O verflow

Module 18

Ethical Hacking and Countermeasures
Buffer Overflow

CEH

Exam 312-50 Certified Ethical Hacker

Buffer Overflow

Module 18

Engineered by Hackers. Presented by Professionals.

1J1lm

E thical Hacking and Countermeasures Vv38

M odule 18:

Module 18 Page 2692

Buffer Overflow

Exam 312-50

Ethical Hacking and Countermeasures Copyright © by EC-COUNCiIl
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
Buffer Overflow

Security News ¢ EH

1 1tkKJl Nmbn

©e o 0 ..,

& # r

S Home f News N Services J About Us Ls t

. . October 19,2012
Steam Gaming Platform Vulnerable to Remote Exploits; ctober
50 Million at Risk

More than 50 million users of the Steam gaming and media distribution platform are at risk for remote compromise
because of weaknesses in the platform's URL protocol handler, a pair of researchers at ReVuln wrote in a paper
released this week.

Luigi Auriemma and Donato Ferrante discovered a number of memory corruption issues, including buffer and heap
overflows that would allow an attacker to abuse the way the Steam client handles browser requests. Steam runs on
Windows, Linux and Mac OSX.

A The steam:// URL protocol is used to connect to game servers, load and uninstall games, backup files, run games and
interact with news, profiles and download pages offered by Valve, the company that operates the platform. Attackers,
Auriemma and Ferrante said, can abuse specific Steam commands via steam:// URLs to inject attacks and run other
malicious code on victim machines.

"We proved that the current implementation of the Steam Browser Protocol handling mechanism is an excellent attack
vector, which enables attackers to exploit local issues in a remote fashion,” Auriemma and Ferrante wrote. "Because of
the big audience, the support for several different platforms and the amount of effort required to exploit bug via the

Steam Browser Protocol commands. Steam can be considered a high-impact attack vector.”

Copyright © by EC-Cauncl. All Rights Reserved. Reproduction is Strictly Prohibited.

S ecurity N ew s

Steam G aming Platform Vulnerable to Remote Exploits;

50 M illion at R isk
Source: http://threatpost.com

More than 50 million users of the Steam gaming and media distribution platform are at risk for
remote compromise because of weaknesses in the platform's URL protocol handler, a pair of

researchers at ReVuln wrote in a paper released this week.

Luigi Auriemma and Donato Ferrante discovered a number of memory corruption issues,
including buffer and heap overflows that would allow an attacker to abuse the way the Steam

client handles browser requests. Steam runs on Windows, Linux and Mac OSX.

The steam:// URL protocol is used to connect to game servers, load and uninstall games,
backup files, run games and interact with news, profiles and download pages offered by Valve,
the company that operates the platform. Attackers, Auriemma and Ferrante said, can abuse
specific Steam commands via steam:// URLs to inject attacks and run other malicious code on

victim machines.

"We proved that the current implementation of the Steam Browser Protocol handling

mechanism is an excellent attack vector, which enables attackers to exploit local issues in a

Module 18 Page 2693 Ethical Hacking and Countermeasures Copyright © by EC-COUNCiIl
All Rights Reserved. Reproduction is Strictly Prohibited.

http://threatpost.com
http://threatpost.com

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
Buffer Overflow

remote fashion,” Auriemma and Ferrante wrote. "Because of the big audience, the support for
several different platforms and the amount of effort required to exploit bug via the Steam

Browser Protocol commands, Steam can be considered a high-impact attack vector."

A large part of the problem rests in the fact that most browsers don't ask for user permission
before interacting with the Steam client, and those that do, don't explain there could be a
security issue. As a result, users could be tricked into clicking on a malicious steam:// URL or

redirect browsers via JavaScript to a malicious site, the paper said.

The paper details five new remotely exploitable vulnerabilities in not only Steam, but also in
the Source and Unreal game engines. Some of the games running on the affected platforms
include Half-Life 2 Counter-Strike, Team Fortress 2, Left 4 Dead, Nuclear Dawn, Smashball and

many others.

One of the more dangerous vulnerabilities discovered is involves the retailinstall command that
allows Steam to install or restore backups from a local directory. An attacker can abuse the
directory path to point to a remote network folder and then attack the function that processes
a .tga splash image which is vulnerable to an integer overflow attack. A heap-based overflow

results and an attacker could remotely execute code.

To exploit the Source game engine, Auriemma and Ferrante used a malicious .bat file placed in

the startup folder of the user's accountthat executes upon the gamer's next login.

The pair also found several integer overflow flaws in the Unreal gaming engine by taking
advantage of a condition where Unreal supports the loading of content from remote machines
via Windows WebDAV or a SMB share. Malicious content could be remotely injected in this

way.

Auto-update function vulnerabilities in a pair of games, All Points Bulletin and MicroVolts, were
also discovered and exploited. The researchers were able to exploit a directory traversal to

overwrite or create any malicious file.

Users reduce the impact of these issues by disabling the steam:// URL handler or using a
browser that doesn't allow direct execution of the Steam Browser Protocol. Steam could also

deny the passing of command-line arguments to remote software.

Copyright © 2012 threatpost.com

By Michael Mimoso

http://threatpost.com/en us/blogs/steam-gaming-platform-vulnerable-rernote-exploits-50-

million-risk-101912

Module 18 Page 2694 Ethical Hacking and Countermeasures Copyright © by EC-COUNCiIl
All Rights Reserved. Reproduction is Strictly Prohibited.

http://threatpost.com/en

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
Buffer Overflow

Module Objectives CEH

J Heap-Based Buffer Overflow J How to Mutate a Buffer Overflow

Exploit

J Why Are Programs and Applications
J Ildentifying Buffer Overflows
Vulnerable to Buffer Overflows?

J How to Detect Buffer Overflows in a

J Knowledge Required to Program Program

Buffer Overflow Exploits
J BOF Detection Tools

J Buffer Overflow Steps
ti Defense Against Buffer Overflows

J Overflow Using Format String)
J Buffer Overflow Security Tools

J Buffer Overflow Examples J Buffer Overflow Penetration Testing

Copyright © by EC-Cauncl. All Rights Reserved. Reproduction is Strictly Prohibited.

M odule O bjectives

Various security concerns, attack methods, and countermeasures have been discussed
in the previous modules. Buffer overflow attacks have been a source of worry from time to

time. This module looks at different aspects of buffer overflow exploits that include:

© Heap-Based Buffer Overflow © How to Mutate a Buffer Overflow

© Why Are Programs and Applications Exploit
Vulnerable to Buffer Overflows? © Identifying Buffer Overflows

© Knowledge Required to Program © How to Detect Buffer Overflows in a
Buffer Overflow Exploits Program

© Buffer Overflow Steps © BOF Detection Tools

© Overflow Using Format String © Defense Against Buffer Overflows

© Buffer Overflow Examples © Buffer Overflow Security Tools

© Buffer Overflow Penetration Testing

Module 18 Page 2695 Ethical Hacking and Countermeasures Copyright © by EC-COUNCiIl
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
Buffer Overflow

Module Flow CEH

Buffer
Buffer Buffer Buffer Buffer
Overflow
Overflow Overflow Overflow Overflow
Counter-
Methodology Examples Detection Security Tools
measures

Buffer
Overflow
Pen Testing

Copyright © by EG'GOUI1gl . All Rights Reserved Reproduction is Strictly Prohibited

M odule F low

Many applications and programs are vulnerable to buffer overflow attacks. This is often
overlooked by application developers or programmers. Though it seems to be simple, it may
lead to severe consequences. To avoid the complexity of the buffer overflow vulnerability
subject, we have divided it into various sections. Before going technically deep into the subject,

first we will discuss buffer overflow concepts.

u Buffer Overflow Concepts Buffer Overflow Countermeasures
Buffer Overflow Methodology Buffer Overflow Security Tools
vri Buffer Overflow Examples «’ — Buffer Overflow Pen Testing
1~ -4j

Buffer Overflow Detection

Module 18 Page 2696 Ethical Hacking and Countermeasures Copyright © by EC-COUNCiIl
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
Buffer Overflow

This section describes buffer overflows, various kinds of buffer overflows (stack-based and

heap-based), stack operations, shellcode, and NOPs.

Module 18 Page 2697 Ethical Hacking and Countermeasures Copyright © by EC-COUNCiIl

All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
Buffer Overflow

00© -
000 B uffer O verflows

Buffers have data storage capacity. If the data count exceeds the original, a buffer
overflow occurs. Buffers are developed to maintain finite data; additional information can be
directed wherever it is needed. The extra information may overflow into neighboring buffers,
destroying or overwriting the legal data. For example, the following C program illustrates how

a buffer overflow attack works, where an attacker easily manipulates the code:
#include<stdio.h>

int main (int argc , char **argv)

char target[5]="TTTT";

char attacker[11]="AAAAAAAAAA";
strcpy(attacker,” DDDDDDDDDDDDDD");
printf("% \n",target);

return O;

Module 18 Page 2698 Ethical Hacking and Countermeasures Copyright © by EC-COUNCiIl
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
Buffer Overflow

0 I 2 3 4 5 6 7 8 9 10 11 12
D DDDUDTDTUDTUDTUDD D D \ string
strcpy /
01 2 34 5 67 8 9 10
1 T 11
AAAAAAAAAA AUV Buffer [11]
01 2 0 4 sTe 7 8 9 10
A
DDDD o DD D o D D D O overflow
L 1

FIGURE 18.1: Buffer Overflows

The program seems to be just another normal program written by a programmer. However, the

crux of this code lies in a small manipulation by the attacker, if examined closely. The actual

problem is explained step-by-step as follows:

1.

During compilation of the program, the following lines of code are executed:

char target[5]="TTTT",;

char attacker[11]="AAAAAAAAAA";
© Atthis point, a buffer called "target," that can hold up to 5 characters, is created
© Then, the program places 4 Ts into the "target" buffer

Q The program then creates a buffer called "attacker" that can hold up to 11

characters
© Then, the program places 10 As into the "attacker" buffer

© The program compiles these two lines of code

The following is a snapshot of the memory in the system. The contents of the target and

attacker buffer are placed in the memory along with null characters, \0.

\0 T T T T

\0 A A A A

A A A A AA

r Stack M em ory initially
1. After compiling the previously mentioned two lines of code, the compiler compiles the
following lines of code:
strcpy(attacker,” DDDDDDDDDDDDD");
printf("% \n",target);
© Here, in this line of code, the sting copy function is used, which copies the 13 characters
ofthe letter D into the attacker buffer
Module 18 Page 2699 Ethical Hacking and Countermeasures Copyright © by EC-COUNCiIl

All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
Buffer Overflow

© After this, the program prints the content of the target buffer

2. The strncpy function of the C program copies the 13 D characters into the attacker
buffer, whose memory space is only 11 characters. Because there is no space for the
remaining "D" characters, it eats up the memory of the "target" buffer, destroying the
contents of the "target" buffer. Here is the snapshot of the system memory after the

strncpy function is executed:

\0\0 D D D

This is how buffer overflow occurs:

A program, which seemed to be less problematic, created a buffer overflow attack just by
manipulating one command. In the current scenario, the focus is primarily on the Application
Programming Interface (API), which is a set of programming conventions facilitating direct
communication with another piece of code; and the protocol, which is a set of data and
commands to be passed between programs. It is a fact that many programs use a standard
code set provided by the operating system when they want to use a protocol. The APIs
associated with a program and the concerned protocol determines the nature of information
that can be exchanged by the program. For instance, consider a simple login form. The login
program can define the length of the input that can be accepted as the user name. However, if
the program does not check for length, it is possible that the storage space allotted for the data
may be used up, causing other areas in the memory to be used. If an attacker is able to detect
this vulnerability, he or she can execute arbitrary code by causing the web application to act

erroneously.

Module 18 Page 2700 Ethical Hacking and Countermeasures Copyright © by EC-COUNCiIl
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
Buffer Overflow

W hy Are Program s and Applications
EH

Vulnerable to B uffer O verflows?

Boundary checks are not done fully or, in most cases, they

* are skipped entirely

« Programming languages, such as C, have vulnerabilities in them

strcat(), strcpy(), sprintf(), vsprjjntf(), bcopy(),
gets(), andscanf ()

4 functions do not validate target buffer size

Programs and applications do not adhere to good

programming practices

Copyright © by EC-Caund. All Rights Reserved. Reproduction is Strictly Prohibited.

W hy Are Program s and A pplications V ulnerable to

B uffer O verflows?

Inacompletely networked world, no organization can afford to have its server go down, even

for a minute. In spite of organizations taking precautionary measures, exploits are finding their

way in to disrupt the networks due to the following reasons:

© Pressure on the deliverables— programmers are bound to make mistakes, which are
overlooked most of the time

6 Boundary checking is not done or it is skipped in many of the cases

0 Programming languages (such as C) that programmers still use to develop packages or
applications contain errors

Q The strcat(), strcpy(), sprintf(), vsprintf(), bcopy(), gets(), and scanf() calls in the C
language can be abused because the functions quit testing if any buffer in the stack is
not as large as data copied into that buffer

© Good programming practices are not followed

Module 18 Page 2701 Ethical Hacking and Countermeasures Copyright © by EC-COIinCil

All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
Buffer Overflow

Understanding Stacks CEH

Stack uses the Last-In-First-Out (LIFO) Bottom of SP points here
the

mechanism to pass arguments to
memory r

functions and refer the local variables

Buffer 2
- Fill
(Local Variable 2) o
direction
Buffer 1
It acts like a buffer, holding all of the BP _
)) : anywhere (Local Variable 1)
information that the function needs L
within the
stack frame
Return Pointer
Function Gall Stack
The stack is created at the beginnin growth
.) ¢ ¢ Arguments o
of the execution of a function and Top of direction
released at the end of it the
memory

Copyright © by EC-Cauncl. All Rights Reserved. Reproduction is Strictly Prohibited.

Understanding Stacks

+ 7' A stack is acontiguous block of memory containing data. A close look at how memory

is structured is shown as follows:

B Code Segment

When a program runs, both code and data are loaded into memory. The code refers to the
area where the instructions for the program are located. This segment contains all the compiled
executable code for the program. Write permission to this segment is disabled here, as the
code by itself does not contain any variables, and therefore has no need to write over itself. By
having the read-only and execute attributes, the code can be shared between different copies

of the program that are executing simultaneously.

Data Segment

The next section refers to the data, initialized and/or un-initialized, required by the
running of the code instructions. This segment contains all the global data for the program. A
read-write attribute is given, as programs would change the global variables. There is no

'execute' attribute set, as global variables are not usually meant for execution.

Module 18 Page 2702 Ethical Hacking and Countermeasures Copyright © by EC-COUNCiIl
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
Buffer Overflow

Stack Segment

Consider the stack as a single-ended data structure with first in, last out data
ordering. This means that when two or more objects/elements are "pushed" onto the

stack, to retrieve the first element, the subsequent ones have to be "popped" off of the stack.
In other words, the most recent element remains on top of the stack. As shown previously,
there is a progression from a lower memory address to a higher memory address as one

moves down the stack.

