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Abstract-Negative mutual inductance results from coupling 
between two conductors having current vectors in opposite 
directions. As a quantity in electronic circuits, negative mutual 
inductance is usually so much smaller in magnitude than 
overall inductance that it can be neglected with little.effect. In 
the microelectronic world, however, its neglect can result in 
inductance values as much as 30 percent too high. This paper 
derives inductance equations for planar thin- or thick-film 
coils, comparing equations that include negative mutual induc- 
tance with those that do not. It describes a computer program 
developed for calculating inductances for both square and 
rectangular geometries, the variables considered being track 
width, space between tracks, and number of turns. Graphic 
results are presented for up to 16 turns over an inductance 
range of 3 nanohenries to 10 microhenries. Although details of 
fabrication are not included, the effects of film thickness and 
frequency on the mutual-inductance parameter are discussed. 

INTRODUCTION 

Technological progress in the areas of hybrid microelec- 

tronics and microwave integrated circuits during the past 
decade has seen thin-film microelectronic inductors used to an 
ever-increasing extent. Inductor design throughout this period, 
reflected in the technical literature [I I-131 has been based 
largely on older theories and derivations, some dating back 
100 years [41. Now, as these inductors become smaller, the 
assumptions that have governed their design in the past be- 
come less valid. Nevertheless, inductor design, artwork prep- 
aration, photoreduction, and fabrication are time-consuming 
processes, and redesign and reprocessing must be kept to a 
minimum. Graphic representations of computer-made complex 
inductance calculations are an invaluabfe means toward this 
end. 

BASIC MATHEMATICAL CONCEPTS 

Self-Inductance Calculations for Straight Conductors 

All theoretical equations for calculations involving planar 
rectangular inductors having one or more turns employ in their 
derivation the self-inductance of a straight conductor. The 
exact self-inductance for a straight conductor is’ 

1 L = O.O02Q[In(2Q/GMD) - 1.25 + AMDlQ + W4)Tl (1) 
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where L is the inductance in microhenries, Q is the conductor 
length in centimeters, GMD and AMD represent the geometric 
and arithmetic mean distances, respectively, of the conductor 
cross section,’ p is the conductor permeability, and T is a 
frequency-correction parameter. 

The geometric mean distance (GMD) between two conduc- 
tors is the distance between two infinitely thin imaginary 
filaments whose mutual inductance is equal to the mutual 
inductance between the two original conductors. The GMD of 
a conductor cross section is the distance between two imag- 
inary filaments normal to the cross section, whose mutual 
inductance is equal to the self-inductance of the conductor. 2 

By definition, the self-inductance of a conductor is the sum of 
the mutual inductances of all the pairs of filaments of which it 
is composed. The GMD is equal to 0.7788 times the radius in 
the case-of a circular cross section, 0.44705 times a side in the 
case of a square cross section, and 0.22313 times the length in 
the case of a straight-line cross section. Computation of the 
GMD for a rectangular cross section is lengthy, but its value- 
which is a function of the ratio between sides a and b-is easily 
seen to lie within a narrow range: for the limiting case where 
W, the value is 0.22313 (a+b); for the limiting case where 
a=b; the value is 0.22352(a+6). 

The arithmetic mean’ distance is the average of all the 
distances between the points of one conductor and the points 
of anothei. For a single conductor, the arithmetic meandis- 
tance is the ‘average of all possible distances within the cross 
section. In the case of a circular cross section, the AMD equals 
the radius; in the case of a straight-line.cross section, the AMD 
equals one-third the length. Thin-film conductors approach the 
straight-line condition: as the film thickness approaches 0, the 
AMD of a thin-film track approaches one-third the width. 

If GMD and AMD values for a circular cross section are 
substituted into (I), we obtain 

L = 0.002Q[ln(2Q/0.7788r) - 1.25 + r/Q + @/4)Tl 
= O.O02Q[ln(2Q/r) - In 0.7788 - I.25 + r/Q + @/4)Tl 
= 0.002Q[ln(2Q/r) - 1 +rlQ + @/4)Tl (2) 

which is the exact equation for a circular cross section, r being 
the radius. For the near-direct-current condition, T equals 1 
and the equation becomes 

L = O.O02Q[ln(2Q/r) - I +r/Q +p/4]. (3) 

1Though not directly stated in the literature, this equation is easily 
derived by combining equations (6). (8). and (211) of Grover (see 
reference 5). The value of T. which varies from 1 at direct current to 0 
at infinite frequency, can be found for a conductor of circular cross 
section from Table 52, page 266 of Grover. 

