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ABSTRACT 

Passive components are indispensable in the design and development of microchips for 

high-frequency applications. Inductors in particular are used frequently in radio frequency (RF) 

IC’s such as low-noise amplifiers and oscillators. High performance inductor has become one of 

the critical components for voltage controlled oscillator (VCO) design, for its quality factor (Q) 

value directly affects the VCO phase noise. The optimization of inductor layout can improve its 

performance, but the improvement is limited by selected technology. Inductor performance is 

bounded by the thin routing metal and small distance from lossy substrate. On the other hand, the 

in-accurate inductor modeling further limits the optimization process. 

 

The on-chip inductor has been an important research topic since it was first proposed in early 

1990’s. Significant amount of study has been accomplished and reported in literature; whereas 

some methods have been used in industry, but not released to public. It is of no doubt that a 

comprehensive solution is not exist yet. A comprehensive study of previous will be first address. 

Later author will point out the in-adequacy of skin effect and proximity effect as cause of current 

crowding in the inductor metal. A model method embedded with new explanation of current 

crowding is proposed and its applicability in differential inductor and balun is validated. This 

study leads to a robust optimization routine to improve inductor performance without any addition 

technology cost and development. 
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CHAPTER ONE: INTRODUCTION 

1.1 Motivation 

1.1.1 Need for Inductors 

In contrast with digital circuits which use mainly active devices, on-chip passive components are 

necessary and imperative adjuncts to most RF electronics [1-2]. These components, which include 

inductors, capacitors, varactors, and resistors, have been known as performance as well as cost 

limiting elements of radio frequency (RF) integrated circuits. While all of these components can be 

realized using MOS technology, their specific designs necessitate special consideration due to the 

requirement of high quality factor Q at relatively high frequencies. Inductors in particular are 

critical components in oscillators and other tuned circuits. For low-frequency applications, passive 

devices can be connected externally, but as the frequency increases, the characteristics of the 

passive devices would be overwhelmed by parasitic effect [3]. For instance, a voltage-controlled 

oscillator (VCO) of 10 MHz needs a tank inductance on the order of several μH, whereas at 10 

GHz the inductance is around 1 nH. It’s impossible to access such a small inductance externally, 

since the inductance associated with the package pin and bond wire can exceed 1 nH. As a result, 

on-chip passive components are commonly used in RF applications. 

 

This chapter will focus on the on-chip inductors. Basically there are three types of on-chip 

inductors. The most widely used type is the planar spiral inductor, and a square shaped spiral 

inductor is shown in Figure 1 [4]. Although a circular shaped inductor may be more efficient and 

yield better performance, the shape of inductor is often limited to the availability of fabrication 
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processes. Most processes restrict all spiral angles to be 90°, and a rectangular/square pattern 

(hereafter called square pattern) is a nature choice, but a polygon spiral inductor can serve as a 

compromise between the square and circular shaped inductors. Structural parameters such as the 

outer dimension, number of turns, the distance between the centers of lines (or pitch), and substrate 

property are all important factors in determining the performance of on-chip inductors. 

 

 

Figure 1 Topology and cross section of a typical on-chip square shaped 

spiral inductor. (after [4]). 

 

Besides the spiral inductor, two other kinds of on-chip inductors have been used. Gyrator, or active 

inductor, utilizes active components (i.e., transistors) to transform the impedance of a capacitor to 

inductance [5]. Figure 2 shows the basic gyrator circuit. The active device and capacitor required 

in the gyrator can be easily fabricated and occupy minimal space, but they consume relatively 

large power and introduce additional noise. The third on-chip inductor type is constructed with the 

bond wire [6], as shown in Figure 3. It can offer a very high quality factor (30~60, typically), but 
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such an approach is likely to cause unwanted coupling to other devices and may not be sufficiently 

robust for some RF applications. Only spiral inductors are covered in this dissertation. 

 

C

1R

2R 3R

NPN

Line From

OUT DC
 

Figure 2 Equivalent circuit of a basic gyrator. 

 

 

Figure 3 Schematic of a bond wire inductor (after [6]). 
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1.1.2 The Effect of Inductor Quality Factor 

One of most frequently mentioned figure of merit of the on-chip inductor is its Q (quality factor). It 

has be often questioned what is quality factor and how it relates with the performance of an 

inductor. 

 

Although describing the roll of an inductor in a RF circuit is not the purpose of this dissertation, 

two example circuits below, with simulation results, explain the importance of Q factor. Figs. 4(a) 

shows a typical low-noise amplifier (LNA) with two active inductors and an ideal inductor with 

infinite inductance serving as RF choke (RFC). Figs. 4(b) and (c) show the simulated noise figure 

and current gain, respectively, for the LNA when the Q factors of the two inductors are assumed 

equal and changed from 5 to 25. Clearly, the RF performances of the LNA are degraded when the 

inductors’ Q factor is reduced. Figure 5(a) shows an RF oscillator circuit having one inductor, and 

the simulation results given in Figure 5(b) indicate that the phase noise of the circuit is again 

degraded as the Q factor of the inductor is reduced. 
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 Figure 4(a) A typical low-noise amplifier, (b) simulated noise figures, 

and (c) simulated small-signal current gains. In the simulations, the two 

active inductors were assumed  having the same Q factors and the Q 

factors were increased from 5 to 25. 
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Figure 5(a) An RF oscillator circuit, and (b) simulated phase noises of the 

circuit with the inductor’s Q factor increasing from 10 to 30. 
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1.2 Description of Problems 

As studied in the previous section, inductance quality factor is a limiting factor of RF front end 

circuits. High performance on-chip magnetic device design method is highly demanded for both 

academic study and industrial development.  

 

This dissertation is constructed with six chapters. The first chapter introduces the application of 

inductor and describes the aim of this dissertation. The second chapter reviews significant amount 

of most updated literatures related to the topic, and offers a clear clue about on-chip inductor 

physics and modeling. Chapter three discovers the current crowding phenomena from a new angle 

of view, and proposes a new model structure to address this discovery. Chapter four further fulfill 

the proposed model in differential inductor and balun, and chapter five proposed an algorithm in 

optimizing inductor layout without any additional technology modification. Silicon data is 

measured and presented in the related chapters. At last, chapter six concludes the dissertation, and 

lead to the future work. 
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CHAPTER TWO: LITERATURE REVIEW 

2.1 Modeling Concept and Design Guideline 

Traditionally, spiral inductors are made in square shape due to its ease of design and support from 

drawing tools [7]. From the performance point of view, however, the most optimum pattern is a 

circular spiral because it suffers less resistive and capacitive losses. But the circular inductor is not 

widely used because only a few commercial layout tools support such a pattern. Hexagonal and 

octagonal structures are good alternatives, as they resemble closely to the circular structure and are 

easier to construct and supported by most computer-aided design tools. It has been reported that 

the series resistance of the octagonal and circular shaped inductors is 10% smaller than that of a 

square shaped spiral inductor with the same inductance value [8]. 

 

In 1990, Nguyen and Meyer [9] first developed a planar inductor on silicon using the interconnect 

technology, and they proposed a simple π model to describe the inductor’s behavior (see Figure 

6(a)), which can be considered as a section of the ladder model for interconnects. An improved 

model, shown in Figure 4(b), was later developed by Ashby et al. [10]. This model accounts for 

more physical mechanisms taking place in the inductor. However, the model parameters need to be 

extracted from empirical curve fitting rather than physical means. More recently, Yue and Wong 

[11] reported an inductor model similar to that in Figure 6(b), as shown in Figure 6(c), but with 

models parameters more relevant to inductor geometry and processing. 

 

In the following subsections, we will consider the square shaped spiral inductor and use the model 

in Figure 6(c) as a benchmark to discuss the important issues associated with such a device, 

8 



including the series inductance (LS), resistances (RS and RSi), capacitances (CS, CSi, and COX), 

and quality factor and substrate loss. Note that these issues strongly correlate with the components 

in the equivalent circuit given in Figure 6(c) for modeling the on-chip inductor. 

pR
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sL sR

pR

pC

  

3subC
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4subC
2subR

2subC

sL
sR

fC

 

(a)          (b) 

 

SiC SiR

oxC

sL
sR

sC

SiC SiR

oxC

 

(c) 

Figure 6 Lumped π models for spiral inductors developed by (a) Nguyen 

and Meyer [9]; (b) Ashby et al. [10]; and (c) Yue and Wong [11]. 
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2.1.1 Series Inductance 

It is quite obvious that the knowledge of series inductance is critical to engineers who develop and 

utilize on-chip inductors for RF IC’s. The inductance represents the magnetic energy stored in the 

device, although parasitic components may store energy as well. Numerical simulators computing 

the electromagnetic field distribution can be used to calculate the inductance, but our focus here is 

to determine such a parameter through analytical means, as the latter is less complicated and 

provides more physical insights. 

 

In 1946, Grover derived formulas for the inductance of various inductor structures [12]. 

Greenhouse later applied the formulas to calculate the inductance of a square shaped inductor [13]. 

