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About This Guide

The Synopsys Sentaurus™ Interconnect tool is an advanced 1D, 2D, and 3D simulator suitable
for IC interconnect reliability analysis. It features modern software architecture and
state-of-the-art models to address current and future interconnect technologies, and is capable
of mechanical, thermal, and electrical analysis.

Sentaurus Interconnect simulates process simulation steps, etching, and deposition along with
mechanical, thermal, and electrical analyses in 1D, 2D, and 3D. Three-dimensional capabilities
include meshing of boundary files using the MGOALS module, and an interface to Sentaurus
Structure Editor, which is the 3D geometry editing tool based on the ACIS solid modeling
library.

Sentaurus Interconnect uses the Alagator scripting language that allows users to implement and
solve their own nonmechanics partial differential equations. Alagator can be used to solve
various electrical and thermal analysis equations. Three-dimensional simulations are handled
in exactly the same way as for one dimension and two dimensions. Therefore, all of the
advanced models and user programmability available in one dimension and two dimensions
can be used in three dimensions.

Related Publications

For additional information, see:

■ The TCAD Sentaurus release notes, available on the Synopsys SolvNet® support site (see
Accessing SolvNet on page xx).

■ Documentation available on SolvNet at https://solvnet.synopsys.com/DocsOnWeb.

Conventions

The following conventions are used in Synopsys documentation. 

Convention Description

Blue text Identifies a cross-reference (only on the screen).

Bold text Identifies a selectable icon, button, menu, or tab. It also indicates the name of a field or an 
option.

Courier font Identifies text that is displayed on the screen or that the user must type. It identifies the names 
of files, directories, paths, parameters, keywords, and variables.
Sentaurus™ Interconnect User Guide xix
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About This Guide 
Customer Support
Customer Support

Customer support is available through the Synopsys SolvNet customer support website and by
contacting the Synopsys support center.

Accessing SolvNet

The SolvNet support site includes an electronic knowledge base of technical articles and
answers to frequently asked questions about Synopsys tools. The site also gives you access to
a wide range of Synopsys online services, which include downloading software, viewing
documentation, and entering a call to the Support Center.

To access the SolvNet site:

1. Go to the web page at https://solvnet.synopsys.com.

2. If prompted, enter your user name and password. (If you do not have a Synopsys user name
and password, follow the instructions to register.)

If you need help using the site, click Help on the menu bar.

Contacting Synopsys Support

If you have problems, questions, or suggestions, you can contact Synopsys support in the
following ways:

■ Go to the Synopsys Global Support Centers site on synopsys.com. There you can find
e-mail addresses and telephone numbers for Synopsys support centers throughout the
world.

■ Go to either the Synopsys SolvNet site or the Synopsys Global Support Centers site and
open a case online (Synopsys user name and password required).

Italicized text Used for emphasis, the titles of books and journals, and non-English words. It also identifies 
components of an equation or a formula, a placeholder, or an identifier.

Menu > Command Indicates a menu command, for example, File > New (from the File menu, select New).

Convention Description
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Contacting Your Local TCAD Support Team Directly

Send an e-mail message to:

■ support-tcad-us@synopsys.com from within North America and South America.

■ support-tcad-eu@synopsys.com from within Europe.

■ support-tcad-ap@synopsys.com from within Asia Pacific (China, Taiwan, Singapore,
Malaysia, India, Australia).

■ support-tcad-kr@synopsys.com from Korea.

■ support-tcad-jp@synopsys.com from Japan.
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CHAPTER 1 Getting Started

This chapter provides an overview of the functionality of Sentaurus
Interconnect and describes how to start the tool.

The TCAD Sentaurus Tutorial provides a range of projects to assist users to work with the tool.
To access the tutorial, go to:

$STROOT/tcad/$STRELEASE/Sentaurus_Training/index.html

where STROOT is an environment variable that indicates where the Synopsys TCAD
distribution has been installed, and STRELEASE indicates the Synopsys TCAD release number.

Overview

Sentaurus Interconnect is a complete and highly flexible, multidimensional, IC interconnect
reliability analysis environment. With its modern software architecture and extensive breadth
of capabilities, Sentaurus Interconnect is a state-of-the-art simulation tool. It offers unique
predictive capabilities for modern silicon and nonsilicon technologies such as analyzing the
reliability of semiconductor interconnect structures. In particular, Sentaurus Interconnect
identifies hot spots in interconnect structures that are susceptible to void formation,
de-bonding, and cracking due to physical phenomena such as stress and temperature
excursions. These reliability concerns arise from both the manufacturing process and circuit
operation.

Sentaurus Interconnect accepts as input a sequence of commands that is either entered from
standard input (that is, at the command prompt) or composed in a command file. Simulations
are performed by issuing a sequence of commands that corresponds to the individual process
steps or analysis modes. In addition, several commands allow you to select physical models
and parameters, grid strategies, and graphical output preferences, if required. You should place
parameter settings in a separate file, which is sourced at the beginning of command files using
the source command.

In addition, the Alagator scripting language allows you to describe and implement your own
models, and thermal and electrical analysis equations.
Sentaurus™ Interconnect User Guide 1
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Setting Up the Environment

The STROOT environment variable is the TCAD Sentaurus root directory, and you must set this
variable to the installation directory of TCAD Sentaurus. The STRELEASE environment
variable can be used to specify the release of the software to run, for example, N-2017.09. If
STRELEASE is not set, the default version is used which is usually the last version installed.

To set the environment variables:

1. Set the TCAD Sentaurus root directory environment variable STROOT to the TCAD
Sentaurus installation directory, for example:

* Add to .cshrc

setenv STROOT <Sentaurus directory>

* Add to .profile, .kshrc, or .bashrc

STROOT=<Sentaurus directory>; export STROOT

2. Add the <Sentaurus directory>/bin directory to the user path.

For example:

* Add to .cshrc:

set path=(<Sentaurus directory>/bin $path)

* Add to .profile, .kshrc, or .bashrc:

PATH=<Sentaurus directory>/bin:$PATH
export PATH

Starting Sentaurus Interconnect

You can run Sentaurus Interconnect in either interactive mode or batch mode. In interactive
mode, a whole process flow can be simulated by entering commands line-by-line as standard
input. To start Sentaurus Interconnect in interactive mode, enter the following on the command
line:

> sinterconnect

Sentaurus Interconnect displays version and host information, followed by the Sentaurus
Interconnect command prompt. You now can enter Sentaurus Interconnect commands at the
prompt:

sinterconnect>
2 Sentaurus™ Interconnect User Guide
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Using a Command File
This is a flexible way of working with Sentaurus Interconnect to test individual process steps
or short sequences, but it is inconvenient for long process flows. It is more useful to compile
the command sequence in a command file, which can be run in batch mode or inside Sentaurus
Workbench.

To run Sentaurus Interconnect in batch mode, load a command file when starting Sentaurus
Interconnect, for example:

> sinterconnect input.cmd

Starting Different Versions of Sentaurus Interconnect

To list all available releases in the TCAD Sentaurus installation directory, enter:

> sinterconnect -releases

To list all versions in a particular release directory, enter:

> sinterconnect -versions

You can select a specific release and version number of Sentaurus Interconnect using the -rel
and -ver options as follows:

> sinterconnect -rel <rel_number> -ver <version_number>

For example:

> sinterconnect -rel M-2016.12

The following command starts the simulation of nmos_sis.cmd using version 1.2 of release
M-2016.12 as long as this version is installed:

> sinterconnect -rel M-2016.12 -ver 1.2 nmos_sis.cmd

Using a Command File

Instead of entering Sentaurus Interconnect commands line-by-line, the required sequence of
commands can be saved to a command file, which can be written entirely by users. To save time
and reduce syntax errors, you can copy and edit examples of command files available from the
TCAD Sentaurus Tutorial or in this user guide.

If a command file has been prepared, run Sentaurus Interconnect by typing the following
command:

sinterconnect <command_filename>
Sentaurus™ Interconnect User Guide 3
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Using a Command File
Alternatively, you can automatically start Sentaurus Interconnect through the Scheduler in
Sentaurus Workbench. The command file has the extension .cmd. (This is the convention used
in Sentaurus Workbench.)

The command file is checked for correct syntax and then commands are executed in sequence
until the simulation is stopped by the command exit or the end of the file is reached. Since
Sentaurus Interconnect is written as an extension of the tool command language (Tcl), all Tcl
commands and functionalities (such as loops, control structures, creating and evaluating
variables) are available in command files. This results in some limitations in syntax control if
the command file contains complicated Tcl commands. You can switch off syntax-checking
with the command-line option -n, for example:

sinterconnect -n commandfile

Sentaurus Interconnect ignores character strings starting with a hash (#) character (although
Sentaurus Workbench interprets # as a special character for conditional statements). Therefore,
this special character can be used to insert comments in the simulation command file.

A file with the extension .log is created automatically whenever Sentaurus Interconnect is run
from a command line, that is, outside the Sentaurus Workbench environment. This file contains
the runtime output, which is generated by Sentaurus Interconnect and is sent to standard output.
When Sentaurus Interconnect is run using a command file <root_filename>_sis.cmd, the
output file is named <root_filename>_sis.log.

When Sentaurus Interconnect is run from Sentaurus Workbench, the output file is named
<root_filename>_sis.out.

For a complete list of commands, see Appendix A on page 361.
4 Sentaurus™ Interconnect User Guide
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CHAPTER 2 Working With the Simulator

This chapter provides an overview of how Sentaurus Interconnect
operates.

The syntax and features of the command file are described, followed by an overview of the
parameter database, which contains all of the model parameters, and technical details regarding
the running of the tool.

For new users, see Interactive Mode on page 12, Syntax for Creating Command Files on
page 16, and Creating and Loading Structures and Data on page 33. For advanced users who
need to adjust model parameters, see Parameter Database on page 21.

Overview

To familiarize users with the different formatting used in this documentation, input commands
from either a command file or the command line are presented this way:

sinterconnect -v

An example of output is:

****************************************************************************
*** Sentaurus Interconnect ***
***                          Version N-2017.09 ***
***                         (1.7, RHEL64) ***
***                                                                      ***
***                       Copyright (C) 1993-2002                        ***
***          The board of regents of the University of Florida           ***
***                       Copyright (C) 1994-2017 ***
***                            Synopsys, Inc.                            ***
***                                                                      ***
*** This software and the associated documentation are confidential     ***
*** and proprietary to Synopsys, Inc. Your use or disclosure of this   ***
*** software is subject to the terms and conditions of a written        ***
*** license agreement between you, or your company, and Synopsys, Inc. ***
****************************************************************************

Compiled Fri Jul 14 23:54:02 PDT 2017 on tcadprod8

      Started at: Tue Jul 11 10:25:16 2017 (CEST)
       User name: jbrowne
Sentaurus™ Interconnect User Guide 5
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Interactive Visualization
       Host name: topo2
             PID: 25333
    Architecture: x86_64
Operating system: Linux rel. 2.6.18-274.12.1.el5 ver. #1 SMP Tue Nov 8 21:37:35 
EST 2011

Interactive Visualization

The options for interactive visualization in Sentaurus Interconnect are:

■ An X-Windows-based graphical display (which will be phased out in future releases)

This viewer can be used for 1D and 2D simulations, and is launched with either the
plot.1d or plot.2d command (see plot.1d on page 546 and plot.2d on page 549).

■ An interface to Sentaurus Visual (which will eventually replace the X-Windows display)

Interface to Sentaurus Visual

The interface to Sentaurus Visual can visualize 1D, 2D, and 3D structures and data evolution
while the simulation progresses (see Figure 1 on page 7). The interface is initiated and
controlled from Sentaurus Visual, including control of the simulation. 

Table 1 Buttons of the Simulation Control panel of Sentaurus Visual

Button Description

Load: Load a command file.
When a command file is loaded, it is thereafter referred to as the flow.

Run: Run the flow.
Use this button either to start running the flow or to continue execution after pausing the flow. The 
simulation continues at the location of the cursor (line with a light-yellow background).

Pause: Pause the running flow.
The pause occurs either when the currently executing step (command) is finished or, for a long-
running step, when the current time step is completed.

Reset: Reset the running flow.
The running flow stops, the connection to the simulator is terminated, and you return to the start of 
the flow.

Run Step: Run the next step in the flow.
When you click this button, either a single step (command) is executed or a group of commands 
enclosed in braces is executed. You must repeatedly click this button to execute the next steps.
6 Sentaurus™ Interconnect User Guide
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In addition, the graphics command can be used to control the plot settings in Sentaurus
Visual and to select which fields are visible (see graphics on page 428).

Figure 1 Interface to Sentaurus Visual: upper pane of Simulation Control panel shows 
command file and lower pane of Simulation Control panel shows log file

Save: Save the flow.

Save As: Save the flow under a new name.

Table 1 Buttons of the Simulation Control panel of Sentaurus Visual

Button Description
Sentaurus™ Interconnect User Guide 7
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Setting Up the Interface

To set up and to run the interface:

1. Launch Sentaurus Visual with the following command-line options:

> svisual -spi &

2. In Sentaurus Visual, choose Edit > Preferences.

3. In the User Preferences dialog box, expand the categories to Common > Miscellaneous.

4. In the Simulator group box:

a) In the Command field, type the tool binary as well as any command-line option
required, for example:

sinterconnect -n

b) In the Communication Option field, type --svi.

5. Click Save. 

Loading Command Files

To load a command file:

1. In the Simulation Control panel, click the Load button (see Figure 1 on page 7).

The Load File dialog box is displayed.

2. Select the command file to open.

3. Click Open.

In addition, a command file can be loaded from the command line using:

svisual -spi <filename>

Inserting Breakpoints in the Flow

To set breakpoints to pause the simulation at a particular step in the flow:

1. Click in the left margin, at the line corresponding to the step (command) where you want
the flow to stop.

A red circle marks the breakpoint (see Figure 2 on page 9).

2. Click the Run button to execute the entire flow or the Run Step button to execute individual
steps.
8 Sentaurus™ Interconnect User Guide
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NOTE You can set multiple breakpoints in a flow.

Deleting Breakpoints in the Flow

To delete a breakpoint:

■ Click the red circle in the left margin. 

Figure 2 Setting a breakpoint in the flow (red circle indicates location of breakpoint)

Indicating Status of Steps

In the Simulation Control panel, as the flow is being executed, a green triangle in the left
margin (in the same location as breakpoints) indicates the step that will be executed next. A red
triangle indicates the step that is currently being executed.

Already executed steps are indicated with a gray background. This part of the flow cannot be
changed further.

Breakpoint
Insertion

Breakpoint
Insertion
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In addition, wherever the cursor is in the flow, its position is indicated by highlighting the line
with a light yellow background.

Updating the Structure

In 3D simulations, two plots are shown with the titles ‘bulk’ and ‘boundary’ (see Figure 1 on
page 7). This is because, in 3D simulations, both the bulk and boundary are not always up to
date. The plot with its title in bold shows the last updated information. For example, if the
insert command is called in a 3D simulation, the boundary is updated; however, by default,
the mesh is not updated. After the insertion operation is completed, the title of the ‘boundary’
plot will be bold, and the title of the ‘bulk’ plot will not be bold.

Controlling the Interface to Sentaurus Visual With the 
graphics Command

To quickly visualize the evolution of a structure or data, the use of the graphics command is
not necessary. Simply launch the interface to Sentaurus Visual and adjust the plot settings in
Sentaurus Visual.

However, when setting up a flow for the first time or for calibration-type activities, the same
command file might need to be run and rerun many times. In these cases, it is convenient to use
the graphics command to specify the Sentaurus Visual plot settings directly into the
command file to avoid having to repeatedly change the plot settings in Sentaurus Visual for
each run.

Another case where the graphics command is needed is choosing the availability or selection
of nonstandard fields for visualization.

In general, graphics commands are executed in the usual sequential order as specified in the
command file; whereas, settings specified in Sentaurus Visual will be executed immediately.
In either case, the latest command to be executed will determine the current settings.

Unless otherwise specified, the arguments of the graphics command are independent and can
be used in any combination (see graphics on page 428).
10 Sentaurus™ Interconnect User Guide
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Command-Line Options

Table 2 lists the command-line options that are available in Sentaurus Interconnect. 

Table 2 Command-line options

Option Short name of option 
(if available)

Function

--batchMode -b Switches off graphics.

--diff Diff mode. To see differences in data and Sentaurus 
Interconnect parameter settings between two TDR files. 
Interpolation is used to compare results from different 
meshes. Usage:
sinterconnect --diff <file1> <file2>
where <file1> and <file2> are TDR files.

--FastMode -f Generates structure, no partial differential equation 
(PDE) solve, and so on.

--GENESISeMode -u Switches off log file creation.

--home <directory> -o <directory> Sets SIHOME to <directory>.

--noSyntaxCheck -n Switches off syntax check.

--pdb -p Runs the Parameter Database (PDB) Browser showing 
parameters as they are set during runtime. Includes 
default parameters and parameters from the command file 
if specified.

--ponly Same as --pdb, but only shows parameters set in the 
command file; does not show default parameters.

--quickSyntaxCheck -q Only checks syntax of branches that are true.

--svi Switches on the Sentaurus Visual interface mode. This 
option is usually specified in the User Preferences dialog 
box of Sentaurus Visual (see Setting Up the Interface on 
page 8).

--syntaxCheckOnly -s Only checks syntax, no execution.

--xml Switches on the creation of an XML-style marked-up log 
file for use in the TCAD Logfile Browser 
(see Utilities User Guide, Chapter 2 on page 5).

-v Prints header with version number.

-h Prints use and command-line options.
Sentaurus™ Interconnect User Guide 11
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Interactive Mode

Sentaurus Interconnect runs in interactive mode if no command file is given. In this mode,
commands can be entered (at the command prompt) line-by-line and are executed immediately.

It is useful to run Sentaurus Interconnect in the interactive mode for the following reasons:

■ When debugging Tcl code, the program does not quit if a Tcl error is found. The error is
displayed and you are prompted again for input. You can source a command file repeatedly
if required.

■ To easily obtain PDB parameter names and defaults with the pdbGet command.

■ To print the list of built-in functions with the help command, and to print the list of Tcl
procedures with the info procs command.

■ To obtain command parameter names and defaults for any built-in command by using the
params flag available in all built-in functions.

Another use of the interactive mode is to pause the simulation using the fbreak command.
When the simulation is paused in interactive mode, the state of the simulator can be queried
using a number of commands including grid, mater, and select. Pausing the simulation can
also be useful when using interactive graphics as described in Interactive Visualization on
page 6.

Fast Mode

When working on a new process flow, it is useful to run Sentaurus Interconnect a few times
using the fast mode (-f command-line option). Developing a new process flow can be
complex, involving many etch, deposit, and photo steps, some with masks; sometimes
adjustments are required. In the fast mode, all 3D remeshing and all electrical, thermal, and
solve commands are ignored. Only process commands for structure generation and analysis are
performed. In this mode, when in three dimensions, all struct commands will write only a
boundary into a TDR file, since the simulation mesh is not synchronized with the modified
structure.

-x Tests floating-point exception handling.

-X Switches off floating-point exception catching.

Table 2 Command-line options

Option Short name of option 
(if available)

Function
12 Sentaurus™ Interconnect User Guide
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Terminating Execution

You can terminate a running Sentaurus Interconnect job in several ways. In some cases, the
termination will take time or will fail for other reasons. The most fail-safe method is to use the
UNIX command:

kill -9 <process_id>

where <process_id> is the process ID number of the running Sentaurus Interconnect job
which can be obtained with the UNIX ps command. This sends a signal SIGKILL to the
corresponding Sentaurus Interconnect job, which will cause the job to terminate immediately.

If Sentaurus Interconnect is run directly from a UNIX shell, usually you can terminate the run
by using shortcut keys. The key sequence is interpreted by the shell command, which sends a
signal to the job in the foreground. Usually, Ctrl+C sends a SIGINT signal and Ctrl+\
(backslash) sends a SIGQUIT signal. The running Sentaurus Interconnect job catches all
SIGINT signals and waits for three signals to be caught (in case it was typed accidentally)
before terminating itself.

However, Sentaurus Interconnect does not catch the SIGQUIT signal, so this signal will
typically cause Sentaurus Interconnect to terminate immediately.

Because the exact behavior may depend on your UNIX shell, the operating system, and the
local configuration, refer to the manual for the UNIX shell you are running or contact your
local systems administrator for more information.

Environment Variables

The Sentaurus Interconnect binary relies on several supporting files found using the
environment variables SIHOME and SCHOME. To change default models and parameters without
modifying the installed Sentaurus Interconnect files, copy the default SIHOME and SCHOME
directories and set the environment variables (SIHOME and SCHOME) to the location of the
modified directories.

By default, SIHOME and SCHOME are set based on the Synopsys standard environment variables
STROOT and STRELEASE, and by the version number of Sentaurus Interconnect using:

SIHOME = $STROOT/tcad/$STRELEASE/lib/sinterconnect-<version number>
SCHOME = $STROOT/tcad/$STRELEASE/lib/score-<version number>
Sentaurus™ Interconnect User Guide 13
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Inside the SIHOME directory, there is the subdirectory TclLib. Inside the SCHOME directory,
the two major subdirectories are TclLib and Params:

■ The subdirectory $SIHOME/TclLib contains all the default model selections in the file
SINTERCONNECT.models.

■ The Tcl files are located in the subdirectories $SIHOME/TclLib and $SCHOME/TclLib.

■ The subdirectory $SCHOME/Params contains the parameter database (see Parameter
Database on page 21).

File Types

The main file types used in Sentaurus Interconnect are:

■ Command file (*.cmd)

This is the main input file for Sentaurus Interconnect. It contains all the process steps and
can be edited. It is referred to as the command file or input file.

■ Log file (*.log and *.out)

Sentaurus Interconnect generates a .log file when it is run from the UNIX command line
and an .out file when run from Sentaurus Workbench. Whichever file is written contains
information about each processing step, and the models and values of physical parameters
used in it. The amount of information written to the log file is controlled by the info
argument, which is available for nearly all commands (see Common Arguments on
page 363). The global default information level (0) can be changed with
pdbSet InfoDefault <n>. Allowed values of InfoDefault are 0, 1, and 2 with
higher values indicating more verbose output. Any value higher than 2 will be interpreted
as 2.

There is a limit to the size of the log file. By default, it is 1.e9 (~1 GB). The simulation
terminates if the limit is reached. This limit can be changed using the double-parameter
Log.File.Limit:

pdbSet Log.File.Limit <value>

In addition, you can set the simulation to continue without logging any more entries after
the limit is reached using:

pdbSet Continue.Past.Log.Limit 1

■ Marked-up log file (*.xml)

When the --xml option is specified on the command line, Sentaurus Interconnect
generates a separate log file containing XML-like tags. This file contains exactly the same
information as the .log file. The additional XML-like tags are used to format the .log file
for efficient access to the information by displaying the structure of the log file content in
the TCAD Logfile Browser. Tags for common modules are written automatically. You can
14 Sentaurus™ Interconnect User Guide
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add custom section tags to mark important processing units with the Section,
SubSection.Start, and SubSection.End commands. Refer to the Utilities User
Guide for information about the TCAD Logfile Browser.

■ TDR boundary file (*_bnd.tdr)

This file stores the boundaries of the structure without the bulk mesh or fields. It can be
used as the structure file for the Sentaurus Mesh meshing engine and can be loaded into
Sentaurus Visual for viewing. The name of a TDR boundary file can be specified using the
tdr argument of the init command, and then the loaded boundary will be meshed.

■ TDR grid and doping file (*_sis.tdr)

TDR files can be used to split and restart a simulation. Such restart files are saved using the
struct tdr=<c> command because restarting requires interface data, parameter and
command settings, mesh ordering information as well as bulk grid and data. If either !pdb
or !interfaces is specified in the struct command, the TDR file will not be suitable
for restarting. The TDR file can be loaded into Sentaurus Interconnect using the init
command, but the results of the subsequent simulation steps might differ in the simulation
with the split and restart compared to a simulation of the entire flow in one attempt. TDR
files store the following types of information:

• Geometry of the device and the grid.

• Distribution of doping and other datasets in the device.

• The internal structure of the mesh in Sentaurus Interconnect required to restore the
simulation mesh to the same state in memory that is present at the time of saving the
file. Restart files store coordinates and field values without scaling to prevent round-off
errors.

• By default, Sentaurus Interconnect stores all changes to the parameter database made
after initial loading of the database and all commands that create objects later
referenced, such as refinement boxes and masks in the TDR file. A TDR file can be
either reloaded into Sentaurus Interconnect to continue the simulation or loaded into
Sentaurus Visual for visualization.

The parameter settings stored in a TDR file can be viewed using pdbBrowser
-nopdb -tdr <tdrfile> (see Viewing Parameters Stored in TDR Files on page 30).

For information about the TDR format, refer to the Sentaurus™ Data Explorer User
Guide.

■ XGRAPH file (*.plx)

This file is used to save 1D distributions of the doping concentration or other fields in a
specified 1D cross section. This file can be viewed by loading it into Inspect.
Sentaurus™ Interconnect User Guide 15
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Syntax for Creating Command Files

This section describes how to create command files manually. It is important to remember that
Sentaurus Interconnect is written as an extension of the tool command language (Tcl). This
means that the full capability and features of Tcl are available in the command files as well as
the interactive mode of Sentaurus Interconnect.

Standard Tcl syntax must be followed; for example, a hash symbol (#) at the beginning of a
line denotes a comment and the dollar sign ($) is used to obtain the value of a variable. Major
features of Tcl include for loops, while loops, if then else structures, switch statements,
file input and output, sourcing external files, and defining procedures (functions). Variables can
be numbers, strings, lists, or arrays. Refer to the literature for more information [1].

Before the command file is executed, its syntax is checked. This is accomplished by first
modifying the command file so that all branches of control structures such as if then else
and switch commands are executed. In addition, a special flag is set so that no structure
operations or operations that depend on the structure are performed. This allows the syntax
check to run quickly but thoroughly. Sometimes, the modifications made to the command file
during syntax checking interfere with the definition or redefinition of Tcl variables, generating
a false syntax error. In these cases, switch off syntax checking for the part of a command file
using the special CHECKOFF and CHECKON commands:

# Skip syntax check for part of command file
# The CHECKOFF/CHECKON commands must start at the beginning of the line
# and be the only command on the line
CHECKOFF
if { $mode } {

array set arr $list1
} else {

set arr $list2 ;# error only if both branches are executed
}
CHECKON
# further commands are syntax checked

Tcl Input

Sentaurus Interconnect has been designed to optimize the use of Tcl. Some examples of this
interaction include:

■ Command parameter values are evaluated with Tcl. For example, expr can appear in the
value of an expression, that is, parameter=[expr $pp/10.0] is valid Sentaurus
Interconnect syntax. This particular expression sets the parameter parameter to the value
of pp/10 if the Tcl variable pp was previously defined with the Tcl set command. 
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■ Tcl expressions may appear in model parameter values in the parameter database. In some
cases, Sentaurus Interconnect parameters are set with Tcl commands to be a function of
other parameters.

■ Sentaurus Interconnect contains many callback procedures, which can be redefined by
users to provide flexibility.

■ Many modular built-in functions are available for postprocessing, which can be combined
into a Tcl script to create powerful analytic tools.

■ There are special Sentaurus Interconnect versions of set (fset) and proc (fproc), which
are stored in TDR files. When simulations are restarted using a TDR file, the settings given
by fset and fproc from the previous simulation will be available.

Other syntax rules to consider when writing command files are:

■ One command is entered on one line only. There are two exceptions to this rule:

• A backslash (\) is used to extend a command on to multiple lines if it appears as the last
character on the line.

• If there is an opening brace, Tcl will assume the command has not finished until the
line containing the matching closing brace.

■ Command parameters have the following form:

• Boolean parameters are true if the name appears on the line. They are false if they are
preceded by an exclamation mark (!).

• Parameters that are of type integer or floating point must appear as
parameter=value pairs.

• String parameters are enclosed, in general, in double quotation marks (" "), for
example, parameter="string".

• Lists can be enclosed in double quotation marks or braces, for example:

parameter= {item1 item2 ...}
parameter= "item1 item2 ..."

You must have a space between the equal sign and the opening brace.

NOTE It is important to separate the equal sign from the parameter value by a
space because Tcl delimiters such as ‘"’ and ‘{’ are ignored if they
appear in the middle of a string. Sentaurus Interconnect can handle no
space between an equal sign and a double quotation mark, but it cannot
correct the case where there is no space between an equal sign and an
opening brace.

• Some parameters take a list of keyword=value pairs, for example:

epi.doping= {Boron = 1e20 Arsenic = 1e18}
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NOTE For convenience, all parameters that take a numeric value will have an
extra Tcl eval applied to them. This means that even if the value of a
parameter is enclosed in braces { }, the parameter will still be evaluated.
For example:

set val1 1.0
set val2 2.0
refinebox xrefine= {$val1 $val2}

will be evaluated as:

refinebox xrefine= {1.0 2.0}

Specifying Materials

Materials are specified in the same way for all PDB commands that require a material
parameter. For a bulk material, specify only one material. For an interface material, specify two
materials combined with an underscore (_).

Some examples of specifying materials with PDB commands are:

pdbSet ... Oxide ... ;# Command applies to oxide.
pdbSet ... Oxide_Silicon ... ;# Command applies to the Si-SiO2 interface.

The order of materials for interfaces is lexical. However, some common material combinations
have aliases. For example, Silicon_Oxide is an alias for Oxide_Silicon.

Materials are specified in the same way for all other commands that require a material
parameter. For a bulk material, specify only one material. For an interface material, specify two
materials: one without a slash and one with a slash (/).

Some examples of specifying materials with other commands are:

<command> ... oxide ;# Command applies to oxide.
<command> ... silicon /oxide ;# Command applies to the Si-SiO2 interface.

The complete list of materials available can be found in the file:

$STROOT/tcad/$STRELEASE/lib/score-<version number>/TclLib/tcl/Mater.tcl

In that file, the lines that contain mater add create a material. For more information about
creating new materials, see mater on page 497.

NOTE Materials present in the Mater.tcl file do not necessarily have
parameters in the parameter database. Attention must be paid to
initializing parameters for a new material.
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Aliases

Sentaurus Interconnect allows more control over the names of command parameters, the
abbreviations of parameter names, as well as interface names. These aliases only apply to
parameters of built-in Sentaurus Interconnect commands, and the pdbSet and pdbGet family
of commands.

This permits clarity and uniformity to commonly used names. Another benefit is that it is easier
to maintain backward compatibility for parameter names while not restricting future parameter
names that could conflict with common abbreviations (that is, V could refer to either vacancy
or void).

An explicit list of allowed aliases is maintained in the $SCORE/TclLib directory (see
Environment Variables on page 13 for information about how the location of the TclLib
directory is determined). The alias command is used to view and extend the list of allowed
aliases (see alias on page 368).

To print the list of aliases:

sinterconnect> alias -list

To view the alias of a parameter name, for example, Vac:

sinterconnect> alias Vac
Vacancy

If an alias does not exist, the same parameter name is returned:

sinterconnect> alias NotAParam
NotAParam

To create a new alias for a parameter name, for example, the alias Vaca for the parameter
Vacancy:

sinterconnect> alias Vaca
Vaca
sinterconnect> alias Vaca Vacancy
sinterconnect> alias Vaca
Vacancy

For interface names, aliases for the sides can be used irrespective of the order. For example, if
Ox is an alias for Oxide and Si is an alias for Silicon, then Ox_Si or Si_Ox is automatically
an alias for the Oxide_Silicon interface. This flexibility does not apply to side-specific
interface parameters. For example, TransferRate_Si is not automatically an alias for
TransferRate_Silicon.
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Default Simulator Settings: SINTERCONNECT.models File

Sentaurus Interconnect starts a simulation by reading the SINTERCONNECT.models file in the
$SIHOME/TclLib directory. This file defines various default parameters and directories used
during the simulation such as:

■ The path for Tcl library files

■ Default material names

■ The math parameters for 1D, 2D, and 3D simulations

■ Default solution names

■ Default callback procedures

The SINTERCONNECT.models file is read once at the beginning of the simulation. You can
override any of the default parameters after the file is read.

Compatibility With Previous Releases

Occasionally, the default parameter and model settings change in Sentaurus Interconnect to
ensure that the default behavior gives robust, accurate, and computationally efficient results on
current production technologies. Usually, when new models and algorithms are developed,
they are optional. After some experience is gained, the default can be changed to take
advantage of the new model or algorithm.

The old model and algorithm settings are collected into a file for each release and are available
so that you can recover results from previous releases. Each file contains only those parameter
changes that occurred for that particular release, so that if the release specified in the
Compatibility command is older than the most recent release, the most recent release
parameters are set first, followed by older releases in reverse chronological order (see
Compatibility on page 380).

For example, the command Compatibility K-2015.06 issued for Version N-2017.09 will
first apply parameters consistent with M-2016.12, then with parameters consistent with
L-2016.03, and finally parameters consistent with K-2015.06. Aliases are available for the
release name so you do not need to know the release foundation letter. For example, 2015.06
can be used instead of K-2015.06.

Files with the compatibility parameter settings are stored in $STROOT/tcad/$STRELEASE/
lib/sinterconnect/TclLib/Compatibility. These files provide a useful list of all
default parameter changes for each release.
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NOTE As a result of code corrections and numeric accuracy limitations, exact
reproduction of results from previous releases is not always possible.

NOTE If the Compatibility command is used, it must be the first command
in a command file so that all subsequent commands that depend on the
defaults take into account the compatibility setting.

For example, to apply the defaults of Version M-2016.12, the first line of the command file
must be:

Compatibility 2016.12

NOTE The Compatibility command does not change the default parameter
and algorithm settings for Sentaurus Mesh, Sentaurus Structure Editor,
and the MGOALS module. To change the backward compatibility
setting for MGOALS, see MGOALS Backward Compatibility on
page 271.

Parameter Database

The parameter database stores all Sentaurus Interconnect material and model parameters as
well as global information needed for save and reload capabilities. There is a hierarchical tree
directory inside the Params directory, which stores the default values. (To locate the Params
directory, see Environment Variables on page 13.)

Data is retrieved using the pdbGet command and is set using the pdbSet command. The
pdbGet and pdbSet commands are checked for correctness of syntax, and they print the
allowed parameter names if a mistake is made. These commands are used to obtain and set all
types of data stored in the parameter database: Boolean, string, double, double array, and
switch.

The higher-level pdbSet and pdbGet commands call lower-level type-specific commands
(pdbGetBoolean, pdbGetDouble, pdbGetDoubleArray, pdbGetString,
pdbGetSwitch, pdbGetSwitchString, pdbSetBoolean, pdbSetDouble,
pdbSetDoubleArray, pdbSetString, and pdbSetSwitch) that are not checked for errors
and, therefore, are not recommended for typical use. These commands have a slight
performance advantage and are used internally.

You can set some parameters in a region-specific manner. Regions can be named with the
region and deposit commands and, if region-specific parameters exist, they will override
the material-specific parameters if any. However, there are many circumstances where this will
not give the desired behavior. In that case, you must create a new material that inherits its
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parameters from an existing material. Then, you must change the material properties of the new
material as needed (see Like Materials: Material Parameter Inheritance on page 23).

Inside the Params directory are subdirectories that define the highest level nodes in the
database. Inside each subdirectory is a file Info, which contains parameters of that level. In
addition, directories in the database have named files that contain parameters, which are under
the node defined by the file name. For example, in the Params database, there is a directory
called Silicon, which contains a file Info. The parameters inside Info are located under the
Silicon node. As another example, the Potential file inside the Silicon directory is
another node. This node contains parameters that are related to the Potential under the
Silicon node.

Inside the files of the parameter database are commands that set the database parameters. The
commands have the form:

array set $Base { <NAME> { <TYPE> <VALUE> } }

where:

■ <NAME> is the parameter name.

■ <TYPE> is one of Boolean, String, Double, DoubleArray, or Switch.

■ <VALUE> is a Tcl expression that sets the default value.

It is often necessary to enclose the <VALUE> expression in braces. Some Tcl procedures have
been created to increase the usefulness of <VALUE> expressions, such as the Arrhenius
function. 

If you start Sentaurus Interconnect and call the pdbGet command of a parameter that contains
an Arrhenius function, it will return the temperature-dependent Arrhenius function of that
parameter. In Sentaurus Interconnect, temperature is a local variable and can be changed with
the SetTemp command. In addition, the solve command changes the local temperature for
each time step.

Other functions that appear in the pdb parameters are pdbGet* functions, which allow
parameters to be set as a function of other parameters.

For the DoubleArray type, a Tcl list is set that is ordered pairwise: 
{key1 value1 key2 value2 ...} where the parameter setting for key1 is value1.

Material parameters can be stored under the known region name. To set and obtain the
parameter value, use the region name instead of the material name. If the parameter is not found
under the region name, it is taken from the material of that region.

Sentaurus Interconnect writes directly to the parameter database in a number of ways. Mostly
this is performed to save information for reload capabilities using the TDR format. Data written
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by the program into the parameter database is not available within the default Params directory
or the Parameter Database Browser, but can be read using the pdbGet command.

For information about the TDR format, refer to the Sentaurus™ Data Explorer User Guide.

Like Materials: Material Parameter Inheritance

The parameters of a material can be inherited from the parameters of another material using
the special Like parameter in the PDB. When this is the case, the two materials are referred to
as like materials. This can be used to specify different settings in different regions. First, a new
material is created and made to be like an existing material using:

mater add name=<c> new.like=<c>

where:

■ name specifies the name of the material to be created.

■ new.like is the name of the existing material from which all default values are inherited.

NOTE It is important to use the mater command instead of directly creating
the Like parameter because the mater command will make all
interfaces to the new material like the appropriate interface to the
existing material.

Interpolation Between Like Materials

By default, data is interpolated between like materials, for example, when you insert a region
that overlaps an existing region of a like material. The inheritance direction does not matter;
either the inserted material is like the existing material, or the existing material is like the
inserted material.

To prevent interpolation between a material and other materials that are like it, use:

mater name=<c> add !like.interpolate

Interface Parameters

When using the Parameter Database commands and the Alagator language, interfaces are
specified as a pair of materials separated by an underscore (_), for example, Gas_Oxide and
Oxide_Silicon. The official name follows alphabetic order, and the first letter is capitalized.
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However, aliases are provided that allow their order to be reversed; some shorter names are
allowed; and all lowercase is generally available.

As an example of setting an interface parameter, the following command sets the numeric
tolerance Abs.Error at the gas–silicon interface to 1e3:

pdbSet Gas_Silicon Vac Abs.Error 1e3

Regionwise Parameters and Region Name-Handling

Many parameters in the parameter database can be specified regionwise including parameters
related to meshing and mechanics parameters. Those parameters used by Alagator as part of
equations and terms, however, cannot be specified regionwise: this includes all solution-related
parameters. For the rest of the parameters, internally, the program checks if there is a
regionwise specification of the parameter; if not, the materialwise specification is used.

The name of regions can be specified with the region command and deposit command;
however, the name:

■ Must not contain an underscore (_) or a period (.) because these characters have special
meaning.

■ Must be different than an existing material name.

During the course of the simulation, geometric operations such as etch and reflect can split
regions in two. If this happens, the history of the region is maintained through its name. For
example, if a region is originally named layer1 and it is etched into two pieces, they will be
named layer1.1 and layer1.2 according to rules given below. 

These two regions will inherit the parameters of layer1. Furthermore, parameters for
layer1.1 and layer1.2 also can be specified separately. If a subsequent step such as a
deposit reunites layer1.1 and layer1.2, the region will be given the name layer1.
Conversely, if layer1.1 is split into two regions, the regions will be named layer1.1.1 and
layer1.1.2, and so on. In this way, regionwise parameter specification is preserved for the
life of the region or its parts.

The numbering of split regions is performed according to the spatial location of the pieces. The
lowest point of each piece to be renamed is found (in the coordinate system of Sentaurus
Interconnect, this would be the largest x-coordinate). To avoid numeric noise, the coordinates
are compared with a specified epsilon given by pdbGet Grid RenameDelta (hereafter,
referred to as RN). If the x-coordinates of the pieces to be renamed are not within RN of each
other, the regions are ordered from lowest to highest, that is, from the highest x-coordinate to
the lowest. If any piece has its lowest coordinate within RN, its y-coordinate is compared, that
is, from the lowest coordinate to the highest.
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Figure 3 Illustration of region-naming rules

For example, in Figure 3, layer1 is split into two regions and the quantity deltax is less than
RN, so the region on the left is given the name layer1.1 and the region on the right is given
the name layer1.2. If deltax had been greater than RN, the region on the right would have
been given the name layer1.1 because it would have been considered lower than the region
on the left. Similarly, in three dimensions, first x and y are compared, and if they are both within
RN, z is used for ordering, that is, from the lowest coordinate to the highest. 

You can apply the above operation to the whole structure with grid rename. In this case, all
the regions are renamed similarly to the above rules but, instead of the root being chosen by the
user, all regions of the same material have the root given by the names of the materials and the
extension is _<n> where <n> is the region number, for example Silicon_1, Silicon_2, and
so on. This should only be used as a postprocessing step because all region-specific parameters
no longer apply when the name of a region has changed.

Sentaurus Interconnect automatically unites regions with the same material type. For example,
if silicon is deposited on top of an existing silicon region, both regions are united, so there will
be only one silicon region. If regions must be united and region names do not follow the rules
mentioned in this section, the united region will take the name of one of the materials in the
united region.

Parameter Database Browser: Viewing the Defaults

The Parameter Database (PDB) Browser is a graphical representation of the parameter
database that allows you to view and edit parameters. The PDB Browser has three distinct areas
(see Figure 4 on page 26):

■ Parameter hierarchy overview in a tree structure representation.

■ Parameter information in a spreadsheet representation. The columns are Parameter, Type,
Value, Unit, Evaluate, Comment, Tool, and Info Level (hidden by default).

layer1

deltax layer1.1 layer1.2
Sentaurus™ Interconnect User Guide 25
N-2017.09



2: Working With the Simulator 
Parameter Database Browser: Viewing the Defaults
■ Graphic window to plot the parameter dependency on the temperature.

The status bar has three indicators that show:

■ The temperature used in temperature-dependent functions such as Arrhenius.

■ The temperature point set for the x-axis.

■ The x-coordinate and y-coordinate of the pointer in the graphic window.

 

Figure 4 Parameter Database Browser

Starting the Parameter Database Browser

To start the PDB Browser from the command line, type:

pdbBrowser

This searches for the parameter database in the same location as Sentaurus Interconnect.

Spreadsheet
Representation

Tree Structure
Representation

Graphic Window
Status Bar
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You can set the environment variables SIHOME and SCHOME to change the location of the
parameter database for the PDB Browser and Sentaurus Interconnect (see Environment
Variables on page 13).

You can select Tools > Filter to choose which parameters to display.

To view parameters in a command file merged with defaults, use:

sinterconnect --pdb <command file>

To view only the parameters specified as input in a command file, use:

sinterconnect --ponly <command file>

PDB Browser Functions

The following functions are available from the File and Tools menus:

File > Export Node 

Saves the selected node into a specified file in tab-delimited format.

File > Export Tree 

Saves the entire parameter database into a specified file in tab-delimited format. The fields
of the file are Parameter Name, Type, Value Evaluation, Original Value, and
Comments.

Tools > Evaluate 

Evaluates the value of the selected parameter and displays the result in the Evaluate column
of the spreadsheet. Values can contain Tcl expressions.

Tools > Plot 

(Applies only to parameters of type double and double array.) Plots the dependency of the
selected parameter on the temperature in logarithmic coordinates versus 1/T. The default
set of temperature values is {700.0 800.0 900.0 1000.0 1100.0}. The resulting
graphs are displayed in the graphic window; otherwise, an error message is displayed.

Tools > Plot Over 

The same as Plot but it does not clear the graphic window of previous graphs.

NOTE You can zoom in by dragging the mouse. To zoom out, use the middle
mouse button, or click the Zoom Out and Zoom Off buttons.
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Tools > Arrhenius Fit 

Using the Arrhenius Fit dialog box, you can find the best prefactor and energy for an
Arrhenius fit of a given profile, taken from the list of temperature–value pairs. The results
can be plotted in the graphic window: 

Tools > Find, Tools > Find Next 

Matches the pattern entered against parameter names according to the options selected in
the Find dialog box. Patterns can include regular Tcl expressions. The match is highlighted
when found: 

Tools > Goto Line 

Highlights a table row or tree node that corresponds to the number entered.

Tools > Filter 

Selects which parameters to display.

Tools > Info Level 

Chooses which parameters to display ranging from basic parameters to all parameters.

Viewing Parameter Information

Double-clicking a nonempty cell in the spreadsheet allows you to view the corresponding
parameter information in a separate window. To close the window, click the Close button.
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NOTE To display a shortcut menu, right-click a parameter and select
commands for editing, evaluating, or plotting.

PDB Browser Preferences

The PDB Browser allows you to reset the default settings for the following values using the
Preferences menu, the shortcut keys, or the shortcut menu of the graphic window:

Preferences > Editor > Change Editor 

Resets the default editor.

Preferences > Editor > Reset Update Time 

Resets the update interval.

Preferences > Graph > Set Temperature 

Sets the global temperature used in the temperature-dependent functions. Default: 1000.0.

Preferences > Graph > Reset X Points 

Displays the Reset Temperature Points dialog box where you set the x-axis temperature
points. The default set is {700.0 800.0 900.0 1000.0 1100.0}: 

Preferences > Graph > Data Point Symbol 

Sets the symbol to use for data points.

Preferences > Graph > X Scale 

Resets the x-scale to logarithmic or linear.

Preferences > Graph > Y Scale 

Resets the y-scale to logarithmic or linear.

Preferences > Tree Node 

Hides the node tip or shows the node tip.
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Preferences > Info Level 

Shows or hides the Info Level column of the spreadsheet.

Preferences > Font > Family 

Changes the font family.

Preferences > Font > Size 

Changes the font size.

Preferences > Cursor 

Changes the style of the cursor.

Viewing Parameters Stored in TDR Files

Parameters stored in TDR files can be viewed using the pdbBrowser command run from the
command line instead of through Sentaurus Interconnect. By default, the PDB Browser reads
parameters from the Sentaurus Interconnect database directory (which can be changed with the
SIHOME and SCHOME environment variables). In addition, parameters stored in a TDR file can
be read in using the -tdr <filename> option of the PDB Browser. Parameters that appear
in the parameter database are overwritten by those contained in the TDR file, so the resultant
parameter set will be the same as if Sentaurus Interconnect had read in the file. On the other
hand, it is also useful to know which parameters are only in the TDR file. To read only those
parameters, the database reading can be switched off using the -nopdb command-line option.

For example, the following command reads the PDB Browser and then reads the parameters
from the n10_sis.tdr file, overwriting values contained in the parameter database:

> pdbBrowser -tdr n10_sis.tdr

For example, the following command reads only the parameters in the n10_sis.tdr file:

> pdbBrowser -nopdb -tdr n10_sis.tdr
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Understanding Coordinate Systems

Sentaurus Interconnect and related tools use different coordinate systems.

Wafer Coordinate System

The wafer coordinate system is fixed with respect to the wafer flat or notch, and is used to
define the relationship of all other coordinate systems to the physical wafer.

The wafer x- and y-axes form a naturally oriented coordinate system when the wafer is drawn
with the flat pointing down as shown in Figure 5. This coordinate system is used for layout
information, such as mask locations, and for setting a cutline using the CutLine2D command. 

Figure 5 Wafer coordinate system

Simulation Coordinate System

The simulation coordinate system is used to define the mesh for the simulation. The default
coordinate system is the unified coordinate system (UCS).

The visualization coordinate system is the UCS as well.

ZW

XW

YW

YW

ZW

XW
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In the UCS, the x-axis points into the wafer and the y-axis is rotated with respect to the wafer
y-axis. Figure 6 shows the UCS. Simulations in one dimension use only the x-axis. Simulations
in two dimensions use only the x- and y-axes. 

Figure 6 Unified coordinate system (slice.angle= 45)

The rotation of the simulation axes with respect to the wafer axes is given by the slice.angle
parameter of the init command. The slice angle is measured from the wafer y-axis to the
simulation y-axis with positive angles counterclockwise about the wafer z-axis.

The default value of slice.angle is . This causes the simulation y-axis to match the
wafer x-axis, which is the usual cut direction through the layout for 2D simulations (see
Figure 7). 

Figure 7 Unified coordinate system when using default value of slice.angle (–90o)

NOTE For backward compatibility, the DF–ISE coordinate system is still
available, but it is not recommended.
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Creating and Loading Structures and Data

The first step in most simulations is either to load an existing structure or to create a new one.
New structures are created through a combination of the line, region, and init commands.
The initial mesh is a tensor-product mesh where the density of lines is specified using the line
command, and the regions are defined by specifying tags in the line commands and defined
in the region command. The initial regions are always defined as axis-aligned rectangles in
two dimensions and axis-aligned bricks in three dimensions.

Defining the Structure: The line and region Commands

The line and region commands are used together to define the structure. In the init
command, the structure is actually formed. Care must be taken when creating a structure
because there are few checks for errors.

These rules must be followed to obtain a valid structure:

■ If this is not the first structure being created in a command file, the command line clear
must be issued to remove line commands and stored mesh ticks.

■ Line locations must be given in increasing order.

■ The region boundaries are defined by tagged lines. Tagged lines are created with the line
command where the parameter tag has been set (as well as the location parameter).

■ At least one region command must be given to define the substrate.

■ Regions must have a material specification, except for the substrate case described
below.

■ Regions must have the same dimensionality as the line commands used (that is, if
line y is given, a 2D region is expected with ylo and yhi set in the region command).

■ The spacing parameter of the line command is used to create lines between user-defined
lines, so that not every line must be specified in the command file. Sentaurus Interconnect
smoothly grades the line density between user-defined lines to match as closely as possible
the spacing at each user-defined line. In addition, there will be lines at locations given by
the location parameter of the line command. By default, the spacing parameter is
extremely large, so that if it is not set, only lines given by the location parameter will be
in the mesh.

■ The *lo parameter refers to the lowest coordinate value, that is, the location of the line
corresponding to the xlo tag must be less than the coordinate corresponding to the xhi tag.

■ The region command can be used to tag a region as a substrate in two ways: 

• If the region is being defined with the material name and the parameters *hi and *lo,
the Boolean keyword substrate will tag this region as the substrate.
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• If the structure is being loaded from a previously saved file, the command:

region name=<c> substrate

will tag the region with <c> as the name of the substrate. This is the only occasion when
the region command will be called after the init command.

Considerations when creating structures are:

■ For 2D and 3D simulations, it is advantageous to create a coarse mesh in the lateral (that
is, y- or z-directions) because lines created with the line command run all the way through
the structure. Often, finer spacing in the y- or z-direction is required near the surface;
whereas, further in the bulk, a coarser spacing is required (to minimize the size of the
problem).

■ When MGOALS is used for etching and deposition, it automatically creates a local
refinement near interfaces that does not run the length of the structure.

■ To specify refinement boxes, use the refinebox command.

Creating the Structure and Initializing Data

The init command is used to create the structure. If the line and region commands have
been given to create a structure from the beginning, the init command does not require any
options. It will take the structure definition and create a new structure.

Many process steps such as etching and deposition require a gas mesh. By default, Sentaurus
Interconnect does not add a gas mesh during the init command, but delays creating the gas
mesh until it is needed. To add the gas mesh immediately, use the command:

pdbSet Grid AddGasMesh 1

NOTE The parameter must be set before the init command to generate the
gas mesh during the init command.

There are different ways to initialize fields at the time the initial structure is created from line
and region commands:

■ To initialize data everywhere in the structure, a field specification can be given in the init
command. 

■ To initialize data in one particular region only, a field specification is given in the region
command. 

In both the init and region commands, the field parameter specifies the name of the data
field that will be created, and the concentration parameter is used to specify the value
created. The init command must not be used to initialize stress values (use instead either the
stressdata command or the select command).
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The init command also can read a structure from a file, for example:

init tdr= file ;# Read geometry, data, and PDB parameters from file.tdr

The TDR format is the default format and can store all the information necessary to restart a
simulation when using ‘splits’ in Sentaurus Workbench. This format stores all pdb parameter
settings as well as numerous other settings coming from commands (see Saving a Structure for
Restarting Simulations on page 39).

The init command specifies the principal wafer orientation (wafer.orient) and the lateral
crystal orientation of the wafer flat or notch (notch.direction).

Defining the Crystal Orientation

Generally, the orientation of a hexagonal crystal system can be described using four Miller
indices <ijtk>; whereas, only three Miller indices <ijk> are needed for other systems. In a
hexagonal crystal system, the sum of the first three indices equals zero (i+j+t = 0);
therefore, the third index t is redundant and can be omitted. For simplicity and consistency, the
wafer orientation and the flat orientation are specified using three Miller indices for all lattice
systems including hexagonal.

The crystal orientation of the wafer is established by specifying the Miller indices of the wafer
surface and the wafer flat. The wafer.orient and notch.direction (originally
flat.orient) arguments of the init command specify the Miller indices of the wafer z-axis
and negative y-axis, respectively. The wafer surface orientation (whose surface normal is
chosen as the wafer z-axis) is set using wafer.orient= {<i> <j> <k>} where <i>, <j>,
and <k> are the crystallographic (Miller) indices of the plane. The notch direction or the flat
orientation (a direction that coincides with the wafer negative y-axis) can be set arbitrarily, but
it must be orthogonal to the surface normal of the wafer orientation.

The default surface orientation is 100 and the default flat orientation is a 110 direction for all
lattice systems.

NOTE The wafer.orient and notch.direction arguments of the init
command apply to any crystalline systems in the structure. However,
these settings are superseded by the material-specific wafer orientation
(vertical.orient) and flat orientation (horizontal.orient) as
specified in the mater command.
Sentaurus™ Interconnect User Guide 35
N-2017.09



2: Working With the Simulator 
Creating and Loading Structures and Data
Table 3 lists the crystallographic directions of the wafer axes for the most common
crystallographic orientations of the wafer as shown in Figure 5 on page 31. 

To facilitate simulations of hybrid orientation technology, Sentaurus Interconnect predefines
three materials (Silicon, Silicon110, and Silicon111) for crystalline silicon. These
materials have exactly the same properties, except for the default crystal orientations that are
<100>, <110>, and <111> for Silicon, Silicon110, and Silicon111, respectively.

Automatic Dimension Control

The maximum dimension of a simulation is determined by the specified line commands:

■ line x commands define the extensions in the vertical direction and are required for 1D,
2D, and 3D simulations.

■ If, in addition, line y commands are specified, the maximum dimension of the simulation
will be at least two dimensions.

■ If, in addition, line z commands are specified, the maximum dimension of the simulation
will be three dimensions.

By default, Sentaurus Interconnect delays the creation of a full-dimensional structure until it
becomes necessary. This means that if you specify a 2D structure where all regions span the
entire simulation domain in the y-direction, Sentaurus Interconnect will create a 1D structure.

When a 2D or 3D mask is used in an etch, a deposit, or a photo command, Sentaurus
Interconnect automatically extrudes the structure and the mesh into the appropriate dimension
and copies the data. This delay of creating a full-dimensional structure can be switched off in
the init command using the option !DelayFullD. To increase the dimension manually, use
the grid command. If a 2D structure is required, that is, both the line x and line y
commands but no line z commands have been specified, grid 2D or grid FullD will
cause a 2D structure to be created.

Similarly, if line x, line y, and line z commands have been specified, grid 2D can be
used to extrude a 1D structure to two dimensions, and a 1D or 2D structure is extruded to three
dimensions using grid 3D or grid FullD. This functionality also can be used to increase
the dimension of structures loaded from files. After the structure has been loaded, line

Table 3 Miller indices of wafer axes for each value of wafer.orient 
(wafer axes are defined in Figure 5)

Wafer orientation XW YW ZW 

100 110[ ] 110[ ] 001[ ]

110 001[ ] 110[ ] 110[ ]

111 112[ ] 110[ ] 111[ ]
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commands can be issued and the dimension of the structure will increase automatically when
necessary or manually using the grid command.

Sentaurus Interconnect does not provide a facility to reduce the dimension of a simulation.

When structures are saved to TDR files (other than TDR restart files), the current maximum
dimension as specified with line commands is used by default in the file. The dimension of
the simulation itself is not affected. To save files in the current dimension, the !FullD
parameter of the struct command can be used (see Saving Structures on page 38). TDR
restart files are always saved in the dimension currently used in the simulation.

Interpolating Field Data From an External Structure File 
Using the load Command

The load command can be used to interpolate data from a TDR file onto the current structure
(see load on page 487). For 1D structures, 1D TDR files are allowed. For 3D structures, 3D
TDR files are allowed. However, for 2D structures, either a 2D TDR file or a 3D TDR file is
allowed.

When loading a 3D file to a 2D structure, the data on the 2D overlap cross-section, between the
3D structure and the 2D structure, is interpolated to the current 2D mesh. The 2D structure is
assumed to be located at z=0.

Several options can handle the new and old datasets. For example, the merge option loads only
datasets that do not currently exist in the structure, the sum option adds new datasets and sums
the matching datasets, the replace option adds new datasets and replaces existing datasets
with new datasets of the same name, and the rename option adds new datasets and renames
them by adding the suffix __load. These actions also can be applied individually to selected
datasets using the species and actions arguments.

For example, the following command sums Potential_Saved and the existing
Potential_Saved (if available), and replaces the existing Temperature data field by the
one in the TDR file:

load tdr= in species= {Potential_Saved Temperature} actions= {sum replace}

The external structure also can be translated or rotated before interpolation with the
transform argument. This is especially useful when loading 3D data to a 2D structure since
the cross section must be at z=0 (the 2D structure is assumed to be allocated at z=0). For
example, the following command loads the 3D data at z=0.5 instead of z=0:

load tdr= source3d transform= { 1 0 0 0 1 0 0 0 1 0. 0. -0.5 }
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While the following command loads the 3D data at y=0 since the 3D structure was rotated, and
the y-axis and the z-axis were exchanged:

load tdr= source3d transform= { 1 0 0 0 0 1 0 1 0 0. 0. 0. }

To ensure the transformation is performed correctly, you may save a TDR file for the
transformed structure with the save.transform argument.

Loading 1D Profiles: The profile Command

The profile command can load a 1D profile into 1D, 2D, or 3D structures (see profile on
page 583). The file to be read must contain one x-coordinate data pair per line. Both linear and
logarithmic interpolation are available. For example, profiles are loaded using:

profile infile= file.dat name= Boron

In this case, Sentaurus Interconnect reads the file.dat file and sets the Boron field
accordingly.

Saving Structures

Sentaurus Interconnect uses the TDR file format for saving the structure geometry with and
without the bulk mesh and data, and with contacts. TDR files contain simply connected regions
to operate smoothly with other Synopsys TCAD tools. One important option available for
saving files is to omit saving gas regions because this may cause problems for other tools.

The TDR format allows you to save and load geometry and data information along with pdb
parameters (see File Types on page 14).

TDR files can be used to split a simulation, and to restart and continue the simulation as if no
file save or file load was performed. Besides the simulation grid and data, additional
information is stored to facilitate such a restart.

NOTE It is recommended to set the simulation coordinate system using the
math coord.ucs command, which specifies the use of the unified
coordinate system (UCS). When using the UCS, the visualization
coordinates are identical to the simulation coordinates.

To select the fields stored in TDR files, use the SetTDRList command. Each field name in the
SetTDRList command is added to the list of fields, which are usually saved (if the field is
present in the structure). This command also takes a macro parameter Solutions.
Solutions refers to variables of partial differential equations (PDEs). The solution variables
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must be stored in a TDR file if that file is to be used to continue a simulation.  By default, TDR
files are saved with Solutions names in SetTDRList. However, this requires many fields to
be stored in the TDR files and, sometimes, it is more convenient to have fewer fields.

To do this, set !Solutions in SetTDRList, which deselects all fields. Then, specify the field
names to be stored in the TDR file.

Saving a Structure for Restarting Simulations

When saving files using the TDR format, the current state of the parameter database is, by
default, saved in the file. The parameter database contains all of the information necessary to
restart a simulation including:

■ Model settings

■ Parameter settings

■ Geometric tolerance settings

■ Refinement boxes from the refinebox command

■ Temperature ramps from the temp_ramp command

■ Line specifications from the line command

■ Region specifications from the region command

■ Specifications for point, polygon, polyhedron 

■ User materials created with the mater command

■ Contact definitions created with the contact command

■ Mask definitions created with the mask command

■ Solution commands can be optionally stored using the store parameter of the solution
command

■ Term commands can be optionally stored using the store parameter of the term
command

■ Global Tcl variables can be stored with fset 

■ Tcl procedures can be stored using fproc 

By default, when loading a TDR file, the changes in the parameter database are read in from
the TDR file and are applied. For information about the TDR format, refer to the Sentaurus™
Data Explorer User Guide.

When saving a TDR file, the simulation coordinate system used is also included in the file and
is used by Sentaurus Visual when opening the file.
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The visualization coordinate system is the same as the simulation coordinate system. To change
the coordinate system, use the math command. For the UCS, use:

math coord.ucs

NOTE It is recommended to always use the math coord.ucs command.

Saving a Structure for Device Simulation

In general, the main steps to saving a structure appropriate for device simulation are:

1. Define contacts.

2. Remesh the structure with appropriate refinement for device simulation.

3. Save the structure with contacts and with Delaunay weights.

Contacts are defined using the contact command. To define contacts, you can either:

■ Use a box where the contact is created at the intersection of a material interface and a box.

■ Use a region contact in which a region is specified by giving a point inside the region; then
all boundaries of this region become a contact.

The contact is given a name and, if the command is executed multiple times with the same
contact and the add parameter, the contact will include all parts specified. There are also
options for creating a contact on the outer boundaries and so on (see contact on page 381).

Remeshing the structure is needed to create a mesh that is better suited to device simulation.
Typically, this means discarding process-based refinements, creating a very fine mesh under
the channel, and refining on the p-n junction. A typical sequence of steps is:

■ Clear the process mesh:

refinebox clear
line clear

■ Reset default settings for adaptive meshing:

pdbSet Grid AdaptiveField Refine.Abs.Error 1.e37
pdbSet Grid AdaptiveField Refine.Rel.Error 1e10
pdbSet Grid AdaptiveField Refine.Target 100.0

■ Set high-quality Delaunay meshes:

pdbSet Grid SnMesh DelaunayType boxmethod

■ Set mesh spacing near interfaces:

pdbSet Grid SnMesh min.normal.size <n>
pdbSet Grid SnMesh normal.growth.ratio.2d <n>
pdbSet Grid SnMesh normal.growth.ratio.3d <n>
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■ Set which interfaces will have interface refinement:

refinebox interface.materials= {Silicon}

■ Specify adaptive refinement:

pdbSet Grid Adaptive 1

■ Specify lines if necessary:

line y loc= $Ymin+0.001
line z loc= $Zmin+0.001

■ Specify refinement boxes, for example:

refinebox min= <list> max= <list> xrefine= <list> yrefine= <list>
zrefine= <list> ;# gate refinement

refinebox refine.fields= NetActive max.asinhdiff= {NetActive= 1.0} \
refine.min.edge= <list> Silicon ;# adaptive refinement on NetActive

■ If you use the IC WorkBench Edit/View Plus–TCAD Sentaurus interface, it may be helpful
to consider using the mask argument of the refinebox command (see Chapter 13 on
page 285 and refinebox on page 591).

To save the structure for device simulation, use the command struct tdr=<c> !Gas. This
command causes a remesh if necessary, stores any contacts that have been defined previously,
and includes fields required for device simulation.

Delaunay weights can be saved in the structure intended for device simulation by setting these
parameters before generating the mesh:

pdbSet Grid SnMesh StoreDelaunayWeight 1
pdbSet Grid Contacts.In.Brep 1

The first parameter StoreDelaunayWeight creates the field variable Delaunay–Voronoï
weight (DelVorWeight) that is used in the weighted box method in Sentaurus Device. The
second parameter Contacts.In.Brep switches on a feature that creates contacts in the
boundary representation (brep) and prevents changes to the mesh that can locally invalidate the
Delaunay weight.

Saving 1D Profiles for Inspect

To store .plx files, use the WritePlx command. The command SetPlxList selects the
fields to be stored in the .plx file. The SetPlxList command is similar to the SetTDRList
command, except that no fields are selected by default. Only the field names specified in
SetPlxList are stored in the .plx file (see SetPlxList on page 619 and WritePlx on
page 681).
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Saving 1D TDR Files From 2D and 3D Simulations, and 2D 
TDR Files From 3D Simulations

The command struct also saves a 1D TDR file if the proper cutting coordinates are specified
(see struct on page 643). In two dimensions, only one cutting coordinate is needed (either x or
y; the z-coordinate makes no sense here). In three dimensions, the command saves the
intersection of the planes specified by two cutting coordinates (for example, specifying x and
z will save the y line containing those x- and z-coordinates). In addition to storing the mesh
and data, these files save any contacts that apply at the cut point, so that the file can be loaded
into Sentaurus Device for electrical analysis. This file can be visualized with Sentaurus Visual.

For 3D simulations, the struct command also saves 2D TDR files when one cutting
coordinate is specified. 

For example, in a 2D simulation, the following command picks up all the x-coordinates with
y=0.5 and saves them in a 1D TDR file:

struct tdr= filename y= 0.5

In addition, in a 3D simulation, the following command saves the y-coordinates with x=0.2
and z=0.1 as a 1D TDR file:

struct tdr= filename x= 0.2 z= 0.1

The following command saves a 2D cross section of the 3D structure to a 2D TDR file at x=0.2:

struct tdr= filename x= 0.2

The select Command (More 1D Saving Options)

The select command is a versatile command for many operations such as viewing results,
postprocessing, and initializing or changing datasets. The basic command is:

select z=<c>

where <c> is an Alagator expression (see Chapter 16 on page 343). A simple example of an
expression is the name of a data field such as Potential and VTotal. The value of the
expression is stored in the selected field.

This selected field can be viewed with print.data or print.1d, for example, or the
integrated values can be obtained using the layers command. The select command can also
be used to set an existing data field or create a new data field, for example:

select z= 1.0 name= MyDataField ;# create a new data field named MyDataField
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;# and set it to 1.0 (everywhere)

select z= 0.1*Vacancy name= Void store ;# Set Void equal to 0.1*Vacancy

The datexcodes.txt File

The datexcodes.txt file is the Synopsys configuration database for materials, doping
species, and other quantities that are used in semiconductor process and device simulations.
Sentaurus Interconnect uses this file in two ways:

■ The "floops" property of each field is read in and is used as a conversion factor between
short internal names and proper DATEX names expected by other tools.

■ The unit field is read from the datexcodes.txt file and is used to convert internal units
to those units expected by other tools.

For example, the distributed datexcodes.txt file contains the following field definition:

VacancyConcentration {
label     = "total Vacancy concentration"
symbol    = "VTotal"
unit      = "cm^-3"
factor    = 1.000E+12
precision = 4
interpol = arsinh
material = All
alter1    = vacancy
alter2    = 0
property("floops") = "VTotal"

}

From this definition, Sentaurus Interconnect reads property("floops") to enable
conversion of the internally named field VTotal to VacancyConcentration in the TDR file
and to save VacancyConcentration in .

References

[1] B. B. Welch, Practical Programming in Tcl & Tk, Upper Saddle River, New Jersey:
Prentice Hall PTR, 3rd ed., 2000.
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CHAPTER 3 Computing Mechanical Stress

This chapter discusses the computation of mechanical stress in
Sentaurus Interconnect.

Overview

Mechanical stress has an important role in process modeling. It controls the structural integrity
of the device, the yield from the process depends on stresses, the mobility of charged carriers
is changed by stresses, and leakage currents also are a function of the stress in the system.

In modern process flows, accurate computation of stress is important. However, there is a
continual trend toward designing process flows that produce the right types of stress in the
device. With appropriate stresses, device performance can be enhanced significantly.

Stress computation simulations are performed in the following distinct steps:

1. Define the equations for mechanics. The equations used in Sentaurus Interconnect define
force equilibrium in the quasistatic regime.

2. Define the boundary conditions for these equations. For the elliptic equations that arise
from the equations of force equilibrium, boundary conditions are needed on all boundaries.
Sentaurus Interconnect allows Dirichlet or Neumann boundary conditions, provided that
certain criteria are met. The minimum criterion is to constrain the structure sufficiently so
that it has no rigid body modes.

3. Define material properties. This step defines the relationship between stresses and strains.
Some materials may hold stresses for a given strain without relaxing; these are elastic
materials. Other materials may relax the stresses away; these are viscous or viscoelastic
materials. Sentaurus Interconnect provides viscoelastic constitutive equations for the
computation of mechanical stresses. By setting parameters appropriately, the extreme cases
of a purely viscous material and a purely elastic material can be simulated as well. The
viscoelastic models used in Sentaurus Interconnect provide a choice between the Maxwell
model and the standard linear solid model. The viscosity can depend on the local shear
stresses, which make the viscosity a locally varying quantity and can lead to nonlinear
mechanical behavior. In addition to elastic and viscoelastic materials, there are materials to
model irreversible deformation and temperature-dependent volume change. Sentaurus
Interconnect provides nonlinear material models for incremental plasticity, deformation
plasticity, viscoplasticity and creep, and swelling.
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4. Define the mechanisms that drive the stresses. In Sentaurus Interconnect, this is performed
through intrinsic stresses, thermal mismatch, and densification. All these processes are
additive in the linear elastic regime. In the nonlinear regime, they must be updated from the
available stress history.

Stress is solved in all materials. Parameters describing material behavior, which will be
introduced in this chapter, can be found in the parameter database:

<material> Mechanics

In the following sections, the constitutive equations are discussed in detail. These tensor
equations can be split into two components:

■ The dilatational component, which corresponds to the trace of the tensor, describes the
material behavior in the case of a pure volume change. 

■ The deviatoric component describes an arbitrary deformation but without changing the
volume.

For example, the strain tensor can be decomposed as follows:

(1)

This decomposition will be used in subsequent equations to discuss the constitutive equation
for the dilatational and deviatoric components independently.

Material Models

Sentaurus Interconnect implements the viscous, viscoelastic, and elastic models in a general
manner, where the viscous model and elastic model can be derived from the viscoelastic model.
The viscous and viscoelastic models use shear stress–dependent viscosity. The elastic model
also has anisotropic elasticity where the elastic coefficients depend on the crystal orientation.
The plasticity models describe the material behavior beyond yield, independent of the rate of
loading. The viscoplasticity and creep models provide rate-dependent plastic behavior, while
the swelling material models temperature-dependent volume change.

εij ε'i j

deviatoric

1
3
--- εkk

k
 
 
 

δi j

dilatational

+=

  

      
46 Sentaurus™ Interconnect User Guide
N-2017.09



3: Computing Mechanical Stress
Material Models
Viscoelastic Materials

The viscoelastic material response is characterized by elastic and viscous components. The
combined response depends on how elastic and viscous stresses or strains are coupled.
Sentaurus Interconnect provides two commonly used combinations:

■ Maxwell model

■ Standard linear solid model

Maxwell Model

The viscoelastic behavior for the Maxwell model is obtained by combining elastic and viscous
responses in series. The stress–strain equations are written in terms of dilatational and
deviatoric components. The equations for the volumetric component of the stress tensor1 take
the form:

(2)

where  is the bulk viscosity. In addition, the relation of the stress and strain tensor to the
hydrostatic pressure  is shown. The bulk modulus  can be computed from the Poisson ratio
(PoissRatio) and Young’s modulus (YoungsMod) as:

(3)

The deviatoric component of the stress tensor is described by:

(4)

where  is the shear viscosity. The shear modulus  can be computed from the Poisson ratio
and Young’s modulus as:

(5)

1. The subscripts of vectors and tensors hold for the Cartesian coordinates x, y, and z.
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By default, the viscoelastic response is applied to the deviatoric components. The linear elastic
model is used for the pressure–volume response, that is:

(6)

To apply the viscoelastic response to both the deviatoric components and the volumetric
component, use:

pdbSet Mechanics NoBulkRelax 0

The shear viscosity  is a function of the shear stress and the temperature , where:

(7)

Usually, the value of ViscosityW is negative and, therefore, the shear viscosity  decreases
with increasing temperature. The bulk viscosity has a similar Arrhenius expression defined by
the parameters Viscosity0.K and ViscosityW.K. The dependency on the shear stress 
is discussed in Shear Stress–Dependent Viscosity on page 50.

Standard Linear Solid Model

In the standard linear solid model, the material behavior is modeled by combining the elastic
response in parallel with the Maxwell model–based viscoelastic response:

(8)

where  is the elastic stress and  is the viscoelastic stress. The difference compared to the
Maxwell model allows the total stress to be nonzero even after the viscoelastic stress has
relaxed away:

(9)

The dilatational and deviatoric components of the elastic and viscoelastic stresses are written
in the usual form:

(10)
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where:

■  and  are the bulk and shear moduli for the elastic response, respectively.

■  and  are the bulk and shear moduli for the elastic component of the viscoelastic
response, respectively.

■  and  are the bulk and shear viscosities, respectively.

■  and  are the dilatational and the deviatoric components of mechanical strain,
respectively.

To enable the standard linear solid model, use:

pdbSetSwitch <material> Mechanics ViscoElasticity.Model SLS-Maxwell

The default value for the above parameter is Maxwell for the Maxwell model.

The elastic response for the standard linear solid model is inactive, by default, so that the
material behavior is similar to that of the Maxwell model. The elastic response can be activated
by providing nonzero values for the bulk and shear moduli:

pdbSetDouble <material> Mechanics BaseBulkModulus <n>

pdbSetDouble <material> Mechanics BaseShearModulus <n>

The material parameters for the viscoelastic response are specified in the same way as for the
Maxwell model. By default, the dilatational component of viscoelastic stress is assumed to be
purely elastic:

(11)

To activate the viscoelastic response for the dilatational component, use:

pdbSet Mechanics NoBulkRelax 0

To visualize elastic and viscoelastic responses, this model provides additional output fields.
Stresses and strains for the elastic response can be viewed with the BaseStressEL and
BaseElasticStrainEL fields, respectively. Creep strains  for the viscoelastic response
can be viewed with the CreepStrainEL field:

(12)

The solution for viscoelastic stress is time dependent. It also becomes nonlinear when viscosity
is a function of viscoelastic shear stress. Therefore, the Newton method is used to solve for
stresses. At the end of each Newton iteration, a check is made on whether the convergence
criteria have been satisfied. More iterations are performed until all the criteria are satisfied
within the specified tolerance or until the maximum number of iterations is reached. For details
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about convergence criteria and time-stepping for mechanics, see Time-Step Control for
Mechanics on page 338.

Purely Viscous Materials

Oxide and nitride, by default, are treated as viscoelastic materials. However, the viscosity is a
function of temperature (see Eq. 7). With increasing temperature, the viscosity decreases, that
is, the material becomes increasingly more liquid. When the viscosity reaches a very low value,
the first term in Eq. 4 can be neglected:

(13)

Eq. 13 describes the deviatoric component of a purely viscous material. The relaxation time
 typically gives a good estimate of the behavior of a viscoelastic material. If  is

much greater than the process time, the material is in the elastic regime. The material behaves
viscoelastically if  is in the range of the process time. If  is very small, the material is in the
viscous regime.

Shear Stress–Dependent Viscosity

For viscous and viscoelastic materials, the viscosity may depend on the temperature and the
shear stress . The temperature dependency is described by Eq. 7. The dependency on the
shear stress is given by:

(14)

The shear stress  is computed from the local stress distribution based on the second invariant
of the deviatoric component of the stress tensor: 

(15)

The viscosity breakdown value  can be determined by:

(16)

where:

(17)
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By default, oxide and nitride are treated as viscoelastic materials with shear stress–dependent
viscosity. The values for Vcrit0 and VcritW also are set in the parameter database:

pdbSetDouble <material> Mechanics Vcrit0
pdbSetDouble <material> Mechanics VcritW

Purely Elastic Materials

If the viscosity in Eq. 4, p. 47 is chosen high enough, the second term on the left can be
neglected and the equation reads:

(18)

This equation describes the deviatoric component of a purely elastic material. By default,
silicon and polycrystalline silicon are treated as purely elastic materials. To achieve this, the
viscosity of these materials is set to .

NOTE  and  are the primary parameters describing elastic materials, and
not Young’s modulus and the Poisson ratio. When changing material
properties with the pdb command, only a change to the primary
parameters affects the simulation. To obtain Young’s modulus and the
Poisson ratio, use the commands KG2E on page 477 and KG2nu on
page 478, respectively.

NOTE When material data is given in terms of Young’s modulus and the
Poisson ratio, use the commands Enu2G on page 411 and Enu2K on
page 412 to convert them to the shear modulus and the bulk modulus,
respectively.

Anisotropic Elastic Materials

The stress and strain relations for anisotropic elastic materials can be described using:

(19)

where  and  are the components of the engineering stress and strain, respectively, and 
is the component of the stiffness matrix. The engineering stress  ( =1, …, 6) corresponds to
the stress-tensor components , and the engineering strain 
( =1, …, 6) corresponds to the strain-tensor components .
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NOTE The engineering shear-strain components differ from the shear-strain
tensor components by a factor of 2.

Cubic Crystal Anisotropy

The mechanical responses of a crystalline solid vary along various crystal orientations. For a
cubic crystal, the axes of reference are chosen to be parallel to the crystal axes. In a coordinate
system with axes aligned along the crystal axes, the symmetric stiffness matrix  has the
following nonzero components: , , .

All other components are zeros. The anisotropic stress and strain relation is completely defined
when three independent modulus parameters C11, C12, and C44 are specified.

The degree of anisotropy for a given material can be measured by the departure from unity of
the ratio . The anisotropic model reduces to the isotropic model if the
ratio  is equal to 1. When the simulation coordinate axes do not coincide with the crystal axes,
the stiffness matrix  must be transformed accordingly. For this, note that  is actually a
rank-4 tensor.

By default, the anisotropic elasticity model is switched off. The following command switches
on the model:

pdbSet Silicon Mechanics Anisotropic 1

The values of these three modulus parameters with respect to the cubic crystal axis can be
defined using the following commands, which also show the default values for the crystalline
silicon:

pdbSet Silicon Mechanics C11 16.57E11
pdbSet Silicon Mechanics C12 6.39E11
pdbSet Silicon Mechanics C44 7.96E11

The unit for these default values is .

This model depends on the wafer.orient and slice.angle parameters specified in the
init command.

Hexagonal Crystal Anisotropy

The mechanical responses of a crystalline solid vary along various crystal orientations.
Hexagonal close-packed crystals contain a plane of isotropy. In a coordinate system with axes
aligned along the crystal axes, the symmetric stiffness matrix  has the following nonzero
components: , , , , , .

C
C11 C22 C33= = C12 C23 C13= = C44 C55 C66= =

A 2 C44 C11 C12–( )⁄=
A

C C

dyn/cm2

C
C11 C22= C33 C12 C13 C23= C44 C55= C66 C11 C12–( ) 2⁄=
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All other components are zeros. The anisotropic stress and strain relation is completely defined
when five independent modulus parameters C11, C12, C13, C33, and C44 are specified.

When the simulation coordinate axes do not coincide with the crystal axes, the stiffness matrix
 must be transformed accordingly. The transformation depends on the crystal orientation

information specified in the init command and the mater command.

The values of these five modulus parameters with respect to the crystal axis can be defined
using the following commands, which also show the default values for crystalline GaN:

pdbSet <material> Mechanics C11 39.0E11
pdbSet <material> Mechanics C12 14.5E11
pdbSet <material> Mechanics C13 10.6E11
pdbSet <material> Mechanics C33 39.8E11
pdbSet <material> Mechanics C44 10.5E11

The unit for these default values is dyn/cm2.

The hexagonal anisotropic elasticity model is applied to certain wurtzite III–V nitride
materials. The following command switches on the model:

pdbSet <material> Mechanics Anisotropic 1

 The material must be set to crystalline with hexagonal lattice type, for example:

pdbSetBoolean <material> Amorphous 0
pdbSetString <material> LatticeType Hexagonal

Orthotropic Model

Orthotropic materials have three planes of symmetry. In a coordinate system with axes aligned
along the symmetry planes, the symmetric stiffness matrix  has the following nonzero
components: , , , . The symmetry
planes of the model coincide with the simulation coordinate system, and the axes 1, 2, and 3
become axes X, Y, and Z in the simulation coordinate system, respectively.

Orthotropic material properties can be described by specifying nine independent parameters,
namely, the Young’s moduli in the symmetry planes ( ), the directional shear moduli
( ), and the directional Poisson ratios ( ). The other directional Poisson
ratios are calculated from:

(20)

where .

C

C
C11 C22 C33 C44 C55 C66, , , , , C12 C21= C13 C31= C23 C32=

Ex Ey Ez, ,
Gxy Gxz Gyz, , νxy νxz νyz, ,

υi j

Ei
------

υj i

Ej
------=

i j, x y z, ,=
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The stiffness matrix components are calculated from the specified material properties as:

(21)

(22)

By default, the orthotropic model is switched off. It is switched on using the command:

pdbSet <material> Mechanics Orthotropic 1

The material properties can be specified by the command:

pdbSetDouble <material> Mechanics <material_parameter> <n>

specifically:

pdbSetDouble <material> Mechanics YoungsModulusX <n>
pdbSetDouble <material> Mechanics YoungsModulusY <n>
pdbSetDouble <material> Mechanics YoungsModulusZ <n>
pdbSetDouble <material> Mechanics PoissonRatioXY <n>
pdbSetDouble <material> Mechanics PoissonRatioXZ <n>
pdbSetDouble <material> Mechanics PoissonRatioYZ <n>
pdbSetDouble <material> Mechanics ShearModulusXY <n>
pdbSetDouble <material> Mechanics ShearModulusXZ <n>
pdbSetDouble <material> Mechanics ShearModulusYZ <n>

The units for Young’s modulus and the shear modulus are .

Orthotropic thermal expansion also is considered in this material model, and different
coefficients of thermal expansion can be specified along the three symmetry planes:

pdbSetDouble <material> Mechanics ThExpCoeffX <n>
pdbSetDouble <material> Mechanics ThExpCoeffY <n>
pdbSetDouble <material> Mechanics ThExpCoeffZ <n>

C11 Ex 1 νyzυzy–( ) γ×=

C22 Ey 1 νxzυzx–( ) γ×=

C33 Ez 1 νxyυyx–( ) γ×=

C12 C21 Ex υyx υyzυzx
+( ) γ×= =

C13 C31 Ez υxz υxyυ
yz

+( ) γ×= =

C23 C32 Ey υzy υzxυ
xy

+( ) γ×= =

γ 1 υxyυyx– υyzυzy– υxzυzx– 2 υyxυxzυzy( )–( ) 1–
=

C44 Gyz=

C55 Gxz=

C66 Gxy=

dyn/cm2
54 Sentaurus™ Interconnect User Guide
N-2017.09



3: Computing Mechanical Stress
Material Models
Temperature-dependent material properties can be specified for all the material parameters
specified above. The variation of a property  can be specified as:

(23)

where the reference value is the material parameter value specified in the command file.

The values can be specified as:

pdbSet <material> Mechanics <material parameter>Rate <n>

For example:

pdbSetDouble FR4 Mechanics ThExpCoeffXRate 0

These orthotropic parameter entries exist for silicon, and the shorthand pdbSet command can
be used. The default values are set to replicate isotropic elastic behavior.

NOTE The older parameters using the 1, 2, 3 indices are deprecated and are
replaced with the new parameters using the X, Y, Z indices.

NOTE Anisotropic elastic models and plastic or viscoplastic models must not
be switched on simultaneously for the same material.