2The concept of cross-section geometric mean distance goes back to 
Maxwall’s examples in article 692, Volume II qf reference 4. 
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If the conductor has a magnetic permeability of 1, (3) reduces 
to 

L 5 Q.OO2Q [In (211/r) - 0.75 + r/121 
s (4) 

and if the length is many orders of magnitude greater than the 
radius, it becomes 

L = O.O02R[ln(2Q/r) - 0.751. (5) 

Equations (3), (4). and (5) are supported by most authorita- 
tive sources El -171. 

For thin-fi!m inductors with rectangular cross sections, (1) 
takes the form 

L = 0.00211 { lnI212/0.2232(a+b)l - 1.25 + [(a+b)/3Ql 
+ W4)T 1 

= 0.002Q { In[2Ql(a+b)l - In 0.2232 - 1.25 + [(a+b)/3L?l 
+ W4)T } 

= 0.002R ( In[2Ql(a+~)l + p.25049 + [(a+b)/3Ql. 
+ &/4)T 1 (6) 

where a and b are the rectangular dimensions of the cross 
section. For the ‘near-direct-current case in which magnetic 
permeability is 1, (6) reduces toy . 

L = C!.aq2Q { ln[iQ/(a+b)] + 0.50049 + [(a+b)/3QI 1 _ (7) 

As Tab!e I indicates, the skindepth phenomenon has little 
effect on thin films, and T in (6) should be considered to have 
a value of 1 for microwave frequencies. For thicker f/lms and 
lower frequencies, corrections may be required and must be 
considerecj [?I, [71, [91. ' 

TABLE I 

Variations in Frequency-Correction Parameter T for 
Thin Films and Microwave Frequencies 

~I 

Mutua!-Inductance Calculations for Planar Coils 

In the case of an L-shaped thin-film inductor, total induc- 
tance is equal to the sum of the self-inductances of the two 
straight segments and is less than the inductance of a single 
straight track of equal total length. In the case of a rectangular 
or square planar coil, straight conductor segments parallel 
other straight conductor segments and the mutual inductance 
between these parallel iracks contributes to the ‘total induc- 
tance of the coil. 

Fig. 1 illustrates the mutual inductance M, 2 that results 
’ from a singularly generated current il. Here, 

3Equation (7) is in substantial agreement with equations derived by 
others icf: [51 through [9] ), the difference being that they have as- 
sunied a square cross ‘section whereas we have assumed a rectangular 
cross section in which one side is many times greater than the other. 

t 

m 

'1 - '2 - 

Fig. 1. Mutual inductance resulting from singularly generated 
current. 

where @, 2 is the flux common to self-inductances I!., and L2 
that is &used by the generated current, i2 being the induced 
current. Fig. 2 illustrates the mutual inductance that results 
from two generated currents, i, and i2. In this case, 

M , 2 = d4, 2Jdil 
and 

M 2 , = d@yl/di2 

where $l 2 is the flux common to self-inductances L, and L, 
that is &used by current i,, and where G2 , is the flux 
common to self-inductances L, and L, that’ is caused by 
current i,. When the frequencies of the two current generators 
are the same, the total mutual inductance M, is equal to the 
vector sum of M, 2 and M, , ; when these frequencies differ, 
the instantaneous iurn must he used. 

Fig. 2. Mutual inductance resulting from two generated currents. 

Consider the case of the two-turn planar rectangular coil rep- 
resented schematically in Fig. 3. ?he total inductance of this coil 
is equal to the sum of the self-inductances of each ?f the straight 
segments (L’, + L, + L, + L, + I!., + L, + L, + L8) plus all the 
mutual inductances between the segments. The mutual in- 
ductance between segm!nts 1 and 5 has a component Ml 5 
cussed by the current flowing in segment 1, and a compone;\t 
M, , caused by the current flowing in segment i. Since the 
freiuency and phase in boih segments are identical, the total 
mutual inductance linking .them equals Ml 5+M5 ‘1. An anal- 
qgous relationship exist! between segment &irs i-6, 3-7, and 
4-8; in each of these pairs, current flow is in the same direction 
in both segments and all mutual inductances, ark positive. The 
mutual inductance between, segments 1 and 7, on the other 
hand, has a component.M , 7 caused by the current in segment 
1, and a component M, , kaused by the current in segment 7. 
The total mutual inductance linking these two segments equals 
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Fig. 3. Two-turn rectangular planar coil. Fig. 4. Two-parallel-filament geometry. 

