

Advances

in COMPUTERS
VOLUME 66

This page intentionally left blank

Advances in

COMPUTERS
Quality Software Development

EDITED BY

MARVIN V. ZELKOWITZ
Department of Computer Science
and Institute for Advanced Computer Studies
University of Maryland
College Park, Maryland

VOLUME 66

AMSTERDAM • BOSTON• HEIDELBERG • LONDON • NEW YORK • OXFORD
PARIS • SAN DIEGO • SAN FRANCISCO• SINGAPORE• SYDNEY • TOKYO

Academic Press is an imprint of Elsevier

Academic Press is an imprint of Elsevier
525 B Street, Suite 1900, San Diego, California 92101-4495, USA
84 Theobald’s Road, London WC1X 8RR, UK
Radarweg 29, PO Box 211, 1000 AE, Amsterdam, The Netherlands
30 Corporate Drive, Suite 400, Burlington, MA 01803, USA

This book is printed on acid-free paper©∞

Copyright © 2006, Elsevier (USA). All rights reserved

No part of this publication may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means electronic, mechanical, photocopying,
recording or otherwise, without the prior written permission of the publisher

Permissions may be sought directly from Elsevier’s Science and Technology Rights
Department in Oxford, UK: phone: (+44) (0) 1865 843830, fax: (+44) (0) 1865 853333,
e-mail: permissions@elsevier.co.uk. You may also complete your request on-line via
the Elsevier homepage (http://www.elsevier.com), by selecting ‘Customer Support’
and then ‘Obtaining Permissions’

Library of Congress Cataloging in Publication Data

British Library Cataloguing in Publication Data

ISBN-13: 978-0-12-012166-3
ISBN-10: 0-12-012166-2
ISSN (Series): 0065-2458

For information on all Academic Press publications
visit our web site at http://books.elsevier.com

Printed and bound in the Netherlands

06 07 08 09 10 11 10 9 8 7 6 5 4 3 2 1

Contents

CONTRIBUTORS . ix
PREFACE . xiii

Calculating Software Process Improvement’s Return on Investment

Rini van Solingen and David F. Rico

1. Introduction . 2
2. Return-on-Investment for Analysing Cost and Benefits 4
3. Using Quantitative Models for SPI Decision Making 14
4. Using Quantitative Measurements for SPI Investment Evaluations 20
5. Conclusions . 27

Acknowledgements . 28
Appendix A: Background of the Quantitative Models 28
References . 36

Quality Problem in Software Measurement Data

Pierre Rebours and Taghi M. Khoshgoftaar

1. Introduction . 44
2. Noise-Handling Techniques . 47
3. Ensemble-Partitioning Filter . 51
4. Modeling Methodology . 56
5. Empirical Evaluation . 61
6. Conclusion . 72

Acknowledgements . 73
References . 73

v

vi CONTENTS

Requirements Management for Dependable Software Systems

William G. Bail

1. Introduction . 80
2. Dependability . 84
3. Nature of Requirements . 94
4. Categories of Requirements . 103
5. Handling Requirements . 115
6. Requirements Quality Attributes . 118
7. Requirements and Dependability . 126
8. Common Requirements Challenges . 127
9. Summary . 138

References . 139

Mechanics of Managing Software Risk

William G. Bail

1. Introduction . 144
2. Project Planning . 145
3. Fundamentals of Risk . 149
4. Sources of Risk . 156
5. Handling Risks . 161
6. Conclusion . 168

References . 170

The PERFECT Approach to Experience-Based Process Evolution

Brian A. Nejmeh and William E. Riddle

1. Introduction . 175
2. Improvement Game Plans . 177
3. Process Evolution . 181
4. The PEDAL Framework . 183
5. Describing Process Evolution Dynamics 197
6. Process Evolution Infrastructure . 213
7. Value and Future Improvements . 224
8. Summary . 233

CONTENTS vii

Acknowledgements . 235
References . 235

The Opportunities, Challenges, and Risks of High Performance
Computing in Computational Science and Engineering

Douglass E. Post, Richard P. Kendall, and Robert F. Lucas

1. Introduction . 240
2. Computational Science and Engineering Analysis 242
3. General Characteristics of a Large Scale Computational Simulation 243
4. FALCON: An Example of a Large-Scale Scientific Code Project 248
5. The Challenges Facing Computational Science and Engineering 257
6. A Comparative Case Study . 276
7. Verification and Validation . 284
8. Software Quality and Software Project Management 290
9. Conclusions and Path Forward . 295

Acknowledgements . 297
References . 297

AUTHOR INDEX . 303
SUBJECT INDEX . 311
CONTENTS OFVOLUMES IN THIS SERIES 323

This page intentionally left blank

Contributors

Dr. William Bail has worked for The MITRE Corporation in McLean, VA since
1990 as a Computer Scientist in the Software Engineering Center. Dr. Bail’s technical
areas include dependable software design and assessment, error handling policies,
techniques for software specification development, design methodologies, metric
definition and application, and verification and validation. At MITRE, Dr. Bail is
currently supporting the U.S. Navy, focusing on the practice of software engineering
within Integrated Warfare Systems, particularly as applied to large real-time sys-
tems. Prior to 1990, Dr. Bail worked at Intermetrics Inc. in Bethesda MD. Since
1989 he has served as an part-time Adjunct Professor at the University of Maryland
University College where he develops instructional materials and teaches courses in
software engineering, in topics such as Software Requirements, Verification and Val-
idation, Software Design, Software Engineering, Fault Tolerant Software, and others.
Previously, Dr. Bail taught part-time at The University of Maryland from 1983–1986
in the Computer Science Department for undergraduate courses in discrete mathe-
matics, computer architecture, and programming language theory. Dr. Bail received
a BS in Mathematics from Carnegie Institute of Technology, and an MS and Ph.D.
in Computer Science from the University of Maryland.

Dr. Richard P. Kendall has been a developer/user/manager of large-scale scientific
and engineering simulations for more than 35 years. He recently retired as Chief
Information Officer of Los Alamos National Laboratory and is currently a member
of the multi-institutional DARPA High Productivity Computing Systems Existing
Code Analysis team. Richard received a Ph.D. in Mathematics from Rice University
in 1973. He began his professional career at Humble Production Research Co. (now
ExxonMobile) in numerical oil reservoir simulation. In 1982 Richard joined a start-
up petro-technical software company, J.S. Nolen & Associates, as Vice-President.
J.S. Nolen & Assoc. was acquired by Western Atlas International, Inc. in 1983. At
Western Atlas, Richard rose to the rank of Chief Operating Officer of the Western
Atlas Software Division. In 1995 he joined Los Alamos National laboratory and was
appointed Chief Information Officer in 2000. Richard has published over 60 refereed

ix

x CONTRIBUTORS

papers. He is a member of the Society of Industrial and Applied Mathematics and
the Society of Petroleum Engineers.

Professor Taghi M. Khoshgoftaar is a professor of the Department of Computer
Science and Engineering, Florida Atlantic University and the Director of the Empiri-
cal Software Engineering Laboratory. His research interests are in software engineer-
ing, software metrics, software reliability and quality engineering, computational
intelligence, computer performance evaluation, data mining, and statistical model-
ing. He has published more than 250 refereed papers in these areas. He has been a
principal investigator and project leader in a number of projects with industry, gov-
ernment, and other research-sponsoring agencies. He is a member of the IEEE, IEEE
Computer Society, and IEEE Reliability Society. He served as the general chair of the
1999 International Symposium on Software Reliability Engineering (ISSRE’99), and
the general chair of the 2001 International Conference on Engineering of Computer
Based Systems. Also, he has served on technical program committees of various in-
ternational conferences, symposia, and workshops. He has served as North American
editor of theSoftware Quality Journal, and is on the editorial boards of the journals
Empirical Software Engineering, Software Quality, and Fuzzy Systems.

Dr. Robert F. Lucas is the Director of the Computational Sciences Division of
the University of Southern California’s Information Sciences Institute (ISI) where
he manages research in computer architecture, VLSI, compilers and other software
tools. Prior to joining ISI, he was the Head of the High Performance Computing
Research Department in the National Energy Research Scientific Computing Cen-
ter (NERSC) at Lawrence Berkeley National Laboratory. There he oversaw work in
scientific data management, visualization, numerical algorithms, and scientific ap-
plications. Prior to joining NERSC, Dr. Lucas was the Deputy Director of DARPA’s
Information Technology Office. He also served as DARPA’s Program Manager for
Scalable Computing Systems and Data-Intensive Computing. From 1988 to 1998 he
was a member of the research staff of the Institute for Defense Analyses’ Center for
Computing Sciences. From 1979 to 1984 he was a member of the Technical Staff
of the Hughes Aircraft Company. Dr. Lucas received his BS, MS, and PhD degrees
in Electrical Engineering from Stanford University in 1980, 1983, and 1988 respec-
tively.

Brian A. Nejmeh is the President of INSTEP, a product and market strategy firm
specializing in product positioning, product management and process engineering.
He is also an Associate Professor of Information Systems and Entrepreneurship at
Messiah College. He holds an M.S. degree in Computer Science from Purdue Uni-

CONTRIBUTORS xi

versity and a B.S. degree in Computer Science from Allegheny College. He can be
reached at nejmeh@instep.com.

Dr. Douglass E. Posthas been developing and applying large-scale multi-physics
simulations for almost 35 years. He is the Chief Scientist of the DoD High Perfor-
mance Computing Modernization Program and a member of the senior technical
staff of the Carnegie Mellon University Software Engineering Institute. He also
leads the multi-institutional DARPA High Productivity Computing Systems Exist-
ing Code Analysis team. Doug received a Ph.D. in Physics from Stanford University
in 1975. He led the tokamak modeling group at Princeton University Plasma Physics
Laboratory from 1975 to 1993 and served as head of International Thermonuclear
Experimental Reactor (ITER) Joint Central Team Physics Project Unit, and head of
ITER Joint Central Team In-vessel Physics Group. More recently, he was the A-X
Associate Division Leader for Simulation at Lawrence Livermore National Labora-
tory and the Deputy X Division Leader for Simulation at the Los Alamos National
Laboratory. He has published over 230 refereed papers, conference papers and books
in computational, experimental and theoretical physics with over 4700 citations. He
is a Fellow of the American Physical Society and the American Nuclear Society and
is presently an Associate Editor-in-Chief of the joint AIP/IEEE publication “Com-
puting in Science and Engineering.”

David F. Rico is a software process improvement consultant specializing in cost,
benefit, and return-on-investment analysis. He holds a B.S. in Computer Science and
an M.S.A. in Software Engineering. He is pursuing a Doctoral Degree in Informa-
tion Technology and has been in the field of computer programming since 1983.
He has been an international keynote speaker and has published numerous articles
in major computer science journals on three continents. Some of his noteworthy
accomplishments include designing software for NASA’s $20 billion space station,
spearheading SW-CMM® and ISO 9001 initiatives for Fujitsu in Tokyo, moderniz-
ing a family of U.S. Air Force static radar ranges, reengineering 36 military logistics
depots in Cairo, designing a $30 billion constellation of U.S. Air Force satellites,
conducting a $42 million U.S. Navy source selection, designing a $70 million cost
model for U.S. Navy aircraft, and participating in over 15 SW-CMM® initiatives.
David can be contacted at: dave@davidfrico.com.

Dr. William E. Riddle is a Senior Solution Architect at Solution Deployment Af-
filiates. His work focuses on the process modeling and analysis and technology
improvement planning. Bill is an IEEE Fellow and recipient of the Most Influen-
tial ICSE-8 Paper Award and the 1999 ACM SigSoft Distinguished Service Award.

xii CONTRIBUTORS

He holds Engineering Physics and Computer Science degrees from Cornell and Stan-
ford. He can be reached at riddle@WmERiddle.com.

Pierre Rebours is a software engineer at Software FX Inc., a leading software
component vendor. He received his M.S. degree in Computer Science from Florida
Atlantic University, Boca Raton, FL, in 2004. He has a B.S. from l’École des
Mines d’Alès, France. His research interests include computational intelligence, data
mining and machine learning, software measurement, software reliability and qual-
ity engineering, design-patterns, and vector graphics. Pierre may be contacted at
prebours@fau.edu.

Dr. Rini van Solingen is a principal consultant at LogicaCMG and a professor
at Drenthe University, in the Netherlands. Within LogicaCMG, he specializes in
industrial software product and process improvement. At Drenthe University-for-
professional-education he heads a chair in quality management and quality engineer-
ing. Rini holds an MSc in technical informatics from Delft University of Technology
and a PhD in management science from Eindhoven University of Technology. Rini
has been a senior quality engineer at Schlumberger/Tokheim Retail Petroleum Sys-
tems and has been head of the Quality and Process Engineering department at the
Fraunhofer Institute for Experimental Software Engineering in Kaiserslautern, Ger-
many. Rini can be contacted at: rini.van.solingen@logicacmg.com.

Preface

This volume ofAdvances in Computersis number 66 in the series that began back
in 1960. This series presents the ever changing landscape in the continuing evolution
of the development of the computer and the field of information processing. Each
year three volumes are produced presenting approximately 20 chapters that describe
the latest technology in the use of computers today. Volume 66, subtitled “Quality
Software Development,” is concerned about the current need to create quality soft-
ware. It describes the current emphasis in techniques for creating such software and
in methods to demonstrate that the software indeed meets the expectations of the
designers and purchasers of that software.

Companies today are engaged in expensive programs to improve their software de-
velopment technology. However, are they receiving a return on their investment? Do
all of the activities, under the general term of “software process improvement,” have a
positive effect on the organization? InChapter 1, Rini van Solingen and David Rico
discuss “Calculating software process improvement’s return on investment.” They
discuss several measures for calculating this return on investment and provide data
that describes the effectiveness that has been achieved for several software process
improvement models.

In Chapter 2, Pierre Rebours and Taghi Khoshgoftaar discuss a related issue to the
topic of the first chapter. Although we want to compute various measures on software
development activities, how do we know if the data we are collecting is accurate?
Software development data is notoriously noisy and often inaccurate. Data, which of-
ten depends upon programmers and other project members submitting forms, is often
missing or incorrect. How can we analyze such data and achieve reliable results? In
“Quality Problem in Software Measurement Data,” the authors discuss various ways
to filter our bad data and “train” the dataset to provide more accurate evaluations.

Chapter 3, “Requirements Management for Dependable Software Systems” by
William G. Bail, discusses the role of requirements in the software develop-
ment process. Many studies over the past 40 years have demonstrated that poor
requirements—often missing, misstated or ambiguous—are a major cause of prob-
lems during the development process. Fixing these problems is a major contributor
toward high software costs. In this chapter Dr. Bail discusses the role of require-
ments and presents several methods in the proper handling of these requirements to
minimize later problems.

xiii

http://dx.doi.org/10.1016/S0065-2458(05)66001-9
http://dx.doi.org/10.1016/S0065-2458(05)66002-0
http://dx.doi.org/10.1016/S0065-2458(05)66003-2

xiv PREFACE

In Chapter 4, “Mechanics of Managing Software Risk” also by William G. Bail,
the topic is the role of risk in the software development process. Intuitively, in the
software development domain a risk is an event that is unexpected and has a cost—
generally an increase in needed staff or a delay in completion of the product. The
major role of management is to make sure that staff understand their roles, that as
many risks as possible are identified early in the development process, and that a
plan for mitigating these risks, i.e., for handling these unexpected events, is identified
before they occur. Dr. Bail provides a summary of the causes of software risks and
various strategies for handling them.

In Chapter 5, “The PERFECT Approach to Experience-Based Process Evolution”
by Brian Nejmeh and William Riddle, the authors describe one method of handling
process evolution. The previous 4 chapters all describe methods for improving the
software development process. Over time as an organization tries to improve its ac-
tivities, the set of all these development activities, or processes, will change and
evolve. How does one understand and manage this change for continued improve-
ment? Based upon their PEDAL framework for describing process evolution steps,
they describe a methodology for understanding their process activities and for man-
aging the changes that will occur to those processes.

In Chapter 6, Douglass Post, Richard Kendell, and Robert Lucas discuss “The
Opportunities, Challenges, and Risks of High Performance Computing in Computa-
tional Science and Engineering.” This chapter discusses software development in an
application domain that is becoming more important—the high end computing do-
main. In this domain, machines consisting of thousands of processors work together
to solve a single problem that is too complex to solve on a single processor. As the au-
thors state: “The advent of massive parallelization to increase computer performance
must be done in a way that does not massively increase the difficulty of developing
programs.” Four requirements must be met to achieve this: “First, computing power
must continue to increase. Second, it must be possible to efficiently develop pro-
grams for these highly complex computers. Third, the programs must be accurate,
i.e., free of important defects and include all of the necessary effects. Fourth, soci-
ety must organize itself to develop the application programs.” This chapter discusses
these requirements in greater detail.

I hope that you find these articles of interest. If you have any suggestions of topics
for future chapters, or if you wish to contribute such a chapter, I can be reached at
mvz@cs.umd.edu.

Marvin Zelkowitz
College Park, Maryland

http://dx.doi.org/10.1016/S0065-2458(05)66004-4
http://dx.doi.org/10.1016/S0065-2458(05)66005-6
http://dx.doi.org/10.1016/S0065-2458(05)66006-8
mailto:mvz@cs.umd.edu

Calculating Software Process
Improvement’s Return on Investment

RINI VAN SOLINGEN

LogicaCMG and Drenthe University
Netherlands

DAVID F. RICO

Abstract
Many organizations and firms invest in software process improvement (SPI).
They do this in order to satisfy business goals for customer satisfaction, time-to-
market, cost, quality, and reliability. Return on investment (ROI) is a traditional
approach for measuring the business or monetary value of an investment. As
such, it can be used for measuring the economic benefit of investing in SPI.
Measuring the ROI of SPI is still in its early infancy, in spite of the fact that ROI
has been around for many decades and the discipline of SPI itself has also been
popular for at least 20 years.

It is important to note that ROI is a metric that can be used before and after an
investment in SPI. ROI can be used to evaluate (a priori) investment opportuni-
ties and make a proper selection and ROI can be used to evaluate (a posteriori)
the extent to which an investment was legitimate. Although the value of using
ROI for SPI calculations seems self evident, using ROI in practice often proves
difficult. In this chapter we provide an overview of how to apply ROI calcula-
tions to enhance decision making processes involving SPI. We approach these
calculations from two dimensions: modelling and measuring. For each of these
dimensions we provide pragmatic approaches for real-life decision making, all
illustrated with actual case studies. The chapter contains guidelines, approaches,
and experiences on how to do this in practice. It supports making simple but
sound financial evaluations when using SPI to improve organizational perfor-
mance.

The main message of this chapter is that ROI can and must be calculated
for most SPI investment decisions as a means of ultimately satisfying busi-
ness goals and objectives. ROI can and should be an explicit part of software
management and engineering decision making processes when it comes to SPI,
which can minimize effort, costs, and financial investments. Software managers

ADVANCES IN COMPUTERS, VOL. 66 1 Copyright © 2006 Elsevier Inc.
ISSN: 0065-2458/DOI 10.1016/S0065-2458(05)66001-9 All rights reserved.

2 R. VAN SOLINGEN AND D.F. RICO

and engineers should include financial considerations such as ROI in their deci-
sions, as well as technical ones, in order to satisfy business goals and objectives
for SPI.

1. Introduction . 2
2. Return-on-Investment for Analysing Cost and Benefits 4

2.1. ROI Metrics . 6
2.2. A Survey of Literature on the ROI Metric for SPI 7
2.3. Cost of SPI . 10
2.4. Benefits of SPI . 12
2.5. A Priori and A Posteriori ROI Analysis . 12

3. Using Quantitative Models for SPI Decision Making. 14
3.1. Cost Models for SPI . 14
3.2. Benefit Models for SPI . 15
3.3. Modelling Cost and Benefits of SPI. 17
3.4. ROI Models for SPI . 18
3.5. Limitations of the Quantitative Models. 19

4. Using Quantitative Measurements for SPI Investment Evaluations. 20
4.1. Measuring Benefits Is Just as Easy as Measuring Cost 20
4.2. Involve Stakeholders for Benefit Estimations 21
4.3. Case 1: GQM-Based Measurement Program 22
4.4. Case 2: CMM-Based Improvement Program 24
4.5. Limitations of Quantitative Measurements. 25

5. Conclusions . 27
Acknowledgements . 28
Appendix A: Background of the Quantitative Models. 28
A.1. Inspection: Detailed ROI Estimation Procedures 29
A.2. PSPsm: Detailed ROI Estimation Procedures 30
A.3. TSPsm: Detailed ROI Estimation Procedures 31
A.4. SW-CMM®: Detailed ROI Estimation Procedures 32
A.5. ISO 9001: Detailed ROI Estimation Procedures. 33
A.6. CMMI®: Detailed ROI Estimation Procedures 35

References . 36

1. Introduction

Software Process Improvement (SPI) is the discipline of characterizing, defining,
measuring, and improving software management and engineering processes. The
goal of SPI is often to achieve better business performance in terms of cost, time-
to-market, innovation, and quality. More importantly, SPI involves change. That is,
there is the fundamental notion that poor organizational performance is associated

CALCULATING SOFTWARE PROCESS IMPROVEMENT’S ROI 3

with poorly defined processes. While there are numerous types of software processes,
software project management and software quality management practices are often
the targets of scrutiny, improvement, and institutionalization. Changes to software
processes are often based on the notions of adopting or adapting best practices (e.g.,
experiences of other, not necessarily similar organizations). These changes often
include the introduction of new product technologies or tools, but also include de-
signing, deploying, and institutionalizing new organizational policies and procedures
for software management and engineering.

SPI now involves the use of many out-of-the-box methodologies, approaches, and
techniques. That is, rather than home grow one’s organizational improvement from
scratch, organizations now have many of pre-packaged approaches from which to
choose, examples are:

• Software Capability Maturity Model® (SW-CMM®) [47,59].

• Capability Maturity Model Integration® (CMMI®) [20,19].

• ISO 9000-3 (dedicated to software)[51].

• ISO 15504 (SPICE)[50].

• BOOTSTRAP[10].

• Quality Improvement Paradigm[4].

• Goal/Question/Metric method[4,78].

• Balanced ScoreCard[54].

• Personal Software Processsm (PSPsm) [48,34].

• Team Software Processsm (TSPsm) [45].

• Software Inspections[33,35].

• Extreme Programming[8].

• Agile Methods[44].

SPI has had the attention of both academics and practitioners since the creation of
the Software Capability Maturity Model (SW-CMM®) almost 15 years ago[59]. The
general aim of SPI approaches is to make the performance of software development
and maintenance more effective and efficient by structuring and optimizing their
processes. SPI focuses on software processes. SPI is based on the assumption that
well managed organizations with rigorously defined software processes are more
likely to provide products and services that satisfy customer requirements. And, these
products and services are expected to be rendered within schedule and budget. Poorly
managed organizations, on the other hand, are assumed to not achieve such consistent
levels of product and service quality without such software processes. As such, SPI

4 R. VAN SOLINGEN AND D.F. RICO

is based on the basic assumption that there is a causal relation between process and
product, and that the product can be determined through its creation process.

There are a few notable detractors of this so-called over emphasis on the virtues of
SPI and software processes[2,3,12,18,21], [43],1 [49,77]. The main criticism is an
over-emphasis on processes with the implicit risk to neglect the product. While even
the greatest detractors of SPI admit that sound software processes are prerequisites
for software development success, not all software processes or SPI methodologies
for that matter are sound. With the amount of international attention, publications,
and investments in SPI, more researchers and practitioners are analyzing the extent
to which the benefits of these investments are worth their cost[31,65–68].

2. Return-on-Investment for Analysing Cost and Benefits

Return on investment (ROI) is a widely used approach for measuring the value of
an investment. In this chapter we consider SPI as a structured investment in which
software processes are changed with the intent to achieve benefits in business perfor-
mance, for example: productivity, customer satisfaction, revenue, profit, cost, quality,
time-to-market, culture, and flexibility. The costs of this undertaking are the sum of
all direct and indirect cost such as: training, consulting, motivation, implementation,
learning, opportunity cost, and material. The benefits are the sum of all direct and
indirect benefits, including achievement of goals, increased staff motivation, bet-
ter quality, productivity, etc. ROI is the numeric calculation in which a financial
representation of the benefits is divided by a financial representation of the costs.2

So, both direct and indirect cost and benefits are converted to a financial number and
included in the calculation. An ROI of 3 generally means that for every monetary
unit invested, three monetary units are earned. (Detailed examples and explanations
will be provided a little later.)

However, ROI still remains a mystery to some practitioners, along with appro-
priate techniques for determining the ROI of SPI. Surprisingly we find also only a
limited number of research reports that contain cost and benefit numbers, and ones
that measure ROI. Such ROI numbers are however useful as they can be used to:

• Convince strategic stakeholders to invest money and effort into SPI, and to con-
vince them that organizational performance issues can be solved through SPI.

1 This study shows that 44% of respondents claim limited, little or no success in improvement after
having had a CMM assessment (also[36]).

2 This is a simplified definition of ROI, as: “. . . yet there is no common understanding of what con-
stitutes an investment and return”[14]. Putnam and Myers even say that these returns should not only
payback the investment, but also in addition the capital that would have been generated if these funds
would have been invested elsewhere[61].

CALCULATING SOFTWARE PROCESS IMPROVEMENT’S ROI 5

• Estimate the amount of effort necessary to solve a certain problem, or estimating
whether a certain intended benefit is worth its cost.

• Decide how to prioritize software process improvements and which software
processes to improve first, as many organizations have severe timing and re-
source constraints.

• Decide whether to continue SPI initiatives and programs. SPI budgets are as-
signed and discussed yearly, so if benefits are not made explicit and a sufficient
ROI is not shown, continuation is at risk.

• Simply survive, as any investment in an organization should be valued against
its return. Or else, it is very likely that money will be wasted and that there is
risk of bankruptcy in the long run.

In this chapter we propose some pragmatic solutions on how to calculate cost and
benefits, and how to calculate the ROI. One main message is to avoid too detailed
calculations. It is in most cases sufficient to know the relative value of the ROI:
is it positive, break-even, or negative? In most industrial organizations it is not so
important to know whether the ROI is 7.345 or 7.955. Knowing whether the ROI is
positive and knowing its range (e.g., between 5 and 10), is for most decision making
more than sufficient. The main purpose of ROI calculations is to decide within a
specific industrial context (and industry) where to invest the money, or to evaluate
whether an investment was worth its money. As SPI is just one possible investment,
its ROI should also be calculated. ROI is the magnitude of benefits to costs. If costs
are small, ROI is large if benefits are large. If costs are high, ROI is generally lower.
Managers often spend too much money to achieve a negligible ROI. Managers need
to realize that the goal is to achieve an optimal ROI, not achieve compliance with
expensive international standards for SPI. Because the most popular methods for
SPI are often the most expensive approaches, managers tend to believe they must
spend a lot of money to achieve some level of ROI. This is often a self defeating
concept. Managers need to apply methods for SPI with high benefits and low costs.
The research community is also responsible for creating methods for SPI with high
benefits and low costs.

Research has proven that humans make trade-off analyses continuously; if not
based on objective measurements then based on intuition[7]. Making explicit ROI
calculations is therefore crucial for SPI, as SPI is an investment with significant cost
and not always clearly visible benefits. ROI should therefore be made visible as well,
as to avoid wrong intuitive evaluations. Without numbers on costs, benefits, and ROI
of SPI, it is be impossible to take proper decisions whether SPI is worth its cost.
Even if the overall costs of a SPI undertaking are at a break even point (e.g., costs
equal benefits), local benefits may already be worthwhile. For example, if it saves a
development team some time: it shortens time-to-market, development can be done

6 R. VAN SOLINGEN AND D.F. RICO

faster, and pressure on developers can be decreased. For showing the ROI of SPI it
is important to focus on productivity and time-to-market impacts. “The true cost-
benefits occur when projects finish earlier, allowing us to apply more engineering
resources to the acquisition and development of new business.” [26].

The ROI of SPI differs, by the way, over different situations. For example, a com-
pany with severe quality problems at customer sites can obtain a much higher ROI
from SPI than a company with productivity problems, because the business benefits
are probably higher in the first case. Building the business case for SPI is therefore
always a specific task for a specific environment. Generic numbers on the ROI of SPI
can help, e.g., for building ROI models, but the business case should be built along
the lines of the specific context, its goals and its problems. A generic benchmark for
SPI cannot be given. However, when building the case for SPI in the comparison to
other investments, quantifying benefits and ROI will certainly help. It is important to
note that a growing body of authoritative literature on the ROI of SPI is now starting
to emerge[30,62,63,66,67,73,76].

2.1 ROI Metrics

ROI metrics are designed to measure the economic value of a new and improved
software process. Each ROI metric is a relevant indicator of how much a new and
improved software process is worth. We recommend only six basic metrics related
to ROI, as shown inTable I. They are costs, benefits, benefit/cost ratio or B/CR,
return on investment or ROI, net present value or NPV, and break even point or
BEP[66–68]. Each ROI metric builds upon its predecessor and refines the accuracy
of the economic value of a new software process. ROI metrics are not necessarily

TABLE I
ROI METRICSSHOWING SIMPLICITY OF RETURN ON INVESTMENT FORMULAS AND THEIR

ORDER OFAPPLICATION

Metric Definition Formula

Costs Total amount of money spent on a new and
improved software process

∑n
i=1 Costi

Benefits Total amount of money gained from a new
and improved software process

∑n
i=1 Benefiti

B/CR Ratio of benefits to costs Benefits
Costs

ROI Ratio of adjusted benefits to costs Benefits− Costs
Costs × 100%

NPV Discounted cash flows
∑Years

i=1
Benefitsi

(1+ Discount Rate)Years − Costs0

BEP Point when benefits meet or exceed cost Costs
Old Costs/New Costs− 1

CALCULATING SOFTWARE PROCESS IMPROVEMENT’S ROI 7

independent or mutually exclusive. Each ROI metric must sometimes be considered
individually. For example, costs may be astronomical or benefits may be negligible,
marginalizing the relevance of the other metrics.

Costs consist of the amount of money an organization has to pay in order to im-
plement a SPI method. Benefits generally consist of the amount of money saved by
implementing a SPI method. B/CR is a simple ratio of the amount of money saved
implementing a new SPI method to the amount of money consumed. ROI is also a
ratio of money saved to money consumed by a new SPI method expressed as a per-
centage. However, the ROI metric demands that the costs of implementing the SPI
method must first be subtracted from the benefits. NPV is a method of adjusting or
reducing the estimated benefits of a SPI method based on projected or future infla-
tion over time. Break even point is a measure of the amount of money that must be
spent on a new SPI method before it begins yielding its benefits.

One should note that the basic ROI metric is, in fact, not a very strong metric
when calculating investments that exceed the time-span of one year; in such cases
net present value (NPV) is stronger. And, there is a growing interest inreal op-
tions as a superior approach towards measuring the value of SPI, versus ROI and
NPV [32]. However, for the purpose of this chapter we will continue with ROI, es-
pecially because we approach ROI from a pragmatic industrial perspective, and try
to keep things simple so exclude interest rates and inflation. Long-term benefits are
nice, but industrial investment in general need to show short-term results within the
same year.

2.2 A Survey of Literature on the ROI Metric for SPI

The ROI of SPI is calculated by dividing a financial representation of the benefits
by a financial representation of the cost. So, an ROI of 5 implies that every invested
dollar brings 5 dollars in profit. A limited number of publications are available that
contain concrete data for calculating the ROI of SPI.Table II presents an overview
of the ROI numbers taken from experience reports in literature. Please note that not
all reports use the formula:(benefits− cost)/cost, for calculating ROI. Some use:
benefits/cost (B/CR: benefit cost ratio) or do not present the calculation used. In
case of high ROI values, the benefits generally outweigh the costs. However, things
get more critical if the ROI approaches 1, which means the monetary costs tend to
outweigh the monetary benefits.

The experience reports inTable II show exhibit a range for the ROI of SPI of
1.5 to 19 for every invested dollar or monetary unit.3 The average ROI is 7 and
the median of the data is 6.6. Although, the ROI of any SPI undertaking depends

3 Jones states that he generally observes a ROI between 3 and 30 to every invested dollar.

8 R. VAN SOLINGEN AND D.F. RICO

TABLE II
RETURN-ON-INVESTMENT NUMBERS IN L ITERATURE [81]

Context Publication Return on investment

Unknowni [14] 1.5
General Dyn. Dec. Systems [25] 2.2
BDN International [74] 3ii

Unknown (Uiii) [42] 4
U.S. Navy [29] 4.1
Unknown (Wiii) [42] 4.2
Hughes Aircraft [46] 5
IBM Global Services India [37] 5.5
Tinker Air Force Base [14] 6
Unknown (Xiii) [42] 6.4
Motorola [26] 6.77
OC-ALC (Tinker) [17] 7.5
Philips [69] 7.5
Raytheon [27,28] 7.7iv

Boeing [84] 7.75
Unknown (Yiii) [42] 8.8
Unknown [14] 10
Hewlett-Packard [39] 10.4
Northrop Grumman ES [64] 12.5v

Ogden ALC [58] 19

Average 7
Median 6.6

i Broadman and Johnson present ROI numbers from several cases (1.5, 2.0, 4, 6, 7.7, 10, 1.26, 5):
underlined are likely to be: Tinker, Raytheon, and Hughes Aircraft.
ii Slaughter et al. present four ROI numbers: 3.83, 3.65, 2.96, and 2.74.
iii Character used to refer to the respective organization in Herbsleb et al.
iv This number is calculated based on 6 projects. If the same calculation is followed for the reported 15

projects, this seems to result in an ROI of 4.
v Reifer et al. report an ROI by productivity gains of 1,251% on a 5 year planning horizon.

on many influencing factors, it appears that a proper estimation for a SPI-ROI lies
between 4 and 10, from this data set. The ROI of SPI is not necessarily constrained
by these dimensions, according to some authors[66–68].

The evidence in literature that the above reported ROI will occur when a certain
SPI method is used, is however limited. The best that can be attained with studies
that focus only on process factors is strong evidence that SPI is associated with some
benefits, or that organizations could benefit from SPI activities[31]. This may mean
that the benefits of SPI will strongly depend on the reasons (e.g., intended benefits)
to use SPI in the first place. Literature findings are diverse and distributed among the

CALCULATING SOFTWARE PROCESS IMPROVEMENT’S ROI 9

several business goals in the software engineering domain. Furthermore, do different
SPI approaches have different effects[57,63,68]?

2.2.1 A Critical View on Industrial Reported ROI
Measurements

Although many publications on the cost and benefits of SPI have been written by
respected researchers, and have been through rigorous peer review processes, there
are some limitations to the reported data that need to be considered. Especially the
validity of these findings (e.g., how good are these findings and are they generically
true?) is an essential issue to consider[31,72]. For example, only success stories
are reported and failures are not, and it is unknown how many failed attempts have
occurred.

Some researchers and practitioners believe that the direct correlation between SPI
and the observed business performance improvements has never been proven, be-
cause organizations take multiple actions. They never ‘bet on one horse.’ This means
they rarely take only one action to get a certain result. Instead, they take several
actions in parallel, with similar expected effects, as they are primarily interested in
the effect and not in what actually causes that effect. In addition, the survey-based
research results are questionable with respect to the way in which data analysis is
performed (e.g., more than one respondent in one organization). Questionnaires are
only returned in small quantities, or they are not randomly distributed[13,42], which
undermines the reliability and validity of these studies. For more information on the
difficulties and limitations in published SPI reports we refer to[31]. This does not
mean that such studies are useless, but one should use and adopt these findings care-
fully [31,41]. They do indicate a positive trend in the ROI of SPI, and also indicate
a wide range in ROI values and results. One should consider that these numbers are,
however, no guarantee for success.

2.2.2 Lack of ROI Expectations

A final observation concerning SPI literature is the total absence of expectations
for costs, benefits, and ROI. None of the companies reported that they established
explicit expectations for ROI of SPI in advance. Some organizations did mention that
they wanted to increase productivity, decrease defects, decrease time-to-market, etc.,
but no publication indicated what price they were willing to pay for an anticipated
range of benefits. It could be that these expectations were defined explicitly, but
not reported. However, we strongly suspect that those expectations were not made
explicit. This might indicate that starting a SPI effort is often driven by a personal
faith that the overall effects of SPI will be positive, and that the investments will have

10 R. VAN SOLINGEN AND D.F. RICO

a significant return. This finding also confirms the general tendency that software
engineering organizations are not strong in measuring their activities[56,70].

An organization should identify its business goals and after that, select the respec-
tive SPI practices that are most likely to have an impact on these goals, to ensure
that SPI results address the most important issues for an organization[31].4 Each or-
ganization should describe by itself: the benefits it wants to achieve and the size
of these benefits. Just stating that the target is to “reduce time-to-market” is not
sufficient. A proper goal is for example: the reduction of average project duration
will be reduced with 10% per year so that projects last between 3 and 6 months,
with a schedule accuracy of 90% with maximum one calendar month delay for
the remaining 10%. Furthermore, the risk of SPI initiatives is so high that estab-
lishing only moderate goals for the ROI of SPI may be inherently self defeating,
necessitating the establishment of more aggressive targets to counteract negative ef-
fects.

The base of scholarly literature on the application of ROI principles is sparse,
hard to find, and not ubiquitous. Scientists should take responsibility for creat-
ing an industry standard set of metrics and models for ROI of SPI. There are just
too many metrics, models, and methods from which to choose. Managers are far
too challenged to keep pace with rapidly changing information technologies. They
simply cannot keep up with advances in management science. Scholars can help
managers by steering them towards cost, benefit, benefit/cost ratio, return on in-
vestment, net present value, and break even point analysis using simple mainstream
methods.

2.3 Cost of SPI
The costs of SPI are almost always expressed in effort, person hours, or engi-

neering hours. This may indicate that effort is considered as the main cost driver
of SPI. On the other hand this may also indicate that indirect costs are likely to be
overlooked, and that measuring cost and benefits of SPI is not so much a financial
investment, but more an effort investment. Managers apparently decide on where to
spend their engineering effort to get a return. This is remarkable as most SPI activi-
ties involve monetary expenditures training, coaching, and consulting as well. Also,
when the costs of SPI are expressed in terms of person effort instead of monetary
terms, the financial figures may be more meaningful across a diverse range of orga-
nizations, as well as their host nations.

As this chapter intends to give financial numbers to its main questions,Table III
provides for each context report, the cost of SPI spent per person per year. These cost
are provided in dollars, calculated based on a yearly cost per person of $100,000.

4 For example: for a study on CMM customisation see[55].

CALCULATING SOFTWARE PROCESS IMPROVEMENT’S ROI 11

TABLE III
COST OFSPI (MEASURED IN DOLLARS PERPERSON PERYEAR)

Context Publication Cost ($ per person per year)

Unknown (Bi) [42] 490
Hughes Aircraft [46] 800ii

Unknown (Ci) [42] 858
Unknown (Ei) [42] 1,375
Schlumberger [83] 1,500iii

Motorola [26] 1,500iii

Unknown (Di) [42] 1,619
HP [39] 1,859iii

AlliedSignal Aerospace [15] 2,000iii

Tokheim [11] 2,000iii

Unknown (Ai) [42] 2,004
Raytheon [28] 2,500iii

Jones [52] 6,750iii

Nasa/SEL [6] 11,000iii

Average 2,590
Median 1,739

i Character used to refer to the respective organization in Herbsleb et al.
ii Calculated based on 400k$ investment for 500 engineers.

iii Calculated based on yearly person cost of $100,000.

Table III shows that SPI cost range between $490 and $11,000 per person per
year based on the experience reports from several organisations. The average of the
provided numbers is $2,590 and the median of the numbers $1,739. Although, SPI
cost depend on the goals of an improvement programme, it seems that a yearly budget
of $1,500–$2,500 per person seems reasonable for an SPI programme. This reflects
a time expenditure for each person of about 2%.

Today’s methods for SPI are often expensive, and range in the millions of dol-
lars. In fact, the most popular method for SPI ranges from five to fifteen million
dollars to apply. SPI is very difficult, and can require many attempts over periods
as long as a decade before achieving a single instance of success. So, their costs
often manifest themselves in multiple applications of the methods. These methods
are cost prohibitive for small to medium size enterprises, and may very well place
large enterprises at risk of financial instability. Managers could be aware that blindly
adopting a method for SPI, in spite of its cost, may place their enterprises at risk,
instead of strengthening them. Managers should apply inexpensive versus expensive
methods for SPI. There are classes of methods, which are inexpensive, yet highly
effective.

12 R. VAN SOLINGEN AND D.F. RICO

2.4 Benefits of SPI

One argument often heard in practice is that benefits of SPI cannot be measured, or
are at least very difficult to measure. Organizations find it relatively easy to measure
cost, but have a hard time in measuring benefits. Investigation of literature supports
this partly, as SPI benefits are rarely expressed in a financial value. Benefits are also
expressed in dimensions other than cost.

The amount of benefits from SPI claimed in practice is diverse. These benefits
are so different that a general number as provided for cost and ROI cannot be given
for benefits. Benefits of SPI differ over SPI methodologies and organizations. This
is even true for publications that present the benefits of one specific SPI approach
(e.g., SW-CMM®), which often obtain different results depending on the different
targets set by the respective organization. So, organizations that start SPI efforts to
reduce their time-to-market will realise a reduction in project duration, while other
organizations starting SPI to increase product reliability will experience a reduc-
tion in post-release defects. Organizations should realise that customer perceptions
only improve as a by-product of improved performance: being better, faster, and/or
cheaper than their competitors[1].

SPI benefits, though different by organization, can be classified among a more
generic scheme of benefits.Table IVshows a classification of SPI benefits, based on
[14,23,26,36,40,43,52,74,75].

What becomes clear from the benefits mentioned in the SPI publications is that
many benefits can be realized. Examples from literature reporting benefits within
this classification are shown inTable V.

2.5 A Priori and A Posteriori ROI Analysis

ROI is oftentimes applied when it’s too late to optimize costs and benefits. In other
words, managers often spend millions of dollars on SPI, and then they want to justify
their expenditures after-the-fact by looking for ROI. Again, ROI is the magnitude
of benefits to costs. If a manager spends too much money, ROI may oftentimes be
negligible. Besides, ROI is not always about minimizing costs, but about maximizing
benefits! Since managers don’t apply ROI, they oftentimes end up with little or no
benefits. So, if managers garner few benefits and spend a lot of money, then ROI is
sure to be negligible.

ROI calculations should be done before and after the investment:

• Before the investment is made the decision making process should include an
explicit step to quantify the cost, benefits and ROI of a SPI investment. This
ensures that the most beneficial improvement is made, and that expectations are
made explicit.

CALCULATING SOFTWARE PROCESS IMPROVEMENT’S ROI 13

TABLE IV
CLASSIFICATION OF SPI BENEFITS

Class Type of benefit

Productivity Increase in productivity
Quality Increase in quality attributes (e.g., reliability, usability, etc.)

Reduction in defects
Reduction in defect density

Cost Reduction project cost
Reduction product cost
Reduction rework cost
Reduction cost of quality

Schedule Increase in schedule accuracy
Increase of on-time delivery
Reduction of throughput time (time-to-market)

Effort Reduction of work effort
Reduction of rework (cycles)

Customer Increase of customer satisfaction
Increase in sales revenues
Increase in profitability

Staff Increase in staff morale
Decrease in over-time
Decrease of staff turnover

TABLE V
REPORTEDBENEFITS WITHIN SPI CLASSIFICATION FRAMEWORK

Class Actual benefit

Productivity 10 time productivity increase (1000%)[17]
70% productivity increase[58]

Quality 50 times reduction of defects[22]
80% reduction of defects[38]

Cost 50% to 300% cost reduction[14]
58% cost reduction[5]
10% work saving due to inspections[69]
$2M cost saving[82]

Schedule 70% reduction of time-to-market[52]
15–23% time-to-market reduction[42]
94% schedule accuracy[83]
>2000% schedule improvement in ten years is feasible[16]

Effort 60% reduction in testing effort[15]
100% good/excellent customer satisfaction[36]
improved customer satisfaction[84]

Staff Improved staff morale with lesser over-time[28]
4 times faster assimilation of new engineers[71]

14 R. VAN SOLINGEN AND D.F. RICO

• After the investment is done, i.e., when the change has been deployed, to eval-
uate whether the expected improvement actually took place. After all, a change
in a process is only an improvement if it actually results in better business per-
formance.

The remainder of this chapter will focus on ROI from these two perspectives.
First, modelling will be addressed as this mainly supports decision making on SPI
investments. Second, measurement is addressed as this supports in SPI investment
evaluations afterwards.

3. Using Quantitative Models for SPI Decision Making

This section includes practical examples for estimating the ROI of Inspections,
PSPsm, TSPsm, SW-CMM®, ISO 9001, and CMMI® through the use of quantitative
models. More importantly, this section helps sort through the literature by identify-
ing a small set of practical metrics, models, and examples for the ROI of some SPI
approaches. A detailed discussion of the models is beyond the scope of this chap-
ter, however, for clarification, the major inputs, terms, and drivers are explained in
Appendix Aof this chapter.

Before entering the presentation of the quantitative models, it seems wise to point
out that quantitative models have certain limitations. They provide a means to esti-
mate the relevant cost and benefits for ones own situation, calculated from estimates
and experiences from others. As such they support in getting a feeling on what to
expect based on data from others. However, these models should be treated care-
fully. Quantitative models tend to provide a level of accuracy which is incorrect, at
the same time they provide sufficiently more insight in the size and effects of certain
activities than just the qualitative descriptions. One must use discretion and caution
with the notion that a single cost model works for every environment (e.g., that for
every 4 person team implementing 10,000 LOC using CMMI, process deployment
costs $941,700 [Table VIII]). The numbers included in quantitative models support
in calculating an estimate for a certain situation. The more numbers from ones own
context can be included, the better it is. Also for quantitative models the general rule
is valid that all models are wrong, but some models are useful.

3.1 Cost Models for SPI

Cost models are simple equations, formulas, or functions that are used to measure,
quantify, and estimate the effort, time, and economic consequences of implementing
a SPI method. A single cost model may be all that is necessary to estimate the cost

CALCULATING SOFTWARE PROCESS IMPROVEMENT’S ROI 15

TABLE VI
COST MODELS OFSPI METHODS WITH EXAMPLES FOR A 4 PERSONTEAM IMPLEMENTING

10,000 LOC

Method Cost models and worked examples Hours Costs

Inspections
(effort)

LOC/(Review_Rate× 2) × (Team_Size× 4 + 1) 708 a$70,833
10,000/(120× 2) × (4 × 4 + 1)

Inspections
(training)

Team_Size× (Fee/Rate+ Hours) 112.4 b$11,240
4 × (410/100+ 24)

PSPsm

(training)
Team_Size× ((Fee+ Expenses)/Rate+ Hours) 1,056 c$105,600
4 × ((5,000+ 5,400)/100+ 160)

TSPsm

(training)
Team_Size× ((Fee+ Expenses)/Rate+ Hours) + PSP 1,484 d$148,400
4 × ((4,000+ 2,700)/100+ 40) + 1,056

SW-CMM®

(process)
561+ 1,176× Number_of_Projects 1,737 e$173,700
561+ 1,176× 1

ISO 9001
(process)

546+ 560× Number_of_Projects 1,106 f$110,600
546+ 560× 1

CMMI®

(process)
(10,826+ 8,008× Number_of_Projects)/2 9,417 g$941,700
(10,826+ 8,008× 1)/2

of implementing a SPI method such as PSPsm and TSPsm. It may be necessary to
combine the results of multiple cost models together in order estimate the costs of
implementing SPI methods such as Inspections[67]. The results of multiple cost
models must be combined with other empirical data to estimate the complete costs
of implementing complex SPI methods such as SW-CMM® and CMMI®. There are
eight basic cost models for estimating key cost elements of the six major SPI methods
as shown inTable VI. There are cost models for Inspections effort and training,
PSPsm and TSPsm training, and SW-CMM®, ISO 9001, and CMMI® processes and
products.

3.2 Benefit Models for SPI

Benefit models are simple equations, formulas, or functions that are used to mea-
sure, quantify, and estimate the economic value, profit, savings, or reward of imple-
menting a new SPI method. SPI methods are designed and implemented in order to
yield economic or monetary benefits such as increased customer satisfaction, pro-
ductivity, quality, cost savings, and cycle time reduction. A long used, classical, and
authoritative approach to quantifying the benefits of SPI methods is to measure to-
tal life cycle costs before and after the introduction of a new SPI method. There are
seven benefit models or total life cycle cost models which are very useful for estimat-
ing the economic value of the six major SPI methods as shown inTable VII. There

16 R. VAN SOLINGEN AND D.F. RICO

TABLE VII
BENEFIT MODELS OFSPI METHODS WITH EXAMPLES FOR A 4 PERSONTEAM IMPLEMENTING

10,000 LOC

Method Benefit models and worked examples Hours Costs

Old Costs LOC× 10.51− Test_Hours× 9 45,100 h$4,509,997
10,000× 10.51− 6,666.67× 9

Inspections LOC× 10.51− Inspection_Hours× 99− Test_Hours× 9 17,425 i$1,742,533
10,000× 10.51− 708.33× 99− 1,950× 9

PSPsm LOC / 25 400 j$40,000
10, 000/25

TSPsm LOC / 5.9347 1,685 k$168,501
10,000/5.9347

SW-CMM® LOC× 10.2544− Inspection_Hours× 99− Test_Hours× 9 14,869 l$1,486,933
10,000× 10.2544− 708.33× 99− 1,950× 9

ISO 9001 LOC× 10.442656− Test_Hours× 9 − Rework_Savings 39,402 m$3,940,156
10,000× 10.442656− 6,670× 9 − 4,995

CMMI® LOC× 10.2544− Inspection_Hours× 99− Test_Hours× 9 14,869 n$1,486,933
10,000× 10.2544− 708.33× 99− 1,950× 9

are benefit models for old costs, Inspections, PSPsm, TSPsm, SW-CMM®, ISO 9001,
and CMMI® [67].

Total life cycle cost is an estimate of complete software development and mainte-
nance costs. The basic form of the total life cycle cost model isLOC×(Defect_Rate×
100 + Software_Effort/10,000) − Inspection_Hours × 99 − Test_Hours × 9.
LOC refers to lines of code,Defect_Raterefers to the defect injection rate, and
Software_Effortrefers to analysis, design, and coding hours.Inspection_Hours
and Test_Hoursare self explanatory. With aDefect_Rateof 10% or 0.1 and
a Software_Effortof 5,100, the basic total life cycle cost model simplifies to
LOC × 10.51 − Inspection_Hours × 99 − Test_Hours × 9. This total life cycle
cost model signifies complete software development and maintenance costs, less the
benefits of inspections and testing. If no inspections or testing are performed, then
the total life cycle cost isLOC×10.51 or 105,100 hours for a 10,000 line of code ap-
plication. If we perform 708.33 hours of inspections and 1,950 hours of testing, then
the total life cycle cost isLOC× 10.51− 708.33× 99− 1,950× 9 or 17,425 hours,
a savings of 87,675 hours. (This is an extensible model which can be calibrated for
varying defect rates, software effort, and Inspections and testing efficiencies. Fur-
thermore, it can be augmented to model the economics of automatic static source
code analysis and analyzers.)

The Old Cost benefit model represents a reliance on 6,667 testing hours to re-
move 667 defects, or 45,100 total life cycle hours for 10,000 lines of code. The

CALCULATING SOFTWARE PROCESS IMPROVEMENT’S ROI 17

Inspections benefit model represents a balance of 708.33 Inspections hours and 1,950
testing hours, or 17,425 total life cycle hours for 10,000 lines of code. The PSPsm

and TSPsm benefit models signify a productivity of 25 and 5.9347 lines of code per
hour, or 400 and 1,685 total life cycle hours for 10,000 lines of code. (The PSPsm and
TSPsm benefit models don’t use the total life cycle cost model because they result in
zero defects, and therefore exhibit little or no post-delivery economic activity.) The
SW-CMM® benefit model results in 2,544 development hours at Level 3, 708.33 In-
spections hours, and 1,950 testing hours, or 14,869 total life cycle hours for 10,000
lines of code. The ISO 9001 benefit model results in 4,426.56 development hours,
6,670 testing hours, andRework_Savingsof 4,995 hours, or 39,402 total life cycle
hours for 10,000 lines of code. The CMMI® benefit model results in 2,544 develop-
ment hours at Level 3, 708.33 Inspections hours, and 1,950 testing hours, or 14,869
total life cycle hours for 10,000 lines of code.

3.3 Modelling Cost and Benefits of SPI

The cost and benefit summary helps organize the results of the cost and benefit
models. The eight major cost and benefit factors are placed against the six major
SPI methods as shown inTable VIII. The eight major cost and benefit factors are
inspections, training, process (includes products), preparation (for appraisals), ap-
praisal, audit, old costs, and new costs. The values for the first six cost factors are
derived fromTable VI, with the exception of preparation, appraisal, and audit costs.
Preparation costs consist of indoctrination courses, response conditioning exercises,

TABLE VIII
COST AND BENEFIT SUMMARY OF SPI METHODS FOR A4 PERSONTEAM IMPLEMENTING

10,000 LOC

Factor Inspections PSPsm TSPsm SW-CMM® ISO 9001 CMMI®

1. Inspections a$70,833 n/a n/a a$70,833 n/a a$70,833
2. Training b$11,240 c$105,600 d$148,400 n/a n/a n/a
3. Process n/a n/a n/a e$173,700 f$110,600 g$941,700
4. Preparation n/a n/a n/a * $36,800 * $26,400 * $48,000
5. Appraisal n/a n/a n/a * $30,100 n/a * $47,700
6. Audit n/a n/a n/a n/a * $36,000 n/a
Costs $82,073 $105,600 $148,400 $311,433 $173,000 $1,108,233

7. Old Costs h$4,509,997h$4,509,997h$4,509,997 h$4,509,997 h$4,509,997 h$4,509,997
8. (New Costs) i ($1,742,533) j ($40,000) k($168,501) l ($1,486,933)m($3,940,156)n($1,486,933)
Benefits $2,767,464 $4,469,997 $4,341,496 $3,023,064 $569,841 $3,023,064

* Preparation, appraisal, and audit costs determined without the aid of a cost model.

18 R. VAN SOLINGEN AND D.F. RICO

and mock appraisals. Appraisal costs consist of the costs for the planning, prepara-
tion, and appraisal stages, as well as the appraisal fees. The preparation, appraisal,
and audit costs were based on bottom up estimates, and no cost models were cre-
ated to aid in their estimation. The total costs are a simple summation of the values
from cost factors one through six. (The letters a through g correspond to the cost
model values fromTable VI.) The values for old costs and new costs are derived
from Table VII. The total benefits are the difference of old costs and new costs. (The
letters h through n correspond to the benefit model values fromTable VII.)

3.4 ROI Models for SPI
The ROI summary illustrates total costs and benefits and the calculation of ben-

efit/cost ratio, return on investment, net present value, and break even point for
each of the six SPI methods.Table IX shows the values of B/CR, ROI, NPV, and
BEP using the metrics fromTable I. B/CR is used to determine the magnitude
of benefits to costs using the formulaBenefits/Costs. ROI is used to determine
the magnitude of benefits to costs based on adjusted benefits using the formula
(Benefits− Costs)/Costs× 100%. NPV is used to discount the cash flows using the
formula, equation, or discounting method fromTable I (e.g., SUM(Benefitsi/(1 +
Discount Rate)Years) − Costs0). BEP is used to determine when the SPI method be-
gins yielding its benefits using the formulaCosts/(Old Costs/New Costs− 1).

The BEP values representtotal costsspent on a new SPI methodbeforethe benefits
are realized. The BEP values should be divided by 400 to account forTeam Sizeand
Rate. The BEP for Inspections is 129 hours or three weeks, PSPsm is two hours, and
TSPsm is 14 hours or two days. The BEP for SW-CMM® is 383 hours or 2.2 months,
ISO 9001 is 2,991 hours or 1.4 years, and CMMI® is 1,363 hours or eight months.
Figure 1is a graphical representation of the costs, benefits, and ROI values from
Table IX. Notice that the costs dramatically increase from left to right as illustrated
by the red bar inFig. 1. Also notice that the benefits and ROI sharply decrease from
left to right as illustrated by the green and blue bars inFig. 1.

TABLE IX
ROI METRIC EXAMPLES OF SPI METHODS FOR A4 PERSONTEAM IMPLEMENTING 10,000 LOC

Method Costs Benefits B/CR ROI NPV BEP

Inspections $82,073 $2,767,464 34:1 3,272% $2,314,261 $51,677
PSPsm $105,600 $4,469,997 42:1 4,133% $3,764,950 $945
TSPsm $148,400 $4,341,496 29:1 2,826% $3,610,882 $5,760
SW-CMM® $311,433 $3,023,064 10:1 871% $2,306,224 $153,182
ISO 9001 $173,000 $569,841 3:1 229% $320,423 $1,196,206
CMMI® $1,108,233 $3,023,064 3:1 173% $1,509,424 $545,099

CALCULATING SOFTWARE PROCESS IMPROVEMENT’S ROI 19

FIG. 1. ROI examples (normalized) showing increasing costs, decreasing benefits, and decreasing
return on investment from left to right.

3.5 Limitations of the Quantitative Models

Six simple ROI metrics were introduced for costs, benefits, benefit/cost ratio, re-
turn on investment, net present value, and break even point. And, fourteen cost and
benefit models were introduced for Inspections, PSPsm, TSPsm, SW-CMM®, ISO
9001, and CMMI®. More importantly, each of the ROI metrics and models were
thoroughly exercised to demonstrate how ROI is estimated for SPI. (As an aside,
important concepts in total life cycle costs were introduced to estimate the benefits
of SPI. The estimation of benefits is perhaps the most elusive concept in the fields of
ROI and SPI.)

As mentioned numerous times, ROI metrics are not mutually exclusive. The result
or value of one ROI metric should not overshadow the value of another. For instance,
Fig. 1 illustrates impressive ROI values of 3,272%, 4,133%, 2,826%, 871%, 229%,
and 173% for Inspections, PSPsm, TSPsm, SW-CMM®, ISO 9001, and CMMI®. Be-
fore running out and immediately implementing one of these methods, one should
consider the costs. The cost per person for these SPI methods is $20,518, $26,400,
$37,100, $77,858, $43,250, and $277,058 as shown inFig. 2. These figures may
not seem daunting for monolithic well endowed non-profit organizations. However,
one can rest assured knowing that the average commercial firm could not afford the
least expensive of these SPI methods. The probability of sustained commitment and
execution of expensive and manually-intensive software processes is nearly zero.

The ROI metrics and models exhibited in this chapter are simple and not perfect at
all. We do not claim perfection or ultimate accuracy. However, the models are highly
useful on getting a grip on the abstract character of SPI and on getting some insight
on where to expect benefits for which cost. As such the models are useful for making
ROI analysis a priori of the investment, and as such support in the basic character
of investment decision making. Use the ROI models in this chapter, however, with
great care and customize them to other organizations as much as necessary.

20 R. VAN SOLINGEN AND D.F. RICO

FIG. 2. Cost per person showing increasing costs for various SPI methods from left to right.

4. Using Quantitative Measurements for SPI Investment
Evaluations

This section includes practical examples on the measurement of the ROI of SPI.
Measuring the ROI of SPI is a prerequisite for evaluating a posteriori whether the
benefits of an investment were worth their costs. Measuring costs and benefits is
often considered as a difficult task. In this section we present pragmatic solutions
and examples for putting a quantitative measurement on SPI cost and benefits.

4.1 Measuring Benefits Is Just as Easy as Measuring Cost

One argument often heard in practice is that benefits of SPI cannot be measured,
or are at least difficult to measure. Organizations find it relatively easy to measure
cost by measuring effort, but have a hard time in measuring benefits. This is however,
based on a serious misunderstanding of cost measurement: costs are much broader
than effort alone. For example, cost also involves other resources such as office-
space, travel, and computer infrastructure. When calculating cost, a fixed hour-rate is
used that is assumed to approach the real value of cost acceptably. Measuring cost in
such way is commonly accepted and agreed upon; however, such a cost calculation is
in fact: an estimate. This in itself is of course not wrong. It is a pragmatic agreement
on how to approach the actual cost with an acceptable level of accuracy. However,
if we accept that cost measurement is just a matter of estimating and agreeing on
the procedure, why don’t we do the same for benefits? If we (just as with costs)

CALCULATING SOFTWARE PROCESS IMPROVEMENT’S ROI 21

agree that approaching the actual value is sufficient and we agree on the estimation
procedure, then we can measure benefits to the same extent as we measure cost.

Measuring benefits is in fact just as easy as measuring cost, or better: just as dif-
ficult. We only need to agree on the required level of accuracy. As ROI calculations
for SPI generally do not need to be very accurate, benefits can be easily measured
based on stakeholder involvement and estimation. As such, explicit ROI calculations
can be incorporated into SPI investments and evaluations can be made on whether
the SPI activities were worth the effort.

ROI requires the application of metrics and models. Software measurement is not
in wide spread use by the general body of managers. Metrics and models are usually
relegated to a few well placed scholars, management consultants, and high maturity
organizations. Worse yet, statistical analysis is not considered a necessary component
of the most popular approaches to SPI. So, managers don’t generally apply ROI, and
see it as part of the field of scientific study; ignoring it because mainstream methods
don’t require its application. Managers should apply quantitative methods for SPI,
especially metrics and models for SPI. They should overcome the myths that metrics
and models are only for special circumstances, such as large, expensive, mission
critical systems. Shortly: managers should apply metrics in all circumstances, in all
projects, and in all maturity levels.

4.2 Involve Stakeholders for Benefit Estimations

The basic starting point for measuring SPI benefits is that: “Although intangi-
ble benefits may be more difficult to quantify, there is no reason to value them at
zero. Zero is, after all, no less arbitrary than any other number.” [53]. So, estimat-
ing a benefit based on stakeholder involvement is fairly better than just estimating
the benefit as zero. Stakeholder involvement for benefit quantification seems logi-
cal. Stakeholders have an overview on impacts and values of benefits from specific
viewpoints. Most people will agree that it is in practice impossible to find one single
person with a full overview on SPI benefits, who is also capable of expressing those
in terms of money. Multiple stakeholders should therefore be involved. For example,
knowing that SPI caused a time-to-market reduction of two weeks, it is possible to
ask the marketing department what this will bring in financial values: a number or
an estimated range will be provided. Calculations can be made with such estimates.
Also it should not be forgotten to ask the project manager whether there would have
been a delay in his opinion if there had not been the SPI activities: a so-called ‘what-
if-not-analysis’[53]. If so, the marketing department can be asked what the cost of
this delay would have been: another benefit. It is important to include all of these SPI
benefits and to transfer them to a financial value. ‘Money’ is after all, a measurement
scale that most stakeholders understand.

22 R. VAN SOLINGEN AND D.F. RICO

Pure calculation of cash-flow benefits for SPI is often considered difficult[9,75].
An alternative to quantifying benefits is by asking the people involved (e.g., manage-
ment) what a certain improvement is ‘worth’. So, don’t simply measure the effort of
the improvement activities, but to look at what the value of that improvement is, and
take this value as the benefit. “Rather than attempting to put a dollar tag on bene-
fits that by their nature are difficult to quantify, managers should reverse the process
and estimate first how large these benefits must be in order to justify the proposed
investment.” [53]. For example, if a manager states that his team has clearly a better
motivation due to the SPI initiatives, ask the manager for what price he would be
willing to ‘buy’ that increased motivation. Ask the manager for example, how many
days of education he would be willing to spend on his staff to acquire this increased
motivation. If it is for example 5 days of training, a quantitative estimation of this
benefit is: number of staff× number of days training× (daily rate of staff+ daily
fee of one-person training). This illustrates clearly: not difficult to quantify as long
as there is agreement on how this benefit is quantified.

4.3 Case 1: GQM-Based Measurement Program

A first case was made for a GQM measurement program as published in[80]
and [81]. It was undertaken in a systems development department (hardware and
software) in an industrial company that produces and services systems for fuel sta-
tions. This particular team developed an embedded software product that controls a
fuel pump and manages all fuel-transaction communications. This case involves a
goal-oriented measurement program in which developer distortions (so-called ‘inter-
rupts’) were addressed. The measurement program had the objective to find out the
reasons for developer-interruptions and as a result reduce the number of developer-
interruptions. During a period of three months, a development team of six people
measured and improved their processes.

When making an analysis of the cost we find that the effort of the software team
was 80 hours, and the effort of the GQM measurement team was 240 hours. So, the
total cost of this improvement program was:(320/1,600) × $100,0005 = $20,000.
When considering the benefits, we measured a saving in engineering effort of the

software team of 260 hours due to the improvements (e.g., reduced number of inter-
rupts) and a saving of 60 hours for the GQM measurement team (e.g., from reusable
material). These benefits were directly related to the objectives of the improvement
program. Therefore, the financial benefits for the software team were $16,000 and
of the GQM team $4,000. The ROI for the software team is therefore 2, and for the

5 We calculated with 1,600 productive engineering hours per year and a yearly cost of $100,000 per
engineer (the case took place in The Netherlands).

CALCULATING SOFTWARE PROCESS IMPROVEMENT’S ROI 23

TABLE X
DETAILED MEASUREMENTS FOR THEROI CALCULATION OF CASE 1 [81]

Cost/Benefits Value Explanation

Cost
Effort engineering team $5,000 80 hours effort expenditure in measurement

program related tasks, measured from hour
registration system

Effort GQM team $15,000 240 hours effort expenditure for measurement
program, measured from hour registration system

Total cost $20,000

Benefits
Effort saving due to less interrupts $16,000 260 hours effort saving during the measurement

program due to a measured reduction of interrupts
Effort saving reuse (GQM team) $4,000 60 hours effort saving due to reusable material on

interrupt reduction
Total direct benefits $20,000
Early delivery due to effort saving $100,000 One week early delivery of the product, measured

from value indicated by marketing manager
Effort saving due to spin-off $50,000 Effort saving during remainder of the year due to

the reduction of interrupts
Increased quality awareness $100,000 Increased focus on quality and time expenditure,

both in the project as in other groups, measured
from value for group manager (combination of
buy-in and personal value)

Update of engineering documentation $16,000 Some documentation was updated due to a
measurable number of interrupts on these
documents, measured from value for engineers

Total indirect benefits $266,000
Total benefits $286,000
Return-on-Investment 1:13

whole program it was break even. The ROI is calculated by dividing the profit of the
investment by the investment, e.g.,(benefit− cost)/cost.

However, when also considering the indirect benefits, it became clear in the feed-
back sessions of the measurement program, and based on conclusions by the project
manager, that the benefits were higher. Some of the benefits were that:

• The project finished at least one week earlier thanks to the measurements (ac-
cording to marketing a saving of at least: $100,000).

• Documentation was updated based on the measurement analysis, preventing at
least 250 hours on interrupts (which makes $16,000).

• Increased quality awareness and interruption awareness of the software team
(which was valued by the project manager as at least: $100,000).

24 R. VAN SOLINGEN AND D.F. RICO

• Saved interruptions in other projects in the same department due to increased
awareness outside the department (which was valued by the project manager to
be worth at least more than $50,000).

Total benefits can be calculated to be at least: $286,000, giving an ROI of 55 for
the software team ($286,000− $4,000− $5,000/$5,000), and an ROI of 13 for the
whole organization ($286,000−$20,000/$20,000). Making the distinction between
direct and indirect benefits supports the business case for SPI. Especially the indirect
benefits (those that are difficult to correlate directly to the SPI efforts, because they
are initiated from multiple initiatives) tend to have large financial benefits. Although
quantification of those benefits requires some effort, it serves to explain to managers,
why SPI initiatives support to attain business goals.

4.4 Case 2: CMM-Based Improvement Program
The second case presents the results of an ROI evaluation of an industrial SPI

program. This program applied the SW-CMM® as a starting point for improvement
and applied it pragmatically as a checklist for potential improvement actions. This
particular organization had defined its improvement goals in terms of development
throughput-time, schedule accuracy and customer satisfaction. The respective or-
ganization develops and services a software simulation package that is capable of
executing virtual tests using finite element modeling. Such simulations provide pro-
duction companies safety feedback on products that are still on the ‘drawing table’.
The market success of this package is in fact mainly due to its high return-on-
investment. Imagine what the savings are for a manufacturer when receiving safety
flaws in design-phase compared to receiving these flaws in delivery-phase.

ROI was evaluated after one year in the SPI program, as contractually agreed upon
with the SPI consulting company. The approach undertaken was similar as described
in this article. Available measurements were used expanded with five stakeholder
interviews (marketing and product manager, development manager, software engi-
neer, test engineer, release coordinator). These interviews indicated that the main
benefits of the SPI program were: process documentation (description of standard
processes, definition of templates and best-practices, and a group wide process-
web-infrastructure), progress monitoring (periodic reporting by progress metrics and
‘traffic-light’-indicators), software engineering role and responsibility definitions,
and improved product documentation.

For each of these benefits, estimations were made based on stakeholder involve-
ment by: asking for effort saving, value range (between min and max), or a purchase
value (what if you had to buy this change?). In every case the lowest value of the
stakeholder numbers were used; implying that the calculated ROI number was a min-
imum agreement. One specific addition was made by adding so-called “contribution

CALCULATING SOFTWARE PROCESS IMPROVEMENT’S ROI 25

percentages.” As many improvements can not be attributed solely to the SPI program
because they result from multiple initiatives, the contribution to the improvement was
indicated in such a percentage. Take for example, the benefit “best-practices.” Best-
practices would probably also be documented if there would not have been a SPI
program. However, the R&D manager estimated that the SPI program would have a
partial contribution of about 25%, due to the focus on best-practice capturing. In this
example, only 25% of the value was measured as benefit.

The cost of the SPI program in the first year was $50,000. For the benefits a dis-
tinction was made between the direct benefits (directly accounted to activities in the
improvement program) and the indirect benefits (results more indirectly accounted
to the improvement program) of the SPI program. The direct benefits were valued to
be $147,000. The indirect benefits were valued to be $300,000. This was calculated
from the separate values for project management and control ($65,000), on-time re-
leasing of the product ($45,000) and role and responsibility definitions ($190,000).

Based on these collected numbers it was relatively easy to calculate ROI numbers.
The direct ROI was 2 to every invested dollar and the total ROI (including both di-
rect and indirect benefits) was 8. This ROI is calculated by dividing the profit of the
investment by the investment(benefit−cost)/cost. The respective interviewed stake-
holders agreed with the numbers used for these calculations. When presenting these
calculations to the complete software engineering team, the engineers indicated that
they did not recognize all of the values. It appeared that not everyone was aware of
the overall improvements and impacts. We concluded that more intermediate com-
munication on SPI activities and results should have been done, instead of this one
yearly ROI analysis only. This could have improved common understanding of the
benefits of the improvement program for the department.

4.5 Limitations of Quantitative Measurements

We have explained and illustrated an approach to quantitatively measure the costs,
benefits, and ROI of SPI in practice. Although the cases show that this approach pro-
vides useful results, there are also some limitations. First of all, the accuracy of the
numbers is limited. The main cause of this is that both cost and benefit measurements
are derived from estimates. Estimates are by definition not very accurate, although
often better than measuring them as zero. In addition, these benefits are quantified
by applying stakeholder input and experiences, which make them strongly influenced
by personal perceptions, characteristics, and attitudes. Secondly, the presented mea-
surements are limited in their external validity, i.e., they are only meaningful within
the respective context. Using these measurements outside that specific project or or-
ganization should not be allowed. There is no evidence that the presented ROI effects
will occur in other environments that apply the same approach. In other words: the

26 R. VAN SOLINGEN AND D.F. RICO

TABLE XI
DETAILED MEASUREMENTS FOR THEROI CALCULATION OF CASE 2 [81]

Cost/Benefits Value Explanation Allocation Value

Cost
Company effort $35,000 305 person hours with an average

hourly fee of $115, measured from
project accounting system.

100% $35,000

External
coaching

$15,000 External coaching hours from con-
sulting company, measured from bills.

100% $15,000

Total cost $50,000

Benefits
Process
awareness

$20,000 Measured from value for R&D
manager, through buy-in comparison:
5 days by external trainer

100% $20,000

Documented
processes
available

$160,000 V-model reflected in set-of procedures
and standard WBS for projects: Effort
saving at least $4,000 per project, 40
projects per year, measured from value
for R&D manager

50% $80,000

Documentation
templates

$120,000 Buy-in value of good template: $1,000,
3 templates set-up, 40 projects per year,
measured from value for R&D manager
and engineers

25% $30,000

Best practices
documented

$32,000 Effort saving of at least $800 per
project, 40 projects, measured from
value for engineers

25% $8,000

Requirements
training
followed

$16,000 Cost of requirements training in effort
and external trainer, measured from
project accounting system

25% $4,000

Project
documentation
updated

$5,000 Updated documentation based on
findings, measured from value for R&D
manager

100% $5,000

Total direct benefits $147,000

Project
management
support

$650,000 Calculated from value for R&D
manager and product manager of the
overall set of PM actions (e.g., traffic
light progress monitoring, customer
planning alignment, less late deliveries)

10% $65,000

Release on time $180,000 Effort/cost saving from releasing on
time: $30,000, 6 releases, calculated
from value for R&D manager and
product manager

25% $45,000

Role separation $255,000 Effort saving of 1.5 person-year, due to
role and responsibility separation,
measured from value for R&D manager

75% $190,000

Total indirect benefits $300,000
Total benefits $447,000
Return-on-investment 1:8

CALCULATING SOFTWARE PROCESS IMPROVEMENT’S ROI 27

predictive value of the measurements is low. Finally, SPI is by definition an activity
that changes things. When implementing change, cost and benefit factors such as
resistance and learning effects are present. Such factors can have a strong influence
on costs and benefits, and directly influence the final ROI measurement. As a conse-
quence, it is unclear to which extend the presented measurements represent the cost
and benefits of the software process improvement itself, from the change process, or
from both.

5. Conclusions

There is one basic concern about ROI measurement in the context of SPI: How to
measure benefits? This leads to several questions, such as: Can benefits be measured,
at all? Can a monetary value be placed on benefits? And, if all such ROI benefit
analysis shows an ROI for 6:1 up to 10:1, why are companies so reluctant to do
this, and if management stops pushing, the process usually dies? If companies really
believed the 6-fold payoff, why are they reluctant to continue to pay $100K per year
(for example) with a demonstrated saving of $600K per year? These are legitimate
questions, which cannot be answered completely based on the currently available
research material. However, one thing is clear: the fact that benefits are often difficult
to measure or even more difficult to quantify financially, is not an excuse not to do
so. As Gilb’s law says: “Anything you need to quantify can be measured in some
way that is superior to not measuring it at all”[24]. In this chapter we have provided
some insights and support on how to (financially) quantify the unquantifiable.

Research has shown that the lack of explicit expectations (e.g., hypothesis) has a
drastic negative effect in the learning effects of SPI programs[77,79]. Without mak-
ing such expectations explicit, it will be difficult to evaluate whether a certain benefit
was worth its cost, or whether an ROI of 3 is sufficient. When planned numbers are
compared with actual numbers, it can be evaluated whether the SPI action was suc-
cessful and whether anything was learned at all from the effects of the SPI program
or initiative. The fact that all too often no quantitative or financial evaluation is made
of SPI investment is probably one of the reasons that SPI initiatives are ended too
soon. If managers are given the promise of an ROI between 6 and 10, but no effort
is spend on actually proving this ROI, the chances rise that support and commitment
start to deteriorate.

Pragmatic ROI calculations are feasible and not difficult at all. If detailed mea-
surements are not available: estimates and models can help. Such estimations may
not be very accurate, but they are at least better than no number at all. Furthermore,
we intended to show that pragmatic ROI calculations open a discussion on the cost,
benefits, and ROI of SPI. Pragmatism is crucial: apply an approach for measuring

28 R. VAN SOLINGEN AND D.F. RICO

cost and benefits that is simple and fast by involving stakeholders. Accept that such
estimations of costs and benefits might not be perfectly accurate, but accuracy is not
the main purpose. The purpose is to indicate value: to indicate whether costs and
benefits are balanced, and to obtain a ROI number for communication purposes.

ROI belongs to the discipline of applying metrics and models for software man-
agement and engineering. Software managers believe that software measurement
requires the application of advanced tools in statistics. And, of course, software man-
agers believe software measurement requires years of data collection, data points,
and impeccable statistical justification. Scholarly methods for determining ROI also
require large investments in capital improvements to apply. Therefore, managers be-
lieve large amounts of money need to be invested in order to apply methods for
ROI. Managers should understand that ROI can be applied to SPI early, easily, and
inexpensively. They should overcome the myths that ROI is only for the scientific
community, and realize it doesn’t require large capital investments. ROI calculations
can be performed early based on top down estimates without years of data collection.

Expressing costs, benefits, and ROI in financial or monetary terms is crucial. If
there is one generic term for which people share perception, then it is: money.

ACKNOWLEDGEMENTS

The authors would like to thank professor Egon Berghout from University Gronin-
gen for his contribution and feedback on earlier versions of this work. And, of course,
we owe a debt of gratitude to professor Marvin Zelkowitz from the University of
Maryland for soliciting, supporting, and championing the completion of this much
needed work.

Appendix A: Background of the Quantitative Models

This appendix provides simple, but powerful, authoritative, and relatively accu-
rate examples of how to apply basic techniques for estimating the ROI of six major
approaches to SPI. Benefit to cost ratio (B/CR) and return on investment percent-
age (ROI%) formulas will be applied to benefit data from Rico[65] as well as other
sources of SPI data. Phillips[60] served as the basis for selecting these arithmeti-
cal techniques for estimating the ROI of SPI. The six approaches to SPI that are
examined here are:

• Inspection: The software inspection process is a highly-structured and facili-
tated group meeting to objectively identify the maximum number of software
defects with the purpose of improving software quality.

CALCULATING SOFTWARE PROCESS IMPROVEMENT’S ROI 29

• PSPsm: The PSPsm is a training curriculum to teach simple, but powerful tech-
niques in software project management and quality management.

• TSPsm: The TSPsm is an extension of PSPsm, which introduces group software
project management techniques versus the individual focus taught by PSPsm.

• SW-CMM®: The SW-CMM® is a supplier selection model created by the U.S.
DoD to evaluate and select software contractors that practice minimum software
project management techniques.

• ISO 9001: ISO 9001, like the SW-CMM®, is a supplier selection model created
by the European Union to evaluate, identify, and select suppliers that practice
minimum quality management techniques.

• CMMI®: The CMMI®, which is the newest version of SW-CMM®, is also a
supplier selection model created by the U.S. DoD to evaluate and select systems
engineering contractors that practice minimum systems engineering manage-
ment techniques.

A.1 Inspection: Detailed ROI Estimation Procedures

Let’s examine the dynamics of estimating the costs, benefits, and ROI of the soft-
ware inspection process using the formulas for B/CR and ROI%.

• Training costs for inspections: Let’s begin by modeling the training costs for
implementing Inspections on a four-person project. The average market price
for Inspection training is about $410 per person. The average length of time for
Inspection training is three days or 24 business hours. At a minimum cost of
$100 per hour, training time comes to $2,400. Add $410 to $2,400 for a total of
$2,810 per person for Inspection training. Multiply $2,810 by four people and
that comes to $11,240 to train four people to perform Inspections.

• Implementation costs for inspections: Now let’s examine the cost of imple-
menting Inspections by our four trained inspectors. Let’s assume the project
will develop 10,000 software source lines of code (SLOC), which is not un-
likely for a web project in modern times. (Inspections of requirements, designs,
and tests drive the Inspection costs even higher, but are omitted for simplicity’s
sake.) At an Inspection rate of 240 SLOC per meeting, that comes to approxi-
mately 41.67 meetings. Since each Inspection run requires about 17 hours for
planning, overviews, preparation, meetings, rework, and follow-up, we then
multiply 41.67 by 17 for a total of 708.33 hours. Once again, at $100 per hour,
that comes to $70,833 for our four trained inspectors to perform Inspections on
10,000 SLOC.

30 R. VAN SOLINGEN AND D.F. RICO

• Costs for inspections: So, we add the training cost of $11,240 to the implemen-
tation cost of $70,833, and we arrive at a total cost of $82,073 for four trained
inspectors to Inspect 10,000 SLOC.

• Benefits for inspections: The estimated total life cycle costs for 10,000 SLOC
after our four trained inspectors perform their Inspections are $1,742,533 (as
illustrated from the benefit model inTable VII). The estimated total life cycle
costs for 10,000 SLOC without Inspections are $4,509,997 (as also shown in
Table VII). So, our four trained inspectors have saved $2,767,464 on their very
first implementation of Inspections.

• B/CR for inspections (the formula for B/CR isbenefitsdivided bycosts): There-
fore, divide the $2,767,464 in Inspection benefits by the $82,073 in Inspection
costs and the B/CR for Inspections is 34:1.

• ROI% for inspections (the formula for ROI% isbenefitslesscostsdivided by
coststimes 100): Therefore, first subtract the $82,073 in Inspection costs from
the $2,767,464 in Inspection benefits and divide the results by the $82,073 in
Inspection costs and multiply by 100 for an impressive ROI% of 3,272%.

A.2 PSPsm: Detailed ROI Estimation Procedures

Now, let’s examine the dynamics of estimating the costs, benefits, and ROI of
PSPsm using the formulas for B/CR and ROI%.

• Costs for PSPsm: Let’s begin by modeling the training costs for implementing
PSPsm on a four-person project. The Software Engineering Institute’s (SEI’s)
price for PSP training is $5,000 per person. The costs of the airline, hotels,
meals, and parking are about $5,400 for two weeks. The length of time for
PSPsm training is 10 days or 80 business hours. Each hour of classroom time
requires approximately one hour of non-classroom time for a total of 80 more
hours. At a minimum cost of $100 per hour, training time comes to $16,000.
Add $5,000, $5,400, and $16,000 for a total of $26,400 per person for PSPsm

training. Multiply $26,400 by four people and that comes to $105,600 to train
four people to perform PSPsm.

• Benefits for PSPsm: The estimated total life cycle costs for 10,000 SLOC after
our four trained PSPsm engineers apply PSPsm are $40,000 (as illustrated from
the benefit model inTable VII). The estimated total life cycle costs for 10,000
SLOC without PSPsm are $4,509,997 (as also shown inTable VII). So, our four
trained PSPsm engineers have saved $4,469,997 on their very first implementa-
tion of PSPsm.

CALCULATING SOFTWARE PROCESS IMPROVEMENT’S ROI 31

• B/CR for PSPsm (the formula for B/CR isbenefitsdivided bycosts): Therefore,
divide the $4,469,997 in PSPsm benefits by the $105,600 in PSPsm costs and the
B/CR for PSPsm is 42:1.

• ROI% for PSPsm (the formula for ROI% isbenefitslesscostsdivided bycosts
times 100): Therefore, first subtract the $105,600 in PSPsm costs from the
$4,469,997 in PSPsm benefits, divide the results by the PSPsm $105,600 in costs,
and multiply by 100 for an impressive ROI% of 4,133%.

A.3 TSPsm: Detailed ROI Estimation Procedures

Now, let’s examine the dynamics of estimating the costs, benefits, and ROI of
TSPsm using the formulas for B/CR and ROI%.

• Costs for TSPsm: Let’s begin by modeling the training costs for implementing
TSPsm on a four-person project. The SEI’s price for TSPsm training is $4,000
per person. The costs of the airline, hotels, meals, and parking are about $2,700
for one week. The length of time for TSPsm training is 5 days or 40 business
hours. At a minimum cost of $100 per hour, training time comes to $4,000. Add
$4,000, $2,700, and $4,000 for a total of $10,700 per person for TSPsm-specific
training. Add the $26,400 for PSPsm training to the $10,700 for TSPsm training
and the total overall TSPsm costs come to a breathtaking $37,100 per person.
Multiply $37,100 by four people and that comes to a budget-busting $148,400
to train four people to use TSPsm.

