6. Negative Feedback in Single-Transistor Circuits (continued)

© Eugene Paperno, 2008

6.3. *Effect of negative feedback on the input and output impedances*

To determine the effect of negative feedback on the input and output impedances let us first determine the effect of feedback on the impedance at an arbitrary port x [see Fig. 1(a)]. (This impedance will be equal to the circuit input or output impedances if the port is chosen at the circuit input or at the circuit load.)

To find the impedance R_x at port x, we first connect a voltage test source v_t to the port and obtain v_t as a function of the circuit return ratio. Since the port x is short-circuited when the return ratio is calculated, we call it as RR_{SC} :

$$s_{\varepsilon} = s'_{\varepsilon_{v}} + s''_{\varepsilon_{v}} = G_{v}v_{t} - s_{\varepsilon}RR_{SC}$$

$$, \qquad (1)$$

$$\Rightarrow v_{t} = \frac{s_{\varepsilon}(1 + RR_{SC})}{G_{v}}$$

where G_{ν} is the input transmission from the voltage test source to the control terminals of the dependent source.

We second connect a current test source $i_t = v_t/R_x$ [see Fig. 1(b)] to the port and obtain i_t as a function of the circuit return ratio. Since the port is open-circuited when this return ratio is calculated, we call it as RR_{OC} :

$$s_{\varepsilon} = s'_{\varepsilon i} + s''_{\varepsilon i} = G_i i_i - s_{\varepsilon} RR_{OC} , \qquad (2)$$
$$\Rightarrow i_i = \frac{s_{\varepsilon}(1 + RR_{OC})}{G_i}$$

where G_i is the input transmission from the current test source to the control terminals of the dependent source. Note that s_{ε} in (1) and (2) have the same values, because i_t and v_t in Figs. 1(a) and (b) are the same.

From (1) and (2), R_x can be expressed as follows:

$$R_{x} = \frac{v_{t}}{i_{t}} = \frac{G_{i}}{G_{v}} \frac{1 + RR_{SC}}{1 + RR_{OC}} \,. \tag{3}$$

To find the ratio of the transmissions G_i and G_v in (3), we suppress in Fig. 1(c) the dependent source and connect to port x a current source $i'_t = v_t/R'_x$, where R'_x represents the open-loop port impedance for $a_{OL}=0$. [Note that suppressing

Fig. 1. Finding the impedance at an arbitrary port *x*.

the dependent source changes the circuit and, therefore, changes the impedance at port *x*. To keep at this port the same voltage v_t that we had in Figs. 1(a) and (b), we have to change the test current.]

$$G_{v} = \frac{s_{\varepsilon v}}{v_{t}}; \quad G_{i} = \frac{s_{\varepsilon v}}{i_{t}'}$$

$$\Rightarrow \frac{G_{i}}{G_{v}} = \frac{v_{t}}{s_{\varepsilon v}'} \frac{s_{\varepsilon v}'}{i_{t}'} = \frac{v_{t}}{i_{t}'} = R_{x}'$$

$$(4)$$

Considering (3) and (4), we obtain Blackman's formula for the closed-loop impedance:

$$R_{x} = R'_{x} \frac{1 + RR_{SC}}{1 + RR_{OC}} = R'_{x} \frac{DSF_{SC}}{DSF_{OC}}.$$
 (5)

Equation (5) reveals the effect of feedback on the closed-

loop impedance at an arbitrary port of a single-transistor circuit: the closed-loop impedance R_x can be higher, equal, or lower than the open-loop impedance R'_x depending on the ratio of the amounts of feedback, one, DSF_{SC} , obtained when the port is short-circuited and the other, DSF_{OC} , obtained when the port is open-circuited.

According to (5), the effect of feedback is most pronounced when either RR_{SC} or RR_{OC} equals zero. Let us see it in the following examples.

Since we are interested in the effect of the feedback, or DSF, that is present in the original circuit, we will express in this course, wherever possible, — and in the exam as well — any closed-loop impedance through either the input or output open-loop impedances and the DSF of the entire circuit and not of a part of it.