SP points here
|

Fill
direction

Stack
growth
direction

FIGURE 18.2: Stack Segment

Module 18 Page 2703 Ethical Hacking and Countermeasures Copyright © by EC-COUNCiIl
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
Buffer Overflow

Stack-Based B uffer O verflow C EH

m A stack-based bufferoverflowoccurswhen abuffer has beenoverrun in the stack space

m| Attackerinjects malicious code on the stack and overflowsthe stackto overwrite the
return pointersothatthe flow of control switchesto the malicious code

Bottom of Stack Bottom of Stack Bottom of Stack
Data on Stack Data on Stack
Segment Segment
SP"> End of Stack 4 Bytes Return Address 4 Bytes New Return Address
\
n Bytes More Data on n Bytes + :Xallclous Code.
Stack Segment new data g)
Execve(/bin/sh)
SP"> End of Stack SP">
A Normal Stack Stack when Attacker calls a Stack when attacker overflows
function buffer in function to smash the stack

Copyright © by EC-Cauncl. All Rights Reserved. Reproduction is Strictly Prohibited.

Stack-based B uffer O verflow

Stack-based buffer overflows have been considered the common type of exploitable
programming errors found in software applications. A stack overflow occurs when data is
written past a buffer in the stack space, causing unpredictability that can often lead to

compromise.

Since in the eyes of the non-security community, stack overflows have been the prime focus of
security vulnerability education, these bugs are becoming less prevalent in mainstream
software. Nevertheless, they are still important and warrant further examination and ongoing

awareness.

Over 100 functions within LibC have security implications. These implications vary from as little
as "pseudo randomness not sufficiently pseudorandom" (for example, srand ()) to "may yield
remote administrative privileges to a remote attacker if the function is implemented

incorrectly” (for example, printf ()).

The overflow can overwrite the return pointer so that the flow of control switches to the
malicious code. C language and its derivatives offer many ways to put more data than

anticipated into a buffer.
Consider an example given as follows for simple uncontrolled overflow:

Q The program calls the bof () function

Module 18 Page 2704 Ethical Hacking and Countermeasures Copyright © by EC-COUNCiIl
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures
Buffer Overflow

Q Once

in the bof () function, a string of 20 As

Exam 312-50 Certified Ethical Hacker

is copied into a buffer that holds 8 bytes,

resulting in a buffer overflow

Bottom of Stack

Data on Stack
Segment

End of Stack

A Normal Stack

Module 18 Page 2705

Bottom of Stack Bottom of Stack

Data on Stack Data on Stack Some data
may be
Segment Segment overwritten
4 Bytes Return Address 4 Bytes New Return Address
\%

n Bytes More Data on n Bytes + Overwritten Data Malicious code.

new data on Stack Segment 6*! ———
Stack Segment g Execve(/bln/sn)

End of Stack SP wm» End of Stack

Stack when Attacker calls a Stack when function smashes a stack

function

FIGURE 18.3: Stack-based Buffer Overflow

Ethical Hacking and Countermeasures Copyright © by EC-COUNCiIl
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
Buffer Overflow

Understanding Heap CEH

m Heap isamemory segment used by a program and is allocated dynamically at run time with

functions such asm alloc (), calloc(), realloc () in Cand using new operator in C++
m Control data is stored on the heap along with the data allocated using the malloc interface

m Heap stores all instances or attributes, constructors, and methods of a class or object

A= m alloc(10) ; C= malloc(4);
AAAAAAA AAA BBBBBBBB cccec 1
/s K A A A =
Memory i Memory Memory
Contents Contents Contents
Control Data Control Data Control Data

Simple Heap Contents

Copyright © by EC-Cauncl. All Rights Reserved. Reproduction is Strictly Prohibited.

The heap is an area of memory utilized by an application and allocated dynamically at
runtime. It is common for a buffer overflow to occur in the heap memory space, and
exploitation of these bugs is different from stack-based buffer overflows. Heap overflows have
been the prominent software security bugs. Unlike stack overflows, heap overflows can be

inconsistent and can have varying exploitation techniques and consequences.

Heap memory is different from stack memory; in that heap, memory is persistent between
functions, with memory allocated in one function remaining allocated until explicitly freed. This
means that a heap overflow can occur, but it is not noticed until that section of memory is used
later. There is no concept of saved EIP in relation to a heap, but other important things are

stored in the heap and can be broken by overflowing dynamic buffers.

From a primitive point of view, the heap consists of many blocks of memory, some of which are
allocated to the program and some are free, but allocated blocks are often placed in adjacent

places of memory.

Module 18 Page 2706 Ethical Hacking and Countermeasures Copyright © by EC-COUNCiIl
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures
Buffer Overflow

A= m alloc(10)

AAAAAAA AAA

Memory
Contents

Control Data

FIGURE 18.4: Understanding Heap

Module 18 Page 2707

Memory
Contents

Control Data

Simple Heap Contents

Exam 312-50 Certified Ethical Hacker

C= malloc(4) ;

CC CcC
A A
Memory
Contents
Control Data

Ethical Hacking and Countermeasures Copyright © by EC-COUNCiIl

All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
Buffer Overflow

H eap-Based B uffer O verflow CEH

J Ifan application copies the data without checking whether it fits into the target destination, attackers can supply the
application with alarge data, overwriting the heap management information

J Attackers overflow buffers on the lower lower part of heap, overwriting other dynamic variables, which can have
unexpected and unwanted effects

input=malloc(20); output=malloc(20);

"normal
D output\0”

Heap: Before Overflow

input=malloc(20); output=malloc(20);

>1 |

D fnordfnordfnordfnordf fno rdfnordfnord\0

Heap: After Overflow

Note: In most environments, this may allow the attacker to control the program's execution

Copyright © by EC-Cauncl. All Rights Reserved. Reproduction is Strictly Prohibited

Heap-based B uffer O verflow

The heap is an area of memory utilized by an application and allocated dynamically at
runtime. It is common for buffer overflows to occur in the heap memory space, and
exploitation of these bugs is different from that of stack-based buffer overflows. Heap
overflows have been the prominent discovered software security bugs. Unlike stack overflows,

heap overflows can be inconsistent and have varying exploitation techniques.

An application dynamically allocates heap memory as needed. This allocation occurs through
the function call malloc (). The malloc () function is called with an argument specifying the

number of bytes to be allocated and returns a pointer to the allocated memory.

© Variables that are dynamically allocated with functions, such as malloc (), are created

on the heap.

© An attacker overflows a buffer that is placed on the lower part of heap, overwriting

other dynamic variables, which can have unexpected and unwanted effects.

© If an application copies data without first checking whether it fits into the target
destination, the attacker could supply the application with a piece of data that is large,

overwriting heap management information.
© In most environments, this may allow the attacker to control over the program's

execution.

Module 18 Page 2708 Ethical Hacking and Countermeasures Copyright © by EC-COUNCiIl
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker

Buffer Overflow

Check what happens to the program when input grows past the allocated space. This happens

because there is no control over its size. Run the program several times with different input

strings.

[root@ localhost]# ./heapl hackshacksuselessdata

input at 0x8049728: hackshacksuselessdata
output at 0x8049740: normal output
normal output

[rootOlocalhost]# ./heapl

hackslhacks2hacks3hacksd4hacks5hacks6hacks7hackshackshackshackshackshack
shacks

input at 0x8049728:

hackslhacks2hacks3hacks4hacks5hacks6hacks7hackshackshackshackshackshack
shacks

output at 0x8049740: hackshackshackshacks5hacks6hacks?

hackshacks5hackshacks6hackshacks?

[root@ localhost]# ./heapl"hackshackslhackshacks2hackshacks3hackshacks4wh

at have | done?"

Input at 0x8049728 hackshackslhackshacks2hackshacks3hackshacks4 what
have | done?

output at 0x8049740: what have | done?

what have | done?

[root@ localhost]#

Thus, overwriting variables on the heap is easy and does not always cause crashes.

input=malloc(20); output=malloc(20);

Paeisgssesegeseegeieatoieioteieieteie normal

output\0”

Heap: Before Overflow

input=malloc(20);

'

D fnordfnordfnordfnordf

Heap: After Overflow

fno

output=malloc(20);

l\/

rdfnordfnord\0

FIGURE 18.5: Heap-based Buffer Overflow

Module 18 Page 2709

Ethical Hacking and Countermeasures Copyright © by EC-COUNCiIl

All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
Buffer Overflow

Stack Operations CEH

"Remove" Important Putone
one item 3 it th
I} stack (CH ftem on the
from the top . = top ofthe
. of the stack \ operations -l stack
Push and Pop operations /
Cc:
Returns the contents pointed to by
a pointer and changes the pointer
Extended Instruction ' Extended Stack Pointer Extended Base Pointer
Pointer (ESP points to the current EBP serves as a static point
EIP points to the code that | position Qn the stack and Tor refere_nmn.g staclf-based
. allows things to be added information like variables
you are currently executing.) X .
. and removed from the stack and data in afunction using
When you call a function, ' :)
. using push and pop offsets. This almost always
this gets saved on the stack | operations or direct stack points to the top of the stack
for later use pointer manipulations fora function

Copyright © by EC-Cauncl. All Rights Reserved. Reproduction is Strictly Prohibited.

Stack O perations

A stack is implemented by the system for programs that run on the system. A variable
can be deployed within the processor itself and memory can also be allocated. The variable is
called the "register"” and the region of memory isthe "stack." The register used to refer to the
stack as the "Stack Pointer" or SP. The SP points to the top of the stack, while the bottom of the

stack is a fixed address. The kernel adjusts the stack size dynamically at run time.

A stack frame, or record, is an activation record that is stored on the stack. The stack frame has
the following: the parameters to a function, its local variables, and the data required to restore
the previous stack frame, along with the value of the instruction pointer (pointer that points

the next instruction to be fetched at the function call) at the time of the function call.

The majority functionality of the stack involves adding and removing items from the stack. This

isaccomplished with the help oftwo major operations. They are push and pop.

When the program is loaded, the stack pointer is set to the highest address. This will be the
topmost item in the stack. When an item is pushed onto the stack, two events take place.
Subtracting the size of the item in bytes from the initial value of the pointer reduces the stack
pointer. Next, all the bytes of the items in consideration are copied into the region of the stack

segment to which the stack pointer now points.

Module 18 Page 2710 Ethical Hacking and Countermeasures Copyright © by EC-COUNCiIl
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
Buffer Overflow

Similarly, when an item is popped from the stack, the size of the item in bytes is added to the
stack pointer. However, the copy of the item continues to reside on the stack. This will
eventually be overwritten when the next push operation takes place. Based on the stack design
implementation, the stack can come down (toward lower memory addresses) or go up (toward

higher memory addresses).

When a procedure is called, it is not the only item that pushes onto the stack. Among others is
the address of the calling procedure's instruction immediately following the procedure call. This
is followed by the parameters to the called function. As the called function completes, it would
have popped its own local variables off the stack. The last instruction the called function runs is
a special instruction called a return. The top values of the stack are popped up and loaded into
the IP by the assembly language, a special processor instruction. At this point, the stack will
have the address of the next instruction of the calling procedure in it. The other concept that
the reader needs to appreciate in order to understand the complete essence of stack overflows

isthe frame pointer.

Apart from the stack pointer, which points to the top of the stack, there is a frame pointer (FP)
that points to a fixed location within a frame. Local variables are usually referenced by their
offsets from the stack pointer. However, as the stack operations take place, the value of these
offsets vary. Moreover, on processors such as Intel-based processors, accessing a variable at a
known distance from the stack pointer requires multiple instructions. Therefore, a second
register may be used for referencing those variables and parameters whose relative distance
from the frame pointer does not change with stack operations. On Intel processors, the base

pointer (BP), also known as the Extended Base Pointer (EBP), is used.

Module 18 Page 2711 Ethical Hacking and Countermeasures Copyright © by EC-COUNCiIl
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
Buffer Overflow

Shellcode CEH

[’"Buffers are soft targets for
attackers asthey overflow
easily due to poor coding

Shellcode refers to code that

i techniques
can be used as payloads in
the exploitation of a Buffer overflow shellcodes, |
software vulnerability written in machine language, 1
exploit vulnerabilities in stack 1
and heap memory management
Example

‘\x2d\x0b\xd8\x9a\xac\xI5\xal\x6e\x2f\x0b\xdc\xda\x90\x0b\x80\x0e™
Ax92\x03\xa0\x08\x94\xla\x80\x0a\x9c\x03\xa0\xI0\xec\x3b\xbfixfo"
‘\xdc\x23\xb fixf8\xc0\x23\xbfixfC :\x82\x10\x20\x3b\xaa\xI0\x3f\xff"

"\x91\xd5\x60\x01\x90\xIb\xc0\x0f\x82\x10\x20\x01\x91\xd5\x60\x01"

Copyright © by EC-Cauncl. All Rights Reserved. Reproduction is Strictly Prohibited.

S hellcode

Shellcode is a small code used as payload in the exploitation of a software
vulnerability. Shellcode is a technique wused to exploit stack-based overflows. Shellcodes
exploit programming bugs in stack handling. Buffers are soft targets for attackers as they
overflow easily if the conditions match. Buffer overflow shellcodes, written in assemble

language, exploit vulnerabilities in stack and heap memory management

For example, the VRFY command helps the attacker to identify potential users on the target
system by verifying their email addresses. In addition, sendmail uses a set user ID of root and
runs with root privileges. If the attacker connects to the sendmail daemon and sends a block of
data consisting of 1,000 a's to the VRFY command, the VRFY buffer is overrun as it was only

designed to hold 128 bytes.

However, instead of sending 1000 a's, the attacker can send a specific code that can overflow
the buffer and execute the command /bin/sh. In this case, when the attack is carried out, a
special assembly code "egg" is transferred to the VRFY command, which is a part of the actual
string used to overflow the buffer. When the VRFY buffer is overrun, instead of the offending
function returning to its original memory address, the attacker executes the malevolent
machine code that was sent as a part of the buffer overflow data, which executes /bin/sh with

root privileges.