He divided the inductor into straight-line segments, and calculated the inductance by summing the 

self inductance of the individual segment and mutual inductance between any two parallel 

segments. The model has the form of 

 

 
−+ −+= MMLLS 0              (1) 

 

 

where LS is the total series inductance, L0 is the sum of the self inductance of all the straight 

segments, M+ is the sum of the positive mutual inductances and M- is the sum of the negative 

mutual inductances. Self inductance L’0 of a particular segment can be expressed as 
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L’0 is the inductance in nH, l is the length of a segment in cm, w is the width of a segment in cm, 

and t is the metal thickness in cm. The mutual inductance between any two parallel wires can be 

calculated using 

 

  '2lQM =                (3) 

 

where M is the mutual inductance in nH and Q’ is the mutual inductance parameter 
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GMD denotes the geometrical mean distance between the two wires. When two parallel wires are 

of the same width, GMD is reduced to 
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d is the pitch of the two wires. Note that the mutual inductance between two segments that are 

perpendicular to each other is neglected. As the number of segments increases, the calculation 

complexity is increased notably because it is proportional to (number of segments)2. Another 

drawback of the model is its limitation to only square shaped inductors.  
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The above model could be simplified using an averaged distance for all segments rather than 

considering the segments individually [14]. Based on this approach, the self and mutual 

inductances are calculated directly as 
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where µ0 is the permeability of vacuum, lT is the total inductor length, n is the number of turns, and 

d’ is the averaged distance of all segments: 
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Mohan developed another method which further simplifies the calculations based on the current 

sheet concept [15]. His method serves as an adequate approximation for geometries where the 

conductor thickness is dwarfed by the length and width, and has the advantage of easily extendable 

to other geometries (i.e., octagonal and circular). 
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The methods mentioned above offer various solutions to estimate the inductance of a square 

shaped inductor. Some empirical techniques based on curve fitting have also been reported in 

[16]-[18], however models derived in this way cannot be scaled to reflect changes in the inductor’s 

layout or fabrication technology. 

 

2.1.2 Resistances 

Series resistance RS (see Figure 6(c)) arises from the metal resistivity in the inductor and is closely 

related to the quality factor. As such, the series resistance is a key issue for inductor modeling. 

When the inductor operates at high frequencies, the metal line suffers from the skin and proximity 

effects, and RS becomes a function of frequency [19]. As a first-order approximation, the current 

density decays exponentially away from the metal-SiO2 interface, and RS can be expressed as [11]: 

 

eff

T
S tw

lR
⋅
⋅

=
ρ               (10)  

 

Where ρ is the resistivity of the wire, and teff is given by 

 

( )δδ t
eff et −−⋅= 1             (11)  

 

t is the physical thickness of the wire, and δ is the skin depth which is a function of the frequency:  

 

fπμ
ρδ =                (12) 
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where μ is the permeability in H/m and f is the frequency in Hz. 

 

The most severe drawback of a frequency-dependent component, such as RS, in a model is that it 

cannot be directly implemented in a time domain simulator, such as Cadence Spectre. Researchers 

have proposed to use frequency-independent components to model frequency-dependent 

resistance [19]-[25]. Ooi et al. [21] replaced RS with a network of 2 R’s and 1 L, where R and L are 

frequency-independent components, in the inductor equivalent circuit, as shown in the dashed line 

box in Figure 7(a). The total equivalent resistance Rtotal of the box is   
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(a)           (b) 

Figure 7 (a) Model with improved series resistance (dashed line box) 

developed by Ooi et al. and (b) resistances measured and simulated for 

two different inductors (after [21]). 
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where R0 is the steady-state series resistance, ω is the radian frequency, P is the turn pitch, t is the 

inductor thickness, w is the inductor width, σ is the conductivity, N is the total number of turns, and 

M is the turn number where the field falls to zero. This expression coincides with the approach 

based on the square-law relationship proposed in [22]. Figure 7(b) compares the measured and 

simulated series resistances of two different inductors. Another approach [23] used an R-L ladder 

to model the frequency-dependant resistor, which gives better flexibility and accuracy. Figs. 8(a) 

and (b) show the equivalent circuit of R-L ladder model and the series resistance results, 

respectively. Melendy et al. [24] used a series of R-L loops to represent the effect of series 

resistance, see Figs. 9(a) and (b). Another method is to average the different parameter values 

associated with R over the frequency [25]. 
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Figure 8(a) Model with improved series resistance (dashed line box) 

developed by Rotella et al. and (b) resistances measured and simulated for 

two different inductors (after [23]). 
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Coupling resistance RSi associated with the Si substrate (see Figure 6(c)) also degrades the inductor 

performance. A simple model to describe the substrate resistance is given by [11] 

  

   
sub

Si Gl
R

⋅⋅
=

w
2

             (14) 

 

where l is total length of all line segments, Gsub is the conductance per unit area of the substrate. 
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Figure 9 (a) Model with improved series resistance (dashed line box) 

developed by Melendy et al. and (b) resistances measured and simulated 

from the conventional model and improved model with one and two R/L 

loops in the dashed line box (after [24]). 
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2.1.3 Capacitances 

There are basically three types of capacitances in an on-chip inductor: the series capacitance CS 

between metal lines, the oxide capacitance COX associated with the oxide layer, and the coupling 

capacitance CSi associated with the Si substrate. Traditionally, they are modeled using the 

parallel-plate capacitance concept [11]: 
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where n is the number of overlaps, w is the spiral line width, Csub is the capacitance of the substrate, 

tox is the oxide thickness underneath the metal, and toxM1-M2 is the oxide thickness between the 

spiral. An improved method [26], which evaluates the voltage and energy stored in each turn, leads 

to the equivalent capacitances of Cp and Csub, as shown in Figure 10. Compared to the model in 

Figure 6(c), Cp and Csub in this model are equivalent to CS and the combination of Cox and CSi, 

respectively,   
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Figure 10 Equivalent circuit of spiral inductor developed by Wu et al. 

[26]. 

 

where Cms represents the capacitance per unit area between the mth metal layer and the substrate, 

Cmm represents the capacitance per unit length between adjacent metal tracks, Ak is the track area of 

kth turn and lk is the length of kth turn. The model also implies that CS is a function of the index 

difference of each adjacent segment pair. This means that the larger the index difference between 

the two adjacent lines, the higher the capacitance [27]. This concept can be used to improve the 

inductor structure to be discussed in Section III. 
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2.1.4 Q Factor and Substrate Loss 

The quality factor Q is an extremely important figure of merit for the inductor at high frequencies. 

For an inductor, only the energy stored in the magnetic field is of interest, and the quality factor is 

defined as [28] 
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Basically, it describes how good an inductor can work as an energy-storage element. In the ideal 

case, inductance is pure energy-storage element (Q approaches infinity), while in reality parasitic 

resistance and capacitance reduce Q. This is because the parasitic resistance consumes stored 

energy, and the parasitic capacitance reduces inductivity (the inductor can even become capacitive 

at high frequencies). Self-resonant frequency fSR marks the point where the inductor turns to 

capacitive and, obviously, the larger the parasitic capacitance, the lower the fSR.  

 

If the inductor has one terminal grounded, as in typical applications, then the equivalent circuit of 

the inductor can be reduced to that shown in Figure 11. From such a model, the quality factor Q of 

the inductor can be derived as [28]: 
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Figure 11 Equivalent circuit of one terminal grounded inductor for 

modeling the Q factor. 

 

where ω is the radian frequency, LS is the series inductance, RS is the series resistance, RP is the 

coupling resistance, and CP is the coupling capacitance. RP and CP in Figure 11 are related to RSi, 

CSi, and COX in the model in Figure 6(c) as 
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Note that Q increases with increasing LS and with decreasing RS. Moreover, it appears from (23) 

that Q should increase monotonically with the frequency. This is not the case, however, as the 

substrate loss becomes a dominant factor for Q at high frequencies. The last two terms on the 

right-hand side of (23) denote the substrate loss factor and self-resonant factor. On-chip inductors 

are normally built on a conductive Si substrate, and the substrate loss is due mainly to the 

capacitive and inductive coupling [7]. The capacitive coupling (represented by CP in the model in 

Figure 11) from the metal layer to the substrate changes the substrate potential and induces the 

displacement current. The inductive coupling is formed due to time-varying magnetic fields 
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penetrating the substrate, and such a coupling induces the eddy current flow in the substrate. Both 

the displacement and eddy currents give rise to the substrate loss and thereby degrade the inductor 

performance. Figure 12 illustrates schematically the eddy and displacement currents in the 

substrate induced magnetically and electrically, respectively, by the current flow in the inductor 

spiral. 
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Figure 12 Eddy and displacement currents in the substrate induced by the 

current flow in inductor spiral. 

 

An important conclusion can be drawn from (23), that is when RP approaches infinity, the substrate 

loss factor approaches unity. Since RP approaches infinity when RSi goes to zero or infinity, Q can 

be improved by making the silicon substrate either a short or an open [28]. 
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2.1.5 Modified π Models 

Some studies have been conducted to improve the accuracy of the simple lumped models shown in 

Figure 6. Gil and Shin [29] modified the simple π model by adding the horizontally coupled 

substrate resistor and capacitor, and the equivalent circuit and results of Q factor are given in 

Figures. 13(a) and (b). Cao et al. [19] proposed a double π model to account for the 

frequency-dependant resistance and inductance, in which the frequency-independent resistance 

components follow the square-law relationship suggested in [21]-[22] and the 

frequency-independent inductance components are derived based on mutual inductances and 

calculated from empirical equations. The equivalent circuit and model results are given in Figures. 

