
UIUC Physics 435 EM Fields & Sources I        Fall Semester, 2007       Lecture Notes  22        Prof. Steven Errede 

© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 
2005-2008.  All Rights Reserved. 

1

LECTURE NOTES 22 
 

Inductance:  Mutual Inductance and Self-Inductance 
 
     Inductance is the magnetic analog of capacitance in electric phenomena.  Like capacitance, 
inductance has to do with the geometry of a magnetic device and the magnetic properties of the 
materials making up the magnetic device.  The capacitance C of an electric device is associated 
with the ability to store energy in the electric field of that device.  The inductance L of a 
magnetic device is associated with the ability to store energy in the magnetic field of that device. 
 
Mutual Inductance: 
 
     Suppose we have two arbitrary shaped loops of wire (both at rest) in proximity to each other, 
as shown in the figure below.  Suppose Loop # 1 carries a current I1(t). 
 

( )1 ,B r t
G G  

 
 

Loop # 2 
 
 
 
 
 

Loop # 1 
 

( )1I t  
 
 
 
The current ( )1I t  flowing in Loop # 1 produces a magnetic field ( )1 ,B r t

G G , and some of these 
magnetic field lines will pass through Loop # 2, linking it. 
 
The magnetic flux from Loop # 
1 linking Loop # 2 is:   
 

     ( ) ( )
2

2

12
1 ,m S

t B r t da⊥Φ = ∫
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  Note that ( )1 ,B r t
G G is linearly   

  proportional to I1(t). 
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Then:  ( ) ( ) ( )
2 2

2 2 1

12 1
1 1 2

ˆ
,

4
o

m S S C

dt B r t da I t daμ
π⊥ ⊥

⎛ ⎞′ ×⎛ ⎞Φ = = ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

∫ ∫ ∫
JJG

GG AG G Gi iv r
r

 

 
Now irrespective of the details of doing the double integral in the above formula, we know that 
that ( )1 ,B r t

G G is linearly proportional to I1(t) and thus to is ( )12
m tΦ
JJG

, i.e.: 
 
The magnetic flux from Loop 1 linking Loop 2 is: ( ) ( )12

112m t M I tΦ ≡
JJG

JJG  

Where the constant of proportionality: 
2

2 1

1
212

what is this physically?

ˆ
4

o
S C

dM daμ
π ⊥

⎛ ⎞×⎛ ⎞= ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

∫ ∫JJG

G
A Gi

����	���

v r

r
 =  

 
Equivalently, note that we can also obtain 12M JJG  using: ( ) ( )

2

12
1 2,m C

t A r t dΦ = ∫
JJG G GG i Av    

       {obtained previously, using B A= ∇×
JG JG JG

} 

Where:   ( ) ( )
1

1
1 1,

4
o

C

dA r t I tμ
π

⎛ ⎞= ⎜ ⎟
⎝ ⎠ ∫

GG AG v r
 ← Note ( )1 ,A r t

G G  is also linearly proportional to ( )1I t  

 

Then:   ( ) ( ) ( )
2 2 1

12 1 2
1 2 1,

4
o

m C C C

d dt A r t d I tμ
π

⎛ ⎞Φ = = ⎜ ⎟
⎝ ⎠∫ ∫ ∫

JJG
G GG G A i AG i Av v v r

 

 

Then if: ( ) ( )12
112m t M I tΦ =

JJG
JJG  Then: 

2 1

1 2
12 4

o
C C

d dM μ
π

⎛ ⎞= ⎜ ⎟
⎝ ⎠ ∫ ∫JJG

G G
A i Av v r

  ⇐  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Mutual Inductance of 
Loop 1 and Loop 2 

Known as 
Neumann’s Formula
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Thus we see that: 
2

2 1 2 1

1 2 1
212

Depends only on geometry; Depends only on geometry; Has dimensions of length.  Has dimensions of length.