Plastic Materials

Materials such as metals show linear elastic behavior at lower stresses but undergo permanent
deformation at higher stresses. At low temperatures, permanent deformation in these materials
is not sensitive to the rate of loading. Such material behavior is defined as plastic or elastic-
plastic. Depending on the type of loading, plastic deformations may be computed using
incremental plasticity or deformation plasticity.

To switch on the plastic material model, use the command:

pdbSet <material> Mechanics IsPlastic <n>

Incremental Plasticity

Plastic material behavior under nonmonotonic loading is modeled using incremental
formulation.

ξ

ξ T( ) ξref ξ· T Tref–( )+=
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Incremental plasticity uses the von Mises yield criterion with associative flow and bilinear
hardening. The von Mises yield criterion for isotropic solid materials takes the form:

(24)

where:

■  is the back stress.

■  is an isotropic hardening variable.

■  is a function describing the change of yield surface with progressive yielding. This
function can be set to linear or exponential with:

pdbSetSwitch <material> Mechanics Incremental.Plasticity.Yield.Model
<Linear | Exponential>

The linear relation takes the form  where  is the yield stress in
uniaxial tension, and  is the isotropic hardening modulus.  and  can be set
respectively using the commands:

pdbSetDouble <material> Mechanics Incremental.Plasticity.SigmaY <n>
pdbSetDouble <material> Mechanics Incremental.Plasticity.Hiso <n>

The exponential relation takes the form  where
 and  are parameters for nonlinear (exponential) isotropic hardening. To set these

parameters, use the commands:

pdbSetDouble <material> Mechanics Incremental.Plasticity.Riso <n>
pdbSetDouble <material> Mechanics Incremental.Plasticity.Biso <n>

Under a small strain assumption, the strains (and strain rates) are decomposed additively:

(25)

where  are the elastic strains, and  are the plastic strains.

For incremental plasticity, the plastic strains are determined by the plastic flow rule:

(26)

where  is the slip rate, and  is the plastic potential. Plastic flow is assumed to be volume
preserving, so that plastic strain is purely deviatoric:

(27)
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For associative plastic flow, the plastic potential  is set equal to the yield function . The
evolution of the isotropic hardening variable and the back-stress variable is given by:

(28)

where  is the linear kinematic hardening modulus,  is the parameter for nonlinear
kinematic hardening, and  is the equivalent plastic strain rate. The Einstein summation
convention is used to define the tensor product in this equation.

To set the kinematic hardening parameters, use the commands:

pdbSetDouble <material> Mechanics Incremental.Plasticity.Hkin <n>
pdbSetDouble <material> Mechanics Incremental.Plasticity.HNLkin <n>

For linear isotropic hardening, the hardening modulus is interpreted as the slope of the stress
versus the plastic strain curve (as obtained from uniaxial tension test) .

It differs from the elastic-plastic tangent modulus, which is defined as the slope of the stress
versus total strain curve .

To switch on the incremental plasticity model, use:

pdbSet <material> Mechanics Plasticity.Model Incremental

The rate equations are discretized using the backward Euler scheme and then are solved using
a radial return mapping algorithm (see [1] for more details).

The nonlinear nature of the plasticity model requires Newton iterations to achieve the
equilibrium state for each loading step. At the end of each iteration, a check on the satisfaction
of convergence criteria is made. More Newton iterations are performed until all the
convergence criteria are satisfied within the specified tolerance or until the maximum number
of iterations is reached. See Time-Step Control for Mechanics on page 338 for details on
convergence criteria and time-stepping for mechanics.

NOTE To define the plastic model, use nonzero values for the isotropic or the
kinematic hardening modulus along with yield stress. In the absence of
hardening, the numeric simulation of plastic deformation may become
unstable.

Q F
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NOTE The PDB parameters Hardening.Modulus.Isotropic,
FirstYield, and Hardening.Modulus.Kinematic are deprecated
and are replaced by Incremental.Plasticity.Hiso,
Incremental.Plasticity.SigmaY, and 
Incremental.Plasticity.Hkin, respectively.

Deformation Plasticity

Plastic materials that do not have well-defined yield stress can be modeled using deformation
plasticity. This model is based on the Ramberg–Osgood formula [2][3], which is only valid for
monotonic loading. It is used mostly for plastic deformation around crack tips since it is well
suited to the J-integral calculation.

For one dimension, an additive decomposition of strains under a small strain assumption is
given as:

(29)

where  and  are material parameters,  is the stress in one dimension,  is the total strain
in one dimension, and  is Young’s modulus.

Extending the formula to three dimensions, the strain components can be expressed as:

(30)

where  is the equivalent stress.

The plastic flow is assumed to be associative and is governed by the von Mises yield criterion.

Under monotonic loading, the total plastic strain can be written as:

(31)

where  is the total equivalent plastic strain.

Inverting the plastic strain expression gives:

(32)
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with  defining the work hardening exponent.

To set the material parameters, use the commands:

pdbSetDouble <material> Mechanics Deformation.Plasticity.sigmay <n>
pdbSetDouble <material> Mechanics Deformation.Plasticity.n <n>
pdbSetDouble <material> Mechanics Deformation.Plasticity.alpha <n>

To switch on the deformation plasticity model, use:

pdbSet <material> Mechanics Plasticity.Model Deformation

The deformation plasticity equations do not require any integration due to total stresses and
strains. However, the nonlinear expressions require Newton iterations to achieve the
equilibrium state for each loading step. At the end of each iteration, a check on the satisfaction
of convergence criteria is made. More Newton iterations are performed until all the
convergence criteria are satisfied within the specified tolerance or until the maximum number
of iterations is reached. See Time-Step Control for Mechanics on page 338 for details on
convergence criteria and time-stepping for mechanics.

NOTE Deformation plasticity must be used only with monotonic loading since
the equations are not valid for unloading. This model must be used if the
J-integral must be calculated around a crack tip with plastic strains.

Viscoplastic Materials

Materials, such as metals at high temperatures, exhibit rate-dependent plasticity also known as
viscoplasticity or creep. There are different ways to model such behavior:

■ Anand model

■ Power law creep

Anand Model

The Anand model [4][5] is used for rate-dependent plasticity that combines creep and plastic
deformation.

Assuming small strains, the strain rates and strains can be decomposed into elastic and
viscoplastic components in an additive manner:

(33)
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The elastic strains are evaluated using Hooke’s law, while the Anand model is used to evaluate
the viscoplastic component. The Anand model assumes that plastic deformation occurs at all
values of strain, so instead of a yield function, a constitutive equation is used to relate stresses
to viscoplastic strains.

The flow rule for evolution of viscoplastic strains (volume preserving) is assumed to be of the
familiar form:

(34)

The equivalent viscoplastic strain rate at constant temperature is given by a constitutive
equation:

 (35)

where  is the deformation resistance. It is defined in terms of an isotropic hardening function
as:

(36)

The saturation value of deformation resistance at a given temperature and strain rate is
expressed as:

(37)

In the above formulation:

■  is a pre-exponential factor (1/s).

■  is the activation energy in eV.

■  is the Boltzmann constant (8.617383e-5 eV/K).

■  is the absolute temperature in kelvin.

■  is the stress multiplier (unitless).

■  is the strain rate sensitivity (unitless).

■  is the constant of athermal hardening or softening in .

■  is the exponent of athermal hardening or softening (unitless).

■  is the coefficient for the saturation value of deformation resistance in .

■  is the exponent for the saturation value of deformation resistance (unitless).
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Values for the material parameters  and the initial value for deformation
resistance  are obtained by fitting experimental data for stress–strain (obtained from tension
or compression tests conducted at various temperatures and strain rates) to the above equations.
For details on how to obtain such data, refer to the literature [4][6][7][8].

To set these parameters, use the commands:

pdbSetDouble <material> Mechanics Viscoplasticity.A <n>
pdbSetDouble <material> Mechanics Viscoplasticity.Q <n>
pdbSetDouble <material> Mechanics Viscoplasticity.Xi <n>
pdbSetDouble <material> Mechanics Viscoplasticity.m <n>
pdbSetDouble <material> Mechanics Viscoplasticity.h0 <n>
pdbSetDouble <material> Mechanics Viscoplasticity.a <n>
pdbSetDouble <material> Mechanics Viscoplasticity.stilde <n>
pdbSetDouble <material> Mechanics Viscoplasticity.n <n>
pdbSetDouble <material> Mechanics Viscoplasticity.s0 <n>

NOTE For other materials, use the long form of the pdb commands to set
parameter values.

The material Solder in the PDB is used to model viscoplastic behavior. The default values for
the above parameters for Solder material are based on 96.5Sn3.5Ag solder alloy as reported
in [6].

To solve the above nonlinear equations, the rate terms are discretized using the backward Euler
method, and the resulting algebraic equations are evaluated locally at every integration point
using the Newton–Raphson iterative scheme.

To switch on the viscoplastic material model, use the command:

pdbSet <material> Mechanics IsViscoPlastic <n>

This flag must be switched on during the simulation if viscoplastic deformation exists. The
nonlinear nature of the viscoplasticity model also requires Newton iterations to achieve
equilibrium of mechanics equations at each loading step. At the end of each iteration,
convergence criteria are checked. More iterations are performed until all the convergence
criteria are satisfied within the specified tolerance or until the maximum number of iterations
is reached. See Time-Step Control for Mechanics on page 338 for details on convergence
criteria and time-stepping for mechanics.

NOTE To avoid convergence problems, use small time steps at the beginning
of the analysis. You can increase the number of time steps later, during
the analysis, if it does not adversely affect the solution.

A Q ξ m h0 a s̃ n, , , , , , ,
s0
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Power Law Creep

Power law creep models primary (transient) and secondary (steady-state) creep behavior in
metals at high temperatures. Depending on the microstructural processes being modeled,
power law creep may be formulated as either Bailey–Norton creep or Mukherjee–Bird–Dorn
creep.

To switch on the creep material model, use the command:

pdbSet <material> Mechanics IsCreep <n>

Bailey–Norton Creep

Bailey–Norton creep [9] assumes creep strain to be of the following form:

(38)

where, for multiaxial loading:

■  is the equivalent creep strain rate (1/s).

■  is a pre-exponential factor in .

■  is the activation energy in eV.

■  is the Boltzmann constant (8.617383e-5 eV/K).

■  is the absolute temperature in kelvin.

■  is the equivalent stress or the von Mises stress in .

■  is the time (different from physical time) in s.

■  and  are exponents (unitless).

The above form is referred to as a time hardening form. A more commonly used form called
the strain hardening form is obtained by eliminating the time variable:

(39)

The material parameters , , , and  are obtained by fitting experimental data. To select
this creep model and to set these parameters, use the commands:

pdbSet <material> Mechanics Creep.Model PowerLawBN
pdbSet <material> Mechanics Creep.A <n>
pdbSet <material> Mechanics Creep.Q <n>
pdbSet <material> Mechanics Creep.n <n>
pdbSet <material> Mechanics Creep.m <n>
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NOTE For materials other than Solder, use the long form of these commands
to set parameter values.

The default values for the above parameters have been added to the PDB to the Solder
material based on the 96.5Sn3.5Ag solder alloy as reported in [10].

Mukherjee–Bird–Dorn Creep

Mukherjee–Bird–Dorn creep [11][12] assumes creep strain to be of the following form:

(40)

where, for multiaxial loading:

■  is the equivalent creep strain rate (1/s).

■  is a dimensionless constant (unitless).

■  is the frequency factor for diffusion in .

■  is the shear modulus in .

■  is the Boltzmann constant (8.617383e-5 eV/K).

■  is the activation energy in eV.

■  is the absolute temperature in kelvin.

■  is the magnitude of the Burgers vector in cm.

■  is the grain size/diameter in cm.

■  is the equivalent stress or the von Mises stress in .

■  and  are exponents (unitless).

The material parameters , , , , , and  are obtained by fitting experimental data. To
select this creep model and to set these parameters, use the commands:

pdbSetBoolean <material> Mechanics Creep.Model PowerLawMBD
pdbSetDouble <material> Mechanics Creep.A <n>
pdbSetDouble <material> Mechanics Creep.D0 <n>
pdbSetDouble <material> burgVectMod <n>
pdbSetDouble <material> Mechanics Creep.Q <n>
pdbSetDouble <material> Mechanics Creep.n <n>
pdbSetDouble <material> Mechanics Creep.p <n>
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The creep model uses the current grain size when the grain growth model is active (see Grain
Growth Model on page 163). The grain size for the grain growth model is set using the
command:

pdbSetDouble <material> GrainSize <n>

When the grain growth model is not active, the grain size must be specified using GSize in the
select command.

Integrating Creep Equations

Under a small strain assumption, strains (and strain rates) can be decomposed additively as:

(41)

with creep strains being distinct from plastic strains.

Creep flow is assumed to be volume preserving ( ) and is governed by:

(42)

When incremental plasticity is also active, the creep flow rule is modified to account for
hardening:

(43)

where:

■  is the equivalent stress.

■  is the back stress for kinematic hardening.

■ Plastic flow equations are solved simultaneously with creep flow.

To solve the creep equations, the rate terms are discretized using the backward Euler method,
and the resulting algebraic equations are evaluated locally at every integration point using the
Newton–Raphson iterative scheme.

The nonlinear nature of the creep model also requires global Newton iterations to achieve
equilibrium of the mechanics equations at each loading step. At the end of each iteration,
convergence criteria are checked. More iterations are performed until all the convergence
criteria are satisfied within the specified tolerance or until the maximum number of iterations
is reached. See Time-Step Control for Mechanics on page 338 for details on convergence
criteria and time-stepping for mechanics.
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NOTE To avoid convergence problems, use small time steps at the beginning
of the analysis. You can increase the number of time steps later, during
the analysis, if it does not adversely affect the solution.

Swelling

Swelling refers to volumetric expansion of material. Swelling material behavior is defined by
specifying strain rates at various temperatures that are interpolated linearly. To switch on the
model, use the command:

pdbSetBoolean <material> Mechanics IsSwelling <n>

The swelling strain rate data is specified with a double array:

pdbSetArray <material> Mechanics SwellingStrainRate 
Temperature { <temp> {<SSR1> <SSR2> <SSR3>} 

<temp> {<SSR1> <SSR2> <SSR3>} ... }

where <temp> is the temperature in degree Celsius, and <SSR1>, <SSR2>, and <SSR3> are
strain rates in the x-, y-, and z-direction, respectively, in .

Strain rates can be the same (isotropic) or different (anisotropic) in each of the three directions.
For cyclic temperature loading, strain rate data must be given for loading (temperature
increment) as well as unloading (temperature decrement). For example:

pdbSetArray Mold Mechanics SwellingStrainRate Temperature {
27 {0.0 0.0 0.0}
77 {0.001 0.001 0.001}
127 {0.002 0.002 0.002}
80 {0.0012 0.0012 0.0012}
25 {0.0 0.0 0.0}

}

If strain rate data is not given for unloading, loading data is used for increasing as well as
decreasing temperatures.

Since strains are assumed to be small, swelling strain rates are added to other strain rates:

(44)

and are integrated over time to give total strains:

(45)

where  for .
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For a given material, only one set of strain rate data can be specified for a solve step. If
necessary, different strain rate data may be specified for the same material in a subsequent solve
step.

Temperature-Dependent Mechanical Properties

The mechanical properties of materials are different at high temperature from those at room
temperature. The elastic modulus of typical materials decreases as temperature rises. Some
materials show nonnegligible changes of mechanical properties at different temperatures.

The temperature dependency can be applied to:

■ The bulk modulus and the shear modulus for isotropic materials.

■ , , and  for cubic anisotropic elastic materials.

■ , , , , and  for hexagonal anisotropic elastic materials.

■ The coefficient of thermal expansion for isotropic, cubic anisotropic, and hexagonal
anisotropic elastic materials. 

The temperature dependency for the above-listed mechanical properties can be defined
separately. The available options are:

■ The linear dependency is defined with the parameter <parameter>.T1, for example:

pdbSet <material> Mechanics BulkModulus.T1 <n>

■ Then, the parameter is calculated using , where the unit of
temperature is degree Celsius.

■ The piecewise linear dependency can be specified with:

pdbSetDoubleArray SiliconGermanium Mechanics ShearModulus.TTable
{<T1> <v1> ... <Tn> <vn>}

The unit of temperature is degree Celsius. The linear dependency defined by
<parameter>.T1 is ignored.

Table 4 Temperature-dependent mechanical parameters

Material model PDB parameters

Isotropic elasticity BulkModulus, ShearModulus, ThExpCoeff

Cubic anisotropic elasticity C11, C12, C44, ThExpCoeff

Hexagonal anisotropic elasticity C11, C12, C13, C33, C44, ThExpCoeff1, ThExpCoeff2, ThExpCoeff3

Other Refer to the corresponding sections for related parameters and syntax

C11 C12 C44

C11 C12 C13 C33 C44

P T( ) P P.T1 T 26.85–( )+=
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Plane Stress Analysis
The temperature dependency can be switched off with:

pdbSet Mechanics Parameter.Interpolation 0

NOTE Do not mix new syntax with old syntax (see Plane Stress Analysis on
page 67). Some of the old syntax might exist in the Advanced
Calibration script.

Temperature dependency of yield stress for incremental plasticity (see Incremental Plasticity
on page 55) can be modeled in two ways: linear or exponential.

Linear dependency of yield stress on temperature is modeled as:

(46)

where  is the yield stress at zero absolute temperature ( ), and  is the reference
absolute temperature. These variables are specified, respectively, by the commands:

pdbSetDouble <material> Mechanics Incremental.Plasticity.SigmaY <n>
pdbSetDouble <material> Mechanics Incremental.Plasticity.RefTemp <n>

Exponential dependency on temperature is modeled through an Arrhenius expression. The
prefactor and exponent of the Arrhenius expression are specified, respectively, by the following
commands:

pdbSetDouble <material> Mechanics Incremental.Plasticity.SigmaY <n>
pdbSetDouble <material> Mechanics Incremental.Plasticity.ActEnergy <n>

NOTE The linear and exponential models are mutually exclusive.

NOTE The PDB parameter FirstYieldW is deprecated and is replaced by
Incremental.Plasticity.ActEnergy.

Plane Stress Analysis

In 2D problems, the elastic models implemented in Sentaurus Interconnect follow the plane
strain formulation by default. Under the plane strain assumption:

(47)

While this is good for structures where the strain in the third direction is very small compared
to the cross section, it would give inaccurate results for thin structures. 
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Equations: Global Equilibrium Condition
Thin plate-like structures where one dimension is very small compared to the other two can be
modeled under the plane stress assumption:

(48)

The strain  is obtained as a function of other strains, for example, for purely elastic
structures:

(49)

The plane stress model can be switched on for a particular region using:

pdbSetBoolean <material> Mechanics PlaneStress 1

NOTE You must switch on the plane stress model in all regions. Combining
plane stress and plane strain formulations within a structure by
switching on plane stress in only a few regions is not advisable.

Equations: Global Equilibrium Condition

The equations for mechanics in Sentaurus Interconnect are the quasistatic equations of force
equilibrium.

The strain rate tensor is related to the symmetric component of the velocity gradient and is
given by:

(50)

Strain is then related to stresses through any of the models defined in Material Models on
page 46. For all models, the global equilibrium condition is given by:

(51)

The above equations are solved using the finite-element method. The solution is a vector
representing the velocity components at each node. These velocities are used to compute the
strain and stresses. The stresses and the boundary conditions determine the mechanical state of
the system.
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Second-Order Finite-Element Analysis
NOTE Stress and strain are derivatives of velocity. They are, therefore,
computed at one order of accuracy lower than the solution variable. This
also means that they are discontinuous across the elements. When
visualized, the stress values may appear poorly converged even if the
linear solver has converged.

In addition, the quasistatic mechanics equations are elliptic in nature and, therefore, are prone
to high levels of shape dependency. This is most frequently seen at structure corners and crack
tips. These equations also exhibit a high sensitivity to the mesh modification algorithms at
these corners or crack tips.

NOTE At sharp corners or crack tips, the mechanics equations have a
singularity. Therefore, it is not possible to discretize at a corner correctly
using regular types of element.

Second-Order Finite-Element Analysis

Second-order finite elements are available for triangles and tetrahedra to perform mechanical
stress analysis for linear elastic (isotropic and anisotropic), viscoelastic, elastoplastic,
viscoplastic, and creep material models. In addition, they can be used for J-integral calculations
and the cohesive zone model.

Figure 8 shows the first-order or linear elements for triangles and tetrahedra. These elements
have nodal degrees of freedom, and the figures show the associated shape functions. 

Figure 8 Shape functions and locations of degrees of freedom for linear elements

Second-order or quadratic elements use quadratic shape functions to provide a higher degree
of accuracy and, in certain cases, they help avoid locking and convergence issues.
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Second-Order Finite-Element Analysis
Second-order finite-element analysis is switched on using:

pdbSet Mechanics FiniteElementOrder 2

If a second-order simulation is performed, second-order elements are used throughout the
entire structure and cannot be used regionwise. In addition, second-order finite-element
analysis is more memory intensive. Given the higher accuracy of these elements, it is suggested
to use fewer mesh points compared to linear elements.

An additional field is available for visualizing second-order elements in Sentaurus Visual:

■ Displacement2 plots the displacement calculated over the nodes and edge centers. This
field is quadratic in nature.

NOTE Second-order elements may give inaccurate solutions or may cause
convergence difficulties with the cohesive zone model when simulating
a uniform pressure distribution on crack surfaces. 

Figure 9 Shape functions and locations of degree of freedoms for quadratic elements

Mechanics Simulations on Mixed or Hybrid Meshes

Mechanics simulations can be performed on hybrid meshes including triangular and
quadrilateral (axis-aligned) elements in two dimensions, and tetrahedral, brick, pyramid, and
prism elements in three dimensions.

The hybrid mesh can be obtained in one of the following ways:

■ Use the line command to generate axis-aligned meshes.

■ Read in a TDR file that contains hybrid elements.
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Mechanics Simulations With Composite Solid Shell Element
To read in a hybrid mesh from a TDR file, specify the option mixed.mesh in the init
command:

init tdr=<c> mixed.mesh

Hybrid mesh elements are only available for first-order mechanics simulations. Process steps
such as etching and deposition are allowed. However, only mechanics simulations can be
performed on these meshes and the results stored. The hybrid meshes support all material
models as well as fracture mechanics (including J-integral calculations and cohesive zone
modeling).

NOTE Not all postprocessing commands (for example, slice and
interface) are supported in mixed-mesh mode. Data extraction using
the interpolate command and data integration using the integrate
command are supported only for nodal data fields. However, you can
convert mixed-mesh structures to triangular or tetrahedral structures
using either the !mixed.mesh option of the init command or external
tools such as Sentaurus Mesh.

Mechanics Simulations With Composite Solid Shell 
Element

A composite solid shell element (CSSE) is a solid finite element that exhibits shell behavior in
the thickness direction. The CSSE falls between thin shell and conventional solid elements and
has the same degree-of-freedom configuration as solid elements. Conventional solid elements
lock when subject to bending and require a very fine mesh for thin layers. CSSEs adopt a
special constitutive formulation to reduce transverse shear locking, membrane locking, and
Poisson thickness locking. It is useful to model shell-like behavior such as thin films subject to
bending and multilayered thin films.

The CSSE is implemented with a first-order linear 3D brick element and supports isotropic and
orthotropic elastic material models. An axis-aligned mesh with brick elements can be
generated using the line command and the mixed.mesh option of the init command (see
Mechanics Simulations on Mixed or Hybrid Meshes on page 70). 

NOTE Typical loading types such as displacement loading and force loading
are supported. Other stress-causing mechanisms and models except
thermal mismatch are not supported.

The CSSE material is defined with the following command and is used to define the material
of a CSSE region:

mater name=<c> add new.like=CSSEMaterial
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Mechanics Simulations With Composite Solid Shell Element
For example:

mater name=CSSEMat add new.like=CSSEMaterial

The material behavior of the CSSE is isotropic elastic by default. If orthotropic elastic behavior
is used, set:

pdbSet <CSSE_Material_Name> Mechanics Orthotropic 1

For a CSSE with a single layer, specify the layer material with a relative thickness of 1.0 by
setting:

pdbSet <CSSE_Material_Name> Mechanics CSSELayers {<material> 1.0}

In this case, a CSSE element behaves the same as a typical solid shell element.

In addition, layered regions can be simulated with a single CSSE in the thickness direction
through the thickness integration of the layered wall. Up to 20 layers are supported. The
material and relative thickness of each layer must be defined layer-wise by setting:

pdbSet <CSSE_Material_Name> Mechanics CSSELayers {<material1> <thickness1>
<material2> <thickness2>
...}

If the material within each layer is orthotropic, an in-plane rotation angle can be specified with:

pdbSetDouble <material1> Mechanics Ortho.InPlane.Rot.Angle.Degree <angle>

For a CSSE with multiple layers, the geometry and data fields for layer-by-layer visualization
are saved to a TDR file using:

struct tdr=<c> csse

With the csse option, each CSSE is split into multiple layers for visualization, and data fields
from layered CSSEs are interpolated to each split layer. In the split CSSE case, each layer can
be visualized individually.
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Boundary Conditions

Equations for stress equilibrium require boundary conditions to define the system completely. 

Figure 10 Default mechanics boundary conditions in the unified coordinate system

The default boundary conditions are zero velocities in the direction perpendicular to the
boundary planes. Since velocities are set to fixed values along the boundaries, these boundary
conditions are referred to as Dirichlet boundary conditions in directions perpendicular to
boundary planes. The HomNeumann boundary condition is used when the plane must be free.

Sentaurus Interconnect provides a general way to reset the default boundary conditions and
specify boundary conditions for stress analysis using the stressdata command:

stressdata bc.location= Left | Right | Front | Back | Bottom | <c>
bc.value= {dx=<n> | dy=<n> | dz=<n> | fx=<n> | fy=<n> | fz=<n> |

sx=<n> | sy=<n> | sz=<n>}

where:

■ dx, dy, and dz specify the displacement rates (default unit: cm/s).

■ fx, fy, and fz specify the total forces (default unit: dyne).

■ sx, sy, and sz specify the distributed forces (default unit: ).

All the displacement rates, total forces, and distributed forces are applied to the area defined
by bc.location, where Left, Right, Front, Back, and Bottom refer to the outer boundary
surfaces of the simulation domain. If bc.location specifies a contact name (<c>), the
corresponding contact must exist.

Vx=0

Vy=0 Vy=0

dyn/cm2
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Sentaurus Interconnect checks whether the following fundamental boundary condition rules
are violated in user-defined settings:

■ For any degree of freedom, only one boundary condition can be specified.

■ At least at one point, the deformation along any coordinate system direction must be fixed
through displacement boundary conditions, so that rigid body movement will not become
a valid solution.

NOTE To obtain reaction forces at nodes with Dirichlet boundary conditions,
specify:

pdbSetBoolean Mechanics Save.Reaction.Force 1

NOTE Any boundary condition defined with the stressdata command
invalidates the default boundary conditions. If no boundary condition is
defined, free boundary condition is applied by default.

Dirichlet boundary conditions are imposed using the penalty method, by default. To adjust the
penalty factor, use the command:

pdbSet Mechanics Boundary.Penalty.Factor <n>

The default penalty factor is 1.0e12. The larger this factor, the more accurate the enforcement
of Dirichlet boundary conditions. However, using an extremely large penalty factor could lead
to an ill-conditioned matrix and, therefore, could slow down the linear equation solver.

Alternatively, you can use the matrix reduction method to impose Dirichlet boundary
conditions. To choose the penalty method or matrix reduction method, use the command:

pdbSet Mechanics Boundary.Method.Type <model>

where <model> is Penalty or MatrixReduction.

NOTE To ensure the structure is bounded by a perfect rectangle, the
displacements computed by these general boundary conditions are not
applied to the structure. However, they evaluate the stresses correctly.
This assumption is consistent with the small deformation assumption
within each mechanics time step.
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Example: Applying Boundary Conditions

This 2D example simulates silicon covered with oxide, with the right side free to move:

line x loc= -0.02 tag= e spacing= 0.005
line x loc= 0 tag= a spacing= 0.005
line x loc= 0.2 tag= b spacing= 0.05

line y loc= 0 tag= c spacing= 0.05
line y loc= 2 tag= d spacing= 0.05

region silicon xlo= a xhi= b ylo= c yhi= d
region oxide xlo= e xhi= a ylo= c yhi= d

init !DelayFullD

pdbSetDouble Mechanics RefThExpCoeff 0
stressdata bc.location= Bottom bc.value= { dx=0 }
stressdata bc.location= Left bc.value= { dy=0 }

pdbSet Oxide Mechanics Viscosity0 1e40
pdbSet Oxide Mechanics ViscosityW 0
mode mechanics

temp_ramp name= tr1 temperature= 600 ramprate= 30<K/min> time= 10<min>
solve temp.ramp= tr1

struct tdr= rampup

solve time= 10 temperature= 900

struct tdr= postout

Deprecated Syntax

You can select various boundary conditions using:

pdbSet Mechanics <side> BoundaryCondition <model>

where:

■ <side> is Left, Right, Front, or Back.

■ <model> is HomNeumann or Dirichlet.
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The HomNeumann boundary condition is used when the plane must be free and implies a zero
normal stress (shown in Figure 11). 

Figure 11 HomNeumann boundary condition on right boundary plane

For example, if you want to set the right plane to be free, use the command:

pdbSet Mechanics Right BoundaryCondition HomNeumann

NOTE Any boundary condition or loading condition defined with the
stressdata command invalidates all boundary conditions defined
with pdbSet Mechanics <side> ..., including the default ones.

Variable Boundary Condition

To define values for displacement rates, total forces, and distributed forces that depend on
temperature or time, use the command:

stressdata bc.location= Left | Right | Front | Back | Bottom | <c>
bc.proc= {dxP=<c> | dyP=<c> | dzP=<c> | fxP=<c> | fyP=<c> | fzP=<c> |

sxP=<c> | syP=<c> | szP=<c>}

where:

■ dxP, dyP, and dzP specify the procedure names for the displacement rates.

■ fxP, fyP, and fzP specify the procedure names for the total forces.

■ sxP, syP, and szP specify the procedure names for the distributed forces.

An example of temperature-dependent boundary conditions is:

stressdata bc.location= Right bc.proc= {dxP=LookUpTable}

Vx=0

Vy=0 sy=0
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fproc LookUpTable { args } {
set CurrTemp [lindex $args 0] ;# current temperature in C
set PrevTemp [lindex $args 1] ;# previous temperature in C
set Time [lindex $args 2] ;# previous time in s
set TimeStep [lindex $args 3] ;# current time step in s
set CurrTime [expr $Time + $TimeStep] ;# current time in s
set PrevTime $Time
set dy 0
if { $CurrTemp < 27 }
{

set dy 1.0e-5 ;# velocity in cm/s
} elseif { $CurrTemp > 27 && $CurrTemp < 127 } {

set dy 1.0e-6 ;# velocity in cm/s
} else {

set dy 0 ;# velocity in cm/s
}
return $dy

}

Pressure Boundary Condition

The pressure boundary condition is used to apply uniform pressure on the exterior boundary.
The direction of the loading depends on the normal of the exterior surface. To apply the
pressure boundary condition, use the stressdata command, for example:

stressdata bc.location= Left | Right | Front | Back | Bottom | <c>
bc.value= {pressure=<n>}

Advanced Dirichlet Boundary Condition

A more advanced Dirichlet-type boundary condition can be defined that specifies both the
translational and rotational velocities on the boundaries. It is defined using the command:

stressdata bc.location= Left | Right | Front | Back | Bottom | <c>
bc.rotation.axis= {xa=<n> | ya=<n> | za=<n>}
bc.value= {dx=<n> | dy=<n> | dz=<n> | rx=<n> | ry=<n> | rz=<n>}

where:

■ dx, dy, and dz specify the displacement rates (default unit: cm/s).

■ rx, ry, and rz specify the rotational velocities (default unit: rad/s).

■ xa, ya, and za specify the coordinates of the point around which the rotation occurs
(default unit: cm).
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NOTE To obtain reaction forces and moments at an external point with
Dirichlet boundary conditions, specify:

pdbSetBoolean Mechanics Save.Reaction.Force 1

Advanced Neumann Boundary Condition

A Neumann-type boundary condition can be defined at an external point constrained to a face
or contact. It is specified using the command:

stressdata bc.location= Left | Right | Front | Back | Bottom | <c>
bc.rotation.axis= {xa=<c> | ya=<c> | za=<c>}
bc.value= {fx=<n> | fy=<n> | fz=<n> | mx=<n> | my=<n> | mz=<n>}

where:

■ fx, fy, and fz specify forces (default unit: dyne).

■ mx, my, and mz specify moments (default unit: dyn cm).

■ xa, ya, and za specify the coordinates of the external point about which the moments are
applied (default unit: cm).

Point-Force Boundary Condition

Point-force boundary condition allows force to be applied directly on a bulk node. This
boundary condition can be defined using the stressdata command:

stressdata bc.location=<c> bc.value= {pfx=<n> pfy=<n> pfz=<n>}
point.coord= {<n> <n> <n>}

where:

■ bc.location specifies the name of the defined point-force boundary condition.

■ bc.value specifies the magnitude of the force to be applied in each direction (default unit:
dyne).

■ point.coord is the coordinate of the bulk node (default unit: ).

The point force is applied to the nearest node to the coordinate specified. The snap tolerance is
default to 1 nm and can be changed with:

pdbSet Mechanics Point.Snap.Dist <n>

If the nearest node is farther than the snap tolerance, the point force is distributed to the two
end nodes of the edge containing the point (in two dimensions) or three corner nodes of the face
containing the point (in three dimensions). To switch from distributing the point force (default)

μm
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to snapping it onto the nearest node when the node is farther than the snap tolerance
(nondefault), use:

pdbSet Mechanics Point.Force.Distribute 0

Unspecified coordinate or force components default to zero. If a new point-force boundary
condition is defined with an existing name, the old point-force boundary condition will be
replaced.

Point-Displacement Rate Boundary Condition

The point-displacement rate boundary condition allows velocity, that is, displacement rate, to
be applied directly to a bulk node. This boundary condition can be defined using the
stressdata command:

stressdata bc.location=<c> bc.value= {pdx=<n> pdy=<n> pdz=<n>}
point.coord= {<n> <n> <n>}

where:

■ bc.location specifies the name of the defined point-displacement rate boundary
condition.

■ bc.value specifies the magnitude of the displacement rate to be applied in each direction
(default unit: cm/s).

■ point.coord is the coordinate of the bulk node (default unit: ).

The displacement rate is applied to the nearest node to the coordinate specified. Similar to the
point-force boundary condition, the snap tolerance defaults to 1 nm and can be changed with:

pdbSet Mechanics Point.Snap.Dist <n>

If the nearest node is farther than the snap tolerance, the point displacement rate is distributed
to the two end nodes of the edge containing the point (in two dimensions) or three corner nodes
of the face containing the point (in three dimensions). To switch from distributing the point
displacement rate (default) to snapping it onto the nearest node when the node is farther than
the snap tolerance (nondefault), use:

pdbSet Mechanics Point.DispRate.Distribute 0

If no coordinate is specified, the default value is zero. If the displacement rate component is
not specified, it is considered to be unconstrained. If a new point-displacement rate boundary
condition is defined with an existing name, the old point-displacement rate boundary condition
will be replaced.

μm
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Periodic Boundary Condition

The periodic boundary condition is used for structures with a periodically repeating pattern.
This condition is used on periodic structures with assigned master and slave boundaries. The
slave boundary has the same deformation profile as the master boundary.

In Figure 12, the left and right boundaries are bound together by the periodic boundary
condition. 

Figure 12 Periodic boundary condition

To apply the periodic boundary condition to the outer bounding surfaces, use the command:

pdbSet Mechanics <Left | Right | Front | Back> Periodic 1

If this command is specified on a sidewall, the opposite sidewall is defined automatically as a
periodic boundary. Conflicts of boundary condition definitions are checked on all sidewalls.
For example, to apply a periodic boundary condition on the left and right sidewalls, use one of
the following commands:

pdbSet Mechanics Left Periodic 1 
pdbSet Mechanics Right Periodic 1

Both the periodic and coupling boundary conditions are implemented using the penalty
method. To adjust the penalty factor, use the command:

pdbSet Mechanics Constraint.Penalty.Factor <n>

The default penalty factor is . The larger this factor, the more accurately the periodic
or coupling boundary conditions will be enforced. Using an extremely large penalty factor
could lead to an ill-conditioned matrix and, therefore, slow down or even fail the linear
equation solver.
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NOTE If you choose to apply periodic boundary conditions, all other boundary
conditions defined through the old pdbSet method will be ignored and
must be redefined using the stressdata command.

Coupling Boundary Condition

Depending on the structure and loading, certain degrees of freedom must be coupled. One
particularly useful case is the coupling boundary condition. The coupling boundary condition
on a sidewall enforces an equal displacement component at all nodes of this boundary, as
shown in Figure 13. 

Figure 13 Coupling boundary condition

To switch on the coupling boundary condition, use:

pdbSet Mechanics <Left | Right | Back | Front> <Cx | Cy | Cz> 1

For example, to apply the coupling boundary condition for the y-component of displacement
on the right sidewall, use the command:

pdbSet Mechanics Right Cy 1

The coupling boundary condition also is implemented through the penalty method.

NOTE If you choose to apply coupling boundary conditions, all other boundary
conditions defined through the old pdbSet method will be ignored and
must be redefined using stressdata command.
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Time-Step Control

It may be necessary to use time step control when viscous or viscoelastic materials are present
in the structure. Usually, when other PDEs are solved, the time steps will be sufficiently limited
by the solver. If PDEs are not solved or for materials with a low viscosity, the time step control
for the Maxwell model can be switched on with:

pdbSet Mechanics Visc.Step.Control 1

Time-stepping can be controlled with both the displacement increment and the relative
relaxation time. To switch on these two options, use the following commands:

pdbSet Mechanics Visc.Step Limit.Disp 1
pdbSet Mechanics Visc.Step Limit.ScaleT 1

To see other control parameters, launch the PDB Browser, and see the section Mechanics >
Visc.Step.

For the standard linear solid model for viscoelasticity, time-step control is activated
automatically (see Time-Step Control for Mechanics on page 338).

Stress-Causing Mechanisms

Every mechanical system needs a set of stress-driving mechanisms to reach a stressed state.
The stress-inducing mechanisms in Sentaurus Interconnect are described here.

Densification

A typical densification process uses thermal heating to increase the density of a porous
material. As the material density increases, its volume shrinks and the volume shrinkage
generates stresses. 

The densification-induced stress computation is switched on using the density.increase
parameter in the solve command or the temp_ramp command, such as:

solve temperature= 1000<C> time= 30<min> \
density.increase= {<regionName>=<n> | <material>=<n>}

temp_ramp name= dens time= 1 temperature= 1000 density.increase= {oxide=0.02}
solve temp.ramp= dens
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The total amount of density increase can be specified per material or per region for a given
solve (or temp_ramp) step as shown above. A proportional amount of density increase is
applied during each time step of the densification process.

The densification operation can be performed for all existing materials, as well as new
materials defined using the mater command:

mater add name= TEOS new.like= oxide
solve time= 1 temperature= 1000 density.increase= {TEOS= 0.03}

For densification processes involving large amounts of volume shrinkage, the material
boundaries and meshes can be updated using the following settings:

pdbSet Grid Modify.Mesh 1
pdbSetDouble TEOS Grid MinimumVelocity 0

For a complete densification process that has distinguished density changes, multiple solve
steps can be used with different density increases for each segment of the process.

Selectively Switching Off Grid Movement

The parameter MinimumVelocity can be used to selectively switch off point or interface
movement. This can be useful, for example, when a mechanics simulation computes a small
amount of boundary movement that is either unwanted or could cause element quality to suffer
in the vicinity, and the approximation of no movement is acceptable. In general, the command
is:

pdbSet <material> Grid MinimumVelocity <speed>

If <material> is a bulk material (no underscore), the parameter applies to bulk points. If the
speed of the bulk points is less than <speed> (in cm/s), Sentaurus Interconnect truncates the
speed to zero. This truncation is applied to material Silicon by default.

On the other hand, if <material> is an interface material (with an underscore, such as
PolySilicon_Silicon), the parameter only applies to points on that interface. This
truncation is applied to material Silicon by default.

NOTE The moving mesh operations can become unstable for values of
MinimumVelocity that are neither very large nor zero. Very large
values stop all motion, and 0 allows all motion.
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Grain Growth

Grain growth means elimination of the grain boundary, which can lead to the evolution of
stress. Using the model of spherical grains, the polycrystalline metal is dilated relative to the
previous state with smaller grains by [12]:

(52)

where the parameters GISGeomFactor and GB.Width are defined for a material.

The grain growth–induced stress model applies only to the grain growth model when the
parameter GIS is switched on:

pdbSet Mechanics GIS 1

Thermal Mismatch

Temperature changes during the process described by the temp_ramp command or the
keyword ramprate in the solve command lead to stress in the structure caused by the
different coefficients of thermal expansion of the relevant materials.

When necessary, the stress computation can be switched off using the stress.relax flag:

solve temperature= 1000<C> time= 30<min> !stress.relax

NOTE If viscous or viscoelastic materials are present in the structure, the stress
distribution may change even without a change in the temperature due
to viscoelastic relaxation.

The coefficient of thermal expansion for certain materials can be found in the parameter
database as follows:

pdbGet <material> Mechanics ThExpCoeff

Thermal expansion only affects the dilatational component of the constitutive equation. For
isotropic elasticity, a small temperature change leads to a change in the dilatational stress
component according to:

(53)

where  is the bulk modulus at the current temperature. The change in the temperature is
described by  and  is the relative coefficient of thermal expansion of a
certain material with respect to the coefficient of thermal expansion of the substrate. The
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integration of thermal mismatch strain uses the midpoint rule. For anisotropic elasticity, the
general tensor expression is used.

For hexagonal anisotropic materials, the coefficient of thermal expansion tensor has a
symmetry plane and can be defined with:

pdbSet <material> Mechanics ThExpCoeff1 <n>
pdbSet <material> Mechanics ThExpCoeff2 <n>
pdbSet <material> Mechanics ThExpCoeff3 <n>

The first two coefficients of thermal expansion must be equal for hexagonal anisotropic
materials.

In certain examples, like bending, you may want to use absolute coefficients of thermal
expansion instead of relative coefficients of thermal expansion. This can be achieved by setting
the parameter RefThExpCoeff as follows:

pdbSetDouble Mechanics RefThExpCoeff 0.

All coefficients of thermal expansion are computed with respect to the substrate. This reference
value is changed by setting a certain region as the substrate and resetting the coefficient of
thermal expansion. A region can be tagged as the substrate in different ways:

■ Use the substrate argument when defining regions with the region command before
the init command.

■ If a saved structure is being loaded into Sentaurus Interconnect, a region is tagged as the
substrate with the command:

region name=<c> substrate

The reference coefficient of thermal expansion can be directly set with:

pdbSetDouble Mechanics RefThExpCoeff <n>

This command overwrites the reference coefficient of thermal expansion setting from the
substrate.

Edge Dislocation

The existence of crystal lattice defects, such as dislocation, affects the channel stress state. The
impact of edge dislocation is included by superposing the dislocation-induced stress field for
an isotropic infinite medium from elasticity theory. Each edge dislocation can be defined with:

stressdata <material> | region=<c>
apply.dislocation dislocation.origin= {<n> <n> <n>}
para.orient= {<n> <n> <n>} perp.orient= {<n> <n> <n>} stress.relax
Sentaurus™ Interconnect User Guide 85
N-2017.09



3: Computing Mechanical Stress 
Stress-Causing Mechanisms
where:

■ dislocation.origin is the location of the dislocation core.

■ para.orient specifies the direction of the edge dislocation or the direction of the half
plane.

■ perp.orient is the Burgers vector in the perpendicular direction to the half plane. Here,
the magnitude of perp.orient is the slip distance.

■ stress.relax switches on the relaxation of stresses after superposing the dislocation-
induced stress field.

You must supply either a region name or a material name. If region is specified, the stress
field is superposed to this region. If a material is specified, the stress field is applied to all
regions of crystalline material. To save the edge dislocation geometry information to a TDR
file for visualization, specify saveTDR with the edge dislocation definition. The edge
dislocation is displayed by the half plane of extra atoms. To save the half plane of the missing
atoms, use:

pdbSet Mechanics Display.Missing.Plane 1

The Burgers vector can be stored in the vector data field BurgersVector by setting:

pdbSet Mechanics Display.Burgers.Vector 1

Singularity exists in the analytic solution at the dislocation core. Without using a nonlinear
atomistic theory, the stresses in the core region within a few magnitudes of the Burgers vector
to the dislocation core are smoothed away. The factor for this core radius can be defined with:

pdbSet Mechanics Dislocation.Coresize.Factor 2.0 

Figure 14 Edge dislocation located at the origin O; n1 is the Burgers vector and n2 is the 
direction of the half plane

A prototype model for positioning the edge dislocations is available by minimizing the elastic
strain energy [13]. The stress field from each edge dislocation is superposed. The elastic strain
energy is determined after force equilibrium with edge dislocations at their initial locations. 

n2

n1O
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The initial location of edge dislocation serves as the initial guess and can be defined by:

stressdata region=<c> !apply.dislocation dislocation.origin= {<n> <n> <n>}
para.orient= {<n> <n> <n>} perp.orient= {<n> <n> <n>}

where:

■ dislocation.origin is the initial location of the edge dislocation.

■ !apply.dislocation is specified to delay applying the dislocation-induced stress field.

Multiple edge dislocations with different Burgers vectors can be defined separately with this
syntax.

When all the edge dislocations for minimizing the elastic strain energy are specified, you can
start the optimization with the command:

stressdata origin.max= {<n> <n> <n>} origin.min= {<n> <n> <n>}
optimize.dislocation

where origin.max and origin.min define the range of dislocation positions in the specified
region. Some additional parameters for optimization convergence control also can be defined
in this command (see stressdata on page 634).

The movement of edge dislocations depends on the gradient of the total elastic strain energy
computed from a discrete integral over all elements. The target of the optimization is set to -5
multiplied by the absolute value of the starting elastic strain energy. This factor can be changed
with:

pdbSetDouble Mechanics Energy.Optimization.Factor <n>

The coordinates of the edge dislocations after optimization are returned in a Tcl list formatted
as:

■ <x1> <y1> <x2> <y2> ... for two dimensions.

■ <x1> <y1> <z1> <x2> <y2> <z2> ... for three dimensions.

The final stress state remains the same as before the edge dislocations are introduced. The edge
dislocations may stop at the local minimum where the elastic strain energy has not reached the
global minimum. In such a case, a new optimization step must be started with the initial guess
of the edge dislocation positions adjusted based on the previous optimization result. It is also
helpful to refine the mesh.

Resolved shear stress can be used to predict the dislocation nucleation. Slip in a grain occurs
when the resolved shear stress exceeds the critical value.
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The applied stress is resolved along a slip plane in the slip direction where the normal of the
slip plane and the slip direction are defined with:

stressdata <material> | region=<c> slip.plane.normal= {<n> <n> <n>}
slip.direction= {<n> <n> <n>}

Both vectors are defined with Miller indices in crystal lattices. The actual calculation is
switched on with:

stressdata resolved.shear.stress

This command will output a scalar field ResolvedShearStress. This calculation only
applies to regions or materials with both the slip plane normal and the slip direction defined.

Inverse Piezoelectric Effect

The effect of the electric field on stresses can be taken into account in simulations using the
inverse piezoelectric effect. To include this effect in a stress simulation, the fields
ElectricField and PrevElectricField are required to be used with only one solve step.
These fields may be stored from a previous simulation or stored during the current simulation
using the select command. Note that in Sentaurus Interconnect the ElectricField is
obtained from the Potential solution.

The contribution of the inverse piezoelectric effect is given by:

(54)

where:

■  are the components of stress due to the inverse piezoelectric effect (  to 6
corresponds to the xx, yy, zz, xy, yz, and xz components of the stress tensor, respectively).

■  are the components of the piezoelectric tensor ( =1, 2, or 3).

■  and  are the components of the current electric field and the previous electric
field, respectively.

To include the effect of electric field on stresses, switch on the following parameter:

pdbSet Mechanics InversePiezoEffect 1

In addition, the piezoelectric tensor parameters must be set regionwise as:

pdbSetDouble <region> Mechanics PiezoElectricTensor<ij> <double>
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where i=1, 2, or 3 and j=1, 2, 3, 4, 5, or 6. These piezoelectric tensor components are defined
in the unified coordinate system (UCS). The default value and unit for the piezoelectric tensor
components is 0 dyn/(V-cm).

NOTE The inverse piezoelectric effect is only included for elastic and
viscoelastic materials. It is not available for nonlinear material models.

Effective Surface Tension and Pressure due to Fluid

Residual fluid can cause pattern deformation by unbalanced capillary forces and surface
tension. These effects are treated as effective surface tension with the line force boundary
condition and effective pressure, respectively.

The line force boundary condition is applied at the gas–fluid–solid material interface. The fluid
region must be defined with a fluid material derived from the material template Fluid, for
example:

mater add name=<FluidMaterial> new.like=Fluid

The surface tension magnitude and the contact angle can be defined for each fluid material on
a list of solid wall materials. Both parameters must be defined for each fluid material (with
default units of dyn/cm and degree, respectively. For example:

pdbSetDoubleArray <FluidMaterial> SurfaceTension {<mat1> <n> <mat2> <n>}

pdbSetDoubleArray <FluidMaterial> ContactAngle 
{<mat1> <angle1> <mat2> <angle2>}

A vector data field TensionForce is created to save the nodal force due to effective surface
tension.

The contact angle specifies the angle between the fluid surface tangent and the solid wall. This
angle is used to determine the direction of the effective surface tension loading. The fluid
region is not required to match the actual curved fluid surface as long as the intersection with
the gas region and the solid wall region is represented correctly. The surface tangent of the fluid
region is not used to determine the direction of the effective surface tension.

The fluid pressure is applied as an average pressure to the fluid–solid interface. Average
pressure can be defined for each fluid material on a list of solid wall materials, for example:

pdbSetDoubleArray <FluidMaterial> AveragePressure {<mat1> <n> <mat2> <n>}

NOTE There is no default mechanics boundary condition for simulations with
fluid regions. Boundary conditions must be defined with the
stressdata command.
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Intrinsic Stress

Certain process steps require the deposition of materials with intrinsic stresses. Sentaurus
Interconnect can be used to model these process steps. The intrinsic stresses (StressELXX,
StressELYY, StressELZZ, StressELXY, StressELYZ, StressELZX) can be prescribed in
the deposit command (see deposit on page 401). After stress relaxation, the resulting stresses
will be less than the prescribed ones by default. You can scale the prescribed stresses so that
for a flat surface, the relaxed stress will be the same as the prescribed stress. To scale the
stresses, use the command:

pdbSet Mechanics StressRelaxFactor 1

For deposition in three dimensions, you can specify stresses in specific layers using the
stressdata command (see stressdata on page 634). For example, the following command
sets the yy component of the intrinsic stress in the nitride to :

stressdata nitride syyi= 1.4e10

For interconnect simulations, intrinsic stresses in metal lines can be modeled as width
dependent [14] with either a linear relation or a logarithmic relation, using the parameters
defined through the stressdata command:

■ If modeled as a linear relation, the total intrinsic stresses are given by:

 

■ If modeled as a natural logarithmic relation, the total intrinsic stresses are given by:

  

where  are defined through the parameters sxxi, sxx1, sxx2, and base of
the stressdata command. The other two components (  and ) are defined in the same
way, and  is calculated internally with respect to the region (not material) boundaries.

The intrinsic stress introduced during material deposition or insertion can also be predefined
per material with:

■ stressdata command options, for example:

stressdata <material> deposit.intrinsic sxxi=<n> syyi=<n> szzi=<n> sxyi=<n>
syzi=<n> szxi=<n>

The specified material must have been defined and will be checked against the list of
existing materials.

1.4 10×10  dyn/cm2
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■ PDB parameters, for example:

pdbSetDouble <material> Mechanics Deposit.Intrinsic.StressXX <n>
pdbSetDouble <material> Mechanics Deposit.Intrinsic.StressYY <n>
pdbSetDouble <material> Mechanics Deposit.Intrinsic.StressZZ <n>
pdbSetDouble <material> Mechanics Deposit.Intrinsic.StressXY <n>
pdbSetDouble <material> Mechanics Deposit.Intrinsic.StressYZ <n>
pdbSetDouble <material> Mechanics Deposit.Intrinsic.StressZX <n>

There is no syntax check of the material name or the parameter name. The stress unit here
is .

To omit the above materialwise intrinsic stress definition, use:

pdbSet Mechanics Deposit.Intrinsic.Stress 0

Stress Rebalancing After Etching and Deposition

When materials are removed from or added to a given structure, physical stress distributions
generally change with the corresponding geometry and boundary changes. In simulations, a
stress-rebalancing step is required to re-establish the stress equilibrium in the structure and to
conform the stress distributions to the new boundaries. By default, a stress-rebalancing
operation is called after etching or deposition is performed. To omit the stress-rebalancing step,
use:

pdbSet Mechanics EtchDepoRelax 0

By default, an elastic stress rebalancing is performed irrespective of the materials present. To
perform stress rebalancing using other material models, the following PDB parameter must be
switched on:

pdbSet Mechanics Full.Stress.Update 1

If stress balancing is switched on with the Full.Stress.Update parameter and inelastic
materials (for example, viscoelastic, plastic, viscoplastic, and creep) are present, a time of 1.0 s
is used for the nonlinear simulation. This is equivalent to switching off the stress balancing step
and performing a solve step for 1.0 s immediately after the etching or deposition step. If a time
other than 1.0 s is required for nonlinear material stress balancing, switch off
EtchDepoRelax, and perform a solve step with the time specified.

Automated Tracing of Stress History

Thermal residual stress in a given device structure is a function of its fabrication history, which
consists of process steps at various temperatures and temperature ramps in between. To model

dyn/cm2
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stress evolution accurately, all temperature ramps should be traced. When the parameter
StressHistory is switched on, for example:

pdbSet Mechanics StressHistory 1

the temperature gaps between process steps such as temperature ramp, deposition, and etching
are detected and filled with instant stress rebalancing, solving for thermal mismatch strains and
stresses.

When stress history is traced and rebalancing is performed, it is done elastically even if
inelastic materials are present.

Saving Stress and Strain Components

By default, stress-tensor components are saved on both elements and nodes. The elastic
portions of the strain-tensor components also are saved on both elements and nodes by default.
The elastic strains are computed from stresses using isotropic elasticity by default. The
anisotropic elasticity also can be used for a given crystalline material when the corresponding
pdb parameter Anisotropic is set. The elastic strain-field computing and saving operation
can be omitted using the command:

pdbSet Mechanics saveElasticStrain 0

The stress tensor can be decomposed and the resulting dilatational and deviatoric stress
components can be saved on nodes when the following parameter is switched on:

pdbSet Mechanics decomposeStress 1

Description of Output Fields

Sentaurus Interconnect assumes that stresses and strains are defined on element Gauss points.
Values from the element Gauss points also are interpolated to the element centers using local
averaging. However, not all tools can read or visualize element values. For this reason,
Sentaurus Interconnect performs an element-to-node interpolation of stresses as a
postprocessing step and writes both forms of stresses to output.

Element stresses have the prefix StressEL, Gauss point stresses have the prefix StressGP,
and nodal stresses have the prefix Stress. The tensor components are given by the suffixes
XX, XY, YY, YZ, ZX, and ZZ.

In history-dependent materials, you cannot create a simple closed-form relation between
stresses and strains. It is useful, however, to compute the elastic component. The elastic
component of the strain is an indicator of the stored strain energy in the system. In addition, the
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elastic component of the strain is the total strain in elastic materials such as silicon and
polysilicon.

Pressure is one-third of the negative of the trace of the stress tensor:

(55)

In Sentaurus Interconnect, the select command performs Tcl-level and Alagator-level
operations. To access the stress components, use the select command.

The stresses and strains are represented as symmetric tensors. To access the xx, yy, and zz
components of nodal stress values, the variable references for the select command are
Stress_xx, Stress_yy, and Stress_zz, respectively. To access the xy, yz, and zx
components, use Stress_xy, Stress_yz, and Stress_zx, respectively.

For element values, the Boolean keyword element of the select command must be set to
true. To access the xx, yy, and zz components of the element stress values, the field references
for the select command are StressEL_xx, StressEL_yy, and StressEL_zz,
respectively. To access the xy, yz, and zx components, use StressEL_xy, StressEL_yz, and
StressEL_zx, respectively.

The nodal fields NodalForce and ReactionForce are not saved in the output files by
default. To save the NodalForce and ReactionForce fields, set the following parameters:

pdbSetBoolean Mechanics Save.Nodal.Force 1
pdbSetBoolean Mechanics Save.Reaction.Force 1

Table 5 describes the mechanics-related fields that are defined on elements. Table 6 on page 95
describes the mechanics-related fields that are defined on nodes. 

Table 5 Fields defined on elements

Field name in Sentaurus Visual Field name in Sentaurus 
Interconnect

Description

BaseElasticStrainEL-XX 
(unitless)

BaseElasticStrainEL_xx 
(unitless)

XX component of elastic element strain for 
standard linear solid viscoelasticity model

BaseElasticStrainEL-XY 
(unitless)

BaseElasticStrainEL_xy 
(unitless)

XY component of elastic element strain for 
standard linear solid viscoelasticity model

BaseElasticStrainEL-YY 
(unitless)

BaseElasticStrainEL_yy 
(unitless)

YY component of elastic element strain for 
standard linear solid viscoelasticity model

BaseElasticStrainEL-YZ 
(unitless)

BaseElasticStrainEL_yz 
(unitless)

YZ component of elastic element strain for 
standard linear solid viscoelasticity model

BaseElasticStrainEL-XZ 
(unitless)

BaseElasticStrainEL_zx 
(unitless)

ZX component of elastic element strain for 
standard linear solid viscoelasticity model

P
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3
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BaseElasticStrainEL-ZZ 
(unitless)

BaseElasticStrainEL_zz 
(unitless)

ZZ component of elastic element strain for 
standard linear solid viscoelasticity model

BaseStressEL-XX (Pa) BaseStressEL_xx (dyn/cm^2) XX component of elastic element stress for 
standard linear solid viscoelasticity model

BaseStressEL-XY (Pa) BaseStressEL_xy (dyn/cm^2) XY component of elastic element stress for 
standard linear solid viscoelasticity model

BaseStressEL-YY (Pa) BaseStressEL_yy (dyn/cm^2) YY component of elastic element stress for 
standard linear solid viscoelasticity model

BaseStressEL-YZ (Pa) BaseStressEL_yz (dyn/cm^2) YZ component of elastic element stress for 
standard linear solid viscoelasticity model

BaseStressEL-XZ (Pa) BaseStressEL_zx (dyn/cm^2) ZX component of elastic element stress for 
standard linear solid viscoelasticity model

BaseStressEL-ZZ (Pa) BaseStressEL_zz (dyn/cm^2) ZZ component of elastic element stress for 
standard linear solid viscoelasticity model

CreepEnergyDensEL (J/m^3) CreepEnergyDensEL 
(erg/cm^3)

Creep strain energy density

CreepEnergyDensRtEL 
(W/m^3)

CreepEnergyDensRtEL 
(erg/cm^3/s)

Creep strain energy rate density

CreepStrainELEQV 
(unitless)

CreepStrainELEQV 
(unitless)

Equivalent creep strain

CreepStrainEL-XX 
(unitless)

CreepStrainEL_xx 
(unitless)

XX component of creep strain

CreepStrainEL-XY 
(unitless)

CreepStrainEL_xy 
(unitless)

XY component of creep strain

CreepStrainEL-YY 
(unitless)

CreepStrainEL_yy 
(unitless)

YY component of creep strain

CreepStrainEL-YZ 
(unitless)

CreepStrainEL_yz 
(unitless)

YZ component of creep strain

CreepStrainEL-XZ 
(unitless)

CreepStrainEL_zx 
(unitless)

ZX component of creep strain

CreepStrainEL-ZZ 
(unitless)

CreepStrainEL_zz 
(unitless)

ZZ component of creep strain

PseudoEnergyDensEL (J/m^3) PseudoEnergyDensEL 
(erg/cm^3)

Pseudo strain energy density

StressEL-XX (Pa) StressEL_xx (dyn/cm^2) XX component of element stress

Table 5 Fields defined on elements

Field name in Sentaurus Visual Field name in Sentaurus 
Interconnect

Description
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StressEL-XY (Pa) StressEL_xy (dyn/cm^2) XY component of element stress

StressEL-YY (Pa) StressEL_yy (dyn/cm^2) YY component of element stress

StressEL-YZ (Pa) StressEL_yz (dyn/cm^2) YZ component of element stress

StressEL-XZ (Pa) StressEL_zx (dyn/cm^2) ZX component of element stress

StressEL-ZZ (Pa) StressEL_zz (dyn/cm^2) ZZ component of element stress

SwellingStrainEL-XX 
(unitless)

SwellingStrainEL_xx 
(unitless)

XX component of swelling strain

SwellingStrainEL-XY 
(unitless)

SwellingStrainEL_xy 
(unitless)

XY component of swelling strain

SwellingStrainEL-YY 
(unitless)

SwellingStrainEL_yy 
(unitless)

YY component of swelling strain

SwellingStrainEL-YZ 
(unitless)

SwellingStrainEL_yz 
(unitless)

YZ component of swelling strain

SwellingStrainEL-XZ 
(unitless)

SwellingStrainEL_zx 
(unitless)

ZX component of swelling strain

SwellingStrainEL-ZZ 
(unitless)

SwellingStrainEL_zz 
(unitless)

ZZ component of swelling strain

ViscoPlasticEnerDensRtEL 
(W/m^3)

ViscoPlasticEnerDensRtEL 
(erg/cm^3/s)

Viscoplastic strain energy rate density

Table 6 Fields defined on nodes

Field name in Sentaurus Visual Field name in Sentaurus 
Interconnect

Description

DeformationResistance (Pa) DeformationResistance 
(dyn/cm^2)

Deformation resistance

Displacement-X (um) Displacement_x (cm) X-component of displacement

Displacement-Y (um) Displacement_y (cm) Y-component of displacement

Displacement-Z (um) Displacement_z (cm) Z-component of displacement

ElasticEnergyDens (J/m^3) ElasticEnergyDens 
(erg/cm^3)

Elastic strain energy density

ElasticStrain-XX 
(unitless)

ElasticStrain_xx 
(unitless)

XX component of elastic strain

Table 5 Fields defined on elements

Field name in Sentaurus Visual Field name in Sentaurus 
Interconnect

Description
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ElasticStrain-XY 
(unitless)

ElasticStrain_xy 
(unitless)

XY component of elastic strain

ElasticStrain-YY 
(unitless)

ElasticStrain_yy 
(unitless)

YY component of elastic strain

ElasticStrain-YZ 
(unitless)

ElasticStrain_yz 
(unitless)

YZ component of elastic strain

ElasticStrain-XZ 
(unitless)

ElasticStrain_zx 
(unitless)

ZX component of elastic strain

ElasticStrain-ZZ 
(unitless)

ElasticStrain_zz 
(unitless)

ZZ component of elastic strain

MisesStress (Pa) MisesStress (dyn/cm^2) von Mises stress

NodalForce-X (N) NodalForce_x (dyne) X-component of the sum of forces at node

NodalForce-Y (N) NodalForce_y (dyne) Y-component of the sum of forces at node

NodalForce-Z (N) NodalForce_z (dyne) Z-component of the sum of forces at node

PlasticEnergyDens (J/m^3) PlasticEnergyDens 
(erg/cm^3)

Plastic strain energy density

PlasticStrainEQV 
(unitless)

PlasticStrainEQV 
(unitless)

Equivalent plastic strain

PlasticStrain-XX 
(unitless)

PlasticStrain_xx 
(unitless)

XX component of plastic strain

PlasticStrain-XY 
(unitless)

PlasticStrain_xy 
(unitless)

XY component of plastic strain

PlasticStrain-YY 
(unitless)

PlasticStrain_yy 
(unitless)

YY component of plastic strain

PlasticStrain-YZ 
(unitless)

PlasticStrain_yz 
(unitless)

YZ component of plastic strain

PlasticStrain-XZ 
(unitless)

PlasticStrain_zx 
(unitless)

ZX component of plastic strain

PlasticStrain-ZZ 
(unitless)

PlasticStrain_zz 
(unitless)

ZZ component of plastic strain

Pressure (Pa) Pressure (dyn/cm^2) Pressure

PseudoDisplacement-X (um) PseudoDisplacement_x (cm) X-component of pseudo displacement

PseudoDisplacement-Y (um) PseudoDisplacement_y (cm) Y-component of pseudo displacement

PseudoDisplacement-Z (um) PseudoDisplacement_z (cm) Z-component of pseudo displacement

Table 6 Fields defined on nodes

Field name in Sentaurus Visual Field name in Sentaurus 
Interconnect

Description
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NOTE The stresses and strains in the output file are according to the unified
coordinate system (UCS).

ReactionForce-X (N) ReactionForce_x (dyne) X-component of reaction force at node with 
Dirichlet boundary condition

ReactionForce-Y (N) ReactionForce_y (dyne) Y-component of reaction force at node with 
Dirichlet boundary condition

ReactionForce-Z (N) ReactionForce_z (dyne) Z-component of reaction force at node with 
Dirichlet boundary condition

Stress-XX (Pa) Stress_xx (dyn/cm^2) XX component of node stress

Stress-XY (Pa) Stress_xy (dyn/cm^2) XY component of node stress

Stress-YY (Pa) Stress_yy (dyn/cm^2) YY component of node stress

Stress-YZ (Pa) Stress_yz (dyn/cm^2) YZ component of node stress

Stress-XZ (Pa) Stress_zx (dyn/cm^2) ZX component of node stress

Stress-ZZ (Pa) Stress_zz (dyn/cm^2) ZZ component of node stress

ViscoPlasticEnergyDens 
(J/m^3)

ViscoPlasticEnergyDens 
(erg/cm^3)

Viscoplastic strain energy density

ViscoPlasticStrainEQV 
(unitless)

ViscoPlasticStrainEQV 
(unitless)

Equivalent viscoplastic strain

ViscoPlasticStrain-XX 
(unitless)

ViscoPlasticStrain_xx 
(unitless)

XX component of viscoplastic strain

ViscoPlasticStrain-XY 
(unitless)

ViscoPlasticStrain_xy 
(unitless)

XY component of viscoplastic strain

ViscoPlasticStrain-YY 
(unitless)

ViscoPlasticStrain_yy 
(unitless)

YY component of viscoplastic strain

ViscoPlasticStrain-YZ 
(unitless)

ViscoPlasticStrain_yz 
(unitless)

YZ component of viscoplastic strain

ViscoPlasticStrain-XZ 
(unitless)

ViscoPlasticStrain_zx 
(unitless)

ZX component of viscoplastic strain

ViscoPlasticStrain-ZZ 
(unitless)

ViscoPlasticStrain_zz 
(unitless)

ZZ component of viscoplastic strain

Table 6 Fields defined on nodes

Field name in Sentaurus Visual Field name in Sentaurus 
Interconnect

Description
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Table 7 lists the mechanics-related fields available for use in the select command. 

Tracking Maximum Stresses

During a typical process flow, the maximum stresses may be reached in a process step and,
subsequently, the stresses may fall. If the material is prone to failure through delamination or
nucleation of dislocations, the failure may occur when the maximum stress is reached.

Table 7 Fields available in select command

Field type Field name

Displacement Displacement_x Displacement_y Displacement_z

StepDisplacement_x StepDisplacement_y StepDisplacement_z

Stress StressEL_xx StressEL_yy StressEL_zz

StressEL_xy StressEL_yz StressEL_zx

MisesStress Pressure

PrincipalStress1 PrincipalStress2 PrincipalStress3

Stress_xx Stress_yy Stress_zz

Stress_xy Stress_yz Stress_zx

Strain ElasticStrainEL_xx ElasticStrainEL_yy ElasticStrainEL_zz

ElasticStrainEL_xy ElasticStrainEL_yz ElasticStrainEL_zx

PlasticStrainEL_xx PlasticStrainEL_yy PlasticStrainEL_zz

PlasticStrainEL_xy PlasticStrainEL_yz PlasticStrainEL_zx

ViscoPlasticStrainEL_xx ViscoPlasticStrainEL_yy ViscoPlasticStrainEL_zz

ViscoPlasticStrainEL_xy ViscoPlasticStrainEL_yz ViscoPlasticStrainEL_zx

ElasticStrain_xx ElasticStrain_yy ElasticStrain_zz

ElasticStrain_xy ElasticStrain_yz ElasticStrain_zx

PlasticStrain_xx PlasticStrain_yy PlasticStrain_zz

PlasticStrain_xy PlasticStrain_yz PlasticStrain_zx

ViscoPlasticStrain_xx ViscoPlasticStrain_yy ViscoPlasticStrain_zz

ViscoPlasticStrain_xy ViscoPlasticStrain_yz ViscoPlasticStrain_zx

Strain PlasticStrainEQV ViscoPlasticStrainEQV

PrincipalStrain1 PrincipalStrain2 PrincipalStrain3
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To always track the maximum stresses, set the following parameter:

pdbSet Mechanics SaveMaxStress 1

The StressMaxGP field is updated when the current stress is greater than the stored stress. In
this way, the maximum is maintained throughout the process flow. The maximum element
stresses and the von Mises stress are computed and stored.

Using the stressdata command (see stressdata on page 634), a list of maximum stresses (hot
spots) and their locations can be obtained. The hot spots can be evaluated by one of the six
stress components (sxx, syy, szz, sxy, syz, and szx), the von Mises stress, the principal stress,
the principal strain, or the hydrostatic stress (negative pressure value or the pressure). The
command returns a list of maximum stress values (largest magnitude, largest tensile, largest
compressive) and the corresponding location coordinates.

Principal Stresses

Principal stresses are normal stresses that act on the planes where shear stresses are zero, that
is:

(56)

which implies that the determinant of the Cauchy relation in matrix form is zero:

(57)

where the coefficients are known as the three stress invariants:

(58)

The three principal stresses are ordered from the largest tensile (positive) stress to the largest
compressive (negative) stress, and are named:

■ First principal stress: 

■ Second principal stress: 

■ Third principal stress: 

The first and third principal stresses are also algebraically the largest and the smallest normal
stresses that can be found at this point. Therefore, principal stresses are often adopted as
measures to evaluate the integrity of structures.

σ σpI–( )n̂ 0=

σp
3

I1σp
2

– I2σp I3–+ 0=

σ1 σii=

σ2
1
2
--- σi iσjj σi jσji–( )=

σ3 det σi j( )=

σ1 max σp1 σp2 σp3, ,( )=

σ2 I1 σ1– σ3–=

σ3 min σp1 σp2 σp3, ,( )=
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To calculate the principal stresses, use:

pdbSet Mechanics Calculate.Principal.Stress 1

The resulting fields are:

■ PrincipalStress1 for the first principal stress.

■ PrincipalStress2 for the second principal stress.

■ PrincipalStress3 for the third principal stress.

If the maximum-stress tracking flag is switched on:

pdbSet Mechanics SaveMaxStress 1

Sentaurus Interconnect also tracks the maximum principal stresses that occurred during the
entire simulation process and stores them as:

■ PrincipalStress1Max 

■ PrincipalStress2Max 

■ PrincipalStress3Max 

Principal Strains

Principal strains are normal strains that act on the planes where shear strains are zero, that is:

(59)

which implies that the determinant of the Cauchy relation in matrix form is zero:

(60)

where the coefficients are known as the three strain invariants:

(61)

The three principal strains are ordered from the largest tensile (positive) strain to the largest
compressive (negative) strain, and are named:

■ First principal strain: 

■ Second principal strain: 

■ Third principal strain: 

ε εpI–( )n̂ 0=

εp
3

I1εp
2

– I2εp I3–+ 0=

ε1 εii=

ε2
1
2
--- εiiεjj εijεji–( )=

ε3 det εi j( )=

ε1 max εp1 εp2 εp3, ,( )=

ε2 I1 ε1– ε3–=

ε3 min εp1 εp2 εp3, ,( )=
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The first and third principal strains are also algebraically the largest and the smallest normal
strains that can be found at this point.

To calculate the principal strains, use:

pdbSet Mechanics Calculate.Principal.Strain 1

The resulting fields are:

■ PrincipalStrain1 for the first principal strain.

■ PrincipalStrain2 for the second principal strain.

■ PrincipalStrain3 for the third principal strain.

If the maximum-stress tracking flag is switched on:

pdbSet Mechanics SaveMaxStress 1

Sentaurus Interconnect also tracks the maximum principal strains that occurred during the
entire simulation process and stores them as:

■ PrincipalStrain1Max 

■ PrincipalStrain2Max 

■ PrincipalStrain3Max 

Nodal Stress and Strain at Like-Material Interface

Nodal stress and strain data fields are interpolated regionwise from the corresponding element
data fields. They are discontinuous across the interfaces of different materials. At the interface
of like materials, the nodal fields Pressure and ElasticStrain are specially interpolated
to have a continuous distribution. This list of nodal data fields can be changed with:

pdbSet Mechanics Like.Material Boundary Continuous {<list of fields>}

Each like-material interface can have its own list of continuous nodal data fields, for example:

pdbSetString <mat1_mat2> Mechanics Boundary Continuous {<list of fields>}

Submodeling

Submodeling is a technique to obtain accurate stress in a local region with mesh refinements,
while the full model can be simulated with a coarser mesh. This technique extracts the
displacement field from the global structure, interpolates the field onto the local refined model,
and applies the displacement on the outer surfaces of the local model as boundary conditions.
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Submodeling is based on St. Venant’s principle [15], which states that the stress and strain
fields of the original system and the statically equivalent system on parts of the body far away
from the loading regions are approximately the same. The principle implies that accurate
results can be obtained in the submodel if the boundaries of the submodel are far away from
the stress concentration.

To initiate a submodeling analysis, use the command:

stressdata global.model=<c>

or equivalently, use:

pdbSet Mechanics Submodel <c>

where <c> is the name of the file that has both grid and field data of the global model. If
submodeling is specified through either the stressdata command or pdb parameter, all other
mechanics boundary condition definitions will be ignored. The global model should contain a
step displacement field (StepDisplacement). In addition, the local model must be cuboid
shaped, and all six boundaries must be within the domain of the global model.

The local model with a cuboid shape also can be created by cutting the global structure with
user-specified bounding box dimensions. To define the cuboid region for submodeling, use the
command:

stressdata align.cut=<n> global.model=<c> min= {<n> <n> <n>} max= {<n> <n> <n>}

NOTE Sometimes, due to round-off issues, the specified coordinates used to
create the local model may deviate slightly from the coordinates already
specified in the masks used to build the structure. This could lead to very
short edges and failures in the simulation. To snap the local model
coordinates to the existing mask edges, use the align.cut argument.

When the tool interpolates the step displacement field from the global model to the boundaries
of the local model, it does not require the two materials at the same location of the global and
local models to match. This facilitates choosing approximate materials for the global model as
a representative unit cell (RUC) to perform a multiscale simulation [16]. When performing an
RUC simulation, iterations between the global model approximation and the local model are
necessary.

If the local model has a different material compared to the global model, for example,
elastoplastic instead of linear elastic, multiple time steps may be needed to solve for stresses.
In such cases, boundary conditions on the outer surfaces of the local model are scaled so that
the total displacements at the end of the multiple-step analysis are the same as the
displacements in the global model.
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When simulating stresses due to thermal expansion, the local model can be analyzed in two
ways. The first option is to use the temp_ramp command to specify the same temperature
profile as in the global model for a multiple-step analysis. The second option is to perform a
single-step analysis after interpolating temperatures from the global model to the local model
using the command:

pdbSet Mechanics Submodel.Add.Global.Temperature 1

NOTE For the second option to give the same thermal strains in the local model
as the global model, it is important that the initial temperature in the
local model is the same as the global model, and the analysis must be
limited to a single time step.

NOTE Use absolute coefficients of thermal expansion instead of relative
coefficients if the substrate is removed from the local model. This can
be achieved by setting the parameter RefThExpCoeff as follows:

pdbSetDouble Mechanics RefThExpCoeff 0

NOTE When using the temp_ramp command in the local model, you must
first use temp_ramp clear to remove any temp_ramp commands
defined in the global model.

NOTE In submodeling, the step displacements (see Principal Stresses on
page 99) not the total displacements are extracted and used as boundary
conditions for the local model.

Crack Analysis

Crack analysis refers to introducing pre-existing cracks in structures and performing stress
analysis. If no cohesive zone model (CZM) is used (see Cohesive Zone Modeling on page 106),
the crack surfaces remain traction free. Depending on the type of loading on the structure, a
crack opens up in one or a combination of the three failure modes: Mode I, Mode II, and
Mode III.

In Sentaurus Interconnect, a crack can be defined at the interface of two materials for 2D or 3D
structures. For a crack within a single material, an interface must be defined at the location of
the crack, with one of the materials defined using the new.like parameter in the mater
command.

A crack is defined using the crack command (see crack on page 389). The normal parameter
defines the normal direction of the crack surfaces, as  shown in Figure 20 on page 115. The
CZM parameter specifies the name of the CZM law defined using the CZM command. The CZM
law name none is reserved to set an initial crack without any traction on crack surfaces.

n
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When the CZM is used for a crack, tractions are assumed to be nonzero over the entire length
of the crack. To apply the CZM over certain parts of the crack, use the CZM.box parameter to
provide the minimum and the maximum coordinates of the bounding boxes. In addition, use
CZM.polarity to specify whether the CZM is active inside or outside the bounding box.

A bounding box is used to define the location of the crack along the interface. In a 2D structure,
the intersection of the bounding box (rectangle) with the interface (line) defines the crack tip
(point). The crack extends along the interface from one crack tip to the other crack tip or the
boundary. In a 3D structure, the intersection of the bounding box (cuboid) with the interface
(surface) defines the crack front (line). The crack extends along the interface bounded by the
crack front or the boundary. If the interface is smaller than the bounding box, the crack tip or
crack front lies at the edge of the interface. If the interface contains a bubble-shaped crack, the
crack front becomes a closed loop that lies completely inside the bounding box.

Figure 15 shows how a crack is defined in 2D and 3D structures. The 2D structure has the same
material on both sides of the interface. The 3D structure has different materials on the top and
bottom. The top block also has an interface between two prismatic halves that have the same
material. For the crack definition, materials for only one of the prisms and the bottom block are
used for the crack command. Even though the bounding box extends over the entire interface
between the top and bottom blocks, the crack is only defined in the triangular portion under the
selected prism with the material specified in the crack command. The longer side of the
triangle forms the crack front. 

Figure 15 Crack definition in (left) 2D structure and (right) 3D structure

To initiate a crack simulation, use:

pdbSet Mechanics Model Crack

Interface

Crack Tip

Bounding Box
to Define Crack

Interface

Crack Front

Bounding Box
to Define Crack
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V-Notch Cracks

The notched specimen has been extensively used to study crack initiation. For structures with
a V-shaped notch (see Figure 16), the same syntax for crack definition can be applied. This will
not affect stress analysis, but it is required for the J-integral calculation at the V-notch crack
front. 

Figure 16 V-notch crack definition in (left) 2D structure and (right) 3D structure

A bounding box intersecting the gas–material interface is used to define the crack surface. The
crack front is set automatically to be where the sharpest angle is on the crack surface.

Bulk Cracks

A bulk crack is an alternative way of defining a crack in bulk material without creating an
interface. In two dimensions, a bulk crack is defined using one or more line segments specified
in terms of point coordinates. Multiple connected line segments define a segmented crack path.

In three dimensions, a bulk crack is defined using one or more previously specified polygons.
Multiple connected polygons define a faceted crack surface. Figure 17 on page 106 shows 2D
and 3D cracks defined in bulk material.

Use segments and polygons in the crack command to define 2D and 3D bulk cracks,
respectively. Use mat.1 in the crack command to specify the name of the bulk material
containing the crack.

NOTE Bulk cracks require boundary representation for contacts and 2D
structures. The following parameters must be used for bulk cracks; if not
defined, they will be switched on automatically:

pdbSet Grid Contacts.In.Brep 1
pdbSet Grid MGoals use.brep.2d 1

Crack Tip Crack Front

Bounding Box
to Define Crack Bounding Box

to Define Crack
Sentaurus™ Interconnect User Guide 105
N-2017.09



3: Computing Mechanical Stress 
Cohesive Zone Modeling
Figure 17 Deformed configurations of (left) 2D bulk crack and (right) 3D bulk crack

Cohesive Zone Modeling

Cohesive zone modeling is a way to model propagation of a crack along a predefined path, for
example, delamination or separation of material interfaces. It involves defining a CZM law to
model the traction–separation behavior of cohesive surfaces. Sentaurus Interconnect provides
two CZM laws: exponential law and triangular law.

To define a CZM law, use (see CZM on page 396):

CZM name=<c> (law= exponential | triangular) normal.stress.max=<n>
shear.stress.max=<n> normal.toughness=<n> shear.toughness=<n>
mat.1=<c> mat.2=<c>

Exponential Law

The exponential constitutive law for a cohesive surface is defined by the interface
potential [17]:

(62)
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where:

■  is the ratio of the work of separation along the tangent direction over the
normal direction.

■  is the ratio of the opening distance along the normal direction after complete
shear separation over the maximum opening distance in the normal direction.

■  and  are the opening distances along the normal and tangent directions of a CZM
surface, respectively.

■  and  are the maximum opening distances along the normal and tangent directions
of a CZM surface, respectively.

The ratios  and  in Eq. 62 define the coupling parameters for the normal and tangential
directions. In Sentaurus Interconnect, the parameter  is set to 1, so the work of separation
along the tangent direction is assumed to be equal to the work of separation along the normal
direction. The exponential law also assumes the constitutive behavior of the cohesive surfaces
to be elastic; therefore, loading and unloading occur along the same path.

The tractions at a cohesive surface are defined accordingly as:

(63)

whose normal and shear components are shown in Figure 18. 

Figure 18 Cohesive zone modeling: Exponential law

Triangular Law

The triangular law for cohesive surfaces is defined by a bilinear curve with a specified peak.
The constitutive behavior is assumed to be elastic but without any coupling between the normal
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and the tangential responses. The normal and shear components of traction for the triangular
law can be expressed directly as:

(64)

where:

■  and  are the work of separation along the normal and tangent directions of a CZM
surface, respectively.

■  and  are the maximum opening distances along the normal and tangent directions
of a CZM surface, respectively.

■  and  are the critical opening distances corresponding to the peak along the normal
and tangent directions of a CZM surface, respectively.

Figure 19 shows the traction–separation curves for the triangular law with the peak in the
middle. 

Figure 19 Cohesive zone modeling: Triangular law
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When the cohesive surfaces close up on each other after separation, contact constraints are
needed to prevent penetration. In Sentaurus Interconnect, these constraints are enforced along
the normal direction using the penalty method; frictionless conditions are assumed for the
tangent direction. The normal component of traction for the exponential law and the triangular
law are defined as:

(65)

where a negative sign indicates compression, and  is an antipenetration factor that can be
defined using the command:

pdbSet Mechanics Anti.Penetration.Factor <n>

The default value for  is 5.0. You can specify a larger value to reduce penetration, provided
it does not severely affect the convergence of the nonlinear solution.

The CZM name default is reserved to define the CZM law that will be applied to any
interfaces where no CZM law is applicable. If you do not define the default CZM law,
Sentaurus Interconnect automatically defines one, for example:

CZM name= default law= exponential normal.stress.max= 1e10 \
shear.stress.max= 1e10 normal.toughness= 1e6 shear.toughness= 1e6

A CZM simulation is invoked using:

pdbSet Mechanics Model CZM

NOTE A CZM simulation may give an inaccurate solution or may cause
convergence difficulties with second-order finite elements when
modeling uniform pressure distribution on crack surfaces. First-order
finite elements should be used in such cases.