• Benefits for TSPsm: The estimated total life cycle costs for 10,000 SLOC after
our four trained TSPsm engineers apply TSPsm are $168,501 (as illustrated from
the benefit model inTable VII). The estimated total life cycle costs for 10,000
SLOC without TSPsm are $4,509,997 (as also shown inTable VII). So, our four
trained TSPsm engineers have saved $4,341,496 on their very first implementa-
tion of TSPsm.

• B/CR for TSPsm (the formula for B/CR isbenefitsdivided bycosts): Therefore,
divide the $4,341,496 in TSPsm benefits by the $148,400 in TSPsm costs and
the B/CR for TSPsm is 29:1.

• ROI% for TSPsm (the formula for ROI% isbenefitslesscostsdivided bycosts
times 100): Therefore, first subtract the $148,400 in TSPsm costs from the
$4,341,496 in TSPsm benefits and divide the results by the $148,400 in TSPsm

costs and multiply by 100 for an impressive ROI% of 2,826%.

32 R. VAN SOLINGEN AND D.F. RICO

A.4 SW-CMM®: Detailed ROI Estimation Procedures
Now, let’s examine the dynamics of estimating the costs, benefits, and ROI of

SW-CMM® using the formulas for B/CR and ROI%.

• Inspection costs for SW-CMM®: SW-CMM® may involve the use of Inspec-
tions for SW-CMM® Level 3 compliance. So, let’s examine the cost of im-
plementing Inspections for SW-CMM® Level 3 compliance by our four trained
inspectors. Let’s assume the project will develop 10,000 software source lines of
code (SLOC), which is not unlikely for a web project in modern times. (Inspec-
tions of requirements, designs, and tests drive the Inspection costs even higher,
but are omitted for simplicity’s sake.) At an Inspection rate of 240 SLOC per
meeting, that comes to approximately 41.67 meetings. Since each Inspection
run requires about 17 hours for planning, overviews, preparation, meetings, re-
work, and follow-up, we then multiply 41.67 by 17 for a total of 708.33 hours.
Once again, at $100 per hour, that comes to $70,833 for our four trained inspec-
tors to perform Inspections on 10,000 SLOC.

• Process costs for SW-CMM®: Let’s begin by modeling the costs for developing
the policies and procedures for SW-CMM® Levels 2 and 3. SW-CMM® Levels
2 and 3 require 13 policies and 38 procedures at 11 hours each. That comes to
561 hours for 51 SW-CMM® Level 2 and 3 policies and procedures. Multiply
561 by $100, and the cost of developing Level 2 and 3 policies and procedures
is $56,100. Now let’s examine the cost of putting SW-CMM® Level 2 and 3
into practice for a single software project. Levels 2 and 3 require 28 documents,
30 work authorizations, 66 records, 55 reports, and 30 meeting minutes at 5.63
hours each. That comes to 1,176 hours for 209 Level 2 and 3 documents, work
authorizations, records, reports, and meeting minutes. Multiply 1,176 by $100,
and the cost of Level 2 and 3 documents, work authorizations, records, reports,
and meeting minutes is $117,600. Add 561 hours for developing SW-CMM®

policies and procedures to 1,176 hours for developing SW-CMM® Level 3-
compliant documentation and this totals 1,737 hours or $173,700 (at $100 per
hour).

• Assessment preparation costs for SW-CMM®: Let’s estimate one software
project of four people in 13 indoctrination courses at 2 hours each which to-
tals 104 hours. Let’s similarly estimate one software project of four people in
13 response-conditioning courses at 2 hours. This totals another 104 hours. Fi-
nally, let’s estimate one software project of four people in one 40 hour mock
assessment or two 20 hour mock assessments. This totals 160 hours. Now, let’s
add 104 indoctrination hours, 104 response conditioning hours, and 160 mock
assessment hours. And, this totals of 368 assessment preparation hours. Finally,
let’s multiply 368 by $100 for a total of $36,800 in assessment preparation costs.

CALCULATING SOFTWARE PROCESS IMPROVEMENT’S ROI 33

• Assessment costs for SW-CMM®: And, let’s not forget the assessment itself.
An assessment requires up to 642 hours of internal labor (not including the
assessor’s effort). However, for our one project of four people let’s estimate 13
hours for planning and 47 hours for preparation. Additionally, let’s estimate 129
hours for the appraisal itself and 12 hours of follow-up which totals 201 hours
for the assessment. Now multiply 201 by $100 for a total labor cost of $20,100
plus $10,000 in assessment fees for a total cost of $30,100.

• Costs for SW-CMM®: Finally, add $70,833 for Inspections, $173,700 for
processes, $36,800 for appraisal preparation, and $30,100 for the appraisal it-
self. This comes to a grand total of $311,433 to achieve SW-CMM® Level 3
compliance and implement Inspections for 10,000 SLOC.

• Benefits for SW-CMM®: The estimated total life cycle costs for 10,000 SLOC
after our software engineers apply SW-CMM® Level 3-compliant policies and
procedures are $1,486,933 (as illustrated from the benefit model inTable VII).
The estimated total life cycle costs for 10,000 SLOC without SW-CMM® are
$4,509,997 (as also shown inTable VII). So, our software engineers have saved
$3,023,064 on their very first implementation of a SW-CMM®-compliant soft-
ware project.

• B/CR for SW-CMM® (the formula for B/CR isbenefitsdivided by costs):
Therefore, divide the $3,023,064 in SW-CMM® benefits by the $311,433 in
SW-CMM® costs and the B/CR for SW-CMM® is 10:1.

• ROI% for SW-CMM® (the formula for ROI% isbenefitslesscostsdivided by
coststimes 100): Therefore, first subtract the $311,433 in SW-CMM® costs
from the $3,023,064 in SW-CMM® benefits and divide the results by the
$311,433 in SW-CMM® costs and multiply by 100 for an impressive ROI%
of 871%.

A.5 ISO 9001: Detailed ROI Estimation Procedures

Now, let’s examine the dynamics of estimating the costs, benefits, and ROI of ISO
9001 using the formulas for B/CR and ROI%.

• Process costs for ISO 9001: Let’s begin by modeling the costs for developing
the policies and procedures for ISO 9001. ISO 9001 requires 144 policy state-
ments, 144 quality manual paragraphs, and 51 procedures at 1.61 hours each.
That comes to 546 hours for 339 ISO 9001 policy statements, quality manual
paragraphs, and procedures. Multiply 546 by $100, and the cost of developing
ISO 9001 policies and procedures is $54,600. Now let’s examine the cost of
putting ISO 9001 into practice for a single software project. ISO 9001 requires

34 R. VAN SOLINGEN AND D.F. RICO

51 plans and 144 records at about 2.87 hours each. That comes to 560 hours
for 195 ISO 9001 plans and records for a single software project. Multiply 560
by $100, and the cost of ISO 9001 plans and records is $56,000 for a single
software project. Therefore, the total process cost for ISO 9001 is 1,106 hours
or $110,600.

• Audit preparation for ISO 9001: Let’s estimate one software project of four
people in 23 indoctrination courses at one hour each which totals 92 hours.
Let’s similarly estimate one project of four people in 23 response conditioning
courses at one hour each which also totals 92 hours. Finally, let’s estimate one
software project of four people in one 20 hour mock quality system audit, for
a total of 80 hours. Now, let’s add 92 indoctrination hours, 92 response condi-
tioning hours, and 80 mock quality system audit hours. This totals 264 quality
system audit preparation hours. Finally, let’s multiply 264 by $100 for a total of
$26,400 in quality system audit preparation costs.

• Audit for ISO 9001: And, let’s not forget the quality system audit itself. An
ISO 9001 quality system audit may cost around $48,000. However, let’s isolate
this cost to $12,000 per software project. Typically, internal labor associated
with quality system audits is about twice that of the cost of the audit itself.
Therefore, let’s assume $24,000 in internal costs to support the actual quality
system audit. So, add $12,000 in external costs and $24,000 in internal costs,
and we arrive at $36,000 per quality system audit per project.

• Costs for ISO 9001: Finally, add $110,600 for processes, $26,400 for audit
preparation, and $36,000 for the audit itself. This comes to a grand total of
$173,000 to acquire ISO 9001 registration for 10,000 SLOC.

• Benefits for ISO 9001: The estimated total life cycle costs for 10,000 SLOC
after our software engineers apply ISO 9001-compliant policies and procedures
are $3,940,156 (as illustrated from the benefit model inTable VII). The esti-
mated total life cycle costs for 10,000 SLOC without ISO 9001 are $4,509,997
(as also shown inTable VII). So, our software engineers have saved $569,841
on their very first implementation of an ISO 9001-compliant software project.

• B/CR for ISO 9001 (the formula for B/CR isbenefitsdivided bycosts): There-
fore, divide the $569,841 in ISO 9001 benefits by the $173,000 in ISO 9001
costs and the B/CR for ISO 9001 is an admirable 3:1.

• ROI% for ISO 9001 (the formula for ROI% isbenefitslesscostsdivided by
coststimes 100): Therefore, first subtract the $173,000 in ISO 9001 costs from
the $569,841 in ISO 9001 benefits and divide the results by the $173,000 in ISO
9001 costs and multiply by 100 for an impressive ROI% of 229%.

CALCULATING SOFTWARE PROCESS IMPROVEMENT’S ROI 35

A.6 CMMI®: Detailed ROI Estimation Procedures

Now, let’s examine the dynamics of estimating the costs, benefits, and ROI of
CMMI® using the formulas for B/CR and ROI%.

• Inspection costs for CMMI®: CMMI® may involve the use of inspections for
CMMI® Level 3 compliance. So, let’s examine the cost of implementing in-
spections for CMMI® Level 3 compliance by our four trained inspectors. Let’s
assume the project will develop 10,000 software source lines of code (SLOC),
which is not unlikely for a web project in modern times. (Inspections of re-
quirements, designs, and tests drive the Inspection costs even higher, but are
omitted for simplicity’s sake.) At an Inspection rate of 240 SLOC per meet-
ing, that comes to approximately 41.67 meetings. Since each Inspection run
requires about 17 hours for planning, overviews, preparation, meetings, rework,
and follow-up, we then multiply 41.67 by 17 for a total of 708.33 hours. Once
again, at $100 per hour, that comes to $70,833 for our four trained inspectors to
perform Inspections on 10,000 SLOC.

• Process costs for CMMI®: Let’s begin by modeling the costs for developing the
policies and procedures for CMMI® Levels 2 and 3. CMMI® Levels 2 and 3
require 416 policies and procedures at approximately 26.02 hours each. That
comes to 10,826 hours for 416 CMMI® Level 2 and 3 policies and procedures.
Multiply 10,826 by $100. The cost of developing CMMI® Level 2 and 3 policies
and procedures is $1,082,600. However, let’s assume only half of this cost is
for software engineering. Let’s adjust it accordingly to $541,300. Now let’s
examine the cost of putting CMMI® Level 2 and 3 into practice for a single
project. CMMI® Levels 2 and 3 require 429 work products at about 18.67 hours
each. That comes to 8,008 hours for 429 CMMI® Level 2 and 3 work products
for a single project. Multiply 8,008 by $100, and the cost of CMMI® Level 2
and 3 work products is $800,800 for a single project. However, let’s assume
only half of this cost is for software engineering, and adjust it accordingly to
$400,400. Add 5,413 hours for developing CMMI® policies and procedures to
4,004 hours for developing CMMI® Level 3-compliant documentation and this
totals 9,417 hours or $941,700 (at $100 per hour).

• Assessment preparation costs for CMMI®: Let’s estimate one project of eight
people in 20 indoctrination courses at 2 hours each which totals 320 hours.
Let’s similarly estimate one project of eight people in 20 response conditioning
courses at 2 hours, each which also totals 320 hours. Finally, let’s estimate one
project of eight people in one 40 hour mock assessment or two 20 hour mock
assessments. This totals 320 hours. Now, let’s add 320 indoctrination hours,

36 R. VAN SOLINGEN AND D.F. RICO

320 response conditioning hours, and 320 mock assessment hours. This totals
960 hours. Finally, let’s multiply 960 by $100 for a total of $96,000 in assess-
ment preparation costs. Half of this is software engineering, which amounts to
$48,000.

• Assessment costs for CMMI®: And, let’s not forget the assessment itself.
For our one software project of four people, let’s estimate 127 hours for the
plan and prepare for appraisal stage. Let’s estimate 204 hours for the con-
duct appraisal stage. And, let’s estimate 21 hours for the report results stage.
This totals to 352 hours. Multiply 352 by $100 for an internal labor estimate
of $35,200. Add an assessment fee of $12,500 for a total assessment cost of
$47,700.

• Costs for CMMI®: Finally, add $70,833 for Inspections, $941,700 for processes,
$48,000 for appraisal preparation, and $47,700 for the appraisal itself. This
comes to a grand total of $1,108,233 to achieve CMMI® Level 3 compliance
and implement Inspections for 10,000 SLOC.

• Benefits for CMMI®: The estimated total life cycle costs for 10,000 SLOC
after our software engineers apply CMMI® Level 3-compliant policies and pro-
cedures are $1,486,933 (as illustrated from the benefit model inTable VII).
The estimated total life cycle costs for 10,000 SLOC without CMMI® are
$4,509,997 (as also shown inTable VII). So, our software engineers have saved
$3,023,064 on their very first implementation of a CMMI®-compliant software
project.

• B/CR for CMMI® (the formula for B/CR isbenefitsdivided bycosts): There-
fore, divide the $3,023,064 in CMMI® benefits by the $1,108,233 in CMMI®

costs and the B/CR for CMMI® is 3:1.

• ROI% for CMMI® (the formula for ROI% isbenefitslesscostsdivided bycosts
times 100): First subtract the $1,108,233 in CMMI® costs from the $3,023,064
in CMMI® benefits and divide the results by the $1,108,233 in SW-CMM®

costs and multiply by 100 for an impressive ROI% of 173%.

REFERENCES

[1] Arthur L.J., “Quantum improvements in software system quality”,Commun. ACM(1997)
46–52.

[2] Bach J., “The immaturity of the CMM”,Amer. Programmer(September 1994) 13–18.
[3] Bach J., “Enough about process: What we need are heroes”,IEEE Software(March 1995)

96–98.

CALCULATING SOFTWARE PROCESS IMPROVEMENT’S ROI 37

[4] Basili V.R., Caldiera G., Rombach H.D., van Solingen R., “Goal Question Metric Ap-
proach (GQM)”, in: Marciniak J.J. (Ed.),Encyclopaedia of Software Engineering, vol. 1,
second ed., John Wiley & Sons, New York, 2002.

[5] Basili V.R., Caldiera G., McGarry F., Pajerski R., Page G., Waligora S., “The software
engineering laboratory—an operational software experience factory”, in:Proceedings of
the 14th International Conference on Software Engineering, 1992.

[6] Basili V.R., Zelkowitz M., McGarry F., Page J., Waligora S., Pajerski R., “SEL’s software
process improvement program”,IEEE Software(November 1995) 83–87.

[7] Beach L.R.,Image Theory: Decision Making in Personal and Organizational Contexts,
John Wiley & Sons, New York, 1990.

[8] Beck K., “Embracing change with extreme programming”,IEEE Computer32 (10)
(1999) 70–77.

[9] Berghout E.W., “Evaluation of information system proposals: design of a decision sup-
port method”, PhD thesis, Delft University of Technology, The Netherlands, 1997.

[10] Bicego A., Kuvaja P., “BOOTSTRAP: Europe’s assessment method”,IEEE Software
(May 1993).

[11] Birk A., van Solingen R., Jarvinen J., “Business impact, benefit and cost of applying
GQM in industry”, in:Proceedings of the 5th International Symposium on Software Met-
rics (Metrics’98), Bethesda, Maryland, November 19–21, 1998.

[12] Bollinger T., McGowan C., “A critical look at software capability evaluations”,IEEE
Software(July 1991) 25–41 (plus pp. 42–46 comments on this article by Humhrey W.S.,
Curtis B.).

[13] Brodman J., Johnson D., “What small businesses and small organizations say about the
CMM”, in: Proceedings of the 16th International Conference on Software Engineering,
1994, pp. 331–340.

[14] Brodman J., Johnson D., “Return on investment from software process improvement as
measured by U.S. industry”,Crosstalk9 (4) (April 1996) 23–29.

[15] Buchman C., “Software process improvement at allied signal aerospace”, in:Proceedings
of the 29th Annual Hawaii International Conference on Systems Science, vol. 1: Software
Technology and Architecture, 1996, pp. 673–680.

[16] Burke S., “Radical improvements require radical actions: simulating a high-maturity or-
ganization”, CMU/SEI-96-TR-024, 1996.

[17] Butler K., “The economic benefits of software process improvement”,Crosstalk8 (7)
(July 1995) 14–17.

[18] Card D., “Understanding process improvement”,IEEE Software(July 1991) 102–103.
[19] Chrissis M.B., Konrad M., Shrum S.,CMMI: Guidelines for Process Integration and

Product Improvement, Addison–Wesley, Reading, MA, 2003.
[20] CMMI Product Development Team, “CMM-i for systems engineering/software engineer-

ing/integrated product and process development, version 1.02, CMMISM-SE/SW/IPPD,
v1.02”, Staged representation, CMU/SEI-2000-TR-030, ESC-TR-2000-095, 2000.

[21] Curtis B., “A mature view of the CMM”,Amer. Programmer(September 1994) 19–28.
[22] Daskalantonakis M.K., “A practical view of software measurement and implementation

experiences within Motorola”,IEEE Trans. Software Engrg.(November 1992) 998–
1010.

38 R. VAN SOLINGEN AND D.F. RICO

[23] Deephouse C., Goldenson D., Kellner M., Mukhopadhyay T., “The effects of software
processes on meeting targets and quality”, in:Proceedings of the Hawaiian International
Conference on Systems Sciences, vol. 4, 1995, pp. 710–719.

[24] DeMarco T., Lister T.,Peopleware: Productive Projects and Teams, Dorset House Pub-
lishing, 1987.

[25] Diaz M., King J., “How CMM impacts quality, productivity, rework, and the bottom
line”, CrossTalk(March 2002) 9–14.

[26] Diaz M., Sligo J., “How software process improvement helped Motorola”,IEEE Software
(September/October 1997) 75–81.

[27] Dion R., “Elements of a process improvement program”,IEEE Software(July 1992) 83–
85.

[28] Dion R., “Process improvement and the corporate balance sheet”,IEEE Software(July
1993) 28–35.

[29] Dunaway D.K., Berggren R., des Rochettes G., Iredale P., Lavi I., Taylor G., “Why do
organizations have assessments? Do they pay off?”, CMU/SEI-99-TR-012, 1999.

[30] El Emam K.,The ROI from Software Quality, Auerbach, New York, 2005.
[31] El Emam K., Briand L., “Cost and benefits of software process improvement”, Interna-

tional Software Engineering Research Network (ISERN) technical report, ISERN-97-12,
http://www.iese.fhg.de/network/ISERN/pub/technical_reports/isern-97-12.ps.gz, 1997.

[32] Erdogmus H., Favaro J., “Keep your options open: Extreme programming and the eco-
nomics of flexibility”, in: Marchesi M., Succi G., Wells J.D., Williams L. (Eds.),Extreme
Programming Perspectives, Addison–Wesley, New York, 2003, pp. 503–552.

[33] Fagan M.E., “Advances in software inspections”,IEEE Trans. Software Engrg.(July
1986) 741–755.

[34] Ferguson P., Humphrey W.S., Khajenoori S., Macke S., Matyva A., “Results of applying
the personal software process”,IEEE Computer(May 1997) 24–31.

[35] Gilb T., Graham D.,Software Inspection, Addison–Wesley, Reading, MA, 1993.
[36] Goldenson D.R., Herbsleb J.D., “After the appraisal: A systematic survey of process im-

provement, its benefits, and factors that influence success”, Technical Report, CMU/SEI-
95-TR-009, Software Engineering Institute, 1995.

[37] Goyal A., Kanungo S., Muthu V., Jayadevan S., “ROI for SPI: Lessons from initiatives
at IBM global services India”. Best Paper at the India SEPG Conference 2001 (24 page
report).

[38] Grady R.B., Caswell D.,Software Metrics: Establishing a Company-Wide Program,
Prentice Hall, New York, 1987.

[39] Grady R.B., van Slack T., “Key lessons in achieving widespread inspection usage”,IEEE
Software(July 1994) 46–57.

[40] Haley T.J., “Software process improvement at Raytheon”,IEEE Software(November
1996) 33–41.

[41] Henry J., Rossman A., Snyder J., “Quantitative evaluation of software process improve-
ment”,J. Systems Software28 (1995) 169–177.

[42] Herbsleb J., Carleton A., Rozum J., Siegel J., Zubrow D., “Benefits of CMM-based
software process improvement: Executive summary of initial results”, Technical Report,
CMU-SEI-94-SR-13, Software Engineering Institute, 1994.

http://www.iese.fhg.de/network/ISERN/pub/technical_reports/isern-97-12.ps.gz

CALCULATING SOFTWARE PROCESS IMPROVEMENT’S ROI 39

[43] Herbsleb J., Zubrow D., Goldenson D., Hayes W., Paulk M., “Software quality and the
capability maturity model”,Commun. ACM(June 1997) 30–40.

[44] Highsmith J.,Agile Software Development Ecosystems, Addison–Wesley, Boston, MA,
2002.

[45] Humphrey W.S.,Introduction to the Team Software Process, Addison–Wesley, Reading,
MA, 1999.

[46] Humphrey W., Snyder T., Willis R., “Software process improvement at Hughes aircraft”,
IEEE Software(July 1991) 11–23.

[47] Humphrey W.S.,Managing the Software Process, SEI Series in SoftwareEngineering,
Addison–Wesley, Reading, MA, 1989.

[48] Humphrey W.S.,A Discipline for Software Engineering, Addison–Wesley, Reading, MA,
1995.

[49] Humphrey W.S., Curtis B., “Comments on ‘a critical look’ ”,IEEE Software8 (4) (July
1991) 42–46.

[50] “ISO 15504, Information technology—software process assessment—Part 2: A reference
model for process and product capability”, Technical Report Type 2, International Orga-
nization for Standardisation, 1998.

[51] “ISO 9000-3, Quality management and quality assurance standards—Part 3: Guidelines
for the application of ISO 9001 to develop, supply install and maintain software”, 1994.

[52] Jones C., “The economics of software process improvement”,IEEE Computer(January
1996) 95–97.

[53] Kaplan R.S., “Must CIM be justified by faith alone?”,Harvard Business Rev.(March–
April 1986) 87–95.

[54] Kaplan R.S., Norton D.P.,The Balanced Scorecard: Translating Strategy into Action,
Harvard Business School Press, Boston, 1996.

[55] Kitson D., Masters S., “An analysis of SEI software process assessment results: 1987–
1991”, in: Proceedings of the International Conference on Software Engineering, 1993,
pp. 68–77.

[56] Kulik P., “Software metrics “State of the art”—2000”,http://www.klci.com/, December
2000.

[57] McGibbon T., “A business case for software process improvement revised: Measuring
return on investment from software engineering and management”, A DACS state-of-
the-art report, SP0700-98-4000, 1999.

[58] Oldham L.G., Putnam D.B., Peterson M., Rudd B., Tjoland K., “Benefits realized from
climbing the CMM ladder”,CrossTalk12 (5) (1999) 7–10.

[59] Paulk M.C., Curtis B., Chrissis M.B., Weber C.V., “Capability maturity model for soft-
ware, version 1.1”, SEI-CMU-93-TR-24, Software Engineering Institute, 1993.

[60] Phillips J.J.,Return on Investment in Training and Performance Improvement Programs,
Gulf Publishing Company, Houston, TX, 1997.

[61] Putnam L.H., Myers W.M.,Measures for Excellence: Reliable Software on Time, within
Budget, Prentice Hall, New York, 1992.

[62] Reifer D.J.,Making the Software Business Case: Improvement by the Numbers, Addison–
Wesley, Reading, MA, 2001.

[63] Reifer D.J., “Let the numbers do the talking”,CrossTalk15 (3) (2002) 4–8.

http://www.klci.com/

40 R. VAN SOLINGEN AND D.F. RICO

[64] Reifer D., Chatmon A., Walters D., “The definitive paper: quantifying the ben-
efits of software process improvement”,Software Tech. News(November 2002),
http://www.dacs.dtic.mil/awareness/newsletters/stn5-4/toc.html.

[65] Rico D.F., “Using cost benefit analyses to develop software process improvement (SPI)
strategies” (Contract Number SP0700-98-D-4000), Air Force Research Laboratory—
Information Directorate (AFRL/IF), Data and Analysis Center for Software (DACS),
Rome, NY, 2000.

[66] Rico D.F., “How to estimate ROI for Inspections, PSP, TSP, SW-CMM, ISO 9001, and
CMMI”, DoD Software Tech. News5 (4) (2002) 23–31.

[67] Rico D.F.,ROI of Software Process Improvement: Metrics for Project Managers and
Software Engineers, J. Ross Publishing, Boca Raton, FL, 2004.

[68] Rico D.F., “Practical metrics and models for return on investment”,TickIT Interna-
tional 7 (2) (2005) 10–16.

[69] Rooijmans J., Aerts H., van Genuchten M., “Software quality in consumer electronics
products”,IEEE Software(January 1996) 55–64.

[70] Rubin H., “Software process maturity: Measuring its impact on productivity and quality”,
in: Proceedings of the International Conference on Software Engineering, 1993, pp. 468–
476.

[71] Rubin H.A., Johnson M., Yourdon E., “With the SEI as my copilot: using software
process flight simulation to predict the impact of improvements in process maturity”,
Amer. Programmer(September 1994) 50–57.

[72] Sheard S., Miller C.L., “The Shangri-La of ROI”, Software Productivity Consortium,
http://www.software.org/pub/externalpapers/Shangrila_of_ROI.doc, 2000.

[73] Sikka V.,Maximizing ROI on Software Development, Auerbach, New York, NY, 2004.
[74] Slaughter S.A., Harter D.E., Krishnan M.S., “Evaluating the cost of software quality”,

Commun. ACM(August 1998) 67–73.
[75] Sorqvist L., “Difficulties in measuring the cost of poor quality”,European Quality4 (2)

(1997) 40–42.
[76] Tockey S.,Return on Software: Maximizing the Return on Your Software Investment,

Addison–Wesley, Reading, MA, 2004.
[77] van Solingen R., “Product focused software process improvement: SPI in the embedded

software domain”, BETA Research Series, Nr. 32,http://www.gqm.nl/, 2000, Eindhoven
University of Technology.

[78] van Solingen R., Berghout E.,The Goal/Question/Metric Method: A Practical Guide
for Quality Improvement of Software Development, McGraw–Hill, 1999,http://www.
gqm.nl/.

[79] van Solingen R., Berghout E., “Integrating goal-oriented measurement in industrial soft-
ware engineering: industrial experiences with and additions to the Goal/Question/Metric
method (GQM)”, in:Proceedings of the 7th International Software Metrics Symposium,
London, April 4–6, 2001, IEEE Comput. Soc., Los Alamitos, CA, 2001, pp. 246–258.

[80] van Solingen R., Berghout E., van Latum F., “Interrupts: Just a minute never is”,IEEE
Software(September/October 1998) 97–103.

[81] van Solingen R., “Measuring the ROI of software process improvement”,IEEE Software
(May/June 2004) 32–38.

http://www.dacs.dtic.mil/awareness/newsletters/stn5-4/toc.html
http://www.software.org/pub/externalpapers/Shangrila_of_ROI.doc
http://www.gqm.nl/
http://www.gqm.nl/
http://www.gqm.nl/

CALCULATING SOFTWARE PROCESS IMPROVEMENT’S ROI 41

[82] Willis R.R., Rova R.M., Scott M.D., Johnson M.I., Ryskowski J.F., Moon J.A., Shumate
K.C., Winfield T.O., “Hughes aircraft’s widespread deployment of a continuously im-
proving software process”, CMU/SEI-98-TR-006, 1998.

[83] Wohlwend H., Rosenbaum S., “Schlumberger’s software improvement program”,IEEE
Trans. Software Engrg.(November 1994) 833–839.

[84] Yamamura G., Wiggle G.B., “SEI CMM level 5: For the right reasons”,CrossTalk(Au-
gust 1997).

This page intentionally left blank

Quality Problem in Software Measurement
Data

PIERRE REBOURS AND TAGHI M. KHOSHGOFTAAR

Empirical Software Engineering Laboratory
Department of Computer Science and Engineering
Florida Atlantic University
Boca Raton, FL 33431
USA
prebours@fau.edu
taghi@cse.fau.edu

Abstract
An approach to enhance the quality of software measurement data is introduced
in this chapter. Using poor-quality data during the training of software quality
models can have costly consequences in software quality engineering. By re-
moving such noisy entries, i.e., by filtering the training dataset, the accuracy of
software quality classification models can be significantly improved.

The Ensemble-Partitioning Filter functions by splitting the training dataset
into subsets and inducing multiple learners on each subset. The predictions are
then combined to identify an instance as noisy if it is misclassified by a given
number of learners. The conservativeness of the Ensemble-Partitioning Filter
depends on the filtering level and the number of iterations. The filter generalizes
some commonly used filtering techniques in the literature, namely the Classi-
fication, the Ensemble, the Multiple-Partitioning, and the Iterative-Partitioning
Filters. This chapter also formulates an innovative and practical technique to
compare filters using real-world data. We use an empirical case study of a high
assurance software project to analyze the performance of the different filters ob-
tained from the specialization of the Ensemble-Partitioning Filter. These results
allow us to provide a practical guide for selecting the appropriate filter for a
given software quality classification problem. The use of several base classifiers
as well as performing several iterations with a conservative filtering scheme can
improve the efficiency of the filtering scheme.

ADVANCES IN COMPUTERS, VOL. 66 43 Copyright © 2006 Elsevier Inc.
ISSN: 0065-2458/DOI 10.1016/S0065-2458(05)66002-0 All rights reserved.

mailto:prebours@fau.edu
mailto:prebours@fau.edu

44 P. REBOURS AND T.M. KHOSHGOFTAAR

1. Introduction . 44
2. Noise-Handling Techniques . 47

2.1. Class-Noise Filters. 47
2.2. Data Noise and Exceptions . 49
2.3. Other Methods to Handle Data Noise. 49

3. Ensemble-Partitioning Filter. 51
3.1. Partitioning the Dataset. 51
3.2. Creation of the Base Learners . 51
3.3. Voting Scheme . 53
3.4. Iterative Approach . 54
3.5. Specialized Filters. 55
3.6. Configuration of the Parameters . 56

4. Modeling Methodology . 56
4.1. Model-Selection Strategy . 57
4.2. Performance Evaluation . 57
4.3. Efficiency Paired Comparison . 58

5. Empirical Evaluation . 61
5.1. System Description . 61
5.2. Creation of the Filters. 62
5.3. Noise Elimination Results . 64
5.4. Performance of the Final Learners . 66
5.5. Results of the Efficiency Paired Comparisons 67

6. Conclusion . 72
Acknowledgements . 73
References . 73

1. Introduction

Software failures or incorrect software requirements can have severe consequences
including customer dissatisfaction, the loss of financial assets and even the loss of
human lives[1,2]. Software Quality Models(SQMs) can be used toward provid-
ing a reliable and high-quality software product. By detecting likely faulty modules,
SQMs allow improvement efforts to be focused on software modules with higher
risks [3–5]. Resources can then be allocated for software testing, inspection, and
quality enhancement of the most likely faulty modules prior to system release. In the
context of two-group classification, SQMs canclassifymodules (i.e., instances) as
eitherfault-prone(fp) or not fault-prone(nfp).

SQMs are often based on inductive learning algorithms which generalize the
concepts learned from a set of training instances (i.e., fit dataset) and apply these
concepts to the unseen or new instances (i.e., test dataset)[6]. Different data mining

QUALITY PROBLEM IN SOFTWARE MEASUREMENT DATA 45

algorithms have been investigated for software quality modeling, such as Case-Based
Reasoning[7], Logistic Regression[5], Genetic Programming[8] and decision trees
[9]. In an ideal inductive learning problem, the predictions generated by the induced
hypotheses should agree with the actual class of the instances. In practice, however,
the training set could be cluttered with poor-quality instances, often referred to as
noise. Using poor-quality data during training lowers the predictive accuracy of the
learning techniques[10–12]. As illustrated by Redman[13], “decisions are not better
than the data on which they are based.”

Noise can occur for various reasons such as poor interface design, data entry er-
rors, lack of necessary information, or measurement subjectivity of the entity being
measured[14,15]. Unless effective measures are taken to prevent errors in data, the
error rate related to data entry and data acquisition is generally more than 5%[13,16].
It is generally considered that noise can be classified into two types:attribute noise
andclass noise[10,17]. Attribute noise represents errors introduced in the attribute
values of the instances (i.e., independent variables or features). Class noise are mis-
labeling errors introduced in the class labels (i.e., dependent variables). Inconsistent
instances (i.e., instances with similar attributes but with different class labels) and
instances labeled with a wrong class (i.e., mislabeled)[18] are the two very likely
causes for class noise.

Table I illustrates some obvious quality problems that can be found in software
measurement data. Each instanceIk is described by four metrics: (1) number of
branches, (2) total number of lines, (3) number of lines of comments, and (4) num-
ber of operands. The dependent variableck is eithernfp or fp. Instances 1 and 2 are
contradictory examples because they have identical attributes but different class la-
bels. Therefore, one instance is either noisy (class noise) or the selected software
measurements do not represent the underlying characteristics of the quality of this
software system. It can also be argued that one of the instances is an exception (see
Section2.2. In instance 3, the ‘total number of lines’ is less than the ‘number of
lines of comments.’ Because the ‘total number of lines’ includes comments as well
as executable code[1], it is likely that I3 contains noisy attributes originating from
inaccurate measurements. Finally,I4 has only a total of five lines but is labeled asfp.

TABLE I
NOISY INSTANCES IN A SOFTWARE QUALITY DATASET

Ik Branches Total lines Lines of comments Operands ck

1 41 194 44 140 nfp
2 41 194 44 140 fp
3 61 149 168 305 nfp
4 1 5 0 3 fp

46 P. REBOURS AND T.M. KHOSHGOFTAAR

It is rather surprising to have afp instance with such a simple implementation. This
makes us suspect that the instance has been mislabeled. Only a manual check by a
software engineering and domain expert could address this issue. But detecting noise
manually becomes very complex and time-consuming because real-world software
repositories have thousands of instances (i.e., program modules) and incorporate a
large number of independent variables. Therefore, detecting noise requires automatic
noise-handling algorithms.

This work focuses onclass-noise filtersto automatically detect and remove train-
ing instances suspected of being mislabeled. Quinlan[19] showed that when the
level of noise increases, removing attribute noise decreases the performance of the
classifier if the test dataset presents the same attribute noise. In contrast, filtering
class noise in the training dataset will result in a classifier with significantly higher
predictive accuracy for the test dataset[20,21].

When identifying noisy instances, two types of misclassifications can occur. The
first type (false positive) occurs when an instance is incorrectly detected asnoisyand
is subsequently discarded. The second type of error (false negative) occurs when a
noisy instance is detected asclean[17,20]. Filtering needs to balance the amount of
noise removed from the dataset with the amount of data retained for training[21].
Consequently, anefficientfilter is defined as being capable of removing noisy in-
stances while retaining clean instances. Filtering may not be feasible with only a
meager amount of data available[10,21].

In this chapter we present the Ensemble-Partitioning Filter. The training dataset
is first split into subsets, and base learners are induced on each of these splits. The
predictions are then combined in such a way that an instance is identified as noisy
if it is misclassified by a certain number of base learners. The amount of noise re-
moved (i.e., the conservativeness of the filter) is tuned by either the voting scheme or
the number of iterations. This filter unifies commonly used filters in the literature,
namely the Classification Filter[10], the Ensemble Filter[20,21], the Multiple-
Partitioning Filter and the Iterative-Partitioning Filter[22]. The advantages of the
proposed filter are threefold:

(1) the practitioner can decide on a trade-off between the efficiency and the com-
plexity of the filter;

(2) the filter is an out-of-the-box solution which allows the practitioner to plug in
any familiar classifiers; and

(3) the algorithm is scalable because it allows filtering small, large, or distributed
data repositories.

This study strives to produce empirical results that offer sound knowledge for
the practitioner to tune up the filtering process. Many empirical works[11,17,20]
evaluated noise handling mechanisms on datasets in which noise is artificially in-

QUALITY PROBLEM IN SOFTWARE MEASUREMENT DATA 47

jected. This seems to be far from the real-world scenario, in which the practitioner
generally does not have any knowledge of the existing noise rate nor the noise dis-
tribution in the dataset. Because there is no direct way to know which instances are
noisy (as opposed to injecting artificial noise), we developed a technique called the
efficiency paired comparisonthat evaluates the relative efficiency of filters on real-
world datasets. Based on our comparative results, we recommend using several base
classifiers as well as performing several iterations with a conservative voting scheme
in order to improve the efficiency of the Ensemble-Partitioning Filter.

The rest of the chapter is organized as follows. In Section2, we present a literature
review on existing noise-handling techniques. Section3 details the implementation
of the Ensemble-Partitioning Filter. In Section4, we describe the modeling method-
ology involved in our empirical investigation. Section5 outlines the empirical study
and analyzes the results. Finally, in Section6, we draw some practical recommenda-
tions for applying the Ensemble-Partitioning Filter on other real-world problems.

2. Noise-Handling Techniques

We describe four class-noise filtering techniques introduced in the literature,
namely the Classification Filter, the Ensemble Filter, the Multiple-Partitioning Filter,
and the Iterative-Partitioning Filter. These filters provide the theoretical foundations
for the Ensemble-Partitioning Filter which will be formulated and presented in Sec-
tion 3. We then present the difference between noise and exceptions in a given
dataset. Finally, we review related works on noise detection.

2.1 Class-Noise Filters
TheClassification Filterwas first introduced in[10] and is often used as a baseline

to compare more advanced noise detection schemes[10,17,20]. For a given dataset,
predictions of a classification algorithm, called thebase learnerof the filter [20],
are obtained byk-fold cross-validation. Ink-fold cross-validation, the data is divided
into k subsets of (approximately) equal size. The learner is trainedk times, each time
leaving out one of the subsets during training[6]. The instances in the remaining
subset that are misclassified are filtered; it is assumed that machine learning algo-
rithms usually treat misclassified instances as noisy (i.e., mislabeled)[10]. In a recent
study[21], we argue that using only one base classifier may be risky because this
classifier may not have the appropriate bias to learn the concepts for a given domain.

TheEnsemble Filter[20] overcomes the limitations of the Classification Filter by
combiningm base learners to filter the data. An instance is labeled as noisy if it is
misclassified by a majority of the base learners (i.e., majority voting scheme) or all

48 P. REBOURS AND T.M. KHOSHGOFTAAR

the m learners (i.e., consensus voting scheme). Similar to the Classification Filter,
the predictions are based on cross-validations. The results reported in[20] with three
base learners have empirically substantiated that filtering can improve classification
accuracy for the datasets with poor-quality data. However, since some learning al-
gorithms are better suited for certain types of data than others, it is possible that
the most appropriate classifier may be outweighed[6,21]. Our previous work[21,
23] concluded that the number of base classifiers is a key factor when the Ensem-
ble Filter approach is used to detect and eliminate noise. Because classifiers do not
perform consistently well across different domains, experimenting with a large num-
ber of classifiers can ensure that the probability of eliminating good data decreases.
Twenty-five distinct base classifiers were selected in[21]. They come from different
categories such as instance-based, rule-based, decision-tree based, and pattern-based.
Because of the large number of base learners, the number of instances removed (i.e.,
level of conservativeness) can be tuned more precisely than the original Ensemble
Filter developed in[20]. Thefiltering level, noted asλ [21,22], is defined as the num-
ber of classifiers which should misclassify a given instance to identify it as noisy.

Zhu et al.[17] argued that the Classification Filter and the Ensemble Filter are
sometimes inadequate for large and/or distributed datasets because the induction of
the base classifiers is too time-consuming, or the datasets cannot be handled at once
by these base learners. In a recent study[22], we proposed a modification of the
partitioning approach developed in[17]. The training dataset is first split inton sub-
sets, andm different base learners are induced on each of these data splits. Two filters
are implemented: the Multiple-Partitioning Filter and the Iterative-Partitioning Filter.
The Multiple-Partitioning Filter combines several classifiers induced on each split.
The Iterative-Partitioning Filter uses only one base learner on each split, but performs
multiple filtering iterations. Similar to the Ensemble Filter[21], this approach allows
us to modify the amount of filtered instances by varying the filtering level and/or the
number of iterations[22].

All the above filters use supervised learning algorithms, i.e., algorithms which
need to be trained on datasets where the dependent variable (fp or nfp) is available.
Therefore, noisy data can only be removed from the training dataset. It is worth notic-
ing that the filters are all based on the same assumption: the more often an instance
is misclassified by the base learners, the more likely it is noisy. After removing in-
stances detected as noisy from the training set,final classifiers[20] are built on the
noise-free training dataset. Hence, the separation of noise detection and hypothesis
induction has the advantage that the noisy instances do not influence the hypotheses
constructed[10].

It is also worth pointing out that combining multiple learners is a well-known data
mining technique also used to improve the predictive accuracy[24,25]. It was found
that the multiple-learners approach does increasingly better than the single-learner

QUALITY PROBLEM IN SOFTWARE MEASUREMENT DATA 49

as the number of irrelevant attributes is increased[26]. Much of the work in learning
from multiple models is motivated by the Bayesian learning theory which suggests
that in order to maximize the predictive accuracy, all hypotheses in the hypothesis
space should be used[26,27].

2.2 Data Noise and Exceptions
The previously mentioned filters automatically remove instances that cannot be

correctly classified by a certain number of base learners. Some of these instances
might be exceptions to the general rules, hence causing a false positive filtering error.
Filtering with different base learners may overcome this problem because the bias of
at least one of the learning algorithms will enable it to learn the exceptions[20,23].
Therefore, even if one classifier (or more) has difficulty capturing a particular ex-
ception, it cannot cause the exception to be erroneously eliminated from the training
data.

It is recommended to take a consensus vote rather than a majority vote because
consensus approach is more conservative and will result in fewer instances being
erroneously eliminated from the training data[20]. Khoshgoftaar et al.[21] argued
that the use of twenty-five classifiers combined with a conservative filtering level
(λ = 23, for example) decreases the rate of misclassification of exceptions as noisy,
to a certain degree. Of course, a conservative approach increases the risk of retaining
bad data (false negative filtering errors).

Exceptions may have the same effects as noisy instances from an induction point
of view [10]. In order to avoid overfitting the fit dataset, some final classifiers do not
induce the hypotheses covering these exceptions[19]. Therefore, it is not practical
to keep unfiltered exceptions from a data mining point of view.

2.3 Other Methods to Handle Data Noise
Robust learning algorithms are often employed to avoid overfitting possible noisy

training instances. Typically, these algorithms try to reduce the complexity of the
induced hypotheses[28]. For example, post-pruning is a popular technique to sim-
plify decision trees and has shown to perform well in noisy environments[19,29,30].
Other post-processing techniques such as boosting[31] and bagging[32] can also
make the learners less sensitive to noise.

In [33], instances that are misclassified by thek-NN classifier are eliminated from
the training set that will be later used to build the final 1-NN classifier. Tomek[34]
extended the method by experimenting with several increasing values of nearest
neighbors in order to eliminate noisy data. Aha et al.[35] showed that if the in-
stances are selected on the basis of their contribution towards the classification

50 P. REBOURS AND T.M. KHOSHGOFTAAR

accuracy of an instance-based classifier, the accuracy of the resulting classifier can
be improved. Applicability of the instance selection techniques is not only lim-
ited to instance-based classifiers. Winston[36] demonstrated the utility of selecting
near misseswhen learning structural descriptions. A new metric for measuring the
possibility of an instance being noisy based on thek-NN algorithm was presented
in [37]. Wilson et al.[33] offered an overview of instance selection techniques for
exemplar-based learning algorithms. Lorena et al.[38] evaluated the effectiveness of
five data-processing algorithms based on[33,34] in the context of genomic identifi-
cation.

Teng[39] explored a different approach called polishing. Instead of removing the
instances identified as being noisy, corrections are made to either one or more fea-
tures or the class label of the instances suspected of being noisy. The concept assumes
that different components in a dataset may not be totally independent except in the
case of irrelevant attributes. However, further noise may be introduced unintention-
ally in an attempt to correct the noisy data. Yang et al.[18] illustrated an algorithm
that produces better results for the independent variables that cannot be predicted
by using the class and other independent variables. Polishing was compared against
other filtering techniques in[11].

In [10], a target theory was built using a rule induction algorithm to correctly
classify all instances in the dataset. Instances that maximize the Minimum Descrip-
tion Length cost of encoding the target theory are removed until the cost cannot be
reduced further. The same authors in[40] also outlined a theoretical approach of
the noise detection problem based on the Occam’s Razor principle. Zhao et al.[41]
adopted a fuzzy logic approach to represent and calculate inaccuracies in the train-
ing data. Their method dynamically determines fuzzy intervals for inaccurate data,
and calls for domain knowledge to be able to divide the features into sets whose
members are qualitatively dependent. Guyon et al.[42] described a method for data
cleaning by discovering meaningless or garbage patterns likely to be noise. Lawrence
et al.[43] proposed a probabilistic noise model for constructing a Fisher kernel dis-
criminant from training examples with noisy labels. Muhlenbach et al.[44] based
their strategy on the cut weight statistic defined by geometrical neighborhoods and
associated with 1-NN predictions. They evaluated their technique with relaxation la-
beling procedures which originate in computer vision and pattern recognition[45].
Zhu et al.[46] proposed a cost-guided class noise algorithm to identify noise for
effective cost-sensitive learning.

Hipp et al.[47] and Marcus et al.[48] demonstrated that association rule mining
can be useful in identifying not only interesting patterns but also patterns that uncover
errors in the data sets. In their study, ordinal association rules identify potential errors
in the dataset with reasonably low computational complexity and high efficiency.
Khoshgoftaar et al.[49] analyzed boolean rules to detect mislabeled instances in

QUALITY PROBLEM IN SOFTWARE MEASUREMENT DATA 51

the training data set. Finally, Hulse et al.[50] presented the pairwise attribute noise
detection algorithm which can be used with or without the knowledge of class labels.

3. Ensemble-Partitioning Filter

The Ensemble-Partitioning Filter is designed to unify the implementations of the
filters presented in Section2.1. Figure 1details the unified implementation using
pseudo-code. The algorithm can be divided into four logical blocks detailed in the
following sections: (1) partitioning the dataset; (2) building the base learners induced
on the partitions; (3) combining the output of the base learners; (4) evaluating the
stopping criterion.

Given a setX, ‖X‖ denotes the number of instances in setX. ‘!’, ‘&’ and ‘ |’
are the symbols for the logicalNOT, AND andOR operators, respectively.Lj (Ik, Pi)

is the predictive class (nfp or fp in our case) of instanceIk obtained by inducing
the learning schemeLj on the training setPi . The predictive class is either equal
to or different from the actual classck of instanceIk. If Ik ∈ Pi , the predictions
are evaluated using cross-validation; the notation hence becomesLcv

j (Ik, Pi). The
remaining notations used inFig. 1 will be defined throughout our discussion of the
algorithm.

3.1 Partitioning the Dataset
The training datasetE is first partitioned inton disjoint almost equally sized sub-

setsPi=1,...,n (step 2). For each partitionPi , two subsets are defined.Ai (step 4) is the
set of instances detected as noisy inPi . Gi (step 5) is the set of good examples inPi .
Good examples are used for the iterative step and are described later in Section3.4.

3.2 Creation of the Base Learners
Given m base classifiersLj=1,...,m, each classifierLj is induced on each subset

Pi . Hence,m × n models are computed. Similar to[17], given an instanceIk, two
error count variables are defined:S le

k , local error count andSge
k , global error count

(step 8). The values of these counters are incremented as follows:

(1) If Ik belongs toPi and Ik ’s classification fromLj (using cross-validation)
induced onPi is different from its original labelck, the local error countS le

k is
incremented (step 11);

(2) If Ik does not belong toPi andIk ’s classification fromLj induced onPi is
different from its original labelck, the global error countSge

k is incremented
(step 12).

52 P. REBOURS AND T.M. KHOSHGOFTAAR

Input: E, training set with‖E‖ examples
Parameters: n, number of subsets

Lj=1,...,m, base learners
bCv, cross-validation constraint flag
λ, filtering level
β, rate of good examples to be removed after each iteration
Stopping criterion

Output: A, detected noisy subset ofE

(1) A ← ∅
(2) Formn subsetsPi , where

⋃n
i=1 Pi = E

(3) for i = 1, . . . , n do
(4) Ai ← ∅
(5) Gi ← ∅
(6) endfor

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎭

Partition, see Section 3.1

(7) for k = 1, . . . , ‖⋃n
i=1 Pi‖ do

(8) S le
k

= S
ge
k

= 0
(9) for j = 1, . . . , m do
(10) for j = 1, . . . , n do
(11) if Ik ∈ Pi&Lcv

j
(Ik, Pi) �= ck then S le

k
+ +

(12) elseifIk /∈ Pi&Lj (Ik, Pi) �= ck then S
ge
k

+ +
(13) endfor
(14) endfor

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

Base learners, see Section 3.2

(15) if (!bCv& (S
ge
k

+ S le
k

) � λ) |
(16) (bCv& S le

k
= m & S le

k
+ S

ge
k

� λ)

(17) then Ai ← Ai ∪ {Ik}
(18) elseifS le

k
= 0 & S

ge
k

= 0
(19) then Gi ← Ci ∪ {Ik}
(20) endfor

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎭

Voting, see Section 3.3

(21) for i = 1, . . . , n do
(22) G′

i
← SelectPortionOfGoodExamples(β,Gi)

(23) Pi ← Pi \ Ai

(24) Pi ← Pi \ G′
i

(25) A ← A ∪ Ai

(26) endfor
(27) if the stopping criterion is satisfiedthen exit
(28) else gotostep 3

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

Iteration, see Section 3.4

FIG. 1. Algorithm of the Ensemble-Partitioning Filter.

It is assumed that noisy instances receive larger values forS le
k andS

ge
k than clean

instances[17]. By selectingm classifiers from distinct data mining families, the bi-
ases of the learners will cancel out one another and make the filter more efficient
in detecting exceptions[21]. Moreover, splitting the training dataset makes the filter

QUALITY PROBLEM IN SOFTWARE MEASUREMENT DATA 53

more adequate to large and/or distributed datasets, partially because the induction of
the base classifiers is less time-consuming[17].

3.3 Voting Scheme

The filtering level (λ) and the cross-validation constraint (bCv) are used to com-
bine the predictions of them × n models. When the cross-validation constraint is
enabled, a distinction is made between the local and the global error counts. More
specifically, two situations can occur:

(1) bCv = false (step 15). An instance is labeled as noise if at leastλ models
misclassify it.

(2) bCv = true (step 16). An instance is labeled as noise if at leastλ models
misclassify itand if it is also mislabeled by all them classifiers induced on the
subset which includes that instance. A classifier often has a higher prediction
accuracy with instances of the training dataset[17].

A filter with the cross-validation constraint is more conservative than a filter with-
out it. The filtering level (λ) could vary fromm × n (i.e., consensus scheme) to
(m × n)/2 + 1 (i.e., majority scheme). The higher the filtering level, the less in-
stances are detected as noisy.

A model generated by a machine learner can be regarded as anexpert[20,6]. In
contrast to the Ensemble Filter[20], the Ensemble-Partitioning Filter makes the dis-
tinction between two types of experts. Alocal expertclassifies instances which are
part of the training subset on which the expert is induced. In this case, the predic-
tions are obtained by cross-validation. Aglobal expertpredicts the class labels of
instances which do not belong to the training subset of this expert. When the cross-
validation constraint is used, the votes of local experts weigh much more than the
votes of global experts. While local experts produce accurate predictions, global ex-
perts avoid overfitting the data. The Ensemble-Partitioning Filter usesm local experts
and(m × n) − m global experts. Consequently, if the dataset is not split (n = 1),
the filter only combines the votes of local experts. It is also worth noticing that in
case of consensus voting, the distinction between local experts and global experts is
irrelevant[51].

Table II presents an example where three different base learners (Lj=1,...,3) are
combined on a dataset preliminary partitioned threefold (Pi=1,...,3). The filtering
level is set to five (λ = 5) and the cross-validation constraint is enabled. This ta-
ble presents three instancesIi=1,...,3 whereI1 andI2 are part of subsetP1 andI3
is part of subsetP2. Bold fonts indicate the predictions of local experts. For exam-
ple, because instance 1 is part of the first partition (I1 ∈ P1), the three local experts
(m = 3) of I1 are trained onP1. I1 is classified as noisy since it is misclassified

54 P. REBOURS AND T.M. KHOSHGOFTAAR

TABLE II
NOISE DETECTION WITH THE ENSEMBLE-PARTITIONING FILTER

I1 I2 I3

Classck nfp fp fp
Pi (Ik ∈ Pi) 1 1 2
L1(Ik, P1) fp nfp fp
L1(Ik, P2) fp nfp nfp
L1(Ik, P3) nfp nfp fp
L2(Ik, P1) fp fp fp
L2(Ik, P2) nfp fp nfp
L2(Ik, P3) nfp nfp fp
L3(Ik, P1) fp nfp nfp
L3(Ik, P2) nfp nfp nfp
L3(Ik, P3) fp fp fp
S le
k

3 2 3

S
ge
k

2 4 1
Noisy

√

λ = 5, n = 3, m = 3, bCv= true.

by five experts including all the related local experts (S le
1 = 3 andS

ge
1 = 2). I2 is

not identified as noisy because it is properly classified by one of its local experts
(L2(I2, P1) = c2). If the cross-validation constraint was disabled,I2 would be la-
beled as noisy. Despite thatI3 is misclassified by all its local experts, there are still
not enough experts misclassifying it. Hence,I3 is labeled asclean.

3.4 Iterative Approach

Similar to the Iterative-Partitioning Filter[22], noise elimination is accomplished
in multiple iterations. The stopping criterion (step 27) is defined as follows: inT1
consecutive iterations, if the number of identified noisy examples in each iteration is
less thanT2, noise elimination will stop. The study in[17] recommended to setT1 to
3 andT2 to 1% of the size of the original training dataset (i.e.,T2 = 0.01× ‖E‖).
The filtering procedure can be also executed for a fixed number of iterations.

Table III illustrates how the stopping criterion works whenT1 andT2 are set to
their recommended values.‖Ai‖ represents the number of instances detected as noisy
in Pi . In this example, the stopping criterion is met at the 5th iteration, because each
of the last three iterations (i.e., iterations 3, 4 and 5) detects less than one percent of
the training dataset as being noisy.

In addition, a portion (β) of good instances (step 22) is removed at each iteration
(step 24)[17]. In this study,β = 50%. A good instance is one that is not misclassified
by any of the models (step 18).Gi=1,...,n, is the set of good examples detected inPi .

QUALITY PROBLEM IN SOFTWARE MEASUREMENT DATA 55

TABLE III
ITERATIVE STOPPINGCRITERION

Noise count‖Ai‖ Total‖A‖ = ∑3
i=1 ‖Ai‖

Round ‖A1‖ ‖A2‖ ‖A3‖ Count Proportion (%)

1 132 140 125 397 19.85
2 51 42 61 154 7.7
3 8 6 2 16 0.8
4 9 4 2 15 0.75
5 2 1 4 7 0.35

‖E‖ = 2000,n = 3, T1 = 3, T2 = 0.01× ‖E‖ = 20.

G′
i=1,...,n is the set of good examples removed fromPi . G′

i is made up ofβ × ‖Gi‖
instances randomly selected fromGi while respecting the original proportion offp
and nfp instances[22]. There are two benefits when some good examples are re-
moved. Firstly, the dataset size is reduced, making the induction learning schemes
run faster in the next iteration. Secondly, the exceptions in the subsets of the previous
iteration may form new rules in the next iteration[17].

3.5 Specialized Filters
By varying the parameters associated to the Ensemble-Partitioning Filter (i.e.,m,

n, bCv, λ, β, and the stopping criterion), the four filters presented in Section2.1
can be instantiated. The Classification Filter[10], abbreviatedcf in this study, only
uses one base classifier (m = 1) induced on the entire dataset (n = 1) without
any filtering iterations. The Ensemble Filter implemented in[21,23] uses twenty-
five distinct classifiers (m = 25) on the whole dataset (n = 1) at filtering level 13,
17, 20, and 23. Our recent work[22] implemented the Multiple-Partitioning Filter
with and without the cross-validation constraint (bCv = true andbCv = false, re-
spectively) by using five different classifiers (m = 5) and by splitting the training
dataset into five subsets (n = 5). The Multiple-Partitioning Filter with and without
the cross-validation constraint are referred to asmpfcvandmpf, respectively. In[22],
the Iterative-Partitioning Filter is implemented with the cross-validation constraint.
One learner (m = 1) is successively induced on the five splits of the training dataset
(n = 5). As its name indicates, the filtering is carried out in multiple iterations. The
majority and consensus schemes are successively used by the Iterative-Partitioning
Filter. The filters are referred to asipfconsandipfmaj, respectively.

Table IVsummarizes the values of the parameters used to specialize the Ensemble-
Partitioning Filter. L and G represent the number of Local and Global experts,
respectively. The value ofbCv is irrelevant for both the Classification Filter and the
Ensemble Filter because only local experts are used (n = 1).

56 P. REBOURS AND T.M. KHOSHGOFTAAR

TABLE IV
SPECIALIZATION OF THE ENSEMBLE-PARTITIONING FILTER

Filter m n bCv λ Iteration L G

cf 1 1 NA 1 no 1 0
ef 25 1 NA 13–25 no 25 0
mpf 5 5 false 13–25 no 5 20
mpfcv 5 5 true 13–25 no 5 20
ipfcons 1 5 true 5 yes 1 4
ipfmaj 1 5 true 3 yes 1 4

3.6 Configuration of the Parameters

The filtering requirements determine the values of the input parameters of the
Ensemble-Partitioning Filter. Four criteria need to be considered:

Efficiency: An efficient filter is capable of removing instances which arenoisy
and retaining instances which areclean. However, the definition of efficiency is
relatively subjective. Depending on the dataset at hand and on the study envi-
ronment, the characteristics of the selected filter may vary. On one hand, it is
preferable to choose a conservative filter for the situations in which there is a
paucity of data. On the other hand, when there is an abundance of data, select-
ing an aggressive filter makes more sense[20]. The level of conservativeness of
the Ensemble-Partitioning Filter can be tuned up by the filtering level and/or the
stopping criterion.

Complexity: The complexity of a filter is determined by the total number of models
(i.e., experts) which need to be built. There are (m × n × number of iterations)
models in the case of the Ensemble-Partitioning Filter. The more complex the
filter, the more computation is required.

Expertise: The expertise that is required to build the filter is directly related to the
total number of distinct learners that are used by the practitioner. While the Clas-
sification Filter and the Iterative-Partitioning Filter only require one learner, the
Ensemble Filter presented in[21] uses twenty-five distinct learners.

Scalability: Partitioning the training set makes the Ensemble-Partitioning Filter
scalable to distributed and/or large datasets[17,22]. It is recommended to maintain
enough instances in the training partitions to induce relevant hypotheses[6].

4. Modeling Methodology

This section lays out the methodology employed and presents the principles of the
efficiency paired comparisons which assess the relative efficiency of filters compared

QUALITY PROBLEM IN SOFTWARE MEASUREMENT DATA 57

to one another. The efficiency of the Ensemble-Partitioning Filter for different input
parameters will later be determined empirically in Section5.

4.1 Model-Selection Strategy

Our empirical study is related to the two-group classification in the context of soft-
ware quality. Software program modules are typically labeled as either fault-prone
(fp) or not fault-prone (nfp). Hence, two types of misclassification errors can occur:
Type I error(or false positive) andType II error(or false negative). In software qual-
ity classification, the Type I and Type II errors are generally inversely proportional.
Hence, software quality engineers often recommend selecting a classification model
that has a preferred balance between the two error rates.

Our previous studies, which focused on high assurance systems similar to the one
in this chapter, selected a preferred balance of equality between Type I and Type II
errors, with Type II being as low as possible. Having both Type I and Type II low
ensures detection of significantly large number offp modules, and at the same time,
keeps the number ofnfp modules predicted to befp (i.e., ineffective testing and in-
spection) low. In this study, we use the same model selection strategy to select the
base learners as well as the final learners.

4.2 Performance Evaluation

Comparing the performance of different classification methods based on the two
misclassification rates (Type I and Type II) can be a difficult task, especially when
the performance of the base classifiers is being evaluated across a range of datasets
(with different levels of noise, in our case).

In the context of (two-group) software quality classification, where there is likely
to be a vast disparity between the prior probabilities of the two classes (fp andnfp)
and the cost of the two types of misclassification, the Expected Cost of Misclassifi-
cation (ECM) is more appropriate as a practical measure for comparison[21]

(1)ECM = CIPr(fp|nfp)πnfp + CII Pr(nfp|fp)πfp

whereCI andCII are costs of Type I and Type II misclassification errors respectively,
πfp andπnfp are prior probabilities offp modules andnfp modules,Pr(fp|nfp) is the
probability that anfp module would be misclassified asfp, andPr(nfp|fp) is the
probability that afp module would be misclassified asnfp.

In practice, it is difficult to quantify the actual costs of misclassification at the time
of modeling. Hence, we define the Normalized Expected Cost of Misclassification

58 P. REBOURS AND T.M. KHOSHGOFTAAR

(NECM):

(2)NECM = ECM

CI
= Pr(fp|nfp)πnfp + CII

CI
Pr(nfp|fp)πfp

NECM facilitates the use of cost ratioCII/CI , which can be more readily estimated
using software engineering heuristics for a given application.

4.3 Efficiency Paired Comparison
Many empirical tests have been conducted on datasets in which noise is artificially

injected[11,17,20]. For example, the method of artificial universes[52], the model
of the classification noise process[53] or a simple pairwise scheme[17,54] can be
used to generate artificial noise. It allows the researchers to compare which noise-
handling technique performs the best in terms of false positive and false negative
filtering errors (see Section2.2).

We introduce the principle ofEfficiency Paired Comparisonsto determine
which filter of a given pair is more efficient. This technique does not require
to inject artificial noise and can validate filtering schemes on a real world case.
Hence, the software quality engineer gets a realistic view of the performance im-
provements that are possible when poor quality instances are removed from the
dataset.

4.3.1 Principles
Suppose that the performance of the final learning algorithms on the dataset fil-

tered by filterf1 is better (i.e., having a lower NECM value) than the performance
of the same learners on the dataset processed by filterf2. f1 is likely to identify
more noise thanf2 because improving performance means that more actual noisy
data is removed[21]. But concluding that filterf1 is more effective than filterf2 is
too shortsighted. The more aggressive the filter, the more likely it will filter instances
which are actually clean. An efficient filter is capable of improving the classifica-
tion accuracies of the final learners while keeping the number of removed instances
low.

This argument leads to conclude that filterf1 is more efficient than filterf2 if one
of the two following criteria is fulfilled:

(1) The NECM values of the final learners built on the dataset filtered byf1 are
lower than the NECM values of the final learners built on the dataset filtered
by f2 and if the number of instances removed byf1 is not higher than that
removed byf2.

(2) The NECM values of the final learners built on the dataset filtered byf1 are
not higher than the NECM values of the final learners built on the dataset

QUALITY PROBLEM IN SOFTWARE MEASUREMENT DATA 59

filtered byf2 and if the number of instances removed byf1 is lower than that
removed byf2.

On the other hand,f1 is as efficient asf2 if the NECM values of the learners built on
the dataset filtered byf1 are the same as the NECM values of the learners built on
the dataset filtered byf2 and if the number of instances removed byf1 is the same
as that removed byf2. No conclusion can be reached whenf1 (f2)’s NECM is lower
thanf2 (f1) and thatf1 (f2) removes more instances thanf2 (f1).

4.3.2 Hypothesis Testings

The principle of the efficiency paired comparison can be translated into two suc-
cessive hypothesis testings:HA andHB. The null hypothesisHA0 is that the propor-
tion of instances filtered byf1 (p1) is equal to the proportion of instances filtered
by f2 (p2). If HA0 is true at a given significance levelα, filter f1 is as conservative
as filterf2. In other words, bothf1 andf2 statistically remove the same number of
instances:

(3)

{

HA0: p1 = p2,

HA1: p1 �= p2.

The value of the test statisticz for the comparison of proportion is computed as
follows [55]:

(4)z = p̂1 − p̂2
√

2 p̄q̄
‖E‖

wherep̄ = p̂1 + p̂2

2
andq̄ = 1 − p̄

wherep̂1 = ‖A1‖/‖E‖ andp̂2 = ‖A2‖/‖E‖ are the two sample proportions where
‖A1‖ and‖A2‖ are the number of instances detected as noisy byf1 andf2, respec-
tively, and‖E‖ is the number of instances in the original training dataset.

The null hypothesisHB0 is that the NECM of the final learners induced on the
dataset filtered byf1 is equal to that filtered byf2:

(5)

{

HB0: µD = 0,

HB1: µD �= 0

whereµD is the difference between the population means of the costs of misclassifi-
cation (NECM) related tof1 andf2. Let k be the number of final learners. The value
of the test statistict for the sample mean is computed as follows[55]:

(6)t = D̄

(σD√
k
)

60 P. REBOURS AND T.M. KHOSHGOFTAAR

whereDj=1,...,k is the sample of difference scores between paired observations,σD

is the standard deviation ofD and D̄ is the mean value of the sample of differ-
ences[55]. For example, suppose that three learners are used (k = 3). The costs
of misclassification of the three learners on datasetE filtered byf1 are 0.34, 0.36
and 0.35, respectively. Similarly, the costs of misclassification of these same three
learners training onE filtered byf2 are 0.39, 0.34 and 0.34, respectively.D̄ is then
computed as follows:

D̄ = 1

3
×

(

(0.34− 0.39) + (0.36− 0.34) + (0.35− 0.34)
)

= −0.05+ 0.02+ 0.01

3
= −0.02

3
.

In this case,f1 performs better thanf2 on average (̄D < 0).
Table Vsummarizes how the outcomes of the hypotheses are combined. IfHA0 is

true, filterf1 is as conservative as filterf2. On the other hand,f1 is more aggressive
thanf2 if HA0 is falseand the sample proportion of instances eliminated byf1 is
greater than the sample proportion eliminated byf2 (i.e., p̂1 > p̂2). Conversely,f2

is more aggressive thanf1 if HA0 is falseand the sample proportion of instances
eliminated byf2 is greater than the sample proportion eliminated byf1 (i.e., p̂2 >

p̂1).
Along the same lines,HB is divided into three different situations. IfHB0 is true

(i.e.,µD = 0), the performance on the dataset filtered byf1 is as good as the perfor-
mance on the dataset filtered byf2 (i.e., with similar NECM). On the other hand, the
performance related tof1 is better than the performance related tof2 if HB0 is false
and the mean value of the sample of differences is lower than zero (i.e.,D̄ < 0), or
the performance related tof1 is worse than the performance related tof2 if HB0 is
false andD̄ > 0.

TABLE V
RELATIVE EFFICIENCY BETWEEN TWO FILTERS

HA0 true HA1 trueand

(i.e.,p1 = p2) p̂1 < p̂2 p̂1 > p̂2

HB0 true f1 as f1 more f2 more
(i.e.,µD = 0) efficient asf2 efficient thanf2 efficient thanf1
HB1 D̄ < 0 f1 more f1 more Cannot
true efficient thanf2 efficient thanf2 conclude
andD̄ > 0 f2 more Cannot f2 more

efficient thanf1 conclude efficient thanf1

QUALITY PROBLEM IN SOFTWARE MEASUREMENT DATA 61

5. Empirical Evaluation

5.1 System Description

The software metrics and quality data used in our study are from a NASA soft-
ware project written in C and referred to as JM1. The data is available through the
Metrics Data Program (MDP) at NASA, and includes software measurement data
and associated error (fault) data collected at the function/subroutine/method level.
The dataset consists of 10883 software modules of which 2105 modules have errors
(ranging from 1 to 26) while the remaining 8778 modules are error-free, i.e., have
no software faults. In this case study, a module is considered not fault-prone (nfp) if
it has no faults, and fault-prone (fp) otherwise[4]. Note that we interchangeably use
the terms errors, defects, and faults in this chapter[1].

Each module in the JM1 project is characterized by twenty-one software measure-
ments[1]: three McCabe metrics (Cyclomatic_Complexity, Essential_
Complexity, Design_Complexity); four basic Halstead metrics (Unique_
Operators, Unique_Operands, Total_Operators, Total_Operands);
eight derived Halstead metrics (Halstead_Length, Halstead_Volume,
Halstead_Level, Halstead_Difficulty, Halstead_Content, Hal-
stead_Effort, Halstead_Error_Est, Halstead_Prog_Time); five
metrics of Line Count (Loc_Code_And_Comment, Loc_Total, Loc_
Comment, Loc_Blank, Loc_Executable); and one metric for Branch Count.
The types and numbers of available software metrics are determined by the NASA
Metrics Data Program. Other types of software metrics, including software process
measurements are not available for analysis. The quality of the modules is described
by theirError Rate(number of defects in the module) andDefect(whether or not the
module has any defects). The latter is used as the class label. For additional details
regarding software measurements and software quality metrics, the reader is referred
to [1].

Upon removing obvious inconsistent modules (those with identical software mea-
surements but with different class labels) and those with missing values, the dataset is
reduced from 10883 to 8850 modules. We denote this reduced dataset as JM1-8850,
which now had 1687 modules (19%) with one or more defects and 7163 modules
(81%) with no defects. We only used thirteen metrics in our analysis. The eight de-
rived Halstead metrics are not used during modeling since these metrics are derived
from the four basic Halstead metrics. Classifiers are built using the thirteen software
metrics as independent variables and the module-class as the dependent variable, i.e.,
fp or nfp.

It is important to note that the software measurements used for the software system
are primarily governed by their availability, the internal workings of the respective

62 P. REBOURS AND T.M. KHOSHGOFTAAR

projects, and the data collection tools used by the project. The use of specific soft-
ware metrics in the case study does not advocate their effectiveness—a different
software project may collect and consider a different set of software measurements
for analysis[1,21,22].

5.2 Creation of the Filters

This section presents how the different filters issued from the specialization of
the Ensemble-Partitioning Filter (Table IV) are created for the JM1-8850 dataset. In
this study, we use a 10-fold cross-validation. Extensive tests on numerous different
datasets, with different learning techniques, show that ten is about the right number
of folds to get the best estimate of error[6].

5.2.1 Classification Filter

J48[56] is selected to be the base classifier for the Classification Filter (cf) since
it generally produces fairly good results on a large variety of datasets. Besides, J48 is
a robust algorithm, making it tolerant to noisy data[10,19]. The Type I and Type II
error rates of classifier J48 on JM1-8850 obtained using 10-fold cross-validation are
32.56% and 32.42%, respectively. The high error rates indicate that JM1 is poten-
tially very noisy[21].

5.2.2 Ensemble Filter

In this chapter, we use the Ensemble Filter implemented in our previous studies
[21,23]. The filter is based on the performance of twenty-five different base classi-
fication techniques (m = 25): Case-Based Reasoning[7]; J48[6,56]; Treedisc[57];
Lines-of-Code[23]; Logistic Regression[58]; Artificial Neural Network[59]; Ge-
netic Programming[60]; Logit Boost[58]; Rule-Based Modeling[61]; Bagging[32];
Rough Sets[62]; Meta Cost combined with J48[63]; Ada Boost combined with J48
[31]; Decision Table[64]; Alternate Decision Tree[65]; Sequential Minimal Op-
timization [66]; IB1 [67]; IBk [67]; Partial Decision Tree[68]; 1R [69]; Repeated
Incremental Pruning to Produce Error Reduction (RIPPER)[70]; Ripple Down Rule
(RIDOR) [71]; Naive Bayes[72]; Hyper Pipes[73]; and Locally Weighted Learn-
ing [74] with Decision Stump (LWLStump). For most classification techniques, the
predictions are obtained using 10-fold cross-validation.1 By selecting classifiers from
different data mining families such as rule-based, tree-based and instance-based clas-
sifiers, the bias of the learners will complement one to another[21].

1 Exceptions due to infeasibility or limitation of the tool used for Treedisc, Logistic Regression, Artifi-
cial Neural Network, Genetic Programming, Rule-Based Modeling, and Rough Sets.

QUALITY PROBLEM IN SOFTWARE MEASUREMENT DATA 63

Similar to [21,23], we only experiment with four different filtering levels. More
specifically, an instance is considered to be noisy if it is misclassified by: 23 or more
classifiers (the most conservative approach, i.e., misclassification by over 90% clas-
sifiers); 20 or more classifiers (misclassification by over 80% classifiers); 17 or more
classifiers (misclassification by over 68% classifiers); and 13 or more classifiers (the
majority approach—the least conservative one). The Ensemble Filter is denoted by
ef and its filtering levelλ. For example, the Ensemble Filter at filtering level 17 is
referred to asef-17.

5.2.3 Multiple-Partitioning Filter

Similar to the Multiple-Partitioning Filter implemented in[22], the dataset is ini-
tially split into five equal subsets (n = 5), and five base algorithms (m = 5) are
selected: J48[56,6]; 1R [69]; LWLStump [74]; RIPPER[70]; and IBk [67]. Two
types of filters are then defined: with or without the cross-validation constraint. Sim-
ilar to the Ensemble Filter defined in the previous section, twenty-five models are
built (m × n = 25), and the same filtering levels are selected: 13, 17, 20, and 23.
The Multiple-Partitioning Filter with the cross-validation constraint is denoted by
mpfcvand its filtering levelλ. For example, the notationmpfcv-17corresponds to the
Multiple-Partitioning Filter with the cross-validation constraint at filtering level 17.
Likewise,mpf refers to the Multiple-Partitioning Filter without the cross-validation.
For example,mpf-23symbolizes the Multiple-Partitioning Filter without the cross-
validation constraint at filtering level 23.

5.2.4 Iterative-Partitioning Filter

The Iterative-Partitioning Filter only uses one base classifier (m = 1). As sug-
gested in[17], the dataset is split into five equal parts (n = 5). In our case study,
J48[56] is selected for the same reasons as with the Classification Filter. J48 is built
on each of the five splits at each iteration. In 3 continuous iterations, if the number
of identified noisy examples in each round is less than 1% of the size of the original
training dataset, the iterative execution stops (Section3.4).

Figure 2indicates the number of instances removed at each iteration for both the
consensus and the majority schemes. Seven iterations are required with the majority
scheme for this specific dataset in order to reach the stopping criterion. On the other
hand, nine iterations are necessary to fulfill the stopping criterion with the consensus
filter. This can be explained by the fact that the filter with majority scheme removes
much more instances at each given iteration than the filter with consensus scheme
does. Therefore, all the potentially noisy (i.e., mislabeled) instances are removed
quicker, making the majority filter reach the stopping criterion in fewer rounds.

64 P. REBOURS AND T.M. KHOSHGOFTAAR

FIG. 2. Noise elimination at different iterations.

The level of conservativeness of the Iterative-Partitioning Filter depends on the
number of iterations and on the filtering scheme. Similar to[22,51,75], the first
five iterations as well as the last one are selected for this study. The Iterative-Parti-
tioning Filter is denoted byipf, its voting scheme (consor maj, for either consensus
or majority scheme), and the number of filtering iterations. For example,ipfcons-9
symbolizes the Iterative-Partitioning Filter with consensus scheme at its ninth (and
last) iteration, andipfmaj-2is related to the Iterative-Partitioning Filter with majority
scheme at its second iteration.

5.3 Noise Elimination Results

Table VI lists the number of instances eliminated by the filters at different filter-
ing levels or at different iterations. For each filter, the table provides the number
as well as the proportion ofnfp and fp modules in the set of instances detected as
noisy. We observe that the Classification Filter and the Iterative-Partitioning Filter
with majority scheme are the most two aggressive filters. Moreover, the Ensemble
Filter with a high filtering level is much more conservative as compared with the
Multiple-Partitioning Filter at the same filtering level. It is also worth noting that the
proportions ofnfp andfp modules eliminated by the filters remain almost the same
as the initial proportions found in dataset JM1-8850 before filtering, because our
model selection strategy attempts to keep the Type I error rate to be balanced with
the Type II error rate (Section4.1).

Figure 3plots the number of instances removed byef, mpf andmpfcvat different
filtering levels. The Ensemble Filter is more conservative than the Multiple-Parti-

QUALITY PROBLEM IN SOFTWARE MEASUREMENT DATA 65

TABLE VI
NUMBER AND PROPORTION OFINSTANCESREMOVED BY THE FILTERS

Filters nfp modules fp modules Total

Count Proportion (%) Count Proportion (%) count

cf 2332 81.00 547 19.00 2879
ef-23 877 82.81 182 17.19 1059
ef-20 1440 83.00 295 17.00 1735
ef-17 1823 82.19 395 17.81 2218
ef-13 2302 81.14 535 18.86 2837
mpf-23 1155 81.51 262 18.49 1417
mpf-20 1567 80.32 384 19.68 1951
mpf-17 1865 79.33 486 20.67 2351
mpf-13 2258 78.84 606 21.16 2864
mpfcv-23 1055 81.78 235 18.22 1290
mpfcv-20 1264 81.97 278 18.03 1542
mpfcv-17 1345 82.11 293 17.89 1638
mpfcv-13 1402 82.18 304 17.82 1706
ipfcons-1 780 77.69 224 22.31 1004
ipfcons-2 1212 80.69 290 19.31 1502
ipfcons-3 1443 81.20 334 18.80 1777
ipfcons-4 1590 80.47 386 19.53 1976
ipfcons-5 1693 79.82 428 20.18 2121
ipfcons-9 1896 79.00 504 21.00 2400
ipfmaj-1 1849 80.53 447 19.47 2296
ipfmaj-2 2246 80.30 551 19.70 2797
ipfmaj-3 2384 80.03 595 19.97 2979
ipfmaj-4 2457 80.01 614 19.99 3071
ipfmaj-5 2483 79.92 624 20.08 3107
ipfmaj-7 2501 79.88 630 20.12 3131

FIG. 3. Noise elimination at different filtering levels.

66 P. REBOURS AND T.M. KHOSHGOFTAAR

tioning Filter without the cross-validation constraint at any filtering level. However,
the amount of noise eliminated byef andmpf gets closer as the level of filtering de-
creases. The Multiple-Partitioning Filter with the cross-validation constraint (mpfcv)
is less conservative than the Ensemble Filter when the filtering level is greater than or
equal to 22. However, at lower filtering levels (λ < 22), the number of instances re-
moved bympfcvis much lower than the other two filters. In a previous study[51], we
explained that the maximum number of instances which can be detected as potential
noise by the Multiple-Partitioning Filter with the cross-validation constraint (mpfcv)
is less than that of its counterparts, i.e., the Multiple-Partitioning Filter without the
cross-validation constraint (mpf) and the Ensemble Filter (ef).

5.4 Performance of the Final Learners

The experimental design is illustrated inFig. 4. Similar to[21], the following steps
are executed for each filtering technique:

(1) Instances detected asnoisyby the filter (setA) are removed from the domain
dataset (E), i.e., JM1-8850 in our case.

(2) The filtered dataset (E′ = E \ A) is randomly split into two equal parts while
keeping an equal proportion of thenfp and thefp modules in the splits. One
split will be used as fit dataset (E′

fit) and the other as test dataset (E′
test).

(3) Four final classifiers—J48, 1R, RIPPER and IBk—are built on the fit dataset
(E′

fit) by following a balanced strategy (Section4.1). Inducing more than one

FIG. 4. General procedure for building final learners.

QUALITY PROBLEM IN SOFTWARE MEASUREMENT DATA 67

classifier gives a better estimate of the predictive performance since the accu-
racy often depends on the bias of the learner[17]. These classifiers are also
used to create the Multiple-Partitioning Filter (Section5.2.3). Using only four
final learners was considered relevant and accurate enough for the purpose of
our experiment work[22].

(4) The selected models are applied to the test dataset (E′
test). It is worth noting

that the level of noise in the fit and test datasets is similar, because the two sets
have been randomly split.

The performance of the final learners are evaluated by using NECM with cost ratio
(CII/CI) values of 10, 20, 30 and 50. These values are considered to be practical for
the JM1 software system[21].

In order to evaluate the efficiency of filters, noise is often artificially injected into
the datasets, either in the class label or in the attribute values[17,20]. However, this
approach does not take into account the quality of the fit dataset prior to injecting
noise. Moreover, without a noise-free test dataset, the predictive performance of the
final classifiers may not be the true indicators of how these techniques perform. In
contrast, our approach analyzes the effect of the filtering techniques on a real world
dataset with inherent noise.

Table VII summarizes the quality-of-fit in terms of NECM (using 10-fold cross-
validation) for the final classifiers built on the JM1-8850 filtered by the Classification
Filter, the Ensemble Filter, the Multiple-Partitioning Filter and the Iterative-Parti-
tioning Filter, respectively. The confidence ranges[76] of the costs of misclassifica-
tion, at a significance level of 0.05, are presented as well. Similarly, the quality-of-
test is presented inTable VIII. It is evident that as more noise is removed from the
dataset (i.e., lower filtering level or higher number of iterations), both the quality-of-
fit and the predictive performance improve for all the final classifiers.

It is assumed that noise occurrence is random. If instances are systematically cor-
rupted in both training and test sets, it is expected that training on the erroneous
training set would yield good performance on the test set which is also erroneous[6].
Therefore, the improvement of the classification accuracy for both the fit and test
datasets indicates that the filter discards instances which are actuallynoisy. In fact,
the more aggressive the filter, the better the performance compared to other filters
from thesamefiltering scheme family.

