
Inductance and 
Magnetic Fields

Chapter 14

Objectives

When you have studied the material in this chapter you should be 
able to:
• explain the meaning and significance of terms such as magnetic field

strength, magnetic flux, permeability, reluctance and inductance;
• outline the basic principles of electromagnetism and apply these to

simple calculations of magnetic circuits;
• describe the mechanisms of self-induction and mutual induction;
• estimate the inductance of simple inductors from a knowledge of their

physical construction;
• describe the relationship between the current and voltage in an

inductor for both DC and AC signals;
• calculate the energy stored in an inductor in terms of its inductance

and its current;
• describe the operation and characteristics of transformers;
• explain the operation of a range of inductive sensors.

We noted in Chapter 13 that capacitors store energy by producing an elec-
tric field within a piece of dielectric material. Inductors also store energy,
but in this case it is stored within a magnetic field. In order to understand
the operation and characteristics of inductors, and related components such
as transformers, first we need to look at electromagnetism.

A wire carrying an electrical current causes a magnetomotive force
(m.m.f.), F, which produces a magnetic field about it, as shown in Figure
14.1(a). One can think of an m.m.f. as being similar in some ways to an
e.m.f. in an electric circuit. The presence of an e.m.f. results in an electric
field and in the production of an electric current. Similarly, in magnetic 
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280 ELECTRICAL AND ELECTRONIC SYSTEMS

circuits, the presence of an m.m.f. results in a magnetic field and the pro-
duction of magnetic flux. The m.m.f. has units of amperes and for a single
wire F is simply equal to the current I.

The magnitude of the field is defined by the magnetic field strength, H,
which in this arrangement is given by

(14.1)

where I is the current flowing in the wire and l is the length of the magnetic
circuit. The units of H are amperes per metre. The length of the circuit
increases as the circumference of the circles increases, and hence the field
gets weaker as we move further from the wire. Since the circumference of
a circle is linearly related to its radius (being equal to 2πr), the field strength
is directly proportional to the current I and inversely proportional to the 
distance from the wire.

A straight wire carries a current of 5 A. What is the magnetic field
strength, H, at a distance of 100 mm from the wire?

Since the field about a straight wire is symmetrical, the length of the 
magnetic path at a distance r from the wire is given by the circumference
of a circle of this radius. When r = 100 mm, the circumference is equal to
2πr = 0.628 m. Therefore, from Equation 14.1

= 7.96 A/m

= 
.

5

0 628

magnetic field strength,   H
I

l
=

H
I

l
  =

Figure 14.1 The magnetic
effects of an electric current in 
a wire

Example 14.1
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CHAPTER 14 INDUCTANCE AND MAGNETIC FIELDS 281

The direction of the electric field is determined by the direction of the cur-
rent in the wire. For a long straight wire the electric field is circular about
its axis, and one way of remembering the direction of the magnetic field is
to visualise a woodscrew lying along the axis of the wire. In this arrange-
ment, the rotation of the screw bears the same relationship to the direction
of motion of the screw as the direction of the magnetic field has to the flow
of current in the wire. This is shown in Figure 14.1(b). If we imagine a wire
running perpendicular through this page, then a current flowing into the
page would produce a clockwise magnetic field, while one flowing out of
the page would result in an anticlockwise field, as shown in Figures 14.1(c)
and 14.1(d). The direction of current flow in these figures is indicated by a
cross to show current into the page and a dot to show current coming out of
the page. To remember this notation, you may find it useful to visualise the
head or the point of the screw of Figure 14.1(b).

The magnetic field produces a magnetic flux that flows in the same
direction as the field. Magnetic flux is given the symbol Φ, and the unit of
flux is the weber (Wb).

The strength of the flux at a particular location is measured in terms of
the magnetic flux density, B, which is the flux per unit area of cross-
section. Therefore

(14.2)

The unit of flux density is the tesla (T), which is equal to 1 Wb/m2.
The flux density at a point depends on the strength of the field at that

point, but it is also greatly affected by the material present. If a current-
carrying wire is surrounded by air, this will result in a relatively small amount
of magnetic flux as shown in Figure 14.2(a). However, if the wire is sur-
rounded by a ferromagnetic ring, the flux within the ring will be orders of
magnitude greater, as illustrated in Figure 14.2(b).

