Chapter 8 Transformers and Mutual Inductance

8.1 Ideal Transformers

- Transformers consist of magnetically coupled coils the respond only when driven by time-varying excitations.
- Ideal transformers vs. real transformers.

- N_1 : primary winding, N_2 : secondary winding.
- Reference direction: both currents into the upper terminals.
- Dot convention: polarity is the same at both windings.
- Coils have zero resistance and are short circuits at dc steady state.
- Time varying excitation activates magnetic coupling and induces voltage at the other winding.
- Turns ratio: $N \equiv N_2 / N_1$.
- $v_2(t) = Nv_1(t)$, $i_2(t) = -i_1(t)/N$.
- With N=1, a transformer becomes an isolation transformer that decouples the dc potential levels without affecting the time-varying quantities.
- An ideal transformer does not dissipate power ($p = v_1 i_1 + v_2 i_2 = 0$).
- Controlled source models (VCVS and CCCS)

- Transformers with three or more windings:

Example 8.1: Analysis of a Transformer Circuit

- Referred networks:

(a) Ideal transformer interfacing a source and a load

(b) Frequency-domain diagram

Figure 8.6.

- Referred load network and referred source network.

- Referred load network: R and L divided by N^2 and C multiplied by N^2 .

Referred source network: voltage multiplied by N, impedance multiplied by N^2 and current divided by N.

Example 8.2 Power Transmission with Transformers

(a) Power transfer via transmission line

(b) Circuit with transformers at each end

(c) Frequency–domain diagram with both ends referred into the middle

Figure 8.8.

Example 8.3 Transformer-Coupled Oscillator

(a) Transformer circuit with ac and dc sources

(b) Frequency-domain diagram with referred source network in the secondary

Figure 8.9.

- Impedance matching (refer to Figure 8.6b).

Example 8.4 Impedance Matching with a Transformer

(a) Model of amplifier with impedance-matching transformer

(b) Referred load in the primary

Figure 8.10.

8.2 Magnetic Coupling and Mutual Inductance

- Magnetic circuits: N turns, magnetic flux ϕ and current i (with right-

- Magnetomotive force (mmf): F=Ni.
- Reluctance: $R = l/\mu_r \mu_0 A$.
- $F=R\phi$.

- Self-inductance and mutual inductance.

- Currents entering the dotted ends of both windings produce flux in the same direction.
- Leakage flux, self-inductance, mutual inductance and coupling coefficient.

Example 8.5: Series Equivalent Inductance

- Stored energy:

- Unity coupling:

8.3 Circuits with Mutual Inductance

- Mutual inductance represented by controlled sources:

- Frequency domain model of self- and mutual inductances:

(a) Transformer interfacing a source and a load

(b) Frequency–domain diagram with controlled sources $\ Figure\ 8.21.$

Example 8.6: Comparison of a real and ideal transformer

- Equivalent tee (T) networks:

- (a) Magnetically coupled coils
- (b) Equivalent tee (T) network $\ \ Figure\ 8.23.$

- Equivalent pi (Π) networks:

Example 8.7: Transformer circuit analysis with a tee network

(a) Circuit with magnetic coupling

(b) Frequency-domain diagram with the equivalent tee network

Figure 8.25.

Example 8.8: Step-Up Autotransformer

- Equivalent networks with an ideal transformer to represent mutual inductance.

Example 8.9: Design of a Tuned Amplifier

(a) Model of "tuned" transistor amplifier

(b) Equivalent circuit with an ideal transformer

(c) Referred source network in the secondary

Figure 8.28.