ˆ
4 4

o o
C C S C

d d dM daμ μ
π π ⊥

⎛ ⎞×⎛ ⎞ ⎛ ⎞= = ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

∫ ∫ ∫ ∫JJG

G G G
A i A A Gi

���	��
 ����	���

v v v r

r r
 

 

We also see that:  
2

2 1 2 1

1 2 1
2

ˆ
C C S C

d d d da⊥

⎛ ⎞×
= ⎜ ⎟

⎝ ⎠
∫ ∫ ∫ ∫

G G G
A i A A Giv v v r

r r
 

 

The SI units of mutual inductance:  12M JJG  = Henrys = Webers
Ampere

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 

( ) ( )12
112m t M I tΦ =

JJG
JJG  →  ( )

( )

12

12
1

m t
M

I t
Φ

=

JJG

JJG  = 
2Flux Webers Tesla m Henrys

Current Ampere Ampere
−

= = =  

 

Note also that:  7 7
2 124 10 4 10o

N Henrys M HenrysmeterA
μ π π− −= × = ×    ⇒   =JJG  

 

Why is 12M JJG  called the mutual inductance of a two-circuit system? 
 
Let’s reverse the roles of Loop 1 and Loop 2 – i.e. Loop 2 carries current I2  
(I2 not necessarily = I1 in original situation). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The magnetic flux from Loop 2 linking Loop 1:  ( ) ( ) ( )

1
1 1

21
2 1 2, ,m C S

t A r t d B r t da⊥Φ = =∫ ∫
JJG G G GG G Gi A iv  

 

With:  ( ) ( )
2

2
2 2 2

ˆ
,

4
o

C

dB r t I tμ
π

×⎛ ⎞= ⎜ ⎟
⎝ ⎠ ∫

GG AG v r
r

 and ( ) ( )
2

2
2 2,

4
o

C

dA r t I tμ
π

⎛ ⎞= ⎜ ⎟
⎝ ⎠ ∫

GG AG v r
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Then: ( ) ( ) ( )
1

1 2 1 2

21 2 2 1
2 22

ˆ
4 4

o o
m S C C C

d d dt I t da I tμ μ
π π⊥

⎡ ⎤⎛ ⎞ ⎡ ⎤×⎛ ⎞ ⎛ ⎞Φ = =⎢ ⎥⎜ ⎟ ⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥⎝ ⎠ ⎣ ⎦⎣ ⎦

∫ ∫ ∫ ∫
JJG

G G G
A A i AGiv v vr r

r
 

 
Again, define ( ) ( )21

221m t M I tΦ ≡
JJG

JJG  with constant of proportionality = mutual inductance 21M JJG  
 

( )21
m tΦ
JJG

 Loop 2→ Loop 1: 
1

1 2 1 2

2 1 2
221

ˆ
4 4

o o
C C S C

d d dM daμ μ
π π ⊥

⎡ ⎤⎡ ⎤ ⎛ ⎞×⎛ ⎞ ⎛ ⎞= = ⎢ ⎥⎜ ⎟⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎢ ⎥⎣ ⎦ ⎝ ⎠⎣ ⎦

∫ ∫ ∫ ∫JJG

G G G
A i A A Giv v vr r

r
 

But: 

( )12
m tΦ
JJG

 Loop 1→ Loop 2:  
2

2 1 2 1

1 2 1
212

ˆ
4 4

o o
C C S C

d d dM daμ μ
π π ⊥

⎡ ⎤⎡ ⎤ ⎛ ⎞×⎛ ⎞ ⎛ ⎞= = ⎢ ⎥⎜ ⎟⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎢ ⎥⎣ ⎦ ⎝ ⎠⎣ ⎦

∫ ∫ ∫ ∫JJG

G G G
A i A A Giv v vr r

r
 

 

Thus we see that 12 21M M≡JJG JJG  !!!  Hence why it is known as the mutual inductance of Loop # 1 

with Loop # 2 (or vice versa)!!  Thus, we don’t need subscripts 12 21M M M= =JJG JJG  
 

     If one thinks about it, the fact that 12 21M M≡JJG JJG  is not a trivial consequence.   
If 1 2I I I= = , independent of the geometrical shapes / configurations of the two loop circuits,  
it is not immediately obvious that:  
 

[magnetic flux ( )12
m tΦ
JJG

 (due to current I1 = I (t) in Loop 1) linking Loop 2] 

        = [magnetic flux ( )21
m tΦ
JJG

 (due to current I2 = I (t) in Loop 2) linking Loop 1]. 
 