Magnetic flux density is related to the field strength by the expression

B = µH (14.3)

where µ is the permeability of the material through which the field passes.
One can think of the permeability of a material as a measure of the ease
with which a magnetic flux can pass through it. This expression is often
rewritten as

B = µ0µ rH (14.4)

B
A

  =
Φ

Figure 14.2 Magnetic flux
associated with a current-
carrying wire
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282 ELECTRICAL AND ELECTRONIC SYSTEMS

where µ0 is the permeability of free space, and µ r is the relative permeabil-
ity of the material present. µ0 is a constant with a value of 4π × 10−7 H/m.
µ r is the ratio of the flux density produced in a material to that produced in
a vacuum. For air and most non-magnetic materials, µ r = 1 and B = µ0H.
For ferromagnetic materials, µ r may have a value of 1000 or more.
Unfortunately, for ferromagnetic materials µ r varies considerably with the
magnetic field strength.

When a current-carrying wire is formed into a coil, as shown in Figure
14.3, the magnetic field is concentrated within the coil, and it increases as
more and more turns are added. The m.m.f. is now given by the product of
the current I and the number of turns of the coil N, so that

F = IN (14.5)

For this reason, the m.m.f. is often expressed in ampere-turns, although for-
mally its units are amperes, since the number of turns is dimensionless.

In a long coil with many turns, most of the magnetic flux passes through
the centre of the coil. Therefore, it follows from Equations 14.1 and 14.5
that the magnetic field strength produced by such a coil is given by

(14.6)

where l is the length of the flux path as before.
As discussed earlier, the flux density produced as a result of a magnetic

field is determined by the permeability of the material present. Therefore,
the introduction of a ferromagnetic material in a coil will dramatically
increase the flux density. Figure 14.4 shows examples of arrangements that
use such materials in coils. The first shows an iron bar placed within a 

H
IN

l
= 

Figure 14.3 The magnetic field
in a coil

Figure 14.4 The use of
ferromagnetic materials in coils
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CHAPTER 14 INDUCTANCE AND MAGNETIC FIELDS 283

linear coil to increase its flux density. The second shows a coil wound on a
ferrite toroid (a ring with a circular cross-section).

A coil is formed by winding 500 turns of wire onto a non-magnetic
toroid that has a mean circumference of 400 mm and a cross-sectional
area of 300 mm2. If the current in the coil is 6 A, calculate:

(a) the magnetomotive force;
(b) the magnetic field strength within the coil;
(c) the flux density in the coil;
(d) the total flux.

How would these quantities be affected if the toroid were replaced by
one of similar dimensions but constructed of a magnetic material with
a µµr of 100?

(a) The magnetomotive force is given by the ‘ampere-turns’ of the coil and
is therefore

F = IN

= 6 × 500

= 3000 ampere-turns

(b) The magnetic field strength is given by the m.m.f. divided by the length
of the magnetic path. In this case, the length of the magnetic path is the
mean circumference of the coil, so

= 7500 A/m

(c) For a non-magnetic material B = µ0H, so

B = µ0H

= 4π × 10−7 × 7500

= 9.42 mT

(d) The total flux can be deduced from Equation 14.2, from which it is
clear that Φ = BA. Hence

Φ = BA

= 9.42 × 10−3 × 300 × 10−6

= 2.83 µWb

If the toroid were replaced by a material with a µ r of 100, this would have
no effect on (a) and (b) but would increase (c) and (d) by a factor of 100.

= 
.

3000

0 4

H
IN

l
  =

Example 14.2
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284 ELECTRICAL AND ELECTRONIC SYSTEMS

As we know, in electric circuits, when an electromotive force is applied
across a resistive component a current is produced. The ratio of the voltage
to the resultant current is termed the resistance of the component and is a
measure of how the component opposes the flow of electricity.

A directly equivalent concept exists in magnetic circuits. Here a magne-
tomotive force produces a magnetic flux, and the ratio of one to the other is
termed the reluctance, S, of the magnetic circuit. In this case, the reluct-
ance is a measure of how the circuit opposes the flow of magnetic flux. Just
as resistance is equal to V/I, so the reluctance is given by the m.m.f. (F)
divided by the flux (Φ) and hence

(14.7)

The units of reluctance are amperes per weber (A/Wb).

A changing magnetic flux induces an electrical voltage (an e.m.f.) in any
conductor within the field. The magnitude of the effect is given by
Faraday’s law, which states that:

The magnitude of the e.m.f. induced in a circuit is proportional to the
rate of change of the magnetic flux linking the circuit.

Also of importance is Lenz’s law, which states that:

The direction of the e.m.f. is such that it tends to produce a current that
opposes the change of flux responsible for inducing that e.m.f.

When a circuit forms a single loop, the e.m.f. induced by changes in the
magnetic flux associated with that circuit is simply given by the rate of
change of the flux. When a circuit contains many loops, then the resulting
e.m.f. is the sum of the e.m.f.s produced by each loop. Therefore, if a coil
of N turns experiences a change in magnetic flux, then the induced voltage
V is given by

(14.8)

where dΦ/dt is the rate of change of flux in Wb/s.
This property, whereby an e.m.f. is induced into a wire as a result of a

changes in magnetic flux, is referred to as inductance.

