CHAPTER

2

ELECTROMAGNETIC
THEORY

2.1 MAXWELL’S EQUATIONS

Electric and magnetic fields that vary with time are governed by physical
laws described by a set of equations known collectively as Maxwell’s equa-
tions. For the most part these equations were arrived at from experiments
carried out by several investigators. It is not our purpose here to justify the
basis for these equations, but rather to gain some understanding of their
physical significance and to learn how to obtain solutions of these equations
in practical situations of interest in the microwave engineering field. The
electric field & and magnetic field & are vector fields and in general have
amplitudes and directions that vary with the three spatial coordinates x, y,
z and the time coordinate ¢.T In mks units, which are used throughout, the
electric field is measured in volts per meter and the magnetic field in webers
per square meter. Since these fields are vector fields, the equations govern-
ing their behavior are most conveniently written in vector form.%

The electric field & and magnetic field # are regarded as fundamental
in that they give the force on a charge ¢ moving with velocity v; that is,

F=q(&+vX%) (2.1)

tBoldface script type is used to represent vector fields having arbitrary time dependence.
Boldface roman type is used later for the phasor representation of fields having sinusoidal time
dependence.

$It is assumed that the reader is familiar with vector analysis. However, for convenient
reference, a number of vector formulas and relations are summarized in App. L.
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(5)

FIGURE 2.1
Illustration of Faraday’s law.

where F is the force in newtons, g is the charge measured in coulombs, and
v is the velocity in meters per second. This force law is called the Lorentz
force equation. In addition to the & and # fields, it is convenient to
introduce two auxiliary field vectors, namely, the electric displacement &
and the magnetic intensity #. These are related to & and # through the
electric and magnetic polarization of material media, a topic covered in the
next section. In this section we consider fields in vacuum, or free space,
only. In this case the following simple relationships hold:

1

¥ =—%F (2.2a)
Ko

D =¢€,& (2.2b)

where p, = 47 X 10”7 H/m and is called the permeability of vacuum, and
€, = 107°%/367 = 8.854 X 107! F/m and is known as the permittivity of
vacuum.

One of the basic laws of electromagnetic phenomena is Faraday’s law,
which states that a time-varying magnetic field generates an electric field.
With reference to Fig. 2.1, let C denote an arbitrary closed curve that forms
the boundary of a nonmoving surface S. The time rate of change of total
magnetic flux through the surface S is d([; & - dS)/dt. According to Fara-
day’s law, this time rate of change of total magnetic flux is equal to the
negative value of the total voltage measured around C. The later quantity is
given by —¢-& - d1. Hence the mathematical statement of Faraday’s law is

Sé:g-dl=—;;fsg-ds (2.3)

The line integral of & around C is a measure of the circulation, or “curling
up,” of the electric field in space. The time-varying magnetic field may be
properly regarded as a vortex source that produces an electric field having
nonzero curl, or circulation. Although (2.3) is in a form that is readily
interpreted physically, it is not in a form suitable for the analysis of a
physical problem. What is required is a differential equation that is equiva-
lent to (2.3). This equation may be obtained by using Stokes’ theorem from
vector analysis, which states that the line integral of a vector around a
closed contour C is equal to the integral of the normal component of the
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curl of this vector over any surface having C as its boundary. The curl of a
vector is written V X & (App. 1), and hence (2.1) becomes

¢p&-dl=[Vxe-ds- —ifg-ds
[o4 S at /g
Since S is completely arbitrary, the latter two integrals are equal only if
0#
VX&=—-— (2.4)
at

which is the desired differential equation describing Faraday’s law. The curl
is a measure of the circulation of a vector field at a point.

Helmholtz’s theorem from vector analysis states that a vector field is
completely defined only when the curl, or circulation, of the field, and also
its divergence, are given at every point in space. Now the divergence (or
convergence) of field lines arises only if a proper source (or sink) is available.
The electric field, in addition to having a curl produced by the vortex source
—d%# /dt, has a divergence produced by electric charge. Gauss’ law states
that the total flux of @ = €,& from a volume V is equal to the net charge
contained within V. If p represents the charge density in coulombs per cubic
meter, Gauss’ law may be written as

gﬁseog’ -dS = [Vp dv (2.5)

This equation may be converted to a differential equation by using the
divergence theorem to give

¢Seog-dS = jvv-eong=prdV

Since V is arbitrary, it follows that
V-e,&=V-9=p (2.6)

where V - & is the divergence of @, that is, a measure of the total outward
flux of @ from a volume element, divided by the volume of the element, as
this volume shrinks to zero. Since both the curl and divergence of the
electric field are now specified, this field is completely determined in terms
of the two sources, d.# /it and p.

To complete the formulation of electromagnetic phenomena, we must
now relate the curl and divergence of the magnetic field to their sources.
The vortex source that creates the circulation, or curl, of the magnetic field
# is the current. By current is meant the total current density, the
conduction current density ,# measured in amperes per square meter, the
displacement current density 09 /d¢, and the convection current pv consist-
ing of charge in motion if present. Convection current is not included in this
chapter. However, in the chapter dealing with microwave tubes, convection
current plays a central role and is discussed in detail there. The displace-
ment current density 39 /3¢ was first introduced by Maxwell, and leads to
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the possibility of wave motion, as will be seen. Mathematically, the circula-
tion of # around a closed contour C bounding a surface S as in Fig. 2.1 is
given by

9SCz-d1=fS%-ds+[sf-ds (2.7)

Application of Stokes’ law to the left-hand side yields
D
fSVxZ-dS=fs—5t—- dS+ij- ds
from which it may be concluded that

0

VX#= Ty +7 (2.8)
Since magnetic charge, as the dual of electric charge, does not exist in
nature, it may be concluded that the divergence of & is always zero; i.e., the
flux lines of # are always closed since there are no charges for them to
terminate on. Thus the net flux of # through any closed surface S is
always zero; i.e., just as much flux enters through the surface as leaves it.

Corresponding to (2.5) and (2.6), we thus have

g@sg - dS=0 (2.9)

V-Z=0 (2.10)

Conduction current, of density _#, is the net flow of electric charge.
Since charge is conserved, the total rate of flow of charge out of a volume V
is equal to the time rate of decrease of total charge within V, as expressed by
the equation

ad

ééf- ds = *EfvpdV (2.11)

This is the continuity equation, and it may be converted to a differential
equation by using the divergence theorem in the same manner as was done
to derive (2.6) from (2.5). It is readily found that
O L 2.12
airts (2.12)
This equation may also be derived from (2.8) and (2.6). Since the divergence
of the curl of any vector is identically zero, the divergence of (2.8) yields

v -
at

Using (2.6) converts this immediately into the continuity equation (2.12). If
the displacement current density 49 /it had not been included as part of
the total current density on the right-hand side of (2.8), that equation would

+V-5
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have led to the conclusion that V :_# = 0, a result inconsistent with the
continuity equation unless the charge density was independent of time.

In summary, the four equations, known as Maxwell’s equations, that
describe electromagnetic phenomena in vacuum are

0#
VxE- - (2.13a)
0P
VXE = — s (2.13b)
V-9=p (2.13¢)
V-&=0 (2.13d)

where in (2.135) the convection current pv has not been included. The
continuity equation may be derived from (2.135) and (2.13¢), and hence
contains no additional information. Although —9.% /3¢t may be regarded as a
source for &, and 09 /3t as a source of #, the ultimate sources of an
electromagnetic field are the current # and charge p. For time-varying
fields, that charge density p which varies with time is not independent of
F since it is related to the latter by the continuity equation. As a conse-
quence, it is possible to derive the time-varying electromagnetic field from a
knowledge of the current density _# alone.

It is not difficult to show in a qualitative way that (2.13a) and (2.13b)
lead to wave propagation, i.e., to the propagation of an electromagnetic
disturbance through space. Consider a loop of wire in which a current
varying with time flows as in Fig. 2.2. The conduction current causes a
circulation, or curling, of the magnetic field around the current loop as in
Fig. 2.2a (for clarity only a few flux lines are shown). The changing
magnetic field in turn creates a circulating, or curling, electric field, with
field lines that encircle the magnetic field lines as in Fig. 2.2b. This
changing electric field creates further curling magnetic field lines as in Fig.
2.2¢, and so forth. The net result is the continual growth and spreading of
the electromagnetic field into all space surrounding the current loop. The
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disturbance moves outward with the velocity of light. A little thought will
show that the same characteristic mutual effect between two quantities
must always exist for wave motion. That is, quantity A must be generated
by quantity B, and vice versa. For example, in an acoustical wave the excess
pressure creates a motion of the adjacent air mass. The motion of the air
mass by virtue of its inertia in turn creates a condensation, or excess
pressure, farther along. The repetition of this process generates the acousti-
cal wave.

" For the most part, as at lower frequencies, it is sufficient to consider
only the steady-state solution for the electromagnetic field as produced by
currents having sinusoidal time dependence. The time derivative may then
be eliminated by denoting the time dependence of all quantities as e/“* and
representing all field vectors as complex-phasor space vectors independent
of time. Boldface roman type is used to represent these complex-phasor
space vectors. For example, the mathematical representation for the electric
field &(x,y, z,t) will be E(x, y, 2)e’“!. Each component of E is in general
complex, with a real and imaginary part; thus

E = ax(Exr +jExi) + a_‘y(Eyr +jEyi) + az( Ezr +jEzi) (214)

where the subscript r refers to the real part and the subscript i refers to
the imaginary part. Each component is allowed to be complex in order to
provide for an arbitrary time phase for each component. This may be seen
by recalling the usual method of obtaining & from its phasor representa-
tion. That is, by definition,

&(x,y,2,t) = Re[E(x,y, z)e/] (2.15)
Thus E, = Re[(E,, + jE,;)e’*!

= Re(\/m ejwt+j¢)
= VE2 + EZ cos(wt + ¢)

where ¢ = tan"Y(E,;/E,,). Unless E, had both an imaginary part jE,; and
a real part E,,, the arbitrary phase angle ¢ would not be present. As a
general rule, the time factor e/“* will not be written down when the phasor
representation is used. However, it is important to remember both the fact
that such a time dependence is implied and also the rule (2.15) for obtaining
the physical field vector from its phasor representation. The real and
imaginary parts of the space components of a vector should not be confused
with the space components; for example, E,, and E,; are not two space
components of E, since the component a_ E, is always directed along the x
axis in space, with the real and imaginary parts simply accounting for an
arbitrary time phase or origin.

A further point of interest in connection with the phasor representa-
tion is the method used for obtaining the time-average value of a field
quantity.
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For example, if
& =a, E cos(wt + ¢;) +a,E,cos(wt + ¢,) + a,E;cos(wt + ;)

the time-average value of |£|? is

1
12, = ?jTg-g’dt
0

1
= ?fT[Ef cos?(wt + ¢;) + E3 cos®(wt + ¢,)
0
+E2cos(wt + ¢5)] dt
1
- 5 (B2 + B} + B}) (2.16)

where T is the period, equal to 27 /w. The same result is obtained by simply
taking one-half of the scalar, or dot, product of E with the complex
conjugate E*; thus

€12, = 3E - B* = }[(E2 + E2) + (E2 + E2) + (E% + E2)| (2.17)
since E_E* =(E,, +jE XE,, —jE.) = E2 + EZ%, etc. This is equal to
(2.16), since E2 = E2 + EZ, etc.