5.5 Results of the Efficiency Paired Comparisons

Table IX summarizes the possible paired comparisons at different cost ratios
(CII/CI) and for both the fit and test datasets. The outcome of the efficiency paired
comparison (Section4.3) is listed at each cost ratio and for both the fit and test

68 P. REBOURS AND T.M. KHOSHGOFTAAR

TABLE VII
COSTS OFM ISCLASSIFICATION (NECM) ON THE FIT DATASET

Filters CII /CI = 10 CII /CI = 20 CII /CI = 30 CII /CI = 50

cf 0.34± 0.11 0.58± 0.19 0.82± 0.27 1.30± 0.42
ef-23 0.68± 0.02 1.17± 0.04 1.65± 0.06 2.62± 0.10
ef-20 0.49± 0.05 0.84± 0.09 1.19± 0.12 1.89± 0.20
ef-17 0.34± 0.03 0.57± 0.05 0.81± 0.06 1.28± 0.10
ef-13 0.15± 0.02 0.26± 0.04 0.37± 0.05 0.59± 0.08
mpf-23 0.56± 0.04 0.95± 0.07 1.34± 0.10 2.12± 0.16
mpf-20 0.39± 0.03 0.66± 0.05 0.93± 0.07 1.47± 0.10
mpf-17 0.22± 0.03 0.38± 0.05 0.53± 0.07 0.83± 0.11
mpf-13 0.06± 0.04 0.10± 0.07 0.15± 0.11 0.23± 0.17
mpfcv-23 0.59± 0.04 1.01± 0.06 1.43± 0.09 2.26± 0.14
mpfcv-20 0.52± 0.05 0.90± 0.08 1.27± 0.12 2.02± 0.19
mpfcv-17 0.52± 0.05 0.88± 0.08 1.24± 0.12 1.97± 0.19
mpfcv-13 0.48± 0.03 0.83± 0.05 1.17± 0.07 1.85± 0.12
ipfcons-1 0.67± 0.08 1.14± 0.15 1.61± 0.23 2.55± 0.38
ipfcons-2 0.53± 0.06 0.90± 0.10 1.27± 0.14 2.01± 0.22
ipfcons-3 0.47± 0.07 0.80± 0.13 1.12± 0.18 1.78± 0.29
ipfcons-4 0.39± 0.04 0.67± 0.08 0.94± 0.11 1.49± 0.18
ipfcons-5 0.35± 0.10 0.59± 0.17 0.83± 0.24 1.31± 0.37
ipfcons-9 0.22± 0.12 0.38± 0.20 0.53± 0.28 0.84± 0.45
ipfmaj-1 0.40± 0.05 0.67± 0.08 0.95± 0.11 1.50± 0.17
ipfmaj-2 0.26± 0.09 0.43± 0.16 0.61± 0.22 0.97± 0.35
ipfmaj-3 0.17± 0.08 0.28± 0.14 0.40± 0.19 0.63± 0.30
ipfmaj-4 0.15± 0.11 0.25± 0.18 0.35± 0.25 0.56± 0.40
ipfmaj-5 0.12± 0.09 0.21± 0.15 0.30± 0.21 0.47± 0.34
ipfmaj-7 0.12± 0.08 0.20± 0.14 0.28± 0.20 0.45± 0.31

datasets. The significance levelα for the hypothesis testings outlined inTable V is
0.05. The paired comparisons, which are indexed for convenience, are ordered from
the least to the most aggressive pairs of filters.

Three situations can occur:

(1) f1 is more efficient thanf2 at a given cost ratio and for a given dataset; it is
symbolized by ‘+’.

(2) f1 andf2 are as efficient at a given cost ratio and for a given dataset; it is
symbolized by ‘=’.

(3) We cannot conclude at a given cost ratio and for a given dataset; the related
cell of the table is left empty.

For example,mpf-13is more efficient thanef-13except on the test dataset for cost
ratios 30 and 50, when the two filters have the same efficiency (# 44). According to
Table VI, ef-13andmpf-13remove 2837 and 2864, respectively. Even thoughmpf-13

QUALITY PROBLEM IN SOFTWARE MEASUREMENT DATA 69

TABLE VIII
COSTS OFM ISCLASSIFICATION (NECM) ON THE TEST DATASET

Filters CII /CI = 10 CII /CI = 20 CII /CI = 30 CII /CI = 50

cf 0.35± 0.09 0.58± 0.12 0.82± 0.15 1.29± 0.22
ef-23 0.68± 0.08 1.15± 0.16 1.62± 0.25 2.55± 0.41
ef-20 0.52± 0.03 0.90± 0.09 1.28± 0.16 2.03± 0.29
ef-17 0.34± 0.06 0.56± 0.11 0.79± 0.16 1.24± 0.26
ef-13 0.16± 0.04 0.28± 0.07 0.39± 0.10 0.62± 0.17
mpf-23 0.62± 0.09 1.10± 0.25 1.57± 0.41 2.52± 0.72
mpf-20 0.42± 0.03 0.71± 0.04 1.01± 0.05 1.60± 0.08
mpf-17 0.24± 0.05 0.40± 0.12 0.56± 0.19 0.88± 0.35
mpf-13 0.08± 0.03 0.13± 0.07 0.18± 0.11 0.28± 0.21
mpfcv-23 0.70± 0.13 1.26± 0.32 1.82± 0.50 2.94± 0.87
mpfcv-20 0.59± 0.09 1.02± 0.20 1.45± 0.31 2.32± 0.53
mpfcv-17 0.53± 0.08 0.90± 0.23 1.26± 0.39 2.00± 0.70
mpfcv-13 0.53± 0.05 0.90± 0.10 1.27± 0.15 2.01± 0.25
ipfcons-1 0.66± 0.05 1.12± 0.14 1.58± 0.24 2.50± 0.43
ipfcons-2 0.54± 0.08 0.92± 0.13 1.30± 0.18 2.05± 0.29
ipfcons-3 0.47± 0.04 0.79± 0.08 1.11± 0.12 1.75± 0.22
ipfcons-4 0.40± 0.11 0.68± 0.22 0.96± 0.33 1.52± 0.55
ipfcons-5 0.36± 0.08 0.62± 0.19 0.88± 0.31 1.41± 0.54
ipfcons-9 0.24± 0.09 0.42± 0.19 0.60± 0.28 0.95± 0.47
ipfmaj-1 0.38± 0.04 0.63± 0.06 0.87± 0.08 1.36± 0.14
ipfmaj-2 0.24± 0.06 0.41± 0.09 0.57± 0.11 0.90± 0.16
ipfmaj-3 0.18± 0.08 0.30± 0.15 0.43± 0.22 0.68± 0.36
ipfmaj-4 0.14± 0.09 0.23± 0.12 0.32± 0.15 0.49± 0.21
ipfmaj-5 0.14± 0.11 0.23± 0.18 0.32± 0.25 0.50± 0.39
ipfmaj-7 0.13± 0.10 0.20± 0.15 0.28± 0.20 0.42± 0.30

is more aggressive thanef-13, the proportion is not significantly different (i.e.,HA0
is true, see Eq.(3)). Tables VII and VIIIindicate that the final learners induced on the
dataset filtered bympf-13perform better than those induced on the dataset filtered by
ef-13. The differences are statistically significant (HB0 is false, see Eq.(5)), except
on the test dataset for cost ratios 30 and 50 because the confidence ranges are too
large in these two situations (HB0 is true).

We have not found any pairs of filters for whichf1 is more efficient thanf2 at a
given cost ratio (CII/CI) and for a given dataset (either fit or test datasets) and, for
whichf2 is also more efficient thanf1 for another cost ratio and/or another dataset.
In addition, only relevant comparisons where one conclusive outcome was reached
at least for both the fit and test dataset are included inTable IX.

cf is outperformed by all the other filters (# 17, 20, 22, 25, 26, 30, 35, 36, 45, and
50). These results were previously confirmed by[17,20]. The Iterative-Partitioning
Filter with majority voting is the second worst filter (# 19, 21, 24, 27, 29, 31, 32, 33,

70 P. REBOURS AND T.M. KHOSHGOFTAAR

TABLE IX
EFFICIENCY PAIRED COMPARISONS ON THEFIT AND TEST DATASETS

Fit dataset Test dataset

f1 f2 10 20 30 50 10 20 30 50

1 ef-23 ipfcons-1 = = = = = = = =
2 mpf-23 mpfcv-20 + + + + + + +
3 ipfcons-2 mpf-23 + + + + = = = =
4 ipfcons-2 mpfcv-17 + + + + + + + +
5 mpfcv-20 ipfcons-2 = = = = = = = =
6 mpfcv-20 mpfcv-13 + + + + + + +
7 mpfcv-17 mpfcv-20 = = = = = = = =
8 mpfcv-17 ipfcons-3 + + + + + + + +
9 mpfcv-13 mpfcv-17 + + + + = = = =

10 ef-20 mpfcv-17 + + + + = = = =
11 ef-20 mpfcv-13 = = = = = = = =
12 ef-20 ipfcons-3 = = = = = = = =
13 ipfcons-3 mpfcv-13 = = = = + + = =
14 ipfcons-3 mpf-20 + + + + + + +
15 mpf-20 ipfcons-4 = = = = = = = =
16 mpf-20 ipfcons-5 + + + + + + +
17 mpf-20 cf + + + + +
18 ipfcons-4 ipfcons-5 + + + + + + + +
19 ipfcons-4 ipfmaj-1 + + + + + + + +
20 ipfcons-4 cf + + + + + + +
21 ipfcons-5 ipfmaj-1 + + + + + + + +
22 ipfcons-5 cf + + + + + + + +
23 ef-17 ipfcons-5 = = = = + = = =
24 ef-17 ipfmaj-1 + + + + + = = =
25 ef-17 cf + + + + + + + +
26 ipfmaj-1 cf + + + + + + + +
27 mpf-17 ipfmaj-1 + + + + + + + +
28 mpf-17 ipfcons-9 = = = = = = = =
29 mpf-17 ipfmaj-2 + + + + + + + +
30 mpf-17 cf + + + + + + + +
31 mpf-17 ipfmaj-4 + + + + + + + +
32 ipfcons-9 ipfmaj-1 + + + + + + + =
33 ipfcons-9 ipfmaj-2 + + + + + + + +
34 ipfcons-9 ef-13 + + + + +
35 ipfcons-9 cf + + + + + + + +
36 ipfmaj-2 cf + + + + + + + +
37 ef-13 ipfmaj-2 + + + + + + + +
38 ef-13 cf + + + + + + + +
39 ef-13 ipfmaj-3 + + + + + + + +
40 ef-13 ipfmaj-4 + + + + + +
41 ef-13 ipfmaj-5 + + + + + + + +

(continued on the next page)

QUALITY PROBLEM IN SOFTWARE MEASUREMENT DATA 71

TABLE IX — continued

Fit dataset Test dataset

f1 f2 10 20 30 50 10 20 30 50

42 ef-13 ipfmaj-7 + + + + + +
43 mpf-13 ipfmaj-2 + + + + + + + +
44 mpf-13 ef-13 + + + + + + = =
45 mpf-13 cf + + + + + + + +
46 mpf-13 ipfmaj-3 + + + + + = = =
47 mpf-13 ipfmaj-4 + + + + + + + +
48 mpf-13 ipfmaj-5 + + + + + + + +
49 mpf-13 ipfmaj-7 + + + + + + + +
50 ipfmaj-3 cf + + + + + + + +
51 ipfmaj-4 ipfmaj-3 = = = = + + + +
52 ipfmaj-4 ipfmaj-5 = = = = = = = =
53 ipfmaj-5 ipfmaj-7 = = = = = = = =
54 ipfmaj-7 ipfmaj-4 + = = = = = = =

37, 39, 40 to 43, 46 to 49), but performs better than the Classification Filter (# 26,
36 and 50). It is also worth noting thatcf andipfmaj are the most aggressive filters
(Table VI).

The use of only one base classifier with majority scheme (i.e.,ipfmaj) is, in most
cases, less efficient than the use of five base classifiers with the majority scheme
(i.e.,mpf-13) according to the paired comparisons # 43 and 46 to 49. Similarly, using
one base classifier with majority scheme is less efficient at any iterations than using
twenty-five base classifiers with an aggressive voting scheme (i.e.,λ = {13, 17},
24, 37, 39 to 42). Using only one base classifier turns out to be risky, because
the classifier may not have the appropriate bias to learn the concepts from a given
domain.

ipfcons-9is more efficient thanipfmaj-1 and ipfmaj-2 (# 32 and 33).ipfmaj-1 is
worse thanipfcons-4andipfcons-5(# 19 and 21). It is generally recommended[20,
21] to take a consensus vote instead of a majority vote because the approach is more
conservative, and therefore, will result in fewercleaninstances being wrongly elim-
inated from the training data.

The Iterative-Partitioning Filter with consensus scheme performs better than or
similar to both the Multiple-Partitioning Filter and the Ensemble Filter in most cases
(# 1, 3, 4, 5, 12, 13, 14, 15, 28, and 34). However,mpfcv-17, mpf-20, andef-20beat
ipfcons-3, ipfcons-5, andipfcons-5, respectively (# 8, 16, and 23). Therefore, using a
conservative scheme with one base classifier and going through multiple iterations is
as efficient as using different base learners. But when more aggressiveness is needed,
the Iterative-Partitioning Filter is outperformed by the Ensemble-Partitioning Filter

72 P. REBOURS AND T.M. KHOSHGOFTAAR

and the Multiple-Partitioning Filter associated with a high conservative level (λ �

17).
mpf-13is more efficient thanef-13(# 44).ef-20 is more efficient thanmpfcv-17

(# 10). ef-20 is as efficient asmpfcv-13(# 11). Consequently, it is recommended
to select the Ensemble Filter over the Multiple-Partitioning Filter when the filtering
level is high (i.e., conservative scheme). On the other hand, the sets of instances
removed bympf and ef have more commonalities as the filtering level decreases
(seeFig. 3) and thatmpf-13is more efficient thanef-13. When the filtering level is
low, it is recommended to use the Multiple-Partitioning Filter.

6. Conclusion

This chapter presented the Ensemble-Partitioning Filter, a generic implementa-
tion of some commonly used noise filters described previously in the literature. The
Ensemble-Partitioning Filter can be tuned by input parameters such as the num-
ber of partitions, the number of base classifiers or the iteration stopping criterion.
Hence, by setting these parameters appropriately, it is possible to instantiate the
Classification Filter, the Ensemble Filter, the Multiple-Partitioning Filter, and the
Iterative-Partitioning Filter. Formalizing such a generic approach to noise filtering
allows customizing a filtering scheme which best fits the needs of the practitioner.

In our empirical work no artificial noise is injected in the dataset because analyzing
the effect of the filters on inherent noise is closer to a real-world scenario. However,
there is no direct way to know which instances are noisy. In order to overcome this
problem, a technique referred to as the efficiency paired comparison is formalized to
assess the relative efficiency among filters.

It was observed that a conservative voting scheme with more iterations is rec-
ommended instead of an aggressive scheme with fewer iterations. Additionally, a
filter combining different base classifiers with an aggressive voting scheme is as ef-
ficient as a filter with a conservative scheme using only one base learner through
multiple iterations. We also confirmed that the Classification Filter performs the
worst among all filters. In the case of conservative filtering, the combination of the
Ensemble Filter with a high filtering level is more efficient than the Multiple-Parti-
tioning Filter. However, for the same number of experts, it is recommended to use
the Multiple-Partitioning Filter over the Ensemble Filter when the filtering level is
low (i.e., aggressive filtering).

Table X summarizes our recommendations depending on the filtering require-
ments exposed in Section3.6, i.e., efficiency, complexity, expertise and scalability.
The recommendations differ depending on the nature of the filtering problem. If the
fit dataset is large, an aggressive scheme is recommended. On the other hand, when

QUALITY PROBLEM IN SOFTWARE MEASUREMENT DATA 73

TABLE X
RECOMMENDATIONS FOR THEAPPROPRIATEFILTER

Efficiency when the filter is

Filter aggressive conservative Complexity Expertise Scalability

ef + ++ −− − − − −
mpf ++ + − −− +
mpfcv + + − −− +
ipfcons + + + + −−a + +
ipfmaj − − −−a + +
cf −− −− + + −

a The complexity may vary depending on the required number of iterations.

the amount of training instances is limited, a conservative filter is more appropriate.
For each criterion, the less/more attractive the filter, the more ‘−’/‘ +’ symbols are
used.

Future work will continue to explore other algorithms for both attribute and class-
noise detection. For example, combining the filtering experts can rely on a more
sophisticated voting scheme such as weighted voting, plurality voting or instance
runoff voting [25]. Furthermore, additional case studies with other software quality
and software measurement datasets will further validate the findings of this study.

ACKNOWLEDGEMENTS

We are grateful to all the current and previous members of the Empirical Software
Engineering Laboratory at Florida Atlantic University for their patient reviews. We
also thank the staff of the NASA Metrics Data Program for making the software
measurement data available.

REFERENCES

[1] Fenton N.E., Pfleeger S.L.,Software Metrics: A Rigorous and Practical Approach, sec-
ond ed., PWS Publishing, Boston, MA, 1997.

[2] DeMarco T.,Controlling Software Projects, Yourdon Press, New York, 1982.
[3] Munson J.C., Khoshgoftaar T.M., “The detection of fault-prone programs”,IEEE Trans.

Software Engrg.18 (5) (1992) 423–433.
[4] Wendell J.D., Hedepohl J.P., Khoshgoftaar T.M., Allen E.B., “Application of a usage

profile in software quality models”, in:Proceedings of the 3rd European Conference on
Software Maintenance and Reengineering, Amsterdam, Netherlands, 1999, pp. 148–157.

[5] Khoshgoftaar T.M., Allen E.B., “Logistic regression modeling of software quality”,In-
ternat. J. Reliability Quality Safety Engrg.6 (4) (1999) 303–317.

74 P. REBOURS AND T.M. KHOSHGOFTAAR

[6] Witten I.H., Frank E.,Data Mining, Practical Machine Learning Tools and Techniques
with Java Implementations, Morgan Kaufmann, San Francisco, CA, 2000.

[7] Khoshgoftaar T.M., Seliya N., “Analogy-based practical classification rules for software
quality estimation”,Empirical Software Engrg.8 (4) (2003) 325–350.

[8] Evett M.P., Khoshgoftaar T.M., Chien P.-D., Allen E.B., “Modelling software quality
with GP”, in: Proceedings: Genetic and Evolutionary Computation Conference, Morgan
Kaufman, Orlando, FL, 1999.

[9] Khoshgoftaar T.M., Allen E.B., Naik A., Jones W.D., Hudepohl J.P., “Using classifica-
tion trees for software quality models: Lessons learned”,Internat. J. Software Engrg.
Knowledge Engrg.9 (2) (1999) 217–231.

[10] Gamberger D., Lavrǎc N., Grošelj C., “Experiments with noise filtering in a medical
domain”, in: Proceedings of the 16th International Conference on Machine Learning,
Morgan Kaufmann, San Francisco, CA, 1999, pp. 143–151.

[11] Teng C.M., “Evaluating noise correction”, in:Proceedings of the 6th Pacific Rim Inter-
national Conference on Artificial Intelligence, Melbourne, Australia, in: Lecture Notes in
Artificial Intelligence, Springer-Verlag, 2000, pp. 188–198.

[12] Khoshgoftaar T.M., Seliya N., “The necessity of assuring quality in software measure-
ment data”, in:Proceedings of the 10th International Symposium on Software Metrics,
IEEE Comput. Soc. Press, Chicago, IL, 2004, pp. 119–130.

[13] Redman T.C., “The impact of poor data quality on the typical enterprise”,Commun.
ACM 41 (1998) 79–82.

[14] Wang R.Y., Strong D.M., “Beyond accuracy: What data quality means to data con-
sumers”,J. Management Information Systems12 (4) (1996) 5–34.

[15] Laudon K.C., “Data quality and the due process in large interorganizational record sys-
tems”,Commun. ACM29 (1) (1986) 4–11.

[16] Orr K., “Data quality and systems theory”,Commun. ACM41 (2) (1998) 66–71.
[17] Zhu X., Wu X., Chen Q., “Eliminating class noise in large datasets”, in:Proceedings of

the 20th International Conference on Machine Learning, AAAI Press, Washington, DC,
2003, pp. 920–927.

[18] Yang Y., Wu X., Zhu X., “Dealing with predictive-but-unpredictable attributes in noisy
data sources”, in:Proceeding of the 15th European Conference on Machine Learning,
Pisa, Italy, Springer-Verlag, 2004, pp. 471–483.

[19] Quinlan J.R., “Induction of decision trees”,Machine Learning1 (1) (1986) 81–106.
[20] Brodley C.E., Friedl M.A., “Identifying mislabeled training data”,J. Artificial Res.11

(1999) 131–167.
[21] Khoshgoftaar T.M., Joshi V., “Noise elimination with ensemble-classifier filtering:

A case-study in software quality engineering”, in:Proceedings of the 16th International
Conference on Software Engineering and Knowledge Engineering, Banff AB, Canada,
2004, pp. 226–231.

[22] Khoshgoftaar T.M., Rebours P., “Noise elimination with partitioning filter for software
quality estimation”,Internat. J. Comput. Appl. Technol., special issue on Data Mining
Applications, in press.

[23] Khoshgoftaar T.M., Zhong S., Joshi V., “Noise elimination with ensemble-classifier fil-
tering for software quality estimation”,Intelligent Data Analysis: Internat. J.6 (1) (2005)
3–27.

QUALITY PROBLEM IN SOFTWARE MEASUREMENT DATA 75

[24] Ho T.K., Hull J.J., Srihari S.N., “Decision combination in multiple classifier systems”,
IEEE Trans. Pattern Anal. Machine Intelligence16 (1) (1994) 66–75.

[25] Alpaydin E., “Voting over multiple condensed nearest neighbors”,Artificial Intelligence
Rev.11 (1–5) (1997) 115–132.

[26] Ali K.M., Pazzani M.J., “Error reduction through learning multiple descriptions”,Ma-
chine Learning24 (1996) 173–202.

[27] Kwok S.W., Carter C., “Multiple decision trees”, in:Uncertainty in Artificial Intelligence,
vol. 4, Elsevier Science Publishers, Amsterdam, 1990, pp. 327–335.

[28] Sakakibara Y., “Noise-tolerant Occam algorithms and their applications to learning deci-
sion trees”,Machine Learning11 (1993) 37–62.

[29] John G.H., “Robust decision tree: Removing outliers from databases”, in:Proceedings
of the 1st International Conference on Knowledge Discovery and Data Mining, AAAI
Press, Menlo Park, CA, 1995, pp. 174–179.

[30] Fürnkranz J., Widmer G., “Incremental reduced error pruning”, in:Machine Learning:
Proceedings of the 11th Annual Conference, New Brunswick, NJ, Morgan Kaufmann,
1994, pp. 70–77.

[31] Freund Y., Schapire R., “A short introduction to boosting”,Japan. Soc. Artificial Intelli-
gence14 (1999) 771–780.

[32] Breiman L., “Bagging predictors”,Machine Learning24 (2) (1996) 123–140.
[33] Wilson D.R., Martinez T.R., “Reduction techniques for exemplar-based learning algo-

rithms”, Machine Learning38 (2000) 257–286.
[34] Tomek I., “An experiment with edited nearest-neighbor rule”,IEEE Trans. Systems, Man

and Cybernetics6 (6) (1976) 448–452.
[35] Aha D., Kibler D., Albert M., “Instance-based learning algorithms”,Machine Learn-

ing 6 (1) (1991) 37–66.
[36] Winston P.H., “The psychology of computer vision”, in:Learning Structural Descrip-

tions from Examples, McGraw–Hill, New York, 1975, pp. 157–206.
[37] Tang W., Khoshgoftaar T.M., “Noise identification with thek-means algorithm”, in:Pro-

ceedings of the 16th IEEE International Conference on Tools with Artificial Intelligence,
Boca Raton, FL, 2004, pp. 373–378.

[38] Lorena A.C., de Carvalho A.C., “Evaluation of noise reduction techniques in the splice
junction recognition problem”,Genetics and Molecular Biology27 (4) (2004) 665–672.

[39] Teng C.M., “Correcting noisy data”, in:Proceedings of the 16th International Conference
on Machine Learning, 1999, pp. 239–248.

[40] Gamberger D., Lavrǎc N., “Conditions for Occam’s Razor applicability and noise elimi-
nation”, in:European Conference on Machine Learning, Prague, Czech Republic, 1997,
pp. 108–123.

[41] Zhao Q., Nishida T., “Using qualitative hypotheses to identify inaccurate data”,J. Artifi-
cial Intelligence Res.3 (1995) 119–145.

[42] Guyon I., Matic N., Vapnik V., “Discovering informative patterns and data cleansing”,
Adv. Knowledge Discovery and Data Mining(1996) 181–203.

[43] Lawrence N.D., Schölkopf B., “Estimating a Kernel Fisher discriminant in the presence
of label noise”, in:Proceedings of the 18th International Conference on Machine Learn-
ing, Williamstown, MA, 2001, pp. 306–313.

76 P. REBOURS AND T.M. KHOSHGOFTAAR

[44] Muhlenbach F., Lallich S., Zighed D.A., “Identifying and handling mislabelled in-
stances”,J. Intelligent Inform. Systems22 (1) (2004) 89–109.

[45] Kittler J., Illingworth J., “Relaxation labelling algorithms—a review”,Image and Vision
Comput.3 (4) (1985) 206–216.

[46] Zhu X., Wu X., “Cost-guided class noise handling for effective cost-sensitive learning”,
in: Proceedings of the 4th IEEE International Conference on Data Mining, Brighton,
UK, IEEE Press, 2004, pp. 297–304.

[47] Hipp J., Güntzer U., Grimmer U., “Data quality mining—making a virtue of necessity”,
in: Proceedings of the 6th ACM SIGMOD Workshop on Research Issues in Data Mining
and Knowledge Discovery, Santa Barbara, CA, 2001, pp. 52–57.

[48] Marcus A., Maletic J.I., Lin K.I., “Ordinal association rules for error identification in
data sets”, in:Proceedings of the 10th ACM International Conference on Information
and Knowledge Management, Atlanta, GA, 2001, pp. 589–591.

[49] Khoshgoftaar T.M., Seliya N., Gao K., “Detecting noisy instances with the rule-based
classification model”,Intelligent Data Analysis: Internat. J.9 (4) (2005) 347–364.

[50] Hulse J.V., Khoshgoftaar T.M., Huang H., “The pairwise attribute noise detection algo-
rithm”, Tech. Rep., Department of Computer Science, Florida Atlantic University, Boca
Raton, FL (November 2004).

[51] Khoshgoftaar T.M., Rebours P., “Evaluating noise elimination techniques for software
quality”, Intelligent Data Analysis: Internat. J.9 (5) (2005) 487–508.

[52] Hickey R.J., “Noise modeling and evaluating learning from examples”,Artificial Intelli-
gence82 (1996) 157–179.

[53] Angluin D., Laird P., “Learning from noisy examples”,Machine Learning2 (1988) 343–
370.

[54] Zhu X., Wu X., “Class noise vs. attribute noise: a quantitative study of their impacts”,
Artificial Intelligence Rev.22 (2004) 177–210.

[55] Berenson M.L., Levine D.M., Goldstein M.,Intermediate Statistical Methods and Appli-
cations: A Computer Package Approach, Prentice Hall, Englewood Cliffs, NJ, 1983.

[56] Quinlan J.R.,C4.5: Programs for Machine Learning, Morgan Kaufmann, San Mateo,
CA, 1993.

[57] Khoshgoftaar T.M., Yuan X., Allen E.B., Jones W.D., Hudepohl J.P., “Uncertain clas-
sification of fault-prone software modules”,Empirical Software Engrg.7 (4) (2002)
297–318.

[58] Friedman J., Stochastic J., Hastie T., Tibshirani R., “Additive logistic regression: A sta-
tistical view of boosting”,Ann. of Statist.28 (2) (2000) 337–374.

[59] Lin C.T., Lee C.S.G.,Neural Fuzzy Systems: A Neuro-Fuzzy Synergism to Intelligent
Systems, Prentice Hall, Upper Saddle River, NJ, 1996.

[60] Koza J.R.,Genetic Programming, vol. 1, MIT Press, New York, 1992.
[61] Khoshgoftaar T.M., Seliya N., “Software quality classification modeling using the

SPRINT decision tree algorithm”, in:Proceedings of the 14th International Conference
on Tools with Artificial Intelligence, Washington, DC, 2002, pp. 365–374.

[62] Komorowski J., Polkowski L., Skowron A.,Rough Set: A Tutorial, Springer-Verlag,
Berlin/New York, 1998.

QUALITY PROBLEM IN SOFTWARE MEASUREMENT DATA 77

[63] Domingos P., “Metacost: A general method for making classifiers cost-sensitive”, in:
Knowledge Discovery and Data Mining, 1999, pp. 155–164.

[64] Kohavi R., “The power of decision tables”, in: Lavrač N., Wrobel S. (Eds.),Proceedings
of the 8th European Conference on Machine Learning, Heraclion, Crete, Greece, in:
Lecture Notes in Artificial Intelligence, Springer-Verlag, 1995, pp. 174–189.

[65] Freund Y., Mason L., “The alternating decision tree learning algorithm”, in:Proceedings
of 16th International Conference on Machine Learning, Bled, Slovenia, Morgan Kauf-
mann, 1999, pp. 124–133.

[66] Platt J.C.,Advances in Kernel Methods—Support Vector Training, MIT Press, Cam-
bridge, MA, 1999, pp. 185–208 (Chapter 12).

[67] Kolodner J.,Case-Based Reasoning, Morgan Kaufmann, San Mateo, CA, 1993.
[68] Frank E., Witten I.H., “Generating accurate rule sets without global optimization”, in:

Proceedings of the 15th International Conference on Machine Learning, Madison, WI,
Morgan Kaufmann, 1998, pp. 144–151.

[69] Holte R.C., “Very simple classification rules perform well on most commonly used
datasets”,Machine Learning11 (1993) 63–91.

[70] Cohen W.W., “Fast effective rule induction”, in: Prieditis A., Russell S. (Eds.),Proceed-
ings of the 12th International Conference on Machine Learning, Tahoe City, CA, Morgan
Kaufmann, 1995, pp. 115–123.

[71] Gaines B.R., Compton P., “Induction of ripple-down rules applied to modeling large data-
bases”,J. Intelligent Inform. Systems5 (3) (1995) 211–228.

[72] Frank E., Trigg L., Holmes G., Witten I.H., “Naive Bayes for regression”,Machine
Learning41 (1) (2000) 5–25.

[73] Peng J., Ertl F., Bhagotra S., Mosam A., Vijayaratnam N., Kanwal I., “Classification of
U.S. census data, data Mining Project CS4TF3”,http://www.census.gov.

[74] Atkeson C.G., Moore A.W., Schaal S., “Locally weighted learning”,Artificial Intelli-
gence Rev.11 (1–5) (1997) 11–73.

[75] Khoshgoftaar T.M., Rebours P., “Generating multiple noise elimination filters with the
ensemble-partitioning filter”, in:Proceedings of the 2004 IEEE International Conference
on Information Reuse and Integration, Las Vegas, NV, 2004, pp. 369–375.

[76] Jain R.,The Art of Computer Systems Performance Analysis: Techniques for Experimen-
tal Design, Measurement, Simulation, and Modeling, John Wiley & Sons, New York,
1991.

http://www.census.gov

This page intentionally left blank

Requirements Management for Dependable
Software Systems

WILLIAM G. BAIL

Software Engineering Center
The MITRE Corporation
McLean, VA
USA

Abstract
Achieving dependable behavior from complex software systems requires care-
ful adherence to best software practice. Experience gained over years of both
failed development and successful efforts has clearly demonstrated that one es-
sential key to developing systems is proper engineering of the requirements
for that system. Systems that are mission and/or safety critical are especially
vulnerable to shortcomings in the requirements specifications. What may be ac-
ceptable anomalies in the behaviors of non-critical systems become unacceptable
and dangerous for systems on which high levels of trust are placed. Just as a
good foundation is important for a building, requirements are important for soft-
ware systems. This chapter provides an overview of the nature of requirements,
presents some typical challenges that are frequently encountered, and provide
some recommendations for how to avoid or overcome problems that may occur.

1. Introduction . 80
2. Dependability. 84

2.1. IFIP WG 10.4 . 85
2.2. The Dependability Tree. 86
2.3. Information Assurance (IA) . 87
2.4. Acceptability . 88
2.5. System Quality . 91
2.6. Types of Failure . 91

3. Nature of Requirements . 94
3.1. IEEE Definition of Requirement. 94
3.2. Derivation of Requirements . 96
3.3. Hierarchies of Requirements . 100

4. Categories of Requirements . 103

ADVANCES IN COMPUTERS, VOL. 66 79 Copyright © 2006 Elsevier Inc.
ISSN: 0065-2458/DOI 10.1016/S0065-2458(05)66003-2 All rights reserved.

80 W.G. BAIL

4.1. Behavioral Requirements . 106
4.2. Quality of Construction Requirements. 111
4.3. Implementation Requirements . 112
4.4. Programmatic Requirements . 114

5. Handling Requirements . 115
5.1. Overview of Development Processes . 115
5.2. Effect of Requirements on Development Processes 117

6. Requirements Quality Attributes. 118
6.1. Complete . 119
6.2. Unambiguous. 121
6.3. Correct . 121
6.4. Consistent . 122
6.5. Verifiable . 122
6.6. Modifiable . 123
6.7. Traceable. 124
6.8. Ranked for Importance . 125
6.9. Ranked for Stability. 126

7. Requirements and Dependability. 126
8. Common Requirements Challenges . 127

8.1. Requirements Not Matching Users’ Real Needs 128
8.2. Volatile and Late-Defined Requirements. 129
8.3. Unknown “Physics” for Embedded Systems. 132
8.4. Fear of Excessive Detail . 133
8.5. Test Environment Does Not Match Operational Environment 134
8.6. Ineffective and Unusable Human–Computer Interfaces. 135
8.7. Over-Specified/Over-Constrained/Unbounded. 137

9. Summary . 138
References . 139

1. Introduction

Over the past two decades, the size and complexity of software systems have
grown significantly. Within large systems, more and more functionality is being al-
located to the software portion, in recognition of its flexibility and power[22]. Many
of these systems are being placed into service where, should failure occur, the po-
tential for damage is significant. This damage may result in loss of service, financial
losses, harm to property, and even loss of life. Recognizing this risk, the software en-
gineering community has placed a great deal of emphasis on developing techniques
aimed at minimizing the number of defects that are introduced into the system (de-
fect avoidance), at detecting and removing latent defects (defect removal), and at

REQUIREMENTS MANAGEMENT FOR DEPENDABLE SOFTWARE SYSTEMS 81

tolerating the presence of defects (fault tolerance), with the overall goal of reducing
our risks, and at the same time, making development more cost efficient.

Detecting and removing defects early is important. Industry experience shows
that the effort and associated cost of removing defects from systems is significantly
higher the later in the life cycle they are discovered. Metrics that support this experi-
ence were reported as early as 1981[4]. This data indicated that the cost of removing
defects after delivery was often 100 times more expensive than removing defects
during the requirements or design phase. In a more recent article[5], the authors re-
fined this observation somewhat, stating that the cost increase for small, non-critical
systems to be about 5 times, although for large, complex systems, the multiplier was
still about 100 times.

Davis [9] reported similar findings based on additional evidence, providing the
values inTable Ifor relative costs to repair based on life cycle phase:

The lesson here is to avoid defects early in the development process. However, in a
recent report for NASA,[3] described the results of a root-cause analysis performed
in 1994 [23] of 387 software defects discovered during the integration test phase
of the Voyager and Galileo spacecraft development efforts. The distribution of the
defects is shown inTable II.

The analysis found that 74% of the defects were functional in nature. Of these,
between 69% and 79% were “directly attributable to errors in understanding & im-
plementing requirements” allocated to the system[3]. These numbers indicate that
fully half of the system defects found during integration were due to requirements.
Requirements, of course, are defined right at the beginning of development. Ref.[20]

TABLE I
RELATIVE COST TOREPAIR DEFECTS

Phase when defect is detected Relative cost to repair

Requirements analysis 1
Design 5
Coding 10
Unit test 20
Acceptance test 50
Operational/maintenance 200

TABLE II
ROOT CAUSE OFDEFECTS

Defect classification Percentage of defects

Functional 74%
Interface 24%
Internal 2%

82 W.G. BAIL

TABLE III
COST OFREPAIRING DEFECT BY PHASE

Phase when defect introduced into system

Req Anl Design Code Test Int Operations

P
ha

se
w

he
n

de
fe

ct
re

pa
ire

d

Req Anl 1
Design 5 1
Code 10 2 1
Test 50 10 5 1
Int 130 26 13 3 1
Operations 368 64 37 7 3 N.A.

reports that more than half of the requirements defects discovered were due to tacit
requirements, those that had not been written down.

The report also provided some more detailed metrics on the cost required to correct
defects based on the life cycle phase they entered the software, and the phase when
they were discovered and removed (seeTable III). According to their results, a re-
quirements defect costs 130 times more to remove during integration than it would
cost if it were detected and removed during the requirements analysis phase. This
is consistent with earlier results. Since half of the defects found during integration
were due to requirements errors, the cost of not discovering them earlier represents
a significant contribution to the overall project cost.

The results also indicate that the cost of removing a requirements defect during
integration is ten times more costly than removing a coding defect during integration.
These findings and others strongly suggest that minimizing defects in requirements is
a key step in being able to affordably develop systems with low numbers of defects.

Over the years we have grown to recognize that despite our creating and apply-
ing more and more techniques, we simply do not have the ability to develop large,
complex software systems that are completely free of defects[21]. We can neither
develop them without defects, nor can we discover and remove all defects prior to
placing the system into service. The sheer cost of finding and removing all defects is
far more than we can afford. That means the system could fail at any time.

One of the most popular techniques is the use of extensive testing. We follow a
process of “build-test-fix”—we test to find problems, fix the problems, and then test
again, repeating this cycle until the application behaves the way we think it should.
In this way, we hope to test quality in, as opposed to building quality in from the
beginning. Much of this type of testing is focused on system-level tests, just prior
to acceptance testing. The problem with this approach is that we are reacting to
embedded defects in the system rather than proactively removing them prior to the
testing phases. Such an approach tends to be expensive and time-consuming.

REQUIREMENTS MANAGEMENT FOR DEPENDABLE SOFTWARE SYSTEMS 83

In this chapter we focus on the development of high-quality requirements as a way
of improving the quality of our software systems. Some practitioners might say that
while the requirements are important, a more important aspect is how the system
is built. That is, the development processes are more crucial than the requirements,
since without them, the requirements cannot be implemented. This observation is
certainly valid—processes are indeed crucial. In fact, in this chapter we emphasize
the importance of sound processes for developing requirements.

An important observation is that requirements form the foundation of all (soft-
ware) system development. If we don’t handle requirements properly, we incur sig-
nificant risk. Many historical examples demonstrate this. If you do not clearly define
what you want your system to do, you will have some (often unpleasant) surprises:

“You get what you spec, not what you expect”

The intent of this chapter is to describe the role of requirements, and how they should
be managed, for dependable systems. Specifically, we will examine:

• Requirements—What is system is supposed to do, and to not-do (besides split-
ting infinitives).

• Management—The disciplined and planned process of control.

• Dependable—Predictable, confidence inspiring, satisfies a need with no sweat.

• Software—Programmable logic used to achieve behavior.

• System(s)—A device that satisfies a need or delivers a service.

Note that there is a large body of related work on this topic. Requirements de-
velopment, requirements documentation, requirements management, dependability
modeling, and other related topics have been documented many times in books, arti-
cles, journals, tutorial, and other papers. The references section of this chapter lists
many of these. This chapter will not cover specific approaches to requirements defi-
nition (such as specific tools and techniques)—this is beyond our scope, and would
duplicate the material that already exists on this topic. Instead we will character-
ize classes of these techniques, and provide recommendations for how to select the
appropriate ones for projects of interest, specifically dependable systems.

In this chapter we focus on software system requirements. We presents a overview
of requirements engineering with a particular focus on requirements for dependable
systems. We emphasize the concepts behind “requirements” (as opposed to specific
techniques) to provide a basis for whatever specific approaches may be selected by
development teams. If the reader wishes to explore further, please refer to the refer-
ences for additional material.

Specifically, this chapter contains eight sections:

84 W.G. BAIL

• Introduction—the purpose and goals of this chapter, and an overview of what
will be covered.

• Dependability—an introduction to the concept of and motivation behind de-
pendability.

• Nature of Requirements—an introduction to system and software requirements,
and how they are created. The various types of requirements, their role in de-
velopment, and their impact on system success.

• Categories of Requirements—a description of the various categories of require-
ments.

• Handling of Requirements—a description of how each of the various types of
requirements need to be handled.

• Requirements Quality Attributes—a description of criteria that can be used to
determine the quality of a set of requirements for a system.

• Requirements and Dependability—an analysis of how the development and
handling of requirements relates to the dependability needs of users.

• Common Requirements Challenges—an analysis of some common challenges
to developing high-quality requirements.

2. Dependability

Dependability is a quality of a system that is generally considered to be an impor-
tant attribute of a high-quality system. We don’t buy an application for our PC if we
know that it is undependable. To help decide whether to buy a software package or
not, we may depend on word of mouth or on reviews of software products published
in magazines. If we are building a new system, we don’t hire someone to develop
it for us and state as a requirement that it needs to be undependable (The system
shall be undependable). Yet, when defining the requirements for our new systems,
we frequently do not directly address the desired (or expected) levels of dependabil-
ity that we want and need. We define what we want it to do, its user interfaces, its
functionality, and so on, but except for an occasional sentence stating that it needs to
be “reliable,” we generally associate “dependability” with the system’s meeting its
requirements, and leave any specific guidance unstated.

But as we observed in Section1, no software system is perfect, that is, defect-
free. There will always be embedded defects that may cause a system failure at some
point, usually at the worst possible time.[8] observed that

“debugging removes the minimum possible number of bugs that must be re-
moved in order to pass the test sequence. For example, bugs outside the area of

REQUIREMENTS MANAGEMENT FOR DEPENDABLE SOFTWARE SYSTEMS 85

test focus are not removed. This property appears to correspond with the informal
principle called ‘Murphy’s law’.”

If we were exceptionally cautious, no software system would ever be used in prac-
tice, especially for use in safety-critical activities. Yet we do use such systems. The
Airbus A320 and the Boeing 777 are controlled by software. Despite appearances,
we are neither foolish (at least, not all the time) nor exceptionally courageous. Rather,
we rely on such systems only after we have become convinced that they serve our
purposes with an acceptable level of risk. To do so, we establish mechanisms that
allow us to make an informed judgment to place trust in the system, and base this
judgment on evidence.

A primary aspect of this decision process is to clearly identify and define what we
expect in terms of “dependability.” We generally tolerate a certain level of “rough
edges” as long as the services that we really care about are delivered. But we have to
tell someone what we care about.

2.1 IFIP WG 10.4

But exactly what would a dependability requirement look like? There has been
significant effort in the technical community directed at formalizing the concept
of dependability, and at expanding the underlying concepts. Many organizations
view dependability as being a combination of three common product attributes—
reliability, maintainability, and maintainability (RMA). NASA, for example, initially
adopted this view for the EOSDIS (Earth Observing System Data and Information
System) project.

In 1980, the International Federation for Information Processing (IFIP) estab-
lished within its Computer Systems Technology Technical Committee (TC 10) a
new working group named “Dependable Computing and Fault Tolerance.” WG 10.4
has defineddependabilityas:

“The trustworthiness of a computing system which allows reliance to be justifi-
ably placed on the service it delivers”http://www.dependability.org/wg10.4/

There are some key words in this definition:

• trustworthiness—the level of trust we can place on the system;

• reliance—the dependence on the system to perform a service;

• justifiably—substantiation that the reliance is appropriate, based on evidence;

• service it delivers—the specific services on which we place trust.

In other words, dependability is related to the level of trust we can place on a sys-
tem that it will deliver a specific set of services. The definition implies that some

http://www.dependability.org/wg10.4/

86 W.G. BAIL

form of justification is necessary to warrant placing this trust. Blind optimism is not
sufficient.

This definition leaves out any specific reference to the nature of the services, how
the reliance is to be justified, and how levels of trust can be determined. Subsequent
work has expanded on this aspect.

2.2 The Dependability Tree
To provide more clarity, additional refinements of the concept of computer system

dependability have been made, notably[1,16,18,19]. They define what they call the
Dependability Tree, as depicted inFig. 1.

In this model, dependability consists of three parts:

• The dependability attributesof the computing systems—these are defined by
the system’s requirements and are the factors that make up the level of trust that
can be placed.

• The meansor mechanismsto be used to achieve these attributes—these are
addressed by the design features of the system.

• The threatsto the systems that would compromise their achieving the desired
attributes—these are the defects in the system that would cause failure.

The model defines the six dependability attributes as follows:

• Availability—the ability of the system to be ready for operation at any point in
time. This is usually defined as the proportion of time that the system is ready

FIG. 1. The dependability tree.

REQUIREMENTS MANAGEMENT FOR DEPENDABLE SOFTWARE SYSTEMS 87

for use, to the total time period of interest. If, for example, the goal is for the
system to be available for use for all but 4 seconds per year, then the availability
is 0.9999999 over the year.

• Reliability—the ability of the system to operate for a period of time without
failure. This is defined as either the failure rate (average failures per time period)
or as the average operational time between failures, also referred to as themean
time between failures(MTBF). A typical reliability requirement would be a
failure rate of 0.01 failures/hour, or, equivalently, a MTBF of 100 hours. Both
specify that the system is required to operate continuously for 100 hours on the
average before failing.

• Safety—the ability of the system to avoid actions that result in catastrophic ac-
tions that result in human injury, large financial loss, or damage to important
assets. This includes actions that are required as well as actions that must be
avoided.

• Confidentiality—the ability of the system to avoid disclosure of information to
unauthorized recipients.

• Integrity—the ability of the system to avoid being corrupted. This attribute cov-
ers the correctness and consistency of the software code and the data structures
that contain the information being processed, as well as the system’s ability to
avoid corruption while it is executing. It includes protection against unautho-
rized modification or destruction of the information and the code.

• Maintainability—the ability of the system to be easily repaired, enhanced, or
modernized.

Note that reliability and availability are interrelated concepts that are not necessar-
ily in synchronization. That is, a system could have high levels of availability yet
have high failure rates. This would occur whenever the system is able to recover
quickly from each failure. A system could also have low failure rates and low levels
of availability. This would be the case if the recovery times are long yet infrequent.

2.3 Information Assurance (IA)

There is a related framework that has recently been developed by the United States
Department of Defense called Information Assurance (IA)[11]. IA consists of five
system attributes[24] that are designed to characterize the ability of the system to
protect and defend information and information systems. Of these five, three are the
same as in the Dependability Tree: availability, integrity, and confidentiality. There
are two attributes that have been added:

88 W.G. BAIL

• Authentication—A security measure designed to establish the validity of a
transmission, message, or originator, or a means of verifying an individual’s
authorization to receive specific categories of information.

• Non-repudiation—An assurance that the sender of data is provided with proof
of delivery and the recipient is provided with proof of the sender’s identity, so
neither can later deny having processed the data.

The IA model is one aspect of dependability that focuses totally on the security of
the information being processed by a system. These two attributes are definable as
specific behavioral requirements that can be addressed with functional requirements.

2.4 Acceptability

The Dependability Tree model provides a useful context in which system depend-
ability can be viewed. Since its introduction, there have been various refinements and
extensions proposed, including the creation of a System Acceptability Model[10,
27]. In these refinements, the concept of stakeholder acceptance was added to reflect
the roles of the customers and users in the operation of the system.Figure 2shows
this model.

Consideration of stakeholders is an important facet, since acceptance of a system is
often based on more than its simple dependability. Stakeholders want a high-quality
system that meets their needs, but that can be made available when they need it and
at a price they can afford (practical acceptability). Rather than having a single set of
fixed expectations, stakeholders frequently trade-off various features: functionality
versus delivery of system, reliability versus ease-of use, etc., based on their needs.
For example, lower levels of reliability might be acceptable if the availability of the

FIG. 2. Sandhu’s system acceptability model.

REQUIREMENTS MANAGEMENT FOR DEPENDABLE SOFTWARE SYSTEMS 89

system is enhanced. A higher priced system might be acceptable if it is of higher
quality.

When deciding whether to accept a system, there are multiple factors that stake-
holders take into account. They are concerned with how well the system conforms
to the requirements that were imposed. They also want the system to be suitable for
use. That is, the requirements for the system need to appropriate for how the system
will be used. Part of this consideration is how easy the system is to use. Another
part is whether the specific capabilities and functions provided smoothly fit into the
way that the users expect to operate once the system is placed into service. They also
want the cost to be controlled and affordable, and they want the system delivered and
placed into service in a timely manner so that they may gain utility from it.

All of these factors are considered by customers when they decide whether to
accept a system or not. Using Sandhu’s Acceptability Model as a basis, we added
these other factors, and defined the following framework for defining and evaluating
the acceptability of a system based on its dependability. SeeFig. 3.

FIG. 3. Acceptability framework.

90 W.G. BAIL

In this framework, a customer or user’s acceptance of a system depends on several
interrelated factors, not just purely on dependability. Several dependability-specific
attributes as well as IA were added to Sandhu’s model to reflect the nature of the
trade-offs that customers need to make. This being the case, when defining depend-
ability requirements, all relevant factors need to be considered as contributors to the
decision of whether to buy or build a system or not.

Factors that contribute to the decision, in addition to the dependability attributes
discussed previously, include:

• Adherence to requirements—this attribute addresses the proportion of the re-
quirements that the system successfully supports. Because not all requirements
are generally equally important or critical, users are willing to accept products
that do not deliver all of the services that the requirements define. Any limi-
tations to the use of the product can be offset by the utility actually delivered.
A similar situation may occur if the services that are delivered do not corre-
spond to those defined in the requirements. If the services can satisfy the users’
needs, then the system might still be acceptable.

• Fitness for purpose—the system might conform to all of the requirements, but
if they do not define the services that the users really want and need, then the
level of acceptability is not likely to be high.

• Usability—the system has to be easy to use. It also needs to be easy to learn.
Limitations in usability can render even the most powerful system unacceptable.
Users can however accept a system, even if it hard to use, if the level of service
is sufficiently high.

• Cost—the cost to develop and acquire a system, as well as the cost to operate
the system, must be within the customer’s budget. It is a cliché that software
development projects are usually over budget. Customers may be willing to
accept the additional cost if the value of the system is sufficiently high for them.

• Delivery and schedule—There is another cliché for software system develop-
ment: the “software is 90% done,” even when the scheduled delivery date has
past. The flexibility in the schedule is one aspect of acceptance that can be
traded off against the other attributes desired by the customer.

When defining the requirements for a system, all of the above factors need to be ad-
dressed. Each needs to be defined as accurately as possible to ensure that the develop-
ers are able to perform appropriate tradeoffs as they progress through development.
Knowing this emphasis, developers can make informed design and implementation
decisions, focusing their efforts on the crucial aspects of the system as defined by the
future users of the system.

REQUIREMENTS MANAGEMENT FOR DEPENDABLE SOFTWARE SYSTEMS 91

In addition, the nature of the reliance must be defined. The need is based on the re-
alization that dependability has several interpretations. The precise nature of what is
expected, and the allowable variations, must be described. For example, do the users
require total conformance to specification, or will they tolerate degraded levels? Will
they accept optional back-up features to provide recovery operations, or is the prime
feature the what they require? The reliance will be characterized by anacceptability
functionwhich captures the customer’s perception of value and willingness to accept
degradation in various capabilities.

2.5 System Quality

As described in the previous section, stakeholders want a high-quality system that
meets their needs, but that can be made available when they need it and at a price
they can afford. With this view, acceptability has four major components:

• Quality—the system possesses attributes of sufficient quality.

• Meets stakeholder needs—the system provides services that the stakeholders
need.

• Schedule—the system will be available for use when needed by the stakehold-
ers.

• Cost—acquiring the system is affordable.

In this context, we can refine our general concept of system quality, by recogniz-
ing that the quality attributes of a system are a subset of the overall acceptability
attributes, as shown in the shaded area ofFig. 4. Quality is an attribute of a system
that can be determined independently of cost and schedule, although achieving high
levels of quality generally requires larger budgets and more time for development.
The quality of a system is also independent of whether the system is suited for any
specific user’s needs. A stakeholder may decide to purchase a system of less over-
all quality if that system is more suitable for how the stakeholder plans to use the
system.

2.6 Types of Failure

There are several different ways that our systems can fail. These are addressed
by [1] as the failure modes. Perhaps the most obvious and visible form is the system’s
crashing, requiring a reboot. On a personal computer, for example, this could be
identified by a frozen screen, a non-responsive cursor, and the inability of a Control–
Alt–Delete (for Windows-based PCs) to regain control. For a PC, pressing the power

92 W.G. BAIL

FIG. 4. System quality attributes.

button and forcing a complete reboot is a potential recovery strategy. For an embed-
ded system, the failure may be observed by the system’s no longer being operational.

There are other types of failure, some of which may be more subtle and harder to
spot. These include (but are not limited to):

– The currently-active application hangs—in this situation, the application that is
being used becomes non-responsive but the system continues to operate. For
a Window-based PC, for example, the recovery techniques involves pressing
Control, Alt, and Delete keys, allowing the user to abort the application and
return control to the operating system.

– The currently-active application crashes—in this situation, the application that
is being used aborts, returning control to the operating system. For an embedded
system that has no operating system, the system will become non-operational.

– An application produces an incorrect result—when asking an application for
information, the answers provided are incorrect—that is, do not satisfy the re-
quirements. One effect of incorrect result would be the system’s performing an
incorrect action, potentially threatening safety or the compromise of informa-

REQUIREMENTS MANAGEMENT FOR DEPENDABLE SOFTWARE SYSTEMS 93

tion. Another effect is providing incorrect results as information to the users
of the system, who may use the information to perform actions that could also
threaten safety.

– Responds too slowly or too quickly—an application responds too slowly or
perhaps too quickly. An example would be a program that on an assembly line
controls part placement on a series of products. If the program is too fast, the
assembly has not yet arrived and the part drops unused. If the part is too slow,
the partially-assembled product continues down the assembly line without the
part that it needs.

For many, the system’s crashing is the most obvious form of failure. More subtle,
and often more damaging, is when the system delivers an incorrect result. Incorrect
information or actions on the part of the system could be innocuous, annoying, or
dangerous.

When a system fails, it is often unable to deliver its services until it is corrected
in some way, such as by rebooting. The proportion of time that the system is able to
provide services is known as itsavailability.

When a system fails by producing an incorrect result, the concept of recovery
is complex—it may appear to outside observers that the system is still operational.
However, the incorrect result may be a one time effect based on input data, indicat-
ing that it indeed may be operational, or it could be an indication that the system
has entered an erroneous program state, and that all future actions are suspect and
potentially incorrect.

Two types of failure associated with erroneous results that present particularly hard
challenges to developers are those that areintermittentand those that are caused by
Heisenbugs. Intermittent failures are those that occur seemingly randomly. Recreat-
ing them in order to correct them can at times be time consuming and expensive,
since determining and recreating the exact state in which the failures occur is not
always possible. Such failures, until their root cause is determined, present a contin-
uing risk of system failure when using the system.

Heisenbugs[7] are defects in a system that cause observable failures, such as
erroneous output values. However, when developers attempt to identify their loca-
tion using instrumentation, inserting logging statement, or turning on debugging,
the failures disappear. They are called Heisenbugs after the Heisenberg Uncertainty
Principle used in quantum physics because of their ability to disappear when being
examined. Note that the term is commonly misused to refer to defects that cause
random failures.

Software users, selfishly so, expect the systems they use to be completely de-
pendable. But users may be unwilling to pay the cost of developing such systems.
In practice, experienced users learn the various behaviors of the programs that they

94 W.G. BAIL

work with, including those areas that are not dependable. When using the program,
they simply avoid those unreliable features, and work their way around them. Some-
times this is unacceptable however when those features are critical to what the users
need.

It is important to note that in a formal sense, a failure of a software system is a
observable variation from its required behavior, given the state of the system. If how-
ever the requirements do not define the behavior that is needed and appropriate, to
the user the system has failed even if the requirements are fully met. If the require-
ments are not complete, and fail to describe all of the needed capabilities, the system
can be, in a strict sense, correct but unusable. Safety-related behaviors often fall into
this category. Many safety requirements are stated in terms of actions to avoid (the
system shall not allow the car to move forward when a passenger door is open). If
not all of these behaviors are described, that is, if there is a failure mode that was
unanticipated, then the system could pass all of its requirements tests, yet still be
unusable.

3. Nature of Requirements

In this section we will introduce the concept of a “requirement.” Understanding
what requirements are, where they come from, and how they mature through the sys-
tem development process, is crucial so that we can effectively capture and document
the customers expectations and needs. Knowing the range of criteria with which the
customer will base their acceptance of the system provides a clear roadmap for de-
velopment, and allows us to balance engineering decisions. Core to this, of course, is
understanding what the customer expects as a dependable system. Regardless of how
much functionality the system provides, if the customer does not view the system as
being “dependable,” they will simply not use it.

3.1 IEEE Definition of Requirement

Requirements form the foundation of all software development. They tell the de-
velopers what to build. They guide the design and implementation by providing to
the developers the “form, fit, and function” of the product. They provide a means of
communications between the customers, users, and developers to ensure that the re-
sulting product is what the users need and the customers want. They provide a basis
for defining criteria to be used for acceptance of the final product by the customer.
Finally, they support product maintenance and enhancements by documenting the
final “as-built” product.

REQUIREMENTS MANAGEMENT FOR DEPENDABLE SOFTWARE SYSTEMS 95

Despite this central role, however, there are many different views about what a
system or software requirement is. The effect of this disparity of views is a lack of
consistency in how requirements and defined and managed across industry. In this
section, we will try to establish a baselines of definitions to assist in achieving a
common, coordinated view.

The term “requirement” is defined in IEEE Std. 610.12-1990, IEEE Standard
Glossary of Software Engineering Terminology[14] as:

“(1) A condition or capability needed by a user to solve a problem or achieve an
objective.
(2) A condition or capability that must be met or possessed by a system or sys-
tem component to satisfy a contract, standard, specification, or other formally
imposed documents.
(3) A documented representation of a condition or capability as in (1) or (2).
See also: design requirement; functional requirement; implementation require-
ment; interface requirement; performance requirement; physical requirement.”

This definition is necessarily broad since it has to cover the many variations of
popular usage. Unfortunately, as a result, the term is often used carelessly to refer to
several different concepts. Drawing on its definition within English, popular use is
to apply the term to refer to anything that is “required” for a project. Often items re-
ferred to as requirements include hopes, dreams, budgets, schedules (“This schedule
is required”. . .“This budget is required”. . .“These software (SW) components must
be used”. . .“These algorithms must be used”. . .)

As we shall see, while each of the statements refers to a requirement, each refers to
a differenttypeof requirement. Each type needs to be handled differently since each
has a different role and affects software development in different ways. In the next
section we focus on differentiating the different types of requirements and on provid-
ing recommendations on how to handle them appropriately. All requirements (in any
sense of the word) are important in some way—they just need to be understand in
the context of their meaning. When working with critical and dependable systems,
careful management of these different types of requirements is crucial, since each
influences dependability in different ways.

For additional clarification, let us refer to IEEE Std. 830-1998—IEEE Recom-
mended Practice for Software Requirements Specifications[15]:

“A requirement specifies an externally visible function or attribute of a system.”

This definition narrows the scope considerably. Instead of using the term “require-
ment” to refer to anything that is “required,” IEEE Std. 830-1998 defines it to be a
specification of externally-visible behavior. That is, requirements deal with the in-
puts and the outputs of the system, but not what happens inside the system. We need

96 W.G. BAIL

to be clear about how we use this term however, since the word actually refers to
several different concepts.

For the context of this chapter, we assert that for any specific product, the be-
havioral requirements for that product specify its externally visible behavior, that is,
behavior as seen by other systems outside of the system of interest.

3.2 Derivation of Requirements

In understanding how we need to manage requirements, it is important to under-
stand where requirements come from and how they evolve from general concepts to
clearly defined behaviors.

Overall there are six types of activities that are involved in creating require-
ments. These are not sequential but rather interdependent. Not all of these would
be performed for every system. Some may have been completed, either explicitly or
implicitly, beforehand. This may be the case for systems with clearly defined needs
where a lot of rationale and trade studies would be wasted effort. Many systems how-
ever need a complete requirements analysis to ensure that the system is appropriate
and dependable.

The six activities are:

• Identify the need for the system.

• Characterize the operational environment.

• Select a strategy to satisfy the needs.

• Define the capabilities.

• Define the way the system will be used.

• Define the requirements.

3.2.1 Identify the Need for the System

The purpose of this activity is to determine why a system is required. Systems
are built in order to provide automated services that cannot easily or efficiently be
satisfied by other means. These needs can range from being very simple (a thermo-
stat to regulate temperature in a room) to very complicated (avionics wing surface
controls for aircraft). As a first step, it is important to identify the benefits of relying
on a system as balanced against the risks associated with any potential failures of the
system. If the benefits are not clear and compelling, the decision to buy or build a
system might not be appropriate. In many situations this decision is easy—an author
would simply buy a word processing system in order to write the next great novel.
In other cases, however, the decision might not be as straightforward. The cost of

REQUIREMENTS MANAGEMENT FOR DEPENDABLE SOFTWARE SYSTEMS 97

either building or buying a system might exceed the benefits that would be realized
from using it. When completing this activity, either the need for the system has been
identified and justified, or there is no need, and no further action is required. Note
that there is no decision yet regarding whether a system should be built, an existing
system should be purchased, or an existing system should be modified. The strategy
for how to achieve the services has not yet been defined.

As an example, suppose that a manager for a particular building is being required
to keep a record of the environmental conditions in his building. He may already
have a computerized building environmental control system, but this system might
not provide for keeping records. He therefore has a need to collect the appropriate
information regarding the building’s environment.

3.2.2 Characterize the Operational Environment

The purpose of this activity is to identify and define the characteristics of the en-
vironment in which the system will operate. This includes other systems with which
the system will interact, physical attributes (temperature, weather, sensors, control
devices,. . .), and any human operators and users. This information is crucial since
systems rarely exist in a vacuum (unless they are on spacecraft). As such, it is im-
portant to understand the environment so that the role of the system and how it will
interoperate with other parts of the environment can be more clearly defined. Once
developed, the characterization will assist in understanding the roles of the various
elements in the environment, will support devising a strategy to provide the needed
services, and will assist in developing the user scenarios. In many situations, the
environment will already be well understood. In others, the environment will con-
tain many unknowns, especially if the system is to be used in a new environment.
Developing requirements in the presence of many unknowns is a risky activity.

Continuing the example of the building manager, the result of characterizing the
relevant elements of the operational environment may look likeFig. 5. Note that this
picture only illustrates the major items in the environment. A full description of the
environment would include the operational characteristics of each item, including
input/output descriptions, formats of messages, patterns of activity, etc.

3.2.3 Select a Strategy to Satisfy the Needs

This activity could be also described as defining the overall systems architecture.
The goal is to describe the various software and hardware assets, as well as the people
who will compose the system, that will, as a whole, satisfy the needs that had been
identified. There will generally be several alternative approaches to how the sys-
tem can be designed. The developers will perform tradeoffs among the alternatives,
weighing the benefits and weaknesses of each relative to fulfilling the users’ needs.

98 W.G. BAIL

FIG. 5. Example of an operational environment.

Some alternatives may take advantage of assets already present in the operational en-
vironment. If existing systems can provide some or all of the services directly, there
is no sense in developing a new system. Other alternatives may require that one or
more new systems may have to be built that will provide the needed services. The
strategy needs to be closely coordinated with the operational environment to ensure
that all viable solutions are identified and considered.

Revisiting our building manager, after considering the possible alternatives for
satisfying the need for a way to collect the history of, and create reports for, the
building environment, he may decide to augment the existing systems with two new
systems, one to record the environmental data, the other to create reports based on
the histories. This system design is shown inFig. 6.

3.2.4 Define the Capabilities

Once the overall strategy has been formulated, the next step is to identify the spe-
cific capabilities that will have to be provided by each part of the system environment.
At this point, the requirements have not yet been refined to the point where they can
be viewed as actual requirements. Rather, they are most commonly described in gen-
eral terms that can be referred to ascapabilities. Based on the strategy developed
previously, this assignment can take different forms. If the strategy involves using
existing systems, the capabilities can be assigned to the existing systems. If the strat-
egy requires modifying existing systems, the nature of these changes needs to be
defined. Finally, if one or more new systems are needed, then the necessary newly-
defined capabilities need to be allocated to these systems. The product of this stage
is a definition of a set of capabilities and a mapping of these capabilities to various
assets, both old and new, in the overall operational environment. This stage is an ad-
ditional refinement of the systems design, since it expands on the initial design by
more precisely describing the individual systems that form the architecture and the

REQUIREMENTS MANAGEMENT FOR DEPENDABLE SOFTWARE SYSTEMS 99

FIG. 6. Overall strategy (system design).

relationships between the systems. Just as with the previous activity, this stage will
involve performing tradeoffs among the various alternatives.

Continuing our example, our building manager may have defined the capabilities
as follows:

• The Data Recording System will be capable of sampling the environmental data
as measured by the Environment Control System, and saving this information
for future use.

• The Reporting System will be capable of creating reports based on the historic
data, and printing these for the building manager.

• The Environment Control System will retain its current capabilities, which will
be augmented by the capability of providing its real-time environmental data to
the Data Recording System.

3.2.5 Define the Operational Scenarios

This activity captures and describes the different ways that the system will oper-
ate, including how the users will interact with it. Various alternative situations will be
identified, with the goal of describing as many possible modes of operations as fea-
sible. These descriptions will form the basis for more detailed operational scenarios.
The product of this activity is a characterization of the expected ways that the users

100 W.G. BAIL

(including other systems) will interact with the product, to satisfy the needs identi-
fied previously. The form of the descriptions may be in a formal notation[25], or it
may be in English, depending on the desired rigor. By developing these scenarios, a
better understanding of what the system is to do can be achieved. Often, such sce-
narios reveal modes of operation that would otherwise have gone unspecified, only
to occur during operation, potentially causing a system failure.

3.2.6 Define the Requirements

The purpose of this activity is to define the actual behaviors of the system. Ad-
ditional detail is added to the capabilities, providing sufficient information to allow
development to proceed. Generally, the behaviors are first defined in a general form,
and are refined until they become exact definitions.

There is an interesting interplay here between the various levels of the system. We
have requirements for the system, for the subsystems, and for the components within
each subsystem. Each set consists of true requirements, in that they define externally
visible behavior. But the items for which the requirements are allocated differ. This
observation is further analyzed in the next section. At this stage, there needs to be
a great deal of detail in the descriptions of the behaviors. The building manager, for
example, will know the exact key strokes needed to create a report, and will know
the various options for the format of the reports.

3.3 Hierarchies of Requirements

One important feature of this process is the prominent role played by trade-off
analyses. As each stage is completed, the degrees of freedom available to the de-
veloper are narrowed as they analyze each alternative and weigh the advantages and
disadvantages of each alternative. The general flow of this process can be illustrated
as shown inFig. 7.

As this process flows from the system level down to the system design level, we
are creating different levels of requirements. The first set defined are those for the
overall system. Next we define requirements for each subsystem, and then for each
of the components within that subsystem (if there are subsystems). The requirements
for the system define the behavior visible to observers outside of the system. At this
level, the behaviors of each of the subsystems are essentially hidden, although some
of these subsystems may have interfaces directly to the “outside.”Figure 8illustrates
this concept.

For any specific system/subsystem/component, its design consists of two closely
related items:

REQUIREMENTS MANAGEMENT FOR DEPENDABLE SOFTWARE SYSTEMS 101

F
IG

.
7

.
S

eq
ue

nc
e

of
tr

ad
eo

ffs
.

102
W

.G
.B

A
IL

FIG. 8. Components within a system.

REQUIREMENTS MANAGEMENT FOR DEPENDABLE SOFTWARE SYSTEMS 103

• the requirementsfor each of its constituent components (defining the behavior
of the components);

• the interrelationshipsbetween the components. That is, the way that the com-
ponents interact to fulfill the behaviors required for the component.

In particular, at the system level, the interaction of its subsystems produces the be-
havior of parent component as a composition.

At each level, we will produce a set of requirements that describe the behavior
at that level. We will then end up with requirements at the system level, at each
subsystem level, and at each component level, as seen inFig. 9.

When systems are developed, one common effect is that the system requirements
are typically defined at a less-precise level than the software requirements, partic-
ularly for those behaviors that will be produced by the software. As development
proceeds, these requirements will become more precise. Unfortunately, it is not a
common practice to maintain the system requirements documentation up to date to
reflect this refinement.

When we document requirements, we need to be clear about to which level and to
which component each requirement applies. Failure to do so is likely to cause confu-
sion when the system is being developed. For large, complex systems, the activities
described above (particularly steps 4, 5, and 6) are repeated several times as each suc-
cessive layer of the system is defined. It is crucial to allow sufficient time for each
requirement analysis activity to operate. For example, attempts to short-circuit devel-
opment schedule by providing system requirements directly to software developers
and skipping the software-level requirements analysis, is a false savings. Generally,
the system-level requirements are not in a form or level of maturity appropriate for
initiating implementation.Figure 10illustrates a sequence that supports this concept.

For the purpose of this chapter, we will focus primarily on two different levels of
requirements:

• thesystem requirements, defined for the entire system to be produced including
hardware, software, and perhaps human operators;

• thesoftware requirements, defined for the software components that are part of
the overall system.

4. Categories of Requirements

As suggested by IEEE Std. 610.12-1990, there are several different categories of
requirements. The identification of these categories vary across industry (for exam-
ple [12]). However, the categories most commonly used are:

104
W

.G
.B

A
IL

FIG. 9. Levels of requirements.

REQUIREMENTS MANAGEMENT FOR DEPENDABLE SOFTWARE SYSTEMS 105

FIG. 10. Relationship of system requirements analysis to software requirements analysis.

• Behavioral requirements—these are associated with externally visible behav-
iors of a system. They are also referred to as functional specifications or func-
tional requirements.

• Quality of construction requirements—these address those characteristics of a
system that are associated with the system’s construction. They are qualita-
tive attributes of an item, such as usability and portability. As such, they are
often not directly observable, and usually deal with how the product can be
handled.

• Implementation requirements—these are also calledimplementation constraints
anddesign constraints—they consist of restrictions placed on developers that
constrain the form and style of how they built the system, thereby limiting their
design space. For example, the developers may be required to use a specific
algorithm, a customer-preferred design style, or specific reusable components,
both COTS and others.

• Programmatic requirements—these deal with the terms and conditions imposed
as a part of a contract and are exclusive of behavioral requirements. They gen-
erally deal with items like cost, schedule, and organizational structures. These
are also often calledprogrammatic requirements.

We will look at each of these categories in more detail in the following sections.

106 W.G. BAIL

4.1 Behavioral Requirements
This category represents what might be called the core of requirements that we

work with for systems. Behavioral requirements define the visible behavior of the
products, specifically the services that the system is to deliver. These requirements
specify behavior that is observable without having to look inside of the system. As
such, all requirements of this type are (potentially) observable or measurable by test-
ing. That is, we can verify their correct implementation in a software product by
testing them. We execute the product, apply inputs, and observe the outputs. We then
compare the outputs to what was expected as defined by the requirements themselves
such as an oracle.

There are seven different types of behavioral requirements:

• Functional • Resource utilization
• Interface • Trustworthiness
• Temporal • Usability
• Capacity

4.1.1 Functional Requirements

This type of requirement addresses functional input-output behavior that can be
expressed in terms of responses to stimuli. That is, for every input that is applied to
a component, a specific output is defined

output= fn (input)

For example, the functional requirements for a module could be defined as a table of
values (seeTable IV).

Usually the function to be performed is more complicated than this example, and
cannot expressed simply as a table of inputs and outputs. In some cases, the function
can be expressed in mathematical terms:

output= 5 ∗ square-root (input)

The table format can be combined with mathematical expressions (seeTable V).

TABLE IV
EXAMPLE—TABLE OF VALUES

Input Output

1 5
2 3
3 7
otherwise 0

TABLE V
EXAMPLE—TABLE WITH FUNCTIONS

Input Output

< 0 0
� 0 square-root (input)

REQUIREMENTS MANAGEMENT FOR DEPENDABLE SOFTWARE SYSTEMS 107

Often, the required behavior is too complex to be defined in terms of just in-
put/output. In the examples above, the behavior is memory-less. That is, the output is
strictly a function of the current input. However, many interesting behaviors depend
not just on the current inputs, but also on the history of inputs. Such behaviors can be
described using more sophisticated techniques such as state transition tables, formal
methods, etc. They can also be defined using less sophisticated techniques, such as
English. The less precisely they are defined, the more the likelihood for misinterpre-
tation.

The key aspect of a functional requirement is that as a result of an input, there is
an observable output. Consider the following statement:

“Whenever a new temperature input is received, the software will compute a
running average of the temperatures received.”

This statement describes no externally visible behavior. As such it cannot be directly
tested. This statement therefore is not a functional requirement, but rather an imple-
mentation constraint (see Section4.3).

4.1.2 Interface Requirements
Requirements of this type deal with the characteristics of system’s interfaces, that

is, the windows through which the outside world views the system (and vice versa).
Interfaces fall into three broad types, as illustrated inFig. 11:

• Peer-to-peer interfaces—through which the system interacts and exchanges in-
formation with other systems.

• User interfaces—that interact with human operators. This type includes design
of user interface displays.

• Computing infrastructure interfaces—that deal with capabilities provided by
lower-level elements, needed by the system for operation. Examples include
messaging middleware APIs and operating system interfaces.

Interfaces are particularly important. Failure to adequately define system interfaces
has resulted at times in rather dramatic and expensive failures. For example, NASA’s
Mars Polar Orbiter crashed onto the surface of Mars partially because of an interface
error.

4.1.3 Temporal Requirements
Temporal requirements deal with observable behaviors that are associated with

time. They are usually associated with specific functional requirements by establish-
ing bounds on the latency of the responses and actions taken by the system. Sample
requirements of this type include those that focus onspeed, latency, andthroughput
of functional behaviors. Examples include:

108 W.G. BAIL

FIG. 11. Types of interfaces.

• Speed—how quickly functions are performed, e.g., “Display refreshed screen
every 0.5 sec.”

• Latency—how long processing takes for functions, e.g., “Transmit filtered data
within 2 sec of receiving unfiltered data.”

• Throughput—how much processing can take place in a specific period of time,
e.g., “Process 10,000 database requests per hour.”

4.1.4 Capacity Requirements

Capacity requirements deal with the amount of information or services that can
be handled by the component or system. These are important since they establish
the way that the system can be used. If the capacity needs are not clearly defined,
developers might underestimate what is needed and the users will find the system
unusable. On the other hand, developers might provide too many resources, making
the system expensive and resource-intensive. Examples include:

• “The system shall be able to support 25 simultaneous users.”

• “The system shall be able to manage up to 20,000 employee records.”

4.1.5 Resource Utilization

This type of requirement addresses the infrastructure resources needed by the sys-
tem as it is operating. In many cases, a product may be introduced into an existing

REQUIREMENTS MANAGEMENT FOR DEPENDABLE SOFTWARE SYSTEMS 109

environment and must share resources with other systems. In other cases, due to
constraints on budget, hardware availability, etc., there may be limitations on com-
puter resources that are available and can be used. When buying a shrink-wrapped
software application at a store, the boxes containing the application usually de-
scribe the expected operating environment. A product might state that it can operate
on Microsoft� Windows�1 2000 or Microsoft� Windows� XP, on an Intel� Pen-
tium�2-based computer with a minimum of 250 MB memory and 10 MB available
disk storage. Typical requirements of this type include:

• Memory usage—e.g., “The system may use no more than 250 MB core memory
during execution.” (also known asmainmemory orRAMmemory).

• Processor usage—e.g., “The system has a limit of 20% of total processor cycles
(loading) average over 24 hours, and a limit of 60% of total processor cycles
peak.”

• Storage usage—e.g., “The system shall use no more than 5 GB disk storage for
logging data.”

• Communication usage—e.g., “The system shall use no more than 50% of the
available channel capacity at any time during operation.”

4.1.6 Trustworthiness

Trustworthiness requirements describe the desired levels of confidence that users
can place on the product’s ability to provide their required services. There require-
ments are sometimes referred to as “dependability” requirements, but to avoid confu-
sion with the dependability attributes described earlier, we will use a different term.
In general requirements of this type cannot be verified directly despite their being ex-
ternally visible. This is because they express levels of confidence that are not directly
measurable, and in order to verify that they have been successfully implemented,
a collection of observations must be made that, taken as a whole, is used to form an
argument of success. No single test can verify the presence of the requirement.

For some products, the level of trustworthiness might not be a significant concern,
either because the impact of failure might not be significant, or because the envi-
ronment in which the product is being used can tolerate failures. For other products
however, being able to trust the delivery of service is of significant concern because
of the role that the system plays. Whenever the services provided by the system are
critically needed, the requirements become more critical.

1 Microsoft� and Windows� are registered trademarks of Microsoft Inc. in the United States and/or
other countries.

2 Intel� and Pentium� are registered trademarks of Intel Corporation or its subsidiaries in the United
States and other countries.

110 W.G. BAIL

Of the dependability attributes described in Section2 (Dependability and Infor-
mation Assurance) five are associated with trustworthiness:

• Reliability.

• Availability.

• Safety.

• Confidentiality.

• Integrity (partial association).

The remaining dependability attributes (maintainability, authentication, and non-
repudiation) are not considered to be trustworthiness requirements.

• Maintainability is a quality requirement. This type is described in Section4.2.

• Authenticationandnon-repudiationare functional requirements since they ad-
dress specific behaviors.

Integrityhas a mixed relationship since it covers two aspects of a system:

• Integrity of operationis a feature of a system that protects it from being cor-
rupted while it is operational. With the rise of viruses, worms, spyware, and
other insidious software that target operational systems, systems must have pro-
tection against being infiltrated by such threats. Systems must also be able to
detect and counter attempts to modify data used by the system for operation.
This aspect of integrity is a trustworthiness requirement, because the negative
effects are visible externally, but the ability to resist such attacks cannot be
proven with certainty through testing.

• Integrity of constructionis a feature of a system’s design and construction that
deals with the ability of the system’s resources to be protected from unau-
thorized modification. Such resources include its source code, its executable
modules, its internal databases, and other artifacts that form the system itself.
This aspect of integrity is quality requirement (Section4.2).

When we work with systems that are expected to evidence high levels of dependabil-
ity, trustworthiness requirements are of primary importance.

4.1.7 Usability

Usability requirements deal with how easy it is for an operator to make use of the
system. Because there are two basic types of operators (humans and other systems),
there are different approaches to expressing these requirements. In general, usability
when applied to system-to-system interfaces deals with the complexity of the inter-
faces, their ease of implementation, and their efficiency of operation. When applied

REQUIREMENTS MANAGEMENT FOR DEPENDABLE SOFTWARE SYSTEMS 111

to human operators, usability deals with the complexity of the interfaces relative to
the how operators can operate with them, the ease of learning, and the efficiencies
with which operators can exploit the services provided by the system.

Usability requirements cannot be directed verified, since they involve subjective
behaviors that often have to be collected over time.

4.2 Quality of Construction Requirements
The second major category of requirements are those that address the quality of the

construction of the software (as opposed to the quality of any of the associated work
products, such as the requirements documents). These requirements do not specifi-
cally address behavioral attributes of the product, but rather, they deal with how the
product can be handled. They are affected by the design and code patterns used to
develop the system, since these patterns influence how we can work with the product.
Quality of construction requirements are not directly measurable and in order to gain
insight into their implementation, we need to rely on indirect measures that help us
infer the level of quality of the component. These measures typically focus on iden-
tifying patterns within the code. Evaluation of how well a specific system achieves
these requirements tends to be based on subjective and heuristic criteria.

In the literature you may see many different kinds of factors included in this cat-
egory. However, many of the popular ones belong in other categories because they
focus on different aspects of the system. For example,usability is often viewed as a
quality requirement. In fact, it is better associated with the behavioral requirements
since it deals with externally visible behaviors of the system. It is important to cor-
rectly categorize requirements so that they can be managed appropriately throughout
development, test, and operation.

Some examples of quality requirements include:

• Portability—the ease with which a product can be ported from one platform to
another. An example would be moving a product that executes on a Windows�

XP / Intel� Pentium� platform, to run on an Apple� Macintosh� platform run-
ning OS�3 X. Companies who develop and sell personal computer applications
often need to provide their products on both platforms. To make this porting
easier, they design their software to minimize dependencies on the underlying
computer and operating system. These companies define a portability require-
ment for their products. The degree to which this factor is achieved in a system
affects the effort required to move the product from one platform to another.

• Maintainability—the ease with which a product can be fixed when defects are
discovered. Since complex software systems always have defects, requirements

3 Apple�, Macintosh�, and Mac OS� are trademarks of Apple Computer, Inc. registered in the U.S.
and other countries.

112 W.G. BAIL

are placed on the system that they be maintainable. This places a need on the
developers to design the system in such a way that repairs are facilitated. This is
often known as design for repair (DFR). Developer of hardware products, such
as irons, toasters, and automobiles have another approach known as design for
assembly (DFA). In this latter approach, the focus is on designing the product
to make it easier to build. DFA and DFR are often opposing goals. In software,
since the system is complete once it is designed, DFA has traditionally not been
an issue. The degree to which a system is maintainable affects the effort required
to correct defects.

• Extensibility—the ease with which product can be enhanced with new function-
ality. Systems are rarely static. Once delivered and placed into service, users
typically make suggestions for improvements. The environments in which sys-
tems operate are seldom static. Changes in the environment usually require
changes to the system. Commercial products add new features in order to stay
competitive with other products. If a system is designed to be extensible, such
changes can be achieved cost effectively. If a system is not extensible, at times
it may be more cost effective to build a new system from scratch than to attempt
to extend the current one.

• Reusability—the ease with which the product or portions of the product can be
reused in the development of other systems. Note that the focus is on the ease
with which the code can be borrowed and adapted. Reusability associated with
the selection of functional capabilities is a behavioral requirement.

• Integrity (partial association)—as described in Section4.1.6(Trustworthiness
Requirements), integrity has a mixed relationship since it covers two aspects of
a system: integrity of operation and integrity of construction. When the focus is
on the second category, integrity is a quality requirement since it addresses the
design and construction of the product itself.

4.3 Implementation Requirements

This category deals with restrictions that are placed on developers. These restric-
tions focus on activities that take place during the design and development of the
software system, and serve to limit the degrees of freedom available for product de-
velopment. Such restrictions fall into two broad categories:

• restrictions on theproduct design and implementation;

• restrictions on theprocesses and development approachesused.

The requirements in this category are also referred to asdesign constraintsor imple-
mentation constraints.

REQUIREMENTS MANAGEMENT FOR DEPENDABLE SOFTWARE SYSTEMS 113

Requirements that fall into this category do not directly address externally visi-
ble behavior, although they have at times a profound influence on product behavior.
Rather, they focus on restricting the design space, limiting the alternatives available
to the developers. Generally, for any specific set of requirements, there are many dif-
ferent ways that they could be implemented. The design process performs tradeoffs
on these alternatives and selects the designs that make the most sense. By providing
implementation requirements, this design space is reduced. Often, such constraints
are defined in order to enhance the quality of construction of the product.

For restrictions on the product design and implementation, there are two main
types:

• Design constraints—restrictions on design styles that can be used.

• Implementation constraints—restrictions on coding or construction.

Some examples of common types of implementation requirements are:

• Use of specific software components—a customer may require that a specific
software package be used as a part of the system, based on previous experience
with that product or based on a desire to standardize. Note however that requir-
ing some types of components might not fall into this category. For example,
if a customer requires the use of the VxWorks�4 operating system as part of
the computing infrastructure, this requirement may be an interface requirement,
since it enforces a specific external interface.

• Imposition of specific algorithms—at times, the customer may require that spe-
cific algorithms be used to certain functions. For example, the customer may
have developed their own algorithm for speech recognition, and desires to have
this algorithm used in the system. Note that at times, a customer may provide
an algorithm as a means of defining behavior. If it is not mandated that the al-
gorithm be used as is, but rather be used as a model of the functional behavior,
then providing an algorithm is a behavioral requirement.

• Required use of specific designs and design patterns—customers may require
that specific architecture styles be followed, or that specific design patterns be
used. This constraint may range from a statement that the system is to have
a “layered design,” to a statement that the system shall employ fault tolerant
features. This latter example typically occurs when the system needs to have
high levels of dependability. Another example is the constraint that the devel-
opers need to define a global error handling policy for the system. This too is
typically employed for dependable system development.

4 VxWorks� is a registered trademark of Wind River Systems, Inc.

114 W.G. BAIL

• Imposition of specific coding styles—customers may require that specific coding
styles be used. This constraint may arise from experience in similar systems
where certain coding styles were proved to have advantages. It may also be
based on the desire to avoid error-prone constructs in the code. Often, this type
of constraint is specified using a coding style manual.

