
The Data Link Layer

Networked Systems 3
Lecture 5

Purpose of Data Link Layer

• Arbitrate access to the physical layer
• Identify devices – addressing

• Structure and frame the raw bitstream; detect and correct bit errors

• Control access to the channel (media access control)

• Turn the raw bit stream into a structured
communications channel

2

Addressing

• Physical links can be point-to-point or multi-access
• Wireless links are common example of multi-access, but several hosts can

also be connected to a single cable to form multi-access wired link

• Multi-access links require host addresses, to identify senders and receivers

!

• Host addresses may be link-local or global scope
• Sufficient to be link-local (i.e., unique amongst hosts connected to a link)

• Many data link layer protocols use global scope addresses

• Examples: Ethernet and IEEE 802.11 Wi-Fi

• Simpler to implement if devices can move, since don’t need to change
address when connected to a different link

• Some privacy concerns

3

Framing and Synchronisation

• Physical layer provides unreliable raw bit stream
• Bits might be corrupted

• Timing can be disrupted

• Data link layer must correct these problems
• Break the raw bit stream into frames

• Transmit and repair individual frames

• Limit scope of any transmission errors

4

Frame Structure

Start
Code

Header Data (~kbytes)
Error

Detection

Frame

Synchronisation
Timing recovery

Host addresses; control information

Network layer protocol data

5

Example: Ethernet

Preamble Source Addr Dest Addr Len CRCData

8 bytes 6 bytes 6 bytes 2 bytes 4 bytes< 1500 bytes

Example: 00:14:51:04:27:ea
24 bit vendor ID 24 bit device ID

Synchronisation and
timing recovery

48 bit globally unique addresses

6

Start Code Header Error Correction

Synchronisation (1)

• How to detect the start of a message?
• Leave gaps between frames

• Problem – physical layer typically doesn’t guarantee timing (clock
skew, etc.)

• Precede each frame with a length field

• What if that length is corrupted? How to find next frame?

• Add a special start code to beginning of frame

• A unique bit pattern that only occurs at the start of each frame

• Enables synchronisation after error – wait for next start code, begin
reading frame headers

7

Synchronisation (2)

• What makes a good start code?
• Must not appear in the frame headers, data, or error detecting code

• Must allow timing recovery

Start code should
generate a regular pattern
after physical layer coding

0 1 1 1 1 1 01

Receiver measures timing

Manchester
Encoding

8

Synchronisation (3)

• What if start code appears in data? Use
bit stuffing to give a transparent channel

• Sender inserts a 0 bit after sending any
five consecutive 1 bits – unless sending
start code

!

• If receiver sees five consecutive 1 bits,
look at sixth bit:

• If 0, has been stuffed, so remove

• If 1, look at seventh bit:

• If 0, start code

• If 1, corrupt frame

01101111110111110111110010110001

9

0110111110101111101111100010110001

Bit stuffing

Transmit data

01101111110111110111110010110001

0110111110101111101111100010110001

Remove stuffing

Error Detection

• Noise and interference
at the physical layer
can cause bit errors
• Rare in wired links, common in

wireless systems

!

• Add error detecting
code to each packet

0 10 0 1 1 1 1 0 1 0 0 0 0 1 0

0 10 0 1 1 0 1 0 1 0 0 0 0 1 0

Noise corrupts signal

10

Parity Codes

• Simplest error detecting code

• Calculate parity of the data
• How many 1 bits are in the data?

• An odd number → parity 1

• An even number → parity 0

• Parity bit is the XOR (“⊕”) of data bits

• Transmit parity with the data,
check at receiver
• Detects all single bit errors

1 1 1 0 1 0 00 Original

1 1 1 0 1 0 00 Add parity0

1 0 1 0 1 0 00 0 Error

1
Recalculate parity

Error
Detected

Transmission

S
en

de
r

R
ec

ei
ve

r

⊕

⊕

11

The Internet Checksum

#include <stdint.h>!
!
// Internet checksum algorithm. Assumes!
// data is padded to a 16-bit boundary.!
uint16_t!
internet_cksum(uint16_t *buf, int buflen)!
{!
 uint32_t sum = 0;!
!
 while (buflen--) {!
 sum += *(buf++);!
 if (sum & 0xffff0000) {!
 // Carry occurred, wrap around!
 sum &= 0x0000ffff;!
 sum++;!
 }!
 }!
 return ~(sum & 0x0000ffff);!
}

• Sum data values, send
as a checksum in each
frame
• Internet protocol uses a 16 bit

ones complement checksum

• Receiver recalculates,
mismatch → bit error

• Better error detection
than parity code
• Detects many multiple bit errors

12

Other Error Detecting Codes

• Parity codes and checksums relatively weak
• Simple to implement

• Undetected errors reasonably likely

• More powerful error detecting codes exist
• Cyclic redundancy code (CRC)

• More complex → fewer undetected errors

• (see recommended reading for details)

13

Error Correction

• Extend error detecting codes to correct errors
• Transmit error correcting code as additional data within each frame

• Allows receiver to correct (some) errors without contacting sender

14

Error Correcting Codes: Hamming Code

• Simple error correcting code:
• Send n data bits and k check bits each word

• Check bits are sent as bits 1, 2, 4, 8, 16, …

• Each check bit codes parity for some data bits:
• b1 = b3 ⊕ b5 ⊕ b7 ⊕ b9 ⊕ b11…

• b2 = b3 ⊕ b6 ⊕ b7 ⊕ b10 ⊕ b11 ⊕ b14 ⊕ b15…

• b4 = b5 ⊕ b6 ⊕ b7 ⊕ b12 ⊕ b13 ⊕ b14 ⊕ b15…

• i.e., starting at check bit i, check i bits, skip i bits, repeat

Character ASCII Hamming Code

H 1001000 00110010000

a 1100001 10111001001

m 1101101 11101010101

m 1101101 11101010101

i 1101001 01101011001

n 1101110 01101010110

g 1100111 11111001111

0100000 10011000000

c 1100011 11111000011

o 1101111 00101011111

d 1100100 11111001100

e 1100101 00111000101

Richard Hamming

15

Error Correcting Codes: Hamming Code

• On reception:
• set counter = 0  

recalculate check bits, k = 1, 2, 4, 8, … in turn {  
 if check bit k is incorrect { 
 counter += k 
 } 
} 
if (counter == 0) {  
 no errors 
} else { 
 bit counter is incorrect 
} 

• Corrects all single bit errors

16

Character ASCII Hamming Code

H 1001000 00110010000

a 1100001 10111001001

m 1101101 11101010101

m 1101101 11101010101

i 1101001 01101011001

n 1101110 01101010110

g 1100111 11111001111

0100000 10011000000

c 1100011 11111000011

o 1101111 00101011111

d 1100100 11111001100

e 1100101 00111000101

Error Correcting Codes

• Other error correcting codes exist

• Tradeoff: complexity, amount of data added, ability
to correct multi-bit errors

!

• Can also detect error, and request retransmission –
error correcting codes not the only means of repair

17

Summary

• Data link layer

• Addressing

• Framing, synchronisation, start codes

• Error detecting and correcting codes

18

