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Our aim is to study the effect of negative feedback on the 
small-signal gain and the small-signal input and output 
impedances of the single-transistor circuits. Our study will be 
based on generic functional models of the circuits (see Fig. 1).  

6.1.  Single-transistor circuits with no feedback 

Let us start from analyzing the small-signal gain of a circuit 
with no feedback [see Fig. 1(a)]   

 
OLAGA  = ,                                 (1) 

 
where G is the small-signal input transmission 
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ss is the signal source value, sε is the signal at the control port 
of the dependent source of the transistor model, and AOL is the 
small-signal open-loop gain  
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Equation (1) shows that the small-signal gain A is directly 

proportional to the small-signal open-lop gain AOL. This may 
be a serious disadvantage because AOL depends on the 
transistor small-signal parameters, which are very sensitive to 
the transistor technology and temperature. On the other hand, 
this can be an advantage if the maximum gain is required and 
its exact value is not important. We will also see later when 
studying positive feedback, that the circuit with no feedback is 
always stable provided its G and AOL gains are stable. In the 
next course on electronic analog circuit, you will see as well 
that adding negative feedback can limit the frequency range of 
the circuit.  

6.2.  Single-transistor circuits with feedback 

Let us now find the closed-loop gain of a single-transistor 
circuit with feedback [see Fig. 1(b)] 
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Fig. 1. Functional (block) diagrams of electronic circuits (a) without and (b) 
with feedback. 

 

D
DSF
AG

D
RR

AGG
A

AG

s
Gs

G
Ass

As
s
sA

OL

OL
fwd

OL

OL

s

fwds

OL

OL

s

o
CL

+=

+
+

=+
+

=

+
+

=≡

       

11
       

 

β
β

β
βεε

ε

,        (4) 

 
where β is the small-signal feedback transmission of the 
feedback network, βfwd is the small-signal feedforward 
transmission of the feedback network, 
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 RR≡AOLβ                                     (5) 
 
is the return ratio,  
 

D≡Gβfwd                                    (6) 
 
is the small-signal direct transmission, and  
 

DSF≡1+AOLβ                               (7) 
 
is the desensitivity factor or the amount of feedback. 

We will define a feedback as negative or positive if it 
decreases or increases, correspondingly, the closed loop gain 
ACL relative to GAOL. It is obvious from (4) that |DSF|>1 
corresponds to a negative feedback, |DSF|<1 corresponds to a 
positive feedback, and DSF=1 corresponds to no feedback.  

Advantages of negative feedback  

From mathematical point of view, both the advantages and 
disadvantages of negative feedback are related to the 
denominator, 1+AOLβ or DSF, in (4).  

For AOLβ>>1, the closed loop gain ACL becomes insensitive 
to the open-loop gain AOL: 

 

fwdCL GGA β
β

+=
1 .                           (8) 

 
ACL mainly depends on the small-signal input transmission G 
and the transmissions β and βfwd of the feedback circuit.  

For an arbitrary return ratio AOLβ , we can find the 
sensitivity of ACL to AOL as follows: 
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This means that the relative change in ACL is by a factor of 
DSF lower than the relative change in AOL. Note that with no 
feedback, like the case of Fig. 1(a), δACL = δAOL. Due to the 
negative feedback, ACL becomes by a factor of DSF less 
sensitive to AOL. 

 

The main disadvantage of the negative feedback is related 
to the frequency dependence of the return ratio AOLβ. If there 
is a frequency where AOLβ  = −1, then in (4), ACL=∞; the 
feedback turns out to be positive, and the circuit (amplifier) 
becomes unstable: it can produce a sustained output, for 
example, sustained oscillations, with no input. We will study 
such a behavior of transistor circuits in the lectures dedicated 
to positive feedback oscillators.  

Finding partial gains 

To define the partial gains in (4)–(7) in terms of the signals 
at the circuit input, ss, output, so, and the control terminals of 
the dependent source, sε, we first assume that in a generic 
single-transistor circuit (see Fig. 2) there is only a single 
dependent source and, then, we will solve this circuit by 
applying superposition. Yes, we will apply superposition 
despite the fact that one in the sources in Fig. 2 depends on 
the other. However, we will do it carefully. 
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We have no difficulty to find the contribution of the ss 
source to all the other signals in Fig. 2(a). To do this, we 
simply suppress the dependent source as shown in Fig. 2(b). 

 However, when we are finding the contribution of the 
dependent source aOLsε, we cannot simply suppress the 
independent source ss. This is so because zeroing the ss source 
also zeroes the aOLsε source and it contributes nothing. To let 
the dependent source aOLsε to contribute the same way it does 
in Fig. 2(a), before applying superposition, we have to 
"remind" the aOLsε source in Fig. 2(c) its original value aOLsε, 
which it had in Fig. 2(a). [If you do not like the word to 
"remind" something to a dependent source, you can replace it 
in Fig. 2(d) with an equivalent independent source having the 
value aOLsε. Or you can assume that the dependent source in 
Fig. 2(c) still depends on the original value of sε in Fig. 2(a).] 

We now can define 
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In a general case, the number of independent signal sources 

in a single-transistor circuit can be greater than one, but by 
applying superposition, the circuit can always be solved for 
each of them separately. Each independent source si will have 
different Gi, βfwd, and Di gains, where i is the dependent 
source number. Individual closed-loop gains can be found in 
this case as  

 

i
OL

iCLi D
DSF
AGA +≡ .                       (15) 

 
It important to note that the solution for the dependent 

source remains the same, and AOL and DSF in (13) should be 
found only once.  

The very important advantages of the new generic approach 
are that it allows for: 

 recognizing the feedback in a single-transistor circuit, 
 finding the partial transmissions and gains of the 

circuit, 
 distinguishing between negative an positive feedback, 
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Fig. 2. Finding partial small-signal transitions and gains of a single-transistor 
circuit. 

 
 solving the circuit in the simplest way: each time it is 

solved for a single source only (this approach is most 
powerful and insightful in noise analysis, when quite a 
few independent equivalent noise sources are 
connected to the circuit and contributions of all of them 
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should be found separately to identify the dominant 
noise source). 

Finding closed-loop gain: example circuit 1 

Let us now to solve the elementary CC amplifier (see Fig. 
3) for the closed-loop gain: 
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In the exam, you do not have to simplify any solution for 

ACL, but we will do it here to be sure that the new solution is 
identical to that obtained in Lecture 3.  
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Fig. 3. Example circuit 1: the elementary CC amplifier, solved with the π 
model of the transistor. 
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Finding closed-loop gain: example circuit 2 

Let us now find the closed-loop gain for the same circuit 
but by using the T model for the transistor. 
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Fig. 4. Example circuit 2: the elementary CE amplifier, solved with the T 
model of the transistor. 
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