Constraints on the processes and development approaches usually take the form of
specifying the process model to be followed, specific development techniques to be
applied, and certain tools that need to be employed.

4.4 Programmatic Requirements

The fourth major category of requirements address the mechanics of developing
the product. These requirements are often expressed as terms and conditions (T&Cs)
imposed as a part of a contract, and define available resources as well as logistical
restrictions. Some typical examples include:

• Costs—e.g., the project has $10,000,000 to cover costs for developing the prod-
uct.

• Schedules—e.g., the product will be delivered in 18 months from the date of
signing the contract.

• Organizational structures—e.g., the project will be managed from the software
engineering branch of the home office.

• Key people—e.g.,
– the chief scientist of the developing organization shall serve as the lead soft-

ware engineer.

– the nephew of the procurer’s wife shall serve as the lead tester.

• Locations—e.g., the development work shall be performed at the San Diego
facilities, proximate to the customer’s main office.

While these are required characteristics of development effort, they are not charac-
teristics of the product. In particular, while such requirements do not directly address
desired levels of dependability, they often directly affect the ability of the develop-
ment effort to achieve those levels. For example, if not enough time or budget is
provided, the ability of the development team to achieve high levels of dependabil-
ity, or even to deliver the product, may be affected to the detriment of the system.
A clear description of programmatic requirements is essential for a project to en-
sure that they are able to trade-off expected requirements and product quality against
resources available.

REQUIREMENTS MANAGEMENT FOR DEPENDABLE SOFTWARE SYSTEMS 115

5. Handling Requirements

Each of the different categories of requirements defined in the previous section
has a different role in the development process. Because their roles vary, the way that
each requirement is handled needs to vary. Failure to recognize these differences gen-
erally results in wasted effort and the potential for embedded defects. Understanding
the nature of how the categories affect the different activities in the development
process is therefore key to planning and managing projects.

5.1 Overview of Development Processes
As a general view, software development consists of six different kinds of activi-

ties: requirements development, design, code, construction, verification, and valida-
tion (V&V). These can be characterized as follows:

• Requirements development—the activity which defines the requirements for the
product to be built.

• Design—the activity which creates the structure of the system, from the
architectural-level design of the product, through the detailed design down to
the code units. The product of this phase is a structure consisting of compo-
nents and interactions between these components.

• Coding—development of the source code.

• Construction—also known as integration. This is the activity that involves
putting the various pieces (components) together, forming larger and larger ag-
gregates, until the entire system has been formed.

• Verification—the activities that examine the various intermediate and final prod-
ucts that are created during development to determine if they meet the criteria
established for them, such as required behavior, adherence to standards, and so
on. This is also calleddevelopmental test.

• Validation—the activities that ensure the entire completed product is perform-
ing as required, based on its behavior as seen through its external interfaces.
This is also calledproduct/acceptance test.

Verification and validation are very similar activities. They differ principally where
they focus their attention. Verification focuses on the intermediate products that are
created during development, while validation focuses on the final product itself.

There are several different techniques used for V&V. The applicability of these
techniques vary according to the category of requirement that needs to be verified.
We will not examine these to any detail since there are ample resources on the topic,
but we will describe them at a high level. V&V techniques fall into five general
categories:

116 W.G. BAIL

• Testing—an activity in which the product is executed and challenged with var-
ious stimuli to determine its behavior. The responses are then compared to
expected responses to determine degree of adherence to requirements. In some
cases, the responses of the system may be examined directly. In other cases,
a detailed analysis of the results may have to be performed, perhaps over the
course of several tests. The execution environment may include the actual op-
erational environment in which the system will be deployed, or it may include
simulations of other systems in the environment. There are two flavors to testing
based on the ability to determine behavioral conformance:
– Definitive—the results are quantitative and can be compared directly to the

requirements. The results can be stated as pass/fail.

– Analytic—used to address requirements that cannot be definitively verified,
but for which mathematical and other forms of analysis can be applied to
make an argument for compliance. The results of testing, perhaps over the
span of many tests, provide data that support an argument for either pass
or fail, but do not provide an absolute determination of conformance. Such
arguments, generally made with mathematical analyses, serve to establish the
levels of trust that can be placed on the system’s performance. For example,
to verify that a system has the required levels of reliability, the system is
executed, the results collected and analyzed to infer the achieved level of
reliability.

• Analysis—an activity in which attributes of the system are examined ana-
lytically, often supported mathematically, and the results used to support an
argument of compliance and to establish levels of trust. Techniques in this
category do not rely on testing because the requirements that are addressed
generally cannot be verified, either efficiently or at all, with testing. The system
attributes generally used for analysis include the system design, its code, and
system models.

• Demonstration—an activity in which the product itself is manipulated in some
way to demonstrate that it satisfies a qualitative requirement. To show that a
product is portable, for example, a demonstration of rehosting the product from
one computer to another may be performed.

• Inspection—a visual examination of the product, its documentation, and other
associated artifacts to verify conformance to requirements. For example, a soft-
ware component may be inspected to verify that makes no operating calls other
than to a POSIX�-compliant5 interface.

5 POSIX� is an acronym for the Portable Operating System Interface. POSIX� is a registered trade-
mark of the IEEE�.

REQUIREMENTS MANAGEMENT FOR DEPENDABLE SOFTWARE SYSTEMS 117

• Process analysis—the activity that examines the techniques and processes used
by the developers to determine if they are adhering to the project standards
and plans. This may involve examination of the various intermediate and final
products as well as programmatic artifacts and records.

5.2 Effect of Requirements on Development Processes

Each of the different categories and types of requirements affect the development
activities in different ways. They affect the development processes selected by the
developers, the design, the coding styles, and the way that the system is tested. It is
important to identify the type of each requirement so that its handling by the devel-
opment team can be more easily identified.

Behavioral requirements are provided as input to the design and code activities.
They exert indirect control over these activities, but do not directly control the way
the developers build the product. That is, these requirements do not restrict the
degrees of freedom available to the developers. Most behavioral requirements are
generally verified using definitive and analytic testing approaches, because they are
defined as observable behaviors. The exceptions are for trustworthiness and usability
requirements which generally need to be verified using analytic testing strategies.
For example, a system’s usability may be measured by performing time-and-motion
studies while operators work with the system as it is operating.

The behavioral requirements have a direct effect on the test activities. Each such
requirement has a defined input/output pattern that can be directly tested. In many
cases, the testers may have to employ sophisticated tools, such as data extraction
devices, to perform the tests. It is important to note that any data that is extracted
is obtained from observing the inputs to, and the outputs from, the product under
test. If it is necessary to extract data that is internal to the product under test, then
the requirement is not easily testable and needs to be rewritten. In some cases, the
verification of correct operation requires post-test analysis. Again, the exceptions are
associated with the trustworthiness and the usability requirements.

Quality requirements are verified using demonstrations and inspections. These ap-
proaches are necessary because this type of requirement deals with how the system
product can be handled. For example, a developer may demonstrate a system’s de-
gree of portability by demonstrating how the source code can be modified to run on a
different host. The portability may also be verified by inspecting the design and code
for the presence of design patterns that enhance the portability aspects of the system.

Implementation requirements are verified using both inspection techniques and
process analyses. They cannot be verified by system testing, although they can be
verified using lower-level testing of the components within the system.

Programmatic requirements are verified by inspection and process analysis.

118 W.G. BAIL

TABLE VI
TYPES OFREQUIREMENTS ANDTHEIR VERIFICATION APPROACHES

Verification approach

Type of
requirement

Definitive
testing

Analytic
testing

Analysis Demon-
stration

Inspection Process
analysis

Behavioral
Functional � � � �

Interface � �

Temporal � � � �

Capacity � � � �

Resource utilization � � � �

Trustworthiness � � � �

Usability � �

Quality � � �

Implementation constraints
Product constraint �

Process constraint � �

Programmatic � �

Table VIsummarizes the effect of each type of requirement on how verification is
to be performed.

6. Requirements Quality Attributes

How do we know that our system requirements are good enough? What guid-
ance is there to help us define our requirements to ensure that they will be ade-
quate to develop the system, and will avoid problems later on in the development
process?

To start, we should listen to the collected advice of those who have had expe-
rience in developing requirements for projects. Especially valuable is the advice
of those who encountered problems—their lessons-learned can help us avoid prob-
lems in the future. This advice is reported in various journals and conferences, and
forms the basis for industry best practice. One good additional source of advice is
the IEEE Recommended Practice for Software Requirements Specifications, IEEE
Std. 830-1998[15]. This publication provides a set of quality factors for require-
ments specifications for systems. These factors are based on industry experiences,
and provide a sound basis for evaluating the requirements for any project. If we fail
to infuse our requirements with these qualities, we run a severe risk of encountering
significant difficulties during development. For dependable systems, this risk is even
more substantial since the effect of failure for such systems is likely to be severe.

REQUIREMENTS MANAGEMENT FOR DEPENDABLE SOFTWARE SYSTEMS 119

The IEEE Recommended Practice lists nine criteria against which a requirements
package can be assessed. While they may seem obvious, it is important to apply
them to requirements specifications, such as when performing peer reviews. Systems
that need to be highly dependable are especially sensitive to the quality of their re-
quirements. As such, understanding these attributes and properly applying them is
crucial. Some of these attributes are to be evaluated against the entire requirements
specification as a whole, while others are to be evaluated against individual require-
ments.

The nine attributes are:

• Complete • Modifiable
• Unambiguous • Traceable
• Correct • Ranked for importance
• Consistent • Ranked for stability
• Verifiable

Each of these factors is briefly described below.

6.1 Complete

For any specific product (system, subsystem, component,. . .), its set of require-
ments is considered to be complete if the requirements, taken as a whole, describe
all aspects of the system to be built. Note that this does not say that all important
requirements are defined, or all behavioral requirements, but ratherall requirements.

It is generally not possible, just from an engineering analysis, to determine if all
required behaviors are described (Fig. 12). We cannot envision requirements that the
user has forgotten or hidden. New ideas for behaviors may be thought of at almost
any point in development. This situation is common for many projects, driving de-
velopers crazy as they try to keep up with the new requirements being provided. The
generation of previously-undefined functions is a key driver of requirements volatil-
ity.

One strategy is to engage in extensive dialog with the customers and future users
of the system.Requirements elicitationis one technique that helps in ensuring that
the requirements identify everything that is needed. We may also need to understand
the domain for which the system will be used, and to analyze the environment in
which the system will be used. The users and customers may be simply unaware of
some requirements that are needed.

While it is impossible to imagine all possible requirements that are “out-of-the
box,” if the requirements categories described in Section4 are used as a checklist, it
is possible to reduce the likelihood that some requirements will be missed. Applying
Section4 allows us to ensure that all categories of requirements have been consid-

120 W.G. BAIL

FIG. 12. Two aspects of completeness.

ered. For example, by stepping through the categories, we may discover through
elicitation that the customer had not included programmatic requirements (“Forgot
to mention that you have 6 weeks for this project”). Or we may discover that no
interface requirements had been defined.

An easier task is to analyze the requirements already identified and determine if
they are internally complete.

One way to judge completeness is to determine if all ranges and combina-
tions of inputs have been accounted for, including illegal and low probability in-
puts. For dependable systems, this is particularly important since such systems
need to maintain control even in the face of unexpected inputs from the environ-
ment.

For example, consider the sample functional requirement that was presented in
Table V. It may appear to be complete, but what is the required behavior should the
input value be greater than the maximum value that can be represented by the host
computer?

Note that it is possible, and in fact likely, that during the beginning stages of devel-
opment, the requirements will not be complete in the sense described here. This will
occur because not all aspects of all requirements will have been determined. While
this is the case, it is important to explicitly acknowledge the levels of incompleteness
in the requirements specification to ensure that the developers have an expectation
of more information to be supplied, and can design defensively to account for future
changes.

REQUIREMENTS MANAGEMENT FOR DEPENDABLE SOFTWARE SYSTEMS 121

6.2 Unambiguous

This attribute applies primarily to individual requirements but also can include two
or more closely-related requirements. A requirement is unambiguous if it has one and
only one interpretation. By reading such a requirement, if any two knowledgeable
reviewers arrive at different conclusions about what the requirement says, then it is
likely to be ambiguous.

The risk of ambiguity is that it is likely to lead multiple designers in different di-
rections during design and implementation. It is also likely to cause developers to
interpret the requirement in a way that is different from the writers of the require-
ments. The overall result it that the system, once complete may produce incorrect
behavior. Or it may result in excessive effort being expended during system inte-
gration to discover and correct the discrepancies. This raises the risk of unintended
side-effects, anomalies in behavior, and even failures of the system.

Some examples of ambiguous requirements are:

• “The user interface shall be easy to use”—the word “easy” is not clear, and
could interpreted differently by different developers and testers.

• “If channel 1 and channel 2 or channel 3 are active, then the panel light will
be illuminated”—the absence of parentheses does not make it clear whether the
correct interpretation is “(channel 1 and channel 2) or channel 3,” or “channel 1
and (channel 2 or channel 3).”

Some viable strategies that help in reducing ambiguity include

• Use of formal notations.

• Avoidance (or minimization) of natural language.

• Disciplined peer reviews and Fagan inspections.

• Independent review of requirements documents.

• Creation of system models to demonstrate understanding and reveal misunder-
standing.

6.3 Correct

A requirements specification is correct if every requirement stated in the speci-
fication is one that the software shall meet. There should be no requirements that
are inessential and beyond what is needed to implement the needed capabilities.
Correctness ensures consistency with the underlying user needs. A system could be
developed with complete adherence to its assigned requirements, but if these require-
ments do not match the user’s needs, then the system is likely to be worthless[10].

122 W.G. BAIL

Correctness for software specifications also implies agreement with the system
specification, if there is a separate set of system requirements. Often, however, the
system specification does not provide the level of detail that the software specifica-
tions provide. As such, the system requirements could be compliant with the user’s
needs, but the software requirements could contains variances. If this is the case, then
those requirements are not correct.

6.4 Consistent

A requirements specification is consistent if no subset of requirements within the
specification conflict with each other. If there are inconsistencies in the requirements
specification, it is likely that unless detected and corrected, the design of the product
will itself contain inconsistencies. Hopefully, such an inconsistency will be discov-
ered during integration testing, but if it is not, then it represents a latent defect that
may cause failure during operation. As an example of an inconsistency, consider the
following two requirements:

• When the fluid level is� two meters, the pump will operate at 1 gallons per
minute.

• When the fluid level is� two meters, the pump will operate at 5 gallons per
minute.

These two statements conflict regarding what needs to happen when the fluid level
equals exactly two meters.

Some viable strategies that help in ensuring consistency include:

• The use of formal notations that assist in performing consistency checks.

• The use of tools that can automatically perform some levels of verification.

• The use of executable models to demonstrate consistency.

6.5 Verifiable

A requirements specification is verifiable if every requirement contained in the
specification can be verified. In turn, a requirement can be verified if a cost-effective
finite process exists to show that each requirement has been successfully imple-
mented. This means that the behavior defined by the requirement can be observed by
challenging the system with stimuli during execution, and observing the responses,
comparing them with the requirements to determine whether the system conforms to
the requirements.

REQUIREMENTS MANAGEMENT FOR DEPENDABLE SOFTWARE SYSTEMS 123

A common reason why a requirement would not be verifiable is if its description
were ambiguous, vague, or poorly stated. Another common reason is if the behavior
cannot be observed. For example, creating a requirement such as:

“The program will execute for 1,000 years without failure.”

is not likely to be verified, unless the tester gets paid by the hour. For requirements
of this type, arguments can be formed that support a positive verification, but such
acceptance is by inference rather than by direct verification.

One strategy that is used is to include with each requirement a specific test case
that will directly verify that requirement when the test case is provided to the system.
If it is not possible to create such a test case, it is reasonable to conclude that the
requirement is not verifiable.

6.6 Modifiable

A requirements specification is modifiable if changes can be made to the require-
ments without major disruption of the structure of the specification. This quality
attribute is associated with how the requirements document is organized. If de-
velopers use an automated tool, the tool should have features that allow changing
individual requirements, and notifying which other requirements are affected.

Of course, changes can always be made to a requirements document. The key
is that these changes can be made efficiently, without a lot of effort and without
disrupting a large proportion of the requirements document itself. There are several
ways that a requirements specification can be hard to modify:

• If a requirement is described in several places in the document, changes made
to this requirement will necessitate making changes in several places at once.
This raises the likelihood of mistakes being made.

• If several requirements are combined in text, perhaps in a single paragraph or
section, making changes to any one is going to be more difficult.

• If the specification does not have a clear and well-organized structure, it will be
difficult to safely make changes with the assurance that all relevant areas have
been successfully modified.

• If the requirements themselves are intertwined and not clearly differentiated, it
may be difficult to describe them clearly and in a structured manner. This sit-
uation relates to the level of coupling and cohesion between the requirements,
where coupling between requirements is a measure of the degree of interdepen-
dence between them, and cohesion is a measure of how “single-purpose” each
requirement is.

124 W.G. BAIL

Some viable strategies that help in enhancing the modifiability of a set of require-
ments include

• Use of automated tools to manage the structure and content of the document.

• Applying the concepts of low coupling and high cohesion to the structure of the
specification.

6.7 Traceable

A requirements specification is traceable if the origin of each requirement is clear,
and the structure of the specification facilitates the referencing each requirement
within lower-level documentation. Traceability is crucial for a dependable system
since it ensures that the requirements as they are developed are consistent with the
higher-level requirements that serve as the basis for the system. For software require-
ments, this quality indicates that every software requirement must be traceable back
to one of more system requirements. For system requirements, this quality indicates
that every system requirement must be traceable back to a defined capability as ex-
pressed by a user.

When attempting to perform a trace on some software requirements, it is at
times difficult to pinpoint exactly what the precedent system-level requirement
is. In some cases, the mapping is clear and one-to-one. In other cases, however
a software requirement may seen to be out of the blue. At the software level,
many requirements are defined in order to provide support for a system-level re-
quirement. The system level requirement is achieved through the composition of
multiple software-level requirements. Overall there are four flavors to this relation-
ship:

• One-to-one—the software requirement is in direct support of the system re-
quirement, defining the same behavior.

• One-to-many—the system requirement is supported by multiple software re-
quirements, and all of the software requirements must be successfully imple-
mented for the system requirement to be satisfied.

• Many to one—the software requirement supports multiple system level require-
ments. If the software requirement were to be incorrectly implemented, all of
the system requirements would fail.

• Many-to-many—multiple software requirements support multiple system re-
quirements. If any one of the software requirements were to fail, all of the
mapped systems requirements would also fail.

REQUIREMENTS MANAGEMENT FOR DEPENDABLE SOFTWARE SYSTEMS 125

One way of determining the relationship is to hypothesize the effect should any
specific software requirement were to fail. Whichever system requirements fail as a
result are those that depend on that software requirement.

It is not unusual to have a software requirement that seems to bear no relationship
to any specific system requirement. Often, these requirements have a utility basis, in
that they perform some lower-level functions that are needed to support the execution
of higher-level requirements. For example, aheart-beatfunction would fall into this
category. A component might have a requirement to emit a heart-beat signal every
5 seconds to a controller component. The use of such a signal is one approach to
determining if all components in a system are still active. Normally, this function
could not be mapped directly to a specific higher-level component, yet it is essential
if the system is to operate successfully.

6.8 Ranked for Importance

A requirement is ranked for importance if it is assigned a rating of its criticality to
the system, based on the needs of the users. In any system, not all requirements have
the same level of importance. There are usually a set of core behaviors that are key
to supporting the users, and a set of others that have varying levels of utility.

One criterion that is often used is the level of negative impact should the re-
quirement not be correctly implemented and fail during execution. Safety-related
requirements, for example, should be explicitly tagged in a specification to ensure
that the developers can easily identify them. Another useful criterion is expressing
the requirement in terms of a range of acceptable behaviors. One way of providing
a range is to explicitly define it, such as: “The system will provide the geographic
position of the car to within an accuracy of between 10 and 15 meters.” Another ap-
proach is to define a goal for the behavior and also provide a minimum acceptance
behavior, such as: “The system will respond to users’ requests for their bank account
balances within 5 seconds (objective) but at most 10 seconds (threshold).” In this
example, the objective value is the “hoped for” behavior, while the threshold value
is the minimum acceptable.

This attribute is especially important for a dependable system for several reasons:

• It provides a means to characterize the overall desired acceptability of the sys-
tem by ranking the requirements. By weighting the requirements, including
those associated with the dependability attributes, it facilitates the tradeoffs
needed to allow assessing the level of trust to be placed on a specific system,
based on observed behaviors during acceptance testing.

• It allows prioritization of the requirements thereby facilitating the designers
ability to perform tradeoffs during design and development.

126 W.G. BAIL

• It provides a framework for selecting degraded modes of operation.

• It supports selecting areas of focus for investment of developers’ time and effort
to apply more rigorous processes.

• It explicitly allows developers to rank the priority of any defects found during
testing. When systems are tested, anomalies are usually ranked according to a
scheme of priority, with the highest priority failures being corrected first. If the
requirements provide such information, the assignment of priority becomes an
easier, less subjective task.

6.9 Ranked for Stability

A requirement is ranked for stability if its likelihood to change is identified, based
on changing expectations or level of uncertainty in its description.

When defining requirements for a system, it is exceedingly rare for the require-
ments to be complete and final at the beginning of the project. On the contrary, it
is common for requirements to change through the development cycle, with some
changing more rapidly than others. Even when the product is complete, there will be
changes requested, either based on subjective preferences or based on objective mo-
tivations. Typically, users will know in general which requirements are most likely to
change, and which are less likely to change. They will also be able to have a general
idea regarding the extent of possible change that the requirement may undergo.

It is a significant help for developers to have this information. By knowing the
areas where changes are most likely, and knowing where requirements will be most
stable, they can tune the design to be able to accommodate these changes. For ex-
ample, there might be a requirement that states a response to a user input needs to
be within 5 seconds of the operator’s pressing a key. If in addition, the developers
were also told that this latency may change to somewhere between 3 and 7 seconds,
they would be better able to prepare for such a change in the design. If they were not
aware of the likelihood of such a change, they might hard code a dependency making
any changes difficult if the time latency were to be altered.

7. Requirements and Dependability

As described in Section2, the trust placed on a system is based on the expected
delivery of services and the confidence of the user that the system will deliver the
services. The nature of these services need to be defined in the requirements for
that system. Confidence is rarely based on a single factor in the set of requirements.
Typically, it is based on a combination of the factors. Overall customer acceptance

REQUIREMENTS MANAGEMENT FOR DEPENDABLE SOFTWARE SYSTEMS 127

TABLE VII
ACCEPTABILITY FRAMEWORK

Acceptability Factor Requirement Category

Factors Subfactors Category Subcategory

A
cc

ep
ta

bi
lit

y

Dependability attributes Availability Behavioral Dependability
Reliability Behavioral Dependability
Safety Behavioral Functional
Confidentiality Behavioral Functional
Integrity Behavioral Functional
Maintainability Quality

Information assurance Behavioral Authentication
non-repudiation

Dependability means Fault prevention Implementation Product
Fault tolerance Implementation Product
Fault removal Implementation Process
Fault forecasting Implementation Process

Adherence to requirements Behavioral
(correct behavior)
Fitness for purpose Correlation of behavior to user needs
Usability Behavioral Dependability
Cost Programmatic
Delivery schedule Programmatic

is achieved by weighting the various factors, and evaluating the system against the
weighted combination. The combination of items that contribute to the decision to
accept is summarized inTable VII. Note that each factor is strongly associated with
a specific type of requirement as defined in Section4. With this structure, we can
effectively manage the various components of acceptance and handle each factor
appropriately, based on its requirement category.

With this framework, customers can explicitly define what they expect in terms of
services, including the levels of reliance that can be placed on these services. Overall,
each project needs to decide whether the expense and effort involved in infusing high
levels of dependability into a system is justified.

8. Common Requirements Challenges

Within the overall context of developing requirements, projects often face unfore-
seen challenges that affect their ability to completely define the requirements and to
develop a system. Even with the goal of satisfying the IEEE quality factors, it is not
always possible to achieve the full set. Technical challenges and limitations of bud-
get and schedule prevent a full exercise of these concept, even for critical systems

128 W.G. BAIL

that are required to have high levels of dependability. In addition, even a direct ad-
herence to the principles does not guarantee that the requirements will be sound. The
realities of large system engineering place many challenges to our ability to infuse
our requirements with these attributes. Also, it is not always obvious how to achieve
these qualities. In this section we describe some common challenges that projects
typically encounter and provide some recommendations on how to overcome them
as their requirements are created and applied.

In spite of accumulated experience and maturing expertise, the practice of devel-
oping software systems has encountered many bumps in the road. Rather than seeing
a continual improvement in our abilities, we have been struggling to maintain system
qualities. One of the key contributors to this problem is our practices of managing
requirements.

In spite of our advancements and incremental progress, we do not understand the
fundamental theories that drive requirements. We cannot reliably perform forward
engineering and predict system behaviors based on requirements that have been de-
veloped. The state of practice is still hit and miss, poke and probe, code and test.
Yet more and more functionality is being placed into systems. The systems are be-
coming more complex and being placed in positions of trust, including autonomous
systems, medical devices, full digital avionics, and others which, if they fail, might
inflict harm on institutions and individuals.

This situation is especially dire for systems that must be dependable. We must
invest large amounts of effort and time to provide confidence that critical systems
operate as they should. As such, we need to carefully and studiously apply what we
do know.

In this section we discuss several common challenges that projects encounter, to-
gether with some effective solutions that have proven to be effective:

• Requirements not matching users’ real needs.

• Volatile and late-defined requirements.

• Unknown “physics” for embedded systems.

• Fear of excessive detail.

• Test environment does not match operational environment.

• Ineffective and unusable human computer interfaces.

• Over-specified/over-constrained/unbounded.

8.1 Requirements Not Matching Users’ Real Needs

In this situation, the system and software requirements are defined. They are
provided to the developers who then proceed to build the system described in the

REQUIREMENTS MANAGEMENT FOR DEPENDABLE SOFTWARE SYSTEMS 129

requirements. When complete, the system is presented to the users who discover that
it is not usable or does not satisfy all or some of their needs.

An alternate scenario is when the requirements are provided to the users prior to
implementation, but for one reason or another, they did not fully understand what the
requirements actually said. The end effect is the same.

There are several causes for this situation.

• The developers decided that involving the users would not be useful or would
take too much time. Or perhaps they simply forgot.

• The requirements were defined in a form that was not easily understandable to
the user community, perhaps in a formal notation.

• The requirements were presented to the users in an incomplete state. Perhaps
the developers presented to the users the proposed user screens in a static
Microsoft� Powerpoint�6 slide format, and did not proceed into a dynamic
simulation to provide more of an operational flavor.

• The operational environment in which the system was to be used was not ade-
quately analyzed and modeled.

• The modes of use to be followed by the users were not adequately modeled and
analyzed.

The key to acceptance of a dependable system is the awareness of the user commu-
nity of the actual behaviors of the system. Users (should) recognize that all systems
contain faults and evidence anomalous behaviors, and should base acceptance on
whether the system is dependable enough for their specific needs. Likewise, devel-
opers need to understand the basis by which the users make these tradeoffs.

Some recommended solutions include:

• Directly involve users in requirements development.

• Create prototypes and allow users to play with various capabilities.

• Create models of usage patterns.

• Correlate requirements against models of user operations (user scenarios).

8.2 Volatile and Late-Defined Requirements

Rarely for any development project are the system or software requirements fully
defined up front, before development starts. Even for projects which establish such
a goal, requirements typically change over time as new ones creep in, existing ones

6 Microsoft� and Powerpoint� are registered trademarks of Microsoft Inc. in the United States and/or
other countries.

130 W.G. BAIL

are modified, and old ones are removed. This situation is the reality of developing
modern, complex, software-intensive systems. In fact, for most systems, the final
requirements are not fully defined until the product is ready for operation. It is not
until this point when all of the detailed behaviors are fully refined. Of course, most of
these behaviors are typically documented by the code itself, since the requirements
documents are rarely kept up to date at a detailed level.

A typical profile of the completeness of requirements definition is shown in
Fig. 13.

Rather than waste energy and resources in resisting this situation, much like the
force of gravity, we need to understand the reasons why this is the case, and plan our
development projects accordingly to take advantage of it.

In general there are four types of requirements changes that typically take place:

• New requirements areadded—these requirements represent new capabilities
and functions.

• Existing requirements aremodified—no new capabilities result, but there are
changes to the ones already defined.

• Existing requirements aredeleted—representing functions or capabilities no
longer needed.

FIG. 13. Requirements completeness over time.

REQUIREMENTS MANAGEMENT FOR DEPENDABLE SOFTWARE SYSTEMS 131

• Existing incomplete requirements arerefined—details are added to provide
more information about what the expected behavior should be.

The downside of requirements changes is the impact on the developers who will have
to perform rework in order to bring the design and code up to date. As such, projects
must plan for change, and expect that some proportion of changes will take place.
Part of the planning needs to focus on applying appropriate techniques to minimize
the amount of change that will take place.

The actual level of risk to a project for late-changing requirements depends on
the requirement attributes, and the lineage of the requirement to the emerging (or
completed) design. In fact,

• Some requirementscanbe defined either early or late.

• Some requirementsmustbe defined early.

• Some requirementsshouldbe defined later.

The criteria that can be used to determine this spectrum can be summarized as fol-
lows:

• If the level of understanding of the desired behavioris low (exact behaviors
not well understood or unknown), a delay in fully defining the requirements
may reduce risk. This is because for certain requirements, if the requirement is
defined and frozen early, later changes may impact design and cause rework to
design and code that was created to address the prematurely defined behavior.

• If there is ahigh likelihood that the requirement will change, a delay in defini-
tion may reduce risk by avoiding later rework, for similar reasons as above.

• If a requirement has high or complexexternal component dependencies, early
resolution and definition are likely to reduce risk. This is because late changes
will affect not only the component in question but also other external compo-
nents which have dependencies on that requirement.

• If a requirement hasstrong internal design dependencies, early resolution and
definition are likely to reduce risk. This is because late changes will require
extensive rework caused by the extensive and strong dependencies internal to
the component in question.

These criteria are summarized inFig. 14 which defines the situations where early
definition and late definition are favored.

One type of requirement that is often defined late and is subject to continual change
is that of human-computer interfaces. Individual users each seem to have their own
preferences for what they want their screens to look like.

There are several different strategies for minimizing the risk presented by volatile
requirements. These include:

132 W.G. BAIL

FIG. 14. Early and late definition of requirements.

• Ensure that all requirements are characterized with their expected stability and
their relative importance (two of the IEEE 830-1998[15] quality attributes).

• Where possible, design the system to allow for run-time reconfiguration. This
approach will allow users to make limited changes in behavior themselves. Per-
sonal computer operating systems allow for a wide range of customization so
that each user can tailor the appearance and functions to their own liking.

• Establish metrics to closely track the changing of requirements, particularly
those that would cause significant rework effort. In particular, closely track im-
mature requirements, undefined requirements, and changing requirements.

8.3 Unknown “Physics” for Embedded Systems

Many systems have a close connection and interaction with the outside “real-
world.” Effective operation of these systems often depends on a detailed and accurate
knowledge of the characteristics of the physical environment. The system exercises
control over physical entities by measuring the environment and based on knowledge
of it, outputs signals that result in effective controls. For example, if we have a sys-
tem that controls fluid levels in a holding tank, we need to know the characteristics of
the fluids, the various pumps and controllers, the effect of the ambient temperature,
the accuracies of the various sensors, and so on.

When developing the requirements for such a system, we often do not know the
precise physical characteristics of the environment, and of the external entities with
which the system, will interact. Perhaps we have some inaccurate models, perhaps
also we have some measurements, but the information we have is often far from
complete. Yet we need to develop a system that exercises the correct control, without
knowing what the exact effect of our signals will be. For this reason we call this topic
“physics.”

In situations like this, developers will create an early version of the system and use
this “prototype” as a way of exploring the universe in order to refine out concepts
of what may be required. Rather than being a pure prototype, however, often these

REQUIREMENTS MANAGEMENT FOR DEPENDABLE SOFTWARE SYSTEMS 133

early versions will be incremental editions of the product, designed to probe the
environment and extract the information needed. Often, as we learn more about the
environment, we may have to make substantial changes to the internal structure of
the system, perhaps by replacing entire algorithms and design structures. Sometimes,
changes may be limited to fine grain discoveries that require changing constants in
the code.

Many systems that need to be highly dependable are in this category. They often
are safety-critical as well. Examples include avionics systems that control the sur-
faces on an aircraft as well as nuclear power plans controls that monitor operations.
As such it is crucial that the requirements for these systems are handled appropri-
ately. In particular, these requirements need to ranked for stability. In addition, the
development process must explicitly acknowledge that some experimentation and
discovery will take place. Likewise, the design needs to be developed in a manner
that facilitates changes in the areas that need to be changed.

Some recommended mitigation strategies include:

• Use of executable models and prototypes.

• Use of simulations to depict external environment.

• Use of data logging functions to collect relevant data.

• Iterative development of system, and use of iterations to probe and explore the
environment.

8.4 Fear of Excessive Detail

When developing a set of requirements for a system, developers often avoid de-
scribing too many details concerning the expected behaviors. This avoidance is
justified under the rationale that such detail is really “part of design,” and is not
really needed. Instead, the details are left for the developers to fill in when they work
through the system design. Examples of details that are avoided include items such
as external system interfaces where the details of the interface are known and doc-
umented, as well user interfaces where the displays are pre-defined or must follow
certain display and iconic formats and standards.

As we have seen however, regardless of the level of detail provided, requirements
are never design. That is, you can describe the requirements to the smallest, most
atomic level possible and still never enter the realm of design. Describing, for exam-
ple, the exact formats of interfaces, the content of messages, even the order of the bits
in each transmitted byte, is simply a part of describing externally visible behavior.

This is also the case when describing details about user interfaces and screens.
If the specific features, formats, colors, fonts, etc. are described, the focus is still

134 W.G. BAIL

FIG. 15. Important requirements as a subset of all requirements.

on items that are externally visible. We may refer to this process as “user interface
design,” but we are simply providing details about externally-visible behaviors.

It is important to remember that providing such detail for all requirements is not
always necessary. However, in some cases, specifically for critical requirements, this
detail may be extremely important. Developers should never shy away from pro-
viding such information as requirements if the information is critical to properly
understanding what the system is to do. It is not an irrelevant detail, for example,
to specify that the units of measure being output from a specific subsystem are in
meters, when another subsystem needs to use this data and might assume that the
units would be in feet.

We need to remember that we often refine requirements as we proceed through
development. Often we do simply not know the details as we start development. We
need to start with a set of requirements based on what is known at project initiation
time. This uncertainly needs to be explicitly defined in the requirements themselves.
Then as we proceed through development and as the details for the requirements are
better understood, we can augment the requirements to reflect this information. It is
important however that as the details become known, they are documented. This is
important information that needs to be captured. The result is that the requirements
documents will change over time, but ensuring that they mature appropriately is an
important task.

There are some requirements, particularly at the detailed level, that do not need to
be defined in all their glory. The specific characteristics of the behaviors simply might
not be important to the users (Fig. 15). There is no use in spending effort to address
these requirements, but to avoid this effort, it is necessary that the user be clear about
what requirements details are needed, and what are not. The exact behaviors can then
be decided by the implementers based on their own design tradeoffs.

8.5 Test Environment Does Not Match Operational
Environment

A key goal is to effectively test the system once it is built. To be able to determine
how it will behave once placed into operation, the test process needs to challenge

REQUIREMENTS MANAGEMENT FOR DEPENDABLE SOFTWARE SYSTEMS 135

the system with tests that replicate the actual operational environment. Failure to do
so often results in unpleasant surprises occurring once the system is released to the
users. If the behavior is sufficiently annoying or dangerous, it is likely to be scrapped,
or at best, not used.

There are three common causes for this situation

• The project does not have available a high-fidelity test environment that contains
up-to-date models of the operational environment.

• The project has access to such a test environment, but the models are out-of-date
and are low-fidelity.

• The project runs short on time and decides to cut out some “extra” steps.

In Section3 we discussed the steps to be followed to develop requirements. Two
steps are especially important to being able to create an effective test program. First,
a model of the operational environment needs to be developed. If the system is to be
used in an office setting, the characteristics of the office need to be captured. If the
system is to operate in a boat, it may be necessary to model the ocean characteristics.
If the system is to make use of signals received over radios, the models need to
capture the nature of these signals. It is important to model not only the expected
environment, such as a clear radio signal, but also abnormal and noisy aspects of
the environment, such as radio signals when traveling through a tunnel. Otherwise,
when placed into service, the system will encounter stimuli that it was not prepared
for, and may experience failures.

Second, it is important to model how users will interact with the system by creating
operational scenarios and usage models[25]. These models should be based on the
overall purpose of the system, but should also include abnormal patterns of use, such
as random keyboard inputs. These models help to verify that the user needs will be
met, but will also facilitate the generation of automated tests.

8.6 Ineffective and Unusable Human–Computer Interfaces
The term Human–System Interface (HSI) is a general term that refers to the mech-

anism used for communications between users of a system and the system itself.
HSIs are most commonly thought of as visual mechanisms, including both graphics-
based and text-based displayed on computer screens. But they can also include other
forms of interactions, including sound and movement (such as vibrations). Modern
cellular phones, for example, employ multiple forms of HSI, including sound (for in-
coming calls and listening to conversations), vibration (for silent ringing), and visual
(for number display and pictures).

There are several other common terms used to denote these interfaces, including
MMI (man-machine interfaces), HCI (human–computer interfaces), HMI (human

136 W.G. BAIL

machine interface), GUI (graphical user interfaces), and OI (operator interface).
Strictly speaking, GUIs refer to visual interfaces that display graphics, so any in-
terface that relies solely on text would not fit into this category. Since HSIs are
externally visible, their definition is part of the requirements development process.

A common and persistent challenge for developers is the creation of HSIs that are
suitable for the users of the system. It is important that the users of a system are
comfortable with and readily accept the “look-and-feel” of the displays presented
to them. Unfortunately, with humans involved, there is a lot of personal taste and
preference associated with acceptance of displays. Many large projects have spent
extra resources to redesign the user interfaces after delivering what they thought was
the completed system. Even with user acceptance, if the interfaces are not designed
to display information efficiently and clearly so that the operators can assimilate
the data, make appropriate decisions, and direct the system to perform appropriate
actions, the system will be ineffective.

There are some important steps that should be taken when developing user inter-
faces to mitigate some of these risks.

• For systems where humans are an integral part of the system’s operations, hu-
man performance must be defined and assessed as a part of system performance.
This means that overall acceptance of the system needs to include humans as
part of the process.

• Involve users early with design of user interfaces—ensure that the future users
of the system are involved early with the design and operation of the user inter-
face. This could involve creating dynamic prototypes of the system interfaces,
allowing users the opportunity to experience alternate forms of operation prior
to implementation and delivery. Experience has shown that static displays have
a limited utility. Since they cannot demonstrate dynamic characteristics, the in-
formation provided to users is inadequate for overall evaluation.

• Perform usability analysis to determine how well users can learn and interact
with the system. In association with providing early prototypes of the interfaces,
it may be necessary for certain critical systems to perform detailed usability
studies. In such studies, future users are asked to run through various scenarios
and are closely monitored to observe their ability to assimilate and respond
to the various displays. Their efficiency of motion and their reaction times
can be measured as various alternative user interface designs are provided to
them.

• Obtain formal agreement on HSIs once they are defined as part of require-
ments. One troublesome situation that has been experienced by projects is the
dissatisfaction with the displays after development, even when there was ini-

REQUIREMENTS MANAGEMENT FOR DEPENDABLE SOFTWARE SYSTEMS 137

tial concurrence that the displays were acceptable. This occurs for a couple of
reasons:
– Users, being human, change their minds, or simply forget their earlier agree-

ments.

– The user community changes between the time the HSIs are defined and the
time that the system is ready to deploy. The new group of users has a different
perspective on what the displays should look like.

If there is a formal agreement between the customer and the developers on a specific
set of HSIs, then the process of requesting changes is made more difficult. This
formality should not affect the ability to make critical changes, but will discourage
the temptation to make changes just for change sake. Associated with this agreement,
however, should be a formal analysis that verifies the HCI is sufficiently supportive
of the systems operational requirements.

• Defer some HSI features as run-time configuration option. In general, many HSI
features can be implemented late in the development process. Features such as
text style, colors, and general appearance are usually parameter driven. If at all
possible, one strategy may be to allow for the users to configure the displays
in certain limited ways themselves, thereby avoiding much of the small-change
syndrome. In some cases, such changes might be reserved for a “super-user,”
while in others, it may be provided as a general capability. Of course, this fea-
ture should be carefully defined as a system requirement.

• Rely on standards to help produce common views. Many operational domains
have their own standards for displays. Relying on these standards can help in the
design process, and can help to avoid the temptation to request changes later.

• Rely on standard tools to help produce the HSIs. The use of tools to gener-
ate displays is a common practice these days. Such tools make developing and
changing HSIs a much easier task that in the past.

8.7 Over-Specified/Over-Constrained/Unbounded

At times, a project may discover that the requirements it has defined cannot be
implemented, either due to technical reasons (don’t know how to implement) or due
to programmatic reasons (not enough time and money). One possible cause for this
situation is an inappropriate selection and definition of the requirements themselves.

If the requirements are too ambitious, too restrictive, or too general, developers
will find that their implementation may be difficult. Ambitious requirements tend
to push the state-of-the-art and may be impossible to satisfy in a given schedule.
At times, such requirements may represent a “gold plating” of the system—features

138 W.G. BAIL

that are not really needed either at all, or to the level described in the requirements.
They may also result in capabilities that are not needed, yet, if implemented, could
potentially affect the performance of the system.

Other times, some requirements may be defined that are too restrictive, resulting
in narrow, point solutions. Systems with such requirements tend to inflexible, unable
to grow and extend over time, and become outdated when their mission changes.

Requirements that are too general have the opposite problem—they tend to be
flexible, but often extremely inefficient. They are able to support many capabilities,
but none efficiently.

The overall result of these requirements is a wasting of resources, and potentially,
an inability to develop the system at all. There are some very general recommenda-
tions that can help to mitigate these risks:

• Focus on prioritization of requirements. Apply the IEEE 830-1998[15] Quality
Factor “Ranked for Importance” when developing and reviewing the require-
ments. Ensure that not all are marked asimportant, and that the spread of
importance levels is acceptable to the users.

• Build system in a series of increments. Plan for completing the most important
capabilities in the earlier builds, so that if the project has to be stopped for any
reason, there will exist an operational version of the system available for use.

9. Summary

Requirements form the foundation for all of software development. While it is
easy to develop software systems without requirements, it is not easy to gain any
utility out of systems built that way, except by accident. Requirements allow us to
develop systems that are useful since requirements provide a focus for the develop-
ment of these systems. To increase our trust in software systems, we need to clearly
define what we expect from them, and use these documented expectations to assess
the nature of the reliance we can place on them. We can trust systems that have de-
fects and failure modes, as long as these are contained and controllable. Mapping our
expectations to what the systems actually deliver is a large component of determin-
ing the appropriate level of confidence. By characterizing our expectations into an
assessment framework, we provide a way of deciding whether to accept any particu-
lar system, and whether to place that system into service at a given level of trust and
confidence. We know that every complex software system has embedded defects, but
if we follow a careful and deliberate process, we can be assured that we can use that
system with an acceptable level of risk.

REQUIREMENTS MANAGEMENT FOR DEPENDABLE SOFTWARE SYSTEMS 139

There is a large body of work that has focused on the need for being able to build
highly-dependable systems. One valuable source of information is the High Depend-
ability Computing Project (HDCP), a joint initiative supported by NASA and several
universities. This effort has resulted in several products, including the Unified Model
of Dependability[2] that can be used to capture users’ expectations of what they want
for a system’s dependability, an attribute-utility based model using Kiviat graphs to
represent dependability[13], an approach to assess high dependable software[26],
and the iDAVE model[6] which provides a framework for assessing the return on
investment, supporting the trade offs necessary when projects have limited resources
yet need dependable systems.

For systems which we need to trust, a careful requirements development process
will produce five essential items:

• A clearly stated description of the need for the system.

• A description of the environment in which the system will operate, including
models of the behaviors of other systems with which the system will interoper-
ate.

• Usage models that capture the various ways that the users will operate the
system, including both likely modes of operation as well as infrequently used
operations.

• A set of requirements specifications that describe the behaviors of the sys-
tem and its primary components, down to the major software elements. These
specifications are kept up-to-date as requirements changes take place, and as
imprecise requirements descriptions are refined throughout the development ac-
tivity (including the system specification).

• A clear description of what the customer will accept, covering the items in the
acceptability framework.

In addition, when writing our requirements, we need to ensure clarity of description.
There are many guides (e.g.,[17]) that provide advice regarding style. Understand-
ing these and applying them appropriately is crucial. We can never eliminate the
chance that something will go wrong, but we can achieve a high level of confidence
that the system will behave as we want it to. Careful attention to understanding and
documenting what the users want is a first step to achieving this confidence.

REFERENCES

[1] Avižienis A., Laprie J.-C., Randell B., “Fundamental concepts of computer system
dependability”, in:IARP/IEEE-RAS Workshop on Robot Dependability: Technological
Challenge of Dependable Robots on Human Environments, May 21–22, 2001.

140 W.G. BAIL

[2] Basili V., Donzelli P., Asgari S., “High dependability computing program”, Computer
Science Department, University of Maryland, Technical Report CS-TR-4601, UMIACS-
TR-2004-43, June 2004.

[3] Bennett T., Wennberg P., “The use of a virtual system simulator and executable specifi-
cations to enhance software validation, verification, and safety assurance”. Final Report
for the NASA Office of Safety and Mission Assurance, Software Assurance Research
Program, Research Initiative 583, May 2004.

[4] Boehm B.W.,Software Engineering Economics, Prentice Hall, New York, 1981.
[5] Boehm B., Basili V.R., “Software defect reduction top 10 list”,IEEE Computer(January

2001).
[6] Boehm B., Huang L., Jain A., Madachy R., “The ROI of software dependability: The

iDave model”,IEEE Software12 (3) (May/June 2004) 54–61.
[7] Bourne S., “A conversation with Bruce Lindsay. Error recovery”,ACM Queue2 (8) (No-

vember 2004).
[8] Brady R.M., Anderson R.J., Ball R.C., “Murphy’s law, the fitness of evolving species, and

the limits of software reliability”, Cambridge University Computer Laboratory Technical
Report no. 471, September 1999.

[9] Davis A.M., Software Requirements: Objects, Functions, & States, Prentice Hall, Engle-
wood Cliffs, NJ, 1993.

[10] Dewsbury G., Sommerville I., Clarke K., Rouncefield M., “A dependability model for
domestic systems”, in:Proceedings of Safecomp 2003, Edinburgh.

[11] Department of Defense, “Information assurance—DoD directive”, 8500.1, October 2002.
[12] European Space Agency, “Guide to the software requirements definition phase”, ESA

Planet. Space Sci.-05-03 Issue 1 Revision 1, March 1995.
[13] Huynh D., Zelkowitz M.V., Basili V.R., Rus I., “Modeling dependability for a diverse

set of stakeholders”, in:The International Conference on Dependable Systems and Net-
works, University of Maryland, 2003.

[14] “IEEE Std. 610.12-1990, IEEE Standard Glossary of Software Engineering Terminol-
ogy”.

[15] IEEE Computer Society, “IEEE Recommended Practice for Software Requirements
Specifications, IEEE Std. 830-1998”.

[16] Knight J.C., “An introduction to computing system dependability”, in:Proceedings of
the 26th International Conference on Software Engineering (ICSE ’04).

[17] Kovitz B.L., Practical Software Requirements: A Manual of Content & Style, Manning
Publications, Inc., Greenwich, CT, 1998.

[18] Laprie J.-C., “Dependable computing and fault tolerance: basic concepts and terminol-
ogy”, in: Proc. of the 15th IEEE International Symposium on Fault-Tolerant Computing
(FTCS-15), Ann Arbor, Michigan, June 1985, pp. 2–11.

[19] Laprie J.-C., “Dependability: Basic concepts and terminology”, in:Dependable Comput-
ing and Fault Tolerant Systems, vol. 5, Springer-Verlag, Vienna, 1992, pp. 257–282.

[20] Lauesen S., Vinter O., “Preventing requirement defects”, in:Proceedings of the Sixth
International Workshop on Requirements Engineering: Foundations for Software Quality
(REFSQ’2000), Stockholm, June 2000.

REQUIREMENTS MANAGEMENT FOR DEPENDABLE SOFTWARE SYSTEMS 141

[21] Littlewood B., “Learning to live with uncertainty in our software”, in:Proceedings of the
2nd International Software Metrics Symposium, London, IEEE Computer Society Press,
October 1994.

[22] Littlewood B., “Software reliability and dependability: a roadmap”, in:The Future of
Software Engineering, 22nd International Conference on Software Engineering, Limer-
ick, ACM Press, June 2000.

[23] Lutz R.R., “Analyzing software errors in safety-critical, embedded systems”, Jet Propul-
sion Laboratory, California Institute of Technology, Pasadena, CA, 1994.

[24] McKnight W.L., “What is information assurance?”,CrossTalk—The Journal of Defense
Software Engineering15 (7) (April 2002).

[25] Prowell S.J., Poore J.H., “Computing system reliability using Markov chain usage mod-
els”, Journal of Systems and Software73 (2) (2004) 219–225.

[26] Rus I., Basili V., Zelkowitz M., Boehm B., “Empirical evaluation of techniques and meth-
ods used for achieving and assessing software high dependability”, in:DSN Workshop on
Dependability Benchmarking, June 25, 2002.

[27] Sandhu J., “Multi-dimensional evaluation as a tool in teaching universal design”, in:
Christopherson J. (Ed.),Universal Design, Hausbanken, Norway, 2002.

This page intentionally left blank

Mechanics of Managing Software Risk

WILLIAM G. BAIL

7900 Cypress Place
Chevy Chase, MD 20815
USA

Abstract
Developing large, software-intensive systems is a significant challenge. Com-
pleting such developments on time and within budget requires careful attention
by both management and technical staff. It seems that almost every project
is faced with unexpected events and situations that directly affect the chances
for success. When combined with the inaccuracies inherent in our estima-
tion techniques which provide only approximations to actual cost and budget,
the chances for successful completion seem extremely small. One technique
that has been shown to be helpful is that of continuous risk assessment and
management. With this technique, projects take a proactive approach to po-
tential pitfalls, and plan for the unexpected. Unfortunately, many projects do
not realize the full advantages of risk management because of shortcomings in
how they apply risk management techniques. This chapter provides an short
overview of risk management, and then describes two key processes that are
often inadequately implemented: documenting risk and planning for risk mitiga-
tion.

1. Introduction . 144
2. Project Planning . 145
3. Fundamentals of Risk. 149

3.1. Formal Definition of Risk. 150
3.2. Risk Likelihood . 152
3.3. Risk Impact . 153

4. Sources of Risk . 156
5. Handling Risks . 161

5.1. Risk Levels . 161
5.2. Risk Mitigation . 165

6. Conclusion . 168
References . 170

ADVANCES IN COMPUTERS, VOL. 66 143 Copyright © 2006 Elsevier Inc.
ISSN: 0065-2458/DOI 10.1016/S0065-2458(05)66004-4 All rights reserved.

144 W.G. BAIL

1. Introduction

The general concept of risk is familiar to most software developers. Nearly every
day they come face-to-face with the limitations of their techniques, and see their soft-
ware projects fail to meet their budgets and schedules. As a result, today most large
software projects have established formal risk management as a part of their com-
mon practice. In many cases, particularly for Government contracts, such processes
are mandatory, and are intended to be an integral part of the development process. To
ensure conformance, projects develop formal risk plans which define the processes
and activities to be used by the project in identifying, tracking, handling, and report-
ing risks that arise during development.

There have been many papers and books written about software risk, e.g.,
[7,10–12,22,24]. These works describe the various types of risk typically found in
software-intensive projects and the different types of impact that result. They also
describe how to plan for effective risk management. In many cases, however, the ap-
plication of these risk management principles has been somewhat less effective than
it should be. One key reason is that the fundamental characteristics of risk and how
risk affects software development are not fully understood.

Additionally, on many such programs, risk management is often seen as a box to
check, a pro-forma action to take just to keep the boss happy and the QA (quality
assurance) people off your back. The proper motions are followed but the integration
of risk management into the everyday life of the developers is often lacking. Even
when followed, risk management tends to be applied loosely, without sufficient at-
tention placed on the mechanics. This laxity results in a less-than-effective process,
reinforcing the impression that risk management is not an important activity.

In this chapter, we will review some key elements of software risk, explain the me-
chanics of describing and reporting risks, and provide some motivation for projects
to take the process more seriously and effectively apply the practice. We will not re-
peat the extensive advice provided in the many articles on this topic. Rather we will
emphasize these core concepts, and refer to other articles for additional material.

Overall, risks are closely tied to the plans that are created for a project[6]. Project
plans describe the activities to be performed as well as the processes to be used.
These plans also define the budgets and the amount of time available for completion
of the project. Correlating the details in the plans with the likelihood of being able to
successfully follow the plan is a key part of risk management. Once we accept that
a particular plan is adequate, and we start work on the project, we implicitly trust
that the plan will carry us through to a successful conclusion. Of course, knowing
that we will always have limited resources (not enough time, not enough money,
not enough technology), we did not infuse the plan with the most intensive set of
processes. That is, the plan, by necessity, contains compromises needed in order to

MECHANICS OF MANAGING SOFTWARE RISK 145

meet these constraints. These tradeoffs create the environment in which risks tend
to occur. If a project is able to adhere to its plan, then any risk have been either
avoided or mitigated. In essence, risk management deals with ensuring that the plans
are executable.

In this chapter, we will start by examining how projects are planned. We will then
present a formal definition of risk, and discuss the various aspects of risk, including
risk levels. Afterwards, we will present approaches that can be taken for mitigation
of these risks. We will also discuss how risks can be reported and tracked.

2. Project Planning

Every software project creates a plan that describes how the system and the soft-
ware will be developed. Sometimes this plan is informal and maintained in the minds
of the developers (hopefully only in the case of small projects). For larger projects,
and those which are to develop critical systems, this plan is usually more formal and
often consists of several documents, such as a Software Development Plan (SDP),
a Configuration Management Plan (CMP), System Requirements Document (SRD),
and others. Taken as a whole, these documents contain a detailed description of what
is to be built and of all essential activities necessary to build the system. The de-
scriptions cover what activities will be performed, when they will be performed
(the development schedule), and how they will be performed (the process and tech-
niques). As such, the project plan provides a roadmap for the developers to guide
them through development. For management, it supports the acquisition of the re-
sources needed for the project and the coordination of the various activities that will
be performed. For the programmers, it describes the system to be developed as well
as the tools and techniques that they will need to perform the development itself.

The plan also provides a framework to allow management and the project stake-
holders to monitor progress as the project proceeds. An essential part of such plan-
ning is the definition of measures that allow monitoring of progress. Without such
measures, management is flying blind—not a desirable situation to be in on a large
software project. The actual metrics collected do not always have to be numeric (such
as counting source lines of code), but they do have to be objective to ensure accu-
racy in assessment. Overall, project plans allow stakeholders to gain confidence that
the system will be developed on-time, within budget, and with the capabilities that
they need. By gaining confidence in the processes and techniques to be used, and in
the way that the effort is organized, stakeholders can support the project. In a sense,
the project plan is a contract between the stakeholders and the developers. Once the
stakeholders have gained confidence, they can feel free to invest in the project, man-

146 W.G. BAIL

agers can gain confidence that the project can be successful, and the developers can
willingly accept the responsibility.

There is some essential information that project plans need to contain. This in-
formation includes descriptions of the various external dependencies that the project
has to external sources. These fall into three categories:

– Materials—that are used to build the system. These are received from other ac-
tivities in a manner similar to a production line, manipulated by the activity,
and provided to later activities. Materials can include intermediate products, in-
formation, and other items needed to develop the system. For example, for a
software development project, customer requirements are necessary to build the
system. For the coding phase of a software project, the detailed design descrip-
tion is needed. In general, any specific activity cannot be completed (and often
cannot start) until its required materials are available.

– Resources—supplies required to perform the activity. These include staff, hard-
ware, software and hardware tools, schedule, and budget. The resources need to
be of adequate quantity to support the activity, as well as of sufficient quality.

– Controls—that guide and constrain the conduct of the activity in various ways.
Examples include the software processes defined and the management structure
which monitors and directs the staff. For software projects, a typical control
is the Software Development Plan, which defines specific processes, tools, and
techniques that the programmers are to use. For example, an SDP might specify
that the developers are to use the IBM� Rational Rose�1 development tool.
The SDP might also specify that the developers need to develop specific types
of documentation in specific formats. These control the way that the developers
complete their tasks.

If any of these dependencies fail to be as expected and planned by the project, there
is a chance that the project will fail to be successful. For example, a tool might prove
to be inadequate, a needed design document might be late, or development technique
might be inappropriate for the problem to be solved. Any of these variations from
the expectations in the plan could threaten project success.

For a typical software project, we might show the relationship of the project to its
environment as shown inFig. 1.

Projects contain a set of interrelated and interdependent activities, each of which is
similar to a mini-project. The cumulative result of these activities is the final software
product. Each activity depends on others for intermediate products, and provides to
others their own intermediate products. Each activity has its own set of resources

1 IBM� and Rational Rose� are trademarks and registered trademarks of International Business Ma-
chines Corporation.

MECHANICS OF MANAGING SOFTWARE RISK 147

FIG. 1. Typical software development project dependencies.

which are needed to carry out their phase of development, and its own processes that
define how the activity is to be performed. The project plan describes the activities,
their interdependencies, and their processes, and provide the roadmap for develop-
ment to proceed.

This structure also provides a framework with which project progress measures
can be defined. If the activities (and subactivities) are clearly described, projects can
track progress by observing when activities are started and completed. These metrics
are sometimes calledinchstones(as opposed to milestones) since they are tracked
at a much smaller level of granularity than major project milestones. Monitoring
inchstones achieved versus inchstones planned is one of the most effective measures
in monitoring risk.

For software development, we generally have a set of well known activities or
“phases,” consisting of requirements analysis, design, coding, and test, in various
forms. We could depict such a project inFig. 2.

This diagram is considerably simplified, since there are many complex interde-
pendencies that are not illustrated. Not surprisingly, the diagram has the general
appearance of the Waterfall process model, where each phase or activity flows into
the next[1].

Within the context of the overall project, each constituent activity has a set of
expectations about what will be available for its use. It expects that it will receive

148
W

.G
.B

A
IL

FIG. 2. Typical software development activities.

MECHANICS OF MANAGING SOFTWARE RISK 149

the necessary intermediate products from other activities at a particular time and at
a defined level of quality, and to have available the processes, techniques, and tools
needed to complete their job. All of these expectations are defined in the project plan.
If everything goes as planned, the final product will be delivered on time, within
budget, and with the necessary functionality and quality.

If we were to compare plans of today with those of even ten years ago, we would
see many improvements. The current state of software development planning has
gained from years of experiences where problems occurred during the development
of software systems. We have made many changes in how we develop software,
many at a low level. For example, it is now commonplace to perform peer re-
views [19] of intermediate products to minimize the potential for defect leakage
from one development phase to the next. Such improvements have been incorpo-
rated into project planning specifically to address common-place risks, and have
improved overall industry best practice. Peer reviews also appear as a mandatory
process activity in the Software Engineering Institute’s CMMI (Capability Maturity
Model Integrated)[20].

However, despite our improvements, there is always the potential for problems
to occur during development. Any number of events could occur (and usually do)
that could change the condition of the project and potentially disturb the planned
activity sequence. Well-written plans typically include consideration of such events
and include mechanisms to monitor, detect, and mitigate such risks. Such activities
include prototyping stages, backup plans, dual-path development, “off-ramps,” and
other strategies designed to avoid impacts caused by problems that may occur[2,
3,21,8]. In this sense, project planning emulates fault tolerant systems by including
fault detection and handling features into their plans.

When defined, the assumption is made that the plan is adequate to successfully
complete the development, and to produce the system that will emerge at the end.
That is, there is an expected flow of events that culminates in product delivery. Of
course, plans are rarely completed without some form of disruption, particularly for
software projects. Undesired (sometimes unpredicted) events occur that perturb the
plans. Predicting these events and planning to avoid any undesirable effects is the
role of risk management.

3. Fundamentals of Risk

We use the word “risk” frequently in software development efforts, but it is im-
portant to have a precise understanding of what it means and how it affects the way
we develop systems. In this section we will provide a formal definition of risk and
then examine two key elements of risk: risklikelihoodand riskimpact.

150 W.G. BAIL

3.1 Formal Definition of Risk

Formally defined, a risk is a potential change of some aspect of a project or of
its environment that, should it occur, will adversely affect the project’s likelihood
of being successfully completed. The change is initiated by an event, called therisk
trigger or risk event.

Why does change present such a problem? Because, as we discussed in Section2,
projects are based on project plans that define what has to be built, what is needed to
build it, and how it needs to be built. These plans are based on specific assumptions
about the state of the various resources and assets that are available. If one or more
of these assumptions proves to be wrong, either because it was initially incorrect or
because the situation has changed, then the result of the change may invalidate the
plans that were prepared, and may adversely affect the project’s chances for success.

Hence, a risk consists of three core elements[13,14]:

– A potential changeto the state of the project or to its environment that, should
it occur, will adversely affect the project. The change could be associated with
the resources needed by a project, the staff assigned, the tools to be used, or
any other aspect that will affect how the project will be conducted. Projects
generally experience change continually, and plan for such change. At times,
however, some changes may perturb the plans and affect how the project can be
completed.

– Thelikelihood that the change will occur. While nearly all project assumptions
might at some point be found to be invalid, some are more likely than others.
Hence, correlated with the change of condition is a measure of the probability
that the change will actually take place.

– Theimpactto the project should the change occur. When there is a change in a
project, it is not necessarily true that it is for the worse. When we describe risks,
however, we are referring specifically to those changes that threaten the success
of the project.

Frequently in the literature, risks are defined as having two elements: the likelihood
of occurrence and the resulting impact. However, it is crucial to include a description
of the change that results in the negative impact. A clear identification of the change
clarifies the origin of the risk, and assists in planning for mitigation.

Note that a risk is associated with apotentialchange in a project. At the time the
risk is identified, the change to the project has not yet happened. Once the risk occurs,
it is no longer potential. It becomes aproblem. The key difference arises when miti-
gation strategies are formulated. One approach for mitigating risks involves reducing
the likelihood of occurrence. With problems, this option is not available—mitigation
must focus solely on reducing the impact.

MECHANICS OF MANAGING SOFTWARE RISK 151

To help to explain this definition, consider the following example.

A project has assigned a staff of five programmers for the development of the
design and code. One of these programmers is an experienced veteran, while
the others are relatively inexperienced. The project managers are planning for
the experienced programmer to manage and train the others, and have allowed
for some extra time in the schedule for this training to take place. There is a risk,
however, that the experienced programmer may decide to leave his position, and
take another job elsewhere.

In this situation, the project managers have defined a plan that they believe ade-
quately covers the need for the inexperienced programmers to be trained. If however
the experienced programmer quits, then the project would experience a change of
condition—one of the plan’s assumptions will have been invalidated, namely that
the lead programmer would be available to direct and train the others. The likelihood
of this happening is hard to say, but with the rising salaries in industry (before the
dot-com bust), the managers feel that it is fairly likely.

The trigger event that activates the risk is the lead programmer’s quitting. Subse-
quently, there is a chain of impacts that result from this event. First the immediate
impact—the absence of a lead programmer to manage the other programmers. Work
has to be accomplished every day, and without the lead programmer, this day-to-day
coordination will not take place. Second, since the lead programmer was responsible
for the design of the system, and since he had a good perspective of what the system
should look like, when he leaves, he will bring this knowledge with him—the overall
design of the system will be cast into doubt. Third, with his absence, there will no
one to train the less experienced programmers.

Faced with this potential event, the project managers could choose among several
alternative strategies to offset any negative effects. One alternative is to wait until
the lead programmer leaves. The managers could then assign a new senior program-
mer to take over the position. This new programmer will need to learn about the
system, understand its emerging design, get acquainted with his programming staff,
and begin to train the junior programmers. All of this change will take time, poten-
tially affecting the overall delivery schedule and costing more money. In addition,
the quality of the system might be affected, since the lead programmer thoroughly
understands the application domain and the requirements for the system that was to
be built.

A second alternative is to “sweeten the deal” by providing incentives for the lead
programmer to stay, such as raise his/her salary, provide additional vacation time, or
given him/her a bigger office. As we will see, this approach is generally referred to
as risk avoidance. While it will result in additional costs, it might be desirable since
it will avoid disruptions in the development activities.

152 W.G. BAIL

A third alternative is to assign an experienced programmer as deputy to the Lead.
The Deputy could offload work from the Lead, such as focusing on peer reviewing
intermediate products. Should either leave, the disruption would be minimal. The
costs would be higher but this early investment might be worth the investment in
terms of the added support of an experienced developer and the reduction in risk of
a key staff member’s leaving. This approach is referred to as risk mitigation.

3.2 Risk Likelihood

Because risks are potential, that is, have not yet happened, there is uncertainty
associated with their occurrence. We refer to the level of uncertainty as thelikelihood
of the risk. More precisely, the uncertainty is characterized by the likelihood that the
trigger event will take place, thereby altering the status of the project in some way
that will result in an adverse effect.

When we estimate the likelihood of occurrence, obtaining a high degree of accu-
racy is generally not possible. Determining the likelihood is not a definitive process.
Rather, it is a function of the nature of the risk as well as the features of the project
plan. There have been many guidelines created to assist in estimating the likelihood
of risks. These are generally based on environmental factors, personnel factors, and
technical factors.

There are many variations of how risk likelihood is represented. In some cases,
projects use a probability estimate, ranging from 0.0 for impossible events, to 1.0 for
certain events. In others, a simple High, Medium, and Low estimate is used. In still
others, a category-based layering is used, with the categories being something like:

• Very unlikely—very low probability of happening.

• Unlikely—low probability but possible.

• Possible—may occur but not guaranteed.

• Likely—will probably occur, but not guaranteed.

• Very likely—highly probable of occurring at some point.

It is generally not advisable to define a large number of likelihood levels. For ex-
ample, projects that attempt to define the probabilities with two digits of accuracy
generally discover that such fine grained differentiation is impossible to achieve, and
often results in spending more time on deliberations estimating the probabilities than
on addressing the risk itself (seetetrapyloctomy2). Based on collective experience,
projects generally settle for somewhere between three and five levels of likelihood.

2 Tetrapyloctomy—the act of splitting a hair four ways. From Eco, Umberto,Foucault’s Pendulum,
Ballantine Books; Reprint edition (November 13, 1990).

MECHANICS OF MANAGING SOFTWARE RISK 153

FIG. 3. Varying likelihood of risk.

In addition to the likelihood of occurrence, there is also the aspect offrequencyof
occurrence. In some cases, the risk might not be whether a specific event occurs, but
rather how often the event occurs. Generally, such risks can be defined by the fre-
quency levels. That is, instead of the risk event being “The developer’s work station
will fail, requiring a reboot,” it would be stated as “The developer’s work station will
fail more than ten times per day, requiring multiple reboots.”

It is important however to note that risks do not generally have a fixed likelihood
of occurrence. Most risks have a varying likelihood that changes over time. Due
to conditions inside of and external to the project, at times the risk may be more
likely to occur, and at times it will be less likely to occur.Figure 3illustrates this
pattern.

3.3 Risk Impact

When the state of the project or its environment changes, there is often an effect
on the project. At times, the effect may be beneficial, such as when the project is
able to hire an exceptionally talented software engineer. Other times, however, the
effect will be detrimental, such as when a project’s top software engineer leaves.
Risk management is by nature focused on the detrimental impacts and how they can
be avoided or handled.

Whenever the risk event occurs, there may be an immediate impact, followed by
a series of cascading impacts, each of which affects the conduct of the project. This
chain reaction perturbs the expectations of various project activities, and may ulti-
mately affect the project’s cost and schedule, as well as the technical adequacy of the
product itself.Figure 4illustrates this effect.

154
W

.G
.B

A
IL

FIG. 4. Chain reaction of risk impacts.

FIG. 5. Interaction of multiple risks.

MECHANICS OF MANAGING SOFTWARE RISK 155

This figure shows a simple model of the flow of impacts leading up to the overall
effect on the project. In any complex project, however, there will be multiple risks
and multiple impacts, causing a complex pattern of interactions. As a result, these
interactions may raise the likelihood of other risks occurring, and increase the level
of the impacts. This phenomenon is illustrated inFig. 5.

For any project, it is important to have an understanding of how various risks affect
the project’s opportunity for success, including their multiple interactions.

However, not all risks have the same impact. As a result, the impacts expected
from each risk are ranked according to the severity of the impact, based on the over-
all effect on the project’s three acceptability criteria: cost, schedule, and technical
sufficiency, and, consequently, to the acceptability tolerance of the stakeholders[4].
Risk impacts are typically classified into a small set of bins, such as shown inTa-
ble I.

The exact criteria in the table are typical examples, and will vary from project
to project, and from organization to organization. However, this general approach to
categorizing the impacts is commonly used. At times, a project might use a numerical
value for the impact level, such as 1 to 5, corresponding to Low to Critical.

These figures show the effect of the risks on the project’s cost, schedule, and tech-
nical adequacy. The effect of most importance, however, is the willingness of the
customer and their stakeholders to accept the system. Most stakeholders are willing
to accept some variation in these factors, even if the impact is large. For example,
they may be willing to provide additional funds, accept a delayed delivery of the
project, and even accept a less capable product. Every customer however has a limit
beyond which perturbations in the final product exceed their needs. At some point
they will decide that the product is no longer acceptable and will withdraw support.
This effect is illustrated inFig. 6.

In the context of balancing the impacts to cost, schedule, and technical adequacy,
it is important for the developers to understand the nature of the tradeoffs that the
customers will consider. If the customers are extremely intolerant of any variations
in the plan, then the developing team must exercise exceptional discipline in develop-
ing the product. This discipline will end up costing additional resources, potentially
making the project too expensive and causing the customers to lose interest. As men-
tioned, however, most customers have some degree of tolerance for varying levels of
adverse impact. They may accept a somewhat higher cost and schedule if they can
obtain all of the required functionality. Or they may be willing to accept lower util-
ity from the system if they can get it delivered on time. This level of stakeholder
tolerance has a direct influence on the level of the risk impact, since for less toler-
ant customers, even a small perturbation in cost, schedule, or technical content may
result in cancellation.

156 W.G. BAIL

TABLE I
SAMPLE RISK IMPACT CLASSIFICATION

Low Minor Moderate Serious Critical

Cost
% of budget <2% 2–5% 5–7% 7–10% >10%
Schedule
% of schedule <5% 5–10% 10–15% 15–20% >20%
Technical Missing Missing Missing Missing large Missing
effect on minor some some amount of critical
functionality functionality functionality important important functionality

functionality functionality

FIG. 6. Effect of Cost, Schedule, and Technical shortfalls on Acceptability.

The trade range for acceptability may appear something like the figure shown in
Fig. 7. In this figure, the tradeoff range is indicated as a surface below which the
customer will tolerate variations in cost, schedule, and technical content. Each axis
is represented as a percentage of the original plan. For example, in this example the
customer will accept the project if the 100% of technical content is achieved at 80%
of the projected schedule, even if the cost rises to 140% of the budget. Each project
and customer will have a different pattern for acceptability.

One key aspect of the risk impact is that they are often not static. That is, depend-
ing on when they occur during a project’s conduct, the impact may have varying
levels of severity, as shown inFig. 8. This pattern is important when planning for
risk mitigation activities.

4. Sources of Risk

Every software development project faces risk. Many of these are common across
all sofware projects[23], and hopefully, most of these are mitigated by the adoption
of standard software development processes. Many are unique to the project and its
specific characteristics. These should be addressed by the project plan. In spite of

MECHANICS OF MANAGING SOFTWARE RISK 157

FIG. 7. Tradeoff range for customer acceptability.

best efforts however, projects still face risks and are likely to encounter various risk
trigger events as they head towards completion of their products. One key to being
able to successfully handle risks is to understand and clearly describe their source.
Such understanding assist in monitoring for emerging risk situations as well as in
preparing mitigation plans. Many models for risk prediction have been created to
assist in the risk identification process. Briand[5] for example uses design metrics
to identify potential areas in the system where problems may emerge.

The risks for the overall project roll up from the risks for each activity to be
conducted for the project. The overall impact of the risks, at the project level, are

158 W.G. BAIL

FIG. 8. Varying levels of risk impact.

described in terms of the effect on the schedule, the cost, and the technical con-
tent/quality of the product.

Associated with the SDP is a certain level of risk. As long as the project proceeds
as planned, the risk will remain stable or decrease. If however any of the activities
fail to be completed as planned, for whatever reason, there is likely to be an impact
to the program’s acceptance by the customer. Due to the interdependencies of the
various activities within the project, failure of any one activity to meet its planned
obligations will cause a rippling effect though other dependent activities.

When we identify risks, we are identifying aspects of the plan and its schedule
where there is a possibility that some event may occur that will perturb the plans’
proceeding as originally devised. When so disturbed, the effect may affect the sys-
tem’s performance, its development schedule, or its project cost. All three affect the
willingness of the customer to accept the product in some way.

For software projects, risks are ever-present. Developing software is inherently
risk prone because every time we develop a new system, we are creating something
that is new, that is, unprecedented. If software were fabricated like hardware, where
there is a design phase and then a production phase, we would have fewer risks. With
hardware, production consists of replicating multiple copies of the same product,
based on the design that was created. But software has no production phase—the
design of the software is the final product. Note that we are treating software coding

MECHANICS OF MANAGING SOFTWARE RISK 159

as design. It is the final step of detailed design where the smallest features of the
design are finalized. Since the design is always new (particularly at the coding level),
we are treading on uncharted territory. Being able to assess risk based on a system’s
design is an important activity. Ref.[16] describes one such approach.

The degree of newness of course varies widely. In some cases, the software system
to be developed is based on an existing system, and as such, can borrow much of its
overall design and even much of its code. But there is always some portion that must
be created fresh, and this is where the risks originate. In other systems, most or all of
the system is new. At times, the system is to implement requirements that have never
been implemented before.

Risks therefore can arise from any aspect of the project plan’s not being achieved.
In fact, some authors assert that risk management is intrinsic to project manage-
ment [17]. A development activity might not receive the intermediate products it
needs on time. Or the intermediate products might not have the necessary character-
istics that are needed, such as missing functionality. The tools used by the activity
might not be adequate for the job. The problem to be solved might be beyond the ca-
pabilities of the staff. The process selected might not be appropriate for the problem.
These are just a few items that could hamper achieving the project plan.

Boehm[2] has identified what he refers to as the top ten software risk items. These
are listed inTable II, along with a short description. This list is based largely on

TABLE II
BARRY BOEHM’ S TOP TEN SOFTWARE RISK ITEMS

Risk item Description

Personnel shortfalls Not enough staff
Staff with talents incompatible with core technologies
Inexperienced staff

Unrealistic schedules and budgets Schedule and/or budgets allocated insufficient for completion
of project

Developing the wrong functions
and properties

Developers produce system that is not what the users want or
need

Developing the wrong user
interface

User interface is not easy to use, fails to follow standards,
and/or is not appropriate for user needs

Gold plating Some requirements are more ambitious than what are needed
Continuing stream of requirements
changes

Through development, the requirements continue to change,
causing extensive rework

Shortfalls in externally performed
tests

System testing falls short and fails to adequately test product
prior to release

Real-time performance shortfalls System fails to meet required latencies for critical functions
Straining computer-science
capabilities

Required functionality is at or past state-of-the-practice, is un-
precedented, and is forcing too much innovation

160 W.G. BAIL

TABLE III
CAPERSJONES’ T OP TEN SOFTWARE RISK ITEMS

Risk item Description

Inaccurate metrics If the metrics collected by the project do not reflect the actual
condition and state of the project, the project may find itself in
trouble too late in the process to recover.

Inadequate measurement If insufficient metrics are collected for a project, the actual
condition and state of the project might be unknown, and the
project may find itself in trouble too late in the process to
recover.

Excessive schedule pressure If an unrealistic development schedule is provided to the de-
velopers, the project may be forced to take hazardous shortcuts
that threaten project success.

Inaccurate cost estimating If the initial estimation of the cost required for developing the
software system is inaccurate, the project is likely to run out
of funds prior to project completion. This usually results in the
skipping of some required process steps thereby increasing the
risk of realizing poor product quality.

Management malpractice (e.g.,
knowledge)

If project management does not understand the essentials of
software development, they may make poor decisions that will
undercut the ability of the developers to complete the project
successfully.

Silver bullet syndrome (will save the
project)

If the project has an unrealistic belief that a miracle tool or
process will provide the productivity enhancement needed to
complete the project, they may discover too late that the “silver
bullet” will not save the project, and be unable to recover.

Creeping user requirements If the requirements are changed continually late into the devel-
opment process, the rework necessary to accommodate these
changes are likely to delay progress and consume resources.

Low quality This “risk” is actually an impact resulting from many risks,
including those listed above.

Low productivity If the actual productivity realized by the developers is less than
that planned for, the project is in risk of being late. If short-
cuts are taken to recover schedule, the final product’s quality is
threatened.

Cancelled projects This “risk” is actually an impact resulting from many risks,
including those listed above.

Boehm’s experiences with a large defense contractor and have a heavy management
flavor. Another more software engineering view of the “top ten” risks is provided by
Capers Jones[15]. These are listed inTable III. Note that in both cases, the risks are
general terms and often stated as impacts. There are many other lists of top risks in
addition to these (e.g.,[6,9,18]).

MECHANICS OF MANAGING SOFTWARE RISK 161

5. Handling Risks

In order to avoid the negative impacts associated with risk, projects employ various
strategies for mitigation. Of course, since software development is a risk-abundant
environment, projects cannot afford to handle every risk they identify. Resources are
generally tight for projects, and so planning for risk mitigation needs to focus on
those risks that are of higher importance, based on the characteristics of the project
and the expectations of the stakeholders. In this section we describe how to determine
the priorities of risks and then examine these concepts and provide some examples.

5.1 Risk Levels
Not all risks are at the same level of significance to a project. Some may present

a catastrophic effect, while other may have only a minor impact. But some risks
that have high likelihoods of occurring can be considered to be less threatening if
their impacts are low. Likewise, risks that have significant impacts can be less of a
problem if their likelihood of occurring is very low. Projects, therefore, need to be
able tradeoff impact and likelihood to determine appropriate mitigation actions. To
this end, the concept ofrisk levelis defined.

Risk level is determined by combining the risk’s likelihood with its impact. In
general, this can be viewed as theexpected valueof the risk impact (risk impact times
the risk likelihood). Because of the inaccuracies with which impacts and likelihoods
are estimated, exact values for these terms is nearly impossible to determine. For
example, deciding between 0.75 and 0.80 probability that your lead programmer
will quit is a fruitless exercise. As such, we tend to use the large grain classification
of impacts and likelihoods that we described in Sections3.2 and 3.3.

Based on the impacts and likelihoods, we generally define three overall levels of
risk: High, Moderate, and Low.

A sample mapping from impact and likelihood to risk level is shown inFig. 9. This
table is often called arisk matrix. Many other mappings are possible of course[25],
but this table is typical. In this matrix, cells that contain an H are those that represent
high risk levels, those that contain an M represent medium risk levels, and those that
contain an L represent Low risk levels. When color printing is possible, the cells are
filled in with red for high, yellow for medium, and green for low.

Some projects assign numeric values to likelihood and impact, and multiply them
together to determine the overall risk level. As an example of this approach, if we
assign the range of values from 1 to 5 for both likelihood and impact, we would have
a risk matrix as shown inFig. 10. In this scheme, the three risk level categories are
generally defined as:

• High risk—for risk levels greater than or equal to 15.

162 W.G. BAIL

FIG. 9. Sample risk matrix.

FIG. 10. Sample numeric risk levels.

• Medium risk—for risk levels greater than equal to 5, and less than 15.

• Low risk– for risk levels less than 5.

Note however that the assignment of risk level to cells does not correspond exactly
to the computed values. A risk with a likelihood of 4 and an impact of 1 is generally
considered to be a low risk, while a risk with a likelihood of 1 but with an impact of
4 is considered to be a moderate risk. This difference is based on the relative ease of
mitigating risks with low impact versus those with higher impacts.

MECHANICS OF MANAGING SOFTWARE RISK 163

FIG. 11. Variation of level of risk over time.

Some projects may have a critical need for a system, to the point where any per-
turbation of its completion may have serious consequences. For such projects, even
very unlikely risks events would be considered being at a High risk level. This sit-
uation is analogous to the safety implications of a critical system. If a system were
to provide life support to a patient undergoing surgery, even a very unlikely chance
of a failure (once every 100 hours of operation perhaps) would be unacceptable. Of
course, project risks are associated with the development of systems, not necessarily
with their operation.

The relationship of risk likelihood and impact is somewhat more complex than
as shown in the matrix. Because each of the factors take effect at varying times
and at varying levels, the matrix can capture the risk only at a specific point in the
project. For any specific risk, the actual risk level can vary according to time, as
shown inFig. 11. In this figure, we see how both the risk likelihood and the risk
impact vary over time (the two lines at the bottom of the figure). The risk level,
being a combination of risk impact and risk likelihood, reflects this variation over

164 W.G. BAIL

FIG. 12. Sample populated risk matrix.

time. At times, this risk falls into a high risk category, while at other times, the risk
is in a low risk category.

Once identified, risks need to be reported regularly and predictably. By their na-
ture, stale reports do not adequately keep stakeholders informed regarding the current
status of the risks. Since many risks have the potential for falling apart quickly, or
need rapid mitigation applied, timely reports are crucial. In addition, the reports need
to convey their information as easily and clearly as possible to facilitate mitiga-
tion.

Figure 12illustrates a sample risk matrix populated with project risks. Each risk
is assigned a unique tracking number. This number is placed in the matrix in the
cell corresponding to its risk level. In this example, there are six risks that are being
tracked by the project, specifically risks 11, 12, 16, 21, 24, and 25. Based on the
project’s analysis, these risks range from low to high.

Alternately, some projects and organizations use what is called a “stop light chart,”
so named because of the use of red-yellow-green as a way of indicating the risk,
reminiscent of a traffic stop light. A sample of such a chart is shown inFig. 13. Note
that in this chart, only those risks that are actively being monitored are listed. Any
risks that have a risk level of Low, either inherently or because of mitigation, are
often not listed. If mitigated, these risks are often referred to as beingretired.

MECHANICS OF MANAGING SOFTWARE RISK 165

Risk
No

Risk Name Likelihood Impact Risk
Level

1 Defects in compiler Likely Serious H
5 Late delivery of test Likely Moderate M

hardware
8 Inadequate training for Possible Moderate M

new complier
13 User indecision on GUI Likely Critical H

design

(a)

(b)

FIG. 13. (a) Sample stop light chart. (b) Effect of impact and mitigation timing on risk planning.

5.2 Risk Mitigation

When risks are identified, if they are of sufficient risk level, projects need to plan
for mitigation activities to address any impacts that may result from the risks. There
are four basic strategies associated with mitigation planning. These are applied to
those risks which have been assessed as having sufficient levels of threat to justify
investment of resources for mitigation. Because the risk levels vary over time based
on varying conditions, it is important that the project perform continuous risk moni-
toring to ensure that the currently-important risks are addressed. The four strategies
are:

166 W.G. BAIL

• Reduce thelikelihoodof the risk’s occurrence—by defining a set of activities to
reduce the likelihood of the risk’s occurrence. this strategy aims at avoiding the
risk’s turning into a problem, thereby avoiding the impact caused by the risk.
Returning to our earlier example, suppose we have a project where we have a
lead programmer who might desire to quit his job and move elsewhere. The
strategy of providing additional incentives, such as raising the salary, providing
more vacation time, or giving the lead a larger office with a river view, is one
approach to reducing the likelihood of the lead programmer’s leaving.