Module 18 Page 2712 Ethical Hacking and Countermeasures Copyright © by EC-COUNCiIl
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker

Buffer Overflow

The following illustrates what an egg, specific to Linux X86, looks like:
Char shellcode [] =
"\xeb\xIf\x5e\x89\x76\x08\x31\xc0\x88\x46\x07\x89\x46\x0c\xb0\x0b"

"\x89\xf3\x8d\x4e\x08\x8d\x56\x0c\xcd\x80\x31\xdb\x89\xd8\x40\xcd"

"\x80\xe8\xdc\xff\x ff\xff/bin/sh?";

Ethical Hacking and Countermeasures Copyright © by EC-COUNCiIl

Module 18 Page 2713
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
Buffer Overflow

No Operations (NOPS) CEH

Most CPUs have a No Most intrusion detection Attacker changes identified IP to start
Operation (NOP) instruction - systems (IDSs) look for anywhere within NOP area to create
it does nothing but advance signatures of NOP sleds multiple zero-day infections
the instruction pointer (polymorphism)

Attacker pads the beginning of the ADMmutate (by http://www .ktwo.ca) accepts

intended buffer overflow with a long a buffer overflow exploit as input and

run of NOP instructions (a NOP slide randomly creates a functionally equivalent

or sled) sothe CPU will do nothing version

until it gets to the "main event” Note: Itis the NOP sled that ADMutate

(which preceded the "return pointer") mutates (not the shellcode)

Copyright © by EC-Cauncl. All Rights Reserved. Reproduction is Strictly Prohibited.

N o O perations (N OP s)
W w wW

Even the best guess may not be good enough for an attacker to find the right address
on the stack. If the attacker is off by one byte, more or less, there can be a segmentation
violation or an invalid instruction. This can even cause the system to crash. The attacker can

increase the odds of finding the right address by padding his or her code with NOP instructions.

A NOP isjust acommand telling the processor to do nothing other than take up time to process
the NOP instruction itself. Almost all processors have a NOP instruction that performs a null
operation. In the Intel architecture, the NOP instruction is 1 byte long and translates to 0x90 in
machine code. A long run of NOP instructions is called a NOP slide or sled, and the CPU does

nothing until it gets back to the main event (which precedes the "return pointer").

Module 18 Page 2714 Ethical Hacking and Countermeasures Copyright © by EC-COUNCiIl

All Rights Reserved. Reproduction is Strictly Prohibited.

http://www.ktwo.ca

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
Buffer Overflow

Bottom of

. . .1
Memory Direction NOP
Buffer Space is NOP «...
overwritten NOP
Buffer 2 NOP
(Local Variable 2) NOP
i 'r Machine Code:
Buffer 1 execve(/bin/sh)
(Local Variable 1) Return Pointer is New Pointerto exec
overwritten 1 code
Return Pointer Function call
Function call Arguments
Arguments
Top of Normal Stack Top of Smashed Stack 1
Memory Memory

FIGURE 18.6: No Operations (NOPs)

By including NOPs in advance of the executable code, the attacker can avert a segmentation
violation if an overwritten return pointer lands execution in the NOPs. The program can
continue to execute down the stack until it gets to the attacker's exploit. In the preceding
illustration, the attacker's data is written into the allocated buffer by the function. As the data
size is not checked, the return pointer can be overwritten by the attacker's input. With this
method, the attacker places the exploited machine's code in the buffer and overwrites the

return pointer so that when the function returns, the attacker's code is executed.

Module 18 Page 2715 Ethical Hacking and Countermeasures Copyright © by EC-COUNCiIl
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures
Buffer Overflow

Buffer
Overflow

Methodology

Ir M odule Flow

priX

So far, we have discussed the basic buffer overflow concepts,
buffer overflow methodology.

BUB Burter

Overflow
oocC

Concepts

Buffer Buffer
Overflow Overflow
Examples Detection

Buffer

Overflow
Pen Testing

Buffer
Overflow
Counter-

measures

Exam 312-50 Certified Ethical Hacker

Buffer
Overflow

Security Tools

Copyright © by EC-Cauncl. All Rights Reserved. Reproduction is Strictly Prohibited.

Buffer Overflow Concepts

Buffer Overflow Methodology

\7"'37
v o*!

Buffer Overflow Examples

Buffer Overflow Detection

Module 18 Page 2716

Now we will discuss the

Buffer Overflow Countermeasures

Buffer Overflow Security Tools

Buffer Overflow Pen Testing

This section describes requirements to program buffer overflow exploits,
and buffer overflow vulnerabilities.

buffer overflow steps,

Ethical Hacking and Countermeasures Copyright © by EC-COUNCiIl
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
Buffer Overflow

K nowledge R equired to P rogram

B uffer O verflow E xploits

B

. Familiarity with
Understandingof

compiling and
stack and heap piiing

deb ing tools
memory processes uoging

such as gdb

B

Understandingof
Knowledge of C and

how system calls

. Perl programming
work at the machine
language
code level

Knowledge of

assembly and

e machine language
«»

Copyright © by EC-Cauncl. All Rights Reserved. Reproduction is Strictly Prohibited.

Knowledge R equired to P rogram B uffer O verflow

E xploits

Logically, the question that arises is why are stacks used when they pose such a threat to
security? The answer lies in the high-level, object-oriented programming languages, where

procedures or functions form the basis of every program.

A stack is used for storing context. For instance, if a procedure simply pushes all its local
variables onto the stack when it enters, and pops those off when it is over, its entire context is
cleaned up so that when the procedure calls another procedure, the called procedure can do
the same with its context, without the aid of the calling procedure's data. The flow of control is
determined by the procedure or function, which is resumed after the current one is done. The
stack implements the high-level abstraction. Apart from this, the stack also serves to
dynamically allocate local variables used in functions, passing parameters to functions, and to

return values from the function.

In fact, though several applications are written in C, programs written in C are particularly
susceptible to buffer overflow attacks. This is due to the fact that direct pointer variations are
permitted in C. Direct, low-level memory access and the pointer arithmetic is provided by C

without checking the bounds. Moreover, the standard C library provides unsafe functions (such

Module 18 Page 2717 Ethical Hacking and Countermeasures Copyright © by EC-COUNCiIl
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
Buffer Overflow

as gets) that write an unbounded amount of user's input into a fixed size buffer without any

boundary checking.
To program buffer overflow exploits, you should be acquainted with the following aspects:
© Understanding of stack and heap memory processes
© Understanding of how system calls work atthe machine code level
© Knowledge of assembly and machine language
© Knowledge of Cand Perl programming language
© Familiarity with compiling and debugging tools such as gdb
© exec()system calls How to guess some key parameters

© How to guess some key parameters

Module 18 Page 2718 Ethical Hacking and Countermeasures Copyright © by EC-COUNCIl
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
Buffer Overflow

Buffer Overflow Steps CEH

CatifV itfciul Nmim

Find the presence and location of buffer

overflow vulnerability

W rite more data into the buffer
than it can handle

Overwrite the return address of

a function

Change the execution flow to
the hacker code

Copyright © by E&Coincil. All Rights Reserved. Reproduction is Strictly Prohibited.

B uffer O verflow Steps

Buffer overflow can be carried out in four steps:

Step 1: In order to perform a buffer overflow attack, first you should check whether thetarget
application or program is vulnerable to buffer overflow or not. Typically buffer overflow occurs
when the input entered exceeds the size of the buffer. Ifthere is any potential buffer overflow
vulnerability present in the program, then it displays an error when you enter a lengthy string
(exceeding the size of buffer). Thus, you can confirm whether a program contains a buffer

overflow vulnerability or not. If it is vulnerable, then find the location of the buffer overflow

vulnerability.

Step 2: Once you find the location of the vulnerability, write more data into the buffer than it

can handle. This causes the buffer overflow.

Step 3: When a buffer overflow occurs, it overwrites the memory. Using this advantage, you

can overwrite the return address of afunction with the address of the shellcode.

Step 4: When the overwrite occurs, the execution flow changes from normal totheshell code.

Thus, you can execute anything you want.

Module 18 Page 2719 Ethical Hacking and Countermeasures Copyright © by EC-COUNCiIl
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures

Exam 312-50 Certified Ethical Hacker
Buffer Overflow

A ttacking a R eal Program CEH

Assuming that a string function is exploited, the attacker can

send a long string as the input. This string overflows the buffer
and causes a segmentation error

The return pointer of the function is
overwritten, and the attacker succeeds

in altering the flow of the execution

If the attacker inserts code as input, he or she has to know the

exact address and size of the stack and make the return pointer
pointto the code for execution

Copyright © by MAII Rights Reserved. Reproduction is Strictly Prohibited.

A ttacking a Real Program

abcdefg%d%on*

FIGURE 18.7: Attacking a Real Program

Module 18 Page 2720

Ethical Hacking and Countermeasures Copyright © by EC-COUNCiIl
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
Buffer Overflow

Lower "
~Memory »
Address 4

+ ~abcdefg%d.255%n

. Abnormal Value
Higher <

Memory «
Address

FIGURE 18.8: Attacking a Real Program

The previous illustration depicts the way an abnormal input causes the buffer to overflow and
cause a segmentation error. Eventually, the return pointer is overwritten and the execution
flow of the function is interrupted. Now, if the attacker wants to make the function execute
arbitrary code of his or her choice, he or she can have to make the return pointer point towards

this code.

When attacking a real program, an attacker has to assume that a string function is being
exploited, and send a long string as the input. After passing the input string, the string
overflows the buffer and causes a segmentation error. The return pointer of the function is
overwritten, and the attacker succeeds in altering the flow of execution. If the user has to

insert his or her code in the input, he or she has to:

© Know the exact address on the stack.

© Know the size of the stack.

© Make the return pointer pointto his/her code for execution.
The challenges that the attacker faces are:

© Determining the size of the buffer.

© The attacker must know the address of the stack so that he or she can get his or her

input to rewrite the return pointer. For this, he or she must ascertain the exact address.
© The attacker must write a program small enough that it can be passed through as input.
Usually, the goal of the attacker isto spawn a shell and use it to direct further commands.

The code to spawn a shell in Cis as follows:

#include <stdio.h>
void main () {
char *name[2];
name[0] = "/bin/sh";
name[1l] = NULL;

execve(name[0], name, NULL); }

Module 18 Page 2721 Ethical Hacking and Countermeasures Copyright © by EC-COUNCiIl
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
Buffer Overflow

The attacker can place arbitrary code to be executed in the buffer that isto be overflowed and
overwrite the return address so that it points back into the buffer. For this, he or she must
know the exact location in the memory space of the program whose code has to be exploited. A
workaround for this challenge isto use a jump (JMP) and a CALL instruction. These instructions
allow relative addressing and permit the attacker to point to an offset relative to the
instruction pointer. This eliminates the need to know the exact address in the memory to which
the exploit code must point. As most operating systems mark the code pages with the read-
only attribute, this makes the previously discussed workaround an unfeasible one. The
alternative is to place the code to be executed into the stack or data segment and transfer
control to it. One way of achieving this is to place the code in a global array in the data

segment as shown in the previous code snippet.

Does the exploit work? Yes.

Nevertheless, in maximum buffer overflow vulnerabilities, it is the character buffer that is
subjected to the attack. Therefore, any null code occurring in the shell code can be considered
as the end of the string, and the code transfer can be terminated. The answer to this hindrance
lies in NOP.

Module 18 Page 2722 Ethical Hacking and Countermeasures Copyright © by EC-COUNCiIl
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures
Buffer Overflow

Format String Problem

Problem if user =
"%S%S°/0S%S%S%S%S"

Most likely program will

In C, consider this example of crash causing a DoS

Format string problem: If not, program will print

memory contents
Similar exploit occurs

int func(char *user) using user = "%n"
%printf(stdout, user);

Correct form is:

int func(char *user)

5f rintf(stdout,
'E) uéer) } ’

Copyright © by E&Caincfl. All Rights Reserved. Reproduction is Strictly Prohibited.

Form at String P roblem

Format string problems usually occur when the input is supplied from untrusted sources
or when the data is passed as a format string argument to functions such as syslog(), sprintf(),
etc. The format string vulnerabilities in C/C++ can easily be exploited because of the %n
operator. If any program contains this kind of vulnerability, then the progranVs confidentiality
and the access control may be at risk because the format string vulnerability exploitation
results in information disclosure and execution of arbitrary code without the knowledge. Thus,

attackers can easily exploit the program or application containing format string vulnerabilities.
In C, consider this example of a format string problem:

int func(char *user)

{

fprintf(stdout, user);

}
Problem ifuser = "%s%s%s%s%s%s%s"
Most likely, the program will crash, causing a DoS. If not, the program will print memory
contents. Full exploit occurs using user = "%n"

Module 18 Page 2723 Ethical Hacking and Countermeasures Copyright © by EC-COUNCiIl

All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures
Buffer Overflow
Correct form is:

int func(char *user)

{

fprintf(stdout, "%s"

Module 18 Page 2724

user)

Exam 312-50 Certified Ethical Hacker

Ethical Hacking and Countermeasures Copyright © by EC-COUNCiIl
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
Buffer Overflow

Copyright © by ﬁ@l’d.w Rights Reserved. Reproduction is Strictly Prohibited.

O verflow Using Format S tring

In C, the format string library functions take variable numbers of arguments. The
format string variable is the one that is always required. The format string contains format-
directive characters and printable characters. Format string overflow attacks are quite similar
to that of buffer overflow attacks since in both attacks the attacker attempts to change the
memory space and consequently runs arbitrary code. The only difference between these two
attacks is that the attacker launches the format string overflow attack by exploiting the

vulnerabilities in the variadic functions, such as format functions.
Format string overflow can be exploited in four ways:
9 Memory viewing
Q Updating aword present in the memory
© Making a buffer overflow by using minimum field size specifier
© Using %n format directive for overwriting the code
In C, consider this example of BOF using format string problem:
char errmsg[512], outbuf[512];

sprintf (errmsg, "lllegal command: %400s", user);

Module 18 Page 2725 Ethical Hacking and Countermeasures Copyright © by EC-COUNCiIl
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
Buffer Overflow
sprintf(outbuf, errmsg);

If user ="%500d <nops> <shellcode>", this will bypass ""%400s" limitation and overflow outbuf.
Thus, the stack smashing buffer overflow attack is carried out.

Module 18 Page 2726 Ethical Hacking and Countermeasures Copyright © by EC-COUNCil
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
Buffer Overflow

Smashing the Stack CEH

The general idea isto overflow a buffer so that it overwrites the return address

When the function is done, it will jump to whatever address is on the stack

Put some code in the buffer and set the return address to point to it

Buffer overflow allows us to change the return address of a function

Copyright © by E&Cauaci. All Rights Reserved. Reproduction is Strictly Prohibited.

Smashing the Stack

Smashing the stack causes a stack to overflow. The stack is a first-in last-out form of
buffer to hold the intermediate results of an operation. If you try to store more data than the
stack's size, then it drops the excess data. The data that a stack holds may be critical for system
operation.

The general idea behind stack smashing is to overflow a buffer which in turn overwrites the
return address. If the attacker succeeds in smashing the stack, then he or she can overwrite the
address on the stack with the address of shellcode. When the function is done, it jumps to the
return address, i.e., the shellcode address. Thus an attacker can exploit the buffer overflow
vulnerability.

Module 18 Page 2727 Ethical Hacking and Countermeasures Copyright © by EC-COUNCil
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
Buffer Overflow

Copyright © by E&Cauaci. All Rights Reserved. Reproduction is Strictly Prohibited.

