

Network Layer (2): Addressing

Networked Systems 3 Lecture 9

Lecture Outline

- Addressing
 - Concepts
 - Addressing in the Internet
 - IPv4
 - IPv6
 - The shortage of IPv4 addresses

Addressing

- How to name hosts in a network?
 - Is the address an identity or a location?
 - Does it name the host, or the location at which it attaches to the network
 - How should addresses be allocated?
 - Hierarchical or flat?
 - What is the address format?
 - Human or machine readable?
 - Textual or binary? Structured or unstructured?
 - Fixed or variable length? How large?

Identity and Location

Addresses can denote host identity

- Give hosts a consistent address, irrespective of where or when they attach to the network
- Simple upper-layer protocols
 - Transport layer and applications unaware of multi-homing or mobility
- Puts complexity in network layer
 - Network must determine location of host before it can route data
 - Often requires in-network database to map host identity to routable address
 - E.g., mobile phone numbers

Identity and Location

- Alternatively, an address can indicate the *location* at which a host attaches to the network
 - Address structure matches the network structure
 - Network can directly route data given an address
 - E.g., geographic phone numbers: +44 141 330 4256
 - Simplifies network layer, by pushing complexity to the higher layers
 - Multi-homing and mobility must be handled by transport layer or applications – transport layer connections break when host moves

Address Allocation

- Are addresses allocated hierarchically?
 - Allows routing on aggregate addresses
 - E.g., phone call to +1 703 243 9422

 Route to US without looking at rest of number
 - Forces address structure to match network topology
 - Requires rigid control of allocations
- Or is there a flat namespace?
 - Flexible allocations, no aggregation → not scalable

Address Formats

- Textual or binary? Fixed or variable length?
 - Fixed length binary easier (faster) for machines to process
 - Variable length textual easier for humans to read
 - Which are you optimising for?

IP Addresses

- IP addresses have the following characteristics:
 - They specify location of a network interface
 - They are allocated hierarchically
 - They are fixed length binary values
 - IPv4: 32 bits
 - IPv6: 128 bits
- Domain names are a separate application level namespace

IP Addresses

Both IPv4 and IPv6 addresses encode location

- Addresses are split into a network part and a host part
 - A netmask describes the number of bits in the network part
 - The network itself has the address with the host part equal to zero
 - The broadcast address for a network has all bits of host part equal to one(allows messages to be sent to all hosts on a network)
- A host with several network interfaces will have one IP addresses per interface
 - E.g., laptop with an Ethernet interface and a Wi-Fi interface will have two IP addresses