Damage Variable

The damage variable is an indicator of the extent of material failure based on CZM element
separation. Normal and shear damage variables are calculated independently and range
between 0 (no damage) and 1 (complete damage). For both triangular law and exponential law,
material failure starts when the maximum normal or shear stresses are reached. 
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For triangular law, complete material failure occurs at the maximum opening and the damage
variable takes the form:

(66)

For exponential law, complete material failure is set to six times the maximum normal opening
and three times the maximum tangential opening. The damage variable takes the form:

(67)
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References
Normal and shear damage variables are calculated and stored on the interface elements that
coincide with CZM elements. The internal field names are DamageVariableNEL and
DamageVariableSEL, respectively. The damage variable fields defined on interface nodes
are interpolated from interface elements and are written to TDR files as DamageVariableN
and DamageVariableS.
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CHAPTER 4 Mechanics Postprocessing

This chapter introduces the stress analysis–related postprocessing
and reliability evaluation capabilities of Sentaurus Interconnect.

Stress-Induced Mobility Enhancement

The mobility enhancement induced by the stress field is defined through piezoresistance
change [1]:

(68)

where  is the piezoresistance coefficient tensor component, and  is the stress component
in compact form. Because of the cubic symmetry of silicon crystals, Sentaurus Interconnect
only uses the three independent coefficients , , and . If the axes of the simulation
coordinate system do not align with the crystal axes, a coordinate system transformation is
performed to obtain the piezoresistance coefficients in the simulation coordinate system.

The piezoresistance coefficients P11/P12/P44 (unit: %/GPa) are defined through the
following parameters:

pdbSetDouble <material> Mechanics <P11 | P12 | P44> <n>

For example:

pdbSet Silicon Mechanics P11 -102.2

NOTE Here, pdbSet is used instead of pdbSetDouble because P11 | P12 |
P44 are predefined for the material silicon in the Parameter Database
Browser.

The calculation of stress-induced mobility enhancement can be invoked during the solving
process using a pdb Boolean parameter:

pdbSet Mechanics Calculate.Mobility 1

The resulting field is saved as MobilityEL (element data) and its unit is percent.

Δρi

ρ
-------- πikσk=

πik σk

π11 π12 π44
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Displacement Field
The default device model is planar type. For FinFET-type 3D devices, set:

pdbSetBoolean Mechanics FinFET.Mobility 1

With this model, the channel orientation can be specified as either 1 for a (110) orientation of
the fin or 2 for a (100) orientation of the fin with:

pdbSetDouble <material> Mechanics FinFET.Channel.Orientation <1 | 2>

The carrier type can be specified as either 0 for electrons or 1 for holes with:

pdbSetDouble <material> Mechanics FinFET.Carrier.Type <0 | 1>

Alternatively, it can be performed as a postprocess step after simulation using the mobility
command (see mobility on page 516), for example:

mobility device.model=planar region.name=Silicon \
piezo.coefficients= {P11=-6.6, P12=1.1, P44=-138.1}

This command calculates the stress-induced mobility enhancement in the material Silicon
using the psilicon material parameters (P11, P12, P44) and stores it in the field named
MobilityEL.

The different device models available are planar-type and FinFET-type 3D devices. Details are
available from mobility on page 516.

Displacement Field

The stress analysis kernel in Sentaurus Interconnect solves the velocity at grid points of the
given structure. The deformation is obtained by integrating the solution over time. By default,
the displacement field is saved in the result file. Saving this field can be switched off by:

pdbSet Mechanics Save.Displacement.Field 0

Two displacement fields are saved:

■ Total displacement for the structure simulation – The displacement solution is stored as a
vector field named Displacement. This displacement is the incremental total of
displacement from all process steps carried out during the simulation. Saving this field can
be switched off by:

pdbSet Mechanics Save.Total.Displacement 0

■ Incremental displacement for the last process step – This solution is stored as
StepDisplacement. Saving this field can be turned off by:

pdbSet Mechanics Save.Step.Displacement 0
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If there are displacement fields in the result file, you can obtain a deformation plot of the
current structure using the struct command.

You also can use this command to generate files for viewing the crack opening status after a
crack simulation (see struct on page 643).

J-Integral

J-integral is an expression to compute the strain-energy release rate, based on the distribution
of stresses around a crack tip. It is defined as [2][3]:

(69)

where:

■  is the strain energy density.

■  is the Kronecker operator.

■ 1 is the direction of the crack propagation (this is orthogonal to the plane containing the
crack normal and the crack front as shown in Figure 20). 

Figure 20 Schematic of a crack definition: (left) two dimensions and (right) three dimensions

It can be easily shown that, for homogenous linear or nonlinear elastic materials, the J-integral
value is independent of the integration path around the crack tip. In addition, by Gauss theorem,
the contour integral can be converted to an area or a volume integral without any loss of
accuracy. In finite-element models where element stress values are more accurate compared to
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nodal values, J-integral is generally computed over the area or volume around the crack tip or
crack front. In 3D structures, J-integral is computed at each node along the crack front.

As shown in Figure 20 on page 115, a crack has a fractured front (crack tip or crack front),
which is the end of two open cracked surfaces. If the stress intensity exceeds the material
toughness, the cracked surfaces extend, thereby releasing the strain energy.

When the J-integral value reaches the threshold value:

(70)

the crack becomes unstable and starts to propagate. The critical energy release rate  is
usually obtained through experiments.

The J-integral value gives a measure of stress intensity at the crack tip, or crack front, for linear
elastic materials and elastic-plastic materials under small scale yielding: The size of the plastic
zone around the crack tip or crack front is much smaller than the size of the crack [4][5]. If
J-integral must be calculated for elastic-plastic materials with cracks, use Deformation
Plasticity on page 58 to model plastic material behavior.

The J-integral value changes with time for viscoelastic and viscoplastic materials. At a shorter
time after application of load, the value near the crack tip is close to that of purely elastic
material. As stresses and strains change with time, the J-integral value also changes depending
on the solve time for stress analysis. For viscoelastic materials, the reference elastic value at
any time can be obtained by computing the Jv-integral (see Jv-Integral on page 118), which
differs from the initial elastic value due to relaxation of stresses. For viscoplastic materials, the
C(t)-integral (see C(t)-Integral on page 118) should be used to obtain a time-dependent value
that becomes path independent after relaxation of stresses.

Use the j_integral command (see j_integral on page 475) to calculate the J-integral value
for cracks in linear elastic materials in 2D and 3D structures under thermal or mechanical
loading. This command calculates the J-integral at the crack tip of the specified crack and
returns its value in units of N/m. The return value can be used in a Tcl expression. Use this
command after a simulation or after loading a TDR file that contains the crack simulation
results.

NOTE J-integral calculation requires the normal direction vector of the crack.
Use the normal parameter to specify the crack surface normal in the
crack command before specifying the j_integral command.

Calculation of J-integral depends on the value of stress and strain-energy density in the region
around the crack tip. As shown in Figure 21 on page 117, the region around the crack tip has
very high stresses and stress gradients. Analytic solutions for stress fields around the crack tip
show that stresses increase asymptotically in the radial direction as you approach the crack tip.

J Jc=

Jc
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To model such high stress gradients in Sentaurus Interconnect, a fine mesh must be used around
the crack tip. 

Figure 21 von Mises stress in a 2D structure with crack

Stress gradients in the immediate neighborhood of the crack tip are generally too large to be
modeled accurately with a refined mesh. Therefore, the J-integral calculation over elements
close to the crack tip are not very accurate. More accurate values are obtained over larger
domains that include elements farther away from the crack tip where the stresses are smoother.
This is possible due to the path independency of the J-integral expression.

Use the number parameter of the j_integral command to specify the number of domains
over which the J-integral value will be calculated. The first domain includes the elements
surrounding the crack tip. The second domain includes the first domain and the elements
surrounding the first domain. Each subsequent domain is built in the same way as the second
domain. 

Figure 22 Domains for J-integral calculation in a (left) 2D structure and (right) 3D structure

Figure 22 shows the domains around the crack tip and crack front in 2D and 3D structures. In
3D structures, J-integral values are computed at each node on the crack front. Use the x, y, and
z parameters to specify the coordinates of the node on the crack front. As seen in Figure 22,
domains in a 3D structure, for nodes in the interior of the crack front, include half the element
thickness on either side of the node. Domains for nodes on either end of the crack front include

von Mises Stress [Pa]
3.4e+06

2.8e+06

2.1e+06

1.5e+06

8.7e+05
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only half the element thickness on one side. An average value of J-integral over all the nodes
on the crack front also is computed for each domain and is reported along with the nodal value.

By default, J-integral is computed for the first domain. When the number parameter is set to a
value greater than 1, J-integral is calculated for all the domains starting from the first domain.

C(t)-Integral

For viscoplastic materials (seeViscoplastic Materials on page 59), a time-dependent contour
integral called C(t)-integral is used to characterize the amplitude of stresses around crack tips
[6][7][8]. It is obtained by replacing strains with strain rates and displacements with velocities
in the expression for J-integral:

(71)

where  is strain energy rate density.

For a short time after load is applied, creep strains dominate other strains in a small region
around the crack tip. During this time C(t)-integral is path dependent. Its value changes at
points away from the neighborhood of crack tip. Over time, as the stresses relax, creep strains
spread through the material away from the crack tip. As time , steady-state conditions
prevail everywhere so C(t)-integral becomes path independent. The path independent, constant
value is referred to as C*.

C(t)-integral is calculated in a manner similar to J-integral, so a fine mesh must be defined
around the crack tip to capture the high stress gradient. Use the CtIntegral parameter of the
j_integral command to calculate the C(t)-integral value in units of N/ms. In addition, use
the number parameter to specify the number of domains over which to calculate the value. At
a shorter time after loading, the value should be computed over domains close to the crack tip;
at a longer relaxation time, more domains should be used to obtain a path-independent value.

Jv-Integral

For viscoelastic material (see Viscoelastic Materials on page 47), the J-integral value changes
with time. At any time after applying the load, the value depends on stresses and strains at that
time.
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To obtain the value in a reference elastic body with the same stresses, use the correspondence
principle [8][9]:

(72)

where:

■  is the pseudo-strain energy density.

■  is the pseudo-strain.

■  is the pseudo-displacement.

■  is the relaxation modulus.

■  is the reference elastic modulus.

Jv-integral is calculated in a manner similar to J-integral with a fine mesh around the crack tip
to capture the high stress gradient. Use the JvIntegral parameter of the j_integral
command to calculate the Jv-integral value in units of N/m. In addition, use the number
parameter to specify the number of domains over which to calculate the value. At a shorter time
after loading, the value should be computed over domains close to the crack tip; at a longer
relaxation time, more domains should be used to obtain a path-independent value.
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CHAPTER 5 Thermal Analysis

This chapter discusses the thermal analysis capability of Sentaurus
Interconnect.

Overview

In a backend simulation tool, thermal analysis is a key requirement because the temperature
distribution in a structure is an important entity. Moreover, many parameters used in other
physical models depend on local temperature. 

Thermal analysis, however, is optional in Sentaurus Interconnect. When thermal analysis is
switched off during a simulation, the temperature does not evolved during the simulation but
remains in whatever initial state it was at the start of the simulation.

To switch on thermal analysis, use (see mode on page 518):

mode thermal

Thermal Model

The thermal analysis available in Sentaurus Interconnect is based on the time-dependent
nonlinear heat equation with distributed heat sources:

(73)

where  is the temperature in kelvin. The first source term on the right side is a fixed power
density term, and the second term is a power density term associated with Joule heating in the
current-carrying regions.

The thermal conductivity, , is by default a simple floating-point number, although you can
override this value with a general expression of solution variables for a given material.  and

 are the mass density and specific heat capacity:

pdbSet <material> MassDensity <n>

pdbSet <material> SpecificHeatCapacity <string_expression>

ρCP t∂
∂
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The material parameter of main relevance for the state thermal analysis is the isotropic thermal
conductivity, . For each material type, a default value for this parameter has been provided in
the parameter database. To modify this parameter, use the command:

pdbSet <material> Temperature Conductivity <string_expression>

For example:

pdbSet Copper Temperature Conductivity { 4.01 - 0.02*(Temperature-300) }

If the thermal conductivity is anisotropic, it can be set with the command:

pdbSet <material> Temperature Aniso.Conductivity { X <string_expression>
Y <string_expression>
Z <string_expression> }

where:

■ X, Y, and Z are the simulation domain x, y, and z, respectively.

■ <string_expression> is any valid Alagator thermal conductivity expression in that
direction.

If thermal conductivity is set to zero in any direction, the value available for isotropic thermal
conductivity is used in that direction.

Individual components of the anisotropic thermal conductivity can be set by:

pdbSet <material> Temperature Aniso.Conductivity X <string_expression>
pdbSet <material> Temperature Aniso.Conductivity Y <string_expression>
pdbSet <material> Temperature Aniso.Conductivity Z <string_expression>

Setting any component of the anisotropic conductivity automatically activates the anisotropic
model. To switch off the anisotropic conductivity model, all of its components must be set to
zero.

NOTE For thermal analysis to converge, each noncontact material type in the
structure must have a well-defined thermal conductivity.

The Joule heating term, , is expressed as:

(74)

where  is the material-specific electrical conductivity, and  is the electrical field in a
current-carrying region. To modify the electrical conductivity, use the command:

pdbSet <material> Potential Conductivity <string_expression>
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The Joule heating term is switched off by default. To switch it on, use:

pdbSet <material> Temperature JouleHeating 1

When the Joule heating term is switched on, the current Laplace equation (see Eq. 83, p. 131)
also must be solved. To solve the thermal equation and the current Laplace equation
simultaneously, use (see mode on page 518):

mode thermal current

For more details on configuring electrical current analysis, see Chapter 6 on page 131.

To define a fixed power-density term for any noncontact region, use the supply command (see
supply on page 647), for example:

supply region.name= Copper_1 power.density= 2.0e8<W/cm3>

NOTE The steady-state heat equation is solved if there are no time-dependent
boundary conditions (for example, voltage ramp), or if Joule heating or
circuit analysis is switched off.

Boundary Conditions

To ensure that the heat equation has a well-defined steady-state solution, the problem must be
properly constrained. This is done by applying thermal boundary conditions to a set of contacts
(thermodes). To establish a fixed temperature reference in the system, at least one of the
boundary conditions must be of constant temperature type. Additional boundary conditions can
be either the constant temperature type or the constant heat flux type.

For all noncontact outer boundaries, by default simple reflective boundary conditions apply,
while flux-conserving continuous boundary conditions apply at material interfaces: 

(75)

(76)

where:

■ Indices 1 and 2 indicate the two sides of the interface .

■  indicates the component of the temperature gradient normal to the interface.

■  is the thermal conductivity.

Noncontact boundary conditions are set up automatically by the system. The outer boundary
conditions are user configurable and can be set to a nonreflective boundary condition. 
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Bottom Boundary Condition

At the bottom, the boundary condition depends on whether the thermal resistor is attached. The
thermal resistor can be switched on using the command:

pdbSet <material> AttachThermalResistor 1

where <material> is the bottom material name. If the thermal resistor is switched on, the
emission flux at bottom is calculated by:

(77)

where:

■  is the wafer thickness.

■  is the bottom coordinate of a simulation structure.

■  is the environment temperature. 

To set the wafer thickness and environment temperature, use:

pdbSet WaferThickness <n>
pdbSet Env.Temp <n>

If the thermal resistor is not switched on, the emission flux at the bottom becomes:

(78)

where  is the heat sink transfer rate.

To specify the heat sink transfer rate, use:

pdbSet <material> HeatSinkTransfer <n>

By default, HeatSinkTransfer is set to zero for all materials.

Side Boundary Condition

At the sides, the flux is calculated by:

(79)

where  is the side heat transfer rate.
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To specify the side heat transfer rate, use:

pdbSet <material> SideHeatTransfer <n>

By default, SideHeatTransfer is set to zero for all materials.

Top Boundary Condition

At the top surface, that is, the gas interface, the boundary condition depends on whether the
thermal resistor is attached. The thermal resistor can be switched on using the command:

pdbSet Gas AttachThermalResistor 1

If the thermal resistor is switched on, the emission flux at the top is calculated by:

(80)

where  is the top coordinate of a simulation structure.

At the top surface, if the radiation heat transfer boundary condition is selected using:

pdbSet Gas RadiationHeatTransfer 1

the heat emission flux from the top material is given by:

(81)

where Emissivity is the emissivity rate. To specify the emissivity rate, use:

pdbSet <material> Emissivity <n>

At the top interface, if the convective heat transfer boundary condition is selected using:

pdbSet Gas ConvectiveHeatTransfer 1

the emission flux from the top material is given by:

(82)

where  is the top heat transfer rate.

To specify the top heat transfer rate, use:

pdbSet <material> TopHeatSinkTransfer <n>

By default, TopHeatSinkTransfer is set to zero for all materials.
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It is also possible to set the heat emission flux boundary condition (see Eq. 78, p. 124) at any
thermal contact using the supply command (see supply on page 647).

For example, the following command will set a heat emission boundary condition at the contact
named therm1 with a rate of  and the environment temperature  of 400 K.
If the environment temperature is not given, it will be read from the PDB:

supply contact.name= therm1 heat.rate= 1e5 temperature= 400<K>

Defining Thermal Contacts

To define thermal contacts, use the contact command (see contact on page 381), for example:

contact box xlo=2<um> xhi=3<um> ylo=0<um> yhi=0<um> Silicon name=therm1 \
sidewall

contact box xlo=7<um> xhi=7<um> ylo=0<um> yhi=10<um> Silicon name=therm2 \
bottom

Applying Boundary Conditions to Thermal Contacts

To apply boundary conditions to the thermal contacts, use the supply command (see supply
on page 647), for example:

supply contact.name = therm1 temperature=285<C>
supply contact.name = therm2 power=1.0e-5<W>

The first command sets a fixed temperature on contact therm1, and the second command
injects a constant power at contact therm2.

NOTE To establish an absolute temperature reference in the system, you must
specify at least one constant temperature boundary condition for
thermal analysis.

Ramped-up temperature sources can be specified using the temp_ramp command (see
temp_ramp on page 655), for example:

temp_ramp name=Tramp1 time=0.06<s> temp=700<V> ramprate=(300.0/0.06)<C/s>
temp_ramp name=Tramp1 time=0.1<s> temp=1000<C>
supply contact.name=elect1 temp.ramp=Tramp1

The first two commands set up a temperature ramp where the temperature increases from
 to  in  and remains at  for . The third command

uses the specified temperature ramp on the contact elect1.

1 5×10 W/cm2K T0

700°C 1000.0°C 6 2–×10 s 1000.0°C 1 1–×10 s
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Thermal Submodeling

Thermal submodeling is a technique to obtain accurate thermal results in a local region with
mesh refinements, while the full model can be simulated with a coarser mesh. This technique
extracts the temperature from the global structure, interpolates the field on to the local refined
model, and applies the temperature to the outer surfaces of the local model as boundary
conditions using the mode command (see mode on page 518):

mode thermal.global.model=<c>

where <c> is the name of the global TDR file. The temperature field from <c> will be applied
to the outer surfaces of the local model as boundary conditions during the execution of the next
solve command. If the global model is not provided, the submodeling simulation will
continue using the current temperature profile at the execution of the next solve command.
This allows users to define temperature profiles using other commands such as select. For
example:

mode thermal.global.model=Chip

will load the temperature field from a global model file named Chip as the outer boundary
condition during the next solve command, and the thermal submodeling equations will be
solved.

The following command will not load the temperature field but will use the current temperature
field as the outer boundary condition at the next solve command, and the thermal
submodeling equations will be solved:

mode thermal.global.model

NOTE In thermal submodeling mode, no thermal contacts for the outer
boundary can be defined. In addition, no bottom, top, or sidewall
boundary conditions with heat transfer are allowed.

Thermal Resistance Matrix

Sentaurus Interconnect calculates the thermal resistance matrix for the listed contacts. If no
contact information is given, conductors are treated as contacts. The resistances are calculated
where resistances may be required. The mathematical relationship between the thermal
resistances expressed in the schematic and corresponding short-circuit thermal resistances
calculated by Sentaurus Interconnect.

Sentaurus Interconnect calculates the thermal resistance matrix among electrodes.
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To calculate thermal resistance matrix, the mode command (see mode on page 518) must be
used, for example:

mode thermal.resistance

See Appendix B on page 683 for detailed explanation.

NOTE Thermal resistance matrix analysis requires a Raphael™ license.

Thermal RC Network

Sentaurus Interconnect performs transient thermal analysis to calculate the thermal RC
networks for the listed contacts.

To calculate the values of the elements of the thermal RC networks, the mode command must
be used (see mode on page 518), for example:

mode thermal.RC.network= {"excitation.contact" "ambient.contact"}

See Appendix B on page 683 for detailed explanation.

NOTE Thermal RC network analysis requires a Raphael license.

Output Data Fields

Table 8 lists the data fields pertinent to thermal analysis. 

In the trivial case where thermal analysis is switched off, the temperature profiles for
Temperature and PrevTemperature are identical.

Table 8 Data fields associated with thermal analysis

Field name Element/Node Description Unit

Temperature Node Final temperature profile K

PrevTemperature Node Previous temperature profile K

TemperatureGradient Node Final temperature gradient K/cm

HeatFlux Node Heat flux W/cm2 

TotalHeat Node Right hand side of Eq. 73 W/cm3 

JouleHeat Node Joule heating K/cm3 
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Example: 2D Thermal Analysis With Joule Heating

The following self-contained example runs a thermal analysis on a simple structure containing
a current-carrying straight copper wire surrounded by oxide (see Figure 23 on page 130). Fixed
temperature boundary conditions are applied to the sidewall and bottom contacts, and the Joule
heating model is switched on to allow the wire to generate heat. Finally, the example
demonstrates how to create a thermal hotspot map in a new data field that is exported to a file
together with other simulations results.

# Set thermal conductivities [W/cm*K] (:approx value)
pdbSet Copper Temperature Conductivity 3.7e4

# Define thermal contacts and supplies
contact box xlo=10<um> xhi=10<um> ylo=0<um> yhi=10<um> Oxide name=thermBot \

bottom
contact box xlo=0<um> xhi=3<um> ylo=0<um> yhi=0<um> Oxide name=thermSide \

sidewall
supply contact.name=thermBot temperature=200<C>
supply contact.name=thermSide temperature=200<C>

# Define electrical contacts and supplies
contact box xlo=4.5<um> xhi=5.5<um> ylo=0<um> yhi=0<um> \

Copper name=anode sidewall
contact box xlo=4.5<um> xhi=5.5<um> ylo=10<um> yhi=10<um> \

Copper name=cathode sidewall
supply contact.name=anode voltage=2.0e-2<V>
supply contact.name=cathode voltage=0<V>

# Define the structure
line clear
line x location=0 spacing=0.1 tag=OxideTop
line x location=4.5 spacing=0.1 tag=wireTop
line x location=5.5 spacing=0.1 tag=wireBot
line x location=10 spacing=0.1 tag=OxideBot

line y location=0 spacing=0.1 tag=OxideLeft
line y location=10 spacing=0.1 tag=OxideRight

region Oxide xlo=OxideTop xhi=wireTop ylo=OxideLeft yhi=OxideRight
region Copper xlo=wireTop xhi=wireBot ylo=OxideLeft yhi=OxideRight
region Oxide xlo=wireBot xhi=OxideBot ylo=OxideLeft yhi=OxideRight

init !DelayFullD

# Switch on both electrical current analysis and thermal analysis as
# well as the Joule heating model, which will couple the heat equation
# and the current Laplace equation.
mode thermal current
pdbSet Copper Temperature JouleHeating 1
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# Set initial temperature in degree Celsius
SetTemp [expr 300.0-273.156]

# Start simulation
solve info=2

# Set up a thermal failure criterion and store the hotspot areas in a
# separate field. Temperature unit is K.
select z="Temperature > 527" name=MaxTemperatureExceeded store

struct tdr=joule_heating_2d_out !Gas

The final temperature distribution for the example is shown in Figure 23. 

Figure 23 Final temperature distribution for example with Joule heating source

References

[1] J. R. Cannon, The One-Dimensional Heat Equation, Encyclopedia of Mathematics and
Its Applications, vol. 23, Menlo Park, California: Addison-Wesley, 1984.
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CHAPTER 6 Electrical Current Analysis

This chapter discusses the electrical current analysis capability of
Sentaurus Interconnect.

Overview

In an interconnect reliability analysis tool, electrical analysis is a key requirement because the
electric potential and the electric field are important entities in their own right.

The types of electrical analysis available in Sentaurus Interconnect are:

■ Electrical current analysis

■ Electrostatic analysis (see Chapter 7 on page 143)

Both analyses are performed as steady-state problems and are mutually exclusive; in other
words, only one of these two types of analysis can be performed in one simulation. 

Electrical current analysis calculates the electric potential and the electric field in and around
the current-carrying conducting regions biased between two or more contacts.

To switch on electrical current analysis, use (see mode on page 518):

mode current

Electrical Current Model

Electrical current analysis in Sentaurus Interconnect is based on the continuity equation for
conducting media [1]:

(83)

(84)

σ ϕ∇( )∇• JD∇•=

JD t∂
∂

– ε ϕ∇( )=
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where:

■  is the electric potential

■  is the displacement current.

■  is the permittivity (see Electrostatic Model on page 143).

The displacement currents are only added when there is ramping boundary conditions (see
current_ramp on page 393 and voltage_ramp on page 679).  is the electrical conductivity,
usually dependent on the local temperature. A simple temperature derating model is used for
most materials by default:

(85)

where:

■  is the electrical conductivity at 300 K.

■  is a linear temperature coefficient.

■  represents the quantum-mechanical correction. It is optional and is zero by default.
See Wire Size–Dependent Electrical Conductivity on page 133.

These parameters can be modified with the respective commands:

pdbSet <material> Potential SigmaRef <n>
pdbSet <material> Potential Alpha <n>

The two parts in Eq. 85 can be overridden with the following commands:

pdbSet <material> Potential Conductivity <string_expression>
pdbSet <material> Potential Conductivity.QMC <string_expression>

NOTE For current analysis to converge, the material type of each noncontact
region in the structure for which the current analysis is switched on must
have a well-defined electrical conductivity.

For efficiency reasons, the current Laplace equation (see Eq. 83) is only solved in metal regions
by default. Whenever you want to solve for the electric potential and the electric field in
dielectric or semiconducting regions, switch on the solution in such material types with:

pdbSet <material> Conductor 1

ϕ
JD

ε

σ

σ T( )
σ300

1.0 α T 300–[ ]+( )
---------------------------------------------- σqmc+=

σ300

α
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Wire Size–Dependent Electrical Conductivity

Two semiempirical conductivity models for narrow wires are available to calculate the
quantum-mechanical correction :

■ Proximity field–based model

■ Nearest distance–based model

Proximity Field–Based Model

This model is based on the proximity effect. In this model, the resistivity  at the -th node
of a conductor is expressed as:

(86)

where:

■  is the quantum-mechanical correction at the -th node.

■  is the volume surrounding the -th node.

■  is the distance from the -th node to the -th node.

■  is the bulk resistivity correction. The default is 28.5.

■  is a control parameter for the range of the proximity effect. The default is 3.75.

■  is set to 1 if the node is inside the conductor, or it is set to the boundary resistivity
correction  if the node is outside the conductor. The default for  is 1000.

■  is the proximity range factor that controls the size of the summation. The default is 5.

These parameters must be calibrated with the known empirical resistivity model or
experimental data. You can modify the values for , , , and  with their respective
commands:

pdbSetDouble <material> Potential Bulk.Resistivity.Correction <n>
pdbSetDouble <material> Potential Boundary.Resistivity.Correction <n>
pdbSetDouble <material> Potential Proximity.Range <n>
pdbSetDouble <material> Potential Proximity.Range.Factor <n>
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For example, to set these values for copper, you add the following settings to the command file:

pdbSetDouble Copper Potential Bulk.Resistivity.Correction 28.5
pdbSetDouble Copper Potential Boundary.Resistivity.Correction 1000
pdbSetDouble Copper Potential Proximity.Range 3.75
pdbSetDouble Copper Potential Proximity.Range.Factor 5.0

To activate the proximity field–based model, you must specify the keyword ProximityField
for the Conductivity.QMC parameter. A field named ProximityField will be calculated
according to Eq. 86, p. 133 for each node. For example:

pdbSet Copper Potential Conductivity.QMC "1e7/ProximityField"

The default units of all variables in this model are extracted assuming lengths in nanometers.
Therefore, 1e7 must be used to convert the units from nm to cm.

The total conductivity is the sum of Conductivity and Conductivity.QMC (Eq. 85,
p. 132). By default, Conductivity is not 0 and Conductivity.QMC is 0. Therefore, when
using Conductivity.QMC to define the model, you must set Conductivity properly.

In addition, if the total conductivity is defined only by Conductivity.QMC, then set
Conductivity to 0 to overwrite its default value:

pdbSet <material> Potential Conductivity 0

The ProximityField is calculated according to regions. For each conductor region, any node
outside of the conductor region is considered to be in a dielectric region. Therefore, adjacent
conductor regions are not considered to be conductors.

In certain cases, such as when the conductor region is close to or on the boundary, the conductor
region may need to be buried in dielectric to achieve the correct proximity effect. To do this,
the structure can be first extended to ensure the conductor regions have a surrounding dielectric
region of at least  thickness. The structure will be restored after the field
ProximityField is calculated. To enable this extension, specify the following:

pdbSetBoolean Copper Potential Extend.Structure 1

By default, Extend.Structure is false (0), and the summation in Eq. 86 is calculated only
up to the boundary when a conductor is near the boundary.

βλq
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Nearest Distance–Based Model

This model is based on the nearest distance to the conductor surface [2]. In this model, the
resistivity is calculated using:

(87)

where:

■  is the quantum-mechanical correction.

■  is the nearest distance to the conductor surface from a point within the conductor.

■  is the bulk resistivity.

■  is a control parameter for the quantum-mechanical effect.

■  is a control parameter for the range of the quantum-mechanical effect.

This model is activated using the pdb parameter Conductivity.QMC. When this parameter
is set, a NearestDistance field (in cm) will be calculated for each conductor region. You can
then use this field to define the nearest distance–based model according to Eq. 87. For example:

proc Cosh1 { a } {
return "(2*exp(-$a)/(1+exp(-2*$a)))"

}
pdbSet Copper Potential Conductivity.QMC 

"1e7/(30.5+52.5*[Cosh1 (NearestDistance*1e7/3.5)])"

Again, the default units of all variables in this model are extracted assuming lengths in
nanometers. Therefore, 1e7 must be used to convert the units from nm to cm.

In addition, if the total conductivity is defined only by Conductivity.QMC, then set
Conductivity to 0 to overwrite its default value:

pdbSet <material> Potential Conductivity 0

Grain Size–Dependent Electrical Conductivity

Mayadas and Shatzkes [3] proposed a model of electron scattering due to a distribution of
planar potentials, that is, grain boundaries, so that smaller grains cause more electron
scattering, leading to greater resistivity:

(88)
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(89)

(90)

where:

■  is the coefficient for the reflection from a single plane.

■  is the background mean free path that is calculated by:

(91)

where  is the atomic volume, and  is the Fermi energy.  is 1/LatticeDensity.

 and  are specified on a material as follows:

pdbSet <material> GB.Reflectivity <n> ;# unitless
pdbSet <material> Fermi.Energy <n> ;# eV

Boundary Conditions

To ensure that the current Laplace equation (see Eq. 83, p. 131) has a well-defined steady-state
solution, the problem must be properly constrained. This is performed by applying electrical
boundary conditions to two or more contacts defined on the regions that constitute the current-
carrying path.

To establish a fixed reference potential in the system, at least one of these boundary conditions
on the contacts must be of constant voltage (Dirichlet) type. Additional boundary conditions
on the contacts can be either of constant current type, constant current density type, or constant
voltage type.

For all noncontact outer boundaries, simple reflective boundary conditions apply, while the
following charge flux–conserving continuous boundary conditions apply at noncontact
material interfaces:

(92)

(93)

where  and  designate the normal component and the tangential component of the electric
field, respectively.
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Noncontact boundary conditions are established automatically by the system and are not user
configurable.

Defining Electrical Contacts

Use the contact command to define electrical contacts (see contact on page 381), for
example:

contact box xlo=2<um> xhi=3<um> ylo=0<um> yhi=0<um> Copper name=elect1 \
sidewall

contact box xlo=7<um> xhi=7<um> ylo=0<um> yhi=10<um> Copper name=elect2 \
bottom

Applying Boundary Conditions to Electrical Contacts

Use the supply command to apply boundary conditions for electrical current analysis to
contacts (see supply on page 647), for example:

supply contact.name=elect1 voltage=1.0e-3<V>
supply contact.name=elect2 current.density=1.0e5<A/cm2>
supply contact.name=elect3 current=1.0e-4<A>

■ The first command specifies a constant voltage type boundary condition on contact
elect1.

■ The second command specifies a constant current density type boundary condition on
contact elect2.

■ The third command specifies a constant current type boundary condition on contact
elect3.

NOTE To establish an absolute reference potential in the system, at least one
constant voltage (Dirichlet) type boundary condition must be specified
when doing current analysis. The presence of a constant voltage
boundary condition on at least one contact also ensures Kirchhoff
compliance, absorbing any excess charge injected into the system by
constant current or fixed current density boundary conditions set on the
other contacts.
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NOTE When applying the constant current density–type boundary condition to
regional contacts, you should use the adjacent.material option of
the contact command (see contact on page 381) to specify the type of
material interfaces that the current is allowed to traverse. For example,
to specify that current is to be injected only into copper regions that abut
the regional contact affiliated with region Metal_1, define the contact
as:

contact region=Metal_1 adjacent.material=Copper

Ramped-up current and voltage sources can be specified using voltage_ramp command (see
voltage_ramp on page 679) and current_ramp command (see current_ramp on page 393),
for example:

voltage_ramp name=Vramp1 time=1e-12<s> voltage=0<V> ramprate=(8.0/1e-12)<V/s>
voltage_ramp name=Vramp1 time=1e-08<s> voltage=8<V>
supply contact.name=elect1 voltage.ramp=Vramp1

The first two commands set up a voltage ramp where the voltage increases from 0 V to 8.0 V
in  and remains at 8.0 V for . The third command uses the specified voltage
ramp on contact elect1.

NOTE Whenever a voltage ramp or current ramp is applied to a contact, the
displacement currents are added automatically.

Resistance Matrix

Sentaurus Interconnect calculates the resistance matrix among electrodes. To calculate the
resistance matrix, use the mode command (see mode on page 518), for example:

mode resistance

For a detailed explanation, see Appendix B on page 683.

NOTE The resistance matrix analysis requires a Raphael user license.

1 12–×10  s 1 8–×10  s
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Output Data Fields

Table 9 lists the data fields relevant to electrical current analysis and whether the field applies
to elements or nodes. 

Example: 2D Electrical Current Analysis

The following self-contained example demonstrates electrical current analysis on a simple
structure containing a copper T-junction embedded in oxide (see Figure 24 on page 141). Two
constant current boundary conditions and one (mandatory) constant voltage boundary
condition are applied to the sidewall and bottom contacts, respectively. The example
demonstrates how to report currents and voltages on contacts as well as the maximum electric
field and current density in the structure to the log file. Finally, the example shows how to
generate a current-crowding hotspot map in a new data field that is exported to a file together
with other simulations results.

# Comment out the next line to override the default 
# electrical conductivity model for copper, for example:
# pdbSet Copper Potential Conductivity 0.25e5

# Define contacts
contact box xlo=4<um> xhi=5<um> ylo=0<um> yhi=0.0<um> sidewall name=C1 Copper
contact box xlo=4<um> xhi=5<um> ylo=10<um> yhi=10<um> sidewall name=C2 Copper
contact box xlo=10<um> xhi=10<um> ylo=5<um> yhi=6<um> bottom   name=C3 Copper

# Bias the contacts: Two current BCs and one (mandatory) Dirichlet BC
supply contact.name=C1 current=5e-3<A>
supply contact.name=C2 current=2e-5<A>
supply contact.name=C3 voltage=0<V>

# Define and initialize the structure
line clear
line x location=0.0 spacing=0.2 tag=StructTop
line x location=4.0 spacing=0.2 tag=Wire1Top
line x location=5.0 spacing=0.2 tag=Wire1Bot

Table 9 Data fields pertinent to electrical current analysis

Field name Element/Node Description Unit

ElectrostaticPotential Node Electric potential V

ElectricField Node Electric field V/cm

ConductionCurrentDensity Node Current density

ElectricalConductivity Node Electrical conductivity

A/cm
2

A/Vcm
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line x location=10.0 spacing=0.2 tag=StructBot
line y location=0.0 spacing=0.2 tag=StructLeft
line y location=5.0 spacing=0.2 tag=Wire2Left
line y location=6.0 spacing=0.2 tag=Wire2Right
line y location=10.0 spacing=0.2 tag=StructRight

region Oxide xlo=StructTop xhi=Wire1Top ylo=StructLeft yhi=StructRight
region Copper xlo=Wire1Top xhi=Wire1Bot ylo=StructLeft yhi=StructRight
region Oxide xlo=Wire1Bot xhi=StructBot ylo=StructLeft yhi=Wire2Left
region Copper xlo=Wire1Bot xhi=StructBot ylo=Wire2Left yhi=Wire2Right
region Oxide xlo=Wire1Bot xhi=StructBot ylo=Wire2Right yhi=StructRight

init !DelayFullD

# Specify current analysis
mode current

# Run the simulation
solve info=2

# Set up a current crowding failure criterion and store the 
# hotspot areas in a separate field. The suffix '_mag' calculates
# the absolute value of the vector field 'ConductionCurrentDensity'.
select z="ConductionCurrentDensity_mag > 6.9e5" name=CurrDensHotspots store

# Save results
struct tdr=current_bc !Gas !interfaces

# Write max E-field and max current density to log file
set max_E_field [select name=ElectricField max]
set max_curr_dens [select name=ConductionCurrentDensity max]

LogFile "MAX(E-field)   = $max_E_field V/cm"
LogFile "MAX(curr_dens) = $max_curr_dens A/cm^2"

# Write measured voltages and currents at contacts to log file
set v1 [contact Potential name=C1 voltage]
set c1 [contact Potential name=C1 current]
set v2 [contact Potential name=C2 voltage]
set c2 [contact Potential name=C2 current]
set v3 [contact Potential name=C3 voltage]
set c3 [contact Potential name=C3 current]

LogFile "MEASUREMENTS @ CONTACTS:"
LogFile "$v1\n$c1\n$v2\n$c2\n$v3\n$c3"
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The electric potential and current density distributions for the example are shown in Figure 24
and Figure 25, respectively. 

Figure 24 Electric potential distribution 

Figure 25 Current density distribution
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CHAPTER 7 Electrostatic Analysis

The chapter discusses the electrostatic analysis capability of
Sentaurus Interconnect.

Overview

In an interconnect reliability analysis tool, electrical analysis is a key requirement because the
electric potential and the electric field are important entities in their own right. 

The types of electrical analysis available in Sentaurus Interconnect are:

■ Electrostatic analysis

■ Electrical current analysis (see Chapter 6 on page 131)

Both analyses are performed as steady-state problems and are mutually exclusive; in other
words, only one of these two types of analysis can be performed in one simulation. 

Electrostatic analysis calculates the static electric potential and the electric field in the
dielectric regions (including gas) between a set of biased metal electrodes.

To switch on electrostatic analysis, use (see mode on page 518):

mode electrostatic

NOTE The calculation of electrostatic potential can be switched off in gas
regions using the following command:

mode electrostatic !gas

Electrostatic Model

Electrostatic analysis in Sentaurus Interconnect is based on the Poisson equation [1]:

(94)ε ϕ∇( )∇• ρ– f=
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where:

■  is the electric potential.

■  is the permittivity, which, in turn, is a product of the relative permittivity  and
the electric constant .

The relative isotropic permittivity is a double-precision floating-point number that can be
modified with the command:

pdbSet <material> Potential Permittivity <n>

If the permittivity is anisotropic, it can be set with the command:

pdbSet <material> Potential Aniso.Permittivity { X<n> Y<n> Z<n> }

where:

■ X, Y, Z are the simulation domain x, y, and z respectively.

■ <n> is the permittivity in that direction.

If permittivity is set to zero in any direction, the value available for isotropic permittivity is
used in that direction. Individual components of the anisotropic permittivity can be set by:

pdbSet <material> Potential Aniso.Permittivity X <n>
pdbSet <material> Potential Aniso.Permittivity Y <n>
pdbSet <material> Potential Aniso.Permittivity Z <n>

Setting any component of the anisotropic permittivity automatically activates the anisotropic
model. To switch off the anisotropic permittivity model, all of its components must be set to
zero.

It is also possible to define a prefactor for the permittivity using the command:

pdbSet <material> Potential Permittivity.Factor <String Expression>

where <String Expression> can be any valid Alagator expression.

For example, the following command sets the isotropic permittivity to be 1x, 1.2x, and 3x in
the x-, y-, and z-directions, respectively:

pdbSet Oxide Potential Permittivity.Factor "diag(1.0,1.2, 3.0)"

NOTE For electrostatic analysis to converge, the material type of each
nonelectrode region in the structure must have a well-defined relative
permittivity.

ϕ
ε εrε

0
= εr

ε0
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The source term  is an optional fixed-charge density term that can be set on a region with the
supply command, for example:

supply region.name=Oxide_1 charge.density=1.0e-3<C/cm3>

Boundary Conditions

To ensure that the Poisson equation has a well-defined steady-state solution, the problem must
be properly constrained. This is done by applying boundary conditions to a set of electrodes,
one boundary condition per electrode. 

For all nonelectrode outer boundaries, simple reflective boundary conditions apply, while
following E-flux conserving continuous boundary conditions apply at nonelectrode material
interfaces:

(95)

(96)

where:

■  is the normal component of the electric displacement

■  is the surface charge density.

■  is the tangential component of the electric field.

Nonelectrode boundary conditions are established automatically by the system and are not user
configurable.

Defining Electrodes

To define electrodes, use the contact command (see contact on page 381), for example:

contact box xlo=2<um> xhi=3<um> ylo=0<um> yhi=0<um> Copper name=elect1 \
sidewall

contact box xlo=7<um> xhi=7<um> ylo=0<um> yhi=10<um> Copper name=elect2 bottom

Applying Boundary Conditions to Electrodes

To apply boundary conditions for electrostatic analysis to electrodes, use the supply
command (see supply on page 647), for example:

supply contact.name = elect1 voltage=1.0e-3<V>
supply contact.name = elect2 charge=1e-18<Coulomb>

ρf

D2n D1n– ρs=

E2t E1t=

Dn

ρs

Et
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The first command specifies a constant voltage-type boundary condition on contact elect1
and sets it to . The second command specifies a constant charge-type boundary
condition on contact elect2 and sets it to .

Capacitance Matrix

Sentaurus Interconnect calculates the capacitance matrix among electrodes. To calculate the
capacitance matrix, use the mode command (see mode on page 518), for example:

mode capacitance

For a detailed explanation, see Appendix B on page 683.

NOTE The capacitance matrix analysis requires a Raphael user license.

Output Data Fields

Table 10 lists the data fields pertinent to electrostatic analysis, and whether the field applies to
elements or nodes. 

Example: Electrostatic Analysis of Strip Between Two 
Ground Planes

The following self-contained example demonstrates electrostatic analysis on a simple structure
containing a straight copper wire embedded in oxide between two metal ground planes (see
Figure 26 on page 148). The wire and the ground planes are biased at 1.33 V and 0 V,
respectively. The example demonstrates how to report the maximum magnitude of the electric
field to the log file and how to generate a hotspot map of the electric field in a new data field
that is exported to a file together with other simulations results.

# Override default relative permittivity for Oxide in database
pdbSet Oxide Potential Permittivity 4.1

# Define electrodes

Table 10 Data fields pertinent to electrostatic analysis

Field name Element/Node Description Unit

ElectrostaticPotential Node Electric potential V

ElectricField Node Electric field V/cm

1
3–×10  V

1
18–×10  C
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Example: Electrostatic Analysis of Strip Between Two Ground Planes
contact region=Copper_1 name=electrode1 !replace
contact region=Metal_1 name=groundPlane1 !replace
contact region=Metal_2 name=groundPlane2 !replace

# Set boundary conditions on electrodes
supply contact.name=electrode1   voltage=1.33<V>
supply contact.name=groundPlane1 voltage=0<V>
supply contact.name=groundPlane2 voltage=0<V>

# Define the structure
line clear
line x location=0.0 spacing=0.25 tag=StructTop
line x location=0.5 spacing=0.25 tag=GrPl1Bot
line x location=2.7 spacing=0.1 tag=StripTop
line x location=3.3 spacing=0.1 tag=StripBot
line x location=5.5 spacing=0.25 tag=GrPl2Top
line x location=6.0 spacing=0.25 tag=StructBot

line y location=0.0 spacing=0.5 tag=StructLeft
line y location=4.0 spacing=0.1 tag=StripLeft
line y location=6.0 spacing=0.1 tag=StripRight
line y location=10.0 spacing=0.5 tag=StructRight

line z location=0.0 spacing=2.0 tag=front
line z location=20.0 spacing=2.0 tag=back
region Metal xlo=StructTop xhi=GrPl1Bot ylo=StructLeft yhi=StructRight \

zlo=front zhi=back
region Metal xlo=GrPl2Top xhi=StructBot ylo=StructLeft yhi=StructRight \

zlo=front zhi=back

region Oxide xlo=GrPl1Bot xhi=StripTop ylo=StructLeft yhi=StructRight \
zlo=front zhi=back

region Oxide xlo=StripBot xhi=GrPl2Top ylo=StructLeft yhi=StructRight \
zlo=front zhi=back

region Oxide xlo=StripTop xhi=StripBot ylo=StructLeft yhi=StripLeft \
zlo=front zhi=back

region Oxide xlo=StripTop xhi=StripBot ylo=StripRight yhi=StructRight \
zlo=front zhi=back

region Copper xlo=StripTop xhi=StripBot ylo=StripLeft yhi=StripRight \
zlo=front zhi=back

init !DelayFullD

# Specify electrostatic analysis
mode electrostatic

# Start simulation
solve info=2

# Set up a dielectric breakdown criterion for all oxide regions in
# units of V/cm and store the hotspot areas in a separate field. The suffix 
# '_mag' calculates the absolute value of the vector field 'ElectricField'.
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select z="ElectricField_mag > 1.2e4" Oxide name=Max_E_FieldExceeded store

# Save results
struct tdr=strip !Gas !interfaces !contacts

# Print maximum E-Field value to logfile 
set max_E_field [select name=ElectricField max]
LogFile "MAX(E-field) = $max_E_field V/cm"

Figure 26 shows the electrostatic potential distribution for the example. 

Figure 26 Electrostatic potential for a conducting strip embedded in an oxide region 
between two ground planes

References

[1] J. R. Reitz, F. J. Milford, and R. W. Christy, Foundations of Electromagnetic Theory,
Chapters 3–4, Reading, Massachusetts: Addison-Wesley, 4th ed., 1993.
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CHAPTER 8 Mixed-Mode Analysis

This chapter discusses the mixed-mode analysis capability of
Sentaurus Interconnect.

Overview

Sentaurus Interconnect is an interconnect reliability analysis simulator with circuit simulator
capabilities in mixed mode. For a mixed-mode simulation, the command file must include
specifications of the mesh, the contacts, and the model parameters for the interconnect
structure (physical device). A circuit netlist must be defined forming a whole system.

To solve the whole system of interconnect structure and circuits, use the solve command.
Initialization of circuit nodes is automatic and can be switched on or off with the isolve
parameter of the solve command (see solve on page 629). A command file can have only one
interconnect structure.

To create a netlist and connect the circuit elements and the interconnect structure, the System
section (see System Section on page 155) or the circuit command (see circuit on page 377)
is required. 

Figure 27 In mixed-mode simulation, an interconnect structure is connected to a circuit 
netlist

Sentaurus Interconnect also provides a number of compact models for use in mixed mode.

Interconnect
Structure

Netlist
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Compact Models

In Sentaurus Interconnect, the compact models comprise three levels:

■ Device

This describes the basic properties of a compact model and includes the names of the
model, electrodes, and internal variables; and the names and types of the internal states and
parameters. The devices are predefined for SPICE models and built-in models. For user-
defined models, you must specify the devices.

■ Parameter set

Each parameter set is derived from a device. The set defines default values for the
parameters of a compact model. Usually, a parameter set defines parameters that are shared
among several instances. Most SPICE and built-in models provide a default parameter set,
which can be directly referenced in a circuit description. For more complicated models,
such as MOSFETs, you can introduce new parameter sets.

■ Instances

Instances correspond to the elements in the Sentaurus Interconnect circuit. Each instance
is derived from a parameter set. If necessary, an instance can override the values of its
parameters.

For SPICE and built-in models, you can define parameter sets and instances. For user-defined
models, it is possible (and required) to introduce new devices. This is described in the Compact
Models User Guide.

The parameter sets and instances in a circuit simulation are specified in external SPICE circuit
files (see SPICE Circuit Files on page 154). These files are recognized by the extension .scf
and are parsed by Sentaurus Interconnect at the beginning of a simulation.

Table 11 lists the built-in models, and Table 12 on page 151 presents an overview of the SPICE
models. 

Table 11 Built-in models

Model Device Default parameter set

Parameter interface Param_Interface_Device Param_Interface
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Table 12 SPICE models

Model Device Default parameter set

Resistor Resistor Resistor_pset

Capacitor Capacitor Capacitor_pset

Inductor Inductor Inductor_pset

Coupled inductors mutual mutual_pset

Voltage-controlled switch Switch Switch_pset

Current-controlled switch CSwitch CSwitch_pset

Voltage source Vsource Vsource_pset

Current source Isource Isource_pset

Voltage-controlled current source VCCS VCCS_pset

Voltage-controlled voltage source VCVS VCVS_pset

Current-controlled current source CCCS CCCS_pset

Current-controlled voltage source CCVS CCVS_pset

Junction diode Diode Diode_pset

Bipolar junction transistor BJT BJT_pset

Junction field effect transistor JFET JFET_pset

MOSFET Mos1 Mos1_pset

Mos2 Mos2_pset

Mos3 Mos3_pset

Mos6 Mos6_pset

BSIM1 BSIM1_pset

BSIM2 BSIM2_pset

BSIM3 BSIM3_pset

BSIM4 BSIM4_pset

B3SOI B3SOI_pset

GaAs MESFET MES MES_pset

HSPICE Level 1 HMOS_L1

HSPICE Level 2 HMOS_L2

HSPICE Level 3 HMOS_L3

HSPICE Level 28 HMOS_L28
Sentaurus™ Interconnect User Guide 151
N-2017.09



8: Mixed-Mode Analysis 
Overview
Example: Compact Models

Consider the following simple rectifier circuit: 

The circuit comprises three compact models and can be defined in the file rectifier.scf as:

PSET D1n4148
DEVICE Diode
PARAMETERS

is = 0.1p   // saturation current
rs = 16     // Ohmic resistance
cjo = 2p    // junction capacitance
tt = 12n    // transit time
bv = 100    // reverse breakdown voltage
ibv = 0.1p // current at reverse breakdown voltage

END PSET

INSTANCE v

HSPICE Level 49 HMOS_L49

HSPICE Level 53 HMOS_L53

HSPICE Level 54 HMOS_L54

HSPICE Level 57 HMOS_L57

HSPICE Level 59 HMOS_L59

HSPICE Level 61 HMOS_L61

HSPICE Level 62 HMOS_L62

HSPICE Level 64 HMOS_L64

HSPICE Level 68 HMOS_L68

HSPICE Level 69 HMOS_L69

HSPICE Level 73 HMOS_L73

HSPICE Level 76 HMOS_L76

Table 12 SPICE models

Model Device Default parameter set

in out
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PSET Vsource_pset
ELECTRODES in 0
PARAMETERS sine = [0 5 1meg 0 0]

END INSTANCE

INSTANCE d1
PSET D1n4148
ELECTRODES in out
PARAMETERS temp = 30

END INSTANCE

INSTANCE r
PSET Resistor_pset
ELECTRODES out 0
PARAMETERS resistance = 1000

END INSTANCE

The parameter set D1n4148 defines the parameters shared by all diodes of type 1n4148.
Instance parameters are usually different for each diode, for example, their operating
temperature.

NOTE A parameter set must be declared before it can be referenced by an
instance.

The Compact Models User Guide further explains the SPICE parameters in this example. The
command file for this simulation can be:

Grid1D
pdbSet Circuit SPICE.Model.Path "/spice/lib"
mode current
solve time=40e-9<s> 
LogFile [circuit node Potential print]

The SPICE.Model.Path is assigned a directory name for SPICE files. The directory is
scanned for .scf files (SPICE circuit files).

Check the log file of Sentaurus Interconnect to see which circuit files were found and used in
the simulation.

The solve command (see solve on page 629) denotes the interconnect and circuit equations
to be solved. The circuit command (see circuit on page 377) prints the voltage values at the
circuit nodes.
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The instances in a circuit also can appear directly in the System section of the command file,
for example:

System {
Vsource_pset v (in 0) {sine = (0 5 1meg 0 0)}
D1n4148 d1 (in out) {temp = 30}
Resistor_pset r (out 0) {resistance = 1000}

}

SPICE Circuit Files

Compact models can be specified in an external SPICE circuit file, which is recognized by the
extension .scf. The declaration of a parameter set can be:

PSET pset
DEVICE dev
PARAMETERS
parameter0 = value0
parameter1 = value1
...

END PSET

This declaration introduces the parameter set pset that is derived from the device dev. It
assigns default values for the given parameters. The device dev should have already declared
the parameter names. Furthermore, the values assigned to the parameters must be of the
appropriate type. 

Table 13 lists the possible parameter types. 

Table 13 Parameters in SPICE circuit files

Parameter type Example Parameter type Example

char c = 'n' char[] cc = ['a' 'b' 'c']

int i = 7 int[] ii = [1 2 3]

double d = 3.14 double[] dd = [1.2 -3.4 5e6]

string s = "hello world" string[] ss = ["hello" "world"]
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Similarly, the circuit instances can be declared as:

INSTANCE inst
PSET pset
ELECTRODES e0 e1 ...
PARAMETERS

parameter0 = value0
parameter1 = value1
...

END INSTANCE

According to this declaration, the instance inst is derived from the parameter set pset. Its
electrodes are connected to the circuit nodes e0, e1. This instance also defines or overrides
parameter values.

See Compact Models User Guide, Syntax of Compact Circuit (.ccf) Files on page 174 for the
complete syntax of the input language for SPICE circuit files.

NOTE The tool spice2sdevice is available to convert Berkeley SPICE and
HSPICE circuit files (extension .cir) to Sentaurus Interconnect circuit
files (extension .scf) (see Utilities User Guide, Chapter 3 on page 13).

System Section

The System section (see System on page 651) defines the netlist of the physical device and the
circuit elements to be solved. The netlist is connected through circuit nodes. By default, a
circuit node is electrical. Each electrical node is associated with a voltage variable. Node names
are numeric or alphanumeric. The node 0 is predefined as the ground node ( ).

Compact models can be defined in SPICE circuit files (see SPICE Circuit Files on page 154).
However, instances of compact models also can appear directly in the System section of the
command file:

parameter-set-name instance-name (node0 node1 ...) {
<attributes>

}

The order of the nodes in the connectivity list corresponds to the electrodes and thermodes in
the SPICE device definition (refer to the Compact Models User Guide).

The connectivity list is a list of contact-name=node-name connections, separated by space.
Contact-name is the name of the contact from the grid file of the given device, and node-name
is the name of the circuit netlist node as previously defined in the definition of a circuit element.

0 V
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The connectivity list of a physical device explicitly establishes the connection between a
contact and node. For example, the following defines two circuit resistors:

Resistor_pset r1(1 0) {...} # circuit resistor
Resistor_pset r2(1 GC){...} # resistor connected to device and circuit node

Both resistors have one of their terminals connected to node 1. Resistor r1 has its other
terminal connected to ground (0), and resistor r2 has its other terminal connected to one of the
following:

■ The physical device contact GC. The name GC of the contact is defined in the grid file of the
physical device. For the complete syntax of the input language for SPICE circuit files, see
Compact Models User Guide, Syntax of Compact Circuit (.ccf) Files on page 174.

■ The node GC, which in turn is connected to the physical device contact by the circuit
interconnect command (see Temperature Dependency on page 157).

To plot voltage and current values at circuit nodes, use the option and WritePlx commands
(see option on page 526 and WritePlx on page 681).

NOTE A physical device, even if it is not part of the circuit netlist, must exist
in order to solve circuit equations.

Circuit Devices

SPICE instances can be declared in SPICE circuit files as discussed in SPICE Circuit Files on
page 154. They also can appear directly in the System section of the command file, for
example:

pset inst (e0 e1 ... t0 t1 ...) {
parameter0 = value0
parameter1 = value1
...

}

This declaration in the command file provides the same information as the equivalent
declaration in the SPICE circuit file.

Array parameters must be specified with parentheses, not braces, for example:

dd = (1.2 -3.4 5e6)
ss = ("hello" "world")

Certain SPICE models have internal nodes. For example, a SPICE inductance creates an
internal node branch, which represents the current through the instance. Therefore, the
expression l.branch can be used to gain access to the current through the inductor l. This is
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useful for plotting internal data (refer to the Compact Models User Guide for a list of the
internal nodes for each model).

In addition, instances of compact models can appear outside the System section of the
command file using the circuit command (see circuit on page 377):

circuit add name=<instance name> model.name = <parameter set name> \
electrodes = <nodes> instance.parameters = {<attributes>}

The order of the nodes in the connectivity list corresponds to the electrodes and thermodes in
the SPICE device definition as in the System section (see System Section on page 155).

Temperature Dependency

You can perform coupled electrothermal analysis in compact models through the definition of
thermal nodes in the circuit. Compact model instances are declared as before, however, the
nodes associated with these instances can be specified as thermal nodes or thermodes.

As for electrical nodes, boundary conditions can be specified on the thermodes, and they can
be connected to contacts. The only difference is that these nodes are solved for temperature,
analogous to potential for electrical nodes.

Thermodes can be defined using the System command:

System {
Thermal (t0 t1 ...)
...

}

or the circuit command:

circuit thermodes = {t0 t1 ...}

A thermal instance also can be added as:

circuit add name=<instance name> model.name= <parameter set name> \
thermodes= <nodes> instance.parameters= {<attributes>}

NOTE An instance can be attached to both electrodes and thermodes
simultaneously.
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You can connect electrical and thermal nodes to the contacts defined on the interconnect (TDR)
structure using the circuit command. For example, the following command connects the
contact MetalContact to the thermode (or electrode) t1:

circuit interconnect= {"MetalContact t1"}

This allows the connection of an electrode and a thermode to the same contact.

NOTE The circuit interconnect command must be specified explicitly
to make a connection between the structure or contact and the circuit
nodes. The contacts cannot be specified in the System command.
Therefore, in the absence of the circuit interconnect command,
a contact will not see the node to which it should be attached.

In addition, boundary conditions can be set on the thermodes using the System or circuit
command (see circuit on page 377 and System on page 651).

SPICE Circuit Models

Sentaurus Interconnect supports SPICE circuit models for mixed-mode simulations. These
models are based on Berkeley SPICE 3 Version 3F5. Several frequently used HSPICE models
also are available. For a detailed description of the SPICE models, see the Compact Models
User Guide.

SPICE Circuit Parameters

The SPICE circuit parameters, model path, model file extension, minimum conductivity,
temperature, and nominal temperature can be specified using the pdb commands:

pdbSet Circuit SPICE.Model.Path <string>
pdbSet Circuit SPICE.Model.Extension <string>
pdbSet Circuit Potential SPICE.Minimum.Conductivity <n>
pdbSet Circuit Temperature SPICE.Temperature <n>
pdbSet Circuit Temperature SPICE.Nominal.Temperature <n>

The value of SPICE.Temperature denotes the global SPICE circuit temperature. Its default
value is . The value of SPICE.Nominal.Temperature denotes the nominal SPICE
circuit temperature. Its default value is .

The parameter SPICE.Minimum.Conductivity refers to the minimum conductance in
SPICE. The default value is .

300.0 K
300.0 K

10 12– Ω 1–
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User-Defined Circuit Models

Sentaurus Interconnect provides a compact model interface (CMI) for user-defined circuit
models. The models are implemented in C++ by users and are linked to Sentaurus Interconnect
at runtime. Access to the source code of Sentaurus Interconnect is not required.

To implement a new user-defined model:

1. Provide a corresponding equation for each variable in the compact model. For electrode
voltages, compute the current flowing from the device into the electrode. For an internal
model variable, use a model equation.

2. Write a formal description of the new compact model. Sentaurus Interconnect reads this
compact circuit file before the model is loaded.

3. Implement a set of interface subroutines C++. Sentaurus Interconnect provides a runtime
environment.

4. Compile the model code into a shared object file, which is linked at runtime to Sentaurus
Interconnect. A cmi script executes this compilation.

5. Use the variable CMI.Model.Path in the command file to define a search path.

6. Reference user-defined compact models in compact circuit files (with the extension .ccf)
or directly in the System section of the command file.

The CMI model path and the model file extension can be specified using the commands:

pdbSet Circuit CMI.Model.Path <string>
pdbSet Circuit CMI.Model.Extension <string>

Example: Mixed-Mode Electrical Current Analysis

The following self-contained example demonstrates mixed-mode electrical current analysis on
a simple structure containing a copper wire, three resistors, and a sinusoidal voltage source (see
Figure 28 on page 160). The example demonstrates how to include circuit components with the
physical device. Finally, the example shows how to generate time-versus-voltage plots at
circuit nodes and device contacts.

# Define contacts
contact box xlo=0<um> xhi=0<um> ylo=0.0<um> yhi=6.0<um> Copper \

name=MetalContact sidewall width = 1.0<cm> depth = 3.0<cm>
contact box xlo=8<um> xhi=8<um> ylo=0.0<um> yhi=6.0<um> Copper \

name=GoldContact sidewall width = 1.0<cm> depth = 3.0<cm>
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# Define and initialize the structure
line clear
line x location=0 tag=t1 spacing=4
line x location=8 tag=t4 spacing=4
line y location=0 tag=l1 spacing=.5
line y location=5 tag=l2 spacing=.5
line z location=0 tag=front spacing=.2
line z location=3 tag=back spacing=.2
region Copper xlo=t1 xhi=t4 ylo=l1 yhi=l2 zlo=front zhi=back
init !DelayFullD

# Specify current analysis
mode current

# Specify the contact/node names where voltage will be stored and plotted
option voltage = { GoldContact MetalContact 1 }

# Define the netlist of the circuit and device
System {

Vsource_pset v (GoldContact 0) {sine = [0.2 0.4 0.25 0.5 0.01]}
Resistor_pset r1 (MetalContact 1) {resistance = 1000}
Resistor_pset r2 (1 0)            {resistance = 1000}
Resistor_pset r3 (1 0)            {resistance = 1000}

}

# Run the simulation
solve time=5<s> maxstep=0.05<s> init=1e-2<s>

# Print the voltage values @ circuit nodes
circuit node Potential print

# Write "Out.plx" file to plot the voltages at circuit
# nodes GoldContact, MetalContact and 1
WritePlx Out voltage

# Save results
struct tdr=resistor 

Figure 28 Mixed-mode electrical current analysis circuit
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Figure 29 shows the time-versus-voltage plots for GoldContact, MetalContact, and
node 1. 

Figure 29 Time-versus-voltage plots for GoldContact, MetalContact, and node 1
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CHAPTER 9 Complementary Models

This chapter describes the complementary models that can be
activated in Sentaurus Interconnect.

Grain growth in polycrystalline metals means elimination of the grain boundary, which can
lead to the evolution of stress and a change in the electrical conductivity. Stress also can affect
the grain growth. The grain growth model discussed here covers stress-dependent grain growth.

Grain Growth Model

Grain growth during thermal processing can be simulated by setting:

pdbSet <material> Grain.Growth.Model Simple ;# default= None

The grain growth model is given by [1]:

(97)

where:

■  is the grain size (GSize).

■  is the effective vacancy diffusivity given by:

pdbSet <material> Vacancy D0 <n> ;# cm^2sec^-1

■ GrainGrowthFactor is a multiplier given by:

pdbSet <material> GrainGrowthFactor <string expression> ;# unitless

■ GISFactor is the grain size dependency on stress:

(98)

where  is the Young’s modulus,  is the Poisson ratio, and  is the initial grain size.

GB.Width is defined per material and can be set by:

pdbSet <material> GB.Width <n>
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Grain Growth Model
GISFactor is invoked by setting:

pdbSet Mechanics GIS 1

If it is not set, GISFactor becomes 1.

NOTE The value of  is important to see the stress effects. The smaller the
value of , the bigger the stress suppression on growth. GrainSize
and GrainSizeFactor are used to set .

■  is the surface energy per atom associated with the grain boundary and is given by
[1][2]:

(99)

where:

•  is the thickness of the deposited layer.

• GBMaxDensity, GBSurface.Energy.Density,
GBSurface.Energy.Density.h, and GBSurface.Energy.Density.1 are
material properties:

pdbSet <material> Vacancy GBMaxDensity <n> ;# cm^-2
pdbSet <material> GBSurface.Energy.Density <n> ;# Jcm^-2
pdbSet <material> GBSurface.Energy.Density.h <n> ;# unitless
pdbSet <material> GBSurface.Energy.Density.1 <n> ;# unitless

Grain growth induces new strains in affected regions. See Grain Growth on page 84 for details
about the grain growth–induced stress model.
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Initializing the Grain Size

The grain size is initialized when a polycrystalline material is first deposited. The initial grain
size is set as:

(100)

where:

■  is the thickness of the deposited layer.

■  is the distance from the depositing surface.

■ Frac.TA, GrainSize, GrainSizeFactor, and GrainSizeTempC are material
parameters:

pdbSet <material> Frac.TA <n> ;# unitless
pdbSet <material> GrainSize <n> ;# cm
pdbSet <material> GrainSizeFactor <n> ;# unitless
pdbSet <material> GrainSizeTempC <n> ;# degree Celsius

Depending on the parameter settings, the initial grain-size field can be either uniform or
nonuniform. When it is nonuniform, its value increases linearly from the depositing surface.
The farther from the depositing surface, the larger the grain size.

Output Data Fields

Table 14 lists the data fields pertinent to complementary models, and whether the field applies
to elements or nodes. 

Table 14 Data fields pertinent to complementary models

Field name Element/Node Description Unit

GSize Node Grain size cm

GSizeAtto Node Solution name of grain size am

Lg

max Frac.TA tm⋅ GrainSize,( )              if  T GrainSizeTempC≤

GrainSize 2 GrainSizeFactor z     if  T GrainSizeTempC>⋅ ⋅+



=

tm

z
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CHAPTER 10 Advanced Calibration

This chapter describes the use of Advanced Calibration in Sentaurus
Interconnect.

Overview

Synopsys’ Consulting and Engineering is working continually on improving the simulation
models and optimizing the model parameters for the latest technology. This effort is based on
long-standing experience of model calibration for customers and a comprehensive, growing
database of state-of-the-art process flows.

The Advanced Calibration set of models and parameters is located in a single file. For the
current version of Sentaurus Interconnect, it has the file name AdvCal_2017.09.sis and is
located in the directory $STROOT/tcad/$STRELEASE/lib/sinterconnect/TclLib/
AdvCal.

Using Advanced Calibration

To use Advanced Calibration in Sentaurus Interconnect, at the beginning of the command file,
insert the line:

AdvancedCalibration

or:

AdvancedCalibration 2017.09

This command sources the file $STROOT/tcad/$STRELEASE/lib/sinterconnect/
TclLib/AdvCal/AdvCal_2017.09.sis.

You can use Advanced Calibration parameters and models from previous releases, for example:

AdvancedCalibration 2016.12

This command sources the file $STROOT/tcad/$STRELEASE/lib/sinterconnect/
TclLib/AdvCal/AdvCal_2016.12.sis.
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Additional Calibration by Users

Advanced Calibration is based on the assumption that all parameters that are not changed in
the parameter files are the Sentaurus Interconnect default parameters.  To use the Advanced
Calibration file AdvCal_2017.09.sis, it must be sourced before the real process
description.

The best way to perform this is to put all additional calibration in a user calibration file, for
example, user_calibration.sis. This file includes all project-specific changes of
physical parameters or callback procedures with respect to Advanced Calibration.

In the process simulation file, at the beginning of the process simulation, insert the lines:

AdvancedCalibration 2017.09
source ./user_calibration.sis

This method has distinct advantages:

■ There is a clear separation between the process flow, which is contained in the Sentaurus
Interconnect command file, and the selection of physical models and parameters. During
calibration of Sentaurus Interconnect for a specific technology, you can first set up the
process flow in the command file of Sentaurus Interconnect and then improve the accuracy
of the simulation by making changes only in its parameter file. Conversely, if you want to
apply the same models and parameters to a different process, it is only necessary to change
the file containing the process flow.

■ The Advanced Calibration file is used as a starting point. The user calibration file is usually
short and clear. You can see all parameter changes with respect to the original Advanced
Calibration at a glance.

NOTE For detailed documentation of the contents and physical models
included in Advanced Calibration as well as a discussion of its accuracy
and limitations, refer to the relevant chapters in the Advanced
Calibration for Process Simulation User Guide.
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CHAPTER 11 Mesh Generation

This chapter describes the mesh algorithms and meshing parameters
available in Sentaurus Interconnect.

Overview

Sentaurus Interconnect automatically generates meshes as they are needed. The behavior of the
automatic-meshing scheme differs depending on the dimension of the simulation because of
the time required to generate meshes. In one dimension and two dimensions, meshes are
generated after every geometry operation such as etching and deposition. In three dimensions,
meshes are only generated immediately before steps that require a bulk mesh, such as a solve
command and structure saving. This scheme can reduce the time spent when there are multiple
geometry-changing steps without a solve command (or any other step requiring a mesh) in
between.

Sentaurus Interconnect uses Sentaurus Mesh as its meshing engine. Since Sentaurus Mesh is a
suite of tools, when discussing its different meshing algorithms, for simplification, Sentaurus
Mesh will be used in this chapter.

The mesh generation process starts with a bisection algorithm, which places mesh points as
instructed by the user. Afterwards, the mesh elements are created using a modified Delaunay-
meshing algorithm. Refer to the Sentaurus™ Mesh User Guide for details.

The meshes generated within Sentaurus Interconnect can be refined adaptively, statically, or as
a combination of adaptive and static refinements. The refinement can be specified using one of
the major types of refinement box:

■ Field based (adaptive meshing)

■ Mask based

■ Uniform (standard)

■ Interface axis-aligned

■ Interface offsetting (offset normal to the interface)

All these refinement types are user controllable. In addition, Sentaurus Mesh enforces mesh
smoothing to limit the changes in element size from one element to the next. This smoothing
is important for mechanics accuracy and convergence behavior (see Mesh Refinement on
page 170).
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One important algorithm affecting refinement behavior is the UseLines algorithm. This
algorithm inserts lines created using the line command into the internal bisection algorithm
before any other lines are introduced. Further mesh refinement proceeds by bisecting the boxes
created by the UseLines lines. This has the effect of isolating static regions of a structure from
regions where the boundaries are moving due to geometric operations. Geometry movement
naturally causes perturbations to the mesh lines. The UseLines lines compartmentalize this
mesh movement to minimize solution degradation from interpolation. See UseLines: Keeping
User-Defined Mesh Lines on page 201.

NOTE Because the bisection algorithm in Sentaurus Interconnect differs from
the one used to create mesh refinement in the standalone Sentaurus
Mesh tool, it is not possible to create meshes identical to those created
with Sentaurus Mesh. However, element quality, stability, and the
Delaunay properties should be qualitatively the same.

Mesh Refinement

By default, no mesh refinement is applied. You must add refinement to achieve accurate results.

Mesh refinement is a two-step process:

■ First, you define the refinement box.

■ Second, the mesh is refined when the next remesh occurs either with an explicit
grid remesh call or during standard geometry modifications such as etch, deposit, clip,
or native layer formation. 

The refinement boxes remain valid unless the list of refinement boxes is cleared with the
refinebox clear command.

All refinement boxes have refinement criteria that add mesh and constraints that can be used to
spatially limit where the mesh refinement occurs. One type of mesh refinement criteria is
available for each type of refinement box, and the criteria essentially define the box type. The
mesh refinement criteria and, therefore, the refinement box type can be either static or adaptive.
All types of refinement box can be mixed in a command file as required.

NOTE Only one type of mesh refinement must be defined in one refinebox
command.

The refinement box spatial constraints are specified along with the mesh refinement criteria in
the refinebox command and can be combined in one command.
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The spatial constraints available include:

■ A material constraint using the materials argument that takes a list of materials.

■ Region constraints using the regions argument that takes a list of region names.

■ The min and max arguments that limit the size of the refinement box (which by default
applies to all of the space).

■ A mask constraint using the mask, extrusion.min, and extrusion.max arguments
that limit the size of the refinement box.

Refinement information also can be extracted and written to a file readable by Sentaurus Mesh
using the mshcmd flag in conjunction with the tdr or tdr.bnd argument of the struct
command (see struct on page 643).

Viewing Mesh Refinement

To aid in setting mesh refinement, you can store the current minimum edge length in each
direction as a field using the command:

pdbSet Grid Set.Min.Edge 1

When specified, Sentaurus Interconnect computes the smallest edge length in each direction
and saves it in three fields: 

■ MinXEdgeLength 

■ MinYEdgeLength (for 2D or 3D structures)

■ MinZEdgeLength (for 3D structures)

In addition, it prints the average edge length to the screen.

Static Mesh Refinement

This section discusses static (not adaptive) mesh refinement.

Standard Refinement Boxes

The standard refinement box allows you to specify a smoothly varying mesh density inside the
refinement box at three locations in the x-, y- and z-directions using the xrefine, yrefine,
and zrefine parameter lists, respectively.
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Each of the xrefine, yrefine, and zrefine parameters lists can contain from one to three
values. If all three xrefine, yrefine, and zrefine values are specified, the mesh density
varies quadratically in that direction. If two are specified, the variation is linear from top to
bottom. If only one value is specified, a constant mesh density is assumed.

This example specifies two refinement boxes and performs a remesh:

refinebox min= {-0.25 0.4 0.0} max= {0.4 0.6 1.0} xrefine= {0.1 0.06 0.1} \
yrefine= {0.1 0.01 0.1} zrefine = {0.01} oxide

refinebox min= {0.6 0.6} max= {0.8 0.8} xrefine= 0.1 silicon
grid remesh

The first refinement box only applies to oxides within the cube delimited by ,
, . It specifies a quadratically varying mesh density for x and y, and

a constant mesh density for z.

NOTE Calculating the linear or quadratic variation of the mesh density when
two or three x-, y-, or z-direction values are given requires the
specification of min and max. If min and max are not specified and at
least one region is specified, the minimum and maximum values of the
bounding box for that region serve as min and max for the calculation.
If more than one region is specified, only the bounding box of the first
region is used for the calculation, although all regions are used as
constraints to the refinement.

Interface Axis-Aligned Refinement Boxes

Refinement near interfaces can be specified globally or constrained spatially inside a
refinement box using the refinebox command. So it is possible to have a large global default
minimum interface mesh-spacing, for example, and a smaller localized value inside a box. The
parameters affecting interface refinement are demonstrated in the following examples:

■ Set the global mesh criteria near interfaces. This is the maximum size the first normal edge
can be, and it is possible for the edge to be 0.5 min.normal.size:

pdbSet Grid SnMesh min.normal.size <n>

■ Set the global growth rate of the edge size away from interfaces:

pdbSet Grid SnMesh normal.growth.ratio.2d <n>
pdbSet Grid SnMesh normal.growth.ratio.3d <n>

■ To constrain the interface mesh specification to a particular set of materials or material
interfaces, set min.normal.size, or normal.growth.ratio, or both locally within a
refinement box:

refinebox min.normal.size=<n> normal.growth.ratio=<n>
[interface.materials= <list> | interface.mat.pairs= <list>]

0.25– x 0.4≤ ≤
0.4 y 0.6≤ ≤ 0.0 z 1.0≤ ≤
172 Sentaurus™ Interconnect User Guide
N-2017.09



11: Mesh Generation
Static Mesh Refinement
Interface Offsetting Refinement Boxes

In addition, the Sentaurus Mesh offsetting algorithm can be used to create offsetting layers that
are conformal to the interface rather than aligned to the coordinate axes by specifying the
offsetting keyword, which also permits regionwise interface specification in addition to the
materialwise possibility:

refinebox offsetting min.normal.size=<n> normal.growth.ratio=<n>
[interface.materials= <list> | interface.mat.pairs= <list>]
[interface.regions= <list> | interface.region.pairs= <list>]

For Sentaurus Mesh offsetting, an additional argument offsetting.maxlevel=<i> defines
the number of layers to be generated at the interface. It can be defined globally through the
PDB parameter Grid SnMesh offsetting.maxlevel, or on a materialwise or regionwise
basis using the refinebox command as shown in the following possibilities:

pdbSet Grid SnMesh offsetting.maxlevel <i>

refinebox offsetting.maxlevel=<i> interface.materials= <list>

refinebox offsetting.maxlevel=<i> interface.regions= <list>

Offset-meshing parameters defined at interfaces using interface.mat.pairs or
interface.region.pairs are interpreted in a symmetric way by default. This means that,
given the specification of a material or region pair , the parameters are defined for both

 at the  interface and  at the  interface. If !double.side is given, Sentaurus Mesh
interprets  in a nonsymmetric way, that is, only for  at the  interface.

Refinement Inside a Mask

Mask-based refinements are similar to standard refinements (see Standard Refinement Boxes
on page 171), except that they have an additional constraint that is defined by a volume
specified by a previously existing mask. This constraint is applied in addition to the normal box
constraint defined by the min and max parameters. Mask-based refinements are a way to have
layout-driven refinements.

For example, if you specify min and max, the refinement area will be the intersection of the
specified rectangle and the mask. If you specify a material name, the final refinement will be
the intersection of the regions with such a material and the mask.

These constraints are specified using the refinebox command with the following options:

■ A mask name (mask).

■ Minimum and maximum coordinates in the x-direction where the refinement will be
applied (extrusion.min and extrusion.max).

x1 x2⁄
x1 x2 x2 x1

x1 x2⁄ x1 x2
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■ An optional parameter to see whether the refinement should extend some distance away
from the mask (extend).

Negative masks are also allowed. Mask boundaries are never interpreted as being infinite in any
direction, even if they extend far from the simulation boundary. Consequently, shrinking a
refinement by specifying a negative extension parameter might leave a region uncovered, even
if the mask originally extended past the boundary. For example, if a mask from (–0.010 to 1)
covers a domain from (0 to 2), specifying extend=-0.02 will produce a refinement extending
from (0.010 to 0.98), thereby leaving the region from 0 to 0.010 unrefined.

Example

First, create a mask, and then a refinement box can be issued:

polygon name= pol segments= { -0.5 -0.5 -.25 -.5 -.25 -.05 .25 -.05 .25 -.5 \
.5 -.5 .5 0 -.5 0 }

mask name= "Mask" polygons= {pol}

# Now that there is a mask, it can be used to produce a refinement.
refinebox name= "refi_mask" mask= "Mask" xrefine= { .075 .075 .075 } \

yrefine= { .075 .075 .075 } extrusion.min= 0 extrusion.max= 0.05 \
extend= -0.1

Refinement Near Mask Edges or Mark Corners

Refinement also can be constrained to be near mask edges or mask corners. The following
arguments are available in the refinebox command:

■ For mask edge–based refinement:

• mask.edge.refine.extent 

• mask.edge.mns 

• mask.edge.ngr 

■ For mask corner–based refinement:

• mask.corner.refine.extent 

• mask.corner.mns 

• mask.corner.ngr 

The mask.edge.refine.extent argument must be specified to switch on mask edge–based
refinement and to set the lateral extent of the refinement from the mask edge. Vertically, the
mask edge–based refinement can be controlled with the x-coordinate of the min and max
arguments. The minimum mesh spacing near the mask edge is set with mask.edge.mns (the
default is taken from the PDB parameter Grid SnMesh min.normal.size), and the growth
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of the edge length away from the mask edge is specified with mask.edge.ngr (default is 1.0,
meaning the constant edges of lengths mask.edge.mns in the normal direction).

Equivalently, the mask.corner.refine.extent argument must be specified to switch on
mask corner–based refinement and to set the lateral extent of the refinement from the mask
corner. Vertically, the mask corner–based refinement can be controlled with the x-coordinate
of the min and max arguments. The minimum mesh spacing near the mask corner is set with
mask.corner.mns (the default is taken from the PDB parameter Grid SnMesh
min.normal.size), and the growth of the edge length away from the mask corner is
specified with mask.corner.ngr (default is 1.0, meaning the constant edges of lengths
mask.corner.mns in the normal direction).

NOTE Similar to the PDB parameter Grid SnMesh min.normal.size,
actual edge lengths may be up to two times smaller than
mask.edge.mns or mask.corner.mns at the mask edge or mask
corner, respectively, because of the binary-tree refinement algorithm.

NOTE The refinebox command can specify either mask edge–based
refinement, or mask corner–based refinement, or both at the same time.

An example of using mask edge–based refinement is:

polygon name= p1 segments= {1.0 1.0 1.0 5.0 3.0 5.0 3.0 2.5 2.0 2.5 2.0 1.0}
mask name= m1 polygons= p1

refinebox clear

# Prevent mesh propagation by defining regular coarse mesh
refinebox yrefine= 0.5 zrefine= 0.5

# Add edge-based refinement
refinebox mask= m1 mask.edge.mns= 0.08 mask.edge.refine.extent= 0.25

grid remesh

The resist layer was created later using the command:

photo mask= m1 thickness= 0.05
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Figure 30 shows the result. 

Figure 30 Mask edge–based refinement shown on the mask and in silicon

Uniform Mesh Scaling

Often in simulations, uniform mesh refinement is required to study mesh effects or
convergence. After defining all of the other mesh refinement criteria, the mesh can be further
split uniformly by a specified factor in each direction. This is achieved by a final split of the
binary tree used in refinement.

To scale a mesh by a specified factor, you can use the binarytree.split.factor.x,
binarytree.split.factor.y, and binarytree.split.factor.z parameters, for
example:

pdbSet Grid SnMesh binarytree.split.factor.x 4
pdbSet Grid SnMesh binarytree.split.factor.y 2
pdbSet Grid SnMesh binarytree.split.factor.z 1

grid remesh

In this example, the final mesh is refined by a factor of 4 in the x-direction and a factor of 2 in
the y-direction, resulting in approximately 8 times more elements.

NOTE The split factors must be specified in powers of 2.
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In addition, you can apply the split factors over a specified box, which is defined in two
dimensions by:

pdbSet Grid SnMesh binarytree.split.box {xmin 0.0 ymin 0.0 xmax 0.0 ymax 0.0}

and, in three dimensions by:

pdbSet Grid SnMesh binarytree.split.box {xmin 0.0 ymin 0.0 zmin 0.0 xmax 0.0 \
ymax 0.0 zmax 0.0}

Adaptive Mesh Refinement

Tailoring a mesh to a specific problem with static refinement boxes can be tedious and time-
consuming. In addition, for some applications, solution profiles evolve so much during the
process that the areas where a finer mesh was needed at the beginning are very different from
the areas where a finer mesh is needed at the end.

To accurately capture the entire evolution with a static mesh, it is necessary to put a fine mesh
over large areas of the structure leading to long simulation times and large memory use.
Adaptive meshing in Sentaurus Interconnect addresses these issues.

For details, see Tips for Adaptive Meshing on page 186.

