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Abstract. A new method for calculating inductances is presented. The method 
reSults in analytically simple expressions that replace the traditional tables and 
working formulae. Moreover, it overcomes the diverging self-inductances of thin 
wires, 

1. Introduction 

The concept of inductance arises naturally when studying 
the interaction energy between current-carrying circuits. 
This interaction energy has a factor that depends only on 
the geometry of the circuits. When we analyse the self- 
energy of a single closed circuit, this factor is called self- 
inductance; when we analyse the interaction energy of two 
distinct circuits, it is called mutual inductance. 

With the theoretical development of electrodynamics, 
three main formulae appeared by which to calculate 
inductance: the expressions of Neumann, Weber and 
Maxwell [ 1.21, and recently, a new one has been deduced 
from Graneau’s work [3, p 2121. It is of great practical 
interest to have a method for calculating inductance with the 
desired degree of precision. This interest is of prominence 
mainly in technological areas, such as in the design of 
electrical circuits for communication. 

There is a large literature about this topic. In 
general, tables and working formulae are presented using 
approximation methods like in [4, SI, or ‘finitesurrent 
element analysis’ like that of Graneau, [3, p 1791 is 
applied. We shall present here a direct calculation of the 
integrals involved in the inductance formulae utilizing a 
more powerful method than those cited above. We compare 
our results with those obtained from the approximation 
methods and compare the four expressions for inductance 
calculations. 

2. Inductance formulae 

The four formulae cited above can be summarized in a 
single expressios. Consider two current elements, I,  dri at 
ri and tj drj at T,. The mutual inductance d2Mij between 
them can be written as 

1 I - k (eij . d r , ) ( q j  . dr j )  
+ (1) rij 

t Also a: Department of Applied Mathematics, IMECC. State University 
of Campinas, 13081-970. Campinas. SBo Paulo. Brazil. 
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where 4 R  x kg m rij = [vi - rjI. e.. = 

easy to see from (1) that d*Mij = d2Mjl. 
For k = 1 we obtain Neumann’s formula d2M$; with 

k = -1 there results Weber’s formula d2M!; for k = 0, 
Maxwell’s formula d’M$’; and for k = -5 Graneau’s 
formula d2M$ [1-3]. Usually, the textbooks present only 
Neumann’s formula, but it should be emphasized that 
beginning with Darwin’s Lagrangian [6] we derive only 
Maxwell’s formula. 

It is known that, when we utilize (1) to calculate 
the mutual inductance between two closed circuits, the 
integrated value is independent of k [2]. This means that, 
in this case, the formulae of Neumann, Weber, Maxwell 
and Graneau yield the same result. This is due to the 
fact that these formulae differ by a total derivative whose 
contribution to a line integral around a closed contour is 
always zero. On the other hand, it is not yet known 
whether these formulae agree with one another for the self- 
inductance of a single closed circuit. In this work we 
compare these expressions for the self-inductance of the 
circuits of figures 1 and 2. This has never been done before. 

The linear current element is an approximation of the 
reality. It is useful when the area of the cross section of the 
wire is small compared with its surface area (that is, when 
the diameter of the wire is much smaller than its length). 
When the linear elements are in contact, expression (1) 
cannot be utilized to calculate inductance due to problems 
of divergence. To solve this problem people usually utilize 
approximation methods. The first of these, the geometric- 
mean distance method of inductance calculations, was 
mainly developed by Maxwell [4]. Other methods utilizing 
approximations are described i n  14, pp 6-28], namely the 
method of Taylor’s series expansions and Lyle’s method 
of equivalent filaments. The present work proposes a 
new method for calculating self-inductances. It allows, in  
principle, exact calculations for any geometry and can be 
utilized when the diameter of the wire is of the same order 
of magnitude as its length. Moreover, another advantage is 
that it yields algebraic expressions for the self-inductance. 
The other methods usually yield numerical values which 
need to be tabulated for different geometries. 

- T .  ,)/rij and k is a dimensionless constant. It is ’ I  - 
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utilizing this fact in Wesley's approach, I d r  + J d V  
yields our result. Analogously, when the current flows 
only along a surface we have I d r  + K da, where K 
is the surface current density vector (with units A m-I). 

For uniform current flow along each section of the surface 
K = i I / w *  yielding our previous result. 

On making this substitution in (l), we obtain for surface 
and volumetric current elements, respectively 

Figure 1. A rectangular circuit with sides e, and e2 and a 
constant thickness w. There is a uniform and constant 
surface current I flowing in the circuit. In pieces 1 to 4 the 
direction of the current is given by, respectively, +&, -6, 
-2 and +e. Here & and 6 are the unit vectors along the x 
and y axes, respectively. 