IPv4 Addresses

32 bit binary addresses

IP address: 130.209.247.112 = 10000010 11010001 11110111 01110000

Netmask: 255.255.240.0 = 11111111 11111111 11110000 00000000

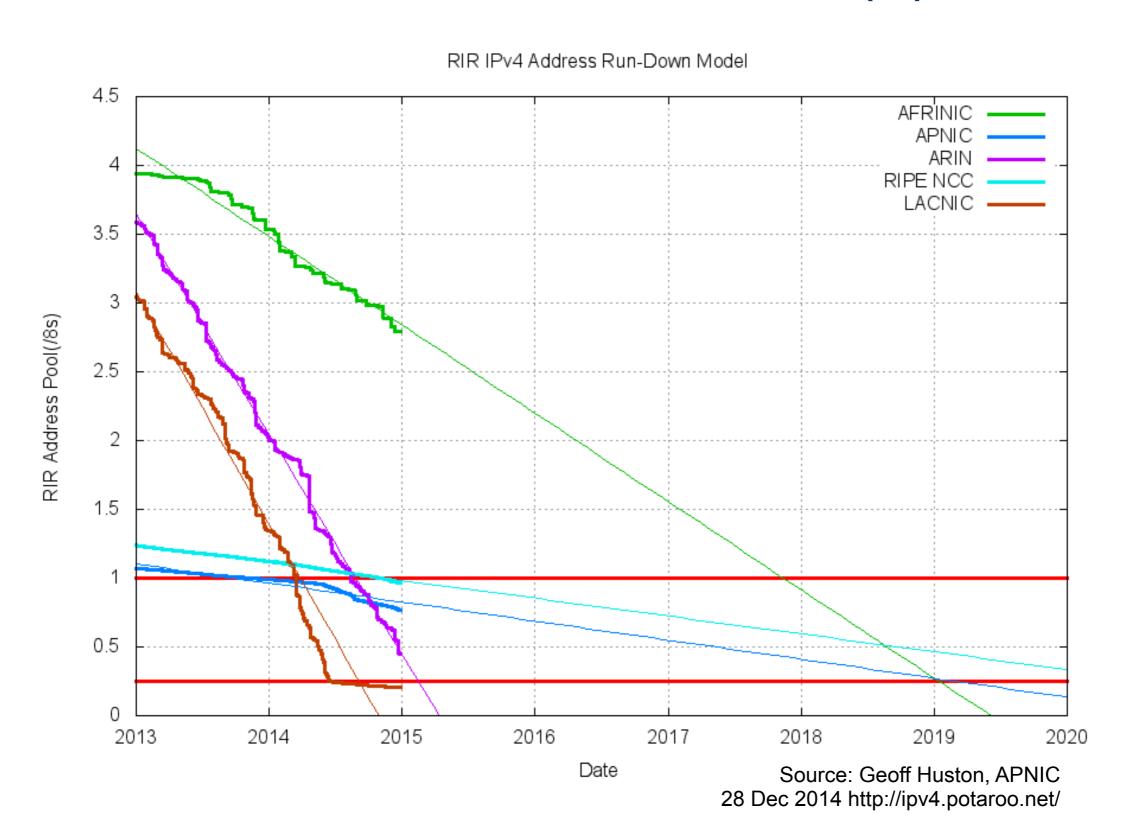
20 bits → network = 130.209.240.0/20

Broadcast address:

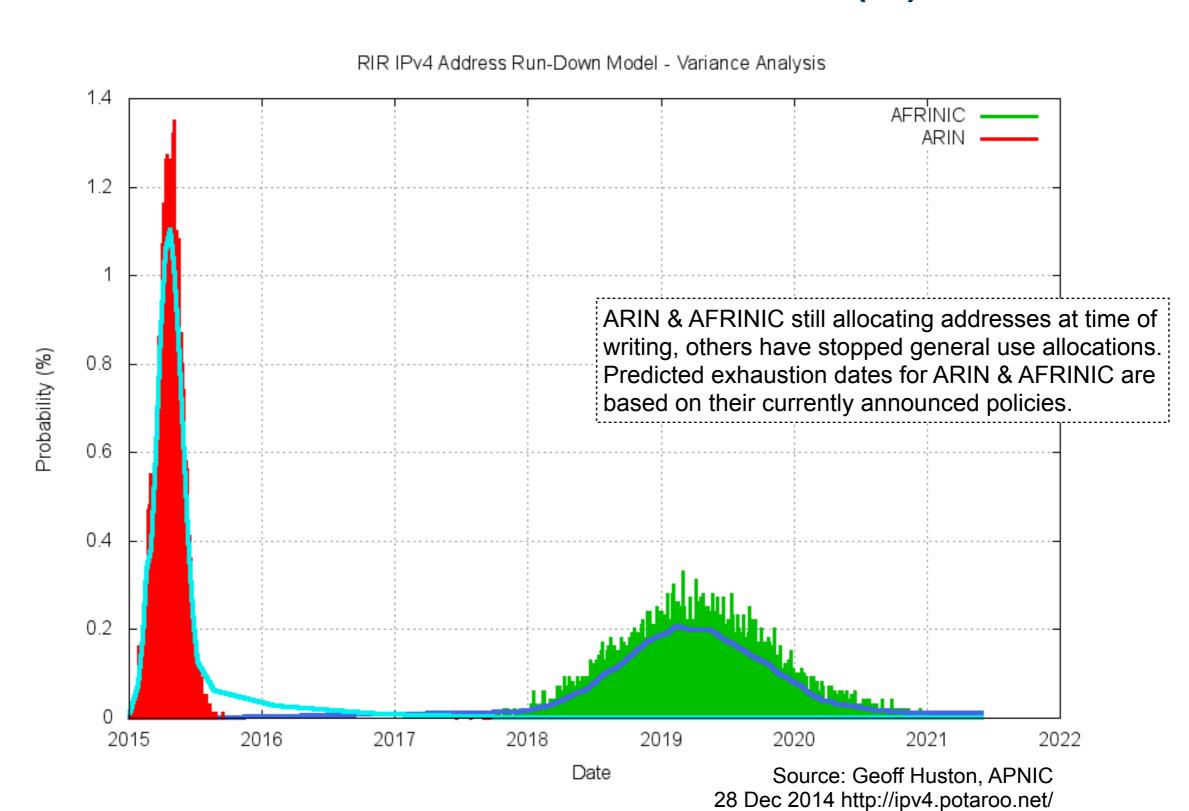
Aside: Classes of IP address

- IP addresses used to be allocated so the netmask was a multiple of 8 bits
 - Class A → a /8 network (~16 million addresses)
 - Class B → a /16 network (65536 addresses)

Old terminology still used sometimes...