When adaptive meshing is switched on, field-based refinement is performed during every
remesh step and for any dimension. This happens for all etching, deposition, native layer,
regrid, and transform operations. In addition, during time-stepping at a specified step interval,
a check of the current mesh is made to determine whether a remesh is required; then the remesh
is performed if necessary. For details, see Adaptive Meshing During Analysis on page 184.

Adaptive Refinement Criteria

Numerous refinement functions are available to deal with differing fields and situations. All
functions involve some comparison between values on neighboring nodes and possible values
between neighboring nodes. In some cases, the same refinement function is available in
Sentaurus Mesh, and similar results to Sentaurus Mesh refinement will be obtained. The
following refinement criteria are available:

■ Relative difference (default)

■ Absolute difference

■ Logarithmic difference

■ Inverse hyperbolic sine (asinh) difference

■ Gradient
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■ Local dose error

■ Interval refinement

These refinements can be applied globally (default) or they can be limited as follows:

■ Boxwise

■ Materialwise

■ Regionwise

Detailed descriptions of the refinement types, their respective control parameters, and
instructions for applying refinement constraints are given in subsequent sections. The default
adaptive meshing parameters have been set to apply only relative difference criteria to the
entire structure, and they typically produce a fairly coarse mesh. It is necessary to set one
criterion or more to produce a mesh sufficiently fine to reach a required accuracy.

Adaptive meshing is switched off by default. To switch on adaptive meshing, use:

pdbSet Grid Adaptive 1
pdbSet Grid SnMesh UseLines 1 ;# Recommended with adaptive meshing

Relative Difference Criteria

The relative difference between two neighboring nodes is computed as follows:

(101)

where  is the field value on node , and  is the field-specific refinement parameter set with:

pdbSet Grid <Field> Refine.Abs.Error <n>

or def.abs.error and abs.error, which are parameters of the refinebox command.

If the value of the expression in Eq. 101 is greater than the maximum relative difference, the
edge between node 1 and node 2 is split. To set the maximum relative difference, use:

pdbSet Grid <Field> Refine.Rel.Error <n>

or def.rel.error and rel.error, which are parameters of the refinebox command.

The quantity <Field> is the name of the field, and <n> is a unitless number for
Refine.Rel.Error and Refine.Abs.Error; the units are the same as those of the field.
The default values for Refine.Abs.Error and Refine.Rel.Error are set from <Field>
= AdaptiveField.

2
C1 C2–

C1 C2 α+ +( )
----------------------------------

Ci i α
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The density of the mesh is sensitive to Refine.Rel.Error because it represents the target
relative change of the field across an edge. For many standard situations, a number of the order
of 1.25 gives a coarse mesh, and a number of approximately 0.5 often gives a fine mesh. The
parameter  sets a smooth cutoff such that values of the field below  result in no refinement.

NOTE The relative difference criteria must only be used with fields that are
always positive.

Absolute Difference Criteria

The absolute difference between two neighboring nodes is computed simply:

(102)

where  is the field value on node . If the value of the expression in Eq. 102 is greater than
the maximum absolute difference, the edge between nodes 1 and 2 is split. The maximum
allowable absolute difference can be set with:

pdbSet Grid <Field> Refine.Max.Difference <n>

Logarithmic Difference Criteria

The logarithmic (base 10) difference between two neighboring nodes is computed as follows:

(103)

where  is the field value on node , and  is the low value cutoff that can be set with:

pdbSet Grid <Field> Refine.Abs.Error <n>

or def.abs.error and abs.error, which are parameters of the refinebox command.

If the value of the expression in Eq. 103 is greater than the maximum logarithmic difference,
the edge between nodes 1 and 2 is split. To set the maximum logarithmic difference, use:

pdbSet Grid <Field> Refine.Max.LogDiff <n>

or def.max.logdiff and max.logdiff, which are parameters of the refinebox
command.

NOTE The logarithmic difference criteria must only be used with fields that are
always positive. Use the inverse hyperbolic sine (asinh) difference
criteria for fields that can have negative values such as stresses.

α α

C1 C2–

Ci i

C1 α+( )log C2 α+( )log–

Ci i α
Sentaurus™ Interconnect User Guide 179
N-2017.09



11: Mesh Generation 
Adaptive Mesh Refinement
Inverse Hyperbolic Sine (asinh) Difference Criteria

The asinh difference between two neighboring nodes is computed as follows:

(104)

where  is the field value on node . If the value of the expression in Eq. 104 is greater than
the maximum asinh difference, the edge between nodes 1 and 2 is split. To set the maximum
asinh difference, use:

pdbSet Grid <Field> Refine.Max.AsinhDiff <n>

or def.max.asinhdiff and max.asinhdiff, which are parameters of the refinebox
command.

Gradient Criteria

The gradient between two neighboring nodes is computed as follows:

(105)

where  is the field value on node , and  is the length of the edge between nodes  and .
If the value of the expression in Eq. 105 is greater than the maximum gradient, the edge
between the two nodes is split. To set the maximum gradient, use:

pdbSet Grid <Field> Refine.Max.Gradient <n>

or def.max.gradient and max.gradient, which are parameters of the refinebox
command.

Local Dose Error Criteria

If an edge between two neighboring nodes is not split, the local dose error is computed as
follows:

(106)

where:

■  is the field value on node .

■  is the concentration at the midpoint between nodes  and .

C1( )asinh C2( )asinh–
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■  is the length of the edge between nodes  and .

■  is the box size perpendicular to the edge between nodes  and  (see Figure 31). 

Figure 31 (Left) One-dimensional and (right) 2D representation of dose loss criteria

The function in Figure 31 (left) is taken from the previous mesh. The box with four points in
Figure 31 (right) represents one cell of the mesh refinement tree. The shaded area is the part of
the 2D field under consideration. The dose in the shaded area is computed in two ways:

■ As is

■ If the edge between  and  is split

If the difference between these two ways is greater than max.dose.error, the edge is split.

The box size is 1.0 (unitless) in 1D; it is the box width (in cm) in 2D; and it is the box area
( ) perpendicular to the edge –  in 3D. If the value of the expression in Eq. 106 is greater
than the normalized maximum local dose error, the edge between the two nodes is split. The
local dose error can be set with:

pdbSet Grid <Field> Refine.Max.DoseError <n>

where <n> has units of , or def.max.dose.error and max.dose.error, which are
parameters of the refinebox command.

The local dose error is first multiplied by the simulation size before comparing it to the
expression in Eq. 106. The simulation size is 1.0 (unitless) in 1D, the simulation width (in cm)
in 2D, and the simulation lateral area in 3D (in ).

To estimate the total dose loss, you must estimate how many nodes carry a significant
concentration of the field in question and then multiply that number by the local dose error to
obtain approximately the maximum total dose error expected. (In practice, the dose error is
often considerably less than this.) This quantity is relatively easy to understand and is less
sensitive than some other parameters to process conditions.
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Interval Refinement Criteria

Interval refinement provides a way to refine the mesh such that field values within a certain
interval are well resolved. Interval refinement produces mesh edges of a specified length
wherever the field values are within a specified interval. Four parameters are required to define
an interval refinement:

■ A minimum and maximum value

■  and 

■ A target length, 

■ A target length scaling, 

To preserve the anisotropy of the mesh, interval refinement examines each edge of a refinement
cell and calculates an effective edge length  defined by:

(107)

where  and  are the endpoints of the edge, and  is the average gradient of the field in
the refinement cell. Edges that are nearly parallel to the contours of the field have effective edge
lengths near zero. Edges that are nearly perpendicular to the contours have effective edge
lengths near their actual edge length. Since edges are split only when they are longer than a
given target length, edges that are parallel to the field contours are allowed to be longer than
those that are perpendicular.

Interval refinement will split any edge whose effective edge length exceeds the effective target
length. The effective target length is calculated differently depending on whether the field
values on the edge overlap the interval specified by  (refinebox min.value) and 
(refinebox max.value).

Let  and  be the values of the field on the endpoints of the edge. If the relation
 is satisfied for any value of  between  and , the edge overlaps the

interval.

For edges that overlap the interval, the effective target length is exactly the target length that
you specify (refinebox target.length), that is:

(108)

For edges that do not overlap:

(109)

where  is either  or ,  is either  or , and the values of  and  are
chosen to minimize the difference.

Cmin Cmax
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leff
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Cmin Cmax
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The formula for  outside the interval produces a graded mesh with an edge length that falls
off parabolically with distance from the interval. Default values for the parameters of the
interval refinements are defined in the Parameter Database (PDB).

Summary of Refinement Parameters

Table 15 lists refinebox parameters in the left column that can be used to specify boxwise
refinement. The right column lists the corresponding PDB parameters that can be used to
specify refinement criteria globally. 

Localizing Adaptive Meshing Using refinebox Command

Adaptive meshing has been implemented through generalized refinement boxes. As such,
adaptive refinement and the refinement parameters themselves can be set in a boxwise manner.
The default adaptive refinement box covers the entire structure and relies on global parameters
and field-based parameters for its default values. If you specify an adaptive refinement box, the
default box is not created.

NOTE For field-based refinement, any adaptive refinebox that is manually
created overrides the default adaptive refinebox. The default adaptive
refinebox (that covers the entire structure) can be created explicitly
with the refinebox adaptive command.

Table 15 Summary of refinement parameters

refinebox parameter Corresponding entry in parameter database

def.rel.error, rel.error Grid <Field> Refine.Rel.Error

def.abs.error, abs.error Grid <Field> Refine.Abs.Error

def.max.difference, max.difference Grid <Field> Refine.Max.Difference

def.max.logdiff, max.logdiff Grid <Field> Refine.Max.LogDiff

def.max.asinhdiff, max.asinhdiff Grid <Field> Refine.Max.AsinhDiff

def.max.gradient, max.gradient Grid <Field> Refine.Max.Gradient

def.max.dose.error, max.dose.error Grid <Field> Refine.Max.DoseError

min.value Grid <Field> Refine.Min.Value

max.value Grid <Field> Refine.Max.Value

target.length Grid <Field> Target.Length

target.length.scaling Grid <Field> Target.Length.Scaling

lteff
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You can create one or more adaptive refinement boxes with different parameters. The most
commonly used parameters control the size of the box (min and max), and the minimum and
maximum edge lengths (refine.min.edge and refine.max.edge).

The default list of fields upon which to refine includes all solution fields. This list can be
modified in several ways. For example, the following command overrides the default list:

pdbSet Grid <field> DoNotAdapt 1

The next example adds Field1 and Field2 to the default list for this particular box:

refinebox refine.add.fields= { Field1 Field2 ... }

The following command redefines the list of fields to be used as the basis for refinement; if set,
this command overrides any add or subtract settings for this particular box:

refinebox refine.fields= { Field1 Field2 ... }

Examples

To switch on adaptive meshing, use:

pdbSet Grid Adaptive 1

To apply adaptive meshing only inside a box and to set the anisotropic edge minimum in the
same box, use:

refinebox min= {0.0 0.0} max= {0.01 0.5} refine.min.edge= {0.001 0.25} adaptive

To refine only considering arsenic and boron, use:

refinebox refine.fields= {Arsenic Boron} adaptive

To create a default box and, in addition, to create a refinement box where  is modified locally
for all species and  is modified for only boron, use:

refinebox adaptive
refinebox min= {0.0 0.0} max= {0.01 0.5} def.rel.error= 0.9 \

abs.error= {Boron= 1.0e14} adaptive

Adaptive Meshing During Analysis

Adaptive meshing during thermal and electrical analysis is switched on by default when
adaptive meshing is switched on (in other words, pdbGet Grid Adaptive returns 1). An
additional control that prevents adaptive meshing at low temperatures is specified as:

pdbSet Grid Min.Adaptive.Temp <Temp C>

rF

αF
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The command:

pdbSet Compute Compute.Regrid.Steps 10 ;# during inert annealings

sets the fixed interval of time steps between meshing. The default value for the parameter
Compute.Regrid.Steps is 4. After the specified number of steps, the mesh is checked to
decide whether the refinement criteria are satisfied (within some tolerance); a remesh is
performed if necessary.

The refinement criteria check is performed as follows: Axis-aligned edges are checked to see
whether they satisfy:

actual < Refine.Factor * error / maxerror (110)

where:

■ Refine.Factor is a direction-dependent parameter of the PDB under Grid.

■ error is the error functions given in Eq. 101–Eq. 106.

■ maxerror is the maximum error parameter associated with each refinement type.

■ actual is the ‘actual’ edge length.

The parameter Grid Refine.Percent limits the percentage of edges that fail (Eq. 110)
before a remesh is called. This check procedure is performed for every
Compute Compute.Regrid.Steps whether a remesh is called or not. You can omit the
refinement criteria check (which can be time-consuming for large meshes) and force a remesh
by setting:

pdbSet Grid Refine.Check 0

Table 16 summarizes the parameters available for adaptive meshing. 

Table 16 Adaptive meshing parameters

Parameter Comment

Compute Compute.Regrid.Steps Number of solution steps before refinement criteria are checked to 
determine whether remeshing is required.

Grid Refine.Check If this parameter is set to 1 (true), refinement criteria are checked and 
remeshing occurs if necessary.
If it is set to 0 (false), remeshing occurs without a check.

Grid Refine.Factor Tolerance factor for marking an edge as too long.

Grid Refine.Percent Allowed percentage of edges that can be too long.
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Tips for Adaptive Meshing

Some useful suggestions when using adaptive meshing are:

■ When setting boxwise meshing criteria, remember that any global criteria you have
specified still apply inside the box. This means you cannot use boxwise meshing criteria to
establish less stringent meshing criteria (such as a larger relative error) inside a box because
the more stringent global criteria still apply. If you want to use different criteria for different
parts of the structure, set the global criteria to the least stringent criteria and use boxes for
more stringent criteria.

■ To switch on adaptive meshing and use all the defaults, all that is needed is pdbSet Grid
Adaptive 1. The main parameter for adjusting the amount of refinement is pdbSet
Grid AdaptiveField Refine.Rel.Error, which defaults to 1.5. In many cases, this
does not refine sufficiently. Decreasing the value causes more refinement. The number of
mesh points is sensitive to this value, and it is not generally recommended to use a value
less than 0.25. This parameter generally meshes doping gradients well, but may leave the
peaks too coarse. To refine the peaks, the best criterion to use is maximum dose error (Grid
AdaptiveField Max.Dose.Error).

■ To override the default refinement box used for field-based refinement (which covers the
whole structure and applies to all solution variables), you need only to create an adaptive
refinement box. To add criteria in addition to the default criteria, for example, to add finer
criteria under the gate while preserving standard parameters elsewhere, you can create your
own default refinement box.

For example:

refinebox adaptive
refinebox min= {-0.01 -0.01} max= {0.15 0.05} adaptive def.rel.error= 0.75

■ The default refinement setting for a solution field can give too fine a mesh. Increase
Grid AdaptiveField Refine.Target.Length from the default value of 0.002 to
reduce refinement.

This command specifies refinement at all interfaces to both <material1> and <material2>.

refinebox interface.mat.pairs= {<material1> <material2>}

This command specifies interface refinement at all interfaces where one side of the interface is
<material1> and the other side is <material2>.

The interfaces that are refined are the union of interface.materials (all interfaces
touching materials in the list) and interface.mat.pairs (only refined on material pairs
found in the list first and second, third and fourth, and so on).

The default min.normal.size for all interface refinement boxes including the default ones
is taken from the pdb parameter Grid SnMesh min.normal.size. Similarly, the default
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value of normal.growth.ratio for all interface refinement boxes is taken from the pdb
parameter Grid SnMesh normal.growth.ratio.2d in two dimensions and from Grid
SnMesh normal.growth.ratio.3d in three dimensions.

To add an interface refinement, use the refinebox command.

To remove an existing interface refinement, first execute refinebox clear, and then start
again.

Examples

The interfaces to be refined are defined as follows:

# Change the default min.normal.size (in micrometers)
pdbSet Grid SnMesh min.normal.size 2.0e-3

# Now modify which materials to apply interface refinement
# refine at all interfaces to silicon and poly (use the global min.normal.size 
# and normal.growth.ratio)
refinebox clear
refinebox interface.materials= {silicon poly}

The next example shows refinement only at the silicon–oxide and polysilicon–oxide interfaces,
and specifies a local value for interface refinement parameters:

refinebox clear
refinebox min.normal.size= 0.005 normal.growth.ratio= 3 \

interface.mat.pairs= {Silicon Oxide PolySilicon Oxide}

Manipulating Refinement Boxes: transform.refinement 
Command

Transformations can be performed on refinement boxes using the transform.refinement
command (see transform.refinement on page 671), which works like the transform
command, except for refinement boxes.

The transform.refinement command accepts the following:

■ Transformation can be either cut, flip, reflect, rotate, stretch, or translate.

■ Arguments depend on the type of transformation.

■ name – applies the transformation to a particular refinement box if specified or to all
refinement boxes otherwise.

■ name.new – specifies the name of the transformed refinement box.
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■ keep.original – specifies whether to retain the original refinement box. Specifying
keep.original preserves the original refinement box and creates a new transformed
one. Specifying !keep.original transforms the specified refinement box, This option is
useful when you want to ‘copy and paste’ refinements by, for example, translating them to
a different position while keeping the original in place.

For example, the following command creates a new refinement box called newRefBox, which
is identical to refbox but is displaced  in the x-direction:

transform.refinement name= "refbox" name.new= "newRefBox" \
translate= {0.1 0 0} keep.original

Settings for Sentaurus Mesh

Table 17 lists the parameters available for Sentaurus Mesh. To set the parameters, use:

pdbSet Grid SnMesh <Parameter> <value> 

Table 17 Parameters available for Sentaurus Mesh

Parameter Default Description

AllowRegionMismatch false If this parameter is set to true, when Sentaurus Mesh checks 
whether the number of regions in the input boundary and the 
number of regions at the end of the meshing process are the 
same, if there is a difference between the numbers of regions, 
Sentaurus Mesh will ignore the discrepancy, and the meshing 
process will continue. If this parameter is set to true and 
MinimumRegionMismatchVolume has also been 
specified, Sentaurus Mesh checks the volumes of all deleted 
regions:
• If the volume of a deleted region is less than the value 

specified by MinimumRegionMismatchVolume, 
the meshing process will continue and the number of 
deleted regions is reported.

• If the volume of a deleted region is greater than the value 
specified by MinimumRegionMismatchVolume, 
the meshing process will stop.

By default (when this parameter is set to false), when Sentaurus 
Mesh checks whether the number of regions in the input 
boundary and the number of regions at the end of the meshing 
process are the same, if there is a difference between the 
numbers of regions, the meshing process will stop.

Apply.Brep.DelPSC false Indicates whether the Delaunay refinement for piecewise 
smooth complex (DelPSC) algorithm is applied to the 
boundary at the beginning of a mesh generation step.
DelPSC multithreading is controlled by:
math numThreadsSnMesh

0.1 μm
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Apply.Brep.DelPSC.Accuracy 1e-4 Specifies the accuracy used by the DelPSC algorithm when 
approximating high-curvature areas.
In general, setting this parameter to 2% of the radius of 
curvature is appropriate. Larger values allow the DelPSC 
algorithm to run faster but generate coarser discretization on 
curved surfaces. Smaller values make the DelPSC algorithm 
run slower and generate finer discretization on curved surfaces.

Apply.Brep.DelPSC.Resolution 1e-2 Controls the size of small triangles in the DelPSC algorithm.
In general, setting this parameter to 10% of the radius of 
curvature is appropriate. Larger values allow the DelPSC 
algorithm to run faster but generate bigger triangles next to 
geometric features and triple lines on curved surfaces. Smaller 
values make the DelPSC algorithm run slower and generate 
smaller triangles next to geometric features and triple lines on 
curved surfaces.

Apply.Brep.DelPSC.Ridge.Angle 150 Angle threshold to detect geometric features.

binarytree.split.box Specifies the region where the binary-tree split factors are 
applied.
In two dimensions:
pdbSet Grid SnMesh binarytree.split.box \
{xmin 0.0 ymin 0.0 xmax 1.0 ymax 1.0}

In three dimensions:
pdbSet Grid SnMesh binarytree.split.box \
{xmin 0.0 ymin 0.0 zmin 0.0 xmax 1.0 ymax 1.0 \
zmax 1.0}

binarytree.split.factor.x 1 Splits the final binary tree used for refinement by the specified 
factor in the x-direction. Powers of 2 must be used.

binarytree.split.factor.y 1 Same as binarytree.split.factor.x but for the 
y-direction.

binarytree.split.factor.z 1 Same as binarytree.split.factor.x but for the 
z-direction.

CoplanarityAngle 175 Any pair of faces with an angle of CoplanarityAngle 
or more will be considered coplanar.

CoplanarityDistance 1.0e-6 Maximum deformation caused to the boundary when swapping 
the edge shared by a pair of adjacent faces.

DecimateBeforeImprint true Decimates the boundary before imprinting it with the axis-
aligned mesh.

DelaunayTolerance 1.0e-4 Specifies how close the ridges and boundary faces conform to 
the Delaunay criterion.

Table 17 Parameters available for Sentaurus Mesh

Parameter Default Description
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DelaunayToleranceMat Specifies an array pair of materials and tolerances to be used in 
those materials. For example:
pdbSet Grid SnMesh DelaunayToleranceMat 
{Silicon 0.01 Oxide 1.0}

DelaunayToleranceReg Specifies an array pair of regions and tolerances to be used in 
those regions.

DelaunayType conformal Types of mesh generated by Sentaurus Mesh. Available types 
are box method, conformal, or constrained.

DelPsc false Indicates whether the Delaunay refinement for piecewise 
smooth complex (DelPSC) algorithm is applied to the 
boundary at the beginning of a mesh generation step.

DelPscAccuracy 1e-4 Specifies the accuracy used by the DelPSC algorithm when 
approximating high-curvature areas. This parameter is used 
during standard mesh generation (as opposed to using DelPSC 
during moving boundary).

EdgeProximity 0.05 Specifies the minimum ratio of the edges generated when an 
edge is split.

FaceProximity 0.05 Specifies the minimum ratio of the faces generated when a face 
is split.

ImprintAccuracy 1e-5 Distance used to determine when two points are too close 
during imprinting.

ImprintCoplanarFacesOnly true Imprints the binary tree on the coplanar sets of faces. This is 
useful to avoid over-refinement in curved areas.

ImprintCoplanarityAngle 179 Angle used to decide when two faces are coplanar. If two 
adjacent faces have an angle greater than this value, they will 
be added to the set of faces to be imprinted with the binary 
refinement tree cells.

ImprintCoplanarityDistance 1e-4 Distance used to determine when two faces are coplanar. If the 
distance from one face to the plane of the other face is less than 
this value, they will be added to the set of faces to be imprinted 
with the binary refinement tree cells.

max.box.angle.2d 120 Maximum angle in binary tree (2D only).

max.box.angle.3d 150 Maximum angle in binary tree (3D only).

max.lateral.size 10 Specifies the maximum lateral spacing between elements in the 
direction parallel to the interface.

MaxAspectRatio 1e6 Specifies the maximum-allowed aspect ratio of an element in 
the binary tree.

Table 17 Parameters available for Sentaurus Mesh

Parameter Default Description
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MaxBoundaryCutRatio.2d 0.01 Specifies the maximum-allowed ratio between the lengths of 
adjacent axis-aligned edges cutting material boundaries (2D 
only).

MaxBoundaryCutRatio.3d 0.01 Specifies the maximum-allowed ratio between the lengths of 
adjacent axis-aligned edges cutting material boundaries (3D 
only).

MaxConnectivity 1e37 Specifies the maximum number of elements connected to a 
point in the final mesh.

MaxNeighborRatio 3.0 Binary-tree smoothing is performed after refinements have 
been added to the binary tree. This prevents sudden changes in 
the element size that can be especially detrimental to 
mechanics results. The ratio of neighboring collinear edges in 
the binary tree can be adjusted with this parameter.

MaxPoints 500000 Maximum number of points allowed by the Sentaurus Mesh 
delaunization module.

MaxSolidAngle 360 Specifies the maximum solid angle allowed in the elements of 
the mesh (3D only).

MaxTetQuality 1e37 Specifies the maximum circumscribed sphere radius–to–
shortest edge ratio allowed in the mesh (3D only).

min.normal.size 8e-4 Specifies the smallest normal (to the interface) mesh element 
size on either side of an interface.

MinAngle 0 Specifies the minimum angle allowed in the elements of the 
mesh (2D only).

minedge 2.0e-6 Minimum edge length request.

MinimumRegionMismatchVolume 0 Specifies a region volume that Sentaurus Mesh uses when 
checking deleted regions. It is used in conjunction with 
AllowRegionMismatch set to true.

normal.growth.ratio.2d 2.0 Factor used to increase the size of the elements in the direction 
normal from the interface. The size of each layer equals the 
size of the previous layer multiplied by this factor (2D only).

normal.growth.ratio.3d 3.0 Factor used to increase the size of the elements in the direction 
normal from the interface. The size of each layer equals the 
size of the previous layer multiplied by this factor (3D only).

offsetting.maxlevel 3 Specifies the number of offsetting layers at an interface when 
Sentaurus Mesh offsetting is used at an interface.

SliverAngle 175 Limits the maximum dihedral angle on one element when the 
delaunizer performs the sliver removal step.

Table 17 Parameters available for Sentaurus Mesh

Parameter Default Description
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Displaying Refinement Boxes

Refinement boxes are saved to TDR files for displaying in Sentaurus Visual. When loading a
TDR file in Sentaurus Visual, if refinement boxes are present, RefinementBox will be listed on
the Materials tab (see Figure 32 (left)). The list of individual refinement boxes is found on the
Lines/Particles tab (see Figure 32 (right)). 

Figure 32 (Left) Materials tab showing RefinementBox and (right) Lines/Particles tab 
showing refinement boxes

By default, refinement boxes are not displayed. They may be displayed in bulk or with borders.
Figure 33 on page 193 shows a 2D structure with two refinement boxes and its corresponding
mesh. Figure 34 on page 193 shows a 3D structure with two refinement boxes and its
corresponding mesh.

SliverDistance 1e-2 Limits the amount of “damage” done to the standard Voronoï 
diagram by the sliver removal algorithm. Note that the grid 
produced by the sliver removal algorithm is weighted 
Delaunay, so the standard Voronoï diagram is “damaged” 
unless the Voronoï weights are stored (see the 
StoreDelaunayWeight parameter). When the box 
method library reads those weights, it calculates the correct 
Voronoï diagram and coefficients to solve the PDEs.

SliverRemovalAlgorithm 1 Algorithm for sliver removal, either 1 (original) or 2 (reduced 
non-Delaunay elements).

StoreDelaunayWeight 0 When set to 1, stores the Delaunay–Voronoï weight 
(DelVorWeight) for the box method library.

UseLines true Specify 1 or 0. UseLines is specified in the line 
command in the mesh generated by Sentaurus Mesh.

Table 17 Parameters available for Sentaurus Mesh

Parameter Default Description
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Figure 33 (Left) Two-dimensional structure with two refinement boxes and (right) 
corresponding mesh 

Figure 34 (Left) Three-dimensional structure with two refinement boxes and (right) 
corresponding mesh
Sentaurus™ Interconnect User Guide 193
N-2017.09



11: Mesh Generation 
Controlling the Mesh During Moving-Boundary Problems
Controlling the Mesh During Moving-Boundary Problems

Moving-boundary problems create new regions and dramatically alter the shape of existing
ones. Controlling the mesh is important. This section covers some mesh control methods.

NOTE The moving boundary in Sentaurus Interconnect is switched off by
default. Use pdbSet Grid Modify.Mesh 1 to switch it on.

TSUPREM-4 Moving-Boundary Meshing Library

The TSUPREM-4 moving-boundary meshing library is available from within Sentaurus
Interconnect (hereafter, referred to as the TS4 mesh library). By default, the TS4 mesh library
performs all mesh updates in 2D moving-boundary oxidation simulations.

Control Parameters in TS4 Mesh Library

The control parameters of the TS4 mesh library are specified with:

pdbSet Grid TS4Mesh <control parameter> <value>

The available control parameters are:

MergeSubAndAdd <0|1> (default: 1)

It optimizes the speed performance by merging the grid subtraction and addition
procedures.

DoSubAfterStep <0|1> (default: 0)

Grid points that are too close to the moving boundary are removed after each solve step,
while grid addition is performed after each mechanics step followed by the solve step.
Switching on this flag forces only one solve step per each mechanics step. When this flag
is switched on, MergeSubAndAdd is ignored.

SubTimeFactor <double> (default: 1.5)

The time step given by mechanics for grid removal is scaled by SubTimeFactor.

NOTE Do not change the default.

MinSpaceOnInterface <double> (default: 2e-6 [ ])

The nodes on an interface mesh must be rebuilt after meshing on the moving boundary
since the bulk meshes along the interface can be added or removed. Instead of destroying

μm
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and rebuilding the interface mesh, the TS4 mesh library tries to reuse the original node data
on the interface mesh to minimize the interpolation error. The original nodes are detected
when the location difference is less than MinSpaceOnInterface.

NOTE Do not change the default.

ExactGridSpace <0|1> (default: 1)

On the growing material side of the interface, the triangular mesh elements expand. To
maintain solution accuracy in the material, you must add nodes to the growing material.
The addition of nodes to the growing material is controlled by perp.add.dist,
ExactGridSpace, and LocalGridSpace.

NOTE perp.add.dist is the grid control parameter of each material, for
example: pdbSet Oxide Grid perp.add.dist 0.01e-4 

Precise grid spacing is obtained by adding new nodes in a growing layer at the distance
specified by perp.add.dist from the existing node in the layer. Because only one node
can be added at each point on an interface during a simulation time step, the size of the time
step may need to be reduced to achieve the required spacing. This reduction in the time step
size can be disabled by specifying:

pdbSet Grid TS4Mesh ExactGridSpace 0

By default, ExactGridSpace is set to 1 to allow reducing the size of the time steps to
control the grid spacing. The algorithm does not allow grid points to be added at spacings
less than 1 Å, and control of the spacing may not be precise for spacings less than 2 Å.

OrderFlatTri <0|1> (default: 1)

When the area of a shrinking triangle becomes less than 1e-15 ( ) after a time step, the
triangle is removed. When the shrinking triangle to be removed is located at a material
interface and the removal of the triangle will result in a bad mesh, the material type of the
shrinking triangle is replaced with the type of the growing neighbor material, instead of
removing it. When those triangles are adjacent to each other, the reordering algorithm for
the replacements smooths the interface shape after conversion.

MinAreaRemovalRatio <double> (default: 10.0)

When a region has only one triangle surrounded by neighbors of different materials and its
area is less than MinAreaRemovalRatio multiplied by 1e-15 ( ), the material type of
the triangle is replaced with the neighbor material that shares the longest edge with the
triangle.

Min.Split.Distance <double> (default: 1e-8 [cm])

When multiple regions with the same material meet at one point, the point is split by
inserting new elements. The parameter determines the minimum split distance.

cm2

cm2
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Moving Mesh and Mechanics Displacements

The displacements computed by the mechanics solution are applied to the nodes after checking
against the MinimumVelocity criterion defined for each region. Velocity is the computed
solution variable and is multiplied by the time step to compute displacements. The nodes are
moved by this amount.

The computed velocities are compared against MinimumVelocity and, if the computed
velocity is greater than MinimumVelocity, the displacements are computed and applied. The
MinimumVelocity is set with the command:

pdbSetDouble Silicon Grid MinimumVelocity <n>

The moving boundary is switched off by default. It can be switched on using the command:

pdbSet Grid Modify.Mesh 1

If the moving boundary is required, the mechanics step is performed before the solve step,
since the mesh is moved during the solve step. In addition, if the heat equation is solved, a heat
step is included before the mechanics step.

NOTE Moving mesh is not supported in high-order elements or mixed meshes.

Controlling the Grid Spacing

Grid spacing in the growing region is controlled by perp.add.dist. Its unit is centimeter,
and the edges in growing regions are checked to see whether they are nearly perpendicular to
the interface.

If they are perpendicular, they are split if their length exceeds the value of perp.add.dist.
This value is set with the command:

pdbSet Oxide Grid perp.add.dist 2e-7

Cleaning Up the Grid

During boundary movement, a region can increase at the expense of a shrinking region. The
shrinking regions then have a problem of small edges. Below a certain value, these edges must
be removed entirely, and the mesh around them must be adjusted.
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The short edge criterion is specified by the Remove.Dist parameter, which is specified in
centimeters and is set as follows:

pdbSet Silicon Grid Remove.Dist 3e-8

NOTE Due to mesh quality constraints, this value must be more than
.

Miscellaneous Tricks

Since Sentaurus Interconnect moving boundary does not allow the interface to traverse more
than one element thickness at a time, speed can be achieved by having elements with longer
edge lengths near the interface. 

This can be controlled by refinement boxes or the pdb parameter
Grid SnMesh min.normal.size. Large structures, like those used in power devices, may
need min.normal.size of , while submicron CMOS devices need .

The parameter Grid SnMesh normal.growth.ratio.3d controls the mesh away from the
interface. If the mesh spacing does not increase fast enough, this number can be increased.

In large structures, the interface fidelity may not need to be as tight as that of 45-nm or 32-nm
gate transistors. The accuracy argument of the mgoals command can be increased to 
(mgoals accuracy= 1e-4), which will cause MGOALS to clean up interfaces of small
(sub– ) features.

These are options available to the simulation engineer; however, care must be exercised in
varying these parameters since they may affect the final structure significantly.

Meshing for 3D Moving-Boundary Problems

Maintaining a conformal high-quality mesh during the simulation of a 3D moving mesh is very
difficult because of the following requirements: moving boundaries, accurate profiles, dose
conservation, minimization of the number of mesh points, and maintaining high-quality mesh
elements. In particular, handling the frequent collision of the moving front with points inside
the other regions can cause intractable problems for the local mesh operations needed for
maintaining dose conservation.

Before each time-step, the mesh is checked for the maximum-possible time step until the first
tetrahedral element collapses (becomes flat) in the material being consumed (that is, silicon).
If necessary, the time step is reduced. During simulation, all mesh points are moved using the
velocity and the time step. The mesh topology is not changed during the solve time step. At the

2 8–×10 cm

0.01 μm 8 Å

1 Å

1 Å
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end of the solve time step, the mesh quality is improved and flat elements are removed,
allowing the next time step to be sufficiently large.

MovingMesh Algorithm

NOTE The MovingMesh algorithm is experimental and requires careful
parameter settings. Contact TCAD Support for technical assistance.

The MovingMesh algorithm is used for 3D moving-boundary problems such as mechanical
bending. It can be switched on and off with the following command before a solve command:

pdbSet Grid Use.MovingMesh 1 ;# switched on by default

Three important parameters control MovingMesh:

pdbSet Oxide Grid perp.add.dist 0.005e-4 ;# centimeter

pdbSet Grid Remove.Dist 0.001e-4 ;# centimeter

pdbSet Grid MovingMesh Remove.Dist.On.Interface 0.0001e-4 ;# centimeter

The perp.add.dist parameter specifies the distance (in cm) that the oxide interface can
move before new mesh points are inserted in the oxide.

The Remove.Dist parameter specifies the shortest distance (in cm) the mesh vertices are
allowed from the interface into the bulk. For lengths shorter than this distance, the vertices will
be removed. Do not specify a distance larger than the minimum material thickness, which is
typically the thickness of the native layer. For a typical example with 1.5 nm native layer,
Remove.Dist of 1.0 nm or less is appropriate.

The Remove.Dist.On.Interface parameter controls small triangles on material interfaces.
Triangles with an edge shorter than this distance will be removed. A smaller number makes the
interfaces smoother, but results in a larger number of triangles.

The moving interfaces can develop problematic geometric features such as knife edges, noisy
surfaces, or extremely thin gaps. You can enable geometry repair and surface remeshing by
using:

pdbSet Grid MovingMesh Repair.Geometry 1 ;# switched on by default

The criteria to trigger geometry repair are based on the minimum dihedral angle and the
maximum face angle:

pdbSet Grid MovingMesh Repair.Geometry.Min.Dihedral.Angle 5 ;# degree

pdbSet Grid MovingMesh Repair.Geometry.Max.Face.Angle 175 ;# degree
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If the minimum dihedral angle between two triangles is below the threshold or the maximum
face angle of a triangle is above the threshold, the geometry repair procedure starts.

The geometry repair procedure involves a multimaterial level-set (MLS) formulation. The
resolution of the level-set cell size is controlled by:

pdbSet Grid MovingMesh Repair.Geometry.Resolution 0.001 ;# micrometer

NOTE The parameter Repair.Geometry.Resolution must be, at most,
one-third the thickness of the thinnest region. Otherwise, the thin region
may be considered noise, and it disappears.

NOTE The amount of geometry smoothing performed by the MLS algorithm
depends on both the curvatures in the input and the level-set cell size. A
noisy surface has a high curvature, so it will be smoothed to a large
extent to remove noise. On the other hand, a planar surface has zero
curvature and is well preserved. Unfortunately, a sharp corner has a
theoretically infinite curvature, so it will become a rounded corner.
When the corner is rounded, the next iteration of MLS smoothing will
have less effect. The specified level-set cell size is the threshold to
distinguish between the noise to be removed and the features to be
preserved.

The boundary representation (brep) of the new geometry must go through a meshing algorithm
for curved surfaces called the Delaunay refinement for piecewise smooth complex (DelPSC)
that improves the quality of triangles on brep surfaces. This algorithm is enabled by:

pdbSet Grid MovingMesh Apply.Brep.DelPSC 1 ;# switched on by default

The DelPSC algorithm performs adaptive sampling on ridges (1D geometric feature) according
to the refinement fields, the curvatures of the ridges, and the proximity among the ridges. On
each surface patch (2D geometric feature), the DelPSC algorithm performs adaptive sampling
according to the refinement fields and the curvatures of the surface. Multithreading in the
DelPSC algorithm is controlled by math numThreadsSnMesh.

Ridge sampling also is controlled by:

pdbSet Grid MovingMesh Apply.Brep.DelPSC.Resolution 0.005 ;# micrometer

The above parameter ensures no ridge edge will be longer than the specification. It is useful,
for example, when you have a straight line (no curvature) next to curved surfaces. You want the
sampling points on the straight line to be fine enough to support the adjacent curved surfaces.

Note that you no longer require Apply.Brep.DelPSC.Resolution to be as small as the thin
native layer thickness, because of the adaptive sampling based on proximity between nearby
ridges.
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To control accuracy in high curvature areas, you can specify the acceptable distance between
the old and new curved surfaces using:

pdbSet Grid MovingMesh Apply.Brep.DelPSC.Accuracy 0.0001 ;# micrometer

NOTE Every time the DelPSC algorithm is applied, the new curved surface can
deviate from the old curved surface by, at most, the value of
Apply.Brep.DelPSC.Accuracy. New vertices lie exactly on the old
surface, but new triangles cannot lie exactly on the old surface unless the
old surface is flat. In general, the smaller the value of
Apply.Brep.DelPSC.Accuracy is, the smoother the new surface
becomes, and the more accurate the new surface represents the old
surface.

These are typical settings for a small transistor structure:

pdbSet Oxide Grid perp.add.dist 2e-7 ;# cm 2nm
pdbSet Silicon Grid perp.add.dist 1e-6 ;# cm 10nm
pdbSet Grid Remove.Dist 9e-8 ;# cm 9A
pdbSet Grid MovingMesh Remove.Dist.On.Interface 3e-8 ;# cm 3A
pdbSet Grid MovingMesh Repair.Geometry.Resolution 3e-4 ;# um 3A
pdbSet Grid MovingMesh Apply.Brep.DelPSC.Resolution 3e-3 ;# um 3nm
pdbSet Grid MovingMesh Apply.Brep.DelPSC.Accuracy 1e-4 ;# um 1A

These are typical settings for a large power structure.

pdbSet Oxide Grid perp.add.dist 2e-6 ;# cm 20nm
pdbSet Silicon Grid perp.add.dist 1e-5 ;# cm 100nm
pdbSet Grid Remove.Dist 9e-7 ;# cm 9nm
pdbSet Grid MovingMesh Remove.Dist.On.Interface 3e-7 ;# cm 3nm
pdbSet Grid MovingMesh Repair.Geometry.Resolution 3e-3 ;# um 3nm
pdbSet Grid MovingMesh Apply.Brep.DelPSC.Resolution 3e-2 ;# um 30nm
pdbSet Grid MovingMesh Apply.Brep.DelPSC.Accuracy 1e-3 ;# um 1nm

MovingMesh has facilities for troubleshooting runtime failures. A typical setting would be:

# Switch on level-1 diagnostics
pdbSetDouble debugLevel MovingMesh 1 ;# switched off by default

# Save intermediate result every 100 time steps
pdbSetDouble Grid MovingMesh Save.Interval 100 ;# switched off by default

# Save diagnostic files for Repair.Geometry and DelPSC
pdbSetBoolean Grid MovingMesh Repair.Geometry.Monitor 1

;# switched off by default

In level-1 diagnostics, the intermediate result will be saved after a certain number of time steps
in the files:

<NodeName>_MovingMeshGridTimeStep<xxxx>.tdr
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The frequency of saving is specified by the Save.Interval parameter. The files are written
after mechanics and before diffusion to analyze the grid-limited time step.

In the event of failure in Repair.Geometry, the level-1 diagnostics will save files with names
such as:

<NodeName>_remeshBrep{In,MLS,PSC,Out}.tdr
<NodeName>_applyBrepDelPSC{In,Out}.tdr

They are useful for checking whether the resolution parameters are adequate. The most likely
cause of failure is a too coarse resolution to capture thin oxide layers and other small geometric
features.

If the parameter Repair.Geometry.Monitor is set to 1, the intermediate files with names
such as:

<NodeName>_remeshBrep_<xxxx>_{In,MLS,PSC,Out}.tdr
<NodeName>_applyBrepDelPSC_<xxxx>_{In,Out}.tdr

will be saved every time the repair geometry operation is triggered. These files are useful to
monitor how the MLS and DelPSC algorithms perform at various points in a simulation.

UseLines: Keeping User-Defined Mesh Lines

During the init command, the line location and spacing specifications given by line
commands are expanded into ticks and stored in the PDB and in TDR files. This is performed
by default.

By carefully placing lines, you can isolate areas of the structure that changed (because of
etching, deposition, and so on) from those that do not (such as bulk silicon). In this way, the
mesh in areas that do not change will have the least amount of change, the least interpolation,
and the most accurate results. Even the mesh in regions that do change will have a similar
starting point and should also have minimal mesh-point movement coming from remeshing.

In the simplest case, all the line commands are specified before the init command, and they
are saved and reused every time a remesh is performed. However, there are other cases
described in the following sections that allow this feature to be more powerful.

Using line Commands After init Command

The expansion of lines from line commands into ticks (in other words, all starting mesh line
locations) is performed only at the point that the lines in that direction are needed. For example,
Sentaurus™ Interconnect User Guide 201
N-2017.09



11: Mesh Generation 
UseLines: Keeping User-Defined Mesh Lines
x-lines are always expanded in the init command, but y-lines are only expanded when the
first etch with a mask is given. Therefore, it is possible to load a 1D structure, give y-lines, and
then expand to 2D, or give both y- and z-lines and expand to 3D. 

After a particular direction or dimension is expanded, it is only possible to insert one tick at a
time in that direction using the line command (in other words, the spacing parameter is
thereafter ignored).

This is handled by specifying one of the following: 

■ The line command in a dimension greater than the current dimension. For example, a y-
line specification when the simulation is one dimensional.

■ The line command in a dimension at or less than the current dimension. For example,
either an x-line or a y-line specified when the simulation is two dimensional.

For more information, see Automatic Dimension Control on page 36.

Dimension Within Current Spatial Dimension

This is encountered if the user-specified x-lines and the current spatial dimension of analyses
is 1D. Or, it could happen if you specify x- or y-lines in 2D, or x-, y-, or z- lines in 3D.

In this case, the line command ignores the spacing parameter and tries to insert only one
tick as long as that tick (line) is not too close to an existing tick. 

Inside the init command, the line commands are expanded into ticks using the spacing
specifications for the dimension as they are needed. When additional line commands are
given for dimensions where the ticks have already been expanded, the spacing parameter is
ignored and one additional tick is added as long as it is not too close to an existing tick.

Dimension Greater Than Current Spatial Dimension

This is encountered if you specified y- or z-lines, and the current spatial dimension of analyses
is 1D. Or, it could happen if you specify z-lines and the current spatial dimension of analyses
is 2D.

In this case, the line command is considered in its entirety, and the spacing parameter is
used. All the intermediate lines are included in the list of ticks kept.
202 Sentaurus™ Interconnect User Guide
N-2017.09



11: Mesh Generation
UseLines: Keeping User-Defined Mesh Lines
Using line Commands to Create Virtual Spacing

By default, the ticks created by the line command with the spacing argument are hard lines
that Sentaurus Mesh enforces whenever possible. Since such lines traverse the entire structure,
they can result in unnecessary refinement, especially if the spacing argument is used with
small values.

Using the virtual.spacing option, the ticks created between line commands become soft
lines. This means that the refinement lines created by Sentaurus Mesh, during the binary tree
construction, will snap to these ticks, thereby building a more predictable pattern instead of the
pattern generated by the default bisection algorithm.

For example, the following commands create a virtual spacing of 1 nm on the device between
the (0, 0) and (1, 1) coordinates. All user-defined refinement will snap to the coordinates
defined in this virtual grid:

line virtual.spacing
line x loc=0 spacing=0.001
line x loc=1 spacing=0.001
line y loc=0 spacing=0.001
line y loc=1 spacing=0.001

NOTE The virtual.spacing option is applied globally and affects all lines
at the same time.

UseLines and the transform Command

The ticks must be handled in a special manner with the transform command (see transform
on page 661).

Reflection

Using transform reflect, in the reflected region, the ticks are created after applying lateral
inversion along the appropriate plane.

Stretch

On applying transform stretch at a given coordinate in a given direction, the existing ticks
in the stretched area are translated by the amount of the stretch. You must insert lines in the
stretched area appropriately.
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Rotation

When applying transform rotate, the ticks also are rotated and properly transferred
between x-ticks, y-ticks, and z-ticks.

Translation

The transform translate command shifts the ticks by the specified amount.

Cut

Using transform cut, the lines in the part of the structure that is cut are deleted.

Example: Testing line Commands

Use the following example to test line commands:

line x loc=0 tag=a spacing=0.05
line x loc=0.1 spacing=0.05
line x loc=1 tag=b spacing=0.05
line y loc=0 tag=c spacing=0.01
line y loc=0.6 tag=d spacing=0.1

region silicon xlo=a xhi=b ylo=c yhi=d
init !DelayFullD

deposit oxide thickness=0.002 iso
grid remesh info=2

line y loc=0.026
line y loc=0.027
line y loc=0.028
line y loc=0.029
line y loc=0.025
line y loc=0.024
line y loc=0.023

grid remesh

deposit poly thickness=0.18 iso
mask name=m1 left=-0.1 right=0.025
etch aniso thickness=0.2 poly mask=m1

struct tdr=linetest
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Example: Showing Clearing Lines for a New Structure

Use the following example to show clearing lines and to prepare for another structure definition
within the same command file:

line x loc=0 tag=a spa=0.125
line x loc=1 tag=b spa=0.125
line y loc=0 tag=c spa=0.125
line y loc=1 tag=d spa=0.125
region silicon xlo=a xhi=b ylo=c yhi=d
init

grid FullD

line clear

line x loc=0 tag=a spa=0.125
line x loc=1 tag=b spa=0.125
line y loc=0 tag=c spa=0.125
line y loc=1 tag=d spa=0.125
region silicon xlo=a xhi=b ylo=c yhi=d
init

line y loc=0.3 spa=0.01

grid FullD

Data Interpolation

Sentaurus Interconnect stores a copy of the mesh with all its data before performing any
geometry-changing operation. This is the reference mesh used to interpolate data onto the new
mesh. In three dimensions, a mesh is generated only when it is necessary, so you can have
multiple etch, deposit, photo, and strip commands without the need to remesh in
between. When a new mesh is required, data is interpolated from the stored mesh and data.

Data interpolation is performed materialwise. This is important because some nodal data can
be discontinuous at material interfaces; for example, segregation causes a jump in
concentration at the silicon–oxide interface. In addition, the precise location of an interface can
change slightly due to numeric noise in geometry-moving algorithms. Therefore, it is
necessary to allow the data to be interpolated from points in the old mesh nearby, but only from
the same material.

Data also can be interpolated from materials that are Like materials (that is, the material in the
old mesh is Like the material in the new mesh, or the material in the new mesh is Like the
material in the old mesh). When interpolating data at an interface, the preference is to use data
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from the same region, then data from the same material, and finally data from Like materials.
If no match is found, then 0 is set for all data at that point.

For data defined on elements, the overlap of elements from the old mesh to the new mesh is
used for weighting. Similar to nodal data, interpolation of elements near interfaces uses the
region, material, and Like material preference order.

Multithreaded interpolation can be used to speed up interpolation in large 3D structures.
Because of the memory-intensive nature of interpolation, the performance benefit of
multithreading may saturate, but it depends strongly on the example. If the performance
degrades when using a large number of threads, the following command can be used to reduce
the number of threads for interpolation:

math numThreadsInterp=<i>

Data Interpolation Near Boundaries

Region boundaries in a mesh can move for various reasons, including:

1. Geometric changes such as etching or deposition.

2. Boundary cleanup operations designed to reduce the number of boundary points and,
therefore, the overall number of mesh points.

3. Moving-boundary simulations such as oxidation, silicidation, and model 0 type epitaxy.

The interpolation module has no information about all the operations that may have occurred
since the last bulk mesh was created. Therefore, a tolerance is used to distinguish between
boundary points displaced by case (1) where the boundary is expected to move more than a
small amount, so interpolated values should be taken from exact locations in the new mesh, and
cases (2) and (3) where the boundary should move only a small amount, so the values at the
boundary should be transferred by interpolating from the nearest location on the old boundary.

The tolerance is set with the following command, where the distance is measured in
micrometers:

pdbSet Grid Interpolation.Search.Distance <n>
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Figure 35 illustrates the meaning of this parameter. 

Figure 35 (Left) The new mesh (blue) has moved from its previous position, but the distance 
is smaller than Interpolation.Search.Distance, so values are interpolated from the 
green mesh to the blue mesh at the boundary. (Right) The distance is too large, 
so only those points in the blue mesh that are the same material as the green 
mesh are interpolated.

Troubleshooting

Sometimes, the mesh generation step fails and it is unclear what the problem could be. The
following are recommendations of where to look when problems arise during meshing:

■ Set InfoDefault to 2 or higher, for example:

pdbSet InfoDefault 2

■ When Sentaurus Mesh prints the message:

"Short edge 1e-8 around points (x1, y1, z1) (x2, y2, z2)"

look at the input structure around the coordinates (x1, y1, z1) or (x2, y2, z2), and
check whether there is a singularity in that area (such as a crack, fold, or surface overlap).

Sometimes, these singularities are the product of an etching or a deposition step, and action
can be taken to improve the quality of the structure.

■ Check the quality of the boundary printed for the steps preceding the mesh generation
process. In particular, the following line provides an indication of quality (this is output if
InfoDefault is 2 or higher):

minDihedralAngle: <angle> [near (x1, y1, z1),(x2, y2, z2)] at
region=Nitride_1.

If you see an angle less than  in the geometry, this might indicate a problem in the
structure at the given coordinates. Look at the preceding process steps in Sentaurus Visual
to see whether they can be modified to avoid creating the problem.

Interpolation search distance

Node value
transferred

Node value not
transferred

3°
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To visualize the problem area in Sentaurus Visual, choose View > Camera Configuration
to open the Camera Properties panel. On the panel, click the Rotation Point tab, enter one
of the coordinates where the small dihedral angle is reported, and select the Show option
under Point/Line. This will display a red 3D crosshair marker indicating the location of the
center of rotation. You can hide all regions, except the one where the minimum dihedral
angle is reported and zoom in around the red marker to locate the problem area. Sometimes
you need to rotate the structure around the red marker to see what is happening to the
geometry.

■ You might need to add !repair to the etch or deposit command to ensure the structure
is not repaired. This makes it easier to find the problem in Sentaurus Visual.

■ Frequently save snapshots of the boundary file of the structure, especially before all mesh
generation operations. This will help you to investigate possible problems in the input to
the mesh generator. To accomplish this, use the command:

struct tdr.bnd=<c> 

Figure 36 (Left) Example of artifact in geometry and (right) magnification of artifact (circled 
region)
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This chapter describes etching, deposition, insertion, and other
geometric transformations available in Sentaurus Interconnect.

Overview

During device fabrication, several etching and deposition steps are necessary. Such steps can
be modeled in Sentaurus Interconnect by simple geometric operations or simple mathematical
formulations in which no physical processing is simulated.

The creation of complex 3D shapes can be assisted by an interface to Sentaurus Structure
Editor (see Sentaurus Structure Editor Interface on page 277) or the insertion of predefined
pieces of a structure (see Inserting Polygons on page 274 and Inserting Polyhedra on
page 274). A shape library is available for commonly used structures (such as shallow trench
isolation). These shapes are already parameterized (see Shape Library on page 238).

For physical etching and deposition, Sentaurus Interconnect provides interfaces to Sentaurus
Topography and Sentaurus Topography 3D (see Sentaurus Topography Interface on page 280
and Sentaurus Topography 3D Interface on page 282).

Sentaurus Interconnect provides several etching and deposition operations, in addition to
purely geometric operations to help shape the geometry of devices:

■ Etching is described in Etching on page 210.

■ Deposition is described in Deposition on page 229.

■ Masks offer an effect (similar to a masking layer) to limit the etching or deposition process
to a certain window or to provide a convenient way to mimic lithographic patterning (see
Masks and Lithographic Patterning on page 251).

■ Several geometric transformations are available (see Geometric Transformations on
page 259).

■ The internal module, MGOALS, which is used to perform geometric etching and
deposition, is described in MGOALS on page 264.
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Three main specifications are required for all etching steps:

■ Etching type

■ Material or materials to be etched

■ Amount of material to be removed

The supported etching types are specified using the type argument of the etch command. 

Some etching types have an option that can be used instead of specifying type:

■ anisotropic (instead of type=anisotropic)

■ cmp (instead of type=cmp)

■ isotropic (instead of type=isotropic)

■ trapezoidal (instead of type=trapezoidal)

Table 18 Supported etching types

Etching type Description

type=angles.rates Etches according to a definition of a piecewise linear etching rate.
See Piecewise Linear Etching on page 227.

type=anisotropic Etches in the vertical direction only.
See Anisotropic and Directional Etching on page 214

type=cmp Performs chemical-mechanical polishing (CMP). The coordinate of the new surface 
must be specified as coord. See Polygonal Etching and CMP on page 218

type=cmp.flat Similar to CMP, except the new surface specified by coord is flattened following 
stress relaxation and has zero displacement.

type=crystal Performs angle-dependent etching where the etching rate depends on the 
crystallographic direction. See Crystallographic Etching on page 222

type=directional Etches in one specific direction only.
See Anisotropic and Directional Etching on page 214.

type=fourier Performs angle-dependent etching where the etching rate is a cosine expansion of the 
etching angle. See Fourier Etching on page 219.

type=isotropic Performs etching where the etching rate is uniform in all directions.
See Isotropic Etching on page 213.

type=polygon Etches according to a user-supplied polygon (2D operations only).
See Polygonal Etching and CMP on page 218.

type=trapezoidal Allows etching with undercut and taper angle specifications (2D operations only), or 
taper and bottom angle specifications (3D operations only).
See Trapezoidal Etching on page 222
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Each etching type requires the setting of parameters particular to that type. Many options are
available and some options are available only with certain etching types. Table 19 summarizes
the syntax options for each etching type. 

Table 19 Options for etch command syntax

Area Parameter name
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rate * * * *

angles.rates *

coeffs *

mat.coeffs *

crystal.rate *

S
to

p
 c

ri
te

ri
a

time * * * * * * *

thickness * * * *

etchstop * * * * * *

coord *

etchstop.overetch * * * * * *

isotropic.overetch * *

S
h

ap
e

polygon *

angle *

undercut *a

a. In 2D when not using force.full.levelset.

bottom.angle *b

b. In 3D when not using force.full.levelset.

bottom.thickness *b 

direction *

ambient.rate *c

c. When used in conjunction with force.full.levelset.

B
ea

m

sources * *

shadowing * *c * *

shadowing.nonisotropic *

M
es

h remesh * * * * * * * *

Adaptive * * * * * * * *

M
o

d
e 1D *

force.full.levelset * *d * *d 

d. Full level set is the default scheme for crystallographic and Fourier etching.

* *
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NOTE To remove materials exposed to the top gas, use the strip command
not the etch command. The strip command is used specifically for
this purpose. It is more straightforward, less prone to user error, and
more robust in delivering the expected results. For example:

strip Photoresist

Etching types have been implemented in Sentaurus Interconnect using three different methods
(analytic, fast level-set, and general time-stepping level-set), which are described in MGOALS
on page 264.

These methods may require different inputs to perform the steps and may take different effects
into account. The method is selected depending on the specified parameters and the structure
to be etched.

NOTE The simplest and fastest algorithm possible is chosen by default.

If simple isotropic, anisotropic, directional, or CMP etching of a single material is requested
and for polygonal etching, an analytic method is used. The analytic method is the fastest and
most accurate. However, in some cases, the resulting etching front might intersect itself.
Sentaurus Interconnect detects such situations and switches to the fast level-set method.

NOTE Although analytic methods are fast and can handle most simple etching
tasks, they do not consider shadowing or visibility effects, and they
cannot etch more than one material at a time.

The general time-stepping level-set method is chosen if you specify any rate versus angle-type
etching (Fourier or crystallographic), or if you choose to etch different materials at different
rates, or if the option force.full.levelset is specified. In addition, the general time-
stepping level-set method can handle multiple etching beams and, optionally, shadowing.

The general time-stepping level-set method used in Sentaurus Interconnect has the same
limitations as all level-set methods:

■ Sharp corners in the evolving front are rounded.

■ Small front movement requires a fine level-set mesh, resulting in large memory use and
long simulation times.

■ The accuracy is limited by the size of the level-set mesh.

Besides the etching type, the materials to be etched and the amount of material to be removed
must be specified. The amount of material to be etched can be specified in three ways: 

■ Thickness

■ Rate and time

■ Using an etch stop
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The etching rate may be specified using etching beams that are created with the beam
command. Beams can be used only with Fourier etching. If an etch stop is specified, the etching
stops as soon as the specified material is exposed to gas.

In addition, a mask specification can be given for all etching types, except CMP and polygonal
to limit the areas where material is removed.

NOTE Trapezoidal etching supports mask specification in 3D only.

Isotropic Etching

Isotropic etching removes material at the same rate in all directions.

When isotropic etching uses either the fast level-set method or the general time-stepping level-
set method, the final surface is obtained by solving a differential equation on a discrete mesh.

NOTE To control errors in the fast level-set method, use resolution in the
mgoals command. For the general etch method, use either
resolution or the dx and dy arguments of the mgoals command.

An example of a single-material isotropic etch is (see Figure 37):

etch silicon thickness= 0.05 type= isotropic 

Figure 37 Single-material isotropic etching
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An example of a multimaterial isotropic etch is (see Figure 38):

etch material= {Silicon Oxide Poly} rate= {1.0 1.5 1.0} time= 0.05 \
type= isotropic 

Figure 38 Multimaterial isotropic etching

Anisotropic and Directional Etching

Anisotropic etching is designed to work primarily with masks or masking layers. Anisotropic
etching removes material in a direction that is purely vertically downwards (see Figure 39). 

Figure 39 Anisotropic etching

Anisotropic etching can take more than one material if the same rate is specified for all etched
materials. This can be useful to create multiple spacers since it does not produce small gaps,
which are difficult to avoid when etching one spacer at a time. If you want to use different rates
for each material, a better alternative is Fourier etching.
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If anisotropic etching is performed to etch the shaded region in the structure shown in
Figure 40, instabilities can arise. The resulting structure can be very different depending on the
numeric round-off errors. 

Figure 40 For this structure, anisotropic etching would not be stable

NOTE With regard to anisotropic etching:

• Anisotropic operations are sensitive to numeric noise at vertical or
nearly vertical walls.

• If the etch command is supposed to remove the entire layer, care
must be taken to overetch by a small amount to prevent thin regions
remaining due to numeric round-off errors.

• It is more robust and better to use the strip command to remove
all exposed layers of a certain material.

In two dimensions, when anisotropic etching is performed, portions of the etched material
lying underneath other material are protected by those materials and, therefore, no etching
occurs in those areas. For example, in Figure 41 on page 216, when silicon is etched using
anisotropic etching, the portion lying underneath oxide is not etched.

On the other hand, depending on the etching rate, in three dimensions, the silicon area
underneath oxide can be etched away, as shown in Figure 42 on page 216. To make the
behavior consistent with 2D anisotropic etching, you can specify the
aniso.etching.protect.materials option of the mgoals command:

mgoals aniso.etching.protect.materials
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Figure 41 Two-dimensional anisotropic etching with material providing protection: 
(left) original structure and (right) result after etching

Figure 42 Three-dimensional anisotropic etching with material providing protection: 
(left) original structure, (middle) default behavior leaving a floating region, and 
(right) behavior with aniso.etching.protect.materials option
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Directional etching is similar to anisotropic etching. In this case, the specified etching rate is
applied in the direction of the etching beam. Visibility effects are not considered. The etching
window is determined from user-defined masks and from the exposed areas of the etched
material (see Figure 43). For example:

etch silicon thickness= 0.05 type= anisotropic 

Figure 43 Anisotropic etching

In the next example of directional etching, the argument direction specifies the direction of
the etching beam by setting values for {x y z}. This direction vector is normalized to 1.0
before the etch command is executed.

etch material= silicon rate= 0.05 time= 1.0 type= directional direction= {1 1} 

Figure 44 Directional etching (angled wall)

etch material= silicon rate= 0.05 time= 1.0 type= directional direction= {1 -1} 

Figure 45 Directional etching with undercut
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Polygonal Etching and CMP

Polygonal etching provides a way of modifying a region without having to define etching rates
or the direction of the etch. The parts of the region inside the polygon that is etched are replaced
by gas.

CMP is handled as a special case of polygonal etching. Mesh elements are intersected at the
specified coordinate. All elements of the specified material above the coordinate are reassigned
to gas.

This example etches a polygon given as x1 y1 x2 y2 ... xn yn:

etch type= polygon material= silicon \
polygon= {-0.1 0.1 0.05 0.1 0.05 0.6 -0.1 0.6} 

Figure 46 Polygonal etching

For example:

etch type= cmp coord= 0.05 material= all 

Figure 47 CMP
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Fourier Etching

In Fourier etching, the etching rate is a function of the angle between the incident etching beam
and the normal vector of the surface being etched. This allows for reasonably directional
etching with control of the slope of sidewalls. The coefficients  are defined using coeffs
(for a single-material etch) or mat.coeffs (for a multimaterial etch), and the etching rate is
computed according to:

(111)

where:

■  is the angle between the incident beam  and the normal to the surface being etched.

■  is the factor given in the beam command for beam .

Any number of coefficients  can be given for each material. If the parameters  are chosen
such that negative etching rates would result in some slope angles, no etching will occur on the
parts of the surface that have that slope.

It is common to set the parameters  such that the etching rate for angles less than a certain
angle are positive and drop below zero (resulting in no etching) above that angle. This produces
a trench with a rounded bottom and a sidewall given by the angle where the etching rate drops
to zero.

Fourier etching uses the full level-set method formulated after Lax–Friedrichs. This
formulation shows good stability, leading to good accuracy of etch wall-angle control. The
Lax–Friedrichs formulation results in slightly less corner sharpness.

The beam command defines the direction and the relative strength of etching beams to be used
with Fourier etching. The syntax is:

beam name=<c> (direction= {<x> <y> <z>} | incidence=<n>) factor=<n>

You specify the angle of incidence of each beam using either direction (the specified
direction vector is normalized automatically to unit length) or incidence (incidence=0
defines a vertical beam).

The angle  in Eq. 111 is measured from the surface perpendicular to the angle of incidence
for beam . The relative strength factor is the weight (strength) of each beam. Each etching
beam must be given a unique name.

Etching beams are assumed to be collimated, that is, a slight angular spread of beam direction
is not considered.
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The sources argument of the etch command lists the names of etching beams to be used in
an etching operation.

For example (see Figure 48):

beam name= src1 direction= {1 0 0} factor= 1
etch material= silicon type= fourier sources= src1 coeffs= {0 0 1.0} time= 0.05 

Figure 48 Fourier etching

Through the selection of Fourier coefficients, the angle of the etching wall can be controlled to
a large degree. In particular, the first coefficient in the list, , corresponds to the equivalent
of the rate of isotropic etching. The second coefficient in the list, , corresponds
approximately to the equivalent of the rate of anisotropic or directional etching. The
approximate formula for determining the etch wall angle is given as:

(112)

where  is the angle of the etch wall measured from the horizontal plane. For example,
 and  result in an etch wall at an angle of approximately  from the

horizontal as shown in Figure 49 on page 220:

beam name= src1 direction= {0.1 0 0} factor= 1
etch material= {silicon} type= fourier sources= {src1} coeffs= {-0.5 0.7071} \

time= 1.0 

Figure 49 Fourier etching with etch wall angle of 45o 
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Another Fourier etching example shows the functionality in three dimensions and how multiple
rates for multiple materials are specified using mat.coeffs. For 3D Fourier etching, also use
the command sde off.

Etching coefficients chosen for this example are illustrative and might not be physically
meaningful:

beam name= src1 direction= {1 0 0} factor= 1
etch sources= {src1} type= fourier remesh= false time= 1 \

mat.coeffs= { Silicon= {-1 2} Nitride= {-0.7 1.2} Oxide= {0.01} \
PolySilicon= {-0.05 0.2} } 

Figure 50 Three-dimensional multimaterial Fourier etching: (left) before etching and (right) 
after etching

The shadowing and shadowing.nonisotropic Options

NOTE Shadowing is not implemented in 3D Fourier etching.

The shadowing.nonisotropic option is used instead of shadowing when you want to
allow only the 0th-order Fourier coefficient to etch areas where the beam is shadowed.

The shadowing option prevents all Fourier etching in areas shadowed from the beam; while
the shadowing.nonisotropic option prevents only the Fourier coefficients of order one
and higher from etching in areas where the beam is shadowed.

Be aware that even when shadowing is specified, the 0th-order Fourier coefficient  should
continue to etch areas where the beam is shadowed. This permits pseudo-isotropic etching that
is independent of shadowing, while at the same time, full Fourier etching occurs only in areas
where the beam is not shadowed.

A0
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Crystallographic Etching

The argument crystal.rate defines etching rates for different crystallographic orientations
to be used in crystallographic etching (see Defining the Crystal Orientation on page 35).

Crystallographic etching rates are specified in crystal.rate as a list of one or more Miller
indices , , and  with corresponding etching rates. The currently supported indices <ijk>
are <100>, <110>, <111>, <311>, <511>, <911>, and <221>:

crystal.rate= {"<100>" =<etch_rate> "<110>" =<etch_rate> "<111>" =<etch_rate>}

NOTE You must add a space between the double quotation mark (") after the
orientation and the equal sign.

Interpolation of the rate at a given point along the etch front is calculated as a linear
combination of the <ijk> rates weighted by the component of the etch front normal vector
along the corresponding crystallographic direction.

A crystallographic etching example is (see Figure 51):

etch material= silicon type= crystal \
crystal.rate= {"<100>" =1.0 "<110>" =0.5 "<111>" =0.001} time= 0.25 

Figure 51 Crystallographic etching

Trapezoidal Etching

Trapezoidal etching provides a simple but flexible approximation to a number of real etching
processes. The location of the etch is determined by masking layers (that is, layers of
nonetchable material that, if nonexistent, can be easily created with the photo command). In
three dimensions, the etch location can be specified through the definition of a mask.

i j k
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Trapezoidal etching uses the following arguments to specify the shape of the region to be
removed:

■ thickness specifies the vertical depth (or a combination of rate and time).

■ angle specifies the angle (in degrees) of the resulting sidewalls.

■ undercut specifies the horizontal penetration of the etch under the edges of the masking
layer. It only works in two dimensions.

■ bottom.angle and bottom.thickness specify the angle and thickness of the sidewalls
for a second etching after thickness and angle are already etched (3D operations only).

These arguments can be used to approximate a number of real etching processes including:

■ Combinations of vertical and isotropic etches.

■ V-groove etches.

■ Etches that produce retrograde sidewall profiles.

Two-Dimensional Trapezoidal Etching

Trapezoidal etching is performed as follows:

1. Perform vertical etching to depth thickness. This etching does not apply to portions of
the surface that are masked by nonetchable materials or shadowed by etchable or
nonetchable materials. In addition, it is not used on segments of the surface that form an
angle greater than angle to the horizontal.

2. Perform horizontal etching. Surfaces that were exposed at the start of Step 1 are etched
horizontally by the distance undercut. Surfaces that were exposed during Step 1 are
etched by a distance proportional to the length of time between when they first became
exposed and the end of Step 1. Therefore, a sidewall exposed three-fourths of the way into
Step 1 is etched horizontally by one-fourth of undercut. (An exception is made when an
angle greater than  is specified.)

3. Perform a vertical upwards etch (that is, in the direction) where overhangs of etchable
material are present at the end of Step 2. On surfaces that were exposed at the start of
Step 2, this etching is to a distance undercut. On surfaces that were first exposed during
Step 2, the distance of this etching is reduced in proportion to the time from the start of
Step 2. This step approximates the undercutting of the mask due to the isotropic component
of the etching.

NOTE Trapezoidal etching using a mask definition is not supported in 2D
operations.

When the thickness, angle, and undercut arguments satisfy the following relationship,
the etching approximates a vertical etching with an isotropic component:

(113)

90°

thickness undercut angle( )tan⋅=
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This is the case whenever two or fewer of these arguments are specified with the
Trapezoidal.Etch.Undercut parameter switched on (default is 0):

pdbSet Grid Trapezoidal.Etch.Undercut 1

For example:

etch material= silicon type= trapezoidal thickness= 0.25 undercut= 0.1 

Figure 52 Basic trapezoidal etching example where the surface is nonplanar

The left half of Figure 52 shows the result when etching a planar substrate. The etch region is
a trapezoid of depth thickness, extending a distance undercut beneath the mask edge. The
right half of Figure 52 shows the result when etching a nonplanar surface.

Step 1 of the sequence etches the exposed surface vertically to a depth of thickness
micrometers. Step 2 etches the resulting sidewall in the horizontal direction, producing an
undercutting of the mask and the sloped sidewall. In this case, Step 3 also has an effect, etching
upwards from the undercut region. Therefore, the hook in the final silicon profile is the result
of approximating the isotropic component of the etch. In each case, the intersection between
the bottom of the etched region and the sidewall occurs directly under the edge of the mask.

Figure 53 and Figure 54 on page 225 show what happens when Eq. 113 is not satisfied.

etch material= silicon type= trapezoidal thickness= 0.3 undercut= 0.1 angle= 45 

Figure 53 Trapezoidal etching example generating a narrow trench bottom
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etch material= silicon type= trapezoidal thickness= 0.3 undercut= 0.1 \
angle= 135 

Figure 54 Trapezoidal etching example generating a wide trench bottom

In Figure 53 on page 224, thickness/undercut are less than tan(angle). In this case, the
sloped sidewall of the etch extends out under the opening in the mask. The intersection between
the bottom of the etch region and the sidewall is no longer directly beneath the edge of the
mask. If the mask opening is narrow enough, the bottom of the etch region disappears entirely,
resulting in a V-groove etch. To produce this etch shape, Step 1 of the etch process is modified
to reduce the depth of the vertical etch near the edges of the mask opening. Note that, in this
situation, even the smallest amount of nonetchable material can produce a triangular mound of
unetched material in the final structure.

Figure 54 shows the case with an angle greater than . In this case, the bottom of the etched
region is wider than the opening in the masking layer, producing overhanging sidewalls. This
etch is accomplished by modifying Step 2 of the procedure to etch further horizontally at the
bottom of the sidewalls formed by Step 1 than at the top. The apparent etch depth of 
at the right side of the mask opening is the result of a  vertical etch of the original
sloped surface (Step 1) followed by a  horizontal etch of the sloped ‘bottom wall’ that
results from Step 1.

Three-Dimensional Trapezoidal Etching

There are two possible cases for 3D trapezoidal etching:

■ Case 1: A thickness (or rate and time) and an angle (optional) are specified. If
angle is not specified, it defaults to  (vertical). In contrast with case 2, angle allows
any value between  and . Figure 55 on page 226 shows examples of both cases.

■ Case 2: A thickness (or rate and time), an angle (optional), and
bottom.thickness and bottom.angle (optional) are specified. If angle is not
specified, it defaults to  (vertical). Here, a special condition applies: angle must be
greater than or equal to , while bottom.angle must be smaller than or equal to .
That is, the first etching penetrates behind the mask, while the second one does the
opposite. Figure 56 on page 226 shows an example of this type.
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NOTE For 3D trapezoidal etching to succeed, the initial etching surface must
be flat. 

Figure 55 Three-dimensional trapezoidal etching: (left) angle=45 thickness=0.3 and (right) 
angle=110 thickness=0.44 

Figure 56 Three-dimensional trapezoidal etching produced with angle=110, thickness=0.3, 
bottom.angle=45, and bottom.thickness=0.400

Trapezoidal Etching Using force.full.levelset Option

When the force.full.levelset option is specified for trapezoidal etching:

■ The etching depth is controlled by rate and time, not by thickness.

■ The argument ambient.rate is used to approximate the underetch effect otherwise
available in the non-force.full.levelset case controlled in two dimensions by
undercut. If undercut is specified, ambient.rate will be approximated by
undercut/time, and a warning message will be issued. The ambient.rate argument
also approximates underetching, controlled in three dimensions in the non-
force.full.levelset case by the combination of angle, bottom.angle, and
bottom.thickness.
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■ The options supported by the level-set solver such as shadowing become available.

■ An additional argument roundness (default 1.0) can be used to increase the curvature of
etching sidewalls.

Piecewise Linear Etching

In piecewise linear etching, the etching rate is a user-defined piecewise linear function of the
angle between the incident etching beam and the normal vector of the surface being etched.
You define the points of angle versus rate on a material-by-material basis, as per the following
syntax:

angles.rates= {
matA = {angleA0 rateA0 angleA1 rateA1 ... angleAn rateAn}
matB = {angleB0 rateB0 angleB1 rateB1 ... angleBn rateBn}
...

}

where .

The rates and angles are interpreted as follows:

■ Angles are given in degrees in the range [ , ].

■ The rate for angle < angle0 is rate0.

■ The rate for angle > anglen is 0.

■ The rate is calculated as the linear interpolation of the nearest two angle–rate pairs within
which the angle lies.

While Fourier etching and trapezoidal etching also define the etching rate according to the
angle between the beam direction and the surface normal, a piecewise linear function is a more
general parameterization of etching rate versus angle that users control directly.

For example (see Figure 57 on page 228):

beam name= src1 direction= {1 0 0} factor= 1
etch type= angles.rates sources= src1 time= 0.2 \

angles.rates= { Silicon= { 25 1.0 45 0.3 } } 

anglen 1– anglen≤

0° 180°
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Figure 57 Piecewise linear etching

You must define the piecewise linear function as smoothly as possible, avoiding discontinuous
changes, to ensure well-defined level-set results.

Etching Beams

The beam command defines the direction and the relative strength of etching beams to be used
with piecewise linear etching (see Fourier Etching on page 219).

The argument sources of the etch command lists the names of etching beams to be used in
an etching operation.

Etching Tips

Some tips for etching are:

■ If the total etch thickness is exactly the same thickness as the layer to be etched, numeric
round-off errors can cause thin pieces of the material to be retained. You should etch a little
more (for example, 0.1%) than the thickness of the layer.

■ Etching small thicknesses using a small isotropic.overetch or etching large
structures can cause the simulation to allocate a large amount of memory and to increase
the simulation time to solve the level-set equation. The argument resolution of the
mgoals command can be increased for the simplified boundary movement mode, and the
arguments dx and dy can be increased in the general boundary movement mode to reduce
memory consumption. However, this may affect accuracy.
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Deposition

Three main specifications are required for all deposition steps:

■ Deposition type

■ Material to be deposited

■ Amount of material to be deposited

The supported deposition types are specified using the type argument of the deposit
command. 

Some deposition types have an option that can be used instead of specifying type:

■ anisotropic (instead of type=anisotropic)

■ crystal (instead of type=crystal)

■ fill (instead of type=fill)

■ fourier (instead of type=fourier)

■ isotropic (instead of type=isotropic)

Table 20 Supported deposition types

Deposition type Description

type=anisotropic Performs anisotropic deposition.

type=crystal Performs crystallographic deposition. The crystal.rate argument must be 
specified. See Crystallographic Deposition on page 233.

type=directional Performs anisotropic deposition using a specified direction.

type=fill Performs a fill of the structure with the specified material up to the coordinate 
specified with the argument coord. See Polygonal Deposition and Fill on page 232.

type=fourier Performs Fourier deposition. See Fourier Deposition on page 233.

type=isotropic Performs isotropic deposition. See Isotropic Deposition on page 232.

type=polygon Performs a polygonal deposition that requires the polygon argument. The specified 
polygon is used to intersect all mesh elements of material gas. Then, elements inside the 
polygon are assigned to the specified material. (Not available in 3D operations.)
See Polygonal Deposition and Fill on page 232.

type=trapezoidal Performs a trapezoidal deposition that requires the angle and thickness 
arguments (3D operations only). See Trapezoidal Deposition on page 234
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Each deposition type requires the setting of parameters particular to that type. Many options
are available and some options are available only with certain deposition types. Table 21
summarizes the syntax options for each deposition type. 

To specify the thickness of the deposited layer for anisotropic and isotropic deposition, use
either thickness or rate and time. Besides the deposition type and thickness, you must
specify the material to be deposited (only one material is allowed per deposit command). To
do this, either specify the material name (<material>) or material=<c> in the command.

The number of steps for a deposition is specified using steps=<n>. The specified time or
thickness is subdivided accordingly. Subdividing a deposition into several steps might be
useful if stresses are initialized in the deposited layer. A stressed film of a given thickness can
be deposited at the same time or in several steps. Sentaurus Interconnect simulates stress
rebalancing after each deposition step.

Multistep deposition is known to generate more realistic stress profiles compared to depositing
the entire layer and then performing one stress rebalancing calculation.

Table 21 Options for deposit command syntax

Area Parameter name

an
is
ot
ro
pi
c

cr
ys
ta
l

di
re
ct
io
na
l

fi
ll

fo
ur
ie
r

is
ot
ro
pi
c

po
ly
go
n

tr
ap
ez
oi
da
l

Rate rate * * *

coeffs *

mat.coeffs *

crystal.rate *

Stop 
criteria

time * * * * *

thickness * * * *

coord *

Shape polygon *

angle *

direction *

Beam sources *

shadowing * * *

shadowing.nonisotropic *

Mesh remesh * * * * * *

Adaptive * * * * * *

Mode 1D *

force.full.levelset *a 

a. Full level set is the default scheme for crystallographic and Fourier deposition.

* *a *
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By default, the material is deposited on the surface exposed to the upper gas region. If a
structure has buried gas bubbles, they remain untouched. To deposit inside these gas bubbles:

■ Specify the fill.buried option in the deposit command to fill all gas bubbles with the
deposited material.

■ Specify the fill.buried.match.surrounding option in the deposit command to
fill all gas bubbles with the material surrounding them, while leaving bubbles at a material
interface filled with gas. This option will override the behavior of fill.buried if it also
is specified.

■ Specify fill.buried.interface=<material> in the deposit command to fill all
gas bubbles at a material interface with the specified material, but only if the material is
already present in the simulation (for example, silicon).

The name of a mask also can be specified in the deposit command. In this case, the material
is deposited outside the specified mask. Deposition inside a mask requires the mask to be
inverted by specifying negative in the mask command defining the mask (see Photoresist
Masks on page 254).

For deposition, the analytic method, the fast level-set method, and the full level-set method are
available.

In two dimensions, the analytic method is preferred for performing deposition, and the level-
set method is used when the analytic method is not possible because a front collision is
detected.

In three dimensions, the analytic method is used for anisotropic deposition, the fast level-set
method is used for isotropic deposition, and the full level-set method is used for Fourier
deposition.

In the newly deposited region, constant field values can be initialized. For isotropic deposition,
you can define piecewise linear solution fields as a function of the distance from the original
surface.
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Isotropic Deposition

For simple, conforming, isotropic deposition, the boundary is offset an equal distance in all
directions. For example (see Figure 58):

deposit nitride thickness= 0.05 type= isotropic 

Figure 58 Isotropic deposition

Polygonal Deposition and Fill

Polygonal deposition allows you to deposit polygonal shapes. The corners must be specified as
pairs of xy coordinates. Existing non-gas regions will not be overwritten.

NOTE Polygonal deposition is not available in 3D simulations.

For example (see Figure 59):

deposit type= polygon material= nitride polygon= {0.1 0.1 0.1 0.6 -0.31 \
0.6 -0.31 0.1} 

Figure 59 Polygonal deposition

Fill is a special case of polygonal deposition. Only the topmost coordinate must be specified.
The simulation domain will be filled up to that coordinate with the specified material.
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For example (see Figure 60):

deposit material= nitride type= fill coord= -0.31 

Figure 60 Fill deposition

Crystallographic Deposition

Crystallographic deposition uses the full level-set method to grow single materials whose rate
of growth is determined by the crystallographic directions. The crystal is assumed to be cubic
regardless of the material being deposited. Deposition rates can be set for one or more of the
directions <100>, <110>, <111>, <311>, <511>, <911>, and <221>. These rates will be
applied to their respective equivalent directions based on cubic symmetry, for example, the
<100> rate will apply to the <010>, <001>, <100>, <010>, and <001> directions.

For example (see Figure 61):

deposit type= crystal material= nitride time= 0.05 \
crystal.rate = {"<100>" =1.0 "<110>" =0.1 "<111>" =0.05} 

Figure 61 Crystallographic deposition: vertical direction is <100>, lateral direction is <011>

 Fourier Deposition

Fourier deposition uses the full level-set method to grow single materials whose rate of growth
is defined by a function of the angle between the surface normal of the material boundary and
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the deposition beams. The definition and calculation of the deposit shape are exactly analogous
to Fourier etching (see Fourier Etching on page 219).

For Fourier deposition, first, define the deposition beam in the same way as in Fourier etching:

beam name=<c> (direction= {<x> <y> <z>} | incidence=<n>) factor=<n>

Use the sources and coeffs arguments in the same way as in Fourier etching, for example:

beam name= src1 direction= {1 0 0} factor= 1
deposit nitride time= 0.2 fourier sources= {src1} coeffs= { -0.3 0.7 }

The coeffs argument is given in units of /minute. By default, time is given in minutes. 

Figure 62 Two-dimensional Fourier deposition for demonstration purposes, nitride is 
deposited selectively on silicon using Fourier deposition and, then, an additional 
Fourier deposition step adding polysilicon selectively on nitride is performed

Trapezoidal Deposition

Trapezoidal deposition creates a shape with sidewalls of a defined height and angle. Height is
defined by thickness. Angle is defined by angle, measured in degrees from the horizontal,
where:

■ angle =  is vertical.

■ angle >  spreads outward as height increases.

■ angle <  closes inward with increasing height.

NOTE Trapezoidal deposition is available only in three dimensions.

