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About This Guide

This user guide provides information about the solvers that are available as part of Synopsys
TCAD software. It is organized into the following parts:

■ Part I PARDISO

■ Part II SUPER

■ Part III ILS

These solvers can be used with the Synopsys Sentaurus™ Device, Sentaurus Interconnect, and
Sentaurus Process tools.

Related Publications

For additional information, see:

■ The TCAD Sentaurus release notes, available on the Synopsys SolvNet® support site (see
Accessing SolvNet on page vi).

■ Documentation available on SolvNet at https://solvnet.synopsys.com/DocsOnWeb.

Conventions

The following conventions are used in Synopsys documentation. 

Convention Description

Blue text Identifies a cross-reference (only on the screen).

Bold text Identifies a selectable icon, button, menu, or tab. It also indicates the name of a field or an 
option.

Courier font Identifies text that is displayed on the screen or that the user must type. It identifies the 
names of files, directories, paths, parameters, keywords, and variables.

Italicized text Used for emphasis, the titles of books and journals, and non-English words. It also 
identifies components of an equation or a formula, a placeholder, or an identifier.
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About This Guide 
Customer Support
Customer Support

Customer support is available through the Synopsys SolvNet customer support website and by
contacting the Synopsys support center.

Accessing SolvNet

The SolvNet support site includes an electronic knowledge base of technical articles and
answers to frequently asked questions about Synopsys tools. The site also gives you access to
a wide range of Synopsys online services, which include downloading software, viewing
documentation, and entering a call to the Support Center.

To access the SolvNet site:

1. Go to the web page at https://solvnet.synopsys.com.

2. If prompted, enter your user name and password. (If you do not have a Synopsys user name
and password, follow the instructions to register.)

If you need help using the site, click Help on the menu bar.

Contacting Synopsys Support

If you have problems, questions, or suggestions, you can contact Synopsys support in the
following ways:

■ Go to the Synopsys Global Support Centers site on synopsys.com. There you can find e-
mail addresses and telephone numbers for Synopsys support centers throughout the world.

■ Go to either the Synopsys SolvNet site or the Synopsys Global Support Centers site and
open a case online (Synopsys user name and password required).

Contacting Your Local TCAD Support Team Directly

Send an e-mail message to:

■ support-tcad-us@synopsys.com from within North America and South America.

■ support-tcad-eu@synopsys.com from within Europe.

■ support-tcad-ap@synopsys.com from within Asia Pacific (China, Taiwan, Singapore,
Malaysia, India, Australia).
vi Solvers User Guide
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■ support-tcad-kr@synopsys.com from Korea.

■ support-tcad-jp@synopsys.com from Japan.

Acknowledgments

ILS was codeveloped by Integrated Systems Laboratory of ETH Zurich in the joint research
project NUMERIK II with financial support by the Swiss funding agency CTI.

METIS is a software package for unstructured graph partitioning and sparse matrix orderings.
It was developed by G. Karypis and V. Kumar, Department of Computer Science, University
of Minnesota (karypis,kumar@cs.umn.edu), and is copyrighted by the regents of the
University of Minnesota (http://glaros.dtc.umn.edu/gkhome/views/metis).

The TCAD Sentaurus software uses the LAPACK linear algebra package, which requires the
following copyright notice:

Copyright (c) 1992-2008 The University of Tennessee. 
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

- Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

- Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer listed in this license in the documentation and/or
other materials provided with the distribution.

- Neither the name of the copyright holders nor the names of its contributors may be used
to endorse or promote products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
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ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

The TCAD Sentaurus software uses the ATLAS (Automatically Tuned Linear Algebra
Software) package, which requires the following copyright notice:

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of
conditions, and the following disclaimer in the documentation and/or other materials
provided with the distribution.

3. The name of the ATLAS group or the names of its contributors may not be used to
endorse or promote products derived from this software without specific written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE ATLAS GROUP OR ITS
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
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Part I PARDISO

This part contains chapters regarding the direct linear solver PARDISO and is intended 
for users of Sentaurus Device, Sentaurus Process, and Sentaurus Interconnect:

Chapter 1 Using PARDISO on page 3 provides background information on PARDISO.





CHAPTER 1 Using PARDISO

PARDISO [1][2] is a high-performance, robust, and easy to use
software package for solving large sparse symmetric or
nonsymmetric systems of linear equations in parallel.

The rapid and widespread acceptance of shared-memory multiprocessors has created a demand
for parallel semiconductor device and process simulation on such shared-memory
multiprocessors.

PARDISO can be used as a serial package, or in a shared-memory multiprocessor environment
as an efficient, scalable, parallel, direct solver.

Algorithms

The process of obtaining a direct solution of a sparse system of linear equations of the form
 consists of four important phases [3][4]:

■ Nonsymmetric matrix permutation and scaling – This places large matrix entries on the
diagonal.

■ Ordering – This determines the permutation of the coefficient matrix  such that the
factorization incurs low fill-in.

■ Numeric factorization – This is the actual factorization step that performs arithmetic
operations on the coefficient matrix  to produce the factors  and  such that .
Complete block diagonal supernode pivoting allows for dynamic interchanges of columns
and rows.

■ Solution of triangular systems – This produces the solution by performing forward and
backward eliminations.

The nonsymmetric matrix permutation and scaling aims to maximize the elements on the
diagonal of the matrix. This step greatly enhances the reliability and accuracy of the numeric
factorization process. More details can be found in the literature [5][6][7].

The reordering strategy of PARDISO features state-of-the-art techniques, for example,
multilevel recursive bisection from METIS [8] or minimum degree–based approaches [9][10]
for the fill-in reduction. The nested dissection approach that is integrated in PARDISO is
substantially better than the multiple minimum degree algorithm for large problem sizes. This
applies especially to three-dimensional problems.

Ax b=

A

A L U A LU=
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1: Using PARDISO 
Parallel Solution on Shared-Memory Multiprocessors
PARDISO exploits the memory hierarchy of the architecture by using the clique structure of
the elimination graph by supernode algorithms, thus improving memory locality [11]. The
numeric factorization algorithm of the package utilizes the supernode structure of the numeric
factors  and  to reduce the number of memory references with Level 3 BLAS [12][13]. The
result is a greatly increased, sequential, factorization performance.

Furthermore, PARDISO uses an integrated, scalable, left-right-looking, supernode algorithm
[14][15] for the parallel sparse numeric factorization on shared-memory multiprocessors. This
left-right-looking supernode algorithm significantly reduces the communication rate for
pipelining parallelism.

The combination of block techniques, parallel processing, and global fill-in reduction methods
for three-dimensional semiconductor devices results in a significant improvement in
computational performance.

Parallel Solution on Shared-Memory Multiprocessors

The use of vendor-optimized BLAS and LAPACK subroutines ensures high computational
performance on a large scale of different computer architectures. The parallelization technique
is based on OpenMP [16], which is an industrywide standard for directive-based parallel
programming of SMP systems. Most SMP vendors are committed to OpenMP, thereby making
OpenMP programs portable across an increasing range of SMP platforms.

A parallel version of PARDISO is available on Red Hat Enterprise Linux (64-bit).

Multiple cores on machines that support hyperthreading are treated in the same way as multiple
CPUs.

A sufficient process stack size is required for the proper execution of PARDISO. To check the
UNIX stack size limit, in csh, type the command:

limit

or, in bash or sh, type the command:

ulimit -a

The stack size limit can be increased, in csh, by using the command:

limit stacksize unlimited

or, in bash or sh, by typing the command:

ulimit -s unlimited

L U
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1: Using PARDISO
Selecting PARDISO in Sentaurus Device
PARDISO is tuned for general use in Sentaurus Device and Sentaurus Process. This means that
user intervention is not necessary.

Selecting PARDISO in Sentaurus Device

PARDISO is activated in Sentaurus Device by specifying in the command file:

Math {
...
Method = Blocked SubMethod = Pardiso
WallClock
...

}

For single-device simulations only, it is also possible to specify Method = Pardiso instead
of Method = Blocked SubMethod = Pardiso.

PARDISO accepts options that can be specified in parentheses: Pardiso (<options>).
Table 1 lists the available options. 

To switch off any option, use a minus sign, for example, -NonsymmetricPermutation.

The default options -IterativeRefinement, NonsymmetricPermutation, and
-RecomputeNonsymmetricPermutation provide the best compromise between speed and
accuracy. However:

■ To improve speed, use -NonsymmetricPermutation.

■ To improve accuracy at the expense of speed, use IterativeRefinement, or
RecomputeNonsymmetricPermutation, or both.

Table 1 PARDISO options

Option Description Default

IterativeRefinement Performs up to two iterative refinement steps to 
improve the accuracy of the solution.

off

MultipleRHS PARDISO solves linear systems with multiple right-
hand sides. This option applies to AC analysis only. It 
may produce minor performance improvements.

off

NonsymmetricPermutation Computes an initial nonsymmetric matrix 
permutation and scaling, which places large matrix 
entries on the diagonal.

on

RecomputeNonsymmetricPermutation Computes a nonsymmetric matrix permutation and 
scaling before each factorization.

off
Solvers User Guide 5
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1: Using PARDISO 
Selecting PARDISO in Sentaurus Device
The keyword WallClock can be used to print the wallclock times of the Newton solver. This
is useful and recommended when investigating the performance of the parallel execution.