If 1 2I I I= = then: 

 ( ) ( ) ( )12
112 12m t M I t M I tΦ = =

JJG
JJG JJG  

 ( ) ( ) ( )21
221 21m t M I t M I tΦ = =

JJG
JJG JJG  

 
And since  12 21M M M= =JJG JJG    then   ( ) ( )12 21

m mt tΦ ≡ Φ
JJG JJG

. 
 
This is a consequence of the Reciprocity Theorem.   
The underlying physics of the Reciprocity 
Theorem has to do with the intrinsic / 
fundamental properties of the 
electromagnetic interaction at the 
microscopic / particle physics level – i.e. 
exchange of virtual photons between 
electrically-charged particles, as well as 
the fundamental symmetry principles 
obeyed by the EM-interaction: 
 
   Charge Conjugation        (C) 
   Parity (Space Inversion) (P) The EM interaction is invariant under C, P and T. 
   Time Reversal                 (T) 
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Also, the intrinsic properties / nature of our 3-space dimensional and 1-time dimensional 
universe is also important  e.g.  3-D space is isotropic – not anisotropic. 
 
The Reciprocity Theorem has many consequences in all branches of physics / chemistry / 
science.  It is also relevant e.g. in optics (i.e. visible light/real photons).  Nearly everything in the 
“everyday world” deals with the EM interaction at the microscopic scale… 
 
For two magnetically-coupled / flux linked circuits, the Reciprocity Theorem also predicts that: 
 

( ) ( ) ( )12
1

2 12
m t I t

mf t M
t t

ε ε
∂Φ ∂

  = − = −
∂ ∂

JJG

JJG   ≡  ( ) ( ) ( )21
2

1 21
m t I t

mf t M
t t

ε ε
∂Φ ∂

  = − = −
∂ ∂

JJG

JJG  

 

If ( ) ( ) ( )1 2I t I t I t= =  then: 
( ) ( ) ( )1 2I t I t I t
t t t

∂ ∂ ∂
= =

∂ ∂ ∂
, then since: 12 21M M M= =JJG JJG  

 

Then: ( ) ( )
2

I t
mf t M

t
ε ε

∂
  = −

∂
 in Loop 1 

         = ( ) ( )
1

I t
mf t M

t
ε ε

∂
  = −

∂
 in Loop 2 

 

i.e. a  ( )I t
t

∂
∂

= 1 Amp/sec change in the current flowing in Loop 1 with M = 1 Henry of mutual 

inductance between Loop 1 and Loop 2 will produce an EMF 2ε  = 1 Volt in Loop 2, which is 

= to a ( )I t
t

∂
∂

= 1 Amp/sec change in the current flowing in Loop 2 with M = 1 Henry of mutual 

inductance between Loop 1 and Loop 2 will produce an EMF, 1ε  = 1 Volt in Loop 1. 
 
Thus, the EMF induced in a loop b due to a time-varying current flowing in loop a producing a 
time-varying magnetic field linking both loops via their mutual inductance, M is: 
 

( ) ( ) ( )m a
b

t I t
mf t M

t t
ε ε

∂Φ ∂
  = − = −

∂ ∂
  

 
This phenomenon then provides a convenient way for us to measure / determine the mutual 
inductance, M of two circuits – i.e. we can compute the mutual inductance from:  
 

( )
( )

( )

             measure in loop 

             put in known (or measured) into loop a

b
b

a
I t

a
t

t
M

I t
t

ε

∂
∂

=
∂

∂

 

 
 
 
 

by the 
Reciprocity 

Theorem 
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     As one might realize, e.g. from our previous experience(s) with dielectric and magnetic 
media, if loops / circuits 1 and 2 are both uniformly embedded inside a magnetically permeable 
material (with magnetic permeability ( )1o m m oKμ μ χ μ= + = ) then for linear magnetic materials 
with m oKμ μ= we would expect: 
 

      ( ) ( ) ( )
4 b a

b a b
m a aC C

d dt I t M I t
μ μ

μ
π

⎡ ⎤⎛ ⎞Φ = =⎢ ⎥⎜ ⎟
⎝ ⎠ ⎣ ⎦

∫ ∫
G G
A i Av v r

  