Once the Stack is Smashed

There are two parts of the attacker's input: an injection vector and a payload. They
may be separate or put together. The injection vector is the correct entry-point that is tied
unambiguously along with the bug itself. It is OS/target/application/protocol/encoding-
dependent. On the other hand, the payload is usually not tied to bugs at all and is contained by
the attacker's ingenuity. Even though it can be independent of the injection vector, it still
depends on machine, processor, and so on.

Once the stack is smashed, the attacker can deploy his or her payload. This can be anything. For
example, in UNIX, a command shell can be spawned. For example, with /bin/sh in Windows
NT/2000 and a specific Dynamic Link Library (DLL), external stacks may be preferable and may
be used for further probing. For example, WININET.DLL can be used to send requests to and get
information from the network and to download code or retrieve commands to execute.

The attacker may launch a denial-of-service attack or he or she may use the system as a
launching point (ARP spoofing). The common attack is to spawn a remote shell. The exploited
system can be converted into a covert channel or it can simulate Netcat to make a raw,
interactive connection. The payload can be a worm that replicates itself and searches for fresh
targets. The attacker can also eventually install a rootkit and remain in stealth mode after
gaining super-user access.

Module 18 Page 2728 Ethical Hacking and Countermeasures Copyright © by EC-COUNCil
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures
Buffer Overflow

HUB

ood

Buffer Buffer
Overflow Overflow
Methodology Examples

P f Module Flow

Buffer
Overflow

Concepts

Buffer
Overflow
Detection

Buffer
Overflow
Pen Testing

Exam 312-50 Certified Ethical Hacker

Buffer
Overflow Buffer
Counter- Overflow
Security Tools
measures

Copyright © by EfrCaind. All Rights Reserved. Reproduction is Strictly Prohibited.

So far, we have discussed buffer overflow concepts and the methodology. Now it's

time to see buffer overflow examples.

Buffer Overflow Concepts

Buffer Overflow Methodology

v\ Buffer Overflow Examples

Buffer Overflow Detection

<

This section covers various buffer overflow examples.

Module 18 Page 2729

Buffer Overflow Countermeasures

Buffer Overflow Security Tools

Buffer Overflow Pen Testing

Ethical Hacking and Countermeasures Copyright © by EC-COUNCil

All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
Buffer Overflow

Simple Uncontrolled Overflow CEH

Example of Uncontrolled Stack Overflow Example of Uncontrolled Heap Overflow\
/* Program to show asimple uncontrolled overflow of the /* Program to show a simple heap overflow*/
stack*/ t include <stdio.h>

~include <stdlib.h>

1- £include <stdlib.h> int mainint arg, . D

2- #include <stdio.h>
3 tinclude <string.h> char *in = malloc (18);
4. int bufferQ { char “out = malloc (8);
B strepy (aut, “Saple output™);
char buff[17]; .
5- strcpy(buff, DDDDDDDDDDDDDDDDDD'Y) ; /copy 18 strcpy (in, argvID;
bytes of D into the buffer/ printf C'input at Y%: %\, in, in);
retum 1; /*this causes an access violation _ 5 .
6. due to stack corruption.*/ } printf (C'output at Y%p: %s\n'*, aut, out);
7- int min(int arge, char *argv){ printfC\n\rs\n"*, out);
g8 bufferQ; /*function call*/ J

/*print a short message, execution will

o: never reach this point because of the
overflow/

10: printf('Lets Go\n');

11- retum 1; /*leaves the main function/ }

Copyright © by E&Cauaci. All Rights Reserved. Reproduction is Strictly Prohibited.

Simple Uncontrolled Overflow

Example of Uncontrolled Stack Overflow
/* stack3.c

This is a program to show a simple uncontrolled overflow of the stack. It
w ill overflow EIP with 0x41414141, which is AAAA in ASCII.

*/

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

int bof()

{
char buffer[8]; /* an 8 byte character buffer */
/*copy 20 bytes of A into the buffer*/
strcpy(buffer,"AAAAAAAAAAAAAAAAAAAA™);

/*return, this will cause an access violation due to stack corruption.
We also take EIP*/
return 1;

Module 18 Page 2730 Ethical Hacking and Countermeasures Copyright © by EC-COUNCil

All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
Buffer Overflow

}
int main(int argc, char **argv)
{
bof(); /*call our function*/
/*print a short message, execution will never reach this point because
of the overflow*/
printf("Not gonna do it!'\n");
return 1; /*leaves the main function*/
}

The main function in this program calls the bof() function. Inthe first line of bof() function code
a buffer of char type with s-bit size is initiated. Later a string of 20 As is copied into the buffer.
This causes the buffer overflow because the size of buffer is just 8 bits,whereas the string
copied into the buffer is 20 bits. This leads to an uncontrolled overflow.

Example of Uncontrolled Heap Overflow

The following code is an example of uncontrolled head overflow.
/*heapl.c - the simplest of heap overflows*/
#include <stdio.h>

#include <stdlib.h>

int main(int argc, char *argvl[])

{

char *input = malloc (20);

char *output = malloc (20) ;

strcpy (output, "normal outputl);

strcpy (input, argv([l]);

printf ("input at %p: %s\n", input, input);
printf ("output at % %s\n", output, output);
printf("\n\n%s\n", output);

}

Module 18 Page 2731 Ethical Hacking and Countermeasures Copyright © by EC-COIInCil
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures
Buffer Overflow

Exam 312-50 Certified Ethical Hacker

Simple Buffer Overflow in C CEH

Command Prompt

1

finelude <stdio.h>
main () {
phar *name;
char *dangerous system command;
name = (char *) malloc(l0) ;
dangerous system command = (char *) malloc (128) ;
printf("Address of name is %d\n", name);

printf("Address of comnand is %d\n", dangerous system conniand) ;

sprintf(dangerous system ccnmand, “echo %s", “Hello world?");

printf("W hat's your name?");
gets (name) ;

system (dangerous system comnand) ;

m The first thing the program does is declare two string variables and assign memory to them
tf The "name" variable is given 10 bytes of memory (which will allow it to hold a 10-character string)
tf The "dangerous_system _com m and* variable is given 128 bytes * ° |\

~ You have to understand that, in C, the memory chunks given to these variables will be located
directly next to each other in the virtual memory space given to the program

Copyright© by E&Caincl. All Rights Reserved. Reproduction is Strictly Prohibited.

A Sim ple Buffer Overflow in C

To understand how buffer overruns works, you need to look at the small C program

that follows:
<include <stdio.h>
main() {
char *name;
char *dangerous_system _command;

name = (char *) malloc(10);

dangerous_system_conmand = (char *) malloc (128);

printf("Address of name is %d\n",
printf("Address of command is
sprintf(dangerous_system_command,
printf("What's your name?");
gets(name);

system(dangerous_system_command);

Module 18 Page 2732

name);
%d\n",
"echo %os",

dangerous_system_command);
"Hello world!");

Ethical Hacking and Countermeasures Copyright © by EC-COUNCil
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
Buffer Overflow

This program is designed to be run by a user on a console, but it illustrates the trouble that a
poorly written network daemon can cause.

The first thing the program does is to declare two string variables, and assign memory to them.
The "name" variable is given 10 bytes of memory (which will allow it to hold a 10-character
string). The "dangerous_system_command" variable is given 128 bytes. The thing you have to
understand is that in C, the memory chunks given to these variables will be located directly next
to each other in the virtual memory space given to the program. If you run the program with a
short name, you can see how things are supposed to work:

[jturner@secure jturner]$./overrun

Address of name is 134518696

Address of command is 134518712

What's your name?James

Hello world!

[jturner@secure jturner]$

As you can see, the address given to the "dangerous_system_command"” variable is 16 bytes

from the start of the "name" variable. The extra e bytes are overhead used by the "malloc"
system call to allow the memory to be returned to general usage when it is freed.

Module 18 Page 2733 Ethical Hacking and Countermeasures Copyright © by EC-COUNCil

All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
Buffer Overflow

Simple Buffer Overflow in C:

Code Analysis CEH

J The "gets" command, which reads a string from the standard input to the specified memory location, does not
have a "length" specification

J This means it will read as many characters as it takes to get to the end of the line, even if it overruns the end of
the memory allocated

J Knowing this, an attacker can overrun the “name" memory into the "dangerous_system_command"” memory,
and run whatever command he or she wishes

Toconpile the overrun.c program Buffer Overrun Output
L mnthiscommandinlinue A
gcc overrun.c -0 overrun [XX1$.loverrun
XX]$./overrxm Address of name is 134518696
Address of name is 134518696 Address of comnand is 134518712
Address of comnand is 134518712 What"s your

What"s your name?xmen name?0123456789123456cat/etc/passwd

H[?olqlg world? <3 >

The address given to the

root:x:0:0:root:/root:/bin/bash
binx:1:1:binZ/bin:

daemon:x :2:2:daemon:/sbin :
"dangerous_system_command" variable is 16 bytes adm:x:3:4 :adm:/var/adm:
from the start of the "name" variable Ip:x:4:7:1p /var/spool/lpd:

The extra 6 bytes are overhead used by the "malloc” sync:ix:5:0:sync:/sbin:/bin/sync

shutdown:x :6:0:shutdown:/sbhin:/sbin/shutdown
system call to allow the memory to be returned to general halt:-x-7-0-halt:/sbin-/sbin/halt
usage when itis freed mail-x:8:12:mai I :/var/spool/mail

Copyright © by E&Caincl. All Rights Reserved. Reproduction is Strictly Prohibited.

Simple Buffer Overflow in C: Code Analysis

After allocating the memory and printing the memory locations of the two variables,
the program generates a command that will later be sent to the "system" call, which causes it
to be executed as if it had been typed at a keyboard. In this case, all it does is print "Hello
world!" Then, it prompts the user for his or her name and reads it using the "gets" system call.
In a real network daemon, this might be printing a prompt and awaiting a command from the
client program such as a website address or email address.

The important thing to know is that "gets,” which reads a string from standard input to the
specified memory location, DOES NOT have a "length" specification. This means it will read as
many characters as it takes to get to the end of the line, even if it overruns the end of the
memory allocated. Knowing this, a hacker can overrun the "name" memory into the
"dangerous_system_command” memory, and run whatever command they wish. For example:

[jturner@secure jturner]$./overrun

Address of name is 134518696

Address of command is 134518712

What's your name?0123456789123456cat /etc/passwd

root:x:o :0 :root:/root:/bin/bash

Module 18 Page 2734 Ethical Hacking and Countermeasures Copyright © by EC-COUNCil
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
Buffer Overflow

bin:x:l:I:bin:/bin:

daemon:x:2 2 :daemon:/sbin:
adm:x:3:4:adm:/var/adm:
Ip:x:4:7:1p:/var/spool/lpd:
sync:x:5:0:sync:/sbin:/bin/sync

shutdown:x:s 0 :shutdown:/sbin:/shin/shutdown
halt:x:7:0:halt:/sbin:/sbin/halt

mail:x:s :12 :mail:/var/spool/mail

By padding out the response to the name query to 16 character and then adding a system
command, the system command overwrites "echo Hello World!" with "cat /etc/passwd". As
you can see, this causes that command to be run instead of the appropriate one.

So what can be done to prevent this? First, use the fgets system call, which specifies a
maximum length, will eliminate the possibility altogether. By changing the "gets" call to:

fgets(name, 10, stdin);

The problem is solved:

[iturner@secure jturner]$./overrun

Address of name is 134518768

Address of command is 134518784

What's your name?01234567890123456cat /etc/passwd
Hello world!

[jturner@secure jturner]$

But, since many sites run software that they do not have source code to (commercial
databases, for example), you cannot protect yourself from all buffer overruns. The other
important step you need to take is to turn off any network services you do not use, and only
run the ones you do use at a permission level that meets the needs of the program. For
example, do not run a database as root; give it its own user and group. That way, if it is
exploited, it cannot be used to take over the system.

Buffer overruns are one of those things that every first-year programming student should be
taught to avoid. That attackers still use it with such frequency is an indication of how far we
have to go in the quest for truly reliable and secure software.

Module 18 Page 2735 Ethical Hacking and Countermeasures Copyright © by EC-COUNCil
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
Buffer Overflow

Exploiting Semantic Comments

In C (Annotations) CEH

Adding after the "/*" Annotationscan be defined by
LCLint using clauses

© Adding after the "/*" which is Describe assumptions about buffers that
considered acomment in C) is recognized as are passed to functions

syntactic entities by the LCLint tool
Y Y Constrain the state of buffers when

© So, in a parameter declaration, it indicates functions return; assumptions and
that the value passed forthis parameter may
not be NULL

constraints used in the example below:
minSet, maxSet, minRead, and maxRead
© Example:/*@ this value may not be null(®*/

char *strcpy (char *si, const char *2)
/*orequires maxSet(si) >= maxRead(s2)@/
/*®Rensures maxRead(si) = maxRead(s2)

/\ result = sI@*/;rr

Copyright © by EfrCaincl. All Rights Reserved. Reproduction is Strictly Prohibited.

Wgr Exploiting Semantic Com ments in C (Annotations)

Though many run-time approaches have been proposed to mitigate the risk
associated with buffer overflows, they are not widely used. Hence, static analysis of a
program's source code came into practice to detect buffer overflows. Thiscan be accomplished
with the help of the LCLint tool. It performs static detection of buffer overflows by exploiting
semantic comments added to the source code. Thus, it enables local checking of
interprocedural properties.

Adding ">&< after the "/*"

© Adding after the "/*" which is considereda comment in C) isrecognized as
syntactic entities by the LCLint tool

© So, in a parameter declaration, it indicates that the value passed for this parameter may
not be NULL

© Example: /*@ this value need not be null(®*/

Module 18 Page 2736 Ethical Hacking and Countermeasures Copyright © by EC-COUNCil
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
Buffer Overflow

Annotations can be defined by LCLint using clauses
© Describe assumptions about buffers that are passed to functions

© Constrain the state of buffers when functions return assumptions and constraints used
in the example below: minSet, maxSet, minRead, and maxRead

char , const char *s2)
/*®requires maxSet(si) >= maxRead(s2)@*/
/*0ensures maxRead(si) =— maxRead(s2)

/\ result = sl@*/;rr

Module 18 Page 2737 Ethical Hacking and Countermeasures Copyright © by EC-COUNCil
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
Buffer Overflow

How to Mutate a Buffer

Overflow Exploit CEH

Forthe NOP For the “M ain For the “Return
Portion Event” Pointer"
Randomly replace the Apply XOR to combine code Randomly tweak LSB of
NOPs with functionally with a random key the pointer to land in the

equivalent segments of unintelligible to IDS. The NOP-zone

the code (e.g.: x++; x-; ? CPU code must also decode

NOP NOP) the gibberish intime to
execute payload. The
XORing makes the payload
polymorphic and and
therefore hard to spot

Copyright © by E&Cauaci. All Rights Reserved. Reproduction is Strictly Prohibited.