The number of threads for PARDISO can be specified in the Math section of the Sentaurus
Device command file as follows:

Math {
...
Number_of_Threads = 2
Number_of_Solver_Threads = 2
...

}

The keyword Number_of_Threads defines the number of threads for both the matrix
assembly and PARDISO, whereas Number_of_Solver_Threads only defines the number of
threads for PARDISO itself. Instead of a constant number of threads, it is possible to specify
maximum. In this case, the number of threads is set equal to the number of processors available
on the execution platform.

If no specification appears in the Math section, Sentaurus Device will check the values of the
following UNIX environment variables (in order of decreasing priority):

SDEVICE_NUMBER_OF_SOLVER_THREADS

SDEVICE_NUMBER_OF_THREADS

SNPS_NUMBER_OF_THREADS

OMP_NUM_THREADS

For example, to obtain parallel execution with two threads, you can define the environment
variable OMP_NUM_THREADS as follows (in a C shell):

setenv OMP_NUM_THREADS 2

In a Bourne shell, the equivalent commands are:

OMP_NUM_THREADS=2
export OMP_NUM_THREADS
6 Solvers User Guide
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1: Using PARDISO
Selecting PARDISO in Sentaurus Process
Selecting PARDISO in Sentaurus Process

In Sentaurus Process, the PARDISO solver is the default for 1D simulations and 2D mechanics
simulations, and also can be used in 2D diffuse simulations and some 3D simulations by
specifying:

math diffuse dim=2 pardiso
math diffuse dim=3 pardiso

or:

math flow dim=3 pardiso

for diffusion simulations or mechanics simulations, respectively.

The number of threads must be specified in the math command, for example:

math numThreadsPardiso=2

NOTE For Sentaurus Process, PARDISO no longer depends on the OpenMP
environment variable OMP_NUM_THREADS, and you no longer need to
specify this variable.

By default for Sentaurus Process, PARDISO uses the multiple minimum degree (MMD)
ordering in 2D and the nested dissection (ND) ordering in 3D. The ordering can be changed
using the following commands, which specify ND ordering and MMD ordering, respectively:

pdbSetDouble Pardiso.Ordering 2
pdbSetDouble Pardiso.Ordering 0

Selecting PARDISO in Sentaurus Interconnect

In Sentaurus Interconnect, the PARDISO solver is the default for 1D simulations and 2D
mechanics simulations, and also can be used in 2D solve steps and some 3D simulations by
specifying:

math compute dim=2 pardiso
math compute dim=3 pardiso

or:

math flow dim=3 pardiso

for solve steps in 2D, 3D, or mechanics simulations, respectively.
Solvers User Guide 7
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The number of threads must be specified in the math command, for example:

math numThreadsPardiso=2

By default for Sentaurus Interconnect, PARDISO uses the multiple minimum degree (MMD)
ordering in 2D and the nested dissection (ND) ordering in 3D. The ordering can be changed
using the following commands, which specify ND ordering and MMD ordering, respectively:

pdbSetDouble Pardiso.Ordering 2
pdbSetDouble Pardiso.Ordering 0
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Part II SUPER

This part contains chapters regarding the direct linear solver SUPER and is intended for 
users of Sentaurus Device:

Chapter 2 Using SUPER on page 13 provides background information on SUPER.

Chapter 3 Customizing SUPER on page 15 describes the .superrc file, which is used to 
customize SUPER.

Chapter 4 Implementing SUPER on page 19 discusses the algorithms used in SUPER.





CHAPTER 2 Using SUPER

SUPER is a library that contains a set of block-oriented and
nonblock-oriented, supernodal, factorization algorithms for the
direct solution of sparse structurally symmetric linear systems.

Overview

It is a fast direct solver for the multidimensional semiconductor device simulator Sentaurus
Device, where the solution of structurally symmetric sparse linear systems of equations
(typically written in the form ) is the main task consuming most of the processor time.

Advances in sparse matrix technology have resulted in supernodal linear solvers. The key idea
behind this technique is based on the concept of a supernode [1]. In the course of the
factorization of the coefficient matrix, supernodes are identified as a set of consecutive
columns in the factor  of the  decomposition with the following structural properties.

Assume  is a set of consecutive columns and  denotes the number of
nonzero entries in column  of the factor . If all  columns share the same
sparsity structure below row  and , the set

 forms a supernode [2].

In other words, a supernode formed by  adjacent columns consists of two blocks: a dense
diagonal block of size  and a block of width  below the diagonal block where all columns
share the same sparsity pattern. Due to structural symmetry, the term ‘supernode’ can also
apply to the rows of the factor . For simplification, this user guide restricts its considerations
mainly to the columns of factor . Figure 1 illustrates a supernode. 

Figure 1 Example of a supernode
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References
Supernodes offer a significant advantage for numeric factorization: a column  being
computed is modified by either all or none of the columns of a supernode , which updates
column  [3]. Additionally, if column  has an identical sparsity structure compared to the
columns of supernode  below row , updating column  is a dense operation, meaning that
no index list is needed to reference the various elements. This is also true for column updates
within the same supernode. The fact that dense linear algebra operations can be performed in
those cases reduces memory traffic and increases the computational efficiency. This is
documented in a number of papers [1][4][5].

SUPER incorporates the advances in supernodal sparse matrix technology towards the most
efficient solution of a given linear system. SUPER contains a set of nine supernodal
factorization methods that provide excellent performance on both RISC and vector machines.

You can fine-tune SUPER although this is not necessary, since all tunable parameters have
built-in default values or are automatically set during execution. Some parameters relate to
measured times during execution; therefore, they influence the computational behavior on
different hardware platforms.
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CHAPTER 3 Customizing SUPER

This chapter discusses the customization that is possible for SUPER.

The .superrc File

You can tailor SUPER behavior to your own preferences by modifying the parameters specific
to SUPER in the .superrc file. The software uses the following procedure to search for this
configuration file. First, SUPER checks whether the environment variable SUPERRC is set. This
environment variable must contain the absolute path name of the directory, which contains
the .superrc file. SUPER checks whether the .superrc file exists; if so, the configuration
file is used. If the environment variable SUPERRC is not set or the directory specified does not
contain a .superrc file, the home directory of the user is sought. Finally, if neither location
contains a .superrc file, the configuration file is sought in the current directory. This
hierarchical concept allows:

■ A group of users to share a common .superrc file by specifying its location in the
SUPERRC environment variable.

■ Individual users to have their own personal global .superrc file found in their home
directory.

■ The use of individual configuration files when put into the current working directories.

SUPER uses default settings if no configuration file is found.

In this section, the grammar of the input language is presented. Terminal symbols are presented
in Courier font and nonterminal symbols are uppercase and italicized:

STATEMENTS ← STATEMENT 

| STATEMENTS, STATEMENT 

STATEMENT ← factorization_type = FACTORIZATION_METHOD 
| write { INTEGER_LIST }
| write ( FORMAT )
| write ( FORMAT ) { INTEGER_LIST }
| write

FACTORIZATION_METHOD ← column_supernode_0
| column_supernode_1
| column_supernode_2
| column_supernode_3
Solvers User Guide 15
N-2017.09



3: Customizing SUPER 
The .superrc File
| block_supernode_0
| block_supernode_1
| block_supernode_2
| block_supernode_3
| block_supernode_4

FORMAT ← blsmp
| matlab

INTEGER_LIST ← INTEGER 
| INTEGER_LIST : INTEGER 

The value of factorization_type specifies the factorization to be used. The factorization
within SUPER is performed using supernodal techniques. Generally, two types of supernodal
approaches are available: column supernode and block supernode (see Sparse Supernodal
Factorization Algorithms on page 27).

SUPER contains four versions of the column supernode approach and five versions of the block
supernode approach. In terms of memory consumption, column supernode methods are
preferred over block supernode algorithms. The algorithm column_supernode_2 uses
minimal space and the algorithm block_supernode_1 requires maximal space. Conversely,
if speed is an important consideration, block supernode approaches should be considered as
they reduce memory traffic and support data locality. By default, SUPER uses
column_supernode_1.

The write statement is used to write linear systems in ASCII representation to files. The
parameter INTEGER_LIST must contain nonnegative numbers separated by colons. It
determines at which invocation of SUPER the output file(s) is to be generated. The list does
not have to be in increasing order. If INTEGER_LIST is missing, the first ten invocations of
SUPER generate the file output.

The parameter FORMAT determines the format of the output (blsmp or matlab). If the blsmp
format is selected, the matrix (the right-hand side) and the solution of the linear system are
written to the file nsuper_blsmp_real_index.txt or the file
nsuper_blsmp_complex_index.txt. If the matlab format is selected, the output is sent
to the file nsuper_matlab_real_index.m or nsuper_matlab_complex_index.m. By
default, no output is generated.