14(a) and (b). Lakdawala et al. [30], on the other hand, used an RLC laddered network to describe 

the frequency-dependent resistance and inductance, as shown in Figure 15(a). The measured and 

calculated Q factors of conventional and micromachined inductors are given in Figure 15(b). The 

models in Figures. 8(a) and Figure 9(a) could also yield good predictions for Q, and the results are 

shown in Figures. 16(a) and (b), respectively. 
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(a)            (b) 

Figure 13(a) Improved inductor model with horizontally coupled 

resistance and capacitance (Rsub and Csub) and (b) Q factors measured and 

simulated with and without Rsub and Csub (after [29]). 
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(a)          (b) 

Figure 14(a) Improved double π model to more accurately account for the 

frequency-dependent series resistance and inductance and (b) Q factors 

measured and simulated from the conventional and improved models 

(after [19]). 
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Figure 15(a) Modified π model with RLC laddered network and (b) Q 

factors measured and calculated from the modified model (after [30]). 
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(b) 

Figure 16(a) Quality factors measured and calculated from model in 

Figure 7(a); (b) Inductances and quality factors measured and calculated 

from model in Figure 8(a). 
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2.2 Advanced Structures  

The preceding section has addressed the design concept and modeling of a typical square shaped 

spiral inductor. The performance of such an inductor can be improved with the following advanced 

structures. 

 

 

2.2.1 Structures to Reduce Substrate Loss 

(a) Ground Shield 

As mentioned earlier, the substrate loss can be reduced with decreasing the substrate resistance RSi. 

To achieve this, one can insert a metal or ploy-Si layer between the inductor and substrate, and 

connect this layer to the ground. This approach, called the ground shielding, reduces the effective 

distance between the spiral metal and ground and thereby reduces the substrate coupling 

resistance. Another purpose of the shield is that it can truncate the electric field in the substrate and 

thus reduce the noise. For a solid ground shield (SGS), however, the varying electromagnetic field 

in the inductor could induce the eddy current with the presence of ground plane, and the reflected 

image in the ground plane serves as a counteractive inductor [31]. Hence, it’s necessary to pattern 

the shield to cut the eddy current loop [28], [32]. It has been found that poly-Si is a good material 

for the patterned ground shield (PGS). Chen et al. [33] reported the use of an n+-diffusion Si 

patterned ground shield to improve the quality factor. Since the substrate current mainly 

concentrates at the Si-SiO2 surface due to the proximity effect, the n+-diffusion Si PGS can 

effectively break the current loop and thus eliminate the eddy current effect [34]. Figs. 17(a) and 
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(b) show a typical PGS and the results of quality factor Q with SGS and PGS. Clearly, the presence 

of PGS improves Q considerably. 
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Figure 17(a) Schematic of patterned ground shield (PGS) and (b) quality 

factors of solid ground shield (SGS), PGS, and no ground shield (NGS) 

(after [28]). 

The most significant drawback of ground shielding is the fact that it reduces the distance between 

inductor and ground and thereby introduces additional capacitance. This effect may sometimes 

adversely decrease the quality factor of ground-shielding inductors [35].  

 

(b) Substrate Removal 

Another way to enhance Q is to increase the substrate resistance. In order to elevate RSi to 

approaching infinity, one idea is to use insulator as substrate. Quartz or glass shows better Q and 

higher self-resonant frequency than Si [35]. For Si technology, however, it is not possible to use a 

high resistive substrate as an effective RF ground, and via contacts through the chip to define RF 
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grounds on both the chip front side and back side is usually not available. In other words, for 

CMOS-based on-chip inductors, we cannot avoid using a low resistive Si substrate. Nonetheless, 

instead of building the whole circuit on a low resistive substrate, we can make a region with high 

resistivity for placing the inductor [36]. This can be accomplished by using the proton 

implantation, and Chan et al. [36] achieved a 7% higher self-resonant frequency and 61% higher Q 

through this approach.  

 

Researchers have come up with other novel ideas to keep the inductor away from substrate so that 

substrate coupling and loss can be greatly reduced. Using an advanced micromachinary process, 

an inductor can be built above the silicon surface [30], [37]-[38], as shown in Figs. 18 and 19, or 

the silicon underneath the inductor can be removed using the deep-trench technology [39], as 

shown in Figure 20. 
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Figure 18(a) Topology of the suspended inductor and (b) comparison of 

inductances and Q factors of conventional and suspended inductors (after 

[37]). 
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Figure 19(a) Topology of the micromachined inductor and (b) Q factors of 

such an inductor with two different diameters (after [30]). 

 

(c) Horizontal Inductors 

An alternative way to reduce magnetic field coupling to substrate is to have the magnetic field 

parallel to the substrate. To this end, research works have been done to fabricate horizontal 

inductors with multilayer of interconnects [40]-[41]. Using this layout, the magnetic field is 

parallel to the substrate surface and the magnetic coupling to the substrate is minimal. This 

structure nevertheless gives rise to an increased in the coupling capacitance. Since a large metal is 

needed for the bottom layer of the horizontal inductor, the inductor-substrate capacitance increases 

tremendously if the inductor is on silicon. Again, researchers tried to use high resistive substrate 

[41], suspend the inductor in air [42], or even rectify the inductor with the so-called plastic 

deformation magnetic assembly (PDMA) [43]. Figs. 21(a) and (b) show the topology and 

performance of a horizontal inductor using the PDMA. 
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Figure 20(a) Inductor with substrate removed by a deep trench technology 

and (b) Q factors of conventional and trenched inductors (after [39]). 
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Figure 21(a) Topology of the horizontal inductor based on the PDMA 

process and (b) Q factors of conventional and horizontal inductors (after 

[43]). 
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2.2.2 Structures to Reduce Series Resistance 

Metal resistivity gives rise to the series resistance RS, and it is always desired to reduce the 

resistance in order to improve the quality factor. One simple idea is to increase the line width. This 

method may work at low frequencies where the current density in a wire is uniform; however, as 

the frequency increases, the skin effect pushes the more current to the outer cross section of the 

metal wire and the so-called skin depth (i.e., the depth in which the current flows) is reduced with 

increasing frequency (see Eq. (12)). Thus, the skin effect increases the series resistance at high 

frequencies, and the approach of increasing the line width would not be effective. According to an 

earlier study, the larger the cross section, the lower the onset frequency at which the skin effect 

dominates the series resistance. Furthermore, a wider metal line would occupy more area, which 

increases the fabrication cost. Several possible solutions to this problem are given below. 

 

(a) Vertical Shunt  

In this approach, the inductor is made of multiple metal layers and the neighboring metal layers are 

shunted through via arrays, so the effective thickness of the spiral inductor is increased, the skin 

effect is weakened, and the series resistance is reduced. A detailed study and comparison on the 

multilayer inductors are presented in [44]. The inductors are fabricated with multiple metal layers 

(M1 to M4), and these layers can be shunted through via arrays, as shown in Figure 22(a) for the 

case of shunting M2, M3 and M4. The results in Figure 22(b) show a reduced series resistance and 

thus an improved Q as the number of shunts is increased (i.e., the case of M3 has no vertical shunt). 

The performance of the inductor is therefore optimized with the increment of total metal thickness 

without occupying more area. One important aspect the inductor in Figure 22 did not address is 
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that the inductor may experience a lower self-resonant frequency with the utilization of lower 

metal layers. This is because 1) the reduction of metal-substrate distance could cause a significant 

increase in Cox, and 2) the capacitance among the metal lines would also increase. 
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Figure 22(a) Inductor with multiple metal layers and vertical shunt and (b) 

maximum Q factors and resistances for the inductor having different 

numbers of vertical shunt (after [44]). 

 (b) Horizontal Shunt 

Instead of shunting vertically, the spiral inductor can be split into several shunting current paths, 

each with an identical resistance and inductance. This approach, called the horizontal shunt, can 

suppress the current crowding and increase the Q factor [45]. Figs. 23(a) and (b) show such an 

inductor and its Q factor, respectively. It is shown that for the same line width, the Q factor 

increases with increasing number of splits. 
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Figure 23(a) Inductor with metal line split into shunt current paths and (b) 

Q factors of horizontally shunt inductor with one, two, and three splits in 

the metal line (after [45]). 

 

(c) Line Width Optimization 

For inductors fabricated with a constant line width, the influence of magnetically induced losses is 

much more significant in the inner turns of the spiral, where the magnetic field reaches its 

maximum. To avoid this effect, one method is to employ the so-called tapered inductor, in which 

the line width decreases toward the center of the spiral [46], as shown in Figure 24(a). A reduced 

series resistance can also be achieved from this approach. Detailed study was performed in [47] 

regarding the optimization of line width in order to enhance the RF performance. The frequency- 

and position-dependent optimum width Wopt is given by: 
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where rs(f) is the sheet resistance of the metal strip, f is the frequency, C is a fitting constant, and gn 

is a geometric dependent parameter. As can be seen in Figure 24(b), the Q factor of a spiral 

inductor is much improved when the line width is not uniform and is optimized. 
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Figure 24(a) Topology of a tapered inductor and (b) Q factors of a tapered 

inductor and three non-tapered inductors (after [47]). 

2.2.3 Structures to Increase Inductance 

Since the quality factor is directly proportional to the series inductance, approaches to increase the 

inductance have also been suggested for on-chip inductor performance enhancement. 

 

(a) Stacked Inductor 

A stacked inductor is a set of series inductors made from different metal layers, as illustrated in the 

schematic in Figure 25(a). This method maximizes the inductance per unit area. It has been 

reported that a 10 nH inductor can be achieved with an area of 22 μm × 23 μm, as opposed to 

several hundreds μm by several hundreds μm for regular inductors [48]. This is the main advantage 
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that this technology can offer. Shortcomings are relatively low Q factor and self-resonant 

frequency, due to the increased substrate capacitance and line to line coupling capacitance. The Q 

factor and inductance of such an inductor are illustrated in Figure 25(b).  
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Figure 25(a) Stacked inductor with six metal layers and (b) Q factor and 

inductance of the stacked inductor (after [48]). 

 

 (b) Miniature 3-D Inductor 

A high-performance stack-like inductor, called the miniature 3-D inductor, was proposed in [49]. 