Separate outward and inward deposition steps can be used to create diamond-like shapes.
Trapezoidal deposition requires a flat starting surface, for which type=fill can be used.
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The following example demonstrates the syntax, whose results are shown in Figure 63:

# First step deposition
deposit material= PolySilicon type= trapezoidal \

selective.materials= Silicon thickness= 0.25 angle= 120

# Provide flat surface for second step
deposit type= fill coord= -0.25 Resist

# Second step deposition
deposit material= PolySilicon type= trapezoidal \

selective.materials= PolySilicon thickness= 0.25 angle= 60 

Figure 63 Trapezoidal deposition: (left) before deposition, (middle) first deposition step with 
angle=120, and (right) second deposition step with angle=60

Selective Deposition

Selective deposition is optionally available and can be used with isotropic, anisotropic, or
Fourier deposition.

Using the selective.materials argument, you can select one or more materials to seed
growth of the overlayer. In 3D SDE mode, only one material can be specified using
selective.materials.
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Fields in Deposited Layers

For isotropic deposition, piecewise linear fields can be specified in the deposited layer. For
crystallographic deposition, piecewise linear fields with time also can be specified. A doping
command must be used for each field; each doping command must assign a unique name.

For example, the following commands create a linear Ge field in the newly deposited oxide
layer. Depth 0 corresponds to the initial surface (the bottom of the new layer):

doping name= strainGe field= Germanium depths= {0 0.1} values= {1e22 1e22}
deposit material= silicon doping= {strainGe} type= isotropic thickness= 0.1

The following commands create a linear boron field in the newly deposited silicon layer:

doping name=gradB field=Boron times= {0.0 0.015} values= {1e20 3e20}
deposit type=crystal doping= {gradB} material=Silicon time= 0.015 \

crystal.rate= {<100>=1.0 <110>=0.5 <111>=0.9} selective.materials=Silicon

Constant field values can be defined for all deposition types as follows:

deposit material= silicon type= isotropic thickness= 0.1 \
fields.values= {Vacancy=1e10 Germanium=2e22}

NOTE To create layers with intrinsic stress, use the field names StressELXX,
StressELXY, StressELYY, StressELZZ, StressELYZ, and
StressELXZ. It is not necessary to specify all components of stress.
Those that are not specified are assumed to be initially at zero. If stresses
are added in this way, they will be rebalanced after the deposition is
completed. The actual value of the stress may differ from the value that
was deposited.

Constant concentrations can be defined for known solution fields (known solution fields must
have been defined before the deposit command, either in the SINTERCONNECT.models file
or the command file of the user) as:

deposit material= {silicon} type= isotropic thickness= 0.1 Vacancy \
concentration= 1e10

Handling Stress in Etching and Deposition

In addition to optionally including an automatic ramp-up or ramp-down before etching and
deposition, by default, Sentaurus Interconnect automatically rebalances the stresses after
etching and deposition. This updates the stress fields at the temperature of the etching or
deposition step based on the new geometry.
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For the best stress results, you must control the temperature history. This includes thermal
ramp-up to process temperature, back to room temperature, and similarly ramp-up and ramp-
down for both etching and deposition. However, as a minimum, the elastic stress rebalancing
can be handled automatically by switching on stress history (see Automated Tracing of Stress
History on page 91).

It is sometimes useful to switch off this stress rebalancing step in 3D simulations because the
rebalance triggers a new mesh to be created. Therefore, if you are more concerned about
simulation time than stress accuracy, you should specify the following to allow multiple
etching and deposition steps to be performed without a mesh being generated in between:

pdbSet Mechanics EtchDepoRelax 0

Suppressing Mesh Generation in 3D Simulations

During typical operations in three dimensions, a new mesh is generated only when necessary
to perform a task that requires a mesh. Operations such as etching and deposition are performed
on the boundary representation and do not necessarily require a new mesh to be generated.
However, mechanics steps such as stress rebalance and initializing fields in newly deposited
layers do require a new mesh be generated.

By default, a mechanics step is performed after etching and deposition steps to balance the
stresses after the structure has changed. The parameter Mechanics EtchDepoRelax controls
this behavior. In addition, the parameter Mechanics StressHistory controls whether a
stress rebalance step is added before etch, deposit, and solve commands. Either of these
rebalance steps can trigger the generation of a new mesh.

If there are multiple etching and deposition steps in sequence, depending on the mechanics
material models being used and the thermal history, it may be a good approximation to delay
stress rebalancing until after the last step. This can be accomplished with the
suppress.remesh option of the etch and deposit commands. Except for the case of
deposition with field initialization, which requires a new mesh, this option will suppress mesh
generation before and after etching and deposition steps.

NOTE When using suppress.remesh, be aware that stresses will not be
rebalanced if the mesh is out-of-date because of a boundary change.
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Shape Library

The shape library provides commands for generating special-shaped polyhedra in Sentaurus
Interconnect. Sentaurus Structure Editor creates these shapes. The shape library is an interface
to use those shapes in Sentaurus Interconnect.

There are two ways to use shapes from the shape library:

■ In MGOALS mode, polyhedra are created using Sentaurus Structure Editor. The generated
polyhedra then can be inserted into a Sentaurus Interconnect structure using the insert
command.

■ In SDE mode, polyhedra are not created directly. Instead, the Sentaurus Structure Editor
structure itself is modified by inserting the shapes (replacing other materials). To activate
the SDE mode, use the command sde on.

The commands available in the shape library are:

■ PolyHedronSTI creates a shallow trench isolation (STI)–shaped polyhedron.

■ PolyHedronSTIaccc creates an STI concave active corner-shaped polyhedron.

■ PolyHedronSTIaccv creates an STI convex active corner-shaped polyhedron.

■ PolyHedronCylinder creates a cylinder-shaped polyhedron.

■ PolyHedronEllipticCylinder creates an elliptic cylinder-shaped polyhedron.

■ PolygonSTI creates a 2D STI-shaped polygon.

■ PolygonWaferMask creates a wafer mask polygon.

■ PolyHedronEpiDiamond creates an epitaxial diamond-shaped polyhedron.

You can define additional commands that create parameterized custom shapes using the
scripting capabilities of Sentaurus Interconnect and Sentaurus Structure Editor.

PolyHedronSTI

The PolyHedronSTI command creates an STI-shaped polyhedron.

The syntax is:

PolyHedronSTI name direction X0 Y0 Depth Zmin Zmax Tsti Asti Hsti Rd Rb Ru
[material]
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where:

■ name is the name of the polyhedron.

■ direction can be left, right, front, or back, which sets the facing direction of the
STI polyhedron.

■ material is optional and specifies the material of the inserted shape in SDE mode. In
MGOALS mode, the material of the inserted shape can be specified in the insert
command.

■ Figure 64 describes the other parameters. 

Figure 64 Parameters for generating STI-shaped polyhedron
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Figure 65 shows some generated STI shapes in different directions. 

Figure 65 STI-shaped polyhedra in different directions 

Figure 66 shows STI shapes with different Tsti and Rb values. 

Figure 66 STI-shaped polyhedra with different Tsti and Rb
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PolyHedronSTIaccc

The PolyHedronSTIaccc creates an STI concave active corner-shaped polyhedron.

The syntax is:

PolyHedronSTIaccc name direction X0 Y0 Z0 Tsti Asti Hsti Rd Rb Ru Rac
[material]

where:

■ name is the name of the polyhedron.

■ direction can be rb (right back), lb (left back), lf (left front), or rf (right front).

■ Rac is the radius of the STI concave corner.

■ Figure 64 on page 239 describes the other parameters.

Figure 67 shows STI concave corner-shaped polyhedra in different directions. 

Figure 67 STI concave corner-shaped polyhedra in different directions: (from left to right) 
left back, right back, left front, and right front

PolyHedronSTIaccv

The PolyHedronSTIaccv command creates an STI convex active corner-shaped polyhedron.

The syntax is:

PolyHedronSTIaccv name direction X0 Y0 Z0 Depth Tsti Asti Hsti Rd Rb Ru Rac
[material]

where:

■ name is the name of the polyhedron.

■ direction can be rb, lb, lf, or rf (as for the PolyHedronSTIaccc command).
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■ Rac is the radius of the convex corner.

■ Figure 64 on page 239 describes the other parameters.

Figure 68 shows a generated STI convex corner-shaped polyhedron. 

Figure 68 STI convex corner-shaped polyhedron

Figure 69 (left) shows a structure generated by combining the above three STI commands.
Figure 69 (right) illustrates the directions of the STI shapes. 

Figure 69 (Left) STI structures and (right) polyhedron directions

PolyHedronCylinder

The PolyHedronCylinder command creates a cylinder-shaped polyhedron.

The syntax is:

PolyHedronCylinder name X0 Y0 Z0 Rc Hc [material] [Rotate.Y | Rotate.Z] [angle]

where:

■ name is the name of the polyhedron.

Back
lb rb

Left Right
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■ If Rotate.Y is specified, the cylinder is rotated at position (X0,Y0,Z0) along the y-axis
for angle degrees. If Rotate.Z is specified, the cylinder is rotated along the z-axis. The
right-hand rule determines the direction of the rotation.

■ angle is the rotation angle in degree.

■ Other parameters give the center coordination, the radius, and the height for the cylinder
(see Figure 70). 

Figure 70  Cylinder-shaped polyhedron

PolyHedronEllipticCylinder

The PolyHedronEllipticCylinder command creates an elliptic cylinder-shaped
polyhedron.

The syntax is:

PolyHedronEllipticCylinder name X0 Y0 Z0 Y1 Z1 Ratio Hc [material]
[Rotate.X | Rotate.Y | Rotate.Z] [angle]

where:

■ name is the name of the polyhedron.

■ X0,Y0,Z0 are the center coordinates of the base ellipse.

■ Y1 and Z1 are the y- and z-coordinates of the major axis of the base ellipse. The base ellipse
is on the yz plane.

■ Ratio is the ratio of the minor axis to the major axis.

■ Hc is the height for the cylinder. The cylinder is extruded in the –x-direction.

■ If Rotate.X is specified, the cylinder is rotated at position (X0,Y0,Z0) along the x-axis
for angle degrees.
If Rotate.Y is specified, the cylinder is rotated at position (X0,Y0,Z0) along the y-axis
for angle degrees.

Hc

X0

(Y0,Z0) Rc
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If Rotate.Z is specified, the cylinder is rotated along the z-axis. The right-hand rule
determines the direction of the rotation.

■ angle is the rotation angle in degrees (see Figure 71). 

Figure 71 Elliptic cylinder-shaped polyhedron

PolygonSTI

The PolygonSTI command creates a 2D STI-shaped polygon. The syntax is the same as for
PolyHedronSTI, except it does not have the Zmin and Zmax parameters (see PolyHedronSTI
on page 238).

The syntax is:

PolygonSTI name direction X0 Y0 Depth Tsti Asti Hsti Rd Rb Ru [material]

where:

■ name is the name of the polygon.

■ direction can be left or right only. This sets the facing direction of the STI polygon.

■ material is optional and specifies the material of the inserted shape in SDE mode. In
MGOALS mode, the material of the inserted shape can be specified using the insert
command.

■ Figure 64 on page 239 describes the other parameters.
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PolygonWaferMask

The PolygonWaferMask command creates a wafer mask polygon.

The syntax is:

PolygonWaferMask name Y0 Z0 Rw Lf

where:

■ name is the name of the polygon.

■ Other parameters give the location and the size of the mask (see Figure 72).

NOTE This command works only in MGOALS mode. 

Figure 72 Wafer mask-shaped polygon

PolyHedronEpiDiamond

The PolyHedronEpiDiamond command creates an epitaxial diamond-shaped polyhedron.

The syntax is:

PolyHedronEpiDiamond name X0 Y0 Z0 Wepi Lepi Hup Hdown Drecess [material]

where:

■ name is the name of the polyhedron.

■ Figure 73 on page 246 describes the other parameters.
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Figure 73 Parameters for generating epitaxial diamond-shaped polyhedron

Tailored Structure Generation

This section describes how to generate a pillar structure and a multiple-pillar structure with a
hexahedral mesh.

Pillar Structure With Hexahedral Mesh

Various pillar structures with a hexahedral mesh can be generated quickly to be used for
mechanical analysis. Figure 74 shows the geometry of a general pillar structure. One or more
concentric or eccentric pillars are embedded in a surrounding material, the pillars can be
straight or tapered, and the structure can have up to two pillar layers with three interfaces. 

Figure 74 Geometry of a general pillar structure
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To generate a pillar structure with a hexahedral mesh, you can use the init command with the
unit.cell and unit.cell.param arguments. The syntax for these arguments is described
in init on page 458.

The unit.cell argument indicates the structure is a pillar.

The unit.cell.param argument consists of a list of arguments that specify the geometry of
the structure as shown in Figure 74 on page 246.

NOTE After a pillar structure with a hexahedral mesh is generated with the
init command, no other process steps should be performed.
Otherwise, the hexahedral mesh will be destroyed.

Examples of Generating Different Pillar Structures

The following example generates an eccentric tapered pillar structure. The two interfaces are
different and form a tapered pillar structure. There are three eccentric circles on each interface,
which result in three pillar regions. The materials for the pillar regions from inside to outside
are PolySilicon, Aluminum, and Copper, respectively. The substrate material is Silicon
and the surrounding material is Oxide. The grid size in both the yz plane and the x-direction
is  (see Figure 75 on page 248 (a)):

init unit.cell=pillar unit.cell.param= { \
setup= { {Silicon Oxide} {0. 1.5 -0.4 0.4 -0.4 0.4} 0.02} \
thicknesses= {0.5 1.} \
pillar.materials= {PolySilicon Aluminum Copper} \
interface0= { {0. 0. 0.15} {0.02 0.02 0.2 } {-0.03 -0.03 0.35} } \
interface1= { {0. 0. 0.1 } {0.02 0.02 0.15} {-0.03 -0.03 0.25} } }

The following example generates an eccentric pillar structure with one straight part and one
tapered part. It has two pillar layers with three interfaces. The interface1 argument is the
same as interface0 to generate the straight part (see Figure 75 (b)):

init unit.cell=pillar unit.cell.param= { \
setup= { {Silicon Oxide} {0. 1.5 -0.4 0.4 -0.4 0.4} 0.02} \
thicknesses= {0.5 0.5 0.5} \
pillar.materials= {PolySilicon Aluminum Copper} \
interface0= { {0. 0. 0.15} {0.02 0.02 0.2 } {-0.03 -0.03 0.35} } \
interface1= { {0. 0. 0.15} {0.02 0.02 0.2 } {-0.03 -0.03 0.35} } \ 
interface2= { {0. 0. 0.1 } {0.02 0.02 0.15} {-0.03 -0.03 0.25} } }

0.02 μm
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The following example generates an eccentric pillar structure with two tapered parts, and three
interfaces are required to define such a structure (see Figure 75 (c)):

init unit.cell=pillar unit.cell.param= { \
setup= { {Silicon Oxide} {0 1.5 -0.4 0.4 -0.4 0.4} 0.02} \
thicknesses= {0.5 0.5 0.5} \
pillar.materials= {PolySilicon Aluminum Copper} \ 
interface0= { {0. 0. 0.1 } {0.02 0.02 0.15} {-0.03 -0.03 0.25} } \
interface1= { {0. 0. 0.15} {0.02 0.02 0.2 } {-0.03 -0.03 0.35} } \ 
interface2= { {0. 0. 0.1 } {0.02 0.02 0.15} {-0.03 -0.03 0.25} } }

The following example generates an eccentric straight pillar structure with varying spacing
along the x-direction. For the straight pillar, since interface1 is the same as interface0,
interface1 is not required. To specify the spacing along the x-direction, all the interface
locations must be defined, including the top of the structure at , the interface between
the substrate and the pillar region at , and the bottom of the structure at  (see
Figure 75 (d)):

init unit.cell=pillar unit.cell.param= { \
setup= { {Silicon Oxide} {0. 1.5 -0.4 0.4 -0.4 0.4} 0.02 \
{0. 0.02 1.0 0.02 1.5 0.06} } \
thicknesses= {0.5 1.} \
pillar.materials= {PolySilicon Aluminum Copper} \
interface0= { {0. 0. 0.1} {0.02 0.02 0.15} {-0.03 -0.03 0.25} } } 

Figure 75 Examples of different pillar structures with hexahedral mesh
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Multiple-Pillar Structure With Hexahedral Mesh

Structures that are composed of multiple-pillar cells can also be generated. All cells can be
identical or can have process variability that allows you to vary the center locations and radii
of pillars according to certain variation types. 

Figure 76 Top view of a multiple-pillar structure: all cells have the same size and the 
materials in each cell are identical

All pillar cells can be identical or can have process variations. When a parameter has variation,
a range must be provided, and the parameter values for different pillar cells will randomly vary
within the range around the provided parameter value. For example, if the radius of the inner
circle is R0 for the single cell, then in the multiple cell structure, the radius of each inner circle
for each pillar cell will randomly vary in the range of [R0–range, R0+range]. The available
variation types are Uniform, Linear, and Gaussian, as specified by variation.type of
the multiple.cell.param argument of the init command. For example, Figure 77 shows
different variation types of the inner circle radius r0 around the provided radius value R0. 

Figure 77 Different variation types
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For Uniform variation, the values of radii in different cells are uniformly distributed between
the lower bound and the upper bound.

For Linear variation, the values of radii in different cells vary piecewise linearly from the
lower bound to the upper bound. The values of radii are calculated according to the following
probability density function:

(114)

For Gaussian variation, the values of radii are calculated according to a Gaussian distribution,
which is described by the following probability density function:

(115)

For Gaussian variation, only values between the lower bound and the upper bound are
selected.

To generate a multiple-pillar structure, you can use the init command with the unit.cell,
unit.cell.param, and multiple.cell.param arguments. See init on page 458 for the
syntax of these arguments. The unit.cell.param argument specifies the geometry of the
single pillar cell, and multiple.cell.param specifies the number of pillar cells in the
structure and process variation parameters for all cells.

The following example generates a multiple-pillar structure composed of  eccentric pillar
cells. The radii of all pillars vary uniformly in a range of . The interfaces interface1
and interface2 were not specified in the multiple.cell.param argument, which means
they are the same as interface0:

init unit.cell=pillar \
multiple.cell.param= { \

number.pillars = { 3 2 } \
variation.type = Uniform \
interface0 = { {0.0 0.0 0.01} {0.0 0.0 0.01} {0.0 0.0 0.01} } } \

unit.cell.param = { \
setup= { {Silicon Oxide} {0. 7. -0.2 0.2 -0.2 0.2} 0.005} \
thicknesses= {2. 2.5 2.5} \
pillar.materials= {PolySilicon Oxide Nitride} \
interface0= { {0.02 0. 0.05} {-0.01 0. 0.08} {-0.02 0. 0.11} } \
interface1= { {0.04 0. 0.06} {-0.02 0. 0.12} {-0.04 0. 0.16} } \
interface2= { {0.02 0. 0.05} {-0.01 0. 0.08} {-0.02 0. 0.11} } }
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Masks and Lithographic Patterning

The photo command can be used to mimic lithographic patterning. The photo command
takes a mask and effectively performs a resist spin-on step followed by an exposure bake and
etch. The resist layer produced has vertical walls and is a negative of the mask by default, but
the positive sense can optionally be created as well.

In addition to the photo command, the etch and deposit commands allow you to use a mask
directly. The mask argument in the etch, deposit, and photo commands specifies the name
of one mask that has been previously defined using a mask command or by reading in masks
from a layout using the IC WorkBench Edit/View Plus–TCAD Sentaurus interface (see
Chapter 13 on page 285).

The mask will have an effect similar to a masking layer; it limits the etching or deposition
process to a certain window. By default, etching is not performed for points inside the mask,
unless the negative argument is used in the mask definition. Similarly, deposition of a new
layer in the deposit command and deposition of the photoresist layer in the photo command
are performed outside the mask unless the negative argument is specified in the mask
command, in which case, deposition occurs inside the mask only.

NOTE Always specify the masks and the simulation domain such that masks
do not end exactly on the boundary of the simulation domain, but end
inside or extend safely beyond the boundary of the simulation domain.

The mask command creates a mask. You can define the geometry of the mask directly in the
command file or can read masks from a layout file. Masks defined in the command file must
be given a name; otherwise, the names are read from the layout file.

If list is specified in the mask command, information about the existing masks is printed. If
name is specified as well, information about the specified mask is printed.

If clear is specified in the mask command, all previous mask definitions are removed. If name
is specified as well, only the specified mask is removed.

A mask can be defined directly in the command file using different types of geometry object:

■ Segments

■ Rectangles

■ Polygons

Each mask may be composed of an arbitrary number of such objects.
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For example, segments are defined as:

mask name= pmask segments= { -0.1 0.6 0.7 1.1 }

Pairs of subsequent values define the y-coordinates of the beginning and end of one mask
segment. Therefore, an even number of coordinates must be specified in the segments
argument. The pairs may be defined in arbitrary order, and the segments defined by pairs of
coordinates may touch or overlap each other. In three dimensions, masks defined by segments
are extended over the entire range of z-coordinates.

For example, a rectangular mask is defined as:

mask name= nimask left= 0.2 right= 1 front= 0.2 back= 1 negative

where:

■ left and right define the minimum and maximum extensions of the mask along the
y-axis, respectively.

■ front and back define the minimum and maximum extensions of the mask along the
z-axis, respectively.

NOTE Only one rectangle can be specified per mask command. The front
and back arguments may be omitted; in this case, the mask is equivalent
to a mask with one segment. Additional mask commands with the same
name can be used to add rectangles. The rectangles defined for a mask
may arbitrarily intersect or touch each other.

Masks also can be defined by a list of names of polygons. These named polygons must have
been defined before the mask command using one polygon command for each named
polygon:

polygon name= LShape2 segments= {0.0 -1.5 0.0 -0.5 0.5 -0.5 0.5 1.5 1.5 \
1.5 1.5 -1.5}

mask name= Mask2 polygons= {LShape2} negative

NOTE The segments in the polygon command are defined as a sequence of y-
and z-coordinates. The polygon is closed implicitly by connecting the
last point to the first. Each polygon for a mask must not touch or
intersect itself. The polygon may be specified with arbitrary orientation
(clockwise or counterclockwise in the yz plane).

Masks also can be defined by a combination of segments, rectangles, and polygons. Different
objects may touch or overlap each other.

In one dimension, the entire simulation domain is masked if the coordinate origin is masked.
Any point along the y-axis in a 2D simulation and any point of the yz rectangle of the
simulation domain in a 3D simulation are inside the mask if they are contained in any one of
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the geometry objects defined for the mask. Specifying negative inverts the mask. In other
words, any point outside all the geometry objects defined for the mask is masked.

Masks can be empty. With an empty mask, the entire simulation domain is unmasked.
Correspondingly, with a negative empty mask, the entire simulation domain will be masked.

These commands can be used to invert a mask at any time after it has been defined:

mask name=<c> negative
mask name=<c> !negative

NOTE In the etch command, the masked area is not etched. While in the
photo and deposit commands, the photoresist or the specified
material is deposited in the unmasked area.

Masks also can be combined using a set of Boolean operations, which are specified using the
bool argument (see Boolean Masks on page 254).

Layouts that have been defined in the GDSII format can be read into Sentaurus Interconnect
using the IC WorkBench Edit/View Plus–TCAD Sentaurus interface (see Chapter 13 on
page 285).

When using a layout, the relation between the layout coordinate system and the Sentaurus
Interconnect coordinate system may need to be defined. By default, the layout-x axis
corresponds to the Sentaurus Interconnect z-axis. The layout-y axis corresponds to the
Sentaurus Interconnect y-axis. This definition matches the default definition of the argument
slice.angle of the init command and the coordinate x- and y-axes when displaying the
Sentaurus Interconnect simulation results.

The coordinate transformation between the Sentaurus Interconnect coordinate system and the
layout coordinate system can be defined in two ways:

■ In the mask command that specifies the layout file, the name of one mask may be specified.
If a mask with the specified name is contained in the layout file, it is used to position and
orientate the simulation domain in the layout.

■ Otherwise, a mask with the specified name must have been defined before using a mask
command. The specified mask is defined in layout coordinates. It may be defined as a
rectangle or a polygon, containing at least two points. 

In the case of a rectangle defined in a mask command, the point with the minimum layout-x
and layout-y coordinate is used as the origin of the Sentaurus Interconnect coordinate system.
The direction from (min.layout-x, min.layout-y) to (min.layout-x, max.layout-y)
is used as the Sentaurus Interconnect y-axis.

If a polygon of at least two points is used (for example, a mask defined as a polygon), the first
point defined is used to place the origin of the Sentaurus Interconnect coordinate system. The
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direction from the first to the second point of the mask is used as the orientation of the
Sentaurus Interconnect y-axis. 

The local coordinates of the specified mask with respect to the selected Sentaurus Interconnect
y-axis and origin are used as default extensions of the simulation domain. If a polygon mask
with only two points is used, the default extension in the z-direction is 0. The default extension
in the y-direction is defined by the distance between the two points. The default extensions in
the y- and z-directions as defined by the mask are reported. If no extensions have been defined
using the line y command, or the line z command, or both commands, the default
extensions are defined for the simulation when the layout file is read.

If a layout file is loaded, but no mask name is specified, the Cutline2D command that may
have been specified in the init command to define the parameter slice.angle will be used
to orientate the coordinate systems. The first point specified in the Cutline2D command is
used as the origin of the Sentaurus Interconnect coordinate system. The direction from the first
to the second point is chosen as the direction of the Sentaurus Interconnect y-axis. If
Cutline2D is used, no default extensions of the simulation domain are defined.

Photoresist Masks

To define photoresist layers, use the photo command and specify a mask. Sentaurus
Interconnect defines photoresist layers by specifying the minimum thickness of the resist and
selecting the name of a mask that has been defined by the mask command. By default, the
photoresist will be deposited outside the specified mask and will have a flat top similar to resist
spin-on. If negative has been specified when defining the mask, a photoresist is created
inside the mask.

Boolean Masks

Two masks can be combined using the bool argument of the mask command. Table 22 on
page 255 presents the Boolean operations that can be specified in the bool argument as well
as examples. The bool argument only accepts simple expressions.

Complex nested expressions (for example, bool= "(M1 + M2) – bias(–50, M3 + M4)")
are not possible. Therefore, they must be reduced to simple operations using a single operator
(for example, bool= "(M1 + M2)"). Masks requiring a combination of three or more masks
must be created using temporary masks to store the intermediate results. In addition, the bool
argument cannot be used together with polygon and negative. 
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Table 22 Boolean operations

Operation Example Description

+ bool= "mask1+mask2" Unites (merges) mask1 and mask2.

– bool= "mask1-mask2" Subtracts mask2 from mask1.

Note that this is a geometric subtraction. Sentaurus 
Interconnect takes mask1 and removes from it the 
portion of mask2 that overlaps mask1.
In particular, the operation mask1-mask2 is not 
equivalent to mask1+(-mask2).

* bool= "mask1*mask2" Produces the intersection of mask1 and mask2.

^ bool= "mask1^mask2" Produces a mask that contains the nonoverlapping 
portions of mask1 and mask2 (XOR operation).

– bool= "-mask" Produces a mask that is the complement of the input 
mask.

array bool= "array(nx, ny, dx, dy, mask)" Produces an array of  masks separated by a 
distance specified with dx and dy.

bias bool= "bias(delta,mask)" All mask edges on the input mask are offset in the 
normal direction by the specified amount. A positive 
delta value expands the mask, while a negative 
delta shrinks it. Zero or negative area sections of 
the mask are eliminated from the output mask. 
Overlapping sections of the mask are merged.

mirror bool= "mirror(axis,[coordinate,]mask)" Mirrors a mask with respect to a local axis specified 
by x or y. The optional parameter coordinate 
defines the local intercept of the local axis-aligned 
reference line used for the mirror operation.

offset bool= "offset(dy, dz, mask)" Translates the mask by the specified amount. The dz 
parameter is ignored in two dimensions.

over_under bool= "over_under(delta, mask)" Expands and then shrinks the input mask by delta. 
This effectively merges areas in close proximity and 
is equivalent to bias(delta, bias(-
delta, mask)).

rotate bool= "rotate(direction,mask)"
bool= "rotate(direction,x0, y0, mask)"

Produces a mask that is rotated with respect to the 
input mask. The direction parameter can be 
either left-90 or right-90.
The optional x0 and y0 parameters specify the 
center of rotation. They are specified using the local 
mask coordinate system. If x0 and y0 are not 
specified, the rotation is performed with respect to the 
center of the bounding box of the mask.

nx ny×
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Line Edge Roughness Effect

Line edge roughness (LER) is the deviation of feature edges from ideal straight lines due to
statistical fluctuations in photolithographic processes. Sentaurus Interconnect uses the
line_edge_roughness command to apply randomized deviations to straight mask edges,
for example:

line_edge_roughness normal= "Z" masks= {mask1} correlation.length= 25.00<nm> \
standard.deviation= 5.00<nm> max.segment.length= 5.00<nm>

The random noise function  applied to mask edges by the line_edge_roughness
command is generated from the power spectrum of a Gaussian autocorrelation function. The
Gaussian autocorrelation shape is characterized by the standard deviation distance  specified
by the standard.deviation argument and the correlation length , specified by the
correlation.length argument:

(116)

 is obtained by Fourier synthesis, applying the inverse Fourier transform to Eq. 116,
after adding random phases. In this way, random deviations of the mask edges can be obtained
from run to run, which correspond to LER profiles having the same standard deviation  and
correlation length .

These random deviations are added in discrete form to the mask edges in question. First, the
mask edge is subdivided into discrete segments complying with the max.segment.length
argument. Second, the deviation at each segment endpoint is added in the direction normal to
the initial mask edge orientation.

LER is applied to all edges of the mask by default. You can limit which edges in a named mask
receive LER using normal, which specifies either the y-axis ("Y") or the z-axis ("Z"). If

scale bool= "scale(factor,mask)"
bool= "scale(factor,x0, y0, mask)"

Produces a mask that is scaled with respect to the 
input mask using the floating-point value of 
factor.
The optional x0 and y0 parameters specify the 
center of scaling. They are specified using the local 
mask coordinate system. If x0 and y0 are not 
specified, the scaling is performed with respect to the 
center of the bounding box of the mask.

under_over bool= "under_over(delta, mask)" Shrinks and then expands the input mask by delta. 
This eliminates small areas and is equivalent to 
bias(delta, bias(-delta, mask)).

Table 22 Boolean operations

Operation Example Description
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normal is specified, only those edges in the named masks normal to the given axis are chosen
for LER to be applied. LER is applied only once per mask. Mask segments along the device
bounding box do not receive LER.

The option !random.reseed bypasses the reseeding of the random number generator before
the random phases are added. Using this option, the shape of the noise function and, therefore,
the LER result, can be reproduced from one run to the next if needed for comparison.

The option random.seed can reproduce specific LER calculations from one run to the next
by setting the same random seed in both runs. When stored in a TDR file in split simulations,
random.seed is included when saving line_edge_roughness to the TDR file, even if it is
not specified by users, to ensure proper reproduction of the same LER in a subsequent reload
of the TDR file.

NOTE The structure is extruded automatically to three dimensions if it is less
than three dimensions and the line_edge_roughness command is
used.

The following strategy is used to address the problem of nearly collinear LER mask points that
may trigger removal by decimation during meshing. Avoiding the decimation of nearly
collinear LER mask points is desirable because removing such points may perturb the power
spectrum of the Gaussian autocorrelation function represented by the mask shape and may also
result in meshing difficulties.

If max.tries is set to a nonzero value, LER masks are checked for nearly collinear points,
which would result in decimation by the mesher:

line_edge_roughness max.tries= 30

If any points in the LER mask are decimated by the mesher, based on the current
mgoals accuracy=<n> setting, the LER mask is rejected and the LER generation process is
restarted. After each restart, the detection and restart process is repeated until an acceptable
LER mask is generated or until the number of attempts exceeds max.tries.

When max.tries is exceeded, Sentaurus Interconnect stops with an error message that
suggests using a smaller value of mgoals accuracy=<n> or a larger value of
max.segment.length in the line_edge_roughness command.

The default value of max.tries is 0, meaning no decimation check is performed, no retries
are attempted, and the initial mask LER is accepted as it is, even with nearly collinear points.
Sentaurus™ Interconnect User Guide 257
N-2017.09



12: Structure Generation 
Masks and Lithographic Patterning
Figure 78 Example of 3D structure with LER applied using different values of standard 
deviation and correlation length : (A) no LER applied, (B) LER applied with 

= 4 nm and  = 20 nm, (C) LER applied with  = 2 nm and  = 20 nm, and 
(D) LER applied with  = 2 nm and  = 12 nm

Mirror Boundary Conditions

The addition of LER is inherently 3D and nonsymmetric; therefore, it is not easily compatible
as a simulation problem with the assumption of symmetry reduction. Adding LER to a
structure reduced by symmetry may produce rough geometric transitions at joined geometric
boundaries when pieces are reunited.

To accommodate the possibility of joining symmetry-reduced structures, an additional
argument smooth.points defines the smoothing of LER at structure boundaries. The default
value of smooth.points is 0, implying no smoothing.

The use of nonzero smooth.points alters the LER function that creates mirror boundary
conditions at the structure boundaries. The smoothing occurs at the intersection of masks with
the structure boundary sides. The argument smooth.points defines the number of segments
in the discrete LER function, counting from the boundary edge of the mask that should be
adjusted or smoothed. The length of segments in the discrete LER function is determined using
max.segment.length.

Smoothing is calculated by generating the LER function, then creating a virtual mirroring at
the structure boundary edge where a cubic spline interpolation is applied with a mirror

A B

C D

50 nm

δ λ
δ λ δ λ

δ λ
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boundary condition. The spline fit is made with the LER at smooth.points from the
boundary. The smoothed LER function is then applied to the mask.

Applying nonzero values of smooth.points affects the randomness and the power spectrum
characteristics of the LER offset function at the boundaries as a trade-off for permitting the
smooth joining of symmetry-reduced structures.

Geometric Transformations

Transformations supported in Sentaurus Interconnect are reflection, stretch, cut, rotation,
translation, and flip:

■ The transform reflect command is used with left, right, front, or back to
perform the reflection centered on the outer boundary of the simulation domain. At the
reflection side, regions are not merged immediately to allow a clean transform cut
afterwards if required. The grid can be merged with the grid merge command manually,
but if not, the structure will naturally be merged for any geometry-changing operation later
(except transform reflect). It is also possible to discard the original structure when
reflecting by specifying !keep.original.

■ The transform stretch command is used to extend the structure. The algorithm cuts
the mesh in two pieces using a cutplane defined by location and the left, right,
front, or back arguments. The resulting pieces of mesh are translated perpendicular to
the cutplane to create a gap of size length in the direction given by left, right, front,
or back. After this translation, a set of new elements is inserted to connect both sections of
the mesh.

■ The transform cut command crops the structure. The algorithm cuts the structure in
two pieces using a cutplane defined by location and the left, right, front, or back
arguments. If location is omitted, the algorithm will cut the structure in the middle. The
left, right, front, or back arguments instruct the algorithm to remove the portion of
the structure along the given direction. For a more general crop operation, the cut
argument can be used with min and max that specify the cropping box.

■ The transform rotate command rotates the structure. The axis and angle arguments
must be specified. Only , , and  angles are allowed for the x-axis, and 
for the y- and z-axis. For 2D simulations, rotations will produce an extruded 3D simulation.

■ The transform translate command shifts the structure by the specified quantity.

Refinement Handling During Transformation

All transformations apply to the existing refinements created with either the refinebox
command or the line command by default.

90° 180° 270° 180°
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To disable this feature, use:

pdbSet Grid Transform.Updates.Refinement 0

Contact Handling During Transformation

The only special contact handling occurs during transform reflect. In this case, contacts
that straddle or touch the reflecting plane are enlarged to the reflected area (only one contact
remains). The remainder of the contacts are duplicated and are renamed by appending a suffix
as follows: 

■ For right or left reflection, the contact on the left after reflection will be named <original
contact name>.1 (where <original contact name> was the name of the contact
before the reflection operation), and the contact on the right after reflection will be named
<original contact name>.2.

■ Similarly, for front or back reflection, the front contact (which has a larger z-coordinate)
will be named <original contact name>.2, and the back contact will be named
<original contact name>.1.

■ For up or down reflection, the upper contact will be named <original contact
name>.1, and the lower contact will be named <original contact name>.2.

You can rename contacts after the transform reflect command, or at any time, using the
command:

contact name=<c> new.name=<c>

For example, after reflection, you can use the command:

contact name= SourceDrainContact.1 new.name= Source

where the original contact name before reflection was SourceDrainContact.

NOTE It is recommended to specify all contacts after all transformation
operations other than transform reflect to avoid problems during
contact creation.

Reflection

The transform reflect command reflects the structure about the left, right, front, or back
boundary (at minimum y, maximum y, maximum z, or minimum z). If any remeshing or other
mesh modification operations are performed after a transform reflect command, the
symmetry will be lost. Using !keep.original discards the original structure leaving only
the reflected one.
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Examples:

transform reflect left
transform reflect ymin
transform reflect front
transform reflect left !keep.original

NOTE The option remesh is disabled in transform reflect because it
may disrupt the symmetry of the reflected structure. However, the
command grid merge can be used afterwards to remove same-
material interfaces at the reflecting plane.

Refinement Handling During Reflection

In the case of !keep.original, lines coming from both the line command and refinement
boxes are reflected along with the structure. However, when the original structure is kept, some
special handling is required.

Typically, during any geometry operation, lines created with the line command that have been
defined outside the bounding box will be removed. Therefore, there is no danger of the
reflected lines conflicting with the original lines.

For refinements created with refinement boxes, if the refinement box is constrained spatially
(that is, min or max has been used in the definition), the box will be duplicated, and the name
of the new box will be reflected_<c>, where <c> is the name of the original refinement box.
If the original and reflected refinement boxes overlap, there is no problem since the refinement
criteria are the same.

Stretch

The transform stretch command stretches the structure in the left, right, down, up, front,
or back directions at a given coordinate location by offsetting one side of the structure by the
specified length. If there is no vertical line of edges at the specified location, MGOALS creates
such a line and then stretches the structure. The data at the two ends of the stretched region is
exactly the same as that of the unstretched mesh.

Examples:

transform stretch location=0.001 length=5 right
transform stretch down loc=0.5 length=200

NOTE Do not use a negative stretch length.
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Refinement Handling During Stretch

During the stretch operation, mesh lines that were created with the line command in the part
of the structure being stretched are translated with the structure. No new lines are introduced
into the expanded region. The refinement boxes that straddle the stretch location increase in
size by the stretch distance to follow the structure.

Cut

The transform cut command cuts at or near the requested coordinate location. The location
defines a line in two dimensions, or a plane in three dimensions, that divides the structure into
the left and right, or front and back, or up and down parts. You can select the left/right, or front/
back, or up/down region to be removed. If a line of element edges in two dimensions, or a plane
of element faces in three dimensions, can be identified by MGOALS, the operation eliminates
only the elements in the removed region. This works well if a structure had been reflected and
needs to be cut back to the original (unreflected) structure. If a line of element edges in two
dimensions, or a plane of element faces in three dimensions, cannot be found, a mesh-cutting
operation is performed. By default, MGOALS tries to find a mesh line or plane near the
specified coordinate. Then, MGOALS removes entire mesh elements rather than cutting mesh
elements to avoid arbitrarily small edges and poor element quality.

To disable the search feature and to perform the operation exactly where specified,
use !mesh.align in the transform command, which will invoke a remesh unless !remesh
also is specified.

Example:

transform cut location=0.5 right

You also can use the transform cut command to crop the mesh by specifying a rectangle or
brick defined by the upper-left-front and lower-right-back corners, specified with the min and
max arguments. The cut operation retains the region enclosed by the rectangle or brick. By
default, MGOALS tries to find a mesh line or plane near the specified coordinate and removes
entire mesh elements instead of cutting the mesh (which could lead to arbitrarily small edges
and poor element quality).

To disable searching of a nearby mesh line or plane, and to perform the operation exactly at the
specified location, specify !mesh.align, which automatically invokes a remesh
unless !remesh also is specified.

Example:

transform cut min= {-10 1.35 0.15} max= {10 1.65 0.4}
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Refinement Handling During Cut

During the cut operation, lines created with the line command that are outside of the
simulation domain after the cut are removed. Similarly, any refinement box that lies completely
outside the simulation domain after the cut is removed as well.

Flip and Backside Processing

The transform flip command provides a convenient way to perform process steps on the
back of a wafer. During the transform flip command, the structure is rotated  about
a line by default in the center of the structure parallel to the y-axis. Therefore, the structure is
upside down after the flip and in the same location.

Because most operations in Sentaurus Interconnect require a gas region on top, a gas region is
added automatically. In addition, many meshing operations require a solid material at the
bottom of the structure, so the Gas region that was previously on top of the structure is
converted to an auxiliary material called BackMat. If the structure is flipped again, the reverse
happens, namely, BackMat is converted to Gas, and Gas is converted to BackMat. Any
operation is allowed on a structure that has been flipped one or more times; however, the
current bottom of the structure is never an active surface for any operation such as etching and
deposition.

There is great flexibility in handling the auxiliary material at the back of the structure. The
material itself defaults to BackMat as mentioned, but you can choose another material using:

pdbSet Grid Back.Material <material>

The material BackMat inherits its parameters from (is Like) Gas so that it behaves like gas
for thermal and electrical simulations. For mechanics, the only way to obtain Gas-like
mechanics boundary conditions at interfaces to the back material is to use an actual Gas region.
Therefore, the back material is converted automatically to Gas before each mechanics call and
is converted back directly afterwards. Finally, when a region of material BackMat is saved in
a structure, it is first converted to Gas, so that other tools reading the structure will have the
proper material. However, it is also given a tag specific to Sentaurus Interconnect, so that
Sentaurus Interconnect knows the region should actually be BackMat.

Refinement Handling During Flip

Refinements during a flip operation are handled in the same way as refinements during
reflection in the case of !keep.original. Lines coming from both the line command and
refinement boxes are reflected along with the structure.

180°
Sentaurus™ Interconnect User Guide 263
N-2017.09



12: Structure Generation 
MGOALS
Rotation

The transform rotate command rotates the structure at the specified angle in the specified
axis using (0,0,0) as the rotation center. It accepts two arguments angle and axis to specify
the rotation angle and the rotation axis, respectively. For Y and Z, 180 degrees can be specified.
For X, 90, 180, and 270 degrees are allowed.

It might happen that, during the rotation, the existing initial gas must be moved to a side or the
bottom of the structure instead of being at the top. In these cases, new gas will be added to the
top.

The transform rotate command applies to 2D and 3D simulations. For 2D simulations, a
rotation in the z-axis will produce another 2D simulation. However, rotations in the x-axis and
y-axis will produce a structure equivalent to extruding the z-axis and then performing the
rotation.

Refinement Handling During Rotation

During a rotation operation, lines coming from both the line command and refinement boxes
are rotated along with the structure.

Translation

The transform translate command does not change the aspect of the structure. It only
adds the coordinate specified in the translate argument to all nodes, that is, it displaces the
structure or shifts it in space. It is equivalent to changing the origin of coordinates by a fixed
quantity.

Similarly, mesh lines created with the line command and the bounding box of refinement
boxes (which are specified with min and max of the refinebox command) are translated with
the structure.

MGOALS

By default, etching and deposition operations are performed using MGOALS in all
dimensions. MGOALS operates as follows:

■ The starting structure is analyzed for the interfaces that will change during the operation.

■ The geometry-changing operations are performed.
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■ In two dimensions, the entire structure is remeshed. During remeshing, nodes in the silicon
region are retained as much as possible in their original locations. In most cases, a high
percentage of nodes are retained after remeshing. This minimizes interpolation errors. In
three dimensions, the structure is remeshed only if the next step requires an up-to-date
mesh.

MGOALS Boundary-Moving Algorithms

MGOALS uses either the analytic method or the fast level-set method to perform boundary-
modifying operations. In general, the analytic method is fast, less memory intensive, and more
accurate, and uses a simplified string algorithm. However, it cannot handle deposition in
concave regions or etching of convex areas when there are boundary collisions and self-
intersections.

Due to speed and accuracy advantages, MGOALS always tries to perform an analytic
operation. If self-intersections are detected in the new boundary, MGOALS automatically
switches from the analytic method to the fast level-set method. Both the analytic method and
the fast level-set method can handle simple etching and deposition processes.

Besides the analytic method and the fast level-set method, the general time-stepping level-set
method is available to handle more complex etching types such as Fourier, crystallographic,
and multimaterial etching, and to include shadowing effects.

Both level-set methods use an approach similar to that described in [1]:

■ First, the level-set method identifies the interface or the part of an interface to be moved.
This computation is based on nonetched overlayers, masks, and if necessary, visibility due
to directional constraints specified by users.

■ Second, evolution of the moving interface is performed using either the fast-marching
scheme, which solves the time-independent boundary-value formulation of the Hamilton–
Jacobi equation (or Eikonal equation), or the full level-set, which is a time dependent,
initial-value formulation of the same equation. The fast-marching scheme computes the
new boundary location for all times in a single step. The nature of the equation is such that
it captures and handles collisions. However, the equation cannot identify when the collision
actually occurred. The full level-set formulation is used for multimaterial, Fourier, and
crystallographic etching, and for handling shadowing effects. Its time-stepping algorithm
allows for recalculating the front velocity at every time step.

In MGOALS, the fast-marching scheme and the level-set equations are solved on a separate
Cartesian mesh that is independent of the simulation grid. For a description of the parameters
that control the Cartesian mesh, see MGOALS Boundary-Moving Parameters on page 266.
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After solving the level-set equations, the newly created boundary is extracted from the level-
set function on the Cartesian mesh and then incorporated into the simulation mesh. The exact
replication of the extracted boundary in the mesh can be expensive and can transfer unwanted
noise from the level-set solution into the structure. To resolve these issues, MGOALS allows a
certain smoothing to be performed on the extracted boundary.

In two dimensions, to incorporate the new boundary into the simulation grid, a simplified
meshing step is performed. A simple mesh is created for the modified regions and connected
to the mesh in unchanged regions. Since this mesh is not suitable for process simulation, by
default, a full remesh is performed after each etching and deposition step.

In three dimensions, almost all boundary-modifying operations performed by MGOALS use
the analytic method. The only exceptions are isotropic deposition and etching, which are
performed using the fast level-set method. The new material boundary is integrated into the
structure using a set of polyhedral Boolean operations.

MGOALS Boundary-Moving Parameters

Parameters to specify the resolution of the Cartesian mesh and the interface fidelity are defined
in an mgoals command before the etch or deposit command. These parameters are applied
to the entire structure. The interface quality and resolution are controlled by accuracy,
resolution, and full.resolution. The actual size and the placement of the Cartesian
mesh bounding box is calculated starting with the initial interface being etched, extended based
on the time and rates given by the user, or in the case of etch stops, extended based on the
distance from the initial front to the etch stops.

The accuracy Argument

The accuracy argument controls the noise and features at an interface. A small value of
accuracy allows only small deviations between the boundary extracted from the level-set
method and the piecewise linear segments incorporated into the simulation mesh. As a result,
a large number of small segments may be created. In addition, a value of accuracy that is too
small may interpret numeric noise as surface features, which MGOALS requires to reproduce
in the simulation mesh. The default value and unit for accuracy is .

NOTE The default value for accuracy works well for small structures that are
approximately  in size. For larger structures, you can
scale up this argument to reduce geometric noise. However, using too
large a value could lead to self-intersection around sharp features, to
meshing failure, and to noticeable loss of curvature in rounded areas.

1.0 5–×10  μm

1 μm 1 μm×
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Figure 79 The curved surface represents the extracted new boundary and the piecewise 
linear segments represent the simplified boundary incorporated into the 
simulation mesh; the accuracy argument ensures that u accuracy

The resolution Argument

The value of the resolution argument controls the element size in the Cartesian mesh used
to perform level set–based etching and deposition. Since the thickness of the layer to be
deposited or etched is user specified, the grid size is defined as a fraction of the thickness of
the modified layer. The size of each grid element of the level-set mesh is given by the product
of the value of resolution and the etching or deposition thickness.

The resolution is specified in the mgoals command, and the etching or deposition
thickness is specified in the etch or deposit command, respectively. This scheme usually
provides a good approximation of the required level-set resolution and is computationally
efficient. The default value for resolution is 0.1.

NOTE Providing a small resolution for thin layers may lead to excessive
time and memory consumption. For example, an isotropic deposition of
1 nm thickness with resolution=0.1 will result in facets of
approximately 1Å in size. In this case, resolution=0.3 would lead
to coarser facets in rounded areas.

NOTE For a thick etching or deposition, it may be necessary to reduce
resolution. For example, resolution=0.1 for a  deposition
leads to a level-set grid size of 100 nm, which may lead to a poor
approximation of sharp corners and rounded areas in the new boundary.

NOTE It is not recommended to set the resolution argument to a value
greater than 0.3. Doing so may compromise the integrity of the layers
being deposited or etched, since they may not be resolved by the level-
set grid.

General Time-Stepping Level-Set Parameters

The general time-stepping level-set method has some additional parameters to control and
balance accuracy, simulation time, and memory use.

u

≤

1 μm
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Usually, the full time-stepping level-set method is used in situations where more intricate
boundaries will be generated. This method is needed for Fourier, crystallographic, and
multimaterial etching, and for etching with shadowing. It is also used if the option
force.full.levelset is specified.

The full.resolution argument can be used for the time-stepping level-set method in the
same way resolution is used for the fast level-set method. You also can specify the actual
spacing of the Cartesian mesh in the x-direction, or y-direction, or both directions, with the dx
and dy arguments (and the z-direction in three dimensions with dz). Reducing the mesh size
causes the time-stepping level-set method to allocate more memory, to take smaller time steps,
and to increase the solve time for each time step, thereby increasing the overall simulation time.

NOTE In previous releases, the Upwind formulation of the time-stepping level-
set method provided users with the arguments reinitfrequency and
reinititerations of the mgoals command to control the frequency
and quality of level-set reinitialization. The currently implemented
Lax–Friedrichs formulation does not provide these parameters to users,
since reinitialization is performed at each time step.

Level-Set Cartesian Mesh and Resolution: Internal Calculations

The Cartesian mesh extent or bounding box, the resolution and full.resolution
criteria, and the grid spacing criteria dx, dy, and dz interplay in the following ways.

The Cartesian mesh encompasses the initial interface between the Gas and all the materials the
user has defined to be etched. It also encompasses the entire movement of the etching front
expected throughout the entire etching process. In the case of time-based etching with the time
argument, an etching distance is computed, based on the requested etching time multiplied by
the maximum expected etching rate. The resolution or full.resolution argument is
then used as the approximate mesh spacing unless overridden by dx, dy, or dz. The number of
resulting Cartesian mesh lines follows as required to achieve the required mesh spacing within
the Cartesian mesh bounding box.

In the case of an etch stop, the bounding box of the Cartesian mesh is calculated based on the
initial gas–etching material interface, and its extent is determined by the position of etch stops
in the simulation domain, that is, the estimated maximum etching distance. The target mesh
spacing in two dimensions is the resolution or full.resolution multiplied by the
estimated maximum etching distance. In three dimensions, the target mesh spacing is set to
min.levelset.size, because the estimated maximum etching distance is not calculated in
three dimensions for this purpose. From the size of the Cartesian mesh bounding box and the
target mesh spacing, possibly overridden by dx, dy, and dz, the number of Cartesian mesh lines
is determined.
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Limitations of Level Set

As a general approach, while the level-set method is especially useful for shadowing,
multimaterial, sophisticated etch velocity functions (for example, surface normal dependent or
crystal direction dependent), and for complex evolution of etch surfaces (that is, complicated
structures), it is generally not a good choice when sharp or exact corners, and straight or exact
etch walls, are required, such as in anisotropic etching.

This limitation is due to the implicit representation of the structure as a rectilinear grid of
distance functions used to calculate the evolution of the moving surfaces.

MGOALS 3D Boundary-Moving Algorithms

In three dimensions, a combination of level set, fast marching, and analytic techniques are used
to perform geometric operations similar to the 2D mode. In three dimensions, MGOALS can
reliably handle complicated polyhedral boundaries. This mode can perform any of the
geometric operations contained in the deposit, etch, photo, polyhedron, and
transform commands.

NOTE After any one of these process steps is performed in three dimensions,
all subsequent geometric operations should be performed using
MGOALS.

The use of the level-set method for thin etches or deposits can be prohibitively CPU intensive
and memory intensive, especially for large structures or for very thin etching or deposition
steps. To address this issue, etches and deposits less than 1 nm use the analytic method by
default. The thickness of this cutoff can be modified using analytic.thickness of the
mgoals command.

To produce meshes with the highest quality elements and the fewest points, you should reduce
the number of interfaces in the structure. This is especially true for 3D simulations.

NOTE When the command sde off is specified, region-merging is switched
on regardless of the previous setting.
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Summary of MGOALS Etching

Table 23 summarizes the methods used internally to implement etching:

■ Level set (LF) – General time-stepping level-set method with Lax–Friedrichs formulation.

This is the most general method. All level-set methods have the disadvantage of a certain
amount of rounding at corners and edges. The LF formulation has added stability, which
can result in slightly more rounding at corners and edges.

■ Fastmarch – The fast level-set method is used in simple 1D or 2D directional and
anisotropic etching.

■ Geometric – Three-dimensional etching algorithm inserts an analytically calculated
etching shape into the device structure.

■ Analytic – One-dimensional or 2D etching algorithm calculates and inserts an analytically
calculated etching shape into the device structure. 

Table 23 Summary of etching algorithms used for different etching input parameters

Material Shadowing Etching type Structure 
dimension

Etchstop mechanism

Time and rate Material Etchstop Thickness

Single material No shadowing Isotropic 1D Analytic Level set (LF) Analytic

2D Fastmarch Level set (LF) Fastmarch

3D Geometric Level set (LF) Geometric

Fourier 1D/2D/3D Level set (LF) Level set (LF) Not supported

Directional 1D/2D Analytic Analytic Analytic

3D Geometric Level set (LF) Geometric

Anisotropic 1D/2D Analytic Analytic Analytic

3D Geometric Level set (LF) Geometric

Shadowing Isotropic 2D Level set (LF) Level set (LF) Level set (LF)

3D Level set (LF) Level set (LF) Level set (LF)

Fourier 2D/3D Level set (LF) Level set (LF) Not supported

Directional 2D/3D Level set (LF) Level set (LF) Level set (LF)

Anisotropic 2D/3D Level set (LF) Level set (LF) Level set (LF)
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MGOALS Backward Compatibility

Default parameters and algorithm settings used by MGOALS can change from release to
release in the pursuit of more accurate, more realistic, and more stable structure generation
results. To use the default parameters and settings from a previous release, type the required
release as a string in the mgoals command, for example:

mgoals "M-2016.12-SP1"

Partial support for this backward compatibility is available starting with Version D-2010.03
with more complete support starting with Version E-2010.12.

Boundary Repair Algorithm

Anisotropic or directional operations can produce residual material when the walls of the
etched material are not perfectly vertical or aligned to the etching beam. These residual
materials usually cause problems for the mesh generator since they contain sharp angles and

Multimaterial No shadowing Isotropic 2D Level set (LF) Level set (LF) Fastmarch

3D Level set (LF) Level set (LF) Geometric

Fourier 2D/3D Level set (LF) Level set (LF) Not supported

Directional 2D Level set (LF) Analytic Analytic

3D Level set (LF) Level set (LF) Geometric

Anisotropic 2D Level set (LF) Analytic Analytic

3D Level set (LF) Level set (LF) Geometric

Shadowing Isotropic 2D Level set (LF) Level set (LF) Level set (LF)

3D Level set (LF) Level set (LF) Geometric

Fourier 2D/3D Level set (LF) Level set (LF) Not supported

Directional 2D Level set (LF) Level set (LF) Level set (LF)

3D Level set (LF) Level set (LF) Geometric

Anisotropic 2D Level set (LF) Level set (LF) Level set (LF)

3D Level set (LF) Level set (LF) Geometric

Table 23 Summary of etching algorithms used for different etching input parameters

Material Shadowing Etching type Structure 
dimension

Etchstop mechanism

Time and rate Material Etchstop Thickness
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small features that cannot be meshed. To correct this problem, the boundary repair algorithm
can analyze the structure and eliminate small unwanted features.

The boundary repair algorithm can be used with the deposit, etch, and photo commands.
These commands include the repair option that controls this algorithm. The boundary repair
algorithm is enabled by default in 3D and disabled in 2D.

To activate or deactivate the boundary repair algorithm, include repair or !repair in the
command specification, for example:

etch material= {Silicon} anisotropic rate= 0.001 time= 1.0 !repair

The repair algorithm also can be controlled globally for the etch and deposit commands. To
disable or enable repairs, use the following options in the mgoals command (see mgoals on
page 510):

■ repair.2d, repair.2d.deposit, repair.2d.etch, repair.2d.photo 

■ repair.3d, repair.3d.deposit, repair.3d.etch, repair.3d.photo 

Structure Assembly in MGOALS Mode

Sentaurus Interconnect can read a 2D or 3D structure from a file and paste it into the current
2D or 3D simulation, respectively. 

To perform structure assembly, use:

paste (direction= back | front | left | right) tdr=<c>

where:

■ In two dimensions, direction can be left or right.

■ In three dimensions, direction can be back, front, left, or right.

■ tdr specifies the TDR file from which a structure will be read and pasted into a simulation.

Sentaurus Interconnect automatically shifts the structure read from the file to the appropriate
quantity in x, y, and z to fit to the current structure. Nevertheless, Sentaurus Interconnect will
not automatically stretch the incoming structure. Consequently, for the operation to succeed,
the sizes of the pasting planes of the incoming structure and the existing one must be the same.

The values of the fields are conserved for each structure and are interpolated at the interface
between the structures.

NOTE Structure assembly requires that the structure read from the file must
have the same dimensionality, 2D or 3D, as the existing structure.
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NOTE In three dimensions, structure assembly must be performed in
MGOALS mode. That is, structure assembly is not available when
sde on is specified.

Multithreading

Some of the more sophisticated etching and deposition types require the use of the level-set
method (such as multimaterial etching, crystallographic etching and deposition, and Fourier
etching and deposition). This can be time consuming, especially for 3D summations. To
minimize simulation time, MGOALS allows for a multithreaded solution of the level-set
equations.

The multithreaded operation can be invoked using:

math numThreads=<i>

or:

math numThreadsMGoals=<i>

where <i> is an integer. It is suggested to keep <i> at or below 4 to obtain reliable speed
improvement.

Insertion: Internal Mode

This section describes different insertion operations.

Inserting Segments

The insert command defines and inserts regions defined by segments in one dimension (see
insert on page 464). You can choose which materials or regions are replaced, and the name and
the material of the new region.

Multiple regions can be inserted in one step. However, to insert multiple regions, the name
cannot be specified. If multiple regions are inserted, machine-generated names are used.
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Inserting Polygons

Two-dimensional regions defined by polygons can be created and inserted directly into a 2D
simulation.

Polygons are created with the polygon command, which accepts several arguments to specify
how to create the polygon:

■ points specifies a list of points defining the polygon.

■ rectangle, with min and max, specifies the rectangle limits.

■ segments specifies pairs of numbers, which are the coordinates where each segment starts
and the previous one finishes.

■ xy specifies the polygon will be created in the xy plane.

Since the standard use of the polygon command (see Masks and Lithographic Patterning
on page 251) is to create masks for the deposit, etch, and photo commands, the default
coordinates are y and z for the segments and min and max arguments. Consequently, the
option xy must be specified in order for the polygon to be created in the xy plane instead
of the yz plane.

■ tdr specifies the name of a TDR file from which to import the polygon, and the argument
materials specifies the material or list of materials that will be read from the TDR file
specified.

The insert command takes the mandatory polygon argument that specifies the name of the
polygon and inserts it into the structure. It allows you to specify the replace.materials,
new.material, replace.regions, and new.region arguments in a very similar way to
the insertion in three dimensions (see Inserting Polyhedra on page 276).

Inserting Polyhedra

Regions defined by polyhedra can be inserted into 3D structures. The polyhedron command
creates a polyhedron and adds it to the internal polyhedron list.

You can build a polyhedron in different ways. However, only one of them can be used at a time
in one polyhedron command (see polyhedron on page 563):

■ Reading polyhedra from a TDR boundary file.

■ Creating a cuboid (brick) polyhedron.

■ Extruding a 2D polygon in the x-dimension.

■ Creating a polyhedron from the beginning using its constituent polygonal faces <pol1> to
<poln>.
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Reading Polyhedra From TDR Boundary File

To read all the polyhedra included in a TDR boundary file called <c>, use the command:

polyhedron name=<c> tdr=<c> [materials= {<mat1> ...<matn>}] 
[regions= {<reg1> ...<regn>}]

The optional argument materials specifies which materials are included. In addition to
explicit material names, you can use materials=bulk.materials to specify all
nongaseous materials.

The optional argument regions specifies which regions of the boundary are included.

If neither regions nor materials is specified, all regions are assumed to be included. If both
regions and materials are specified, the union of the two is assumed.

Several polyhedra can be included in a TDR file. Any valid TDR boundary file is allowed,
regardless of the tool used to create it.

Creating a Cuboid (Brick) Polyhedron

To create a cuboid polyhedron given the coordinates of two diametrically opposite corners, use
the command:

polyhedron name=<c> brick= {<minx> <miny> <minz> <maxx> <maxy> <maxz>}

Extruding 2D Polygons

To take a 2D polygon (created with the polygon command) and to extrude it in the x-direction
from min to max to build a 3D polyhedron, use the command:

polyhedron name=<c> polygons= <list> min=<n> max=<n>

The command expects the polygon to be planar. Only one polygon name is expected in the
polygons list.

Creating Polyhedron From Its Constituent Polygonal Faces

To build a polyhedron given its definition as a set of polygons, use the command:

polyhedron name=<c> polygons= {<pol1> <pol2> ... <poln>}

The polygons are <pol1> to <poln>. Obviously, the command expects the polygon list to
form a valid polyhedron, that is, a compact, enclosed, nonintersecting 3D space. The polygons
can be created with the polygon command.
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Insertion: External Mode

This mode differs from the standard Sentaurus Structure Editor mode (see Sentaurus Structure
Editor Interface on page 277) in that a structure can be created inside Sentaurus Structure
Editor independently of the existing Sentaurus Interconnect structure. The minimum syntax
needed for creating an external structure is:

sde external {<Sentaurus Structure Editor commands>}

where <Sentaurus Structure Editor commands> are Scheme commands that are sent
directly to Sentaurus Structure Editor. As an option, a polyhedron can be specified to initialize
the structure, and after sde external, further geometric commands such as etch, deposit,
and transform operate on the external structure until the command sde off is specified. See
sde on page 606.

To create a polyhedron from an external structure, the option external.sde of the
polyhedron command must be given. In the following example, an aluminum sphere is
inserted into a Sentaurus Interconnect structure:

math coord.ucs
sde external {

(sdegeo:create-sphere (position 0.4 0.0 0.0) 0.9 "Aluminum" "Aluminum_1")
}
polyhedron name= sphere external.sde
sde off
insert polyhedron= sphere

Inserting Polyhedra

The insert command is:

insert polyhedron=<c> [replace.materials= {<mat1> <mat2> ...<matn>}]
[replace.regions= {<reg1> <reg2>...<reg2>}] [new.material=<c>]
[new.region=<c>]

NOTE The argument polyhedron is mandatory and specifies the name of the
polyhedron with which to operate. This polyhedron must have been
previously defined with the polyhedron command (see Inserting
Polyhedra on page 274).

The optional argument replace.materials lists the materials to be replaced by the
polyhedron. In addition to explicit material names, you can use replace.materials=
bulk.materials. If replace.materials=bulk.materials is specified, all materials in
the structure, except gas, will be replaced.
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The optional argument replace.regions lists the regions to be replaced by the polyhedron.
If neither replace.regions nor replace.materials is specified, all materials are
replaced. If both replace.regions and replace.materials are specified, the union of
the two is assumed.

If the optional argument new.material is specified, all the regions in the polyhedron will
change to the specified material. This argument does not change the polyhedron information
except temporarily for the duration of the insert command. The material name in the inserted
polyhedron is inserted, but not in the original polyhedron.

The optional argument new.region is valid only when there is one region. When set, the
region name is set to the specified one after insertion. The region name in the inserted
polyhedron is affected, but not the original polyhedron.

The insert command can perform polyhedron etching and polyhedron deposition as well as
more general polyhedron insertion. Polyhedron etching is performed by specifying
new.material=gas in the insert command or by creating a gas polyhedron. Polyhedron
deposition is performed by specifying replace.materials=gas in the insert command
as well as choosing one or more bulk regions or materials in the polyhedron command, such
as materials=bulk.materials or new.material=Silicon.

NOTE The boundaries of the polyhedra to be inserted must not overlap any
interfaces or outer boundaries of the structure. Otherwise, it is likely the
operation will fail.

Sentaurus Structure Editor Interface

Sentaurus Structure Editor can perform 3D etching, deposition, and geometric transformation
operations. It uses the ACIS solid geometry modeling kernel and the Scheme scripting
language. Structures are created using CAD operations and process emulation operations. All
3D etch, deposit, strip, photo, mask, and transform commands are translated into
appropriate Scheme commands that are then dispatched to Sentaurus Structure Editor.

Sentaurus Interconnect provides an interface to Sentaurus Structure Editor.

Sentaurus Structure Editor also can be used as a standalone tool to build the final structure
using both its user interface and scripting capability. Then, the final structure can be used in
Sentaurus Interconnect either as a boundary file or after remeshing the structure. The mesh or
the boundary for the final structure is loaded and, before each solve step, the material of all
regions, not yet present in the structure for the process step, is changed to gas.
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In addition, the Sentaurus Structure Editor external mode allows independent (that is, external)
structures built in Sentaurus Structure Editor to be inserted into structures created with
MGOALS (see Insertion: External Mode on page 276).

Hereafter, the standard Sentaurus Structure Editor mode (sde on) is referred to as the SDE
mode.

As usual, simulations may start in one or two dimensions. If a 3D mask is encountered and if
z-lines have been defined, the structure will be extruded to three dimensions, and if the SDE
mode is switched on, the Sentaurus Structure Editor interface will be initialized. All subsequent
structure-modifying steps in the etch, deposit, strip, photo, and transform commands
are dispatched to Sentaurus Structure Editor.

NOTE Reading a discretized 3D structure in Sentaurus Structure Editor can be
unstable. Most isotropic operations (deposition or etching) will fail if
this method to initialize Sentaurus Structure Editor is used. Therefore,
when initializing a 3D simulation, you should store and load .sat files,
rather than simply loading a 3D TDR boundary or grid file.

When the 3D structure has been initialized in Sentaurus Structure Editor, structure generation
commands (mask, etch, deposit, photo, strip, and transform) are translated by
Sentaurus Interconnect into appropriate Scheme commands and then dispatched to Sentaurus
Structure Editor.

NOTE Some arguments of the etch command cannot be translated into
appropriate Scheme constructs: Fourier etching, trapezoidal etching,
crystallographic etching, and shadowing effects are not supported in
three dimensions. The argument etchstop only works with CMP not
with other etching types.

The modified structure will be retrieved from Sentaurus Structure Editor and remeshed when
a command that requires the geometry and the mesh to be synchronized (for example, solve
and struct commands that write the mesh to a file) is found in the Sentaurus Interconnect
command file.

This ‘lazy’ remeshing (only when needed) minimizes the number of 3D remeshing operations
and, therefore, increases both the robustness and speed of the 3D structure generation and
remeshing.

The sde command is used to configure and control the Sentaurus Structure Editor interface and
to specify Scheme commands directly (see sde on page 606).
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You must specified the following command in each 3D simulation so that the simulation is
performed using the Sentaurus Structure Editor interface:

sde on

To switch off the SDE mode, use:

sde off

The argument logfile of the sde command specifies a file name in which to record all
Scheme commands that are dispatched to Sentaurus Structure Editor. At the end of the
simulation, a complete Scheme script is generated that can be used in a standalone run for
debugging, testing different algorithms, or fine-tuning a few command parameters for
Sentaurus Structure Editor without rerunning the Sentaurus Interconnect simulation, for
example:

sde -l logfile.scm

These modified parameters and algorithm selections can later be incorporated into the etch,
deposit, and other commands by specifying the argument sde in these commands:

deposit oxide thickness= 5<nm> isotropic \
sde= {"algorithm" "lopx" "adaptive" #t "radius" 0.075}

etch silicon thickness= 0.2<um> isotropic \
sde= {"algorithm" "lopx" "radius" 0.07 "vexity" "convex" \
"blend-global" "steps" 1 "overetch" 0.2}

deposit oxide thickness= 5<nm> isotropic sde= {"algorithm" "lopx"}

NOTE The Scheme language is incompatible with the Tcl used by Sentaurus
Interconnect. Therefore, all Scheme commands and parameter settings
must be enclosed by a pair of braces. The opening brace must be on the
same line as the sde argument.

In the sde command, the braces can contain any number of Scheme commands, each of which
starts on a new line.

Since the braces protect the Scheme commands and parameter settings from being parsed by
Tcl, they must not contain any calls to Tcl procedures in Tcl expressions. The Scheme language
provides its own set of expressions, parameter definitions, and other language constructs.

You should increase the default verbosity level when working with the sde command:

pdbSet InfoDefault 1

Sentaurus Structure Editor does not provide any error-processing facility for errors that have
occurred during the solid modeling operations. This can be time consuming if a structure
generation step fails and a long solve simulation is performed for an incorrect structure. To
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avoid this, use a few runs with the -f command-line option to adjust the commands and to
verify that the proper structure is created. In addition, by default, all boundary files that are
written in struct commands in the fast mode and before remeshing are read and checked for
any geometric inconsistencies. If any defects are observed, the simulation is stopped with an
error. To prevent this checking, specify !SdeCheck.

NOTE By default, Sentaurus Interconnect performs stress relaxation at the end
of each etching and deposition step. This requires that a boundary-fitted
mesh be constructed at the end of each step. If you do not want to track
the stress through all the process steps, use the following command
before starting 3D structure generation:

pdbSet Mechanics EtchDepoRelax 0

NOTE To prevent adjacent regions of the same material (for example, gas
regions) from merging, switch off region-merging using the command
pdbSet Grid No3DMerge 1. During the process, as more regions
need to be considered (for example, nitride spacer), appropriate
materials must be reverted from gas to the required materials.

The option Grid Auto3DMergeAndSeparate (off by default) adds the following commands
at the end of photo and depo when switched on:

(sdegeo:bool-unite (find-material-id 'depositedMaterial'))
(sde:separate-lumps)

Only the second command is added after etching.

Sentaurus Topography Interface

Sentaurus Interconnect provides an interface to Sentaurus Topography, which is a 2D physical
etching and deposition simulator.

Each sptopo command first transfers the current 2D geometry from Sentaurus Interconnect
to Sentaurus Topography. Then, it dispatches the command to Sentaurus Topography. Finally,
it retrieves the modified 2D geometry from Sentaurus Topography and creates a mesh for it.

Sending a new geometry from Sentaurus Interconnect to Sentaurus Topography has been
restricted to cases where the geometry has actually been modified in Sentaurus Interconnect
after last retrieving the structure from Sentaurus Topography, for example, when using the
Sentaurus Interconnect etch or deposit command. Provisions also are made to detect
whether Sentaurus Topography has actually modified the structure or simply a definition of it,
for example, a new machine has been added to Sentaurus Topography. Remeshing is restricted
to the commands that actually have changed the structure.
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During syntax checking, Sentaurus Topography commands are dispatched to Sentaurus
Topography and are checked for syntactical correctness. The syntax of the sptopo command
is (see sptopo on page 632):

sptopo <Sentaurus Topography command>
sptopo <Sentaurus Topography command>
sptopo <Sentaurus Topography command>

or:

sptopo {
<Sentaurus Topography command>
<Sentaurus Topography command>
...

}

The first form of the sptopo command allows use of all the usual Sentaurus Interconnect Tcl
constructions in the parameter specifications of <Sentaurus Topography command>. This
form of the command is parsed through the Tcl interpreter. Otherwise, the syntax used for the
<Sentaurus Topography command> is the same as in each of the commands for a
standalone Sentaurus Topography run. In Sentaurus Interconnect command files, each
Sentaurus Topography command must start with sptopo.

In the second form of the command, the pair of braces prevents the Sentaurus Topography
commands from being parsed by the Tcl interpreter. No Tcl expressions must be used in this
form of the sptopo command. On the other hand, any number of Sentaurus Topography
commands can be provided in the second form of the command, each on a separate command
line. If necessary, the structure will be sent from Sentaurus Interconnect to Sentaurus
Topography once at the beginning, and retrieved and remeshed once at the end of the entire
command sequence.

Example 1

The following command performs two planar deposition steps in Sentaurus Topography, where
the first step fills the structure with oxide up to 5 nm above the top material position, and the
second step adds a planar layer of 180 nm polysilicon:

sptopo {
deposit material= Oxide thickness= 0.005
deposit material= PolySilicon thickness= 0.180

}

The structure is sent to Sentaurus Topography once, retrieved, and remeshed once at the end of
both deposition steps.
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Example 2

If masks are required in a Sentaurus Topography simulation, segments can be specified in the
sptopo command as shown here. Alternatively, you can use the Sentaurus Interconnect photo
command with a mask to define a photoresist layer that will protect certain areas from being
etched in an sptopo etch command.

The Sentaurus Interconnect strip command, or the following sptopo command, can be used
later to remove the entire photoresist layer:

sptopo etch material=Photoresist complete

Example 3

The following example defines a mask in Sentaurus Topography including:

■ Geometric etching of polysilicon, which is strictly vertical and restricted to the outside of
the specified mask segments.

■ An anisotropic etching machine.

■ Execution of an anisotropic oxide etching in Sentaurus Topography.

sptopo {
mask name=m1 s0=-1.1 e0=-0.3 s1=0.3 e1=1.1
etch material=PolySilicon depth=0.185 mask=m1

machetch name=oxe1 material=Oxide anisotropy=1 rate=1
etch machname=oxe1 time= 0.02 dx=0.03 dy=0.03 mask=m1

}

To increase the default verbosity level when working with the sptopo command, use:

pdbSet InfoDefault 1

For details about the commands, parameters, and syntax rules of Sentaurus Topography, refer
to the Sentaurus™ Topography User Guide.

Sentaurus Topography 3D Interface

Sentaurus Interconnect provides an interface to Sentaurus Topography 3D, which is a three-
dimensional physical etching and deposition simulator.

The Sentaurus Topography 3D interface makes advanced etching and deposition models of
Sentaurus Topography 3D available from within Sentaurus Interconnect.
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The subset of 3D commands that are needed for etching and deposition is available through the
interface. The topo command in Sentaurus Interconnect enables all the interface functionality
(see topo on page 660). The topo command is followed by the respective Sentaurus
Topography 3D commands:

topo {<Sentaurus Topography 3D commands>}

For a list of the supported Sentaurus Topography 3D commands, refer to the Sentaurus™
Topography 3D User Guide.
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CHAPTER 13 ICWBEV Plus Interface for 
Layout-Driven Simulations

This chapter describes how to use the IC WorkBench Edit/View
Plus–TCAD Sentaurus interface.

Overview

The IC WorkBench Edit/View Plus (ICWBEV Plus)–TCAD Sentaurus interface drives the
TCAD simulations from the GDSII or OASIS layout file provided by designers, which could
be at any level of integration in the hierarchy: full chip, test chip, or a single cell.

The TCAD simulation domain can be conveniently chosen using specific markups in the layout
file. A single process flow can be defined for all devices in the layout and can be applied easily
with minimal adjustments for 1D, 2D, and 3D simulation domains. For meshing, it provides
the unique feature of layout-driven meshing. Electrical contacts can be defined easily using
auxiliary masks.

This chapter includes the following sections:

■ Introducing ICWBEV Plus for TCAD Users on page 286 provides basic ICWBEV Plus
training, especially with relevance to TCAD.

■ Sentaurus Markup Files and TCAD Layout Files on page 297 introduces the files and file
formats used in the ICWBEV Plus–TCAD Sentaurus interface.

■ Starting ICWBEV Plus in Batch Mode and Using Macros on page 304 introduces working
with macros and running ICWBEV Plus in batch mode.

■ TCAD Layout Reader on page 305 presents the TCAD layout reader of Sentaurus
Interconnect that provides a file-based interface between ICWBEV Plus and Sentaurus
Interconnect.
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Introducing ICWBEV Plus for TCAD Users

Before discussing the ICWBEV Plus–TCAD Sentaurus interface, it is important to have an
understanding of ICWBEV Plus itself.

The general ICWBEV Plus training is a good starting point. Here, the focus is mainly on
ICWBEV Plus operations that are most relevant to TCAD Sentaurus users.

For details, refer to the ICWBEV Plus documentation available from the Help menu. For all
user documentation, choose Help > Documentation.

The first step consists of opening a layout file, which is typically in GDSII format.

Opening GDSII Layout Files

To open a GDSII or an OASIS layout file:

1. On the command line, set the environment variable ICWBEV_USER to activate the
ICWBEV Plus Sentaurus User Mode by typing:

setenv ICWBEV_USER SENTAURUS

2. Launch ICWBEV Plus by typing:

icwbev

3. Select the file to be opened by choosing File > Open.

4. In the Open File dialog box, browse to the file you want to load.

5. Click Open.
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User Interface of ICWBEV Plus

Figure 80 shows the user interface of ICWBEV Plus and illustrates the typical layout of work,
panes, and toolbars. The panes can be moved and reconfigured as needed. 

Figure 80 ICWBEV Plus main window with toolbar buttons specific to TCAD Sentaurus 
shown in red box at top

Figure 80 includes the following TCAD-relevant items in the GUI:

■ The Open Cells pane contains details about layers and markups including the TCAD-
relevant markups.

■ The Layout Layers pane shows the list of layers.

■ The Command Pane shows commands after GUI operations. Commands also can be
entered directly in this pane.
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Table 24 describes the relevant buttons of the TCAD Sentaurus toolbar. 

Sentaurus Markups

Sentaurus markups are used to add the simulation domain in 1D, 2D, and 3D domains as
needed. The Command Pane in Figure 81 shows the commands after adding Sentaurus
markups in the layout using GUI actions. 

Figure 81 Adding Sentaurus markups to a layout

Table 24 TCAD Sentaurus–specific toolbar buttons

Button Description Button Description

Highlight (3D simulation domain) Stretch utility

Gauge (2D simulation domain) Sentaurus Export for saving TCAD 
layout files or markup files

Point (1D simulation domain)
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To add a 3D simulation domain (highlight), a 2D simulation domain (gauge), or a 1D
simulation domain (point), click the respective toolbar button and draw a rectangle, a line, or a
point on the layout, respectively. 

NOTE A 2D simulation domain (gauge) has a direction. The starting point is
given as an open diamond, and the endpoint is given as a filled diamond.
A gauge that runs parallel to an edge of a layer must have a finite
orthogonal distance to that edge. If a gauge is collinear with the edges
of a layer, this edge might not be included in the 2D mask.

The default naming convention is the following, where <n> is an automatically incremented
number:

■ For a highlight: SIM3D<n> 

■ For a gauge: SIM2D<n> 

■ For a point: SIM1D<n> 

For 2D TCAD simulations, it can be useful to work with composite simulation domains, for
example, when the different contacts in a device layout cannot be connected by a single straight
line. In this case, it is not possible to perform a 2D device simulation after a 2D process step
using a single 2D simulation domain. However, a 2D TCAD simulation using a composite 2D
simulation domain is feasible. In this case, the various 2D cuts in the layout are joined to form
a composite 2D simulation domain.

An example of a composite simulation domain is shown in Figure 82, which shows a close-up
of the layout of a bipolar transistor with two 2D TCAD simulation domains. The simulation
domain labeled BJTBE cuts through two base–contact fingers and one emitter finger. The
simulation domain labeled BJTC cuts through the collector contact. 

NOTE The two simulation domains are orthogonal and not contiguous. 

Figure 82 Layout of a bipolar transistor with two 2D simulation domains: BJTBE cuts 
through two base–contact fingers and one emitter finger, and BJTC cuts through 
the collector contact
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Figure 83 shows the 2D TCAD simulation results obtained with a composite simulation
domain consisting of both the BJTBE and BJTC domains. Using a composite simulation
domain allows simulating a functional bipolar junction transistor (BJT) even for a 2D TCAD
simulation. 

Figure 83 Two-dimensional TCAD simulation results using composite simulation domain 
consisting of the 2D domains BJTBE and BJTC

Stretch Utility

The stretch utility provides a convenient way to parameterize a layout by inserting a uniformly
stretched segment into the layout. For example, this feature can be used to generate a set of
transistors that have different gate lengths but are otherwise identical. 

Figure 84 (Left) Snapshot of sample ICWBEV Plus layout with stretch utility line and (right) 
effective layout seen by Sentaurus Interconnect when the layout is loaded with a 
positive stretch amount
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A stretch line must be defined in ICWBEV Plus first. The stretch amount is set after loading
the TCAD layout with the Sentaurus Interconnect command:

icwb stretch name= "<stretch-name>" value= <stretch-amount>

This feature can be used for simple parameterization of layouts for quantities such as wire
length (Joule heat). Figure 85 shows a close-up of the layout containing an NMOS transistor.
In addition, two stretch lines are shown. The stretch line labeled NMOS_W is used to vary gate
width, and the one labeled NMOS_L is used to vary the gate length in an NMOS.

To add a stretch line:

■ Click the stretch utility toolbar button, and draw a line across the required region in the
layout.

NOTE The stretch line must cross the entire simulation domain to which it
should be applied. Stretch lines can be used for 2D and 3D simulation
domains. 

Figure 85 Adding stretch lines in a layout to vary gate width and gate length

Figure 86 on page 292 shows the resulting changes in the NMOS gate width and gate length.
The default naming scheme for a stretch line is Stretch<n>.

For example, to apply a stretch at runtime in Sentaurus Interconnect, use a command such as:

icwb stretch name= "NMOS_W" value= @Stretch@
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where NMOS_W is the name of the stretch variable. Here, the amount of stretching is defined
using the Sentaurus Workbench variable @Stretch@. A positive stretch value is used for
expansion; a negative value leads to shrinkage. 

Figure 86 Effect of stretch utility on 3D NMOS structure showing variation in width and 
length

Renaming Markups

Markups can be renamed and edited. 

To rename markups:

1. Choose View > Views > Open Cells.

2. Expand the markup type, for example, Highlights.

3. Click the respective Sentaurus Interconnect markup to edit the name.

4. Click the coordinates to edit the coordinate values.

Figure 87 on page 293 shows the Open Cells pane, displaying the list of Sentaurus Interconnect
markups and their coordinates that can be edited as required.

L = 25 nm
W = 50 nm

L = 80 nm
W = 50 nm

L = 80 nm
W = 100 nm
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Figure 87 Open Cells pane showing list of objects with descriptions

Auxiliary Layers

Auxiliary layers are used, for example, to denote the position of electrical contacts in a layout.
To add auxiliary layers, first a layer must be declared and attributes must be defined.

To add auxiliary layers, draw a polygon defining the region of the layer:

1. Open the layout for editing by choosing Edit > Cell.

2. Select the active layer.

3. Select the shape tool.

4. Draw a polygon.
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Figure 88 illustrates how to define a layer and its attributes. 

Figure 88 Defining a layer and its attributes: selecting New Layer, specifying attributes of 
layer, and Layout Layers panel showing new layer

Text Labels

As an alternative to auxiliary layers, you can use text labels to denote the position of electrical
contacts in a layout.

To add a text label:

1. Open the layout for editing by choosing Edit > Cell.

2. Select the active layer.

3. Select the text-adding tool by choosing Tools > Create > Text.
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4. In the layout window, click at the location where you want to add the text label.

5. Type the name of the text label in the entry box.

Editing Polygons

If required, polygons can be edited. You can edit polygons by either:

■ Resizing a rectangle.