In many cases, you can completely ignore setting up a special .superrc file and can rely on
the defaults. Conversely, there is no way to change the default settings without modifying the
corresponding parameter in the .superrc file. In addition, the .superrc file is read only once,
at the initial invocation of SUPER.
16 Solvers User Guide
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The .superrc File
An example of a .superrc file is:

factorization_type = block_supernode_4,
write (blsmp) {5:9}

These settings in the .superrc file instruct SUPER to use the factorization algorithm
block_supernode_4. The write statement instructs SUPER to generate ASCII files, in
blsmp format, of the fifth and ninth linear systems solved.
Solvers User Guide 17
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CHAPTER 4 Implementing SUPER

This chapter describes the algorithms in SUPER.

Overview

Typically, you want to solve a linear system of the form:

(1)

where  is the structurally symmetric coefficient matrix of the system,  denotes the solution
vector or the right-hand side, and  is the vector of all unknowns, commonly referred to as the
solution. A permutation matrix  is used to apply row and column permutations to the
coefficient matrix . Now, the linear system Eq. 1 becomes:

(2)

where  and . The permuted coefficient matrix  is decomposed into two
triangular factors  and , for example:

(3)

Eventually, the linear system Eq. 2 is solved by forward and backward substitution:

(4)

Finally, the solution  of the original linear system Eq. 1 is obtained by left-multiplying , the
solution of Eq. 2, with  [1].

Technically, the solution process of SUPER has six distinct phases leading to a modular code
that is easier to maintain and optimize. This approach has been used in other solver packages
such as SPARSPAK [2] and YSMP [3]. The phases are:

■ Structure input

■ Reordering

■ Symbolic factorization

■ Numeric value input

■ Numeric factorization

■ Numeric solution
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During structure input, the solver reads the nonzero structure of the lower triangle of the
coefficient matrix  and generates a full adjacency structure of , which passes to the
reordering phase.

Reordering is a very important phase in the solution process. The goal of applying row and
column permutations to the coefficient matrix is to minimize the size of its factors  and .
Any additional nonzero entry in the decomposition is called a fill-in entry. In terms of
computational cost (that is, memory consumption and execution time), you may want to retain
the nonzero structure of the coefficient matrix in its factors or at least reduce growth to a
minimum. Although there is no minimum fill-in reordering scheme [4], a number of heuristics,
mainly using graph theoretical approaches, produce near-to-optimal reorderings. Among these
approaches, the minimum degree reordering heuristic has proven to be most effective [5]. In
this solver, an enhanced minimum degree algorithm called the multiple minimum degree
(MMD) algorithm is used [6][7]. Its motivation is based on the observation that in the course
of elimination, expensive degree updates can be saved if nodes of the same degree were
eliminated simultaneously, hereby producing supernodes as a side effect [8]. How Multiple
Minimum Degree (MMD) Works on page 22 presents the MMD algorithms in detail.

When the coefficient matrix is reordered, it is desirable to predetermine the structure of its
factors  and . This process is referred to as symbolic factorization [9]. Knowing the factor
structure, you can preallocate the necessary memory space for the remainder of the solution
process.

So far, only preliminary steps toward the numeric solution of the linear system have been
performed. The numeric value input phase is now the preparation step for numeric
computation; the numeric values of the coefficient matrix  are read into their memory
locations simultaneously applying the row and column permutations found in the reordering
phase.

The numeric factorization is the most time-consuming part of the solution process. Extensive
research to find optimal performance in terms of speed and memory requirements has lead to
supernodal techniques [10]. Column supernode and block supernode (also referred to as
supernode–node and supernode–supernode, respectively) algorithms are implemented. Both
methods are schematically depicted in Figure 2 on page 21. 
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4: Implementing SUPER
Overview
Figure 2 Illustration of supernode column (left) and block supernode updating (right)

Column supernode updating describes a technique where only one column of the factor  is
computed at a time. Consider Figure 2 (left): column  is updated by supernode . Computing
this update is mathematically expressed in the term:

(5)

also known as a DGEMV operation in BLAS terminology [11]. Computing  is a dense
operation that requires no indirect addressing. 

When the result of this matrix–vector product is subtracted from vector , the elements of the
resulting vector need to be scattered into their corresponding positions only.

Block supernode factorization operates on groups of columns or a complete supernode at the
same time instead of merely focusing on a single column. It must compute:

(6)

representing a DGEMM operation [12]. Block supernode methods mainly involve dense
matrix–matrix multiplications, hereby reducing memory traffic. Analogous to column
supernode methods, indirect addressing is necessary when the results of the dense
matrix–matrix multiplication are scattered into the updated supernode. Since DGEMV and
DGEMM operations are highly efficient computational kernel routines, their use during
numeric factorization significantly speeds up the decomposition. Sparse Supernodal
Factorization Algorithms on page 27 describes all supernodal algorithms implemented in
SUPER.
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The final step in the solution process is the numeric solution phase. The solution is found using
forward and backward substitution to exploit the supernodal partitioning of the factors.
Detailed discussions of this are documented in the literature [8][13][14][15].

How Multiple Minimum Degree (MMD) Works

Before going into detail, a few preliminary terms must be defined for subsequent use.

Let  be a graph.

Def.: adjacency set

Let ; 
(The adjacency set  for any  consists of all nodes , which are directly
connected with  through an edge from set .)

Def.: indistinguishable1

Let ;  is indistinguishable from  
(Two nodes  are said to be indistinguishable if and only if  and  have identical
adjacency sets and each node is contained in the other’s adjacency set2.)

As previously mentioned, MMD is a variant of the minimum degree (MD) ordering algorithm.
Its concept is based on the observation that, during elimination, expensive degree updates can
be saved if nodes of the same minimum degree are eliminated simultaneously. For
indistinguishable nodes, it can be shown that they are eliminated consecutively when MD is
used.

Algorithm 1 on page 23 lists the MMD algorithm. Initially,  is set equal to the empty set and
the degrees of all nodes in  are computed. Next, a set  is determined, which contains all
nodes from  to  that have minimum degree. Mass elimination is performed over all
elements of . On entry, all elements (nodes) are unflagged (unmarked). Next, a node 
must be selected. The criteria that set out how to select elements from  are called tie-breaking
strategies.

Effective tie-breaking is known to improve numeric factorization since the fill-in of the factor
 can be reduced significantly [5]. SUPER does not implement any of the commonly used tie-

breaking strategies used in other well-known solver packages3. Instead, SUPER uses random
tie-breaking, which is the selection of elements without intelligence; mostly implied by the
underlying data structure.

1.  The concept of indistinguishable nodes is covered extensively in the literature [2].
2.  Practically, this defines the term clique where all nodes are connected to each other.
3.  MA27 (Harwell Laboratories), SPARSPAK (University of Waterloo), and YSMP (Yale University).
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After an element  is chosen, the algorithm determines the set  that contains all elements
of  indistinguishable from 1. When  is computed, all elements of  and the adjacency set
of , , are flagged. There are two reasons for this. First, flagging the nodes of set 
prevents double-accessing indistinguishable nodes, that is, nodes found to be indistinguishable
from , the current node, do not have to be looked at while mass elimination proceeds, because
they are eliminated with . Second, nodes that lie in  must be marked for a degree
update, because some of their neighbors, some or all elements of , are eliminated. This means
their current degree was modified.

Finally, set  is unified with set  and mass elimination starts over with another element 
until no unflagged element remains. Then, the graph representation of the remaining nodes
from  to  is computed. Simultaneously, all flagged nodes in  to  undergo a degree
update. Finally, the non-eliminated nodes are unmarked and the algorithm continues until

. 

Algorithm 1 Multiple minimum degree (MMD) algorithm

1.  Element  is trivially indistinguishable from itself.
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Example: MMD Execution

Figure 3 provides the symmetric pattern of the matrix  where ‘•’ denotes a nonzero entry.

Figure 3 Sample sparse matrix A 

Figure 4 illustrates the graph representation of .

Figure 4 Graph representation of sample matrix A 

The numbering in the graph is equal to the line numbering of the matrix. The initial minimum
degree of the graph is 31. Therefore, the ordering algorithm starts with:

(7)

1.  Self-loops are neglected.

A

A
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Now,  is chosen from . The only indistinguishable node from  is the node
with the number 6, yielding 1. The adjacency set  contains the nodes 2
and 8 that, therefore, are flagged (indicated by ‘+’).  becomes . After the first
loop through the mass elimination step:

(8)

The second loop finds  and , since node 3 is indistinguishable from
node 9. Nodes 7 and 5 are marked because they are adjacent to . By the end of the loop:

(9)

The node  is the only unflagged node left in .  has no indistinguishable nodes
besides itself. Therefore, only  is eliminated, leaving adjacent node 4 flagged. All
elements of  are now flagged and the algorithm proceeds to the degree update step. Figure 5
shows the graph representation of the remaining nodes all of which had their degree updated
because they were all flagged.