Figure 26(a) shows such an inductor, which consists of at least two or more stacked inductors by 

series connections, and every stacked inductor has only one turn in every metal layer. The 

miniature inductor, while quite complicated, possesses a minimal coupling capacitance. This leads 

to a much higher self-resonant frequency and a wider frequency range for high quality factor. 
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Comparisons of capacitances and Q factors obtained from this inductor and a typical stacked 

inductor are given in Figs. 26(b) and (c), respectively. 
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Figure 26(a) Structure of the miniature 3-D inductor, (b) capacitances of 

typical stacked and 3-D inductors, and (c) Q factors of typical stacked and 

3-D inductors (after [49]). 
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2.2.4 Symmetrical Inductor 

 

Traditionally, the winding of an inductor spiral starts from the outer turn to inner turn and then 

goes back out through an underpass. This is called the non-symmetrical inductor, as shown in 

Figure 27(a). An improved structure with a symmetrical winding, called the symmetrical inductor 

shown in Figure 27(b), will yield better performances [50]. This is because in the symmetrical 

inductor the geometric center of the symmetrical inductor is exactly the magnetic and electric 

center, which increases the mutual inductance and consequently the total inductance. 

Performances of the symmetrical and non-symmetrical inductors are illustrated in Figs. 28(a), (b) 

and (c). While the Q factor and series resistance of the symmetrical inductor are improved, the 

self-resonant frequency (i.e., frequency at which the inductance is zero) of such an inductor is 

reduced. This is due to an increased ac potential difference between the neighboring turns in the 

symmetrical inductor, a mechanism that increases the coupling capacitance and degrades the 

self-resonant frequency [26]. 
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Figure 27 Spiral pattern of (a) non-symmetrical inductor and (b) 

symmetrical inductor. 
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Figure 28 Comparison of (a) Q factor [50], (b) self-resonant frequency 

[27], and (c) capacitance [27] of non-symmetrical and symmetrical 

inductors. 

The symmetrical inductor can be further enhanced with a dual-layer structure, as shown in Figure 

29(a) [51]. The results in Figure 29(b) suggest that this structure possesses a much higher Q factor 

over its single-layer counterpart. 
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(b) 

Figure 29(a) Structure of the dual-layer symmetrical inductor and (b) Q 

factors of single and dual-layer symmetrical inductors (after [51]). 
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2.2.5 Alternative Patterns 

 

The preceding discussions have focused mainly on square shaped spiral inductors. As mentioned 

earlier, while the circular shaped inductor yields better performance, such a pattern is more 

difficult to realize than its square counterpart. On the other hand, alternatives like the hexagonal 

and octagonal patterns are more feasible and good compromises. For these inductors, as the 

number of sides is increased, less metal length is needed to achieve the same number of turns. Thus 

series resistance is compressed and Q factor improved. On the other hand, the square shaped 

inductor is more area efficient. For example, for a square area on the wafer, square shape utilizes 

100% of the area, whereas hexagonal, octagonal and circular shapes use 65%, 82.8% and 78.5%, 

respectively. As a result, square inductor can accommodate more metal line, thus yielding a larger 

inductance, within the same square area. 

 

Selection of the pattern shape is a compromise between quality factor and area. Mohan [15] 

studied inductors with different shapes having a fixed inductance of 5 nH. As shown in Figure 30, 

the quality factor is improved with increasing number of sides (note that circular pattern can be 

considered as having infinite number of sides). The study further suggested that an octagonal spiral 

inductor suffers a 3~5% lower Q factor but achieves a 3~5% smaller effective chip area than the 

circular spiral inductor [15]. 
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Figure 30 Q factors of different shaped inductors with a fixed inductance 

of 5 nH (after [15]). 

 

The quality factor and inductance of square and octagonal shaped inductors having the same inner 

diameter are compared in Figs. 31(a) and (b) [52]. The square inductor possesses a higher peak 

inductance but a lower self-resonant frequency. This is because the longer metal line of square 

inductor induces a larger metal to substrate coupling capacitance, which reduces the inductance at 

high frequencies. For low frequencies, the inductor performance depends mainly on the length of 

the spiral wire, and the square pattern possesses a larger inductance in this region. Experiments of 

other research works also indicated an up to 10% resistance reduction of circular and octagonal 

inductor over the square inductor with the same inductance [8], as illustrated in Figure 32. 
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Figure 31(a) Q factor and (b) inductance of octagonal and square 

inductors having the same inner-diameter of 100 μm, number of turns of 

3.5, and line width of 6 μm (after [52]). 
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Figure 32 Resistance comparison on square, octagon and circular 

inductors 
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The dynamic growth in RF electronics has demanded and vitalized the need of high-performance 

on-chip passive components. One of these components, the on-chip spiral inductor, has been 

considered and reviewed in this chapter. Many aspects of the design and modeling of the on-chip 

inductor have been presented, and their impacts on RF performance addressed. It is demonstrated 

that while it is cost effective and technology reliable to fabricate such devices on Si substrate, the 

conductive nature of Si material gives rise to a large substrate loss and consequently relatively 

poor RF performance. The spiral pattern and geometry can also be optimized to enhance the 

quality factor, but these alternatives often come with trade-offs or compromises. This work should 

provide a useful and sufficient breath to researchers and engineers who are interested in the design 

and development of RF IC’s involving passive components. 
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CHAPTER THREE: MODELING METHODOLOGY 

Recent growth in RF applications has increased the use of spiral inductors and thus demanded a 

more accurate model for such devices. In this dissertation, we focus on the model development of 

spiral inductors with symmetrical and asymmetrical terminals. Relevant and important physics 

such as the current crowding in metal line, frequency-dependent permittivity in oxide, and overlap 

parasitics are accounted for. Experimental data and results calculated from the existing inductor 

models are included in support of the model development. 

 

3.1 Introduction 

 

Wireless communications is already part of our daily life. To reduce the cost of monolithic 

microwave integrated circuits (MMICs), passive devices are frequently integrated with active 

components on the same chip. Spiral inductors are particularly important and widely used in 

MMICs such as low-noise amplifiers, oscillators, and mixers [8]. 

 

Spiral inductors with asymmetrical and symmetrical terminals have been used in RF IC’s, and 

their configurations for the widely used differential driven applications are shown in Figs. 1(a) and 

(b), respectively. For such applications, the symmetrical inductor yields better performance [53]. 

This is due to the presence of a shorter underpass metal line and smaller number of overlaps in the 

symmetrical inductor, which decrease the capacitance and consequently improve the quality factor 
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(Q factor) of the inductor [50]. In addition, the symmetrical inductor occupies a smaller chip area 

than its asymmetrical counterpart [53]. 
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Figure 33 Schematic of (a) asymmetrical inductor and (b) symmetrical 

inductor with a square pattern for differential driven applications 
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Many spiral inductors models have been reported in the literature [15][9][11], and all these models 

were developed intended for asymmetrical inductors but nonetheless sometimes used for 

symmetrical inductors. To the best of our knowledge, an accurate and compact symmetrical 

inductor model is not yet available and urgently needed. Empirical technique based on curve 

fitting for symmetrical inductors has been reported in [16], but models derived this way cannot be 

scaled to reflect changes in the inductor’s layout or fabrication technology and cannot be 

implemented into a circuit simulator. Commercial electromagnetic field solver may also be used to 

predict the inductor’s performance accurately, but the computation time can be too extensive to be 

practical. 

 

In this paper, a physics-based model applicable for both symmetrical and asymmetrical inductors 

will be developed. Model development and the proposed equivalent circuit for symmetrical 

inductors will first be given in Section II. This is followed by the model development of 

asymmetrical inductors in Section III. In Section IV, results obtained from the present model, 

existing models, and measurements are compared. Finally, conclusions are given in Section V. 

 

3.2 Model Development of Symmetrical Inductor 

 

Our model development will first focus on symmetrical inductors. In addition, an octagonal spiral 

pattern will be considered, but the approach applies generally to other non-circular patterns. It has 

been suggested that the octagonal spiral provides a higher Q factor and lower series resistance than 
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the square pattern [8] and is more area efficient and easier realized than the circular spiral [15]. The 

consideration of the octagonal in fact makes the model more comprehensive than most existing 

models which consider only square or hexagonal patterns. 
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(b)            (c) 

Figure 34 (a) Schematic of an octagon symmetrical inductor with 3 turns, 

(b) overall equivalent circuit for the inductor including segmental and 

overlap components, and (c) equivalent circuit for the segment in (b). 
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Figure 34(a) shows a symmetrical, octagon spiral inductor with 3 turns. For such an inductor, the 

metal track can be divided into 5 segments and 2 overlaps (see Figure 34(a)), and the improved 

equivalent circuit for the inductor is given in Figure 34(b). In Figure 34(b), each segment box is 

represented by a lumped model shown in Figure 34(c). In addition, coupling capacitances between 

the metal lines and parasitics associated with the overlaps need to be considered. These are 

accounted for with all the other components besides the segment boxes in Figure 34(b), where CC,ij 

is the coupling capacitance between two particular metal lines i and j, Cmm represents the 

capacitance associated with the overlap, Cox_up and Csub_up model the capacitances associated with 

the oxide and substrate of the underpass metal, respectively, and Gsub_up models the substrate 

conductance of the underpass metal. Note that there are two sets of the overlap parasitic 

components, and the subscripts 1 and 2 denote the components pertinent to overlaps 1 and 2, 

respectively. It is worth mentioning that the lumped equivalent circuit in Figure 34(c) is the sole 

framework used in the conventional modeling of spiral inductors. The improved version suggested 

in Figure 34(b) allows for the inclusion of the distributed nature of the spiral inductor and thus an 

increase in the model accuracy. 