By using the phasor representation, the time derivative d/d¢ may be

replaced by the factor jw since de’*!/dt = jwe’*!. Hence Maxwell’s equa-
tions, with steady-state sinusoidal time dependence, become

VXE= —jwB (2.18a)
VXH=joD+d (2.18b)
V-D=p (2.18¢)
V-B=0 (2.18d)

2.2 CONSTITUTIVE RELATIONS

In material media the auxiliary field vectors # and & are defined in terms
of the polarization of the material and the fundamental field quantities &
and &. The relationships of # to # and of @ to & are known as
constitutive relations, and must be known before solutions for Maxwell’s
equations can be found.

Consider first the electric case. If an electric field & is applied to a
material body, this force results in a distortion of the atoms or molecules in
such a manner as to create effective electric dipoles with a dipole moment
& per unit volume. The total displacement current is the sum of the
vacuum displacement current de,& /3¢t and the polarization current 9.9 /dt.
To avoid accounting for the polarization current 99 /d¢ explicitly, the
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€ +q
‘ LD =qx
-q
FIGURE 2.3
Model for determining the po-
larization of an atom.
(a) ()
displacement vector 9 is defined as
D =€,&+P (2.19)

whence the total displacement current density can be written as 09 /dt.

For a great many materials the polarization # is in the direction of
the electric field &, although rarely will # have the same time phase as &.
A simple classical model will serve to illustrate this point. Figure 2.3a
shows a model of an atom consisting of a nucleus with charge ¢ surrounded
by a spherically symmetrical electron cloud of total charge —q. The applica-
tion of a field & displaces the electron cloud an effective distance x as in
Fig. 2.3b. This displacement is resisted by a restoring force kx proportional
to the displacement (Prob. 2.1). In addition, dissipation, or damping, effects
are present and result in an additional force, which we shall assume to be
proportional to the velocity. If m is the effective mass of the electron cloud,
the dynamical equation of motion is obtained by equating the sum of the
inertial force m d2x/dt?, viscous force mv dx/dt, and restoring force kx to
the applied force —q&; thus

B v ke = —qe 2.20
m—3 + myv— = —q (2.20)
When & = E, cos wt, the solution for x is of the form x = —A cos(wt + ¢).

If E, cos wt is represented by the phasor E_, and x by the phasor X,
the solution for X is readily found to be

—qu

—o?m + jovm + k

and hence
x = Re( Xe’**) = A cos(wt + ¢)
where A= (¢/m)E,
- 1/2
[(w2 - w%)2 + w2y2]
$ = tan~! wv
w2 - 0)(2,

and we have replaced k/m by w?.
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The dipole moment is p,, where
q’E,

m[(w2 - wg)z + w??

Py = —qx = ]1/2 cos(wt + ¢) (2.21)

For N such atoms per unit volume the polarization per unit volume is
%, = Np, and the displacement 2, is given by
Nq’E,
D, = €yE, cos ot + . 7z cos(wt + ¢)
m[(w2 - w%) + wZVZ]

This equation may also be put into the following form:

1/2
[€0(@h — w?) + qu/m]2 + (wvey)® ’

92,=E, cos(wt — 0) (2.22)
(0f - w2)2 + (wv)2
N 6 = tan-! wv can-1 wv
where = tan — tan
w3 — w? w? — 0® + Ng®/eqm

Two points are of interest in connection with (2.22). One is the linear
relationship between & and &, and hence between 2 and &. The second is
the phase lag in 9 relative to & whenever damping forces are present.

The phase difference between &, &, and 2 makes it awkward to
handle the relations between these quantities unless phasor representation
is used. In phasor representation (2.21) and (2.22) become

q’E,

P = 2.23

¥ (0} - 0 +jov)m (2.23)
€o( w3 — w? + jov) + Ng%/m

p, = Sol@o > ) ) * No*/m o (2.24)

i — 0? + jov
In general, for linear media, we may write
P =¢,x.E (2.25)

where y, is a complex constant of proportionality called the electric suscep-
tibility. The equation for D becomes

D=¢E +P=¢y(1+x,)E
=eE =€, E = (¢ — je")E (2.26)

where € = €,(1 + x,) is called the permittivity, and €, = € /¢, the dielectric
constant of the medium. Note that € is complex whenever damping effects
are present and that the imaginary part is always negative. A positive
imaginary part would imply energy creation instead of energy loss. [The
reader may verify from (2.22) that 8 is always positive.]

Loss in a dielectric material may also occur because of a finite conduc-
tivity o. The two mechanisms are indistinguishable as far as external effects
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related to power dissipation are concerned. The curl equation for H may be
written as

VXH=jw(e —je")E + oE

where J = ¢E is the conduction current density in the material. We may
also write

o
vVxH =jw[e' —j(e” + ;)]E =jwe'E + (we" + o)E  (2.27)

where by €” + ¢/w may be considered as the effective imaginary part of the
permittivity, or we” + o as the total effective conductivity.
The loss tangent of a dielectric medium is defined by

we" + o

tan 8, = (2.28)

!

wEe

Any measurement of tan §, always includes the effects of finite conductivity
o. At microwave frequencies, however, we” is usually much larger than o
because of the large value of w.

Materials for which P is linearly related to E and in the same direction
as E are called linear isotropic materials. Nonlinear effects generally occur
only for very large applied fields, and as a consequence are rarely encoun-
tered in microwave work. However, nonisotropic material is of some impor-
tance. If the crystal structure lacks spherical symmetry such as that in a
cubic crystal, it may be anticipated that the polarization per unit volume
will depend on the direction of the applied field. In Fig. 2.4 a two-dimen-
sional sketch of a crystal lacking cubic symmetry is given. The polarization
produced when the field is applied along the x axis may be greater than that
when the field is applied along the y or z axis because of the greater ease of
polarization along the x axis. In this case we must write

D, =¢,E, D =¢,E D,=¢,E, (2.29)

y Yoy
where ¢,,, €, , and ¢,, are, in general, all different. The dielectric constants
€2 = €,,/€0, €,y = €,,/€q, €,, = €,,/€, are known as the principal dielectric
constants, and the material is said to be anisotropic. If the coordinate
system used had a different orientation with respect to the crystal structure,

D
G F e O

7

] | Z
] P 4
G----- 'é}' € FIGURE 2.4

A noncubic crystal exhibiting anisotropic effects.
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the relation between D and E would become
D ,=¢,E, + exyEy +¢€,,E,
D, =¢,E, +¢,E +e¢,E,
D,=¢,E +¢,E +¢€,E,

or in matrix form,

Dx €xx €;acy €z Ex
D, |=|e. €, €.l|E, (2.30)
Dz €2x 6zy €22 Ez

Only for a particular orientation of the coordinate system does (2.30) reduce
to (2.29). This particular orientation defines the principal axis of the medium.
For anisotropic media the permittivity is referred to as a tensor permittivity
(a tensor of rank 2 may be represented by a matrix). For the most part the
materials dealt with in this text are isotropic. Nevertheless, an awareness of
the existence of anisotropic media and of the nature of the constitutive
relations for such media is important.
For the magnetic case, H is defined by the constitutive relation

woH = B — oM (2.31)

where M is the magnetic dipole polarization per unit volume. For most
materials (ferromagnetic materials excluded), M is linearly related to B and
hence to H. By convention this is expressed by the equation

M=y, H (2.32)

where x,, is called the magnetic susceptibility. Substituting (2.32) into
(2.31) gives

B = po(M + H) = (1 + x,)H = uH (2.33)

where u = uo(1 + x,,) is called the permeability.

As in the electric case, damping forces cause u to be a complex
parameter with a negative imaginary part; that is, u = u' — ju'. Also, there
are magnetic materials that are anisotropic; in particular, ferrites are
anisotropic magnetic materials of great usefulness at microwave frequen-
cies. These exhibit a tensor permeability of the following form:

My Jug 0
[w]l=|-jrz w O (2.34)
0 0

when a static magnetic field is applied along the axis for which the perme-
ability is uj. A discussion of ferrites and their uses is presented later; so
further comments on their anisotropic properties is deferred until then.

In Sec. 2.1 care was taken to write Maxwell’s equations in a form valid
not only in vacuum but also in material media. Thus (2.13) and (2.18) are
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valid in general, but with the constitutive relations of this section replacing
the free-space relations (2.2). Note, however, that it is not possible to write,
in general, constitutive relations of the form @ = ¢&, # = u#, when @
and &, and likewise & and #, are not in time phase. For arbitrary time
dependence we must write instead P = €,& + P, F = u (¥ +4) and
relate # and 4 to & and # through the dynamical equation of motion
governing the polarization mechanism. This difficulty may be circumvented
by using the phasor representation for which relations such as D = ¢E are
perfectly valid because the complex nature of € accounts for the difference
in time phase.t It should be pointed out, however, that for many materials
used at frequencies up to and including microwaves, the losses are so small
that @ and &, and also # and %, are very nearly in time phase. In such
cases constitutive relations such as @ = &, & = u# apply with negligible
error. Significant departure in time phase between 2 and & or # and
# occurs only in the vicinity of a natural resonance frequency of the
equation of motion for the polarization.

2.3 STATIC FIELDS

For electric and magnetic fields that are independent of time, the electric
and magnetic fields are not coupled, and likewise the current and charge are
not coupled. Putting all time derivatives equal to zero in (2.13) yields}

VXE=0 (2.35a)
V-eE=p (2.35b)
VXxH=J (2.36a)
V-B=0 (2.360)
V-J=0 (2.36¢)

The last equation is the continuity equation for the special case dp/dt = 0.

The static electric field has zero curl, or circulation, and this means
that the line integral of E around any arbitrary closed contour is zero. This
property is just the condition that permits E to be derived from the gradient
of a scalar potential function ®; that is, since V X V® is identically zero, we
may put

E=-Vo (2.37)

tThe situation here is like that encountered in ac circuit analysis, where in phasor notation the
voltage V equals the current I multiplied by the impedance Z; that is, V = IZ. An Ohm’s law
of this sort cannot be written for the physical voltage and current, for if = Re(Ve/**) =
Vcos wt, then .# = Re(le/*!) = [V/(R? + X?)'/?]cos(wt — ¢), where ¢ = tan~(X/R).
Clearly,  cannot be equated to .# multiplied by a constant because of the difference in phase.
tFor static fields we are using boldface roman type to represent the physically real vector fields.
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b=V
x=a
P
y FIGURE 2.5
®=0 x=0

A simple potential problem.

Substituting (2.37) into (2.35b) and assuming that e is a constant indepen-
dent of the coordinates give

V-E=-Vo=-2 (2.38)
€

This equation is known as Poisson’s equation. When p = 0, Laplace’s
equation

V2 = 0 (2.39)

is obtained. The basic field problem in electrostatics is to solve Poisson’s or
Laplace’s equation for a potential function ® that satisfies specified bound-
ary conditions.