Finding the closed-loop input and output impedances: example 1

To analyze the effect of feedback on the closed-loop input and output impedances of the CC amplifier (see Fig. 2), we first find the open-loop input and output impedances:

$$\begin{aligned} R'_{in} &= r_s + h_{ie} + R_E \parallel r_o \\ & . \end{aligned} \tag{1} \\ R'_o &= R_E \parallel r_o \parallel (r_s + h_{ie}) \end{aligned}$$

We second find the return ratios RR_{SC} and RR_{OC} for the input

$$RR_{SC(in)} \equiv \frac{-s_{\varepsilon}''}{s_{\varepsilon}} \bigg|_{SC(in)} = \frac{-i_{b}''}{i_{b}} \bigg|_{\substack{i_{b}=1\\SC(in)}}$$
$$= h_{fe} \frac{R_{E} \parallel r_{o}}{R_{E} \parallel r_{o} + r_{s} + h_{ie} + 0} = RR$$
$$. (2)$$
$$RR_{OC(in)} \equiv \frac{-s_{\varepsilon}''}{s_{\varepsilon}} \bigg|_{OC(in)} = \frac{-i_{b}''}{i_{b}} \bigg|_{\substack{i_{b}=1\\OC(in)}}$$
$$= h_{fe} \frac{R_{E} \parallel r_{o}}{R_{E} \parallel r_{o} + r_{s} + h_{ie} + \infty} = 0$$

and output ports

$$RR_{SC(o)} \equiv \frac{-s_{\varepsilon}''}{s_{\varepsilon}} \bigg|_{SC(o)} = \frac{-i_{b}''}{i_{b}} \bigg|_{\substack{i_{b}=1\\SC(o)}}$$

$$= h_{fe} \frac{R_E \| r_o \| 0}{R_E \| r_o \| 0 + r_s + h_{ie}} = 0$$

(3)

$$RR_{OC(o)} \equiv \frac{-s_{\varepsilon}''}{s_{\varepsilon}} \bigg|_{OC(o)} = \frac{-i_{b}''}{i_{b}} \bigg|_{\substack{i_{b}=1\\OC(o)}}$$

$$= h_{fe} \frac{R_E \parallel r_o \parallel \infty}{R_E \parallel r_o \parallel \infty + r_s + h_{ie}} = RR$$

Considering (1)-(3), we finally obtain the closed-loop input and output impedances according to Blackman's formula (note that the negative feedback increases by the circuits DSF the closed-loop input impedance relative to its open-loop value and decreases to the same extent the closed-loop output impedance relative to its open-loop value):

Fig. 2. Example 1: finding closed-loop input and output impedances for a CC amplifier.

$$R_{in} = (r_s + h_{ie} + R_E || r_o) \left(1 + h_{fe} \frac{R_E || r_o}{R_E || r_o + r_s + h_{ie}} \right)$$

= $(r_s + h_{ie} + R_E || r_o) (1 + RR) = R'_{in} DSF$
. (4)
$$R_o = [R_E || r_o || (r_s + h_{ie})] \frac{1}{1 + h_{fe} \frac{R_E || r_o}{R_E || r_o + r_s + h_{ie}}}$$

$$= [R_E \parallel r_o \parallel (r_s + h_{ie})] \frac{1}{1 + RR} = R'_o \frac{1}{DSF}$$

Finding the closed-loop input and output impedances: example 2

To find the closed-loop impedance $R_{in}(r_s)$ seen by r_s in Fig. 3, we simply note that

$$R_{in} = R_{in}(r_s) + r_s$$

$$, \qquad (1)$$

$$\Rightarrow R_{in}(r_s) = R_{in} - r_s$$

or, considering (4) in the previous subsection,

$$R_{in}(r_s) = R'_{in} DSF - r_s .$$

To find the closed-loop impedance $R_o(R_E)$ seen by R_E in Fig. 3, we simply note as well that

$$R_{o} = R_{o}(R_{E}) \parallel R_{E} = \frac{R_{E} R_{o}(R_{E})}{R_{E} + R_{o}(R_{E})}$$
$$\Rightarrow R_{o}R_{E} + R_{o}R_{o}(R_{E}) = R_{E} R_{o}(R_{E}).$$
(3)
$$\Rightarrow R_{o}(R_{E}) = \frac{R_{o}R_{E}}{R_{E} - R_{o}}$$

or, considering (4) in the previous subsection,

$$R_{in}(R_E) = \frac{R'_o \frac{1}{DSF} R_E}{R_E - R'_o \frac{1}{DSF}}.$$
 (4)

Thus, we have expressed the $R_{in}(r_s)$ and $R_o(R_E)$ closed-loop impedances through either the input or output open-loop impedances and *DSF* of the entire circuit.

Fig. 3. Example 2: finding the impedances $R_{in}(r_s)$ seen by r_s and $R_{in}(R_E)$ seen by R_E .

References

[1] P. R. Gray, P. J. Hurst, S. H. Lewis, and R. G. Meyer., *Analysis and Design of Analog Integrated Circuits.* (4th Edition.)

Important!

Read the next lecture notes (Lecture 10: Positive-Feedback Oscillators) *before* attending the class! Reserve enough time for this work! Refer [2] while reading.

Those students who will attend the class without reading the lecture 10 notes in advance will not be allowed to ask any questions.