Ml 7+M7 1 but is negative because current flow in ‘segment 1 
is bpposiie in direction to current flow in segment 7. An 
analogous relationship exists between segment pairs l-3, 5-7, 
5-3, 2-8, 2-4, 6-8, and 6-4. Current magnitude is identical in all 
segments, with the result that M, ,,=Mb a, The total induc- 
tance L, for this two-turn coil the&fore becomes 

L,=L,+L2+L3+L4+L5+L6+L7+L8+2(Ml 5+M26 
+M37+M,8k2W, 7+Ml 3+M57+M5;+M2; 

+ MZ4 . . 
’ +Ms’8+Mg4).’ ’ ’ ’ ’ 

The general equation for a coil or a part of a coil of any 
shape is 

L,=Lo+XM (8) 

where L, is the total inductance, L, is the sum of the 
self-inductances of all the straight segments, and ZM is the 
sum of all the mutual inductances, both positive and negative. 
Since mutual inductance is positive when current flow in two 
parallel conductors is in the same direction and negative when 
current flow is in opposite directions, (8) can be rewritten to 
read 

jy” Lo + M, -Iv- (9) 

where M+ is the sum of the positive mutual inductances and 
M- is the sum of the negative mutual inductances. 

The mutual inductance between two parallel conductors is 
a function of the length of the conductors and of the geo- 
metric mean distance between them. In general, 

M= 2QQ (IO) 

where M is the mutual inductance in nanohenries, Q is the 
conductor length in centimeters, and Q is the mutual-induc- 
tance parameter, calculated from the equation 

0 = In { (Q/GMD)+[l+(Q2/GMD2)] ’ 1 
- [l+(GMD*/Q*)I % + (GMD/Q). (11) 

In this equation, Q is the length corresponding to the subscript 
of 0, and GMD is the geometric mean distance between the 
two conductors, which is approximately equal to the distance 
d between the track centers. The exact value of the GMD may 
be calculated from the equation 

In GMD = In d - {[1/12(d/w)*l + ~l160(d/w)41 
+ [l/168(d/w)6] + [lB60(d/w)*] + [1/G60(d/w)10] + . . . ) (12) 

where w is the track width. 
Now consider the two-conductor geometry represented 

schematically in Fig. 4. Two filaments of lengths j and m, 

respectively, are separated by a geometric mean distance GMD. 
In this case, 

2Mjm = + CM,,,+p + M,,,+J - ‘Mp +Mq’ (13) I 
and the individual M terms are calculated using equation (IO) 
and the lengths corresponding to the subscripts; that is, 

M m+p = 2Qm+pQ,+p = 2(m+p)Q,,,+,, 

where 0 is the mutual-inductance parameter 0 for 
GMDl(m+T?Though other more general expressions are avail- 
able,4 we will limit ourselves for purposes of this paper to the 
use of (13) and two additional relationships: 

forp=q, 

Mjt77 =Mm+p -Mp (14) I 
forp=O, 

2Mi m 
= (Mj+M,,,) -Mq. (15) I 

SOME COMPARATIVE CALCULATIONS 

In the sections that follow, we shall calculate by several 
methods the inductance of a single-turn square planar coil of 
the type shown in Fig. 5. All segments will be assumed to be 
shortened at each connecting end by half the track width w, so 
that 

RI = II, = Q, = 0.10 - w = 0.10 - 0.01 = 0.09 centimeter 

and 

II, = II, - w -s = 0.09 - 0.01 - 0.01 = 0.070 centimeter 

+ O.lOcm --+ A- Ql 
I = 0.01 cm 

I-- 

‘__ii: 
w = 0.01 cm -7 

p2 d O.lOcm 
p4 

p3 I 

Fig. 5. Single-turn square planar coil. 

4The derivation of (13) and these more general expressions are 
presented by Grover in [51. 
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We shall also assume that the magnetic permeability of the 
conductor material is 1 and that film thickness t is 0.0005 
centimeter. 

Expanded Grover Method 

The derivations in the preceding theoretical discussion are 
based largely on the work of Grover (51 and produce the 
following calculated results. Repeating (9). 

LT=LO+M+-M- 

where Lo = L, + L, + Lg + L,. From (7); we obtain 

Lx = 211 x ( ln[2QJ(w+t)l+ 0.50049 + [(W+t)/3QXl 

where LX is the segment inductance in nanohenries, !$ 

I (I 6) 

is the 
segment length in centimeters, w is the segment width in 
centimeters, and t is the segment thickness in centimeters. 
Substituting values into (16). we obtain 

L, = 2(0.09) ( ln[(2)(0.09)/(0.01+0.0005)1 
+ 0.50049 + [(0.01+0.0005)/(3)(0.09)1} 

or 

L, = L, = L, = 0.60867 nanohenry. 