As a simple example consider two infinite conducting planes at x = 0, a,
as in Fig. 2.5. Let charge be distributed with a density p = p,x between the
two plates.t It is required to find a ® which is a solution of Poisson’s
equation and which equals zero on the plane x = 0 and V on the plane
x = a. The potential will depend on x only; so (2.38) becomes

d?d x
— = —po—
dx2 0eo

Integrating this equation twice gives ® = —pyx3/6¢, + C;x + C,. Impos-
ing the boundary conditions at x = 0, a yields 0 = C,,

3
Poa
V='“6€0 +Cla+C2

tThe example is somewhat artificial since the assumed charge distribution is not a stable one;
i.e., the electric field it produces would cause the charge distribution to change.
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and hence C, = 0, C; = V/a + p,a®/6¢,. The solution for ® is thus

3 2
PoX poax 'V
P=- = + —x
6eg 6eg a

The electric field between the two plates is

P x? a® v
E=—Vd>=—ax§=ax(po _ﬂ?____)

2¢, 6¢, a

The solution for the electrostatic field is greatly facilitated by introduc-
tion of the scalar potential ®. For the same reason it is advantageous to
introduce a potential function for the solution of magnetostatic problems.
Since B always has zero divergence, it may be derived from the curl of a
vector potential A; that is,

B-VXA (2.40)

This makes the divergence of B vanish identically because the divergence of
the curl of a vector is identically zero. Using (2.40) in (2.36a) and assuming
that u is constant yields the equation

VXuH=VXB=VXVXA=ud

A vector identity of use here is VX VX A = VV - A — V?A. The divergence
of A may be placed equal to zero without affecting the value of B derived
from the curl of A, and hence the equation for A is

VA = —ud (2.41)

This equation is a vector Poisson’s equation. In rectangular coordinates,
(2.41) represents three scalar Poisson’s equations, the first being

VA, = —ud, (2.42)

In a curvilinear coordinate system, such as a cylindrical coordinate system,
(2.41) cannot be written in such a simple component form. The reason is
that, for example, V2a, A, does not equal a,VZA_ because, even though the
unit vector a, is of constant length, its orientation varies from point to
point since it is always directed along the radius vector from the origin to
the point under consideration. The evaluation of V?A in curvilinear coordi-
nates is made by using the vector identity quoted above to give V?A = VV -
A — V X V X A. These latter operations are readily carried out.

The interest in static field solutions at microwave frequencies arises
because the field distribution over a cross-sectional plane of a transmission
line is a static field distribution and because static field solutions are good
approximate solutions to the actual fields in the vicinity of obstacles that are
small compared with the wavelength. The potential theory introduced above
may be extended to the time-varying case also, and this is done in a
following section.
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2.4 WAVE EQUATION

For convenience, the two curl equations are repeated here:

VX & % 2.43

X& = "3; ( . a)
0P

VXZ’=-:97 (2.43b)

where it is assumed for the present that the current density _# is zero in the
region of interest. These equations, together with the assumed constitutive
relations & = €&, # = u#¥, may be combined to obtain a separate equation
for each field. The curl of (2.43a) is

IV XZ#) W(VXZH)
VXVX&=-—"—= —p—
at at
Using (2.43b) and expanding V X V X & now yields
) ’g
VV.-& - V& = —’“—aﬁ
Since p is assumed zero and e is taken as a constant, V- & = 0, and we
obtain
a2g
Vzg - /.Leat—2 =0 (2.44)

which is a three-dimensional wave equation. The velocity of propagation v is
equal to (ue)~1/2 In free space v is equal to the velocity of light c¢. To
illustrate the nature of the solutions of (2.44), consider a case where & has
only an x component and depends only on the z coordinate. In this instance

g, 9%,
922 #6_3157 =0
Any function of the form f(z — vt) is a solution of this equation since
2 2 2
::_.zg =f Z—té - vza(av;)z =V
and hence
2f 1%

This solution is illustrated in Fig. 2.6 and clearly represents a disturbance
propagating in the positive 2z direction with velocity v. An equally valid
solution is f(z + vt) and represents a disturbance propagating in the
negative z direction.
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Propagation of a disturbance f(z — vt).

By eliminating the electric field, it is readily found that the magnetic
field # also satisfies the wave equation (2.44). In practice, however, we
solve the wave equation for either & or /# and then derive the other field by
using the appropriate curl equation. When constitutive relations such as
D = €& and £ = u# cannot be written, the polarization vectors # and
# must be exhibited explicitly in Maxwell’s equations. Wave equations for
& and # may still be derived, but & and 4 will now enter as equivalent
sources for the field (which they actually are). The derivation is left as a
problem at the end of this chapter.

For harmonic time dependence, the equation obtained in place of
(2.44) is

V2E + k2E = 0 (2.45)

where k2 = w?ue. This equation is referred to as the Helmholtz equation, or
reduced wave equation. The constant & is called the wave number and may
be expressed in the form
) f 2 9.4
” 2 ” X (2.46)
where the wavelength A is equal to v/f. In free space the wave number will
be written as &, and is equal to wy/ue€y = 27/A,. The magnetic field H, as
may be surmised, satisfies the same reduced wave equation.

In a medium with finite conductivity o, a conduction current # =
o0& will exist, and this results in energy loss because of Joule heating. The
wave equation in media of this type has a damping term proportional to o
and the first time derivative of the field. In metals, excluding ferromagnetic
materials, the permittivity and permeability are essentially equal to their
free-space values, at least for frequencies up to and including the microwave
range. Thus Maxwell’s curl equations become

k= wype =

o &
ng=—#0¥ sz’=603_t-+ag
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Elimination of # in the same manner as before leads to the following wave
equation for &

) & 2g

The magnetic field # also satisfies this equation. For the time-harmonic
case damping effects enter in through the complex nature of € and u, and
hence the wave number k. It should be recalled here that, as shown by
(2.27), a finite conductivity o is equivalent to an imaginary term in the
permittivity e. In the present case the equivalent permittivity is € = ¢, —
Jo /o and the Helmholtz equation is

V2E + w2,u060(1 —j—g—-)E =0 (2.48)

we,
In metals the conduction current o E is generally very much larger than the
displacement current weyE, so that the latter may be neglected. For exam-
ple, o is equal to 5.8 X 10" S/m for copper, and at a frequency of 10'° Hz,
wey = 0.55, which is much smaller than ¢. Only for frequencies in the
optical range will the two become comparable. Thus (2.47) may be simpli-
fied to

, g
V8 — poo - =0 (2.49)

and (2.48) reduces to
V2E — jou,cE =0 (2.50)

Equation (2.49) is a diffusion equation similar to that which governs the
flow of heat in a thermal conductor.

2.5 ENERGY AND POWER

When currents exist in conductors as a result of the application of a suitable
potential source, energy is expended by the source in maintaining the
currents. The energy supplied by the source is stored in the electric and
magnetic fields set up by the currents or propagated (radiated) away in the
form of an electromagnetic wave. Under steady-state sinusoidal time-vary-
ing conditions, the time-average energy stored in the electric field is
WRlED*dVl’EE*V )
. = Re va . = vae -E*d (2.51a;

If € is a constant and real, (2.51a) becomes

W, i E - E*dV 2.51b
e_4fv (' .
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The time-average energy stored in the magnetic field is given by
W_ =R ! H* - BdV . 'H - H*dV 2.52
m erV —val‘l' ( a)
which, for u real and constant, becomes
W, =" [H-H*dV (2.52b)
4’y
These expressions for W, and W,, are valid only for nondispersive media,
1.e., media for which € and u can be considered independent of w in the

vicinity of the angular frequency « with which the fields vary. In general,
when the losses are small, so that €” < €' and y’ < &/, we have

W, = le B2 gy (2.53a)
¢ 4y ow

W, = lfH-H*MdV (2.53b)
™ 4y ow

for the time-average stored electric and magnetic energy.

The above equations for the time-average energy in a dispersive
medium may be established by considering a classical model of the polariza-
tion mechanism similar to that discussed in Sec. 2.2. In a unit volume let
the effective oscillating charge of the dipole distribution be —¢g with an
effective mass m. Let the damping force be equal to m» times the velocity
of the charge. This damping force takes account of collision effects and loss
of energy by radiation from the oscillating charge. The equation of motion
for the polarization charge displacement u is

d?u du
mW + mv-a + ku = —-qé’

where u is parallel to the direction of the field &. In this equation % is the
elastic constant giving rise to the restoring force. This constant arises from
the Coulomb forces acting on the displaced charge, and hence is of electrical
origin. The dipole polarization & is —qu, and the polarization current
S = dP/dt. Introducing the polarization current into the equation of
motion gives

md & mv k.t

— + 55+ | 5dt=&

q2 dt q2 pP q2 f P
This equation is formally the same as that which describes the current in a
series LCR circuit with an applied voltage 7~ equal to & and with

L= g™ .2
q® q® k

An equivalent circuit describing the polarization is illustrated in Fig. 2.7. If
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FIGURE 2.7
° Equivalent circuit for polarization current.

a time dependence e’“! is assumed and phasor notation is used,
R -jX
R T T
where Y is the input admittance and X = wL — 1/wC. Since P = ¢yx. E
and J, = joP, we see that

’ s ; _X —JR
wegx, = weg(x, —Jjx;) = —JjY = R? + X2
and hence
. -X
weoXe = ZTy x2 (85¢2)
" R
“eoX: = FE 1 2 (2:540)

The time-average power loss associated with the polarization is the
same as the power loss in R in the equivalent circuit. This is given by

P, L EE* R

L 27 R?+x?
per unit volume. This equation shows that weyx), = we” is an equivalent
conductance. The time-average energy stored in the system is of two forms.
First there is the kinetic energy of motion, that is, $m(du/dt)? averaged
over a cycle, and this is equal to the magnetic energy stored in the inductor
in the equivalent circuit. This time-average kinetic energy per unit volume
is given by

1
= EEE*weox;' (2.55)

1 1
Um = ZLJPJ: = ZEE* (2560)

R? + X?
The second form of stored energy is the potential energy associated with the
charge displacement. The time-average value of this energy is equal to the
time-average electric energy stored in the capacitor C in the equivalent
circuit, and is given by
1
U= -EE*5——F——— 2.56b
¢ 4 w?C(R? + X?) ( )

The total time-average energy stored per unit volume is U = U,, + U,. Note
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that U is not given by $EE*€,x,. The latter expression gives
lEE*e Y. = lEE*_L_
4 0%e 4 w(R? + X?)
_lgpCCL oy
4 R? + X? e om
or the difference between the potential and kinetic energy stored.
To obtain an expression for the total stored energy, note that

d( X )_L+1/w20( 2X2)

do \R? + X2 ax |1 TR ixe

For a low-loss system, R? < X2, and we then have 1 — 2X2/(R? + X?) =
—1; so

do\BRITx2) = o (@eoxe) = paixe

Multiplying this expression by (EE* now gives the total time-average
energy stored, as comparison with (2.56a) and (2.56b) shows. Thus the final
expression for the time-average electric energy stored in a volume V is given
by the volume integral of U = U, + U,, plus the free-space energy density
€o(E - E*)/4 and is

d( -X ) d L+ 1/w?C

W=[(U+ 52E-E*)olv
e v 4

E-E dweyx.
[V : (eo+ — )dV

dwe'

! E - E* dv
_va w

since € = €,4(1 + x.). This equation is the result given earlier by (2.53a).

A similar type of model may be used to establish (2.53b) for the
average stored magnetic energy. It should be pointed out that under time-
varying conditions the average stored energy associated with either electric
or magnetic polarization includes a kinetic-energy term. This term is negli-
gible at low frequencies and also when ¢’ and y' are essentially independent
of w for the range of » of interest. When this energy is not negligible, the
modified expressions for stored energy must be used.

Although (2.53) is more general than (2.51) and (2.52), we shall, in the
majority of instances, use the latter equations for the stored energy. We
thereby tacitly assume that we are dealing with material that is nondisper-
sive or very nearly so.