■ Converting a rectangle to a polygon.

Resizing a Rectangle

To resize a rectangle:

1. If not already open, open the layout for editing by choosing Edit > Cell.

2. Activate the selector tool.

3. Click the polygon edge to select it.

4. Move the edge as needed.

Figure 89 shows a rectangle highlighted for editing. 

Figure 89 Moving the edge of a rectangle: select the rectangle and drag an edge

Converting a Rectangle to a Polygon

To convert a rectangle to a polygon:

1. Click the polygon edge to select it.

2. Right-click and select Split Edge.

3. Move the edge as needed.
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Figure 90 illustrates the procedure. 

Figure 90 Converting a rectangle to a polygon

Nonaxis-Aligned Simulation Domains

The ICWBEV Plus–TCAD Sentaurus interface supports nonaxis-aligned domains. To realize
nonaxis-aligned simulation domains, the GDSII layout is rotated by a given angle, and the
TCAD simulation domain is added as discussed in Sentaurus Markups on page 288. Figure 91
on page 297 shows the transformation of a GDSII layout and the transformation parameters.

To rotate a GDSII layout:

1. Choose Layout > Transform.

2. In the Transform dialog box, enter the values of the fields as required.

3. Click OK.
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Figure 91 Rotation of layout with transformation parameters

Sentaurus Markup Files and TCAD Layout Files

After adding Sentaurus Interconnect markups in ICWBEV Plus, the markup information is
saved in two different files:

■ Sentaurus markup file (*_mkp.mac): This file format is based on the standard
ICWBEV Plus macro language. It can be used to reload and re-edit Sentaurus Interconnect
markup. It also contains a reference to the original, potentially large, GDSII file.

■ TCAD layout file (*_lyt.mac): This file format is used as an internal file format for the
exchange of layout information between ICWBEV Plus and TCAD Sentaurus. It is based
on the standard ICWBEV Plus macro language. This file is flat and does not contain a
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reference to the GDSII file. It is a small file because it contains only the parts of the layout
needed for TCAD Sentaurus.

After performing the necessary operations on the layout file, save the resulting Sentaurus
markup file. 

Saving the Sentaurus Markup File

To save a Sentaurus markup file:

1. Click the Sentaurus Export button (see Table 24 on page 288) or choose Layout >
Sentaurus Export.

2. In the Sentaurus Export dialog box, select the Markups option (see Figure 92 on
page 299).

3. If you have added auxiliary layers, which you do not want to store in the GDSII file, select
the Include new layers option.

NOTE Including new layers in the markup file keeps the original GDSII file
intact.

4. To open a specific layout file when reloading the markup file, select the Open a layout file
option:

a) Active layout: Select this option when using a centrally located GDSII layout. This
option is particularly useful when working with a very large full-chip layout.

b) Layout: Select this option when working with an edited or a local version of the GDSII
layout. Specify the name of the layout.

5. Type the file name in the Output file field.

The recommended extension for saving the file is _mkp.mac, for example,
BiCMOS_mkp.mac.

6. Click OK.

The corresponding script command is:

sentaurus export markups <name>_lyt.mac [-newLayers] 
[-active | -reference <gdsfilename>]
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Figure 92 Sentaurus Export dialog box, showing options for saving markup file

Contents of Sentaurus Markup File

This section describes a typical markup file with a brief explanation. For a description of
keywords, refer to the IC WorkBench Edit/View Plus User Guide.

Version information:

# Sentaurus markups information - Tue Jul 18 15:43:47 2017
# Version - M-2016.12 (513586)

Setting for treating self-intersection: By default, all layers are ORed. This convention is
expected by all subsequent tools and, therefore, this setting should not be altered.

default winding 1

Pointer to layout file:

layout open [<path>]/BICMOSinverter.gds Inverter

Global transformations:

cell transform 1 0 0 0 0

Layer declarations and display settings:

layer configure 1:0 -name NWELL -fill #00ff00 -pattern fill12-a 
-outline #00ff00 -lineStyle solid -lineWidth 1
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Open cell for editing (here, for adding new polygons):

cell edit_state 1

Auxiliary layers:

polygon -layer 20:0 {950 5150 950 5350 1150 5350 1150 5150}
...

Simulation domains:

point add {8900 8100} Emit1D
gauge add {2100 7900 2100 10000} PMOS
highlight add {7900 7550 9900 9900} BJT3D
...

Text labels:

cell object add text {layer 9:3 string "gate" coords {750 150}
mag 0.3 anchor c angle 0 mirror 0}
...

File end:

select clear
catch {view default}

Reloading the Markup File

To edit a markup file, you must reload it.

To reload a markup file:

1. Choose File > Open.

The Open File dialog box is displayed (see Figure 93 on page 301).

2. In the Files of type field, select Flags Files (*.mac) or Macro Files (*.mac).

3. Select the file required.

4. Click Open.
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Figure 93 Open File dialog box for reloading markup file

Saving the TCAD Layout File

To save the TCAD layout file:

1. Click the Sentaurus Export button (see Table 24 on page 288) or choose Layout >
Sentaurus Export.

2. In the Sentaurus Export dialog box, select the TCAD layout option (see Figure 94 on
page 302).

3. A layer in a layout can be defined by a large number of touching or overlapping polygons.
To merge all these polygons into a smaller number of possibly more complex polygons,
select the Merge shapes option.

4. For better viewing, layers are padded 10 units (nm). To change the padding value, edit the
Margin field.

5. Type the file name in the Output file field.

The recommended extension for the TCAD layout file is _lyt.mac, for example,
BiCMOS_lyt.mac.

6. Click OK.
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The corresponding script command is:

sentaurus export layout <name>_lyt.mac [-merge | -noMerge] [-margin <number>] 

Figure 94 Sentaurus Export dialog box, showing options for saving TCAD layout file

Contents of TCAD Layout File

This section describes the contents of the TCAD layout file and the differences between the
contents of the Sentaurus markup file and TCAD layout file.

Version information: Same as Contents of Sentaurus Markup File on page 299.

Setting for treating self-intersection: Same as Contents of Sentaurus Markup File.

Pointer to layout file: Commented out.

Global transformations: Commented out.

Initialization of this self-contained layout:

layout new <cell name> -dbu 1e-09

Layer declarations and display settings: Same as Contents of Sentaurus Markup File.

File end: same as Contents of Sentaurus Markup File.
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Simulation domains in a layout file are described below. Point, gauge, and highlight
coordinates are mentioned first, and all polygons associated with the given simulation domains
are listed:

■ 1D simulation domains:

point add {8900 8100} Emit1D
polygon -layer 1:0 {8890 8090 8910 8090 8910 8110 8890 8110}
...

■ 2D simulation domains:

gauge add {2100 7900 2100 10000} PMOS
rectangle -layer 1:0 {2090 10010 2110 7890}
...

■ 3D simulation domains:

highlight add {7900 7550 9900 9900} BJT3D
polygon -layer 1:0 {7890 7540 9910 7540 9910 9910 7890 9910}
...

■ Text labels:

cell object add text {layer 9:3 string "gate" coords {750 150}
mag 0.3 anchor c angle 0 mirror 0}
...

Reloading the TCAD Layout File

For debugging purposes, reload the TCAD layout file. 

To reload the file:

1. Choose File > Open.

The Open File dialog box is displayed (see Figure 93 on page 301).

2. In the Files of type field, select Macro Files (*.mac).

3. Select the required file.

4. Click Open.

NOTE Do not extract a TCAD layout from a reloaded TCAD layout. TCAD
layout files should always be extracted from the Sentaurus markup file.
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Starting ICWBEV Plus in Batch Mode and Using Macros

To extract the TCAD layout file in batch mode, add the following command to the end of the
markup file:

sentaurus export layout <name>_lyt.mac [-merge | -noMerge] [-margin <number>]
exit

To start ICWBEV Plus in batch mode, run the following command from the shell prompt:

> icwbev -nodisplay -run <name>_mkp.mac

ICWBEV Plus Macros

ICWBEV Plus macros can be used to create simple layouts. An example of a macro is:

default winding 1
layout new a -dbu 1e-09
cell transform 1.0 0.0 0 0.0 0.0
layer add 0:0
layer configure 0:0 -name {} -fill #ff0000 
layer add 1:0
layer configure 1:0 -name {} -fill #ff0000 
cell edit_state 1
polygon -layer 0:0 {0 0 0 100 50 100 50 0}
polygon -layer 1:0 {-25 25 75 25 75 75 -25 75}
select clear
catch {view default}

Tcl-Based Macros for Layout Parameterization

The macro language of ICWBEV Plus is Tcl based. Figure 95 on page 305 shows a rectangle
that has been replicated four times. The following Tcl command performed the replication:

layout new a -dbu 1e-09
layer configure 0:0 -name {}
cell edit_state 1
set SHIFTS [list 0 100 200 300 400]
foreach SHIFT $SHIFTS {

eval rectangle -layer 0:0 { $SHIFT 0 [expr 50+$SHIFT] 50 }
}
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Figure 95 Shift operation using macros

TCAD Layout Reader

The TCAD layout reader of Sentaurus Interconnect provides a file-based interface between
ICWBEV Plus and Sentaurus Interconnect. Some of its key features include:

■ Loading the TCAD layout (optional rescaling)

■ Layout query functions 

■ Selecting a simulation domain

■ Applying stretches

■ Creating masks

■ Mask-driven meshing

■ Mask-driven contact assignment

The following sections discuss these features in detail.
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Loading the TCAD Layout

To load a TCAD layout in Sentaurus Interconnect, use the command:

icwb filename=<c> [scale=<n>]

Coordinates found in the TCAD layout file are multiplied by the value of the optional argument
scale as the file is read.

For example, to load the TCAD layout file BiCMOS_lyt.mac and to apply a rescaling factor
of 1/1000 to convert the ICWBEV Plus default unit of nanometer to the Sentaurus Interconnect
default unit of micrometer, use:

icwb filename= "BiCMOS_lyt.mac" scale= 1e-3

Finding Simulation Domains

To generate a list of the simulation domains, use:

icwb list domains

For example:

set Domains [icwb list domains]
-> icwb: Domains -> Emit1D NBODY NMOS BJT3D PMOS3D

Finding Layer Names and Layer IDs

Each layer in the TCAD layout file has a unique ID of the form <integer>:<integer>, for
example 3:0. A layer also can have an optional explicit layer name such as NWELL. If no
explicit layer name has been set in ICWBEV Plus, the TCAD layout reader uses the layer ID
as the default layer name. The TCAD layout reader refers to layers always by the layer name.

To find the layer names, use:

icwb list layerNames

For example:

set LNames [icwb list layerNames]
-> icwb: LNames -> NWELL NPDIFF POLY EMIT METAL CONT ndrain ngate nsource base 
emitter collect
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To find the layer IDs, use:

icwb list layerIDs

For example:

set LIDs [icwb list layerIDs]
-> icwb: LIDs -> 1:0 2:0 3:0 4:0 5:0 6:0 7:0 8:0

Selecting the Simulation Domain

To select a single or a composite simulation domain, use one of the following commands:

icwb domain=<c> | <list-of-2d-domain-names>

icwb domain= { <domain_name1> <domain_name2> ...<domain_namen> }

For example, to select a single simulation domain (which can be 1D, 2D, or 3D), use:

icwb domain= {PMOS}

To define a composite simulation in two dimensions, use:

icwb domain= { NBODY NMOS PMOS BJTBE BJTC }

Loading a GDSII Layout

To load a GDSII layout directly in Sentaurus Interconnect, use the command:

icwb gds.file=<c> cell=<c> layer.names= {<list>} layer.numbers= {<list>}
sim2d | sim3d= {<n>} [domain.name=<c>] [scale= <n>]
[stretches= {<c>= {<n>}}]

For example:

icwb gds.file= BCD.gds cell= Inverter \
layer.numbers= "1:0 2:0 3:0 4:0 5:0 6:0 7:0 8:0" \
layer.names= "NWELL NACTIVE PACTIVE NPLUS POLY PBASE EMIT CONT" \
sim3d = "6300 3500 7750 3750" \
stretches= {lgate= {7025 3400 7025 3850}} scale= 1e-3

The domain.name argument defines the name of the simulation domain. If no name is
specified, SIM3D is used for a 3D domain, and SIM2D is used for a 2D domain.

The domain will be set to be the current domain automatically, so you do not need to call
icwb domain=<c> before using other icwb commands.
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NOTE The simulation domain and the stretches are defined using layout
coordinates. This option does not require access to ICWBEV Plus. Two-
dimensional composite simulation domains are supported using a
variation of the icwb command (see icwb.composite on page 449).

Finding Domain Dimensions

To find the domain dimensions, use:

icwb dimension

This command returns 3 for 3D simulation domains (highlight), 2 for 2D simulation domains
(gauge), and 1 for 1D simulation domains (point).

For example:

set DIM [icwb dimension]
-> icwb: dimension -> 3

Finding Bounding Box of Domain

To find the coordinates of the bounding box of the simulation domain in the global layout
coordinates, use:

icwb bbox (xmin | xmax | ymin | ymax)

For example:

set LXmin [icwb bbox xmin] ; set LXmax [icwb bbox xmax]
set LYmin [icwb bbox ymin] ; set LYmax [icwb bbox ymax]
-> icwb: Layout Bounding Box -> 7.9 9.9 7.55 9.9

To find the coordinates of the bounding box that automatically recenters the simulation domain
to start at the origin, use:

icwb bbox (left | right | back | front)

For example:

set Ymin [icwb bbox left] ; set Ymax [icwb bbox right]
set Zmin [icwb bbox back] ; set Zmax [icwb bbox front]
-> icwb: Centered Bounding Box -> 0 2.35 0 2
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NOTE Sentaurus Interconnect works with the centered coordinates. The
coordinates in Sentaurus Interconnect correspond to left, right,
front, and back. Whereas, GDS layout coordinates correspond to
xmin, ymin, xmax, and ymax. In other words, (0, 0) corresponds to (7.9
9.9) on the layout. The option !recenter can be given with the
gds.file or filename argument to switch off recentering, which is
supported in 3D simulations.

Interface With line Commands

After storing the bounding box of the simulation domain in the Tcl variables such as Ymin,
Ymax, Zmin, and Zmax, these variables can be used in line commands to define the initial
substrate and mesh in Sentaurus Interconnect. For example:

if { $DIM == 3 } {
line y location= $Ymin spacing=100.0 tag=left
line y location= $Ymax spacing=100.0 tag=right
line z location= $Zmin spacing=100.0 tag=back
line z location= $Zmax spacing=100.0 tag=front
set Ydim "ylo=left yhi=right"
set Zdim "zlo=back zhi=front"

} elseif { $DIM == 2 } {
line y location= $Ymin spacing=100.0 tag=left
line y location= $Ymax spacing=100.0 tag=right
set Ydim "ylo=left yhi=right"
set Zdim ""

} else {
line y location=-0.5 spacing=100.0 tag=left
line y location= 0.5 spacing=100.0 tag=right
set Ydim "ylo=left yhi=right"
set Zdim ""

}
eval region silicon xlo=top xhi=bottom $Ydim $Zdim

Creating Masks

To create a mask from a layer, use the command:

icwb.create.mask 
layer.name= <c> | <list>
[name= <string>] [polarity= positive | negative] 
[save.to.tdr= 0 | 1]
[shift= {<dy> <dz>}]
[stretchypos= {<yo> <dy>}] [stretchyneg= {<yo> <dy>}] 
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[stretchzpos= {<zo> <dz>}] [stretchzneg= {<zo> <dz>}] 
[reflecty= <yo>] [reflectz= <zo>]

Masks can be created in the following ways:

■ Mask name defaults to the layer name:

icwb.create.mask layer.name= POLY

■ Give an explicit name to the mask. For example, to distinguish between the positive mask
and negative counterparts:

icwb.create.mask layer.name= NWELL name= NWELL polarity= positive
icwb.create.mask layer.name= NWELL name= NOTNWELL polarity= negative

Several layers can be ORed to create a single mask. The following command illustrates the OR
procedure:

icwb.create.mask layer.name= "NPDIFF PPDIFF NPLUG PBASE" name= STI info= 1

The info argument directs more detailed information about the mask creation process to the
log file.

To automatically create mask layers with both polarities, use the command:

icwb.create.all.masks

The resulting mask names are <layername>_p for the positive version and <layername>_n
for the negative version.

The optional arguments shift, stretchypos, stretchyneg, stretchzpos, and
stretchzneg, reflecty, and reflectz allow you to modify individual layers during the
mask generation with icwb.create.mask. For example, to generate a mask that corresponds
to layer 1:0 shifted by  along the y-direction and by  along the z-direction,
use:

icwb.create.mask layer.name= 1:0 shift= {0.25 -0.1}

For 2D simulation domains, the z-shift can be omitted.

The arguments starting with the word stretch allow you to stretch individual layers in a
manner similar to the icwb stretch command. (The latter, however, is applied to all layers
and takes the location of the stretch from the TCAD layout file.) The remaining part of the
argument determines whether the stretch is applied along the y- or z-direction, and whether the
layer is stretched to the positive or negative side of the stretch position. For example, to move
the vertices of layer 1:0, which have a y-coordinate less than 1.2 by , use:

icwb.create.mask layer.name= 1:0 stretchyneg= {1.2 -0.25}

0.25 μm 0.1– μm

0.25– μm
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This command operates on layer vertex coordinates and does not check if the resulting polygon
is valid. When using these commands to shrink layers, you must ensure that the resulting
polygons are still well defined, for example, not self intersecting.

More than one shift, stretch*, and reflect* argument can be used in the
icwb.create.mask command. As these operations may not commute, you must note the
order in which these operations are applied if more than one is used. First, shift is applied,
and then stretchypos, stretchyneg, stretchzpos, stretchzneg, reflecty, and
finally reflectz are applied.

NOTE This order is hard coded and not influenced by the order the arguments
appear on the command line.

NOTE If you have a large layout with masks containing many polygons, it can
take some time until the Tcl function icwb.create.all.masks
parses and creates the masks. In this situation, you can use the command
icwb create.all.masks to create all the masks (see icwb on
page 445). This command works like the Tcl version but creates the
masks much faster.

By default, all masks are saved into a TDR file and can be reused after reloading the TDR file
in a different input file. Certain GDSII files can, however, contain layers with a very large
number of points. Saving masks created from such GDSII layers in a TDR file is usually
undesirable and is automatically suppressed. The default of the cut-off limit is 200 points per
layer. If needed, you can increase this limit with:

pdbSet GDS Max.Points <n>

In addition, you can suppress the saving any mask created from GDSII layers by setting:

pdbSetBoolean GDS Save.To.TDR 0

To overwrite the default saving behavior for an individual mask, use the save.to.tdr
argument, for example:

icwb.create.all.masks save.to.tdr= 0 | 1

icwb.create.mask layer.name= L012 name= L012_n polarity= negative \
save.to.tdr= 0 | 1

NOTE If you have a large layout with masks containing many polygons, it can
take some time until the icwb.create.all.masks Tcl function
parses and creates the masks. In this situation, you can use the command
icwb create.all.masks to create all the masks (see icwb on
page 445). This command works like the Tcl version but creates the
masks much faster. Masks created with the icwb create.all.masks
command are not saved to the TDR file.
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Mask-Driven Meshing

To create a refinement box that is tied to a mask, use:

refinebox
[(mask=<c> extrusion.min=<n> extrusion.max=<n>) [extend=<n>]

([mask.corner.mns=<n>] [mask.corner.ngr=<n>]
[mask.corner.refine.extent=<n>] |
[mask.edge.mns=<n>] [mask.edge.ngr=<n>] [mask.edge.refine.extent=<n>])]

[<other_arguments>]

Mask-driven meshing can be particularly useful when meshing in critical regions, such as the
channel and emitter areas of BiCMOS devices. The following example illustrates the use of the
POLY mask for meshing placement:

refinebox name= UnderPoly mask= POLY extend= 0.1 \
extrusion.min= -1.51 extrusion.max= -1.35 \
xrefine= 0.02 yrefine= 0.02

refinebox name= SiOxPo mask= POLY extend= 0.1 \
extrusion.min= -1.51 extrusion.max= -1.35 min.normal.size= 0.005 \
interface.mat.pairs= {Silicon Oxide Silicon Polysilicon}

The extend argument provides the option to mesh in areas wider than the mask.

Figure 96 and Figure 97 on page 313 demonstrate the use of the extend argument in the
emitter region of a BJT and the channel region of an NMOS, respectively. 

Figure 96 Meshing in emitter region of BJT; the extend parameter is set to 0.1 μm
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Figure 97 Meshing in channel region of NMOS; the extend parameter is set to 0.1 μm

Layout-Driven Contact Assignment

The icwb.contact.mask command creates contacts for subsequent device simulations that
are tied to a layer or a text label in the TCAD layout file. The command serves as an interface
between the TCAD layout and the Sentaurus Interconnect contact command by
automatically obtaining the lateral placement of the contact from the specified layout layer or
text label, taking the vertical placement from the argument list and passing all other options
directly to the contact command. The syntax of the command is:

icwb.contact.mask
(label.name=<c> [distance=<n>] | layer.name=<c>)
(box <material> [adjacent.material=<c>] [boxheight=<n>] [xhi=<n>] [xlo=<n>]
|
point <material> [replace] [x=<n>])

[name=<c>] [<other_arguments>]

The icwb.contact.mask command supports both box-type and point-type contacts:

■ A box-type contact consists of elements at the surface of one region or material inside the
box. The lateral extent of the box is determined automatically from the layer segment (two
dimensions) or the layer polygons (three dimensions), while the vertical extent is taken
from the xlo and xhi arguments of the contact command. If the xlo argument is not
explicitly given, the vertical extent is determined automatically, based on the topmost
interface with the material mentioned in the command call. The vertical extent of the box
is controlled by boxheight. If a text label name is given, the layer associated with that
text label is used.

■ A point-type contact contains all the boundary elements of one region. The lateral position
of the point is determined automatically as a point inside the layer segment (two
dimensions) or the polygon (three dimensions), while the vertical position is taken from the
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x argument of the contact command. If the x argument is not explicitly given, the vertical
position is determined automatically, based on the interfaces with the material given in the
command call. If a text label name is given, the anchor point of the text label is used.

Often, there is no layer or text label in the layout provided by designers that can be used readily
for the creation of contacts. In this case, add auxiliary layers or text labels in ICWBEV Plus to
be used as markups for device contacts.

The following example demonstrates the assignment of gate and drain contacts using layout-
driven contact assignment:

icwb.contact.mask layer.name= ndrain name= drain point aluminum \
replace x= -2.0

icwb.contact.mask layer.name= ngate name= gate box polysilicon \
adjacent.material= oxide xlo= -2.05 xhi= -1.95

icwb.contact.mask label.name= "drain" point Aluminum replace

Any other commands not explicitly handled by the icwb.contact.mask command are
passed to the contact command. The argument name is optional. If no name is given, the
label name or the layer name is used as the contact name, depending on whichever has been
specified.

Figure 98 on page 315 shows a layout on which auxiliary layers have been added for layout-
driven contact assignment. Figure 99 on page 315 shows the 2D boundary after the process
simulation with Sentaurus Interconnect depicting the gate, drain, and source contacts.
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Figure 98 Auxiliary layers added for gate, source, and drain contacts are represented by 
rectangles of solid color in the layout 

Figure 99 Final boundary after TCAD simulation showing gate (red), drain (blue), and 
source (green)
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Aligning Wafer and Simulation Domain

To correctly support tilted process steps for 2D and 3D simulation domains, the alignment
between the wafer and the simulation domain must be declared using the slice.angle
argument of the init command.

The TCAD layout reader command icwb slice.angle.offset returns the relative angle
of the active simulation domain so that the slice angle can be adjusted as needed.

Table 25 lists the returned slice.angle offset values for:

■ A 3D simulation domain (SIM3D1).

■ A 2D domain along the layout x-axis extending from left to right (SIM2DXLR) and from
right to left (SIM2DXRL), and along the layout y-axis from top to bottom (SIM2DYTD) and
from bottom to top (SIM2DYDT). 

The following commands realize a tilted process:

set SliceAngle -90
set SliceOffset [icwb slice.angle.offset]
init silicon field= Vacancy concentration= 1e13 \

slice.angle= [expr $SliceAngle+$SliceOffset]

Additional Query Functions

The TCAD layout reader of Sentaurus Interconnect provides additional layout query functions.
For example, the following command returns a list of segments in the given layer for a 2D
simulation domain:

set Segments [icwb list.segments layer.name= "<layer-name>"]

Table 25 Values of slice.angle offset for different domains

Domain Offset value returned

SIM3D1 90

SIM2DXLR 0

SIM2DXRL 180

SIM2DYDT 90

SIM2DYTD –90
316 Sentaurus™ Interconnect User Guide
N-2017.09



13: ICWBEV Plus Interface for Layout-Driven Simulations
TCAD Layout Reader
For a 3D simulation domain, the following command returns a list containing the bounding
boxes for all polygons in the given layer (this command also can be used for 2D):

set PolyBBoxes [icwb list polygon.bounding.boxes layer.name= "<layer-name>"]

For a 3D simulation domain, the following command returns a list containing a tessellated
representation of polygons in the given layer (this command also can be used for 2D):

set PolyTessel [icwb list polygon.tessellations layer.name= "<layer-name>"] 

Figure 100 Sample layout containing two polygons

For example, Figure 100 shows a simple layout containing two polygons in layer 0:0. The
following commands:

■ Load the TCAD layout file (here, called ORG_lyt.mac).

■ Select the 2D simulation domain SIM2D1.

■ Query the segment, the bounding boxes, and the tessellations:

icwb filename= "ORG_lyt.mac"
icwb domain= "SIM2D1"

set Segments [icwb list.segments layer.name= "0:0"]
LogFile "Segments $Segments"
# -> Segments 100 200 300 400 500 800

set BBoxes [icwb list polygon.bounding.boxes layer.name= "0:0"]
LogFile "BBoxes: $BBoxes"
# -> BBoxes: {100 0 200 0} {300 0 400 0} {500 0 800 0}

set Tessellations [icwb list polygon.tessellations layer.name= "0:0"]
LogFile "Tessellations: $Tessellations"
# -> Tessellations: {100 0 200 0} {300 0 400 0} {500 0 800 0}

NOTE The bounding box and tessellation queries are supported for 2D, and
they return flat rectangles. The returned y-values are the same as for the
segment query; however, zeros are padded for the z-direction.

When loading the 3D simulation domain SIM3D2, the set of rectangles returned by the
polygon.bounding.boxes query and the polygon.tessellations query are different:

icwb filename= "ORG_lyt.mac"
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icwb domain= "SIM3D2"

set BBoxes [icwb list polygon.bounding.boxes layer.name= "0:0"]
LogFile "BBoxes: $BBoxes"
# -> BBoxes: {100 100 300 400} {100 500 300 800}

set Tessellations [icwb list polygon.tessellations layer.name= "0:0"]
LogFile "Tessellations: $Tessellations"
# -> Tessellations: {100 100 150 200} {100 200 150 300} {100 300 150 400}
# {100 500 150 600} {100 700 150 800} {150 100 300 200} {150 300 300 400}
# {150 500 300 600} {150 600 300 700} {150 700 300 800}

The polygon.bounding.boxes query returns the bounding box rectangle for each polygon
in the layer, while the polygon.tessellations query breaks each polygon into a set of
rectangles and then returns these rectangles. The set of rectangles covers the same area as the
original polygon, while the bounding box rectangles may cover a larger area.

Figure 101 shows the rectangles returned by the two query functions as an ‘effective/
equivalent’ layout for better comparison with the original layout shown in Figure 100 on
page 317.

NOTE The tessellation procedure supports only polygons with axis-aligned
edges. 

Figure 101 Set of rectangles returned by (left) polygon.bounding.boxes query and (right) 
polygon.tessellations query for polygons shown in Figure 100
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This chapter presents strategies for analyzing simulation results.

Overview

This chapter covers basic tasks such as obtaining a list of materials currently in the structure,
and obtaining 1D solution profiles from 2D or 3D structures to more complex ones, such as
looping through all materials and extracting parameters for each material. The following
commands perform these tasks: interface, interpolate, layers, mater, print.1d,
select, slice, FitArrhenius, and FitLine.

All these commands are built-in procedures designed to work with the tool command language
(Tcl). These commands allow you to take full advantage of the programmability of the
Sentaurus Interconnect input language and provide a powerful framework for performing
complex customized tasks.

These commands return or accept a Tcl list to perform their respective functions. The Tcl list
can be viewed and processed by the user, passed to another function, written to a file, or read
from a file. For example, the slice command returns a Tcl list of  pairs where the  value
gives the depth  and the  value gives the value chosen with the select command. This
list can be viewed with the Tcl puts command, written to a file with the Tcl open and puts
commands, or processed with another command.

An understanding of basic Tcl commands and Tcl lists is helpful to utilize fully the flexibility
of these commands. For convenience, some basic aspects of Tcl are described to enable you to
work efficiently with these commands, and examples of basic results analysis are provided.

Saving Data Fields

Sentaurus Interconnect automatically saves all solutions along with mechanical stress results
in a TDR file. You can control the fields that will be saved in the TDR file using the
SetTDRList command (see SetTDRList on page 620).

You can create new data fields and store them in a TDR file. The following example divides
the DataField by 2 and saves the results in a data field called MyField:

sel z= "DataField/2" name= MyField store

xy x
μm[ ] y
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The parameter store ensures that the newly created field will be saved in a TDR file. To see
whether a field will be saved in a TDR file, the select command with the option permanent
can be used (see select on page 609). The following example returns 1 if the field will be saved
in a TDR file (otherwise, it returns 0):

sel name= MyField permanent

Selecting Fields for Viewing or Analysis

Most analytic tasks begin with the select command, which is used to select a data field to be
viewed or operated on (see select on page 609). A data field in Sentaurus Interconnect is a
quantity that varies over the simulation domain, such as thermal or electrostatic potential
distribution. The value of the data field is set with the z parameter of the select command.

The expression can be simply the name of a solution variable (such as Temperature or
Potential) or it can be a complex expression depending on what is required. If the expression
is the simple name of an existing data field, the select command selects this data field.

If it is more complex expression, the select command creates a corresponding data field and
then selects it, for example:

select z= Potential ;# Select Potential concentration
select z= "Potential+2*Potential" ;# Create and select a data field using

;# solution variable

The list of available data fields can be retrieved by using select list. The name that can
appear in the expression of the z parameter can be either a data field or a term.

A term is defined with the term command and is also an expression containing solution
variables, data fields, constants, and so on (see term on page 658). Numerous terms are created
automatically in the solve command (see solve on page 629), and any of these terms can be
selected.

When a data field is selected (or created and selected) with the select command, the data field
can be viewed or operated on. The following commands can operate on the selected field:
interpolate, layers, plot.1d, print.1d, print.data, and slice.

Obtaining 1D Data Cuts

After a select command has been issued, you can obtain 1D cuts through the data along one
of the principal axes using the slice or print.1d command. The slice command returns
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a list of coordinate data pairs. To make a cut perpendicular to x, specify the x parameter,
similarly for y and z.

The print.1d command returns a list of data-point lists. Each data-point list contains the
coordinate, data value, and the material name at that coordinate. Again, a cut perpendicular to
x is made by specifying the x parameter and, similarly, for the y and z cuts.

The plot.1d command can be used to view profiles with a temporary X11 graphics tool.

Examples

Sentaurus Interconnect can run in interactive mode if there is no command file given on the
command line. In this case, you are prompted with the sinterconnect> prompt for
commands. If a command file is given, commands are read from this file. In interactive mode,
the return value of the commands is always displayed. You can set variables to the return value
of a command by using the syntax:

set var [command]

In this case, command is executed and a Tcl variable var is created if it does not already exist,
and the value of var is set to the return value of command. In addition, the return value of
command is displayed. It is also possible to write the return value to a user-defined file. The
following examples demonstrate the differences and functionality of the slice and print.1d
commands:

sinterconnect> select z= MyData
sinterconnect> slice y=0.6
{-1.000000e-02 4.804720e+16
-9.340278e-03 5.869015e+16
...
0.000000e+00 5.969905e+17
0.000000e+00 7.075867e+17
7.421875e-04 7.618894e+17
...
sinterconnect> print.1d y=0.6
{ Distance         Value       Material }
{ -1.00000e-02   4.80472e+16     Oxide }
{ -9.34028e-03   5.86902e+16     Oxide }
...
{ 0.00000e+00   5.96991e+17     Oxide }
{ 0.00000e+00   7.07587e+17     Silicon }
{ 7.42188e-04   7.61889e+17     Silicon }
...
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Here, the slice command returns raw coordinate data pairs, whereas print.1d returns a
header and coordinate data–material triplets. In both cases, the coordinates are given in
micrometers and the concentration is in .

To illustrate how data from these functions can be manipulated with Tcl, suppose you require
a 1D profile of MyData, which starts with 0.0 as the first coordinate, and the MyData
concentration to be in .

First, create a Tcl list from the data returned by the slice, and convert data in that list to a new
list, such as:

set myList[lindex [slice y=0.6] 0] ;# Create a new list from slice
 # command called myList

set offset [lindex myList 0] ;# Grab the offset, that is, the
 # first coordinate

list modList ;# Create new Tcl list where 
 # modified data will reside

foreach { coord data } $myList {\
lappend modList [expr $coord-$offset] ;# Convert coordinate by subtracting

 # the offset and append to modList
lappend modList [expr $data*1.0e-12] ;# Convert data to um^-3 units and

 # append to modList
}

The above example uses the following Tcl commands; 

■ lindex retrieves a given element of a list.

■ list creates a list.

■ lappend appends an element to the end of a list.

■ expr evaluates a math expression.

■ foreach is used for looping.

For example, to write modList to a file called xy.dat:

set fileID [open xy.dat w] ;# Use the Tcl open command
# to open a file for writing

foreach { x y } $modList { puts $fileID "$x $y" } ;# Write modList line by line
close $fileID

cm 3–

μm 3–
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Determining the Dose: Layers

The layers command computes the dose of the selected data field along one of the principal
axes. The syntax to specify the cut is the same as the slice command (see slice on page 623).
As with the other commands, the information is returned as a list of lists:

sinterconnect> sel z= MyData
sinterconnect> set layerInfo [layers y=0.5]; # For a 2d structure, 

either x or y must be specified
{ Top         Bottom        Integral    Material}
{-2.06000e-01   -6.00000e-03     9.98843e+14 Silicon}
{-6.00000e-03    0.00000e+00     3.97970e+09e Oxide)
{ 0.00000e+00    1.00000e+00     2.81858e+05 PolySilicon}

The top and bottom coordinates are in micrometers. To obtain the total integrated dose along
y=0.5, use:

sinterconnect> set total 0
0
# Loop over layerInfo list of lists skipping header list,
# and retrieve the 3rd element of each list (first element has 0 index)
# which corresponds to the Integral for that layer.
sinterconnect> for { set i 1 } { $i < [llength $layerInfo] } { incr i } {
> set total [expr $total + [lindex [lindex $layerInfo $i] 2]]
> }
sinterconnect> puts $total
9.991288377e+14
sinterconnect>

In addition to the Tcl commands used in the previous section, this example uses the following:

■ llength returns the size of a given list.

■ incr increases an integer by 1.

For more information about the layers command, see layers on page 479.

Extracting Values and Level Crossings: interpolate

The interpolate command has two purposes: to obtain the position at which a profile
crosses a particular value and to retrieve a value at a particular location in space. Interpolation
is used to accomplish both tasks.
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The main arguments of this command are value, x, y, and z. The combination of these
arguments determines how the command operates on a selected data field:

■ In 1D simulations, you must supply either x or value. If x is supplied, Sentaurus
Interconnect returns the value at x. If value is supplied, Sentaurus Interconnect returns the
locations at which the selected profile crosses value.

■ In 2D simulations, two of these arguments must be given (not z).

■ In 3D simulations, three of these arguments must be given.

For example, in 2D simulations, if x and value are given, the locations along x where value
is crossed are returned. If x and y are given, the value at this location is returned.

For more information, see interpolate on page 473.

Extracting Values During solve Step: extract

The extract command is used to extract historical data during solve steps. This command
allows you to define the data extraction script with the command parameter. The extraction
script is composed typically of the select command for choosing the data field for extraction
and the interpolate command for retrieving the value at a specified location. Only values
returned by the interpolate command, at each time step, are stored in the historical data
values.

For example, to extract the potential at the position  in the silicon and the YY
component of the element stress at the position  in the oxide for each solve
substep:

extract name=etest command= {
sel z=Potential
interpolate Silicon x=0.04
sel z=StressEL_yy element
interpolate Oxide x=-0.001

}

This command must be defined before the solve step. After the solve steps of interest, the
following command retrieves the extracted data values for the defined extraction etest:

extract name=etest print

The values are returned as a Tcl list with the format:

<time1> <Potential> <Syy1> <time2> <Potential> <Syy2> ...

0.04 μm
0.001–  μm
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The following script demonstrates how to manipulate this list for more formatted output:

set extdata [extract name=etest print]
foreach { time bval sval } $extdata {

puts "$time $bval $sval"
}

Output from the above script is:

0.000000e+00 4.738727e+15 6.000000e+09
1.000000e-04 4.738727e+15 4.793201e+09
2.503231e-04 4.738727e+15 4.793201e+09
5.509694e-04 4.738727e+15 4.793201e+09
1.152262e-03 4.738727e+15 4.793201e+09
...

For more information, see extract on page 422.

Optimizing Parameters Automatically

Previously, users relied on the Optimizer tool in Sentaurus Workbench to perform parameter
optimization. Sentaurus Interconnect provides a built-in capability for automatic optimization
of parameters using the optimize command (see optimize on page 522).

To use this feature, a Tcl procedure must be created that takes as input the current values of the
parameters to be optimized, and returns a corresponding result. Although writing the procedure
is a small extra task for users, this design allows greater flexibility in the types of optimization
that can be performed. The procedure can specify anything from a simple analytic function to
a complete process simulation flow. The form of the result is a vector of values from which an
error is computed based on user-defined target data. This generic flow allows for various
applications (such as dopant profiles resulting from multiple process steps or the thickness of
an oxide layer).

To use the automatic parameter optimization feature, the Tcl procedure is introduced into an
input file or sourced from an external file before calling the optimize command.

The optimize command also allows you to weigh target values, to log the history of
optimization steps, and to specify the maximum number of iterations and other convergence
criteria.
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Fitting Routines

The following commands provide fitting capabilities.

FitArrhenius Command

This command is used to find the best prefactor and energy for an Arrhenius fit of a given
profile, for example:

sinterconnect> list dat ;# This is the list to be passed to FitArrhenius
sinterconnect> foreach temp { 700 800 900 1000 } {
> SetTemp $temp
> lappend dat $temp ;# dat will contain "temp" - "Arrhenius val" pairs
> lappend dat [Arrhenius 0.1 1.0]; ;# Arrhenius takes prefactor and

# activation energy
> }
sinterconnect> FitArrhenius $dat ;# Send the list to FitArrhenius
0.0999999308634 1.00030363776 -0.999999999866 ;# Return prefactor, energy

;# and corr factor
sinterconnect>

This command takes a list of temperature–function pairs. The unit of temperature is degree
Celsius. The return value is a list where the first member is the prefactor, the second member
is the activation energy [eV], and the third member is the correlation factor. Absolute values of
the correlation factor close to one are desirable.

FitLine Command

This command is used to find the best offset and slope for a given set of data, for example:

sinterconnect> foreach temp { 700 800 900 1000 } {
> lappend dat $temp
> lappend dat [expr 110 + 10*$temp]
> }
sinterconnect> FitLine $dat ;# Get the slope, offset, and correlation 
factor
10.0 110.0 1.0
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Storing Time Versus Resistance, Current, and Voltage

The option command allows you to store time versus resistance between two contacts, or
current at a contact, or voltage at a contact for a time-dependent simulation, for example:

option resistance= { {upper lower} }
option current= {upper lower} voltage= {upper lower}

The first command stores the resistance between the contacts upper and lower. The second
command stores the current and voltage at the same contacts versus time. More than one
contact name can be given in a list for the current and voltage options. For resistance,
a list of contact pairs must be given. For resistance information of multiple pairs of contacts,
use:

option resistance= { {upper lower} {c1 c2} }

When the time-dependent simulation is completed, the result can be written to a .plx file using
the WritePlx command (see WritePlx on page 681).

WritePlx TimeVsR resistance "upper lower"
WritePlx TimeVsI current "upper lower"
WritePlx TimeVsV voltage "upper lower"

The first command creates a file called TimeVsR.plx and writes time-versus-resistance values
for the contacts upper and lower. The second command creates a file called TimeVsI.plx
and writes time-versus-current values for the contacts upper and lower. The third command
creates a file called TimeVsV.plx and writes time-versus-voltage values for the contacts
upper and lower.

Optionally, file.name can be used in the option command to store the results in a file:

option resistance= { {upper lower} } file.name= TimeVsR.plx

The option command also can be used to store circuit information. For circuit simulations, it
can store time-versus-total current between a circuit element and a node, and time-versus-total
voltage at a node, for example:

option current= { {r1 left} {V2 grnd} }
option voltage= {left grnd}

The first command stores time versus total current between the pairs, circuit element r1 and
node left, and also between circuit element V2 and node grnd. The second command stores
the time-versus-voltage values for the circuit nodes left and grnd. To write the results to
a .plx file, use WritePlx:

WritePlx TimeVsI current "r1 left"
WritePlx TimeVsV voltage "left"
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The first command creates a TimeVsI.plx file and writes the time-versus-current between the
circuit element r1 and circuit node left. The second command creates a TimeVsV.plx file
and writes the time-versus-voltage values for the circuit node left.

NOTE When time-versus-variable files are written, they begin at time t=0. For
mixed-mode simulations, isolve is switched on by default in the
solve command and, therefore, a steady-state solution at t=0 is
obtained, which is written to the file. However, when performing
structure-only simulations, isolve is not switched on by default and,
therefore, the solution at t=0 is the initial guess supplied to the
simulation. If a more accurate representation of the starting point is
needed using an initial steady-state solution, isolve must be switched
on. However, consider that this could be computationally expensive.
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This chapter discusses numerics-related issues, time integration
methods, and the linear solvers used in Sentaurus Interconnect.

Overview

In Sentaurus Interconnect, during the simulation of solve steps, different sets of nonlinear
partial differential equations must be solved:

■ Thermal

■ Electrical

■ Stress equations

These equations are solved on the simulation mesh using a trapezoidal rule/backward
differentiation formula (TRBDF) time discretization, a finite volume (box) method for the
spatial integration, and a Newton method to solve the nonlinear equations.

For the discretization of the nonlinear stress equations, piecewise linear finite elements are
used. If stress history is tracked, the stress equations are solved, not only during the simulation
of thermal and electrical solution steps, but also at the end of etch and deposit steps.

Various direct and iterative solvers are integrated in Sentaurus Interconnect to solve the large
systems of linear equations in each Newton iteration. By default, for all equations in 1D
simulations and for mechanics equations in 2D simulations, the parallel direct solver
PARDISO is used. For diffusion equations in two dimensions and for all equations in three
dimensions, the iterative solver ILS is used. The solver can be selected using the math
command:

math ils

This command selects the solver ILS for all types of equation in 1D, 2D, and 3D. Separate
selections can be made for the various spatial dimensions and for the solution of mechanics,
thermal, and electrical equations. 

The parameters Flow and compute select the type of equation, and the parameter dim
specifies the spatial dimension:

math Flow    dim=2 ils
math compute dim=2 pardiso
math Flow    dim=3 pardiso
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If a direct solver is used, a modified Newton method is used by default; Sentaurus Interconnect
tries to avoid the recomputation and factorization of a new matrix and will reuse the last
factorized matrix, as long as the convergence rate remains sufficiently high. For the iterative
solvers, by default, a modified Newton scheme is used as well. 

The math command is used to specify various parameters for the Newton iterations and to
define resources and specifications for the linear solvers (see math on page 501).

For the default settings for ILS, refer to the Parameter Database (PDB). More detailed settings
for ILS can be made using pdbSet commands as described in the next section.

Setting Parameters of the Iterative Solver ILS

The iterative solver ILS is used by default to solve the linear systems for mechanics, thermal,
and electrical analyses in 3D simulations. Default parameters for ILS have been added to the
parameter database. To specify modified parameters for ILS, such as the type of iterative
scheme, the number of iterations, the output verbosity, or the memory resources, use the
pdbSet commands.

NOTE In the pdbSet commands, parameters must be specified separately for
each type of problem (Flow or compute) and for each dimension (1D,
2D, or 3D).

NOTE ILS is not recommended for use in 1D simulations because of the simple
structure of matrices arising in 1D cases. The default direct solver
PARDISO is the correct choice for 1D simulations.

Different ILS parameters can be specified both in 2D or 3D. In general, the pdbSet command
for the ILS parameters has the form:

pdbSet Math [compute | Flow] [2D | 3D] ILS.[command] [value]

The following ILS commands are available:

ILS.compact Boolean
ILS.fgmres.restart         Double
ILS.gmres.restart          Double
ILS.fit Double
ILS.ilut.tau               Double
ILS.leftPreconditioner     Boolean
ILS.maxit Double
ILS.method                 String
ILS.nonsymmOrdering        String
ILS.okayForModNewton       Boolean
ILS.preconditioner         String
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ILS.recompute.ordering     Double
ILS.refine.residual        Double
ILS.refine.iterate Double
ILS.scaling                String
ILS.symmOrdering           String
ILS.tolabs                 Double 
ILS.tolrel                 Double 
ILS.tolunprec              Double 
ILS.useILSRCFile           Boolean 
ILS.verbose                Double 

To select the GMRES method, for example, gmres(60), use:

pdbSet Math compute 3D ILS.method gmres
pdbSet Math compute 3D ILS.gmres.restart 60

To specify the FlexibleGMRES method, for example, fgmres(40), to solve the stress
equations, use:

pdbSet Math Flow 3D ILS.method fgmres
pdbSet Math Flow 3D ILS.fgmres.restart 40
pdbSet Math Flow 3D ILS.fit 5

To select the efficient reuse mode (on each 3D solution time step, the costly reordering is
applied only once to a first Jacobian system), specify:

pdbSet Math compute 3D ILS.recompute.ordering 2

and to return to reordering for every system, use:

pdbSet Math compute 3D ILS.recompute.ordering 1

To improve the accuracy and convergence of iterative linear solvers, use an enhanced option by
specifying (default value is 0):

pdbSet Math [compute | Flow] [2D | 3D] ILS.refine.iterate 1

   To select the solvers for mechanics, STS2 or STCG2 for 2D, and STS3 or STCG3 for 3D, for
example, sts3, use:

pdbSet Math Flow 3D ILS.method sts3
pdbSet Math Flow 3D ILS.tolrel 1e-10
pdbSet Math Flow 3D ILS.ilut.tau 5e-4
pdbSet Math Flow 3D ILS.scaling diagsym
pdbSet Math Flow 3D ILS.nonsymmOrdering none

For the mechanics solvers STS2, STS3, STCG2, and STCG3, it is mandatory to specify
ILS.scaling as diagsym, and ILS.nonsymmOrdering as none. It is also recommended
to specify the value for the parameter ILS.ilut.tau in the range of – .5 4–×10 5 5–×10
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To improve convergence of the mechanics solver STS2 or STS3, use an enhanced version of
the solver by specifying, respectively (default value is 0):

pdbSet Math Flow 2D ILS.refine.sts 1

or:

pdbSet Math Flow 3D ILS.refine.sts 1

The enhanced version takes advantage of results from previous solve steps, so the actual
performance gain can vary depending on the simulation setup, and it performs best when there
is a sequence of mechanical solve steps, as in temperature ramps.

To active the STS solver which improves robustness and speed, use:

pdbSet Math Flow 3D ILS.refine.sts 2

Partitioning and Parallel Matrix Assembly

Sentaurus Interconnect can assemble the solution matrix in parallel on multicore machines. To
switch on the parallel assembly, use:

math numThreads=<i> | numThreadsAssembly=<i>

where numThreads is the number of threads that would be used during the matrix assembly.
numThreads is a general keyword (see math on page 501) used by linear solvers. If you want
to use a different number of threads for matrix assembly, use the keyword
numThreadsAssembly. If the number of threads is greater than 1, Sentaurus Interconnect first
creates the threads.

To modify the thread stack size, use:

math threadStackSize=<i>

NOTE It is recommended that numThreadsAssembly equals the number of
actual CPUs that the computer contains. Parallel assembly of the matrix
is not recommended for moving-boundary problems.

Sentaurus Interconnect then partitions the mesh structure into levels, and each level is divided
into different domains at the beginning of the solve step. For example, Figure 102 on page 333
shows a structure with three levels. The first level (blue) (L0) has four domains: D0, D1, D2,
and D3. Elements belonging to each domain on the same level do not cross over to the other
domains. The second level (orange) (L1) also has four domains: D0, D1, D2, and D3. Again,
the elements on the same level do not cross over to the other domains. The third level (green)
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(L2) has only one domain: D0. This is the last level and contains all the elements not included
in the previous levels.

To control the partitioning, use:

math maxNumberOfDomains=<i> | NumberOfElementsPerDomain=<i>

NOTE The maxNumberOfDomains argument is the maximum number of
domains that each level of partition can have. It is recommended that
maxNumberOfDomains is equal to or greater than the number of
threads used. The argument NumberOfElementsPerDomain is the
number of elements that should go to each domain.

Figure 102 Partitioned mesh structure

The final number of domains at each level is determined by: 

(117)

To partition the mesh, based on material type, give weight to each material using the command:

pdbSet <material> PartitionWeight <n>

domains min maxNumberOfDomains
Number of Edges

NumberOfElementsPerDomain
-----------------------------------------------------------------------------------( , )=
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For example:

pdbSet Silicon PartitionWeight 10
pdbSet Gas PartitionWeight 0

gives more weight to silicon mesh elements than the gas mesh elements during partitioning.
This allows Sentaurus Interconnect to distribute the work among the threads more evenly since
there is no matrix assembly for the gas mesh.

Partition weights for mechanics assembly can be specified separately with:

pdbSet <material> Mechanics PartitionWeight <n>

This allows balancing the workload among threads according to the stress analysis methods for
different material behaviors. If the partition weights for mechanics assembly are not defined,
the partition weights for PDE assembly are used by default.

Matrix Size Manipulation

The size of the matrix used during PDE assembly is automatically determined based on the
number of solution variables and nodes in the structure. In most cases the allocated matrix size
is more than sufficient. If the matrix size becomes insufficient during the assembly, the matrix
size will be increased automatically by 10%. You can change the default 10% value by using
the command:

pdbSet Math Matrix.Size.Scale <n>

where the value <n> should be greater than one.

You also can increase the automatically determined matrix size using the command:

pdbSet Math Assembly.Matrix.Size.Scale <n>

where the value <n> should be greater than one.

NOTE Be careful when choosing the matrix scaling values because it can
exhaust the computer memory for large scaling values.

Node and Equation Ordering

Because the order of nodes in meshes does not follow a specific order by default, adjacent
nodes may be far from each other in the internal node list. The order may not have much effect
334 Sentaurus™ Interconnect User Guide
N-2017.09



15: Numerics
Time Integration
on simulation time for small examples (such as 2D), but it may degrade 3D results. The nodes
in the structure can be ordered meshwise or globally using the command:

pdbSet Math <1D | 2D | 3D> Reorder.Nodes <model>

where <model> is None (default), Mesh, or Global.

The default order of equation numbering in the structure is based on the meshes. Each node in
the mesh receives an equation number from a solution variable and the same is repeated for the
next solution. This may create many distributed entries in the assembly matrix. Again, the order
may not greatly affect the simulation time for small examples (such as 2D), but it may degrade
3D results. It is possible to number equations based on solutions by taking a node in the mesh,
numbering it for each solution variable, and moving to the next node in the mesh. This creates
better-distributed entries in the assembly matrix. The order can be changed using the
command:

pdbSet Math <1D | 2D | 3D> Reorder.Equations <model>

where <model> is None (default) or Solution.

Time Integration

The TRBDF method [1] is used for time integration by default for time-dependent problems.
It also is possible to choose the backward Euler method for the time integration. The following
command can be used to switch between methods:

math [tr_bdf | euler]

A TRBDF integration step consists of a trapezoidal step followed by a backward difference
step. A second trapezoidal solution is used to estimate the local truncation error and to
determine the size of the next time step. 

The local truncation error can be estimated by either a Milne’s device (the default method) or
the divided difference method. The following command switches between methods:

math [milne | difference]

The local truncation error for the next time-step estimation can be modified using the
command:

pdbSet Math Time.Step.Function {<model>}

where <model> is Damped, UnDamped, or Linear. The Damped model applies a logarithmic
damping function to the truncation error if the error is greater than 1.0. The UnDamped model
does not modify the error. The Linear model applies a linear damping function to the
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truncation error if the error is greater than 1.0. The Linear model matches that of
TSUPREM-4.

When the geometry of a simulation structure evolves, one cycle of the TRBDF time integration
requires the geometric coefficients at three incidents, that is, . To
reduce the computational time to calculate the geometric coefficients, especially in three
dimensions, the geometric coefficients at  can be set to the interpolated values by
assuming that the coefficients change linearly during , which reduces the number of the box
method calls by one third:

pdbSet Math 3D Use.Interpolated.Geom.Coeff 1

or:

math dimension=3 use.interpolated.geom.coeff

Time-Step Control

This section discussed different time-step controls.

Time-Step Control for PDEs

Sentaurus Interconnect provides automatic time-step control. You can modify some of the
control parameters.

The first time step of the solve command uses the initial time given with the solve command
(see solve on page 629).

In an ideal situation, mechanics and PDE solve time steps are equal to each other, and the next
time step is increased by the IncreaseRatio:

(118)

where  is the next time step,  is the current time step, and  is the IncreaseRatio.
The default for IncreaseRatio is 2.

Use the following command to change IncreaseRatio:

pdbSet Compute IncreaseRatio {<n>}

In some cases, the ideal time step can be solution limited or reduced:

■ Solution limited is the case when the time step is shortened to decrease the local truncation
error; in a log file, such steps are marked by (s).

t t0 t0 ΔtTR+ t0 Δt+, ,=

t t0 ΔtTR+=
Δt

tn 1+ Iratiotn=

tn 1+ tn Iratio
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■ Reduced is the case when the time step is reduced to prevent overstepping of  mechanics
steps; in log files, such steps are marked by (r).

If convergence is not achieved, the next time step is reduced by the ReduceRatio:

(119)

The following command can be used to change ReduceRatio:

pdbSet Compute ReduceRatio {<n>}

For more information about the convergence during solve steps, use the command:

pdbSet Compute Convergence.Info <1 | 0>

Typical output with information level=2 will look like:

Iter Lin  Potential   Vacancy
  1    8  1.526e-03 1.007e+01
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
Mesh: Copper_1         Mater: Copper
        Org. Val. Org. Updt. Org.-Updt Apld. Updt.  Error    Location
Vac     3.5e+14   5.5e+13    2.9e+14   2.9e+14   1.5e+03 (4.82e-01 1.0e+00  1.00e+00) (UCS)
                                                         (1.00e+00 1.0e+00 -4.82e-01) (DFISE)
Largest update: Vac in Silicon @ (5.01e-01 1.00e+00  1.00e+00) (UCS)
                                 (1.00e+00 1.00e+00 -5.01e-01) (DFISE)

where:

■ Org.Val is the original value at the node.

■ Org.Updt is the original update at the node.

■ Org.-Updt is the Original Value – Original Update.

■ Apld. Updt. is the applied update.

■ Location is the location (in ) of the node in both the unified coordinate system (UCS)
and the DF–ISE coordinate system.

Different time-step control models are available:

■ Two history-based models involving all previous time steps within the solve command:
BPTS and NGLTS.

BPTS uses the biggest previous time step from the history, such that Eq. 118 is modified as:

(120)

NGLTS uses the latest nongrid limited time step, and Eq. 118 is modified as:

(121)

t̃n 1+ Rratiotn 1+=

μm

tn 1+ IratiotBPTS n,=

tn 1+ IratiotNGLTS n,=
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Use the following command to choose the time-step control model:

pdbSet Compute TSEM <model>

where <model> can be None, BPTS, or NGLTS.

Error Control for PDEs

To control errors during transient simulation, Sentaurus Interconnect uses the following to
calculate the error:

(122)

where the sum is taken over all solution variables, and  is the update for solution .
TransRelErr and AbsErr are the transient relative error and absolute error for the solution
variables, respectively. They can be set using the commands:

pdbSetDouble <mater> <solution> Transient.Rel.Error <n>
pdbSetDouble <mater> <solution> Abs.Error <n>

where <mater> is the material name.

To control errors during nonlinear Newton iterations, Sentaurus Interconnect uses the
following to calculate the error:

(123)

where RelErr is the relative error for the solution variables. It can be set using the command:

pdbSetDouble <mater> <solution> Rel.Error <n>

NOTE If the error control parameter is not defined in the PDB for a material or
a solution, the long-hand command pdbSetDouble must be used.

Time-Step Control for Mechanics

Automatic time-step control for mechanics is activated only if the structure contains certain
nonlinear features that require Newton iterations, such as CZM, plasticity, viscoplasticity, and
creep. The size of the time step is adjusted based on satisfaction of certain convergence criteria.
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Convergence Criteria

To check the convergence of Newton iterations for mechanics equations [2][3], the criteria are:

■ Force residual

■ Energy

■ Displacement

The force residual criterion checks the satisfaction of force equilibrium by comparing the
maximum norm of the residual ( ) against a reference value:

(124)

The reference value of the force residual is computed automatically by taking a norm of the
element force residual vector at the first Newton iteration in a time step.

The energy criterion checks the satisfaction of the minimization of energy at equilibrium by
comparing the change in energy against a reference value:

(125)

The reference value of energy is computed automatically by taking a dot product of the force
residual and the displacement increment ( ) vector at the first Newton iteration in a
time step.

The displacement criterion checks the satisfaction of the solution accuracy by comparing the
maximum norm of the displacement increment against a reference value:

(126)

The reference value of displacement is computed automatically by taking a norm of the
displacement increment vector at the start of the first Newton iteration in a time step.

The force residual and the energy criteria are checked by default. Optionally, the energy
criterion may be replaced by the displacement criterion. Use the following parameters to
activate or deactivate any of the convergence criteria:

pdbSet Mechanics Convergence.Force.Check <n>
pdbSet Mechanics Convergence.Energy.Check <n>
pdbSet Mechanics Convergence.Displacement.Check <n>

where <n> is either 0 (deactivate) or 1 (activate).
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The choices for the force residual and the displacement reference value norms that can be set
using the following command are:

pdbSet Mechanics Convergence.Check.Norm [RMS | ABS]

where RMS refers to the root mean square value (default) and ABS refers to the mean absolute
value.

The reference values for any of the convergence criteria can be changed by using the
commands:

pdbSet Mechanics Convergence.Force.RefVal <n>
pdbSet Mechanics Convergence.Energy.RefVal <n>
pdbSet Mechanics Convergence.Displacement.RefVal <n>

where <n> is a suitable positive value.

By default, the tolerance for each of the convergence criteria is set to 0.001 and can be changed
by using the commands:

pdbSet Mechanics Convergence.Force.Tolerance <n>
pdbSet Mechanics Convergence.Energy.Tolerance <n>
pdbSet Mechanics Convergence.Displacement.Tolerance <n>

where <n> is a value between 0.0 and 1.0.

Convergence criteria are checked in every iteration until either they are satisfied or the
maximum number of Newton iterations is reached. The default value for the maximum number
of Newton iteration is 8, and this can be changed using the command:

pdbSet Mechanics MaxIterations <n>

where <n> is a value greater than zero.

Time-Step Adjustment

The first time step for solving mechanics equations is set to the initial time given with the
solve command. The size of subsequent time steps is decided based on the convergence
history of the preceding time step. The time-step size is extended if the preceding time step
converges quickly. The maximum value is limited to the maximum time given with the solve
command. The time-step size is reduced if the preceding time step takes too many iterations to
converge; it remains unchanged if the preceding time step takes a moderate number of
iterations to converge.

The time-step size also is adjusted to keep the viscoplastic or creep strain error or value within
tolerance when using such material models. The viscoplastic strain error or value is checked
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for the Anand model (see Anand Model on page 59), while the creep strain error or value is
checked for power law creep and the standard linear solid model (see Power Law Creep on
page 62 and Standard Linear Solid Model on page 48). Use the following commands to change
the default settings for the viscoplastic or creep strain error or value:

pdbSet Mechanics StrainVP.Error.Tolerance <n>
pdbSet Mechanics StrainVP.Value.Tolerance <n>
pdbSet Mechanics StrainCr.Error.Tolerance <n>
pdbSet Mechanics StrainCr.Value.Tolerance <n>

where <n> is a value between 0.0 and 1.0 for both. By default, only the viscoplastic or creep
strain error criterion is used with a tolerance of 0.02.

Time-Step Cutback

An automatic time-step cutback procedure interrupts the Newton iteration loop and restarts the
time step with a smaller size when any of the following issues is encountered:

■ Convergence criteria are not satisfied within the maximum number of Newton iterations.

■ The solution converges very slowly over several iterations.

■ The solution diverges over several iterations.

■ Convergence criteria are satisfied, but viscoplasticity equations fail to converge.

■ Convergence criteria are satisfied, but the viscoplastic or creep strain error or value is
greater than the tolerance.

To check convergence details during solve steps, specify info=1 in the solve command.

For more information about convergence during solve steps, use the command:

pdbSet Mechanics Convergence.Info <1 | 0>

Typical output with information level=2 is:

-Iter 1
lin norm 4.6088e-13 vel err 27.792

-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 
          Mesh: region_1         Mater: Metal

Org. Val. Update New Val. Error Location
Velocity_y 1.95e-05 -5.31e-05 -3.35e-05 5.20e+01 (0.00e+00 0.00e+00 4.64e-03) (UCS)

(4.64e-03 0.00e+00 0.00e+00) (DFISE)
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 

Largest update: Velocity_y in Metal @ (-3.94e-02 0.40e+00 0.00e+00) (UCS)
( 0.00e-00 0.40e+00 3.94e-02) (DFISE)

-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 
Mechanics Assembly time: 0.09s
Maximum Residual 2.7020e+07 Reference Value 3.4748e+07 Tolerance 1.0000e-03
Energy 1.5095e+03 Reference Value 5.7383e+03 Tolerance 1.0000e-03
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where:

■ Org. Val. is the original value at the node.

■ Update is the update at the node.

■ New Val. is Org. Val. + Update.

■ Maximum Residual is the maximum norm of the force residual over the entire structure.

■ Energy is the square root of the maximum norm of change in energy over the entire
structure.

■ Location is the location (in ) of the node in both the UCS and the DF–ISE coordinate
system.
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CHAPTER 16 Writing Partial Differential 
Equations Using Alagator

This chapter discusses how to specify partial differential equations
and boundary conditions for use in simulations using the Alagator
scripting language.

The partial differential equations (PDEs) are expressed in a Newton iteration–ready form and
are specified as strings that are assumed to equal zero. Most mathematical operators are
supported, and operators for differential terms are available.

Care must be exercised with the Tcl expansion of variables and strings because, usually, users
want variables to be evaluated at runtime, not when they are read.

Available Operators and Variables

The operators and variables of the Alagator scripting language include binary operators, simple
functions, differential functions, string names, solution names, subexpressions, constants, and
parameters.

Binary and Unary Operators

Most common binary algebraic operators are supported. Unary negation is also supported with
the usual mathematical rules applying. Table 26 lists the supported binary and unary operators
in order of precedence. Parentheses are supported for grouping operations.

NOTE The unary minus (-) and power (^) operators have nonstandard
precedence. 

Table 26 Precedence of supported binary and unary operators

Operator Description

- Unary minus

^ Power; for example, to raise  to the  power, use: 
a^b

*, / Multiplication, division

a b
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Many comparison operators are implemented. These do not support derivative operations, so
they cannot be used with the grad operator (see Differential Functions on page 345). However,
they can be used in the select command (see select on page 609).

Logical operators and (&&) and or (||) are provided for use with callback procedures and
initialization. When these operators are used as part of a PDE, care must be taken as the Newton
method does not ensure convergence for problems that are not first-order continuous.

The conditional operator (?:) takes three operands:

■ The first operand is a condition.

■ The second operand is the value of the entire conditional expression if the condition is true.

■ The third operand is the value of the entire conditional expression if the condition is false.

NOTE When using the conditional operator (?:), use parentheses around the
expressions to ensure the correct order of evaluation.

For example, the command:

select z= "(MyData>1e15) ? (1e15) : (MyData)" name= MyData

sets the value of MyData to  on mesh points where MyData is greater than  and
does not change MyData on mesh points where MyData is smaller than . Since the
select command works on mesh points, the conditional operator is very useful for truncating
profiles.

+, – Addition, subtraction

<, <=, >=, >, ==, != Equality, inequality
NOTE Care must be used with equals and not equals, since a comparison of floating-
point values in this way can be problematic.

&& Logical and 

|| Logical or 

?: Conditional operator

, Comma operator for lists

Table 26 Precedence of supported binary and unary operators

Operator Description

1 15×10 1 15×10
1 15×10
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Simple Functions

All simple functions take one argument that must be enclosed in parentheses. The argument
can be any expression. Most common functions are available, including:

■ ‘exp’ natural exponentiation

■ ‘log’ natural log

■ ‘log10’ log base 10

■ ‘sqrt’ square root

In addition, the complementary error function ‘erfc’ and error function ‘erf’ are provided to
help build initial doping profiles. All of these functions have supported derivatives and can be
used in the specification of PDEs.

The ‘abs’ function and the ‘sign’ function provide an absolute value and a sign operation,
respectively. The sign operation returns +1 if the argument is greater than zero and returns –1
if the argument is less than zero. These functions do not provide derivatives and cannot be used
as part of a PDE.

Differential Functions

Differential functions are used in PDEs only and are not evaluated with the select command.
The differential operators are ddt and grad.

Time derivatives are supported with the ddt operator. It takes a single argument and computes
the first-time derivative of the argument for use in a PDE. Time-step integration is provided
automatically using the Bank–Rose trapezoidal rule/backward differentiation formula
(TRBDF) method [1].

A simple gradient is supported with the grad operator. Implied is the evaluation in a discrete
sense and the integral around a control volume. For this reason, the divergence (div) operator
is not required. For example, A*B*grad(C) is treated as div(A*B*grad(C)).

NOTE Sentaurus Interconnect automatically calculates the divergence if the
term includes the grad operator.
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String Names

Strings that are not recognized as real numbers, operators, or functions are compared to four
sets of possible matches:

■ The first set is valid solution names created with the solution command (see solution on
page 626).

■ The second set is named subexpressions created with the term command (see term on
page 658).

■ The third set is the data field name.

■ Finally, any remaining strings pass to the Tcl expression function to see whether they can
be parsed to a real number constant. This allows parameters from the parameter database
to be used in PDEs.

Solution Names and Subexpressions

Solution names must match exactly the string specified in the solution name=<c>
command (see solution on page 626). This is important because solution names link PDEs to
the variables to be solved. Derivatives are taken automatically of all equations with respect to
each solution name found in the PDE.

Terms are useful for common subexpressions (see Using Terms on page 350). The term name
used in the PDEs must match exactly the string specified in the term name=<c> command
(see term on page 658).

NOTE Terms and data fields with the same name can coexist in a structure.
During equation parsing, the term name has higher priority than the data
field name for a region.

Constants and Parameters

Anything that does not match the name of a term or solution passes to the Tcl expression parser
to see whether it evaluates as a valid expression. The result is treated as a constant. The
evaluation of the expression is performed again in the code if the temperature or time changes,
so that parameters can have explicit dependencies on these values.

When defining parameters, care must be given to nested declarations. Especially when
parameters are derived using the pdbDelayDouble command from other parameters, the Tcl
expression parser may be unable to expand the entire expression and evaluate it correctly.
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For example:

pdbSetDouble Si Test Param1 {[Arrhenius 1 2]} (1)
pdbSetDouble Si Test Param2 {2.0*[pdbDelayDouble Si Test Param1]} (2)
pdbSetDouble Si Test Param3 {2.0*[pdbGetDouble   Si Test Param1]} (3)
pdbGet Si Test Param2                                            (4)
pdbGet Si Test Param3                                            (5)

Lines 1–3 set Param1, Param2, and Param3. Both Param2 and Param3 are derived
parameters from Param1. While Param2 uses pdbDelayDouble to obtain the value of
Param1, Param3 uses pdbGetDouble. When retrieving data, line 4 will return an error
message, and line 5 will return a valid double number without an error message.

The error message is issued because pdbDelayDouble returns an expression of Param1,
which is treated as a string by the Tcl expression parser during the evaluation of Param2.

To prevent such errors, Param2 can be encapsulated with the expr command, for example:

pdbSetDouble Si Test Param2 {[expr 2.0*[pdbDelayDouble Si Test Param1]]}

NOTE If Sentaurus Interconnect cannot evaluate an expression correctly, it
assumes that it is zero.

Basics of Specifying Partial Differential Equations

In this section, an example is used to illustrate how to specify PDEs using the Alagator
scripting language. The general expression for diffusion of species  is given by:

(127)

This will be translated to the Alagator language as:

ddt(CX)-D*grad(CX) = 0

where CX is the solution variable and D is the diffusivity term (see Using Terms on page 350).

NOTE The divergence (div) operator is not specified in front of D*grad(CX)
because it is implied and computed as part of the discretization of PDEs.
Whenever the grad operator is in a term, it is assumed that the
divergence will be taken of that term during assembly.

NOTE The argument of the grad operator must be a function of the solution
variable.

CX

∂CX

∂t
---------- ∇ D∇CX•=
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NOTE Since the examples in this section use parameters that are not in the
parameter database, long-hand pdbSet commands are used (see pdbSet
and Related Commands on page 540).

Building Partial Differential Equations

The simplest diffusion equation uses a constant diffusivity and can be described by Fick’s first
law and second law. Two main steps are required to initialize and solve this equation:

1. A solution must be defined (see solution on page 626).

2. An equation must be entered into the parameter database.

A minimum of two commands can accomplish this, for example:

solution name=CX add !negative !damp solve
pdbSetString Silicon CX Equation "ddt(CX) - [Arrhenius 0.138 1.37]*grad(CX)"

The first command creates a new solution named CX and adds it to the solution list. The solution
cannot take negative values, and numeric damping is not applied to the updates of the Newton
iteration. The solution must always be solved.

NOTE Aliases are defined only for pdb commands. The solution name used in
PDEs must match exactly the one specified with the solution
command.

The second command creates an entry in the parameter database for the material Silicon and
the solution variable CX. An entry is made for an Equation, which is the predefined entry that
Alagator looks for to find a PDE. The string value is the PDE that will be solved for this
variable in this material.

In this example, the PDE to be solved is:

d(CX)/dt-div(0.138*exp(-1.37/kT)*grad(CX))=0

Here, k is the Boltzmann constant and T is the temperature.

NOTE In the second command, [Arrhenius 0.138 1.37] is evaluated and
converted to "(0.138*exp(-1.37/((Temperature)*
8.617383e-05)))". The Arrhenius function is a predefined helper
function that allows for the simple creation of Arrhenius expressions. It
uses the local temperature.
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Setting the Boundary Conditions

After defining a solution and entering the equation into the parameter database, you need to set
boundary conditions.

Dirichlet Boundary Condition

The previous example can be enhanced by adding a boundary condition. For simplicity, it is
assumed that the surface concentration of variable CX is  at the Gas_Silicon
interface.

The following commands create this boundary condition, and both commands work on the
gas–silicon interface for the CX variable:

pdbSetBoolean Gas_Silicon CX Fixed_Silicon 1
pdbSetString Gas_Silicon CX Equation_Silicon "CX_Silicon - 5.0e19"

The first command indicates that the value will be set on the silicon side (with the _Silicon
option on Fixed), that is, a Dirichlet boundary condition will be applied. The keyword Fixed
is used only with the Dirichlet boundary condition. Fluxes will be ignored at this node and the
boundary condition will control the concentration. Specifying Fixed_Silicon is critical
because there can be three components on any interface: one for each material and one for the
interface.

The second command sets the boundary condition equation. The CX variable has _Silicon
appended to indicate that the concentration of  is set on the silicon side.

NOTE Equations are set to zero by definition.

NOTE Interface names are ordered alphabetically. Most interface names are set
to the correct order using the alias command (for example,
Silicon_Gas will be interpreted as Gas_Silicon). If a new interface
name is introduced, the order must be followed.

5 19×10  cm 3–

5 19×10  cm 3–
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Segregation Boundary Condition

If a segregation-type boundary condition is needed, for example, at the oxide–silicon interface,
use the following commands:

pdbSetString Oxide_Silicon CX Equation_Oxide "(1.6e-7*(CX_Oxide - \
CX_Silicon/0.28))"

pdbSetString Oxide_Silicon CX Equation_Silicon "-(1.6e-7*(CX_Oxide - \
CX_Silicon/0.28))"

This boundary condition assumes that an equation for CX is solved in the oxide region as well.
Otherwise, the equations would be unbalanced at this interface.

Both commands work on the oxide–silicon interface. The _Silicon and _Oxide options on
Equation indicate the side of the interface to which the given flux will be applied. The same
options on the solution variable CX indicate whether the solution variable value at this interface
is taken from the oxide side or the silicon side.

NOTE The fluxes have opposite signs. The first number ( ) in the flux
equation is the transfer coefficient, and the second number (0.28) is the
segregation coefficient.

Using Terms

A term is a common subexpression that can be used in multiple instances or to retrieve
information. When the term appears in multiple equations, it reduces the maintenance of
equations, and the values are easily retrieved from memory and accumulated. The previous
example can be modified in the following way (see term on page 658):

term name= D Silicon eqn= "[Arrhenius 0.138 1.37]" store
pdbSetString Silicon CX Equation "ddt(CX) - D * grad(CX)"

The first command creates the D term, not a local variable. The dollar sign (indicating a Tcl
variable) is no longer needed for D in the subsequent equation.

The terms are retained until you exit the simulator, so they can be used in other PDEs or in a
select command (if you want to monitor the diffusivity of CX).

   

1.6 7–×10
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Modifying Built-in Equations and Terms

Sentaurus Interconnect builds equations and terms for known solution variables by default. If
you want to add a new expression to an existing equation or term, or to subtract a new
expression from an existing equation or term, you can use one of the following commands:

■ UserAddEqnTerm 

■ UserSubEqnTerm 

■ UserAddToTerm 

■ UserSubFromTerm 

NOTE Do not use these commands within callback procedures. They are
designed to change PDEs without using callback procedures (see Using
Callback Procedures to Build Models on page 353).

NOTE All commands are saved to TDR files. If the command file is split, the
commands must not be included in the new command file. However, if
a user-defined variable or term is used with these commands, the
variable or term must be included in the new command file, or the
variable must be saved with the define command (see define on
page 398) and the term must be stored using the store argument (see
term on page 658).

UserAddEqnTerm and UserSubEqnTerm

The UserAddEqnTerm and UserSubEqnTerm commands allow you to add a new expression
to an existing solution variable equation or to subtract the new expression from an existing
solution variable equation. The commands have the format:

UserAddEqnTerm <material> <solution> <expression> <side> \
overwrite | !overwrite

UserSubEqnTerm <material> <solution> <expression> <side> 
overwrite | !overwrite

where:

■ <material> is any valid material name.

■ <solution> is any valid solution variable name.

■ <expression> is the new expression to be added to or subtracted from the solution
variable.
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■ <side> is the side of the interface material where the new expression will be added or
subtracted.

■ overwrite | !overwrite specifies whether or not to overwrite the previous setting.
The default is not to overwrite (!overwrite).

For example, the following command adds the expression "{2e-15*(CY*CY-1e-16*CX)}"
to the CY equation in silicon by overwriting the previous settings during the PDE solve:

UserAddEqnTerm Silicon CY "{2e-15*(CY*CY-1e-16*CX)}" overwrite

Since the equations can be set in three different ways for interfaces, you have the option to
specify the side to which the expression will be added or subtracted.

For example, the commands:

UserAddEqnTerm Oxide_Silicon CX "(CX_Oxide - CX_Silicon)" Silicon
UserSubEqnTerm Oxide_Silicon CX "(CX_Oxide - CX_Silicon)" Oxide

add the expression "(CX_Oxide - CX_Silicon)" to the Oxide_Silicon interface
equation for CX on the Silicon side, and subtract the same expression from the
Oxide_Silicon interface equation for CX on the Oxide side, respectively. If no side
information is given, the expression will be added to the Oxide_Silicon interface equation
for CX.

NOTE The UserAddEqnTerm and UserSubEqnTerm commands apply to
materials that are like the one given with the <material> option.

UserAddToTerm and UserSubFromTerm

The UserAddToTerm and UserSubFromTerm commands add a new expression to an existing
term or subtract the new expression from an existing term. The commands have the format:

UserAddToTerm <material> <term> <expression>

UserSubFromTerm <material> <term> <expression>

where:

■ <material> is any valid material name.

■ <term> is an existing term name.

■ <expression> is the new expression to be added to or subtracted from the existing term.

For example, the following command adds the expression "2*CX" to the term MyTerm in
silicon:

UserAddToTerm Silicon MyTerm "2*CX"
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In the same way, the following command subtracts the expression "2*CX" from the term
MyTerm in silicon:

UserSubFromTerm Silicon MyTerm "2*CX"

NOTE The UserAddToTerm and UserSubFromTerm commands do not
apply to materials that are like the one given with the <material>
option.

Using Callback Procedures to Build Models

NOTE Callback procedures involve complex operations. Only advanced users
should use them.

Callbacks allow additional intelligence to be built into PDEs by allowing procedures to be
called at runtime. These procedures build the Alagator equation strings according to user-
specified options. By selecting model switches, you can choose between different physical
models to be represented in the equation strings. By having callback procedures that use a
material name and a solution name as arguments, the same type of equation can be built for
several materials and solutions.

In Sentaurus Interconnect, all frequently used equations are built-in Tcl callback procedures.
Using the pdbSet command, you can instruct Alagator to use various callback procedures.

You use specific keywords to create callback procedures. Table 27 lists the callback procedure–
related keywords in Alagator. 

 Callbacks During Execution of the solve Command

In addition to calling the callback procedures at various stages during the execution of a solve
command, Sentaurus Interconnect calls the solvePreProcess procedure before executing

Table 27 Keywords used to create callback procedures

Keyword Description

EquationProc Specifies the name of the callback procedure to set up the PDEs (see Constructing 
Equation Strings: EquationProc on page 358).

InitProc Specifies the name of the callback procedure that usually resets or deletes existing 
parameter database equations or terms when the solve command is called (see 
Cleaning Up Equation Strings: InitProc on page 357).
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the solve command and the solvePostProcess procedure after executing the solve
command. Figure 103 shows the flowchart of the process. 

Figure 103 Flowchart with calls to callback procedures during execution of a solve command

The solvePreProcess Procedure

Sentaurus Interconnect can initialize solution variable fields on the command line using
commands such as select (see select on page 609) and profile (see profile on page 583).
If the initialization can be standardized, it is better to use the solvePreProcess procedure
because, by default, it initializes the data fields for potential and temperature.

The execution of each solve command starts with a call to the solvePreProcess procedure
that initializes various data fields or preprocesses existing data fields. For example, the
solvePreProcess procedure initializes solution variables. In this procedure, the potential
and temperature equations are switched on or off according to the simulation models selected.
In addition, the appropriate boundary conditions for each simulation model are set.

To enforce additional actions to be performed upon solve preprocessing, it is not necessary to
overwrite the default implementation of the solvePreProcess procedure. Instead, to
preserve the default initialization of data fields, you can redefine the UserSolvePreProcess
procedure. By default, UserSolvePreProcess is an empty procedure and is called from the
solvePreProcess procedure as one of the last commands.

solve

solvePreProcess

For each: solution and material

EquationProc callback procedure

Solve PDEs

solvePostProcess

InitProc callback procedure

For each: solution and material

Next

For each: solution and material

For each: solution and material

InitProc callback procedure

EquationProc callback procedure

Next

NextNext
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Building and Solving PDEs

After the execution of the solvePreProcess procedure, Sentaurus Interconnect checks all
material and solution names to see whether a callback procedure has been specified using the
InitProc keyword (see Cleaning Up Equation Strings: InitProc on page 357). If a callback
procedure is defined, it is called for the specified material name and solution name. Such a
callback procedure usually sets the equation strings to empty strings and removes terms defined
in previous steps. By having empty equation strings, the equations and terms can be built up
piecewise, by adding expressions for each selected model that contributes to an equation or a
term. This is necessary because different models may be used for different solve steps, and
because additional solution variables may be added between solve steps, which may require
terms to be added to the equations for existing species.

In the next step, Sentaurus Interconnect checks all material and solution names to see whether
a callback procedure has been specified using the EquationProc keyword (see Constructing
Equation Strings: EquationProc on page 358). If a callback procedure is defined, it is called
with the material name and solution name as arguments. Such a procedure is used to set the
PDEs for the solution variable. Alternatively, if no callback procedure is defined for a material
and a solution, the equation string can be set on a command line without specifying any
callback procedures.

NOTE If a callback procedure has been specified using the EquationProc
keyword for a material name and solution name, this callback procedure
typically overwrites any equation specified on the command line for that
material and solution.

After the equations are set, Sentaurus Interconnect solves the equations using the local
temperature.

The solvePostProcess Procedure

Finally, the solvePostProcess procedure is called when the solve command is finished.
By default, it deletes the data fields that are no longer needed and stores the conduction current
density, the electric fields, and the temperature gradient.

The last command line of the solvePostProcess procedure calls the procedure
UserSolvePostProcess, which is empty by default. To add commands to be executed after
the solve command is finished, you can redefine the UserSolvePostProcess procedure.

NOTE The solvePreProcess and solvePostProcess procedures can be
found in the TclLib directory in the SolveProcess.tcl file.
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Specifying Callback Procedures Using Keywords

This section demonstrates how to use keywords to specify callback procedures.

Common Features of Using Keywords

To avoid unnecessary repetition of content, this section describes common features that apply
to all keywords described in the next sections.

Using the InitProc keyword as an example, here is a simple demonstration of how you would
use this keyword to create a callback procedure:

pdbSetString Silicon CX InitProc CleanEquations

proc CleanEquations { Mat Sol } {
LogFile "This callback procedure unsets $Sol equation in $Mat."
pdbUnSetString $Mat $Sol Equation

}

where:

■ The first line specifies the name of the callback procedure in silicon for CX, which follows
the keyword instance. In this case, the callback procedure is named CleanEquations.

■ The second line defines the CleanEquations callback procedure.

The callback procedure takes two arguments: a material name (Mat) and a solution name
(Sol). In this example, Sentaurus Interconnect calls the CleanEquations procedure with
these two arguments: The first will be Silicon and the second will be CX.

NOTE The argument names Mat and Sol are arbitrary. They can be any valid
Tcl variable but the first argument is always the material name and the
second argument is always the solution name.

■ The third line defines the message string that will be printed to the log file when the
callback procedure is executed. This is to inform users that the callback procedure is called.
The $Sol variable and $Mat variable will be replaced with the solution name and the
material name, respectively. In this case, the message would be:

This callback procedure unsets CX equation in Silicon.

■ The fourth and last line unsets the equation if it exists.

Generic Procedure

When neither the material name nor the solution name is used in the implementation of a
callback procedure, it is a generic procedure and can be used for several materials and
solutions.
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The examples in the next sections demonstrate generic procedures.

Cleaning Up Equation Strings: InitProc

The InitProc keyword specifies the name of the callback procedure that cleans up equation
strings.