 

We want to point out that horizontal coupling in the substrate (horizontal coupling underneath the 

adjacent metal lines in the substrate) may affect the inductor performance, but such an effect is 

rarely included in the inductor compact modeling because of the complexity associated with its 

distributed nature. To the best of our knowledge, only the work by Gil and Shin [29] included the 

horizontal substrate coupling, but the model considered only the lump components for the 

horizontal substrate coupling, and all the model parameters were obtained from fitting schemes. 

To keep the present model compact and the parameters physics-based, this coupling effect will not 
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be considered. The eddy current is another mechanism for substrate loss. However, a recent work 

[19] has suggested that the loss due to eddy current is negligible in a relatively low conductive 

substrate with a resistivity larger than 10 Ω-cm. Because all the inductors considered in our work 

have a substrate resistivity of larger than 15 Ω-cm, such an effect will be neglected in this work. 

 

3.2.1 Nonuniform Current Distribution in Metal Lines 

 

A difficult issue in modeling the spiral inductor is the fact that the current distribution in a metal 

line is not uniform and is a strong function of its location and operating frequency. Such a 

nonuniform current distribution is an important mechanism affecting the inductor performance. 

Traditionally, the current density in a metal line is considered to be governed by the skin and 

proximity effects [19]. It is more realistic, however, to consider the subject metal line lies in midst 

of electromagnetic field generated by all the other metal lines. According to the 

partial-element-equivalent-circuit (PEEC) simulation [54] and 3-D electromagnetic simulation 

[55], the current distribution in a metal line in general exhibits an exponential decay from the inner 

edge (side of metal line closer to the center of spiral) to the outer edge (side of metal line farther 

away from the center of spiral). Furthermore, this exponential-decay distribution is more 

prominent in the inner turns (i.e., segments 2, 3, and 4) and as the frequency is increased. Figure 35 

shows the current density distributions in segments 1, 4, and 3 (circled in Figure 35) simulated 

from an EM simulator. The frequency and location dependencies of the current distribution in the 

metal lines are clearly illustrated. 
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We now introduce the concept of the effective line width Weff in which the majority of the current 

density exists (the region where the first exponent of current density exists). Once Weff is in place, 

then the nonuniform current distribution effect can be accounted for by replacing the physical line 

width in the model parameters with Weff. The following expressions are proposed to describe the 

effective line width as a function of the frequency and the segment number:  
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where w is the physical width of metal line, f is frequency in Hz, i is turn index (i.e., for segments 

1 and 5, i=1; segments 2 and 4, i=2; segments 3, i=3), and c1 and c2 are fitting parameters to make 

the inductance and resistance match with measurements. A systematic method to determine the 

values of c1 and c2 will be developed and discussed later. 
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Figure 35 Current density contours in the three metal lines at three 

different frequencies simulated from an EM simulator. 

 

Figure 36 shows the normalized current distributions in segments 3, 2, and 5 (see Figure 36) 

obtained from an EM simulator and the effective line width model. The model results were 

calculated by first integrating the current distribution simulated from the EM simulator over the 

physical line width, normalizing it with the current integrated over the effective line width, and 

then using it as the peak value followed by an exponential decay function. The good agreement 
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demonstrates the soundness of using the effective line width for modeling the frequency- and 

location-dependent natures of the spiral inductors. 
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Figure 36 Comparison of current density distributions in the three metal 

lines calculated from the present model (lines) and obtained from EM 

simulations (symbols). 
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3.2.2 Modeling the Segment Box 

 

We will now first discuss the modeling of the components in the segment box (see Figure 34(c)), 

and later discuss the modeling of the overlap components in Figure 34(b). As shown in Figure 

34(c), the model components in the segment box include the series inductance LS, series resistance 

RS, and substrate parasitics. 

 

(a) Series Inductance 

 

The metal track in each segment can be further divided into several straight metal lines (for 

example, 5 straight metal lines for segment 4, see Figure 34(a)), so that the inductance LS_lines of 

each straight metal line can be expressed as the self inductance Lline_self plus the mutual inductance 

M from all other metal lines [13]:  

 

∑+= MLL selflinelineS __              (3)  

 

The self inductance of a straight metal line can be written as [12]: 
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where l is the length of the straight line, and t is the line thickness. Note that the current crowding 

effect has been accounted for and the self inductance is frequency dependent because of the 

introduction of weff in (4).  

 

At low frequencies where the current distribution in a metal line is fairly uniform, mutual 

inductance of two parallel metal lines can be calculated using the geometric mean distance (GMD) 

[12]. This approach becomes questionable for high frequencies because of the highly non-uniform 

current distribution. In this work, the line separation is more accurately determined by the distance 

d between the centers of the two effective line widths. Based on this concept, the mutual 

inductance Mp for two parallel filaments of equal length (see Figure 37(a)) is expressed as 
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For unequal parallel filaments (see Figure 37(b)), the mutual inductance M’P is  

 

( ) ( )[ ] ( ) ( )[ ]δδδδ +++−+++= mMlMMmlMM pp'2       (6)  

 

Here, m is the length of the second line, and δ is the misalignment of the two lines and δ becomes 

negative when two filaments overlap. For filaments incline with an angle between them (see 

Figure 37(c)), the mutual inductance Mi is  
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Figure 37 Different possible filament alignments for the mutual 

inductance calculations. 

 

 

For the other possible configurations shown in Figure 37(d) and (e), the mutual inductances M’i 

and M”i can be modeled as 
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The total series inductance of a segment is the sum of all the straight-line series inductances, 

including the self and mutual inductances, within the segment. 

 

Note that because of the need of a terminal taken in the middle of the segment box to connect the 

coupling capacitance to the neighboring segment box, the series inductance is split into two, each 

with LS/2 and located on both sides of the terminal (see Figure 34(c)). The same applies to the 

series resistance.   

 

(b) Series Resistance 

 

Ohmic loss (I2R) caused by the series resistance in the metal line is a factor limiting the inductor 

performance. At low frequencies, where the current density in the metal line is uniform, the series 

resistance can be easily found from the metal line resistivity and geometry. For spiral inductors 

operating at high frequencies, the series resistance of a straight line is frequency dependent and can 

be modeled using the concept of the effective metal width: 
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where ρ represents the resistivity in Ω-cm and tm is the metal thickness. The total series resistance 

of a segment is the sum of all straight line resistances. 

 

(c) Substrate Parasitics 

 

Substrate parasitics result from the electrical coupling between the metal track and substrate, as the 

metal track of a spiral inductor can be considered as a microstrip on substrate with waves passing 

through it. Three elements, Cox, Gsub, and Csub, are used to model the substrate parasitics (see 

Figure 34(c)).  

 

The frequency-dependent permittivity εeff(f) is needed to model the frequency-dependent 

capacitance. It can be written as [56]: 
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Here, tox is the thickness of oxide under the metal line, εox is the relative permittivity of oxide, and 

the critical frequency fC is given by 
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Using the frequency-dependent permittivity, the oxide capacitance and substrate conductance can 

be expressed as 
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where ε0 is the permittivity of free space, σsub is the silicon substrate conductivity, and tsub is the 

thickness of substrate. The substrate capacitance can be expressed using (16) with tox replaced by 

tsub.  

 

3.2.3. Modeling Components Outside Segment Box 

 

Two types of components are located outside the segment boxes in Figure 34(b): the coupling 

capacitances between the metal lines and parasitics associated with the overlaps. 

 

(a) Coupling Capacitance Between Metal Lines 

 

CC,ij in Figure 34(b) describes the coupling capacitance between segments i and j. Such a 

capacitance can be modeled using the method stated in [57]. For a conductor of width w centered at 

b, the even-symmetric potential at any point jyxz +=  in the complex plane is given by 
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On the other hand, the odd-symmetric potential at any z is 
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q and g in the above expressions are constants. Therefore, the potential of a two conductors 

centered at b and –b can be written as 

 ( ) ( ) ( )zhGzhQz oe ⋅+⋅=φ               (22) 

 

Q and G are the normalized charge and amplitude, respectively, and  

 

( ) ( wbzHwbzHh eee ,,,, −−=

 

 

 

 
)              (23) 

 

Forcing the potential ( ) Vz =φ at the two match points z1 and z2 yields 

1 2z b r w= − ⋅                 (25) 

2 2z b r w= + ⋅                 (26) 
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These constraints, together with the assumption that the metal lines are relatively thin, lead to the 

following simplified expressions [57] 

 

( ) ( )
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             (27) 
 

 

 

Solving for the charge Q in (27), and the coupling capacitance CC per unit length between the two 

metal strips can be calculated from [57] 

 

VQC 20ε=                 (28)  

 

To include the nonuniform current distribution effect discussed in Sec. 3.2.1, the metal line width 

w in the above equations should be replaced with weff. 

 

(b) Overlap Parasitics 

 

Because the length of overlap between the top and underpass is normally much shorter than that of 

the whole metal line, the resistance and inductance of the overlap can be omitted, and only the 

overlap capacitances are considered. There are two set of parasitic components denoted by 

subscripts 1 and 2 due to two different overlaps (see Figure 34(b)). The analysis below applies 

generally to both sets of the components. 
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Figure 38 Cross-section showing the different thicknesses associated with 

the overlap parasitics modeling. 