 

where:         
4 b a

a b
C C

d dM μ
μ
π

⎡ ⎤⎛ ⎞= ⎢ ⎥⎜ ⎟
⎝ ⎠ ⎣ ⎦

∫ ∫
G G
A i Av v r

 

 
vs. that for non-magnetic materials: 
 

( ) ( ) ( )
4 oo b a

b o a b
m a aC C

d dt I t M I t
μ μ

μ
π

⎡ ⎤⎛ ⎞Φ = =⎢ ⎥⎜ ⎟
⎝ ⎠ ⎣ ⎦

∫ ∫
G G
A i Av v r

 

where:         
4o

b a

a bo
C C

d dM μ
μ
π

⎡ ⎤⎛ ⎞= ⎢ ⎥⎜ ⎟
⎝ ⎠ ⎣ ⎦

∫ ∫
JJG JJG
A i Av v r

 

 

Thus, we see that: 
omM K Mμ μ= . 

 

For example, for soft/annealed iron 1000Fe Fe
m oK μ μ≡ � . Then for two circuits embedded in 

soft/annealed iron, their mutual inductance is also correspondingly increased by this same factor: 
 

       1000
o omM K M Mμ μ μ= � . 

 

This also implies that magnetic fluxes are also correspondingly increased: ( ) ( )
o

b
m m mt K t

μ μ
Φ = Φ  

and the induced EMF’s in the loops are also increased by the same factor, since: 
 

( )
( )

( )
( )

o

o

bb
mmb b

m m

tt
t K t K

t t
μμ

μ με ε
∂Φ∂Φ

= − = = −
∂ ∂

  ⇒    ( ) ( ) ( )1000
o o

b b b
mt K t tμ μ με ε ε= =  

 
Of course, the above results implicitly assume that the flux-linking geometries of the two circuits 
are identical – with and without the presence of the magnetically permeable material. 
 
Thus, we see that the use of highly magnetically permeable materials ( oμ μ� ) can dramatically 
improve the magnetic coupling between two circuits, over and above the free-space oμ  value!! 
 
For the long solenoid, this also means that a high magnetic permeability flux return (external to 
solenoid) from one end to other must also be provided to “complete” the magnetic circuit. 
 

If only a magnetic core is used inside the solenoid, then:  
1.7

1.3
o

core
only

M L
M D

μ

μ

⎛ ⎞×⎜ ⎟
⎝ ⎠

�  where  D = 2R 
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The Mutual Inductance Between Two Long Coaxial Solenoids 
Take a long air-core solenoid of length L and radius R wound with

11 TOTn N L=  turns/meter. 
Then wind a second winding over the first winding of the solenoid with

22 TOTn N L= turns/meter. 
 
If we put a steady current I through the 2nd (i.e. outer) winding of the long solenoid, the magnetic 
field inside the bore of the outer solenoid is: 

2 2 ˆinside
oB n Izμ=

G
 (Using Ampere’s Circuital Law enclosed

o TotB d Iμ=∫
GG

i Av ) 
 
 
 
 
 
 
 
 
The magnetic flux through the bore of the outer solenoid is: 
 

2 2
2 2 2 2 2oB A B R n R Iπ μ π

⊥
Φ = = =

GG
i  where 2

2 2 ˆ ˆA A z R zπ
⊥ ⊥

= =
G

 
 

However, this same magnetic flux links each and every one of the 
1TOTN  turns of the inner 

solenoid winding (if the two windings are close-packed / carefully wound). 
 
Thus, the magnetic flux (arising from I flowing in the outer solenoid winding) that links one turn 
of the inner solenoid winding is: 
 

1

one turn 2
1 2 2 2oB A n R Iμ π⊥Φ = = = Φ

GG
i  

 

But the inner solenoid has
1TOTN  total number of turns, thus the total magnetic flux (arising from 

current I flowing in the outer solenoid winding) linking 
1TOTN  total number of turns of the inner 

solenoid is: 

1 1

one turn 2
1 1 2
TOT

TOT o TOTN N n R Iμ πΦ = Φ =    but  1
1

TOTN
n

L
=    

      ∴   2
1 1 2
TOT

o n n R L Iμ π⎡ ⎤Φ = ⎣ ⎦  
 

Total magnetic flux linking   Current I flowing in  
  inner solenoid winding   outer solenoid winding 

 
But 1

TOT MIΦ =    ⇒  mutual inductance of two long coaxial solenoids:  2
1 2oM n n R Lμ π⎡ ⎤= ⎣ ⎦  

 
Notice that: 

2
1 2n n R Lπ⎡ ⎤⎣ ⎦  has dimensions of length, and 

2
2 1 2 1

1 2 1
2

ˆ1 1
4 4C C S C

d d d da
π π ⊥

⎛ ⎞×
= = ⎜ ⎟

⎝ ⎠
∫ ∫ ∫ ∫

G G G
A i A A Giv v v r

r r
!!! 