For example, the InitProc keyword defines the ResetEquations callback procedure of the
solution variable CX in silicon:

pdbSetString Silicon CX InitProc ResetEquations

proc ResetEquations { Mat Sol } {
LogFile "This callback procedure unsets $Sol equation in $Mat."
pdbUnSetString $Mat $Sol Equation

}

Sentaurus Interconnect will call the ResetEquations procedure with two arguments: The
first will be Silicon and the second will be CX.

The procedure is called every time the solutions are checked during the PDE solve. The
ResetEquations procedure prints the message to the log file and removes the parameter
database equation if it was defined.

This example can be extended with the following commands:

pdbSetString Silicon CX InitProc ResetEquations
pdbSetString Silicon CY InitProc ResetEquations
pdbSetString Oxide CX InitProc ResetEquations
pdbSetString Oxide CY InitProc ResetEquations

In this case, the same ResetEquations callback procedure is used for the solution variables
CX and CY in oxide and silicon. Sentaurus Interconnect will print the following messages:

This callback procedure unsets CX equation in Silicon.
This callback procedure unsets CY equation in Silicon.
This callback procedure unsets CX equation in Oxide.
This callback procedure unsets CY equation in Oxide.

The advantage of callback procedures is clear. With four new command lines, the equations for
CX and CY in both oxide and silicon can be unset. At the same time, there is only one callback
procedure to maintain. If you change the callback procedure, the changes will apply to all four
settings.
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Constructing Equation Strings: EquationProc

The EquationProc keyword specifies the name of the callback procedure that constructs the
equation string in the parameter database.

For example, the first command defines SetEquations as the callback procedure of the
solution variable CX in silicon:

pdbSetString Silicon CX EquationProc SetEquations

fproc SetEquations { Mat Sol } {
LogFile "This callback procedure sets $Sol equation in $Mat."
pdbSetString $Mat $Sol Equation "ddt($Sol) - \[Arrhenius 0.138 1.37\] \

*grad($Sol)"
}

Sentaurus Interconnect will call SetEquations with two arguments: The first will be
Silicon and the second will be CX.

The SetEquations callback procedure is called every time the solutions are checked during
the simulation. The SetEquations procedure prints the message to the log file and sets the
parameter database equation for CX in silicon.

NOTE In this example, the SetEquations callback procedure is a generic
procedure. The equation setting is similar to that explained in Building
Partial Differential Equations on page 348. The only difference is that,
instead of using a material name and solution name, only Tcl variables
are used.

This example can be extended with the following commands:

pdbSetString Silicon CX EquationProc SetEquations
pdbSetString Silicon CY EquationProc SetEquations

In this case, the same SetEquations callback procedure is used for the solution variables CX
and CY in silicon. Sentaurus Interconnect will print the following messages:

This callback procedure sets CX equation in Silicon.
This callback procedure sets CY equation in Silicon.

Summary

You have been shown how to set up PDEs and boundary conditions, and to initialize solution
variables. The example can be divided into three parts.
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The first part is the pdb entries for the models such as diffusivities and conductivity. These
parameters correspond to the parameter database. All default Sentaurus Interconnect model
parameters are stored in the parameter database.

The second part defines the names of the solution variables and the names of the callback
procedures:

solution add name=CX !damp !negative solve

pdbSetString Silicon CX EquationProc SetEquations
pdbSetString Silicon CX InitProc ResetEquations

The third part defines the models.

References

[1] R. E. Bank et al., “Transient Simulation of Silicon Devices and Circuits,” IEEE
Transactions on Electron Devices, vol. ED-32, no. 10, pp. 1992–2007, 1985.
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APPENDIX A Commands

This appendix describes the commands of Sentaurus Interconnect.

Syntax Conventions

The commands are designed to optimize the use of the tool command language (Tcl).

The following conventions are used for the command syntax:

■ Each command starts on a new line.

■ A backslash (\) is used to extend a command on to multiple lines if it appears as the last
character on the line. It is not included on the last line of a command. For example:

refinebox name= SiOxPo mask= POLY extend= 0.1 \
extrusion.min= -1.51 extrusion.max= -1.35 min.normal.size= 0.005 \
interface.mat.pairs= {Silicon Oxide Silicon Polysilicon}

■ Braces – { } – indicate a list. The braces are part of the syntax.

NOTE Usually, Tcl lists are created using braces, but Tcl does not typically
evaluate expressions enclosed by braces. However, for convenience,
Sentaurus Interconnect does evaluate all parameters that take numeric
values even when enclosed by braces.

■ Brackets – [ ] – indicate an optional argument. The brackets are not part of the syntax.

■ Parentheses – ( ) – indicate grouping of arguments. The parentheses are not part of the
syntax.

■ A vertical bar – | – indicates options, only one of which can be specified. Vertical bars are
not part of the syntax.

■ Angle brackets – < > – indicate specific type of input. The angle brackets are not part of
the syntax.

NOTE An exception to this is that angle brackets must be included in the syntax
if units are specified in a command. For example:

line x location= 0<um> spacing= 0.02<um> tag= surf
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■ The following type identifiers are used:

• <c>: Replace with a string. In general, strings are enclosed in double quotation marks
(" "), for example:

line_edge_roughness normal= "Z" masks= {mask1} \
correlation.length= 25.00<nm> standard.deviation= 5.00<nm>

• <i>: Replace with an integer.

• <n>: Replace with a floating-point number.

• <list>: Replace with a Tcl list of values. The list must be enclosed in braces, for
example, min= {-5.0 0.0 0.0}.

• <field>: Replace with the name of a field.

• <material>: Replace with the name of a material.

• <solution>: Replace with the name of a solution.

■ Boolean arguments are true (or on) if they appear on the command line (for example,
negative).

■ Boolean arguments are false (or off) if they appear on the command line preceded by an
exclamation mark (for example, !negative).

Example of Command Syntax

An example of command syntax is:

command
argument1=<n>[<unit1>]
argument2=<i>
argument3=<i>
argument4
...

There are two types of argument:

■ Named arguments must be specified with a value, for example, name=Germanium.

■ Unnamed arguments supply only the value, for example, <material> would be replaced
by Oxide.

If you specify units for an argument:

■ Omit spaces between the value and unit.

■ Include the angle brackets with the unit, for example, xlo=5<um>.
362 Sentaurus™ Interconnect User Guide
N-2017.09



A: Commands
Syntax Conventions
If you specify lists:

■ Lists must be enclosed in braces.

■ Elements in the list must be separated by space.

■ You must insert space between the equal sign and the opening brace. For example:

transform translate= {-1 0 0}

Common Arguments

Nearly all Sentaurus Interconnect commands (with the exception of those implemented as Tcl
procedures as well as a few others) support two common optional arguments:

■ info=<i> 

This argument sets the amount of information to be printed to the screen and the log file. It
can take the value 0, 1, or 2. The default is 0, which is the minimum amount. Higher values
give more details about the status of the simulation as well as model and parameter
selection information. Any value greater than 2 will be interpreted as 2.

This argument can be used with any other argument combination for nearly all commands
that are not Tcl procedures.

For example, to specify that more information should be printed to the screen and the log
file for the etch command, use:

etch info= 2

■ parameters 

This argument prints all the available arguments for a command.

For example, to print the arguments for the extract command, use:

extract parameters

NOTE When you use the parameters argument, the complete list of
arguments for that command is generated. However, some of the
arguments in this list are not documented. These parameters are used for
debugging purposes only.
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Quantities and Units for Command Arguments

Table 28 lists the quantities and units for arguments used in the commands. Many command
arguments specify physical values. Such arguments are given a quantity, and any unit of a given
quantity can be used. The factor listed is the value that is multiplied by the given value to
convert to the default unit (which has a factor of 1). 

Table 28 Quantities, units, and factors for command arguments

Quantity Unit Factor

Time s 1

ms 1.00e-03

min 60

hr 3600

Distance cm 1

Angs 1.00e-08

nm 1.00e-07

um 1.00e-04

m 1.00e+02

Volume cm3 1

Angs3 1.00e-24

nm3 1.00e-21

um3 1.00e-12

m3 1.00e+06

Dose cm-2 1

Concentration cm-3 1

m-3 1.00e-06

um-3 1.00e+12

nm-3 1.00e+21

Angs-3 1.00e+24
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Velocity cm/s 1

Angs/hr 2.78e-12

Angs/min 1.67e-10

Angs/s 1.00e-08

nm/min 1.67e-09

nm/s 1.00e-07

um/min 1.67e-06

Diffusivity cm2/s 1

um2/min 1.67e-10

Flow l/min 1

Stress dyn/cm2 1

Pa 1.00e+01

kPa 1.00e+04

MPa 1.00e+07

GPa 1.00e+10

atm 1.01e+06

torr 1.33e+03

Viscosity poise 1

Pa*s 1.00e+01

Energy eV 1

keV 1.00e+03

MeV 1.00e+06

Temperature C 1

K 1

Temperature rate C/s 1

K/s 1

C/min 1.67e-02

K/min 1.67e-02

Inverted temperature 1/K 1

Table 28 Quantities, units, and factors for command arguments

Quantity Unit Factor
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Angle degree 1

Current A 1

Current density A/cm2 1

Current rate A/s 1

A/min 1.67e-02

Charge Coulomb 1

Charge density C/cm3 1

Coulomb/cm3 1

Dose rate cm-2/s 1

cm-2/min 1.67e-02

Electric potential V 1

Electric potential rate V/s 1

V/min 1.67e-02

Power W 1

nW 1.00e-09

uW 1.00e-06

mW 1.00e-03

Power density W/cm3 1

nW/cm3 1.00e-09

uW/cm3 1.00e-06

mW/cm3 1.00e-03

Power density rate W/cm3/s 1

W/cm3/min 1.67e-02

Resistivity ohm-cm 1

kohm-cm 1.00e+03

Force dyn 1

N 1.00e+05

Toughness dyn/cm 1

N/m 1.00e+03

Table 28 Quantities, units, and factors for command arguments

Quantity Unit Factor
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Moment dyncm 1

Nm 1.00e+07

Mass g 1

amu 1.66e-24

Table 28 Quantities, units, and factors for command arguments

Quantity Unit Factor
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alias

Sets and prints aliases.

Syntax

alias <c> [<c>] [-list]

Arguments

<c>

If one argument is specified, only one alias for this value is printed.

If two arguments are specified, a new alias is set.

-list

Prints a list of allowed aliases.

Description

This interactive mode command sets and prints aliases.

If the first argument is -list, a list of allowed aliases is printed. Otherwise, only one alias
corresponding to the first argument is printed.

Examples

Set a new alias of Temperature:

alias Temp Temperature

Print the list of allowed aliases:

alias -list

Print an alias of Temp:

alias Temp
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ArrBreak

Creates two Arrhenius expressions that depend on a break temperature.

Syntax

ArrBreak <n> <n> <n> <n> <n>

Arguments

<n>

The first argument is the prefactor and the second argument is the activation energy [eV]
of the first Arrhenius expression.

The third argument is the prefactor and the fourth argument is the activation energy [eV]
of the second Arrhenius expression.

The final argument is the break temperature [ ].

Description

This command creates two Arrhenius expressions and switches from the first expression to the
second one at the given break temperature.

The first Arrhenius expression is computed when the temperature is below the break
temperature. The second Arrhenius expression is computed when the temperature is equal to
or greater than the break temperature.

Examples

Create two Arrhenius expressions –  and  – with a break temperature
of . The first Arrhenius expression is computed when , and the second
Arrhenius expression is computed when :

ArrBreak 3.0 0.5 2.0 0.4 825.0

°C

3.0 e
0.5– kBT⁄

2.0 e
0.4– kBT⁄

825°C T 825°C<
T 825°C≥
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Arrhenius

Creates an Arrhenius expression.

Syntax

Arrhenius <n> <n>

Arguments

<n>

The first argument is the prefactor and the second argument is the activation energy [eV]
of the Arrhenius expression.

Description

This command creates an Arrhenius expression.

Examples

Create the Arrhenius expression :

Arrhenius 4.0 0.5

4.0 e
0.5– kBT⁄
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beam

Creates a beam for multiple-beam etching.

Syntax

beam
name=<c>
(direction= {<x> <y>} | incidence=<n>)
factor=<n>
[list]

Arguments

direction

Defines the angle of incidence of the beam using a direction vector. The specified direction
vector is normalized automatically to unit length.

factor

If multiple beams are defined, factor defines the relative strength of each beam.

incidence

Defines the angle of incidence of the beam. An angle of 0 is vertical. The angle is measured
counterclockwise, that is, a positive angle implies a beam ray entering from the upper left
towards the lower right. A negative angle implies a beam ray entering from the upper right
towards the lower left.

list

Returns a Tcl list of known beams.

name

Specifies the beam name to be referenced using sources of the etch command.

Description

This command defines the direction and relative strength of etchant beams. The beam name is
referenced in the etch command. The angle of incidence of the beam can be given using
direction or incidence. The relative strength factor is used to mix the strength of
different beams. Etchant beams are assumed to be collimated, that is, a slight angular spread of
beam direction is not taken into account.
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Examples

Define a vertical beam called source1 and a beam called source2 at half the strength of
source1 at an angle of  (positive angle implies that the beam travels from the upper left
to the lower right). A third beam called source3 at one-tenth the strength of source1 enters
from the upper right slightly towards the lower left:

beam name= source1 incidence= 0 factor= 1

beam name= source2 incidence= 10 factor= 0.5

beam name= source3 direction= {1 -0.1} factor= 0.1

See Also

etch on page 414

10°
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bound

Extracts the boundary of a material or region, and returns the outline as a list of coordinates.

Syntax

bound
<material> | region=<c> [list.all]

Arguments

<material>

Specifying a material extracts the boundary of all regions of the specified material. See
Specifying Materials on page 18.

list.all

This option lists all boundary coordinates of a region with no ordering. For regions with
more than one boundary, only one closed boundary will be listed by default. If this option
is switched on, all boundaries will be listed in one list but with no ordering. Default: false.

region

Specifying a region extracts the boundary of that region.

Description

This command is used to plot the limits of the regions for further processing. It returns a list of
lists of coordinates of the boundary. The outer lists are distinct parts of the regions. Each outer
list comprises a complete circle around that part. Each inner list contains coordinate pairs in
order around the regions. The coordinate pairs are written in xy order around the material.

NOTE This command is not available for 3D simulations.

Examples

Return the boundary of oxide material:

bound oxide

Return the boundary of the region named Silicon_1:

bound region= Silicon_1
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boundary

Controls the conversion of GC structures generated by Sentaurus Process Explorer into the
boundary representation (brep) used by Sentaurus Interconnect.

Syntax

boundary
[spx2brep.method= MLS | Standard]
[spx2brep.mls.cellsize=<n>]
[spx2brep.mls.decimateblockbreps]
[spx2brep.mls.decimatebrep]
[spx2brep.mls.prefilterdecimation]
[spx2brep.mls.splinesmooth]
[spx2brep.standard.decimation]
[spx2brep.standard.decimation.accuracy=<n>]
[spx2brep.standard.decimation.ridge.angle=<n>]
[spx2brep.standard.decimation.shortest.edge=<n>]
[spx2brep.standard.tolerance=<n>]

Arguments

spx2brep.method

Selects the conversion method from the following options:

• MLS uses a multimaterial level set–based conversion to smooth and filter out small
features in the geometry. The MLS algorithm produces guaranteed well-defined breps
that are suitable for simulation, but it is considerably slower than the standard
algorithm. Internally, the algorithm first performs a standard brep conversion and then
filters the resulting brep using the level-set algorithm.

• Standard provides a fast conversion and, by default, it does not apply any smoothing,
resulting in a blocky appearance of the structure. The argument
spx2brep.standard.tolerance controls this conversion method. After the
conversion, the brep is decimated if the spx2brep.standard.decimation option
is specified.

Default: Standard.

spx2brep.mls.cellsize

Sets the resolution of the cells used by the MLS algorithm. By default, the cells are four
times the size of the resolution used in the GC structure.
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spx2brep.mls.decimateblockbreps

If specified, the MLS algorithm decomposes the domain into blocks to improve the
performance of the conversion. Default: false.

spx2brep.mls.decimatebrep

If specified, a decimation step is performed after the brep has been processed by the MLS
algorithm. Default: false.

spx2brep.mls.prefilterdecimation

If specified, a decimation step is performed before sending the brep to the MLS algorithm.
Default: false.

spx2brep.mls.splinesmooth

If specified, a b-spline filter is applied to smooth the geometry during the MLS conversion.
The smoothing radius is defined as , where  is the height of the GC column.
Default: true.

spx2brep.standard.decimation

If specified, a decimation step is performed after the GC to brep conversion. Default: true.

spx2brep.standard.decimation.accuracy

Sets the accuracy used during decimation. Points are removed from the brep only if the
deformation induced in the structure is less than the value specified by this argument.
Default value and unit: .

spx2brep.standard.decimation.ridge.angle

Sets the criterion used to detect feature ridges in the structure. Feature ridges are preserved
and, if possible, not deformed during the decimation process. Default value and unit: 150°.

spx2brep.standard.decimation.shortest.edge

Sets the length of the shortest edge allowed in the final brep structure. Default value and
unit: .

spx2brep.standard.tolerance

Specifies how much smoothing is performed on the columns during conversion. The
default value is 0.0, that is, no smoothing.

The following example sets the tolerance to 5.0, which represents reasonable smoothing:

boundary spx2brep.standard.tolerance=5.0

16 h× h

1.0 8–×10 μm

1.0 8–×10 μm
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NOTE Using the standard algorithm can result in nonconformal brep
geometries for nonzero values of spx2brep.standard.tolerance.
For this reason, it is recommended to set this argument only if the
resulting brep structure is intended for visualization purposes.

Description

Conversions occur when Sentaurus Interconnect reads a TDR GC file using the init
command. After the init command is executed, Sentaurus Interconnect works as usual, using
the MGOALS module to produce structures.
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circuit

Defines a circuit for mixed-mode simulation.

Syntax

circuit
[add] [clear] [contact] [current]
[electrodes= {<c> <c>}]
[element]
[instance.parameters= {<c>}]
[interconnect= { {<c> <c>} {<c> <c>} }]
[list] [model.name=<c>] [name=<c>] [node] [print]
[set= { {<c> <n>} {<c> <n>} }]
[<solution>]
[thermodes= {<c> <c>}]

Arguments

add

Adds a new circuit element with specified details.

clear

Clears all circuit information.

contact

Retrieves circuit-to-contact connection information.

current

Retrieves the current between a node and an element.

electrodes

Specifies the electrodes of a circuit element.

element

Retrieves circuit element information.

instance.parameters

Specifies the parameters, such as resistance, of a circuit element.
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interconnect

Connects a contact to an electrode or a thermode.

list

Prints a list of circuit nodes or elements.

model.name

Specifies the name of the model from which the element instance is derived.

name

Specifies the name of the circuit element or node.

node

Retrieves circuit node information.

print

Prints the node or element information requested.

set

Sets the boundary conditions on thermodes.

<solution>

Specifies the solution name for the circuit. It is used to retrieve information, such as
voltage, regarding the specified solution name at the circuit.

thermodes

Specifies the thermodes of a circuit element.

Description

This command adds circuit elements to a mixed-mode simulation. It also can be used to obtain
information about circuit nodes and elements.

Examples

Add a circuit element (resistor) that is derived from the model Resistor_pset. The name of
the element is r3, and its electrodes are 1 and 0. The circuit element resistance is 1000
units:

circuit add name= r3 model.name= Resistor_pset electrodes= {1 0} \
instance.parameters= {resistance= 1000}
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List all the circuit nodes:

circuit node list

List all the contacts of the physical device to which the circuit nodes are connected:

circuit node contact list

Print the current between the circuit element r3 and the node 1:

circuit node= 1 name= r3 current print

Clear all circuit information:

circuit clear

Set Dirichlet boundary conditions on the thermode t0 with the value 300 K:

circuit set= { {t0 300} }
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Compatibility

Applies parameters consistent with the default values of a previous release.

Syntax

Compatibility <c>

Arguments

<c>

Specifies the release from which to apply parameters. Aliases are available for the release,
so it is not necessary to know the release foundation letter. For example, 2016.12 can be
used instead of M-2016.12.

Description

If used, this command must be the first command in the command file, so that all subsequent
commands that depend on the default values take into account the compatibility setting (see
Compatibility With Previous Releases on page 20).

Examples

Apply parameters consistent with Version M-2016.12:

Compatibility 2016.12
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contact

   Defines a contact for subsequent simulation.

NOTE If the contacts are defined before the init command (see init on
page 458) in mixed-mesh mode, you must switch on contacts in the
boundary representation using the command:

pdbSet Grid Contacts.In.Brep 1

Syntax

contact
[add] [clear] [charge | current | power | temperature | voltage]
[depth=<n>][<um>]
[left] [right] [back] [front] [top] [bottom]
[list] [list.existing] [list.region]
[merge= <list>]
[name=<c>] [new.name=<c>]
[precision=<n>]
[print]
[region=<c>]
[sidewall]
[<solution>]
[width=<n>][<um>]
(

[box] [<material>] [adjacent.material=<c>] [cut.mesh]
[xlo=<n>][<m>|<cm>|<um>|<nm>]
[xhi=<n>][<m>|<cm>|<um>|<nm>]
[ylo=<n>][<m>|<cm>|<um>|<nm>]
[yhi=<n>][<m>|<cm>|<um>|<nm>]
[zlo=<n>][<m>|<cm>|<um>|<nm>]
[zhi=<n>][<m>|<cm>|<um>|<nm>] |

[point]
[x=<n>][<m>|<cm>|<um>|<nm>]
[y=<n>][<m>|<cm>|<um>|<nm>]
[z=<n>][<m>|<cm>|<um>|<nm>]
[replace]

)
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Arguments

add

If the contact command is called multiple times with the same name, it overwrites the
previous definition by default. If add is specified, the contact command will instead add
to the existing contact indicated by name or create a new contact if it does not already exist.

adjacent.material

Specifies a second material for the contact. Only elements at the interface between the two
materials are allowed for the contact.

box, point

Selects one of the supported contact types:

• box: Specifies a box-type contact that consists of elements at the surface of one region
or material inside the box, defined for the contact. When choosing a box-type contact,
the mesh is cut where the box intersects the chosen region to give an accurate size for
the contact (see cut.mesh). Occasionally, this cutting produces poor quality mesh
elements. In such cases, cutting can be switched off with
pdbSet Grid Cut.At.Contacts 0. Use the line command to insert lines in the
mesh to retain contact size accuracy if required.

• point: Specifies a region-type contact that contains all the boundary elements of one
region. The region can be specified or the material and the x-, y-, and z-coordinates of
one point can be specified to select the region.

NOTE Box-type contacts should be used to set up mechanical boundary
conditions. Region-type contacts are not recommended for setting up
mechanical boundary conditions.

clear

Clears the list of all contacts. If name is specified, clear removes only the specified
contact.

charge, current, power, temperature, voltage

If specified, returns the total charge, or the total current, or the total power, or the average
temperature, or the average voltage at the contact.

cut.mesh

By default, when a box contact is created, the mesh is cut at the contact borders to ensure
accurate contact dimensions. Specifying !cut.mesh switches off mesh cutting, providing
better element quality at the contact borders, but possibly sacrificing accuracy of the
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contact borders. The contact will only include nodes of the existing mesh within the contact
borders.

depth

Depth of the contact in micrometers.

left, right, back, front, top, bottom

These arguments selectively switch on certain outer boundaries where contacts will be
placed. Outer boundaries are those of the simulation domain, which includes gas regions.

By default, only top and bottom are switched on, and the rest are switched off. If any of
these arguments are specified, internal interfaces are switched off. In addition, sidewall
is equivalent to specifying all these arguments.

list

Prints a list of currently defined contacts.

list.existing

Returns a list of all contacts currently existing in the bulk structure. Adding contacts to the
mesh is delayed by default. However, additional contacts that do not appear in the returned
list may be read directly from a file and, therefore, exist in the structure.

list.region

Prints a list of regions adjacent to the named contact.

<material>

Specifies the material for the contact. Contacts in TDR files are always defined as a set of
surface elements. Only elements at the surface of volume regions of the specified material
are selected. See Specifying Materials on page 18.

merge

Specifies a list of contacts that must be electrically merged. If name is specified, a new
contact with the name name is created, and contacts in the list are deleted.

name

Name of the contact.

new.name

Used with name to change the name of a contact from that specified by name to that
specified by new.name.
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precision

Sets the number of digits after the decimal point for the printed value of the total charge,
or the total current, or the total power, or the average temperature, or the average voltage at
the contact. You also can use the following command for all contact commands:

pdbSet Compute Matrix.Precision <n>

print

Prints the contact information.

region

Name of the volume region or name of the interface region to be used for the contact. For
volume regions, only surface elements of that region are selected for the contact. For
interface regions, all elements of that region are selected for contacts.

replace

If specified, the material of the region of a contact is replaced by gas for point contacts in
the TDR file.

NOTE Replacement of the contact material with gas occurs only when the TDR
file is written. However, material replacement is not allowed for the
boundary representation geometry that is included in the TDR file. This
is needed to restart simulations from a saved TDR file. In addition, the
internal structure remains unchanged while the TDR file is written.
Therefore, no material replacement occurs for the internal structure.

sidewall

Allows only surface elements on the external boundary of the simulation domain (left,
right, front, back) to be selected for a contact. By default, only surface elements at material
interfaces and surface elements at the top and bottom of the simulation domain are selected
for contacts. Default: false.

<solution>

Specifies the solution name for the contact. It retrieves information, such as current,
regarding the specified solution name at the contact.

width

Width of the contact in micrometers.
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x, y, z

Define the coordinates of a point for a region-type contact. If some coordinates of the point
are omitted, the region is selected using the specified coordinates only. Default unit: .

xlo, xhi, ylo, yhi, zlo, zhi

Define the low and high values in each of the coordinate directions for a box-type contact.
If some coordinates are omitted, the current bounds of the simulation domain are used.
Default unit: .

Description

This command defines new contacts, deletes contacts, and prints contact information. The
contact command can be called multiple times with the same name if the add argument is
specified. In this case, the contact will have multiple parts.

NOTE Contacts are not transformed using the transform command.

NOTE If a TDR file containing a boundary or mesh is read into Sentaurus
Interconnect (during the init command), contacts defined in this file
are added to the list of contacts.

Examples

List all available contacts:

contact list

Define a contact named gate, which will consist of boundary elements of the region
containing the point (-0.05,0.0). The region material will be replaced by gas:

contact name= gate x= -0.05 y= 0.0 replace point

Define a box-type contact containing the surface elements of an aluminum region inside the
specified box:

contact box Aluminum xlo= -0.01 ylo= -0.46 xhi= 0.1 yhi= -0.16 name= source

Define the substrate contact at the bottom of the simulation domain, and switch off interior
interfaces:

contact bottom name= substrate

μm

μm
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Define a contact named lfcontact on the left side (minimum y-coordinate) and the front
(maximum z-coordinate) of the simulation domain for that part of the simulation domain inside
the box (0,0,0) -> (1,1,1) and not on any interior interfaces:

contact left front name= lfcontact xlo= 0 ylo= 0 zlo= 0 xhi= 1 yhi= 1 zhi= 1

Merge contacts C1 and C2 so that the same supply value applies to both contacts:

contact merge= {C1 C2}

See Also

integrate on page 467
line on page 481
struct on page 643
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contour

Plots a contour of the selected variable or named data field at the value specified on a 2D plot.

Syntax

contour
[color=<c>] [name=<c>] [print] [value=<n>]
[x=<n>][<m>|<cm>|<um>|<nm>]
[y=<n>][<m>|<cm>|<um>|<nm>]
[z=<n>][<m>|<cm>|<um>|<nm>]

Arguments

color

Specifies the line color of the contour. It can be any color supported by X11 hardware and
named in the color database.

name

Name of the data field. It allows plots to be created without using the select command.
Default: Z_Plot_Var.

print

Specifies that the contour values must be printed not plotted. The output is compatible with
xgraph. In addition, a set of Tcl lists is returned.

value

Specifies the value at which the contour line should be plotted. If boron has been selected,
a value of 1.0e16 would produce a line of constant boron concentration at that
concentration.

x, y, z

Specify the plane on which contouring is performed. In two dimensions, they need not be
specified. In three dimensions, two arguments must be specified to indicate the plane of
calculation of the contour. Default unit: .

Description

The value must be specified in the range of the computed variable. For example, if plotting log
boron, the value must be in the range 10 to 20 not 1e10 to 1e20.

μm
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The contour command assumes that the plot.2d command has been specified and that the
screen is configured to plot a 2D graphic. If this has not been set, the routine most likely will
produce unhelpful results.

Examples

Draw a line at an isoconcentration of :

contour value= 1e10

See Also

Compatibility on page 380
plot.2d on page 549
slice on page 623

1010
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crack

Defines a crack and its characteristic parameters.

Syntax

crack
[angle.tolerance=<n>][<degree>]
[clear] [CZM=<c>]
[CZM.box= {

xmin= {<n0>[<m>|<cm>|<um>|<nm>] <n1> ... <nn> [...]}
ymin= {<n0>[<m>|<cm>|<um>|<nm>] <n1> ... <nn> [...]}
zmin= {<n0>[<m>|<cm>|<um>|<nm>] <n1> ... <nn> [...]}
xmax= {<n0>[<m>|<cm>|<um>|<nm>] <n1> ... <nn> [...]}
ymax= {<n0>[<m>|<cm>|<um>|<nm>] <n1> ... <nn> [...]}
zmax= {<n0>[<m>|<cm>|<um>|<nm>] <n1> ... <nn> [...]}

}]
[CZM.polarity= positive | negative]
[delete] [global] [list]
[mat.1=<c>] [mat.2=<c>]
[name=<c>]
[normal= {<n1> <n2> <n3>}]
[polygons= <list>] [print] [segments= <list>]
[tolerance=<n>][<m>|<cm>|<um>|<nm>]
[x.min=<n>][<m>|<cm>|<um>|<nm>] [x.max=<n>][<m>|<cm>|<um>|<nm>]
[y.min=<n>][<m>|<cm>|<um>|<nm>] [y.max=<n>][<m>|<cm>|<um>|<nm>]
[z.min=<n>][<m>|<cm>|<um>|<nm>] [z.max=<n>][<m>|<cm>|<um>|<nm>]

Arguments

angle.tolerance

Sets the tolerance of a surface normal. A crack surface can be defined using normal. A
surface is considered to be coplanar with the crack surface if the angle between the surface
normal directions is within the tolerance.

clear

Clears all the crack definitions.

CZM

Specifies the name of the selected cohesive zone model (CZM), which must be defined
using the CZM command before the simulation. To model initial cracks, use CZM=none.
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CZM.box

Specifies the x-, y-, and z-coordinates at the upper-left back corners and lower-right front
corners of the cubes enclosing parts of the crack where CZM is active. Default unit: .

CZM.polarity

Sets the CZM to be active inside CZM.box when set to positive or outside CZM.box
when set to negative. Default: positive.

delete

Deletes the crack definition specified by name.

global

Sets the flag for a massive cohesive zone definition. When global is specified, other
arguments in the command are ignored, and all other crack definitions are removed.
Cohesive surfaces are specified for all surfaces defined by element boundaries. Default:
false.

list

Lists the names of all crack definitions.

mat.1, mat.2

Specify the material names on the two sides of a crack interface.

name

Sets the name of the crack.

normal

Sets the normal direction vector of the crack surface being defined. This normal direction
must have been normalized (the square root of the sum of squares of three components is
1.0).

polygons

Specifies a 2D surface in three dimensions as a list of named polygons. The named
polygons must have been defined using polygon commands (see polygon on page 559).
The list of polygons must form a continuous 2D surface.

print

Prints information about the specified crack.

μm
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segments

Specifies a 1D line in two dimensions as a list of coordinates. Several coordinates can be
specified at the same time. The first coordinate defines the beginning of a segment; the
second coordinate defines the end of the segment; the third coordinate defines the
beginning of the second segment, and so on. The list of coordinates must form a continuous
1D line. Coordinates are given in .

tolerance

Controls the snapping distance when processing the geometry features. Default:
.

x.max, y.max, z.max

Specify the x-, y-, and z-coordinates at the upper-left back corner of the cube enclosing the
crack in the unified coordinate system (UCS). Default unit: .

x.min, y.min, z.min

Specify the x-, y-, and z-coordinates at the lower-right front corner of the cube enclosing
the crack in the UCS. Default unit: .

Description

This command defines a crack with a name, location, CZM law, material interface, normal
direction to the crack surface, and tolerance.

Examples

Define an initial crack along the interface between silicon and oxide. The crack is bounded by
the specified minimum and maximum coordinates in the x-, y-, and z-directions with a
snapping distance:

crack name= SiliconOxide mat.1= Silicon mat.2= Oxide CZM= none \
tolerance= 1.0e-6 x.min= -0.1 x.max= -0.05 y.min= -0.1 y.max= -0.05 \
z.min= 0.0 z.max= 0.4

Define a V-notch in aluminum for crack analysis. The crack surface and the crack front are
bounded by the specified minimum and maximum coordinates in the x-, y-, and z-directions
with a snapping distance:

crack name= AluminumNotch mat.1= Gas mat.2= Aluminum CZM= none \
angle.tolerance= 1.0e-3 tolerance= 1.0e-3 normal= "0.0 -1.0 0.0" \
x.min= -0.1 x.max= -0.05 y.min= -0.1 y.max= -0.05 z.min= 0.0 z.max= 0.4

μm

1.0 6–×10 μm

μm
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Define a bulk crack using segments in two dimensions. The first pair of coordinates is x and y
of the beginning of the segment, and the second pair of coordinates is the end of the segment.
The crack must be confined to one region and must not intersect another crack:

crack name= BulkCrack1 mat.1= Silicon segments= {3.0 1.2 1.0 4.0} \
angle.tolerance= 1.0e-2

Define a bulk crack using polygons in three dimensions, where P1, P2, and P3 are predefined
polygons. The crack must be confined to one region and must not intersect another crack. The
polygons must form a continuous 2D surface:

crack name= BulkCrack2 mat.1= Silicon polygons= {P1 P2 P3} \
angle.tolerance= 1.0e-2

NOTE Bulk cracks require that contacts be defined in the boundary
representation (brep) mode (pdbSet Grid Contacts.In.Brep 1).
If not, the brep mode will be switched on. In addition, the structure in
two dimensions must use the brep mode (for example, pdbSet Grid
MGoals use.brep.2d 1); otherwise, it will be switched on.

See Also

CZM on page 396
polygon on page 559
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current_ramp

Defines a current profile for use with the supply command.

Syntax

current_ramp
(clear | list | name=<c>)
[c.final=<n>][<V>]
[current=<n>][<A>]
[current.time=<n>][<hr>|<min>|<s>]
[delC=<n>[<A>] | delNC=<n>[<A>]]
[hold] [last]
[ramprate=<n>][<A/s>|<A/min>]
[reset.init.time]
[time=<n>][<hr>|<min>|<s>]

Arguments

c.final

Final current for a voltage ramp-up or ramp-down. It is used if ramprate is not specified.
The ramp time is calculated automatically.

clear

Clears the global list of current ramps. When defining profiles, the action is to unite the new
definition with any prior profiles of the same name.

current

Simulation current.

current.time

Returns the value of the ramp for the given time.

delC

Defines the maximum current step during a current ramp-up if specified.

delNC

Defines the maximum current step during a current ramp-down if specified.

hold

During this segment, allows the solve command time to specify the time of the segment.
Sentaurus™ Interconnect User Guide 393
N-2017.09



A: Commands
current_ramp
last

Defines the final component of the current profile. There will be no more additions to the
ramp.

list

Generates a list of current profiles. It returns a Tcl list and can be operated on as such. The
default action for commands is to print the return, so if no handling is required, list prints
a list of names of defined current profiles. If name is specified, current_ramp only is
listed along with details about the ramps.

name

Name of the parameter used to identify the current ramp and to specify it in a supply
command.

ramprate

Specifies the current change during the simulation. Default value and unit: 0 A/s.

reset.init.time

Starts each current step with the same initial time step.

time

Simulation time. Default unit: minute.

Description

This command specifies multiple-step current ramps and holds. It can be used to construct a
complex current sequence to be simulated with the solve command.

Examples

Define the current profile named cr1 with a current rate of 0.5e-3 V/s:

current_ramp name= cr1 current= 0.1 ramprate= 0.5e-3<A/s> time= 1<s>

See Also

solve on page 629
supply on page 647
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CutLine2D

Computes the slice angle when given a cut in wafer coordinates.

Syntax

CutLine2D <x1> <y1> <x2> <y2>

Arguments

<x1> <y1> <x2> <y2>

Endpoints of the simulation cutline in wafer coordinates.

Description

Given a cut in wafer coordinates defined by the endpoints (<x1>,<y1>) and (<x2>,<y2>), the
CutLine2D command computes the slice angle.

Examples

Set the cutline for the simulation from (0,0) to (1,0):

init slice.angle= [CutLine2D 0 0 1.0 0]

See Also

Wafer Coordinate System on page 31
init on page 458
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CZM

Defines the parameters for a cohesive zone model (CZM).

Syntax

CZM
[clear] [delete] [law=<c>] [list] 
[mat.1=<c>] [mat.2=<c>]
[name=<c>]
[normal.critical.length=<n>][<um>|<cm>|<m>|<nm>]
[normal.stress.max=<n>][<atm>|<GPa>|<MPa>|<KPa>|<Pa>|<dyn/cm2>]
[normal.toughness=<n>][<N/m>|<dyn/cm>]
[print]
[shear.critical.length=<n>][<um>|<cm>|<m>|<nm>]
[shear.stress.max=<n>][<atm>|<GPa>|<MPa>|<KPa>|<Pa>|<dyn/cm2>]
[shear.toughness=<n>][<N/m>|<dyn/cm>]

Arguments

clear

Clears all CZM definitions.

delete

Deletes the CZM definition specified by name.

law

Specifies a cohesive law: exponential (default) or triangular.

list

Lists the names of all CZM definitions.

mat.1, mat.2

Specify the material names on the two sides of the interface for the CZM. mat.1 and
mat.2 can be identical. If either mat.1 or mat.2 is omitted, the CZM command defines a
CZM at element boundary surfaces within the same material.

name

Name of the cohesive law. A CZM defined by the name default will be applied to any
element interface that has no CZM defined.
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normal.critical.length

Sets the critical normal opening distance at the maximum normal material strength for the
triangular law. If not specified, the critical normal opening distance is set to half of the
maximum normal opening. Default unit: .

normal.stress.max

Sets the maximum material strength in the normal direction. Default unit: .

normal.toughness

Sets the work of separation in the normal direction. Default unit: .

print

Prints information about the specified CZM.

shear.critical.length

Sets the critical shear opening distance at the maximum shear material strength for the
triangular law. If not specified, the critical shear opening distance is set to half of the
maximum shear opening. Default unit: .

shear.stress.max

Sets the maximum material strength in the shear direction. Default unit: .

shear.toughness

Sets the work of separation in the shear direction. Default unit: .

Description

This command defines the parameters (material, toughness, and maximum stresses for both
normal and shear directions) for a CZM.

Examples

Define an exponential CZM for cohesive surfaces within material Oxide. The material
strength and the work of separation are given in both the normal and shear directions:

CZM name= CzmOxide law= exponential mat.1= oxide \
normal.stress.max= 1.0e3<MPa> shear.stress.max= 1.2e3<MPa> \
normal.toughness= 5<N/m> shear.toughness= 6<N/m>
normal.critical.length= 3e-3<um> shear.critical.length= 3e-3<um>

μm

dyn cm 2–

dyn cm 1–

μm

dyn cm 2–

dyn cm 1–
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define

Defines a Tcl variable.

Syntax

define <name> <value>

Arguments

<name>

Any user-defined parameter name.

<value>

Any number or string value.

Description

The define command is equivalent to the Tcl command set, except that variables defined
with set are not saved or re-stored in TDR files. Variables defined using the define command
are saved or re-stored.

The define and fset commands are equivalent.

Examples

Define the Tcl variable LG, which is stored in and loaded from a TDR file. It can be used in any
Tcl expression:

define LG 0.02

See Also

Tcl documentation for description of set syntax
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defineproc

Defines a Tcl procedure.

Syntax

defineproc <name> { <procedure_arguments> } {
<body_of_procedure>

}

Arguments

<name>

Name of the Tcl procedure.

<procedure_arguments>

Lists the arguments of the named Tcl procedure.

<body_of_procedure>

Describes the Tcl procedure.

Description

The defineproc command is equivalent to the Tcl command proc, except that procedures
defined with proc are not saved or re-stored in TDR files. Procedures defined using
defineproc are saved or re-stored.

The defineproc and fproc commands are equivalent.

Examples

Define the Tcl procedure relerr, which is stored in and loaded from a TDR file:

defineproc relerr { newVal RefVal name my_err } {
upvar my_err fl
set denom [ expr abs($newVal)+abs($RefVal)+1e-20 ]
set deviation [expr 100*abs(($RefVal - $newVal)/$denom)]
if { $deviation > 0.5 } {

LogFile IL0 "Compare: $name= $newVal, ref= $RefVal, relerr= $deviation
\n --> failed\n"
set fl [ expr $fl+1 ]

} else {
LogFile IL0 "Compare: $name= $newVal, ref= $RefVal, relerr= $deviation
ok\n"
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}
}

See Also

Tcl documentation for description of proc syntax

DeleteRefinementboxes

Deletes a set of refinement boxes based on a pattern.

Syntax

DeleteRefinementboxes pattern=<c>

Arguments

pattern

Specifies the pattern to use.

Description

This command finds all the refinement boxes with names that match the defined pattern and
deletes them. The pattern is expanded according to standard Tcl rules.

Examples

Delete all refinement boxes that have names such as root_1, root_2, and root_3:

DeleteRefinementboxes pattern= "root*"
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deposit

Deposits a new layer.

Syntax

deposit
( [<material>] [anisotropic | crystal | fill | fourier | isotropic]

[coord=<n>][<m>|<cm>|<um>|<nm>]
[thickness=<n>][<m>|<cm>|<um>|<nm>] )

[1D] [Adaptive] [angle=<n>]
[coeffs= {<A0> <A1> <A2> ... <An>}]
[crystal.rate= {"<100>" =<n> "<110>" =<n> "<111>" =<n> "<311>" =<n>

"<511>" =<n> "<911>" =<n> "<221>" =<n>}]
[direction= <list>]
[doping= <list>]
([<fieldname>] | [species=<c>]

[concentration=<n>][<m-3>|<cm-3>|<um-3>|<nm-3>])
[fields.values= <list>]
[fill.buried] [fill.buried.interface=<material>]
[fill.buried.match.surrounding]
[force.full.levelset]
[mask=<c>]
[mat.coeffs= {

<mat1>= {<A0> <A1> <A2> ... <An>}
<mat2>= {<A0> <A1> <A2> ... <An>}
...
<matn>= {<A0> <A1> <A2> ... <An>} }]

[material=<c>]
[polygon= <list>]
[rate=<n>[<um/min>]]
[region.name=<c>]
[remesh] [repair]
[sde=<c>] 
[selective.materials= <list>]
[shadowing] [shadowing.nonisotropic]
[sources= {<beam1> <beam2> ... <beamn>}]
[steps=<n>] [Strained.Lattice]
[suppress.remesh]
[temperature=<n>][<C>|<K>]
[time=<n>][<hr>|<min>|<s>]
[type= anisotropic | crystal | directional | fill | fourier | isotropic |

polygon | trapezoidal]
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Arguments

1D

Usually, a polygon deposition automatically increases the dimension to two dimensions
before performing the operation. Specify 1D to prevent this behavior.

Adaptive

If specified, Adaptive switches on adaptive meshing for deposition. Parameters for
adaptive meshing are described in Adaptive Mesh Refinement on page 177. The default is
the return value of pdbGet Grid Adaptive.

angle

Specifies the sidewall angle in degrees when using type=trapezoidal. An angle of 
is vertical; an angle >  spreads outward with increasing deposited thickness; and an
angle <  closes inward with increasing deposited thickness. Default unit: degree.

anisotropic, crystal, fill, fourier, isotropic

Specify the type of deposition:

• anisotropic defaults to vertically downward deposition.

• crystal specifies crystal deposition.

• fill is used to fill the structure with the specified material up to the specified
coordinate. 

• fourier specifies Fourier-type deposition. When using Fourier deposition, the
coefficients must be specified using coeffs or mat.coeffs.

• isotropic implies the same rate in all directions.

These deposition types must be used with thickness or coord, not with rate and time.

coeffs

List of single-material coefficients used in Fourier deposition.

coord

Specifies the x-coordinate for type=fill. Default unit: .

crystal.rate

List of deposition rates defined per crystallographic direction in the format:

{"<100>" =<depo_rate> "<110>" =<depo_rate> "<111>" =<depo_rate>}

There is no default value for any undefined rate in a given crystallographic direction.

90°
90°

90°

μm
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direction

Specifies the direction for directional deposition as a list of x- and y-coordinates of the
deposition vector. The x-coordinate must be positive. Positive-y indicates a right-pointing
deposition beam, and negative-y indicates a left-pointing beam.

doping

List of names of doping profiles that have been previously defined with the doping
command.

<fieldname>, species, concentration

These arguments allow a doped layer to be deposited. species specifies the name of the
data field to be incorporated (you can add a new user species this way). Instead of
specifying species, you can specify a field name (for example, boron, arsenic,
phosphorus, and indium). The default value and unit for concentration is .

fields.values

List of parameters where the parameter name is the name of the field to be introduced in
the deposited layer, and the value is the initial value, for example, fields.values=
{Boron=1e18}. A list of fields of any name can be initialized with this argument and, for
solution variables or stress components, units are accepted.

fill.buried

By default, the material is deposited on the surface exposed to the upper gas region. If the
structure has buried gas bubbles, they are untouched. Use fill.buried to deposit the
deposition material inside those gas bubbles.

fill.buried.interface

Specifies the material with which to fill gas bubbles present at a material interface.

NOTE The specified material must already be present in the simulation (for
example, silicon).

fill.buried.match.surrounding

Similar to fill.buried, but instead of depositing the deposition material inside gas
bubbles, this option fills gas bubbles that are completely surrounded by a single material
with that material, removing the bubbles from the domain entirely. Gas bubbles at material
interfaces remain unfilled but can be filled using fill.buried.interface.

NOTE This option is available only for 3D deposition.

1010 cm 3–
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force.full.levelset

By default, the simplest algorithm is chosen to perform the deposition. However,
sometimes the algorithm chosen generates incorrect results if the topology of the structure
is complicated. Specifying force.full.levelset switches on the general level-set
time-stepping algorithm that correctly handles these structures.

mask

Name of a mask to be used for the deposition. 

NOTE The material is deposited outside of the mask. If deposition inside the
mask is required, negative must be specified in the mask command.

mat.coeffs

List of multimaterial coefficients  used in Fourier deposition with a different
set of coefficients defined for each material.

<material>

Allows the specification of the deposited material. See Specifying Materials on page 18.

material

Specifies the material to be deposited. Overrides the <material> specification.

polygon

Specifies a list of x- and y-coordinates for the deposition. This is used only for 2D
deposition with type=polygon. The list of coordinates must define a single polygon with
no self-intersections. The first and last points are connected implicitly to close the polygon.
The specified material is deposited inside the polygon. The default unit for the coordinates
is .

rate

Deposition rate. Default unit: /minute.

region.name

Name of the region created by the deposit command. The name must not contain an
underscore (_) or a period (.) because these characters have special meaning. The name
must be different than an existing material name (see Regionwise Parameters and Region
Name-Handling on page 24).

remesh

Performs a remeshing after the deposition.

A0 A1 … An, , ,

μm

μm
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repair

In 3D MGOALS mode, small regions are removed automatically by default. Sometimes,
this causes small gas bubbles in the structure or other problems. Use !repair to switch
off the small region removal.

sde

Specifies the arguments and algorithms for 3D Sentaurus Structure Editor. By default,
arguments such as rate, thickness, time, and type are translated into appropriate
Sentaurus Structure Editor commands.

If an algorithm is specified, it overwrites the algorithm used by default for isotropic or
anisotropic deposition, for example:

sde= {"algorithm" "lopx"}
sde= {"algorithm" "lopx" "radius" 0.07}

selective.materials

Specifies that deposition will occur only on a list of selected materials. For 2D simulations,
MGOALS is used and multiple materials can be selected. For 3D simulations, the
Sentaurus Structure Editor interface is called and only one material can be selected. In
either case, only one material can be deposited.

shadowing

In two dimensions, switches on the inclusion of shadowing effects if
force.full.levelset is specified or for Fourier deposition. The visibility of each
surface area to each beam is calculated at every level-set time step. In 3D MGOALS mode,
this argument enables shadowing effects on both directional and anisotropic deposition.
The interface to Sentaurus Structure Editor ignores shadowing.

shadowing.nonisotropic

Use instead of shadowing to allow the 0th-order Fourier coefficient to deposit in areas
where the beam is shadowed.

sources

Defines the source beams for level-set deposition.

steps

Subdivides a deposition into more than one step. If necessary, stress relaxation is calculated
at the end of each step. Default: 1.

Strained.Lattice

Specifies strained deposition.
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suppress.remesh

Suppresses mesh generation and stress rebalance operations before 3D deposition steps. It
also suppresses mesh generation and stress rebalance after a 3D deposition, except when
initializing fields in the newly deposited layer. See Suppressing Mesh Generation in 3D
Simulations on page 237.

temperature

Deposition temperature used for stress relaxation only. Default value and unit: .

thickness

Thickness of the deposited layers. Default unit: .

time

Deposition time. It must be specified if the rate argument is used. Default unit: minute.

type

Explicitly specifies the type of deposition to be performed:

• type=anisotropic performs deposition in the vertical direction only, which must be
used with the rate and time arguments.

• type=crystal performs crystallographic deposition. The crystal.rate argument
also must be specified.

• type=directional performs anisotropic deposition using a specified direction.

• type=fill performs a fill of a specified material up to the coordinate specified with
the coord argument.

• type=fourier performs Fourier deposition, which requires the coefficients to be
specified with either coeffs or mat.coeffs.

• type=isotropic performs isotropic deposition, which must be used with the rate
and time arguments.

• type=polygon performs a polygonal deposition (in two dimensions), which requires
the polygon argument.

• type=trapezoidal performs a trapezoidal deposition, which requires the angle
and thickness arguments, and using selective.materials is recommended.
This is supported in 3D deposition only.

Description

This command simulates a deposition step.

26.85°C

μm
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Examples

Isotropic deposition of a  oxide layer:

deposit thickness= 0.2 oxide isotropic

Same as above; thickness is defined by rate and time:

deposit rate= {0.2} material= {oxide} type= isotropic time= 1

Add an intrinsic isotropic stress of  to the deposited nitride layer before the post-
deposition mechanics rebalancing step:

deposit thickness= 0.1 nitride \
fields.values= {StressELXX= 1e9<Pa> StressELYY= 1e9<Pa> \
StressELZZ= 1e9<Pa>}

Deposit Si0.8Ge0.2:

deposit thickness= 0.1<um> SiliconGermanium \
fields.values= [MoleFractionFields SiGe 0.2]

See Also

doping on page 408
mask on page 493
mgoals on page 510

0.2 μm

109 Pa
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doping

Defines a named piecewise linear doping profile that can be used with the deposit command.

Syntax

doping
field=<c> name=<c>
(depths= <list> | times= <list>)
stress.values= <list>
values= <list>
[clear] [list] [location= vertex | element] [log.grad]

Arguments

clear

Clears all doping specifications.

depths, times

You can use either:

• depths to specify a numeric list of the depths at which the values are applied.
Default unit: .

• times to specify a numeric list of the times at which the values are applied. This
argument only works for crystallographic deposition. The unit is minutes and cannot
be changed.

Only depths or times can be specified, but not both at the same time.

field

Name of the field. For stresses, use the field names:

• StressELXX 

• StressELXY 

• StressELYY 

• StressELZZ 

• StressELXZ 

• StressELYZ 

It is not necessary to specify all stress components. Those not specified are assumed to be
zero initially and are updated during the stress rebalance at the end of deposition.

μm
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list

Returns the names of all doping specifications.

location

Location where the field is to be applied. Default: vertex.

log.grad

Specifies a piecewise logarithmic doping profile.

name

Name of the profile to be used in the deposit command.

stress.values

Numeric list of the values of the stress field. Default unit: .

values

Numeric list of the values of the data field. Default unit: .

Description

This command allows a doping profile specification that can be used inside the deposit
command to add doping and other fields to the newly deposited layer (on either vertices or
elements).

Examples

Create a doping profile definition with the name init_boron that consists of a boron profile
linearly increasing from  at the starting surface to  at  and beyond in the
deposited layer. This doping profile definition can be used with the deposit command to
create the specified profile:

doping name= init_boron field= Boron values= {1e10 1e20} depths= {0 0.1}

Add an intrinsic isotropic stress of  to the deposited layer before the post-
deposition mechanics rebalancing step:

doping name= film_Sxx field= StressELXX stress.values= {1e9 1e9} depths= {0 1}
doping name= film_Syy field= StressELYY stress.values= {1e9 1e9} depths= {0 1}
doping name= film_Szz field= StressELZZ stress.values= {1e9 1e9} depths= {0 1}

See Also

deposit on page 401

dyn/cm2

cm 3–

1 10×10 1 20×10 0.1 μm
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element

Extracts the grid for a specified material and returns the grid as a list of coordinates.

Syntax

element <material> [region]

Arguments

<material>

Name of the material. See Specifying Materials on page 18.

region

Limits output to only one region if specified.

Description

This command can be used to plot the grid. It returns a list of coordinates that define the grid.
Each of the outer lists makes up a continuous line through the grid. Each inner list contains
coordinate pairs in order for that line.

NOTE This command is not available for 3D simulations.

Examples

Return the grid of oxide material:

element oxide
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Enu2G

Computes the shear modulus from Young’s modulus and the Poisson ratio.

Syntax

Enu2G <n> <n>

Arguments

<n>

The first value is Young’s modulus.

The second value is the Poisson ratio.

Description

The same units are assumed for all moduli.

Examples

Compute the shear modulus from Young’s modulus (1.620e12 dyn/cm2) and the Poisson ratio
(0.28):

Enu2G 1.620e12 0.28
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Enu2K

Computes the bulk modulus from Young’s modulus and the Poisson ratio.

Syntax

Enu2K <n> <n>

Arguments

<n>

The first value is Young’s modulus.

The second value is the Poisson ratio.

Description

The same units are assumed for all moduli.

Examples

Compute the bulk modulus from Young’s modulus (1.620e12 dyn/cm2) and the Poisson ratio
(0.28):

Enu2K 1.620e12 0.28
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equation

Allows test parsing and resolution of an equation string.

Syntax

equation eqn=<c> [nodal]

Arguments

eqn

String to be checked.

nodal

If specified, nodal returns the nodal part of the string specified by eqn.

Description

The equation string is parsed, broken into pieces, and derivatives are taken and printed. This
command is useful for debugging problems with the resolver and parsing, as equation strings
can be tried before being run.

Examples

Parse and resolve the string exp(Potential*$Vti):

equation eqn= "exp(Potential*$Vti)"

See Also

solution on page 626
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etch

Removes part or all of an exposed layer.

Syntax

etch
[1D] [Adaptive] [ambient.rate=<n>] [angle=<n>]
[angles.rates= {

matA= {angleA0 rateA0 angleA1 rateA1 ... angleAn rateAn}
matB= {angleB0 rateB0 angleB1 rateB1 ... angleBn rateBn}
... }]

[anisotropic | cmp | isotropic | trapezoidal]
[bottom.angle=<n>] [bottom.thickness=<n>]
[coeffs= {<A0> <A1> <A2> ... <An>}]
[coord=<n>][<m>|<cm>|<um>|<nm>]
[crystal.rate= {"<100>" =<n> "<110>" =<n> "<111>" =<n> "<311>" =<n>

"<511>" =<n> "<911>" =<n> "<221>" =<n>}]
[direction= <list>]
[etchstop= {<mat1> <mat2> ...} [etchstop.overetch=<n>]]
[force.full.levelset] 
[isotropic.overetch=<n>]
[levelset.upwind]
[mask=<c>]
[mat.coeffs= {

<mat1>= {<A0> <A1> <A2> ... <An>}
<mat2>= {<A0> <A1> <A2> ... <An>}
...
<matn>= {<A0> <A1> <A2> ... <An>} }]

[<material>]
[material= <list>]
[polygon= <list>]
[rate= <list>]
[remesh] [repair] [roundness=<n>]
[sde=<c>]
[shadowing] [shadowing.nonisotropic]
[sources= {<beam1> <beam2> ... <beamn>}]
[steps=<n>]
[suppress.remesh]
[temperature=<n>][<C>|<K>]
[thickness=<n>][<m>|<cm>|<um>|<nm>]
[time=<n>][<hr>|<min>|<s>]
[type= anisotropic | cmp | cmp.flat | crystal | directional | fourier |

isotropic | polygon | trapezoidal]
[undercut=<n>]
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Arguments

1D

Usually, a polygon etching automatically increases the dimension to two dimensions
before performing the operation. Set 1D to prevent this behavior.

Adaptive

If specified, Adaptive switches on adaptive meshing for this etching step. Parameters for
adaptive meshing are described in Adaptive Mesh Refinement on page 177. The default is
the return value of pdbGet Grid Adaptive.

ambient.rate

Used with type=trapezoidal and force.full.levelset to approximate the
underetch effect. Default unit: .

angle

Specifies the etching angle for type=trapezoidal. Default unit: degree.

angles.rates

Specifies a set of angle rate pairs that gives a piecewise linear etch rate versus angle. To be
stable, smaller angles must have a higher etch rate. Specify the etching rate to go to zero
above some angle produces facets.

anisotropic, cmp, isotropic, trapezoidal

Specifies the type of etching:

• anisotropic: Anisotropic etching.

• cmp: Chemical-mechanical polishing (CMP).

• isotropic: Isotropic etching.

• trapezoidal: Trapezoidal etching.

bottom.angle

Specifies the angle for the bottom of a trapezoidal etching in three dimensions. Default
unit: degree.

bottom.thickness

Specifies the thickness for the bottom of a trapezoidal etching in three dimensions. Default
unit: .

μm/minute

μm
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coeffs

List of single-material coefficients  used in Fourier etching.

coord

The x-coordinate to work with type=cmp. Default unit: .

crystal.rate

List of etching rates defined per crystallographic direction in the format:

{"<100>" =<etch_rate> "<110>" =<etch_rate> "<111>" =<etch_rate>}

You must add a space between the double quotation mark (") after the crystallographic
direction and the equal sign. There is no default value for any undefined rate in a given
crystallographic direction. Default unit: .

direction

Numeric list of x-, y-, and z-values specifying the etching direction for
type=directional.

NOTE All three values must always be specified. In two dimensions, the z-
value must always be zero.

etchstop

Materials, instead of time, can be given as etch-stopping criteria. In this case, etching
continues until any of the given etchstop materials is exposed. An additional overetch is
performed, with a time equal to etchstop.overetch (default: 10%) multiplied by the
accumulated time required to expose the first etchstop material.

In three dimensions, etchstop is ignored when Sentaurus Structure Editor is used.

NOTE Materials, in addition to time, can be given as etch-stopping criteria for
Fourier etching. If both time and etchstop are given, Fourier etching
stops when either of the two criteria is first met.

etchstop.overetch

When etchstop is defined, an additional overetch is performed when the first etchstop
material becomes exposed to gas. The duration of this overetch step is the already
performed etching time multiplied by etchstop.overetch. Default: 0.1 (10%).

force.full.levelset

By default, the simplest algorithm is chosen to perform the etching. However, sometimes,
the algorithm chosen generates incorrect results if the topology of the structure is

A0 A1 … An, , ,

μm

μm/minute
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complicated. Specifying force.full.levelset switches on the general level-set time-
stepping algorithm, which correctly handles these structures.

isotropic.overetch

Specifies a required amount of isotropic etching following anisotropic etching. The
thickness is specified as a fraction of the anisotropic component. This argument is not
implemented in 3D MGOALS mode.

levelset.upwind

Used with force.full.levelset to choose the Upwind formulation of the full level-
set algorithm. The Upwind algorithm is less stable and less robust than the Lax–Friedrichs
algorithm, which is the default.

mask

Name of the mask to be used for the etching.

mat.coeffs

List of multimaterial coefficients  used in Fourier etching with a different set
of coefficients defined for each material.

<material>

Specifies the material to be etched. See Specifying Materials on page 18.

material

String list of materials for multimaterial etching.

polygon

Numeric list of x- and y-coordinates for type=polygon. The list of coordinates {x0 y0
x1 y1 x2 y2 ... xn yn} defines a single polygon that must not be self-intersecting.
The first and last points are connected implicitly to close the polygon. The material inside
the polygon is etched. The default unit of the coordinates is .

rate

Numeric list of etching rates. Default unit: /minute.

remesh

Performs remeshing after the etching.

A0 A1 … An, , ,

μm

μm
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repair

In 3D MGOALS mode, small regions are removed automatically by default. Sometimes,
this causes small gas bubbles in the structure or other problems. Use !repair to switch
off the small region removal.

roundness

Tuning argument for the curvature of the etch sidewalls in the case of trapezoidal etching
when force.full.levelset is used. The default value is 1.0. Increased values up to 2.0
or 3.0 increase the curvature of the etch sidewall calculated by the level-set solver.

sde

String used to specify parameters and algorithms for 3D Sentaurus Structure Editor. By
default, arguments such as rate, thickness, time, and type are translated into
appropriate Sentaurus Structure Editor commands. If an algorithm is specified using sde,
it overwrites the algorithm used by default for isotropic or anisotropic etching, for example:

sde= {"algorithm" "lopx"}
sde= {"algorithm" "lopx" "radius" 0.07}

shadowing

In two dimensions, shadowing switches on the inclusion of shadowing effects if
force.full.levelset is specified or for Fourier etching. The visibility of each surface
area to each beam is calculated at every level-set time step.

In 3D MGOALS mode, shadowing enables shadowing effects on both directional and
anisotropic etching.

The Sentaurus Structure Editor interface ignores shadowing.

shadowing.nonisotropic

Used instead of shadowing to allow the 0th-order Fourier coefficient to etch areas where
the beam is shadowed.

sources

Defines the etching source beams for level-set etching.

steps

Subdivides an etching operation into more than one step. If necessary, stress relaxation is
calculated at the end of each step. Default: 1.

suppress.remesh

Suppresses mesh generation and stress rebalance operations before and after 3D etching
steps (see Suppressing Mesh Generation in 3D Simulations on page 237).
418 Sentaurus™ Interconnect User Guide
N-2017.09



A: Commands
etch
temperature

Etching temperature. Default value and unit: .

thickness

Thickness that is removed in the etching. Default unit: .

time

Refers to the etching time. It must be specified if rate is used. Default value and unit:
1.0 minute.

NOTE If both time and etchstop are given for Fourier etching, the Fourier
etching stops when either of these two criteria is met.

type

Specifies the type of etching to be performed: 

• type=anisotropic performs etching in the vertical direction only and must be used
with the rate and time arguments.

• type=cmp performs CMP and is used with the argument coord.

• type=cmp.flat performs CMP, except the new surface specified by coord is
flattened following stress relaxation and has zero displacement.

• type=crystal performs etching in two dimensions or three dimensions using etching
rates dependent on the crystallographic direction defined by the crystal.rate
argument.

• type=directional performs anisotropic etching in other directions and must be
used with the direction, rate, and time arguments.

• type=fourier performs angle-dependent etching in two dimensions or three
dimensions where the rate-versus-angle functions are defined by a cosine series using
coeffs or mat.coeffs.

• type=isotropic performs isotropic etching, which must be used with the rate and
time arguments.

• type=polygon performs polygonal etching in two dimensions and is used with the
polygon argument.

• type=trapezoidal performs trapezoidal etching like Taurus™ TSUPREM-4™ in
two dimensions defined by the thickness, undercut, and angle arguments, and in
three dimensions defined by the thickness, angle, bottom.thickness, and
bottom.angle arguments.

26.85°C

μm
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undercut

Distance to etch below the nonetchable material in 2D trapezoidal etching. Default unit:
.

Description

This command etches a layer exposed to the top gas. Several materials can be etched at the
same time. There are different modes to perform etching:

■ The MGOALS mode uses either an analytic or a level-set method performed by the
MGOALS module.

■ A general level-set time-stepping mode can handle more sophisticated etching capabilities
such as multimaterial etching, Fourier etching, multiple beam, and shadowing.

Examples

Etch a  silicon layer anisotropically in the direction indicated by direction. A mask
called m1 is used during etching:

etch time= 2.0 rate= {0.1} material= {silicon} type= directional \
direction= {1.0 1.0 0.0} mask= m1

Etch silicon for 0.1 minute at a rate of  per minute, using source1 as the etching beam,
including shadowing effects, and with a Fourier response to the etchant defined by 
and :

beam name= source1 factor= 1.0 incidence= -30

etch material= {silicon} shadowing sources= {source1} type= fourier \ 
coeffs= {0.1 0 0 1} time= 0.1

Define multimaterial Fourier etching for 0.2 minutes. The Fourier coefficients for each material
are given separately within mat.coeffs:

beam name= source_beam factor= 1.0 incidence= -30

etch material= {Silicon Nitride Oxide PolySi} sources= {source_beam} \
mat.coeffs= { Silicon= {0 0.5} Nitride= {0 1} Oxide= {0 0.75} \ 
PolySilicon= {0.5} } type= fourier time= 0.2

See Also

deposit on page 401
mask on page 493
mgoals on page 510

μm

0.2 μm

1 μm
A0 0.1=

A3 1=
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exit

Terminates the execution of Sentaurus Interconnect.

Syntax

exit

Description

This command can be used in interactive mode as well as in command files.

See Also

fbreak on page 424
fcontinue on page 424
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extract

Extracts historical data during a solve step.

Syntax

extract
[clear]
[command= {<c> <c> ...}]
[name=<c>] [print]
[syntax.check.value=<c>]

Arguments

clear

Clears the stored historical data.

command

List of commands for data interpolation.

name

Name of data extraction.

print

Returns the extracted data values as a Tcl list with all interpolated variables.

syntax.check.value

Sets a value to be returned only during syntax-checking mode. Sometimes, the value
returned by a command can cause a false syntax-check error because the value returned by
the command would not be the value during the normal run mode. Setting this value avoids
such problems.

Description

Specifies the commands for data extraction during a solve step.

The extracted historical data can be returned as a Tcl list. Typically, the extracted data is in
internal units. Internal units are the centimeter-gram-second (CGS) system of units [s, cm, g,

, poise, ]. For example, the unit for stress is .dyn/cm2 cm2/s dyn/cm2
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Examples

Extract and store the value of Potential at the position  in the silicon for each solve
step:

extract name= etest command= {select z= Potential interpolate Silicon x= 0.04}

Return the extracted data values with the extraction name etest in a Tcl list (for example, if
two values are extracted in etest, the Tcl list takes the format <time1> <value1_1>
<value2_1> <time2> <value1_2> <value2_2> ...):

extract print name= etest

Clear all stored historical data:

extract clear

See Also

Extracting Values During solve Step: extract on page 324
interpolate on page 473

0.04 μm
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fbreak

Starts interactive mode.

Syntax

fbreak

Description

This command interrupts the execution of command files and starts the interactive mode.

See Also

exit on page 421
fcontinue

fcontinue

Resumes execution of command files.

Syntax

fcontinue

Description

This interactive mode command resumes the execution of command files in batch mode.

See Also

exit on page 421
fbreak
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fexec

Executes system commands.

Syntax

fexec

Description

Executes system calls through the Tcl command exec (with exactly the same syntax). Using
fexec, the system calls are not executed during syntax-checking as they would be if the plain
exec command were used. If there is an error in the execution, this command prints an Error
in system call message, in addition to the error output of exec.

Examples

List the contents of the current directory:

fexec ls

See Also

Tcl documentation for description of exec syntax

fproc

The defineproc and fproc commands are equivalent.

See defineproc on page 399.

fset

The define and fset commands are equivalent.

See define on page 398.
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generic_step

Define a process step in a generalized way.

Syntax

generic_step
[<material>]
[<par1>=<c>] [<par2>=<c>] ... [<parn>=<c>]
[sde_proc=<c>]
[sxx=<n>][<atm>|<GPa>|<MPa>|<KPa>|<Pa>|<dyn/cm2>]
[syy=<n>][<atm>|<GPa>|<MPa>|<KPa>|<Pa>|<dyn/cm2>]
[szz=<n>][<atm>|<GPa>|<MPa>|<KPa>|<Pa>|<dyn/cm2>]
[temperature=<n>][<C>|<K>]

Arguments

<material>

Specifies the material to which the command applies. See Specifying Materials on page 18.

<par1>, <par2>, ... <parn>

Parameters to be passed to user-defined Sentaurus Structure Editor procedures. The names
of these parameters must exactly match the names used in the header of the user-defined
procedure, although the order is insignificant.

sde_proc

Specifies the name of the Sentaurus Structure Editor procedure for this step. The procedure
must have been defined in the sde_init file, which is assumed to be located in the current
working directory.

sxx, syy, szz

Specify the intrinsic stresses in the regions generated in this step. Default value and unit:
.

temperature

Specifies the temperature of this process step. Default value and unit: .

Description

This command defines a process step that employs user-defined Sentaurus Structure Editor
procedures for structure-geometry generation, and defines the temperature and intrinsic
stresses for this step.

0.0 dyn/cm2

25°C
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NOTE Dimension-dependent intrinsic stresses can only be defined using the
stressdata command.

Examples

Define a process step at temperature of , define which structure geometry is generated
by the user-defined Sentaurus Structure Editor procedure named mydepo1, and pass values of
oxide, 0.1, Copper, depo4 to the parameters mat, thickness, mat2, and region4 of the
procedure mydepo1, respectively:

generic_step temperature= 200.0 sde_proc= mydepo1 mat= Oxide \
thickness= 0.1 mat2= Copper region4= depo4

See Also

stressdata on page 634

200°C
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graphics

Controls the user interface of Sentaurus Visual (both the plot and field selection) from the
command file.

Syntax

graphics
[add.active] [add.dopants] [add.total] [cmd=<c>]
[display.all= <list> | all]
[display.border= <list> | all]
[display.bulk= <list> | all] 
[display.field= <list> | all]
[display.mesh= <list> | all]
[field.1d.max=<n>] [field.1d.min=<n>]
[field.max= {<c>=<n> ...}] [field.min= {<c>=<n> ...}]
[field.scale= asinh | linear | log]
[fields= <list>]
[keep.aspect.ratio] [off | on]
[svisual.cmd=<c>] [update]
[xmax=<n>] [xmin=<n>] [ymax=<n>] [ymin=<n>]

Arguments

add.active, add.dopants, add.total

These options are used to select the types of fields that will be displayed in one dimension
and are available to be displayed in two and three dimensions. To switch off the active
dopant concentrations and NetActive, use !add.active. To switch off the dopant
fields, use !add.dopants. To switch off the total concentration fields, use !add.total.
Default:  true.

cmd

Whenever a graphics update is typically executed, a script defined by the value of cmd is
executed in addition to the graphics updating.

display.all, display.border, display.bulk, display.field, display.mesh

These arguments switch on and off respective parts of a 2D or 3D structure. They all take
a list of region names or material names, or all (meaning all regions or materials) as
values. For each material or region in the list, that particular part of the structure will be
visible. Using an exclamation mark in front of a material or region name will hide that part
of the structure. In these lists, if all appears, it is processed first for convenience.
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For example, to switch on the mesh in all regions of material Silicon and to switch off
the mesh in the region named Oxide_1, set:

display.mesh= {Silicon !Oxide_1}

This applies similarly to display.border, display.bulk, and display.field. Use
display.all to switch on or off all bulk, field, mesh, and borders simultaneously.

For example, to switch off all regions except for the material Silicon, use the command:

graphics display.bulk= {!all Silicon}

field.1d.max, field.1d.min

Set the data range for all fields in xy plots. These arguments specify the maximum and
minimum of the y-axis of xy plots, and apply only when Sentaurus Visual displays an xy
plot of field values versus depth.

For example, field.1d.min=1e10 sets the minimum value for an xy plot.

field.max, field.min

These arguments apply only to 2D and 3D simulations when Sentaurus Visual represents
field values using color contours on the structure. These arguments adjust the field values
corresponding to the maximum and minimum color contours.

For example, field.min= {Boron=1e10 Interstitial=1e7} sets the minimum of
the color range to  when boron is displayed and to  when interstitial is
displayed.

field.scale

Changes the scaling of the contours (in 2D or 3D simulations) or the y-axis of the xy plot
(1D simulation). Valid values are asinh, linear, or log.

fields

Specifies which fields to display. For 1D simulations, all fields in this list are displayed on
an xy plot. For 2D and 3D simulations, the first field in the list is displayed, and the
remaining fields are sent to Sentaurus Visual and can be displayed using the Data menu
(Scalars tab).

In addition to this list, the options add.active, add.dopants, and add.total control
the default availability of the fields. Since these options are true by default, the active, total,
and dopant fields are sent in addition to fields specified by the fields argument.

keep.aspect.ratio

Applies to 2D simulations only. The plot range can be adjusted using xmin, xmax, ymin,
and ymax. By default, the aspect ratio between the x-axis and y-axis is maintained, so that

1010 cm 3– 107 cm 3–
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the specified plot range of those arguments is not necessarily used. To remove this
restriction, specify !keep.aspect.ratio.

off, on

By default, graphics updating is automatically switched on when in the Sentaurus Visual
interface mode (command-line option --svi). These options can be used as follows:

• Set off to switch off automatic updating of graphics.

• Set on to switch on automatic updating of graphics using the command given by cmd.

svisual.cmd

Specifies a Tcl command file to be sent directly to Sentaurus Visual. Refer to the
Sentaurus™ Visual User Guide for commands, parameters, and syntax.

update

Forces a graphics update. Usually this is not necessary, as the graphics are updated
automatically when the structure or data changes.

xmax, xmin, ymax, ymin

These arguments set the range of the plot and can be used independently if required. The
xmin and xmax arguments apply to 1D and 2D simulations. The ymin and ymax arguments
apply only to 2D simulations.

By default, the aspect ratio between the x-axis and the y-axis is maintained, so the specified
plot range is not necessarily used. Specify !keep.aspect.ratio to remove this
restriction. Default unit: .

Description

The graphics command controls plot settings in Sentaurus Visual and selects which fields
are available for visualization. Plot settings also can be controlled directly using the user
interface of Sentaurus Visual. However, if for example, the same command file is to be run and
rerun, it can be very convenient to add graphics commands to control the plot settings instead
of making adjustments repeatedly in the user interface.

The graphics command also can be used to display or make available nonstandard fields. By
default, standard fields will be sent to Sentaurus Visual. The fields argument is used to
extend the available list (that is, to include fields not usually stored in the TDR file).

μm
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Examples

In one dimension, add Vacancy to the list of fields that are displayed (or, in two dimensions
and three dimensions, display Vacancy):

graphics fields= {Vacancy}

Set the display range in two dimensions without maintaining the xy aspect ratio (the values
default to the outer simulation boundaries, so only specify those boundaries to zoom in from
the outer boundary):

graphics xmin= -0.05<um> xmax= 0.1<um> ymax= 1.0<um> !keep.aspect.ratio

Specify the default minimum values for various species:

graphics field.min= {Vacancy=1e7 VacancyGbc=1e3 VTotal=1e7}

Send a special command directly to Sentaurus Visual (in this case, to adjust the plot view):

graphics svisual.cmd= "move_plot -position {0.09 -0.125}"

See Also

Sentaurus™ Visual User Guide 
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grid

Sets meshing parameters, performs grid operations, and computes statistics about the mesh.

Syntax

grid
[Gas]
[get.bbox | get.bbox.cm | get.bbox.um | get.bulk.nodes | get.bulk.regions |
get.dimension | get.elements | get.interface.nodes | 
get.interface.regions | get.max.angle | get.max.connectivity |
get.max.edge | get.max.volume | get.max.volume.ratio |
get.max.volume.ratio.location | get.min.angle | get.min.edge |
get.min.edge.vertices | get.min.volume | get.min.volume.location |
get.nodes | get.obtuse | get.total.nodes | get.total.volume | get.vertices]

[get.brep.faces | get.brep.min.angle | get.brep.min.angle.location |
get.brep.min.edge | get.brep.min.edge.location | get.brep.stats |
get.brep.vertices]

[get.interface.area] [get.mesh.stats]
[interpolate]
[<material>]
[merge]
[remesh [Adaptive] | (2D | 3D | FullD) | get.refine.check]
[rename [print.names]]
[save.min.edge] [save.volume]
[set.Delaunay.type= boxmethod | conformal | constrained]
[set.max.connectivity=<n>]
[set.max.neighbor.ratio=<n>]
[set.max.points=<n>]
[set.min.angle=<n>]
[set.min.edge=<n>[<m>|<cm>|<um>|<nm>]]
[set.min.grid=<n>[<m>|<cm>|<um>|<nm>]]
[set.min.normal.size=<n>[<m>|<cm>|<um>|<nm>]]
[set.normal.growth.ratio.2d=<n>]
[set.normal.growth.ratio.3d=<n>]
[set.syntax.check.value=<c>]
[smooth.brep [

set.delpsc.accuracy=<n>[<m>|<cm>|<um>|<nm>]
set.delpsc.resolution=<n>[<m>|<cm>|<um>|<nm>]
set.repair.resolution=<n>[<m>|<cm>|<um>|<nm>]]]

Arguments: Regridding, Renaming, Refinement

2D, 3D, FullD

Extrudes grid to higher dimension. The line commands must be issued before extruding
to a higher dimension. For two dimensions, at least two y-lines must have been specified.
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For three dimensions, two y-lines and two z-lines must have been specified. FullD
extrudes to the highest possible dimension.

Adaptive

If specified, Adaptive switches on adaptive meshing if remesh is specified. Parameters
for adaptive meshing are described in Adaptive Mesh Refinement on page 177. The default
is the return value of pdbGet Grid Adaptive.

get.refine.check

Returns 1 if remeshing is needed, based on refinement criteria. Otherwise, it returns 0.

interpolate

Performs interpolation if remesh is specified.

merge

Merges adjacent regions of the same material into one region.

NOTE Do not use in combination with other arguments.

print.names

Prints the region names if rename is specified.

remesh

If specified, the mesh is re-created using the active mesh generator.

rename

Renames all regions of the structure according to the material they contain and the smallest
y-coordinate point of the region, that is, from the bottom of the structure upwards. Multiple
regions of the same material with the smallest y-coordinate within the given coordinate
interval will increase the associated index towards the positive x-axis, from left to right (see
print.names).

save.min.edge

Must be used by itself. When specified, Sentaurus Interconnect computes the smallest edge
length in each direction and saves it in three fields: MinXEdgeLength, MinYEdgeLength
(for 2D or 3D structures), and MinZEdgeLength (for 3D structures). In addition, this
argument stores the element volumes in the field ElementVolume. When set.min.edge
is specified, the average edge length in each direction is returned and can be used to set a
Tcl variable, for example:

set aveEdgeLength [grid save.min.edge]
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save.volume

Sets element volumes as element values over the mesh. This field is not updated
automatically.

set.min.grid

Specifies the minimum-allowed grid spacing. Default unit: .

set.syntax.check.value

Sets a value to be returned only during syntax-checking mode. Sometimes, the value
returned by a command can cause a false syntax-check error because the value returned by
the command would not be the value during the normal run mode. Setting this value avoids
such problems.

Arguments: Setting Mesh Parameters

NOTE These arguments set the corresponding meshing parameters under
pdbSet Grid SnMesh. See Table 17 on page 188 for more details.

set.Delaunay.type

Sets the meshing PDB parameter DelaunayType. Specifies the type of mesh generated by
Sentaurus Mesh. Available types are boxmethod, conformal, or constrained.
Default: constrained.

set.max.connectivity

Sets the meshing PDB parameter MaxConnectivity. Specifies the maximum number of
elements connected to a point in the final mesh. Default: 1e37.

set.max.neighbor.ratio

Sets the meshing PDB parameter MaxNeighborRatio. Binary-tree smoothing is
performed after refinements have been added to the binary tree. This prevents sudden
changes in the element size that can be especially detrimental to mechanics results. The
ratio of neighboring collinear edges in the binary tree can be adjusted with this argument.
Default: 3.0.

set.max.points

Sets the meshing PDB parameter MaxPoints. Specifies the maximum number of points
allowed by the delaunization module of Sentaurus Mesh. Default: 500000.

set.min.angle

Sets the meshing PDB parameter MinAngle. Specifies the minimum angle allowed in the
elements of the mesh (2D only). Default value and unit: .

μm
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set.min.edge

Sets the meshing PDB parameter minedge. Specifies the minimum edge length. Default
value and unit: 2.0e-6 .

set.min.normal.size

Sets the meshing PDB parameter min.normal.size. Specifies the smallest normal (to
the interface) mesh element size on either side of an interface. Default value and unit: 
8.0e-4 .

set.normal.growth.ratio.2d

Sets the meshing PDB parameter normal.growth.ratio.2d. This factor is used to
increase the size of the elements in the direction normal from the interface. The size of each
layer equals the size of the previous layer multiplied by this factor (2D only). Default: 2.0.

set.normal.growth.ratio.3d

Sets the meshing PDB parameter normal.growth.ratio.3d. This factor is used to
increase the size of the elements in the direction normal from the interface. The size of each
layer equals the size of the previous layer multiplied by this factor (3D only). Default: 3.0.

Arguments: Grid Statistics

Gas

By default, quality (except volume) and bbox measures include the gas mesh. To exclude
gas in the quality or bbox measure, use !Gas.

<material>

If specified, limits the measured grid statistics to the specified material.

Arguments: Reporting Grid Statistics

get.bbox

Prints the bounding box of the structure (coordinates in ).

get.bbox.cm

Prints the bounding box of the structure (coordinates in cm).

get.bbox.um

Prints the bounding box of the structure (coordinates in ).
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get.bulk.nodes

Returns the number of bulk nodes.

get.bulk.regions

Returns the number of bulk regions.

get.dimension

Returns the current simulation dimension.

get.elements

Returns the number of elements.

get.interface.area

Computes the area of interfaces. It can be limited to one particular interface by specifying
a material interface such as "Silicon /Oxide" (  in two dimensions,  in three
dimensions).

get.interface.nodes

Returns the number of interface nodes.

get.interface.regions

Returns the number of interface regions.

get.max.angle

Returns the maximum angle in degrees between edges (two dimensions) or faces (three
dimensions).

get.max.connectivity

Returns the maximum number of edges connected to a single node.

get.max.edge

Returns the maximum edge length in .

get.max.volume

Returns the maximum element volume (  in two dimensions,  in three
dimensions).

μm μm2
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get.max.volume.ratio

Returns the maximum ratio of volumes of two elements that share the same node (three
dimensions only).

get.max.volume.ratio.location

Returns the location where the maximum volume ratio occurs (coordinates in ).

get.mesh.stats

Indicates that all bulk mesh statistics must be printed. Here, all mesh statistics are listed as
command arguments if they can be individually queried. They also are printed with
get.mesh.stats or are listed below if they are available only by using
get.mesh.stats:

• bbox: Bounding box (minimum and maximum extents) of the mesh.

• bulk.nodes: Number of nodes in mesh excluding those in the interface meshes (this
gives two nodes for each vertex on an interface and one node for each bulk vertex).

• bulk.regions: Number of regions in the mesh.

• dimension: Simulation dimension.

• elements: Number of elements in the mesh.

• interface.nodes: Number of interface nodes in mesh. This will be the same as the
number of interface vertices.

• interface.regions: Number of interface regions in the mesh.

• max.angle: Maximum of all angles of all elements in the mesh.

• max.connectivity: Maximum number of edges sharing one vertex in the mesh.

• max.edge: Length of maximum edge in the mesh (in ).

• max.volume: Maximum element volume (in  where D is the dimension).