V N
t

  =
d

d

Φ

S
F

  =
Φ

Reluctance14.3

Inductance14.4
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CHAPTER 14 INDUCTANCE AND MAGNETIC FIELDS 285

We have seen that a current flowing in a coil (or in a single wire) produces
a magnetic flux about it, and that changes in the current will cause changes
in the magnetic flux. We have also seen that when the magnetic flux asso-
ciated with a circuit changes, this induces an e.m.f. in that circuit which
opposes the changing flux. It follows, therefore, that when the current in a
coil changes, an e.m.f. is induced in that coil which tends to oppose the
change in the current. This process is known as self-inductance.

The voltage produced across the inductor as a result of changes in the
current is given by the expression

(14.9)

where L is the inductance of the coil. The unit of inductance is the henry
(symbol H), which can be defined as the inductance of a circuit when an
e.m.f. of 1 V is induced by a change in the current of 1 A/s.

14.5.1 Notation

It should be noted that some textbooks assign a negative polarity to 
the voltages of Equations 14.8 and 14.9 to reflect the fact that the induced
voltage opposes the change in flux or current. This notation reflects the
implications of Lenz’s law. However, either polarity can be used provided
that the calculated quantity is applied appropriately, and in this text we will
use the positive notation since this is consistent with the treatment of volt-
ages across resistors and capacitors.

The current in a 10 mH inductor changes at a constant rate of 3 A/s.
What voltage is induced across this coil?

From Equation 14.9

= 10 × 10−3 × 3

= 30 mV

Circuit elements that are designed to provide inductance are called inductors.
Typical components for use in electronic circuits will have an inductance
of the order of microhenries or millihenries, although large components
may have an inductance of the order of henries.

V L
I

t
  =

d

d

V L
I

t
  =

d

d

Self-inductance14.5

Inductors14.6

Example 14.3
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286 ELECTRICAL AND ELECTRONIC SYSTEMS

Small-value inductors can be produced using air-filled coils, but larger
devices normally use ferromagnetic materials. As we noted earlier, the
presence of a ferromagnetic material dramatically increases the flux density
in a coil and consequently also increases the rate of change of flux. There-
fore, adding a ferromagnetic core to a coil greatly increases its inductance.
Inductor cores may take many forms, including rods, as in Figure 14.4(a),
or rings, as in Figure 14.4(b). Small inductor cores are often made from
iron oxides called ferrites, which have very high permeability. Larger com-
ponents are often based on laminated steel cores.

Unfortunately, the permeability of ferromagnetic materials decreases
with increasing magnetic field strength, making inductors non-linear. Air
does not suffer from this problem, so air-filled inductors are linear. For this
reason, air-filled devices may be used in certain applications even though
they may be physically larger than components using ferromagnetic cores.

14.6.1 Calculating the inductance of a coil

The inductance of a coil is determined by its dimensions and by the 
material around which it is formed. Although it is fairly straightforward to
calculate the inductance of simple forms from first principles, designers
often use standard formulae. Here we will look at a couple of examples, as
shown in Figure 14.5.

Figure 14.5(a) shows a simple, helical, air-filled coil of length l and
cross-sectional area A. The characteristics of this arrangement vary with the
dimensions, but provided that the length is much greater than the diameter,
the inductance of this coil is given by the expression

(14.10)

Figure 14.5(b) shows a coil wound around a toroid that has a mean cir-
cumference of l and a cross-sectional area of A. The inductance of this
arrangement is given by

(14.11)L
AN

l
r  =

µ µ0
2

L
AN

l
  =

µ0
2

Figure 14.5 Examples of
standard inductor formats
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CHAPTER 14 INDUCTANCE AND MAGNETIC FIELDS 287

where µ r is the relative permeability of the material used for the toroid. If
this is a non-magnetic material then µ r will be equal to 1, and the induct-
ance becomes

(14.12)

which is the same as for the long air-filled coil described earlier (although
the meaning of l is slightly different). Although these two examples 
have very similar equations, other coil arrangements will have difference 
characteristics.

In these two examples, and in many other inductors, the inductance
increases as the square of the number of turns.

Calculate the inductance of a helical, air-filled coil 200 mm in length,
with a cross-sectional area of 30 mm2 and having 400 turns.