Similarly, 

L, = 2(0.07d) { In[ (2)(0.070)/0.0105~ + 0.50049 
+ [0.0105/(3)(0.070)1) 

= 0.43597 nanohenry. 

Then, 

Lo = 3(0.60867) + 0.43597 = 2.26198 nanohenries. 

Since the currents in parallel legs flow in opposite direc- 
tions, there is no positive mutual inductance in this coil; that 
is, 

L, = 2.26198~~‘,0.30463 = 1.9573 nanohenries. 

Note that, if we were to neglect the negative mutual induc- 
tance in the coil, L, would equal Lo and have a value of 
2.26198 nanohenries. Alternatively, if the coil were treated as 
equivalent to a straight conductor equal in length to the sum 
of the segment lengths (0.335 centimeter),. the inductance 
value arrived at would be 

M+=O 

The negative mutual inductance is equal to the sum of M, 3, 
M , M, 4, and M4 2, or, since M, 3 equals M, , and M; 4 
eq:jls Ma’*, 

M-=2(M, 3+M24). (17) I I 
Going back to (12) and substituting values of 0.01 and 0.09 
for w and d, respectively, yields a GMD of 0.0899 centimeter. 
This value and that for Q,, when substituted into (1 I), yield a 
mutual-inductance parameter Q, of 0.4672. Now, using (10) 
and the fact that Q, equals !$ we can write 

L = 2(0.335) ( ln[(2)(0.335)/0.01051 + 0.50049 
+ [0.0105/(3)(0.0335)1) 

= 3.1479 nanohenries. 

Bryan Method 

M , , 3 = 2R, 0, = 2(0.09)(0.4672) = 0.084096 nanohenry. 

However, because P, does not equal Q,, (15) must be used to 
solve for M2,4. In this case, 

2M2 4 , = WI2 + M4) - Mo.02. (18) 

Again using (IO), 

M2 = 2Q,Q, 

M4 = 2Q4Q, 
M 0.02 = 2(0.02)Qo~02. 

Bryan’s equation for the inductance of a flat square coil 
[lo], which has been referenced by Dukes [81 has the form 

L = 0.141an5’310g[8(a/c)] 

with dimensions expressed in inches and inductance in micro- 
henries. In terms of centimeter dimensions and natural log- 
arithms, the equation becomes 

L = 0.0241an5’31n[8(a/c)l , 

where a is outside plus inside diameter divided by 4, c is 
outside minus inside diameter divided by 2, and n is the 
number of turns. 

Applying this equation to the one-turn coil represented in 
Fig. 5, for which 

and 

a = (0.10+0.08)/4 = 0.045 centimeter 

Since Q, equals Q, and the GMD remains constant, 0, must c = (O.lO-O-08)/2 = 0.01 centimeter 

equal 0, as calculated from (11). It follows that 

M2=“l,3 = 0.084096 nanohenry. 

To obtain 0, and Q,.,,, however, (11) must be solved for a 
GMD of 0.0899 and segment lengths of 0.070 and 0.02 centi- 
meter, respectively. Thus calculated, 0, is found to be 0.3770, 
and M4 becomes 

M4 = 2(0.070)(0.3770)= 0.052780 nanohenry. 

Similarly, Q,.,, is found to be 0.0110, and Momo2 becomes 

M o.02 = 2(0.02) (0.011) = 0.000440 nanohenry. 

Substituting these values into (18), we obtain 

22.4 = (0.084096 + 0.052780) - 0.000440 

2,4 
= 0.068218 nanohenry. 

Having determined M, 3 and M, 4, we can now calculate the 
total negative mutual jnductance in the coil, as expressed by 
(17): 

M- = 2(0.084096 + 0.068218) = 0.30463 nanohenry. 

Finally, returning to (9), 

L,=Lo+M+-M- 

we obtain for total inductance 
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one obtains for total inductance 

L = (0.0241)(0.045)(1) ( ln[8(0.045/0.01)] } 
= 3.8871 nanohenries. 

