

Protocols and Layers

Networked Systems 3 Lecture 2

Lecture Outline

- Network Protocols
 - Syntax and semantics
- Protocol Layering
 - OSI Reference Model
- Protocol Standards

Network Protocols

- Communication occurs when two (or more) hosts exchange messages across a network
- To be meaningful, the messages need follow some well known syntax, and have agreed semantics
 - A network protocol is an agreed language for encoding messages, along with the rules defining what messages mean and when they can be sent
 - c.f. a programming language, where syntax and semantics define the legal programs
 - Numerous network protocols exist; some operate between hosts, some between routers, and some between hosts and routers
 - The protocols define the behaviour of the network

Network Protocols: Syntax

- A protocol will comprise different types of message
 - Known as protocol data units (PDUs)
- Each type of PDU will have a particular syntax
 - Describes what information is included in the PDU, and how it's formatted
 - PDUs may be formatted as textual information or as binary data
 - Textual PDUs have a syntax and grammar that describes their format
 - Much like a programming language has a grammar
 - Examples: HTTP/1.1, SMTP, SIP, Jabber
 - Binary PDUs similarly have rules describing their format
 - Is data big or little endian? 32 or 64 bit? Fixed or variable length? What are the alignment requirements?
 - Examples: TCP/IP, RTP
- PDUs define what messages are legal to send

Network Protocol: Semantics

- Protocol semantics define when PDUs can be sent, and what response is needed
 - Define who can send PDUs, and when they can be sent
 - Define roles for the hosts (e.g., client and server, peer-to-peer)
 - Define what are the entities that communicate and how they are named
 - Define how errors are handled
- Commonly described using state-transition diagram
 - States indicate stages of protocol operation
 - Transitions occur in response to PDUs, and may result in other PDUs being sent

Network Protocol Example: Morse Code

- A simple network protocol: Morse code and the telegraph
 - Signals on electrical cable form the channel
 - Protocol syntax: pattern of dots and dashes signals letters

Α	• -	J	•	S	• • •
В	- • • •	K	- • -	Т	•
С	- • - •	L	• - • •	U	• • -
D	- • •	M		V	• • • -
Е	•	Ν	- •	W	•
F	• • • •	0		Χ	- • • -
G	•	Р	• •	Υ	- •
Н	• • • •	Q	•-	Z	• •
I	• •	R	• - •		

- Protocol semantics:
 - Different gap lengths to signal end of word, end of latter
 - Use of STOP for end of message

Samuel Morse

Protocol Layering

- Communications systems are typically organised as a series of protocol layers
 - Structured design to reduce complexity
 - Each layer offers services to the next higher layer, which it implements using the services of the lower layer – well defined interfaces
 - Highest layer is the communicating application
 - Lowest layer is the physical communications channel
 - Peers at some layer, i, communicate via a layer i protocol, using lower layer services

Protocol Layering: Example

- Web browser talking to a web server
- Simplified view with five protocol layers:
 - HTML
 - HTTP
 - TCP
 - IP
 - Ethernet

OSI Reference Model

A standard way of thinking about layered protocol design A design tool; real implementations are more complex

Physical Layer

- Defines characteristics of the cable or optical fibre used:
 - Size and shape of the plugs
 - Maximum cable/fibre length
 - Type of cable: electrical voltage, current, modulation
 - Type of fibre: single- or multi-mode, optical clarity, colour, power output, and modulation of the laser
- For wireless links:
 - Radio frequency, transmission power, modulation scheme, type of antenna, etc.

Data Link Layer

- Structure and frame physical layer bit stream
 - Split the bit stream into messages
 - Detect/correct errors in messages
 - Parity and error correcting codes
 - (Negative) acknowledgements + retransmission
- Perform media access control
 - Assign addresses to hosts on the link
 - Arbitrate access to link, and determine when hosts are allowed to send message
 - Ensure fair access to the link and provide flow control to avoid overwhelming hosts
- Examples: Ethernet, 802.11

Network Layer

- Interconnects multiple links to form a wide area network from source host to destination host
 - Data delivery
 - Naming and addressing
 - Routing
 - Admission/Flow control
- Example: IP

Transport Layer

- End-to-end transfer of data from the source to the destination(s)
 - Transfers data between a session level service at the source, and corresponding service at the destination
 - May provide reliability, ordering, framing, congestion control, etc.
 - Depends on guarantees provided by the network layer
- Example: TCP

Session Layer

- Manages (multiple) transport layer connections
- Example session layer functions:
 - Open several TCP/IP connections to download a web page using HTTP
 - Use SMTP to transfer several email messages over a single TCP/IP connection
 - Coordinate control, audio and video flows making up a video conference

Presentation Layer

- Manages the presentation, representation, and conversion of data:
 - Character set, language, etc.
 - Data markup languages (e.g. XML, HTML)
 - Data format conversion (e.g. big or little endian)
 - Content negotiation (e.g. MIME, SDP)
- Common services used by many applications

Application Layer

- User application protocols
 - Not the application programs themselves

Examples:

- Flickr API, Facebook API, Google Maps API, etc.
- Web services
- Grid computing

Protocol Standards

- A formal description of a network protocol
- Ensure interoperability amongst diverse implementations
- Variety of standards setting procedures:
 - Open or closed standards development process
 - Free or restricted standards availability
 - Individual vs. corporate vs. national membership
 - Lead technical development or document existing practice

You are here! -

Political

Financial

Application

Presentation

Session

Transport

Network

Data Link

Physical

Key Standards Organisations

- Internet Engineering Task Force
 - http://www.ietf.org/ and http://www.rfc-editor.org/
- International Telecommunications Union
 - http://www.itu.int/ (part of the United Nations)
- 3rd Generation Partnership Project
 - http://www.3gpp.org/
- World Wide Web Consortium
 - http://www.org/

Summary

- Protocols: syntax and semantics
- Layered network architectures
- Importance of standards

"Networks are like onions..."

