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Our aim is to develop the transistor small-signal model for 

high frequencies and to find the high-frequency response of 

elementary transistor circuits. We will do this for the BJT 

transistors only; the analysis of JFET and MOSFET transistor 

circuits is very similar.  

8.1. Transistor small-signal model for high frequencies 

At high-frequencies, the impedances of the parasitic 

capacitances related to the transistor junctions (see Fig. 1) 

become comparable to the values of the corresponding h-

parameters of the transistor model, which was obtained for dc 

and relatively low frequencies. Thus to adjust the transistor 

model for high frequencies, we include in it the parasitic 

capacitances of the transistor emitter and collector junctions, 

Cπ and Cµ, and also the ohmic resistance of the base, rb. We 

also rename some of the transistor small-signal parameters to 

allow the hie parameter represent the input impedance of the 

new model: 
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where 

 

efe rhr )1( +=π .                                  (2) 

 

Unity-gain frequency (GBP) 

For a given transistor, the ohmic resistance rb of the base 

and the capacitance Cµ of the collector junction can be found 

analytically. The capacitance Cπ of the emitter junction is 

usually measured experimentally.  

The experimental setup is shown in Fig. 2. The aim is to 

measure the frequency ωt ("omega test"), at which the CE 

amplifier with the collector, which is short-circuited for small 

signals, has the current gain |Ai(jωt)|=1. The unity-gain 

frequency ωt is then translated into Cπ. 

Note from Fig. 2 that in the small-signal analysis, rb can be 

neglected because it is connected in series with the current 

source is and, hence, does not affect the base current. The 

transistor output resistance, ro, can also be neglected because it 

is short-circuited. The capacitor Cµ can be connected in 

parallel with Cπ, provided that the current flowing through Cµ 

is much smaller than the current generated by the dependent 

source:  
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Fig. 1. Parasitic capacitances of the BJT transistor and its high-frequency 

small-signal models: T and hybrid-π. 

8. High-Frequency Response 
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As a result, the circuit current gain 
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where ωc =1/[( Cπ + Cµ)rπ] is the circuit corner frequency. 

Assuming hfe>>1, 
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According to (5), ωt has an additional meaning: "gain-

bandwidth product", where hfe is the maximum, dc gain of the 

circuit, and ωc is the circuit bandwidth. 

Since in the vicinity of ωt the circuit is not lamped and the 

current gain does not meet (5) (see Fig. 2), ωt is measured 

indirectly, namely, a current gain |Ai'(jω
'
)| is measured at a 

frequency ωt >> ω' >> ωc 
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Fig. 2. Experimental setup for measuring ωt and Cπ. 
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Having ωt, we can eventually find Cπ as follows 
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This experimental value of Cπ is given in the data sheets of the 

transistor for a particular IC, which was set in the experimental 

setup.  

For a different IC, the value of Cπ should be adjusted. Since 

the diffusion capacitance of the emitter junction is usually 

much greater than the junction capacitance, and the diffusion 

capacitance is directly proportional to the emitter and collector 

currents, the Cπ value, which given in the date sheets, can 

simply be multiplied by the ratio of the collector current that is 

set in the developed circuit and that is given in the data sheets.  

8.2. Miller's theorem for voltages 

The Miller theorem for voltages allows splitting (see Fig. 2) 

the impedance connected to an arbitrary port of a circuit into 

two impedances connected to ground, provided the ratio µ 

(Miller gain) is known of the port terminal voltages relative to 

ground. As the Miller theorem for current, this new theorem 

will help us to divide a circuit into two separate parts and to 

solve them independently, thus, simplifying the analysis.  
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Fig. 3. Miller's theorem for voltages. 



Lecture 12: Introduction to electronic analog circuits 361-1-3661      4 

Example circuit: CE amplifier at high frequencies  

Our aim is to find the upper limit, ωH, of the amplifier small-

signal frequency band. To simplify the analysis, we split Cµ 

into Cµ in and Cµ  o (see Fig. 4) by applying the Miller theorem. 

This allows us to separate the circuit input and output loops.  

To find Cµ  in approximately, we suppose that ωH depends on 

the corner frequency of the circuit input part only, and that the   

Cµ o capacitor impedance is high enough to be neglected at ωH 

in the circuit output part. Thus, we can find Cµ in=Cµ(1−µdc), 

where µdc does not depend on Cµ o. To find Cµ o, we suppose 

that |µ|>>1, which gives us Cµ  o=Cµ (1−1/µ) ≈ Cµ. 

The corner frequencies ωin and ωo of the separate input and 

output parts of the circuit can very easily be found (see Fig. 5). 

If ωo>4ωin (see Fig. 4), then ωH≈ωin, and the impedance of the 

Cµ o capacitor is indeed high enough, and its effect on the 

Miller gain µ can be neglected. If ωo<4ωin, then our above 

assumption is not correct, and we cannot solve this circuit by 

hand. 

Note that for negative |µ|>>1, the Cµ in=Cµ(1−µ) capacitance 

in the input part of the CE amplifier can be much greater than 

Cπ. Such an increase of the equivalent input capacitance and 

the corresponding reduction of the circuit frequency band is 

called Miller effect. 

Note also that the Miller gain and ωo can be found with no 

approximation: 
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Fig. 4. Example circuit: CE amplifier at high frequencies.  

. 
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Example circuit: CB amplifier at high frequencies  

The aim is to find the upper limit, ωH, of the amplifier small-

signal frequency band. To find ωH easily, we neglect ro and 

also the voltage drop across rb (because both ib and rb are 

small). The latter allows us to ground rb and the controlled 

source (see Fig. 5) and to separate the circuit input and output 

parts.  

The corner frequencies ωin and ωo of the separate input and 

output parts can very easily be found (see Fig. 5). When one of 

these frequencies is greater than the other by at least of a factor 

of 4, then ωH is nearly equal to the lower corner frequency. 

When ωin=ωo, then ωH=(2
0.5−1)

0.5ωin/o (prove this!). In all the 

other cases, ωH cannot by found in a simple way. 

Note that the CB amplifier does not suffer from the Miller 

effect, and, thus, has a much wider frequency band than the CE 

amplifier. 

REFERENCES 

[1] S. Sedra, K. C. Smith, Microelectronic Circuits, 4th ed. New York: 

Oxford University Press, 1998. 

h
fe
iπ

g
m
vπ

r
o

v
π

r
B

C
π

R
B2

R
C

C
B

v
O

+V
CC

v
s

ω in= Cπ(rs
||r

e
)

1
ωο = Cµ 

(R
C
||r

o
)

1

R
B1

v
s

R
C

v
o

Cµ
iπ

r
e

i
b

iπ

v
s

r
e

r
s

r
s

Cπ

vπ h
fe
iπ

g
m
vπ

R
C

v
o

Cµ

∞=

|A
v
/A

v max
|, (dB)

0

log(ω )−3

ω
o
>4ω

in
ω

H
ω

in

|A
v
/A

v max
|, (dB)

0

log(ω )−3

ω
o

ω
H

ω
in

=

ω
H
=(20.5−1)0.5ω

in/o

 
 

Fig. 5. Example circuit: CB amplifier at high frequencies.  

 