From Equation 14.10

= 30 µH

14.6.2 Equivalent circuit of an inductor

So far we have considered inductors as idealised components. In practice,
all inductors are made from wires (or other conductors) and therefore all
real components will have resistance. We can model a real component as
an ideal inductor (that is, one that has inductance but no resistance) in
series with a resistor that represents its internal resistance. This is shown in
Figure 14.6.

=
× × × ×
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  =
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14.6.3 Stray inductance

While circuit designers will often use inductors to introduce inductance into
circuits, the various conductors in all circuits introduce stray inductance

Figure 14.6 An equivalent
circuit of a real inductor

Example 14.4
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288 ELECTRICAL AND ELECTRONIC SYSTEMS

that is often unwanted. We have seen that even a straight wire exhibits
inductance, and though this is usually small (perhaps 1 nH per mm length
of wire) the combined effects of these small amounts of inductance can dra-
matically affect circuit operation – particularly in high-speed circuits. In
such cases, great care must be taken to reduce both stray inductance and
stray capacitance (as discussed in Chapter 13).

When several inductors are connected together, their effective inductance
is computed in the same way as when resistors are combined, provided that
they are not linked magnetically. Therefore, when inductors are connected
in series their inductances add. Similarly, when inductors are connected in
parallel their combined inductance is given by the reciprocal of the sum of
the reciprocals of the individual inductances. This is shown in Figure14.7.

Inductors in 
series and 

parallel

14.7

Calculate the inductance of:

(a) a 10 H and a 20 H inductor in series;
(b) a 10 H and a 20 H inductor in parallel.

(a) Inductances in series add

L = L1 + L2

= 10 H + 20 H

= 30 H

(b) Inductances in parallel sum as their reciprocals

L = 6.67 H

= 
30

200

= +   
1

10

1

20

1 1 1

1 2L L L
    = +

Figure 14.7 Inductors in series
and parallel

Example 14.5
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CHAPTER 14 INDUCTANCE AND MAGNETIC FIELDS 289

From Equation 14.9, we know that the relationship between the voltage
across an inductor and the current through it is given by

This implies that when a constant current is passed through an inductor
(dI/dt = 0) the voltage across it is zero. However, when the current changes
a voltage is produced that tends to oppose this change in current. Another
implication of the equation is that the current through an inductor cannot
change instantaneously, since this would correspond to dI/dt = ∞ and
would produce an infinite induced voltage opposing the change in current.
Thus inductors tend to stabilise the current flowing through them. (You
may recall that in capacitors the voltage cannot change instantaneously, so
capacitors tend to stabilise the voltage across them).

The relationship between the voltage and the current in an inductor is
illustrated in Figure 14.8. In the circuit of Figure 14.8(a), the switch is ini-
tially open and no current flows in the circuit. If now the switch is closed
(at t = 0), then the current through the inductor cannot change instantly, so
initially I = 0, and consequently VR = 0. By applying Kirchhoff’s voltage
law around the circuit, it is clear that V = VR + VL, and if initially VR = 0,
then the entire supply voltage V will appear across the inductor, and VL = V.

The voltage across the inductor dictates the initial rate of change of the
current (since VL = L dI/dt) and hence the current steadily increases. As I
grows the voltage across the resistor grows and VL falls, reducing dI/dt.

V L
I

t
  =

d

d

Relationship 
between voltage 

and current in 
an inductor

14.8

Figure 14.8 Relationship
between voltage and current in
an inductor
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290 ELECTRICAL AND ELECTRONIC SYSTEMS

Therefore, the rate of increase of the current decreases with time. Gradu-
ally, the voltage across the inductor tends to zero and all the applied volt-
age appears across the resistor. This produces a steady-state current of V/R.
The result is that the current is initially zero but increases exponentially
with time, and the voltage across the inductor is initially V but falls exponen-
tially with time. This behaviour is shown in Figures 14.8(b) and 14.8(c).
You might like to compare these curves with the corresponding results 
produced for a capacitor in Figure 13.7.

Computer Simulation Exercise 14.1

Simulate the circuit of Figure 14.8(a) with V = 1 V, R = 1 Ω and L = 1 H.
Include in your circuit a switch that closes at t = 0. Use transient 
simulation to investigate the behaviour of the circuit during the first 5 s
after the switch changes. Plot VL and I against time on separate graphs
and confirm that the circuit behaves as expected. Experiment with 
different values of the circuit components and note the effects on the
voltage and current graphs.

In Chapter 13, we noted that the time taken for a capacitor to charge
increases with both the capacitance C and the series resistance R, and we
defined a termed called the time constant, equal to the product CR, which
determines the charging time. In the inductor circuit discussed above, the
rate at which the circuit approaches its steady-state condition increases with
the inductance L but decreases with the value of R. The reason for this
effect will become clear in Chapter 18, but for the moment we will simply
note that circuits of this type have a time constant (T) equal to L/R.