The time-average power transmitted across a closed surface S is given
by the integral of the real part of one-half of the normal component of the
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complex Poynting vector E X H*; that is,
1
P=Re —¢E x H* - dS (2.57)
27s

The above results are obtained from the interpretation of the complex
Poynting vector theorem, which may be derived from Maxwell’s equations
as follows: If the divergence of E X H*, that is, V - E X H*, is expanded, we
obtain

V-ExH*=(VXE) -H*— (VX H*) -E

From Maxwell’'s equations VX E = —joB and VX H* = —joD* + J*,
and hence

V-EXH*= —joB:H* + joD*-E - E - J*

The integration of this equation throughout a volume V bounded by a
closed surface S gives the complex Poynting vector theorem,; i.e.,

1 V-EXH*dV ! E X H*- dS
3,7 EXH V= 5¢

- —jﬂf(B-H*—E-D*)dV—ifE-J*dV
2y 27y
(2.58a)

where the divergence theorem has been used on the left-hand side integral.
The above result may be rewritten as

27g vi 4 4
+ l[1&: - J*dV (2.58b)
2Jy

where —dS is a vector element of area directed into the volume V. If the
medium in V is characterized by parameters € = ¢ — je", u = ¢ — ju’, and
conductivity o, the real and imaginary parts of (2.58) may be equated to
give

RelsﬁExH* -(-dS) = 2f(#"H-H* +¢'E - E¥) dV
27s 27y

1
— . ¥
+ ZfVaE E*dV (2.59a)

E - E*
4

Equation (2.59a) is interpreted to state that the real electromagnetic power
transmitted through the closed surface S into V is equal to the power loss
produced by conduction current ¢E, resulting in Joule heating plus the

Im LG E x H* - (—dS) = 20 [ [« _ o dv (2.59b
ngig X (— )—wfv(p, y (2.59b)



38 FOUNDATIONS FOR MICROWAVE ENGINEERING

power loss resulting from polarization damping forces. Note that we” could
be interpreted as an equivalent conductance, as pointed out in Sec. 2.2. This
equation also shows that y’ and €’ must be positive in order to represent
energy loss, and hence the imaginary parts of € and x must be negative.
Equation (2.59b) states that the imaginary part of the complex rate of
energy flow into V is equal to 2w times the net reactive energy W,, — W,
stored in the magnetic and electric fields in V. The complex Poynting vector
theorem is essentially an energy-balance equation.

A result analogous to the above may be derived for a conventional
network, and serves to demonstrate the validity of the interpretation of
(2.58). Consider a simple series RLC circuit as in Fig. 2.7. If the current in
the circuit is I and the applied voltage is V, the complex input power is
given by

Lvie - 2o - Lie(R v jor - L
2 2 2 JOn T W
The time-average power loss in R, magnetic energy stored in the field
around L, and electric energy stored in the field associated with C are
given, respectively, by

1 1
P, = —RII* W, = —LII* W, =
e ™4
since the voltage across C is I/wC. Hence
1 1
SVI* = 521" = P + 2ju(W, — W,)

which has the same interpretation as (2.58). This equation may also be
solved for the impedance Z to give
z P +2jo(W, - W,)
- 1

(2.60)

and provides a general definition of the impedance of a network in terms of
the associated power loss and stored reactive energy. The factor ;II* in the
denominator serves as a normalization factor, and is required in order to
make Z independent of the magnitude of the current at the input to the
network.

In the case of a general time-varying field, an expansion of V - & X ¥
and substitution from Maxwell’s equations (2.13) lead to the following
Poynting vector theorem for general time-varying fields:

X ox
%gxz'(—dS) =fv([.l.ol"—at—' +/.L0)7‘—£
o0& oP
+€og‘a—t +g‘—£ +&-£1dV
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Since # + 0% /3t = 5 I H# + ¥#)/0t, etc., and the electric and magnetic polar-
ization currents are , = 02 /dt, £, = wo(04/dt), we have

d (/.LOZ'X fog'g

gﬁsgxz-(—dS)=a~tV St 5|4V

+fv[g-(; +5,) ¥ £ AV (2.61)

where —dS is an element of surface area directed into V. This equation
states that the rate of energy flow into V is equal to the time rate of change
of the free-space field energy stored in V plus the rate of energy dissipation
in Joule heating arising from the conduction current # and, in addition, the
instantaneous rate of energy supplied in maintaining the polarization cur-
rents. If # and #, and also & and &, are in phase, there is no energy loss
associated with the polarization currents. If these quantities are not in
phase, some energy dissipation takes place, leading to increased heating of
the material.

If the susceptibilities y, and x,, can be considered as constants, so
that 02/t = €,x,(0& /dt) and o.4/dt = x,(3# /3t), then (2.61) becomes
d X B &9
& xx-(-ds) = —/(— + —)dV+ |&-£dv (262)
s atJy v

2 2
which is the usual form of the Poynting vector theorem. The first term on
the right is now interpreted as the instantaneous rate of change of the total
electric and magnetic energy stored in the volume V.

The susceptibilities can usually be considered as true constants when-
ever the inertial and damping forces are small compared with the elastic
restoring force in the dynamical equation describing the polarization. For
example, with reference to (2.54a), this is the case when k is much greater
than wmv or w?m, that is, when 1/wC is large compared with wL and R,
so that

[

€ox. = C =

2.6 BOUNDARY CONDITIONS

In order to find the proper and unique solutions to Maxwell’s equations for
situations of practical interest (these always involve material bodies with
boundaries), a knowledge of the behavior of the electromagnetic field at the
boundary separating material bodies with different electrical properties is
required. From a mathematical point of view, the solution of a partial
differential equation, such as a wave equation, in a region V is not unique
unless boundary conditions are specified, i.e., the behavior of the field on the
boundary of V. Boundary conditions play the same role in the solution of
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/ FIGURE 2.8
A cylindrical cavity partially filled with a dielectric medium.

partial differential equations that initial conditions play in the solution of
the differential equations that govern the behavior of electric circuits.

As an example, consider the problem of finding a solution to Maxwell’s
equations inside a cylindrical cavity partially filled with a dielectric medium
of permittivity €, as in Fig. 2.8. In practice, the solution is obtained by
finding general solutions valid in the two regions labeled R, and R,. These
general solutions must satisfy prescribed conditions on the metallic bound-
aries and in addition contain arbitrary amplitude constants that can be
determined only from a knowledge of the boundary conditions to be applied
at the air-dielectric boundary separating regions R; and R,.

The integral form of Maxwell’s equations provides the most convenient
formulation in order to deduce the required boundary conditions. Consider
two media with parameters e, 4, and €,, 15, as in Fig. 2.9¢q. If there is no
surface charge on the boundary, which is the usual case for nonconducting
media, the integral of the displacement flux over the surface of the small
“‘coin-shaped’’ volume centered on the boundary as in Fig. 2.95 gives, in the
limit as h tends to zero,

lim@ D -dS =D,, AS —D,, AS =0

h—>078
or D2n = Dln =n- Dz =n- Dl (2-63)
Din
AS
— I
_Jr
0211
(5)
E"
—_— ¢
——— A

|t I:‘ FIGURE 2.9
£ Boundary between two different
(c) media.
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where n denotes the normal component. The limit -2 — 0 is taken so that
the flux through the sides of the coin-shaped region vanishes. Equation
(2.63) simply states that the displacement flux lines are continuous in the
direction normal to the boundary. A similar result clearly must hold also for
the magnetic flux lines since V - B = 0, and hence, by analogy,

n-B,=n-B, (2.64)

To obtain boundary conditions on the tangential components of the
electric field E and magnetic field H, the circulation integrals for E and H
are used. If for the contour C in Fig. 2.9¢, the width % is made to approach
zero, the magnetic flux flowing through this contour vanishes and

im@E-dl= lim —jw[B-dS=0
h—>07C h—0 S

=E, Al - E,, Al
or E,=E, (2.65)

For the same contour C the total displacement current directed through the
contour vanishes as h — 0, so that

lim@® H - dl = 1im(jwa-ds)=o
h—07C h—0 S

= (Hy — Hy,) Al
or H, =H, (2.66)

where ¢ denotes the components tangential to the boundary surface. These
latter relations state that the components of E and H tangent to the
boundary are continuous across the boundary; i.e., the tangential compo-
nents on adjacent sides of the boundary are equal at the boundary surface.

For the boundary conditions at the surface separating a good conduc-
tor (any metal) and free space or air, some simplification is possible. As
shown in a later section, the electromagnetic field can penetrate into a
conductor only a minute distance at microwave frequencies. The field
amplitude decays exponentially from its surface value according to e/,
where u is the normal distance into the conductor measured from the
surface, and §, is called the skin depth. The skin depth is given by

2

YNy

For copper (o = 5.8 X 107 S/m) at a frequency of 10'° Hz, the skin depth is
6.6 X 107° cm, truly a very small distance. Likewise, the current J = ¢ E is
concentrated near the surface. As the conductivity is made to approach
infinity, 8, approaches zero and the current is squeezed into a narrower and
narrower region and in the limit o — « becomes a true surface current.
Since the skin depth is so small at microwave frequencies for metals, the
approximation of infinite conductivity may be made with negligible error (an

1/2
5 =

s

(2.67)
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c=o,D=0

==

On

FIGURE 2.10
Boundary of a perfect conductor.

exception is when attenuation is to be calculated, since then infinite conduc-
tivity implies no loss). For infinite conductivity the field in the conductor
must be zero. Since the flux lines of B are continuous and likewise since the
tangential component of E is continuous across the boundary, it is neces-
sary that

n-B=0 (2.68a)
E,=nxE=0 (2.68b)

at the surface of a perfect conductor. This same argument cannot be applied
to the normal component of D and the tangential component of H because,
as noted above, a surface current J will exist on the surface in the limit
o — o, Applying Maxwell’s equation

H-dl=jo[D-dS + [J-dS
¢ / /

to the contour C illustrated in Fig. 2.10 gives

lim 9%11 - dl

lim HtAl=’}Ex})fij°dS+’11_rf})fJ-dS

lim hJ Al = J, Al
h—0

or in vector form,
nxH=4J, (2.68¢)

Note that the field in the conductor goes to zero, that the total displacement
current through C vanishes as A — 0, but that hAJ tends to the limiting
value J; as the conductivity is made infinite and A is made to approach
zero. Associated with the surface current is a charge of density p, on which
the normal displacement flux lines terminate. Hence, at the surface of a
perfect conductor,

n-D=D,=p, (2.68d)

When it is desired to take into account the large but finite conductivity
(as would be the case in attenuation calculations), an impedance boundary
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condition may be used with little error. The metallic surface exhibits a
surface impedance Z,, with equal resistive and inductive parts, given by

1+

(2.69)

" ad,
At the surface a surface current exists, and the relation between this and
the electric field tangent to the surface is

E -2,J, (2.70)

Note that the tangential electric field cannot be zero for finite conductivity,
although it may be very small. Now n X H = J_, so that

E,=-2,J,-Z,nxH (2.71)

From (2.69) it is seen that the resistive part of the surface impedance is
equal to the dc resistance per square of a unit square of metal of thickness
.. In a later section the above results are verified; so further comments are
reserved until then.

In practice, it suffices to make the tangential components of the fields
satisfy the proper boundary conditions since, when they do, the normal
components of the fields automatically satisfy their appropriate boundary
conditions. The reason is that when the fields are a solution of Maxwell’s
equations, not all the components of the field are independent. For example,
when the tangential part of the electric field is continuous across a bound-
ary, the derivatives of the tangential component of electric field with respect
to coordinates on the boundary surface are also continuous. Thus the curl of
the electric field normal to the surface is continuous, and this implies
continuity of the normal component of B. More specifically, if the xy plane
is the boundary surface and E_, E, are continuous, then dE, /dx, JE, /dy,
dE /dx, and dE,/dy are also continuous. Hence —jwB, = dE /dx — IE, /dy
is continuous. For the same reasons continuity of the tangential compo-
nents of H ensures the continuity of the normal component of D across a
boundary.