• Reduce theimpactof the risk—by defining steps that absorb or avoid the im-
pact, and minimize the effect on the project’s level of acceptability. These steps
can be applied either prior to or after the risk event’s occurrence. Continuing
our example, if we assign a second lead programmer to the project, to share the
responsibilities and duties, if one should leave, the project would still have the
other to continue supporting the project. While this strategy might not totally
avoid the impact, it would certainly reduce it to the point of being tolerable and
acceptable.

• Deferring or acceleratingthe time when the risk impact occurs—by altering
the project plan so that the risk impact hits at a stage of the project when the
impact will have less overall effect. Suppose a project will be using a newly
released compiler, but has concerns over the maturity of the compiler. If the
compiler contains defects (as is typical for a new tool), the programmers may
have to spend extra effort to work with the vendor as well as to work around
the tool deficiencies so that they can continue to develop their system. This will
slow them down and potentially impact their schedule. One mitigation strat-
egy to avoid this impact is to begin to work with the compiler earlier in the
schedule than was originally planned. This shifts the impact of the risk, so that
if extensive compiler fixes are needed, they can be accomplished before the
programmers are heavily dependent on its correct operation.

• Accepting and absorbingthe impact—by balancing the impact against other
aspects of the project. If our lead programmer were to leave, we might decide
that we could absorb the overall impact on cost and schedule.

In planning for mitigation, there are six steps:

(1) Identify the risks that have the most potential for disruption of the project (the
greatest impact of overall acceptability). Use the risk levels as a basis for this
identification, but not as the sole resource.

(2) Determine if there are any viable actions that can be taken to reduce the like-
lihood of these risks. If so, create a plan to initiate these actions.

MECHANICS OF MANAGING SOFTWARE RISK 167

(3) Define and monitor metrics designed to detect the risk event. In the case of
the potentially immature compiler, a project might collect metrics on the error
rate experienced by the programmers when using the compiler. If the error
rate rises above a nominal level, it can be concluded that the risk has become
a problem.

(4) Identify any viable actions that can either reduce or change the timing of the
risk impact. If there are such actions, create a plan to activate these actions
should the risk event occur. These actions include any strategies for absorbing
the impact. The mitigation plan for each risk should define the schedule for
each mitigation step as well as the project resources needed to accomplish the
mitigation. Since the risk event has not yet occurred, the schedule is generally
defined relative to the time when the risk event occurs.

(5) Define metrics designed to monitor the risk levels of each risk, addressing both
the likelihood of occurrence and the level of impact. Continuously monitor
these metrics. In the case of the immature compiler, monitoring the amount
of effort needed to differentiate between a compiler bug and a bug ion the
application code is one measure of the impact.

(6) Define metrics designed to track the effectiveness of the mitigation actions.
Continuously monitor these metrics. Using the metric applied to the compiler
in the above example, a continual monitoring of the error rate might indicate
a maturation of the compiler as indicated by the error rate dropping over time.

Project plans created for projects generally contain activities designed for both prod-
uct development as well as some level of risk mitigation. When a specific risk is
identified, the risk mitigation actions may include elements of the project plan, but
usually adds new steps tailored for the risk.

When planning for the mitigation of risks, it is important to consider the timing of
the impacts and of the mitigation effects:

• Impact timing—the time period when the impact of the risk becomes noticeable
or measurable.

• Mitigation timing—the time period when the effect of the mitigation activities
take effect.

Even if a risk has a serious impact, if the impact has a delay before it has a noticeable
effect, it may be prudent for projects to address risks with less serious impacts first.
Likewise, if the mitigations steps have a delay before they can be fully effective, then
projects need to plan for activating them as early as possible to ensure maximum
effectiveness. The effect of timing on mitigation planning is illustrated inFig. 13.

A project risk mitigation plan is therefore a dynamic, continuously changing doc-
ument that contains a list of currently identified risks. For each risk, the plan defines:

168 W.G. BAIL

FIG. 14. Risk mitigation plan chart.

• Metrics for detecting the risk event.

• A set of scheduled mitigation steps designed to address the risk.

• Metrics designed to track the risk level as the mitigation steps are applied.

• Planned reduction of risk level correlated to each risk mitigation step.

• Resources required for implementing the risk mitigation steps.

Plans for mitigating risks can be reported using a chart such as shown inFig. 14. In
this chart, each risk mitigation step is uniquely identified. The date on which the step
is performed is defined, and the expected effect on the risk level is described. This
chart can be used to track the effectiveness of risk mitigation, since at each date, the
risk metrics can be applied to ensure that the reduction in risk level was achieved as
planned.

For each risk that needs to be tracked and mitigated, projects need to create a
report that contains all the information concerning the risk. This report is periodically
updated to reflect any changes in condition. A sample report is shown inFig. 15.

6. Conclusion

Software development projects are always risky. Because developing software in-
volves innovation, the risk can never be eliminated. Some authors assert that any
software project that has a low risk is not being aggressive enough in advancing ca-
pabilities. This judgment depends on the system to be developed of course. However,
there are many steps that can be taken to manage software risk. Careful attention to
the identification and monitoring of risks is crucial to avoid project failures. While
most projects have some form of risk management in place, they do not always pay
sufficient attention to some of the crucial aspects of risk management.

MECHANICS OF MANAGING SOFTWARE RISK 169

F
IG

.
1

5
.

S
am

pl
e

ris
k

su
m

m
ar

y
re

po
rt

.

170 W.G. BAIL

In this chapter, we emphasized the importance of three items:

• Clearly describing the three key components of risk: the risk event, the likeli-
hood of risk occurrence, and the risk impact. A common mistake is to simply
describe the risk in terms of its impact. For example, “schedule” is never a
risk—it is an impact resulting from a risk event. Planning for mitigation de-
pends on a clear description of the event itself and the chain of effects that lead
to the schedule slip.

• Creating a risk plan that tracks risk levels, and applies effective mitigation steps
as needed. Each step should be clearly identified as being either part of the
baseline project plan or added specifically to address the risk.

• Following the plan, including the active use of risk metrics to monitor progress.
Risk plans are not simply to keep management happy. They are extremely ef-
fective tools to assist in the success of the project.

REFERENCES

[1] Boehm B.W., “A spiral model for software development and enhancement”,IEEE Com-
puter21 (5) (1988) 61–72.

[2] Boehm B.W., “Software risk management: Principles and practices”,IEEE Software
(January 1991).

[3] Boehm B.W., DeMarco T., “Software risk management”,IEEE Software(May/June
1997).

[4] Brekka L.T., Maksimovie V., Picardal C., Iftekharuddin K., “Risk management and
systems engineering discipline”, in:IEEE 1996 National Aerospace and Electronics
Conference—NAECON, 1996.

[5] Briand L.C., Thomas W.M., Hetmanski C.J., “Modeling and managing risk early in soft-
ware development”, in:Proceedings of the 15th International Conference on Software
Engineering, 1993.

[6] Chittister C., Haimes Y.Y., “Assessment and management of software technical risk”,
IEEE Trans. Systems, Man, Cybernetics24 (2) (February 1994).

[7] DeMarco T., Lister T., “Risk management during requirements”,IEEE Software(Sep-
tember 2003).

[8] Department of Defense, Defense Acquisition University, “Risk management guide for
DoD acquisition”, fourth ed., February 2001.

[9] Doernemann H., “Tool-based risk management made practical”, in:Proceedings of the
IEEE Joint International Conference on Requirements Engineering (RE’02).

[10] Fairley R., “Risk management for software projects”,IEEE Software(May 1994).
[11] Feather M.S., “Towards a unified approach to the representation of, and reasoning with

probabilistic risk information about software and its system interface”, in:Proceedings
of the 15th International Symposium on Software Reliability Engineering (ISSRE’04).

MECHANICS OF MANAGING SOFTWARE RISK 171

[12] Fenton N., Neil M., “Software metrics and risk”, in:FESMA 99—2nd European Software
Measurement Conference, 8 October, 1999.

[13] Gemmer A., “Risk management: Moving beyond process”,IEEE Computer(May 1997).
[14] IEEE Std. 1540-2001, IEEE Standard for Software Life Cycle Processes—Risk Manage-

ment.
[15] Jones C.,Assessment and Control of Software Risk, Yourdon Press Computing Series,

Prentice Hall, 1994.
[16] Kitchenham B., Linkman S., “Estimates, uncertainty, and risk”,IEEE Software(May/

June 1997).
[17] Lister T., “Risk management is project management for adults”,IEEE Software(May/

June 1997).
[18] Moynihan T., “How experienced project managers assess risk”,IEEE Software(May/

June 1997).
[19] NASA Software Policy, Directive NPD 2820.1C.
[20] Paulk M.C., Weber C.V., Garcia S., Chrissis M.B., Bush M., “Key practices of the capa-

bility maturity model, version 1.1”, Software Engineering Institute, CMU/SEI-93-TR-25,
February 1993.

[21] Ropponen J., Lyytinen K., “Components of software development risk: How to address
them? A project manager survey”,IEEE Trans. Software Engrg.26 (2) (February 2000).

[22] Roy G.G., “A risk management framework for software engineering practice”, in:IEEE
Proceedings of the 2004 Australian Software Engineering Conference (ASWEC’04).

[23] Sherer S.A., “The three dimensions of software risk: Technical, organizational, and envi-
ronmental”, in:IEEE Proceedings of the 28th Annual Hawaii International Conference
on System Sciences, 1995.

[24] Williams R.C., Walker J.A., Dorofee A.J., “Putting risk management into practice”,IEEE
Software(May/June 1997).

[25] Yau C., “A quantitative methodology for software risk control”, in:Proceedings of the
1994 IEEE International Conference on Systems, Man, and Cybernetics, 1994.

This page intentionally left blank

The PERFECT Approach to
Experience-Based Process Evolution

BRIAN A. NEJMEH

INSTEP Inc.
999 Chapel Forge Court
Lancaster, PA 17601
USA

Systems and Entrepreneurship
Messiah College
One College Avenue
Grantham, PA 17027
USA

WILLIAM E. RIDDLE

Solution Deployment Affiliates
658 La Viveza Court
Santa Fe, NM 87501
USA

Fraunhofer Institut Experimentelles
Software Engineering
Fraunhofer-Platz 1
67663 Kaiserslautern
Germany

Abstract
Improvement game plans—carefully defined, organized and managed sequences
of process change activities based on standards, maturity models and best
practices—are critical to a company’s success. Also critical is the ability to
evolve processes in response to precipitous, unpredictable changes to critical
business-context factors such as financial goals, customer desires, personnel
availability, and available process performance support technology. This chapter
describes an approach—PERFECT—to process evolution resulting from many

ADVANCES IN COMPUTERS, VOL. 66 173 Copyright © 2006 Elsevier Inc.
ISSN: 0065-2458/DOI 10.1016/S0065-2458(05)66005-6 All rights reserved.

174 B.A. NEJMEH AND W.E. RIDDLE

decades of experience in helping companies—of a variety of sizes and in many
industry sectors—rationally, rapidly and incrementally evolve their processes,
often but not necessarily in the context of an overall improvement game plan. The
approach is based on a framework—PEDAL—identifying twelve categories of
activities comprising process evolution. Three Case Studies introduce the frame-
work and process evolution approach and show their application across a wide
variety of situations to evolving a company’s processes through narrowly fo-
cused, short, overlapping process evolution exercises each addressing a set of
tightly inter-related processes. Several important lessons learned are discussed,
followed by a description of a variety of simple techniques and tools allow-
ing process change agents to rationally describe, understand, learn from, plan
and manage process evolution exercises. The chapter ends with a discussion of
various improvements that should be made to the PERFECT process evolution
approach and its underlying PEDAL framework.

1. Introduction . 175
2. Improvement Game Plans . 177
3. Process Evolution . 181

3.1. Process Evolution Focus and Intent . 181
3.2. The Nature of Process Evolution . 182
3.3. Process Evolution Requirements . 182

4. The PEDAL Framework . 183
4.1. A General View of Process Evolution . 183
4.2. Process Evolution Stages . 185
4.3. Process-Related Information . 189
4.4. The PEDAL Framework . 190

5. Describing Process Evolution Dynamics . 197
5.1. Process Evolution Description Case Studies 197
5.2. Observations . 206
5.3. Lessons Learned . 208
5.4. Process Evolution Description . 209

6. Process Evolution Infrastructure . 213
6.1. Additional Assets . 213
6.2. Process Information Gathering . 215
6.3. Activity Category-Specific Support .. 218
6.4. Process Change Team Support. 220
6.5. Process Evolution Infrastructure Summary . 224

7. Value and Future Improvements . 224
7.1. Value of PEDAL and PERFECT . 225
7.2. Improvements . 226
7.3. Game Plan Focusing . 230
7.4. Process Visualization . 231
7.5. Process Evolution Planning and Management 232

THE PERFECT APPROACH 175

8. Summary . 233
Acknowledgements . 235
References . 235

1. Introduction

A company’s engineering, business and operational processes are major deter-
miners of its success. It is through these processes that the company identifies
customer needs, develops and delivers quality products, applies leading edge tech-
niques and tools, competes within the marketplace, demonstrates conformance to
regulatory and contractual constraints, manages its out-sourcing and subcontracting
arrangements, and keeps its work force up-to-date professionally. Process deficien-
cies with respect to any of these business-context factors can lead to serious failures,
including: reduced market-share; decreased profitability; increased time-to-market;
insufficient work force capability and productivity; and non-effective, inefficient
business performance. Any of these negative effects can “sound a company’s death
knell.”

Companies fully understand that to prevent these potentially disastrous results
they must rationally, incrementally, and agilely adjust their products in response
to changes to customer desires, marketplace structure, personnel availability and
capability, business goals, and available technology, as well as many other business-
context factors. They know this requires developing near- and long-term product-
related objectives, tracking the progress of projects against these objectives, and
modifying the objectives in response to project performance difficulties and failures.
They additionally know they must argue that their products are suitable with respect
to their business context, for example, through their marketing literature and demon-
strations of regulatory constraint satisfaction. They realize they must learn from the
experiences gained in one project to improve the conduct of future projects. Finally,
they know there will be precipitous, unpredictable changes to their business context
and they must respond—as quickly as possible—by appropriately modifying their
product-related objectives, projects, suitability arguments and experience interpre-
tations. In short, successful companies understand that rational, incremental, agile
product evolutionis key to their success and survival.

Companies often fail to understand that rational, incremental, agileprocess evo-
lution is equally key to their success and survival. Successful companies frequently
improve their engineering processes, for example in response to a need to demon-
strate some level of product development and project management capability. How-
ever, they often fail to address the improvement of their business and operational
processes to the same degree, with the same care or with the same levels of ef-

176 B.A. NEJMEH AND W.E. RIDDLE

fort. In addition, companies often fail to realize that maintaining the status quo,
process-wise, in the face of change is often a more critical issue than is improve-
ment. Finally, they often focus on relatively long-term improvement based on an
assumption of business context stability and fail to realize that they must also be po-
sitioned to quickly change their processes in response to precipitous, unpredictable
changes to their business context. As a result, companies are often surprised to find
that while they have addressed process improvement with major efforts consuming
extensive resources, they still fail in ways that can be traced to process deficien-
cies.

As a result of a collective five decades helping companies—of many sizes and
in many industry sectors—successfully evolve their processes, we have concluded
that a superior process evolution capability isthekey factor in assuring a company’s
success. We have found that the capabilityoften requires the ability to use stan-
dards, maturity models and best practices to continuously improve the company’s
processes over relatively long periods, measured in years. In addition, we have also
found that the capabilityalwaysrequires the ability to rapidly—in a matter of weeks
and months—adjust their processes in response to sudden, unforeseen events. The
longer term focus allows the company to address business context requirements, for
example, the need to periodically demonstrate conformance to regulatory constraints.
The shorter term focus helps the company contend with precipitous, unpredictable
changes to the company’s business context, for example, an unexpected failure to
demonstrate conformance because of seemingly ancillary factors such as an inferior
training program.

Further, we have found that the basis for achieving and maintaining the shorter
term focus is to understand thedynamicsof process evolution, the ways in which
process evolution can and must change to cope with new business contexts. Further,
we have found that these changes can best be accommodated if process evolution is
conducted through multiple, short, concurrent, iterative, mutually influential process
change exercises, each narrowly focused on a small set of specific, highly inter-
related, business-context issues.

Finally, we have found that this approach to process evolution can create a sense
of confusing, unmanageable “chaos.” We have developed a framework and an as-
sociated process evolution approach to help process change agents cope with this
apparent chaos. The framework—which we call PEDAL (Process Evolution Dy-
namics Activity Landscape)—helps process change agents describe, understand,
learn from, plan and manage process evolution exercises. The process evolution
approach—which we call PERFECT (Process Evolution Rationalization through
Flexible, Experience-based, Continuous Tailoring)—helps process change agents
continuously, iteratively, and rapidly perfect the company’s processes in response
to sudden, unforeseen business-context changes.

THE PERFECT APPROACH 177

The goal of this chapter is to help companies understand and effectively apply
PEDAL and PERFECT. To set the stage, we first discussimprovement game plans
supported by standards, maturity frameworks and best practices (Section2) and then
argue the need for a more expansiveprocess evolutionpoint-of-view (Section3).
We then describe the PEDAL framework (Section4) and the PERFECT approach
to process evolution (Section5). This is followed by a discussion of a variety of
techniques and tools developed to support the PERFECT process evolution approach
(Section6). The chapter ends with a discussion the value of the PEDAL framework
and the PERFECT process evolution approach as well as several ways in which their
value could, and should, be improved (Section7).

2. Improvement Game Plans

Companies look to standards to understandwhy their processes should have vari-
ous properties, maturity frameworks to understandwhatactivities should be included
in their processes, and best practices to understandhow the activities might best
be carried out. Successfully addressing all three of these concerns assures that a
company’s processes continuously match the company’s needs and objectives by
achieving more than merely satisfactory levels of process excellence (seeAchieving
Process Excellencesidebar).

Work-to-date on achieving high degrees of process excellence by addressing these
why, whatandhowconcerns has addressed several aspects of evolving a company’s
processes over time. Taken collectively, the results support the definition ofimprove-
ment game plans: carefully defined, organized and managed sequences of process
change activities based on standards, maturity models and best practices. We dis-
cuss improvement game plans in this Section using primarily software development
process examples.

Standards—for example, the ISO 9001 Standard for product quality[25] and the
Business Standards Institute’s standard regarding the confidentiality, integrity, and
availability of information[8]—identify goals and requirements for an improve-
ment game plan. These standards do not directly identify activities, roles, artifacts
or assets (see“Speaking of Processes”sidebar). Nor do they indicate operational
aspects such as how the activities should be carried out or the responsibilities of
specific roles. They do imply, and often explicitly state, major conditions that must
be satisfied for the processes to be judged acceptable with respect to some area of
concern such as product quality or information security. The standards contribute
to achieving process excellence by focusing the attention of the company’s process
change agents upon critical business issues. They contribute to a company’s success
in many ways, most notably by highlighting regulatory or contractual constraints

178 B.A. NEJMEH AND W.E. RIDDLE

Achieving Process Excellence

High levels of process excellence lead to engineering, business and operational
processes which constantly satisfy the company’s needs and are ‘fit for use.’ The key
aspects of achieving process excellence are:

Discipline: process performance is orderly and steadily converges on an intended re-
sult; processes may be easily managed

Maturity: processes are consistently performed from project to project; processes are
continuously improved based on experience

Agility: processes can be adjusted to both expected and unexpected changes in the use
of their interfaces; interfaces may be changed in response to new requirements

Efficiency: process performance is rapid and cost-effective; time and effort are not
wasted

“Speaking of Processes”

Clear process description requires the distinction of several different types of process
entities:

activity: a unit of work performed in carrying out the process; for example,Develop
Project Plan

role: a set of permissions and obligations which must be adhered to during activity
performance; for example,Project Manager

artifact: a tangible object created or modified by activities; for example,Project Plan
condition: a situation occurring during process performance; for example,Project

Plan drafted
asset: a resource supporting process performance; many relate to artifacts, for example

atemplate provides an initial value for some artifact (thetemplate itself is not
manipulated during process performance but rather it is copied to provide an initial
version of the artifact); other assets relate to activities, for example, a checklist,
a policy statement, or a standard; still others are automated agents (i.e., tools) or
human agents that support achieving a role’s responsibilities.

See[48] for a more detailed discussion of the concepts useful in describing processes.

which affect the company’s ability to sell its products as well as obtain and retain
contracts.

Definitions of effective, efficient best practices provide descriptions of detailed,
concrete activities and tasks within the processes.Agile methods[1,20] are one ex-
ample. Each reflects its developer’s philosophy regarding the purpose of agility and

THE PERFECT APPROACH 179

defines specific techniques for agile process performance. Another example is the
operational procedurescollected and promoted by the IEEE Computer Society for
software development[22] and the Project Management Institute[43]. Best practices
reflect—often merely by assumption or implication—process excellence-related re-
quirements. For example, eXtreme programming[5] proposes that aCode Module
activity be conducted by two programmers, one to create the module’s code and
the other to continuously assess whether or not the code is syntactically and se-
mantically correct. This is intended to satisfy requirements such as: “the module’s
code satisfies its requirements” and “errors are caught as early as possible.” Best
practices contribute to a company’s success because satisfying the practices’ spe-
cific requirements contributes to satisfying success-related requirements regarding
product quality, product development efficiency, project manageability, work force
effectiveness, etc.

Maturity models provide a “bridge” between the requirements-oriented standards
and the implementation-oriented practices. These models:

(1) identify key practices that contribute to meeting success-related requirements;
(2) organize the practices into coherent collections; and
(3) in terms of the collections, define a sequence of successively more mature

levels of capability.

The definitions of the key practices imply the activities that are needed and of-
ten additionally identify relevant artifacts, roles, conditions and assets. Perhaps the
most widely known maturity model is the Carnegie Mellon� Software Engineering
Institute (SEISM) Capability Maturity Model� (CMM�) [41]. This maturity model
identifies a wide variety of software development practices, organizes them into five
Process Areas, and uses the Process Areas to establish a sequence of increasing ca-
pability from Level I: Ad Hoc—at which process performance is somewhat random
with little discipline or efficiency—toLevel V: Optimizing—at which a company
has unambiguously defined and fully integrated their management and engineering
processes, conscientiously captures process-performance data, and uses the data to
guide not only project management and conduct but also continuous process im-
provement. Other example maturity models are the SEI’sCapability Maturity Model
Integration (CMMI�) (V1.1) [11] which also addresses software development, the

SM SEI is a service mark of Carnegie Mellon University.
� Carnegie Mellon, Capability Maturity Model and CMM are registered in the U.S. Patent and Trade-
mark Office by Carnegie Mellon University.

180 B.A. NEJMEH AND W.E. RIDDLE

Information Systems Audit and Control Association’sControl OBjectives for Infor-
mation and related Technology(COBIT) framework[12] which addresses business
as well as software development processes, and theSix Sigmaapproach[50], de-
veloped by General Electric, to achieving high levels of product quality. Maturity
models assist in achieving process excellence in two ways: first, by focusing attention
on the myriad concerns in a logical sequence, and secondly, by suggesting both an
overall design for the company’s collection of processes (along the lines delineated
by the practice collections) and conceptual designs for the processes themselves (in
terms of activities, roles, artifacts, conditions and assets identified in the process de-
finitions).

The work-to-date onwhy, what and how concerns is quite complementary, ad-
dressing different aspects of improving a company’s processes over time. For exam-
ple, the maturity model work may be viewed as setting a context for establishing
the requirements for applying agile methods[13]. As another example, agile meth-
ods can be considered as possible ways to accomplish many of the key practices
established by maturity models[6].

Improvement game plans—carefully defined, organized and managed sequences
of process change activities—are based on standards, maturity models and best
practices. The standards provide overall requirements for the efforts. Maturity mod-
els establish a basis for overall, iterative, long-term improvement by establishing
a logical sequencing for the work that has to be done. In addition, a maturity
model’s key practice definitions establish conceptual designs for the processes and
establish specific requirements for these processes. Finally, best practice defini-
tions support the definition of detailed, concrete approaches to carrying out the
processes.

In many cases, improvement game plans are based on the CMM maturity model
and move the company, step-by-step, from a primitive, ad hoc level of capability
to a superior, optimizing level. The details of a variety of these efforts, and data
demonstrating their cost-effectiveness and value, may be found in the SEI’s Software
Engineering Information Repositoryhttp://seir.sei.cmu.edu.

Over the past decade, significant improvements to the applicability and value
of improvement game plans have come from them not being viewed as a strict,
level-by-level “march” from the primitive to the superior level. This has included
simultaneously addressing several levels[16], interleaving a concern for other stan-
dards, for example,[8] and the People Capability Maturity Model[14,51], and
skipping levels and shifting among maturity models as the available standards, matu-
rity models and best practices, as well as the company’s process improvement goals,
mature[37].

http://seir.sei.cmu.edu

THE PERFECT APPROACH 181

3. Process Evolution

Improvement game plans are critical to a company achieving the levels of process
excellence needed to successfully compete and survive. These game plans, however,
are focused on relatively long timeframes (measured in years) and are based on an as-
sumption of stability that is often precipitously disrupted, especially in today’s highly
dynamic business climate. Work forces may be reduced with little advance notice,
mergers lead to a company suddenly having many ways of conducting their busi-
ness, poor and good performance (in terms of profitability, sales, etc.) can radically
change process improvement budgets (positively as well as negatively), competi-
tors enter the marketplace with little warning and little advance knowledge of their
market-niche focus or their “unique selling points,” and product/service providers are
continually introducing new capabilities that might, if adopted, significantly improve
a company’s engineering, business and operational processes.

The use of improvement games plans must therefore be augmented with a compat-
ible approach to process improvement that allows the company to respond to sudden,
unforeseen changes to their business context. We call this additional approach to
process improvementprocess evolution. In this section we discuss the nature of
process evolution and requirements for effectively and efficiently carrying it out. The
rest of the chapter discusses an approach to process evolution, reflecting our expe-
riences in many quite radically different process improvement situations, that meets
these requirements.

3.1 Process Evolution Focus and Intent

Process evolution efforts, in contrast to improvement game plans, are focused
on short timeframes (measured in weeks or months) and specifically intended to
help companies cope with precipitous, unpredicted changes to their business con-
text. They are intended to complement improvement game plan-based improvement
efforts. They are also intended to provide an effective approach to process improve-
ment for those companies that realize they must continuously improve their processes
in response to business-context changes but decide, for whatever reasons, not to make
the investment needed to use an improvement game plan-based approach. Finally, an
important focus of process evolution efforts is upon maintaining thestatus quoin
the face of change. In industry sectors not subject to regulatory constraints or sec-
tors in which companies are not required to demonstrate specific levels of capability,
maintaining the status quo in the face of business-context changes is often quite crit-
ical.

182 B.A. NEJMEH AND W.E. RIDDLE

3.2 The Nature of Process Evolution

Process evolution involves a variety of parallel, inter-related streams of activities,
each focused on specific objectives and collectively focused on achieving some goal.
These streams are complimentary and must be coordinated, consistent, and mutu-
ally supportive. Further they must rapidly provide positive results. This is not only
because they are focused on the short term. It is also because there is frequently not
enough time to pre-arrange for the commitment of all the needed resources, and early
positive results are needed to be able to obtain additional support.

During process evolution, the focusing business context can (and will) precipi-
tously change in totally unpredictable ways. Process evolution must, therefore, not
only rapidly provide near-term successes but simultaneously support the knowledge
acquisition that supports the description, understanding, learning, planning and man-
aging that allows companies to contend with future business-context changes. This
requires a focus on making continuous, incremental, iterative change by concurrently
performing many activity streams, each narrowly focused on one or a small number
of specific business-context issues.

3.3 Process Evolution Requirements

Our view of process evolution implies a variety of specific objectives, among
them:

• coordination among the many activity streams that are occurring in parallel; for
example, the concurrent upgrading of a company’s processes and the material
it uses to retrain its work force and train new hires;

• coordinated and mutually influential concern for corporate-level requirements,
needs, objectives, and constraints; for example, concern for the need to effec-
tively compete in some new market segment when defining an activity stream’s
objectives (and vice versa);

• appropriate resource allocation decisions; for example, the funding and staffing
of a workflow automation effort that would, if implemented, considerably re-
duce the cost of re-training the company’s work force with respect to new
versions of the company’s processes; and

• rapid, timely distribution of effective process documentation that helps process
performers understand what they should do, why, and how it differs from what
they have been doing; for example, deploying the process documentation via
the company’s intranet with advice about how to tailor the processes to specific
types of projects.

THE PERFECT APPROACH 183

Meeting objectives such as these requires satisfying the following requirements
for process evolution:

• recognition of multiple, parallel streams of process evolution activities,

• effective coordination among these activity streams,

• synergy across the activity streams with respect to business objectives,

• incremental accumulation of information about the company’s processes, and

• support for improvement game plan activities.

4. The PEDAL Framework

After actively participating in more than a dozen process evolution efforts, and
reviewing reports and detailed records from several dozen others, we have found
that:

(1) most efforts—including the best planned ones—appear to be somewhat
chaotic in nature,

(2) there is always an order underlying the apparent chaos, and
(3) this underlying order may be articulated in terms of interacting streams of

activities.

We have created the PEDAL framework is to allow the “orderly chaos” to be
clearly and succinctly articulated. One objective is to allow process change agents
to discover and unambiguously describe complex, apparently chaotic, process evo-
lution efforts. A second is to allow the change agents to transcend the details and
gain a solid understanding of “What happened?” A third objective is to allow the
change agents to identify lessons learned and guidance that may positively affect the
company’s future process evolution efforts. The fourth and final objective is to allow
the change agents to successfully plan and manage future process evolution efforts.

In this section, we first describe a view of process evolution that fosters rational
discussion. Then, we define the PEDAL framework, first in terms of general evolu-
tion stages, then in terms of three fundamentally different kinds of process-related
information, and finally in terms of twelve fundamental activity categories. This sec-
tion ends with a discussion of the framework’s use in describing process evolution
dynamics.

4.1 A General View of Process Evolution
Processes evolve incrementally over time, sometimes in formal, well-planned

ways but often informally as a result of experiences gained during their performance.

184 B.A. NEJMEH AND W.E. RIDDLE

Projects

By “project” we do not mean merely the “official projects” a company uses to orga-
nize and track its work, the productivity of its work force, its profitability, etc. The
project may be formally commissioned and actively managed, for example, a project
commissioned to develop a new version of a product or maintain an existing prod-
uct. Alternatively, the project may be neither formally commissioned—for example
the “project” by which employees trade information, often around the water cooler,
about their experiences in carrying out their work—nor fully, actively managed—for
example, the “project” by which a team manages the evolution of techniques and tools
supporting the company’s operational processes.

Process evolution is therefore often perceived as chaotic with many activities being
carried out in parallel, each activity changing not only the details of some specific
process but also the interfaces among the processes. The apparent chaos is only an
illusion, however, and there is an underlying order. Key to recognizing this order is to
focus on a subset of the processes being evolved and describe the streams of activities
that change the processes over time. Once these activity streams have been articu-
lated, then coordination among them may be described in terms of the interactions
among the activity streams.

A collection of processes is often comprised of sub-collections which havestrong
process coherency—by which we mean that changes to one process in the sub-
collection lead to changes to many of the other processes in the sub-collection—but
which haveloose process coupling—by which we mean that changes to a process
in one sub-collection leads to few, if any, changes to the processes in some other
sub-collection.

A process setis a collection of processes to be performed during some project
(seeProjectssidebar). For example, aSoftware Development process set
typically containsRequirements Management, Software Design, and
Walkthrough Review processes as well as many other software development-
related processes. A process set has strong process coherency because the proc-
esses share many artifacts and have many critical dependencies. For example,
a Requirements document will be shared among most all of the processes in
theSoftware Development process set and theSoftware Design process
may not begin until theRequirements document has been developed by the
Requirements Management process and been validated to some degree. On
the other hand, the coupling among process sets is loose because document sharing
and other dependencies among projects are typically minimized to allow effective,
efficient progress as the projects proceed in parallel. For example, the document

THE PERFECT APPROACH 185

sharing and dependencies between a company’sSoftware Development and
Human Resource Management process sets will typically be limited toJob
Description documents and satisfaction of aStaffing Needs fulfilled
condition controlling the initiation of the project.

A process evolution exerciseis the coordinated and managed performance of activ-
ities that results in new versions of the processes in a process set. A process evolution
exercise may primarily focus on only one, or a small number, of the processes in a
process set. However, because of a process set’s strong coherency, it is often neces-
sary to update many, perhaps all, of the processes in a process set to maintain their
process-to-process consistency. Therefore, while the process evolution exercise may
begin with a focus on only one process, it is not unusual for it to expand in scope to
other processes in the process set.

In addition, a process evolution exercise identifies requirements for changes to
processes in other process sets. The exercise will almost always reveal the need to
change processes in other process sets, again to maintain consistency. Therefore, one
process evolution exercise may lead to requirements for some other process evolu-
tion exercise that may be being performed concurrently or may be performed in the
future. These requirements may be expressed in many ways. Most often the require-
ments are specified in terms of the definitions of artifacts shared among the process
sets. Frequently, the requirements involve the definition of conditions that control
coordination between processes in different process sets. These conditions identify
the situations that the processes in one set expect will be established or reacted to by
the processes in the other set.

It is certainly possible that the requirements resulting from one process evolution
exercise cannot be satisfied. This leads to the trading of information about the re-
quirements among the exercises in an attempt to concurrently change the processes
in mutually satisfactory ways. This overlap of the process evolution exercises with
the exchange of information about the necessity and satisfiability of requirements is
what leads to the illusion of chaos.

4.2 Process Evolution Stages

We have found that twelve activity categories are both necessary and sufficient
for describing, understanding, learning from, planning and managing process evo-
lution exercises. The activity categories pertain to long-term efforts, lasting one or
more years, and short-term ones, lasting only a few weeks or months. The cate-
gories are not only pertinent to process evolution efforts guided by well-defined plans
but also to efforts that are relatively unplanned and unmanaged. Finally, the activity
categories are pertinent to processes that govern a company’s large-scale, engineer-
ing efforts—for example, its software development and maintenance processes—as

186 B.A. NEJMEH AND W.E. RIDDLE

well as to its more narrowly-focused operational procedures—for example, its travel-
reimbursement and report-production processes. These activities form a “basis set”
for process evolution—all process evolution efforts are comprised of a (perhaps com-
plex) combination of activities, each belonging to one of the activity categories, and
no process evolution efforts involve activities which do not belong to one of the cat-
egories.

We set the stage for defining and discussing the activity categories, and therefore
defining and discussing the framework, by first indicating their general nature in
terms of a four-stage process evolution model and the nature of the information the
activities use, modify and produce in terms of a set of three databases. The four-stage
process evolution model is discussed in this section. The databases are discussed in
the following section.

The PEDAL framework is a variant of Shewhart’s Plan-Do-Study-Act (PDSA)
statistical quality-control model[49] underlying Deming’s work on quality improve-
ment[15]. Another process improvement-oriented variant of the PDSA model is the
QIP software engineering-oriented improvement model[4] developed by the Fraun-
hofer Institute for Experimental Software Engineering in Kaiserslautern, Germany,
and its sister organization, the Fraunhofer Center for Experimental Software Engi-
neering, in College Park, Maryland. A third variant is the IDEAL CMM-oriented
software development process-improvement model[31] developed at the SEI. In
contrast to these other PDSA models, PEDAL concerns the objectives of process
evolution efforts. These objectives reflect the goals of one (or, in some cases, two) of
the process evolution stages depicted inFig. 1.

4.2.1 Scope
The goal during this stage is to establish a process evolution exercise’s context,

requirements, progress-related metrics and plan. This includes determining the oper-
ating context for the processes as well as establishing requirements for the process
evolution exercises. It also includes defining specific process evolution objectives and
metrics for assessing progress during process evolution exercises. Aprocess archi-
tectureis defined during this stage to allow process change agents and stakeholders
clearly and unambiguously discuss the processes and argue their suitability. (See
Process Architecturesidebar.) The concepts defined by the process architecture are
used to record information about “as-is” versions of the processes, versions reflected
by the current documentation and the ways the processes are actually carried out. The
concepts are also used to define “should-be” versions of the processes, versions that
reflect suggestions from process performers and other stakeholders about changes.
The “as-is” and “should be” descriptions are used to make the process, process
documentation and process evolution requirements concrete and well-defined. The
descriptions are also used to establish concrete plans for process evolution exercises.

THE PERFECT APPROACH 187

FIG. 1. Process evolution stages.

Process Architecture

A process architecture identifies the concepts that process change agents and stake-
holders use to describe and evaluate a company’s processes. Process architectures vary
from company to company, and a company’s process architecture will vary over time.
A process architecture rigorously defines the process elements pertinent to describing
and evaluating the process. This may be the full set of possible elements: activities,
roles, artifacts, conditions and assets. Normally, however, it is just a subset of these
elements. The process architecture also rigorously defines the elements’ attributes and
their inter-relationships. The major reasons for specifying a process architecture are:

Clarification: The process architecture identifies the concepts which are important in
thinking about a company’s processes.

Discussion: The process architecture facilitates discussion among process change
agents and other stakeholders.

Evaluation: The process architecture facilitates checking the completeness, consis-
tency and accuracy of the processes and their descriptions.

See[48] for a more detailed discussion of process architectures.

188 B.A. NEJMEH AND W.E. RIDDLE

4.2.2 Define

During this stage, the goal is to define new processes, as well as new versions
of current processes, and assure that the processes, and their descriptions, are com-
plete, consistent and accurate. The concepts defined by the process architecture are
used to define “to-be” versions of the processes, versions that help process perform-
ers understand what they need to do and provide them with advice and guidance
about how to do their work, how to tailor the processes to group and individual pref-
erences, capabilities and experiences, and how to modify their on-going work and
update their capabilities in order to successfully perform the new processes. Pre-
performance analysis is used to assure that the processes are of high quality and “fit
for purpose.” Analysis is also done to assure the quality, clarity and suitability of the
process documentation. The analyses are often performed by informal and formal
reviews. If the process architecture is based on a formal model, the analyses may be
analytic or simulation-based. Trial applications, in projects specifically set up for the
purpose, may also be used to validate the processes and their documentation.

4.2.3 Perform

During this stage, the goal is to gather use-based qualitative and quantitative
information about the quality, clarity and suitability of the processes and their de-
scriptions. The process documentation is distributed throughout the company. The
defined processes are instantiated (as project plans) and performed. With respect to
process evolution, this includes training company personnel, tailoring the processes
to meet the needs of specific projects as well as the experiences and skills of project
personnel, and creating project plans and refinements to plans for the company’s
projects. Process performance is actively monitored during this stage. Information
is collected about performance failures (and successes); this includes information
about any changes needed to successfully perform the processes. Information is also
collected about the process documentation, including data about inconsistencies, its
completeness and clarity, and customizations made by process performers to match
their preferences, capabilities and experiences.

4.2.4 Review

The goal during this stage is to retrospectively, based on historical evidence,
prepare advice affecting the definition of future process evolution exercises. The
definitions of the processes and process evolution exercises, and information about
their performance, are audited for conformance to constraints and the satisfaction
of requirements. Information gathered during prior applications of the company’s
processes is examined to identify and prioritize changes to the processes and their

THE PERFECT APPROACH 189

documentation. Similar information gathered during process evolution exercises is
examined to identify and prioritize potential changes to the definition or conduct of
future exercises. With respect to both the processes and process evolution exercises,
the information is examined to identify: new assets and improvements to existing
assets; additional information to be gathered about standards and best practices; and
other influences upon what happens during the other stages.

4.3 Process-Related Information

During a process evolution exercise, the activities in the various stages use, mod-
ify and produce process-related information relevant to some aspect of the process
or its performance. Over time, this information creates arepositoryof all that is
known about the company’s processes and their effective, efficient, accurate perfor-
mance. The repository also, over time, reflects all of the versions and variants of the
processes that have been used for a company’s projects. The repository is, in essence,
a corporate knowledge base concerning the company’s processes.

Conceptually, the repository is composed of three (logically) distinct databases,
each holding a categorically different kind of information:

• a Process Informationdatabase holding descriptions of the various processes
in terms of the process elements, attributes and relationships defined by the
company’s process architecture,

• aResource Informationdatabase holding the assets (templates, checklists, poli-
cies, etc.) supporting performance of the company’s processes, and

• a Project Informationdatabase holding the specific work products (designs,
meeting minutes, white papers, etc.) produced during the course of a specific
project.

A company’s repository contains one Process Information database holding infor-
mation about all of its process sets, several Resource Information databases each
pertaining to one of the company’s process sets, and many Project Information data-
bases, one for each of the projects carried out by the company.

Activities in all of the categories create new information to be held in these data-
bases based on the information held in previous versions of the databases. As such,
the activities collectively mature the information in these databases over time. In
many cases, this maturation involves updating the information in one of the databases
by synopsizing or integrating information held in the other databases. For example,
a new version of an asset (deposited into a Resource Information database) is often
created by inspecting, and abstracting from, the various specific artifacts (held in
Project Information databases) created from previous versions of the asset.

190 B.A. NEJMEH AND W.E. RIDDLE

4.4 The PEDAL Framework

The PEDAL framework identifies twelve fundamental activity categories. Collec-
tively, activities falling into these categories serve to mature the information held in
the repository. Individually, the activities use, modify and produce information held
in the repository in order to satisfy specific objectives.

The PEDAL framework is depicted inFig. 2 using a “flower-petal” diagram first
suggested by Kouichi Kishida[27]. The twelve activity categories are depicted as
“flower petals” with an indication of their relationship to the four stages. Their pro-
duction and use of information in the repository is indicated by the bi-direction
arrows used to depict each category. The intended implication is that activities in
all of the categories may proceed concurrently with their coordination achieved by
the exchange of information through the repository.

The diagram implies a logical, clockwise, progression of activities in the various
categories, starting with a Gather activity, and their use and production of informa-

FIG. 2. The PEDAL framework.

THE PERFECT APPROACH 191

tion contained in the repository. The diagram, however, does notprescribethat an
exercise starts with a Gather activity, that activities in all of the categories are per-
formed during a process evolution exercise, or that activities are actually performed
in the implied order. In fact, as demonstrated by the Case Studies in Section5,
a process evolution exercise will involve only a subset of the activities, performed
as necessary to meet the exercise’s objectives.

The order of activity performance is not, however, totally arbitrary. Major con-
straints come from the need to produce information before it is needed; these con-
straints are implied by the definitions of the activity categories appearing in the
following sections. Other constraints are also important. Any number of business,
technical, resource or schedule constraints may dictate that certain process evolution
activities are performed or omitted to satisfy such constraints. For example, a need
to quickly, under severe time constraints, define a process might lead to an initial
Define stage activity without any preceding Plan stage activities.

The categories are discussed in this section; use of the diagram to describe and
understand actual process evolution exercises is discussed in the following section.

4.4.1 Gather

Activities in this category establish requirements for a process evolution exercise
and the processes it will address. They also collect assets that will facilitate perfor-
mance of the processes and the process evolution exercise itself. The objective is to
find, filter and organize information that either impacts the company’s processes and
the process evolution exercise or can be used to support performance of the processes
or the process evolution exercise. Information obtained during these activities may
include constraints upon the processes: maturation frameworks (e.g., CMM, CMMI,
etc.), regulatory constraints, policies, standards (e.g., ISO 9001), etc. It may also
include information about resources supporting both process and process evolution
exercise performance: detailed procedures and techniques, best practices, templates,
checklists, (good and bad) examples from prior performances, etc. The information
might also concern other constraints such as budget and schedule limitations, market
conditions and personnel availability and capability. As one result of activities in this
category, the Process Information database contains information about constraints
upon the processes being evolved, as well as their importance and their necessity. As
another result, process change agents have information that affects the definition of
a concrete process evolution exercise plan.

4.4.2 Plan

These activities develop a plan for a process evolution exercise and define the cri-
teria used to measure progress and success. The objective is to identify requirements

192 B.A. NEJMEH AND W.E. RIDDLE

Process Metrics

Process metrics define quantitative and qualitative measures related to a process, its
performance and its evolution. Process metrics are relevant to a process entity (i.e.,
activity, role, artifact, condition, asset) or combination of entities.

Static Process Metrics relate to properties of the defined process (e.g., number of role
types, artifact types, etc.).

Dynamic Process Metrics relate to process performance properties (e.g., elapsed time
for the performance of an activity, number of activities performed, number of arti-
facts created, etc.).

Process Evolution Metrics relate to the process of making changes to a process over
time (e.g., number of iterations within a process evolution exercise).

See[35] for a more detailed discussion of process metrics.

for the process evolution exercise and the processes resulting from the exercise. Es-
sentially, these activities define the criteria that may be used to measure progress
during the process evolution exercise to determine its success. The criteria concern
the static or dynamic properties of the processes being evolved during the exercise
and the properties of these processes’ descriptions. They also concern the status of a
process evolution exercise. A major task is to define the metrics (seeProcess Metrics
sidebar) used to measure process evolution exercise progress. As a result of activ-
ities in this category, the Process Information database contains concrete exercise
objectives defined in terms of process properties and process description properties.

4.4.3 Capture

These activities gather and organize information about the company’sshould-
be processes—the processes as they should be performed, usually as described
in the documentation for the processes. One objective is to establish a process
architecture—process elements, their attributes and their inter-relationships facili-
tating process agent and stakeholder discussion and evaluation of the company’s
processes—and use it to organize information about the company’s should-be
processes. Another objective is to update the company’s process documentation to
use the terminology defined by the process architecture and remove any inconsisten-
cies. A third objective is to gather suggestions from process performers and other
stakeholders concerning improvements to the processes and their documentation. As
a result of activities in this category, the Process Information database contains a de-
finition of the process architecture and, in terms of it, information about not only the

THE PERFECT APPROACH 193

processes as they should be performed according to the current process documenta-
tion but also stakeholder thoughts about potential improvements.

4.4.4 Elicit

These activities gather and organize information about the company’sas-is
processes, the processes actually being performed. The objective is to understand
how the processes are currently being performed in practice. In part, these activi-
ties capture the experiences of the company’s work force as indicated by the ways
personnel actually carry out the processes and have tailored and customized them to
match the needs of specific projects or personnel. These activities involve interviews
with process performers, trainers, appraisers and others having insight into process
performance. The Process Information database is updated to reflect the “reality”
of what really happens during process performance This may be done by changing
the information about the should-be processes, or it may be done by developing a
separate description so that comparisons may be made between the should-be and
as-is processes. A side-effect of these activities may be to suggest changes to the
process architecture. As a result of activities in this category, the Process Informa-
tion database contains information about how process performers actually carry out
the processes.

4.4.5 Design

These activities specify the company’sto-beprocesses—the processes the com-
pany wishes to use in the future. The objective is to define the company’s new or
revised processes. The major task is to develop descriptions, expressed using the
concepts defined in the process architecture, of processes that conform to any con-
straints, appropriately utilize the company’s personnel, and reflect the personnel’s
experiences and expertise. This usually involves an intermixture of work focused
on a process set and work devoted to defining the interactions among the process
sets. A side-effect of these activities may be to suggest changes to the process ar-
chitecture. As a result of activities in this category, the Process Information database
contains information about the processes that are to be used, in the future, to conduct
the company’s business.

4.4.6 Analyze

Activities in this category focus on verifying and validating the processes and
their descriptions. One objective is to analyze the processes and process descriptions
(seeProcess Analysissidebar). Another objective is to make appropriate change
requests or suggestions. Activities in this category verify and validate the work

194 B.A. NEJMEH AND W.E. RIDDLE

Process Analysis

Evaluation of the quantitative and qualitative characteristics of a process and its
(should-be, as-is and to-be) descriptions.

Purpose: identify errors and anomalies, i.e., characteristics that might be errors de-
pending on information beyond the scope of the analysis and requiring human
interpretation.

Properties: suitability of a process or its description concerns:

• clarity: the degree to which performers will reach similar interpretations or
results

• completeness:the degree to which performers’ questions have been addressed

• consistency:the degree to which redundant statements are congruent

• accuracy: the degree to which the results of performance will be as specified

• suitability: the degree to which the results of performance are as required or
needed

Approaches:

• inspection: informal and formal reviews; for example, aWalk-through
Review or aDesk Check Review

• formal analysis: analysis based on a formal model’s semantics; for example,
analysis based on a state transition model of processes

• simulation: analysis based on the simulation of process dynamics; for exam-
ple, use of a queuing theory model of system dynamics

• trial use: use of the process in a non critical-path exercise; for example, use of
the process in an additional project specifically designed to evaluate the process
rather than contribute to some project’s success

done during Capture, Elicit and Design activities. Using process descriptions and
reports generated from the information in the Process Information database, review-
ers check the properties of the processes and their descriptions. The reviewers also
check process-versus-process properties, description-versus-description properties,
and process-versus-description properties. The reviews may involve consideration of
process dynamics through, for example, the consideration of use cases. The reviews
may also involve considering the differences between old, as-is processes and pro-
posed, to-be processes. As one overall result of activities in this category, the Process
Information database contains information about errors or anomalies in the processes
or their descriptions, perhaps accompanied by change requests or suggestions.

THE PERFECT APPROACH 195

4.4.7 Deploy
These activities disseminate descriptions of the processes throughout a company.

The primary objective is to communicate the new or revised processes and help on-
going projects migrate to the new processes as required and feasible. This leads to
activities which define a look-and-feel for the company’s process documentation,
create documentation having this look-and-feel, and distribute the documentation
to the company’s work force. The means of distribution will determine the form
that needs to be created; intranet distribution, for example, requires a web-based
form. Multiple versions, with alternative look-and-feels or presented in alternative
rendition media, may have to be created. The documentation may be accompanied
by information about: how to best view the documentation or obtain hardcopy ver-
sions; the situations in which use is mandatory; how to migrate an on-going project
to the processes; the ways in which the processes may be tailored; and how to
couple the new processes to already-existing processes with which they interact.
A second objective is to create and distribute addition descriptions, for example,
material soliciting feedback about the quality and suitability of the processes and
their documentation. A third objective is to collect information about any difficulties
encountered in distributing the descriptions. As a result of activities in this category,
the Process Information database contains versions of the descriptions accompanied
by information regarding the ease or difficulty of introducing the process within the
company.

4.4.8 Train
These activities provide on-the-job and course-based process education and train-

ing to new hires and the current work force. An objective is to establish the work
force’s ability to accurately, effectively and efficiently carry out the processes. This
may involve educating the work force about the process architecture (as needed to
understand the process descriptions). It may also involve developing the skills to use
new resources (e.g., new tools) that support process performance. Another objective
is to collect information about any difficulties encountered in educating and train-
ing the company’s work force. As a result of activities in this category, the Process
Information database contains material explaining the processes in terms supporting
on-the-job and course-based training accompanied by information regarding the ease
or difficulty of process-related education and training.

4.4.9 Perform
The goal of this category’s activities is to assure that the processes can be, and

are, performed accurately, effectively and efficiently. Support for assuring accu-
racy, effectiveness and efficiency may be provided by dedicated personnel (“process

196 B.A. NEJMEH AND W.E. RIDDLE

police”) or electronically (i.e., via process workflow support). One objective with
respect to process evolution is to adapt the company’s processes to the specific
needs of the company’s projects and identify any problems in the processes or their
documentation. An additional objective—again, with respect to process evolution—
is to gain experience in using the processes and identify any additional problems
that need to be addressed. A third objective is to modify the processes to address
problems discovered during performance. As a result of activities in this category,
the Process Information database contains information about how the processes
are applied in the company’s projects and any difficulties which were encoun-
tered.

4.4.10 Monitor

These activities track process performance with the intent of gathering informa-
tion that will affect future process evolution exercises. The objective is to obtain
quantitative data about the performance of the processes over many projects. Ac-
tivities in this category gather the data that will be used in assessing the processes
and improving them over time based on experiences in performing them in a variety
of projects. Metrics defined during activities in other categories guide the data col-
lection. Data collection may be manual, assisted by checklists or other assets. When
workflow support is provided, data collection may be accomplished by instrumenting
the process’ workflow script. A secondary task, therefore, is to note any workflow
support problems that impact data collection. As a result of activities in this category,
the Process Information database contains quantitative, longitudinal data concerning
the ease and difficulty of performing the processes.

4.4.11 Audit

During activities in this category, the processes, process performance information
and process descriptions are reviewed with respect to their requirements. A major
objective is to assess conformance to regulatory or contractual constraints. In part,
this involves reviewing the processes’ descriptions, perhaps by reviewing process
documentation and perhaps by reviewing descriptions published in some review-
oriented format. It also involves reviewing information about process performance
to assure that it is consistent with the process descriptions. Review meetings will
require special reports about the processes and their performance designed to assist
in addressing review questions and issues. As a result of activities in this category,
the Process Information database contains information about the conformance and
non-conformance of the processes, their documentation and their performance to
regulatory or contractual constraints.

THE PERFECT APPROACH 197

4.4.12 Examine

These activities serve to organize and analyze information gathered during other
activities and develop a prioritized list of potential process changes with an indication
of their criticality. The objective is to collect and sort out feedback from the other
activities to aid the definition of future process evolution exercises. This involves
recording lessons learned, analyzing the results of audits, defining desirable and/or
required changes, identifying desirable additional performance-support resources,
specifying changes to the process architecture, defining new process and process
description properties to be analyzed, specifying new process performance data to
be collected, etc. It also involves identifying requirements for future versions of the
process. In short, it involves:

(1) reviewing feedback from the previous activities;
(2) noting requirements for future process versions, and
(3) capturing valuable assets to support future process performance. As a result

of activities in this category, the Process Information database contains a list
of process evolution activities that should be carried out in future process evo-
lution exercises. The primary result is a prioritized list of actions that could to
be taken to satisfy the (new) requirements.

5. Describing Process Evolution Dynamics

PEDAL identifies and defines a collection of fundamental process evolution activ-
ity categories. Because the framework is non-prescriptive, it admits a wide variety
of process evolution exercises. In this Section, we first give three Case Studies in-
dicating the broad range of process evolution exercises permitted by the PEDAL
Framework. Following this, we make some general observations about process evo-
lution as indicated by the Case Studies. Finally, we identify some important lessons
learned from the Case Study applications as well as other applications.

5.1 Process Evolution Description Case Studies
We have applied the PEDAL framework and PERFECT approach to process

evolution in a variety of situations. A representative sampling are discussed in
this section including one application in which process evolution was carried out
in the context of an improvement game plan, one that addressed the company’s
business—rather than its software development—processes, and one that involved
the development—over several applications in a variety of companies—of a general
process for business-driven product planning.

198 B.A. NEJMEH AND W.E. RIDDLE

5.1.1 CMM-Based Development of Processes Conforming to
Regulatory Constraints

This Case Study concerns a large, multi-national manufacturer of embedded soft-
ware devices. The manufacturer had developed a set of processes governing the
“birth-to-death” design, development, marketing, delivery and maintenance of their
products’ software components. Their products were subject to regulatory constraints
levied by a Government organization. They had been appraised at CMM Level II and
wished to move to Level III. Prior to a Level III appraisal, they would be audited
with respect to the regulatory constraints. Their processes were described in several
Word documents, roughly one per process set. For example, they had one docu-
ment for their three different kinds ofPeer Review processes and one for their
Requirements Management processes. They were aware of many problems
in their process documentation, ranging from simple inconsistencies (e.g., differ-
ent names in different documents for a particular role) to process-logic errors (e.g.,
work products not produced before they are needed) to incompatibilities across their
process sets (e.g., inconsistent definitions of the interfaces between processes in dif-
ferent sets). In addition, they were finding that manual maintenance of the documents
was not only increasingly error prone but also starting to consume so much time that
deployment of new versions could not be accomplished in a timely manner. Finally,
they had received several requests for views better satisfying process performer needs
(e.g., a table that describes document production and usage by activities) and had
recognized the need to provide views that supported non-performance needs (e.g.,
views supporting work force training, conformance audits and capability appraisals).

Evolution Effort Scope. The company’s Software Engineering Process
Group (SEPG) decided to focus on their software development processes, simulta-
neously prepare for their regulatory-constraint audit and Level III appraisal, correct
the noted inconsistencies and errors, move from their Word-based documentation
to WebGuides(seeWebGuidessidebar), and include new process performance-
related views as much as possible. They consciously decided to delay work on
related processes, for example, process training and process documentation de-
ployment processes; before working on these other processes, they planned to gain
experience by performing them in the context of the evolving software develop-
ment processes. Additionally, they consciously decided to delay producing audit- or
appraisal-oriented views; again, they planned to use experience during the upcoming
audit and appraisal to guide development of these views.

Evolution Effort Goals. The SEPG launched a process evolution effort hav-
ing the following goals:

THE PERFECT APPROACH 199

WebGuides

A WebGuide is a website providing highly interlinked information regarding process
elements (activities, roles, artifacts, conditions and assets) as well as their inter-
relationships[28,47]. WebGuides are not narrative discussions of the process (as often
found in process documentation). Rather they are stylized, structured presentations that
describe each process element in terms of “information chunks.” For example, for an
activity the chunks include: a synopsis of the activity, the roles which have responsi-
bility for successful activity performance, the other roles that participate in the activity,
the activity’s enabling and termination conditions, etc.[18]. WebGuides are typically
quite large (4000-plus web pages are not unusual). They cannot, therefore, be success-
fully maintained manually. General knowledge management technology, for example,
Lotus Notes[21] may be used to maintain and generate them. It is more effective,
however, to use specializedWebGuide Generation Tool Suitesallowing the definition
of a process-specific schema for the knowledge base and specialized view generators
(examples include Dreamweaver[30], iNotion [24], IRIS [39], process Max[44], and
Spearmint/PMC[23]. These tool suites provide a rich array of reports about the inter-
relationships among the process elements; for example, artifact usage and production
views, activity predecessor and successor views, views regarding role participation in
activities, etc. Only a small number of these views are provided by manually main-
tained process documentation because of the difficulty of establishing and maintaining
them and their consistency.

• G1: Updateall of the company’s software development processes in preparation
for the upcoming audit and appraisal.

• G2: Correct errors and inconsistencies noted to date as well as problems and
inconsistencies uncovered by several levels of review (by the SEPG itself, by
personnel from various divisions invited to review the new processes, and by
the work force in general).

• G3: Convert the company’s software process documentation to WebGuides de-
ployed via the company’s intranet.

Evolution Effort Strategy. The SEPG decided to initially focus on just two of
its software process sets—Peer Review andRequirements Management.
By initially addressing more than one process set, the SEPG intended to develop a
process architecture appropriate for all of its software development processes. By
simultaneously addressing two process sets, the SEPG intended to define a reason-

200 B.A. NEJMEH AND W.E. RIDDLE

able approach to evolving a process set as well as an understanding of the inter-play
among the process evolution exercises addressing different process sets.

After completing some, but perhaps not all, of the work on these two process
sets, the SEPG planned to move on to its other software development process
sets—Quality Assurance, Design and Implementation, Mainte-
nance, etc. Because of time pressures, the SEPG planned to move on to addressing
other process sets as soon as they felt that their approach to working on a process
set was reasonably well-defined and fairly stable. They were willing, in other words,
to forego achieving an “ideal” process set evolution process in favor of achieving a
reasonable process that would, itself, have to evolve over time.

Process Evolution Exercise. With respect to a process set, the SEPG
planned to evolve its processes using a highly iterative steam of activities. This ac-
tivity stream was:

1. Define a process architecture pertinent to the process set’s processes. (Cap-
ture)

2. Import the information in existing Word documentation into a Process Infor-
mation database. (Capture)

3. Generate an example WebGuide and review it to validate the process archi-
tecture and the WebGuide look-and-feel. (Analyze)

Iterate activities 1-through-3 as necessary.

4. Improve the process definitions and correct errors and inconsistencies noted
to date. (Design)

5. Generate WebGuides and have the full SEPG use them to identify errors and
inconsistencies in the processes and process descriptions. (Analyze)

Iterate activities 4-through-5 as necessary.

Iterate activities 1 and 3-through-5 as necessary.

6. Disseminate a test version of the WebGuides for review by a select group of
personnel with respect to the suitability of the processes in the process set.
(Deploy)

7. Analyze the feedback from the review and identify issues that need to be
addressed. (Analyze)

Iterate activities 4-through-7 as necessary.

Iterate activities 1 and 3-through-7 as necessary.

8. Assure that the processes, and their WebGuides, are ready for deployment
throughout the company. (Analyze)

THE PERFECT APPROACH 201

9. Make the WebGuides available via the company’s intranet. (Deploy)
10. Tailor the processes to meet the needs of specific projects and the abilities and

experiences of project personnel, noting not only the changes needed to tailor
the processes but also any errors and inconsistencies in the processes or the
WebGuides. (Train)

Iterate activities 4-through-10 as necessary.

Iterate activities 1 and 3-through-10 as necessary.

Exercise-to-Exercise Influences. The SEPG recognized that changes to
the processes within one process set would imply changes to processes in another
process set. It planned to use changes toRequirements Management processes
to understand the changes that might be needed toPeer Review processes, and
vice versa. It also planned to address this cross-exercise influence by developing
and evolving, through experience, a process for managing changes to inter-process
interfaces. The SEPG recognized that this would introduce a “broader scope” activity
stream that coordinated changes across multiple process evolution exercises.

5.1.2 Rationalization of Inventory-Control Processes and
Development of Requirements for Process-Support
Technology

This Case Study concerns a product service division within a large, Fortune-100
company. This division was responsible for receiving defective/damaged products
and determining the most cost effective approach to repairing the defects, completing
the repairs, and shipping the repaired product back to the customer. The division used
straightforward, fairly standard, inventory control procedures not only to support the
repair process but also to support identification of the “best” repair approach based
on the current status of their parts inventory. The inventory control procedures were
supported by an inventory control system.

For various reasons, the decision had been made to replace the current inven-
tory control system in six months. The cut-over to the new system was scheduled
to be done over a weekend; no overlapped operation of the old and new systems
was planned. The division had established an Information Technology Infrastructure
(ITI) Project to implement and test the new inventory control system to the degree
needed to avoid a major disaster when the new inventory control system became
operational.

The Manager of the ITI Project had found that the documentation for the current
inventory control procedures was not only rather vague but also rather poorly under-
stood and rarely consulted. She also predicted that, because of differences between

202 B.A. NEJMEH AND W.E. RIDDLE

the old and new inventory control systems’ hardware (mostly its user-interface termi-
nals), the current as-is procedures would have to be changed, mostly in minor ways
but in some cases in rather significant ways. She was understandably worried that
mismatches between the service personnel and her IT personnel understandings of
the current and new procedures would lead to a failed implementation and a resultant
inability to conduct business.

Evolution Effort Scope. The ITI Project Manager had decided to first docu-
ment the procedures to the degree necessary:

(1) for service and IT personnel to mutually agree on the division’s current pro-
cedures,

(2) to support describing changes to the procedures, and gaining rapid mutual
agreement, as the IT personnel learned more about how best to apply the new
inventory control system, and

(3) to support the definition of test cases. There was the conscious decision to
not, initially at least, describe the procedures to the degree of detail and pre-
cision needed for a new Procedures Manual; the more immediate need was
to prepare for the cut-over and it was felt that future work could mature the
procedure documentation as needed for the Procedures Manual. There was
also the conscious decision to not yet tackle the problem of how to validate
the new procedures through controlled testing by service personnel. It was
decided that a decision about how to do this should be delayed for two-to-
three months until the decision could be made in the light of experience with
implementing the new support capabilities.

Evolution Effort Goals. The ITI Project Manager established a single goal:

• G1: Precisely define the inventory control procedures to the degree needed for
IT personnel to understand the current procedures, define and get approval for
changes, and effectively test the implemented support prior to the change over.

Evolution Effort Strategy. This led to a rather straightforward approach: de-
velop an initial set of descriptions in consultation with the service personnel, use
modified descriptions to gain agreement by the service personnel on changes to the
procedures, and develop and conduct tests to verify correct implementation. It was
fully realized that critical to the success of this approach would be to use a descrip-
tion technique already familiar to both the service and IT personnel and, in addition,
carry out activities in parallel as much as possible.

Process Evolution Exercise. The ITI group decided on the following ap-
proach:

THE PERFECT APPROACH 203

1. Identify an appropriate approach to describing the procedures. (Capture)
2. Interview the service personnel and develop descriptions of the procedures cur-

rently in use. Iterate with the service personnel until there is agreement that the
descriptions are accurate. (Elicit)

3. Consult with service personnel to explore and get approval for changes that
implementation of the support indicates would be valuable or necessary. (Ana-
lyze)

4. Use the descriptions to define verification tests, conduct the tests and then iter-
ate back to activity 2 as test results indicate is necessary. (Analyze)

Exercise-to-Exercise Influences. The first activity was easily (and rap-
idly) completed; the current documentation already used a transaction-based, state-
machine, notation. The problem came at the start of the second activity. In preparing
for the interviews, a list was made of the current as-is procedures so that they could be
grouped into categories and the interviews could be prioritized and most efficiently
conducted on a category-by-category basis using well-focused group interviews. The
procedure list identified some 350-plus procedures,many more than anyone ex-
pected. It was quickly realized that time did not allow for all of them to be described,
even to the somewhat minimal level of detail and precision needed.

This led to changing the second activity as follows:

2.1 Identify the 50-or-so “high-risk” or “critical path” procedures most critical to
the division’s success. (Plan)

2.2 Interview the service personnel and develop descriptions of these procedures.
Iterate with the service personnel until there is agreement that the descriptions
are accurate. (Elicit)

In addition, the third and fourth activities were changed to focus on the “high-risk”
or “critical path” procedures.

This modified approach was quite successful for several weeks. The next problems
arose when the IT personnel consulted with service personnel to get their approval
for changes. A rather simple problem was that it was difficult for the service person-
nel to understand exactly what changes had been made. Most problematic was the
difficulty, for both service and IT personnel, to understand the impact of the changes.

It was realized that the “change impact understanding” problem had to be solved
by the service and IT personnel conducting “animation exercises,” depicting the dy-
namics of process performance, when considering the changes. It was also realized
that these exercises, as well as the problem of understanding the change being pro-

204 B.A. NEJMEH AND W.E. RIDDLE

posed, could be facilitated by some visualizations of the “delta” between the old and
new procedures. This led to changing the first activity1 as follows:

1.1 Identify an appropriate approach to describing the procedures. (Capture)
1.2 Develop an approach to describing the differences between the old version of

a procedure and its new version. (Plan)

A technique, and some supporting tools, were rather quickly implemented to support
the side-by-side description of old and new procedure versions with highlighting of
the differences. This led to successful, on-time cut-over to the new inventory control
system.

5.1.3 Business-Driven Product Planning

This Case Study concerns the development, over several process evolution ex-
ercises with several technology product companies, of a business-driven product
planning approach[36] to address a common product planning problem within these
companies. The common problem had to do with how to define and decide upon
the range of possible product feature, cost, schedule combinations which were best
and, in turn, how to define a product release plan that afforded some degree of re-
lease flexibility. Said another way, all of the companies wanted to avoid the “all or
nothing” nature of traditional product release plans.

This Case Study focuses on solving a set of process-related problems that were
common to a number of different companies. This required that the process we de-
veloped be robust enough to be applied in a myriad of diverse settings, including
those companies that were small start-ups in the initial phases of product definition
and release as well as those that were very mature, publicly-held software companies
whose products had been in the marketplace for 15-plus years.

Evolution Effort Scope. Unlike the other cases studies, this work was not
birthed within the context of a single company. Rather, having seen a common prod-
uct planning problem across a myriad of companies, we decided to scope out and
define a business-driven product planning process that could be used in a variety of
settings. The work began by providing a high-level process for defining a product re-
lease plan. Once the high-level—generic—product planning process was defined, use
of it in subsequent applications incrementally expanded its activities based on lessons
learned from applying the process in various commercial settings. We consciously

1 This changed an “already completed” activity. This was not really a problem since the PERFECT
view is that activities are done in parallel rather than in sequence. Introducing the new task within the first
activity merely meant that it was “re-activated” and the new task was addressed, with influences upon the
performance in the future, of the other activities.

THE PERFECT APPROACH 205

decided to delay work on automation related to the product planning process. We also
deferred any work on related processes, such as project management and version and
configuration management, that would obviously be impacted.

Evolution Effort Goals. We defined the following goals for the product plan-
ning process:

• G1: It must apply to technology product companies, regardless of their size,
industry or state of product maturity.

• G2: It must provide a sound decision framework for assessing the range of pos-
sible feature, schedule, cost combinations and lead to the definition of release
schedules with desirable content, predictable costs and firm schedules.

• G3: It must lead to a series of incremental release streams that preserve release
flexibility.

• G4: It must provide a product planning process that could be used in the context
of an agile development method.

Evolution Effort Strategy. We initially focused on defining the high-level
product planning process. We first performed a best practices literature search in
the area of incremental product planning. We also researched the product planning
disciplines of successful software product companies. This led to an initial prod-
uct planning process that consisted of the following activities—Define Release
Themes, Define Feature Areas, Analyze Feature Cost & Value
andPlan Product Release. This allowed us to grasp the breadth of the plan-
ning process scope we were attempting to address without requiring us to define
the details of the process. Clearly, however, such a high-level process definition was
not ready for use by any company. The second iteration of the product planning
process definition involved decomposing and defining, to the task-level, each of the
activities. Only after completing the second stage of process definition evolution was
the process ready for pilot deployment. In the third iteration, the product planning
process was applied in a variety of diverse settings in parallel. This resulted in a num-
ber of keen insights about deficiencies, anomalies and opportunities for improving
the product planning process definition. In turn, we continued to evolve the product
planning process to the point where it was successfully deployed across a number of
diverse companies.

Process Evolution Exercise. We decided on the following approach:

1. Research and gather best practices related to product planning. (Gather)
2. Create a high-level process architecture and a preliminary high-level product

planning process definition. (Capture)

206 B.A. NEJMEH AND W.E. RIDDLE

3. Develop a task-oriented product planning process by decomposing the high-
level product planning process definition. (Design)

4. Analyze the process definition for completeness, consistency and ease of ap-
plication prior to pilot use of the process. (Analyze)

5. Apply the product planning process in a variety of different company settings.
(Perform)

Iterate activities 3 and 4 based on

feedback and lessons learned from activity 5.

6. Package and distribute the product planning process within companies. (De-
ploy)

Exercise-to-Exercise Influences. In this Case Study, the exercise-to-
exercise influences concern the evolution of the product planning process. By design,
our first exercise defined a high-level process; we needed, though a subsequent exer-
cise, to define a process that was concrete enough to be applied in specific situations.
Further iterations were driven by experiences gaining in using the process in a num-
ber of different situations.

5.2 Observations

Collectively, the Case Studies highlight a variety of aspects of the PEDAL frame-
work and PERFECT approach to process evolution and the impacts of using them.
These are discussed in this section.

The PEDAL framework is applicable to a wide variety of process evolution situa-
tions, pertaining not only to a company’s software engineering processes but also to
its business and operational processes. In addition, process evolution exercises may
be in the context of an improvement game, but this is not necessary.

Every process evolution exercise has a specific focus and a well-articulated set
of goals. At the start of every exercise, there is also an identification of what the
exercise will not address. This clarifies what future exercises will have to address.
Experiences in one exercise will, and should, prejudice subsequent exercises. The
prejudice may be strong but that isn’t always the case. For example, with respect to
the first Case Study, in handling the evolution of non software development-related
process sets (e.g., aConformance Demonstration process set) the approach
used for software development-related process setscouldbe used. In all likelihood,
however, these exercises will be different, if only because they have different goals,
are carried out by other personnel and are conducted in other timeframes (and there-
fore different business contexts).

THE PERFECT APPROACH 207

In every process evolution exercise, the emphasis is upon evolving both the com-
pany’s processes and its ability to conduct process evolution exercises without a large
amount of “up front” work on either the company’s process evolution process or a
standard versions of its processes. Some advance work is needed in both regards, but
it need not be extensive. To adjust for the lack of extensive advance work, the com-
pany’s processes and its process evolution processes are evolved iteratively through
the use of short, relatively well-focused, exercises that lead to the rapid definition of
new versions based on actual experience. The company’s standard processes and its
ability to conduct process evolution exercises both evolve as a result of experience
gained in a variety of exercises.

There is no “one size fits all” process evolution exercise; exercises will vary, often
quite radically. A major reason is that an exercise’s starting point—in terms of the
category of its first activity—varies as needed to meet the situation that exists when
the exercise begins. In addition, an exercise involves the activities needed to meet
the exercise’s objectives; in fact, mapping the activities to the categories highlights
the activities’ objectives by indicating the information they use and should produce.
However, the activities included in an exercise and their sequencing depends on the
results of previous exercises and varies as required to meet the exercise’s focus and
goals.

Exercises are performed concurrently. This raises the need to directly address the
cross-flow of information from one exercise to a concurrently performed exercise.
This cross flow of information reflects the fact that, to make progress, activities in
one exercise will at various points need information produced by activities in other
exercises. If the information is not available, the activities will have to wait. This
means that a major challenge is to not only minimize the information-flow cross-
dependencies among activities but also to manage activity performance in a way
that reduces waiting time. We have found that general, fairly obvious, principles can
help meet these challenges; for example, the principle “continuously monitor activity
performance and watch for bottlenecks.”

Another general observation is that use of the PERFECT process evolution ap-
proach and its underlying PEDAL framework tends to reveal the “order within the
chaos.” In practice, process evolution efforts involve hundreds of activities all pro-
ceeding concurrently. The overall effort will, without a doubt, appear to be chaotic;
but there is an underlying order and this can be exposed by using the notions of
process evolution exercises, with the PEDAL framework not only clarifying the
nature and objectives of the activities within an exercise but also the information
flow-based interactions among the activities within the exercises and between activ-
ities in concurrent exercises.

The final observation is that none of the exercises discussed in the Case Stud-
ies explicitly included the development of techniques and tools to support process

208 B.A. NEJMEH AND W.E. RIDDLE

evolution. This was the case in general over all of applications of the PEDAL frame-
work. Their development and application is important, but we have found it best to
have them follow from, rather than drive, the exercises. Several techniques and tools
have, in fact, been developed and applied and these are discussed in Section6. Their
development and application, however, followed from actual needs identified during
process evolution exercises rather than from some pre-conceived, hypothetical, need.

5.3 Lessons Learned

A major theme of the PERFECT process evolution approach is “learn from ex-
perience.” The most important lessons learned from applying the approach to date
are:

• Plans are important but “getting started earlier rather than later” is critical.
A major reason is that the intent is to enable companies to rapidly respond to
a precipitous, unpredicted change in their business context. This is, we found,
better done in the context of on-going process evolution, when the focus and
goals are well known, rather than in the context of process evolution planning.
Plans are, of course, needed to obtain the necessary management commitment
and the allocation of resources. But the “up front” value demonstration should
be, first, narrowly focused on the initial exercises and, secondly, accompanied
by an argument that process evolution will be a continuing, never ending, cor-
porate endeavor.

A second major reason is that the emphasis of the approach is to capitalize
on experience. When company’s have no experience—such as in the second Case
Study—then it can be gained by doing some actual exercises. Some experience can
be obtained by involving a process evolution services provider, but these providers
will not have the requisite knowledge of the company’s culture, practices, and his-
tory. Getting started and responding to problems as they arise is, we found, best not
only in gathering experience but also in establishing the “frame of mind” needed to
respond to business context-change “problems.”

• Do not automate too early. It is often easy, especially for technologists, to fo-
cus on developing supporting techniques and tools rather than on the job at
hand, namely process evolution. For example, in the third Case Study, our early
intuitions were to build a tool suite to support the automation of the product
planning process. We resisted the temptation to do so, instead focusing on the
real-world application of the product planning process and refining the process
based on lessons learned during its application. This proved to be invaluable
in rapidly evolving the product planning process to a point where it could be

THE PERFECT APPROACH 209

practically used in a diversity of product planning settings. In addition, by de-
laying the development of the tool suite we had a much understanding of the its
requirements.

• Solving one process-related problem more often than not significantly con-
tributes to the solution of other process-related problems. For example, in the
situation discussed in the second Case Study, success required the develop-
ment of ways to visualize the differences between the old and new procedure
versions. This capability provided quite valuable support for the company’s re-
training of its work force.

• Develop and actively use a Process Architecture. The architecture establishes
a basis for clear, crisp communication not only among the company’s process
change agents but also between these agents and stakeholders. It also establishes
a basis for identifying confusions, inconsistencies and errors in the process and
its documentation. In situations where the company already had process docu-
mentation, we found that the process architecture could be quickly articulated in
an initial Capture activity specifically devoted to process architecture definition.
When the company had no documentation, or their documentation was minimal
or poorly explained their processes, we found it best to evolve the architecture
over the first one-to-three process evolution exercises. In all cases, we found
a process architecture critical to continued success and that the architecture it-
self should be continuously evolved by periodically performing an appropriate
Capture activity (as part of some process evolution exercise).

• Work with, rather than, replace any existing graphical depictions of the com-
pany’s processes. In almost all of the applications of the process evolution
approach, we found that the company already had a graphical depiction of their
processes showing, most usually, the flows of control and documents. These
depictions were often quite detailed. They were also quite often complex and
ambiguous (indicating that the company did not have a well-developed, mature,
process architecture). They did, however, allow the process change agents and
stakeholders to focus their attention and discuss problems and alternative solu-
tions. Rather than take the top-down approach of first “cleaning up” the diagram
(and its underlying process architecture) we found it best to delay this activity
and, further, do it incrementally across several process evolution exercises.

5.4 Process Evolution Description

Narrative descriptions of process evolution efforts, such as used to describe the
Case Studies, certainly help process change agents focus their efforts and understand
the purposes of their actions. They also provide process change agents with insights

210 B.A. NEJMEH AND W.E. RIDDLE

into what happened during a process change exercise. In this section we discuss two
representations we have additionally found useful in providing retrospective descrip-
tions of process exercises.

An example of one of these representations appears inFig. 3which graphically de-
picts the exercise discussed in the first Case Study. In this description, the exercise’s
activities are mapped to the twelve activity categories defined by the framework with
ordinal numbering used to indicate the order in which the activities are performed.
Rather than merely duplicate the information in the narrative description, this graphi-
cal representation indicates additional information. First of all, it explicitly indicates
which activity categories werenot included in the exercise. This can help process
change agents understand and articulate the reasons for whatever problems might
have arisen. It can also help the agents understand the applicability of the exercise as
a means of addressing a business-context change. Finally, by providing a checklist of
sorts, it can help the agents focus on what might need to be done in future exercises.

Graphical descriptions such as appearing inFig. 3 also better imply the informa-
tion flow that takes place during a process evolution exercise. By explicitly indicating
the databases in the repository, it allows process change agents, with additional an-
notations, to describe the flow of information among the process evolution activities.

FIG. 3. Process evolution exercise.

THE PERFECT APPROACH 211

Because of the different intents of the databases, it helps the agents understand when
the flow takes place—roughly: during process definition, during project planning, or
during process performance. This in turn, can help the agents understand the source
of problems (including inordinate wait times) and predict the feasibility of some fu-
ture exercise either in continuing to address some business-context change or some
change that precipitously occurs.

We have found that as process change agents become familiar and facile with us-
ing graphical descriptions such as appearing inFig. 3they can quickly articulate and
discuss process evolution problems, potential solutions, lessons learned to consider
in defining future exercises, and the potential value of an exercise with respect to
some business-context change. In addition, the agents can use these descriptions to
develop rough plans for process evolution exercises. This partially involves under-
standing the skills, knowledge and experience that will be needed and adjusting the
plan to better match the capabilities of available personnel. It also involves first get-
ting a sense of what will done before delving into the details and then developing,
in parallel with developing the details, a better understanding of how the activities
relate to each other. Finally, we have found that these descriptions are also a valuable
management tool; they can be used to describe the status of an exercise, the potential
sources of problems, and key conditions that need to be checked in the future.

However, we have also found that an additional representation is needed to fully
support process change agents in understanding, learning from, planning and manag-
ing their process evolution exercises. This stems from the fact that descriptions such
as inFig. 3 can become quite complex and hard to understand when, as typically
occurs, there are many iterations during a process evolution exercise. An approach
to depicting iteration during process evolution exercises is shown inFig. 4 which
corresponds to the first Case Study but which, for the purposes of example, reflects
a more complete accounting of the activities in the process evolution exercise.

Descriptions such as inFig. 4 more clearly indicate the flow of control among
iterations that are not evident from descriptions such as inFig. 3 and are poorly
depicted by annotating such descriptions. In addition, they reveal major phases that
occur during the process evolution exercise. InFig. 4, for example, the phases are:

(1) Commit: validate the approach and develop a plan,
(2) Convert, Correct and Update: iteratively develop and review versions,
(3) Launch: obtain additional reviews and prepare for application within projects,

and
(4) Use: apply the processes within projects.

Note that the flow of activities is depicted in two ways inFig. 4. First, there is a
timeline that indicates membership of the activities in the various categories. Sec-
ond, below the timeline presentation is a textual representation that uses a regular

212
B

.A
.N

E
JM

E
H

A
N

D
W

.E
.R

ID
D

LE

FIG. 4. Process evolution exercises—alternative depiction.

THE PERFECT APPROACH 213

expression-like notation to indicate the flow of activities with respect to the cate-
gories. Both highlight the extent to which the activities “cover” the activities as well
as the iterative flow of the activities. Together they indicate that there are both graph-
ical and textual ways to depict the iterative flow.

6. Process Evolution Infrastructure

Many techniques and tools have been created to support developing and carry-
ing out improvement games plans. Primary among them have been Process Asset
Libraries[40] providing templates, examples, procedures, guidance checklists, etc.,
for both the process being working on and the improvement process itself. In addi-
tion, most improvement game plan-oriented service providers have developed their
own set of proprietary techniques and tools.

All of these techniques and tools provide part of a process evolution infrastructure
—a collection of techniques and tools supporting a company’s process change
agents’ work in describing, understanding, learning from, planning and managing
their process evolution exercises. In our work developing the PERFECT approach to
process evolution, we have found it necessary to add additional techniques and tools
to support process evolution exercises.

The techniques and tools we have developed result from our experiences in ap-
plying the PERFECT approach to process evolution. The need for them was “dis-
covered” during on-going exercises, they were quickly defined and implemented as
needed for that exercise, and then they were refined and improved as needed to sup-
port subsequent exercises. Tool suites can be, and often are, evolved over time, but
this is generally within the context of some overall, rational plan[46]. In our experi-
ence, the overall plan is not necessarily needed.

6.1 Additional Assets

Several of the applications of the PERFECT approach to process evolution focused
on software process improvement. Most of these were in the context of the com-
pany’s improvement game plan effort. In these cases the assets developed over time
by the improvement game plan community were generally sufficient; they sometimes
had to be changed in relatively minor ways but that is a normal part of improvement
game plans. In those applications that focused on software development processes
but were not in the context of an overall improvement game plan, we found it most
often sufficient to “re-use” assets from the improvement game plan community,
changing them as necessary to fit the needs of the company.

214 B.A. NEJMEH AND W.E. RIDDLE

We had to develop additional assets for three reasons. First, the PERFECT ap-
proach to process evolution concerns many activities that are not within the scope of
many, if any, improvement game plan approaches. For example, the deployment of
new versions is within the scope of the PERFECT approach to process evolution but
not within the scope of the standards, maturity models and best practices underlying
improvement game plans. We had to development assets to support these additional
activities, for example, a “deployment checklist” to help rationalize and guide the
deployment of new versions of the process.