Figure 5 Elimination graph after first loop through multiple mass elimination

The new minimum degree is 2, which yields:

(10)

The algorithm finds nodes 7 and 5 as well as nodes 8 and 2 to be indistinguishable, respectively.
They are eliminated leaving only node 4. The reordering sequence or permutation is now
computed to be:

(11)

1.  Parentheses are only used to identify groups of indistinguishable nodes.
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Applying this permutation to the matrix  results in the structure shown in Figure 6.

Figure 6 Sample matrix A reordered with MMD

Performing symbolic factorization on this matrix reveals the sparsity pattern of the factor ,
which is depicted in Figure 7 where the columns have been renumbered.

Figure 7 Sparsity structure of factor L of A 

NOTE The sparsity structures for  and  are similar;  has two
additional nonzero fill-in entries (indicated by ‘o’). In addition, 
consists of groups of columns that share the same sparsity pattern, such
as columns 10 and 6, or 9 and 3 (indicated by the dashed rectangles).

These groups of columns correspond to the sets  of indistinguishable nodes as they are found
in the course of the mass elimination step. These groups form supernodes [8]. Supernodes play
an important role in improving the performance of the numeric factorization. SUPER is
focused entirely on the supernodal update scheme. You can take advantage of the fact that a
column update depends on all previous columns of the same supernode and on all nodes of
other supernodes that update this column.

Using BLAS terminology [11][12][16], the first type of update mentioned involves dense
SAXPY operations, whereas the second type performs so-called indexed SAXPY or SAXPYI
operations [13][17]. 
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Additionally, to update updating a column  by a supernode  requires one gather and one
scatter operation, whereas node–node updates require as many operations as there are nodes in

 of each [13]. Therefore, memory traffic is reduced and numeric factorization is accelerated,
especially on machines with hardware-supported gather and scatter operations.

Sparse Supernodal Factorization Algorithms

Generally, matrix reordering and numeric factorization are the parts of a direct solver package
where most of the execution time is spent. Depending on the algorithm and its implementation,
the time necessary to reorder the input matrix can vary significantly and can even dominate the
factorization time. Nevertheless, these are rare cases, since the reordering algorithm does not
have to deal with any fill-in that occurs during  decomposition. This leaves numeric
factorization as the part to focus on for performance improvements.

Factorization algorithms based on supernodal techniques have proven to be superior over
former general approaches [8][13][18][19].

The following subsections describe several supernodal factorization algorithms implemented
in SUPER. These algorithms fall into two different classes: column and block supernode
update schemes. Table 2 lists the symbols used here.

Table 2 List of symbols

Symbol Description

Supernodes of the LDU decomposition

Nodes, that is, columns or rows of a supernode

Number of supernodes

Temporary work vectors

Temporary blocks of workspace

A column or row of the coefficient matrix 

A column or row block of the coefficient matrix 

A (block) column of the factor 

A (block) row of the factor 

i-th element of column (row) vector 

j-th diagonal element of the matrix  of the LDU decomposition

Index vectors

Scattering into column  is performed using index map 
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Column Supernode Algorithms

Supernode–node updating describes a technique where only one column or row of the factors
 and  is computed at a time, although the corresponding supernode may consist of several

columns or rows. Algorithm 2 lists the first algorithm implementing this technique.

Algorithm 2 column_supernode_0

Number of equations of the linear system

Number of off-diagonal nonzero entries in the lower-half or upper-half of 

Number of nonzero entries in the factor 

Number of supernodes

maxcol Maximum number of nonzero entries in a column of 

maxsup Maximum number of columns in a supernode

Table 2 List of symbols

Symbol Description

n

ne A

L L

S

L

L U

for  to  do (c0.1)
for  do (c0.2)

for all  updating  do (c0.3)
if (  and  have same sparsity pattern) (c0.4)

collect dense updates
else

for  do (c0.5)

end for
end if

end for

for all dense updates  do (c0.6)

end for

end for
end for

tL 0 tU 0←;←
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j J (in order)∈
tL[ ]
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Initially, the algorithm reveals the general form of supernode–node updating algorithms: a
triple-nested for-loop (indicated with indices c0.1 to c0.3). The outermost loop runs over all
supernodes  that were generated in the reordering and symbolic factorization steps. The next
for-loop (c0.2) proceeds one level deeper and scans over all nodes  of the current supernode

 starting with the smallest index.

NOTE The product of the loop lengths for loop c0.1 and c0.2 is always equal
to the dimension of the matrix .

Finally, the innermost loop (c0.3) handles the contribution of all updating supernodes  to the
current node . Furthermore, three computationally intensive kernels CRmod_{i,d} and CRdiv
(see Algorithm 3 and Algorithm 4 on page 30, and Algorithm 5 on page 30) are typical for 
decomposition methods [8][20].

CRmod_i and CRmod_d describe the necessary operations to calculate the update of column
 and row  on the current column  using indexed SAXPY [13][21] and dense SAXPY

[16] operations, respectively. The contribution of these two vectors is then accumulated into the
column vector  and the row vector . CRdiv describes the scaling procedure after column or
row  has been updated. All of these kernel routines can be vectorized, thereby running very
efficiently on machines with vector capabilities.

A third task, which is also common to all algorithms implemented in SUPER, is the
determination of the row structure of the factor  (or, identically, the determination of the
column structure of ). This row structure is required to find all supernodes updating the
current column  (see loop c0.3 in Algorithm 2 on page 28). As described [8], it is not
necessary to calculate the row structure of  beforehand, since it can be efficiently generated
during factorization.

Specific to this algorithm is the use of the temporary vectors  and , and, as a result, the
implementation of CRmod_{i,d} and CRdiv. Vectors  and  contain intermediate results for
the factors  and , respectively. Both vectors are of length  where  is the dimension of
the matrix  of the linear system. Initially,  and  are set to zero. Then, for every column
or row  to be computed (loop c0.2), column  is loaded into  and row  is loaded into

.

This is performed by expanding (scattering) the densely stored column or row elements of 
into their corresponding positions into  and . Hereby, it is possible to accumulate all
indexed updates to column  without repeatedly storing the contents of the temporary vectors

 and  into factor storage and simultaneously zeroing out both vectors. Additionally, the
index vector ind (loop c0.5) simply holds the row structure of the current column , which does
not have to be computed, since it is provided by the symbolic factorization. Doing this
significantly reduces memory traffic at the cost of comparably little storage overhead1. 

1.  Compared to the fill-in size.

J
j

J

A

K
j

LU

L* k, Uk *, j

c r
j

L
U

j
L

tL tU

tL tU

L U n n
A tL tU

j A*,j tL Aj *,
tU

A
tL tU

j
tL tU

j

Solvers User Guide 29
N-2017.09



4: Implementing SUPER 
Sparse Supernodal Factorization Algorithms
In addition to saving memory transfers, algorithm column_supernode_0 increases
computational efficiency by collecting all dense updates (collected in statement c0.4) and
executing them in one block in loop c0.6. This requires additional storage to keep track of all
nodes that share the same sparsity pattern as column/row , but provides for a compact dense
update procedure. After column  has been computed, it must be scaled by its diagonal .
This is performed in the kernel routine CRdiv.

NOTE The computation of the scaling diagonal  is performed along with the
column/row  instead of calculating its value separately. The
data structures used were dimensioned to have extra space for the
diagonal element, thus exploiting vectorization capabilities on the
different hardware platforms. 

j
j dj

dj
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for  to n do

end for

Algorithm 3 CRmod_d kernel

for  to n do

end for

Algorithm 4 CRmod_i kernel
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end for

Algorithm 5 CRdiv kernel

for all row indices  of  do

end for

Algorithm 6 Setup of vector im 
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Algorithm 7 is an enhanced version of the previous algorithm. In this case, it was feasible to
reduce the storage overhead introduced by the temporary vectors  and .

Algorithm 7 column_supernode_1

Instead of occupying space for  real numbers, algorithm column_supernode_1 needs
only 1 where  denotes the maximal number of nonzero entries
in a column of  excluding the diagonal element. In 2D and 3D device simulation, where  is
typically greater than 5000, 2 is much smaller than  [22].

Conversely, we use a technique called relative indexing [15][23] so that algorithm
column_supernode_1 can use smaller temporary vectors. Relative indexing introduced an
additional vector 3 of length  (c1.1). Nevertheless, the total amount of overhead storage
required for algorithm column_supernode_1 is approximately 60% of that used in
column_supernode_0.

1.  MAXCOL + 1 is needed here to hold the diagonal element of the current column.
2.  Experimental results revealed MAXCOL to be less than 10% of  in 2D device simulation.
3.  Acronym for index map.

tL tU

for  to  do
setup vector (c1.1)
for  do

(c1.2)

for all  updating  do
if (  and  have same sparsity pattern)

collect dense updates
else

for  do (c1.3)

end for
end if

end for

(c1.4)

for all dense updates  do

end for

end for
end for

tL 0← tU 0← im 0←
J 1= NS

im
j J (in order)∈

tL[ ]
im

A* j,←

tU[ ]
im

Aj *,←

K j
K J

k K∈
CRmod_i tL tU im j k, , , ,( )

L* j, tL← tL 0←

Uj *, tU← tU 0←

k
CRmod_d L* j, Uj *, j k, , ,( )

CRdiv j( )

2*n
2* MAXCOL 1+( ) MAXCOL

L n
MAXCOL n

n

im n
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Algorithm 6 on page 30 shows the vector  setup. Basically, the row index vector for the first
column  of supernode  is scanned and the corresponding position in vector  is set to the
value of the integer variable , which is incremented by one after each assignment starting with
zero. Thereby, referencing  for a row index  returns the relative position of the
corresponding column element  within .