 

Figure 38 shows the structure of the overlap and three pertinent thicknesses: tupox, tsub, and tmm. All 

the underpass capacitances can be modeled using the same approach as in Sec. 2.1. The oxide 

dielectric permittivity can be assumed frequency-independent because the underpass metal is 

relatively short. Thus, 
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3.3 Model Development of Asymmetrical Inductor 

 

The concept of modeling the asymmetrical inductor, shown in Figure 39(a), is analogous to that of 

the symmetrical inductor given in Section II. For this inductor having 2.5 turns and octagonal 

pattern, the metal track can be divided into 4 segments and 1 overlap. Another difference between 

this and the symmetrical inductor in Figure 34(a) is the different location of the underpass. The 

equivalent circuit of the asymmetrical inductor is given in Figure 39(b). 
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(a)          (b) 

Figure 39 (a) Schematic of an octagon, 2.5-turn asymmetrical inductor 

and (b) overall equivalent circuit for the inductor including segment, 

capacitive coupling, and overlap components. 
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3.4 Model Verification 

 

A symmetrical, octagon inductor fabricated with the 0.35μm CMOS technology was first 

considered and measured to verify the model developed. The inductor was built on a 9.59μm oxide 

and 500μm silicon substrate. The inductor has 3 turns, metal width of 15μm, metal thickness of 

2μm, and metal line spacing of 8μm. Two-port parameters were measured, and the inductance, 

resistance and quality factor of the inductor were extracted. In addition to the present model, two 

existing inductor models [11],[58] intended for the asymmetrical inductors were considered. Note 

that the models of Yue and Wong [11] and Mohan et al. [58] employed a simple π equivalent 

circuit, and the results of their models were simulated based on the equivalent circuit with the 

components calculated from the expressions given in the papers. 

 

A systematic method to determine the values of the fitting parameters (c1 and c2) in equations (2) 

is needed. To this end, the following function is developed: 
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where D describes the averaged error associated with fitting the model to the measured Q factor 

and inductance using different fitting parameter values at several different frequencies. The 

parameter value that yields the smallest D is the one to use, and c1 = 0.653 and c2= 0.53 (also listed 

in Table 1) were obtained from this approach for the spiral inductor considered and compared. 
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Figure 40(a)-(c) show the quality factor, inductance, and resistance, respectively, calculated from 

the present model, calculated from the two existing models, and obtained from measurements. The 

present model demonstrates a better accuracy over the existing models for a wide range of 

operating frequencies. Thus, our results suggested that it is erroneous and impractical to use the 

inductor model developed intended for asymmetrical inductors for predicting the characteristics of 

symmetrical inductors. The magnitude and phase of S21 parameter calculated from the models and 

obtained from measurements are compared in Figure 41(a) and (b), respectively. 
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(c) 

Figure 40 Comparisons of the present model, existing models, and 

measurements of (a) quality factor (b) inductance and (c) series resistance 

for the 3-turn symmetrical inductor. 
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(b) 

Figure 41 Comparisons of the present model, existing models, and 

measurements of (a) magnitude and (b) phase of S21 for the 3-turn 

symmetrical inductor. 
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To further verify the model developed, we compare the model calculations with data measured 

from another spiral inductor having an octagonal, 5-turn, and symmetrical structure, and the Q 

factor, inductance, and resistance results are given in Figure 42(a)-(c). The values of fitting 

parameters c1 and c2 for this inductor are listed in Table 1. Again, a good agreement between the 

model and measurements is found.   
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Figure 42 Comparisons of the present model and measurements of (a) 

quality factor (b) inductance and (c) series resistance for the 5-turn 

symmetrical inductor. 
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Table 1 Values of Fitting Parameters for the Three Inductors Considered 

  c1 c2 

3-turn symmetrical inductor 0.653 0.53 

5-turn symmetrical inductor 0.669 0.56 

2.5-turn asymmetrical inductor 0.816 0.75 

 

 

 

 

 

One would expect that the existing models [11],[58] would be more accurate for asymmetrical 

inductors because they were developed intended for such devices. This is indeed the case, as 

shown in the results of the Q factor, inductance, and resistance given in Figure 43(a)-(c). The 

asymmetrical inductor considered has 2.5 turns, metal width of 16μm and spacing is 10μm, and the 

values of c1 and c2 for modeling this inductor are again given in Table 1. In fact, while the model 

predictions vary slightly at different frequencies, all three models possess very similar overall 

accuracy when compared to the experimental data. S-parameter results given in Figure 44 (a) and 

(b) yield similar conclusions. 
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(c) 

Figure 43 Comparisons of the present model, existing models, and 

measurements of (a) quality factor (b) inductance and (c) series resistance 

for the 2.5-turn asymmetrical inductor. 

69 



1 10

-5

0

M
ag

. S
21

 (d
B

)

 Proposed Model
 Yue's Model [6]
 Mohan's Model [16]
 Measured Data

Frequency (GHz)

 

 

 

(a) 

1 10
-1.8

-1.6

-1.4

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

Ph
as

e 
S 21

 (r
ad

)

  

 

 

 Proposed Model
 Yue's Model [6]
 Mohan's Model [16]
 Measured Data

Frequency (GHz)

 

(b) 

Figure 44 Comparisons of the present model, existing models, and 

measurements of (a) magnitude and (b) phase of S21 for the 2.5-turn 

asymmetrical inductor. 
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3.5 Conclusions 

 

A compact and accurate model for spiral inductors has been developed. Unlike the existing 

inductor models which were developed intended only for asymmetrical inductors, the present 

model is shown capable of predicting accurately both the symmetrical and asymmetrical inductors. 

The concept of the effective line width was introduced to account for the effect of nonuniform 

current distribution in the metal lines, and overlap parasitics and geometry factors have also been 

included. Comparisons among the present model, existing models, and measured data were 

presented to illustrate the usefulness of this work.  

 

Acknowledgements—Authors are grateful to Dr. Yun Yue at Conexant Systems for useful 

discussions on the inductor modeling and providing experimental data. 
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CHAPTER FOUR: APPLICATION IN 
DIFFERENTIAL INDUCTORS AND BALUNS 

On-chip differential inductors and transformers have been used widely in RF ICs, and a compact 

and accurate model for these devices is not yet available in the literature. In this dissertation, such 

a model is developed based on the concept of the effective metal line width to account for the 

frequency- and location-dependent current distribution effect. Results obtained from model 

calculation and measured data for a differential and transformer are included in support of the 

model development. 

4.1 Introduction 

 

On-chip spiral inductor is no doubt a key component for modern radio frequency integrated 

circuits (RFIC’s), and it is required in the design and realization of many RFIC’s such as the low 

noise amplifier (LNA) and oscillator. In particular, differential inductors and transformers (or 

baluns), which are built based on the spiral inductors, have broad applications in RF circuits 

involving with differential signals. Figure 45(a) and (b) show RF circuits using a differential 

inductor and transformer, respectively. 

 

Despite the importance of these devices, modeling of the differential inductor and transformer is 

largely overlooked and not yet well established. Some efforts have been reported in the literature 

[15][9][11][16], but the focus has been placed on the less complex two-terminal inductors, rather 

than the three-terminal differential inductors and 4-terminal transformers. In addition, relevant 
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physical mechanism, such as nonuniform current distribution in the metal line, was not fully 

incorporated in the models. Recently, we introduced the concept of effective metal line width to 

account for the current crowding effect, and based on this concept a compact model for the 

two-terminal spiral inductor was developed [60]. In this dissertation, we will extend the approach 

developed in [60] to the modeling of differential inductors and transformers.   
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Figure 45 Examples of differential inductor and transformer applications: 

(a) voltage control oscillator (VCO) with a differential inductor, (b) RF 

front-end circuit with a transformer for Bluetooth applications. 
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In section II, models of differential inductor and transformer/balun will be developed. Discussions 

and model verifications against measured data will be presented in section III. Finally, conclusions 

are given in section IV. 

 

4.2 Model Development 

 

In this section, the physics of nonuniform current distribution in the metal line of spiral inductor, 

and the concept of the effective metal line width, will first be reviewed. This is followed by the 

development of model for the different inductors and transformers.  

  

4.2.1 Nonuniform Current Distribution 

 

Traditionally, the current distribution in a metal line is considered to be governed by the skin and 

proximity effects [57][19]. This is true for a simple conductor, where the metal line is subject to 

the magnetic field of its own. For the case of spiral inductors and transformers, such a simple 

environment does not exist, since each metal line lies in the midst of all the electromagnetic fields 

generated by many other metal lines. According to the observations of 

partial-element-equivalent-circuit (PEEC) simulation [54] and 3-D electromagnetic simulation 

[55], the current distribution in a metal line in general exhibits an exponential decay from the inner 

edge (side of metal line close to the center of spiral) to the outer edge (side of metal line away from 
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the center of spiral). Furthermore, this exponential-decay distribution is more prominent in the 

inner turns and as the frequency is increased. 

 

The nonuniform current distribution effect was accounted for effectively and accurately using the 

concept of the effective line width Weff [60]. It is defined as the length of the region in which the 

first exponent of current density exists, and Weff is then used to replace the physical metal line 

width to accurately model the frequency-dependent behavior of the spiral inductor. The following 

expressions were developed for the effective line width as a function of the frequency and the line 

segment index [60]: 
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where w is the physical metal line width, f is frequency in Hz, i is index of the spiral line segment 

divided based on the location of the underpasses, and c1 and c2 are parameters for matching the 

model with measurements. The method to determine the values of c1 and c2 is discussed briefly 

below. The following function was developed [60]: 
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where D describes the averaged error associated with fitting the model to the measured resistance 

and inductance using different fitting parameter c1 and c2 values at several different frequencies. 

The values that result in the smallest D are then chosen for the inductor modeling.  