How to Mutate a Buffer Overflow Exploit

----- Most IDSes look for signs of NOP sleds. Detecting an array of NOPs can be indicative
of a buffer overflow exploit across the network. ADMutate takes the concept a bit further. It
accepts a buffer overflow exploit as input and randomly creates a functionally equivalent
version (polymorphism, part deux).

ADMutate substitutes the conventional NOPs with operationally inert commands. ADMutate
encodes the shellcode with a simple mechanism (xor) so that the shellcode will be unique to
any NIDS sensor. This allows it to bypass shellcode signature analysis. XORing encodes the
shellcode with a randomly generated key. It modulates the return address and the least
significant byte is altered to jump into different parts of the stack. It also allows the attacker to
apply different weights to generate ASCII equivalents of machine language code and to tweak
the statistical distribution of resulting characters. This formulates the traffic as the "standard"
for a given protocol, from a statistical perspective, for example, more heavily weighted
characters "<" and ">" in HTTP protocol. To further reduce the pattern of the decoder, out-of-
order decoders are supported. This allows the user to specify where in the decoder certain
operational instructions are placed. ADMutate was developed to offend IDS signature checking
by manipulation of buffer overflow exploits. It uses techniques borrowed from virus creators
and works on Intel, Sparc, and HPPA processors. The likely targets are Linux, Solaris, IRIX, HPUX,
OpenBSD, UnixWare, OpenServer, TRU64, NetBSD, and FreeBSD.

Module 18 Page 2738 Ethical Hacking and Countermeasures Copyright © by EC-COUNCil
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
Buffer Overflow

Buffer

HUB Overflow

0o Concepts

Buffer Buffer Buffer Osgmec;w Buffer
Overflow Overflow Overﬂpw Counter- Ove;n‘low
Methodology Examples Detection measUres Security Tools

Buffer

Overflow

Pen Testing

Copyright © by E&Ctincfl. All Rights Reserved. Reproduction is Strictly Prohibited.

Module Flow

So far, we have discussed what buffer overflow is and how to exploit it. Now it's time
to discuss how to detect buffer overflows.

Buffer Overflow Concepts Buffer Overflow Countermeasures
L Buffer Overflow Methodology v Buffer Overflow Security Tools
Buffer Overflow Examples < Buffer Overflow Pen Testing
Ql Buffer Overflow Detection

This section focuses on various buffer overflow detection methods such as testing for heap and
stack overflows, formatting string conditions, and buffer overflow detection tools.

Module 18 Page 2739 Ethical Hacking and Countermeasures Copyright © by EC-COUNCil
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
Buffer Overflow

ldentifying Buffer Overflows CEH

STEP 1 STEP 2 STEP 3

If web server
Issue requests
Run web server X crashes, search
on local machine with long tags core dump for
i . . u
M M M M ending with M MM W "E$$SS” to find

overflow location

STEP 6 STEP 4
Using automated
Use IDA-Pro to
. tools such as
construct an X X X X disassemblers X X X X
A codeBlocker,

exploit and debuggers

eEye Retina, etc.

Copyright © by E&Cauaci. All Rights Reserved. Reproduction is Strictly Prohibited.

Identifying Buffer Overflows

In order to identify the buffer overflow vulnerability, follow the steps mentioned as
follows:

© Step 1:Run web server on local machine
Q Step 2:Issue requests with long tags-all long tags end with "$$$$$"

Q Step 3: If the web server crashes, search core dump for "$$$$$" to find overflow
location

Q Step 4:Using automated tools such as codeBlocker, eEye Retina, etc.
Q Step 5:Use disassemblers and debuggers

Q Step s6:Use IDA-Pro to construct an exploit

Module 18 Page 2740 Ethical Hacking and Countermeasures Copyright © by EC-COUNCil
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
Buffer Overflow

How to Detect Buffer Overflows
In a Program CEH

Local Variables

Inthis case, the attacker can look for strings declared as local
variables in functions or methods, and verify the presence of
boundary checks

111111111 111 11

Standard Functions

It is also necessary to check for improper use of standard
functions, especially those related to strings and input or output

Ancther way is to feed the application with huge amounts of data and check for
abnomrel behavior

Copyright © by E&Cauaci. All Rights Reserved. Reproduction is Strictly Prohibited.

__->How to Detect Buffer Overflows in a Program

To identify buffer overflows, you need to examine programs systematically in order
to discover vulnerabilities. There are basically two main ways to detect buffer overflow
vulnerabilities:

© The first method is to look at the source code:

The attacker looks for strings declared as local variables in functions or methods and
verifies the presence of a boundary check or use of "SAFE" C functions. In addition, it is
also necessary to check for the improper use of standard functions, especially those
related to strings and input/output.

e The second method is to feed the huge volumes of data to the application and check for
abnormal behavior.

To start with, you can attempt to reverse the code using a disassembler or debugger and
examine the code for vulnerabilities.

Disassembly starts from the entry point of the program and then proceeds with all routes of
execution to search for the functions that are external to the main flow of the program. The
user may keep his or her focus on functions lying outside main () and check those subroutines
that take strings as their input or generate them as output.

Module 18 Page 2741 Ethical Hacking and Countermeasures Copyright © by EC-COUNCil
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
Buffer Overflow

As already mentioned, programs written in C are particularly susceptible, because the language
does not have any built-in bounds checking, and overflows are undetected as they write past
the end of a character array. The standard C library offers many functions for the purpose of
copying or appending strings that do not perform any boundary check. These include strcat (),
strepy (), sprintf (), and vsprintf (). These functions operate on null-terminated strings and do
not check for an overflow resulting from a received string.

The gets () function reads a line from stdin into a buffer until a terminating new line or EOF
occurs. It does not check for any buffer overflows. The scanf() function also gives rise to
potential overflows, if the program attempts to match a sequence of non-white-space
characters (%s) or a non-empty sequence of characters from a specified set [%]).

The array pointed to by the char pointer is inadequate to accept the entire sequence of
characters, and the optional maximum field width is not specified. If the target of any of these
functions is a buffer of static size, and its arguments are derived from user input, there is a good
chance of encountering a buffer overflow.

Most attackers point out that ingenuity is critical for exploiting buffer overflow vulnerabilities.
This is true especially when one has to guess a few parameters. For instance, if the attacker is
looking at software that assists in communication such as FTP, he or she may be looking at
commands that are typically used and how they are implemented.

For example, the attacker can search for text and pick out a suspect variable from a table. He or
she can then go on and check the code for any boundary checks and functions such as strcpy()
that take input directly from the buffer. The emphasis can be on local variables and
parameters. The attacker can then test the code by providing malformed input and observe the
resulting behavior of the code.

Another method is to adopt a brute force approach by using an automated tool to bombard the
program with excessive amounts of data and cause the program to crash in a meaningful way.
The attacker can then examine the register dump to check whether the data bombarding the
program made its way into the instruction pointer.

What happens after the buffer overflow vulnerability is discovered? After discovering a
vulnerability, the attacker can observe carefully how the call obtains its user input and how it is
routed through the function call. He or she can then write an exploit, which makes the software
do things it would not do normally. This can range from simply crashing the machine to
injecting code so that the attacker can gain remote access to the machine. He or she might then
use the compromised system as a launch base for further attacks.

However, the greatest threat comes from a malicious program such as a worm that is written
to take advantage of the buffer overflow.

Module 18 Page 2742 Ethical Hacking and Countermeasures Copyright © by EC-COUNCil
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
Buffer Overflow

On the next slide, when the MOV instructions shown in the left pane of the
screenshot are executed, the overwrite takes place. When the function is called, the
user-supplied code gets executed

Copyright © by E&COoinci. All Rights Reserved. Reproduction is Strictly Prohibited.

Testing for Heap Overflow Conditio ns: heap.exe

A heap is memory that is allocated dynamically; these are dynamically removed
(example delete, free) and created (example new, malloc). In some cases, heaps are reallocated
by the programmer. Each memory chunk in a heap is associated with boundary tags containing
information about memory management.

Heap-based buffer overflow causes overwriting the control information. This leads to an access
violation when the heap management routine frees the buffer. This overflow vulnerability
allows an attacker to overwrite a desired memory location with a user-controlled value, when
executed in a controlled fashion. Thus, it allows an attacker to overwrite function pointers and
other addresses stored in TEB, GOP, or .dtors structures with the shellcode's address.

There are many ways in which the heap overflow vulnerability can be exploited to execute
shellcode by overwriting function pointers. In order to exploit these vulnerabilities, certain
conditions need to exist in the code. Hence, identifying or locating these vulnerabilities
requires closer examination when compared to stack overflow vulnerabilities.

You can test for heap overflows by supplying input strings longer than expected. Heap
overflow in a Windows program may appear in various forms. The most common one is pointer
exchange taking place after the heap management routine frees the buffer.

Two registers EAX and ECX, can be populated with user-supplied addresses:

Module 18 Page 2743 Ethical Hacking and Countermeasures Copyright © by EC-COUNCil
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
Buffer Overflow

6 One of the addresses can point to a function pointer that needs to be overwritten, for
example, UEF (Unhandled Exception filter)

© The other address can be the address of user-supplied code that needs to be executed

Module 18 Page 2744 Ethical Hacking and Countermeasures Copyright © by EC-COUNCil
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
Buffer Overflow

Testing for Heap Overflow Conditions: heap.exe
(Cont'd)

Let us consider the following example of heap overflow vulnerability:

OltyObc* heap.exe [0*11 main thread, module ntdllj "X

Module 18 Page 2745 Ethical Hacking and Countermeasures Copyright © by EC-COUNCil
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
Buffer Overflow

The two registers shown, EAX and ECX, can be populated with user-supplied addresses used to
overflow the heap buffer. One address points to a function pointer such as Unhandled
Exception Filter (UEF) that needs to be overwritten, and the other holds the address of the
arbitrary code. The overwrite takes place when the MOV instructions are executed. When the
function is called, the arbitrary code gets executed.

In addition to this method, the heap-based buffer overflows can be identified by reverse
engineering the application binaries and using fuzzing techniques.

Module 18 Page 2746 Ethical Hacking and Countermeasures Copyright © by EC-COUNCil
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
Buffer Overflow

Steps for Testing for Stack Overflow

CEH

in OllyDbg Debugger

Copyright © by EfrCaind. All Rights Reserved. Reproduction is Strictly Prohibited.

Steps for Testing for Stack Overflow in OllyD bg
Debugger

Stack buffer overflow occurs when the variable data size larger than the buffer size is placed in
the program stack without bound checking. This can be a serious vulnerability and may even
cause denial-of-service attacks. A stack overflow vulnerability allows an attacker to take
control of the instruction pointer. This may lead to severe consequences. Therefore, you need
to test your application or processes against stack overflow vulnerabilities.

Similar to heap-based buffer overflow testing, the stack overflow vulnerability can also be
tested by supplying a large amount of input data than the normal or expected. However, this
alone is not enough. In addition to sending a large amount of input data, you need to inspect
the execution flow of the application and the responses to check whether an overflow has
occurred or not. You can do this in four steps with the help of a debugger, a computer program
used to test other programs. Here we are testing for stack overflow with the help of the
OllyDbg debugger. The first step in testing for stack overflow is to attach a debugger to the
target application or process. Once you successfully attach the program, you need to generate
the malformed large input data for the target application to be tested. Now, supply the
malformed input to the application and inspect the responses in a debugger. The ollydbg
debugger allows you to observe the execution flow and the state of registers when the stack

Module 18 Page 2747 Ethical Hacking and Countermeasures Copyright © by EC-COUNCil
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
Buffer Overflow

overflow gets triggered. On the next slide, we will discuss these steps by considering an
example.

Module 18 Page 2748 Ethical Hacking and Countermeasures Copyright © by EC-COUNCil
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker

Buffer Overflow

Testing for Stack Overflow in

OllyDbg Debugger CEH

Demonstration of how an attacker can overwrite
the instruction pointer (with user-supplied
values) and control program execution

T I I
Step 1 Step 2 Step 3 Step 4 Step 5
Testing Launch A large Open the EIP contains
“sample.exe" for "sample.exe" sequence of executable with the value
stack overflows: in a debugger characters such the supplied "41414141",
einciude<stdio.h> as "A", can be arguments which
int main (int arge, supplied in the (AAAAAAAA..) represents the
char *argv[]) !) .
argument field and continue hexadecimal
as shown in execution. The "AAAA"
char buff20); i : i
printf('copying figure 1 in next result is shown
into buffer'’); . L .
strcpy(buff,') slide in figure 2 in

argv[d]); retum O;

next slide

>

Copyright © by E&CtINcil. All Rights Reserved. Reproduction isStrictly Prohibited.

Testing for Stack Overflow in OllyDbg Debugger

Here we are going to demonstrate how an attacker can overwrite the instruction
pointer (with user-supplied values) and control program execution. Consider the following
example of "sample.exe" to test for stack overflows:

#include<stdio.h>

int main(int argc,char *argv[])

{

char buff[20]; printf("copying into buffer");
strcpy(buff, argv[l]);

return O;

>

Launch the sample.exe in OllyDbg debugger. The sample.exe accepts command line arguments.
So you can supply a large sequence of characters such as A' in the argument field as shown in
figure 1 on the next slide. Now open sample.exe with the supplied arguments (AAAAAAAAA....)
and continue execution. The result is shown in figure 2 on the next slide. From the figure 2 in

Module 18 Page 2749 Ethical Hacking and Countermeasures Copyright © by EC-COUNCil

All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
Buffer Overflow

next slide, it is clear that the EIP (Extended Instruction Pointer) contains the value "41414141."
The hexadecimal representation of character 'A’ is 41. Hence "41414141" represents the string
"AAAA."