Secondly, many of the applications concerned business and operational processes
rather than software development processes. In these applications, we had to de-
velop assets specific to these other process domains. These assets were analogous
to those developed for software processes by the improvement game plan commu-
nity. They were, however, quite often radically different from those found in this
community for two reasons. First, in the software process improvement community,
the processes being considered have a broad scope, for example, aPeer Review
process. In business and operational processes, however, the processes generally have
a considerably more narrow scope, for example, aTravel Request Approval
process. Secondly, business and operational processes are most often thought of in
terms of a transaction-based or state change-based model. Software processes are
thought of in analogous terms—for example, in terms of information flow among
activities—but not with the degree of detail and rigor afforded by transaction-based
or state change-based models. For these reasons, the templates we developed for
these non software process-oriented models were similar in function but almost al-
ways quite different in form from those developed by the improvement game plan
community.

The third reason we had to develop new assets was that we needed assets that
supported the PERFECT approach to process evolution itself.2 For example, to sup-
port the applications described in the third Case Study, we needed to define a set of
templates that corresponded to the product planning process’ work products. It is not
surprising that these assets are needed; the PERFECT approach to process evolution
is, itself, a process and templates, examples, guidance, checklists, etc., are as much
needed to support it as they are needed to support the process that is being evolved.

In summary, we needed to expand the contents and broaden the scope of the
Process Asset Library in many directions. We did this with little—hardly any—
advance thinking about what was needed. Rather, we developed new assets “just

2 This type of asset appears to be largely absent from the set of assets developed by the improvement
game plan community. It appears this community has focused on the assets needed for the processes
that are being improved. Individual service providers have developed assets supporting their approach to
improvement game plan development and conduct. But few assets, if any, have been developed, and made
available, by the community at large.

THE PERFECT APPROACH 215

in time,” as the need for them became apparent during process evolution exercises,
and then evolved them in the course of using them in subsequent exercises.

6.2 Process Information Gathering

In all of the process evolution exercises, there was the need to support the gather-
ing of information about should-be, as-is and to-be processes. This often led to the
development of “information gathering” assets, primarily forms that we could use for
the efficient gathering of information about the process being evolved from process
performers, process design experts, customers, and other stakeholders. We found,
however, that these forms were hardly ever re-usable from exercise to exercise. Each
company had evolved a somewhat unique way of thinking and talking about their
processes. The information gathering forms had to reflect this and rarely were the
forms developed for one application useful without considerable modification.

In addition, we found that it was generally better to gather information during
working sessions with the stakeholders. Just as different companies view processes
in different ways, different people having some “stake” in a process will view it
in different ways. Forms-based information gathering, therefore, more often than
not resulted in confused, sometimes seemingly contradictory, information about the
process. Interactive sessions attended by a cross-section of stakeholders were more
often the most effective way to understand the process from the collective point-
of-view rather than from a variety of separate, hard to integrate, points of view.
We ended up, therefore, developing several techniques for interactively gathering
information about the company’s processes. These were sometimes used to gather
information about the company’s as-is processes; they were much more often used
to gather information about the should-be and to-be processes.

As much as possible we tried to gather information through forms since this was
much more efficient than holding interactive sessions. But we found interactive, face-
to-face working sessions to be the best way to get unambiguous, understandable
information at least two-thirds of the time. Our use of forms and working sessions is
explained in the remainder of this section.

• Architecture Definition Interviews. As indicated in the list of lessons learned,
different companies, and different people connected with a company, think and
talk about the company’s processes in different ways. Therefore, we tended,
over time, to start our engagements by interviewing a sampling of process per-
formers, process change agents, project managers, and corporate executives as
well as the company’s “process experts,” its customers and its investors. These
interviews were very open-ended. After establishing the overall intent as be-
ing to understand the way stakeholders think and talk about the company’s

216 B.A. NEJMEH AND W.E. RIDDLE

processes, the interviews commenced with the open-ended question: Tell me
about your company’s processes. The intents were many, from simple to com-
plex. At the “simple” end of the spectrum was the intent to identify the way
terms such asprocess, procedure, activity, task, step, artifact, document, work
product, role, team, condition, milestone, etc. were commonly used by process
change agents and stakeholders. At the “complex” end of the spectrum was
the intent to understand the “views”—activity-based, artifact-based, role-based,
etc.—that the different parts of the agent and stakeholder community used to
understand and talk about the company’s processes.

The result was a company-specific process architecture reflecting the com-
pany’s process-related terminology and, more importantly, those aspects of a
process—activities, roles, artifacts, conditions and assets—deemed important
by the company’s stakeholders. We have come to feel that it critical to start
every engagement with this Capture category activity.

• Patterns. In some cases—but unfortunately not as many as we expected—the
company-specific process architecture aligned with a pre-defined, well-defined
architecture. For example, in two cases, it aligned with the ETVX process
model [45] in which an activity is described in terms of itsEntry conditions,
the Tasks that must be performed, the additional tasks need toVerify activity
performance, and the conditions that are true when its eXits. This led to the use
of ETVX patterns in the assets we developed to gather information. It also led
to the ETVX point-of-view in interactive sessions we held with stakeholders.

As another example, in three other cases we found the use of a “phase gat-
ing” point of view—a process is comprised of several successive phases, the
completion of each phase is “gated” by an activity that checks the validity of
some conditions, and gating activities differ with respect to the documents that
are considered and the conditions to be checked. Once again, this affected the
assets we developed and the focus of interactive sessions.

• Brainstorming Workshops. Most often we found that the company’s process
architecture did not align with an established process model. In addition, we
found there were variances, mostly minor, across the stakeholders in terms of
their use of terms or their view of the company’s processes. Among other things,
this meant we were unable to develop effective information gathering forms.
The result was that we developed a stylized approach to gathering information
through focused, interactive, “brainstorming” workshops with eclectic groups
of stakeholders.

These workshops relied on tried-and-true, classic brainstorming techniques—
such as the use of post-it notes, etc.—that have proven to be effective ways to
elicit information during well-managed workshops. The sessions were orga-
nized into sequences that, collectively, addressed all the important aspects of a

THE PERFECT APPROACH 217

FIG. 5. Process brainstorming.

process. The sequence started with a focus on that aspect, typically activities,
identified in the Architecture Definition Interviews as the primary concern of
the stakeholders involved in the sessions. The sessions successively treated all
of the aspects of a process; this meant that a side-effect was to help the company
understand, and treat, aspects that they did not think were important.

In one exercise, three working groups were established, each focused on one
of three inter-related processes and having order-of six participants. Over two
weeks, each working group held half-day meetings three times a week. The first
five sessions for two of the three working groups focused on process aspects
in the order depicted inFig. 5: 1st activities, 2nd roles, 3rd assets, 4th arti-
facts and 5th conditions. The third group started with a focus on conditions and
then moved to a focus on assets, artifacts, roles and activities; this group had a
preponderance of management-oriented, rather than performance-oriented par-
ticipants and this was a more “natural” order for them to consider the various
aspects of a process. As graphically illustrated in the figure, in each session
comments inevitably arose regarding aspects that were not the session’s focus.
These were acknowledged and noted but either delayed to a future session or
worked, offline, back into the results of a previous session. During each session,
the emphasis was on determining “critical” process information. For example,
it was easy to identify a large number of conditions gating the termination of an

218 B.A. NEJMEH AND W.E. RIDDLE

activity; the emphasis was on reducing this long list to a short one identifying
the critical termination conditions.

The sixth session for every group was used to review and confirm the results
from the first five sessions. In addition, follow-up sessions were used to homog-
enize the work across the groups, identify inter-process interactions, and verify
and validate the overall results. The net result was that coherent descriptions of
three of the company’s software development processes were developed with
about 4.5 person-months of effort (not including overhead effort).

• Modified Delphi Technique. Often, it can be quite difficult to get a group of
stakeholders to reach a consensus on the goals, scope or definition of a process.
We have found the use of a modified Delphi technique in which each participant
is asked to respond to a specific question or to rate a list of issues to be a critical
tool. Our approach has been to have each participant give their perspective on
the matter and then to consolidate the responses by eliminating duplicates and
other responses deemed by the group to not be appropriate. The participants
then discuss the responses that remain and a vote is subsequently taken pertain-
ing to the matter. This process continues until an obvious choice emerges or the
group can reach some acceptable consensus on the matter.

6.3 Activity Category-Specific Support

We found it valuable to have tools providing automated support for various activ-
ities in the twelve activity categories. Some examples are:

• Importer. In many engagements, we used a WebGuide Generation Tool
Suite[23] providing for the automated generation of large online process doc-
umentation websites (the website was often in excess of 4000 web pages). The
tool suite generates the process documentation website from information con-
tained in a Process Information database. The database holds “fundamental
facts” about the process, for example, information about which artifacts are
used or produced by an activity. The generated website provides views that
combine these facts to provide more global summaries useful to process per-
formers, for example, a chart showing the flow of artifacts among the activities
in the process.

Often, companies already had process documentation at the start of an en-
gagement. To apply the WebGuide Generation Tool Suite, it was necessary to
identify the “elementary facts” within the current documentation and import
them into the tool suite’s Process Information database; this was a quite com-
mon Capture activity. At first, we tackled this problem on a case-by-case basis
and successfully imported Word- and Excel-based documentation as well as

THE PERFECT APPROACH 219

documentation held in Lotus databases. Over time we realized that while we
could not develop a generalized Importer, we could develop a set of relatively
simple transforms that we could mix and match to support what was inherently
a “human intelligence needed” procedure. Over time, we automated about 60%
of the importing activity.

• Value vs. Return-on-Investment Analyzer.In many engagements, it was also
necessary to initially gain the support and commitment of senior management.
In one case, we developed an Excel spreadsheet-based tool to support this Plan
activity. The focus was on transaction-based business processes. We followed
an approach used in a study of the Return on Investment (ROI) provided by
providing automated support for transaction-based business processes[9]. In
our variant of this approach, the independent variables were factors such as
the number of performers, the frequency of transaction performance, the cost
of automated support implementation, the cost of training, etc. The dependent
variables—the results—were estimates of the ROI and the time to cost recov-
ery. The rather spectacular results—ROIs on the order of 10 to 100, and cost
recovery generally within four-to-five months—were instrumental in gaining
the needed support and commitment. We used variants of this approach, but
not always with the use of a tool, to gather support and commitment in several
subsequent situations.

• “Difference” Reports. In the application discussed in the second Case Study,
we developed a tool-supported approach to displaying the differences between
the old versions of a process and its new versions. This was achieved by extend-
ing the WebGuide Generation Tool Suite to create these information displays.
A major part of the extension was to have the database hold information about
the old—as-is—and new—to-be—artifacts and activities as well as “same as”
information about the relationship between the old and new artifacts and ac-
tivities. A major part of the display of the differences was a report identifying
artifact and activity differences—the inclusion of new artifacts and activities
and the deletion of old artifacts and activities.

We also included the display of differences in the “dynamics” of the new
versus old processes. This display showed, given a scenario defined in a start-
ing condition and a set of stopping conditions, how the old and new processes
would differ with respect to performing activities to achieve the stopping con-
ditions when beginning performance in the starting condition. To automate the
generation of this display of the dynamics, we developed a means to define start-
ing and stopping conditions, relied on previously developed techniques[3,7] for
computing activity sequences, and developed a way of displaying the result in
terms of flowcharts with the activity sequences highlighted. A sample dynamics
display is shown inFig. 6.

220 B.A. NEJMEH AND W.E. RIDDLE

FIG. 6. Sample dynamics display.

6.4 Process Change Team Support

In all of our applications of the PERFECT approach to process evolution, we found
it critical to provide support for teams of process change agents carrying out the
process evolution exercises. This involved not only focusing their attention during
meetings but also supporting their decision-making.

• Team Meeting Support.In those application in which we used the WebGuide
Generation Tool Suite, the periodic team meetings generally had the intent of
reviewing the process documentation resulting from the team’s work to date,
resolving issues as possible, and then moving on to address some additional
aspects of the process. A major part of supporting the meeting was to generate a
“fresh” version of the documentation to be reviewed in advance of the meeting
or in real-time during the meeting.

In the application discussed in the first study, we additionally extended the
WebGuide Generation Tool Suite to incorporate meeting agendas and provide
links to the parts of the documentation pertinent to each agenda item. For exam-
ple, an agenda item might be “validate the association of roles with conditions.”

THE PERFECT APPROACH 221

This agenda item would be linked to the various summary reports regarding
roles and conditions and, through them, to the role and condition descriptions
themselves as well as the definitions of the activities that the roles participated
in (to establish the conditions) and the artifacts (that were the process elements
most usually used to define the conditions). Linking the agenda item to the role
and condition summaries—and from there to the relevant information about
roles, conditions, activities and artifacts—made it considerably easier to vali-
date the association of roles with conditions.

In addition, we found it useful to further extend the WebGuide Generation
Tool Suite to handle:

(1) a version of the agenda with annotations identifying the decisions made
during the meeting and the meeting’s results in general;

(2) a list of Action Items; and
(3) a list of Deferred Issues. All of this information could, in turn, be linked

into the emerging process documentation. This provided a traceability
of the team’s work that was easy to use to review the team’s work. It
also facilitated future meetings. For example, it became rather simple
to, as a part of every meeting, review the Deferred Issues, use the links
embedded in the issue’s description to view information that reminds
everyone about the issue’s details, and decide whether or not to continue
to defer the issue. It was similarly easy to process the Action Item list to
check status, raise issues and track progress.

• Mentoring. We also found it necessary to “gently” guide the focus and actions
of process change agent teams outside of their team meetings. For example,
in the situation described in the third Case Study, we had to work with teams,
individually and collectively, in order to help them understand how to best apply
and adapt the product planning process framework.

As another example, in the situation described in the first Case Study, the
team lead fully understood the importance of considering all five major aspects
of a process—activities, roles, artifacts, conditions and assets—but individual
team members did not understand the importance of some of these aspects. We
had to help each member understand the importance of all of the aspects.

We therefore found ourselves, in every application, working with process
change agents to both broaden their view of a process and hone their ability to
work with some particular approach to addressing their company’s processes.
We ended up using traditional mentoring techniques: “over the shoulder” obser-
vation, problem-driven interactions, the use of “hypothetical scenarios,” etc.

• Problem Reports.From previous work based mostly on “first principles” rather
than experience[33,42], we knew that process-evolution change agents would

222 B.A. NEJMEH AND W.E. RIDDLE

need reports such as a list of roles, a matrix indicating role/activity associa-
tions, and Work Breakdown Structure (WBS) descriptions of activities. These
reports help process change agents quickly identify problems with the process
or its documentation. For example, in one case a list of roles generated after im-
porting the company’s documentation revealed that they used some 350 names
for only about 100 identifiable roles—the major problem was the appearance
of “reasonable” name variants such asProject Manager and Project
Leader, Tester andChecker, etc. As another example, review of the WBS
for another company’s processes indicated that they had many cases in which
separately defined processes were actually variants of a “general” process and
their documentation could be considerably simplified (and made much easier to
maintain) if this were capitalized on.

In every application, however, we found that the groups needed additional
reports. Further, these additional reports often concerned the dynamics of the
process rather than the static nature of the process description. One of the most
complex situations concerned a company having a process architecture that sep-
arated uses/produces from succeeds/precedes information. Uses/Produces infor-
mation indicates activity/artifact relationships. Succeeds/precedes information
indicates the time sequencing among activities. We extended the WebGuide
Generation Tool Suite to generate reports about inconsistencies such as “this
activity uses an artifact that no preceding activity produces.” This might not
be an error; the used artifact may be produced by some activity in some other
process set. But it is an anomaly that must be considered, perhaps with the de-
cision that “everything is OK.”

• Metrics. Underlying every problem report is at least one factor pertinent to
some goal. For example, the role list pertains to a “minimal role definition”
factor—“the role list should contain only those roles necessary and sufficient
to describe the process”—which, in turn, contributes to the goal of achieving
clear, understandable documentation. As another example, a report identifying
used artifacts that are not produced by some preceding activity pertains to a
process logic factor—“every used artifact must be produced by some preceding
activity”—which, in turn, contributes to a process-correctness goal.

Metrics are needed to be able to measure factors. Some metrics may be quite
simple and quantitative, for example, the “number of redundant roles in the role
list.” Others may be equally simple but qualitative, for example, “the degree to
which role responsibilities definitions overlap.”

Most of the metrics we defined concerned the properties of the documenta-
tion, for example, the role list-related metrics just mentioned. However, to allow
the PERFECT approach to process evolution to be adequately driven from a
qualitative and quantitative perspective, we often had to define metrics reflect-

THE PERFECT APPROACH 223

ing the dynamics of the process. These metrics were often quite complex. The
metrics concerning the degree to which used artifacts are or are not produced
by a preceding activity is one example. As another example, in the applica-
tion described in the third Case Study we needed to define a way to quantify
the return-on-investment for development effort in terms of relative delivered
market value.

• Views.A “process view” provides summary information about the process, usu-
ally indicating cross-correlations among process elements. For example, a table
with rows for the artifacts, columns for the activities and uses/produces indi-
cations in each cell is a cross-correlation view. Another, more complex, cross-
correlation view is one which identifies “communication obligations,” each of
which identifies an artifact that must be produced, the role responsible for pro-
ducing it, the activity during which the artifact must be produced, the roles that
will receive and review the artifact, and the activities during which the artifact
will be reviewed by the receiving roles (“status reporting” is an example of a
communication obligation).

Problem reports are views of the process specifically intended to evaluate
the factors resulting from the goals for a process evolution exercise. In addi-
tion we found it valuable to provide views not directly related to a factor. We
found that these additional views provided insights that were helpful in assess-
ing the process and facilitating a process evolution exercise but which did not
concern some pre-identified factor. Many of these additional views were those
that would be provided to process performers, for example, a WBS annotated
with used and produced artifacts. We also found that while cross-correlations
should be expressed in one way for process performers, process change agents
were better served by inverting the correlations. As a simple example, process
performers are usually most comfortable with an artifact/activity view that lists
for each activity the artifacts it uses or produces. However, for many of the
checks process change agents need to make, they are better served by a compli-
mentary view that lists for each artifact the activities that use or produce it. In
fact we generally found that change agents needed both of these complemen-
tary views to assess the accuracy, completeness and consistency of artifact flow
during process performance.

Finally, we often found it necessary to provide specialized views oriented to-
wards specific evolution issues. For example, in applications within the context
of a CMM-based improvement game plan, we found it was important to record
and report the relationships between items in the defined process and the items
defined by the CMM.

• Decision Visualization.In the application described in the third Case Study, we
found it necessary to visualize the decisions that were being made about prod-

224 B.A. NEJMEH AND W.E. RIDDLE

uct planning during the performance of the process. We found it very valuable
to take some key outputs of the product planning process, the relative effort and
relative value estimates for each candidate product feature, and to plot them in a
quartile matrix structure (i.e., thex-axis divided cost up into four cost quadrants
(very high, high, medium, low) and they-axis divided value up into four value
quadrants (also namedvery high, high, medium, low). We would plot each fea-
ture in its properx–y coordinate matrix location. This visualization helped us
to spot anomalies such as very high value and very low cost features, etc.

6.5 Process Evolution Infrastructure Summary
Over many applications and many years, we have gradually accumulated a large

number of techniques and tools. The need for each was identified during an actual
process evolution exercise; none were pre-identified in advance of an exercise. The
initial implementation of each was simple, providing just what was needed at the
time. Over time, we found that previously developed techniques and tools could be
re-used to meet some need that arose during an exercise, sometimes without modifi-
cation but most often with the addition of some features or capabilities required for
the newly identified need.

We have, however, also identified many techniques and tools that we believe
should be developed. These are discussed in the following Section in the course of
indicating the ways in which the framework-based PERFECT approach to process
evolution capability should be enhanced and improved.

7. Value and Future Improvements

We have found that the PEDAL framework provides a solid, clarifying basis for
the rapid, rational evolution of a company’s process in response to precipitous, un-
predicted changes to their business context. We have also found that, while the frame-
work is important, its successful application requires the “philosophy”—embodied
in the PERFECT approach to process evolution—of achieving long-term change
through narrowly focused, short, overlapping process change exercises each address-
ing a specific business-context issue. Finally, we have found that positive effects can
be obtained within the context of an improvement game plan but that such a plan is
not necessary for positive effects to be achieved.

During the course of our applications, however, we have identified many im-
provements that would be beneficial. Some, as indicated in the previous section,
involve the development of additional techniques and tools. Others involve address-
ing some quite difficult issues. In this section, we first discuss the value of the PEDAL

THE PERFECT APPROACH 225

framework and PERFECT approach to process evolution. We then discuss several
significant enhancements and improvements we feel are particularly important.

7.1 Value of PEDAL and PERFECT

The PEDAL framework may be thought of as a combination of:

(1) a checklist of the activities that should be considered for inclusion in process
evolution exercises;

(2) a specification of objectives for process evolution activities in terms of their
exchange of information; and

(3) a means of describing the dynamics of process evolution exercises. As such
it allows process change agents and stakeholders to crisply and succinctly
discuss and evaluate what happened during past process evolution exercises,
what is happening during on-going exercises, and what is planned for future
exercises. By providing a structured, well-defined basis for canonically, nor-
matively, describing and analyzing process evolution exercises, the PEDAL
framework establishes a solid foundation for making process evolution highly
experienced based.

Whereas the PEDAL framework focuses on individual process evolution exer-
cises, the focus of the PERFECT approach to process evolution is upon the concur-
rent and longitudinal inter-relationships and interactions among process evolution
exercises. The framework allows a separation of concerns; the improvement work
being done on the company’s processes can be understood in terms of concurrent
work on the company’s process sets. Work on a process set is tightly coupled and ad-
dressed via a process evolution exercise. The process evolution exercises themselves
are loosely coupled, with the coupling following from the exchange of information
about the processes being improved and, in addition, the exchange of information
about the necessity and satisfiability of requirements. In sum, the PEDAL frame-
work allows process change agents and stakeholders to focus on individual exercises
whereas the PERFECT framework allows agents and stakeholders to continuously
adapt process evolution efforts in response to problems, in particular precipitous and
unpredicted changes to a company’s business context.

The PEDAL framework and PERFECT approach emphasize the use of past ex-
periences to influence future actions. This beneficially affects not only the conduct
of process improvement efforts but also the implementation of techniques and tools
to support process evolution. In keeping with the framework and approach’s em-
phasis on experience, techniques and tools are: identified by concrete needs arising
during process evolution exercises; implemented in a satisfying, “as needed,” form;
and evolved through their application in subsequent exercises. This not only makes

226 B.A. NEJMEH AND W.E. RIDDLE

it easier to rapidly start process evolution efforts, it also tends to control the effort
and resources expended to provide the necessary techniques and tools.

The PERFECT approach to process evolution is not an alternative to using im-
provement game plans (and PEDAL is not an alternative framework to other PDSA-
style frameworks). Rather this approach complements improvement game plan ap-
proaches by supporting rapid responses to precipitous, unpredicted events. The ap-
proach may be used in conjunction with improvement game plan approaches to add a
short-term focus to the game plan’s long-term focus. The approach may also be used
in lieu of game plan approaches to support process evolution when a company does
not have the inclination, need or means to take a longer range perspective. Therefore,
the primary value of the PERFECT approach, and its underlying PEDAL framework,
is to allow companies to enhance their long-term improvement efforts or make rea-
sonable progress in improving their processes when they do not, for whatever reason,
have a long-term improvement game plan.

7.2 Improvements

The PEDAL framework and PERFECT approach to process evolution are quite
valuable, but they need to be improved in many ways. Several improvements are dis-
cussed in this section. In some cases, we are actively pursuing these improvements.
In other cases, we have identified the improvement, and some of its critical issues, in
the hope that we or others can pursue it in the future.

7.2.1 Process Evolution Agility

Our notion of process evolution has some similarities with agile methods[5,20].
Just as the agile methods community sees systems evolving into existence through a
series of rapid iterations, so it is with our view of how processes should evolve over
time. In alignment with the agile methods community, we see the world of process
evolution as highly adaptive and typically not predictive.

We have proposed accommodating the adaptive nature of process evolution
through a series of short, iterative exercises. Where we may differ from the agile
methods community is that we believe we have defined a canonical process evolu-
tion framework within which any process evolution exercise can be defined. That is
to say, we believe the range of process evolution activities one may perform is pre-
dictive, but the order and manner in which they are performed in sequence and in
iteration over time is highly adaptive.

Specific issues include:

THE PERFECT APPROACH 227

• To what extent would agile method practices (and their underlying philosophy)
improve the conduct of process evolution exercises? For example, would the
notion of “team programming” improve Design activities?

• Can patterns be developed for agile method practices so that they may be easily
adopted for inclusion in a new version of a process?

7.2.2 Process Evolution Focusing

The PEDAL framework is non-prescriptive about the activities involved in a
process evolution exercise and the order in which activities are performed. For exam-
ple, process definition oriented exercises have their origins in activities in the Gather
and Plan category while process measurement oriented exercises have their origins
in activities in the Monitor, Audit and Examine categories.

Over time, we have developed several “default” approaches to initiating a process
evolution exercise. We have developed an intuitive sense of when each of these is the
“right” initial exercise based on the conditions holding when the effort begins. For
example, if the company already has process documentation, the first exercise should
involve an iteration of Capture and Analyze activities during which the existing docu-
mentation is analyzed to discover and verify/validate the process’ “elementary facts”
(and import them into a Process Information database if a WebGuide Generation
Tool Suite is to be used). On the other hand, if the precipitating event is a failure to
achieve a target maturity model level during an assessment, the first exercise should
involve iterations of Elicit, Monitor, Analyze and Audit activities intended to under-
stand the company’s as-is processes in advance of planning the actions needed to
make them compliant with the level’s requirements.

In our applications we have noticed that some overall “theme” generally influences
an effort’s initial focus. For example, if the overall emphasis is upon conformance to
regulatory constraints, then the effort tends to begin with Gather and Plan activities.
On the other hand, if the overall emphasis is upon improving the company’s training,
then the effort tends to begin with Deploy and Train activities. Finally, if the overall
emphasis is upon process performance efficiency, then the effort tends to begin with
Perform, Monitor and Examine activities.

Clearly, there is the overall issue of how best to “get things going.” Sometimes this
is clear; often it is not. Further, we have not found a pre-defined, “one size fits all,”
exercise that should be used at the beginning of every improvement effort. In fact,
we firmly believe that this universally applicable initial exercise does not exist.

Specific issues include:

• What factors help identify an effort’s initial exercise?

• Which metrics are useful in evaluating these factors?

228 B.A. NEJMEH AND W.E. RIDDLE

• What are the major themes influencing process evolution, how do they affect
the definition of factors, and what are their metrics?

7.2.3 Process Evolution Guidance

Getting a process evolution exercise started is one thing. Keeping it going is quite a
different matter. We often found that the activity categories emphasized in the initial
exercise identify the activity categories needed in subsequent exercises. For example,
process evolution exercises that began with Gather and Plan activities tended to be
followed by exercises beginning with Train and Deploy activities. Equally often, we
found that the focus of subsequent exercises was not at all clear. Further, we found
that determining the focus became increasingly problematic as the effort proceeded.

The overall problem is guiding efforts through an appropriate sequence of exer-
cises as a function of their overall process improvement objectives. Ideally, a set of
questions could be defined related to process improvement goals and known informa-
tion, such that when these questions are answered by process change agents, a set of
recommended process evolution exercise sequences could be suggested along with
their rationale. Process change agents would then be free to determine which of the
potential exercise sequences make the most sense.

The overall issue is: Is it possible to rationally guide an effort through successive
exercises? Believing that it is, the more specific issues are:

• What information is needed to guide a sequence of process evolution exercises?

• How can alternatives be comparatively judged and evaluated with respect to
their efficiency, effectiveness and value?

• What does this imply with respect to an effort’s initial exercise?

7.2.4 Process Evolution Support Capability

The previous topics imply the need to be able to collect and capitalize upon histor-
ical information. Deciding upon appropriate process evolution exercises in terms of
questions to be answered, recommended activity sequences and the rationale for such
recommendations all demand the collection of historical information (across compa-
nies as well as within a company). This suggests the necessity of automated support
for collecting, organizing and interpreting the information. Having a repository of
such information, one could begin to learn from past process evolution exercises to
guide future process evolution exercises.

Specific issues include:

• What information should be collected regarding evolution activities/exercises
and their success or failure?

THE PERFECT APPROACH 229

• How can this information be used to guide future process evolution?[34,38]

• What techniques and tools can support the collection, analysis and use of the
historical information?[38]

• How can alternative suites of techniques and tools be compared and the “best
option” identified?[2]

7.2.5 Process Enactment Support
Process Enactment Support is generally understood to be proactive support for

process performance based on retained knowledge about the status of the process.
A commonly known example is workflow support[17,53] which has proven quite
beneficial for business processes in which the status of the process can be encoded in
terms of artifact states, the flow of artifacts from performer to performer can be auto-
mated based on the artifact state, and performers can be presented not only with the
artifacts they need to work on but also links to appropriate tools and reminders of nec-
essary conditions. A simple example is workflow support for expense form process-
ing. The states that control the flow of aReimbursement Request would be
filled-out, approved, rejected and paid. Once aReimbursement
Request has been filled out by anEmployee, it would be in statefilled-out
and automatically routed to the appropriateManager who would also be provided
Reimbursement Guidelines as a reminder the company’s policies. After the
Manager considered the request, the state would beapproved or rejected.
In the former case, it would be forwarded to theAccounting Office; in the
later case it would be routed back to theEmployee.

Analogous support can be provided when the activities are more general, and the
states cannot be specified so concretely, through Role-Based Workspaces[29,19].
A Role-Based Workspace is an electronic context which provides access to the sta-
tus information, artifacts and tools (and other assets) that an agent filling a role
needs to carry out his/her work.3 As the agent carries out his/her work, an under-
lying system can keep track of the agent’s status. The system can use this status
information to keep agents playing other roles appraised of the status of the work
as it affects their work, for example, as it inhibits or enables their activities. When
an agent has to switch his/her attention, the context can be saved, and the agent
(or another agent) can re-start the work once he/she has the available time. Role-
based workspaces therefore support an agent’s context switching when he/she has
to work concurrently on many assignments. They also support coordination among
a group of agents who are collectively responsible for fulfilling a role’s obligations,
for example, a group of agents who cooperate to provide System Administration ser-
vices. Finally, role-based workspaces support collaboration among the agents filling

3 A workspace may be generated from the same information used to generate WebGuides.

230 B.A. NEJMEH AND W.E. RIDDLE

different roles within some process by providing the support for asynchronous and
synchronous interactions, collaborative decision-making, etc., that is typically found
in Computer Support Cooperative Work systems[10,32,52].

Process enactment support of either type—or anywhere along the spectrum of
possibilities that they imply—is quite pertinent to process evolution exercises in two
different ways. First, it should be considered when developing the new process. This
leads to issues such as:

• What are the process enactment support-related factors that should be consid-
ered when defining a should-be or to-be process?

• How may process change agents decide whether a workflow style or a role-
based workspace style is most applicable?

• What process enactment support-related issues should be considered at various
points along a series of process evolution exercises?

The second reason that process enactment support is important with respect to
process evolution is that it can support the process evolution exercises themselves.
Process evolution is carried out by a team of process change agents, and this team’s
coordination and collaboration can be focus of the process enactment support. This
leads to somewhat different issues, among them:

• What is the architecture for a process enactment support system and its con-
stituent parts that allows the parts to be flexibly assembled in the variety of
ways required to support the full spectrum of possible process evolution exer-
cises?

• What constraints might this architecture and these constituent parts place on
process evolution exercises and how can these constraints be minimized?

7.3 Game Plan Focusing
We feel that many long-range game plans might themselves be described in terms

of the PEDAL framework as iterative performance of activities falling into the frame-
work’s activity categories. The framework can therefore be used to compare and
contrast alternative approaches to improvement game plan-based process improve-
ment. By using the framework to characterize alternative approaches, it could be used
to decide among alternative service-provider or product-provider offerings. It could
also be used by process service providers to articulate their range of service offerings
or their approach as well as propose a particular process improvement effort. Simi-
larly, a company could define their process improvement requirements in the form of
an Request for Proposals that references specific PEDAL-defined process evolution
exercises reflecting the requirements and scope of the work.

THE PERFECT APPROACH 231

This use of the framework requires consideration of at least the following issues:

• In what ways does the PEDAL framework significantly differ from PDSA-style
models—for example, QIP and IDEAL—which have been used to describe and
characterize improvement game plan-based process improvement efforts?

• What are the decision-oriented factors regarding alternative approaches to im-
provement game plan-based process improvement and how are they reflected
by the PEDAL framework?

• In what ways may the PEDAL framework support the estimation of “value de-
livered,” “probability of success,” “cost effectiveness,” “return on investment,”
etc., for improvement game plan-based process improvement efforts?

7.4 Process Visualization

In Section5.4, we provided two examples of graphically, visually, describing
process evolution exercises. While we feel these are valuable, we also feel that con-
siderably more is needed to allow the insights needed to rapidly adjust a process
evolution exercise in response to problems or business-context changes.

The notion here is to define various representations—primarily graphical but also
having other forms such as tables, indented textual lists, multi-dimensional graphs,
etc.—that lead to a “deep” understanding of a process evolution exercise (or, for that
matter, an improvement game plan and the process being improved/evolved). The
goal is representations allowing insights leading to the articulation of problems and
their solution. We note that the representations presented earlier reflect an activity-
flow point of view, one that is quite commonly used in describing the dynamics of
a process and quite easily understood by people having an interest in the process.
These representations are based on activity-to-activity relationships, captured either
directly through aprecedes/succeedsrelation or as implied by auses/producesrela-
tion between activities and artifacts.

From our experience, and taking a cue from the emerging science of complex,
adaptive networks[26], we have come to feel that other relations might lead to better
representations providing enhanced visibility and insights. As an example, consider
anoccupiesrelation between agents and roles. A graphical representation based on
this relation might show the strength of communication among roles as a function of
role occupancy. The communication is stronger if the same agent occupies the two
roles. This is because the communication when different agents occupy the role is
limited to what one agent tells the other in response to questions whereas the com-
munication in the case that the same agent occupies the two roles includes what the
agent knows without being explicitly asked. Strong communication can lead to many
effects: it can improve the accuracy of process performance; it can speed up process

232 B.A. NEJMEH AND W.E. RIDDLE

performance; it can lead to earlier discovery of problems; etc. All of these affect the
conduct of improvement game plan-based improvement efforts and process evolu-
tion exercises. They can also affect the design of a process undergoing improvement
or evolution.

Some of the issues are:

• What are the relations that provide insights into a process undergoing improve-
ment or evolution or the effort effecting the improvement or evolution?

• How should information about these relations best be depicted to maximize the
insights that can be gained?

• How do these representations affect the design and conduct of improvement
game plans and process evolution exercises?

7.5 Process Evolution Planning and Management
To date, our work has had a decidedly “retrospective” emphasis. We have em-

phasized making progress by frequently “taking stock” of what has happened and
adjusting activities as needed to correct problems or accommodate changes to the
business context. Process change agents also need support in “looking forward” to
plan the overall effort in general and the next exercise in particular. We sense that
many of the techniques and tools we have developed to date are valuable in planning,
and managing, the overall effort and individual efforts. We also sense that much more
is needed.

One necessary capability is basically retrospective but decidedly “forward look-
ing.” This is the determination of lessons learned. The most important issue is:

• What information should be collected, and how should it be processed, to max-
imize the discovery of “lessons learned” that quickly and efficiently lead to
adjustments to an improvement game plan or future process evolution exer-
cises?

More generally, there is the need to use historical information to make plans for
the future and manage the execution of these plans. Example issues are:

• What planning and management-oriented information needs to be collected dur-
ing the activities in the various activity categories?

• How should traditional information collection and management technology (for
example, version and configuration management technology) be applied to sup-
port the collection, consideration and application of historical information?

Finally, there is the need to address planning and management directly. An exam-
ple issue is:

THE PERFECT APPROACH 233

• How should plans be developed and managed in the highly dynamic context
presented by precipitous, unpredictable changes to a company’s business con-
text.

In several applications, we found the need to give special attention to specific
management issues stemming from the nature of the process domain itself. For ex-
ample, in our product planning process work (described in the third Case Study), the
process had to be modified to accommodate the fact that complex products can often
have dozens of different feature categories and hundreds of different features within
those categories. The product planning framework had to scale to manage such com-
plexity in a form that could be used by product planning personnel. The issues here
are process domain-specific, and we therefore do not list them and let the example
indicate their nature.

8. Summary

The overall intent of this chapter is to describe an experience-based framework and
process evolution approach that help companies rationally, rapidly and incrementally
perfect their processes in response to changes in market pressures, personnel avail-
ability, available technology and other business-context factors.

We first discussed the nature and considerable value of long-range improvement
game plans based on standards, maturity frameworks and best practices. These game
plans address a company’s business-context factors such as conformance to regu-
latory constraints, the company’s marketplace and financial goals, its work force’s
capabilities, and its use of techniques and tools supporting performance of its prod-
uct development, project management, business and operational processes.

We then argued the additional need for a company being able to rapidly adapt their
processes in response to precipitous, unpredicted changes to its business context.
Improvement game plans are based on an assumption of business context stability
and establish relatively long-term goals. In addition, there is the need to rapidly adapt
process improvement efforts to address the challenges of perturbations that occur
suddenly and without warning. Games plans have timeframes measured in years.
Precipitous, unexpected perturbations to a company’s business context require an
additional ability to focus on timeframes measured in weeks and months.

Following this, we described a framework—PEDAL—which allows process
change agents and stakeholders to crisply and succinctly discuss and evaluate what
happened during past process evolution exercises, what is happening during on-going
exercises, and what is planned for future exercises. The framework is based on an
accounting of process evolution-related activities we have found to be critical. It not

234 B.A. NEJMEH AND W.E. RIDDLE

only identifies the activities but also organizes them in terms of process evolution
exercises highlighting their dependencies. By providing a structured, well-defined
basis for canonically, normatively, describing and analyzing process evolution ex-
ercises, the framework establishes a solid foundation for making process evolution
highly experienced based.

We then discussed several example applications of an approach to process
evolution—PERFECT—which allows process change agents and stakeholders to
continuously adapt process evolution efforts in response to problems, in particular
precipitous and unpredicted changes to a company’s business context. Whereas the
PEDAL framework focuses on individual process evolution exercises, the focus of
the PERFECT approach to process evolution is upon the concurrent and longitudinal
inter-relationships and interactions among process evolution exercises. PERFECT is
specifically designed to allow process change agents and stakeholders to co-evolve
an understanding of the problems they encounter when improving the company’s
processes and a definition of appropriate solutions (new processes) and effective
process evolution exercises to achieving them. This discussion of the PERFECT ap-
proach ended with an indication of several ways the PEDAL framework may be used
to visualize process evolution exercises constituting a process improvement effort.

Following the discussion of the PERFECT approach to process evolution, we de-
scribed the techniques and tools we developed to support describing, understanding,
learning from, planning and managing process evolution exercises. These techniques
and tools were neither preconceived nor implemented in advance of carrying out
process evolution exercises. Rather, the need for the techniques and tools devolved
from conducting the exercises, they were implemented to meet the needs of the on-
going exercise, and they were evolved over time as a result of their use in various,
subsequent process evolution exercises.

We then discussed the value of the PEDAL framework and PERFECT approach
to process evolution. We believe that co-evolution of an understanding of process
evolution problems and appropriate solutions is extremely important. We feel that
long-range improvement game plans provide critically necessary solutions to these
problems. We also feel it is additionally necessary for companies to have a short-
range, experience-based focus, particularly when they do not have the inclination,
need or means to take a longer range perspective. We feel that the PERFECT ap-
proach to process evolution and its underlying PEDAL framework meet this need by,
among many reasons, making it much easier to:

(1) provide the value demonstrations needed to gain personnel support,
(2) maintain management attention and support in times of resource restrictions,
(3) match the pace of current-day business context changes, and
(4) gather the lessons-learned experience and process performer insights needed

to make additional changes.

THE PERFECT APPROACH 235

Finally, we identified a wide variety of ways in which PEDAL framework and
PERFECT approach to process evolution should be improved. We are actively work-
ing on some of these improvements. We identify the others to suggest the ways in
which future work in the process improvement community could advance the capa-
bilities of a company’s process change agents.

ACKNOWLEDGEMENTS

This work has been influenced—directly and indirectly—through most-interesting,
delightful, rewarding collaborations with many people during a wide variety of
projects in many organizations. Those who have had a major impact include: Niniek
Angkasaputra, Ove Armbrust, Denis Avrilionis, Dave Barstow, Ulrike Becker-
Kornstaedt, Fabio Bella, Jorge Boria, Alan Christie, Bill Curtis, Mark Dowson, Pat
Ferguson, Jens Heidrich, Marc Kellner, Sally Miller, Tom Miller, Jürgen Münch,
Alexis Ocampo, Don Oxley, Dick Phillips, Marilyn Phillips, John Sayler, Henry
Schneider, Martin Soto, Joyce Statz, Vencat Subramanyam, Ian Thomas, Lyn Uzzle,
Shawn Wietstock and Jack Wileden.

REFERENCES

[1] Abrahamsson P., Salo O., Ronkainen J., Warsta J.,Agile Software Development
Methods: Review and Analysis, VTT Publications, vol. 478, VTT Technical Re-
search Centre of Finland, Vuorimiehentie, Finland, 2002,http://www.vtt.fi/inf/pdf/
publications/2002/P478.pdf.

[2] Angkasaputra N., Bella F., Riddle W., “Perspective-based evaluation of software
process management tool suites”, in:Proc. of the Third World Congress for Software
Quality (WCSQ), Munich, Germany, 2005, http://www.iese.fhg.de/Products_Services/
vincent/publications/spm_tool.

[3] Avrunin G., Dillon L., Wileden J., Riddle W., “Constrained expressions: Adding analysis
capabilities to design methods for concurrent software systems”,IEEE Trans. Software
Engrg.SE-12(2) (February 1986) 278–292.

[4] Basili V., Caldiera G., Rombach D., “The experience factory”, in: Marciniak J. (Ed.),
Encyclopedia of Software Engineering, vol. 1, John Wiley & Sons Inc., Hoboken, NJ,
1994, pp. 469–476.

[5] Beck K., Andres C.,Extreme Programming Explained: Embrace Change, Addison–
Wesley, Boston, MA, 2004.

[6] Boehm B., Turner R.,Balancing Agility and Discipline: A Guide for the Perplexed, Pear-
son Education, Inc., Boston, MA, 2004.

[7] Bristow G., Drey C., Edwards B., Riddle W., “Anomaly detection in concurrent pro-
grams”, in: Gehani N., McGettrick A. (Eds.),Concurrent Programming, Addison–
Wesley, Boston, MA, 1988, pp. 567–585.

http://www.vtt.fi/inf/pdf/publications/2002/P478.pdf
http://www.iese.fhg.de/Products_Services/vincent/publications/spm_tool
http://www.vtt.fi/inf/pdf/publications/2002/P478.pdf
http://www.iese.fhg.de/Products_Services/vincent/publications/spm_tool

236 B.A. NEJMEH AND W.E. RIDDLE

[8] “Information security management—specification for information security man-
agement systems”, BS 7799-2, Business Standards Institution (BSI) Group,
London, United Kingdom, 2002,http://www.bsi-global.com/Information+Security/
Standards+Publications/bs7799-2.xalter.

[9] Campbell I., “The Internet: Slashing the cost of business”, Netscape Communications
Corp., 1997,http://netcenter.netscape.com/netcenter.

[10] Christie A., Grana-Dominguez S., Gujran N., Riddle W., Rixey A., “SIS: An exploratory
synthesis of workflow and collaborative technologies”, Carnegie Mellon University, Soft-
ware Engineering Institute, Pittsburgh, PA, July 1998.

[11] CMMI Product Team, “CMMI for Systems Engineering/Software Engineering/
Integrated Product and Process Development, V1.1”, CMU/SEI-2002-TR-004, Carnegie
Mellon University, Software Engineering Institute, Pittsburgh, PA, 2002,http://www.
sei.cmu.edu/publications/documents/02.reports/02tr004.html.

[12] “Control Objectives for Information and related Technology (COBIT)—Release 3.1”,
Information Systems Audit and Control Association, Rolling Meadows, IL, 2004,
http://www.isaca.org.

[13] Curtis B., Nejmeh B., Riddle W., “Achieving process agility”, in:Proc. SEPG, New
Orleans, Louisiana, March 2001, Carnegie Mellon University, Software Engineering In-
stitute, Pittsburgh, PA, 2001.

[14] Curtis B., Hefley W., Miller S.,People Capability Maturity Model, Addison–Wesley Pub-
lishing Co., Boston, MA, 2001.

[15] Deming E.,Out of the Crisis, MIT Center for Advanced Engineering Study, Cambridge,
MA, 1986.

[16] Ferguson P., Leman G., Perini P., Renner S., Seshagiri G., “Software process im-
provement works!”, CMU/SEI-99-TR-027, ESC-TR-99-026, Carnegie Mellon Univer-
sity, Software Engineering Institute, Pittsburgh, PA, 2002, November 1999,http://
www.sei.cmu.edu/publications/documents/99.reports/99tr027/99tr027abstract.html.

[17] Fernström C., “ProcessWEAVER: Adding process support to UNIX,” in: Proc. Second
International Conference on the Software Process: Continuous Software Process Im-
provement, Berlin, Germany, 1993, pp. 12–26.

[18] Gates L., Goncharoff K., Kellner M., “An example process guide: Process guide for a
descriptive modeling process”, CMU/SEI-97-HB, Carnegie Mellon University, Software
Engineering Institute, Pittsburgh, PA, 1997.

[19] Heidrich J., Münch J., Riddle W., Rombach D., “People-oriented capture, display, and
use of process information”, in:Peopleware and the Software Process, 2005, in press,
http://www.computer.org/cspress/CATALOG/st01121.htm.

[20] Highsmith J., Cockburn A., “Agile software development: The business of innovation”,
IEEE Computer(September 2001) 120–122.

[21] “Lotus Notes”, IBM Corporation, White Plains, NY, 10604,http://www.lotus.com/
products/product4.nsf/wdocs/noteshomepage.

[22] IEEE Computer Society, “IEEE Software Engineering Standards Collection”, CD-ROM
(IEEE Computer Society Press, Los Alamitos, CA, 2003,http://www.computer.org/
cspress/CATALOG/st01121.htm.

http://www.bsi-global.com/Information+Security/Standards+Publications/bs7799-2.xalter
http://netcenter.netscape.com/netcenter
http://www.sei.cmu.edu/publications/documents/02.reports/02tr004.html
http://www.isaca.org
http://www.sei.cmu.edu/publications/documents/99.reports/99tr027/99tr027abstract.html
http://www.computer.org/cspress/CATALOG/st01121.htm
http://www.lotus.com/products/product4.nsf/wdocs/noteshomepage
http://www.computer.org/cspress/CATALOG/st01121.htm
http://www.bsi-global.com/Information+Security/Standards+Publications/bs7799-2.xalter
http://www.sei.cmu.edu/publications/documents/02.reports/02tr004.html
http://www.sei.cmu.edu/publications/documents/99.reports/99tr027/99tr027abstract.html
http://www.lotus.com/products/product4.nsf/wdocs/noteshomepage
http://www.computer.org/cspress/CATALOG/st01121.htm

THE PERFECT APPROACH 237

[23] “Spearmint/PMC Tool Suites”, Fraunhofer Institut Experimentelles Software Engi-
neering, Kaiserslautern, Germany,http://www.iese.fhg.de/Products_Services/vincent/
technology.

[24] “iNotion”, I-Logix, Andover, MA, http://www.ilogix.com/inotion/inotion.cfm.
[25] International Standards Organization (ISO), “Quality management systems: Require-

ments”, ISO 9001, International Standards Organization, Geneva, Switzerland,http://
www.iso.org/iso/en/iso9000-14000/iso9000/iso9000index.html.

[26] Jain S., Krishna S., “A model for the emergence of cooperation, interdependence
and structure in evolving networks”,Proc. Nat. Acad. Sci.98 (2000) 543,http://
arXiv.org/abs/nlin.AO/0005039.

[27] Kishida K., “Remarks during Second International Software Process Workshop, Coto de
Caza, California, March 1985”,Software Engineering Notes(August 1986).

[28] Kellner M., Becker-Kornstaedt U., Riddle W., Tomal J., Verlage M., “Process
guides: Effective guidance for process participants”, in:Proceedings of the Fifth
International Conference on the Software Process: Computer Supported Organiza-
tional Work, Chicago, IL, 1998, pp. 11–25,http://www.iese.fhg.de/Products_Services/
vincent/publications/EPGs.pdf.

[29] Krementz M., “Personal workspaces for Electronic Process Guide (EPG) users”, Project
Thesis, Fraunhofer Institut Experimentelles Software Engineering, Kaiserslautern, Ger-
many, 1999.

[30] “Dreamweaver”, Macromedia, San Francisco, CA,http://www.macromedia.com/
software/dreamweaver.

[31] McFeeley R., “IDEAL: A user’s guide for software process improvement”, CMU/SEI-
1996-HB-001, Carnegie Mellon University, Software Engineering Institute, Pittsburgh,
PA, 1996,http://www.sei.cmu.edu/publications/documents/96.reports/96.hb.001.html.

[32] “NetMeeting”, Microsoft Corporation, Redmond, WA 98052-6399, USA,http://
www.microsoft.com/windows/netmeeting.

[33] MSP User’s Manual, Ref. No. 23-34-5, SDA Inc. and INSTEP Inc. (March 1994).
[34] Münch J., Ocampo A., “Software process variability: Concepts and approaches”, Report

No. 124.04/E, Fraunhofer Institut Experimentelles Software Engineering, Kaiserslautern,
Germany, December 2004.

[35] Nejmeh B., “Process cost and value analysis”,Comm. ACM38 (6) (1995) 19–24.
[36] Nejmeh B., Thomas I., “Business-driven product planning using Feature vectors and in-

crements”,IEEE Software19 (6) (2002) 34–42.
[37] Nichols R., Connaughton C., “Software process improvement journey: IBM Aus-

tralia application management services”, CMU/SEI-2005-TE-002, Carnegie Mellon
University, Software Engineering Institute, Pittsburgh, Pennsylvania, March 2005,
http://www.sei.cmu.edu/publications/documents/05.reports/05tr002.html.

[38] Ocampo A., Bella F., Münch J., “Software process commonality analysis”,Software
Process Improvement and Practice(2005) 10.

[39] “IRIS”, Osellus, Toronto, Canada,http://www.osellus.com/products/irispas.html.
[40] “Integrated Process Asset Library”, Federal Aviation Administration (FAA), Washington,

DC, USA,http://www.faa.gov/ipg/pimat/ipal.

http://www.iese.fhg.de/Products_Services/vincent/technology
http://www.ilogix.com/inotion/inotion.cfm
http://www.iso.org/iso/en/iso9000-14000/iso9000/iso9000index.html
http://arXiv.org/abs/nlin.AO/0005039
http://www.iese.fhg.de/Products_Services/vincent/publications/EPGs.pdf
http://www.macromedia.com/software/dreamweaver
http://www.sei.cmu.edu/publications/documents/96.reports/96.hb.001.html
http://www.microsoft.com/windows/netmeeting
http://www.sei.cmu.edu/publications/documents/05.reports/05tr002.html
http://www.osellus.com/products/irispas.html
http://www.faa.gov/ipg/pimat/ipal
http://www.iese.fhg.de/Products_Services/vincent/technology
http://www.iso.org/iso/en/iso9000-14000/iso9000/iso9000index.html
http://arXiv.org/abs/nlin.AO/0005039
http://www.iese.fhg.de/Products_Services/vincent/publications/EPGs.pdf
http://www.macromedia.com/software/dreamweaver
http://www.microsoft.com/windows/netmeeting

238 B.A. NEJMEH AND W.E. RIDDLE

[41] Paulk M., Curtis B., Chrissis M., Weber C., “Capability maturity model for soft-
ware, version 1.1”, CMU/SEI-93-TR-024, ADA 263403, Carnegie Mellon Univer-
sity, Software Engineering Institute, Pittsburgh, PA, 1993,http://www.sei.cmu.edu/
publications/documents/93.reports/93.tr.024.html.

[42] PM User’s Manual, Ref. No. 23-46-3, SDA Inc. and INSTEP Inc. (March 1994).
[43] “A Guide to the Project Management Body of Knowledge (PMBOK� Guide)”, Project

Management Institute (PMI), Four Campus Boulevard, Newtown Square, PA, 2000,
http://www.pmi.org/info/PP_CurrentStandardsProjects.asp.

[44] Pragma Systems Corporation, Reston, VA,http://www.pragmasystems.com.
[45] Radice R., Phillips R.,Software Engineering, An Industrial Approach, Prentice Hall, En-

glewood Cliffs, NJ, 1988.
[46] Riddle W., “The evolutionary approach to building the Joseph software development en-

vironment,” in:Proc. Softfair: A Conf. on Software Development Tools, Techniques, and
Alternatives, Crystal City, VA, July 1983, pp. 317–325.

[47] Riddle W., “Just-in-time process documentation”, in:Proceedings of the Argentine
Symposium in Software Engineering, Santa Fe, Argentina, 9–13 September 2002
(Astrophys. Space Sci. E 2002),http://www.iese.fhg.de/Products_Services/vincent/
publications/JIT_ProcDoc.pdf.

[48] Riddle W., “Coping with process specification”, in:Proceedings 2003 Integrated De-
sign and Process Technology Conference, IDPT-2003, Austin, TX, Society for De-
sign and Process Technology, Austin, TX, December 2003,http://www.iese.fhg.de/
Products_Services/vincent/publications/COPEing.pdf.

[49] Shewhart W.A.,Economic Control of Quality of Manufactured Product, original publi-
cation: 1931. Re-issue edition: American Society for Quality, Milwaukee, WI, December
1980.

[50] “What is Six Sigma?”, General Electric, Fairfield, CT, 2004,http://www.ge.com/
sixsigma/.

[51] Subramanyam V., Deb S., Krishnaswamy P., Ghosh R., “An integrated approach to
software process improvement at wipro technologies: Veloci-Q”, CMU/SEI-2004-TR-
006, Carnegie Mellon University, Software Engineering Institute, Pittsburgh, PA, 2004,
http://www.sei.cmu.edu/publications/documents/04.reports/04tr006.html.

[52] “Teamware Pl@za”, Teamware Group Oy, Helsinki, Finland,http://www.teamware.net/
Resource.phx/twplaza/index.htx.

[53] “Workflow Management Coalition, The Workflow Reference Model”,http://www.
wfmc.org/standards/doc/tc003v11.pdf.

http://www.sei.cmu.edu/publications/documents/93.reports/93.tr.024.html
http://www.pmi.org/info/PP_CurrentStandardsProjects.asp
http://www.pragmasystems.com
http://www.iese.fhg.de/Products_Services/vincent/publications/JIT_ProcDoc.pdf
http://www.iese.fhg.de/Products_Services/vincent/publications/COPEing.pdf
http://www.ge.com/sixsigma/
http://www.sei.cmu.edu/publications/documents/04.reports/04tr006.html
http://www.teamware.net/Resource.phx/twplaza/index.htx
http://www.wfmc.org/standards/doc/tc003v11.pdf
http://www.sei.cmu.edu/publications/documents/93.reports/93.tr.024.html
http://www.iese.fhg.de/Products_Services/vincent/publications/JIT_ProcDoc.pdf
http://www.iese.fhg.de/Products_Services/vincent/publications/COPEing.pdf
http://www.ge.com/sixsigma/
http://www.teamware.net/Resource.phx/twplaza/index.htx
http://www.wfmc.org/standards/doc/tc003v11.pdf

The Opportunities, Challenges, and Risks
of High Performance Computing
in Computational Science and Engineering

DOUGLASS E. POST

DoD High Performance Computing Modernization Office
Arlington, VA
and Carnegie Mellon University Software Engineering Institute
Pittsburgh, PA
USA

RICHARD P. KENDALL

Los Alamos National Laboratory
Los Alamos, NM
USA

ROBERT F. LUCAS

University of Southern California Information Sciences Institute
Marina del Rey, CA
USA

1. Introduction . 240
2. Computational Science and Engineering Analysis 242
3. General Characteristics of a Large Scale Computational Simulation 243
4. FALCON: An Example of a Large-Scale Scientific Code Project 248

4.1. FALCON Characteristics . 248
4.2. FALCON Life Cycle . 250
4.3. Workflows and Tasks . 252
4.4. “Lessons Learned” from the FALCON Project 256
4.5. Observations and Conclusions for the FALCON Project Case Study 256

5. The Challenges Facing Computational Science and Engineering 257
5.1. The Performance Challenge . 257
5.2. The Programming Challenge . 262
5.3. The Prediction Challenge . 265

ADVANCES IN COMPUTERS, VOL. 66 239 Copyright © 2006 Elsevier Inc.
ISSN: 0065-2458/DOI 10.1016/S0065-2458(05)66006-8 All rights reserved.

240 D.E. POST ET AL.

5.4. Scientific Software Characteristics and Issues 269
5.5. Success Is not Guaranteed!. 271
5.6. The Development Challenge . 274

6. A Comparative Case Study . 276
6.1. Quantitative Estimation. 279

7. Verification and Validation . 284
7.1. Verification . 284
7.2. Validation . 286

8. Software Quality and Software Project Management. 290
9. Conclusions and Path Forward . 295

Acknowledgements . 297
References . 297

1. Introduction

The exponential growth in microchip processing power described by “Moore’s
Law” [1], the concomitant increase in memory and disk size, and the advent of mas-
sively parallel platform architectures have resulted in a factor of 1013 improvement
in computer processing power since 1945[2]. This expansion of raw computing
power is enabling computational science and engineering to address many impor-
tant problems with a degree of realism that was unimaginable twenty years ago.
It is even becoming credible to envision computational science and engineering as
a problem solving and research methodology that can stand along side experimen-
tal and theoretical science and engineering analysis. The continued growth of this
computing power depends on continued improvements in processor speed, network
bandwidth, memory size, computer architecture, and other aspects of computer tech-
nology. In particular the introduction of massive parallelization has been one of the
biggest reasons for recent improvements in computer performance, but it has also
resulted in much more complex platform architectures.

The increased complexity has made programming high performance computing
applications more difficult and has increased the time required to develop application
codes. Optimizing code performance has also become more difficult. Performance
analysis and debugging tools for massively parallel platforms are still relatively im-
mature. Programming models and language extensions (e.g., MPI, OpenMP, HPF,
etc.) have evolved, but vary among platform vendors and architectures and often in-
volve very low levels of abstraction. At the same time that developing even “simple”
codes for high performance computers is becoming more difficult and challenging,
developers are striving to develop very ambitious programs. While computational
simulations are proving to be useful tools for scientific discovery and engineering de-
sign and analysis, their effectiveness at this time is limited by the available computer

THE OPPORTUNITIES, CHALLENGES, AND RISKS 241

power and memory. These limit the spatial and temporal resolution, the accuracy
of solution algorithms, the number of effects that can be included, and the range
of time and distance scales that can be treated. The growth in computer process-
ing power and memory is beginning to allow us to remedy these shortcomings. The
newest application codes employ more grid points in multiple dimensions for better
resolution, include many more effects that span orders of magnitude of distance and
time scales, and utilize extensive and detailed sets of physical data from tables and
models for greater realism. The size and complexity of the codes has become very
large. The additional work associated with the increased programming challenges
and the tasks involved with including more complete (and complex) models make
code development much more difficult than was the case ten or twenty years ago.

The unparalleled complexity and scale of the applications, and the difficulty of
developing them, leads to the challenge of developing complicated applications that
can produce reliable and accurate answers. Finding errors in large, complicated codes
running on massively parallel platforms is extremely difficult. The newest codes in-
clude models for many competing effects. Determining if the models are accurate
and complete is essential for accurate predictive capability. Developing these ap-
plications in a timely and efficient manner is also crucial. The time scales for the
development of many large-scale simulation projects extends to ten years or more
for the largest and most ambitious applications[3] and involve teams of 15 or more
highly trained and multi-disciplinary staff. The team leadership must include com-
petent scientists, computer scientists, managers and leaders. An extensive validation
program is required. The project must have strong, continuous support from spon-
sors, stakeholders and users throughout the lengthy development. Often this support
is lacking, and the applications that could address strategic problems and issues are
never successfully developed[4]. This defines another challenge—“The Develop-
ment Challenge.”

Together, these developments define four distinct challenges:

1. “The Performance Challenge:” Designing and building high performance com-
puters.

2. “The Programming Challenge:” Programming for complex computers.
3. “The Prediction Challenge:” Developing codes with complex physical models

that are truly predictive.
4. “The Development Challenge:” Supporting the development of application

programs for Computational Science and Engineering.

We first briefly explore the promise of using high performance computers to ad-
dress the strategic problems facing society. Next we characterize some of the key
properties and characteristics of some important high performance computing appli-
cations. Then we address the four challenges highlighted above. We initially describe

242 D.E. POST ET AL.

the scope of these four challenges, identify the risks involved with each challenge,
and then suggest ways to mitigate the risks. Our descriptions and solutions rely heav-
ily on case studies of a number of large computational science projects and stress the
importance of continued case studies as an essential element of the maturing process
for computational science and engineering.

2. Computational Science and Engineering Analysis

Computational science and engineering based on the use of high performance
computers is growing exponentially. It pervades many disciplines (Table I). Several
recent books present surveys of high performance computing applications[2,5] and
descriptions of individual projects abound (see the references inTable I).

These applications and others that can be addressed with high performance com-
puting literally span the fields of human knowledge and endeavor. High performance
computing offers society the opportunity to address strategic problems of immense
importance. During the first few decades of supercomputers (1960–1980), they were
applied chiefly to national defense-related problems. As computers grew more pow-
erful, it became possible to address a much broader range of problems. The number
of such fields is growing. Even the social sciences are becoming more quantitative.
Serious work in political science now involves supporting conclusions with analyzed
data.

TABLE I
EXAMPLES OF HIGH PERFORMANCECOMPUTING APPLICATIONS (WITH ILLUSTRATIVE

REFERENCES)

Astrophysics[6] Fracture Analysis[21]
Atomic and Molecular Physics[7] Genetics[22]
Bioengineering and Biophysics[8] Groundwater and Contaminant Flow[23]
Chemistry[9] Inertial Confinement Fusion[24]
Climate and Weather Prediction[10] Magnetic Fusion Energy[25]
Computational Biology[11] Materials Science[26]
Computational Fluid Dynamics[12] Medicine[27]
Cosmology[13] Nanotechnology and Nanoscience[28]
Cryptography[14] Optics[29]
Data Mining[15] Scientific Databases[30]
Earth Systems[16,17] Shock Hydrodynamics[31]
Earthquakes[17] and Volcanoes[18] Space weather[32]
Engineering Design and Analysis[19] Weather Prediction[33]
Finance[20] Wild Fire analysis[34]

THE OPPORTUNITIES, CHALLENGES, AND RISKS 243

3. General Characteristics of a Large Scale
Computational Simulation

As illustrated inTable I, computational science and engineering addresses many
problem domains. They fall into general classes based on the models and solution
techniques used in the simulation (Table II).

These approaches are summarized in Dongarra et al.[2]. There are many cat-
egories of problems and solution techniques (Table III). Problems can be time-
dependent (e.g., predicting the weather), static (e.g., stress levels in load bearing
structure), or unsteady (turbulent flow). The partial differential equations can be
either parabolic (e.g., diffusion or conduction), elliptic (e.g., many steady-state prob-
lems), or hyperbolic (e.g., wave equation[35]). While a few problems are linear,
almost all real problems are nonlinear. They involve nonlinear equations with com-
plicated, non-analytic coefficients and source terms that are expressed either as tables
of data or calculated from in-line models.

Many different numerical schemes are employed. Many time-dependent problems
use finite difference or finite volume techniques. These schemes can be made con-
servative (i.e., the numerical scheme obeys conservation laws at the level of machine
accuracy), and are usually fairly simple to implement. Finite element techniques are
used for many engineering problems, particularly time-independent problems involv-
ing complex geometries. Other problems can be formulated as integral equations,
which can be solved as minimization problems (including finite element formula-
tions), or with stochastic techniques like the Monte Carlo[36] method.

Dimensionality, the number of dimensions included in a calculation, also varies
among codes. Generally the larger the dimensionality, the larger the number of cal-
culations that must be performed, so there is a substantial incentive to use as few

TABLE II
EXAMPLES OF GENERAL PROBLEM FORMULATION AND SOLUTION

TECHNIQUES

• Initial value partial differential equations—explicit and implicit
• Static partial differential equations—eigenvalue and steady-state solutions
• Ordinary differential equations
• Integral equations
• Data search and mining
• Data analysis
• Particle simulation
• Number theory and integer processing
• Signal processing
• “Event” simulation

244 D.E. POST ET AL.

TABLE III
SAMPLE DISTINGUISHING FEATURES FORPARTIAL DIFFERENTIAL EQUATION APPLICATIONS

• Initial value-time dependent, non-steady state, unsteady/steady state/eigenvalue

• Deterministic/probabilistic

• Parabolic/hyperbolic/elliptic partial differential equations

• Linear/non-linear

• Problem formulation
◦ Finite difference/finite volume/finite element/integral/Monte Carlo/spectral elements. . .

• Dimensionality:
◦ Spatial dimensions: 1, 2 or 3
◦ Velocity dimensions: 1, 2 or 3
◦ Total number of dimensions: 1-D to 6-D plus time, or
◦ degrees of freedom (e.g., quantum mechanical systems): 1 to thousands

• Mesh and Grid
◦ Structured/unstructured spatial mesh
◦ Degree of complexity (see[37])
◦ Adaptive mesh refinement/static mesh
◦ Single material/property or multi-material/multi-property

• Single physics/Multi-physics→ weakly/strongly coupled

• Degree of Multi-scale (largest distance or time / smallest distance or time= 10n); n > 3 or 4
requires sub-grid models and/or implicit techniques

• Solution approach
◦ Operator splitting, coupled solutions
◦ Implicit/explicit
◦ Direct solution, iterative solutions
◦ Data: Physical data models/physical data tables/no data

dimensions as possible. Some problems have inherent symmetries that allow reduc-
tions in the dimensionality. For many, the distribution of particles in a system can
generally be described by the Boltzmann equation(1). The distribution function is a
function of velocity, space, time, and particle type.r is the position vector,v is the
velocity, E andB are the electric and magnetic fields, andC is the collision oper-
ator. For each particle type, there are seven dimensions in full generality (3 space,
3 velocity and 1 time). Due to the nonlinearity and large size of the resulting grids,
few calculations include the full distribution function. The dimensionality in velocity
space is often reduced by using moments over the distribution function and truncat-
ing the moments after the second moment[38]. The total number of grid points
scales asnm, wheren is the number of grid points in one dimension, andm is the
sum of the number of spatial dimensions (0 to 3), velocity dimensions (0 to 3) and
time dimensions (0 to 1). Sincem can be as high as 7, the models in most codes have

THE OPPORTUNITIES, CHALLENGES, AND RISKS 245

reduced dimensionality

(1)
∂f (�r, �v, t)

∂t
+ �v · ∇f +

(�E + �v × �B
)

· ∇�vf = C(f).

Computations are carried out at discrete points laid out in a “mesh” or “grid”[37].
Physical space is usually divided into cells. The cells can either be “fixed” in space
(Eulerian) or tied to the material and move with it (Lagrangian)[39]. The meshes
can either be structured or unstructured. With structured meshes, the information for
adjoining mesh cells is stored in the order that the cells are arranged in real space.
The cell information is indexed by location of the cell. The information for zone with
indices(ix, jy, kz) is between zones(ix − 1, jy, kz) and(ix + 1, jy, kz), and so on.
The location of a mesh cell in a structured mesh is identified from the zone indices.
An unstructured mesh is more complex in that the information about the location of
the cell and the location of adjacent cells is part of the information stored with each
cell. This requires more work, and more storage, but splitting and combining cells is
much easier.

A key limitation to accuracy is the lack of adequate spatial resolution in regions
where high accuracy is required. The spatial resolution is limited by available mem-
ory and computer speed. It is possible to increase the resolution locally by “adaptive
mesh refinement,” that is, refining a mesh locally where higher accuracy is desired.
This has the potential to increase the local resolution without major increases in the
total number of zones in the whole problem. This is much easier for unstructured
meshes since only the information for the affected zones needs to be changed. New
zones can be tacked onto the end of the list of zones, a much easier task than inserting
zones into a multi-dimensional list.

Some codes treat only one material. However, there is greater interest in multi-
material codes that can treat a number of different materials simultaneously. Such
multi-material codes have additional complexity due to the need to maintain mate-
rial interfaces. This is straightforward for Lagrangian codes where the mesh moves
with the material and the material interfaces can be located at the mesh boundary. It
is more challenging for Eulerian codes since the mesh is fixed in space and the ma-
terial moves through the mesh. The challenge is especially acute when the material
interface moves through many cells during a timestep.

Application codes vary in the complexity of the models they include. Codes that
include many strongly interacting effects are more difficult to develop than codes
with fewer effects. This is particularly true if the effects happen on different time
or distance scales. An example of these “multi-scale” problems is the turbulent flow
of water down a pipe. The bulk flow of the water occurs with a distance scale on
the order of the diameter of the pipe, and may require 10 to 50 zones across a one
cm diameter pipe to resolve important features at the millimeter scale (∼10−3 m).

246 D.E. POST ET AL.

Turbulence occurs at much smaller distance scales, down to the distance between
molecules (∼10−10 m). The ratio of the largest distance scale to the smallest is thus
about 107. For a two or three dimensional calculation 1018 to 1027 mesh cells would
be required, a size that is completely impractical in the foreseeable future. In addi-
tion, since most fluid flow calculations are limited by a time step that is roughly the
transit time of a sound wave across a zone, it would take 109 time steps for informa-
tion to propagate across the mesh, far too many time steps for a practical calculation.
This translates into a measure of the degree of the multi-scale nature of the problem,
Eq. (2). If n in Eq. (2) is greater than 3 or 4, then it is basically impossible to treat
both the smallest and largest time or distance scales with a single method

(2)
λlarge

λsmall
≈ 10n or

τlarge

τsmall
≈ 10n.

If the same equations describe both the large and small time scale events, then im-
plicit techniques can often be used to solve the system. These often involve ignoring
the small scale effects and averaging over them. This can only be done if one has
access to all of the values of the whole problem, and requires fast communication. If
the equations are different for small and large scale effects, then methods that cap-
ture the essential features of the small scale phenomena need to be developed and
coupled to the treatments of the larger scale events.

If the different effects in a simulation affect each other weakly, then each model
can be solved independently and the results combined after each iteration or time-
step (Eq.(3)) (operator splitting). Suppose the change inf is due to two simultaneous
effects, 1 and 2. For operator splitting the change inf due to each effect is computed
separately, then the two changes are added. If the time step is small and the effects are
weakly coupled this may be sufficiently accurate. If the effects are strongly coupled,
the change inf due to both effects will need to be computed simultaneously and
operator splitting cannot be used

∂f

∂t
= ∂f

∂t

∣

∣

∣

∣

1
+ ∂f

∂t

∣

∣

∣

∣

2
,

∂f

∂t

∣

∣

∣

∣

1
= O1(f),

(3)
∂f

∂t

∣

∣

∣

∣

2
= O2(f),

∂f

∂t
= O1(f) + O2(f).

Some codes do not require physical data. But more often, codes that treat phys-
ical phenomena must include real data for the source terms and coefficients in the
equations. Examples of data include yield strengths, opacity, equations of state, con-
ductivity, collision cross sections, reaction rates, oscillator strengths, energy levels,
enthalpy, viscosity, magnetic susceptibility, etc. This data can be either collected and
used in tabular format or computed by inline models or both. Construction of efficient

THE OPPORTUNITIES, CHALLENGES, AND RISKS 247

TABLE IV
CODE SIZE AND TIME SCALES

Number of zones or mesh cells<1010

Production run time per problem<1 to 2 weeks
Time steps or iterations<106 cycles
Development time∼5 to 10 years

and accurate methods for incorporating data and physical models into simulations is
often challenging.

We can derive some estimates of the scale of large scientific and engineering codes
from simple considerations. The size of practical problems and the time required
to run them is determined by available memory and processor and memory access
time. The time to develop a code is determined by the size of the code and both its
capability and complexity (Table IV).

The present memory of a high performance computer is usually of order 1 GByte
per processor. Present high performance computers have between 1000 and 100,000
processors. With expected growth, this will soon yield memories in the range of 10 to
100 TBytes. A typical application requires between 1 and 10 kBytes of information
per cell, so this limits the number of mesh cells to the order of 1010.

For a variety of reasons, it is impractical to envision many large-scale problems
that take more than a week or two for one run. A typical parameter scan with large
scale code runs will require a few runs, almost never less than five to ten, and prefer-
ably more. There are only 45 or so usable weeks in a year. It is generally impractical
for a single large problem to get more than 20% of the total time on a platform. Thus
ten runs will take about 1/2 of a year, and more runs longer. Only in rare cases will a
single problem be allocated more than about 10% of the total machine available for
a year. Thus for almost all cases a few weeks is the limit for practical single runs.

The typical run time required for a time step is a few seconds for many common
codes that solve initial value problems[3]. Since the maximum time per problem is
about a week or two (106 s), this leads to an estimate of around 106 for the maximum
number of cycles, iterations or time steps. Similar estimates arise from round-off
error accumulations. While we have discussed these issues in terms of initial value
codes, similar conclusions exist for other types of codes, including signal processing
codes, event simulation, data mining, pattern recognition, data analysis, etc.

Large-scale codes take a long time to develop to the point where they can be used
with credibility. A typical scaling for the development time for large scale scientific
codes is

(4)τdev ∼ FP0.47 × contingency[40],

248 D.E. POST ET AL.

whereτdev is the development time in months, the contingency factor is about 1.6
for scientific codes compared to the information technology industry[40], and FP
is the number of equivalent function points for the code[41]. For typical scientific
codes, FP∼ SLOC/100, where SLOC is the source lines of code. For typical large
scientific codes, the SLOC count ranges from 300,000 to 1,000,000. To put this in
perspective[42], if the SLOC count is∼450,000, FP∼4500, and a contingency of
∼1.6 is assumed, then the development timeτdev is ∼85 months, or∼7 years.

4. FALCON: An Example of a Large-Scale Scientific Code
Project

4.1 FALCON Characteristics

Now that we have set the general context for large scale scientific codes, it is use-
ful to describe a specific example. Two of the present authors (Post and Kendall)
recently conducted a detailed case of study of one such code, the ongoing FALCON
project. The actual subject of the case study is anonymous to encourage complete dis-
closure of all the important aspects of the project history and issues[43]. FALCON
is larger and more ambitious than most current applications, but is prototypical of
many of the next generation of high performance computing applications. It models
many strongly coupled effects that span distance and time scales of 5 to 10 orders of
magnitude. This case study allowed us to characterize the issues that the developers
and users of large scientific codes face, including the programming and prediction
issues highlighted earlier. Key points that emerged from the study were the impor-
tance of good software engineering and verification and validation. Verification is
ensuring that the code has no errors, that it solves the equations correctly. Validation
is ensuring that the models in the code are accurate representations of what occurs
in nature. It usually involves comparing code results with the results of experiments
and observations.

The goal of the FALCON code project is to develop a predictive capability for a
product whose performance involves the trade-off of many strongly coupled physical
effects with time and distance scales that span ten orders of magnitude or more. An
accurate predictive capability is needed to reduce the dependence of the sponsoring
institution on large, expensive and potentially dangerous empirical tests to certify the
product.

The FALCON code project is based on an innovative and potentially very pow-
erful method for solving a set of initial value partial differential equations for the
conservation of particles, momentum and energy. These equations are non-linear and

THE OPPORTUNITIES, CHALLENGES, AND RISKS 249

have non-linear source terms and coefficients that are calculated with analytic, com-
putational and table look-up schemes. The coupled set of equations is solved with
operator splitting with some degree of time and spatial error correction. A mixture of
explicit and implicit techniques is used. The FALCON code was designed to run on
massively parallel Symmetric Multi-Processor (SMP) platforms[2]. The product to
be simulated is a multi-material object with a complicated geometry. The equations
are solved on an unstructured two or three-dimensional mesh that captures the major
features of the object. Generating a reliable mesh from CAD-CAM files and other
descriptions of the problem is a highly challenging task in itself, often consuming
several months of an expert’s time to set up each new type of problem[37]. The
unstructured mesh allows flexibility for incorporating adaptive mesh refinement and
adding resolution for capturing fine-scale features where necessary.

Parallelization for computation with SMP architectures is accomplished with
domain decomposition of the mesh using ParMetis[2]. The parallel program-
ming model for distributed memory architectures is the Message Passing Interface
(MPI) [2]. As noted before, the target platforms are SMP clusters with thousands
processors.

The approach to performance optimization has been pragmatic. The team uses
several optimization tools (e.g., PIXIE, DCPI, SpeedShop and prof[2]) to iden-
tify roadblocks. The team then works on minimizing the impact of the roadblocks.
The emphasis during the early stages of development was to maximize performance
through reasonable choices for the code architecture, and then to work on optimiza-
tion after the basic capability of the code had been established. This approach was a
response to the pressures to develop the basic capability necessary for demonstrating
the actual and potential utility of the code as soon as possible, even if the initial per-
formance efficiency was low. If the required capability had not been demonstrated in
a timely fashion, the project would have been canceled. A substantial investment in
optimization was thus a luxury to be addressed at a later time. This is not atypical of
large-scale scientific code development projects.

The FALCON code project uses nine different languages and a set of external
libraries including: Fortran, C, Perl, Python, Unix shells, SCHEME, MAKE, and ex-
ternal libraries. Most of the code is an object-oriented instantiation of Fortran 77. The
team has successfully captured many of the advantages of low level object-oriented
capability, such as polymorphism and inheritance, while avoiding the pitfalls of many
levels of inheritance and excessive use of templates. The reliability of Fortran out-
weighed its limitations in the massively parallel hardware environment. The major
blocks of code are about 410,000 SLOC of Fortran, 50,000 SLOC of C, 200,000
SLOC of library code, and about total 30,000 SLOC of Perl, Python and Unix scripts.
Perl and Python are primarily used for build and test scripts.

250 D.E. POST ET AL.

The FALCON project computational tools are being used by a team of approxi-
mately 50 engineers to assess the behavior of new and existing product designs. The
users are highly knowledgeable and experienced. They do most of the validation of
the code by comparing the code results with data from past experiments and a few
new experiments. Their level of experience and expertise is sufficiently high that they
can not only identify bugs and model deficiencies but can often identify the source
of the bug or the needed model improvements. The users participate very construc-
tively and effectively in the development, verification and validation of the code. The
code is extensively documented on an internal web-site (approximately 400 Mbytes
of HTML files). The documentation consists of descriptions of the physics in the
code, the algorithms and models in the code, the input and output, and instructions
for how to run the code. This has proved highly useful for the users and has been a
key contributor to the success of the project.

The level of maturity of the code project was judged to be somewhere between
CMM Level 2 and Level 3 based on the processes and practices followed[44] by the
FALCON code team.

4.2 FALCON Life Cycle

Based on the experience with similar projects at their institution, the FALCON
code project lifetime is expected to be on the order of 30 years (Fig. 1). Indeed, some
projects like FALCON have had lifetimes of up to 45 years. The first part of the life
cycle was dedicated to development of an initial capability to solve the conservation
equations without accurate source terms or coefficients. This took about five years.

FIG. 1. FALCON project projected life cycle.

THE OPPORTUNITIES, CHALLENGES, AND RISKS 251

Now that capability is being tested and accurate models and data are being added.
Further development will continue until a production capability has been achieved
with more accurate source terms and coefficients. The production phase involves
heavy use and testing by the user community. During the production phase, the code
team will support the use of the code, maintain the code, port it to new platforms,
and develop and add new capability as required by product engineers.

For similar projects at this institution, the ultimate life span of the code is deter-
mined by user demand and the difficulty of successively porting the code to new
platforms. When a successor can replace the older code, and the product engineers
have made the transition from the older code to the successor code, support for the
older code ceases and it is “retired.” The development of new capability then shifts
to the successor code. The FALCON project is in the process of displacing an older
code project with less capability. The life-time of these projects (20 to 30 years) is
much longer than the time between new platforms (4 to 6 years). Thus, porting to
new platforms is much more important than extensive performance optimization for
any particular platform.

Like many computational simulations, the FALCON code project has a strong
element of research and development to ensure that new algorithms and models are
developed and successfully implemented. The users also have needs that must be
met if the code project is to be successful. The adequacy of the models in the code
can only be determined as part of an intensive validation program. It was impossible
to draft a detailed list of requirements before the project was begun or to specify a
detailed schedule.

In the case of the FALCON project, senior institutional management and the spon-
sor specified a set of requirements that would allow them to “sell” the program to
the funding sources. This is similar to experiences in the Information Technology
(IT) industry where a marketing department identifies market opportunities, and then
signs up customers by promising the level of code capability necessary to outbid
the competition. Then the software engineers are required to deliver the promised
capability. This approach contributes to over-promising the capability that can be
delivered within the defined schedule and resource level[45,46].

In the case of the Falcon project, the detailed schedule initially specified by the
sponsor and senior institutional management was not based on the prior experience
with similar codes or quantitative estimates (see Eq.(4)). Instead the schedule was
based on when the capability was desired. In addition, the sponsor and institutional
management chose a set of goals that appealed to the funding agency but were not
the highest priority for the ultimate customers, the product engineers. The customers
needed and wanted a different set of capabilities. They thus had little interest in the
initial code project. Once it became clear that the schedule was almost a factor of
three too optimistic and that the initial goals were not appropriate, the project goals

252 D.E. POST ET AL.

were changed to match the needs of the customers and a more realistic schedule was
developed.

4.3 Workflows and Tasks
The institution that managed the Falcon project has had decades of experience

developing and using similar (but less ambitious) simulations. However, that experi-
ence was in serial development (i.e., develop one capability and test it, then develop
a second capability and add it to the first, etc.) (Fig. 2). Serial code development
would have taken 20 years or more to achieve the desired capability. The FALCON
code project and others begun at the same time planned to develop the major com-
ponents in parallel to speed up the overall development process (Fig. 3). Component
development in parallel placed new and much greater demands on project manage-
ment skills since the code teams were four to five times larger than in the past. It also
called for better risk management techniques. If many components requiring simi-
lar development times are needed for the full capability, one failure would double
the overall development time (seeFig. 3). This risk was realized for the FALCON
project. A contract support group did not deliver a key component. The FALCON
team has had to develop it internally. This subtracted from the resources available
for other tasks and delayed realization of the full project capability. The institution
that developed FALCON has had to learn how to organize and manage this new kind
of code development process.

The tasks that the FALCON code development project and their users carry out
can be grouped into seven categories (Fig. 4; Table V). Ideally, these tasks would

FIG. 2. Legacy serial code development model.

THE OPPORTUNITIES, CHALLENGES, AND RISKS 253

FIG. 3. FALCON parallel code development plan.

FIG. 4. Computational science and engineering code project workflow.

be carried out in a linear fashion (e.g., the classic “waterfall” model)[47]. In reality,
they are nested, and iterative (Fig. 5). For instance, a candidate solver might be se-
lected during the design phase. Then it might be discovered during the testing phase
or during production runs that it does not provide the needed capability. Then the
team has to go back, identify a new candidate solver, develop it, test it, etc., until a
satisfactory solver has been found. One might discover in the V&V phase that the
models miss an important effect that has to be included, and so on. Nonetheless, the
use of these categories has been useful for ensuring that all of the tasks are identi-
fied for the hardware and software vendors (Table VI). Improved tools to accomplish
these tasks would improve the ability of code teams like the FALCON code team to
develop scientific codes more quickly with fewer defects and better performance.