4 ~ 

Figure 2. The same as in figure 1, but now with a uniform 
and constant volumetric current I flowing in a circuit with a 
square of side o as its cross section. 

Our new method involves simply the substitution of the 
element d r  by j d V / A  in equation ( I ) ,  where i is the unit 
vector indicating the direction of the current flow, A is the 
area of the cross section of the wire and dV an element of 
volume in the conductor. For two-dimensional current flow 
we replace d r  by eda/w, where w is the width (transverse 
to 2)  of the conductor and da an element of area in the 
conductor. 

He 
utilized for the first time a similar approach in order to 
compare the Ampire and Grassmann forces between current 
elements. Specifically, he replaced the current element I d r  
by J d V ,  where J is the volumetric current density vector 
(with units A m-'). When the current flows uniformly in 
each cross section of the wire we have J = P I / A .  On 

This idea is derived from Wesley's work [7]. 

(3) 

We use K da or J dV instead of I d r ,  in some cases, 
because this makes the logarithmic divergence manageable. 
Usually, the opposite is done in order to reduce a higher 
dimensional integral to only one integration along a current 
line. 

3. Calculation for specific configurations 

We now calculate the self-inductance of the circuits of 
figures 1 and 2, beginning with some preliminary results. 

3.1. Parallel straight wires 

Let us calculate the mutual inductance between two parallel 
straight wires of length e,  separated by a distance h and 
carrying currents in opposite directions. Equation ( I )  with 
d r i  = dxik, d r j  = -dxjk, ri = xi% and r, = xjk + h c  
yields 

1 
M I ?  = -""l'dxil'dxj[ 4n (F) [(Xi - Xj)Z + hZ]'/Z 

1 (Xi - X j ) Z  

+ (q) [(xi - xj)' + h2I3/' 

Equation (4) depends on k and goes to infinity when 
h i e  -+ 0.  

3.2. Rectangular surfaces 

Consider a rectangular surface of sides e and 0. with 
uniform current I in the direction of the side e (figure 3). 
In this case we utilize equation (2) to calculate the self- 
inductance L of the rectangular current carrying surface. 
With i i  = 2, =.kc,  ri = xi% + yic, r, = xjj. + yjc, 
ti  = ti = w, doi = dxidyi and daj = dxjdyj we get 

1803 
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Figure 3. A rectangular surface with sides e and w with 
uniform current 1 flowing along its length. 
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Figure 4. Rectangular surfaces in contact of lengths e r  and 
e2 and thickness w,  with uniform current flow 1. 

This is exact. It indicates how powerful this method 
of inductance calculations is. It yields exact results in 
analytical form. In order to compare it to the results of 
the literature, we consider w << e. Expanding the square 
brackets of (5) in ole, and neglecting terms of order (ale)' 
and above, yields 

This result goes to infinity when ole + 0, showing 
the divergence indicated above. As we are supposing that 
w << e ,  this approximate result is valid for any termination 
of the circuit and not only for a rectangular surface. 

3.3. Rectangular surfaces in contact 

We now calculate the mutual inductance between the 
rectangular surfaces 1 and 2 which are in contact, figure 4. 
utilizing now 2i = -2, 2j = -5, ~i = xi2 + yie, 

1804 

Figure 5. A wire of rectangular cross section with sides w,  
and 02, length e and uniform current flow 1 .  

7 .  I -  - x j 2  + y,& dui = dxidyi, d q  = dxjdyj and 
ti = t, = w yields 

We are interested only in the approximate result when 
o << e ,  and w (< &z. Neglecting terms of the orders 
(w/el)3, ( O J / ~ ~ ) ~  and above yields 

The last result does not diverge for any value of el 

or ez, although the two pieces are in contact. Under 
this approximation (w << el and w (< ez) the result is 
independent of o, which is quite remarkable. Because the 
result (8) is valid only when w << el and w < (2, it will 
remain valid for any termination of the pieces. 

3.4. Rectangular circuits 

The expressions obtained in the last sections will be used to 
calculate the self-inductance L of the circuit of figure I .  In 
order to simplify the results, we consider that e l  >> w and 
ez >> w. The self-inductance of the circuit above can be 
written as (utilizing that, by symmetry, L I  = L,, La = L4, 

MI3 = h i 3 1  and M24 = M ~ z )  
Mi2 = Mi4 = M 3  = M23 = M32 = M34 = M 4 3  = M41, 
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Grover, for instance, gives the following expressions for 

respectively, 
02 = 201 E 2~ and for w1 = OJZ E OJ [4, p 351. 