Computer Simulation Exercise 14.2

Repeat Computer Simulation Exercise 14.1 noting the effect of differ-
ent component values. Begin with the same values as in the previous
simulation exercise and then change the values of L and R while keep-
ing the ratio L/R constant. Again plot VL and I against time on separate
graphs and confirm that the characteristics are unchanged. Hence
confirm that the characteristics are determined by the time constant L/R
rather than the actual values of L and R.

It is interesting to consider what happens in the circuit of Figure 14.8(a) if
the switch is opened some time after being closed. From Figure 14.8(b), we
know that the current stabilises at a value of V/R. If the switch is now
opened, this would suggest that the current would instantly go to zero. This
would imply that dI/dt would be infinite and that an infinite voltage would
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CHAPTER 14 INDUCTANCE AND MAGNETIC FIELDS 291

be produced across the coil. In practice, the very high induced voltage
appears across the switch and causes ‘arcing’ at the switch contacts. This
maintains the current for a short time after the switch is operated and
reduces the rate of change of current. This phenomenon is used to advant-
age in some situations such as in automotive ignition coils. However, 
arcing across switches can cause severe damage to the contacts and also
generates electrical interference. For this reason, when it is necessary to
switch inductive loads, we normally add circuitry to reduce the rate of
change of the current. This circuitry may be as simple as a capacitor placed
across the switch.

So far in this section we have assumed the use of an ideal inductor and
have ignored the effects of any internal resistance. In Section 14.6, we
noted that an inductor with resistance can be modelled as an ideal inductor
in series with a resistor. In Chapter 15, we will look at the characteristics of
circuits containing elements of various types (resistive, inductive and
capacitive), so we will leave the effects of internal resistance until that time.

Having looked at the relationship between voltage and current in a DC cir-
cuit containing an inductor, it is now time to turn our attention to circuits
using sinusoidal quantities.

Consider the arrangement of Figure 14.9(a), where an alternating current
is passed through an inductor. Figure 14.9(c) shows the sinusoidal current

Sinusoidal 
voltages and 

currents

14.9

Figure 14.9 Inductors and
alternating quantities
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292 ELECTRICAL AND ELECTRONIC SYSTEMS

Energy storage 
in an inductor

14.10

waveform in the inductor, which in turn dictates the voltage across the
inductor. From Equation 14.9 we know that the voltage across an inductor
is given by L dI/dt, so the voltage is directly proportional to the time
differential of the current. Since the differential of a sine wave is a cosine
wave, we obtain a voltage waveform as shown in Figure 14.9(b). The cur-
rent waveform is phase-shifted with respect to the voltage waveform by 90°
(or π/2 radians). It is also clear that the current waveform lags the voltage
waveform. You might like to compare this result with that shown in Figure
13.8 for a capacitor. You will note that in a capacitor the current leads the
voltage, while in an inductor the current lags the voltage. We will return to
the analysis of sinusoidal waveforms in Chapter 15.

Computer Simulation Exercise 14.3

Simulate the circuit of Figure 14.9(a) using any value of inductor. Use
a sinusoidal current source to produce a current of 1 A peak at 1 Hz
and use transient analysis to display the voltage across the inductor,
and the current through it, over a period of several seconds. Note the
phase relationship between the two waveforms and hence confirm that
the current lags the voltages by 90° (or π/2 radians). Note the effect of
varying the inductor value, and the frequency used.

Inductors store energy within a magnetic field. The amount of energy
stored in this way can be determined by considering an initially un-
energised inductor of inductance L, in which a current is gradually
increased from zero to I amperes. If the rate of change of the current at a
given time is di/dt, then the instantaneous voltage across the inductor (v)
will be given by

In a small amount of time dt, the amount of energy added to the magnetic
field is equal to the product of the instantaneous voltage (v), the instantane-
ous current (i) and the time interval (dt).

Energy added = vidt

= Lidi

Therefore, the energy added to the magnetic field as the current increases
from zero to I is given by

= L
i

t
i t

d

d
d

v L
i

t
  =

d

d
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CHAPTER 14 INDUCTANCE AND MAGNETIC FIELDS 293

(14.13)

What energy is stored in an inductor of 10 mH when a current of 5 A is
passing through it?

From Equation 14.3

= 125 mJ

If two conductors are linked magnetically, then a changing current in one
of these will produce a changing magnetic flux associated with the other
and will result in an induced voltage in this second conductor. This is the
principle of mutual inductance.