In addition to the boundary conditions given above, a boundary condi-
tion must be imposed on the field solutions at the edge of a conducting body
such as a wedge. The edge condition requires that the energy stored in the
field in the vicinity of an edge of a conducting body be finite. This limits the
maximum rate at which the field intensities can increase as the edge is
approached.t A detailed analysis shows that at the edge of a two-dimen-
sional perfectly conducting wedge with an internal angle ¢, the field compo-
nents normal to the edge must not increase any faster than r¢, where r is

1J. Meixner, The Behavior of Electromagnetic Fields at Edges, N.Y. Univ. Inst. Math. Sci.
Res. Rept., vol. EM-72, December, 1954. The theory is also discussed in R. E. Collin, ““Field
Theory of Guided Waves,” chap. 1, IEEE Press, Piscataway, N.J., 1991, revised edition.
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the perpendicular radial distance away from the edge and

nw

a= _
2m — ¢

1

where the integer n must be chosen so that « is greater than or equal to —
at least.

When solving for fields in an infinite region of space, the behavior of
the field at infinity must also be specified. This boundary condition is called
a radiation condition, and requires that the field at infinity be a wave
propagating a finite amount of energy outward, or else that the field vanish
so fast that the energy stored in the field and the energy flow at infinity are
zZero.

2.7 PLANE WAVES

In this section and the two following ones we shall introduce wave solutions
by considering plane waves propagating in free space and reflection of a
plane wave from a boundary separating free space and a dielectric, or
conducting, medium. The latter problem will serve to derive the boundary
conditions given by (2.68) to (2.71) in the preceding section.

Plane Waves in Free Space

The electric field is a solution of the Helmholtz equation

PE °E ’E
+ + 77 +kE=0

2 2@ —
VE+RE - S5+ o

This vector equation holds for each component of E, so that

CE,  PE P o -
+ + + k2E, = = :
dx? ay? 922 0™ PEEY.2 ( )

The standard procedure for solving a partial differential equation is the
method of separation of variables. However, this method does not work for
all types of partial differential equations in all various coordinate systems,
and when it does not work, a solution is very difficult, if not impossible, to
obtain. For the Helmholtz equation the method of separation of variables
does work in such common coordinate systems as rectangular, cylindrical,
and spherical. Hence this method suffices for the class of problems discussed
in this text. The basic procedure is to assume for the solution a product of
functions each of which is a function of one coordinate variable only.
Substitution of this solution into the partial differential equation then
separates the partial differential equation into three ordinary differential
equations which may be solved by standard means.
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In the present case let E, = f(x)g(y)h(z). Substituting this expression
into (2.72) gives

ghf” + fhg" + fgh" + ki fgh =0

where the double prime denotes the second derivative. Dividing this equa-
tion by fgh gives

fll g// h’l

—+ =+ —+k3=0 2.73
Each of the first three terms in (2.73), such as f”/f, is a function of a single
independent variable only, and hence the sum of these terms can equal a
constant —k2 only if each term is constant. Thus (2.73) separates into three
equations:

ﬁ=—k2 §:=~k2 E=—k2
f R T h ?
d2f dzg 2
7 2 £ -5 25 4R = )
or e + k2 0 x +kg=0 7 k:h =0 (2.74)

where k2, k2, k2 are called separation constants. The only restriction so far
on k2, k2, k2 is that their sum must equal k3, that is,

RZ + k2 + k2 =k} (2.75)

so that (2.73) will be satisfied.

Equations (2.74) are simple-harmonic differential equations with expo-
nential solutions of the form e */*=* e /%Y ¢ *J/k:2 Ag one suitable solution
for E, we may therefore choose

E, = Ae Jhsx—ikyiksz (2.76)

where A is an amplitude factor. This solution is interpreted as the x
component of a wave propagating in the direction specified by the propaga-
tion vector

k=a,k, +ak, +ak, (2.77)

because the scalar product of k with the position vector
r=ax+ayta,z

equals k x + ky + k,z and is k, times the perpendicular distance from
the origin to a plane normal to the vector k, as illustrated in Fig. 2.11. The
k vector may also be written as k = nk,, where n is a unit vector in the
direction of k and k, is the magnitude of k by virtue of (2.75).

Although (2.76) gives a possible solution for E,, this is not the
complete solution for the electric field. Similar solutions for E, and E, may
be found. The three components of E are not independent since the diver-

gence relation V - E = 0 must hold in free space. This constraint means
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FIGURE 2.11
Illustration of plane normal to vector k.

that only two components of E can have arbitrary amplitudes. However, for
V - E to vanish everywhere, all components of E must have the same spatial
dependence, and hence appropriate solutions for E, and E, are

E,=Be/*r E, =Ce/kr

with B and C amplitude coefficients. Let E, be the vector a,A + a,B +
a,C; then the total solution for E may be written in vector form as

E =Eje7Jkr (2.78)

The divergence condition gives
V M E = V * Eoe_jk.r = EO * Ve—jk“' = _jk ° Eoe—jk.r = 0

or k-E,=0 (2.79)
since Ve /®'F = —jke/¥'F as may be verified by expansion in rectangular
coordinates. The divergence condition is seen to constrain the amplitudes
A, B, C so that the vector E, is perpendicular to the direction of propaga-
tion as specified by k. The solution (2.78) is called a uniform plane wave
since the constant-phase surfaces given by k - r = const are planes and the

field E does not vary on a constant-phase plane.
The solution for H is obtained from Maxwell’s equation

VXE = —jou,H
which gives

. 1 .
V X Eoe_‘lk'r = = EO X Ve_'lk'r

H=--
JWHo JWHo

1 . k,
—kXEje /"= —nxE
Wl LAY

1/ﬁn><E=Yoan (2.80)
Ko

where Y, = y/€o/p, has the dimensions of an admittance and is called the
intrinsic admittance of free space. The reciprocal Z;, = 1/Y, is called the
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FIGURE 2.12
Space relationship between E, H, and n in a TEM
wave.

intrinsic impedance of free space. Note that H is perpendicular to E and to
n, and hence both E and H lie in the constant-phase planes. For this reason
this type of wave is called a transverse electromagnetic wave (TEM wave).
The spatial relationship between E, H, and n is illustrated in Fig. 2.12.

The physical electric field corresponding to the phasor representation
(2.78) is

E = Re(Eje /% *%*!) = E; cos(k * r — wt) (2.81)
where, for simplicity, E, has been assumed to be real. The wavelength is the

distance the wave must propagate to undergo a phase change of 27. If we
let A, denote the wavelength in free space, it follows that

lk|A0 = kOAO = 27T
so that

ko= wyuoeo =

This result is the familiar relationship between wavelength A,, frequency
f=w/2m, and velocity ¢ in free space. A wavelength in a direction other
than that along the direction of propagation n may also be defined. For
example, along the direction of the x axis the wavelength is

(2.82)

) 2
c—)\O

N 2
=k

and since &, is less than &, A, is greater than A,. The phase velocity is the
velocity with which an observer would have to move in order to see a
constant phase. From (2.81) it is seen that the phase of E is constant as long
as k - r — ot is constant. If the angle between k and r is 6, then k - r — w?
= kor cos § — wt. Differentiating the relation

(2.83)

x

korcos 8 — wt = const

) dr ®
gives a P T kocos 6

(2.84)

for the phase velocity v, in the direction r. Along the direction of propaga-
tion, cos § = 1 and v, = w/k, = c. In other directions, the phase velocity is
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FIGURE 2.13
A wave propagating obliquely to the u axis.

greater than c. These results may be understood by reference to Fig. 2.13.
When the wave has moved a distance A, along the direction n, the
constant-phase-plane intersection with the u axis has moved a distance
A, = Agsec @ along the direction u. For this reason the wavelength and
phase velocity along u are greater by a factor sec 6 than the corresponding
quantities measured along the direction of propagation n.

The time-average rate of energy flow per unit area in the direction n is
given by

P=1ReEXH*-n=_1ReY,E X (n X E*) - n = 1V,E, - Ef (2.85)

The time-average energy densities in the electric and magnetic fields of a
TEM wave are, respectively,

e

€0 . €0 .
U=IE’E=ZEO’E0
€
U, = -‘;—°H-H*= %Yg(an) ‘(nXE*) = 2B, Ef - U,
and are seen to be equal. Since power is a flow of energy, the velocity v, of
energy propagation is such that

(U, + Um)vg =P
P %YoEo - Ep Y,

= = = e— = 2.
or YeT U+ U, LB, EF € (2.86)

Thus, for a TEM wave in free space, the energy in the field is transported
with a velocity ¢ = 83 X 108 m/s, which is also the phase velocity. Since the
phase velocity is independent of frequency, a modulated carrier or signal
will have all its frequency components propagated with the same velocity c.
Hence the signal velocity is also the velocity of light c. Later on, in the study
of waveguides, situations arise where the phase velocity is dependent on
frequency and consequently is not equal to the velocity of energy propaga-
tion or the signal velocity.
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2.8 REFLECTION FROM A DIELECTRIC INTERFACE

In Fig. 2.14 the half-space z > 0 is filled with a dielectric medium with
permittivity e (dielectric constant €, = €/¢,; index of refraction n = ‘/Z ). A
TEM wave is assumed incident from the region z < 0. Without loss in
generality, the xy axis may be oriented so that the unit vector n, specifying
the direction of incidence lies in the xz plane. It is convenient to solve this
problem as two special cases, namely (1) parallel polarization, where the
electric field of the incident wave is coplanar with n, and the interface
normal, i.e., lies in the xz plane, and (2) perpendicular polarization, where
the electric field of the incident wave is perpendicular to the plane of
incidence as defined by n; and the interface normal, i.e., along the y axis.
An incident TEM wave with arbitrary polarization can always be decom-
posed into a linear sum of perpendicular and parallel polarized waves. The
reason for treating the two polarizations separately is that the reflection
and transmission coefficients, to be defined, are different for the two cases.

1 Parallel Polarization
Let the incident TEM wave be

Ei = Ele—jkolll'l‘ Hi = Yonl X Ei (2.87)

where E, lies in the xz plane. Part of the incident power will be reflected,
and the remainder will be transmitted into the dielectric medium. Let the
reflected TEM wave be

E, = E,e /b H =Y, XE, (2.88)

where n, and E, are to be determined. In the dielectric medium the
solution for a TEM wave is the same as that in free space, but with ¢,

replaced by e. Thus, in place of k, = wy/use, and Y, = \/eo/mq, the
parameters k = w\/uoe = nky and Y = y/e/u, = nY, are used, where n =
\/Z is the index of refraction. The transmitted wave in the dielectric may be

£r \_LL‘ € €
Rz n o ad

8, X
6

ny

;rf FIGURE 2.14

& 7 Plane wave incident on a dielectric interface.
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expressed by
E,=E;eV*s'r H,=Yn,XE, (2.89)

with E; and nj as yet unknown.