74 10oμ π −= ×  Henrys/meter → M  in Henrys 
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     In the real world, it is very difficult to build any two-coil device (e.g. a transformer!!) with 
perfect, 100.0000% magnetic flux linking / coupling between the two windings.  It is always 
some fraction of 100%. 
 

Can define an efficiency of magnetic coupling of the two windings to each other, ∈ :  0 1≤∈≤  
 

Then: 2
1 2actual ideal oM M n n R Lμ π⎡ ⎤=∈ =∈ ⎣ ⎦  and 2

1 1 2actual

TOT
actual ideal oM I M I n n R L Iμ π⎡ ⎤Φ = =∈ =∈ ⎣ ⎦  

 

Then: ( )1− ∈  = inefficiency of magnetic coupling / flux linkage between the two windings 
 

Define: ( ) 2
1 21leakage

o n n R L Iμ π⎡ ⎤Φ ≡ −∈ ⎣ ⎦ = Leakage flux not coupled from one winding to the 
other. 
 
The value of ∈  in an actual device depends on the details of the design (and who made it)...  
Generally speaking, everyone wants 100.000%∈≡ .  Manufacturers try to achieve this, but the 
old adage: “Yous gits what yous payz for” is true . . .  
 
Significant leakage flux in a transformer (a 2-winding  
magnetically-coupled circuit) will adversely affect the 
high-frequency response of the transformer output  
vs. input for a real transformer. 
 
The mutual inductance for two coils tightly wound together on a long solenoid is:  
 

2
1 2oM n n R Lμ π=∈  (Henrys) 

 
Note that M > 0 i.e. the mutual inductance M is always a positive quantity. 
 
Note that how the two separate coils are wired up into a larger circuit does matter – on the sign 
(i.e. polarity) of the voltage output from one coil relative to the voltage input of the other – i.e. 
the relative phase polarity of the two coils. 
 
Schematically, this phase polarity is indicated by black dots on the circuit diagram for two 
magnetically coupled circuits (i.e. transformer) as follows: 
 

The arrows indicate direction of positive current  flow. 
   Coil  
winding 
   # 1 
  Current I1 enters coil winding #1 through lead #1 
  (with black dot), leaves through lead #2 
 
 
  The direction of induced current flow in coil winding 
   Coil   #2 is shown. 
Winding   
    # 2  When the voltage at point 1 on coil # 1 goes positive, 
         the voltage at point 3 on coil 2 also goes positive. 
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     By the Reciprocity Theorem, either coil #1 or coil #2 could be viewed as the “primary” 
winding, the other coil would then be the “secondary” winding (or vice versa). 
 
If two long solenoid coils are coaxially wound together on a magnetically permeable core 

( )( )1o m o mKμ μ μ χ= = + , then: 
2

1 2 o omM n n R L K M Mμ μ μμ π=∈ = �   if oμ μ�  
n.b. adding μ also tends to improve 100%∈� !! 
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Self-Inductance – a.k.a. “Inductance”: 
 
     As we have seen in two-coil magnetically coupled circuits, a time-varying current with 

( )I t t∂ ∂  in one coil induces an EMF ( )( )freeM I t tε = − ∂ ∂  in the other coil due to their mutual 
inductance, M. 
 

     Similarly, a time-varying current with ( )freeI t t∂ ∂  in an isolated / single coil also induces a 
so-called BACK EMF (i.e. a reverse EMF) in itself, due to Lenz’s Law (i.e. the coil tries to 
maintain constant magnetic flux – maintain the flux status quo). 
 

The Self-Inductance of a Long Solenoid 
 
     For a long solenoid the magnetic flux in the bore (cross-sectional area) of the long solenoid 
(of lengthA , radius R and TOTn N= A turns/meter) is 2

m o freen R Iμ πΦ =  where 2solenoidA Rπ⊥ = .  
 