Module 18 Page 2750 Ethical Hacking and Countermeasures Copyright © by EC-COUNCil
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
Buffer Overflow

Testing for Stack Overflow in
OllyDbg Debugger @»d CEH

"o

00320FB4

00414141

7FFDD000

0012FEEC RSCII

41414141

4141414
C 0 ES 002332bit O(FFFFFFFF
P CS 001IB 32bit 0 (FFFFFFFF
0 0 SS 002332bit ©(FFFFFFFF
Z 1 DS 0023 32bit O (FFFFEFFFF
S 0 FS 003B32bit 7FFDFOOO(FFF
E) 8 QS 0000 NULL
0 0 LastErr ERROR_SUCCESS (00000000)
EFL 00010246 (NO,NB,E,BE,NS,PE,GE,LE)
STO enpty -UNORM BDEC01050104 002E0067
ST1 enpty 0.0
ST2 enpty 0.0
ST3 enpty 0.0
ST4 enpty 0.0
ST5 enpty 0.0
ST6 enpty 0.0
ST7 enpty 0.0

3210 ESPUOZD

FST 0000 Cond0 00O Err0O000000
FCUI 027F PrecNERR.53 Mask 11111

Testing for Stack Overflow in OllyDbg Debugger
(Cont'd)

R*gUt«r« (FPU)

mam m
4

0012FEEC PSCII
41414141
00000028

FIGURE 18.10: Testing for Stack Overflow in OllyDbg Debugger

Module 18 Page 2751 Ethical Hacking and Countermeasures Copyright © by EC-COUNCil
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
Buffer Overflow

Testing for Format String CEH
Conditions Using IDA Pro

Format String Manipulating I S |
Vulnerabilities Input Parameters

Format string vulnerabilities Attacker manipulates input

are most often exploited parametersto include % or %

within: type specifies

For example, a legitimate request like:

http://hostname/cgi-bin/

e Web servers

e Application servers query.cgi?name=john&code=4576S
. . e is changed into:
© Web applications utilizing http://hostname/cgi-bin/
C/C++ based code query.cgi?name=

john%x.%ox.%x&code=45765%6X.%x
© CGlI scripts written in C

Copyright © by EC-Cauactl. All Rights Reserved. Reproduction is Strictly Prohibited.

Testing for Form at String Conditions Using IDA Pro

Applications can be tested for format string vulnerabilities by supplying format type
specifiers in application input. Format string vulnerabilities usually appear in web servers,
application servers, or web applications utilizing C/C++ based code or CGI scripts written in C.
Most of these format string vulnerabilities are resulting because of the insecure call to error
reporting or logging function like syslog().

An attacker manipulates input parameters to include %x or%n type specifiers in a CGl script.
Consider a legitimate example:

http://hostname/cgi-bin/query.cgi?name= john&code=457 65
Attacker can manipulate this to
http://hostname/cgi-bin/query.cgi?name=john%xX.%x.%x&code=45765%x.%ox

If the routine processing the altered request contains any format string vulnerability, then it
prints out the stack data to browser.

Module 18 Page 2752 Ethical Hacking and Countermeasures Copyright © by EC-COUNCil
All Rights Reserved. Reproduction is Strictly Prohibited.

http://hostname/cgi-bin/
http://hostname/cgi-bin/
http://hostname/cgi-bin/query.cgi?name=
http://hostname/cgi-bin/query.cgi?name=

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
Buffer Overflow

Testing for Format String
Conditions Using IDA Pro cont) CEH

. e 10401010 ! - dwtrd h
J Attacker identifies the presence of a ot pr K
format string vulnerability by checking i
1040101/
instances of code (assemblyfragments) Daiang
It*title a,)]
J When the disassembly is examined st it TCBNAHBHIST IOV YD TRY
. . “ii R
using IDA Pro: Tt
o RN el '(we
© The address of a format type specifier pne*

A rth KDIUOT$SCFs?$AIW t. "v.dai« xnt»: lwin7tt*

being pushed on the stack is clearly visible y mraballoc o BCT- ...

before a call to print is made

; DATA XRIF: Min

Command Prompt

int main(int argc, char **argv)

{printf("The string entered
is\n");

printf("% s",argv[1]);

return O;}

Copyright © by EC-Cauactl. All Rights Reserved. Reproduction is Strictly Prohibited.

'0): Testing for Format String Conditions Using IDA Pro
- (Cont’'d)
An attacker identifies the presence of a format string vulnerability by checking instances of
code (assembly fragments). Consider the following example code:
int main(int argc, char **argv)
{ printf ((IThe string entered is\n") ;
printf("%s" ,argv[I]);
return 0;}

Examine the disassembly of the code using IDA Pro. You can clearly see the address of format
type specifier being pushed on the stack before a call to printf is made.

No offset will be pushed on the stack before calling printf, when the same code is compiled
without "% " as an argument.

Module 18 Page 2753 Ethical Hacking and Countermeasures Copyright © by EC-COUNCil
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
Buffer Overflow

B IDA View A . "O)H
text :00*401010 arg k - duord ptr OCh
te xt:00101010

' text:001101010 push ebp
* text:00101011 nou ebp, esp
* text:00%*101013 sub esp, *4Ch
* text :00*101016 push ebx
" text:00%101017 push esi
* text:00%101018 push edi
" text:00%101019 lea edi, [ebp»uar_*40]
* text:00*40101C nou ecx, 10h
" text:00%01021 nou eax, OCCCCCCCCh
" text:00%01026 rep stosd
* text:00*401028 push offset ??_C8_OBHQHGKHOThe?5string?5entered?5i
" te x t:00*40102D call print*
" text:00%01032 add esp, 4
* text:00*401035 nou eax, [ebp»arg_*1]
* text :00*401 038 nou ecx, [eax**4]
* te x t:00*40103B jush PCX
" text:00%40103C ___push offset ??_00_O2DILLO?$Crs?$AA<S$I
* text :00%4010*41 call printf

Arr& _O2DILLO?$CFs?$AAe db 25h T A~ s DATA XREF: nain*2Cto
_heap_alloc_dbg»BCto
«(\%. 730, s

db 0
??_CB_BBHBHGKMOThe?Sstring?Sentered?Sis?6?$AA8 db ,The string entered is".OAh,()
DATA XREF: nain«18TO0

db 0
db 0
db)

FIGURE 18.11: Testing for Format String Conditions Using IDA Pro

Module 18 Page 2754 Ethical Hacking and Countermeasures Copyright © by EC-COUNCil
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
Buffer Overflow

BoF Detection Tool: Immunity CEH
CANVAS

Y =

=TTV

h ‘n]s"«l rort MCk 17" T« rt T
WnJ2WSCEFS **U*hock
LM Sat car*d (0*w*c to C:AMIND(WS\ty«iBar\cad. #Ke
37| Turning WSOEP-Mod into t'BpOr*ry Int*rective WWU
u* *SKTACY I+| Nete: «ill back to «OSCE* 0'< “mit*
HewMor *ft#lihoek#d’
Microsoft «findo» 1P (Vortion S.1.2690]

OVASI (@l Capyrint 1942061 Microsoft Corp.
o] L
5|\
i Deu 10, 0"avI", ~<Min Mgo’ BV

» Sbnrm, Eftdtm* Wormeicl

Copyright © by EC-Cauactl. All Rights Reserved. Reproduction is Strictly Prohibited.

) BoF Detection Tool: Im munity CANVAS
IWiW| '

Source: http://www.immunitysec.com
Immunity's CANVAS is an exploit development framework for penetration testers and security
professionals. It allows you to discover how vulnerable you really are. It comes with packaged
vulnerability exploitation modules for scripting and framework for developing original exploits.
Thus, it provides a way for any organization to have a picture of their security posture, without
guesswork or estimation.

WeTmi ~ — mi s UMaAMVTIMAVE

[k Wtars Jeeatm e U* &63 ue0
. + g) Gt
o he« Stwg“?' 0S Qrirg arge' Host Step Expat 05 Téong Ca*>a« 17216.173.1 172 16 173.132
MaMo * Searc M<x»W3- oi MﬁTree Boploit De«(11ption
Name Description pj f— cexnptu < M Oos*k Noda Vitv. CAWVAS ViortdMap Ondu*
ATTeS user Oenned ~ FavoTtes Jsarcefl (GI-'lm"ub) H1 Pt back 1o WCANT*S .
-~ (=2 Wi w r*S>» on
HowMoaty msoe 0671 Ardom oSO dhetnoas
g‘swv GCWAS B fs*«sng_&n VS2ers* s[antJ ched conspes o GBSO -
o = uming HoSCef-Noco i < »ractl*a "
i Post Expift C nutauce oD ¢ 523 (ot 010 rovort beck 0 OB on verif
ormands cermmnos AL » rie MewNor *heUstocked!
- Microsoft Windows XP_[Verslcn 5.1.26601
gos Den* ofSen J » Bpuofts cAnsASI S g 20 0L Meeresoft oo
o* Mo 1+ » >c(an awt Eq<
» ketcn \jth » Comrrands SIS yEtanSTd e\
» Senvers AS Serv . » 005 ey B
CuriMt M«tw <cwm 104 fi#bng Ino 1)*U Vifw urlentMatin In v n Lo« IMugloa DAL I/ew
States Action Start Tir End Tvie mfomattoo Scat*» Action ScaTi

MM Mlf»v.jSt'vw Svcl yMoerflow IMSO0067) attackiw? 172 16 171 |K <4S I»uc<ecOe4) 03 33!

VI Cowflnnt! 10 Sal Cum I1>rv 10

FIGURE 18.12: Immunity CANVAS Screenshot

Module 18 Page 2755 Ethical Hacking and Countermeasures Copyright © by EC-COUNCil
All Rights Reserved. Reproduction is Strictly Prohibited.

http://www.immunitysec.com

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
Buffer Overflow

BoF Detection Tools CEH
Immunity Debugger m BLAST
19 | http://www.immunityinc.com http://mtc.epfl.ch

OllyDog . Stack Shield
http://www.oilydbg.de 12 http://www.angelfire.com

I B
Splint Valgrind
http://www.splint, org http://valgrind.org

fa'y .
BOON PolySpace C Verifier
http://www.cs.berkeley.edu C http://www.mathworks.in
Hawfinder Insure++
http://www.dwheeler.com http://www parasoft.com

Copyright © by EC-Cauactl. All Rights Reserved. Reproduction is Strictly Prohibited.

BoF Detection Tools

In addition to OllyDbg Debugger, IDA Pro, and Immunity CANVAS, many other tools
have the capability to detect buffer overflows. A few buffer overflow detection tools are listed

as follows:
Q Immunity Debugger available at http://www.immunityinc.com
© OllyDbg available at http://www.ollydbg.de

Splint available at http://www.splint.org

BOON available at http://www.cs.berkeley.edu

¢

Flawfinder available at http://www.dwheeler.com
BLAST available at http://mtc.epfl.ch

Stack Shield available at http://www.angelfire.com
Valgrind available at http://valgrind.org

PolySpace C Verifier available at http://www.mathworks.in

® © © @ © O

Insure++ available at http://www.parasoft.com

Module 18 Page 2756 Ethical Hacking and Countermeasures Copyright © by EC-COUNCil
All Rights Reserved. Reproduction is Strictly Prohibited.

http://mtc
http://www.angelfire.com
http://valgrind
http://www
http://www
http://www.immunityinc.com
http://www
http://www
http://www
http://www
http://www.immunityinc.com
http://www.ollydbg.de
http://www.splint.org
http://www.cs.berkeley.edu
http://www.dwheeler.com
http://mtc.epfl.ch
http://www.angelfire.com
http://valgrind.org
http://www.mathworks.in
http://www.parasoft.com

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
Buffer Overflow

Buffer

HUB Overflow

0o Concepts

Buffer Buffer Buffer Osgrfff%w Buffer
Overflow Overflow Overflow Counter- Overflow
Methodology Examples Detection MEasUres Security Tools

Buffer

Overflow

Pen Testing

A

Copyright © by EtCaincil. All Rights Reserved. Reproduction is Strictly Prohibited.

Module Flow

----- So far, we have discussed the buffer overflow vulnerability, how to exploit it, and how
to detect it. Once you detect buffer overflows, you should immediately apply or take
countermeasures to protect your resources from being compromised. There are many reasons

for buffer overflow exploits. The countermeasures to be applied may vary depending on the
kind of buffer overflow vulnerability.

u Buffer Overflow Concepts Buffer Overflow Countermeasures

Buffer Overflow Methodology Buffer Overflow Security Tools

V1], Buffer Overflow Examples ' — Buffer Overflow Pen Testing
¥ e

Buffer Overflow Detection

Module 18 Page 2757 Ethical Hacking and Countermeasures Copyright © by EC-COUNCil

All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker

Buffer Overflow

This section suggests various countermeasures to different kinds of buffer overflow
vulnerabilities. Thus, it can help you to prevent buffer overflow attacks.

Ethical Hacking and Countermeasures Copyright © by EC-COUNCil

Module 18 Page 2758
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
Buffer Overflow

Copyright © by EC-Cauactl. All Rights Reserved. Reproduction is Strictly Prohibited.

Defense against Buffer Overflows

The errors in programs are the main cause of buffer flow problems. These problems
are responsible for security vulnerabilities using which the attacker tries to gain unauthorized
access to a remote host. Attackers easily insert and execute attack code. To avoid such
problems, some protection measures have to be taken. Protection measures to defend against
buffer overflows include:

V' Manual auditing of code

—————— ' Search for the use of unsafe functions in the C library like strcpy() and replace them
with safe functions like strncpy(), which takes the size of the buffer into account. Manual
auditing of the source code must be undertaken for each program.

Compiler technigues

Range checking of indices is defined as a defense that guarantees 100% efficiency
from buffer overflow attacks. Java automatically checks if an array index is within the proper
bounds. Use compilers like Java, instead of C, to avoid buffer overflow attacks.

Module 18 Page 2759 Ethical Hacking and Countermeasures Copyright © by EC-COUNCil
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
Buffer Overflow

Safer C library support

A robust alternative is to provide safe versions of the C library functions where it
attacks by overwriting the return address. It works with the binaries of the target progranVs
source code and does not require access to the program's source code. It can be handled
according to the occurrence of the threat without any vendors operating against it. It is
available for Windows 2000 systems and is an effective technique.

Disabling stack execution

——————— This is an easy solution that provides an option to install the OS-disabling stack
execution. The idea is simple, inexpensive, and relatively effective against the current crop of
attacks. A weakness in this method is that some programs depend on the execution of the
stack.

Module 18 Page 2760 Ethical Hacking and Countermeasures Copyright © by EC-COUNCil
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
Buffer Overflow

Preventing BoF A ttacks CEH

Use type safe languages Implement run-time
(Java, ML) checking
Mark stack as non-
execute, randomize Addl f resslion
stack locations
Static source code Randomize location of
analysis functions in libc

Copyright© by EC-COUIcii. All Rights Reserved Reproduction is Strictly Prohibited.

Preventing BoF Attacks

A buffer overflow attack occurs when large amounts of data are sent to the system,
more than it is intended to hold. This attack usually occurs due to insecure programming.
Often this may lead to a system crash. To avoid such problems, some preventive measures are
adopted. They are:

Q Implement run-time checkingAddress obfuscation
Q Randomize location of functions in libcStatic source code analysis
© Mark stack as non-execute, random stack location

© Use type safe languages (Java, ML)

Module 18 Page 2761 Ethical Hacking and Countermeasures Copyright © by EC-COUNCil
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
Buffer Overflow

Programming Countermeasures CEH

]
Design progranswith security 400 Consider using "'safer”
inmnd : conpilers such as StackGuard
Disable Stack Execution (it's
possible with hardwere Prevent retum addresses
segmentation, or softwere from being overwritten
segnentation such as CHP)
Validate arguents and reduce
E%tg%gemgmecodeto the amount of code that runs
with root privilege
Prevent al sensitive
kbt ek d rinmetcn g
I ' ovenwitten
Copyright © by EC-Cauactl. All Rights Reserved. Reproduction is Strictly Prohibited.
(li'l Program ming Countermeasures
a,
© Design programs with security in mind.
© Disable dtack execution (possible on Solaris).
© Test and debug the code to find errors.
© Prevent use of dangerous functions: gets, strcpy, etc.
© Consider using "safer" compilers such as StackGuard.
© Prevent return addresses from being overwritten.
© Validate arguments and reduce the amount of code that runs with root privilege.
© Prevent all sensitive information from being overwritten.
Module 18 Page 2762 Ethical Hacking and Countermeasures Copyright © by EC-COUNCil

All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
Buffer Overflow

Programming Countermeasures (Cont'd)

Q Make changes to the C language itself at the language level to reduce the risk of buffer
overflows.