NOTE The row index vector is stored in decreasing order (looking at the
column from the bottom) by the symbolic factorization phase of the
solver.

Vector  is then used to copy the nonzero elements of column or row  into  and
 (c1.2) and to perform the indexed updates in loop c1.3. Both operations take advantage of

the fact that the set of row indices for  and the updating supernodes  up to row  from a
subset of column ’s set of row indices in the factor  [24].

This is also the reason why  does not have to be reset to zero when all nodes  of supernode
 have been computed; this reduces memory traffic. Finally, storing the contents of  and 

into factor storage (c1.4) does not require indirect addressing and can be performed one by one,
because  and  share the same sparsity pattern.

Next, algorithm column_supernode_2 (see Algorithm 8 on page 33) is introduced, which
implements a major change compared to algorithm column_supernode_1 dealt with
previously. Instead of loading column or row  of the coefficient matrix  into a
temporary work space, the contents are directly transferred into the appropriate places of 
and , respectively (see c2.1). 

In this case, since the temporary work vectors  and  are not required, it is possible to
further reduce memory consumption. Since all computation is performed within factor space,
additional data transfers, and scatter and add operations caused by intermediate results can also
be saved (see c1.4 in Algorithm 7 on page 31). Consequently, algorithm
column_supernode_2 uses the least amount of memory of all algorithms considered in this
section.

im
j J im

i
imk K

ck tL

im A*,j Aj *,⁄ tL

tU

A*,j K j
j L

im j
J tL tU

tL tU⁄ L*,j Uj *,⁄

A*,j Aj *,⁄ A
L*,j

Uj *,

tL tU
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Algorithm 8 column_supernode_2

Algorithm 9 on page 34 shows another variant of column supernode  factorization. This
algorithm requires the same amount of storage overhead as algorithm column_supernode_1,
but implements two significant changes computing supernode ’s update on column  (see
c3.2 and c3.3).

First, like algorithm column_supernode_2, column or row  of the coefficient
matrix  are not loaded into temporary work space but into their appropriate places in  and

, respectively (see c3.1). This is not necessarily advantageous concerning memory traffic,
since the algorithm still uses temporary work vectors (  and ), which have to be merged into
factor storage. The advantage over the other algorithms is assumed to unfold in the fact that we
can compute supernode ’s contribution updating column  as a dense SAXPY operation (see
c3.2), therefore revealing the second major difference mentioned above.

Unfortunately, after  and  have been computed, their contents must be scattered and added
to column or row  using the index map  of supernode . This is the price for being
able to use dense SAXPY operations to calculate  and . Experiments with real device
simulation test cases have shown that the computational efficiency suffers from the resulting
memory transfers. In addition,  and  must be reset to zero for the next supernode to update
column  (see c3.3). The remainder of algorithm column_supernode_3 is identical to the
algorithms previously discussed.

for  to  do
setup vector 
for  do

(c2.1)

for all  updating  do
if (  and  have same sparsity pattern)

collect dense updates
else

for  do (c2.2)

end for
end if

end for
for all dense updates  do

end for

end for
end for

im 0←
J 1= NS

im
j J (in order)∈

L* j,[ ]
im

A* j,←

Uj *,[ ]
im

Aj *,←

K j
K J

k K∈
CRmod_i L* j, Uj *, im j k, , , ,( )

k
CRmod_d L* j, Uj *, j k, , ,( )

CRdiv j( )

LU

K j

A*,j Aj *,⁄
A L*,j

Uj *,
tL tU

K j

tL tU

L*,j Uj *,⁄ im J
tL tU

tL tU

j
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Algorithm 9 column_supernode_3

Looking at all the supernode–node updating algorithms previously discussed reveals that, in all
cases, dense updates and column/row scaling are treated equally. Thus, we conclude that the
data structures involved as well as the execution time necessary for the two operations do not
differ (at least not significantly) in all four cases. This leaves the indexed updates and the
memory references through gather and scatter operations for the temporary vectors  and 
as the critical points for measuring how efficiently the algorithms run on different machines.

In terms of storage overhead and memory transfers, algorithm column_supernode_2 clearly
is the first choice. Although, if execution time is important, most machines seem to prefer
column_supernode_1 to the others. In the next section, we reduce the number of scatter/
gather operations by working on blocks of columns of the same supernode simultaneously.

for  to  do
setup vector 
for  do

(c3.1)

for all  updating  do
if (  and  have same sparsity pattern)

collect dense updates
else

for  do (c3.2)

end for

(c3.3)

end if
end for
for all dense updates  do

end for

end for
end for

tL 0← tU 0← im 0←
J 1= NS

im
j J (in order)∈

L* j,[ ]
im

A* j,←

Uj *,[ ]
im

Aj *,←

K j
K J

k K∈
CRmod_d tL tU j k, , ,( )

L* j,[ ]
im

tL← tL 0←

Uj *,[ ]
im

tU← tU 0←

k
CRmod_d L* j, Uj *, j k, , ,( )

CRdiv j( )

tL tU
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Block Supernode Algorithms

Block supernode factorization operates on groups of columns or rows or an entire supernode
at the same time instead of merely focusing on a single node. This does not reduce the number
of references to memory by any means, but by grouping them together, memory fetch and store
can be made more efficient, that is, using the same index map only once throughout a loop
cycle. In addition, in terms of vectorization, supernode–supernode updating does not make the
vectorizable loops longer, thus increasing the average vector length, but it nests the
vectorizable loops one level deeper, which collapses vector work and avoids vector startup
overhead.

On the other hand, supernode–supernode factorization increases storage overhead
considerably, since the intermediate results for more than one column or row must be retained
and, in order to support this technique, other data structures must be added. Furthermore, the
time necessary to perform the setup and administration of these data structures cannot be
neglected.

Algorithm 10 (block_supernode_0) shows a first approach implementing this block
supernodal factorization technique. Obviously, the algorithms in this section consist of a
double-nested loop construct compared to the three-level nesting of supernode–node
algorithms. The third level of nesting has not vanished, but is hidden in the kernels CRmod_d
and CRmod_i. 

Algorithm 10 block_supernode_0

for  to  do
set up vector 

(b0.1)

for all  updating  do
determine all  being updated by (b0.2)

(b0.3)

end for
for  do (b0.4)

end for
end for

TL 0← TU 0← im 0←
J 1= NS

im

TL[ ]
im

A* J,←

TU[ ]
im

AJ *,←

K J
j J∈ K

CRmod_d TL TU J K, , ,( )
CRmod_i TL TU im J K, , , ,( )

j J (in order)∈
CRmod_d TL TU j J, , ,( )

L* j, L* j, TL j( )+← TL j( ) 0←

Uj *, Uj *, TU j( )+← TU j( ) 0←

CRdiv j( )
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These kernels now consist of a double-nested loop where the inner loop remains the same as
in Algorithm 3 and Algorithm 4 on page 30; the outer loop usually runs over all nodes  being
updated by a supernode 1. The temporary vectors  and  had to be enlarged to hold a
complete supernode.

Their counterparts in this section are denoted by  and ; both of length
 where  holds the size of the largest system supernode.

For each supernode being updated,  and  are loaded with the corresponding values from
the coefficient matrix  (denoted ) using the index vector .

When this is finished, block_supernode_0 determines the set of nodes  of supernode ,
which are updated by supernode  (see b0.2). This set is formed by reverse scanning all
column indices of supernode  and adding the corresponding node  of supernode  to the
set. At the same time, the algorithm marks those nodes , which can be computed using dense
operations. Then, the dense and indexed updates are performed where the order of execution is
merely implied by the underlying data structures (see b0.3). 

After all supernodes  updating supernode  have been processed, supernode  needs to
update itself (see b0.4). This is a dense operation involving each node of . Loop b0.4 shows
all operations necessary to complete the factorization of supernode . Unfortunately, these
operations cannot be applied to all nodes of  at the same time.

In Algorithm 11 on page 37 (block_supernode_1), an attempt was made to increase
computational efficiency by collecting the dense updates from all updating supernodes  and
process them in one separate loop (see b1.1 and b1.2). It is clear that this approach costs more
in terms of both storage and computation to implement. As a result, this algorithm is only
efficient if the amount of dense updates is (much) greater than the indexed one to trade off for
the additional storage and computing overhead.