However, this magnetic flux links each and every turn of the solenoid (ideally): 
 

Total magnetic flux linking all NTOT turns 
 Magnetic flux linking one turn 
 

Then: 2TOT
m TOT m o TOT freeN N n R Iμ πΦ = Φ =   with TOTn N= A  

 

Thus: 2 2TOT
m o freen R Iμ π⎡ ⎤Φ = ⎣ ⎦A  

 
We see here again, for a single solenoid coil, that TOT

mΦ  is linearly proportional to freeI , i.e.: 
 

 TOT
m freeLIΦ ≡   where the constant of proportionality (here) is: 2 2

oL n Rμ π= A  (Henrys)  
 
The quantity L is known as the self-inductance of the long solenoid. SI units are (also) Henrys. 
 

BACK EMF in a coil due to its self-inductance: ( ) ( ) ( )TOT
freem I tt

t L
t t

ε
∂∂Φ

= − = −
∂ ∂

  

 
A two-lead device with many turns of wire – having much self-inductance is called an inductor. 
{Analogous to a two-lead device that can store much charge – called a capacitor.} 

 
For the long solenoid, unless a good / high-permeability external magnetic flux return is 
provided, then using only a magnetic core: 
 

1.7

1.3
o

core
only

L
L D

μ

μ

⎛ ⎞
⎜ ⎟
⎝ ⎠
A�  where D = 2R  (Diameter) 

 
 
 
 
 

Due to 
Lenz’s Law
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The Self-Inductance of a Toroidal Coil 
 
3-D View:        Dimensions of 
         Rectangular Toroid: 
Direction of        - Inner radius a 

mB
G

 and        - Outer radius b 
closed contour       - Height h  
path of                   - Toroid has TOTN turns 
Integration, C             
 
 
 
 
Cross-Sectional View: 
 
 
 
 
 
 
 
 
 
 
 
 
From Ampere’s Circuital Law ( ) ( )( ), enclosed

o TOTC
B r t d I tμ=∫

GG G i Av : ( ) ( )enclosed
TOT TOT freeI t N I t=  

The magnetic field inside the bore of the toroid: ( ) ( ) ˆ,
2

TOT freeo
in

N I t
B t μρ ϕ

π ρ
⎛ ⎞= ⎜ ⎟
⎝ ⎠

G
,   2 2x yρ = +   

     (in cylindrical coordinates) 
The magnetic flux through the bore of the toroid is:  
 

( ) ( ),m S
t B t daρ

⊥
⊥Φ = ∫

G Gi  with ˆda d dzρ ϕ⊥ =
G  

( ) 2

2

1  
2

hz bo
TOT free hz a

N I t d dz
ρ

ρ

μ ρ
π ρ

=+ =

=− =

⎛ ⎞= ⎜ ⎟
⎝ ⎠ ∫ ∫    

( ) ( ) ( )
( )

2

2
ln

ln ln  
2

hzo
TOT free hz

b
a

N I t b a dzμ
π

=+

=−

=

⎛ ⎞= −⎡ ⎤⎜ ⎟ ⎣ ⎦⎝ ⎠ ∫ ���	��

 

( ) ( )ln 2 22
o

TOT free
b h hN I t a

μ
π

⎛ ⎞ ⎡ ⎤= +⎜ ⎟ ⎣ ⎦⎝ ⎠
 

Thus: ( ) ( ) ( ) ( )1ln
2

o
m TOT free m

bt N I t h ta
μ
π

⎛ ⎞Φ = = Φ⎜ ⎟
⎝ ⎠

  =  

 

magnetic flux linking 
one turn of the toroid. 
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But (here again) the magnetic flux inside the bore of the toroid links each and every turn of the 
toroid (ideally).  
 