The boundary conditions to be applied are the continuity of the
tangential components of the electric and magnetic fields at the interface
plane z = 0. These components must be continuous for all values of x and y
on the z = 0 plane, and this is possible only if the fields on adjacent sides of
the boundary have the same variation with x and y. Hence we must have

kony, = kony, = kng, = nkong, (2.90)

i.e., the propagation phase constant along x must be the same for all waves.
Since n,, was chosen as zero, it follows that n,, = nj, = 0 also. The unit
vectors n,,n,, n, may be expressed as

n, =a,sinf, + a,cos 0,
n,=a,sinf, + a,cos 0,

ng=a,sinf; + a,cosf;

Equation (2.90) gives

sin 6; = sin 6,
or 0, =0, (2.91)
which is the well-known Snell’s law of reflection; in addition, (2.90) gives

sin §; = 7 sin 0,4 (2.92)

which is also a well-known result specifying the angle of refraction 65 in
terms of the angle of incidence 6, and the index of refraction 7.
The incident electric field E; has components E,, = E, cos 0,

E,,= —E;siné6,

since n; - E; must equal zero. Note that E; is used to denote the magni-
tude of the vector E,;. Since the incident electric field has no y component,
the reflected and transmitted electric fields also have zero y components.t
Expressing all fields in component form, i.e.,

E2x = E2 Ccos 02
E,, =E,sin6,, E; = E;cosf;, E;, = —E3sinf; and imposing the

boundary condition of continuity of the x component at z = 0 yields the
relation

E cos 6, + E,cos 0, = Egcos 03

tIf the reflected and transmitted electric fields were assumed to have a y component, the
boundary conditions which must apply would show that these are, indeed, zero.
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Ve, — sin® 6
or (E, + E,)cos 6, = E5y/1 — sin® 65 = E,~————  (2.93)
n

by using (2.91) and (2.92). Apart from the propagation factor, the magnetic
field is given by

H, =Yn, XE, = Yoay(_nlelz +n,E;)= YanEl
H, = -Y,a E,
H; =Ya E;
and has only a y component. Continuity of this magnetic field at the
boundary requires that
Yo(E, ~ E,;) = YE; = nY, Eq (2.94)

If a reflection coefficient I, and a transmission coefficient T, are
introduced according to the following relations:

amplitude of reflected electric field E,

1=

amplitude of incident electric field  E, (2.95a)

amplitude of transmitted electric field  E;
amplitude of incident electric field ~ E,

1=

(2.95b)

then the boundary conditions (2.93) and (2.94) may be expressed as

(e, — sin? 01)1/2
7 cos 6,

1-T,=1T, (2.96b)

These equations may be solved to give the Fresnel reflection and transmis-
sion coefficients for the case of parallel polarization, namely,

2
)’

1+, =T,

(2.96a)

(e, — sin?6,) " — €, cos 6,

I, = (2.97a)

. 1/2
(e, — sin®6,) % + €, cos b,

27 cos 0,
T, = . (2.97b)
- 5 72
(e, —sin®8,) " + €, cos 0,

An interesting feature of I, is that it vanishes for an angle of incidence
6, = 6,, called the Brewster angle, where, from (2.97a),

€, — sin? 9, = €2 cos? 9,

€

- )1/2 (2.98)

or Sin0b= (
e, +1
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|
1.00p ——————
0.75 :
0.50 | FIGURE 2.15
0.25 } Modulus of reflection coefficient at a dielectric in-
1

terface for €, = 2.56, |I'; | parallel polarization, |T,|

O 1 1 9
60 75 90° perpendicular polarization.
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At this particular angle of incidence all the incident power is transmitted
into the dielectric medium. In Fig. 2.15 the reflection coefficient I’ is
plotted as a function of 6, for polystyrene, for which €, = 2.56.

2 Perpendicular Polarization

For perpendicular polarization the roles of electric and magnetic fields are
interchanged so that the electric field has only a y component. The fields
may, however, still be expressed in the form given by (2.87) to (2.89), but
with E,, E,, and E; having y components only. As in the previous case, the
boundary conditions must hold for all values of x and y on the z = 0 plane.
Therefore Snell’s laws of reflection and refraction again result; i.e., (2.91)
and (2.92) must be satisfied. In place of the boundary conditions (2.93) and
(2.94), we have

E, + E, = E, (2.99a)
Y,(E, — E;)cos 8, = YE; cos 0,4 (2.99b)
Introducing the following reflection and transmission coefficients:
E, Eq
into (2.99) yields
(e, — sin? 01)1/2

cos 6,

The Fresnel reflection and transmission coefficients for the case of perpen-
dicular polarization thus are

cos 0, — (e, — sin® 01)1/2

(2.101a)

(e, — sin® (:71)1/2 + cos 6,

T 2 008 0y (2.101b)
2 (e, — sin? 01)1/2 + cos 6, '
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A notable difference for this case is the nonexistence of a Brewster angle for
which T, vanishes. For comparison with the case of parallel polarization, T,
is plotted in Fig. 2.15 for €, = 2.56.

2.9 REFLECTION FROM A CONDUCTING PLANE

The essential features of the behavior of the electromagnetic field at the
surface of a good conductor may be deduced from an analysis of the simple
problem of a TEM wave incident normally onto a conducting plane. The
problem is illustrated in Fig. 2.16, which shows a medium with parameters
€, u, o filling the half-space z > 0. Let the electric field be polarized along
the x axis so that the incident and reflected fields may be expressed as

— —Jjkoz
E, =E,a,e™/"0

— ~jkoz
H, = Y,E,a ek

— +jkgz
E, = TE,a_e*/*

H, = ~Y,[Ea e"/**

(2.102b)

where I is the reflection coefficient.

In the conducting medium the conduction current ¢ E is much greater
than the displacement current jweE, so that Helmholtz’s equation reduces
to (2.50); i.e.,

V2E - jouocE =0
The transmitted field is a solution of

32
(82_2 —jw,u.a)E, =0

since no x or y variation is assumed. The solution for a wave with an «x
component only and propagating in the z direction is

E,=E;a e (2.103a)
X
€0, Mo €, U, 0
Ei AN
>
’_NVW\
FIGURE 2.16

, A TEM wave incident normally on a conducting plane.
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with a corresponding magnetic field

1
Ht = -——VX Et = LayEse_yz (2103b)
Jou Jop
1+
where y = (jopo)? = 8 : (2.104)

and the skin depth 8, = (wno/2)~'/2 The propagation constant y = a + jB
has equal phase and attenuation constants. In the conductor the fields decay
by an amount e~ ! in a distance of one skin depth §,, which is a very small
distance for metals at microwave frequencies (about 10 % cm). The intrinsic
impedance of the metal is Z,,, where

Jou Jou 1+

= (2.105)

Z = =
Y (Jwwo)* 08,

m

and is very small compared with the intrinsic impedance Z, = (no/€,)"/? of
free space. For example, for copper at 10* MHz, Z,, = 0.026(1 +j) Q as
compared with 377 Q for Z,. Note that (2.103b) may be written as

1
Ht = _Z_'ayE3e~yz = YmayEae_‘yz

m
which shows that the ratio of the magnitudes of the electric field to
the magnetic field for a TEM wave in a conductor is the intrinsic imped-
ance Z,,.

Returning to the boundary-value problem and imposing the boundary

conditions of cantinuity of tangential fields at the boundary plane z = 0 give

(1+T)E, = E, = TE, (2.106a)
(1-T)Y,E, =H,=Y,E, = Y, TE, (2.106b)

where E,/E, = T, the transmission coefficient. Solving (2.106) for the
reflection coefficient I" and T yields

poZn=% (2.107a)
Z, +2Z,
27

Since |Z,,| is small compared with Z, the reflection coefficient I is almost
equal to —1 and the transmission coefficient T is very small. Almost all the
incident power is reflected from the metallic boundary. As the conductivity
o is made to approach infinity, the impedance Z,, approaches zero and in
the limit I' = —1 and T = 0. Hence, for a perfect conductor, the tangential
electric field at the surface is zero and the tangential magnetic field has a
value equal to twice that of the incident wave.
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The current density in the conductor is J = cE, = ¢TE,a_e”"*. The
total current per unit width of conductor along y is

oTE,a,

J,= [Jdz=0oTEa,[ e dz = A/m
y 0 0

This result may also be expressed in the following form:
20Z2E,

J,-——"L g 2.108
(Z, + Zo)jon (2.108)

by substituting for T from (2.107b) and replacing y by jou/Z, from
(2.105). As o — «, the limiting value of J, becomes

2E,
J,=——a, =2Y,Ea, (2.109)
Z,
since Z,, > 0 and 0Z2 — jou. This current exists only on the surface of
the conductor since, as o — «, the skin depth 8, — 0; that is, the field
decays infinitely fast with distance into the conductor. When o is infinite,
I'= -1 and the total tangential magnetic field at the surface is 2Y,E,a,
and equal in magnitude to J. In vector form the boundary conditions at the
surface of a perfect conductor are thus seen to be

nxXE=0 (2.110a)
nXxXH=4J, (2.1100)

where n is a unit outward normal at the conductor surface.

For finite conductivity the current density at the surface is ¢ TE, and
the magnetic field at the surface is Y,,TE,. In terms of these quantities the
total current per unit width may be expressed as

oTE, oZ,
Js = ax = (YmTEl)ax = YmTElax
Y Y

In other words, the total current per unit width is equal to the tangential
magnetic field at the surface.

The time-average power transmitted into the conductor per unit area
is given by the real part of one-half of the complex Poynting vector at the
surface, and is

P,= ;ReE xH* - a, = ;TT*E Ef ReY,, = :TT*E,E¥05, (2.111)
The reader may readily verify that this is equal to the result obtained from

a volume integral of J - J*; that is,

P-L (5 gta
t—%/o 2

Equation (2.111) may be simplified with little error by making the following
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approximation:
— 402,27
T T2, ¥ Z)(Z, + Z,)
402,27 8
S TzE T g8z

whence (2.111) becomes
p 1 (2Y,E,)(2Y,EY)
£ _2— od

(2.112)

s

Note that 2Y, E, is the value of the magnetic field, tangent to the surface,
that would exist if o were infinite. Hence an excellent approximate tech-
nique for evaluating power loss in a conductor is to find the tangential
magnetic field, say H,, that would exist for a perfect conductor, and then
compute the power loss according to the relation

P, = {Re(H,H}Z,) = 3 Re(J,J}Z,,) (2.113)

This procedure is equivalent to assuming that the metal exhibits a surface
impedance Z,, and the current is essentially the same as that which would
exist for infinite conductivity.

The procedure outlined above for power-loss calculations is widely
used in microwave work. Although the derivation was based on a considera-
tion of a very special boundary-value problem, the same conclusions result
for more complex structures such as conducting spheres and cylinders. In
general, the technique of characterizing the metal by a surface impedance
Z, and assuming that the current J; is the same as that for infinite

conductivity is valid as long as the conductor surface has a radius of
curvature at least a few skin depths in magnitude.

2.10 POTENTIAL THEORY

The wave solutions presented in the previous sections have all been source-
free solutions; i.e., the nature of the sources giving rise to the field was not
considered. When it is necessary to consider the specific field generated by a
given source, as in antenna problems, waveguide and cavity coupling, etc.,
this is greatly facilitated by introducing an auxiliary vector potential func-
tion A. As will be seen, the vector potential A is determined by the current
source, and the total electromagnetic field may be derived from A.

Since V + B = 0 always, this condition will hold identically if B is
expressed as the curl of a vector potential A since the divergence of the curl
of a vector is identically zero. Thus let

B=-VXxA (2.114)

The assumed time dependence e/“ is not written out explicitly in (2.114)
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since this is a phasor representation. The curl equation for E gives

VXE=—joB=—-joVXA
or VX (E+jwA) =0
Now the curl of the gradient of a scalar function ® is identically zero; so the
general integral of the above equation is

E + joA = -V®

or = —jwA - VO (2.115)
Substituting this expression into the V X H equation gives

1
VXH=—VXVXA=jweE + J = w%A — joeV® + J (2.116)
n

Up to this point the divergences of A and V® have not been specified [note
that (2.114) specifies the curl of A only]. Therefore a relation between V - A
and ® may be chosen so as to simplify (2.116). Expanding V X V X A to
give VV + A — V?2A enables us to write (2.116) as

VV-A-V2A=Fk%A — joeuV® + ud
where k% = w?ue. If now the following condition is specified:
VV-A= —joeuVe
or VA= —joued (2.117)
this equation simplifies to
VZA + B2A = —pd (2.118)

Thus A is a solution of the inhomogeneous Helmholtz equation, the current
dJ being the source term. The condition imposed on V - A and & in (2.117) is
called the Lorentz condition in honor of the man first to propose its use.