1.  This node is sometimes split into nodes that can be updated densely and nodes that require indexed updating.

j
K tL tU

TL TU

MAXCOL 1+( )*MAXSUP MAXSUP
TL TU

A A*,j Aj *,⁄ imap

j J
K

K j J
j

K J J
J

J
J

K
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Algorithm 11 block_supernode_1

Algorithm 12 on page 38 (block_supernode_2) is designed so that it does not need to
perform any indexed updates. Primarily, the matrix elements of supernode  are stored into
factor storage using the index map  (see b2.1). In the next loop over all updating supernodes

, first, another index vector  is set up. Vector  comprises the relative indices of supernode
’s column structure in relation to supernode ’s column structure.  provides an offset

from the bottom of a node  of , which maps the -th element of a node of  to the
corresponding position within . The index vector  can, therefore, be regarded as a compact
form of  applied to some supernode  updating  (see b2.2). 

After  is set up, the contribution of supernode K to the factorization of supernode  is
accumulated as a dense operation in the temporary work arrays  and  as a dense
operation. The result is then scattered and added into factor storage using  (see b2.3 and
b2.4)1.

1. Internally, the algorithm is more sophisticated at this point, since it knows which K shares the same sparsity pattern
as J and then adds the contents of TL and TU with stride one.

for  to  do
set up vector 

for all  updating  do
determine all  being updated by (b1.1)
and collect dense updates

end for
for all dense updates do (b1.2)

end for
for  do

end for
end for

TL 0← TU 0← im 0←
J 1= NS

im

TL[ ]
im

A* J,←

TU[ ]
im

AJ *,←

K J
j J∈ K

CRmod_i TL TU im J K, , , ,( )

CRmod_d TL TU J K, , ,( )

j J (in order)∈
CRmod_d TL TU j J, , ,( )

L* j, L* j, TL j( )+← TL j( ) 0←

Uj *, Uj *, TU j( )+← TU j( ) 0←

CRdiv j( )

J
im

K ri ri
K J rik

j J k K
j ri

im K J

ri J
TL TU

ri
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Finally, the factorization of supernode  is completed by dense computations in factor storage
(see b2.5). The algorithm is most efficient when there are only a few large supernodes updating
another supernode. Otherwise, memory access penalties will decrease performance. 

Algorithm 12 block_supernode_2

Algorithm 13 on page 39 (block_supernode_3) is a variant of block_supernode_2. In
this case, the second index map  is omitted and indirect addressing is used explicitly (see
b3.1). Furthermore, a modified version of the CRmod_{d,i} kernels is used. In the algorithms
previously presented, the products  and  are precomputed immediately after
setting up the index map  and their results are stored in a temporary work space for later use.
This has been changed for algorithms block_supernode_3 and block_supernode_4 (see
Algorithm 14 on page 39). Both algorithms use the kernels CRmod_d and CRmod_i as they are
depicted in Algorithm 3 on page 30. This leads to reduced memory requirements.
Consequently, algorithms block_supernode_3 and block_supernode_4 use less space
than the previously presented block supernode algorithms.

J

for  to  do
set up vector 

(b2.1)

for all  updating  do
determine all  being updated by (b2.2)
simultaneously setting up vector

(b2.3)

(b2.4)

end for
for  do

(b2.5)

end for
end for

TL 0← TU 0← im1 0←
J 1= NS

im

L* J,[ ]
im1

A* J,←

Uj *,[ ]
im1

AJ *,←

K J
j J∈ K

CRmod_d TL TU J K, , ,( )
L* J,[ ]

ri
L* J,[ ]

ri
TL+← TL 0←

UJ *,[ ]
ri

UJ *,[ ]
ri

TU+← TU 0←

j J (in order)∈
CRmod_d L* J, UJ *, j J, , ,( )
CRdiv j( )

ri

dk*Uk j, dk*Lj k,
im
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Algorithm 13 block_supernode_3 

Algorithm 14 block_supernode_4

for  to  do
set up vector 

for all  updating  do
determine all  being updated by 
simultaneously setup vector 

(b3.1)

end for
for  do

end for
end for

TL 0← TU 0← im 0←
J 1= NS

im

L* J,[ ]
im

A* J,←

Uj *,[ ]
im

AJ *,←

K J
j J∈ K

ri
CRmod_d TL TU J K, , ,( )

L* J,[ ]
imind

L* J,[ ]
imind

TL+← TL 0←

UJ *,[ ]
imind

UJ *,[ ]
imind

TU+← TU 0←

j J (in order)∈
CRmod_d L* J, UJ *, j J, , ,( )
CRdiv j( )

for  to  do
set up vector 

for all  updating  do
determine all  being updated by 

(b4.1)
end for
for  do

end for
end for

TL 0← TU 0← im 0←
J 1= NS

im

TL[ ]
im

A* J,←

TU[ ]
im

AJ *,←

K J
j J∈ K

CRmod_i TL TU im J K, , , ,( )

j J (in order)∈
CRmod_d TL TU j J, , ,( )

L* j, L* j, TL j( )+← TL j( ) 0←

Uj *, Uj *, TU j( )+← TU j( ) 0←

CRdiv j( )
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Part III ILS

This part contains chapters regarding the iterative linear solver ILS and is intended for 
users of Sentaurus Device, Sentaurus Process, and Sentaurus Interconnect:

Chapter 5 Using ILS on page 45 describes how to select ILS in Sentaurus Device, 
Sentaurus Process, and Sentaurus Interconnect, and how to control the parallel 
execution.

Chapter 6 Customizing ILS on page 51 describes the parameters of ILS.





CHAPTER 5 Using ILS

The package ILS (iterative linear solver) is a library to solve sparse
linear systems iteratively.

Overview

ILS contains several iterative methods and different kinds of preconditioner. Recent techniques
to reorder and scale the linear systems are used in the package to achieve good convergence
results and high performance.

On shared-memory architectures, the iterative solver can be run in parallel. Similar techniques
to those in direct methods are used to achieve good accelerations. The parallelization of ILS is
performed with OpenMP [1], which is an industry standard for parallel programming on
shared-memory multiprocessor (SMP) systems. Most vendors of shared-memory architectures
support this standard.

A parallel version of ILS is available on Red Hat Enterprise Linux (64-bit).

Multiple cores on machines that support hyperthreading are treated in the same way as multiple
CPUs.

Selecting ILS in Sentaurus Device

You can enable ILS in Sentaurus Device by specifying:

Math {
...
Method = Blocked SubMethod = ILS
ILSrc = "

set (...) {
iterative (...);
preconditioning (...);
ordering (...);
options (...);

};
...

"
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Selecting ILS in Sentaurus Device
WallClock
...

}

For single-device simulations only, it is also possible to specify Method=ILS instead of
Method=Blocked SubMethod=ILS.

ILS accepts options that can be specified in parentheses: ILS (<options>). Table 3 lists the
available options. 

The optional ILSrc statement allows you to specify all ILS options within the Math section of
Sentaurus Device. If the ILSrc statement is missing, Sentaurus Device uses the following
built-in defaults:

set (1) { // default
iterative (gmres(100), tolrel=1e-8, tolunprec=1e-4, tolabs=0, maxit=200);
preconditioning (ilut(0.001,-1));
ordering (symmetric=nd, nonsymmetric=mpsilst);
options (compact=yes, verbose=0, refineresidual=0);

};

set (2) { // improved accuracy for AC analysis
iterative (gmres(150), tolrel=1e-11, tolunprec=1e-8, tolabs=0, maxit=300);
preconditioning (ilut(0.0001,-1), left);
ordering (symmetric=nd, nonsymmetric=mpsilst);
options (compact=yes, verbose=0, refineresidual=1);

};

set (3) { // for SHE distribution model
iterative (gmres(150), tolrel=1e-11, tolunprec=1e-8, tolabs=0, maxit=150);
preconditioning (ilut(0.0001,-1));
ordering (symmetric=rcm, nonsymmetric=mpsilst);
options (compact=yes, verbose=0, refinebasis=1);

};

set (4) { // for SHECoupled statement
iterative (gmres(150), tolrel=1e-7, tolunprec=1e-4, tolabs=0, maxit=150);
preconditioning (ilut(0.001,-1));
ordering (symmetric=rcm, nonsymmetric=mpsilst);
options (compact=yes, verbose=0, refinebasis=1, refineresidual=0);

};

Table 3 ILS options

Option Description Default

MultipleRHS ILS solves linear systems with multiple right-hand sides. This option applies 
to AC analysis only. It may produce minor performance improvements or 
slightly more accurate results.

off

Set=<integer> Uses the ILS options from the specified set. 1
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Selecting ILS in Sentaurus Device
The parameters in set 1 give good results for most simulations.

Sets 1–9 are reserved for the built-in defaults. User-defined sets can be assigned to numbers 10
and higher.

If an ILSrc statement is specified in the Math section, it also must include the default sets as
documented here.

To improve the accuracy for AC analysis, set 2 may be selected as follows:

Math {
ACMethod = Blocked
ACSubMethod = ILS (Set=2)
...

}

The keyword WallClock can be used to print the wallclock times of the Newton solver. This
is useful and recommended when investigating the performance of parallel execution.

The number of threads for ILS can be specified in the Math section of the Sentaurus Device
command file as follows:

Math {
...
Number_of_Threads = 2
Number_of_Solver_Threads = 2
...