254 D.E. POST ET AL.

TABLE V
SEVEN CATEGORIES OFTASKS FORSCIENTIFIC CODE DEVELOPMENT

1. Formulate questions and issues
Identify high level goals, customers and the general approach

2. Develop computational and project approach
Define detailed goals and requirements, seek input from customers, select numerical algorithms

and programming model, design the project, recruit the team, get the resources, identify the expected
computing environment

3. Develop code
Write and debug code, including code modules, input and output, code controllers, etc.

4. Perform V&V
Define verification tests and methodology, utilize regression test suites, define unit tests and exe-

cute them, define useful validation experiments, design validation experiments, get validation results
and compare with code results, etc.

5. Make production runs
Setup problems, schedule runs, execute runs, store results

6. Analyze computational results
Begin analysis during run to optimize run, store and visualize/analyze results, document results,

develop hypotheses, test hypotheses with further runs

7. Make decisions
Make decisions based on results, document and justify decisions, develop plan to reduce uncer-

tainties and resolve open questions, identify further questions and issues

TABLE VI
OPPORTUNITIES FORIMPROVED DEVELOPMENT TOOLS AND DEVELOPMENT

ENVIRONMENTS

• Problem set-up tools (mesh generation, etc.)

• Data storage and retrieval, especially over distributed networks

• Smoother upgrades for operating systems and tools

• Better and easier-to-use compilers and parallel programming models for massively
parallel computers (now Fortran with MPI)

• Linkers and loaders with ability to link many languages

• Better parallel debuggers

• Performance analysis tools (hardware and software)

• Better run schedulers

• Visualization (office, small workroom, theater)

• Data analysis tools (V&V and analysis of runs)

• Testing tools (coverage analysis, software quality,. . .)

• Production run configuration and problem logs

T
H

E
O

P
P

O
R

T
U

N
IT

IE
S

,C
H

A
LLE

N
G

E
S

,A
N

D
R

IS
K

S
255

FIG. 5. Code development and application task categories.

256 D.E. POST ET AL.

The FALCON project also focused on verification and validation, but found it to
be extremely challenging. None of the existing techniques for verification proved
to be satisfactory for a complex, multi-physics code. Validation has been similarly
challenging. There is little data available, and usually it includes many effects which
cannot be separated from each other. Identification of the role of specific individual
effects proved to be difficult.

A key observation by the FALCON team is that debugging massively parallel
programs is hard. The worst debugging situations included occasions where bugs
were not consistently reproducible. These include subtle errors that build from the
least significant digit over many calculation cycles, bugs that are only reproducible
after a very long run (restarting near the bug makes it go away), bugs that are not
reproducible in a debug version (e.g., you must search in an optimized version where
variables have been optimized away and cannot be viewed), bugs that only show up
in a huge problem (giga-bytes of state data) and bugs that occur when the mesh data
migrates between processor/nodes (during remaps).

4.4 “Lessons Learned” from the FALCON Project

The “lessons learned” from the Falcon project case study include identification
of the characteristics of a working code. One goal is to identify the key roadblocks
and issues. That would enable hardware and software vendors to help code devel-
opers be more efficient and effective. It will also identify the steps and procedures
that code development projects can follow to improve their products and time to
solution. Some specific FALCON-related opportunities for improvement are listed
in Table VI. There were also “lessons learned” from the experiences of the Fal-
con team that pertain to team and institutional dynamics. Many of these lessons are
emphasized in the standard software project management literature[48,49] and are
addressed later in this chapter.

4.5 Observations and Conclusions for the FALCON Project
Case Study

One of the main values of the FALCON project case study was a characterization
of a large-scale computational science project. As noted before, we found that it was
essential to maintain complete anonymity to ensure that the team would allow us
access to a full and accurate set of information.

Three major conclusions evolved from this case study. The first major conclusion
is that the life time for this project is expected to be around 30 years, much longer
than smaller computational science projects such as are found in academia, and much

THE OPPORTUNITIES, CHALLENGES, AND RISKS 257

longer than most projects in the Information Technology industry. This has driven the
development team to be conservative in its approach and increases the importance of
minimizing risks. As a consequence, the FALCON team has avoided using new and
untried computer languages, compilers, code development methodologies, libraries,
etc., especially those targeted to a single platform. Performance optimization has
been much less important than being able to port the code to successive genera-
tions of platforms and to different types of existing platforms. Evidence that many
projects have life cycles of many machine generations has had an impact on com-
puter vendors. The vendors now have a better understanding of the need for stability
and incremental steps for software development infrastructure and tools.

Secondly, the specification of the workflow steps has been useful for identify-
ing the areas where hardware and software vendors can improve productivity by
eliminating bottlenecks and improving programming efficiency. Specifying the de-
velopment steps has helped computer vendors focus on the most productive areas for
improvement.

Thirdly, this study demonstrated that, while it is impossible to set down specific
detailed requirements for a scientific code project, it is important to outline them
in enough detail to allow estimation of needed resources and the development of
implementation time lines.

5. The Challenges Facing Computational Science and
Engineering

5.1 The Performance Challenge

Computer power measured in Floating Point Operations per second (FLOP/s) has
grown exponentially from about 10 FLOP/s in 1945 to about 35× 1012 FLOP/s
in 2004[2]. This expansion in capability has been achieved by a combination of in-
creased processor speed (characterized by “Moore’s Law”[50]) and improvements in
computer architecture, networks and data storage. Greater processor speed has been
achieved partially by technological innovation with electronic switches, progressing
from relatively slow mechanical relays to vacuum tubes to discrete component tran-
sistors to integrated circuits. Present processors have millions of transistors and other
components on a single chip with multiple arithmetic units. The clock speeds already
are in the Giga-Hertz range. The feature size is a fraction of a micron. At some point
within the next 40 to 50 years, Moore’s law will saturate due to the finite size of atoms
and molecules, the irreducible thermodynamic minimum heat associated with a bit
of information, quantum interference between adjacent components, etc. Although

258 D.E. POST ET AL.

there are indications that the rate of increase of processor speed is slowing, it is likely
that processor speed will continue to increase for the next couple of decades[51].

Data storage capability has kept pace with processor speed. Mechanical relays
and vacuum tubes were replaced by magnetic cores followed by transistors and ca-
pacitors. Now Gigabyte memories with access rates of hundreds of nanoseconds are
common. As for persistent data storage, 10,000 rpm rotating disks are approaching a
terabyte per disk. On the other hand, communication bandwidth between processors
has increased much more slowly than processor speed, with the result that remote
memory access and communication between processors are increasingly important
factors limiting application speed.

Exponential performance growth appears likely to continue for the near term,
largely because processing capability has also been accelerated by the use of many
processors operating in parallel. Computers with as many as 50,000 processors are
now in operation, and ones with 100,000 to 1,000,000 processors are under develop-
ment. It is reasonable to expect a 100 TeraFLOP/s computer by the end of 2005 and
a PetaFLOP/s computer in the 2010 time-frame. While the capability of computer
platforms has been increasing exponentially, the cost per FLOP/s has been dropping
rapidly. Indeed the cost of the largest supercomputer has remained in the $50M to
$150M range (in 2000 $) for over 40 years.

These achievements have been remarkable and possibly unique in the history of
technology. One can buy computers at a local office supply store for around $500 that
are as powerful as the biggest and most capable computer available for any amount
of money in 1990. In 2006, the PlayStation 3 will contain a TeraFLOP/s computer
and cost about $200.

Although each significant advance in computer power involves technological in-
novation, it appears to everyone that computer capability will continue to grow
exponentially, at least for the next 10 to 20 years. Predictions beyond that are hard to
make. Many new technologies offer promise, including advanced materials, optical
logic units, superconducting elements, and ultimately—the “Holy Grail”—quantum
computers. Although no technology grows exponentially forever, there appear to be
no near-term limits for computer capability.

This technological innovation has strong economic drivers. The market for faster
processors and networks and larger memory is immense and diverse. High Perfor-
mance Computing is a very small part of that market, but will continue to benefit
from the progress driven by the whole computer market.

The “Performance Challenge” is thus being met. The capability it provides for ad-
dressing the important technical problems humanity faces is tremendous. But the
increased capability comes at the price of increasing architectural complexity. It
is becoming increasingly more difficult to develop programs for the increasingly
more complex platforms. Realizing the capability of the new platforms leads to the

THE OPPORTUNITIES, CHALLENGES, AND RISKS 259

second and third challenges: “The Programming Challenge” and “The Prediction
Challenge.”

The nature of the programming challenge becomes evident when one considers the
kinds of computers code developers and production users want. They want fast in-
teger and floating point arithmetic (with divides); fast, globally addressable, reliable
memory and data storage; stable, long-lived and reliable platforms and architectures;
and stable, long-lived and reliable software development and production tools that
provide the needed capability and are simple to use. Basically they want something
that looks like the UNIX workstation development and production environment they
enjoyed 10 and 20 years ago. They want systems that are simple to use, and are
reliable.

This is not what they are getting. Industry is delivering distributed memory sys-
tems with very slowly improving memory bandwidth. As noted, the rate of perfor-
mance growth for individual processors is slowing. The new computers have an ever
increasing number of processors linked together in ever more complex networks. The
new machines and machine architectures are turning over every 3 to 5 years. Paral-
lel file systems are generally complex and often unreliable. The development and
production environment is often unstable, especially for the early life of a platform.
The complexity of the platform architectures and memory layout make programming
very complex. The performance of their codes is often only a few percent of the peak
performance, which subjects them to pressure to optimize for particular platforms
that have only a 3 to 5 year life span. The turnover in platforms and platform ar-
chitectures means that code developers must port their codes to new platforms and
architectures every 3 to 5 years. Production users face similar scale changes in the
production environment.

An overview of the types of existing supercomputers sets the stage for the chal-
lenges that programmers face when developing codes for supercomputers or porting
existing codes to them[52]. Progress in supercomputing is rapid, making any de-
scription of the landscape rapidly obsolete. Today, there two main types of high per-
formance computers[2]. They are all clusters of Symmetric Multi-Processor (SMP)
machines that employ either many cache-based commodity processors or a tightly
integrated set of SMPs that process data in vectors. With rare exceptions, they are all
Distributed Memory-Multiple Instruction Multiple Data (DM-MIMD) architectures
in the nomenclature of D. Kuck[53]. Each “node” of the system is an SMP machine
with its own, uniquely addressable, shared memory, employing anywhere from one
to 512 processors. These processors are typically the same ones used in desktop PCs
but can also include sophisticated RISC processors such as IBM’s Power 5 or even
custom vector processors as in Cray’s X-1. The nodes of the supercomputer commu-
nicate with each other through high speed interconnects. Processors located in any
given node can generally only access the memory at other nodes only through mes-

260 D.E. POST ET AL.

sage passing protocols such as MPI (the standard message passing interface)[54]
that are generally slower than direct memory access inside the node. As a result, ac-
cess to program state distributed across global memory is now a major limitation for
high speed computing. Fetching and storing data, especially on remote nodes, often
takes 100 to 1000 times longer than performing integer or floating point arithmetic
on a set of numbers. Programming for these complex architectures is much more
difficult than for simpler architectures.

Today, most supercomputers are Linux clusters, often assembled by their owners.
Larger supercomputers tend to be clusters of powerful SMPs sold by large, vertically
integrated system vendors. The most powerful of all, for the moment, is IBM’s Blue
Gene/L, which is a custom integrated cluster of processors originally designed for
embedded systems. We will discuss each of these in turn.

Generic Linux clusters are very cheap and very popular. They are generally built
from commodity parts (processors, interconnects, memory, storage disks, etc.). The
operating system software is usually some sort of open source LINUX. The cluster
can be assembled and maintained either by the owner (cheapest) or by a contrac-
tor. Its interconnects are often nearly as fast as the ones available on the vendor
platforms where more effort can be spent on optimization. The purchase price of a
generic LINUX cluster can be quite low, and if cheap labor (e.g., graduate students)
is available, they can be an attractive way to get computing cycles. There are many
small clusters, ranging up to a few 100 processors, and larger systems are beginning
to appear more frequently. One major drawback with such “homemade” systems is
that there is no single vendor putting the whole system together and supporting it.
When things don’t work, there is often a lot of finger pointing among the various
hardware and software suppliers, and no single party is responsible for fixing the
problem. The required labor to support homemade LINUX clusters is thus a hidden,
long-term cost that is often overlooked.

There are also many clusters integrated by system vendors. These companies range
from small companies that specialize in LINUX clusters to the largest computer
manufactures. The purchase price of such clusters is higher than the price of the
components, but they are advantageous when an organization does not the indige-
nous talent to assemble clusters themselves. For one thing, the vendor is responsible
for ensuring that the system works. Furthermore, the system integrator can include
unique, proprietary technology not available to those building their own clusters. Red
Storm located at Sandia and built by Cray is an example of such a machine. The op-
erating system software for Red Storm is actually a joint Cray–Sandia development
project, but Cray is responsible for ensuring that the entire system works. In addi-
tion, the vendor is responsible for ensuring that the common tool set of compilers,
etc. work on the platform. Proprietary interconnects like that used in Red Storm are
generally faster and more highly optimized than those used on generic clusters.

THE OPPORTUNITIES, CHALLENGES, AND RISKS 261

Most larger-scale systems are clusters of SMPs. Examples include the ASCI Q
and Purple systems. These machines are built out of systems designed to be large
servers, with multiple processors sharing the memory of each node. Users are thus
tempted to use a shared memory programming model for communication and syn-
chronization within nodes and message passing between nodes. Most such machines
have multiple-issue RISC processors, but some systems delivered by Cray and NEC
can have vector processors instead. The famous Earth Simulator built by NEC is
an example of a cluster of vector SMPs. While the performance efficiency of vec-
tor machines often exceeds that of standard, multi-issue RISC processors, the price
per TeraFLOP/s is much higher. Furthermore, most application codes need to be
rewritten substantially to use vector computers. These factors have limited the at-
tractiveness of vector processors in recent years.

The IBM Blue Gene is presently the world’s fastest computer. It uses up to 128k
very cheap and simple 700 MHz PowerPC processors. It locates two processors on
a single chip, and puts two chips on a single circuit board along with 512 Mbytes
of memory. Each board is a node. This is a very cheap and effective design, and a
360 Tera-FLOP/s computer costs approximately $70M. It is between 7 and 27 times
cheaper per TFLOP/s than super computers of just two years ago. The cost reduc-
tion comes at the cost of slower interconnect speeds, and the memory per processor
is somewhat lower than other supercomputers. Nonetheless, many applications, par-
ticularly those not requiring extremely fast memory access times, run very well on
this machine. In its use of massive numbers of embedded processors, rather than
PC or server CPUs, Blue Gene may very well be a harbinger of things to come in
supercomputing.

Most of today’s massively parallel platforms are designed for speed, sometimes
specifically designed to place high on the top 500 list[52] by running LINPACK[2]
efficiently. Unfortunately, few applications exercise massively parallel computers the
same way as LINPACK. Benchmarks and “synthetic workloads” are needed so that
vendors can test their platforms with software that places the same demands on the
platform as “real” applications. Otherwise, the highest performing systems will be
useful for only an increasingly small number of applications.

Looking to the near future, the supercomputing world can continue to expect rapid
changes. A number of vendors are now marketing systems that include new com-
ponents such as Graphics Processors (GPUs) or Field Programmable Gate Arrays
(FPGAs). These components have the potential for greatly increasing the throughput
of some aspects of codes such as single-precision, dense matrix operations in the
case of GPUs.

Looking towards the end of the decade, a new generation of systems with a goal
of 4 PetaFlops/s is being developed in the United States with support from DARPA’s
High Productivity Computing Systems program[55]. Three system vendors, Cray,

262 D.E. POST ET AL.

IBM, and SUN, are developing systems specifically designed to be more productive
in measurable ways than today’s systems. They will likely have globally addressable
memories. They may even have new programming languages that will increase the
productivity of scientific code developers. Details of the machines, as well as others
such as the recently announced 10 PetaFlops/s follow-on to the Earth Simulator in
Japan, are still closely held.

Vector processor symmetric multiprocessor machines are being developed and
sold by Cray and NEC. The Japanese Earth Simulator with a peak speed of 35
TeraFLOP/s was built by NEC. While the performance can be very good, the price
per TeraFLOP/s is much higher than other SMPs. Most application codes need to be
rewritten substantially to use vector computers.

5.2 The Programming Challenge

The challenge of programming for the complicated and diverse architectures de-
scribed above is daunting and continues to grow. As noted, modern computers can
contain hundreds, thousands, even tens-of-thousands of processors linked together in
complicated networks, with both local and distributed data storage hierarchies. The
next generation of high performance computers could exceed 1,000,000 processors.
Success requires that we be able to rapidly develop codes that will run efficiently on
these complex platforms. A modern application code will often have millions, even
billions, of computational cells. It can contain several million lines of code. It con-
sists of dozens of complex, strongly interacting components and modules. The code
can produce PetaBytes of output data, and require hours, days, or even weeks of run
time to complete a problem. The programming challenges include: problem setup
and mesh or cell generation, domain decomposition, load balancing, job schedul-
ing and run-time problem management, check pointing and restart, debugging on
thousands of processors, configuration management, output and storage for many
terabytes of data, and finally the analysis and perhaps visualization of said data.
Achieving good performance requires performance analysis tools to identify com-
munication between processors, race conditions, data transmission inconsistencies
and errors, cache use efficiency, etc. All of this is staggeringly complex compared to
code development requirements only twenty years ago.

MPI and OpenMP have become the standard parallel programming models, but
higher level languages such as Unified Parallel C (UPC) and Co-Array Fortran (CAF)
are emerging[2]. The Message Passing Interface (MPI) is a programming model with
a relatively low level of abstraction that allows the programmer to store and fetch
data across a distributed memory architecture platform. OpenMP is a model for writ-
ing threaded programs for platforms that have a centrally and globally addressable
memory architecture. While the programming challenge for large complicated codes

THE OPPORTUNITIES, CHALLENGES, AND RISKS 263

is immense, it is often not much less for short, simple codes that need high speed
processing of large data sets. In the latter case, the parallel version of a serial process-
ing code that took a few days in the 1990s to develop may take weeks to months to
address with massively parallel architectures due largely to the complications of writ-
ing and debugging the program. P-threads and OpenMP allow programmers to de-
compose applications on SMP systems (or SMP nodes of large clusters) into multiple
threads which can share access to the same program state. Standard sequential appli-
cations can evolve to exploit concurrency on SMPs one construct at a time, making
this an evolutionary and thus very attractive model for developing parallel codes. Un-
fortunately, performance for such codes tends to often lag expectations. Users tend to
add directives to parallelize only a subset of the application, leaving large portions to
run sequentially. Parallel regions under-perform because synchronization overheads
are necessary to protect shared data and false-sharing can thrash the memory system.
The net result is often disappointing performance on SMPs, especially when users
do not invest the time and labor to restructure and hence parallelize entire codes.

For prior generations of computers, the development of operating systems, perfor-
mance tools, debuggers, compilers, visualization tools, etc., was the responsibility
of the platform vendor. Now, this software is often developed through Open Source
venues, small development companies and university and national laboratory groups.
MPI is the communication library used for most large-scale parallel applications. It
provides a fairly low level programming methodology, not too far removed from
assembly language. The programmer must determine what operations can be per-
formed in parallel, and explicitly choreograph inter-processor synchronization and
the exchange of data. This is a tedious and often error prone process which has
remained largely unchanged during the twenty years since the delivery of the first
hypercubes by Intel and NCube. On the bright side, message passing requires the
programmer to decompose an application into multiple, independent programs with
no shared state. When successful, this often heroic labor can be rewarded with appli-
cations that scale well on even the largest of today’s supercomputers.

UPC and CAF are relatively new languages that have been specifically designed
to facilitate the problem of programming large-scale parallel systems[2]. Both ex-
tend familiar programming languages (C and Fortran) with a global address space
abstraction. The user must still explicitly identify concurrency in the application,
but no longer has to explicitly manage the movement of data between processors.
Instead, the user writes what looks like a standard C or Fortran program and the
transmission of data between processors is implemented by the compiler. Unfortu-
nately, acceptance of these new languages has been very slow. Users are loath to
risk using programming languages or libraries that they are not confident will exist
decades in the future. In turn, computer vendors don’t want to support software that is
not widely used, and progress with respect to programming environments stagnates.

264 D.E. POST ET AL.

As large-scale scientific and engineering problems become increasingly compli-
cated, users also find it increasingly challenging to maximize the performance of
each individual processor. The performance growth of individual processors has long
outstripped the ability of memory systems to supply the necessary operands for ap-
plications whose working sets exceed the size of a CPU’s cache. Furthermore, few
applications yield the breadth of instruction-level parallelism needed to approach
peak performance on processors that issue as many as eight instructions per cy-
cle. High-quality optimizing compilers are needed as well as highly tuned libraries
for common operations such as linear algebra kernels. Sadly, the government agen-
cies sponsoring research in computer science largely disinvested in this area in the
mid-1990s, and progress has been excruciatingly slow. Developers concerned about
performance find themselves doing tedious experiments in code restructuring that
have to be revisited each time the application is ported to a new system.

All of the difficulties discussed above exist for small codes as well as large ones.
Many small codes are developed to solve specific problems or test hypotheses, often
only being run to completion once. Even though the code itself may be small, the
programmer must still tackle the complexity of parallelizing the application. The
net result is that problem that could have been addressed and solved in a few days
in the 1990s may take weeks or even months to address with massively parallel
architectures, due largely to the complications of writing the program.

All of the above problems suggest that there is a second “More’s Law” for pro-
gramming to complement the conventional “Moore’s Law” for semiconductors. As
the speed of computers increases each year, it takes “More” time to develop codes
that can run efficiently on the “Moore” complex platforms. Perhaps the only truly
viable approach to addressing the complexity of programming is to raise the level of
abstraction by using tools such as MATLAB™. While MATLAB™ is a proprietary
code, and massively parallel versions exist only as research projects, MATLAB™
does allow many code developers to develop powerful and complex codes much
more quickly than they could using Fortran, C or C++. The code performance with
MATLAB™ and other higher level programming abstractions is generally not as
good as with Fortran or C, but developing accurate codes rapidly is often much eas-
ier and faster.

As daunting as the programming challenge is today, it may become larger in
the near future. For prior generations of computers, the development of operating
systems, performance tools, debuggers, compilers, visualization tools, etc. was the
responsibility of the platform vendor. Now, this software is often developed through
Open Source venues, small development companies, or university and national labo-
ratory groups. This is leading to problems with the availability and reliability of the
software[56]. Who is going to develop the next generation of tools to take the place

THE OPPORTUNITIES, CHALLENGES, AND RISKS 265

of CVS, MAKE, Vampir™, Ensight™, Totalview™, etc., for the next generation of
supercomputers?

If high performance computers are to be useful tools for solving real problems,
programmer productivity must improve at least as rapidly as the difficulty of pro-
gramming for new computer platforms increases. This programming challenge has
not been met over the course of the past twenty years, as supercomputers have
evolved from vector mainframes to massively parallel, distributed memory MIMD
systems. Given the relatively small research investments being made in program-
ming models, languages, compilers, and other tools, it’s hard to be optimistic that
any real progress will be made in the near future.

When considering the programming challenge, one bright spot is the recent work
by DARPA and DOE sponsored HPCS Development Time researchers to begin at-
tempting to quantify the relative difficulty of using various programming models and
tools. This in turn will allow developers to weigh the merits of adopting new technol-
ogy based on more than just anecdotal evidence of its efficacy. Ultimately, it is hoped
that quantifying the cost savings associated with new programming technology will
accelerate its acceptance and hence overcome the programming challenge.

5.3 The Prediction Challenge

While “The Programming Challenge” is daunting, “The Prediction Challenge”
may be even greater. The difficulty of programming massively parallel computers
is largely a question of efficiency. It may take more time and be more difficult to
develop such codes, but more resources and time will generally result in a working
code. However, without reasonable assurance that the predictions of a code are accu-
rate and can be trusted or, at a minimum, some idea of how reliable the predictions
are, the predictions are largely worthless. There is then no reason to invest the re-
sources to run the code, to develop the code or even to develop the computer to run
it on.

A key part of the problem is that it is often very difficult to judge whether a code
result is correct. For experiments or theory, the peer review process for published
papers is the filter that separates the wheat from the chaff. However, for computa-
tional science, the existing peer review process doesn’t necessarily work well. When
a scientist receives a computational science paper from a journal to referee, he has
no definitive way to determine if the paper is correct. He cannot reproduce the results
in the paper, and generally he cannot check the important results with experimental
data. The most important results typically make predictions for situations for which
there is no data. That’s often the purpose of the calculation. Even if the referee had a
listing of the code—and he almost never does—the listing is not enough to determine

266 D.E. POST ET AL.

the validity of a very complex and large calculation. All that the referee can do is to
subject the paper to a series of “plausibility” checks:

• Is the paper consistent with known physical laws?

• Is the author a reputable scientist, known for careful work?

• Are the results consistent with other work in the field?

• Is the simulation validated with data as close as possible the regimes of appli-
cation?

• Do the computational methods seem sound and applicable to the problem?

• Are the original models and fundamental equations correct?

Tragically, these criteria discriminate against new and exciting results, since such
results usually cannot be thoroughly checked, and may be wrong. Major new contri-
butions are thus less likely to survive the refereeing process in favor of more modest
extensions of previously accepted work.

These criteria are not nearly as reliable and solid as the criteria used for theoret-
ical or experimental papers. A knowledgeable reviewer can re-derive many of the
important formulae in a theoretical paper. Experimental science is a well-established
methodology, and important experiments are duplicated fairly quickly. In fact, im-
portant experimental results are usually not accepted by the general scientific com-
munity until they are confirmed by independent experiments. A similar practice
will probably be necessary for computational science. “Discoveries” like cold fu-
sion have their moment of fame then fade into infamy as “irreproducible” results.
Reproducibility and the professional integrity of the scientist and engineer are the
cornerstones of sound science.

Many things could be wrong with the computational science paper that the referee
could not detect. The code could have errors in the way it was written such as bugs,
the wrong use of computer or mathematical algorithms, inadequate resolution in time
or space, non-converged solutions, etc. Even if the code had few errors, the models
and equations in the code could be inadequate or wrong. As Robert Laughlin[57]
points out, “One generally can’t get the right answer with the wrong equations.”
The physical data used in the code may not have adequate resolution or may be
inaccurate. The scientist or engineer running the code may not know how to set up
or run the problem correctly. He may not know how to interpret the results of the
code accurately. Yet the community relies upon referees to judge the correctness of
published papers. It is a challenge the community must address if computational
science is to become a mature field.

Important scientific, engineering design and public policy questions are beginning
to be decided using predictions by computational scientists. As a community, it is
our responsibility to ensure that computational science achieves the same level of

THE OPPORTUNITIES, CHALLENGES, AND RISKS 267

reliability as theoretical and experimental science and engineering design. It is a
question of professional integrity. If we do not meet our professional responsibilities,
computational science will not become a credible methodology, and its potential
for contributing to the betterment of the human condition will not be realized. If a
significant number of computer predictions and analysis are wrong, and there is no
way to determine which ones are right and which are wrong, people will not rely on
them and will not support the development of our field.

What steps have other fields gone through as they matured? In “Design Para-
digms,” Henry Petroski traces the history of a number of technology fields as they
mature. From his history, we have identified four stages needed for an engineering
technology to reach maturity[58]. These stages can be illustrated using his example
of suspension bridges. The first stage involved the design and construction of early
suspension bridges. The designers and construction crews did not know the design
limits and were deeply afraid of failures. The designs therefore were very conser-
vative and extensively over-engineered. Although there were some initial failures,
the early suspension bridges generally worked. An example is the Széchenyi chain
bridge over the Danube joining Buda and Pest constructed in 1840. It stood for 105
years until the Germans damaged it in World War II. It was rebuilt in the 1980s and
stands today.

The second stage involved cautious design improvement and optimization based
on the first generation of bridges. The Brooklyn Bridge was constructed by John and
Washington Roebling in 1880. It is still standing and carrying a modern traffic load
after 120 years.

The third stage involved the development of continually more ambitious designs
that pushed the limits of the existing technologies until large-scale failures occurred.
The cautious approaches and the deep fear of failure of the prior generations of de-
signers were often forgotten in the enthusiasm to go beyond the achievements of
the past. The Tacoma Narrows bridge, constructed in 1940, failed catastrophically
due to the excitation of wind-driven harmonic oscillations. Such bridge failures are
spectacular. Almost everyone who reads this paper has seen the short movie of the
galloping Tacoma Bridge as it bucked and pitched in the wind until it collapsed into
the water. The civil engineering community studied and analyzed the causes for the
failures, then developed solutions that became part of the design methodology for all
future suspension bridges.

Advancement to the fourth stage—that of a mature field—is based on the devel-
opment and adoption of the “lessons learned” from the failures and successes of that
field. The field of suspension bridge design and construction is today a mature field.
Very large suspension bridges are being built, such as the 2 kilometer span Akashi
Kaikyo Bridge in 1998. A measure of the maturity of a field is the level of profes-
sional integrity of people in the field. Consider the case when a government agency

268 D.E. POST ET AL.

puts a prospective new bridge out for bid with the hope that it can spend $50M and
have a bridge in 2 years. Let us suppose that when the bids come in, the lowest bid is
$100M with a construction time of 4 years. If the agency tries to convince the lowest
bidder to do the job for $50M in 2 years, the bidder will walk away from the job,
rather than build a bridge that will almost certainly fail. The industry knows how to
build safe bridges. It can predict how long it will take and what it will cost to build
a bridge. When was the last time a technical software project manager walked away
from a scientific code project he thought would take 4 years for 15 developers to
complete after the sponsor told him that the project had to be completed in 2 years
with only 9 staff? When that happens, the field will be mature.

Another criterion is insurability. If one can buy insurance for reasonable rates that
insure you for liability in case your product fails, that means that there is a reliable
track record of success in your industry. Do any of us know of an insurance company
that will insure the correctness of a new piece of scientific software? Other areas of
software (e.g., embedded systems in automobiles, airplanes, etc.) are beginning to
reach this level of maturity, but not scientific software.

We assert that computational science is in the midst of the third step on the path to
maturity. The first generation of computational scientists used the supercomputers of
the 1950s, 1960s and 1970s. They developed and used codes to analyze data, design
nuclear weapons, model supernovae, conduct engineering analyses, etc. Computa-
tional science was a new field and everyone was very aware that it had limitations.
Due to restrictions in memory and processing speed, the problems generally did not
have adequate spatial or temporal resolution and the solutions were often not con-
verged. Often only very approximate models were employed for the problems being
addressed. Nonetheless, computational tools were a step forward over existing analy-
sis tools, and—used with caution and careful verification and validation—produced
better answers than other methodologies.

As computers became more powerful, the DOE and the NSF established “su-
percomputer” centers in the US between 1975 and 1985 to provide supercomputer
capability to the academic and general national laboratory community. The DoD
used supercomputers to address important national security issues. Industrial com-
panies such as Boeing and General Motors used supercomputers for engineering
analyses of aircraft, engine and automobile components. There was still generally a
strong component of skepticism about computational results and as a consequence,
computational predictions were usually thoroughly checked and validated.

By the 1990s, computing power had reached the point where some of the prior
limitations on resolution and the ability to solve complex mathematical systems had
been overcome. Computational techniques began to have the potential to seriously
address difficult and important problems such as climate change and weather predic-
tion, nuclear weapons design, astrophysics, non-linear turbulence, chemistry, biology

THE OPPORTUNITIES, CHALLENGES, AND RISKS 269

and human event simulation. This coincided with the advent of a new generation of
scientists and engineers specifically trained as computational scientists. They began
to use computational techniques to tackle many very difficult and complex problems.
While these scientists and engineers were highly skilled at using computers, many
have not had the inherent skepticism about computational results that was character-
istic of prior generations. Although they know that computational models are only
incomplete models of nature, they have sometimes placed an unwarranted faith in
the validity of the computational results.

5.4 Scientific Software Characteristics and Issues

A perspective on the maturity level of computational science and engineering can
be gained from experiences in other problem solving methodologies. Large-scale
simulation projects face similar challenges and are following a history similar to
large-scale experimental projects[59]. Both:

(1) require project planning and strong, effective leadership;
(2) require a large well-coordinated, knowledgeable and effective team;
(3) require a clear and consistent set of goals, resources and schedule;
(4) have ambitious technical goals that push the frontier of known technologies;
(5) must meet budget and schedule constraints;
(6) need adequate flexibility and contingency to adjust to changing requirements

and unexpected events;
(7) must continually test their systems to detect and fix errors and faults; and
(8) have to verify and validate their tools.

Using a code to address a technical issue is similar to conducting an experiment on
an experimental facility. Computational scientists set up problems, run the code and
monitor its performance, collect and analyze the results, draw conclusions and test
hypotheses, and then document their conclusions and the basis of those conclusions,
activities analogous to those of experimental scientists. A computational scientist
must get computer time and use it effectively, just as an experimentalist must get
time on the experimental facility. The computational scientist usually needs the sup-
port and help of the code development group and computer facility staff just as an
experimentalist will need the support of the experimental facility staff.

The continual increase in computing power is allowing scientists to tackle more
challenging problems. As a result computational science is making a transition from
individuals and small teams of scientists modeling problems with only a few ef-
fects to large-scale teams modeling problems with many effects that link many
disparate time and distance scales. Most of the physicists making this transition have
backgrounds in theoretical physics and have had little or no experience planning,

270 D.E. POST ET AL.

coordinating and leading, and managing technical software projects. Experimental
scientists initially made the paradigm shift from individuals or small teams carrying
out small-scale experiments in a one or two room laboratory (“the good old days”) to
much larger groups carrying out “big science” experiments on large scale facilities
in the 1930s, 40s and 50s.

Computational scientists will need to make the transition from small-scale projects
to large-scale projects, but it may be a more difficult step for them than it was for
experimentalists. Code projects involving only one or two scientists can be accom-
plished fairly efficiently with little or no formal planning, especially if the project
involves research and development of new physics or mathematical algorithms. In-
formal communication between two professionals is usually very efficient. Small-
scale experiments usually require substantially more planning, organization and in-
teraction with other staff than small code projects. Equipment must be designed and
built, or procured and delivered, and integrated. Support is needed from machinists,
electrical and electronic technicians, administrators, health and safety personnel, etc.
Supplies must be ordered and delivered. There are well-established standards for the
safety and quality of components and instruments. These require much more inter-
action with the outside world than does code development by small teams.

In addition, the experimental community had twenty or thirty years to make this
transition. Computational scientists are trying to make the transition in only a few
years. It is noteworthy that many successful scientific code projects have been led
by scientists with experimental rather than theoretical backgrounds. Successful tech-
nical project leaders must combine many different talents. They must have a good
technical overview of all aspects of the project, a coherent vision for the project, and
a good sense for what is practical and achievable. They must be competent in the
key individual technical areas being integrated. They must be able to command the
personal and professional respect of their team, and the trust of their management.
They need to make the right technical decisions, decisions whose correctness may
not be apparent for years. They must be able to estimate the needed resources and
schedule; ensure that all elements of the project succeed; guide, develop and nurture
their team; anticipate the changing needs of their customers; and shield their team
from unreasonable requests and requirements.

This is a heroic vision that is seldom encountered in practice. Nevertheless, few
code projects are successful without leadership approaching this caliber. The 50 year
history of simulation programs at a large federal contractor bears this out. That con-
tractor has successfully developed over 15 major physics simulation codes for a
specific mission during the last 50 years. Each project was led by one or two sci-
entists during the development phase. The success of these code projects was largely
due to the competence, vision and leadership of the code team leaders and the de-
velopment of cohesive code teams. That contractor started many code projects over

THE OPPORTUNITIES, CHALLENGES, AND RISKS 271

the last 50 years, but only about 15 were truly successful in the sense that they had
long, useful lives. Those 15 code team leaders and their teams were one of the major
reasons that contractor has produced most of the successful physics simulation codes
used by the US for the mission of the contractor over the last 50 years. The contractor
management recognized, supported and nurtured the team leaders and the teams.

Successful code development teams include staff with many talents. First there
must be scientists with domain expertise. The purpose of the code is to solve a tech-
nical problem. Key members of the development team must be experts in the relevant
domain. These experts are needed to define the models that must be solved by the
code, and are needed to judge the validity of the results. The team must include
staff knowledgeable in computational algorithms, the techniques used to solve the
models. Without them, the code can be very inefficient in the use of computer time,
often leading to long running times that are impractical or inaccurate solutions to
the models. Computer scientists and scientific programmers are needed to devise the
code architecture and implement programming techniques needed to run on today’s
complex, massively parallel computer platforms. As noted in the FALCON study,
many large codes employ five to ten separate computer languages. Code librarians
are needed to keep track of all of the pieces of the code being developed simulta-
neously by a large team. Experts in verification techniques and software quality are
required. Technical writers are needed to produce documentation for the code team
and users. In addition to these skills, the code team must receive institutional sup-
port to help it use development tools including compilers, debuggers, visualization
tools, performance profilers, optimizers, configuration management tools, etc.[2,56].
Code validation requires detailed knowledge of experimental data from the applica-
tion domain. Experimentalists and experienced users are normally required for this.
In practice, each team member acquires some expertise in many of these issues, but
the collective knowledge required for modern codes usually exceeds the capacity of
one or two people so that a multi-disciplinary team is needed.

5.5 Success Is not Guaranteed!

There are many documented failures of computational science. The Columbia
Space Shuttle Accident was caused by a piece of foam that broke off from the main
fuel tank of the shuttle and struck the wing. The foam damaged the wing enough
that hot gases entered the wing body during re-entry and destroyed the wing[60].
Very shortly after the foam was observed to have fallen off during launch, the poten-
tial wing damage was assessed computationally. The computational analysis results
were ultimately interpreted as indicating that significant wing damage was unlikely.
There were, however, many problems with the analysis. The analysis was carried
out by an inexperienced engineer. The foam-wing collision conditions were outside

272 D.E. POST ET AL.

the range of validation for the computational model, CRATER. The engineer’s man-
agement didn’t pass along all of the engineer’s analysis to the upper level NASA
engineers making the crucial decisions on what to do about the rest of the flight of
the Columbia.

CRATER was intended to model the impact of small objects, such as meteorites,
on the shuttle tiles. The piece of foam was more than 400 times the size of the im-
pacting objects used in the CRATER validation tests. In addition, CRATER did not
treat the strength of multiple layers of the shuttle tiles correctly. A more capable tool,
such as LS-DYNA™—used by the aeronautics, defense and automobile communi-
ties to study the effects of the impact of large size objects (e.g., cars, projectiles,
etc.)[61]—generally was not used by NASA because of the detailed setup required.
Although CRATER was a much simpler and less appropriate tool than LS-DYNA
for this problem, results could be obtained much more quickly. While most of the
CRATER code results indicated that the damage would be minimal, some of the
CRATER analyses did indicate that there might be a problem. The senior engineering
managers discounted the negative results because the CRATER model had generally
given conservative results for the smaller scale validation experiments. For calculat-
ing the impact of a large piece of foam on the shuttle wing, the code was, in fact, not
conservative. Upper level NASA management was misled into believing that it was
unlikely that wing was fatally damaged. As the NASA accident report stated, it may
not have been possible to avoid the loss of the shuttle even if it had been apparent that
the wing was seriously damaged. However no effort was made to look for damage or
to fix it, partially because the CRATER[60] analysis suggested that the damage was
likely insignificant.

A second example recently occurred in the field of sonoluminescence. In early
2002, scientists at the Oak Ridge National Laboratory formed sound bubbles in
deuterated acetone that collapsed and produced light[62]. They reported tritium
decay and the emission of 14 MeV neutrons. This could only be true if the temper-
ature achieved in the collapse was in the range of 106 to 107 K, far higher than the
103 K range normally produced in similar experiments. If such a high temperature
was real, this would possibly be the most important scientific result of the 21st cen-
tury. Nuclear fusion energy production might be achievable with tabletop conditions.
These results were “confirmed” by computational modeling. “Hydrodynamic shock
code simulations supported the observed data and indicated highly compressed, hot
(106 to 107 degrees Kelvin) bubble implosion conditions, as required for nuclear
fusion reactions.” Unfortunately the authors employed an arbitrary factor of ten en-
hancement in the driving pressure and assumed that the implosion was perfectly
spherically symmetric to achieve agreement with the reported tritium and neutron re-
sults. The general physics experimental community quickly rushed to confirm such
important results. No one else, including another group at Oak Ridge[63], found

THE OPPORTUNITIES, CHALLENGES, AND RISKS 273

significant levels of either tritium or 14 MeV neutrons as reported by scientists.
The final conclusion has been that the reported experimental results were erroneous,
and that the assumption that the driving force should be enhanced by a factor of
ten was unwarranted. The fact that the original code results could be interpreted as
confirming the erroneous experimental results gave the experimentalists additional
encouragement to proceed with publication. In reality the code was misapplied, and
an erroneous result was reported to the scientific community.

A third case involved theoretical predictions of the performance of the Interna-
tional Experimental Tokamak Reactor (ITER)[64]. Based on extensive analysis of
the results of smaller facilities by the international fusion community[65], the gov-
ernments of the US, USSR, Japan and the European Community proposed to build
a “next step” large experiment[66] as a joint project. Just at the time that the design
of this large experiment was being completed by the international design team, and
approval was being sought for construction, three theorists at the University of Texas
and Princeton University completed a computer simulation of the expected perfor-
mance of the proposed facility using a new code they had just developed. The new
results indicated that the proposed experiment would not meet its performance ob-
jectives[64]. The new results and the implications of those results for the proposed
international project were widely reported in the popular media[67]. The publicity
strongly contributed to the US withdrawing from the project. The rest of the ITER
partners stayed in the project, and, now, eight years later, the US is attempting to
rejoin the project. Extensive analysis by the international fusion community, espe-
cially the American, Japanese, Russian and European scientific communities, during
the following year led to the realization that the three theorists had neglected impor-
tant effects with the result that the performance levels they had predicted were much
lower than the most complete and most thoroughly validated theories would pre-
dict. The theorists had overstated the accuracy of their preliminary results. The more
complete results of other groups indicated that the expected performance would be
roughly what the original design team had predicted. In this case, a computational
prediction that was later proven to be wrong had an important impact, and negative,
on an international scientific policy issue[68].

Many other examples are also available. They illustrate that computational sci-
ence is beginning to play an important role in society, but not always a constructive
one. If this role is to be a positive one, computational scientists and engineers, as a
community, must work to achieve a higher level of maturity—one which embraces
accuracy and reliability. As in the case of evolution of suspension bridges, they must
start analyzing their failures and successes, and learn from them. Professional in-
tegrity demands no less. To illustrate some of the kinds of “lessons learned” analyses
that will be needed, we later describe the analysis that two of the authors (R. Kendall
and D. Post) carried out for six computer simulation projects in a large federal pro-

274 D.E. POST ET AL.

gram[69]. This analysis emphasizes both the importance of the code development
process and the validity of the results of the computations. Both points are impor-
tant because reliable answers require a mature methodology for development of the
analysis tools.

5.6 The Development Challenge

As the FALCON case study and many surveys of computational science and en-
gineering applications indicate, the development of such applications requires time
and resources, and the attention and support of institutional and programmatic man-
agement. As noted above (Table V, Figs. 4 and 5), the development process involves
at least seven different types of activities. However, the development process will be
not begin unless an organization decides that a computational approach to solving its
important problems is sufficiently promising that it is willing to commit the resources
to developing and applying computational tools. There are at least six elements of a
successful computational project.

1. Identification of an important problem to which computational techniques can
contribute.

2. A long term commitment by an institution to initiate and support the required
code development project.

3. Formation of a well-led, highly competent, and cohesive multi-disciplinary
code development team.

4. Endorsement of the potential role that computational tools can play in the sci-
entific analysis and discovery and engineering design process by experimental
and theoretical scientists and design engineers.

5. Adequate computer resources and support for code development and produc-
tion runs together with knowledgeable and experienced users.

6. Adequate validation data.

All of these elements are essential. The first issue is that decision makers at an
institution or a program recognize areas that large scale computational science and
engineering can facilitate. This requires a level of vision and expertise that not all
institutions and programs possess. In many cases, they may not be aware that com-
putational science can help contribute to the solution of their problems. In other
cases, they may not know how to structure a computational science and engineering
program to address their problems.

Successful computational science and engineering projects may take many years
to develop the required code and to apply it to problems of interest. The institution
or programs must thus recognize the opportunity and launch the project years before
the solution will be necessary. Long-term commitments are becoming less common

THE OPPORTUNITIES, CHALLENGES, AND RISKS 275

in industry, especially for methodologies that involve significant risk such as com-
putational science and engineering. Since many scientific code development projects
require continuous support over a development and production cycle that may last as
long as five to ten years, the support of several generations of management is often
required. This has been identified in the literature as a major risk factor.

It is challenging to form and sustain large, successful code development teams.
Many institutional cultures do not recognize the value of such teams with the result
that even if project teams are formed, they do not receive the continuous support nec-
essary for success. A multi-disciplinary team is difficult to form and to sustain. Team
members from different disciplines have different career goals and values. Maintain-
ing an appropriate level of professional and personal respect among team members is
often challenging. Domain scientists sometimes do not appreciate the contributions
of other disciplines. Good team leaders are difficult to find.

Even if a good computational tool has been developed, it may not be applied to
problems of interest unless the engineering or scientific community appreciates the
value of the tool. Mature engineering communities have established methods for de-
sign and testing, and may be reluctant to use a “new” tool. It is important to work
with potential users to establish the value of the computational tool. If it is clear that
the tool will not be used, then the project should not be started. It is also important
that the project have sufficient flexibility to follow the evolution of the domain field.
Solving the problem of five years ago is not success. The code needs to solve today’s
problems. This is a point that is not widely appreciated in scientific code develop-
ment.

Adequate computer resources and computer support are also essential. It must
be possible for scientists and engineers to obtain results in a timely and convenient
fashion. Usually many production runs are necessary to do parameter studies, vali-
date the code for the problem of interest, and answer “what if” questions. If it takes
too long to complete production runs or requires heroic efforts on the part of the user,
the scientist or engineer will rely on other techniques to get the answers they need.
As the Columbia Space shuttle experience indicates, knowledgeable, experienced
users are essential.

If the code has not been validated for the problem of interest, then the scientist or
engineer cannot rely on the code results for making decisions. Thus there must be
adequate validation data and sufficient attention given to validating the code for the
problem of interest. As we discuss later, it is an area that seldom receives adequate
emphasis. The information technology industry spends more resources on testing
than on code development, and their problems are usually conceptually simpler than
those of computational science and engineering. Validation is all too often an after-
thought in computational science and engineering.

276 D.E. POST ET AL.

These issues define the “Development Challenge,” overcoming the risk that the
scientific and engineering community will not launch code development projects to
develop the computational tools that could help them address their important prob-
lems.

6. A Comparative Case Study

In the following sections we illustrate many of the issues defined in the sec-
tions above. Our approach has been to examine existing code projects, and develop
“lessons learned” from their successes and failures. This approach has been followed
successfully in other fields[43], and, to some extent, in the IT industry[48].

In 2002, two of us (Kendall and Post) analyzed and developed a set of “lessons
learned” from a computational physics program launched and supported by a large
federal agency[69]. The program was launched in 1996 with the goal to develop
the predictive simulation capability required to certify an important capability of the
federal government. If the simulations could be used to make accurate predictions,
then the US would not have to carry out an expensive, lengthy and dangerous exper-
imental program to empirically certify the required capability.

This situation provided us with an almost unique opportunity to do a comparative
case study of six code projects with the same goals, level of resources and computing
environments, but with different organizational, computational science and technical
approaches. We were able to compare the effectiveness of the different approaches
and environments and draw conclusions on the most effective approaches. Most
other potential case study opportunities involve single projects with unique goals,
requirements, and institutional environments. Drawing general “lessons learned” is
thus more challenging in these cases.

The program included the development of large-scale, massively-parallel com-
puter platforms, the associated operating systems and code development tools, appli-
cation codes and supporting algorithms and models. At the time we conducted our
study, some of the applications development projects had been successful in meet-
ing their objectives and some had not. We analyzed the application projects utilizing
metrics and case studies that focused on the history, organization and institutional
support of the code projects. By identifying the common elements that led to suc-
cess or failure to achieve objectives and comparing them to the experience of the
information technology (IT) community (e.g.,[48,49,70,71]), we developed a set of
recommended practices for large-scale technical code projects (Table VII).

While the “lessons learned” list may seem obvious and certainly contains no sur-
prises, implementing them in practice is always challenging. Every code project

THE OPPORTUNITIES, CHALLENGES, AND RISKS 277

TABLE VII
CODE DEVELOPMENT “L ESSONSLEARNED” FROM THE COMPARATIVE CASE STUDY

1. Identify the things your organization or institution does well and build on them.Introduce change
with clearly defined goals in an evolutionary fashion. Even though you may think that the ideal structure
for effective code development might be radically different from the existing organization and culture,
radical, changes imposed too rapidly will disrupt whatever is working, and likely will not lead to suc-
cess. Successful change takes time and requires that the people in the institution feel “safe” and trust the
management to treat them fairly.

2. Teams, not organizations or processes, develop software.Form the best team you can, support it,
and help it “jell.” A good team is the strongest asset an institution can have. Developing good teams is the
key to developing good software. The teams need to have a balanced skill mix of scientists, programmers,
mathematicians and computer scientists. A good team is also a crucial deliverable for a successful project
because all further progress must build on the team.

3. Run the code project like the project that it is, with requirements, deliverables, a sound plan,
realistic schedules and adequate resources.Align authority with responsibility. The project manager
must be able to control the resources and the team, and have the active support of senior management.
Otherwise, he is a project “cheerleader,” not a project leader, and the project will fail. Detailed require-
ments are difficult to develop for scientific codes, but it is crucial to developsomerequirements to anchor
schedules and requirements.

4. The development of large, complex technical codes is inherently very risky.Many, if not most,
code development efforts fail to meet their initial objectives, and many fail completely. It is essential to
identify the major risks, minimize them and provide contingency and mitigation. The major risk factors
for software projects are[72]:

• Uncertain goals, objectives and requirements;

• Inadequate resources and support, including an overly ambitious schedule;

• Institutional turmoil, including too much employee turnover;

• Requirements and goals that change too rapidly or increase too fast; and

• Poor team performance.

Two additional risk factors specific to technical software are:

• Non-delivery of essential components from outside contract organizations

• Poor judgment about the technical feasibility of candidate approaches and methods for meeting the
requirements (cf.[45]).

Poor team performance was the smallest risk factor for the these code projects[69] as well as for the
Information Technology (IT) software industry in general[73]. The other risk factors strongly dominate.
Most code project failures (for the general IT community and this program[49,73]) are due to the failure
of senior management to fulfill its responsibility to provide proper sponsorship, guidance, oversight and
support for the code projects.

(continued on next page)

278 D.E. POST ET AL.

TABLE VII — Continued

5. If adequate resources and schedule are not provided, the project will fail to meet its objectives on
time. The failure to meet the initial objectives on time is regrettable but not fatal. However, this failure
may cause management to take actions that punish rather than help the code team, and thus contribute to
the failure of the entire project. If the resource levels continue to be inadequate, and the schedule contin-
ues to be too ambitious, the project will fail. For resources and schedule, there is even less flexibility for
software development than for conventional projects where one can fix two, but not three of: objectives,
resources and schedule. For software, one can only fix the objectives. The objectives and goals determine
the resources and schedule[48,49,74]. The rate limiting process for code development is the rate at which
people can analyze problems and develop solutions. The ability to increase the schedule is severely lim-
ited. As Tim Lister states: “People don’t think faster under pressure.” Similarly, the maximum size of a
code team is limited by the ability of people to communicate complicated information with each other.
This is reflected in the quantitative analysis that follows in the next section. The standard estimation tech-
niques indicate that the optimal schedule and team size are a function only of the size and complexity of
the code[74]. Frederick Brooks put it another way: “Adding more staff to a late project will only make it
later[75].” Ed Yourdon wrote a book entitled “Death March” about the disastrous consequences of overly
ambitious code project schedules[76].

6. Codes that customers, especially the users, do not want to use are like experiments that do not
take data or equipment that people do not use.Such codes are a waste of resources and the efforts of
creative people. The code team and management must focus on providing what the customer both needs
and wants. If the code cannot provide the user with a needed capability, the user cannot solve the problem
that justified the code development project. If the customer does not want or like the product, the code
will fail even if it is what is really required. The satisfaction and support of the users is the key success
factor in long-lived codes.

7. The value of the code to the user is the physics capability of the code.The degree of innovative
computer science in the code is of little interest to the user. The most successful codes concentrated
on improved physics and have been very conservative in their use of cutting edge computer science.
By computer science, we mean methodologies for code development and programming techniques. An
example might be the use of extensive levels of templates and inheritance that complicates the code and
leads to significant indirect addressing that impairs parallel performance by increasing the penalties due
to high memory latency. We do not mean the development of more powerful mathematical techniques
and algorithms. Indeed, many of the most significant improvements in the physics have been due to the
development and use of new and more powerful computational mathematics techniques and algorithms
that, together with increased computer power, enable the scientist to solve problems that couldn’t be
addressed with prior generations of computers.

8. Computer science research within the context of an application project greatly adds to the risks
and often results in code project failure.Use modern, but proven techniques. Improving the physics is
risky enough. Leave computer science experiments to those who can afford to fail a few times. Devel-
oping improved code development methods is very important and deserves support and emphasis. Such
development should be carried out as an independent activity. The new methodologies should be tested in
a way that does not add to the risks of important projects, and be adopted only when the methods have
proved their worth.

(continued on next page)

THE OPPORTUNITIES, CHALLENGES, AND RISKS 279

TABLE VII — Continued

9. Invest in the team members through training and professional development. They will become
more capable as they acquire new skills and will be more productive. It is a good way to encourage change
and to get the team members to see how other groups and industries tackle their problems. In addition,
their morale will increase in proportion to the support of their management. Training also provides an
opportunity for code team members to share experiences with the rest of the team and with other teams.

10. Software quality is important. High quality software has fewer defects, is more reliable and is
easier to develop, maintain and use. However, research-oriented staff will not take a series of processes
defined in a book and follow them blindly because someone in authority tells them to. They will apply
the same standard to software development methods that they apply to their science. They have to be able
to convince themselves that any proposed new process adds value to their work. For improving software
quality, it is more successful to convince the teams that each individual practice adds value (configuration
management, etc.) than to try to convince them to blindly embrace on faith a large system of processes
just because the management orders it. Software quality, however, can’t be ignored. If you don’t give it
sufficient emphasis, your sponsor may impose software quality procedures that will very likely be much
more onerous and less effective than the ones you would identify yourself.

11. Physics codes are an incomplete representation of reality.All models have shortcomings and often
exhibit mistakes in their implementation. Without a verification and validation program for the codes and
their applications, there is no reason to believe that the code results have any validity at all.

we studied violated at least a few. Almost all were violated for the least success-
ful projects. These lessons are generally not new. Indeed, many of these lessons can
be found in Fred Brooks’ 1975 classic: “The Mythical Man-Month”[75] as well as a
host of IT industry books and courses. Also, many of these principles apply to almost
every organized human activity (e.g., F. Brooks[77]).

6.1 Quantitative Estimation
These “lessons learned” were based on a qualitative and a quantitative analysis

of the histories of the different code projects and comparison with the Informa-
tion Technology industry and conventional project management and scientific re-
search. The quantitative analysis was a key element in establishing that these code
projects had not been given a consistent set of requirements, resources and sched-
ules. While our analysis[69] was relatively simple compared to the methods often
employed in the Information Technology (IT) community[74], the conclusions are
very clear. We found that the key predictor of success was the age of the code
project and the amount of time allocated to complete the project and meet mile-
stones. Our analysis of the historical data indicated that it takes about 8 years to
develop a code with the initial level of capability needed to meet the requirements.
The projects that had 8 years of development often succeeded, and all those that did
not have 8 years of development time failed to meet their initial milestones. This re-

280 D.E. POST ET AL.

sult emphasized the crucial need for a consistent set of requirements, resources and
schedule.

The case studies included metrics (code size, team size, age, etc.). To see if this
experience was consistent with the Information Technology (IT) community ex-
perience, an analysis was performed on the case studies using a generic “function
point” model[74] widely used by the IT industry. We calibrated this model for sci-
entific code projects using the comparative case study data. Function points are a
weighted total of inputs, outputs, inquiries, logical files and interfaces[74,78]. Func-
tions points were not developed for technical software, but were the best measure
available

(5)FP =
(

C++ SLOC

53
+ C SLOC

128
+ F77 SLOC

107

)

,

(6)Schedule(months) = FPx, 0.4 < x < 0.5; usex = 0.47,

(7)Schedule= Contingency× Function Point schedule+ Delays,

(8)Team Size= 3 + 0.6
FP

150
.

Equation(5) converts the single lines of code, available for all of the projects, to
Function points (FP). T. Capers Jones lists the equivalent single lines of code (SLOC)
per function point (FP) for the common computer languages[74] since computer
languages have different information densities.

In this model, the required schedule and average team size are determined by the
Function Point (FP) count (Eqs.(6)–(8)). These general scalings were modified to
account for the added complexity and viscosity associated with developing scientific
codes specifically for the nuclear weapons complex. The schedule was lengthened by
1.5 years to account for the additional time it takes to recruit, hire, train and obtain
security clearances for code development staff (the last step has no analogue in the
commercial IT world). Using a methodology developed by the Lawrence Livermore
National Laboratory Engineering Department[71], a contingency factor of 1.6 was
calculated to account for the additional risks, uncertainties, and complexities for the
restrictive computing environments that these projects shared (Eq.(7)). The standard
FP scaling for the size of the code team (Eq.(8)) [74] was modified to match the
comparative case study data. This included a correction for small code teams.

Seven code projects were analyzed (Table VIII). For reasons of anonymity, we
have identified the projects with birds[43]. Table VIII lists the size of the code in
function points, the time estimated by Eq.(4) to develop the initial capability of the
code project, the actual age of the code at the point it was expected to accomplish
its first milestone, whether or not the project succeeded, the optimal code team size
estimated from Eq.(8) and the actual size of the team. The sizes of the codes (e.g.,
lines of code, loc) were approximate estimates by the code teams. Establishing the

THE OPPORTUNITIES, CHALLENGES, AND RISKS 281

TABLE VIII
SOFTWARE RESOURCEESTIMATES FOR THECOMPARATIVE CASE STUDY PROJECTS*

Kite Egret Tern Finch Puffin Gull Jabiru

Single Lines of Code (k) 184 640 410 300 500 200 314
Function Points (Eq. (4)) 4800 6100 5400 2900 4800 3800 2900

Estimated schedule (Eq. (6)) 8.7 9.0 6.9 6.6 8.1 7.4 6.7
Project age (at initial
milestone date) 3 9 N/A 4 3.5 8 8
Successful in achieving
initial program milestone No Yes N/A No No No Yes

Estimated staff
requirements (Eq. (7)) 22 27 24 14 22 18 14
Real team size 20 22 8 17 8 35 12

* Shading denotes historical data; white background denotes computed estimates (Eqs.(4)–(7)).

size of the code teams was challenging. In general, good records were not available.
Thus the code team sizes were generally estimated by the code team leaders. Because
good records were not kept, it was also difficult to account for staff who worked on
the code project but were part of other organizations. More than one-half of the
Gull code project team, for instance, was part of other organizations. Where this was
an issue, we used conservative estimates. For example, the Gull code project staff
probably had a staffing level of about 50 for the first 4 or 5 years of its life instead of
the 35 we assumed. We used a smaller number based on the actual number of people
we could definitely identify as having worked on the project.

The case histories and the estimation procedures indicate that it generally takes a
minimum of 8 years for a code team to develop an initial capability for a weapons
code project. The requirements for a weapons code are determined by the physics
necessary to simulate a nuclear weapon. The contractors had over 50 years of expe-
rience in this area, and know these requirements in detail. Codes of this type have
between 3000 and 6000 function points (Fig. 6).

Some of these codes were started well before the federal program began in 1996
(the Egret, Jabiru, Gull and Tern projects). The Egret project was started roughly
in 1992 and had a working prototype in 1994. The Jabiru code project was started
before 1992. The Kite, Puffin and Finch code projects were started around early
1997. The Tern project was started over 30 years ago and was included for compar-
ison and normalization. Since the history of these code project can be matched with
scalings derived from the experience of the commercial software industry, it is rea-
sonable to conclude that the constraints, computer science practices and management
issues that generally apply to the IT industry generally apply to the development of

282 D.E. POST ET AL.

FIG. 6. Time required to complete a project and average code team size as a function of code capability
measured in function points.

weapons codes as well (i.e., there is no “Silver Bullet” that can radically reduce the
development time[79]).

The dominant factor for success is the age of the code project (see line 5 ofTa-
ble VIII). The code projects that did not have sufficient time (8 years—seeFig. 7)
failed to meet their milestones. The two projects (Egret and Jabiru) that successfully
met the initial milestone were at least 8 years old. Three other projects (Kite, Finch
and Puffin) were less than 8 years old and didn’t meet their initial milestone. The
Gull project was eight years old but didn’t meet its initial milestone. Two of the
projects eventually were successful in meeting later milestones after they had more
development time. The other two did not meet their milestones and were eventually
abandoned. The Gull project was successful in meeting a different set of milestones,
but not the initial set. This is clear evidence that schedules and requirements must be
consistent. The schedule cannot be fixed independently of the requirements, a fact
long appreciated by the IT industry[48,74]but not adequately taken into account in
the early planning for the whole program. The program set the milestone for demon-
strating the capability of each code project to be three and a half years (December
1999) after the beginning of the program (∼mid 1996) and three years after the date
that many of the code projects were launched (∼January 1997).

Adequate development time is necessary—but not sufficient—for success. Several
code projects failed in spite of having adequate time. Poor practices and inadequate
support—implicitly included in the contingency factor—hurt some of the projects as

THE OPPORTUNITIES, CHALLENGES, AND RISKS 283

FIG. 7. Project schedule for six large-scale computational science code projects.

well. The Gull code project failed to meet its milestones even with adequate time and
ample resources.

Another point is that it is clear from the function point scaling relations (Eqs.(5)–
(8)) is that the code requirements determine both the schedule and resources needed
for success. This estimating analysis indicates the importance of a realistic set of
requirements, schedule and resources. Without them, projects will fail and the needed
applications will not be developed.

These case studies helped persuade the program’s senior management that the
“younger” code teams (those started less than 8 years before the milestone) deserved
a second chance. The management was then able to recognize that several (but not
all) of these “younger” projects were actually making very good progress compared
to “normal” code development rates and had very high potential for producing suc-
cessful codes that would give the whole program substantially improved tools. Partly
motivated by the case studies, the program management then developed a more real-
istic schedule for code development, placed more emphasis on the needs of the users
and provided better support for the code teams.

284 D.E. POST ET AL.

Three issues identified as “lessons learned” are expanded on in the following
two sections: verification and validation and software quality. Both areas are cru-
cial for success for technical software projects, and have special—and often not well
understood—requirements.

7. Verification and Validation

An application code typically solves a model problem that is only an abstraction
of reality. Many things can limit the validity of a code calculation. The models and
solution algorithms may be implemented incorrectly. The models may not accurately
reflect the phenomena of interest[80,81]. Verification is the determination that the
code solves the model correctly. Validation is the determination that the models in
the code capture, with adequate fidelity, the phenomena of interest. Both are essential
elements of a program to develop and apply application codes to problems of interest
[81]. Without adequate verification and validation, there is no reason to believe any
part of a code result. Unfortunately, for much of computational science, verification
and validation efforts fall far short of what is needed.

7.1 Verification
The code could have faults, use computer or mathematical algorithms incorrectly,

have inadequate resolution in time or space, etc. The few existing studies of defect
levels in scientific codes indicate that the error rate is often as large as 6 faults per
1000 lines of Fortran[82]. Even if the code has few faults, the models and equations
in the code could be inadequate or incorrect. “One generally can’t get the right an-
swer with the wrong equations”[57]. The physical data used in the code may not
have adequate resolution or may be inaccurate. The scientist or engineer running the
code may not know how to set up or run the problem or how to interpret the results
of the code accurately.

Both verification and validation become more difficult as codes become more
complicated. A typical application might have many different components. A sophis-
ticated climate modeling code might include models for ocean evaporation, ocean
currents, ocean salinity, atmospheric flow, clouds, precipitation, CO2 sequestration,
radiation transport, atmospheric chemistry, ground water flow, vegetation growth, ice
formation, etc. The code might predict many observables, such as average surface
temperature, precipitation levels, etc. The accuracy of these observables depends on
the accuracy of each component model, the completeness of the set of all the mod-
els (i.e., does the code treat all of the important phenomena), the accuracy of the
solution method for the model including its interaction with the other models, the

THE OPPORTUNITIES, CHALLENGES, AND RISKS 285

physical data used in the models, the adequacy of the problem generation and the
ability of the user to correctly set up the problem, run it and interpret the results.
Verifying and validating all of these is a major challenge.

The accuracy of a multi-model code depends first on the accuracy of each compo-
nent, as well as the accuracy of their interactions. In practice, first one has to verify
each component, then validate each component for the relevant regimes, then verify
and validate progressively larger collections of interacting components, until the en-
tire integrated code has been “verified” and “validated” for the problem regimes of
interest.

There are at least five common verification techniques, all with serious shortcom-
ings (Table IX).

Comparison with analytic results is worthwhile, but extremely limited in prac-
tice. There are usually few, if any, relevant problems with exact answers, espe-
cially with realistic boundary conditions, realistic geometries, realistic data, non-
linear conditions, or multiple-component systems. The computational fluid dynamics
community widely uses the convergence rate of the truncation error to verify pro-
grams[81,84]. This technique, too, is limited in applicability. It works best when
the expected truncation rate can be determined from the basic difference equations
and boundary conditions. That is often impossible. Convergence rates often are not
useful to check two or more interacting modules. The third technique, the Method
of Manufactured Solutions, is, in principle, very powerful[81,83,85]. It works for
almost arbitrarily complicated and strongly coupled models, and almost arbitrar-
ily complicated boundary conditions. However, problems with real data, moving or
adaptive meshes, non-analytic (and non-differentiable) terms and real physical data
are difficult to treat. These challenges, as well as the complexity of implementing
the manufactured solutions, seem to prevent its wide-spread use. A fourth tech-
nique is monitoring properties the developers know have to be correct. Examples
of such properties include “conserved” quantities (e.g., total energy, momentum,
mass, etc.), quantities whose evolution can be estimated (e.g., entropy) to check

TABLE IX
TYPES OFVERIFICATION TECHNIQUES

1. Comparison of the code results with the analytic results for a problem with an exact answer;
2. Establishing that the convergence rate of the truncation error is consistent with the expected conver-

gence rate;
3. Comparison of the observed results with the expected results for a problem specially manufactured

to test the model (or models)[83];
4. Computation and monitoring “conserved” quantities and parameters that should be constant or are

predictable; and
5. Comparison of the code results with the results from similar codes (“Code Benchmarking”).

286 D.E. POST ET AL.

the accuracy of individual components and of the whole code, symmetry properties
that should be preserved with symmetric initial conditions and boundary conditions,
or procedures that can be predicted (e.g., procedural behaviors designed into the
code). Comparing the results of a problem for two different codes (Benchmarking)
can increase the likelihood of detecting errors, but only to a limited degree. Both
codes could have compensating defects. Two codes usually have different ways of
solving a problem and sorting those effects can be time-consuming and potentially
impossible. Benchmarking is worthwhile because it can catch errors, but it isn’t a
substitute for a mathematically rigorous verification procedure. These are all nec-
essary, but not sufficient, tests to verify that the code is correctly solving the equa-
tions.

In spite of all these limitations, verification must be done as thoroughly as pos-
sible. If a code is not solving the models correctly, then the answers are worthless.
Any correspondence of the answers with reality is completely fortuitous. Verifica-
tion needs to be performed every time the code or operating system (compilers, etc.)
changes. This is often accomplished by running a set of test problems (a “regression
suite”) periodically (often every evening) and identifying when the answers change
unexpectedly. A code has to be verified before it can be validated. Validating an un-
verified code is generally a waste of time. Given the deficiencies of existing practices,
better verification techniques are desperately needed.

As a practical matter, diligent code developers do as much verification as they
judge feasible, and then keep their eyes open for suspicious behavior by the code.
However, this is far from a guarantee that the code is free of errors. Also, not all code
developers (and users) are sufficiently diligent or knowledgeable.

7.2 Validation

Once a code has been verified as much as possible, the code must be validated
for the problem regimes of interest. A code is never a valid tool for all conceivable
problems. It can only be validated for specific regimes, and the validity in adjacent
regimes estimated (Fig. 8). The entire calculational system including the user, com-
puter system, problem set-up, problem running and results analysis for each user and
computer system must be validated because all elements are important. An inexpe-
rienced or non-expert user can easily get incorrect answers using a good code in a
validated regime.

Validation has a number of challenges. Each individual component and all im-
portant combinations of the components must be validated. Validation data and
experiments come in a variety of forms (Table X).

Each type of experiment can be done before or after the code prediction has been
completed and can address single-effect issues or integrated phenomena.

THE OPPORTUNITIES, CHALLENGES, AND RISKS 287

FIG. 8. Schematic illustration of code and problem validation and predictive validity range (Courtesy,
D. Tubbs).

TABLE X
FOUR TYPES OFEXPERIMENTSUSED TOVALIDATE CODES

1. Passive observations of physical events (e.g., supernovae explosions or the weather);
2. Experiments designed to certify a physical component or physical system (tests of an engineering

component such a scaled airplane wing, car crash, etc.);
3. Experiments designed to elucidate a general physics or engineering principle or law (e.g., wind tunnel

studies of turbulent eddies around airfoils); and
4. Experiments specifically designed to validate a code application (e.g., wind tunnel tests designed to

provide data to validate a code calculation).

The best validation consists of the comparison of predictions made before an ex-
periment with data from experiments designed specifically for validation. Successful
prediction of experimental results is a better test than successful reproduction of ex-
isting experiments. Since few codes have no uncertainties, “tuning” a code for an
application is usually necessary to get reasonable answers. The experienced user has
learned how to set up an appropriately zoned mesh, how to vary the physical data
within the known uncertainties to get reasonable answers, which effects are essential
for the application and which are inappropriate, how to interpret the results, when the
code is outside the region of validity, etc. With this freedom, it is thus often feasible
to tune a code to match many of the salient points of an existing experiment. It is a
much more rigorous test of the application to predict experimental results before the

288 D.E. POST ET AL.

experiment has been conducted. This is also of course, the ultimate purpose of the
code and computer system, to make accurate predictions of unknown events using
known data before the events occur. An additional benefit of the validation process
is that it trains the users how to use the code to get reasonable results. The entire
computational system needs to be validated (code, user, computer system). As we
have seen, an inexperienced user can get the wrong result.

For many applications, controlled experiments are not feasible or are imprac-
tical. For them validation is especially challenging. Models of astrophysical and
large-scale geophysical phenomena (weather, climate, volcanoes, asteroid impact,
watersheds, etc.) and large scale economic and political systems, must rely on histor-
ical data and current observations. The conduct of controlled supernovae explosions
or scheduled earthquakes, volcano eruptions or asteroid impacts is not likely in the
near future. For these phenomena, the best that can be done is to collect as extensive
sets of data as possible, especially data that is fundamental to the correctness of the
code. For these systems it is often not possible to get data for all conditions, a com-
plete time history, adequately resolved data, and data for many of the quantities of
interest.

However, many, if not most, applications can be validated with data from con-
trolled experiments. Key issues include adequate coverage in space and time of the
appropriate experimental initial conditions and the behavior of the important vari-
ables. An accurate description of the initial and boundary conditions is essential.

The types of experiments used for validation listed inTable Xare also listed in or-
der of their utility for validation. Aeronautical Computational Fluid Dynamics (CFD)
codes were first validated using wind tunnel tests of scaled aircraft parts (Experiment
Type 2,Table X). The object of the experiment was to test the aircraft part. The use
of the data for validation was largely incidental and occurred after the experiment.
Most of experiments of Type 2 were integral, in that they gave data that reflected
the behavior of the trade-offs of a number of competing effects. Code developers
have recognized that data for specific effects is needed to validate each component in
their codes. They therefore have used data from single effect experiments designed
to study a single, isolated phenomenon as much as possible. Such data might be
yield strength data for metal components, thermal conductivity measurements, etc.
Again, validation of a code was usually not the primary purpose of the experiment,
although such experiments were often cheap enough that they could have been used
for explicit validation experiments. The fourth type of experiment is one designed
explicitly for code validation. The purpose of those experiments is to test the models
in the code. The code is often used to design the experiment. Some of these points
are illustrated inFig. 9. An airfoil moving through the air sees a plane front of air
rushing toward it. Fifty years ago, wind tunnels were used to faithfully reproduce the
plane air front conditions to test aircraft components. Achievement of a plane front

THE OPPORTUNITIES, CHALLENGES, AND RISKS 289

FIG. 9. (a) Wind tunnel matching planar air flow conditions of an airfoil moving through free space
air to test aircraft components. (b) Comparison of large wind tunnel for testing aircraft components and
small wind tunnel experiments designed to validate CFD codes.

required a large wind tunnel to minimize the effects of drag by the wall. Now, much
smaller wind tunnels are used to validate the codes that are used to design airfoils.
Once the requirement for a planar air front was removed, a much smaller and cheaper
wind tunnel could be used. The validation wind tunnel facility can also have shorter
set-up and experimental turnaround times and be more easily and thoroughly diag-
nosed. The idea is to test the code, not the component. A final test of the component
may be advisable, but a CFD code validated for the appropriate conditions can be
used for most, if not all, of the design studies.

In fact, data from experiments not designed for validation can sometimes be mis-
leading or inaccurate for validation. The experiment may have been designed to
measure a particular effect. The data for other effects may not have been checked
sufficiently and may be inaccurate, misleading or wrong. As noted in the sonolumi-
nescence example earlier, codes can be, and have been, forced to match incorrect
experimental data.

A paradigm shift with regard to the value and importance of validation exper-
iments is needed in the experimental community. Experimentalists and funding
agencies understand the value of experiments designed to explore new scientific phe-
nomena, test theories or certify and test the performance of a design component. Few
appreciate the value of experiments explicitly conducted solely for the purpose of
code validation. No mechanisms generally exist to get validation experiments funded
even if experimentalists are interested.

Validation assumes an even more important role if one realizes a truly predic-
tive model for a natural system—physical, chemical, biological, and so forth—may
be much more than the sum of the individual components. For physical systems,
Robert Laughlin recently pointed out that much of science today is inherently reduc-

290 D.E. POST ET AL.

tionist [86]. Present scientific research paradigms emphasize the detailed study of
the individual elements that contribute to a complex system’s behavior. High-energy
physics, for example, involves the study of fundamental particles at progressively
higher accelerator energies. Yet successful models of complex systems, such as low-
temperature superconductors, are relatively insensitive to the detailed accuracy of
the individual constituent effects. Laughlin stresses that successful models capture
the emergent principles that determine the behavior of complex systems. Examples
of these emergent principles are conservation laws, the laws of thermodynamics, and
preservation of symmetries.

Almost all computational models for complex systems integrate many individual
modules that treat each individual effect. Considerable, and very appropriate, effort
is spent on validating each individual module. Yet if the “emergent” phenomena are
not captured by the integration, the whole modeling system will be incorrect. Since
a computational simulation is only a model of nature, not nature itself, there is no
assurance that a collection of highly accurate individual components will capture the
emergent effects. Yet most computational simulations implicitly assume that if each
component is accurate, the integrated code will be accurate. Nature includes all of the
emergent phenomena, but a computational modeling system may not. Accurately in-
tegrating many strongly competing effects is challenging for multi-scale phenomena
even when the underlying “emergent” principles are explicitly known. For phenom-
ena where the “emergent” principles are not known and built into the integration
scheme, accurate calculations may not be possible. This perspective underscores the
importance of validation of both the integrated code and the individual models.

Finally, since the value of verification and validation is to ensure that the code can
give accurate predictions for the phenomena of interest, a written record of the ver-
ification and validation of the code is extremely important. That record is necessary
to establish the credibility of the code predictions with the code project sponsors and
customers. In fact, validation needs to be organized like a project, with goals and re-
quirements, a plan, resources, a schedule, and deliverables including a documented
record of the validation project.

Few existing computational science projects practice systematic verification or
validation. Almost none have dedicated experimental validation programs with ded-
icated validation experiments. Yet, without such programs, computational science
will never achieve credibility.

8. Software Quality and Software Project Management

Software quality and software project management are very important issues. Im-
provements in quality offer the promise of greater longevity and easier maintenance.

THE OPPORTUNITIES, CHALLENGES, AND RISKS 291

Attention to quality will likely improve the code. Inattention to quality will almost
certainly contribute to poor quality (high defect rates, and code that is hard to main-
tain and upgrade). It can also leave the code project vulnerable to the Software
Quality Assurance (SQA) mafia employed by some organizations. If poor quality
becomes an issue, the sponsors and customers will take action. The DoD and other
sponsors have developed fairly rigid processes for code development and software
quality assurance in response to disasters caused by buggy aircraft and satellite con-
trol software. Bugs in embedded control software have caused airplane and rocket
crashes. To reduce the defect rate, the DoD and other organizations have established
rigorous procedures for vendors to follow in the development of such software[44].

Similarly, sound software project management can do a lot to speed code devel-
opment, increase the likelihood of a successful success and minimize the defect rate.
Quality was an issue for the US automobile industry in the 1970s and 1980s[87].
The American automobile industry in general produced cars of relatively poor qual-
ity and lost market share to their Japanese competitors. A basic difference was that
the US automobile industry did not emphasize quality on the assembly line and in
the externally supplied components. They mostly tested the cars after they came off
the assembly line and tried to fix the worst ones. The Japanese, on the other hand,
emphasized quality at every step of the assembly process and for components. They
tested the cars at many points along the assembly line and tested components be-
fore installation. The result was that Japanese cars had much higher quality, and the
American automobile industry lost many customers.

Similarly, software quality engineering is most effective when it is applied at each
step of the software development process. This is much better than the all too com-
mon practice of waiting until the code is nearly complete to begin testing the code.
However, just as on the assembly line, different development processes require differ-
ent methods. No one size fits all. Also, just as the Japanese auto makers emphasized
input from the assembly line workers, the code developers themselves are often the
best judges of how to implement quality improvements. A process rigidly imposed
by senior management will likely get the same type of token (and sometimes mali-
cious) compliance that was observed in the US auto industry.

Quality assurance for technical software has an important sociological dimension.
Technical software is developed by teams of scientists and engineers. Scientists and
engineers are trained to question everything, and accept nothing purely on the ba-
sis of authority. After all, even though he might want to, your boss cannot change
the laws of nature—and that is what you are trying to model. That is why scientists
are hired to develop scientific software. The models in the codes have to be correct.
If the models do not reflect reality, the code results are worthless. Wrong models
lead to incorrect results and to decisions that will be wrong, often with tragic con-
sequences. Giving scientists a “bible” that describes an elaborate, rigid process for

292 D.E. POST ET AL.

developing software, but which provides little in the way of justification is counter-
productive. We have observed that it is more successful to work with the individual
team to identify the “practices” that they judge add value to the scientific code de-
velopment process, and encourage the teams to implement the practices they helped
to identify [47]. It is also necessary to provide support to carry out some of the more
routine practices. For large projects, it is better to hire a “code librarian” to imple-
ment and maintain the configuration management system and a dedicated “tester” to
design, implement and run regression test suites than to default these activities to the
team. Without additional resources, the team will have to drop other tasks to com-
plete newly assigned software quality steps. The practices that technical software
development groups have found useful include configuration management, require-
ments definition, sound software project management, regression testing, adequate
documentation, design and code reviews, etc.

Various government agencies sponsor the development of technical software and
its use to solve problems their problems. Often the contracting officers for these agen-
cies are not very knowledgeable about the challenges of developing large, technical
software projects. They are, however, accountable for delivery of their programs and
projects their agencies sponsor. Large technical software projects usually have sub-
stantial risks. They are often behind schedule, over-budget, do not deliver exactly
what was promised, and even fail entirely. To succeed, sponsors must hold the code
development organizations accountable to deliver the promised codes. Government
agencies are tempted to require that the organizations they sponsor follow a “process”
model like the Capability Maturity Model (CMM) developed by the Software Engi-
neering Institute at Carnegie–Mellon University[44]. After all, the data that indicates
that code development organizations that follow the CMM processes produce “bet-
ter” code, meet milestones more often, and deliver products within budgets. Who can
be against these benefits?

This kind of quality for scientific software, however, comes with a severe price.
An analysis of the Software Engineering Institute CMM processes indicates that it is
most successful for software that must have no bugs (e.g., the airplane control soft-
ware mentioned above). Implementing the CMM process, is expensive and lengthy.
History shows that several years and substantial resources are required to move from
one of the five CMM levels to the next. The strong emphasis on “process” limits the
agility of the code team to explore new solution techniques and test different models
to find the ones that best solve the problem of interest.

Computational science has different goals and requirements than embedded con-
trol or analysis software. For computational science, it is much more important that
flexibility to improve the physics or chemistry and incorporate the best solution al-
gorithms exist than to require that every last defect be eliminated. Developing the
right physics or chemistry package usually requires experimentation and creativity.

THE OPPORTUNITIES, CHALLENGES, AND RISKS 293

It is impossible to plan every detailed facet of a large complex code with scientific
and mathematical challenges—primarily because it is impossible to anticipate them
due to the inherent research nature of scientific code development. The code devel-
opment team must be very creative. It must develop and test many new algorithms
and models to find ones that succeed. A rigid code development process impedes the
flexibility and creativity needed to develop new codes. This is not only the case for
scientific codes, but also for most really innovative software development. There is
a running debate on this issue in the software literature between the “rigid process”
community and the “agile software” community. The “agile software” community
stresses the importance of innovation and the difficulty of being innovative if one
is constrained by rigid processes[88]. The “rigid process” community stresses the
importance of reduced defects and efficient code development[89]. Both positions
have valid points, but the reality is that there is no “one size fits all” solution. Just as
there is no “one way” to do laboratory experiments in physics, chemistry or biology,
theoretical work in chemistry, physics or biology, or engineering design and analy-
sis, there is no “one way” to develop technical software. There is no “fool proof”
way to develop codes, or as Frederick Brooks states: “There is no silver bullet for
software development”[75]. Just as in other scientific methodologies, one has to do
the intellectually difficult work of examining and testing candidate practices and then
using the ones that work for the problem at hand. But this does not mean that “any
old method” is acceptable and will work. It only means that not every development
problem has the same answer. While we cannot blindly accept what people hand us,
we do have an obligation to find something that works well.

A constant theme that seems to always emerge from case studies is that good soft-
ware project management is essential. It is usually more important than any set of
externally imposed processes. The Software Engineering Institute stresses the impor-
tance of software project management in its “Team Software Process,”[90] which
captures many of the software project management methods long advocated in the
general IT industry, especially in the non-government IT industry (e.g.,[48,49,71,
75]). The Software Engineering Institute data shows that introducing sound software
project management can often achieve as large a reduction in the defect rate as mov-
ing many levels up in CMM process.

