each
waiting to be accept()’ed

#include <sys/types.h>
#include <sys/socket.h>

if (bind(fd, addr, addrlen)

== -1) {
// Error: unable to bind
}
if (listen(fd, backlog) == -1) {
// Error




Implementing a Server: Accept

® Once the server socket is listening for connections,
call accept () In aloop to accept new connections

In turn:

int connfd;

struct sockaddr in cliaddr;

socklen t cliaddrlen = sizeof(cliaddr);

connfd = accept(fd, (struct sockaddr *) &cliaddr, &cliaddrlen);
if (connfd == -1) {
// Error

The connfd is a new file descriptor for this connection
The original £d remains open, and can be used to accept another connection



Implementing a Client

® Aclient doesn't need to #inciude <sys/types.n>
. . #include <sys/socket.h>
bind() Or 1listen(),
. if (connect(fd, addr, addrlen) == -1) {
and Slmply COnneCtS tO // Error: unable to open connection
the server

® The addr parameter includes the

IP address and port on which the
server is listening



Specifying IP Addresses

e Specify an address and port ==t soereder

uint8 t sa_ len;
nbind() and connect () | mfeivs sty

® The address can be either IPv4 or IPv6

e Addresses for bind () and connect ()
specified via struct sockaddr

e (Could be modelled in C as a union, but the designers of the sockets API
chose to use a number of structs, and abuse casting instead

¢ The sa data field is big enough to hold the largest address of any family;
sa_len and sa family specify the length and type of the address

® Treats address as opaque binary string



Specifying |IP Addresses: |IPv4

® Two variations exist for IPv4
and IPvb addresses

® Use struct sockaddr in to hold
an |Pv4 address

e Has the same size and memory layout
as struct sockaddr, but interprets
the bits differently to give structure to
the address

struct in addr ({

}i

in addr t

s_addr;

struct sockaddr in {

}i

uint8 t

sa family t

in port t
struct in addr
char

sin len;

sin family;
sin port;
sin addr;
sin pad[1l6];




Specifying |IP Addresses: IPv6

® Two variations exist for IPv4
and IPvb addresses

® Use struct sockaddr iné6 to hold
an |Pv6 address

e Has the same size and memory layout
as struct sockaddr, but interprets
the bits differently to give structure to
the address

struct in6 addr ({

}i

struct sockaddr iné

}i

uint8 t

uint8 t

sa family t
in port t
uint32 t

s6 _addr[1l6];

{

sin6 len;

sin6 family;
sin6 port;
sin6é flowinfo;

struct in6 addr sin6 addr;




Working with |IP Addresses

® Work with either struct sockaddr 1inor
struct sockaddr 1iné6

® Castittoastruct sockaddr before calling
the socket routines

struct sockaddr in addr;
// Fill in addr here

if (bind(fd, (struct sockaddr *) &addr, sizeof(addr)) == -1) {




Creating an Address: INADDR_ANY

#include <sys/types.h> e Servers often just want to listen on the default
#include <sys/socket.h> address — do this using INADDR_ANY for the
#include <netinet/in.h> address passed to bind ()

#include <arpa/inet.h> e Convert port number using htons(...)

struct sockaddr in addr;

addr.sin addr.s addr = INADDR ANY;
addr.sin family = AF INET;
addr.sin port htons (80);

i1f (bind(fd, (struct sockaddr *)&addr, sizeof(addr)) == -1) {




Creating an Address: Manually

#include
#include
#include
#include

<sys/types.h>
<sys/socket.h>
<netinet/in.h>
<arpa/inet.h>

e Clients want to connect to a specific IP address —
can use inet pton() to create the address, if
you know the numeric IP address

e Convert port number using htons(...)

struct sockaddr in
inet pton(AF_INET,
addr.sin

addr.sin

if (connect(fd,

addr;
“130.209.240.1",
family = AF INET;

port = htons(80);

(struct sockaddr *)&addr, sizeof(addr)) == -1) {

&addr.sin addr);

DON’T DO THIS — USE THE DNS INSTEAD

—> Lecture 16



Role of the TCP Port Number

Port Range Name Intended use
0] 1023|Well-known (system) ports Trusted operating system services
1024 | 49151 |Registered (user) ports User applications and services
49152 65535|Dynamic (ephemeral) ports Eg'a’f;: ;g’ft’sﬁgf;'g’lgpggn?%%'fna;girfﬁs

e Servers must listen on a known e TCP clients traditionally connect
port; IANA maintains a registry from a randomly chosen port in

e Distinction between system and the ephemeral range

user ports ill-advised — security ® The port must be chosen randomly, to

problems resulted prevent spoofing attacks

. _ e Many systems use the entire port range
e |nsufficient port space available for source ports, to increase the amount