}

The keyword Number_of_Threads defines the number of threads for both the matrix
assembly and ILS, whereas Number_of_Solver_Threads only defines the number of
threads for ILS itself. Instead of a constant number of threads, it is possible to specify
maximum. In this case, the number of threads is set equal to the number of processors available
on the execution platform.

If no specification appears in the Math section, Sentaurus Device will check the values of the
following UNIX environment variables (in order of decreasing priority):

SDEVICE_NUMBER_OF_SOLVER_THREADS
SDEVICE_NUMBER_OF_THREADS
SNPS_NUMBER_OF_THREADS
OMP_NUM_THREADS

For example, to obtain parallel execution with two threads, you can define the environment
variable OMP_NUM_THREADS as follows (in a C shell):

setenv OMP_NUM_THREADS 2
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In a Bourne shell, the equivalent commands are:

OMP_NUM_THREADS=2
export OMP_NUM_THREADS

Selecting ILS in Sentaurus Process

You can enable ILS in Sentaurus Process by specifying the following commands for either
diffusion simulations or mechanics simulations, respectively:

math diffuse dim=3 ils

math flow dim=3 ils

Use dim=3 for 3D simulations or dim=2 for 2D simulations.

You can set the parameters of the ILS solver using the pdbSet commands. For details, see
Sentaurus™ Process User Guide, Setting Parameters of the Iterative Solver ILS on page 884.

The default set of ILS parameters used in Sentaurus Process is specified in the parameter
database. These default parameters give good results for most simulations.

You can fine-tune some default parameters to improve the convergence. In such cases, it is
recommended to fine-tune the ILS.ilut.tau parameter, or the ILS.gmres.restart
parameter, or both.

The ILS.ilut.tau parameter can be reduced, for example, from 2.e-3 (the default value for
3D diffusion) to 2e-4, all the way to 1e-5. You can increase the parameter
ILS.gmres.restart from 60 to 100 (the default value is 60 for 3D diffusion). However,
these two actions will increase memory use.

You can use the pdbSet command to activate the parameter ILS.refine.sts, which
improves the convergence of the iterative mechanical solver STS3 in 3D simulations. The
default value of ILS.refine.sts is 0, while the values 1 and 2 activate improvements made
in Version H-2013.03 and Version I-2013.12, respectively. For example:

pdbSet Math Flow 3D ILS.refine.sts 2

Examples

pdbSet Math diffuse 3D ILS.ilut.tau 5e-5

pdbSet Math diffuse 2D ILS.ilut.tau 1e-5

pdbSet Math diffuse 3D ILS.gmres.restart 80
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The number of threads must be specified in the math command, for example:

math numThreadsILS=2

For better ILS parallelization, you can specify the pdbSet command to activate the parameter
ILS.hpc.mode – a high-performance computation mode that addresses multicore computers.
This parameter helps to boost a parallel diffuse solver in Sentaurus Process when using many
threads: 

■ The default value is 0 (no activation). 

■ A value of 1 activates algorithmic improvements made in Version E-2010.12.

■ A value of 2 activates parallel improvements made in Versions F-2011.09 and G-2012.06.

■ A value of 3 activates improvements made in Versions H-2013.03 and I-2013.12.

■ A value of 4 activates algorithmic improvements made in Version J-2014.09, K-2015.06,
L-2016.03, M-2016.12, and N-2017.09:

pdbSet Math diffuse 3D ILS.hpc.mode 4

NOTE For Sentaurus Process, ILS no longer depends on the OpenMP
environment variable OMP_NUM_THREADS, and you no longer need to
specify this variable.

Selecting ILS in Sentaurus Interconnect

You can enable ILS in Sentaurus Interconnect by specifying the following commands for either
solve steps or mechanics simulations, respectively:

math compute dim=3 ils

math flow dim=3 ils

Use dim=3 for 3D simulations or dim=2 for 2D simulations.

You can change the parameters of the ILS solver using the pdbSet commands. For details, see
Sentaurus™ Interconnect User Guide, Setting Parameters of the Iterative Solver ILS on
page 330.

The default set of ILS parameters used in Sentaurus Interconnect is specified in the parameter
database. These default parameters give good results for most simulations.

You can fine-tune some default parameters to improve the convergence. In such cases, it is
recommended to fine-tune the ILS.ilut.tau parameter, or the ILS.gmres.restart
parameter, or both.
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The ILS.ilut.tau parameter can be reduced, for example, from 2.e-3 (the default value for
3D simulations) to 2e-4, all the way to 1e-5. You can increase the parameter
ILS.gmres.restart to 120. However, these two actions will increase memory use.

Examples

pdbSet Math compute 3D ILS.ilut.tau 5e-5

pdbSet Math compute 2D ILS.ilut.tau 1e-5

pdbSet Math compute 3D ILS.gmres.restart 120

The number of threads must be specified in the math command, for example:

math numThreadsILS=4

For Sentaurus Interconnect, some ILS parameters have been tightened to provide better and
faster convergence of iterative solvers (refer to the file sinterconnect/sinterconnect/
TclLib/SINTERCONNECT.models):

pdbSet Math compute 1D ILS.refine.residual 3
pdbSet Math compute 2D ILS.refine.residual 2
pdbSet Math compute 3D ILS.refine.residual 2
pdbSet Math compute 1D ILS.ilut.tau 2.e-5
pdbSet Math compute 2D ILS.ilut.tau 5.e-5
pdbSet Math Flow 3D ILS.ilut.tau 1.0e-4

You can use the pdbSet command to activate the parameter ILS.refine.sts, which
improves the convergence of the iterative mechanical solver STS3 in 3D Sentaurus
Interconnect simulations. The default value of ILS.refine.sts is 0, while the values 1 and
2 activate improvements made in Version H-2013.03 and Version I-2013.12, respectively. For
example:

pdbSet Math Flow 3D ILS.refine.sts 2

References
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This chapter discusses the customization that is possible for ILS.

Configuration

In Sentaurus Process and Sentaurus Interconnect, the parameters of ILS can specified using the
pdbSet commands (see Chapter 5 on page 45).

In Sentaurus Device, the behavior of ILS can be controlled with an ILSrc statement in the
Math section, for example:

Math {
Method = Blocked SubMethod = ILS
ILSrc = "
set (1) {

iterative (gmres(100), tolrel=1e-8, tolunprec=1e-4, tolabs=0,
maxit=200);

preconditioning (ilut(0.001,-1));
ordering (symmetric=nd, nonsymmetric=mpsilst);
options (verbose=0);

};
"

}

In ILS, the solution of a linear system consists of four steps:

■ Computation of a nonsymmetric ordering to improve the condition of the matrix.

■ Determination of a symmetric ordering to reduce the fill-in in the preconditioner.

■ Creation of a preconditioner to accelerate the convergence in the iterative method.

■ Calling an iterative method.

For each step, there are several options, which are described in the following sections. ILS
allows you to define sets of parameters. A configuration string defines one or more sets. Each
set is identified with a number. In Sentaurus Device, you can select a set with the following line
in the command file:

Method = Blocked SubMethod = ILS (set = <integer>)
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Nonsymmetric Ordering
If a set is omitted, the number one (1) is taken as default. The syntax of a set specification is:

set( <integer> ) {
[ parent( <integer> ); ]
[ iterative block ]
[ preconditioning block ]
[ ordering block ]
[ options block ]

};

where <...> represents a subspecification, [...] is an optional block, and ‘|’ defines a
choice. The meaning of parent(i) is that all of the parameters of the set i are copied into the
current set. This instruction can be used if two similar sets are specified, with only minor
changes between them.

NOTE The source set must be defined beforehand and parent should be the
first statement of a set.

A description of the four other blocks is given in the following sections.

Nonsymmetric Ordering

The first step in the solution process of a linear system is the computation of a nonsymmetric
ordering and scaling [1][2][3], such that the reordered and scaled system is better conditioned.
The three different options for this step are the default version is column oriented (MPSILST),
the second version is row oriented (MPSILS), and the third possibility is to omit the
nonsymmetric ordering by specifying none. The syntax to select the nonsymmetric ordering
is given in the next section, Symmetric Ordering.

Symmetric Ordering

As in direct methods, the linear systems are reordered before the preconditioner is computed.
The purpose of the symmetric ordering is twofold. The quality of the preconditioner depends
on the ordering. On the other hand, the ordering also influences the amount of fill-in in the
preconditioners and, therefore, the time for the application of the preconditioner in the iterative
method. The following orderings are available in ILS:

■ Reverse Cuthill–McKee (RCM) [4]

■ Multiple minimum degree (MMD) [5]

■ Multilevel nested dissection (ND) [6]

■ A combination of ND and RCM (NDRCM)
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The ordering to be used depends on the preconditioner and an application. The best choice for
an ILU(0) factorization is often the RCM ordering [7][8]. For an incomplete LU factorization,
where the dropping is entirely based on the numeric values (ILUT), the ND and NDRCM
orderings are preferable. The approximate inverse preconditioners are independent of a
symmetric ordering and, therefore, this step can be omitted for these preconditioners.