Q Use static or dynamic source code analyzers at the source code level to check the code
for buffer overflow problems.

Q Change the compiler at the compiler level that does bounds checking or protects
addresses from overwriting.

6 Change the rules at the operating system level for which memory pages are allowed to
hold executable data.

© Make use of safe libraries.

© Make use of tools that can detect buffer overflow vulnerabilities.

Module 18 Page 2763 Ethical Hacking and Countermeasures Copyright © by EC-COUNCil
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker

Buffer Overflow

Data Execution Prevention (DEP) cen

DEP is a set of hardware and software
technologies that monitors programs to
verify whether they are using system
memory safely and securely

It prevents applications from accessing
memory that wasn't assigned for the
process and lies in another region

When a violation is attempted, hardware-
enforced DEP detects code that is running

Performance Options B

MSUci Effects [Advanced Data Execution Prevention

j! I DataExecution Prevention (DEP) helps protect
JL agairst damage from viruses and other security
A threats. How does it work*

©lum on DEP for essential Windows programs and services
only

OTym on DEPfor all programs and services exceot those |
select:

from these locations and raises an exception

To prevent Malicious code from taking
advantage of exception-handling
mechanisms, Windows uses Software- And... Rfmone

enforced DEP You computer's processor supports hardwarebagsd DEP.

DEP helps in preventing code execution from

within data pages, such as the default heap

pages, memory pool pages, and various oK Caned
stack pages, where code is not executed

from the default heap and the stack

Copyright © by EC-Cauactl. All Rights Reserved. Reproduction is Strictly Prohibited.

Data Execution Prevention (DEP)

Data execution prevention (DEP) is a set of hardware and software technologies that
monitors programs to verify whether they are using system memory safely and securely. It
prevents the applications that may access memory that wasn't assigned for the process and lies
in another region. When an execution occurs, hardware-enforced DEP detects code that is
running from these locations and raises an exception. To prevent malicious code from taking
advantage of exception-handling mechanisms in Windows, use software-enforced DEP.

DEP helps in preventing code execution from data pages, such as the default heap pages,
memory pool pages, and various stack pages, where code is not executed from the default heap
and the stack.

Ethical Hacking and Countermeasures Copyright © by EC-COUNCil
All Rights Reserved. Reproduction is Strictly Prohibited.

Module 18 Page 2764

Ethical Hacking and Countermeasures
Buffer Overflow

Performance Options

Visual Effects Advanced Data Executxjn Preventxjn

I Data ExecutX)n Prevention (DEP) helps protect
j L aganstdn>at fromvtruy and other security
® threats. Hmf does it "vork*

() Turn on DEP for essential Wndows programs and services
only

O Turn on DEP for all programs and services except those |
select:

Agd... Remove

Your computer's processor supports hardware-based DEP.

oK Cancel Apply

FIGURE 18.13: Data Execution Prevention (DEP)

Exam 312-50 Certified Ethical Hacker

Module 18 Page 2765 Ethical Hacking and Countermeasures Copyright © by EC-COUNCil
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
Buffer Overflow

Enhanced Mitigation Experience
Toolkit (EMET)

Enhanced Mitigation Experience Toolkit (EMET) is designed to make it more difficult for
an attacker to exploit the vulnerabilities of software and gain access to the system

It supports mitigation techniques that prevent common attack techniques, primarily
related to stack overflows and the techniques used by malware to interact with the
operating system as it attempts a compromise

It improves the resiliency of Windows to the exploitation of buffer overflows

Structure Exception Handler Dynamic Data Address Space Layout
Overwrite Protection (SEHOP) Execution Prevention (DDEP) Randomization (ASLR)
It prevents common techniques It marks portions of process New in EMET 3.0 is mandatory
used for exploiting stack memory non-executable, address space layout
overflows in Windows by making it difficult to exploit randomization (ASLR), as well
performing SEH chain memory corruption as non-ASLR-aware modules
validation vulnerabilities on all new Windows Versions
hittp://support, microsoft.com

Copyright© by EC-Gouidl. All Rights Reserved Reproduction is Strictly Prohibited.

Enhanced Mitigation Experience Toolkit (EMET)

Enhanced Mitigation Experience Toolkit (EMET) is designed to make it more difficult
for an attacker to exploit the vulnerabilities of software and gain access to the system. It
supports mitigation techniques that prevent common attack techniques, primarily related to
stack overflows and the techniques used by malware to interact with the operating system as it
attempts the compromise. It improves the resiliency of Windows to the exploitation of buffer
overflows.

0 Structure Exception HandlerOverwrite Protection (SEHOP):

It prevents common techniques used for exploiting stack overflows in Windows by
performing SEH chain validation.

© Dynamic Data Execution Prevention (DDEP):

It marks portions of a process's memory non-executable, making it difficult to exploit
memory corruption vulnerabilities.

© Address Space Layout Randomization (ASLR):

New in EMET 2.0 is mandatory address space layout randomization (ASLR), as well as
non-ASLR-aware modules on all new Windows Versions.

Module 18 Page 2766 Ethical Hacking and Countermeasures Copyright © by EC-COIInCil
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
Buffer Overflow

a Enhanced Mitigation Expenence Toolkit - n o« Enhanced Mitigation Expenence Toolkit
Hdp
Srst* Stk Sfrtnr Sbu

[
ixesbeautonPreveneon C0S) e m@chDt\I Data Becutor! Prevertion (DS) ApofedftonOot n
Stcttrfd Sctotton*ander Overwt Prot*cton (SHP) s«*al Ls: in Struchred BrosptionHarxte Overrate Protection (SEHCP) Apokaaon Os”
Actiress Spece layoutRandomzaoon (SIR) Apokaaon 00: h

System Configuration S 0
| CandareSweni | > dsenngs
RUTDProesces, o Purt* ham QustomSettings

ProcessID Processhame DEP R1WQOCT

T SeQirtor

1*6 PFOQeBioysa\la

1SM wmservte 0

cee] Mnft.nrer tj

}» svhet

74 googhu*

s svikst w

F5 fpoohv V

53 <> Iy

&mne V 1 H.)[- a I

2m2 et Q

Eec3 wdm (0]

20 wis J

0 &vrm o

3sM oswvC \%

20 iJ

2 &nm iJ

oV Srwpit.

4 BP.UOSA v

Catgir

http://Aw.microsoft.com

Copyright © by E&Cauactl. All Rights Reserved. Reproduction is Strictly Prohibited.

EMET System Configuration Settings
Source: http://www.microsoft.com

The Enhanced Mitigation Experience Toolkit (EMET) was designed specifically for preventing
vulnerabilities in software from being exploited. After installation, you need to configure EMET
to provide protection for software. System and application are the two main categories you
need to configure on EMET. To configure both these categories, you need to click the respective
button present on the right side of the EMET main window. The system status display may vary
from one operating system to the other.

The System Configuration section is used to configure system-wide (i.e., no need to explicitly
define the process to be protected) specific mitigations such as DEP, SEHOP, and ASLR. In
operating systems such as Windows 7, when the system configuration is set to maximum
security, the DEP option will be set to Always On, SEHOP to Application Opt Out, and ASLR to
Application Opt In modes. But, setting DEP to Always On may cause all applications that are not
compatible with DEP to crash. This in turn may cause system instability. Hence, if you wish to
accomplish stability, then it is recommended to set all these settings to Application Opt In.

Module 18 Page 2767 Ethical Hacking and Countermeasures Copyright © by EC-COUNCil
All Rights Reserved. Reproduction is Strictly Prohibited.

http://www.microsoft.com
http://www.microsoft.com

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
Buffer Overflow

FIGURE 18.14: EMET System Configuration Settings

Module 18 Page 2768 Ethical Hacking and Countermeasures Copyright © by EC-COUNCil
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
Buffer Overflow

EMET Application Configuration C
Settings w2 T

Application Configuration | | M
SVuctxcd Cxaoton Hjnder 9>crvantc Protection (SOVIOP)
Address Soace Layout Randorrtatjon (ASLR)
Rirnnc Processes
Process D Process Nane: |cP
3 SneplEdtor
2u POgoectoySenvke o J Using the Application Configuration dialog box, we can
Ism \YrfUe*vct H . -
= v Tiir 5 add application(s) to be configured by EMET
3* Svatot tJ . . .
3724 qooglelic J This helps harden applications that have not been
S*» ivtfmt KJ H i i iFi N
s o compiled (by the original vendor) with specific security
M v i countermeasures.
8% &nme v
1452 foefox Vv
36 MtnM Vi
wic vdt
4100 drome
3x4 OsPRVC g M Rnu
220 tvOfiM
130 (hrone
“am SngPrv
524 BV.UOSA

Copyright © by EC-Cauactl. All Rights Reserved. Reproduction is Strictly Prohibited.

b. $ &1 EM ET Application Configuration Settings

-------- Contrary to system configuration, application configuration enables mitigations such
as DEP per application rather than system-wide. In order to configure applications, you need to
click the Configure Apps button in EMET's main window. This will prompt you with the
Application Configuration window of EMET. By default, this window will be blank. If you want to
protect any particular program, then click the Add button and specify the path where the
executables of the programs are installed.

FIGURE 18.15: EMET Application Configuration Settings

Module 18 Page 2769 Ethical Hacking and Countermeasures Copyright © by EC-COUNCil
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker

Buffer Overflow

Buffer

HUB Overflow

0o Concepts

Buffer Buffer Buffer Osgrfff%w Buffer
Overflow Overflow Overflow Counter- Overflow
Methodology Examples Detection MEasUres Security Tools

Buffer

Overflow

Pen Testing

Copyright © by E&Cauactl. All Rights Reserved. Reproduction is Strictly Prohibited.

& Module Flow

A3l
So far, we have discussed what buffer overflow is, how to exploit it, buffer overflow

examples, detection methods, and countermeasures. In addition to countermeasures, there are
some automated buffer overflow security tools that detect and prevent the exploitation of

buffer overflows.

Buffer Overflow Concepts Buffer Overflow Countermeasures
Buffer Overflow Methodology Buffer Overflow Security Tools
Buffer Overflow Examples Buffer Overflow Pen Testing

Buffer Overflow Detection

This section lists and describes buffer overflow security tools.

Module 18 Page 2770 Ethical Hacking and Countermeasures Copyright © by EC-COUNCil
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures

Buffer Overflow

IGS

http://www. microsoft. com

The Buffer overrun attack exploits
poor coding practices that
programmers adopt when writing
and handling the C and C++ string
functions

/GS compiler switch can be
activated from the Code
Generation option page on the
C/C++ tab

The /GS switch provides a "speed
bump,” or cookie, between the

buffer and the return address that
helps in preventing buffer overrun

If an overflow writes over the
return address, it will have to
overwrite the cookie putin
between it and the buffer,

1 ? 1/Gs

Source: http://www.microsoft.com

(At »
Save
Reg”ers

Exam 312-50 Certified Ethical Hacker

Function Function

Parameters Return Address
Exception 0 * 0
Handler Frame vV

Copyright © by EC-Cauactl. All Rights Reserved. Reproduction is Strictly Prohibited

The buffer overrun attack utilizes poor coding practices that programmers adopt when writing
and handling the C and C++ string functions. The /GS compiler switch can be activated from the
Code Generation option page on the C/C++ tab. The /GS switch provides a "speed bump/' or
cookie, between the buffer and the return address that helps in preventing buffer overrun.

If an overflow writes over the return address, it will have to overwrite the cookie put in
between it and the buffer, resulting in a new stack layout:

€ Function parameters

€ Function return address

€ Frame pointer

€ Cookie

0 Exception Handler frame

€ Locally declared variables and buffers

€ Callee save registers

Module 18 Page 2771

Ethical Hacking and Countermeasures Copyright © by EC-COUNCil
All Rights Reserved. Reproduction is Strictly Prohibited.

http://www.microsoft.com

Ethical Hacking and Countermeasures
Buffer Overflow

Exam 312-50 Certified Ethical Hacker

BoF Security Tool: BufferShield CEH

J BufferShield allows you to detect
and prevent the exploitation of buffer
overflows, responsible forthe majority
of code injection attacks

J Features:

© Detects code execution on the stack,
default heap, dynamic heap, virtual
memory, and data segments

« Terminates applications in question if a
buffer overflow was detected

$*«9m» |Elector Scope |Jest |

Glob-31 Setting".

T U<

p

Show rrfeiacitve wainng message
Check appdcatlOnjtack

Check data segrent

Check &nam<c apptcabon heap

Iv Check virtual memay
17 &SIR IAddest Space Layout Randarcaton]

Note By defall «¢ optiors are engbled

Status
Up and tunmms

http://www.sys "1 21age-corm

Copyright © by EC-Cauactl. All Rights Reserved. Reproduction is Strictly Prohibited.

BoF Security Tool: BufferShield

Source: http://www.sys-manage.com

BufferShield a security tool that prevents the exploitation of buffer overflows. It allows you to
detect and prevent the exploitation of buffer overflows, responsible for the majority of security

related problems.