Terman Method 

Terman [7] has derived two inductance equations5 that are 
applicable to the simple coil under consideration. One applies 
to a single-turn rectangle of rectangular wire and has the form 

L = 0.02339 ( (S, +S2)log[2S,S2/(w+t)l -S, log(S, tg)- 
- S,log(S,+g) + 0.01016 { 2g- [ (S, +S2)/2] +0.447(w+t) } 

where S, and S, are the maximum side lengths, g is the 
diagonal, w is the conductor width, and t is the conductor 
thickness, with dimensions expressed in inches and inductance 
in microhenries. For the case of a square, this equation be- 
comes 

various methods described above are summarized in Table II. 
The differences noted are particularly alarming when one 
considers that none of the methods used was derived for 
circular spirals and none assumed either a zero cross section or 
a circular cross section for the conductor. Indeed, all but the 
Bryan method took into consideration both the width and the 
thickness of the conductor. Though no direct measurements 
have been made on coils of the exact size represented in Fig. 5, 
measurements on other coils have been shown to agree with 
results calculated by the expanded Grover method within 
experimental error. 6 

As we have seen, the expanded Grover method is very 
lengthy and cumbersome, even for a single-turn coil. For a 
multiturn coil, calculations requiring as long as eight hours if 
performed without computer aid are not uncommon. The 
computer program described in the section that follows has 
proved an effective solution to this problem. 

L = (0.02339)(28) { log[2S2/(w+t)l -log(S+g) ) 
+ 0.01016 ( 2g-S+[0.447(w+t)] ) . 

For the coil represented in Fig. 5, 

TABLE II 

Comparison of inductance Calculations for a 
Square Planar Single-Turn Coil 

S = 0.10 centimeter = 0.0394 inch 
9 = (1.414)(0.0394) = 0.0557 inch 
w + t = 0.0105 centimeter = 0.00413 inch. 

Substituting these values into the equation above, one obtains 

L = (0.02339)(2)(0.0394) { l0g[2(6.0394)2/0.00413] 
- 10g(0.0394+0.0557)~ + 0.01016 { [2(0.0557)1 
- 0.0394+[0.447(0.00413)1 ] . 

Then 

L = [(1.844)(10-3)(-0.125 - 1.022)1 
+ [ (0.751 )(10-3)] microhenries 

= 2.403 nanohenries . 

Calculation Method Calculated Inductance, 
nanohenries 

Expanded Grover Formula 1.9573 

GIOVIX Formula without Mutual Inductance 2.2620 

Coil Considered a Straight Conductor 3.1479 

Bryan Formula 3.8871 

Terman Formula 2.403 

COMPUTER PROGRAM FOR 
INDUCTANCE CALCULATIONS 

Computer calculation of total inductance is based on (9) 
previously cited, namely, 

Terman has also derived an equation for square coils of 
rectangular cross section that is good for any number of turns 
n. This equation, 

LT=LO+M+-M-. 

L = 0.0467Sn2 { log[2S2/(t+w)] -log 2.414s) 
+0.02032Sn2 { 0.914+[0.2235(t+w)/Sl~ 

where dimensions are expressed in inches and inductance in 
microhenries, is simply a modification of the first and would 
yield identical results. 

Other Methods 

Inductance equations have been derived by Wheeler [ 1 I], 
Gleason [I I, and Olivei [31, but they are limited to spiral 
geometries and cannot be applied to square or rectangular 
coils. The formula developed by Dill [2] for flat square 
geometry applies only to cases in which the coil area is 
completely filled. 

All straight segments of the induction coil are assigned serial 
numbers from 1 to Z, Z being the total number of segments. 
Numbering proceeds from outside to inside. Since Z need not 
be a multiple of 4, inductance can be calculated for coils with 
a resolution of a quarter turn. For a coil with four turns, Z 
equals 16; for a coil with 2% turns, Z equals 11. The data 
required for each calculation are the number of segments Z, 
the length of the first segment Q,, the length of the second 
segment Q,, the width of the conductor w, the thickness of the 
conductor t, the edge-to-edge distance between conductors s, 
and the number of complete turns n. 

The computer calculates the lengths of all other segments. 
For even-numbered segments, it uses the expression 

Q 2y = Q2 - (y -‘l ) (w+s) 

and for odd-numbered segments, 

(19) 

Summary of Results 

The inductances calculated for a single-turn coil by the 
Q 2y-, = Q, - (Y--2)(w+s) (20) 

with y > 2. Then 

6Equation (34) in [7] appliesto a single-turn rectangle of rectangular 
wire; equation (60) applies to square coils of rectangular cross section. 6 Supporting data are presented in a subsequent section. 
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LY being calculated using a form of (7), namely, 

L, = 0.00212y { In~[2!$l(w+t)l + 0.50049 + [(w+t)/3Qyl~ (22) 

where inductance is in microhenries. 
The number of terms contributing to M, increases rapidly 

with the number of segments in the coil. For n full turns and Z 

total segments, the number of positive mutual-inductance 
terms will be 

4[n(f7-1 )I + 2n(Z-4n). 