Mutual inductance is quantified in a similar way to self-inductance, such
that if a current I1 flows in one circuit, the voltage induced in a second cir-
cuit V2 is given by

(14.14)

where M is the mutual inductance between the two circuits. The unit of
mutual inductance is the henry, as for self-inductance. Here, a henry would
be defined as the mutual inductance between two circuits when an e.m.f. of
1 V is induced in one by a change in the current of 1 A/s in the other. The
mutual inductance between two circuits is determined by their individual
inductances and the magnetic linkage between them.

Often our interest is in the interaction of coils, as in a transformer. Here
a changing current in one coil (the primary) is used to induce a changing
current in a second coil (the secondary). Figure 14.10 shows arrangements
of two coils that are linked magnetically. In Figure 14.10(a), the two coils
are loosely coupled with a relatively small part of the flux of the first coil
linking with the second. Such an arrangement would have a relatively low
mutual inductance. The degree of coupling between circuits is described by
their coupling coefficient, which defines the fraction of the flux of one coil
that links with the other. A value of 1 represents total flux linkage, while a
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t
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Stored energy  =
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Stored energy d   = L i t
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�
0

Mutual 
inductance

14.11

Example 14.6
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294 ELECTRICAL AND ELECTRONIC SYSTEMS

value of 0 represents no linkage. The coupling between the two coils can
be increased in a number of ways, such as by moving the coils closer
together, by wrapping one coil around the other, or by adding a ferromag-
netic core as in Figure 14.10(b). Excellent coupling is achieved by wrap-
ping coils around a continuous ferromagnetic loop as in Figures 14.10(c)
and 14.10(d). In these examples, the cores increase the inductance of the
coils and increase the flux linkage between them.

The basic form of a transformer is illustrated in Figure 14.11(a). Two coils,
a primary and a secondary, are wound onto a ferromagnetic core or former
in an attempt to get a coupling coefficient as close as possible to unity. In
practice, many transformers are very efficient and for the benefit of this 
discussion we will assume that all the flux from the primary coil links with
the secondary. That is, we will assume an ideal transformer with a coupling
coefficient of 1.

Figure 14.10 Mutual
inductance between two coils

Transformers14.12

Figure 14.11 A transformer
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CHAPTER 14 INDUCTANCE AND MAGNETIC FIELDS 295

If an alternating voltage V1 is applied to the primary, this will produce
an alternating current I1, which in turn will produce an alternating magnetic
field. Since the variation in the magnetic flux associated with the primary
coil is the same as that associated with the secondary, the voltage induced
in each turn of the primary and the secondary will be the same. Let us call
this VT. Now, if the number of turns in the primary is N1, then the volt-
age induced across the primary will be N1VT. Similarly, if the number of
turns in the secondary is N2, then the voltage across the secondary will be
N2VT. Therefore, the ratio of the output voltage V2 to the input voltage V1 is
given by

and thus

(14.15)

Thus the transformer works as a voltage amplifier with a gain determined
by the ratio of the number of turns in the secondary to that in the primary.
N2/N1 is often called the turns ratio of the transformer.

However, there are, several points to note about this arrangement. The
first is that this voltage amplification clearly applies only to alternating volt-
ages – a constant voltage applied to the primary will not produce a chang-
ing magnetic flux and consequently no output voltage will be induced.
Second, it must be remembered that this ‘amplifier’ has no energy source
other than the input signal (that is, it is a passive amplifier) and consequently
the power delivered at the output cannot be greater than that absorbed at the
input. This second point is illustrated in Figure 14.11(b), where a resistive
load has been added to our transformer. The addition of a load means that
a current will now flow in the secondary circuit. This current will itself pro-
duce magnetic flux, and the nature of induction means that this flux will
oppose that generated by the primary circuit. Consequently, the current
flowing in the secondary coil tends to reduce the voltage in that coil. The
overall effect of this mechanism is that when the secondary is open-circuit,
or when the output current is very small, the output voltage is as predicted
by Equation 14.15, but as the output current increases the output voltage
falls.

The efficiency of modern transformers is very high and therefore the
power delivered at the output is almost the same as that absorbed at the
input. For an ideal transformer

V1I1 = V2 I2 (14.16)

If the secondary of a transformer has many more turns than the primary we
have a step-up transformer, which provides an output voltage that is much
higher than the input voltage, but it can deliver a smaller output current. If
the secondary has fewer turns than the primary we have a step-down trans-
former, which provides a smaller output voltage but can supply a greater

V

V

N

N
2

1

2

1

  =

V

V

N V

N V
T

T

2

1

2

1

  =

EAE_C14.qxd  7/11/03  17:28  Page 295



296 ELECTRICAL AND ELECTRONIC SYSTEMS

current. Step-down transformers are often used in power supplies for low-
voltage electronic equipment, where they produce an output voltage of a
few volts from the supply voltage. An additional advantage of this arrange-
ment is that the transformer provides electrical isolation from the supply
lines, since there is no electrical connection between the primary and the
secondary circuits.