We utilize equations (4) for Mi3 and MN, equation (6) 
for L I  and LZ and equation (8) for MI, in expression 
(9). Neglecting terms of order ( ~ / l ~ ) ~ ,  and above 
yields the self-induction of this circuit as 

The most important fact is that (IO) is independent of k. 
Although the self-inductance of each piece and the mutual 
inductance of any two pieces depend on k, the same is not 
true for the self-inductance of this closed circuit. This is a 
completely non-trivial result. 

We cannot yet compare this result to the literature 
because other workers usually tabulate the inductance of  
volumetric circuits. This is the subject of the next section. 

3.5. Wires of rectangular cross section 
Now, we calculate the self-inductance L of the wire of 
length e and rectangular cross section of sides WI and oz .  
There is a uniform current I flowing along the wire, as 
indicated in figure 5. 

With i i  = 2, = 2, r; = xi? + yijC + z i i ,  rj = 
xj& + y j c  + z j i ,  dVi = dxi dyi dzi, dVj = dxj dyj dzj and 
Ai = A j  = w i y ,  we obtain with equation (3) 

L=-- I*o 1 
4% 0 1 2 0 2 2  

Supposing (in order to compare to the tables) that 
W I  (< &? and y << t and neglecting terms of the order 
( o ~ ~ / t ) ~ ,  ( ~ / e ) ~  and above yields 

For wl = wz o this reduces to 

This result diverges when ole --f 0. Because (13) is valid 
for o << e ,  it will remain valid for any termination of the 
piece. 

These two last results can be compared to the literature. 
In all tables only Neumann's formula (k = 1) is presented. 
The value of (4n /po ) ( t / t )  is a dimensionless parameter. 
We will take this parameter with three significant digits. 

Our formulae yield the following algebraic results, with 
k = l :  

I 
24 

In2  - - In5  + 2arctan2 

4n 13 + -  
3 6  

_- 
4 2z 13 

+ - l n 2 - - + - .  
3 3 6  

The values of the numerical constants (to three 
significant digits) in (16) and (17) are given by, 
respectively, 0.185 and 0.996. This shows the correctness 
of our approach, and how it can be widely applied in other 
geometries. 

We now continue our analysis to calculate the self- 
inductance of the circuit of figure 2. What remains to be 
calculated is the mutual inductance between opposite sides 
(such as sides 1 and 4), and between adjacent sides (such as 
sides 1 and 2).  Because we are considering 01 (< e l ,  oz << 
&, 01 << and 02 << t z ,  result (4) will be the approximate 
value of the mutual inductance between opposite sides. 
Analogously, the mutual inductance between any two 
adjacent volumehic sides will be given by (8). 

On utilizing in equation (9) the expressions (13) for Li 
and Lz, (8) for MI, and (4) for M13 and MN we get, with 
U,  = oz w (neglecting terms of order ( ~ / e ~ ) ~ ,  (o,W3 
and above) 

. .  

1 
The self-inductance for the circuit of figure 2 is independent 
of k, as was the case with the circuit of figure I. Let us 
compare it to Grover's tabulated result for this geometry. 
In equation (9) with Grover's value (15) for L I  and Lz, (8) 
(k = 1) for Mi2 and (4) (k = 1) for Mi3 and M z ~ ,  we get 
his result as 

-4t1 sinh-I ($) + 8(t: + ti)'/'+ 2(ei + e,) 

~ ( - 2 l n 2 -  1.004) . (19) 1 
On comparing (18) and (19) we see that they may differ 

only in the numerical coefficient of the factor 2(el + e,). 
1805 
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In equation (18) we have: [1/6 - 2/3(ln2) - (2n)/3] x 
-2.390; and by the approximation method used in Grover’s 
book, (-21n2 - 1.004) % -2.390. Consequently, there 
is an excellent agreement between our method and the 
approximation utilized in Grover’s book. 

4. Conclusions 
We have presented a new way of making inductance 
calculations. One of the advantages is that we can obtain, in 
principle, exact and algebraic results like the ones obtained 
in (4) and (5). Our results for Neumann’s formula were 
compared to those obtained by Grover and the agreement 
was excellent. For the configurations utilized in this work 
we have obtained that the self-inductance of each piece, or 
the mutual inductance of any two pieces, depends on k. 
So, the inductance has different values for the formulae of 
Neumann, Weber, Maxwell and Graneau. Despite this fact, 
the self-inductances of the closed circuits of figures 1 and 2 
are independent of k and have the same value for all these 
formulae. 
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