(>75% of ports are registered) of randomness available

http://www.iana.org/assignments/port-numbers

|7



TCP Connection Setup

® Connections use 3-way handshake

The SYN and ACK flags in the TCP header signal
connection progress

Initial packet has SYN bit set, includes randomly
chosen initial sequence number

Reply also has SYN bit set and randomly chosen
sequence number, acknowledges initial packet

Handshake completed by acknowledgement of
second packet

Happens during the connect ()/accept () calls

e Combination ensures robustness

Randomly chosen initial sequence numbers give
robustness to delayed packets or restarted hosts

Acknowledgements ensure reliability

|18

Time

Similar handshake ends connection,
with FIN bits signalling the teardown



Reading and Writing Data

#define BUFLEN 1500 * The read () call reads up to BUFLEN
. . bytes of data from connection — blocks

ssize t 1; . .

ssize t rcount; until data available

char  buf[BUFLEN]; * Returns actual number of bytes read,

e t d(fd, buf, BUFLEN) or -1 on error
rcoun = YXea ’ ur, H . .
if (rcount == -1y { e Data is not null terminated

// Error has occurred

}

for (1 = 0; i < rcount; i++) {
printf(“%c”, buf[i]);

}
char data[] = “Hello, world!”; * Thewrite() call sends data over a
int tal = - .
int datalen = strlen(data); socket: blocks until all data can be
if (write(fd, data, datalen) == -1) { written
// Error has occurred * Returns actual number of bytes written,

or —1 on error




Record Boundaries in TCP Connections

o |fthe datainawrite() is bigger than the data link
layer MTU, TCP will send the data as fragments

e Similarly, multiple small write () requests may be
aggregated into a single TCP packet

e |mplication: the data returned by a read () doesn't
necessarily match that sent in a single write ()

® There often appears to be a correspondence, but this is not guaranteed
(it may work in the lab, but not when you use it over a different link)

20



Application Level Framing

Data may arrive in arbitrary sized chunks; must parse and understand
the data, no matter where it is split by the network — it's a byte stream
(colours indicate one possible split of the data into chunks)

HTTP/1.1 200 OK

Date: Mon, 19 Jan 2009 22:25:40 GMT

Server: Apache/2.0.46 (Scientific Linux)
Last-Modified: Mon, 17 Nov 2003 08:06:50 GMT

ETag: "57c0cd-e3e-17901a80" Example: HTTP response
Accept-Ranges: bytes
Content-Length: 3646 Known marker (blank line)

Connection: close

Content-Type: text/html; charset=UTF-8 S|gnals end of headers

<HTML> Size of payload indicated
SHEAD= | | | | In the headers
<TITLE>Computing Science, University of Glasgow </TITLE>

</BODY>

</HTML>

21



TCP Reliability

e [CP connections are reliable

Application data gathered into packets
Each packet has a sequence number and

an acknowledgement number

e  Sequence number counts how many bytes are sent
(this example is unrealistic, since it shows one byte

being sent per packet)

Acknowledgement number specifies next

byte expected to be received

e Cumulative positive acknowledgement

e Only acknowledge contiguous data packets (sliding
window protocol, so several data packets in flight)

e Duplicated acknowledgements imply loss

TCP layer retransmits lost packets — this is

Invisible to the application

22

Host A

seq=5
seq=06
seq=7
seq=8
seq=9
seq =10
seq = 11

Time

Host B

Time

ack =6
ack =7

ack =8

ack =8
ack =8
ack =8



TCP Reliability: How is Loss Detected

Host A
seq=95
seq =6 \
seq =7 \
seq =8 \
seq=9\ ~__>>
seq =10 \\\ S
seq = 11 e T
\\\)
\
£ £
= 4 = 4

Host B

ack =6
ack =7
ack =7
ack =9
ack =10
ack = 11
ack =12

23

® Packet reordering also
causes duplicate ACKs

Gives appearance of loss, when
the data was merely delayed

o TCP uses triple duplicate
ACK to indicate loss

Four identical ACKs in a row

Slightly delays response to loss,
but makes TCP more robust to
reordering



Head of Line Blocking in TCP

e Data delivered in order, even after loss occurs

e TCP will retransmit the missing data, transparently to the application

® Aread() for the missing data will block until it arrives; TCP delivers all
data in-order

Sender Receiver
seq=0
1500 byt
seq = 1500 °s —2lack = 1500 read() » 1500 bytes
seq = 3000 —1ack = 3000 read() » 1500 bytes
seq = 4500 ~—2lack =4500 read() -» 1500 bytes
seq = 6000
—2ack = 4500
seq = 7500
—2ack = 4500 |read() blocks
seq = 9000 =
—>lack = 4500
= 4500 p==
seq !
—>lack = 10500 read() » 6000 bytes
seq = 1050% v

24



Summary

® The Berkeley Sockets API
e |mplementing TCP client and server sockets
e The TCP API:

e Reliability
e Unframed byte stream

e Head of line blocking

25