In the preceding derivation three of Maxwell’s equations have been
used and are therefore satisfied. The fourth equation, V - D = p, must also
hold, and this will be shown to be the case provided the Lorentz condition is
obeyed. Hence the three equations (2.114), (2.115), and (2.118), together
with the Lorentz condition (2.117), are fully equivalent to Maxwell’s equa-
tions. To verify the equation V - D = p, take the divergence of (2.115) to
obtain

V-€eE = —jweV - A - eV2D (2.119)

where € is a constant. Using the Lorentz condition yields
V-A 1 1
VD= —jweV:-A-V2—— = —V-(VAA+kA)=-—V-J
—jop  jou jo
by using (2.118) and noting that V2V - A = V - V2A; that is, these differen-
tial operators commute. Now V - J = —jwp from the continuity equation;
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so we obtain
1
VD= - —(~jwp) =p
Jjo

If, instead of eliminating ® in (2.119), V - A is eliminated by use of the
Lorentz condition, we get

V-D=p=—joe(—joped) — e V2P

or V2O 4+ k2D = — 2 (2.120)

€
Hence the scalar potential ® is a solution of the inhomogeneous scalar
Helmholtz equation, with the charge density p as a source term.

For the time-varying field, J and p are not independent, and hence the
field can be determined in terms of A and J alone. The scalar potential can
always be found from the Lorentz relation, and p from the continuity
equation, but explicit knowledge of these is not required in order to solve
radiation problems. For convenience, the pertinent equations are summa-
rized here:

B=VXA (2.121a)
) VV-A ERA+VV-A
= —jwA — VO = —joA + — = - (2.121d)
Joue Jjoue
VA + k?A = —ud (2.121c)

where the Lorentz condition was used to eliminate V® in (2.12154). Note
that, in rectangular coordinates, (2.121¢) is three scalar equations of the
form
VA, + k*A, = —ud,

but that, in other coordinate systems, V2A must be expanded according to
the relation V2A = VV:-A - VX V X A

The simplest solution to (2.121¢) is that for an infinitesimal current
element J(x', y’, 2’) = J(x') located at the point x',y’, 2z, as specified by the
position vector r' = a,x’ + a ¥’ + a,2, as in Fig. 2.17. This solution is
e—JkR

R

A(x,y,2) = A(r) = :—WJ(r’) av’ (2.122)

FIGURE 2.17
Coordinates used to describe vector potential from
a current sheet.
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where R = |r — r'| is the magnitude of the distance from the source point
to the field point at which A is evaluated; i.e.,

1/2
R=[(x-x)+(y-y)+(2-2)]
and J(r')dV’ is the total source strength. In terms of this fundamental
solution, the vector potential from a general current distribution may be
obtained by superposition. Thus, adding up all the contributions from each
infinitesimal current element gives
u e JkR M e JRIT-T|

Alr) = — | J(x',y,2 de'dy' dz = — | J(r')———— dV’
(1) = 5= [ Iy, 2) ' dy e = = | () 0

(2.123)

where the integration is over the total volume occupied by the current. Note
that the solution for A as given by (2.122) is a spherical wave propagating
radially outward from J and with an amplitude falling off as 1/R. The
solution (2.123) is a superposition of such elementary spherical waves.

*2.11 DERIVATION OF SOLUTION
FOR VECTOR POTENTIAL

In this section a detailed derivation of the solution to the inhomogeneous
Helmholtz equation for a unit current source is given. A unit source is a
source of unit strength, localized at a point in space (a familiar example is a
point charge). Such a unit source in a three-dimensional space is a general-
ization of a unit current impulse localized at a time # along the time
coordinate. A current pulse is represented by the Dirac delta function
8(¢ — ¢') in circuit theory, where 8(¢ — ') has the property

S(t—t)=0 t#¢ (2.124a)

and at ¢ = t' it becomes infinite but is integrable to give

[ s -ty dr =1 (2.124b)

t'—r

A further property is that, for any function f(¢) which is continuous at ¢,

f,tlﬂf(t)‘s(t —t)dt =f(t) (2.124c)

This result follows since 7 can be chosen so small that, in the interval
' —7<t<t+r, the function f(¢) differs by a vanishing amount from
f(t') since f(¢) is continuous at #'. Hence (2.124¢) may be written as

F@) [7To( — vy d = £(2)
by virtue of (2.124b).
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As the preceding discussion has shown, the delta function is a conve-
nient mathematical way to represent a source of unit strength localized at a
point along a coordinate axis, in the above example along the time axis. In
an N-dimensional space a product of N delta functions, one for each
coordinate, may be used to represent a unit source. Thus, in three dimen-
sions, a unit source is represented by

8(x—x")o(y —y')o(z—2")=8(r—-71) (2.125)
where 8(r — r’) is an abbreviated notation for the product of the three

one-dimensional delta functions. The source function 8(r — r’) has the
following properties:

(r—-r)=0 r#*r (2.126a)
- _ 1 rinV
fpx-ryav= {0 rinV (2.126b)
[R5 - ¥ av = {F("') r'inV (2.126¢)
14 0 r notinV

where F is an arbitrary vector (or scalar) function that is continuous at r’,
that is, at x',y’, 2. These properties follow from the properties of the
one-dimensional delta functions that make up 8(r — r’).

A unit current source directed along the unit vector a at ¥’ may be
expressed as J = ad(r — r’). The vector potential is a solution of

VA + k?A = —pad(r — r') (2.127)

Since the current is in the direction a, the vector potential must also be in
this direction, and hence A = Aa. Equation (2.127) may therefore be writ-
ten as a scalar equation:

VZA + k%A = —pud(r — 1) (2.128)
At all points r # r', A is a solution of
VA + k%A =0 (2.129)

If the source point r’ is considered as the origin in a spherical coordinate
system, then, since no angle variables occur in the source term in (2.128),
the solution for A must have spherical symmetry about the source point r’.
Thus, in terms of the spherical radial coordinate R = |r — r’|, which is the
radial distance from the origin at r', (2.129) is a function of R only and may
be written as

L RzaA kA =0
7 or W5 ) T H4 -
d’A 2 dA
or — +=—-=+kA=0 (2.130)

after expressing the R-dependent part of V2 in spherical coordinates. In
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anticipation of a spherical-wave solution, let A = f(R)e 7*E. Substitution
in (2.130) leads to the following equation for f(R):

df (2  \df 2jk
ﬁ+(E—2Jk)d_R——I—%_f=O

which is readily verified to have the solution f= C/R, where C is an
arbitrary constant. Consequently, the solution to (2.129) is A = Ce /*E/R.
This solution is singular at R = 0, and the singularity must correspond to
that of the source term at this point.

To determine the constant C, integrate (2.128) throughout a small
sphere of radius r, centered on r' and use the delta-function property
(2.126b) to obtain

[ [ + k*A)R*sino o d s dR

= [(VA+k*A)dV = —u[8(r - r)dV = —p
\% \%

Now the integral of the term k2R?A, which is proportional to R? will
vanish as r; tends to zero. Hence, for sufficiently small r,

| VAdV = —u

v

Since V2A = V - VA, the divergence theorem may be used to give
[ VZAQV =G VA- dS = VA - a,rEd0
v s S

since dS = a,r§ dQ, where dQ is an element of solid angle. Since A is a
function of R only, VA = a,(dA/dR), and hence

A A
r&SBSVA -a,d0= rg%ﬁ dQ = dmri—m = —u

Evaluating dA/dR for R = r, shows that

0A Jjk e Jkro
4177‘35 = —4#Crg(;ge_ﬂ"° + -2 ) = —47C
in the limit as r, tends to zero. Hence 4wC = pu, or C = u /4w, in order for
the singularity in the solution for A to correspond to that for a unit source.

The above solution for the vector potential from a unit source, namely,
p e JkIr=rl

A(r) = E—Ir .y a

(2.131)

is clearly a function of both the source point and field point. Since (2.131) is
the solution for a unit source, it is often called a Green’s function and
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denoted by the symbol G as
e-—jk]r—r'|
G N =@ ’ =@ .y, /’ /’ ' - = .
(rlr’) (rir)a (x,5,2lx',5',2")a Y —— a (2.132)
because, by definition, a Green’s function is the solution of a differential
equation for a unit source.
The vector potential from a general current distribution may now be
expressed in the form
M e—jk|r—r’|
Ar) = — | J(¥')———dV' = ! ydvV' (2.133
(1) = = [IC) 7 [IE)Gxir)dv (2.133)
since any current distribution J may be considered as a sum of weighted
unit sources.

2.12 LORENTZ RECIPROCITY THEOREM

The Lorentz reciprocity theorem is one of the most useful theorems in the
solution of electromagnetic problems, since it may be used to deduce a
number of fundamental properties of practical devices. It provides the basis
for demonstrating the reciprocal properties of microwave circuits and for
showing that the receiving and transmitting characteristics of antennas are
the same. It also may be used to establish the orthogonality properties of
the modes that may exist in waveguides and cavities.t Another important
use is in deriving suitable field expansions (analogous to a Fourier series
expansion) for the fields radiated or coupled into waveguides and cavities by
probes, loops, or coupling apertures.

To derive the theorem, consider a volume V bounded by a closed
surface S as in Fig. 2.18. Let a current source J, in V produce a field
E,, H,, while a second source J, produces a field E,, H,. These fields satisfy
Maxwell’s equations; so

VXE, = —jouH, VX H, =jweE, +J,
VXE2= —jwﬂHz VXH2 =j(0€E2+J2

Expanding the relation V - (E; X H, — E, X H,) and using Maxwell’s equa-
tion show that

V-(E; xH,-E, xH))
=(VXE)-H,-(VXH,)'E, - (VXE,) -H; + (VXH,)-E,
=-d,-E +J,-E, (2.134)

tIn any waveguide or cavity an infinite number of field solutions are possible. Any one solution
is called a mode for the same reason that the various solutions for vibrating strings and
membranes are called modes. Orthogonality of modes is discussed in Sec. 3.14.
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FIGURE 2.18
Illustration of the Lorentz reciprocity theorem.

Integrating both sides over the volume V and using the divergence theorem
give

[ V(B xH, - E; X H;)dV = §(E, X H, - E, X H,) - ndS
\% S

= [(E,d, —E, - Jy)dV  (2.135)
14

where n is the unit outward normal to S.

Equation (2.135) is the basic form of the Lorentz reciprocity theorem.¥
For a number of typical situations that occur, the surface integral vanishes.
If S is a perfectly conducting surface, then n X E;, =n X E, =0 on S.
Since E; X H,  n = (n X E)) - H,, etc., the surface integral vanishes in
this case. If the surface S is characterized by a surface impedance Z,,, then,
according to (2.71),

E,=-Z,nXH o nXE=-Z nX(nxH)

[note that in (2.71) n points into the region occupied by the field, and hence
the minus sign is used here, since n is directed out of V]. Consequently,

(nxE))-H, - (nXE,)-H,
=-Z,[nx(nxH)]-H,+Z,[nX(nxH,)| -H,
=Z (nxH,) -(nxH,)-Z (nxH) -(nxH,)=0

and the surface integral vanishes again.

tIn anisotropic media with nonsymmetric permittivity or permeability tensors, a modified form
must be used. See, for example, R. F. Harrington and A. T. Villeneuve, Reciprocity Relations
for Gyrotropic Media, IRE Trans., vol. MTT-6, pp. 308-310, July, 1958.
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Another example where the surface integral vanishes is when S is
chosen as a spherical surface at infinity for which n = a,. The radiated field
at infinity is a spherical TEM wave for which

€ \1/2
H=Ya,xE=(—) a,xE
In

Therefore
(nXE,) -H, - (n XE,) - H, = Y(a, XE,) - (a, X Ey)
~Y(a, X E,) - (a, X Ey) = 0

and the surface integral vanishes.