In parallel mode, it is mandatory to use either ND (default) or NDRCM, since these orderings
allow for the parallel computation and application of incomplete LU factorizations. It is also
possible to use MMD for the parallel solver, but the performance is better using the other
orderings.

The syntax is:

ordering ( [ symmetric = < none | mmd | nd | ndrcm | rcm > ]
[, nonsymmetric = < none | mpsils | mpsilst > ] );

Example

ordering( symmetric=nd, nonsymmetric=mpsilst );

Preconditioners

Iterative methods are usually combined with preconditioners to improve convergence rates.
Especially for ill-conditioned matrices, iterative methods fail without the application of a
preconditioner. Several preconditioners exist in ILS, from simple techniques such as a diagonal
preconditioner, over different incomplete LU factorizations, to sparse approximate inverse
preconditioners.

An overview of the syntax to select a preconditioner is presented and the various possibilities
are described.

The syntax is:

preconditioning( < none | diagonal | ilu0 |
ilut( <double>, <integer> ) |
spai0 | spai1 |
spai( <double>, <integer>, <integer>, <integer> ) >
[, < left | right > ] );

If none is specified, the linear system is solved without a preconditioner. If a preconditioner is
used, it can be applied from either the left (default) or right by specifying the according
option. In the former case, the unpreconditioned residuals and the preconditioned residuals do
not correspond, but the error is the same for both the preconditioned and unpreconditioned
linear system. In the latter case, the situation is reversed.
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Example

preconditioning( ilut(0.001,-1), right );

Incomplete LU Factorizations

Direct solvers for linear systems decompose a given matrix  into triangular factors  and ,
whose product is equal to the original matrix, that is, . One of the main concerns of
direct methods is the high demand of memory to perform the factorization. As the factors 
and  are not computed exactly, but some elements are disregarded, it is more economical to
work with them.

Several strategies have been proposed in the literature to determine, which elements should be
dropped or kept. In ILS, three different incomplete LU factorizations are implemented: ILU(0),
ILUT( , ), and ILUPT( , ). They are described in Table 4. Parallel versions of the first two
incomplete factorizations exist. ILUPT is currently not parallelized.

Sparse Approximate Inverses

These preconditioners approximate directly the inverse of the given linear system. Three
different versions exist in ILS: SPAI(0), SPAI(1), and SPAI( ) [9]. The difference between
these preconditioners is their structure. The first consists solely of a diagonal, the second has
the same structure as the given linear system, and the structure of the third one is computed
dynamically during the computation of the approximation. 

Table 4 Incomplete LU factorizations

Factorization Description

ILU(0) The simplest incomplete LU factorization, where all elements but the entries from the 
linear system are dropped.

ILUT( , ) Incomplete LU factorization, where the dropping of elements is based on the values. 
Elements smaller than  are dropped during the elimination. The second parameter is 
intended to limit the number of elements in a row in the triangular factors, but currently 
this value is ignored. The smaller  is, the more accurate the preconditioner becomes. 
However, the computation, memory requirements, and application of the preconditioner 
is increasing in this case.

ILUPT( , ) A combination of ILU( ) (generalization of ILU(0)) and ILUT. Increasing  or 
lowering  improves the accuracy of the preconditioner, but the same consequences as 
for lowering  in ILUT( , ) hold. Note that the parameters  and  are reversed in the 
configuration string.
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The implementation of SPAI( ) requires four arguments: spai(epsilon, bs, ns, mn).
They are described in Table 5. These preconditioners have the advantage that they can be
computed and applied in parallel. However, their quality is not good enough to use them for
semiconductor device simulations. For this reason, they are currently not available as parallel
versions.

Other Preconditioners

A simple diagonal preconditioner is also available in ILS. The preconditioner is equal to the
inverse of the diagonal of the given matrix.

Iterative Methods

Unsymmetric sparse linear systems can be solved with different Krylov subspace methods.

The most famous methods are the biconjugate gradients stabilized (BICGSTAB) method [10]
and the generalized minimal residual (GMRES(m)) method [11], which are both implemented
in ILS. Usually, they give the best results in terms of the number of iterations and the time to
compute the solution. In semiconductor device simulations, GMRES demonstrates better
reliability.

NOTE In Sentaurus Device, the default iterative solver is GMRES(100).

Three additional general iterative methods, CGS [12], BiCGxMR2 [13], and FGMRES(m)
(FlexibleGMRES), are available (use the keyword bicgxmr2 to select the second one).
Additionally for Sentaurus Process, special iterative methods, STCG2 and STS2 for solving 2D
stress problems, as well as STCG3 and STS3 for solving 3D stress problems, are available. The
stress solvers STS2 and STS3, which are based on improved orderings and preconditioners, are
recommended for mechanics simulations in Sentaurus Process.

NOTE In Sentaurus Process, the default iterative solver for 3D diffusion is
GMRES(60) and, for 3D stress problems, the default is STS3.

Table 5 Parameters for SPAI( )

Parameter Description

bs Block size to use.

epsilon Threshold to limit fill-in.

mn Maximum number of columns to add during one improvement step.

ns Number of improvement steps.

ε

ε
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In the GMRES(m) method, the parameter m, which is the number of backvectors, is required
to limit the memory demands of the method. After m iterations, GMRES is restarted. The
default value m is 100 in Sentaurus Device, and m is 50 in Sentaurus Process. Larger values of
m usually help GMRES to converge, but at the expense of higher memory and execution time.

If there are convergence problems, it is recommended to decrease the threshold parameter
<eps> or to increase the number of backvectors m or both. Conversely, in the case of huge
simulations, m can be decreased to fit the available memory of the computer.

The syntax is:

iterative ( < bicgstab | bicgxmr2 | cgs | fgmres(<integer>) | 
gmres(<integer>) | stcg2 | stcg3 | sts2 | sts3 >

[, tolrel = <double> ]
[, tolabs = <double> ]
[, tolunprec = <double> ]
[, maxit = <integer> ] );

Different stopping criteria are available for the iterative methods. If one of these is satisfied, the
iterative method stops. The first possibility is to specify the relative tolerance of the norm of
the preconditioned residual, that is, the iteration stops if the norm of the preconditioned
residual is reduced by tolrel. The second criterion checks if the preconditioned residual
becomes smaller than tolabs. With the option tolunprec, the reduction of the
unpreconditioned residual can be monitored (the left preconditioned gmres controls only a
preconditioned residual). This option makes sense only if the preconditioner is applied from
the left. Otherwise, the unpreconditioned and preconditioned residuals are the same and,
therefore, this option corresponds to the first one. A limit of the number of iterations can be
specified with maxit.

Table 6 lists the default values for the different stopping criteria.

Example

iterative( gmres(100), tolrel=1e-8, tolunprec=1e-4, maxit=200 );

Table 6 Default values for stopping criteria for iterative methods

Option Value Option Value

maxit 200 tolrel 1e-8

tolabs 0 tolunprec 1e-4
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There are additional options that you can specify for the linear solver. One of these should be
used if the linear system to be solved contains many entries that are numerically zero.
Especially for simulations with Sentaurus Device, this option should be switched on. The
default of this option is compact=yes.

The option refineresidual=m with a specified positive m will force the GMRES method to
perform m additional iterations and, on exiting, will improve iteratively the final residual for the
original (unpreconditioned/non-reordered) linear system. This option may be recommended if
there are convergence problems in Sentaurus Device or Sentaurus Process. 

It is also useful in Sentaurus Process when diffusion steps converge in a few (for example, 2–3)
iterations. In such a situation, specifying additional m=1,2 iterations may improve the accuracy
of the solution. The default of this option is refineresidual=0.

The option refineiterate=1 is used to improve the final iteration, that is, the computed
approximate solution of the original (unpreconditioned/non-reordered) linear system. This
option differs from the option refineresidual=m, but it is recommended if there are
convergence problems in Sentaurus Device or Sentaurus Process. The default of this option is
refineiterate=0.

The option refinebasis=1 forces a partial reorthogonalization in the GMRES, helping to
improve the orthonormality of the backvectors and to obtain a more accurate solution. It may
be recommended if device simulations have convergence problems. In typical cases, these extra
refinements are not required, and the default of this option is refinebasis=0.

The verbosity of ILS is controlled with the option verbose. With a value of 0, all output is
suppressed. If a value of 1 is specified, the accumulated numbers of calls, iterations, and
execution times are printed to standard output. The most basic information is printed with
verbose=2 and this should be sufficient for the needs of most users. Higher values print
additional information about the solution and preconditioners.

The syntax is:

options([ compact=<no|yes> [, refineresidual=<integer>] 
[, verbose=<integer>] ]);

Examples

options( compact=yes, verbose=1 );

options( compact=yes, refineresidual=2, verbose=1 );
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General Remarks

The parser of the configuration string is case insensitive. Comments can be made in the
configuration string, as in a C++ or C source file, that is, text that follows // up to the end of
the line is ignored. Text between /* and */ is disregarded.
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