Key features of BufferShield:

9 It detects code execution on the stack, default heap, dynamic heap, virtual memory, and

data segments

© Itcan terminate applications in question if a buffer overflow was detected

@)

It reports to the Windows event log in case of any detected overflows

© Itallows the definition of a protection scope to either protect only defined applications
or to exclude certain applications or memory ranges from being protected

It utilizes Intel XD / AMD NX hardware based technology if available

It has SMP support

Module 18 Page 2772

Ethical Hacking and Countermeasures Copyright © by EC-COUNCil

All Rights Reserved. Reproduction is Strictly Prohibited.

http://www.sys
http://www.sys-manage.com

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker

Buffer Overflow
Q It uses Address Space Layout Randomization (ASLR)

~ Sys Manage BufferShield Configuration xJ
Settirgs | RotedionSogpe | Test |
Add SHtirgs
|5 I erminate processes if detecting mwanted code execution
17 Show interactive warning message
(7 Check application stack
W Check data segment
17 Check dynamic application heap

W Check virtual memory
W ASLR (Address Space Layout Randomization)

Note: By cHfault dl gias ae eretded
SzLs
Wpandmmig
K CGard Hip

FIGURE 18.16: BufferShield Screenshot

Module 18 Page 2773 Ethical Hacking and Countermeasures Copyright © by EC-COUNCil
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures

Buffer Overflow

Exam 312-50 Certified Ethical Hacker

BoF Security Tools CEH
DefenseWall HreFuzzer
http://www.softsphere.com v >1 http://code,google,com
TIED BOON

[mmJ http://www.security, iitk.ac.in m http://www.cs. berkeley.edu

, The Enhanced Mitigation
LibsafePlus o oot
http://www.security.iitk.ac.in I Exmnerne

http://support. microsoft.com

' i
Comodo Memory Firewall BOB T oer® Static Analysis
http://www.comodo.com adOd

http://www.grammatech.com
Clang Static Analyzer M CORE IMPACT Pro
http://clang-analyzer.llvm.org nn http://www.coresecurity, com

Copyright © by EC-Cauactl. All Rights Reserved. Reproduction is Strictly Prohibited.

BoF Security Tools

In addition to /GS and BufferSheild, many other buffer overflow security tools are
readily available in the market. A more buffer overflow security tools that can detect and
prevent buffer overflows are listed as follows:

© DefenseWall availbleat http://www.softsphere.com

TIED available at http://www.security.iitk.ac.in

LibsafePlus available at http://www.security.iitk.ac.in

Comodo Memory Firewall available at http://www.comodo.com

Clang Static Analyzer available at http://clang-analyzer.llvm.orR

FireFuzzer available at http://code.google.com

BOON available at http://www.cs.berkeley.edu

The Enhanced Mitigation Experience Toolkit available at http://support.microsoft.com

CodeSonar® Static Analysis Tool available at http://www.grammatech.com

© © 6 © © © @ O O

CORE IMPACT Pro available at http://www.coresecurity.com

Module 18 Page 2774 Ethical Hacking and Countermeasures Copyright © by EC-COUNCil

All Rights Reserved. Reproduction is Strictly Prohibited.

http://code
http://www.softsphere
http://www
http://www
http://s
http://www
http://www
http://www
http://www
http://clang-analyzer
http://www.softsphere.com
http://www.security.iitk.ac.in
http://www.security.iitk.ac.in
http://www.comodo.com
http://clang-analyzer.llvm.orR
http://code.google.com
http://www.cs.berkeley.edu
http://support.microsoft.com
http://www.grammatech.com
http://www.coresecurity.com

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
Buffer Overflow

Buffer

HUB Overflow

0o Concepts

Buffer Buffer Buffer Osgrfff%w Buffer
Overflow Overflow Overflow Counter- Overflow
Methodology Examples Detection MEasUres Security Tools

Buffer

Overflow

Pen Testing

Copyright© by EtCaincil. All Rights Reserved. Reproduction is Strictly Prohibited.

Module Flow

So far, we have discussed all the necessary elements required to test the security of an
application or program against buffer overflow vulnerabilities. Now it's time to test the security
of an application, service, or program. The test conducted to check the security of your own
application by simulating the actions of an attacker or external user is called penetration
testing.

u Buffer Overflow Concepts Buffer Overflow Countermeasures
Buffer Overflow Methodology Buffer Overflow Security Tools
) . Buffer Overflow Examples Buffer Overflow Pen Testing
)

Buffer Overflow Detection

Module 18 Page 2775 Ethical Hacking and Countermeasures Copyright © by EC-COUNCil
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
Buffer Overflow

This section provides a detailed step-by-step process of testing the security of application,
service, or program against buffer overflow flaws.

Module 18 Page 2776 Ethical Hacking and Countermeasures Copyright © by EC-COUNCil
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
Buffer Overflow

n

Buffer Overflow Penetration
Testing L

0 0
Buffer overflow penetration testing is based on the assumption that the application Q
will result in a system crash or in extraordinary behavior when supplied with
format type specifiers and input strings that are longer than expected

Skills of a Penetration Tester

Muimmiii

Understanding of how Understating of memory
i J g buffer overflow attack management in various
works operating environments

Understanding of
programming languages
such as C/C++, assembly,
and machine language

Proficiency in running
debuggers, disassemblers,
and fuzzers

..Copyright © by E&Counctl. All RightsReservei;Reproduction isStrictly Prohibited.

Buffer Overflow Penetration Testing

Buffer overflow penetration testing is based on the assumption that the application
will result in a system crash or an extraordinary behavior when supplied with format type
specifies and input strings that are longer than expected. A penetration tester's job is to not
only scan for the vulnerabilities in the applications or server, but also he need to exploit them
to gain access to the remote server.

A good pen tester should possess the following skills:
© Understanding of how buffer overflow attack works
© Understating of memory management in various operating environments

© Understanding of programming languages such as C/C++, assembly, and machine
language

© Proficiency in running debuggers, disassemblers, and fuzzers

Module 18 Page 2777 Ethical Hacking and Countermeasures Copyright © by EC-COUNCil
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
Buffer Overflow

Buffer Overflow Penetration
Testing (@td CEH

J Search for calls to insecure library functions
such as gets(), strcpy(), strcat(), printf, fprintf,
sprintf, snprintf, vfprintf, vprintf, vsprintf,
and vsnprintf that may result in buffer
overflow if not used properly

J Perform static code analysis using tools such
asFlawfinder

Reverse engineer app J Reverse engineerthe application using
code using disassemblers disassemblers such as IDA Pro and OllyDbg
to analyze code of compiled software in
V order to identify buffer overflow condition
Attach a debugger to J Attach a debugger (OllyDbg, IDA Pro) to the
the target application target application, supply a large input data,
and inspect responses in a debugger to
\ identify the bufferflowcondition; repeat
Search for calls to Supply a this step with different inputs of variable
insecure library functions large input data length
% \Y
Perform static code Inspect responses
analysis using tools in a debugger

Copyright © by EG-Cauactl. All Rights Reserved. Reproduction is Strictly Prohibited.

m Buffer Overflow Penetration Testing (Cont’'d)

An application can be tested against buffer overflows by supplying a larger amount of
input data than the usual. Then you should observe the application's responses and execution
flow to check whether an overflow occurred or not. To test the application against buffer
overflow with all possible cases, follow these steps:

Step 1: Locate the target application

In order to perform penetration testing, first you should locate the target application on which
you want to conduct the test. Then check whether the source code of the target application is
available or not.

If the source is not available, then go to step 4 to perform static code analysis using tools and if
the source is available, then review the code.

Step 2: Review code

Review the source code of the application to find the vulnerabilities in the application
development and try to exploit those vulnerabilities. Test for common vulnerabilities such as
buffer overflows, format string exploits, etc.

Module 18 Page 2778 Ethical Hacking and Countermeasures Copyright © by EC-COUNCil
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
Buffer Overflow

Step 3: Search for calls to insecure library functions

Library functions make the application development easy but all the library function calls are
not secure. Though they seem to be normal, they can be exploited. Hence, you should search
for insecure library function calls and secure them from exploitation.

Step 4: Perform static code analysis using tools

Static code analysis allows you to test the application without actually executing the
application. This is usually done with the help of automated tools such as RATS and Flawfinder.

Step 5: Reverse engineer app code using disassemblers

Reverse engineer app code involves testing the assembly code with help of disassemblers
passively. In this method of testing, various sections of the code are scanned for vulnerable
assembly fragment signatures.

Step 6 : Attach a debugger to the target application

In order to locate and validate a buffer overflow vulnerability, you need to attach a debugger
to the target application.

Step 7: Supply a large amount of input data

Create a larger string than the actual size and supply it as input data to the application and
observe the responses of the application to the given input.

Step 8 : Inspect responses in a debugger

The debugger attached to the application allows you to see the execution flow and state of
registers when the buffer overflow gets exploited.

Module 18 Page 2779 Ethical Hacking and Countermeasures Copyright © by EC-COUNCil
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
Buffer Overflow

Buffer Overflow Penetration
Testing (atd EH

j Supply format type specifiers in the input such as %x or %n
Supply format type

specifiers in the input j Use fuzzing techniques that provide invalid, unexpected, or random
data to the application inputs and observe application behavior

J Use fuzzing tools such as Spike and Brute Force Binary Tester (BFB) for

Use fuzzing techniques to automated fuzzing testing

overflow the application . L . -
pp J Any extraordinary application behavior or crash indicates a successful

buffer overflow attack

Document all the findings

oil DX 1
mi 1lolCo10010%01

Copyright © by EC-Cauactl. All Rights Reserved. Reproduction is Strictly Prohibited.

Buffer Overflow Penetration Testing (Cont’'d)
Step 9: Supply format type specifiers in the input

Supply format type specifiers such as %x or %n in the application input to test for format string
vulnerabilities that in turn may lead to buffer overflows.

Step 10: Use fuzzing techniques to overflow the application

Provide invalid, unexpected, or random data as input to the target application using fuzzing
techniques and then observe the application behavior. This way you can find whether the
application is vulnerable to buffer overflows or not. You can also conduct automated fuzzing
test with the help of fuzzing tools such as Spike and Brute Force Binary Tester (BFB).

Step 11: Document all the findings

Documenting all the findings is the last and the most important step that should be carefully
carried out. It is the most important step because in this step you need to document all the
critical information that can lead to exploitation. Sometimes even a small piece of information
left out may lead to great losses for a company. Therefore, this step should be done carefully.

Module 18 Page 2780 Ethical Hacking and Countermeasures Copyright © by EC-COUNCil
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
Buffer Overflow

M odule Summ ary CEH

Urtiftetf ttkujl IUckM

0O A buffer overflow occurs when a program or process tries to store more
data in a buffer (temporary data storage area) than it was intended to hold

b} Buffer overflow attacks depend on lack of boundary testing, and a machine that can
execute a code that resides in the data or stack segment

D A stack-based buffer overflow occurs when a buffer has been overrun in the stack

space

0O Buffer overflow vulnerability can be detected by skilled auditing of the code as well as
boundary testing

O Shellcode is machine level code used as payload in the exploitation of a software
vulnerability

O Countermeasuresincludechecking the code, disablingstack execution, supportinga
safer C library, and using safer compiler techniques

O Tools like stackguard, Immunix,and vulnerability scanners help in securing systems .

Copyright © by EC-Cauactl. All Rights Reserved. Reproduction is Strictly Prohibited

Module Summary

© A buffer overflow occurs when a program or process tries to store more
data in a buffer (temporary data storage area) than it was intended to hold.

© Buffer overflow attacks depend on the lack of boundary testing and a machine that can
execute a code that resides in the data or stack segment.

© A stack-based buffer overflow occurs when a buffer has been overrun in the stack space.

© A buffer overflow vulnerability can be detected by skilled auditing of the code as well
as boundary testing.

© Shellcode is small code used as payload in the exploitation of a software vulnerability.

© Countermeasures include checking the code, disabling stack execution, supporting a
safer C library, and using safer compiler techniques.

© Tools such as stackguard, Immunix, and vulnerability scanners help in securing systems.

Module 18 Page 2781 Ethical Hacking and Countermeasures Copyright © by EC-COUNCil
All Rights Reserved. Reproduction is Strictly Prohibited.

	Buffer Overflow

	Module 18

	Security News

	Steam Gaming Platform Vulnerable to Remote Exploits; 50 Million at Risk

	Module Objectives

	Module Objectives

	Module Flow

	Module Flow

	ooo Buffer Overflows

	1^־ Stack Memory initially

	Why Are Programs and Applications Vulnerable to Buffer Overflows?

	Why Are Programs and Applications Vulnerable to Buffer Overflows?

	Understanding Stacks

	Understanding Stacks

	Code Segment

	Data Segment

	Stack Segment

	Stack-Based Buffer Overflow C EH

	Stack-based Buffer Overflow

	Understanding Heap

	Heap-Based Buffer Overflow CEH

	Heap-based Buffer Overflow

	Stack Operations

	Stack Operations

	Shellcode

	No Operations (NOPs)

	No Operations (NOPs)

	lr Module Flow

	Knowledge Required to Program Buffer Overflow Exploits

	Buffer Overflow Steps	CEH

	Buffer Overflow Steps

	Attacking a Real Program CEH

	Attacking a Real Program

	Format String Problem

	Format String Problem

	Overflow Using Format String

	Smashing the Stack

	Smashing the Stack

	Once the Stack is Smashed

	Pf Module Flow

	Simple Uncontrolled Overflow

	Simple Buffer Overflow in C CEH

	A Simple Buffer Overflow in C

	Simple Buffer Overflow in C: Code Analysis

	Simple Buffer Overflow in C: Code Analysis

	Exploiting Semantic Comments in C (Annotations)

	Wgr Exploiting Semantic Comments in C (Annotations)

	How to Mutate a Buffer Overflow Exploit

	Module Flow

	Identifying Buffer Overflows

	How to Detect Buffer Overflows in a Program

		-9> How to Detect Buffer Overflows in a Program

	Testing for Heap Overflow Conditio ns: heap.exe

	Testing for Heap Overflow Conditions: heap.exe (Cont’d)

	Steps for Testing for Stack Overflow in OllyDbg Debugger

	Steps for Testing for Stack Overflow in OllyDbg Debugger

	Testing for Stack Overflow in OllyDbg Debugger

	Testing for Stack Overflow in OllyDbg Debugger

	Testing for Stack Overflow in OllyDbg Debugger (Con»׳d)

	Testing for Stack Overflow in OllyDbg Debugger (Cont’d)

	Testing for Format String Conditions Using IDA Pro

	Testing for Format String Conditions Using IDA Pro

	Testing for Format String Conditions Using IDA Pro (Cont’d)

	'0): Testing for Format String Conditions Using IDA Pro - (Cont’d)

	BoF Detection Tool: Immunity CANVAS

	B0F Detection Tool: Immunity CANVAS

	BoF Detection Tools

	Module Flow

	Defense against Buffer Overflows

	Manual auditing of code

	Compiler techniques

	Safer C library support

	Disabling stack execution

	Preventing BoF Attacks CEH

	Preventing BoF Attacks

	Programming Countermeasures CEH

	(|j!| Programming Countermeasures

	Programming Countermeasures (Cont’d)

	Data Execution Prevention (DEP)

	Data Execution Prevention (DEP)

	Enhanced Mitigation Experience Toolkit (EMET)

	EMET System Configuration Settings

	EMET Application Configuration Settings

	& Module Flow

	i?i/Gs

	BoF Security Tool: BufferShield

	BoF Security Tools

	BoF Security Tools

	Module Flow

	Buffer Overflow Penetration	״

	Buffer Overflow Penetration Testing

	m Buffer Overflow Penetration Testing (Cont’d)

	Buffer Overflow Penetration Testing (cont’d)

	Buffer Overflow Penetration Testing (Cont’d)

	Module Summary	CEH

	Module Summary