Thus: ( ) ( ) ( ) ( )1 2 ln
2

TOT o
m TOT m TOT free

bt N t N I t h a
μ
π

⎛ ⎞Φ = Φ = ⎜ ⎟
⎝ ⎠

  = 

 

But:   ( ) ( )TOT
m freet LI tΦ =    ⇒   Self-inductance of rectangular toroid: ( )2 ln

2
o

TOT
bL N h a

μ
π

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

Back EMF in Toroid: ( ) ( ) ( ) ( ) ( )2 ln
2

TOT
free freem o

TOT

I t I tt bmf t L N h at t t
με ε
π

∂ ∂∂Φ ⎛ ⎞  = − = − = −⎜ ⎟∂ ∂ ∂⎝ ⎠
 

 
Due to the nature of the toroid’s excellent magnetic self-coupling (toroid = solenoid bent back on 
itself),  if the toroid coil is wound on magnetically permeable core (of magnetic permeability 

( )1m o o mKμ μ μ χ= = + ), then: 
Air core toroid 

( ) ( ) ( ) ( )2 ln
2 o

TOT TOT
m TOT free m m

bt N h I t K taμ μ

μ
π

⎛ ⎞Φ = = Φ⎜ ⎟
⎝ ⎠

 

Magnetic core toroid  ( )2 ln
2 oTOT m

bL N h K Laμ μ
μ
π

⎛ ⎞= =⎜ ⎟
⎝ ⎠

 

( ) ( ) ( ) ( )
o o

free free
m m

I t I t
mf t L K L K t

t tμ μ μ με ε ε
∂ ∂

  = − = − =
∂ ∂

 

 
     For inductors with magnetically permeable cores, the magnetization Μ

G
 and hence , mμ χ  are 

often (not all) frequency dependent!!  Frequency dependence can be significant (100 % or more)  
(over wide frequency range) and depends on the microscopic (and (eddy currents) macroscopic) 
details of the magnetically permeable material(s) being used. 
 
Magnetic materials have various magnetic dissipation mechanism(s) which can be/are frequency 
dependent… 
 
Furthermore, magnetic dissipation mechanisms can be/are also dependent on the strength of inB

G
 

(Since m Bχ
μ

Μ =
GG

 is a non-linear relationship, e.g. for soft iron) thus magnetic dissipation is 

frequently a non-linear function of the magnetization, Μ
G

. 
 
 
 
 
 
 
 
 
 

total magnetic flux 
linking all TOTN turns 
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The Ideal Transformer 
 
     An ideal transformer is a crude representation of a real transformer; nevertheless it is a very 
useful approximation to a real one. A simple (and very common version) of a real transformer is 
one which has two windings that are wound on a magnetically-permeable core (such as iron), 
such as is shown in the figure below: 
 
 
 
 
 
 
 
 
 
 
 
 
For an idealized version of this transformer, we make the following simplifying assumptions: 
(1) Each of the two coil windings have no resistance. 
(2) There are no Eddy-current and/or hysteresis Joule-heating losses in the magnetic core of the     
      transformer. The hysteresis loop for the core is then a straight line through the origin, then B   
      is linearly proportional to H, which is in turn proportional to I, thus B is then proportional to I 
(3) All of the magnetic flux is confined to the magnetic core – i.e. there is no leakage flux, and  
      thus the magnetic flux through one winding is the same as that through the other winding. 
 
Since the two windings are perfectly magnetically coupled to each other in the ideal transformer, 
then ( ) ( ) ( )

1 2

1 1 1
m m mt t tΦ = Φ ≡ Φ = magnetic flux passing through one loop of winding # 1 (or # 2).  

 
The mutual inductance of the two windings of the ideal transformer is M, and if e.g. a function 
generator is connected to winding # 1, then a potential difference (i.e. a voltage) ( )1V tΔ is 

present and thus a free current ( )1I t will flow in winding # 1; thus a magnetic field ( )1B t  will be 
present in the magnetic core of the ideal transformer. If the magnetic core of the ideal 
transformer has a cross sectional area coreA , then a magnetic flux of ( ) ( )

1

1
1m coret B t AΦ = ⎡ ⎤⎣ ⎦ is 

present in the core of the ideal transformer.  
 
Then the total magnetic flux through winding # 1 is: ( ) ( ) ( )

1 1

1
1 1 1

Tot
m m coret N t N B t AΦ = Φ = ⎡ ⎤⎣ ⎦  

 

But:  ( ) ( ) ( ) ( )1 1

1

1 1 1

Tot
m mt t

V t N t
t t

ε
∂Φ ∂Φ

Δ = − = =
∂ ∂

   
 
However since the two windings of the ideal transformer are perfectly magnetically coupled, i.e.:  
 

( ) ( ) ( )
1 2

1 1 1
m m mt t tΦ = Φ ≡ Φ   then:  

( ) ( ) ( )1 2

1 1 1
m m mt t t
t t t

∂Φ ∂Φ ∂Φ
= =

∂ ∂ ∂
. 