Actually, for any surface S which encloses all the sources for the field,
the surface integral will vanish. This result may be seen by applying (2.135)
to the volume V bounded by S and the surface of a sphere of infinite radius.
There are no sources in this volume, and since the surface integral over the
surface of the sphere with infinite radius is zero, we must have, from
(2.135),

Sﬁs(Elez—szHl) -(-n)dS =0

=§(E, xH, - E, x H,) -ndS§
S

Hence the surface integral taken over any closed surface S surrounding all
the sources vanishes.
When the surface integral vanishes, (2.135) reduces to

[E,-d,dV=[E,-J,dV (2.136)
\%4 \%

If J; and J, are infinitesimal current elements, then
E(r;) * dy(ry) = Ey(ry) - Jy(ry) (2.137)

which states that the field E; produced by J, has a component along J, that
is equal to the component along J; of the field radiated by J, when J;, and
J, have unit magnitude. The form (2.137) is essentially the reciprocity
principle used in circuit analysis except that E and J are replaced by the
voltage V and current I. The applications of the reciprocity theorem are
illustrated at various points throughout the text and hence are not dis-
cussed further at this time.
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An atom of atomic number Z has a nuclear charge Ze and Z electrons
revolving around it. As a model of this atom, consider the nucleus as a point
charge and treat the electron cloud as a total charge —Ze distributed uniformly
throughout a sphere of radius r,. When an external field E is applied, the
nucleus is displaced an amount x. Show that a restoring force x(Ze)?/4mrde,
is produced and must be equal to ZeE. Thus show that the induced dipole
moment is p = 4meyr¢E and is linearly related to E.

In a certain material the equation of motion for the polarization is
d’# d# )
F + VE + a)oﬂ = 2600)03

where & is the total field in the dielectric. Find the relation between % and &
when & = Re(Ee’*!) and E is real. If w, = 10'' and » = 10, over what
frequency range can a relationship such as 9 = €& = €,& + £ be written if it
is assumed that the criterion to be used is that the phase difference between 2
and & should not exceed 5°? Plot the magnitude and phase angle of the
dielectric constant €, = e/¢, = (¢ — j€e") /¢, as a function of w.

A dielectric material is characterized by a matrix (tensor) permittivity
€xx  €xy €xz € 7 3 -2y0.5
€xy €y Cyz| = —40‘ 3 7 —-2v0.5
Crz €yz Ca -2/05 -2/05 10

when referred to the xyz coordinate frame. If the coordinate axis is rotated into
the principal axis u, v, w, the permittivity is exhibited in diagonal form:

€. 0 0
[e]=]| 0 €, O
0 0 €

ww

Find the principal axis and the values of the principal dielectric constants
€,./¢€p, ete.

Hint: By definition, along a principal axis a scalar equation such as
D, =¢,,E, holds. In general, if D is directed along a principal axis, then

D] 7 3 -2/05 |[E, E,
D, | = ZO 3 7 —2y05 || E, | =A|E,
D, -2/05 -2/05 10 E, E,

or in words, when D is directed along a principal axis, it is related to E by a
scalar constant A. The above constitutes a set of three homogeneous equations,
of which the first is

Te 3 2¢,v0.5
(—“ —/\)EI +0p VP g
4 Y 4
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Verify that, for a solution, the following determinant must vanish:

7 - 4\ /e, 3 -2/0.5
3 T-4r/e, -2/05 |[=0

-2y0.5 -2v0.5 10 — 4A /¢,

This cubic equation gives three roots for A, which may be identified as
€.u> €uuy €y FOr any one root, say e€,,, the components of a vector directed
along the corresponding principal axis are proportional to the cofactors of the
above determinant. This type of problem is called a matrix eigenvalue problem.
The A’s are the eigenvalues.

Answer: €,, = 3¢, €,, = 2¢q, €, = €.
Unit vectors along the principal axis are

a,=0.5a,6 +05a,-vV05a,
a,=0.5a,+05a,+V05a,
a,=V05a,-v05a,

In the interior of a medium with conductivity o and permittivity e, free charge
is distributed with a density py(x,y, z) at time ¢ = 0. Show that the charge
decays according to

€
p=poe”/T  r=-
(o8
Evaluate the relaxation time 7 for copper for which o = 5.8 X 107 S/m, € = ¢,.
Find 7 for sea water also for which ¢ = 4 S/m and e = 80¢,. If the relaxation
time is short compared with the period of an applied time-harmonic field, there
will be negligible accumulation of free charge and V - D may be assumed to be
zero. What is the upper frequency limit for which this is true in the case of
copper and sea water, i.e., the frequency for which = is equal to the period?
Hint: Use the continuity equation, Ohm’s law, and the divergence equa-
tion for D.

. Show that, when the relaxation time for a material is small compared with the

period of the time-harmonic field, the displacement current may be neglected in
comparison with the conduction current.

Consider two concentric spheres of radii a and b. The outer sphere is kept at a
potential V, and the inner sphere at zero potential. Solve Laplace’s equation in
spherical coordinates to find the potential and electric field between the spheres.
Take b > a.

Solve Laplace’s equation to find the potential and electric field between two
coaxial cylinders of radii a and b if the center cylinder is kept at a potential V
and the outer cylinder at zero potential. Take b > a.

Derive (2.45) from (2.18).

Derive (2.47).

2.10. Express the scalar Helmholtz equation V2§ + &2y = 0 in cylindrical coordi-

nates. If ¢ = f(¢)g(r)h(2), find the differential equations satisfied by f, g,
and h.
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When material polarization & and 4 are explicitly taken into account, show
that the wave equations satisfied by & and # are

sz‘!"—,u.oeoiz= —-VV -+ pge -a?—l—iVX.?—-VXf

at2 07052 ot

VZg_#Oeoﬁ_g=Mf‘?_+“ Z+#iVx1+in_VV°g
a2 T0g2 T M0 T M0y €0 €o

Notethat V- # =0;50V - #=-V-£andV-@ =p;s0V -, &=p - V-
#. Examination of the source terms in the above equations shows that d# /3¢
is a polarization current analogous to conduction current #.

Derive (2.62).

Between two perfectly conducting coaxial cylinders of radii a and b, b > a,
the electromagnetic field is given by

E=a Eyrte/* H=a,Y,E,r e /*o

where kg = w(p€g)'’? Y, = (€9/1)"/% Find the potential difference be-
tween the cylinders and the total current on the inner and outer cylinders.
Express the power in terms of the voltage and current, and show that it is
equal to that computed from an integration of the complex Poynting vector
over the coaxial-line cross section. Show that the characteristic impedance of
the line is V/I = (Z,/2m)In(b/a) = 601n(b/a), where V is the voltage and I
is the total current on one cylinder.

A round wire of radius r, much greater than the skin depth &, has a uniform
electric field E applied in the axial direction at its surface. Use the surface-im-
pedance concept to find the total current on the wire. Show that the ratio of
the ac impedance of the wire to the dc resistance is

Z,, reo

R, 2"

Evaluate this ratio for copper at f = 10® Hz for o = 5.8 X 107 S/m, ry = 0.1
cm, i = py.

The half-space z > 0 is filled with a material with permittivity ¢, and perme-
ability 4 # u,. A parallel polarized plane TEM wave is incident at an angle 6,,
as in Fig. 2.14. Find the reflection and transmission coefficients for the electric
field. Does a Brewster angle exist for which the reflection coefficient vanishes?
Repeat Prob. 2.15 for the case of a perpendicular polarized incident wave.
Does a Brewster angle exist? If so, obtain an expression for it.

The half-space z > 0 is filled with a material with permeability x and permit-
tivity e. When a plane wave is incident normally on this material, show that
the reflection and transmission coefficients are

= = + =
Z+2, Z+Z,

where Z = (u/e)'/?, Z, = (uy/€)"/? Choose an electric field with an x
component only.
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2.18. The half-space z > 0 is filled with a material of permittivity e, and with
@ = po. A second sheet with permittivity €, is placed in front. A plane wave is
incident normally on the structure from the left, as illustrated. Verify that the
reflection coefficient at the first interface vanishes if €; = (e,€,)'/% and the
thickness d = Aq(€y/€,)"/2. The electric field may be assumed to have an x
component only. The matching layer is known as a quarter-wave transformer
(actually an impedance transformer). This matching technique is used to
reduce reflections from optical lenses and is called lens blooming, or coated
lenses.

[;nCMW

€0

FIGURE P2.18

2.19. In terms of the vector potential A from a short current element AzIl,a,
located at the origin, show that the radiated electric and magnetic fields are

Io Az jko 1 .
= —_— 4 — i —jkor
yym ( = r2)3¢51n09

I,Az jZ, (jke 1 "
o k—o(-;2-+r—3)a,cos0e ko

I, Az jZo( I T

=
47 kO 2 r3

a,sin § e ko
r r

Hint: Use (2.122) and (2.121), and express A as components in a
spherical coordinate system r, 0, ¢. Note that a, = a, cos § — a,sin 6.

2.20. A dielectric may be characterized by its dipole polarization P per unit volume.
If p=dJ =0 and P is taken into account explicitly, show that, if a vector
potential A is introduced according to B = V X A, then A is a solution of

VZA + kZA = —jou P
and that the fields are given by

VV-A +E2A

B=VxXA E -
JWWRo€
Note that a Lorentz condition is used. Thus an electric dipole P is equivalent
to a current element jwP, or alternatively, a current element J may be
considered as an electric dipole P = J /jw.
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FIGURE P2.21

A small current loop constitutes a magnetic dipole M = ISa, where I is the
current, S the area of the loop, and a a vector normal to the plane of the loop
and pointing in the direction that a right-hand screw, rotating in the direction
of the current, would advance. The field radiated by such a current loop, with
linear dimensions much smaller than a wavelength, may be obtained by a
potential theory analogous to that given in Prob. 2.20 by treating the loop as a
magnetic dipole M. Thus replace B by u H + uo,M in Maxwell’s equation and
treat M as a source term. Since p is zero, V - D = 0, and this permits D to be
expressed as D = —V X A, , where A, is a magnetic-type vector potential.
By paralleling the development in the text for the potential A, show that the
following relations are obtained:

VZA, +k2A, = —jopge M

D--VxA,

RZA, +VV-A,
H=

JoroEg
Hence, for a z-directed magnetic dipole at the origin,

A = pr’OeoMe_jkor

m 4mr

from which the fields are readily found. Note that in this problem M repre-
sents the magnetic dipole source density in Maxwell’s equations, but in the
solution for the vector potential it represents the total magnetic dipole
strength. It would have been more consistent to use M 6(r — r') to represent
the source density, where &6(r — r') is the three-dimensional Dirac delta
function which has the property

[s(r-r)dv'=1 rinV
\%

Consider an arbitrary current element J, in front of a perfectly conducting
plane. This current radiates a field E, having zero tangential components on
the conducting plane. Use the Lorentz reciprocity theorem to show that a
current J, parallel to the conducting plane and an infinitesimal distance in
front of it does not radiate.
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