Since these terms have the general form 

M 
y,(y+4n) 

the total positive mutual inductance may be represented 

~+=~“y,(y+4n)=2[My,(+4)~y,(y+*)‘My,(y+12). . . .I (23) 

where y has values from 1 through Z-4, n hasvalues from 1 
through the number of complete turns, and y+4n has a max- 
imum value of Z. Consider, for example, a coil having 3% 
turns, such as is diagrammed in Fig. 6. This coil, for which n=3 
and Z=13, will have 30 positive mutual-inductance terms. The 
M 

y.(y+4) 
terms are Ml 5, M, 6, M, 7, M, 8, M, 9r MS 1os 

M 7,11’ 
M 

MS,,*, and M9113. The My:(y+8j ‘terms ‘are M;,?, 
2 1o’ M, i 1, M, ,2, and M, 13. The My (v+,~) term 1s 

M ,‘,S. These 15 terms fall inside the bracket, so that the 
expression for total positive mutual inductance becomes 

M+ = 2tM, ,s+~, ~3+~3 7+“4 ~+~6 !3+“6 I 13+~7 I I +“8 12 

+"9,13 , I , , I +h, g+h2 ,@f3 ,;+M, ;2+M5 ;3+Ml,,31. 

Equation (14). which is used by the computer to calculate 
values for these individual terms, is an exact equation for all 
conductor pairs except those involving segment 1. As can be 
seen from Fig. 6, however; pairs of the latter type-in this case, 
l-5, l-9, and I-13-are almost symmetrical, and using a 
symmetrical formula for them introduces only a very small 
error; moreover-, since this error also exists in the calculation 
of negative mutual inductance, it tends to cancel out of the 
total inductance equation. Equation (14) can be rewritten in 
the form 

M y,(y+rln) 
=M 

(y+4n)+ { 
(24) 

Then, combining (10) and (24), we obtain 

M = y,(y+4n) 2Q(y+4n)+ { ~~-(~+4n) 2b 12 

‘a{ [y-(y+4n)l 12 1 - { 
1 ‘(~+4n) 

[Y-(y+4n)1 I2 1 
4 [y--ly+rln) l/2) . 

(25) 

The Iz values are calculated using (19) and (20). and Q is 
calculated using (11). 

Negative mutual inductance results from fluxes common to 
segments on opposite sides of the coil. The number of terms 
contributing to M- is even greater than the number con- 
tributing to M+. For a coil having n full turns and Z total 
segments, it equals 

Fig. 6. Square planar 3Cturn coil. 

4n2 + 2ntZ-4n) + (Z-4n-2) (Z-4n-1) [ (Zy4n)/3] . 

Negative mutual-inductance terms have the general form 

M y,(y+4n-2) 

and total negative mutual inductance may be represented 

M- =EM y,(y+4n-2) 
= 2Wy (y+2) MY (y+6)’ My,(y+l o).’ . . .I , I 

(26) 

where y has values from 1 through Z-2, n has values from 1 
through the number of complete turns, and y+4+2 has a 
maximum value of Z. The coil in Fig. 6, for which n=3 and 
Z=13, will have a total of 42 negative mutual-inductance 
terms. The MY (y+2) terms are Ml 3, M, 4, M, S, M, 6’ MS 7J 
M 6.8’ M7g, ‘M,,,, Mg,,, h,,,,: and’M,,;S. The 
M y(y+6, iermsa;eM, 7,~28’~3~~~410~~61~~~612 
and M, ,3. The My (;+loj ‘terms’are h, , ,, h2 , 2’ ‘and 
M, 13. These 21 terms fall inside the!, bracket, so ‘that the 
expression for total negative mutual inductance becomes 

M- =2[M, 3+M2 4+M3 5+M4 6+M, 7’M6 8+M7 g 

+“8,1 0 ’ +M 9’,,+‘,0 12’“,, ;3+“l’7+M2’8+M3 9 

+“4,,0+M,;, ,+“f=j,,‘2+M7,1;+M1,1 ;+“2,1’2+M3:1 3’ . 