 

4.2.2. Differential Inductor 

 

We now focus on the model development for a differential inductor. A three-turn square 

differential inductor is considered and shown in Figure 46. With the center tap floating, this 

structure can be used as a single-ended inductor. When it is driven by a differential signal, the 

center tap is often connected to an ac ground, and the structure is called the differential inductor. 

Following the approach developed in [60], the spiral is first divided into six segments, as labeled in 

Figure 46, by underpasses and center tap. Then each segment is represented by a single π 

equivalent circuit as shown in Figure 47. Thus, the complete equivalent circuit for the entire 

differential inductor is shown in Figure 48. Note that each numbered box in Figure 48 represents 

the single π equivalent circuit for each numbered segment. Information on the single π equivalent 

circuit for each segment and the construction of the complete equivalent circuit for the spiral 

inductor has been discussed in detailed in [60].    
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Figure 46 Pattern of a three-turn square differential inductor, with six 

metal-line segments divided by the underpasses and center tap. 

 

The series inductance Ls in Figure 47 consists of the self inductance L of a particular segment and 

the mutual inductance M between this and another segment are calculated as 

 

 ∑=
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where i and j are the index numbers of two different segments, and m and n are the index numbers 

of metal lines in a segment. A segmental inductance matrix is formed after all the self and mutual 

inductances are known. 

77 



 

Other components in the equivalent circuit in Figure 47 include the series resistance Rs, oxide layer 

capacitance Cox, and substrate coupling conductance Gsub and capacitance Csub. Besides the 

segment box, other components in Figure 48 account the parasitic effect at the underpass region. 

They are Cox_up, Gsub_up and Csub_up, and Cmm is the capacitance from top metal to underpass. 

Expressions for these components can be found in [60]. 
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Figure 47 Equivalent circuit of each segment in Figure 46. 

 

 

 

78 



TapCenter 

upoxC _

upSubG _ upSubC _

upoxC _

upSubG _ upSubC _

mmC
mmC

T1 T2
1 4 5 6 3 2

 

Figure 48 Complete equivalent circuit for the differential inductor in  

4.2.3. Transformer/Balun 

 

A transformer/balun, which has two terminals, can be viewed as two differential inductors 

inter-winding together. Figure 49 shows the transformer/balun structure considered in this study. 

When the two center taps are both floating, the structure is called the transformer, and when 

inductor1’s center tap is grounded and inductor2’s center tap is floating, or vise versa, the structure 

is called the balun. The equivalent circuit for the transformer/balun, as given in Figure 50, can be 

constructed based on the same concept used in Sec. 2.2.   
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Figure 49 Pattern of a nine-turn square transformer/balun. 
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Figure 50 Complete equivalent circuit for the transformer/balun in Figure 49. 
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4.3 Model Verification and Discussions 

 

A 3-turn differential inductor and a 9-turn transformer were fabricated using the 0.18 μm CMOS 

technology and measured to verify the model developed. The spiral inductor was built on an 11.31 

μm oxide and 330 μm silicon substrate. Other parameters for the structures are listed in Table.1.  
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Figure 51 Magnitude of two-port S-parameters for the inductor shown in  

Figure 51 and Figure 52 show the magnitude and phase of four S parameters calculated from our 

model (solid lines) and obtained from measurements (symbols). In addition, the results for the 

two-terminal inductor (center tap floating) are also included (dashed lines). Figure 53 compares 

the differential inductance, resistance and quality factor calculated from the model and obtained 

from measurements.  
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Figure 52 Phase of two-port S-parameters for the inductor shown in 

Figure 46 

 

Table 2 Parameters for the inductors considered and fabricated 

  Nt Od Wi Sp c1 c2 

Differential Inductor 3 180μm 12.5μm 3μm 1.225 0.55 

Transformer/Balun 9 180μm 5μm 2μm 0.572 0.85 

 

 

 

         Nt=number of turns, Od= outer diameter, Wi=width, Sp=spacing 
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Figure 53 (a) Inductance, (b) resistance, and (c) quality factor for the 

inductor shown in Figure 46 
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Calculated and measured magnitude and phase of four S parameters for the transformer are plotted 

in Figure 54 and Figure 55. In addition, the model results for the balun from port1 to port2 

(inductor1’s center tap grounded) and the balun from port2 to port1 (inductor2’s center tap 

grounded) are also given to demonstrate of the capability of our model. For the case of both ports 

matched, which yields the best available RF performance, Figure 56 and Figure 57 illustrate the 

transducer gain (insertion loss) and the resistance/inductance of the transformer, respectively. All 

these model results compare favorably with measured data. 
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Figure 54 Magnitude of two-port S-parameters for the transformer/balun 

shown in Figure 49 
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It is worth pointing out that no comparison to other compact models was made in the above 

figures, as to the best of our knowledge no such models are available in the literature. 
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Figure 55 Phase of two-port S-parameters for the transformer/balun 

shown in Figure 49 
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Figure 56 Best available (with both ports matched) transducer gain 

(insertion loss) for the transformer/balun shown in Figure 49 
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Figure 57 Resistance and inductance of the transformer with both ports 

matched 
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4.4 Conclusions 

 

A physics-based and compact model for differential inductors and transformers/baluns has been 

developed in this work. Included in the model framework are the equivalent circuit, concept of the 

effective metal width to account for the nonuniform current distribution, and method to determine 

the values of two fitting parameters involved in the model. RF performance calculated from the 

present model show good agreement with experimental data measured from a 3-turn differential 

inductor and 9-turn transformer. The model developed should provide a useful and practical CAD 

tool for the design and fabrication of spiral inductors for RF applications. 
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CHAPTER FIVE: APPLICATION IN 
METAL WIDTH OPTIMIZATION 

It is always desirable to know the performance limit of an existing technology without expensive 

option and long term development. Inductor, as a key passive device in radio frequency circuit 

today, has it performance highly depend on layout technique. Whereas the performance of active 

devices is decided by material and doping profiles, there is some room for inductor to improve. 

This chapter is to propose some new angles to view the parameters of on-chip spiral inductor, and 

optimize them. The results are verified with measurement. 

 

5.1 Introduction 

Modern radio frequency (RF) technology becomes one of the fast growing sectors in the 

semiconductor industry, as we can easily experience the daily convenience provided by the 

cell-phone, GPS, bluetooth, wireless LAN, etc. To realize these RF electronics, the RF front-end 

module is inevitable the first and critical block to process RF signals. Design and optimization of 

the on-chip inductor, a key passive component for the RF front-end circuits such as the voltage 

controlled oscillator (VCO) and low noise amplifier (LNA), has drawn a great deal of attention 

recently. For example, high performance (i.e., high quality factor or Q factor) inductors are needed 

in the VCO to suppress its phase noise, which is an important spec for all RF communication 

chips. Any failure in meeting the phase noise requirement will result in compromising the RF 

functionality of the entire chip. For example, the Q factor in an LC tank is inversely proportional to 

the phase noise of an oscillator circuit shown in Figure 58, in which the capacitor/varactor Q is 
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typically fixed at 50. The quality factor of the inductor then decides the overall performance of the 

circuit. As a result, the design of high performance RF IC’s is often a careful selection of the 

correct and suitable inductor technology [6]. 
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Figure 58 (a) An RF oscillator circuit, and (b) simulated phase noises of 

the circuit with the inductor’s Q factor increasing from 10 to 30. 
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It is always desirable to know the performance limit of an existing technology without expensive 

fabrication and long development cycle. Unlike active devices whose performance is decided 

predominantly by the material property and doping profile, the behavior of the on-chip inductor 

depends heavily on the layout technique [37][30][39][43]. With the limitation of the existing 

CMOS technology, the most viable way to optimize the on-chip inductor performance is the 

manipulation of the inductor’s layout [15][52][50]. In this aspect, inductor’s shape is frequently an 

important factor, and it is well known that the octagonal or circular shape can enhance the 

inductor’s Q factor. But this enhancement always comes at the expense of decreased inductance. 

This is because it is impossible to vary the shape while keep all other parameters (i.e., area, metal 

width, spacing, total metal length, etc.) intact. For impedance matching in LNA and LC tank 

resonance in VCO, a specific inductance, in addition to a high Q factor, is needed. So it is 

important to develop a method that can optimize the layout of an inductor while maintaining a 

desirable inductance. 

 

In this paper, a generalized frame work to optimize the Q factor for a specific inductance will be 

proposed. The optimization approach will be presented in section II, and the experimental 

verification of the inductor optimization will be demonstrated in section III. Finally, conclusions 

will be given in section IV. 
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5.2 Optimization Approach Development 

 

Conventionally, the on-chip spiral inductor optimization focuses on a few layout parameters. For a 

single-ended square inductor, the most often used layout parameters are the outer diameter, metal 

width, spacing and number of turns. The work in [47] proposed a good scheme to minimize the 

serial resistance in order to meet the goal of achieving the highest quality factor. But as the 

inductance at the frequency of interest is shifted after the optimization, this approach has little use 

in the practical design of spiral inductors. Furthermore, for the frequency range of several GHz, the 

current nonuniform effect in the inductor is always quite prominent [60], and such an effect can 

influence the inductor’s performance significantly. Thus, an effective and accurate design and 

optimization must account for the current nonuniform effect, but such an inclusion will further 

complicate the optimization procedure. 