Winding # 1 
N1 total turns 

Winding # 2 
N2 total turns 
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Then the resulting EMF induced in winding # 2 is: ( ) ( ) ( ) ( )2 2

1

2 2 2

Tot
m mt t

t N V t
t t

ε
∂Φ ∂Φ

= − = = Δ
∂ ∂

 

 

Since: 
( ) ( ) ( )1 2

1 1 1
m m mt t t
t t t

∂Φ ∂Φ ∂Φ
= =

∂ ∂ ∂
  and 

( ) ( )2

1
2

2

m t V t
t N

∂Φ Δ
=

∂
 and 

( ) ( )1

1
1

1

m t V t
t N

∂Φ Δ
=

∂
 

 

Thus:  
( ) ( ) ( ) ( ) ( )1 2

1 1 1
2 1

2 1

m m mt t t V t V t
t t t N N

∂Φ ∂Φ ∂Φ Δ Δ
= = = =

∂ ∂ ∂
 or: 

( ) ( )2 1

2 1

V t V t
N N

Δ Δ
=  

 

Or:      
( )
( )

( )
( )

2 2 2

1 1 1

t V t N
t V t N

ε
ε

Δ
= =

Δ
 = Turns Ratio of ideal transformer = Constant 

 
     Each winding of the ideal transformer has its own associated self-inductance, L  and for each 

winding, i = 1,2: ( ) ( )
i

TOT
m i it L I tΦ =  and ( ) ( ) ( ) ( )i

TOT
m i

i i i

t I t
mf t L V t

t t
ε ε

∂Φ ∂
  = − = − = Δ

∂ ∂
.  

 
     As we saw in the case of the rectangular toroid (with soft-iron core), the self-inductances 
associated with each of the two windings of the ideal transformer are proportional to the square 
of the number of turns of their windings, i.e. 2

1 1L N ∼ and 2
2 2L N ∼ . Then we can also see that: 

 

( )
( )

( )
( )

2 2 2 2

1 1 1 1

t V t N L
t V t N L

ε
ε

Δ  
= = =

Δ  
 

 
     If the ideal transformer is lossless, then electrical power in winding # 1 can be transferred 
with 100% efficiency to winding # 1 (and vice-versa) (n.b. microscopically, all energy/power is 
transferred from one winding to the other via virtual photons), and thus: 
 

 ( ) ( ) ( ) ( ) ( ) ( )1 1 1 2 2 2P t V t I t V t I t P t= Δ = Δ =   or:  
( )
( )

( )
( )

2 1

1 2

V t I t
V t I t

Δ
=

Δ
 

 

Then we see that:  
( )
( )

( )
( )

( )
( )

2 2 1 2 2

1 1 2 1 1

t V t I t N L
t V t I t N L

ε
ε

Δ  
= = = =

Δ  
 and that  ( ) ( )1 1 2 2N I t N I t=  

 
Thus for an ideal transformer, e.g. if winding # 1 has many turns and winding # 2 has few turns, 
the above formulae tell us that for 1 2N N�  (i.e. a so-called “step-down” transformer): 
 

( ) ( )1 2V t V tΔ Δ�  and ( ) ( )1 2I t I t�  with ( ) ( ) ( ) ( ) ( ) ( )1 1 1 2 2 2P t V t I t V t I t P t= Δ = Δ = ;  
 

whereas if winding # 1 has few turns and winding # 2 has many turns, then for 1 2N N�  
(i.e. a so-called “step-up” transformer): 
 

 ( ) ( )1 2V t V tΔ Δ�  and ( ) ( )1 2I t I t�  with ( ) ( ) ( ) ( ) ( ) ( )1 1 1 2 2 2P t V t I t V t I t P t= Δ = Δ = . 

n.b. By the 
Reciprocity 
Theorem:  
A step-up 
transformer  
run backwards 
= a step down 
transformer!!!