Values for these negative mutual-inductance terms are calcu- 
lated in much the same manner as those for positive mutual 
inductance. Rewritten for this calculation, (14) takes the form 

M y,(y+4n-2) = M(y+4n-2)+ I 
’ Lyn;llr;::ly2,‘:E2)) ,2) (27) 

Then, combining (1.0) and (27). we obtain 

M y,(y+4n-2) = 2Q(y+4n-2)+ 

‘(y+4n-2) + 

{ 

1 

[y-ty+4”-h/2 ] 

fy-iy+4n-2) 1 12 I 
(28) 

-2K { [y-(y+4n--211 /2) Q([y-(~+4n2)1/2 1. 

As in the case of the positive terms, Q values are calculated 
using (19) and (20) and Q is calculated using (11). 

COMPUTER-CALCULATED INDUCTANCE DATA 

Four different induction coils were fabricated by vacuum- 
depositing phased chromium/gold onto 99 percent alumina 
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and then gold-plating to a thickness of 0.0005 inch (0.0127 
millimeter). Values for L and Cj were measured at 150 mega- 
hertz, and the corresponding L values were calculated by the 
Bryan, Terman, .and expanded Grover methods. Results are 
summarized ‘in Table Ill. It will be noted that Terman’s 
method yielded values two to fou; times higher than the 
measured values. Bryan’s method pioved better, though the 
results for sm.all’coils were much too high. 

Figs. 7 through 12 present plots developed from other 
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computer-calculated inductance data for square and rectan- 
gular planar coils.7 In Figs. 7, 9, and 11, inductance in nano- 
henries is plotted versus number of segments Z for various 
lengths Q, of the first outside segment, the number of com- 
plete turns n deing equal to Z/4. In Figs. 8, 10, and 12, 
inductance in nanohenries is plotted versus segment length Q, 
for different numbers of complete turns n. 

The irregularities in the Fig. 9 and Fig. 11 curves result 
from the fact that segment lengths between the outside and 

1 1 
4 6 12 16 20 24 26 32 36 40 44 46 52 56 60 &, 

Number ofsegmsntr z 

Fig. 7. Square-planarcojl inductance as a function of number of coil 
segments. 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.6 0.9 1.0 ,.I 1.2 

Length of FtrrtSegment ,,.inches 

Fig. 8. Square-planar-coil inductance as a function of first-segment 
length. 

10.000 
6 : : : : 
6 : : : : : : : : : 

Conductor Thirhnerr t = 0.0003 inch 

I’ / ’ J 
4 6 12 16 20 24 26 32 36 40 44 46 62 55 60 64 

Number 0‘ segmentr 2 

1 

Fig. 9. Rectangular-planar-coil inductance as a function of number of 
coil segments (111 /Q2 = 2). 

Fig. 10. Rectangular-planar-coil inductance as a function of first- 
segment length (PI /II2 = 2). 

7Exploded copies of these figures with much finer resolution are 
available from the author upon request. 
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the inside of the coil do not decrease uniformly. Segments that 
are longer than the preceding segments contribute greater 
amounts of inductance and cause fluctuations in the value of 
L’,. Since the amount of this fluctuation constitutes a de- 
creasing percentage of total inductance as the number of 
segments increases, the irregularities become less pronounced 
as the semilogarithmic plot progresses. 

The. slight irregularities in the Fig. 7 curves result from a 
similar phenomenon. The fact that Q, has been defined as 

Fig. 11. !+xtangular-planarcoil inductance as a function of number 
‘of coil segrrknts (P,/Q, =a). 

-+--L-t--.-.--- 1 

i 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 

Lenmh of First Segment v,, inches 

Fig. 12. Re&ngular-planar-coil inductance as a function of first- 
segment length (!?I IQ2 = 4). 

TABLE III 

Calculated as Compared with Measured Inductance 
Values for Typical Square Coils 

I Method of Determination 
Inductance, nanohenries 

.Coil A Coil B Coil C Coil D. 

Bryan Calcula!ion j5.6 

Terman Calculation 67.13 

Expanded Grover y---L 
71.4 111.4 207.3 

111.7 447.6 636.2 

Calculation 28.33 56.84 106.68 197.88 

Experimental Measurement 23.2 51.8 98.9 1 211.9 

equal to Q, in a square coil causes an initial nonuniformity in 
the rate of decrease of Q, the pattern being 

R, = Q2 = Q, > Q, = Q, > Q6 = II, > Q, = 12, > Q; o . . 