 

At a given frequency, it has been shown that the current nonuniformity is fairly constant within a 

specific turn [60]. As such, the optimization will be carried out first in a specific turn, and the 

width of the metal line in the turn will be set as a variable to optimize. The spacing between the two 

adjacent metal tracks affects the mutual inductance and capacitive coupling. Since the capacitive 

coupling among the different turns is of minor importance to the overall inductance performance, 

the spacing can be fixed at the minimum value decided by the ground rule to maximize the mutual 

inductance in order to obtain a high Q factor. The outer diameter can also be fixed based on the 

maximum die size allowed, so that a high area efficient is achieved. Thus, for a given inductor 

shape (i.e., square, octagonal, etc.), the variables to be optimized are the metal line width of each 
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turn and number of turns. Note that the optimization requires a model which accounts for various 

physical effects and is valid for an arbitrary inductor. The model reported in [60] meets such 

requirements and will be used as the backbone for the optimization method.  

 

A few commercial software tools, such as Matlab, are available for finding the maximum Q factor 

in an inductor, but only the local optimum (i.e., one parameter optimized while others are fixed) 

can be obtained from these tools. A more generalized way is to consider multiple applicable 

variables mentioned above in the range of interest, and the results will be a multi-dimensional plot 

of inductance and Q factor. This allows for a true optimization of the spiral inductor to meet 

specific design criteria.  
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Figure 59 Typical variation of inductance and quality factor with sweep of 

metal line width. 
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Obviously, an importance issue is the range of inductance of interest. An initial observation of this 

can be obtained by changing one of the metal widths while holding all other parameters constant. 

Using this approach, the inductance vs. metal line width characteristics of a typical inductor are 

illustrated in Figure 59. The inductance decreases with increasing metal line width, while the Q 

factors increases quickly; it reaches the peak value and drops slowly afterward. From these results, 

one can determine the lower and upper bounds of the metal line width for the inductance of 

interest. 

 

We propose the following procedure to optimize the metal line widths at the different turns of a 

spiral inductor: 

 

1. Set outer diameter and spacing (depend on technology and maximum die side allowed) and 
choose an initial guess for the number of turns; 

2. Decide the minimum and maximum values of the width of the first turn (Turn 1) as illustrated 
in Figure 59; 

3. Using the inductor model in [60], together with the two metal line width values in step 2, 
calculate the inductance at the frequency of interest. If the inductance of interested is within 
the calculated inductance values, then start to sweep the width of Turn 1; if not, change 
number of turns, and go back to step 2; 

4. Record the calculated Q factors vs. metal line width results and select the line width that 
yields the maximum Q factor; 

5. Repeat steps 2-4 for other turns (i.e., Turn 2, Turn 3, etc.); and  
6. Repeat steps 2-5 until all possible metal line width/number of turns combinations have been 

considered and calculated. 
 

After this optimization procedure, we will have a list of the Q factor as a function of the metal 

width and number of turns for the inductances of interest. The optimum Q factor can be picked 

from these results. The optimization procedure is summarized in the flowchart in Figure 60.  
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Figure 60 Optimization flow graph 

5.3. Experimental Verification 

 

The model report in [60] has been used to calculate the inductance and Q as a function of the 

inductor layout and frequency. The fitting parameters needed in the model were first obtained from 

a structure of similar outer diameter and occupation ratio (inner diameter divided by outer 

diameter). The optimization target is the highest possible Q factor for a square shape, single-ended 

inductor with a 180 μm outer diameter, an inductance of 1.7 nH, and operates at a frequency of 1 

GHz. The task is challenging because of the low inductance required and limited outer diameter. 

The optimization procedure outlined in section II was carried out, and optimized layout obtained 
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from this procedure is designated as Inductor 2 in Table 3. For comparison purposes, the layout of 

a non-optimized inductor, designated as Inductor 1, is also given in the table.  

 

Table 3 Layouts of optimized and non-optimized inductors 

 description Nt Od W1 W2 W3 W4 Sp 

Inductor1 Square Single-ended 3 180 14 14 14 - 2.6 

Inductor2 Square Single-ended (opt) 3 180 13.96 11.47 10.4 - 2.6 

Inductor3 Octagonal Single-ended 3 180 11 11 11 - 2.6 

Inductor4 Octagonal Single-ended (opt) 3 180 7.73 9.91 15.56 - 2.6 

Inductor5 Octagonal Differential 3 280 9 9 9 - 2.6 

Inductor6 Octagonal Differential (opt) 3 280 8.32 7.865 17.26 - 2.6 

Inductor7 Square Single-ended 4 250 14.5 14.5 14.5 14.5 2.6 

Inductor8 Square Single-ended (opt) 4 250 11.82 18.07 13.19 12.7 2.6 

 

Inductors 1 and 2 were then fabricated following the layouts listed in Table 3 using a 2 μm thick 

metal placed on 5.07 μm oxide and 350 μm substrate, and the topology of the inductors are shown 

in Figure 61(a) and (b), respectively. Since the dielectric material between the spiral and substrate 

has many layers, the effective dielectric constant Ereff is calculated as 
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Figure 61 Layout topology of (a) Inductor 1 (b) Inductor 2 

 

where di is the thickness of ith layer, and Eri is the dielectric constant of the ith layer. The inductors 

were measured using the Agilent network analyzer and properly de-embedded. Figure 62 

compares the measured inductances and Q factors of Inductors 1 and 2. Note that the peak Q 

factors for Inductors 1 and 2 are 12.5 and 14.5, respectively, confirming that the present approach 

can be used to obtain an optimal layout for the spiral inductors.  
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Figure 62 (a) The inductance and (b) quality factor of Inductors 1 and 2 

The optimization procedure developed is applicable to other types of inductors as well. Layouts of 

optimized 3-turn octagonal single-ended and differential inductors, designated as Inductors 4 and 
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6, respectively, are listed in Table 3. The layouts of their non-optimized counterparts, designated 

as Inductors 3 and 5, are also given in Table 3. Figure 63 and Figure 64 illustrated the measured 

inductances and Q factors for Inductors 3 and 4 and Inductors 5 and 6, respectively. Inductors with 

a 4-turn and 250 μm outer diameter layout were also considered, and the non-optimized and 

optimized layouts designated as Inductors 7 and 8 are listed in Table I and their performances are 

shown in Figure 65. These results again indicate clearly that the Q factor improved after inductor’s 

layout is optimized with the present approach.      
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Figure 63 (a) The inductance (b) and quality factor of Inductors 3 and 4 
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Figure 64 (a) The inductance and (b) quality factor of Inductors 5 and 6 
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Figure 65 (a) The inductance and (b) quality factor of Inductors 7 and 8 

 

5.4. Conclusion 

 

An optimization procedure for the spiral inductor has been developed and verified with 

measurements. A previously developed inductor model was used as the backbone for the 

optimization calculations, and a procedure was established to carry out the optimization of the 

layout of the inductors. The approach developed can reduce the design cycle significantly and thus 

decrease greatly the cost of RF IC’s development. 
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CHAPTER SIX: SUMMARY AND FUTURE WORK 

6.1 Summary 

This dissertation reviews existing articles about on-chip inductor, and describes the in-sufficiency 

of skin effect and proximity effect in terms of addressing the current crowding. It also presents new 

modeling technique of inductor and balun with new explanation of current crowding of on-chip 

inductor. An optimization procedure is proposed as well. 

 

In chapter 1 and chapter 2, author elaborately collected references from over 200 existing articles 

that focus on inductor design, modeling and advanced technology. The chapters start with the 

basic structure and modeling technique. They later lead to more advanced technology to improve 

the performance, which includes the techniques using existing technology (metal paralleling, 

metal width optimization) and special technologies (deep trench, MEMS). Their improvement and 

limitations are also introduced. The modeling regarding to each component (mostly series 

resistance and inductance) is embodied as well.  

 

In chapter 3 and chapter 4, author conceptual and experimentally explained the caused of current 

crowding in inductor is the magnetic field generated by the whole inductor. On the other hand, 

traditionally believed skin effect and proximity effect are suitable for only single conductor and 

conductor pair. Current distribution in the metal crosssection is neither at the surface (skin effect) 

nor at the inner side (proximity effect). A model was proposed to account this new discovered 

current crowding phenomenon, and it is also applied to differential driven inductor and balun. 

Model simulation results are plotted against measured data, and a good agreement can be found. 
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Traditionally, the inductor optimization needs to parameterize the inductor with four parameters: 

outer diameter, metal width, spacing and number of turns. Many complex mathematic methods are 

used to accelerate the optimization procedure. The potential problem is that they can not guarantee 

the convergence and the result is initial-value-dependent. Thus the result may not the real 

optimized one. Chapter 5 proposed a simple method based on sweeping all possible parameter 

combinations with skipping the un-usable region. The scheme is robust and efficient. The 

optimization parameters are not limited by the four mentioned above. The chapter proposed to 

introduce one width parameter for each turn. Optimization result is improved by 7~10% 

comparing with the uniform width inductor. 

 

The purpose of this dissertation is to discover new design guidance to achieve best inductor with 

given technology and silicon area and new model for time domain simulation. Both of them are of 

significance in modern semiconductor industry. 

 

6.2 Future Work 

As stated above, the two tasks are efficient inductor design and accurate inductor modeling. 

Author would like to suggest possible future development based on his point of view.  

 

The model proposed in this dissertation fulfilled the idea of current crowding. But the current 

crowding model needs two fitting parameters, which restricts its application. It is encouraged to 
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derive physical expressions for the fitting parameters, thus the model become fully physical and 

predictive. Furthermore, components in model are frequency dependent, which prevent it become 

a candidate for time domain simulator (SPICE, SPECTRE). 

 

An accurate predictive model is critical for parameter optimization. Without the model, the 

optimization result is meaningless. 2.5 D numerical EM simulator could be a good candidate 

before reliable model is available. Normally, with mesh reduction and neglect the radiation, a 

simulation takes about one minute. This is acceptable with low volume of request on IC chip. And, 

with the development of digital calculation power, the EM solution will become more popular. 
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