- Class C → a /24 network (256 addresses)
- Inflexible, and wasted addresses

- Arbitrary length netmask allowed since 1993:
 - The Glasgow SoCS network is a /20


IP Address Management

- IPv4 has $2^{32} = 4,294,967,296$ addresses
 - IANA administers the pool of unallocated addresses
 - Historically would assign addresses directly to ISPs, large enterprises, etc.
 - Now, addresses assigned to regional Internet registries (RIRs) as needed:
 - AfriNIC (Africa), APNIC (Asia-Pacific), ARIN (North America), LACNIC (Latin America and Caribbean), and RIPE (Europe, Middle East, Central Asia)
 - Allocations made one /8 (2²⁴ = 16,777,216 addresses) at a time
 - RIRs allocate addresses to ISPs and large enterprises within their region;
 ISPs allocate to their customers
- IANA has allocated all available addresses to RIRs
 - Last allocation made on 3 February 2011

RIR IPv4 Address Exhaustion (1)

RIR IPv4 Address Exhaustion (2)

The IPv4 Address Space is Fully Used

 In practical terms, we have run out of IPv4 address space

IPv6

- IPv6 provides 128 bit addresses if deployed it will solve address shortage for a *long* time
 - $2^{128} = 340,282,366,920,938,463,463,374,607,431,768,211,456$ addresses
 - Approximately 665,570,793,348,866,943,898,599 addresses per square metre of the Earth's surface

IPv6 Addresses

128 bit binary addresses, written as : separated hexadecimal

2001:0db8:85a3:08d3:1319:8a2e:0370:7334

A *single* run of consecutive zeros can be compressed to a ::

2001:200::8002:203:47ff:fea5:3085

IPv6 Addresses

Local identifier part of IPv6 address is 64 bits:

2001:0db8:85a3:08d3:1319:8a2e:0370:7334

Local identifier part

Can be derived from Ethernet/Wi-Fi MAC address:

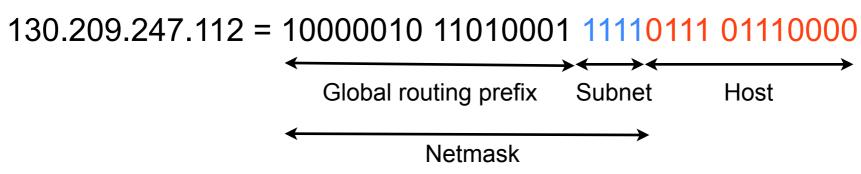
48 bit IEEE MAC: 0014:5104:25ea

Expand to 64 bits: 0014:51ff:fe04:25ea

Invert bit 6: 0214:51ff:fe04:25ea

Or randomly chosen, with bit 6 set to zero, to give illusion of privacy

IPv6 Addresses

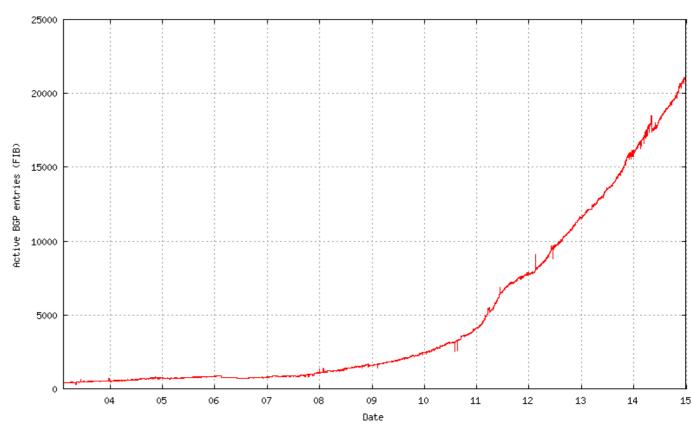

Routers advertise network part, hosts auto-configure

address: 2001:0db8:85a3:08d3:1319:8a2e:0370:7334

Network part

Network part is split into a *global routing prefix* (a.k.a. "routing goop" of up to 48 bits) and a *subnet identifier*

Formalises the distinction present in IPv4:



IPv6 Deployment Issues

- IPv6 requires changes to every single host, router, firewall, and application...
 - Significant deployment challenge!
 - Host changes done: MacOS X, Windows, Linux, FreeBSD, Symbian, iOS, Android, etc.
 - Backbone routers generally support IPv6, home routers and firewalls (mostly) not yet
 - Many applications have been updated

NAT vs. IPv6

- NAT widely deployed for IPv4
 - Initially seems simple: no host changes; web browsing and email still work
 - But... hugely complicated for peer-to-peer applications → lecture 14
 - Very difficult to debug problems, or deploy new classes of application
- IPv6 starting to see large-scale use:

Source: Geoff Huston, APNIC 28 Dec 2014 http://bgp.potaroo.net/v6/as2.0/

Summary

- Addressing: identity vs. location, address formats
- Internet addressing:
 - IPv4 and address exhaustion
 - IPv6