Moreover, the addition of new segments does not add uni- 
formly to the number of the positive and negative mutual- 
inductance terms. The addition of segments 5,6, 9, 10, 13, 14, 
etc. introduces two posh&e and two negative terms per seg- 
ment whereas with the addition of segments 7, 8, 11, 12, 15, 
16, etc., the number of negative terms introduced per segment 
exceeds the number of positive terms by two. 

Two important types of information can be readily ex- 
tracted from Figs. 7 through 12. It is possible to determine by 
inspection not only the inductance value that corresponds to a 
given coil geometry, but also the various coil geometries that 
wil! yield a given inductance value.. Information of the latter 
type is particularly valuable and is difficult to obtain in a 
practical manner without the aid of a computer. Even assum- 
ing that an accurate method of calculating inductance for a 
given geometry’ is available, the search for a geometry that will 
yield a given inductance is inevitably an iterative process that 
begins with a best guess. The calculation must usually be 
repeated a number of times before it is possible to single out a 
geometry-the inductance value for which is close enough to 
permit fabrication of’ the coil. Using pigs. 7 through 12, 
however, the task becomes relatively simple. 

Assume, for example, that an inductance of 106 nano- 
henries is required. Fig. 7.ind/c@es that this inductance value 
can be obtained using’a square coil of just over four segments 
with an II, of 0.80 inch (2.032 centimeters), a square coil of 
almost seven segments-with an Q, of 0.40 inch (1 .016 centi- 
meters), and a square coil of 13 segments w.ith an Q, of 0.20 
inch (0.508 centimeter). Fig. 8 indicates that the same induc- 
tance.can be obtained using a square two-turn coil with an Q, 
of 0.34 inch (0.864 centimeter) or a square one-turn coil with 
an II, of 0.85 inch (2.160 centimeters). Examining each of the 
other figures in the same manner,’ one finds that all the 
geometries described in Table IV will, in fact, yield the desired 
inductance value. Such a tabulation provides a great deal of 
latitude in overall hybrid microcircuit ,design. Although Q 
values for these coils have not been thoroughly investigated, 
we have observed that they range typically between 20 and 45, 
provided that the thickness of the inductor is adequate for the 
frequency stipulated. A thickness of ,0.0003’ inch (0.0076 
millimeter) is required at 3 gigahertz and a thickness of 6.0001 
inch (0.025 millimeter) at 10 megahertz. 
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TABLE IV 

Rectangular-Planar-Coil Geometries for a 
100 Nanohenry Inductor 

I Coil Parameters 

I w2 I P 1, inches 
I 

Number of 
I 

Number of 
(centimeters) Segments 2 Turns n 

I 1 1 0.80(2.032) 1 4+ I I 
1 0.40 il.Ol6j l- 
1 0.20 (0.508) 13 
1 0.17 (0.432) 16 4 
1 0.34 (0.864) 8 2 
1 0.85 (2.159) 4 1 

2 0.80 (2.032) 4% 
2 0.40 (1.016) 8% 
2 0.20 (0.508) 16 4 
2 0.46 (1.168) 8 2 

CONCLUSION 

The concept of negative mutual inductance has been dis- 
cussed, and equations for calculating mutual inductance as 
well as total inductance for planar rectangular coiis have been 
presented. A computer program designed to solve these equa- 
tions has been described, and the utility of its graphic data 
output for coil design has been demonstrated. Sufficient detail 
has been presented to permit the interested reader to develop 
similar computer programs for other inductor types. 

AMD 
d 

9 

GMD 

h 
L 

LO 

LT 

Lx 
M 

M 
a,b 

MT 

SYMBOLS 

Arithmetic mean distance. 
Distance between track centers. 
Diagonal of coil cross section. 
Geometric mean distance. 
Current. 
Conductor length. 
Self-inductance. 
Sum of self-inductances (total minus mutual in- 
ductance). 
Total inductance. 

Self-inductance of coil segment X. 
Mutual inductance. 
Mutual inductance between segments a and b due 

to @a b 
Total mutual inductance. 

M+ 
M 

- 

n 

cl 

r 

S 

S 

t 

T 

W 

Z 

Y 

@ 
a,b 

Sum of positive mutual inductances. 
Sum of negative mutual inductances. 
Number of complete turns in coil. 
Mutual-inductance parameter. 
Radius of conductor cross section. 
Edge-to-edge distance between conductors. 
Maximum side length. 
Conductor thickness. 
Frequency-correction parameter. 
Conductor width. 
TotaI.number of coil segments. 
Conductor permeability. 
Magnetic flux common to segments a and b and 
generated in a. 
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