We have looked at several forms of inductor and transformer, and some of
these may be indicated through the use of different circuit symbols.
Figure 14.12 shows various symbols and identifies their distinguishing
characteristics. Figure 14.12(f) shows a transformer with two secondary
coils. This figure also illustrates what is termed the dot notation for indic-
ating the polarity of coil windings. Current flowing into each winding at 
the connection indicated by the dot will produce magnetomotive forces in
the same direction within the core. Reversing the connections to a coil will
invert the corresponding voltage waveform. The dot notation allows the
required connections to be indicated on the circuit diagram.

Circuit symbols14.13

Inductors and transformers are used in a wide range of electrical and elec-
tronic systems, and we shall be meeting several such applications in later
chapters. However, at this point, it might be useful to look at a couple of
situations where inductance is used as a means of measuring physical quant-
ities. The first of these we have already encountered in Chapter 3.

The use of 
inductance in 

sensors

14.14

Figure 14.12 Circuit symbols
for inductors and transformers
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14.14.1 Inductive proximity sensors

We looked briefly at inductive proximity sensors in Section 3.6 and looked
at some real devices in Figure 3.7. The essential elements of such a sensor
are shown in Figure 14.13. The device is basically a coil wrapped around a
ferromagnetic rod. The arrangement is used as a sensor by combining it
with a ferromagnetic plate (attached to the object to be sensed) and a cir-
cuit to measure the self-inductance of the coil. When the plate is close to
the coil it increases its self-inductance, allowing its presence to be detected.
The sensor can be used to measure the separation between the coil and the
plate but is more often used in a binary mode to sense its presence or
absence.

14.14.2 Linear variable differential transformers (LVDTs)

An LVDT consists of three coils wound around a hollow, non-magnetic
tube, as shown in Figure 14.14. The centre coil forms the primary of the
transformer and is exited by an alternating voltage. The remaining coils
form identical secondaries, positioned symmetrically either side of the prim-
ary. The two secondary coils are connected in series in such a way that 
their output voltages are out of phase (note the position of the dots in Figure
14.14) and therefore cancel. If a sinusoidal signal is applied to the primary
coil, the symmetry of the arrangement means that the two secondary coils
produce identical signals that cancel each other, and the output is zero. This
assembly is turned into a useful sensor by the addition of a movable ‘slug’
of ferromagnetic material inside the tube. The material increases the mutual
inductance between the primary and the secondary coils and thus increases

Figure 14.13 An inductive
proximity sensor

Figure 14.14 A linear variable
differential transformer (LDVT)
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the magnitude of the voltages induced in the secondary coils. If the slug is
positioned centrally with respect to the coils, it will affect both coils equally
and the output voltages will still cancel. However, if the slug is moved
slightly to one side or the other, it will increase the coupling to one and
decrease the coupling to the other. The arrangement will now be out of bal-
ance, and an output voltage will be produced. The greater the displacement
of the slug from its central position the greater the resulting output signal.
The output is in the form of an alternating voltage where the magnitude 
represents the offset from the central position and the phase represents the
direction in which the slug is displaced. A simple circuit can be used to con-
vert this alternating signal into a more convenient DC signal if required.

LVDTs can be constructed with ranges from a few metres down to a
fraction of a millimetre. They typically have a resolution of about 0.1 
percent of their full range and have good linearity. Unlike resistive poten-
tiometers, they do not require a frictional contact and so can have a very
low operating force and long life.

Key points n Inductors store energy within a magnetic field.

n A wire carrying an electrical current causes a magnetomotive force
(m.m.f.), which produces a magnetic field about it.

n The magnetic field strength, H, is proportional to the current and
inversely proportional to the length of the magnetic circuit.

n The magnetic field produces a magnetic flux, Φ, which flows in the
same direction.

n The flux density is determined by the field strength and the permeab-
ility of the material present.

n When a current-carrying wire is formed into a coil, the magnetic field
is concentrated. The m.m.f. increases with the number of turns of the
coil.

n A changing magnetic flux induces an electrical voltage in any con-
ductors within the field.

n The direction of the induced e.m.f. is such that it opposes the
change of flux.

n When the current in a coil changes, an e.m.f. is induced in that 
coil which tends to oppose the change in the current. This is 
self-inductance.

n The induced voltage is proportional to the rate of change of the cur-
rent in the coil.

n Inductors can be made by coiling wire in air, but much greater induct-
ance is produced if the coil is wound around a ferromagnetic core.
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14.1 Explain what is meant by a magnetomotive
force (m.m.f.).