The burden of identifying code development methods that work well falls on every
code team. As noted before, if the team does not find methods that work, the sponsor
will dictate the processes and methods to be used. The processes are unlikely to
be the ones that the team would have selected. Developing a good set of practices
and implementing them is the beginning of a good defense against being forced to
follow externally-imposed practices. The code development team also has to be able
to explain its practices and be able to demonstrate to management and, in some cases,
to auditors from the sponsoring agency (DoD, DOE, NASA, etc.). that the team’s

294 D.E. POST ET AL.

practices work. There is no single solution (“silver bullet”) for this problem either
[75]. The team has to make the effort to establish credibility with its management so
management will trust the team to do things right.

While the technical software community has many unique issues, it nonetheless
can learn much from the general IT industry. The IT community has had to address
the problem of how to plan and coordinate the activities of large numbers of pro-
grammers writing fairly complex software. In the authors’ experience few of even the
simplest well-known and proven methods for organizing and managing code devel-
opment teams and projects are being employed by the technical software community.
The most common approach seems to be to independently rediscover the IT industry
“lessons.” This unfortunately leads to wasted effort, delayed schedules, and, all too
often, failure of the project.

Several of these “lessons” are worth highlighting. It is very important to learn
how to develop specifications and requirements for technical projects. Most technical
projects start out with a vision of what the code team leaders want to accomplish.
Unfortunately, the leaders do not develop requirements and specifications at the level
of detail that the other members of a large team can follow to produce an integrated
code. This often leads to overly ambitious goals and unrealistic schedules, missed
milestones, and sometimes to project failure. While good estimation is difficult, one
commonly recommended technique is to develop a prototype that requires 5 to 10%
of the full project resources, and use it for estimation[91]. Another technique is to
look at similar projects and scale from them. In fact, most technical code projects
do not appear to follow very many of the “lessons learned” from the program code
projects listed inTable VII.

A related issue is the need to balance the need to improve the computer science
techniques and methodologies used for code development while using conservative
and reliable practices for the development of essential applications. A good exam-
ple of this is the effort to develop the Common Components Architecture as a way
to standardize component development[2]. In principle, this is a great idea. If one
develops a module, it would be wonderful if it could be used in many applications.
The core of the idea is to develop interface specifications for modules. Where this
is possible, it should greatly help code development. Unfortunately, modules are the
building blocks of applications and every module has a specific and usually unique
purpose. They usually require different interfaces and data structures for each tech-
nical problem. The hard part is to define the specific interfaces and it is not clear that
this can be done in a general way. It is difficult to see how a computer scientist will
be able to anticipate what interfaces are needed so that a module that calculates the
thrust from a rotor on a bacterium can be successfully integrated into a unified cal-
culation of a swimming bacterium. Clearly new code development methodologies
must be developed and tested on real problems. Identifying ways to develop these

THE OPPORTUNITIES, CHALLENGES, AND RISKS 295

new methodologies and test them without unduly impeding application code devel-
opment and greatly increasing application code development risk will continue to be
a major challenge for the computational science community.

Another challenge will be to develop appropriate metrics for the development of
technical software. Conventional function points are clearly inadequate. Technical
software has additional complexity and challenges beyond those faced by the IT
industry. Developing those metrics should be a key goal of any “lessons learned”
activity. Gathering data on code projects will be essential. Without real data on the
code development process and the codes themselves, it will be difficult to identify
what is successful and what lessons can be applied to other projects.

Finally, code development in the future will almost certainly be done by “vir-
tual teams,” teams of non-collocated software developers at geographically separated
sites. Such teams have the advantage of bringing varied skill sets to the project with-
out the need to relocate and the potential for tapping the expertise of a number of
institutions and generating the political as well as technical support of many insti-
tutions. Even collocated development teams face communication and coordination
challenges. Those problems are more severe for virtual teams, and success will re-
quire addressing these challenges.

9. Conclusions and Path Forward

Computational science and engineering can play an exceedingly important role in
society. The High Performance Computing community is meeting “The Performance
Challenge” to provide us unprecedented power to tackle important problems. How-
ever, three additional challenges must be met before that potential can be realized.
The first challenge is “The Programming Challenge.” The development commu-
nity must be able to efficiently develop programs for the ever more powerful and
ever more complicated computer platforms. Secondly, the application models must
become sufficiently accurate that they can be used for prediction with confidence—
“The Prediction Challenge.” Thirdly, the community must identify problems that
can be addressed computationally and enlist the resources and commitment neces-
sary to develop application codes to address those problems—“The Development
Challenge.”

To meet “The Programming Challenge,” the High Performance Computer oper-
ations and development software community (industry, government and academia)
must develop the tools and methods to facilitate the development and running of
codes so that application codes can be developed quickly and reliably and can be
run efficiently on the High Performance platforms. To meet “The Prediction Chal-
lenge,” the computational science community (industry, government and academia)

296 D.E. POST ET AL.

will need to become as mature as the theoretical and experimental scientific and en-
gineering design communities. The computational science community must develop
methods to ensure that the equations and models in the codes accurately reflect the
real world, that the equations and models are solved correctly, that the applications
are set up and run correctly by knowledgeable and careful users, and that the results
are interpreted correctly.

The process must be consistent with the general “lessons learned” discussed in the
foregoing. One of the most important “lessons learned” is that an intensive verifica-
tion and validation program is an essential element of ensuring that computational
results are accurate. Unfortunately, not only is the level of verification and validation
usually insufficient, there is inadequate effort devoted to developing new methodolo-
gies and concepts for verification and validation. Much is needed and little is being
done. The gap between the capabilities of scientific codes and code verification and
validation processes is widening. Finally, those developing the code and those using
the code must have a deep appreciation of the limits of the code and a deep-rooted
appreciation that the results may not be correct.

As in other methodologies, retrospective case studies of past practices are an es-
sential part of the path toward maturity. It is imperative that we as a discipline
continuously examine and assess our mistakes and our successes. Without such a
continuous re-assessment, we will continue to make the same mistakes. Our field
will never be able to fulfill the tremendous promise that powerful computers give us.

Another way to look at it is as an issue of professional integrity. Unless the field of
computational science and engineering has the same level of professional integrity
as other methodologies (experiment, theory and engineering design), we will never
be as credible as the other methodologies. We will continue to hear the refrain: “Who
can believe that? It’s just a code result and we know they can get anything they want
if they play with the code enough.” Scientists who conduct experiments irresponsi-
bly find that their professional reputations are discredited quickly and thoroughly.
The discoverers of “cold fusion” are no longer regarded as reputable by the scien-
tific community[92]. It is rare that anyone in computational science gets even the
slightest rebuke for a misleading or incorrect result. It is not enough for 95% of the
work in computational science to be reliable, and 5% to be wrong. Unless the outside
world can tell which 5% is bogus, none of the work will have the impact it deserves.

Finally, because it often takes 5 to 10 years and teams of 10 to 30 professionals to
develop large, complex computer simulations, sponsors need to initiate and support
code development projects well before the time they are needed. Indeed, if they don’t
do this, the codes will not be available when they are needed.

Looking to the future, the DARPA High Productivity Computing Systems (HPCS)
project is focusing on reducing the time to solution for important problems by
meeting the Performance, the Programming and the Prediction challenges. Improv-

THE OPPORTUNITIES, CHALLENGES, AND RISKS 297

ing productivity will help lower the barrier for developing new application codes.
In its second phase, the DARPA HPCS program is working with three vendors, IBM,
Cray and Sun to design and build Peta-FLOP/s scale platforms to be ready in 2010.
Part of the HPCS project is the development of benchmarks for the platforms that
are prototypical of real applications. Attention is being paid to the development of
programming models and development tools for optimizing parallel performance.
The HPCS project is sponsoring case studies of representative computational sci-
ence projects in the DoD, DOE, NASA, NOAA, industry and academia to identify
the lessons learned and document and publish them for the benefit of the computa-
tional science community. We have outlined a number of “lessons learned” that have
already been developed from the comparative case study projects. As we assess a
wider range of projects, we will refine those lessons and identify new ones. Adop-
tion of these “lessons learned” by the computational science community will help
the field to mature just as the development of “lessons learned” and their adoption
has helped other fields to mature.

ACKNOWLEDGEMENTS

The authors are grateful for discussions with Vic Basili, Don Burton, Bill Carlson,
John Cerutti, Linnea Cook, Larry Cox, Larry Davis, Tom DeMarco, Dale Henderson,
Cray Henry, Fred Johnson, Leo Kadanoff, Jeremy Kepner, Joseph Kindel, William
Krauser, Ken Koch, Dimitri Kusnesov, Steve Libby, Andrew Mark, Tom McAbee,
Doug Miller, Pat Miller, Jim Rathkopf, Don Remer, Rob Thomsett, Tim Trucano,
David Tubbs and Larry Votta and to the Department of Defense and Department of
Energy for support.

REFERENCES

[1] Frank M.P., “The physical limits of computing”,Comput. Sci. Engrg.4 (2002) 16–26.
[2] Dongarra J., Foster I., Fox G., et al.,Sourcebook of Parallel Computing, Morgan Kauf-

mann Publishers, Amsterdam, 2003.
[3] Post D.E., Kendall R.P., Whitney E.M., “Case study of the FALCON code project”, in:

Proceedings of 2nd Workshop on HPC Applications, ACM/IEEE International Confer-
ence on Software Engineering, St. Louis, MO, 2005.

[4] Joseph E., Snell A., Willard C.G., et al., “Study of ISVs serving the high performance
computing market: The need for better application software”,http://www.compete.org/
hpc, 2005.

[5] Koniges A.E.,Industrial Strength Parallel Computing, Morgan Kaufmann, San Fran-
cisco, 2000.

http://www.compete.org/hpc
http://www.compete.org/hpc

298 D.E. POST ET AL.

[6] Blondin J.M., Mezzacappa A., DeMarino C.,Astrophys. J.584(2003) 971.
[7] Colgan J., Pindzola M.S., Robicheaux F.F., “Triple photoionization of the lithium atom”,

Phys. Rev. Lett.93 (2004) 053201.
[8] Ethier C.R., “Bioengineering and biophysics”,Comput. Sci. Engrg.3 (2001) 382.
[9] Hase W.L., Scuseria G.E., “Computational chemistry”,Comput. Sci. Engrg.5 (2003) 12.

[10] Spotz W.F., Swarztrauber P.N., “Climate modeling”,Comput. Sci. Engrg.4 (2002) 24.
[11] Mesirov J.P., Slonim D.K., “Computational biology”,Comput. Sci. Engrg.1 (1999) 16.
[12] Chung T.J.,Computational Fluid Dynamics, Cambridge Univ. Press, Cambridge, UK,

2002.
[13] Tohline J.E., Bryan G.L., “Cosmology and computation”,Comput. Sci. Engrg.1 (1999)

17.
[14] Schneier B.,Applied Cryptography, second ed., John Wiley & Sons Inc., New York,

1996.
[15] Karypis G., “Data mining”,Comput. Sci. Engrg.4 (2002) 12.
[16] Asrar G.R., “A pathway to decisions on Earth’s environment and natural resources”,

Comput. Sci. Engrg.6 (2004) 13.
[17] Rundle J.B., “Computational Earth system science”,Comput. Sci. Engrg.2 (2000) 20.
[18] Saito T., Takayama K., “Applying shock-wave research to volcanology”,Comput. Sci.

Engrg.7 (2005) 30.
[19] Hallquist J.O., “Current and future developments of LS-DYNA-1”, in:Proceedings of

4th European LS-DYNA Conference, ULM, Germany, 2003.
[20] Northover K., Lo A.W., “Computational finance”,Comput. Sci. Engrg.1 (1999) 22.
[21] Vashishta P., Nakano A., “Dynamic fracture analysis”,Comput. Sci. Engrg.1 (1999) 20.
[22] Kumar S., Sastry S., “Biocomputation”,Comput. Sci. Engrg.4 (2002) 18.
[23] Winter C.L., Tartakovsky D.M., “Groundwater flow in heterogeneous composite

aquifers”,Water Resources Res.38 (2004) 231.
[24] Lindl J., Inertial Confinement Fusion, AIP Press, Springer-Verlag, New York, 1998.
[25] Wesson J.,Tokamaks, Oxford Univ. Press, Oxford, 2004.
[26] Kaxiras E., “Materials science”,Comput. Sci. Engrg.3 (2001) 14.
[27] Weinhous M.S., Rosen J.M., “Computing in medicine”,Comput. Sci. Engrg.2 (2000) 14.
[28] Ratner M.A., Chelikowski J.R., “Nanoscience, nanotechnology, and modeling”,Comput.

Sci. Engrg.3 (2001) 40.
[29] Kupinski M.A., “Computing in optics”,Comput. Sci. Engrg.5 (2003) 13.
[30] Chonacky N., “Scientific databases”,Comput. Sci. Engrg.5 (2000) 14.
[31] McGlaun J.M., Thompson S.L., Kmetyk L.N., et al., “CTH: A three-dimensional shock

wave physics code”,Internat. J. Impact Engrg.10 (1990) 351.
[32] Gombosi T.I., Powell K.G., DeZeeuw D.L., et al., “Solution-adaptive magnetohydro-

dynamics for space plasmas: Sun-to-Earth simulations”,Comput. Sci. Engrg.6 (2004)
14–35.

[33] Lin S.J., Atlas R., Yeh K.S., “Global weather prediction and high-end computing at
NASA”, Comput. Sci. Engrg.6 (2004) 29.

[34] Webb M.D., Balice R.G., “A real-time wildfire model for Los Alamos, New Mexico”,
Internat. J. Technol. Transfer Commercialisation3 (2004) 226–242.

THE OPPORTUNITIES, CHALLENGES, AND RISKS 299

[35] Heath M.T.,Scientific Computing: An Introductory Survey, McGraw–Hill, New York,
1997.

[36] Kalos M.H., Whitlock P.A.,Monte Carlo Methods, John Wiley & Sons, New York, 1986.
[37] Thompson J.F., Soni B.K., Weatherill N.P.,Handbook of Grid Generation, CRC Press,

Boca Raton, 1998.
[38] Braginskii S.I., in: Leontovich M.A. (Ed.),Reviews of Plasma Physics, vol. 1, Consul-

tants Bureau, New York, 1965, pp. 205–311.
[39] Roache P.J.,Fundamentals of Computational Fluid Dynamics, Hermosa Publishers, Al-

buquerque, 1998.
[40] Post D.E., Kendall R.P., “Software project management and quality engineering prac-

tices for complex, coupled multiphysics, massively parallel computational simulations:
Lessons learned from ASCI”,Internat. J. High Performance Comput. Appl.18 (2004)
399–416.

[41] Capers-Jones T.,Estimating Software Costs, McGraw–Hill, New York, 1998.
[42] Post D.E., Kendall R.P., “Software project management and quality engineering prac-

tices for complex, coupled multiphysics, massively parallel computational simulations”,
Internat. J. High Performance Comput. Appl.18 (2004) 399–416.

[43] Yin R.K., Case Study Research, Design and Methods, third ed., Sage Publications, Thou-
sand Oaks, 2003.

[44] Paulk M.,The Capability Maturity Model, Addison–Wesley, New York, 1994.
[45] Glass R.L.,Software Runaways: Monumental Software Disasters, Prentice Hall PTR,

New York, 1998.
[46] Ewusi-Mensah K.,Software Development Failures: Anatomy of Abandoned Projects,

MIT Press, Cambridge, MA, 2003.
[47] Phillips D., The Software Project Manager’s Handbook, IEEE Computer Society, Los

Alamitos, 1997.
[48] DeMarco T.,The Deadline, Dorset House Publishing, New York, 1997.
[49] Thomsett R.,Radical Project Management, Prentice Hall, Upper Saddle River, NJ, 2002.
[50] Moore G.E., “Cramming more components onto integrated circuits”,Electronics38

(1965).
[51] Frank M.P., “The physical limits of computing”,Comput. Sci. Engrg.4 (2002) 16–36.
[52] Dongarra J., van der Steen A., “Overview of recent supercomputers”,http://www.top500.

org/ORSC/2004/, 2003.
[53] Kuck D.J.,High Performance Computing: Challenges for Future Systems, Oxford Univ.

Press, Oxford, 1995.
[54] Gropp W., Lusk E., Skjellum A.,Using MPI, MIT Press, Cambridge, MA, 1996.
[55] Graybill R., Kepner J., Lucas R., “DARPA high productivity computing systems pro-

gram”,http://www.highproductivity.org/, 2004.
[56] VanDeVanter M., Post D.E., Zosel M.E., “HPC needs a tool strategy”, in:Proceedings of

2nd Workshop on HPC Applications, ACM/IEEE International Conference on Software
Engineering, St. Louis, MO, 2005.

[57] Laughlin R., “The physical basis of computability”,Comput. Sci. Engrg.4 (2002) 27–30.
[58] Petroski H.,Design Paradigms: Case Histories of Error and Judgement in Engineering,

Cambridge Univ. Press, New York, 1994.

http://www.top500.org/ORSC/2004/
http://www.highproductivity.org/
http://www.top500.org/ORSC/2004/

300 D.E. POST ET AL.

[59] Traweek S.,Beamtimes and Lifetimes: The World of High Energy Physicists, Harvard
Univ. Press, Cambridge, MA, 1988.

[60] Gehman H.W., Barry J.L., Deal D.W., et al., “Report of the Columbia Accident Investiga-
tion Board”, National Aeronautics and Space Administration, Washington, DC, August
2003, 248 pp.

[61] Hallquist J.O., “Curent and future developments of LS-DYNA-1”, in:Proceedings of 4th
European LS-DYNA Conference, ULM, Germany, 2003.

[62] Taleyarkhan R.P., West C.D., Cho J.S., et al., “Evidence for nuclear emissions during
acoustic cavitation”,Science295(2002) 1868–1873.

[63] Shapira D., Saltmarsh M., “Nuclear fusion in collapsing bubbles—is it there? An at-
tempt to repeat the observation of nuclear emissions from sonoluminescence”,Phys. Rev.
Lett.89 (2002) 104302–104305.

[64] Glantz J., “Behind the official optimism, flawed projections”,Science274(1996) 1600.
[65] Wakatani M., Mukhovatov V.S., Burrell K.H., et al., “ITER: Plasma confinement and

transport”,Nuclear Fusion39 (1999) 2176–2249.
[66] Yushmanov P., Takizuka T., Riedel K., et al., “Scalings for tokamak energy confinement”,

Nuclear Fusion30 (1990) 1999–2006.
[67] Glantz J., “Turbulence may sink titanic reactor”,Science274(1996) 1600–1603.
[68] Glantz J., “Bright omens for giant reactor”,Science274(1997) 1559–1560.
[69] Post D.E., Kendall R.P., “Software project management and quality engineering prac-

tices for complex, coupled multi-physics, massively parallel computational simulations”,
Internat. J. High Performance Comput. Appl.18 (4) (2004) 399–416.

[70] Beck K.,Extreme Programming Explained, Addison–Wesley, Boston, 2000;
van Vliet H.,Software Engineering, Principles and Practice, John Wiley and Sons, Ltd.,
Chichester, 2000.

[71] Remer D., “Managing software projects”, in:Proceedings of UCLA Technical Manage-
ment Institute, Los Angeles, CA2000.

[72] DeMarco T., Lister T.,Waltzing with Bears, Managing Risk on Software Projects, Dorset
House Publishing, New York, 2003.

[73] DeMarco T., Lister T., “Risk management for software”, August, 2002, Arlington, MA,
2002.

[74] Capers-Jones T.,Estimating Software Costs, McGraw–Hill, New York, 1998.
[75] Brooks F.,The Mythical Man-Month: Essays on Software Engineering, Addison–Wesley

Publishing Co., Menlo Park, 1995.
[76] Yourdon E.,Death March, Prentice Hall PTR, Upper Saddle River, NJ, 1997.
[77] Verzuh E.,The Fast forward MBA in Project Management, John Wiley, New York, 1999;

Ruskin A.M., Estes W.E.,What Every Engineer Should Know About Project Manage-
ment, Marcel Dekker, Inc., New York, 1995.

[78] Symons C.R., “Function point analysis: Difficulties and improvements”,IEEE Trans.
Software Engrg.14 (1988) 2–11.

[79] Brooks F.P., “No silver bullet: Essence and accidents of software engineering”,Com-
puter20 (1987) 10–19.

[80] Oberkampf W., Trucano T., “Verification and validation in computational fluid mechan-
ics”, Prog. Aerospace Stud.38 (2002) 209–272.

THE OPPORTUNITIES, CHALLENGES, AND RISKS 301

[81] Roache P.J.,Verification and Validation in Computational Science and Engineering, Her-
mosa Publishers, Albuquerque, 1998.

[82] Hatton L., Roberts A., “How accurate is scientific software?”,IEEE Trans. Software En-
grg. 20 (1994) 785–797.

[83] Roache P.J., “Code verification by the method of manufactured solutions”,Trans.
ASME124(2002) 4–10.

[84] Kamm J.R., Rider W.J., Brock J.S., “Combined space and time convergence analysis of
a compressible flow algorithm”, in:Proceedings of AIAA Conference on Computational
Fluid Dynamics, Orlando, FL, 2003.

[85] Pautz S.D., “Verification of transport codes by the method of manufactured solutions: The
ATTILA experience”, in:Proceedings of ANS International Meeting on Mathematical
Methods for Nuclear Applications, Salt Lake City, UT, 2001.

[86] Laughlin R.B.,A Different Universe: Reinventing Physics from the Bottom Down, Basic
Books Inc., 2005.

[87] Halberstam D.,The Reckoning, William Morrow and Co., New York, 1986.
[88] DeMarco T., Boehm B., “The agile methods fray”,Computer35 (2002) 90–92;

Boehm B., “Get ready for agile methods, with care”,Computer35 (2002) 64–69;
Highsmith J., Cockburn A., “Agile software development: the business of innovation”,
Computer34 (2001) 120–127.

[89] Herbsleb J., Zubrow D., Goldenson D., et al., “Software quality and the capability matu-
rity model”, Comm. ACM40 (1997) 30–40.

[90] Humphrey W.S.,Winning with Software: An Executive Strategy, Software Engineering
Institute, Pittsburg, 2001.

[91] McConnell S.C.,Software Project Survival, Microsoft Press, 1997.
[92] Huizenga J., Harris T.H. Jr., Happer W., et al., Report No. DOE/S-0073 DE90 005611,

1989.

This page intentionally left blank

Author Index

Numbers initalics indicate the pages on which complete references are given.

A

Abrahamsson, P., 178,235
Aerts, H., 8, 13,40
Aha, D., 49,75
Albert, M., 49,75
Ali, K.M., 49, 75
Allen, E.B., 44, 45, 61, 62,73, 74, 76
Alpaydin, E., 48, 73,75
Anderson, R.J., 84,140
Andres, C., 179, 226,235
Angkasaputra, N., 229,235
Angluin, D., 58,76
Arthur, L.J., 12,36
Asgari, S., 139,140
Asrar, G.R., 242,298
Atkeson, C.G., 62, 63,77
Atlas, R., 242,298
Avižienis, A., 86, 91,139
Avrunin, G., 219,235

B

Bach, J., 4,36
Balice, R.G., 242,298
Ball, R.C., 84,140
Barry, J.L., 271, 272,300
Basili, V.R., 3, 11, 13,37, 81, 139,140, 141,

186,235
Beach, L.R., 5,37
Beck, K., 3,37, 179, 226,235, 276,300
Becker-Kornstaedt, U., 199,237
Bella, F., 229,235, 237
Bennett, T., 81,140
Berenson, M.L., 59, 60,76

Berggren, R., 8,38
Berghout, E.W., 3, 22, 27,37, 40
Bhagotra, S., 62,77
Bicego, A., 3,37
Birk, A., 11,37
Blondin, J.M., 242,298
Boehm, B.W., 81, 139,140, 141, 147, 149,

159,170, 180,235, 293,301
Bollinger, T., 4,37
Bourne, S., 93,140
Brady, R.M., 84,140
Braginskii, S.I., 244,299
Breiman, L., 49, 62,75
Brekka, L.T., 155,170
Briand, L.C., 4, 8–10,38, 157,170
Bristow, G., 219,235
Brock, J.S., 285,301
Brodley, C.E., 46–49, 53, 56, 58, 67, 69, 71,74
Brodman, J., 4, 8, 9, 12, 13,37
Brooks, F.P., 278, 279, 282, 293, 294,300
Bryan, G.L., 242,298
Buchman, C., 11, 13,37
Burke, S., 13,37
Burrell, K.H., 273,300
Bush, M., 149,171
Butler, K., 8, 13,37

C

Caldiera, G., 3, 13,37, 186,235
Campbell, I., 219,236
Capers-Jones, T., 248, 278–280, 282,299, 300
Card, D., 4,37
Carleton, A., 8, 9, 11, 13,38

303

304 AUTHOR INDEX

Carter, C., 49,75
Caswell, D., 13,38
Chatmon, A., 8,40
Chelikowski, J.R., 242,298
Chen, Q., 45–48, 51–56, 58, 63, 67, 69,74
Chien, P.-D., 45,74
Chittister, C., 144, 160,170
Cho, J.S., 272,300
Chonacky, N., 242,298
Chrissis, M.B., 3,37, 39, 149,171, 179,238
Christie, A., 230,236
Chung, T.J., 242,298
Clarke, K., 88, 121,140
CMMI Product Team, 179,236
Cockburn, A., 178, 226,236, 293,301
Cohen, W.W., 62, 63,77
Colgan, J., 242,298
Compton, P., 62,77
Connaughton, C., 180,237
Curtis, B., 3, 4,37, 39, 179, 180,236, 238

D

Daskalantonakis, M.K., 13,37
Davis, A.M., 81,140
de Carvalho, A.C., 50,75
Deal, D.W., 271, 272,300
Deb, S., 180,238
Deephouse, C., 12,38
DeMarco, T., 27,38, 44,73, 144, 149,170,

256, 276–278, 282, 293,299–301
DeMarino, C., 242,298
Deming, E., 186,236
des Rochettes, G., 8,38
Dewsbury, G., 88, 121,140
DeZeeuw, D.L., 242,298
Diaz, M., 6, 8, 11, 12,38
Dillon, L., 219,235
Dion, R., 8, 11, 13,38
Doernemann, H., 160,170
Domingos, P., 62,77
Dongarra, J., 240, 242, 243, 249, 257, 259,

261–263, 271, 294,297, 299
Donzelli, P., 139,140
Dorofee, A.J., 144,171
Drey, C., 219,235
Dunaway, D.K., 8,38

E

Edwards, B., 219,235
El Emam, K., 4, 6, 8–10,38
Erdogmus, H., 7,38
Ertl, F., 62,77
Estes, W.E., 279,300
Ethier, C.R., 242,298
Evett, M.P., 45,74
Ewusi-Mensah, K., 251,299

F

Fagan, M.E., 3,38
Fairley, R., 144,170
Favaro, J., 7,38
Feather, M.S., 144,170
Fenton, N.E., 44, 45, 61, 62,73, 144,171
Ferguson, P., 3,38, 180,236
Fernström, C., 229,236
Foster, I., 240, 242, 243, 249, 257, 259,

261–263, 271, 294,297
Fox, G., 240, 242, 243, 249, 257, 259,

261–263, 271, 294,297
Frank, E., 44, 47, 48, 53, 56, 62, 63, 67,74, 77
Frank, M.P., 240, 258,297, 299
Freund, Y., 49, 62,75, 77
Friedl, M.A., 46–49, 53, 56, 58, 67, 69, 71,74
Friedman, J., 62,76
Fürnkranz, J., 49,75

G

Gaines, B.R., 62,77
Gamberger, D., 45–50, 55, 62,74, 75
Gao, K., 50,76
Garcia, S., 149,171
Gates, L., 199,236
Gehman, H.W., 271, 272,300
Gemmer, A., 150,171
Ghosh, R., 180,238
Gilb, T., 3,38
Glantz, J., 273,300
Glass, R.L., 251, 277,299
Goldenson, D.R., 4, 12, 13,38, 39, 293,301
Goldstein, M., 59, 60,76
Gombosi, T.I., 242,298

AUTHOR INDEX 305

Goncharoff, K., 199,236
Goyal, A., 8,38
Grady, R.B., 8, 11, 13,38
Graham, D., 3,38
Grana-Dominguez, S., 230,236
Graybill, R., 261,299
Grimmer, U., 50,76
Gropp, W., 260,299
Grošelj, C., 45–50, 55, 62,74
Gujran, N., 230,236
Güntzer, U., 50,76
Guyon, I., 50,75

H

Haimes, Y.Y., 144, 160,170
Halberstam, D., 291,301
Haley, T.J., 12,38
Hallquist, J.O., 242, 272,298, 300
Happer, W., 296,301
Harris Jr., T.H., 296,301
Harter, D.E., 8, 12,40
Hase, W.L., 242,298
Hastie, T., 62,76
Hatton, L., 284,301
Hayes, W., 4, 12,39
Heath, M.T., 243,299
Hedepohl, J.P., 44, 61,73
Hefley, W., 180,236
Heidrich, J., 229,236
Henry, J., 9,38
Herbsleb, J.D., 4, 8, 9, 11–13,38, 39, 293,301
Hetmanski, C.J., 157,170
Hickey, R.J., 58,76
Highsmith, J., 3,39, 178, 226,236, 293,301
Hipp, J., 50,76
Ho, T.K., 48,75
Holmes, G., 62,77
Holte, R.C., 62, 63,77
Huang, H., 51,76
Huang, L., 139,140
Hudepohl, J.P., 45, 62,74, 76
Huizenga, J., 296,301
Hull, J.J., 48,75
Hulse, J.V., 51,76
Humphrey, W.S., 3, 4, 8, 11,38, 39, 293,301
Huynh, D., 139,140

I

IEEE Computer Society, 179,236
Iftekharuddin, K., 155,170
Illingworth, J., 50,76
International Standards Organization (ISO),

177,237
Iredale, P., 8,38

J

Jain, A., 139,140
Jain, R., 67,77
Jain, S., 231,237
Jarvinen, J., 11,37
Jayadevan, S., 8,38
John, G.H., 49,75
Johnson, D., 4, 8, 9, 12, 13,37
Johnson, M.I., 13,40, 41
Jones, C., 11–13,39, 160,171
Jones, W.D., 45, 62,74, 76
Joseph, E., 241,297
Joshi, V., 46–49, 52, 55–58, 62, 63, 66, 67, 71,

74

K

Kalos, M.H., 243,299
Kamm, J.R., 285,301
Kanungo, S., 8,38
Kanwal, I., 62,77
Kaplan, R.S., 3, 21, 22,39
Karypis, G., 242,298
Kaxiras, E., 242,298
Kellner, M., 12,38, 199,236, 237
Kendall, R.P., 241, 247, 248, 274, 276, 277,

279,297, 299, 300
Kepner, J., 261,299
Khajenoori, S., 3,38
Khoshgoftaar, T.M., 44–58, 61–64, 66, 67, 71,

73–77
Kibler, D., 49,75
King, J., 8,38
Kishida, K., 190,237
Kitchenham, B., 159,171
Kitson, D., 10,39
Kittler, J., 50,76

306 AUTHOR INDEX

Kmetyk, L.N., 242,298
Knight, J.C., 86,140
Kohavi, R., 62,77
Kolodner, J., 62, 63,77
Komorowski, J., 62,76
Koniges, A.E., 242,297
Konrad, M., 3,37
Kovitz, B.L., 139,140
Koza, J.R., 62,76
Krementz, M., 229,237
Krishna, S., 231,237
Krishnan, M.S., 8, 12,40
Krishnaswamy, P., 180,238
Kuck, D.J., 259,299
Kulik, P., 10,39
Kumar, S., 242,298
Kupinski, M.A., 242,298
Kuvaja, P., 3,37
Kwok, S.W., 49,75

L

Laird, P., 58,76
Lallich, S., 50,76
Laprie, J.-C., 86, 91,139, 140
Laudon, K.C., 45,74
Lauesen, S., 81,140
Laughlin, R.B., 266, 284, 290,299, 301
Lavi, I., 8,38
Lavrǎc, N., 45–50, 55, 62,74, 75
Lawrence, N.D., 50,75
Lee, C.S.G., 62,76
Leman, G., 180,236
Levine, D.M., 59, 60,76
Lin, C.T., 62,76
Lin, K.I., 50, 76
Lin, S.J., 242,298
Lindl, J., 242,298
Linkman, S., 159,171
Lister, T., 27,38, 144, 159,170, 171, 277,300
Littlewood, B., 80, 82,141
Lo, A.W., 242,298
Lorena, A.C., 50,75
Lucas, R., 261,299
Lusk, E., 260,299
Lutz, R.R., 81,141
Lyytinen, K., 149,171

M

Macke, S., 3,38
Madachy, R., 139,140
Maksimovie, V., 155,170
Maletic, J.I., 50,76
Marcus, A., 50,76
Martinez, T.R., 49, 50,75
Mason, L., 62,77
Masters, S., 10,39
Matic, N., 50,75
Matyva, A., 3,38
McConnell, S.C., 294,301
McFeeley, R., 186,237
McGarry, F., 11, 13,37
McGibbon, T., 9,39
McGlaun, J.M., 242,298
McGowan, C., 4,37
McKnight, W.L., 87,141
Mesirov, J.P., 242,298
Mezzacappa, A., 242,298
Miller, C.L., 9, 40
Miller, S., 180,236
Moon, J.A., 13,41
Moore, A.W., 62, 63,77
Moore, G.E., 257,299
Mosam, A., 62,77
Moynihan, T., 160,171
Muhlenbach, F., 50,76
Mukhopadhyay, T., 12,38
Mukhovatov, V.S., 273,300
Münch, J., 229,236, 237
Munson, J.C., 44,73
Muthu, V., 8,38
Myers, W.M., 4,39

N

Naik, A., 45,74
Nakano, A., 242,298
Neil, M., 144,171
Nejmeh, B., 180, 192, 204,236, 237
Nichols, R., 180,237
Nishida, T., 50,75
Northover, K., 242,298
Norton, D.P., 3,39

AUTHOR INDEX 307

O

Oberkampf, W., 284,300
Ocampo, A., 229,237
Oldham, L.G., 8, 13,39
Orr, K., 45,74

P

Page, G., 13,37
Page, J., 11,37
Pajerski, R., 11, 13,37
Paulk, M.C., 3, 4, 12,39, 149,171, 179,238,

250, 291, 292,299
Pautz, S.D., 285,301
Pazzani, M.J., 49,75
Peng, J., 62,77
Perini, P., 180,236
Peterson, M., 8, 13,39
Petroski, H., 267,299
Pfleeger, S.L., 44, 45, 61, 62,73
Phillips, D., 253, 292,299
Phillips, J.J., 28,39
Phillips, R., 216,238
Picardal, C., 155,170
Pindzola, M.S., 242,298
Platt, J.C., 62,77
Polkowski, L., 62,76
Poore, J.H., 100, 135,141
Post, D.E., 241, 247, 248, 264, 271, 274, 276,

277, 279,297, 299, 300
Powell, K.G., 242,298
Pragma Systems Corporation, 199,238
Prowell, S.J., 100, 135,141
Putnam, D.B., 8, 13,39
Putnam, L.H., 4,39

Q

Quinlan, J.R., 46, 49, 62, 63,74, 76

R

Radice, R., 216,238
Randell, B., 86, 91,139
Ratner, M.A., 242,298
Rebours, P., 46, 48, 53–56, 62–64, 66, 67,74,

76, 77

Redman, T.C., 45,74
Reifer, D.J., 6, 8, 9,39, 40
Remer, D., 276, 280, 293,300
Renner, S., 180,236
Rico, D.F., 4, 6, 8, 9, 15, 16, 28,40
Riddle, W., 178, 180, 187, 199, 213, 219, 229,

230,235–238
Rider, W.J., 285,301
Riedel, K., 273,300
Rixey, A., 230,236
Roache, P.J., 245, 284, 285,299, 301
Roberts, A., 284,301
Robicheaux, F.F., 242,298
Rombach, D., 3,37, 186, 229,235, 236
Ronkainen, J., 178,235
Rooijmans, J., 8, 13,40
Ropponen, J., 149,171
Rosen, J.M., 242,298
Rosenbaum, S., 11, 13,41
Rossman, A., 9,38
Rouncefield, M., 88, 121,140
Rova, R.M., 13,41
Roy, G.G., 144,171
Rozum, J., 8, 9, 11, 13,38
Rubin, H.A., 10, 13,40
Rudd, B., 8, 13,39
Rundle, J.B., 242,298
Rus, I., 139,140, 141
Ruskin, A.M., 279,300
Ryskowski, J.F., 13,41

S

Saito, T., 242,298
Sakakibara, Y., 49,75
Salo, O., 178,235
Saltmarsh, M., 272,300
Sandhu, J., 88,141
Sastry, S., 242,298
Schaal, S., 62, 63,77
Schapire, R., 49, 62,75
Schneier, B., 242,298
Schölkopf, B., 50,75
Scott, M.D., 13,41
Scuseria, G.E., 242,298
Seliya, N., 45, 50, 62,74, 76
Seshagiri, G., 180,236
Shapira, D., 272,300

308 AUTHOR INDEX

Sheard, S., 9,40
Sherer, S.A., 156,171
Shewhart, W.A., 186,238
Shrum, S., 3,37
Shumate, K.C., 13,41
Siegel, J., 8, 9, 11, 13,38
Sikka, V., 6,40
Skjellum, A., 260,299
Skowron, A., 62,76
Slaughter, S.A., 8, 12,40
Sligo, J., 6, 8, 11, 12,38
Slonim, D.K., 242,298
Snell, A., 241,297
Snyder, J., 9,38
Snyder, T., 8, 11,39
Sommerville, I., 88, 121,140
Soni, B.K., 244, 245, 249,299
Sorqvist, L., 12, 22,40
Spotz, W.F., 242,298
Srihari, S.N., 48,75
Stochastic, J., 62,76
Strong, D.M., 45,74
Subramanyam, V., 180,238
Swarztrauber, P.N., 242,298
Symons, C.R., 280,300

T

Takayama, K., 242,298
Takizuka, T., 273,300
Taleyarkhan, R.P., 272,300
Tang, W., 50,75
Tartakovsky, D.M., 242,298
Taylor, G., 8,38
Teng, C.M., 45, 46, 50, 58,74, 75
Thomas, I., 204,237
Thomas, W.M., 157,170
Thompson, J.F., 244, 245, 249,299
Thompson, S.L., 242,298
Thomsett, R., 256, 276–278, 293,299
Tibshirani, R., 62,76
Tjoland, K., 8, 13,39
Tockey, S., 6,40
Tohline, J.E., 242,298
Tomal, J., 199,237
Tomek, I., 49, 50,75
Traweek, S., 269,300
Trigg, L., 62,77

Trucano, T., 284,300
Turner, R., 180,235

V

van der Steen, A., 259, 261,299
van Genuchten, M., 8, 13,40
van Latum, F., 22,40
van Slack, T., 8, 11,38
van Solingen, R., 3, 4, 8, 11, 22, 23, 26, 27,37,

40
van Vliet, H., 276,300
VanDeVanter, M., 264, 271,299
Vapnik, V., 50,75
Vashishta, P., 242,298
Verlage, M., 199,237
Verzuh, E., 279,300
Vijayaratnam, N., 62,77
Vinter, O., 81,140

W

Wakatani, M., 273,300
Waligora, S., 11, 13,37
Walker, J.A., 144,171
Walters, D., 8,40
Wang, R.Y., 45,74
Warsta, J., 178,235
Weatherill, N.P., 244, 245, 249,299
Webb, M.D., 242,298
Weber, C.V., 3,39, 149,171, 179,238
Weinhous, M.S., 242,298
Wendell, J.D., 44, 61,73
Wennberg, P., 81,140
Wesson, J., 242,298
West, C.D., 272,300
Whitlock, P.A., 243,299
Whitney, E.M., 241, 247,297
Widmer, G., 49,75
Wiggle, G.B., 8, 13,41
Wileden, J., 219,235
Willard, C.G., 241,297
Williams, R.C., 144,171
Willis, R., 8, 11, 13,39, 41
Wilson, D.R., 49, 50,75
Winfield, T.O., 13,41
Winston, P.H., 50,75
Winter, C.L., 242,298

AUTHOR INDEX 309

Witten, I.H., 44, 47, 48, 53, 56, 62, 63, 67,74,
77

Wohlwend, H., 11, 13,41
Wu, X., 45–48, 50–56, 58, 63, 67, 69,74, 76

Y

Yamamura, G., 8, 13,41
Yang, Y., 45, 50,74
Yau, C., 161,171
Yeh, K.S., 242,298
Yin, R.K., 248, 276, 280,299
Yourdon, E., 13,40, 278,300

Yuan, X., 62,76
Yushmanov, P., 273,300

Z

Zelkowitz, M.V., 11,37, 139,140, 141
Zhao, Q., 50,75
Zhong, S., 48, 49, 55, 62, 63,74
Zhu, X., 45–48, 50–56, 58, 63, 67, 69,74, 76
Zighed, D.A., 50,76
Zosel, M.E., 264, 271,299
Zubrow, D., 4, 8, 9, 11–13,38, 39, 293,301

This page intentionally left blank

Subject Index

A

Acceptability, 88–91
components, 91
effect of shortfalls on, 154, 156
factors contributing, 90
framework, 89, 127
practical, 88
tradeoff range for, 156, 157

Acceptability function, 91
Acceptance test, 115
Activity, definition, 178
Adaptive mesh refinement, 245
Adaptive networks, 231
Agile methods, 178, 180, 226–7
“Agile software” community, 293
Ambiguity, reduction, 121
Analysis, 116

process, 117, 194
Analyze activities, 193–4
Appraisal costs, 17–18
Architecture definition interviews, 215–16
Artifact

definition, 178
states, 229

ASCI Q system, 261
Asset, definition, 178
Association rule mining, 50
Audit activities, 196
Authentication, 88, 110
Automobile industry, 291
Availability, 86–7, 93, 110

B

B/CR, 6, 7
examples for SPI methods, 18–19

Bagging, 49
Base classification techniques, 62

Base learners, 47
categories, 48

Bayesian learning theory, 49
Behavioral requirements, 106–11, 117–18
Benchmarking, 285
Benefit/cost ratioseeB/CR
Benefits (as ROI metric), 6, 7
BEP, 6, 7

examples for SPI methods, 18–19
Best practices, 177, 178–9
Boltzmann equation, 244
Boolean rules, 50
Boosting, 49
Brainstorming workshops, 216–18
Branch Count metrics, 61
Break even pointseeBEP
Build-test-fix process, 82
Business-driven product planning case study,

204–6
decision visualization, 223–4
development effort ROI, 223
evolution effort goals, 205
evolution effort scope, 204–5
evolution effort strategy, 205
exercise-to-exercise influences, 206
process evolution exercise, 205–6
scaling to manage complexity, 233

C

C, 263, 264
C++, 264
CAF, 262, 263
Capabilities, 98
Capability Maturity ModelseeCMM
Capability Maturity Model Integrationsee

CMMI
Capacity requirements, 108–9
Capture activities, 192–3

311

312 SUBJECT INDEX

Carnegie Mellon Software Engineering
Institute (SEI), 179

Software Engineering Information
Repository, 180

Cells, 245
Change, potential, 150
Class-noise filters, 46, 47–9

efficient, 46
Classification Filter, 46, 47, 48

classifiers, 55
for JM1-8850 dataset, 62

Classification of modules, 44
Climate modeling, 284
CMM, 179, 180, 223, 292–3, 294

case study, 198–201
CMMI, 3, 29, 179

benefit model, 16, 17
cost model, 15
detailed ROI estimation procedures, 35–6
peer reviews, 149
ROI metric examples, 18–19

Co-Array Fortran (CAF), 262, 263
COBIT, 180
Code development teams, 270–1, 275, 277,

294
training, 279
virtual, 295

Code librarian, 292
Coding, 115
“Cold fusion”, 271, 296
Columbia Space Shuttle Accident, 271–2
Common Components Architecture, 294
Communication bandwidth, 258
Communication obligations, 223
Communication usage, 109
Completeness, 119–20

over time, 130
Complex systems, emergent principles

determining behavior, 290
Computational fluid dynamics (CFD), 285

validation of codes, 288–9
Computational physics case study, 276–83

code development “lessons learned”,
277–79, 284

contingency factor, 281, 282
function point scaling relations, 280, 283
project age, 282

project schedule, 282
project time, 282
software resource estimates, 281

Computational science and engineering
analysis, 242
code development teams, 270–1, 275, 277,

293–4
training, 279
virtual, 295

comparative case studyseeComputational
physics case study

compared with experimental science, 269–70
computational tools role, 274
development challenge, 274–6, 295
failures, 271, 273–4
future developments, 296–7
goals and requirements, 292
lessons from general IT industry, 294
maturity level, 269–70, 273
metrics for software development, 295
performance challenge, 257–62, 295
prediction challenge, 265–9, 295
programming challenge, 259, 262–5, 295
project leader talents, 270–1
validation, 276, 286, 288–90
verification, 283, 285–6
see alsoFALCON project; High

performance computing
Computer power, growth, 257
Computer Support Cooperative Work, 230
Computing infrastructure interfaces, 107
Condition, definition, 178
Confidentiality, 87, 110
Configuration management, 292
Configuration Management Plan (CMP), 145
Consensus voting scheme, 48
Conservativeness, level of, 48
“Conserved” quantities, 285
Consistency, 122
Construction, 115
Contractual constraints, 177–8, 196
Contribution percentages, 24–5
Control OBjectives for Information and related

Technology (COBIT), 180
Controls, project, 146
Convergence rates, 285
Correctness, 121–2

SUBJECT INDEX 313

Cost-sensitive learning, 50
Costs (as ROI metric), 6, 7
CRATER, 272
Cray, 260, 261–2, 297

X-1, 259
Cross-correlation views, 223
Cross-validation,k-fold, 47
Cross-validation constraint, 53

D

Data mining algorithms, 44–5
Data noiseseeNoise
Data storage capability, 258
Debugging, massively parallel programs, 256
Decision visualization, 223–4
Defect avoidance, 80
Defect removal, 80
Defects

repair costs
by phase, 82
relative, 81

root cause analysis, 81–2
Delivery schedule, 90
Delphi technique, modified, 218
Demonstration, 116
Dependability, 84–94

attributes, 86–7, 110
IFIP WG 10.4 definition, 85
means/mechanisms achieved, 86
requirements and, 126–7
return on investment, 139
threats, 86
see alsoAcceptability; Trustworthiness

Dependability tree, 86–7
Deploy activities, 195
Deployment checklist, 214
Design, software, 115
Design activities, 193
Design for assembly (DFA), 112
Design and code reviews, 292
Design constraints, 112, 113
Design for repair (DFR), 112
Development, softwareseeSoftware

development
Development challenge, 274–6, 295
Developmental test, 115

“Difference” reports, 219–20
Distributed Memory-Multiple Instruction

Multiple Data (DM-MIMD)
architectures, 259

Dynamics display, 219–20

E

Earth Simulator, 261, 262
Efficiency paired comparison, 47, 58–60

hypothesis testings, 59–60
principles, 58–9
relative efficiency between filters, 60
results for JM1-8850 dataset, 67–72

Elicit activities, 193
Embedded control software, 291
Embedded systems, design, 132–3
Ensemble Filter, 46, 47–8

classifiers, 55
for JM1-8850 dataset, 62–3
number of base classifiers, 48

Ensemble-Partitioning Filter, 46, 51–6
advantages, 46
algorithm, 52
base learner creation, 51–3
complexity, 56
efficiency, 56
empirical evaluationseeJM1 evaluation
expertise to build, 56
iterative approach, 54–5
model-selection strategy, 57
parameter configuration, 56
partitioning of dataset, 51
performance evaluation, 57–8
recommendations for appropriate filter, 72–3
scalability, 56
specialized filters, 55–6
voting schemes, 53–4, 73
see alsoEfficiency paired comparison

ETVX process model, 216
Examine activities, 197
Exceptions, data noise versus, 49
Expected Cost of Misclassification (ECM), 57
Expense form processing, 229
Experimental science, 269–70
Experiments

controlled, 287

314 SUBJECT INDEX

in validation, 287–9
Experts, 53
Extensibility, 112
eXtreme programming, 179

F

Failure
intermittent, 93
types, 91–4

FALCON project, 248–57
characteristics, 248–50
conclusions, 256–7
debugging, 256
development tool improvements, 253, 254,

256
lessons learned, 256
life cycle, 250–2
requirements, 251
research and development, 251
roadblock identification, 249, 256
tasks, categories, 252–3, 254, 255
verification and validation, 256
workflows, 252–6

False negative error, 46, 57
False positive error, 46, 57
Fault-prone (fp), 44
Fault tolerance, 81
Field Programmable Gate Arrays (FPGAs),

261
Filtering level (λ), 48, 53
Final classifiers, 48
Fitness for purpose, 90
Formal analysis, 194
Fortran, 249, 263, 264
fp, 44
Function points (FP), 247–8, 280, 295
Functional requirements, 105, 106–7

G

Gather activities, 191
Gilb’s law, 27
Global address space abstraction, 263
Global experts, 53
Gold plating, 159
GQM measurement program, 22–4

Graphics Processors (GPUs), 261
Grids, 245

see alsoMeshes
GUIs, 136

H

Halstead metrics, 61
Hardware development, 158
Heart-beat function, 125
Heisenbugs, 93
High Dependability Computing Project

(HDCP), 139
High performance computing

application domains, 242
large scale computational simulation

characteristics, 243–8
code size, 247
development time, 247–8
dimensionality, 243–5
time steps, 247

problem formulation and solution
techniques, 243

see alsoComputational science and
engineering; FALCON project;
Supercomputers

High Productivity Computing Systems
(HPCS) program, 261, 265, 296

Human–system interfaces (HSIs), 135
development steps, 136–7
formal agreement on, 136–7
problems, 135–7

Hypercubes, 263

I

IBM, 262, 297
Blue Gene, 260, 261
Power 5, 259

iDAVE model, 139
IDEAL model, 186, 231
IEEE Recommended Practice for Software

Requirements Specification (IEEE Std.
830-1998), 95–6, 118–19

IEEE Standard Glossary of Software
Engineering Terminology (IEEE Std.
610.12-1990), 95

SUBJECT INDEX 315

IFIP WG 10.4, 85
Impact of riskseeRisk impact
Implementation constraints, 112, 113
Implementation requirements, 112–14, 117–18
Importer, 218–19
Improvement game plans, 177–80

definition, 177
PEDAL framework and, 230–1
PERFECT approach and, 226
techniques and tools, 213, 214

Inchstones, 147
Inductive learning algorithms, 44
Information Assurance (IA), 87–8
Inspection, 116

process, 194
Inspections, 28

benefit model, 16, 17
cost models, 15
detailed ROI estimation procedures, 29–30
ROI metric examples, 18–19

Instance selection techniques, 49–50
Insurability, 268
Integration, 115
Integrity, 87, 110, 112

of construction, 110
of operation, 110

Intel, 263
Interfaces, 107–8, 133, 136, 294
International Experimental Tokamak Reactor

(ITER), 273
Inventory-control case study, 201–4

evolution effort goals, 202
evolution effort scope, 202
evolution effort strategy, 202
exercise-to-exercise influences, 203–4
process evolution exercise, 202–3

ISO 9001 method, 29
benefit model, 16, 17
cost model, 15
detailed ROI estimation procedures, 33–4
ROI metric examples, 18–19

Iteration stopping criterion, 54, 55
Iterative-Partitioning Filter, 46, 48, 54

with consensus voting scheme, 55
for JM1-8850 dataset, 63–4
with majority voting scheme, 55

J

J48 classifier, 62, 63
JM1 evaluation, 61–72

efficiency paired comparison results, 67–72
filter creation, 62–4
final learners performance, 66–7
JM1-8850 dataset, 61
misclassification costs

fit dataset, 68
test dataset, 69

noise elimination results, 64–6
software measurements, 61–2
system description, 61–2

L

Large scale computational simulationseeHigh
performance computing

Large-scale experimental projects, 269–70
Latency, 108
Likelihood of riskseeRisk likelihood
Line Count metrics, 61
LINPACK, 261, 265
Linux clusters, 260
Local experts, 53
LS-DYNA, 272

M

Maintainability, 87, 110, 111–12
Majority voting scheme, 47
Materials, project, 146
MATLAB, 264
Maturity, path to, 266, 268–9
Maturity models/frameworks, 177, 179–80
McCabe metrics, 61
Mean time between failures (MTBF), 87
Memory usage, 109
Mentoring, 221
Meshes, 245

generation, 249
structured, 245
unstructured, 245

Message Passing Interface (MPI), 249, 260,
262, 263

Message passing protocols, 259–60

316 SUBJECT INDEX

Method of Manufactured Solutions, 285
Metrics, processseeProcess metrics
Misclassification errors, types, 46, 57
Models

operational environment, 135
usage, 135

Modifiability, 123–4
Monitor activities, 196
Moore’s Law, 240, 257, 264
“More’s Law”, 264
MPI, 249, 260, 262, 263
Multi-material codes, 245
Multiple-Partitioning Filter, 46, 48

classifiers, 55
for JM1-8850 dataset, 63

Multi-scale problems, 245–6

N

NASA
Columbia Space Shuttle Accident, 271–2
High Dependability Computing Project

(HDCP), 139
Metrics Data Program (MDP), 61
software defect analysis, 81

NCube, 263
Near misses, 50
NEC, 261

Earth Simulator, 261, 262
NECM, 57–8
Net present valueseeNPV
nfp, 44
Noise, 45

artificial, 58
attribute, 45
class, 45

see alsoClass-noise filters
exceptions versus, 49
methods to handle, 49–51

Non-repudiation, 88, 110
Normalized Expected Cost of

Misclassification (NECM), 57–8
Not fault-prone (nfp), 44
NPV, 6, 7

examples for SPI methods, 18–19
Nuclear fusion, 272
Nuclear weapons complex, 280, 281

O

Oak Ridge National Laboratory, 272
Occupies relation, 231
Old Cost benefit model, 16
OpenMp, 262, 263
Operational procedures, 179
Operational scenarios, 99–100, 135
Operator splitting, 246
Optimizing compilers, 264

P

P-threads, 263
Pairwise attribute noise detection algorithm, 51
Parallel code development, 252, 253
Parallel file systems, 259
ParMetis, 249
Partial differential equation applications,

243–5
distinguishing features, 244

PDSA models, 186, 231
PEDAL framework, 183, 186, 190–7, 225

activity categories, 190
analyze, 193–4
audit, 196
capture, 192–3
deploy, 195
design, 193
elicit, 193
examine, 197
gather, 191
monitor, 196
perform, 195–6
plan, 191–2
train, 195

in improvement game plan focusing, 230–1
improvements, 226–30
observations from Case Studies, 206–8
value, 225–6, 234

Peer reviews, 149, 266–7
Peer-to-peer interfaces, 107
People Capability Maturity Model, 180
PERFECT approach

additional assets, 213–15
as improvement game plan complement, 226
improvements, 226–30

SUBJECT INDEX 317

lessons learned, 208–9
observations from Case Studies, 206–8
process change team support, 220–4
value, 225–6, 234
see alsoProcess evolution

Perform activities, 195–6
Performance challenge, 257–62, 295
Performance optimization, 249
Phase gating, 216
Physical data, 246–7
Physics simulation codes, 270–1
Plan activities, 191–2
Plan-Do-Study-Act (PDSA) models, 186, 231
Plans, projectseeProject plans
Platform architectures, turnover, 259
Plausibility checks, 266
PlayStation 3, 258
Polishing, 50
Political science, 242
Portability, 111
Post-pruning, 49
PowerPC processors, 261
Precedes/succeeds relation, 231
Prediction challenge, 266–9, 295
Predictive class, 51
Predictive validity range, 287
Preparation costs, 17–18
Probabilistic noise model, 50
Problem reports, 221–2, 223
Process analysis, 117, 194
Process architecture, 186, 187

architecture definition interviews, 215–16
establishment, 192
importance, 209
patterns, 216
for process enactment support system, 230
reasons for specifying, 187

Process Areas, 179
Process Asset Libraries, 213
Process coherency, strong, 184
Process coupling, loose, 184
Process documentation

collection of information about, 188
creation, 195
distribution, 188, 195
update, 192

Process enactment support, 229–30
Process evolution, 181–3

agility, 226–7
case studies, 197

lessons learned, 208–9
observations from, 206–8
see alsoBusiness-driven product planning

case study; Inventory-control case
study; Software engineering
processes case study

concepts, 176
descriptions, 209–13
dynamics, 176
exercise, 185
focus and intent, 181
focusing, 227–8
general view, 183–5
graphical depictions of processes, 209,

210–11, 231–2
guidance, 228
importance, 175
infrastructure, 213–24

activity category-specific support, 218–20
additional assets, 213–15
process change team support, 220–4
process information gathering, 215–18

iteration depictions, 211–13
lessons learned, 208–9, 232
metrics, 192
nature, 182
objectives, 182
planning and management, 232–3
process enactment support, 229–30
requirements, 183
stages, 185–9

define, 188
perform, 188
review, 188–9
scope, 186

support capability, 228–9
see alsoPEDAL framework; PERFECT

approach
Process Evolution Dynamics Activity

LandscapeseePEDAL framework
Process excellence, achieving, 177, 178
Process Information database, 189

as-is processes, 193
error/anomaly information, 194
exercise objectives, 192

318 SUBJECT INDEX

future activities, 197
importing of information, 218–19
process application information, 196
process architecture definition, 192
process conformance information, 196
process descriptions, 195
process performance information, 196
to-be processes, 193
training information, 195

Process metrics, 192, 222–3
dynamic, 192
static, 192

Process police, 195–6
Process-related information, 189
Process set, 184
Process views, 223
Process visualization, 231–2
Process workflow support, 196
Processor speed, 257–8
Processor usage, 109
Product evolution, 175
Product test, 115
Professional integrity, 266, 267, 268
Programmatic requirements, 114, 117–18
Programming challenge, 259, 262–5, 295
Project, definition, 184
Project Information database, 189
Project plans, 145–9

dependencies, 146–7
information contained, 146
see alsoSoftware development

Prototypes, 294
PSP, 3, 29

benefit model, 16, 17
cost model, 15
detailed ROI estimation procedures, 30–1
ROI metric examples, 18–19

Q

QIP model, 186, 231
Quality

software, 279, 291–5
system, 91, 92

Quality of construction requirements, 111–12,
117–18

Quantum computers, 258

R

Ranking
for importance, 125–6, 138
for stability, 126

Red Storm, 260
Regression suite, 286
Regression testing, 292
Regulatory constraints, 177–8, 196
Reliability, 87, 110
Reliance, 85
Repository, 189

databases, 189
Reproducibility, 266
Requirements

adherence to, 90
behavioral, 106–11, 117–18
capacity, 108–9
categories, 103–14
challenges, 127–38

fear of excessive detail, 133–4
human–system interface (HSI) problems,

135–7
inappropriate requirements, 137–8
test versus operational environment

mismatch, 134–5
unknown “physics” for embedded

systems, 132–3
users’ real needs not matched, 128–9
volatile and late-defined requirements,

129–32
changes, 129–32
definition, 292
dependability and, 126–7
derivation, 96–100

capabilities definition, 98–9
operational environment characterization,

97
operational scenarios definition, 99–100,

135
requirements definition activity, 100
strategy selection, 97–8
system need identification, 96–7

development, 115
effect on development processes, 117–18
elicitation, 119
functional, 105, 106–7

SUBJECT INDEX 319

handling, 115–18
hierarchies, 100–3, 104
IEEE definitions, 95–6
implementation, 112–14, 117–18
interface, 107–8, 133, 136
nature, 94–103
over-constrained, 138
over-specified, 137–8
programmatic, 114, 117–18
quality attributes, 118–26

complete, 119–20
consistent, 122
correct, 121–2
modifiable, 123–4
ranked for importance, 125–6, 138
ranked for stability, 126
traceable, 124–5
unambiguous, 121
verifiable, 122–3

quality of construction, 111–12, 117–18
resource utilization, 108
software, 103, 105

relationship to system requirements,
124–5

system, 103, 105
relationship to software requirements,

124–5
temporal, 107
trustworthiness, 109–10, 117
unbounded, 138
usability, 110–11, 117

Resource Information database, 189
Resource utilization requirements, 108
Resources, project, 146
Return on investmentseeROI
Reusability, 112
“Rigid process” community, 293
RISC processors, 259, 261
Risk

definition, 150
frequency of occurrence, 153
handling, 161–8

see alsoRisk levels; Risk mitigation
monitoring/reporting, 164, 167
retired, 164
sources, 156–61

top ten items, 159, 160
summary report, 168, 169

Risk avoidance, 151
Risk event, 150

elements, 150
Risk impact, 150, 153–6

acceptance/absorption, 166
classification, 155–6
effect on acceptability, 155–6
expected value, 161
reduction, 166
timing, 167

alteration of, 166
tradeoff range for acceptability, 156, 157
variation in levels, 156, 158

Risk levels, 161–5
high, 161, 163
low, 161, 162, 164
medium/moderate, 161, 162
monitoring, 167
stop light chart, 164, 165
variation over time, 163

Risk likelihood, 150, 152–3
category-based layering, 152
levels, 152
reduction, 166

Risk matrix, 161, 164
Risk mitigation, 152, 165–8

plan chart, 168
plans for, 167–8
risk summary report, 168, 169
steps, 166–7
strategies, 166
timing, 167

Risk trigger, 150
Roadblock identification, 249, 256
ROI

definition, 4
estimation procedures for SPI approaches,

28–36
literature survey, 7–10

critical view on measurements, 9
lack of ROI expectations, 9–10
ROI numbers, 8

metrics, 6–7
models for SPI, 18–19
a posteriori analysis, 12, 14
pragmatic approach, 5, 27–8
a priori analysis, 12, 14

320 SUBJECT INDEX

of software dependability, 139
value vs. ROI analyzer, 219

Role-Based Workspaces, 229–30
Roles

definition, 178
name variants, 222

Run-time reconfiguration, 132, 137

S

Safety, 87, 110
Safety-related behaviors, 94
Sandia, 260
Serial code development, 252
Silver bullet syndrome, 160
Simulation

large scaleseeHigh performance computing
process, 194

Six Sigma approach, 180
SMPs, 249, 259

clusters, 260, 261
performance, 263

Social sciences, 242
Software Capability Maturity Modelsee

SW-CMM
Software development

activities, 115–17, 147, 148
code value, 278
resource needs, 278
risk factors, 158–9, 277
schedule needs, 278
software quality, 279, 290–5
teamseeCode development teams
see alsoProject plans

Software Development Plan (SDP), 145, 146
associated risk, 158

Software Engineering Information Repository,
180

Software Engineering Institute (SEI), 293
see alsoCMM

Software engineering processes case study,
198–201

evolution effort goals, 198–9
evolution effort scope, 198
evolution effort strategy, 199–200
exercise-to-exercise influences, 201
graphical description, 210–11

iteration depiction, 211–13
process evolution exercise, 200–1

Software process improvementseeSPI
Software project management, 290, 292,

293–4
Software quality, 279, 290–5
Software Quality Assurance (SQA), 291
Software Quality Models (SQMs), 44

see alsoEnsemble-Partitioning Filter
Sonoluminescence, 272
Source lines of code (SLOC), 248
Speed, 108
SPI

approaches, 28–36, 213
benefit models, 15–17
benefits, 12

classification, 13
reported, 13
stakeholder involvement in estimation,

21–2
cost and benefit summary, 17–18
cost models, 14–15
costs, 10–11
definition, 2
pre-packaged approaches, 3
process scope, 214
quantitative measurement for investment

evaluations, 20–7
applicability, 20–1
CMM-based improvement program,

24–5, 26
GQM-based measurement program, 22–4
limitations, 25, 27

quantitative models for decision making,
14–20

limitations, 19–20
see alsoROI

Stakeholders
needs, 88
see alsoAcceptability

Standards, 177
Stop light chart, 164, 165
Stopping criterion, 54, 55
Storage usage, 109
Suitability, process, 194
Sun, 262, 297
Supercomputers, 242

costs, 258

SUBJECT INDEX 321

future developments, 261–2
types, 259–61

Supervised learning algorithms, 48
Suspension bridges, 267–8
SW-CMM, 3, 29

benefit model, 16, 17
cost model, 15
detailed ROI estimation procedures, 32–3
improvement program evaluation, 24–5, 26
ROI metric examples, 18–19

Symmetric Multi-Processor machinessee
SMPs

System, components within, 100, 102
System Acceptability Model, 88
System quality, 91, 92
Systems Requirement Document (SRD), 145

T

Tacoma Narrows bridge, 267
Target theory, 50
Team meeting support, 220–1
Team programming, 227
Team Software Process, 293
Technical softwareseeComputational science

and engineering
Technology, path to maturity, 267–8
Temporal requirements, 107
Terms and conditions, 114
Tester, dedicated, 292
Testing, 116

analytic, 116
definitive, 116

Tetrapyloctomy, 152
Throughput, 108
Total life cycle cost, 16
Traceability, 124–5
Trade-offs, sequence, 100, 101
Train activities, 195
Trustworthiness, 85

requirements, 109–10, 117
TSP, 3, 29

benefit model, 16, 17
cost model, 15
detailed ROI estimation procedures, 31
ROI metric examples, 18–19

Turbulent flow, 245–6
Type I error, 46, 57
Type II error, 46, 57

U

Unambiguity, 121
Unified Model of Dependability, 139
Unified Parallel C (UPC), 262, 263
Usability, 90

analysis, 136
requirements, 110–11, 117

Usage models, 135
User interfaces, 107, 133, 136
Uses/produces relation, 231

V

Validation, 115–17, 248, 284
in computational science and engineering,

276, 286–90
experiment types used, 287–9
FALCON project, 256
of integrated code, 290
written record, 290–1

Value vs. ROI analyzer, 219
Vector processors, 259, 261, 262
Verifiability, 122–3
Verification, 115, 248, 283

in computational science and engineering,
284–6

FALCON project, 256
techniques, 115–17, 285–6

by requirement type, 117–18
written record, 290

W

Waterfall model, 147, 253
WebGuide Generation Tool Suites, 199, 218

extensions, 219, 220–1, 222
WebGuides, 198, 199
Wind tunnel studies, 287, 289
Work Breakdown Structure (WBS), 222
Workflow support, 229

This page intentionally left blank

Contents of Volumes in This Series

Volume 42

Nonfunctional Requirements of Real-Time Systems
TEREZA G. KIRNER AND ALAN M. DAVIS

A Review of Software Inspections
ADAM PORTER, HARVEY SIY, AND LAWRENCE VOTTA

Advances in Software Reliability Engineering
JOHN D. MUSA AND WILLA EHRLICH

Network Interconnection and Protocol Conversion
M ING T. L IU

A Universal Model of Legged Locomotion Gaits
S. T. VENKATARAMAN

Volume 43

Program Slicing
DAVID W. BINKLEY AND KEITH BRIAN GALLAGHER

Language Features for the Interconnection of Software Components
RENATE MOTSCHNIG-PITRIK AND ROLAND T. M ITTERMEIR

Using Model Checking to Analyze Requirements and Designs
JOANNE ATLEE, MARSHA CHECHIK, AND JOHN GANNON

Information Technology and Productivity: A Review of the Literature
ERIK BRYNJOLFSSON ANDSHINKYU YANG

The Complexity of Problems
WILLIAM GASARCH

3-D Computer Vision Using Structured Light: Design, Calibration, and Implementation Issues
FRED W. DEPIERO AND MOHAN M. TRIVEDI

Volume 44

Managing the Risks in Information Systems and Technology (IT)
ROBERT N. CHARETTE

Software Cost Estimation: A Review of Models, Process and Practice
FIONA WALKERDEN AND ROSSJEFFERY

Experimentation in Software Engineering
SHARI LAWRENCE PFLEEGER

Parallel Computer Construction Outside the United States
RALPH DUNCAN

Control of Information Distribution and Access
RALF HAUSER

Asynchronous Transfer Mode: An Engineering Network Standard for High Speed Communications
RONALD J. VETTER

323

324 CONTENTS OF VOLUMES IN THIS SERIES

Communication Complexity
EYAL KUSHILEVITZ

Volume 45

Control in Multi-threaded Information Systems
PABLO A. STRAUB AND CARLOS A. HURTADO

Parallelization of DOALL and DOACROSS Loops—a Survey
A. R. HURSON, JOFORDT. L IM , KRISHNA M. K AVI , AND BEN LEE

Programming Irregular Applications: Runtime Support, Compilation and Tools
JOEL SALTZ , GAGAN AGRAWAL , CHIALIN CHANG, RAJA DAS, GUY EDJLALI , PAUL

HAVLAK , YUAN-SHIN HWANG, BONGKI MOON, RAVI PONNUSAMY, SHAMIK SHARMA ,
ALAN SUSSMAN, AND MUSTAFA UYSAL

Optimization Via Evolutionary Processes
SRILATA RAMAN AND L. M. PATNAIK

Software Reliability and Readiness Assessment Based on the Non-homogeneous Poisson Process
AMRIT L. GOEL AND KUNE-ZANG YANG

Computer-supported Cooperative Work and Groupware
JONATHAN GRUDIN AND STEVEN E. POLTROCK

Technology and Schools
GLEN L. BULL

Volume 46

Software Process Appraisal and Improvement: Models and Standards
MARK C. PAULK

A Software Process Engineering Framework
JYRKI KONTIO

Gaining Business Value from IT Investments
PAMELA SIMMONS

Reliability Measurement, Analysis, and Improvement for Large Software Systems
JEFF TIAN

Role-based Access Control
RAVI SANDHU

Multithreaded Systems
KRISHNA M. K AVI , BEN LEE, AND ALLI R. HURSON

Coordination Models and Language
GEORGEA. PAPADOPOULOS ANDFARHAD ARBAB

Multidisciplinary Problem Solving Environments for Computational Science
ELIAS N. HOUSTIS, JOHN R. RICE, AND NAREN RAMAKRISHNAN

Volume 47

Natural Language Processing: A Human-Computer Interaction Perspective
BILL MANARIS

Cognitive Adaptive Computer Help (COACH): A Case Study
EDWIN J. SELKER

Cellular Automata Models of Self-replicating Systems
JAMES A. REGGIA, HUI-HSIEN CHOU, AND JASON D. LOHN

Ultrasound Visualization
THOMAS R. NELSON

CONTENTS OF VOLUMES IN THIS SERIES 325

Patterns and System Development
BRANDON GOLDFEDDER

High Performance Digital Video Servers: Storage and Retrieval of Compressed Scalable Video
SEUNGYUP PAEK AND SHIH-FU CHANG

Software Acquisition: The Custom/Package and Insource/Outsource Dimensions
PAUL NELSON, ABRAHAM SEIDMANN , AND WILLIAM RICHMOND

Volume 48

Architectures and Patterns for Developing High-performance, Real-time ORB Endsystems
DOUGLAS C. SCHMIDT, DAVID L. L EVINE, AND CHRIS CLEELAND

Heterogeneous Data Access in a Mobile Environment – Issues and Solutions
J. B. LIM AND A. R. HURSON

The World Wide Web
HAL BERGHEL AND DOUGLAS BLANK

Progress in Internet Security
RANDALL J. ATKINSON AND J. ERIC KLINKER

Digital Libraries: Social Issues and Technological Advances
HSINCHUN CHEN AND ANDREA L. HOUSTON

Architectures for Mobile Robot Control
JULIO K. ROSENBLATT AND JAMES A. HENDLER

Volume 49

A Survey of Current Paradigms in Machine Translation
BONNIE J. DORR, PAMELA W. JORDAN, AND JOHN W. BENOIT

Formality in Specification and Modeling: Developments in Software Engineering Practice
J. S. FITZGERALD

3-D Visualization of Software Structure
MATHEW L. STAPLES AND JAMES M. B IEMAN

Using Domain Models for System Testing
A. VON MAYRHAUSER AND R. MRAZ

Exception-handling Design Patterns
WILLIAM G. BAIL

Managing Control Asynchrony on SIMD Machines—a Survey
NAEL B. ABU-GHAZALEH AND PHILIP A. W ILSEY

A Taxonomy of Distributed Real-time Control Systems
J. R. ACRE, L. P. CLARE, AND S. SASTRY

Volume 50

Index Part I
Subject Index, Volumes 1–49

Volume 51

Index Part II
Author Index
Cumulative list of Titles
Table of Contents, Volumes 1–49

326 CONTENTS OF VOLUMES IN THIS SERIES

Volume 52

Eras of Business Computing
ALAN R. HEVNER AND DONALD J. BERNDT

Numerical Weather Prediction
FERDINAND BAER

Machine Translation
SERGEI NIRENBURG AND YORICK WILKS

The Games Computers (and People) Play
JONATHAN SCHAEFFER

From Single Word to Natural Dialogue
NEILS OLE BENSON AND LAILA DYBKJAER

Embedded Microprocessors: Evolution, Trends and Challenges
MANFRED SCHLETT

Volume 53

Shared-Memory Multiprocessing: Current State and Future Directions
PER STEUSTRÖM, ERIK HAGERSTEU, DAVID I. L ITA , MARGARET MARTONOSI, AND

MADAN VERNGOPAL

Shared Memory and Distributed Shared Memory Systems: A Survey
KRISHNA KAUI , HYONG-SHIK K IM , BEU LEE, AND A. R. HURSON

Resource-Aware Meta Computing
JEFFREYK. HOLLINGSWORTH, PETER J. KELCHER, AND KYUNG D. RYU

Knowledge Management
WILLIAM W. AGRESTI

A Methodology for Evaluating Predictive Metrics
JASRETT ROSENBERG

An Empirical Review of Software Process Assessments
KHALED EL EMAM AND DENNIS R. GOLDENSON

State of the Art in Electronic Payment Systems
N. ASOKAN, P. JANSON, M. STEIVES, AND M. WAIDNES

Defective Software: An Overview of Legal Remedies and Technical Measures Available to Consumers
COLLEEN KOTYK VOSSLER ANDJEFFREYVOAS

Volume 54

An Overview of Components and Component-Based Development
ALAN W. BROWN

Working with UML: A Software Design Process Based on Inspections for the Unified Modeling Language
GUILHERME H. TRAVASSOS, FORRESTSHULL , AND JEFFREYCARVER

Enterprise JavaBeans and Microsoft Transaction Server: Frameworks for Distributed Enterprise
Components

AVRAHAM LEFF, JOHN PROKOPEK, JAMES T. RAYFIELD , AND IGNACIO SILVA -LEPE

Maintenance Process and Product Evaluation Using Reliability, Risk, and Test Metrics
NORMAN F. SCHNEIDEWIND

Computer Technology Changes and Purchasing Strategies
GERALD V. POST

Secure Outsourcing of Scientific Computations
M IKHAIL J. ATALLAH , K. N. PANTAZOPOULOS, JOHN R. RICE, AND EUGENE SPAFFORD

CONTENTS OF VOLUMES IN THIS SERIES 327

Volume 55

The Virtual University: A State of the Art
L INDA HARASIM

The Net, the Web and the Children
W. NEVILLE HOLMES

Source Selection and Ranking in the WebSemantics Architecture Using Quality of Data Metadata
GEORGEA. M IHAILA , LOUIQA RASCHID, AND MARIA -ESTERV IDAL

Mining Scientific Data
NAREN RAMAKRISHNAN AND ANANTH Y. GRAMA

History and Contributions of Theoretical Computer Science
JOHN E. SAVAGE , ALAN L. SALEM , AND CARL SMITH

Security Policies
ROSSANDERSON, FRANK STAJANO, AND JONG-HYEON LEE

Transistors and 1C Design
YUAN TAUR

Volume 56

Software Evolution and the Staged Model of the Software Lifecycle
KEITH H. BENNETT, VACLAV T. RAJLICH, AND NORMAN WILDE

Embedded Software
EDWARD A. L EE

Empirical Studies of Quality Models in Object-Oriented Systems
L IONEL C. BRIAND AND JÜRGEN WÜST

Software Fault Prevention by Language Choice: Why C Is Not My Favorite Language
RICHARD J. FATEMAN

Quantum Computing and Communication
PAUL E. BLACK , D. RICHARD KUHN, AND CARL J. WILLIAMS

Exception Handling
PETER A. BUHR, ASHIF HARJI, AND W. Y. RUSSELL MOK

Breaking the Robustness Barrier: Recent Progress on the Design of the Robust Multimodal System
SHARON OVIATT

Using Data Mining to Discover the Preferences of Computer Criminals
DONALD E. BROWN AND LOUISE F. GUNDERSON

Volume 57

On the Nature and Importance of Archiving in the Digital Age
HELEN R. TIBBO

Preserving Digital Records and the Life Cycle of Information
SU-SHING CHEN

Managing Historical XML Data
SUDARSHAN S. CHAWATHE

Adding Compression to Next-Generation Text Retrieval Systems
NIVIO ZIVIANI AND EDLENO SILVA DE MOURA

Are Scripting Languages Any Good? A Validation of Perl, Python, Rexx, and Tcl against C, C++, and
Java

LUTZ PRECHELT

328 CONTENTS OF VOLUMES IN THIS SERIES

Issues and Approaches for Developing Learner-Centered Technology
CHRIS QUINTANA , JOSEPHKRAJCIK, AND ELLIOT SOLOWAY

Personalizing Interactions with Information Systems
SAVERIO PERUGINI AND NAREN RAMAKRISHNAN

Volume 58

Software Development Productivity
KATRINA D. MAXWELL

Transformation-Oriented Programming: A Development Methodology for High Assurance Software
V ICTOR L. W INTER, STEVE ROACH, AND GREG WICKSTROM

Bounded Model Checking
ARMIN BIERE, ALESSANDROCIMATTI , EDMUND M. CLARKE , OFER STRICHMAN , AND

YUNSHAN ZHU

Advances in GUI Testing
ATIF M. M EMON

Software Inspections
MARC ROPER, ALASTAIR DUNSMORE, AND MURRAY WOOD

Software Fault Tolerance Forestalls Crashes: To Err Is Human; To Forgive Is Fault Tolerant
LAWRENCE BERNSTEIN

Advances in the Provisions of System and Software Security—Thirty Years of Progress
RAYFORD B. VAUGHN

Volume 59

Collaborative Development Environments
GRADY BOOCH AND ALAN W. BROWN

Tool Support for Experience-Based Software Development Methodologies
SCOTT HENNINGER

Why New Software Processes Are Not Adopted
STAN RIFKIN

Impact Analysis in Software Evolution
M IKAEL L INDVALL

Coherence Protocols for Bus-Based and Scalable Multiprocessors, Internet, and Wireless Distributed
Computing Environments: A Survey

JOHN SUSTERSIC ANDALI HURSON

Volume 60

Licensing and Certification of Software Professionals
DONALD J. BAGERT

Cognitive Hacking
GEORGECYBENKO, ANNARITA GIANI , AND PAUL THOMPSON

The Digital Detective: An Introduction to Digital Forensics
WARREN HARRISON

Survivability: Synergizing Security and Reliability
CRISPIN COWAN

Smart Cards
KATHERINE M. SHELFER, CHRIS CORUM, J. DREW PROCACCINO, AND JOSEPHDIDIER

CONTENTS OF VOLUMES IN THIS SERIES 329

Shotgun Sequence Assembly
M IHAI POP

Advances in Large Vocabulary Continuous Speech Recognition
GEOFFREYZWEIG AND M ICHAEL PICHENY

Volume 61

Evaluating Software Architectures
ROSEANNETESORIEROTVEDT, PATRICIA COSTA, AND M IKAEL L INDVALL

Efficient Architectural Design of High Performance Microprocessors
L IEVEN EECKHOUT AND KOEN DE BOSSCHERE

Security Issues and Solutions in Distributed Heterogeneous Mobile Database Systems
A. R. HURSON, J. PLOSKONKA, Y. JIAO , AND H. HARIDAS

Disruptive Technologies and Their Affect on Global Telecommunications
STAN MCCLELLAN , STEPHENLOW, AND WAI -TIAN TAN

Ions, Atoms, and Bits: An Architectural Approach to Quantum Computing
DEAN COPSEY, MARK OSKIN, AND FREDERICT. CHONG

Volume 62

An Introduction to Agile Methods
DAVID COHEN, M IKAEL L INDVALL , AND PATRICIA COSTA

The Timeboxing Process Model for Iterative Software Development
PANKAJ JALOTE, AVEEJEETPALIT , AND PRIYA KURIEN

A Survey of Empirical Results on Program Slicing
DAVID BINKLEY AND MARK HARMAN

Challenges in Design and Software Infrastructure for Ubiquitous Computing Applications
GURUDUTH BANAVAR AND ABRAHAM BERNSTEIN

Introduction to MBASE (Model-Based (System) Architecting and Software Engineering)
DAVID KLAPPHOLZ AND DANIEL PORT

Software Quality Estimation with Case-Based Reasoning
TAGHI M. K HOSHGOFTAAR ANDNAEEM SELIYA

Data Management Technology for Decision Support Systems
SURAJIT CHAUDHURI , UMESHWAR DAYAL , AND VENKATESH GANTI

Volume 63

Techniques to Improve Performance Beyond Pipelining: Superpipelining, Superscalar, and VLIW
JEAN-LUC GAUDIOT, JUNG-YUP KANG, AND WON WOO RO

Networks on Chip (NoC): Interconnects of Next Generation Systems on Chip
THEOCHARIS THEOCHARIDES, GREGORY M. L INK , NARAYANAN V IJAYKRISHNAN , AND

MARY JANE IRWIN

Characterizing Resource Allocation Heuristics for Heterogeneous Computing Systems
SHOUKAT ALI , TRACY D. BRAUN, HOWARD JAY SIEGEL, ANTHONY A. M ACIEJEWSKI,

NOAH BECK, LADISLAU BÖLÖNI, MUTHUCUMARU MAHESWARAN, ALBERT I. REUTHER,
JAMES P. ROBERTSON, M ITCHELL D. THEYS, AND BIN YAO

Power Analysis and Optimization Techniques for Energy Efficient Computer Systems
WISSAM CHEDID, CHANSU YU, AND BEN LEE

Flexible and Adaptive Services in Pervasive Computing
BYUNG Y. SUNG, MOHAN KUMAR , AND BEHROOZSHIRAZI

330 CONTENTS OF VOLUMES IN THIS SERIES

Search and Retrieval of Compressed Text
AMAR MUKHERJEE, NAN ZHANG, TAO TAO, RAVI V IJAYA SATYA , AND WEIFENG SUN

Volume 64

Automatic Evaluation of Web Search Services
ABDUR CHOWDHURY

Web Services
SANG SHIN

A Protocol Layer Survey of Network Security
JOHN V. HARRISON AND HAL BERGHEL

E-Service: The Revenue Expansion Path to E-Commerce Profitability
ROLAND T. RUST, P.K. KANNAN , AND ANUPAMA D. RAMACHANDRAN

Pervasive Computing: A Vision to Realize
DEBASHIS SAHA

Open Source Software Development:Structural Tension in the American Experiment
COSKUN BAYRAK AND CHAD DAVIS

Disability and Technology: Building Barriers or Creating Opportunities?
PETER GREGOR, DAVID SLOAN , AND ALAN F. NEWELL

Volume 65

The State of Artificial Intelligence
ADRIAN A. HOPGOOD

Software Model Checking with SPIN

GERARD J. HOLZMANN

Early Cognitive Computer Vision
JAN-MARK GEUSEBROEK

Verification and Validation and Artificial Intelligence
TIM MENZIES AND CHARLES PECHEUR

Indexing, Learning and Content-Based Retrieval for Special Purpose Image Databases
MARK J. HUISKES AND ERIC J. PAUWELS

Defect Analysis: Basic Techniques for Management and Learning
DAVID N. CARD

Function Points
CHRISTOPHERJ. LOKAN

The Role of Mathematics in Computer Science and Software Engineering Education
PETER B. HENDERSON