14.2 Describe the field produced by a current flowing
in a straight wire.

14.3 A straight wire carries a current of 3 A. What is
the magnetic field at a distance of 1 m from the
wire? What is the direction of this field?

14.4 What factors determine the flux density at a 
particular point in space adjacent to a current-
carrying wire?

14.5 Explain what is meant by the permeability of
free space? What are its value and units?

14.6 Give an expression for the magnetomotive force
produced by a coil of N turns that is passing a
current of I amperes?

14.7 A coil is formed by wrapping wire around a
wooden toroid. The cross-sectional area of the
coil is 400 mm2, the number of turns is 600, and
the mean circumference of the toroid is 900 mm.
If the current in the coil is 5 A, calculate the mag-
netomotive force, the magnetic field strength in

the coil, the flux density in the coil and the total
flux.

14.8 If the toroid in Exercise 14.7 were to be replaced
by a magnetic toroid with a relative permeability
of 500, what effect would this have on the val-
ues calculated?

14.9 If a m.m.f. of 15 ampere-turns produces a total
flux of 5 mWb, what is the reluctance of the
magnetic circuit?

14.10 State Faraday’s law and Lenz’s law.

14.11 Explain what is meant by inductance.

14.12 Explain what is meant by self-inductance.

14.13 How is the voltage induced in a conductor re-
lated to the rate of change of the current within it?

14.14 Define the henry as it applies to the measure-
ment of self-inductance.

14.15 The current in an inductor changes at a constant
rate of 50 mA/s, and there is a voltage across it
of 150 µV. What is its inductance?

Exercises

n All real inductors have some resistance.

n When inductors are connected in series their inductances add. When
inductors are connected in parallel the resultant inductance is the
reciprocal of the sum of the reciprocals of the individual inductances.

n The current in an inductor cannot change instantly.

n When using sinusoidal signals the current lags the voltage by 90° (or
p/2 radians).

n The energy stored in an inductor is equal to 1/2LI2.

n When two conductors are linked magnetically, a changing current in
one will induce a voltage in the other. This is mutual induction.

n When a transformer is used with alternating signals, the voltage gain
is determined by the turns ratio.

n Several forms of sensor make use of variations in inductance.
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14.16 Why does the presence of a ferromagnetic core
increase the inductance of an inductor?

14.17 Calculate the inductance of a helical, air-filled
coil 500 mm in length, with a cross-sectional
area of 40 mm2 and having 600 turns.

14.18 Calculate the inductance of a coil wound on a
magnetic toroid of 300 mm mean circumference
and 100 mm2 cross-sectional area, if there are
250 turns on the coil and the relative permeabil-
ity of the toroid is 800.

14.19 Calculate the effective inductance of the follow-
ing arrangements.

300 ELECTRICAL AND ELECTRONIC SYSTEMS

14.20 Describe the relationship between voltage and
current in an inductor.

14.21 Why is it not possible for the current in an induc-
tor to change instantaneously?

14.22 Repeat Computer Simulation Exercise 14.1 with
V = 15 V, R = 5 Ω and L = 10 H. Plot the current
through the inductor as a function of time and
hence estimate the time taken for the inductor
current to reach 2 A.

Exercises continued

14.23 Explain what is meant by a time constant. What
is the time constant of the circuit in Exercise
14.22?

14.24 The circuit of Exercise 14.22 is modified by
changing R to 10 Ω. What value should be cho-
sen for L so that the time taken for the inductor
current to reach 2 A is unchanged?

14.25 Confirm your answer to Exercise 14.24 using
computer simulation.

14.26 Discuss the implications of induced voltages
when switching inductive circuits.

14.27 How do real inductors differ from ideal 
inductors?

14.28 What is the relationship between the sinusoidal
current in an inductor and the voltage across it?

14.29 What is the energy stored in an inductor of 2 mH
when a current of 7 A is passing through it?

14.30 Explain what is meant by mutual inductance.

14.31 Define the henry as it applies to the measure-
ment of mutual inductance.

14.32 What is meant by a coupling coefficient?

14.33 What is meant by the turns ratio of a transformer?

14.34 A transformer has a turns ratio of 10. A sinu-
soidal voltage of 5 V peak is applied to the prim-
ary coil, with the secondary coil open-circuit.
What voltage would you expect to appear across
the secondary coil?

14.35 Explain the dot notation used when representing
transformers in circuit diagrams.

14.36 Describe the operation of an inductive proximity
sensor.

14.37 Describe the construction and operation of an
LVDT.
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