• max.volume.ratio: Maximum ratio of volumes (larger volume to smaller volume)
of neighboring elements.

• max.volume.ratio.location: Location where maximum ratio of volumes occurs.

• min.angle: Minimum of all angles of all elements in the mesh.

• min.edge: Length of minimum edge in the mesh (in ).

• min.edge.vertices: Endpoints of minimum edge.

• min.volume: Minimum element volume (in  where D is the dimension).

• min.volume.location: Location of the center of the element with the minimum
volume.
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• nodes: Total number of nodes in mesh. At interfaces, there are three nodes for each
vertex. In the bulk, there is one node for each vertex.

• obtuse: Percentage of triangles or tetrahedra that have obtuse angles.

• total.nodes: Same as nodes, that is, the total number of nodes in mesh.

• total.volume: Volume of mesh (in  where D is the dimension).

• vertices: Number of vertices in mesh.

get.min.angle

Returns the minimum angle in degrees between edges (two dimensions) or faces (three
dimensions).

get.min.edge

Returns the minimum edge length in .

get.min.edge.vertices

Returns the vertices of the minimum edge.

get.min.volume

Returns the element with the smallest area in two dimensions (in ) or the smallest
volume in three dimensions (in ).

get.min.volume.location

Prints the location of the smallest element (coordinates in ).

get.nodes

Same as get.bulk.nodes.

get.obtuse

Returns the percentage of triangles or tetrahedra that have obtuse angles.

get.total.nodes

Returns the total number of nodes in the mesh. Note the difference between points and
nodes: There is a node for each region sharing an interface point in addition to each point
not on an interface.
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get.total.volume

Returns the total volume of the bounding box (cm in one dimension,  in two
dimensions, and  in three dimensions). The unit of the angles reported is degree. If
none of these is chosen, all values are reported.

get.vertices

Returns the total number of vertices in the mesh.

Arguments: Boundary Representation (Brep) Statistics Reporting

get.brep.faces

Returns the number of faces in the brep.

get.brep.min.angle

Returns the brep minimum angle in degrees.

get.brep.min.angle.location

Returns the coordinates of the minimum angle (coordinates in ).

get.brep.min.edge

Returns the minimum edge length (in ) (three dimensions only).

get.brep.min.edge.location

Returns the coordinates of the minimum edge length (three dimensions only) (coordinates
in ).

get.brep.stats

Indicates that all brep statistics must be printed. Here, all brep statistics are listed as
command arguments if they can be individually queried. They also are printed with
get.brep.stats or are listed below if they are available only by using
get.brep.stats:

• brep.are.all.boundaries.on.bbox: Returns true if all outer boundaries are on
a flat bounding box; otherwise, false.

• brep.bbox: Returns the bounding box of the brep.

• brep.conformal: Returns true if the brep is conformal; otherwise, false.

• brep.dimension: Returns the dimension of the brep.

• brep.max.angle: Returns the brep maximum angle in degrees.
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• brep.max.angle.from.flat: Returns -brep maximum angle (three
dimensions only).

• brep.max.angle.location: Returns the coordinates (in ) of the maximum
angle (three dimensions only).

• brep.min.dihedral.angle: Returns the minimum dihedral angle in degrees in the
brep (three dimensions only).

• brep.min.dihedral.angle.location: Returns the coordinates (in ) of the
minimum dihedral angle (three dimensions only).

• brep.min.dihedral.angle.material: Returns the material where the minimum
dihedral angle is located (three dimensions only).

• brep.regions: Returns the number of regions in the brep.

• brep.total.area: Returns the total brep interface area in three dimensions or the
bulk area in two dimensions (in ).

• brep.total.volume: Returns the brep volume (three dimensions only) (in ).

get.brep.vertices

Returns the number of vertices in the brep.

Arguments: Smoothing Boundary Representation (Brep)

smooth.brep

Removes noise and sharp features by smoothing the brep. First, a multimaterial level-set
(MLS) algorithm removes any noise that may be present in the brep. Second, surface
remeshing creates good-quality triangles on uneven surfaces using the Delaunay
refinement for piecewise smooth complex (DelPSC) algorithm. Using multithreading with
the MLS algorithm is controlled by math numThreadsMGoals, and using multithreading
with the DelPSC algorithm is controlled by math numThreadsSnMesh.

set.delpsc.accuracy

Controls the deviation between the new surface from the DelPSC algorithm and the surface
from the MLS algorithm. Default unit: .

The DelPSC surface can deviate from the MLS surface by, at most, the value of
set.delpsc.accuracy. The DelPSC vertices lie exactly on the MLS surface, but
DelPSC triangles cannot lie exactly on the MLS surface unless the MLS surface is flat. In
general, the smaller the value of set.delpsc.accuracy is, the smoother the DelPSC
surface becomes, and the more accurate the DelPSC surface represents the MLS surface. It
uses the default value from:

pdbGet Grid Apply.Brep.DelPSC.Accuracy
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set.delpsc.resolution

Controls the size of small triangles in the DelPSC algorithm. Default unit: . It uses the
default value from:

pdbGet Grid Apply.Brep.DelPSC.Resolution

set.repair.resolution

Specifies the level-set cell size to remove noise and sharp features by the MLS algorithm.
Default unit: .

It must be, at most, one-third of the thickness of the thinnest region. Otherwise, the thin
region may be considered noise and may disappear. It uses the default value from:

pdbGet Grid Repair.Geometry.Resolution

The amount of geometry smoothing performed by the MLS algorithm depends on both the
curvatures in the input and the level-set cell size. A noisy surface has a high curvature, so
it is smoothed to a large extent to remove noise. On the other hand, a planar surface has
zero curvature and is well preserved. Unfortunately, a sharp corner has a theoretically
infinite curvature, so it becomes a rounded corner. The specified level-set cell size is the
threshold to distinguish between the noise to be removed and the features to be preserved.

Description

This command allows you to:

■ Remesh.

■ Setting meshing parameters.

■ Merge regions.

■ Extrude.

■ Rename regions.

■ Measure and report on various mesh statistics.

■ Measure and report on various boundary representation (referred to as brep) statistics.

To retrieve mesh or brep statistics, you can either:

■ In a single pass, all statistics can be computed and returned in a Tcl array that can be
accessed by the name of the measured value, for example:

array set returnArray [grid get.mesh.stats]
set numNodes $returnArray(get.total.nodes)
set numElements $returnArray(get.elements)

■ To retrieve only the required parameter, use:

set numNodes [grid get.nodes]
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NOTE If you are interested in several mesh statistics, it is more efficient to
retrieve all statistics in one pass and read them from a Tcl array.

To limit grid or brep statistics to a particular material or interface, specify the material on the
command line. For example:

■ To limit brep statistics to silicon, use:

grid get.brep.stats Silicon

■ To limit brep statistics to the oxide–silicon interface, use:

grid get.brep.stats Silicon /Oxide

Several mesh statistics parameters compute a measure of element quality including:

■ avg.element.quality (average element quality)

■ best.element.quality 

■ worst.element.quality 

■ lt3.element.quality (percentage of elements whose quality is less than 0.3)

■ gt6.element.quality (percentage of elements whose quality is greater than 0.6)

These arguments are computed and returned as part of get.mesh.stats, but they are not
separately available.

NOTE For the purpose of this command, quality is defined as:

• Triangles: 4.0 * sqrt(3.0) * area (sum of side lengths)2.

• Tetrahedra: The ratio of the radius of the inscribed sphere to the
radius of the circumsphere.

Examples

Recreate the mesh using currently specified refinements:

grid remesh

Report the percentage of obtuse elements in silicon:

grid get.obtuse silicon

Compute all mesh statistics, and then read the number of nodes and the number of elements
from the statistics array into numNodes and numElements, respectively:

array set returnArray [grid get.mesh.stats]
set numNodes $returnArray(get.total.nodes)
set numElements $returnArray(get.elements)
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Remove noise and sharp features from the brep:

grid smooth.brep set.delpsc.resolution= 0.02 set.delpsc.accuracy= 0.0002 \
set.repair.resolution= 0.003

See Also

line on page 481
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help

Prints a list of all commands available in Sentaurus Interconnect.

Syntax

help

Description

This command can be used in interactive mode as well as in command files.
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icwb

IC WorkBench (ICWB)–related functions.

Syntax

icwb bbox (xmin | xmax | ymin | ymax | left | right | front | back)

icwb create.all.masks

icwb dimension

icwb domain=<c>

icwb domain= [list "<domain_name1>" "<domain_name2>" ... "<domain_namen>"]

icwb filename=<c> [scale=<n>] [!recenter]

icwb gds.file=<c> cell=<c> layer.names= {<list>} layer.numbers= {<list>}
sim2d | sim3d= {<n>} [domain.name=<c>] [stretches= {<c>= {<n>}}]
[scale=<n>] [!recenter]

icwb layer.name=<c> list polygon.names

icwb list domains

icwb list (layerIDs | layerNames)

icwb list polygon.bounding.boxes layer.name=<c>

icwb list polygon.inside.points layer.name=<c>

icwb list polygon.tessellations layer.name=<c>

icwb polygon.name=<c> list.segments

icwb slice.angle.offset

icwb stretch name=<c> value=<n>

Description

The keyword icwb introduces commands used to operate with ICWB TCAD layout files. The
different uses of the keyword icwb are given here, along with their syntax and corresponding
descriptions:

icwb bbox (xmin | xmax | ymin | ymax | left | right | front | back)

Returns the corresponding coordinate, which can be one of the following in either ICWB
coordinates (xmin, xmax, ymin, ymax) or Sentaurus Interconnect coordinates (left,
right, front, back).
Sentaurus™ Interconnect User Guide 445
N-2017.09



A: Commands
icwb
icwb create.all.masks

Faster version of the icwb.create.all.masks command; intended to create large
masks from complex layouts.

icwb dimension

Returns the dimension of the current domain. For the following domain types, the
corresponding value for dimension is returned:

• Point: 1

• Gauge: 2

• Highlight: 3

icwb domain=<c>
icwb domain= [list "<domain_name1>" "<domain_name2>" ... "<domain_namen>"]

Defines the current domain. Setting the name of the current domain is a prerequisite for
other ICWB commands that implicitly depend on the current domain being defined.

The second variation allows for the concatenation of multiple gauge domains, reorientated
into one linear simulation domain.

icwb filename=<c> [scale=<n>] [!recenter]

Reads an ICWB TCAD layout file with the extension .mac. Coordinates in the ICWB file
are multiplied by the optional scale argument as the file is read. Translation of the ICWB
file coordinates to the (0,0) origin is switched off when the !recenter option is specified,
which is supported in 3D simulations. The ICWB TCAD layout file must be read as a
prerequisite to other ICWB commands that act on the domains and masks defined in that
file.

icwb gds.file=<c> cell=<c> layer.names= {<list>} layer.numbers= {<list>} 
sim2d | sim3d= {<n>} [domain.name=<c>] [stretches= {<c>= {<n>}}]
[scale=<n>] [!recenter]

Reads a GDSII layout file:

The gds.file argument specifies the input GDSII file name, and cell specifies the cell
name. You can use ? for the cell name, in which case, the first root cell will be used. The
layer.numbers is a list of selected layers from the cell, and layer.names is a list of
names for those layers.

The domain.name argument defines the name of the simulation domain. If no name is
specified, SIM3D is used for a 3D domain, and SIM2D is used for a 2D domain. The domain
will be set to be the current domain automatically, so you do not need to call icwb
domain=<c> before using other ICWB commands. However, you can call icwb
domain=<c> to set another preferred current domain.
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sim2d | sim3d indicates whether it is a 2D or 3D simulation domain. The simulation
domain is defined by two points, with each point defined by x- and y-coordinates in the
GDSII coordinate system. For two dimensions, the two points are endpoints of a segment.
The segment must be horizontal or vertical in the GDSII coordinate system. For three
dimensions, the two points are the two opposite corners of the simulation domain. The first
point is the left-back corner and the second point is the right-front corner in the UCS.

The stretches argument is a list of stretches, with each stretch having a name and being
defined by a segment with two points. For a 3D domain, the segment must cross the
bounding box of the domain. For a 2D domain, the segment must intersect with the 2D
domain.

The scale argument is the same as that in the icwb filename=<c> [scale=<n>]
command. Coordinates in the GDSII file are multiplied by scale as the file is read in to
Sentaurus Interconnect.

Translation of the ICWB file coordinates to the (0,0) origin is switched off when
the !recenter option is specified, which is supported in 3D simulations.

This command can be called multiple times to set multiple simulation domains. The GDSII
layout file or the ICWB TCAD layout file must be read as a prerequisite to other ICWB
commands that act on the domains and masks defined in that file.

icwb layer.name=<c> list polygon.names

Lists polygon names given a layer name.

icwb list domains

Queries the names of the current domains.

icwb list (layerIDs | layerNames)

Returns a list of layer IDs or layer names of the ICWB TCAD layout file.

icwb list polygon.bounding.boxes layer.name=<c>

Returns the bounding box rectangle for each polygon in the layer.

icwb list polygon.inside.points layer.name=<c>

Returns a point from inside each polygon in the layer.

icwb list polygon.tessellations layer.name=<c>

Breaks each polygon in the layer into a set of rectangles, and then returns these rectangles.

icwb polygon.name=<c> list.segments

Lists polygon segments given a polygon name.
Sentaurus™ Interconnect User Guide 447
N-2017.09



A: Commands
icwb
icwb slice.angle.offset

Returns the relative angle of the active simulation domain.

icwb stretch name=<c> value=<n>

Applies the given stretch by the given amount to the current domains. The order of applied
stretches is important since the location of other stretches can change given the application
of one stretch.
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icwb.composite

Loads a GDSII file for a 2D TCAD simulation based on composite simulation domains.

Syntax

icwb.composite
cell=<c>
composite.domain.name= {<list>}
gds.file=<c>
layer.names= {<list>} 
layer.numbers= {<list>}
sim2d.list= {{<n>} {<n>}} 
[scale=<n>]
[stretches= {<c>= {<n>}}]

Arguments

cell

Specifies the cell name.

composite.domain.name

Defines the name of the composite simulation domain. The name must consist of one
alphanumeric name for each 2D simulation domain. The names are combined with a plus
sign. No whitespace is allowed.

gds.file

Specifies the name of the input GDSII file.

layer.names

List of the names for the layers specified using layer.numbers.

layer.numbers

List of the selected layers from the GDSII file specified by gds.file.

scale

Coordinates in the GDSII file are multiplied by the optional scale argument as the file is
read.
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sim2d.list

Defines a sequence of 2D simulation domains that are joined to form a composite 2D
simulation domain.

stretches

List of stretches, with each stretch having a name and being defined by a segment with two
points. For a 2D domain, the segment must intersect with the 2D domain.

Description

This command is similar to the icwb gds.file=<c> command, but it applies to 2D
composite simulation domains.

Examples

The following command loads the BCD.gds GDSII file and activates a 2D composite
simulation domain consisting of two regular simulation domains called BJT1 and BJT2:

set LAYERS "1:0 2:0 3:0 4:0 5:0 6:0 7:0 9:0"

set NAMES "NWELL NACTIVE PACTIVE NPLUS POLY PBASE EMIT CONT"

icwb.composite \
gds.file= "BCD.gds" cell= "Inverter" scale= 1e-3 \
layer.numbers= $LAYERS layer.names= $NAMES \
composite.domain.name= "BJT1+BJT2" \
sim2d.list= {{6200.0 8150.0 8400.0 8150.0} {8250.0 8800.0 8250.0 9900.0}}
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icwb.contact.mask

Creates contacts for subsequent device simulations that are tied to a layer in the ICWB TCAD
layout file.

Syntax

icwb.contact.mask
(label.name=<c> [distance=<n>] | layer.name=<c>)
(box <material> [adjacent.material=<c>] [boxheight=<n>] [xhi=<n>] [xlo=<n>]
|
point <material> [replace] [x=<n>])

[name=<c>] [<other_arguments>]

Arguments

box, <material>, adjacent.material, boxheight, xhi, xlo

When you specify the box option, the part of the interface between the <material> and
the adjacent.material that intersect the box given by the lateral extent of the layout
polygon and the vertical extent given by xhi and xlo is turned into a contact.

If xlo is not specified, the vertical location of the interface is determined automatically,
and the vertical extent of the box is controlled by boxheight. The default for boxheight
is .

label.name, distance

Name of a text label in the ICWB TCAD layout file.

Only the text label within the given distance of the active 2D simulation domain is
recognized. The default for distance is . Simulation domain units are used (not
layout units). The distance argument has no effect for 3D simulation domains.

layer.name

Name of a layer in the ICWB TCAD layout file.

name

Name of the contact. If name is not specified, the default value is either the label name or
the layer name, whichever is specified.

point, <material>, replace, x

A point-type contact contains all the boundary elements of one or more regions. The
regions are identified by the specified material and the spatial coordinate of a set of one or
more points.
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If layer.name is specified, the lateral coordinates of these points are taken as a point
inside each lump of the layer (if there is more than one lump).

If label.name is specified, the lateral coordinates are taken as the anchor points of all text
labels with the given label name.

The height coordinate can be either specified explicitly with the x argument or computed
automatically. If the replace option is specified, the original material of the region of the
contact is replaced by gas in the TDR file.

<other_arguments>

Any other arguments supported by the contact command.

Description

This command serves as an interface between the ICWB TCAD layout and the contact
command by automatically obtaining the lateral placement of the contact from the specified
ICWB layer or text label location, taking the vertical placement from either the x argument
(point type) or the xhi and xlo arguments (box type) (or, if not specified, computing it
internally), and passing all other options directly to the contact command.

The icwb.contact.mask command supports both box-type and point-type contacts:

■ A box-type contact consists of elements at the surface of one region or material inside the
box. The lateral extent of the box is determined automatically from the layer segment (two
dimensions) or the layer polygons (three dimensions), while the vertical extent is taken
from the xlo and xhi arguments of the contact command. If the xlo argument is not
explicitly given, the vertical extent is determined automatically, based on the topmost
interface with the material mentioned in the command call. The vertical extent of the box
is controlled by boxheight. If a text label name is given, the layer associated with that
text label is used.

■ A point-type contact contains all the boundary elements of one region. The lateral position
of the point is determined automatically as a point inside the layer segment (two
dimensions) or the polygon (three dimensions), while the vertical position is taken from the
x argument of the contact command. If the x argument is not explicitly given, the vertical
position is determined automatically, based on the interfaces with the material given in the
command call. If a text label name is given, the anchor point of the text label is used.

For details on how to define contacts, see contact on page 381.

NOTE It may be advantageous to create auxiliary layers or text labels in
IC WorkBench Edit/View Plus for the placement of contacts.

NOTE For 3D simulations, sometimes the placement of contacts in Sentaurus
Interconnect causes meshing problems. Consider using the !cut.mesh
option of the contact command (see contact on page 381).
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Examples

The following commands create contacts for subsequent device simulations tied to the layers
named emitter and pdrain, and the text label drain, in the example ICWB TCAD layout
file:

icwb.contact.mask layer.name= emitter box polysilicon \
adjacent.material= oxide xlo= -2.05 xhi= -1.95

icwb.contact.mask layer.name= pdrain name= drain point aluminum replace \
x= -2.0

icwb.contact.mask label.name= "drain" point Aluminum replace
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icwb.create.all.masks

Creates positive and negative mask versions for all layers found in the currently active ICWB
simulation domain.

Syntax

icwb.create.all.masks
[save.to.tdr= 0 | 1]
[shift= {<dy> <dz>}]
[stretchypos= {<yo> <dy>}] [stretchyneg= {<yo> <dy>}]
[stretchzpos= {<zo> <dz>}] [stretchzneg= {<zo> <dz>}]
[reflecty= <yo>] [reflectz= <zo>]

Arguments

See icwb.create.mask on page 455.

Description

The names of the masks are given by the layer names and the suffix _p for the positive and _n
for the negative version of the mask.

For example, if the TCAD layout contains a layer with the name TRENCH, the corresponding
mask names are TRENCH_p and TRENCH_n.

This command makes two calls to the icwb.create.mask command for each layer it finds
in the layout file. Therefore, this command supports the reflect*, save.to.tdr, shift,
and stretch* arguments of the icwb.create.mask command.

NOTE Use the command-line option -n to suppress automatic syntax-
checking in Sentaurus Interconnect when using this feature. The syntax-
checker cannot determine which masks are available. Therefore, it may
incorrectly flag the use of an unknown mask.
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icwb.create.mask

Creates a mask for subsequent use in etch, deposit, or photo commands from one or more
ICWB layers.

Syntax

icwb.create.mask
layer.name= <c> | <list>
[name=<c>] [polarity= positive | negative]
[save.to.tdr= 0 | 1]
[shift= {<dy> <dz>}]
[stretchypos= {<yo> <dy>}] [stretchyneg= {<yo> <dy>}]
[stretchzpos= {<zo> <dz>}] [stretchzneg= {<zo> <dz>}]
[reflecty= <yo>] [reflectz= <zo>]

Arguments

layer.name

Name of one or more layers in the ICWB TCAD layout file. If more than one layer name
is given, the resulting mask is the union of the polygons (3D) or segments (2D) from all the
layers listed. (Use the icwb list layerNames command to obtain a list of all layer
names.)

name

Name of the mask. The mask name defaults to the layer name. If the layer name list
contains more than one entry, the first layer name is used.

polarity

Sets the polarity. Select negative to invert a mask. The polarity is assumed to be
positive by default, that is, points inside the mask are considered masked.

reflecty

Reflects the layer around the y-axis defined by the given coordinate before creating the
mask.

reflectz

Reflects the layer around the z-axis defined by the given coordinate before creating the
mask.
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save.to.tdr

If save.to.tdr=0, the created masks are not saved in a TDR file. If save.to.tdr=1,
the mask is saved in a TDR file if – and only if – the total number points in the mask is less
than or equal to the limit set in the PDB by the GDS Max.Points parameter. The default
value of save.to.tdr is 200. If needed, you can increase this limit with:

pdbSet GDS Max.Points <n>

In addition, you can suppress the saving of any mask created from GDSII layers by setting:

pdbSetBoolean GDS Save.To.TDR 0

shift

Shifts the layers by the specified amount before creating the mask.

stretchyneg, stretchypos, stretchzneg, stretchzpos

Stretches the layer before creating the mask. The last four characters of the arguments
determine whether the stretch is applied along the y- or z-direction and whether the layer
is stretched to the positive or negative side of the stretch position.

NOTE More than one shift, stretch*, and reflect* argument can be
used in the icwb.create.mask command. As these operations may
not commute, you must note the order in which these operations are
applied if more than one is used. First, shift is applied, and then
stretchypos, stretchyneg, stretchzpos, stretchzneg,
reflecty, and finally reflectz are applied.

Description

This command serves as an interface between the ICWB TCAD layout and the mask and
polygon commands, and provides a convenient way to generate 1D, 2D, and 3D masks
consisting of the points, segments, or polygons from one or more ICWB layers based on a
dimension-independent syntax. The command automatically determines the dimension of the
currently active ICWB simulation domain.

Examples

The following commands create masks from the corresponding layers named by layer.name:

icwb.create.mask layer.name= NWELL polarity= negative

icwb.create.mask layer.name= NWELL name= NOTNWELL

icwb.create.mask layer.name= "NPDIFF PPDIFF NPLUG PBASE" name=STI info=1

icwb.create.mask layer.name= 1:0 stretchyneg= {1.2 -0.25}
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See Also

deposit on page 401
etch on page 414
mask on page 493
photo on page 544
polygon on page 559
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init

Sets up the mesh and background doping levels.

Syntax

init
[Adaptive]
[concentration=<n>][<m-3>|<cm-3>|<um-3>|<nm-3>]
[DelayFullD] [done]
[field=<c>]
[fields.values= <list>]
[load.commands] [<material>]
[mixed.mesh]
[multiple.cell.param= {

interface0= { {rangeY0 rangeZ0 rangeR0} [{rangedy1 rangedz1 rangeR1}
{rangedy2 rangedz2 rangeR2}] ...}

[interface1= { {rangeY0 rangeZ0 rangeR0} {rangedy1 rangedz1 rangeR1}
{rangedy2 rangedz2 rangeR2} ...}]

[interface2= { {rangeY0 rangeZ0 rangeR0} {rangedy1 rangedz1 rangeR1}
{rangedy2 rangedz2 rangeR2} ...}]

number.pillars= {Ny Nz}
variation.type= Gaussian | Linear | Uniform

}]
[notch.direction= <list>]
[pdb] [pdb.only]
[sat=<c>] [sigmac=<c>]
[slice.angle=<n>][<degree>]
[tdr=<c>] [top]
[unit.cell=pillar]
[unit.cell.param= {

setup= {
{<substrate_mat> <surround_mat>}
{Xmin Xmax Ymin Ymax Zmin Zmax}
{yz.spacing=<n>}
[{Xmin s0 x1 s1 ... Xmax s}]

}
thicknesses= {h0 h1 h2 ...}
pillar.materials= {mat1 mat2 mat3 ...}
interface0= { {Y0 Z0 R0} [{dy1 dz1 R1} {dy2 dz2 R2}] ...}
[interface1= { {Y0 Z0 R0} {dy1 dz1 R1} {dy2 dz2 R2} ...}]
[interface2= { {Y0 Z0 R0} {dy1 dz1 R1} {dy2 dz2 R2} ...}]

}]
[wafer.orient= <list>]
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Arguments

Adaptive

When loading a TDR file containing geometry but no mesh, a mesh is generated
automatically. This argument determines whether adaptive meshing is used. The default is
the return value of pdbGet Grid Adaptive.

concentration

Concentration of the incorporated data field. The only available unit is , but any nodal
quantity (with any internal unit) can be initialized with this argument if no unit is specified.
Default value and unit: .

DelayFullD

By default, Sentaurus Interconnect generates a minimum-dimensional structure, which
will be extruded to higher dimensions when Sentaurus Interconnect encounters a mask. To
generate a full-dimensional structure, use !DelayFullD.

done

Returns 1 if the initialization is performed; otherwise, returns 0.

field

Name of the data field to be initialized everywhere in the structure.

fields.values

Specifies a list of parameters where the parameter name is the name of the field to be
introduced in the bulk regions of the new structure, and the value is the initial value, for
example, fields.values= {Boron=1e18}. A list of fields of any name can be
initialized with this argument and, for solution variables or stress components, units are
accepted.

load.commands

Loads the commands in the TDR format file. Default: true.

<material>

Specifies a material for doping. It must be used with the field argument.

mixed.mesh

Sets the simulation structure to mixed-mesh mode, that is, it allows the presence of
rectangles, bricks, prisms, and pyramids without converting them to triangles or tetrahedra.

cm 3–

0.0 cm 3–
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NOTE This mode is only available for mechanics.

multiple.cell.param

Specifies fields to define a structure having multiple pillar cells. Each pillar cell is defined
as in unit.cell.param, with process variation specified by this parameter (see Multiple-
Pillar Structure With Hexahedral Mesh on page 249).

The number.pillars field specifies the number of pillar cells along the y- and z-
directions, respectively. By default, both numbers are 1.

The variation.type field specifies the variation type for all parameters that are allowed
to be varied. These include the radii of all circles, the centers of inner circles, and the center
shifts for all outer circles. Default: Uniform.

The interface0, interface1, and interface2 fields define the variation range for
each parameter on the interface. If all the variation ranges are zero, all pillar cells are
identical. For a pillar structure, there are at least two interfaces. Identical to
unit.cell.param, when the number of interfaces is less than the number of thicknesses,
this command will assume the next interface has the same variation ranges as the previous
one. For example, if only interface0 is defined, it assumes interface1 (and
interface2 if there are three interfaces) has the same variation ranges. When no interface
is defined, all pillar cells will be identical.

NOTE The variation of each parameter must not violate any limitations that are
set for one-pillar cells. Circles inside each cell must be well separated.
The simulation will exit with an error message if any overlap exists
between circles.

notch.direction

NOTE This was originally the flat.orient argument.

Specifies a direction from the wafer center to the notch using a list of three Miller indices,
or specifies an orientation that is normal to the wafer flat (imagine that a wafer flat is a
plane parallel to wafer.orient). Default: {1 1 0}.

pdb

Loads pdb parameters along with geometry and data in the TDR file. Default: true.

pdb.only

Loads only pdb parameters without geometry and data in the TDR file. Default: false.

sat

Specifies to read the structure file in the Sentaurus Structure Editor format.
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sigmac

Specifies to read the structure file in Sigma-C 3D format.

slice.angle

Angle of the simulation domain with respect to the wafer coordinate system. Default value
and unit: .

The slice.angle can be specified using a CutLine2D command:

init slice.angle= [CutLine2D 1.65 0.15 1.95 0.6]

tdr

Specifies the TDR format file to read.

In general, a TDR file can contain a variety of information depending on which tool was
used to generate the file. By default, Sentaurus Interconnect writes files with sufficient
information to restart a simulation. This includes current parameter settings, stored
commands (such as polygon, mask, contact), bulk mesh and data, and, in three
dimensions, a boundary (see Saving a Structure for Restarting Simulations on page 39). If
such a file is specified, all this data is read and used to restart the simulation. It is also
possible to read TDR files that include only bulk mesh and data, or only a boundary. If only
a boundary is available, Sentaurus Interconnect creates a mesh using current refinement
criteria. However, TDR files generated by Sentaurus Device do not contain information to
restart a simulation and may not be read correctly.

For information about the TDR format, refer to the Sentaurus™ Data Explorer User
Guide.

top

Specifies that the gas is found at the smallest x-value (at the top of the structure). If !top
is specified, the gas is added at the highest x-value (at the bottom). Default: true.

unit.cell

When unit.cell=pillar, this argument specifies that a pillar structure with a
hexahedral mesh will be generated (see Pillar Structure With Hexahedral Mesh on
page 246).

unit.cell.param

Specifies a list of arguments that define the geometry of a pillar structure (see Pillar
Structure With Hexahedral Mesh on page 246):

• setup defines:
The substrate material and the surrounding material: 
{<substrate_mat> <surround_mat>}.

90– °
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The structure bounding box: {Xmin Xmax Ymin Ymax Zmin Zmax}.
The grid spacing in the yz plane: {yz.spacing=<n>}.
The grid spacing along the x-direction: {Xmin s0 x1 s1 x2 s2 ... Xmax s}.

The specification for the grid spacing along the x-direction is optional. If it is used,
Xmin,Xmax and all the interface locations must be included. Xmin, x1, x2 … Xmax are
locations, and s0, s1, s2 … s are spacings. Values must be paired, and each location
is followed by a spacing. It works like the line command.

If the grid spacing along the x-direction is not defined, yz.spacing is used to
determine the grid size along the x-direction. In the yz plane, yz.spacing determines
the grid size around the center of the inside circle on the top interface as well as the
parts that are meshed independently, for example, the four corners of the top interface.
Grid sizes in some parts depend on the meshing of other parts, for example, the grid
size of eccentric circles depends on the grid size of the inner circle, and the grid size of
other interfaces depends on the meshing of the top interface. The default value of
yz.spacing is .

• thicknesses defines the thickness of each layer, starting with the thickness of the
substrate. At least two thicknesses are required and, at most, three thicknesses can be
specified.

• pillar.materials defines the material for each pillar region, starting with the
innermost pillar. Up to five concentric or eccentric pillars are allowed.

• interface0 defines the first interface between the pillars and the substrate. The
values {Y0 Z0 R} are the center coordinates and radius that define the inside circle.
The values {dy1 dz1 R1},{dy2 dz2 R2} are optional and define the concentric or
eccentric circles around the inside circle. They are the center shifts from the inside
circle and its radius. For concentric circles, set dy1=dz1=dy2=dz2= ... = 0. You can
define up to five circles. At least one interface is required.

• interface1 and interface2 are optional. The number of interfaces must be as
same as the number of thicknesses, or one less than the number of thicknesses. When
the number of interfaces is one less than the number of thicknesses, the command
assumes that the next interface is the same as the previous one. For example, if only
interface0 is defined, interface1 is assumed to be the same as interface0. The
circles on interfaces define the tops or bottoms of pillars.

wafer.orient

Wafer orientation specified as three Miller indices. Default: wafer.orient= {0 0 1}.

Description

Sets up the mesh from either a rectangular specification or a file. The command also allows
initialization of the background doping concentration and type.

0.02 μm
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Examples

Read in a structure previously saved using struct tdr=temp, which produces the file
tmp_sis.tdr:

init tdr= temp

Create a structure with the current mesh parameters and a uniform boron doping of :

init field= Boron concentration= 1e15

Initialize a structure and set the Germanium and Silicon fields so that the mole fraction is
0.2, that is, Si00.8Ge0.2:

init fields.values= [MoleFractionFields SiliconGermanium 0.2]

Initialize a structure with a (110) wafer and an  miscut towards the <110> direction:

init wafer.orient= {1 1 0} notch.direction= {1 -1 0} miscut.tilt= 8 \
miscut.toward= {1 -1 0}

See Also

CutLine2D on page 395
line on page 481
region on page 601
struct on page 643

1 15×10
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insert

Inserts segments into 1D structures, polygons into 2D structures, and polyhedra into 3D
structures.

Syntax

insert
polygon=<c> | polyhedron=<c> | segments= {<n1> <n2> ...}
[Adaptive]
[fields.values= <list>]
[new.material=<c>] [new.region=<c>]
[repair]
[replace.materials= {<mat1> ... <matn>}]
[replace.regions= {<reg1> ... <regn>}]

Arguments

Adaptive

If specified, Adaptive switches on adaptive meshing if remeshing. Parameters for
adaptive meshing are described in Adaptive Mesh Refinement on page 177. The default is
the return value of pdbGet Grid Adaptive.

fields.values

Specifies a list of parameters where the parameter name is the name of the field to be
introduced in the inserted geometry and the value is the initial value, for example,
fields.values= {Boron=1e18}. A list of fields of any name can be initialized with
this argument and, for solution variables or stress components, units are accepted.

new.material

Sets the material for the inserted segment, polyhedron, or polygon. This argument is
mandatory for all but TDR polyhedra or polygons.

new.region

Sets the name of the inserted region. It works with one segment, polygon, or polyhedron
only, that is, it does not work if the segment, polygon, or polyhedron contains more than
one region.

NOTE This argument is not allowed for TDR polyhedra.
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polygon

Specifies the polygon to insert. Only polygons created with the xy argument of the
polygon command are allowed. The polygon argument fails if the simulation is three
dimensional, or if it is one dimensional and cannot be extruded to two dimensions because
there are no y-lines available.

polyhedron

Specifies the polyhedron to insert. It needs a 3D simulation or a simulation that can be
extruded to three dimensions.

repair

If specified, this option enables an algorithm that tries to repair sharp features or geometric
artifacts produced by polyhedron insertion. Repair operations can be disabled either
globally by setting mgoals !repair.3d or locally for each insert command by
specifying !repair. Default: true.

replace.materials

Specifies a list that indicates the materials to be replaced by the polyhedron. In addition to
explicit materials, the argument bulk.materials is allowed. If bulk.materials is
used, it means that all materials in the structure, except gas, will be replaced.

replace.regions

Specifies a list of regions to be replaced by the polyhedron.

segments

Segments are defined as a list of an even number of coordinates (in ). If more than two
coordinates are specified, unique region names are generated for each segment or region.

Description

Segments are defined using the segments argument, but polygons and polyhedra must be
defined using the polygon and polyhedron commands, respectively. You must specified one
of the segments, polyhedron, or polygon arguments.

When specified, replace.materials and replace.regions provide a list of materials
and regions to be replaced. If neither is specified, all materials will be replaced. If both are
specified, the union of them will be replaced. The new.material argument changes the
polyhedron material temporarily.

The insert command can be used to perform polyhedron or polygon etching and deposition
as well as the more general polyhedron or polygon insert functionality. Polyhedron or polygon
etching is performed by specifying new.material=gas or by creating a gas polyhedron. You

μm
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also can do the same in one dimension with segments, but this is the same as CMP or fill.
Polyhedron or polygon deposition is performed by specifying replace.materials=gas as
well as having one or more bulk materials in the polyhedron or polygon, or defining them
temporarily with new.material.

The insert command operates only in the 3D MGOALS mode for polyhedra. If the SDE
mode is switched on, calling this command will set sde off.

NOTE It is recommended that no faces of the polyhedron overlap material
interfaces or the outermost simulation boundary. This may cause
failures due to round-off errors or may create poor mesh elements such
as slivers.

Examples

Etch the structure using a polyhedron called prism:

insert polyhedron= prism new.material= Gas

Replace all materials in the structure with a polyhedron called smallCube, and fill the
polyhedron with oxide:

insert polyhedron= smallCube new.material= Oxide

Replace the nitride, and only the nitride, in the simulation with oxide inside the polyhedron
called smallCube:

insert polyhedron= smallCube replace.materials= {Nitride} new.material= Oxide

Replace all materials in the structure with a polygon called Channel, and fill the polygon with
material Silicon2, and the region is named ChannelRegion. This polygon can be inserted
without merging with neighboring silicon regions:

mater add name= Silicon2 new.like= Silicon alt.matername= Silicon

insert polygon= Channel new.material= Silicon2 new.region= ChannelRegion

See Also

Inserting Polyhedra on page 274
polygon on page 559
polyhedron on page 563
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integrate

Returns the volume integration of the named quantity.

Syntax

integrate
[absolute] [average] [element] [interfaces]
[<material>]
[max= {<n> <n> <n>}]
[min= {<n> <n> <n>}]
[mode= mesh | boundary | jagged]
[name=<c>] [region=<c>]
[skipgas] [syntax.check.value=<c>]

Arguments

absolute

Specifies that integration is performed with the absolute values of the named quantity.

average

Specifies that the average value of the named quantity is computed and added to the
returned Tcl list.

element

Specifies that integration is performed elementwise. In this case, it is expected that the
quantity specified by name is an elemental quantity.

interfaces

Specifies that integration is performed on interface meshes.

<material>

Used to limit integration to regions of the specified material. See Specifying Materials on
page 18.

max

List of numbers defining the x-, y-, and z-coordinates of the lower-right front corner of the
cutting box. For 1D, 2D, and 3D structures, a list of one, two, or three numbers is required,
respectively. The possible maximum number is used for missing numbers.
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min

List of numbers defining the x-, y-, and z-coordinates of the upper-left back corner of the
cutting box. For 1D, 2D, and 3D structures, a list of one, two, or three numbers is required,
respectively. The possible minimum number is used for missing numbers.

mode

Specifies the integration mode within a given box:

• The mesh mode (default) uses a mesh-cutting algorithm.

• The boundary mode for three dimensions cuts the boundary to a cuboid and remeshes
the cuboid using the given mesh refinements. The boundary mode is for 3D
simulations only.

• The jagged mode includes all nodes contained entirely within the given box for
integration.

name

Quantity to be integrated. Default: Z_Plot_Var.

region

Limits integration to only the region specified.

skipgas

Specifies that integration is omitted on invisible meshes.

syntax.check.value

Sets a value to be returned only during syntax-checking mode. Sometimes, the value
returned by a command can cause a false syntax-check error because the value returned by
the command would not be the value during the normal run mode. Setting this value avoids
such problems.

Description

This command integrates the field specified with the name argument (by default, the last
unnamed select command field) over the entire structure or within a given box specified by
min and max. If material is specified, the integration is limited to regions of the given
material. If a region is specified, the integration is limited to only the named region.

The command by default expects the quantity to be nodal and the integration is performed
nodewise, but if element is given, an elemental quantity is expected and the integration
proceeds elementwise.
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A Tcl list is returned where the first value is the integrated value.

The second value is the volume of the computed regions:

■ In <value_unit>*cm for one dimension

■ In <value_unit>*  for two dimensions

■ In <value_unit>*  for three dimensions

where <value_unit> is the unit of the named quantity.

The third value is the dose (the integrated value divided by the simulated area in  in all
dimensions). The fourth and fifth values are the minimum and maximum of the named
quantity, respectively. If average is specified, the averaged result for the named quantity is
appended to the returned Tcl list.

Examples

Return the integral boron in all silicon regions in the structure, the volume of all silicon regions,
and the combined boron dose in all silicon regions:

integrate silicon name= Boron

Return the integrated pressure elementwise in the entire structure (excluding gas) and the
volume of the structure (excluding gas):

select z= "1.0/3*(StressEL_xx+StressEL_yy+StressEL_zz)"
integrate element

Return a list of integral, volume, dose, minimum, maximum, and average values of boron
within the box defined by the upper-left corner (0.0, 0.0) and the lower-right corner (10.0, 0.2):

integrate name= Boron average min= {0. 0.} max= {10. 0.2}

Return the integrated term BActive, the volume, and the combined dose in all silicon regions
in the structure. The term BActive is first converted to a temporary data field before
integration:

select z= BActive
integrate silicon

Return a list of integral, volume, dose, minimum, and maximum of boron within the cuboid
defined by the upper-left back corner (0.0, 0.0, 0.0) and the lower-right front corner (0.4, 0.4,
0.4):

integrate name= Boron mode= jagged min= {0. 0. 0.} max= {0.4 0.4 0.4}

cm2

cm3

cm 2–
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interface

Returns the location or the value of the selected data field at a material interface.

Syntax

interface
[All] [data] [<material>] [name=<c>]
[p1= {<n> <n> <n>} p2= {<n> <n> <n>}]
[precision=<n>]
[region=<c>] 
[side=<c>]
[syntax.check.value=<c>]
[thickness]
[x=<n>][<m>|<cm>|<um>|<nm>]
[y=<n>][<m>|<cm>|<um>|<nm>]
[z=<n>][<m>|<cm>|<um>|<nm>]

Arguments

All

If specified, all interface locations are returned. Otherwise, only the first value is returned.

data

If specified, the value of the selected data field at the interface is returned.

<material>

Usually works with an interface description and returns the location or value of the selected
quantity at the interface. See Specifying Materials on page 18. When the thickness
option is specified, a material name can be used.

NOTE If the thickness option is not specified and an interface is not
specified, an error occurs. If the specified interface does not exist in the
current structure, an error is reported.

name

Name of the data field to be returned when data is specified. Default: Z_Plot_Var.

p1, p2

Specify the two endpoints of a cutline. Both p1 and p2 must be specified together as a list
of numeric values. Only the first <dim> numbers from each list is read, where <dim> is the
spatial dimension of the simulation. Specifying the endpoints with p1 and p2 allows for
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nonaxis-aligned cuts. Endpoints also can be used to limit axis-aligned cuts instead of
cutting through the entire structure.

precision

Controls the number of precision digits of floating values (in scientific notation).
Default: 6.

region

When the thickness option is specified, you can specify the name of a region from which
to extract its thickness.

side

Takes its value from one of the two bulk materials consisting of the interface or the
‘interface’ (literally) itself. If side is not specified, the ‘interface’ itself is assumed. If
side is specified as one of the bulk materials, the value of the selected data field for the
bulk material is returned. This argument is effective only if data is specified.

syntax.check.value

Sets a value to be returned only during syntax-checking mode. Sometimes, the value
returned by a command can cause a false syntax-check error because the value returned by
the command would not be the value during the normal run mode. Setting this value avoids
such problems.

thickness

Specify this option to extract the thickness of a region. The thickness of the first region
along the cutline will be returned. The unit of the returned thickness is micrometer. When
you specify this option, you can specify a material or region, but not an interface. If a
material is specified, the thickness of the first material region will be returned. If a region
is specified, the thickness of the region will be returned.

x, y, z

Provide the description of a line to look for the interface. These arguments are unnecessary
in 1D simulations. In 2D simulations, one of x and y must be specified. In 3D simulations,
two of these must be specified. Default value and unit: .

Description

This command returns the position of an interface or returns the value of the selected data field
if data is specified. Therefore, the command can be used to prepare plots of material
thickness, silicon consumption, or material growth. It also is used to provide an argument to
the interpolate command, which returns a list if there is more than one interface. The list-
processing commands of Tcl, particularly lindex, are very helpful.

0.0 μm
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Examples

Return the silicon–oxide interface at a lateral position of :

interface y= 1.0 silicon /oxide

Return the top position of the oxide:

interface oxide /gas

Return any oxide–nitride interfaces between (1.0, 1.0) and (1.1, 1.1). This specification is valid
for one or two dimensions, but not three dimensions. In one dimension, it returns the interfaces
between 1.0 and 1.1:

interface p1= {1.0 1.0} p2= {1.1 1.1} Nitride /Oxide

See Also

interpolate on page 473
plot.xy on page 553
point.xy on page 557

1.0 μm
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interpolate

Returns the requested position or value at a specified location.

Syntax

interpolate
<material> [name=<c>]
[syntax.check.value=<c>]
[value=<n>]
[x=<n>][<m>|<cm>|<um>|<nm>]
[y=<n>][<m>|<cm>|<um>|<nm>]
[z=<n>][<m>|<cm>|<um>|<nm>]

Arguments

<material>

Limits the search to a single material. See Specifying Materials on page 18.

name

Name of a data field. This allows printing without using the select or tclsel
commands. Default: Z_Plot_Var.

syntax.check.value

Sets a value to be returned only during syntax-checking mode. Sometimes, the value
returned by a command can cause a false syntax-check error because the value returned by
the command would not be the value during the normal run mode. Setting this value avoids
such problems.

value, x, y, z

The combination of these arguments determines how the command operates:

• In 1D simulations, you must supply either x or value. If x is supplied, Sentaurus
Interconnect returns the value at x. If value is supplied, Sentaurus Interconnect returns
the locations at which the selected profile crosses value.

• In 2D simulations, two of the four arguments must be given (not z).

• In 3D simulations, three of the four arguments must be given.

For example, in two dimensions, if x and value are given, the locations along x where
value is crossed are returned. If x and y are given, the value at the location (x,y) is
returned. The default unit of x, y, and z is .μm
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Description

This powerful command analyzes simulation results. It returns the interpolated value of one
coordinate given the other two coordinates in three dimensions defined by x- and y-variables,
and the data field. It also works for 1D simulations by returning values as a function of one
coordinate.

This command returns a Tcl list of values if more than one is found. For example, there may
be several junctions found along a given line. All of these are returned and can be processed by
standard Tcl list operations. In most cases, this command returns a single value. The returned
value is in internal units. Internal units are CGS; for example, the unit for stress is .

In addition, this command can return the data value at a specified position in the structure or
return the position at which a specified data value occurs.

Examples

Return the value of the data field at the position ( , ) in the oxide:

interpolate oxide x= 1.0 y= 1.0

Return a list of zero crossings in silicon of the data field along the vertical line y = :

interpolate y= 0.0 silicon value= 0.0

Return a list of zero crossings in silicon along a horizontal line at a depth of :

interpolate silicon x= 2.0 value= 0.0

Return the value of the data field at :

interpolate x= 1.0 silicon

Return the yy component of the element stress field at :

interpolate x= 1.0 oxide name= StressEL_yy

Return a list of zero crossings in silicon material:

interpolate silicon value= 0.0

See Also

interface on page 470
plot.xy on page 553
point.xy on page 557

dyn/cm2

1.0 μm 1.0 μm

0.0 μm

2.0 μm

1.0 μm

1.0 μm
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j_integral

Calculates the J-integral of a crack and returns its value.

Syntax

j_integral
crack=<c>
x=<n>[<m>|<cm>|<um>|<nm>]
y=<n>[<m>|<cm>|<um>|<nm>]
z=<n>[<m>|<cm>|<um>|<nm>]
[CtIntegral | JvIntegral] [number=<n>]

Arguments

crack

Name of the crack. The crack must have been defined and solved.

CtIntegral, JvIntegral

Specifies the type of contour integral to compute, either:

• CtIntegral is used to compute the C(t)-integral for viscoplastic materials.

• JvIntegral is used to compute the Jv-integral for viscoelastic materials.

These contour integral types must be used only for cracks in viscoplastic or viscoelastic
materials.

number

Specifies the number of contours around the crack tip where the J-integral is evaluated. By
default, the J-integral is evaluated over the first contour. When two or more contours are
specified, the J-integral is evaluated for every contour starting from the first contour.

x, y, z

Specify the x-, y-, and z-coordinates of the point where the J-integral is evaluated. The
point must be located at the crack tip. If the point is not located at the crack tip, a point that
is on the crack tip and is closest to the requested point is used to perform the calculation.
Default unit: .μm
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Description

The return value can be used in a Tcl expression. The command must be used after a
simulation, or after loading a TDR file that contains crack simulation results. For 3D cracks,
an average value of the J-integral over the crack front is returned in addition to the value at the
specified point.

Examples

Calculate the J-integral of crack crk01 at point (4.0, 5.0, 0.0) over the first three contours, and
assign the results to a Tcl variable the_j:

set the_j [j_integral crack= crk01 x= 4.0 y= 5.0 z= 0.0 number= 3]
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KG2E

Computes Young’s modulus from the bulk modulus and the shear modulus.

Syntax

KG2E <n> <n>

Arguments

<n>

The first value is the bulk modulus.

The second value is the shear modulus.

Description

The same units are assumed for all moduli.

Examples

Compute Young’s modulus from the bulk modulus 1.2272e12 dyn/cm2 and the shear modulus
6.328e11 dyn/cm2:

KG2E 1.2272e12 6.328e11
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KG2nu

Computes the Poisson ratio from the bulk modulus and the shear modulus.

Syntax

KG2nu <n> <n>

Arguments

<n>

The first value is the bulk modulus.

The second value is the shear modulus.

Description

The same units are assumed for all moduli.

Examples

Compute the Poisson ratio from the bulk modulus 1.2272e12 dyn/cm2 and the shear modulus
6.328e11 dyn/cm2:

KG2nu 1.2272e12 6.328e11
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 layers

Prints material interfaces and integrated data field values.

Syntax

layers
[<material>] [merge] [name]
[precision=<n>] [print.logfile] 
[region.names] [syntax.check.value=<c>]
[x=<n>][<m>|<cm>|<um>|<nm>]
[y=<n>][<m>|<cm>|<um>|<nm>]
[z=<n>][<m>|<cm>|<um>|<nm>]

Arguments

<material>

Used to limit the reporting of layers to regions of the specified material. See Specifying
Materials on page 18.

merge

Specifies that the adjacent regions with the same material should be merged. Default: false.

name

Name of a data field. This allows printing without using the select or tclsel
commands. Default: Z_Plot_Var.

precision

Controls the number of precision digits of floating values (in scientific notation).
Default: 12.

print.logfile

Allows output to be written to the log file.

region.names

Specifies that region names must be printed in addition to the material names for each
region in the structure.
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syntax.check.value

Sets a value to be returned only during syntax-checking mode. Sometimes, the value
returned by a command can cause a false syntax-check error because the value returned by
the command would not be the value during the normal run mode. Setting this value avoids
such problems.

x, y, z

Specify the constant values of a line along which sectioning will be performed. In one
dimension, these arguments are not necessary. In two dimensions, only one of x or y can
be specified for a given device. Specifying x produces a horizontal slice through the device,
and y specifies a vertical slice. An easy way to remember this is that the cross section is
taken at the constant value specified. For a 3D simulation, two of these three arguments
must be specified. Default unit: .

Description

This command prints the material interfaces and integrates the selected data field in each
region. It is most useful for examining doping because it gives the integrated doping in each
layer. This command can be simulated with the integrate and interface commands, and
it returns a Tcl list of each material.

Examples

In a 1D simulation, list all material interfaces:

layers

In a 2D simulation, list all material interfaces at a lateral position of  and integrate the
data field named Boron:

layers y= 0.0 name= Boron

See Also

integrate on page 467
interface on page 470
select on page 609
System on page 651
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line

Specifies the position and spacing of mesh lines.

Syntax

line
location=<n>[<m>|<cm>|<um>|<nm>] (x | y | z)
[clear] [mgoals]
[spacing=<n>][<m>|<cm>|<um>|<nm>]
[spacing.method= even | regular | smooth]
[tag=<c>] [virtual.spacing]

Arguments

clear

Clears lines in preparation for a new structure definition, or removes all ticks stored for the
UseLines method (see UseLines: Keeping User-Defined Mesh Lines on page 201).

location

Location along the chosen axis. Default unit: .

mgoals

Lines for Sentaurus Mesh (continuum) meshes are stored separately. By default, line
commands are applied to continuum meshes. Use negative values for these arguments to
not apply mesh lines. For example, for a line command to apply only to a continuum
mesh, use !mgoals.

spacing

Local grid spacing. Each mesh line has a characteristic required spacing. Lines are graded
from one spacing to the next over the interval. The default is a spacing equal to the largest
interval between the neighboring lines. Default unit: .

spacing.method

Specifies the method to use when distributing the ticks created by the spacing argument:

• even: Distributes the ticks evenly, trying to approximate the spacing specified at the
beginning of the interval.

• regular: Distributes the ticks evenly using the exact spacing specified at the
beginning of the interval, and leaving the last interval with an approximate size if there
is no more room to accommodate the requested size.

μm

μm
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• smooth: Distributes the ticks to have a smooth grading of spacing between lines.

Default: smooth.

tag

Lines can be labeled for later reference by region commands. The label can be any word.

virtual.spacing

If specified, this option enables the creation of virtual ticks between lines. The mesh
refinement will snap to these virtual ticks whenever possible. When Sentaurus Mesh
attempts to produce a refinement that is finer than the spacing provided by the virtual ticks,
it will proceed to split the spacing in half using the default bisection algorithm.

x, y, z

Orientation of the mesh line. Specifying x places a mesh line at a constant x-value. A series
of line x commands would specify the horizontal grid locations during the simulation.

Description

The line command is used with the init and region commands to create the initial mesh.
Only rectilinear structures can be specified with the line and region commands, that is,
rectangular regions in two dimensions and cuboid-shaped regions in three dimensions.

Sentaurus Interconnect uses the unified coordinate system (UCS):

■ x is the direction normal to the wafer with positive-x oriented into the bulk of wafer.

■ y is perpendicular to the x-direction and lies along the wafer surface; y is in the lateral
direction.

■ The z-direction is used for three dimensions, and the direction is given by .

By default, Sentaurus Interconnect delays promoting a structure until it is necessary (by use of
a higher dimensional mask). The lines specifying the higher dimensions are stored until they
are needed. During the init command, the line and spacing information is expanded into
mesh ‘ticks’ that are stored in the PDB. These ticks are used every time a mesh is created if
UseLines is switched on (see UseLines: Keeping User-Defined Mesh Lines on page 201).

When you specify the spacing argument, the line command generates a series of lines or
ticks that is incorporated into the mesh refinement as lines that completely cut through the
device. This is useful to generate the spacing for the initial structures generated by the init
and the region commands. After the init command, however, if new lines are specified and
UseLines is switched on, the spacing argument is ignored, and only one tick or mesh line
can be added at a time.

X Y×
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However, if the virtual.spacing option is specified, the spacing argument will be used
to build a series of soft lines or ticks. All user-defined refinement coordinates will snap to those
lines, thereby creating a more predictable spacing pattern compared to the one generated by the
default bisection algorithm.

To create an entirely new structure, the command line clear must first be issued to remove
old lines and mesh ticks before issuing new line, region, and init commands.

Examples

There are three user-specified y-lines and two user-specified x-lines. Taking the y-lines as an
example, there is a finer spacing in the center than at the edges. After processing, Sentaurus
Interconnect produces a mesh with x-lines at 0.0, 0.42, 0.69, 0.88, 1.0, 1.12, 1.31, 1.58, and
2.0. Around the center, the spacing is 0.12, approximately what will be requested. At the edge,
the spacing is 0.42 because that is as coarse as it could become without having an interval ratio
greater than 1.5 (a fixed quantity). If the interval ratio was allowed to be 9, for example, there
would be one interval of 0.9 and one interval of 0.1 on each side. In this example, specifying a
spacing of 1 at the edges is redundant because that is what the spacing of the user-specified
lines was already:

line x location= 0 spacing= 0.02 tag= surf
line x location= 3 spacing= 0.5 tag= back
line y location= 0 spacing= 1 tag= left
line y location= 1 spacing= 0.1
line y location= 2 spacing= 1 tag= right

In the following example, a structure with two bricks is created using the line and region
commands. After the structure is created, a set of virtual lines is enabled to guide the
refinement. If the virtual.spacing option is not used, the default bisection algorithm
would place the refinement at powers of 2 between the given line locations:

mgoals accuracy=0.002

line x loc=0.0 spacing=0.1 tag=top
line x loc=0.2 spacing=0.1 tag=siflat
line x loc=1.0 spacing=0.1 tag=bottom
line y loc=0.0 spacing=0.1 tag=left
line y loc=0.1 spacing=0.1 tag=mid
line y loc=0.2 spacing=0.1 tag=right

region Silicon xlo=siflat xhi=bottom
region Silicon xlo=top xhi=siflat ylo=left yhi=mid

init !DelayFullD

line clear
line virtual.spacing
line x loc=0.0 spacing=0.01
line x loc=0.2 spacing=0.01
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line x loc=1.0 spacing=0.01
line y loc=0.0 spacing=0.01
line y loc=0.1 spacing=0.01
line y loc=0.2 spacing=0.01

refinebox clear
refinebox xrefine = 0.1 yrefine = 0.1
refinebox interface.materials = Silicon min.normal.size = 0.0075 \

normal.growth.ratio = 1.5

deposit oxide iso thickness =0.1
struct tdr=virtualspacing

See Also

init on page 458
region on page 601
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line_edge_roughness

Adds line edge roughness (LER) to named masks.

Syntax

line_edge_roughness
correlation.length=<n>[<m>|<cm>|<um>|<nm>]
masks= <list>
max.segment.length=<n>[<m>|<cm>|<um>|<nm>]
normal= "Y" | "Z"
standard.deviation=<n>[<m>|<cm>|<um>|<nm>]
[max.tries=<n>] [min.radius=<n>]
[random.reseed] [random.seed=<n>] [smooth.points=<n>]

Arguments

correlation.length

Specifies the correlation length of the randomized LER. Corresponds approximately to the
concept of wavelength. Default value and unit: .

masks

Specifies as a list the names of masks to receive LER defined by the other arguments in the
line_edge_roughness command.

max.segment.length

Specifies the maximum segment length. Mask edges are subdivided into segments that are
approximately this size or smaller before LER deviation is added to each. Default value and
unit: .

max.tries

Specifies the maximum number of LER mask generation attempts. For nonzero values,
detection of nearly collinear points is performed after LER generation, and the LER
process is restarted if decimation occurs based on the mgoals accuracy value. The
default value is 0, meaning that the LER mask is accepted as it is, with no decimation
detection.

min.radius

When normal is not specified, where two mask edges receiving LER meet, the corner is
first rounded before LER is applied. This allows a well-defined application of LER and
avoids discontinuous jumps in the resulting mask shape. The rounding radius is the greater
of min.radius and twice the correlation.length. Default unit: .

20 μm

1 μm

μm
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normal

Defines the normal axis. Only mask segments normal to this axis receive LER. This axis is
also the reference axis along which the LER deviation is added to the given mask segment.
The default is to add LER to all edges of the mask.

random.reseed

Before the calculation of LER, the random number generator is reseeded to ensure each call
of line_edge_roughness results in randomized noise that is uncorrelated with other
calls of line_edge_roughness.

To switch off random reseeding, use !random.reseed to reproduce the same LER from
call to call. Default: true.

random.seed

Used to reproduce specific LER calculations from one run to the next by setting the same
random seed in both runs. Ignored when !random.reseed is used.

smooth.points

Alters the LER function at the structure boundaries, allowing for better mirror boundary
conditions when uniting symmetry-reduced structure parts at those boundaries. Defines the
number of segments in the discrete LER function, counting from the boundary edge of the
mask, which must be adjusted or smoothed. Default: 0 (implying no smoothing).

standard.deviation

Specifies the standard deviation of the randomized LER. Corresponds approximately to the
concept of added noise amplitude. Default value and unit: .

Description

This command adds LER to the named masks, along the mask edges normal to the given
normal axis ("Y" or "Z"). LER can be added to a mask only once. See Boolean Masks on
page 254.

Examples

Add LER to the mask named mask1 along mask segments normal to the z-axis. These
segments are subdivided into smaller segments of length smaller than or equal to 5 nm. LER is
characterized by a correlation.length of 25 nm and standard.deviation of 5 nm.
The random number generator is reseeded automatically before LER is calculated:

line_edge_roughness normal= "Z" masks= {mask1} \
correlation.length= 25.00<nm> standard.deviation= 5.00<nm> \
max.segment.length= 5.00<nm>

2 μm
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See Also

Line Edge Roughness Effect on page 256

load

Interpolates data from a TDR file onto the current mesh.

Syntax

load
tdr=<c> (merge | rename | replace | sum)
[fast.tdr.ave= <list>]
[flip (left | right | front | back | up | down)]
[keep.outside] [material.specific] [offset= {<n> <n>}]
[save.transform=<c>]
[shift=<n>]
[species= <list> actions= <list>]
[transform= {<n> <n> <n> <n> <n> <n>}]

Arguments

fast.tdr.ave

Averages the data from a list of TDR files (all with identical meshes to the current mesh)
and replaces the current data with the averaged data from the files.

NOTE Do not use fast.tdr.ave with any other argument. To use it, specify
a list of files, for example:

fast.tdr.ave= {mydata1.tdr mydata2.tdr mydata3.tdr}

flip (left | right | front | back | up | down)

Performs a flip of the data in the indicated direction about the outer boundary before
interpolation. This argument must be used with a direction, for example, flip front.

keep.outside

Specifies that the fields outside the bounding box of the loaded TDR file will remain
unchanged. If this option is switched off (false) and the replace option is specified, the
fields outside the TDR bounding box will be deleted (assuming the TDR bounding box is
smaller than the current device bounding box). Default: false.
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material.specific

By default, interpolation is material specific, so that data is interpolated from the file if the
material in the existing structure matches. Use !material.specific to allow
interpolation regardless of material.

merge

Adds only new datasets that do not currently exist in the structure.

offset

For 2D structures only. Offsets the data by a vector before loading it.

rename

Adds new datasets and renames them by adding the suffix __load.

replace

Adds new datasets and replaces existing datasets with new datasets of the same name.

save.transform

Saves a TDR file for the transformed structure. You can examine the saved TDR file to
ensure the loaded structure is in the required location.

shift

Shifts the data laterally before loading it.

species, actions

These lists specify field-by-field actions. The field name must be one of those in the loaded
TDR file. The actions in the actions list can be merge, rename, replace, and sum.

sum

Adds new datasets and sums matching datasets.

tdr

Specifies the name of the command file in the TDR format. Sentaurus Interconnect checks
for standard file names with the .tdr extension. For 2D structures, a 3D TDR command
file is also allowed. The data on the 2D overlap cross-section between the 3D structure and
the 2D structure will be interpolated to the current 2D mesh. When calculating the
intersection, the 2D structure is assumed to be located at z=0.
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transform

Provides a general interface for translating or rotating the structure to be loaded before
interpolation. When loading 3D results to a 2D structure, since the 2D structure is assumed
to be located at z=0, to obtain 3D data other than on the cross section at z=0 of the 3D
structure, this argument can be used to transform the 3D structure to a required location.

In one dimension, one value must be specified: the shift in the x-coordinate.

In two dimensions, six values must be specified: rxx, ryx, rxy, ryy, offsetx, offsety.

In three dimensions, 12 values must be specified: rxx, ryx, rzx, rxy, ryy, rzy, rxz, ryz,
rzz, offsetx, offsety, and offsetz. First, the offset is applied, and then the rotation
matrix is applied. Sentaurus Interconnect uses a right-hand coordinate system, so the
rotation must follow the right-hand rule and the rotation matrix should be specified
correctly. For example, in three dimensions, for a 90° rotation about the x-axis, the rotation
matrix should have rxx=1, rzy=-1, ryz=1, and the remaining values should be zero.

Description

This command interpolates data from TDR files onto the current mesh. There are several
options for handling the new and old datasets. First, the actions can be applied individually to
selected datasets using species and actions. If the species list appears, the actions list
must be specified and must have the same number of members as the species list. If this is
the case, only the species in the species list are taken from the external datasets. If the
species list does not appear, one of the global actions is used. The default behavior is a global
sum where new datasets are added and, if there is an existing dataset with the same name, the
external data is added (summed) with the existing dataset.

The other actions that can be performed are:

■ merge takes only the new datasets that do not currently exist in the structure.

■ rename renames new datasets by appending __load to the name, which can be
manipulated with the select command as required.

■ replace replaces current datasets with new datasets of the same name.

Examples

Replace all existing datasets with those in the file in_sis.tdr:

load tdr= in replace

Load the TDR file in_sis.tdr, sum Potential_User and the existing Potential_User
(if available), and replace the existing Temperature data field by the one in the in_sis.tdr
file:

load tdr= in species= {Potential_User Temperature} actions= {sum replace}
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See Also

select on page 609
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LogFile

Prints a message to the screen and to the log file.

Syntax

LogFile
<c>
[IL0 | IL1 | IL2 | IL3] [PrintCommands]

Arguments

<c>

Specifies the message to be printed to the screen and to the log file.

IL0, IL1, IL2, IL3

Specifies the information level.

PrintCommands

Specifies whether commands are printed to both the screen and the log file. To stop the
printing of commands, use !PrintCommands. Default: true.

Description

This command prints messages to the terminal window in which Sentaurus Interconnect is
running and to the log file. If IL0, IL1, IL2, or IL3 is given and this command is called from
within a Sentaurus Interconnect command, the message is printed only if the information level
is equal to or greater than the one specified.

Examples

Print the string "Step 25" to the screen and the log file:

LogFile "Step 25"

Print the contents of the Tcl variable DebugInfo only if info=1 or higher has been specified
in the calling command:

LogFile IL1 "$DebugInfo"
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Do not print the sel z=1e10 name=Test command and subsequent commands to the screen
and the log file:

LogFile !PrintCommands
sel z=1e10 name=Test
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mask

Creates a mask for subsequent use in etch, deposit, or photo commands.

Syntax

mask
[bbox] [bool=<c>] [clear] [covered.status]
[cut.x=<n> (materials= <list> | regions= <list>)]
[get.segments] [get.segments.z]
[list] [name=<c>] [negative]
(

[polygons= <list>] [segments= <list>] |

[left=<n>][<m>|<cm>|<um>|<nm>]
[right=<n>][<m>|<cm>|<um>|<nm>]
[front=<n>][<m>|<cm>|<um>|<nm>]
[back=<n>][<m>|<cm>|<um>|<nm>]

)

Arguments

bbox

Returns the mask bounding box. The command returns a list of lists where the values are
in centimeters: {ymin zmin} {ymax zmax}.

bool

Performs Boolean operations between masks. It cannot be used with polygons and
negative. See Boolean Masks on page 254.

clear

Clears the list of all masks. If name is specified, it clears only that mask.

covered.status

Used to obtain information about the coverage of the simulation domain. The following
strings may be returned:

• covered: The mask completely covers the simulation domain.

• uncovered: The mask does not cover the simulation domain at all.
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• partial.2d: The mask partially covers the domain, but in a way that the mask does
not promote the simulation dimension (that is, the mask does not vary in the z-direction
over the simulation domain).

• partial: The mask partially covers the simulation domain, and its use in etching or
deposition forces the simulation to three dimensions.

cut.x, materials, regions

The cut.x argument is only available in two dimensions. It must be used with either
regions or materials to create a mask. The mask is created by taking a cut through the
set of regions created by a union of regions listed in regions and regions of one of the
materials listed in materials. The cut is taken at the x-coordinate specified by cut.x,
and the resulting outline is used to create the mask. Default unit of cut.x: .

get.segments, get.segments.z

Retrieves segments that result from cutting the mask at z=get.segments.z. The default
value of get.segments.z is the midpoint of the simulation domain in the z-direction.

left, right, front, back

Specify the corners of one rectangle. The rectangle is added to the current list for the mask.
If several rectangles must be specified for a mask, several mask commands must be used
with the same name. Default unit: .

list

Prints a list of all currently defined masks. If name is specified, it prints information for that
mask only.

name

Name of a mask. If used with clear or list, only the specified mask will be reported or
removed. If defining a new mask, name must be specified.

negative

Inverts the type of mask. By default, points inside the mask are considered masked. For
example, the command mask name=xyz negative inverts an existing mask xyz.

For an empty negative mask, all points are considered masked, and the simulation domain
is fully covered by the mask.

polygons

Specifies a mask as a list of named polygons. The named polygons must have been defined
using polygon commands.

μm

μm
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segments

Specifies a list of coordinates of mask segments. Several mask segments can be specified
at the same time. The first coordinate defines the beginning of a segment, the second
coordinate defines the end of the segment, the third defines the beginning of the second
segment, and so on. In 3D simulations, mask segments are extended across the entire
structure in the z-direction. Default unit: .

Description

This command manages and creates masks for use with subsequent etch, deposit, or photo
commands. Mask definitions are stored in TDR files and re-stored when loading a TDR file in
the init command. Masks can be defined by rectangles, polygons, and segments, or they can
be read using the IC WorkBench Edit/View Plus–TCAD Sentaurus interface (see Chapter 13
on page 285).

Masks are created additively. If more than one mask command is issued with the same name,
the union of the specified masks is assumed. To change a mask, first clear it and then assign a
new specification (in two separate calls to the mask command).

Examples

Define a mask named field:

mask name= field left= 0.0 right= 10.0

The position of this mask is the same as in the previous example:

mask name= mgoals segments= {0.0 10.0}

Return information about all masks in array format:

mask list

Return a list of mask names:

array set maskinfo [mask list]
LogFile "Mask names: [array names maskInfo]"

Print all information about the mask named PolygonMask:

array set polyInfo $maskInfo(PolygonMask)
LogFile "Contents of PolygonMask: [array names polyInfo]"

Print the number of polygons in the mask named PolygonMask:

LogFile "Number of polygons in PolygonMask: [llength $polyInfo(polygons)]"

μm
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Print the first polygon in the mask named PolygonMask:

LogFile "polygon 0 in PolygonMask: [lindex $polyInfo(polygons) 0]"

See Also

deposit on page 401
etch on page 414
photo on page 544
point on page 555
polygon on page 559
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mater

Returns a list of all materials in the current structure, and adds new materials to a global list.

Syntax

mater
[add] [alt.matername=<c>]
[bbox | bbox.cm | bbox.um] [cropped.bbox]
[cubic | hexagonal | orthorhombic]
[horizontal.orient= {<n> <n> <n>}]
[Interface]
[lattice.const=<n>] [lattice.const.b=<n>] [lattice.const.c=<n>]
[like.interpolate] [list.all]
[max= {<n> <n> <n>}] [min= {<n> <n> <n>}]
[name=<c>] [new.like=<c>]
[polytype=<c>]
[syntax.check.value=<c>]
[vertical.orient= {<n> <n> <n>}]

Arguments

add

Adds a new material specified by name to the global material list.

alt.matername

Specifies the name of the material that should be written in the TDR file for regions of the
newly defined material.

For example, when writing the TDR file, if the newly defined material is called
MySilicon and alt.matername=Silicon, Sentaurus Interconnect uses Silicon for
those regions of MySilicon.

This is useful when transferring the structure to device simulation.

bbox, bbox.cm, bbox.um

If specified, the mater command returns the maximum extents of the material in two
points in centimeter or micrometer.

cropped.bbox

Returns the cropped bounding box of a material within a user-defined bounding box.
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cubic, hexagonal, orthorhombic

Specifies the lattice system as either cubic, hexagonal, or orthorhombic for a crystalline
material as specified by name.

horizontal.orient

Specifies the flat orientation for crystalline material as three Miller indices. The default
value of horizontal.orient depends on the wafer orientation:

• If vertical.orient= {0 0 1}, horizontal.orient= {1 1 0}.

• If vertical.orient= {1 1 0} or {1 1 1}, horizontal.orient= {1 -1 0}.

For all other nonstandard wafer orientations, a flat orientation that is orthogonal to the
wafer orientation must be specified.

NOTE The arguments horizontal.orient and vertical.orient
supersede notch.direction and wafer.orient specified in the
init command for this particular material (as specified by name).

Interface

Returns a list of interface materials in the current structure.

lattice.const

Specifies the lattice constant for the crystalline material. Default value and unit:
.

lattice.const.b

Specifies the lattice constant  for the crystalline material. If lattice.const.b is not
specified, it is assumed to be the same as lattice.const. Default unit: .

lattice.const.c

Specifies the lattice constant  for the crystalline material. If lattice.const.c is not
specified, it is assumed to be the same as lattice.const. Default unit: .

like.interpolate

Usually, the interpolation code interpolates data from and to materials that are like each
other. Use !like.interpolate to prevent such interpolation. See Like Materials:
Material Parameter Inheritance on page 23.

list.all

Lists all the materials defined.

5.431 4–×10 μm

b
μm

c
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max, min

Specify the bounding box of a material. These arguments compute the cropped bounding
box of a material.

name

Name of the material.

new.like

Name of the existing material from which all default values are inherited. For newly created
materials, pdb parameters for this material are checked first and, if not found, the ‘Like’
material parameters are used (see Like Materials: Material Parameter Inheritance on
page 23).

polytype

Specifies the polytype for the crystalline material as specified by name. For cubic or
orthorhombic lattice systems, the valid polytypes are Sc, Bcc, Fcc, and Zincblende.
For a hexagonal lattice system, the valid polytypes are 2H, 3C, 4H, and 6H.

syntax.check.value

Sets a value to be returned only during syntax-checking mode. Sometimes, the value
returned by a command can cause a false syntax-check error because the value returned by
the command would not be the value during the normal run mode. Setting this value avoids
such problems.

vertical.orient

Specifies the wafer orientation for crystalline material as three Miller indices. Default
value: vertical.orient= {0 0 1}.

NOTE The arguments vertical.orient and horizontal.orient
supersede wafer.orient and notch.direction specified in the
init command for this particular material (as specified by name).

Description

This command returns a list of all materials in the current structure. The format of the list is
compatible with the material specification for the program. Bulk material names are returned
if no arguments are given. Interface materials can be obtained by using Interface.

This command also computes the cropped bounding box of a material that lies within a user-
specified bounding box defined by max and min. The name argument is given as input.
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Examples

Add germanium material to the global material list and make it inherit the default values from
silicon material:

mater add name= Germanium new.like= Silicon

Specify the crystal properties for hexagonal GaN:

mater name= GaN hexagonal polytype= 2H \
lattice.const= 3.189e-4 lattice.const.c= 5.185e-4 \
vertical.orient= {0 0 1} horizontal.orient= {1 1 0}
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math

Sets the numeric and matrix parameters. Parameters set with the math command are stored in
TDR files by default.

Syntax

math
[AMS.NegErrCntrl] [FTS.NegErrCntrl] [LocTrnErrCntrl] [NegErrCntrl]
[auto | compatible]
[compute | Flow]
[dimension= 1 | 2 | 3]
[extrapolate]
[pardiso | ils] [scale]

[fullNewton | modNewton]
[newtonDeriv] [newtonRate1=<n>] [newtonRate2=<n>]
[newtonStats=<i>] [newtonSteps1=<i>] [newtonTries1=<i>]

[coord.dfise]
[coord.transform coord.translate (coord.read | coord.write)]
[coord.ucs] [coord.xyz] [coord.yxz] [coord.-zyx]

[maxNumberOfDomains=<i>]
[NumberOfElementsPerDomain=<i>]
[numThreads=<i>]
[numThreadsAssembly=<i>]
[numThreadsBoxMethod=<i>]
[numThreadsILS=<i>]
[numThreadsInterp=<i>]
[numThreadsMGoals=<i>]
[numThreadsPardiso=<i>]
[numThreadsSnMesh=<i>]
[parallel.license= go.serial | go.abort | go.keep | go.recheck | go.wait]
[threadStackSize=<i>]

[milne | difference] [tr_bdf | euler]
[use.interpolated.geom.coeff] [voronoitriangle]

Arguments: Solver Selection

AMS.NegErrCntrl

Allows stricter error control for each solve time step after an adaptive meshing step by
calculating the error from negative updates instead of damped results.
Sentaurus™ Interconnect User Guide 501
N-2017.09



A: Commands
math
auto, compatible

These options modify the conditional numerical reproducibility (CNR) for Intel CPUs.
Floating-point computations on an Intel processor might not give bit-for-bit identical
results for equivalent computations, even though the same hardware and binary are used.
The fused multiply–add (FMA) instruction is a common source of differences. A small
difference can be amplified in applications where the boundary moves (for example,
oxidation). Therefore, differences can be minimized by specifying the compatible
option. Default: compatible.

NOTE The CNR value can be set only at the beginning of the simulation before
any arithmetic operation is performed. The compatible mode can
significantly degrade the performance of the simulation if the PARDISO
solver is used.

compute, Flow

Specifies the type of equation to which the command specification applies. If omitted, it
applies to all equation types.

dimension

Specifies the dimensionality to which the command specification applies. If omitted, it
applies to all dimensions.

extrapolate

If this option is specified, extrapolated solutions can be used as the initial guess for the
backward differentiation formula (BDF) step. Extrapolated solutions are calculated using
solutions at the previous time step and at the first trapezoidal rule (TR1) step.

FTS.NegErrCntrl

Allows stricter error control for the first solve time step by calculating the error from
negative updates instead of damped results.
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LocTrnErrCntrl

Allows stricter error control for each solve time step by modifying the handling of negative
updates:

• 1 (|upd|/org*lte+abs)

• 0 (|upd|/org+lte*abs)

LocTrnErrCntrl can be switched on for individual solution variables in specific
materials using:

pdbSetBoolean <mater> <solution> LocTrnErrCntrl 1

NegErrCntrl

Allows stricter error control at each Newton iteration step by calculating the error from
negative updates instead of damped results. NegErrCntrl can be switched on for
individual solution variables in specific materials using:

pdbSetBoolean <mater> <solution> NegErrCntrl 1

pardiso, ils

Specifies the type of linear solver to apply to the system:

• pardiso selects the parallel direct solver PARDISO, which is based on the LU
factorization with pivoting of the matrix. PARDISO decomposes the matrix.

• ils selects the iterative linear solver ILS, including preconditioners, iterative methods,
scaling, and convergence criteria. (You can change the default settings of ILS
parameters by specifying pdbSet Math commands.) To set ILS parameters in the
parameter database, see Setting Parameters of the Iterative Solver ILS on page 330.

scale

Applies row/column scaling to the matrix in an attempt to make it better conditioned. This
is a recommended argument. No scaling is performed if the modified Newton scheme
(modNewton) is used.

Arguments: Newton Method

fullNewton, modNewton

Specifies the type of nonlinear equation solver to use:

• fullNewton performs a matrix factorization at each step.

• modNewton tries to reuse one matrix factorization for several solve steps.
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The full Newton method may be more robust, but it can use more solution time than the
modified Newton method:

• modNewton is the default in two dimensions for both PARDISO and ILS.

• modNewton is the default for ILS in three dimensions.

newtonDeriv

Allows the Jacobian computation to be switched on during the modified Newton step.
Default: false.

newtonRate1

For the modified Newton method, if the solution for any of the Newton steps 1 through
newtonSteps1 is newtonRate1 or more times better than the previous step, the next step
can be a solve-only step. Otherwise, the next step will perform a matrix factorization.
Default: 4.0.

newtonRate2

For the modified Newton method, if the solution for any of the Newton steps
newtonSteps1+1 onwards is newtonRate2 or more times better than the previous step,
the next step can be a solve-only step. Otherwise, the next step will perform a matrix
factorization. Default: 32.0.

newtonStats

Prints information on Newton iterations.

newtonSteps1

For the modified Newton method, any of the Newton steps 1 through newtonSteps1 must
improve the solution by the factor newtonRate1 over the previous step. Otherwise, the
next step will be a full Newton step. For Newton steps newtonSteps1+1 onwards, the
solution at each step must improve by the factor newtonRate2. Otherwise, the next step
will be a full Newton step. Default: 12.

newtonTries1

Number of first modified Newton step breakdowns allowed before switching to the full
Newton method. Default: 2.

Arguments: Time Discretization

milne, difference

Controls whether the next time step is estimated using the Milne’s device or the divided
difference method. Default: milne.
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tr_bdf, euler

Specifies the type of time discretization scheme to use. The options are TR-BDF(2) or the
backward Euler method. Default: tr_bdf.

Arguments: Parallel Processing

Sentaurus Interconnect provides parallel processing for the matrix assembly, the box method,
and the linear solvers by generating multiple threads to accelerate simulations on multicore
shared-memory computers. By default, only one processor (thread) is used.

NOTE The number of threads must not exceed the number of actual CPUs
(cores) of the computer.

NOTE Observe the following general recommendations to obtain the best
results from a parallel run: Speedup is only obtained for sufficiently
large problems. In general, the mesh should have at least 10000 nodes.
Three-dimensional problems are good candidates for parallelization.

NOTE You must run a parallel job on an unloaded computer. As soon as
multiple jobs compete for processors, performance decreases
significantly (a parallel job could run even longer than a serial one).

NOTE The parallel execution of the matrix assembly on the solvers PARDISO
and ILS produces different rounding errors. Therefore, the number of
Newton iterations in particular may change.

NOTE Parallel performance scalability of the different modules (such as
assembly and linear solver) can vary dramatically.

NOTE You do not need to set the OpenMP environment variable
OMP_NUM_THREADS. You need only specify the number of threads
required in the math command.

To use more than one thread, specify the following arguments of the math command in the
command file:

maxNumberOfDomains

Modifies the maximum number of domains each level of partition can have (see
Partitioning and Parallel Matrix Assembly on page 332).

NumberOfElementsPerDomain

Modifies the number of elements that must go to each domain (see Partitioning and Parallel
Matrix Assembly on page 332).
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numThreads

Specifies the number of parallel threads for Sentaurus Interconnect. Applies to matrix
assembly, the box method, and the solvers PARDISO and ILS.

To run matrix assembly, the box method, or the solvers with a different number of threads,
specify the following arguments:

• numThreadsAssembly 

• numThreadsBoxMethod 

• numThreadsILS 

• numThreadsInterp 

• numThreadsMGoals 

• numThreadsPardiso 

• numThreadsSnMesh 

Separately, these arguments have priority over numThreads.

numThreadsAssembly

Number of threads used for matrix assembly.

numThreadsBoxMethod

Number of threads used for the box method.

numThreadsILS

Number of threads for the ILS solver.

 numThreadsInterp

Number of threads used for interpolation. Because of the memory-intensive nature of
interpolation, the performance benefit of multithreading may saturate, but it depends
strongly on the simulation. If you observe saturation, reduce the value of this argument.

numThreadsMGoals

Number of threads used for MGOALS-related operations.

numThreadsPardiso

Number of threads when running PARDISO.

numThreadsSnMesh

Number of threads used when running Sentaurus Mesh.
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parallel.license

If you run a simulation in parallel mode but the number of parallel licenses is insufficient,
Sentaurus Interconnect proceeds in serial mode (default behavior or if
parallel.license=go.serial is specified), or waits for parallel licenses
(parallel.license=go.wait), or aborts (parallel.license=go.abort). The
option parallel.license=go.recheck checks for parallel licenses at each parallel
step, regardless of whether or not the licenses were available at the previous step.

If parallel.license=go.keep, Sentaurus Interconnect checks out a number of
parallel licenses using the current value of numThreads=<i> at the next parallel step, but
it will not return the parallel licenses to the server until the end of the simulation flow. In
other words, the subsequent parallel license check will be disabled, and all modules will
use the same number of parallel licenses in the entire run.

NOTE When the parallel licenses have been checked out, the new command
math numThreads=<i> will not change the number of parallel
licenses currently in use.

threadStackSize

Stack size for each thread. Default stack size is bytes (see Partitioning and
Parallel Matrix Assembly on page 332).

Arguments: Coordinate System Input and Output Selection

coord.dfise

Reads or writes files using the DF–ISE coordinate system. This must be used only to revert
coordinate systems. If the dimension of the structure changes, math coord.dfise must
be recalled.

coord.transform, coord.translate, coord.read, coord.write

Both coord.transform and coord.translate allow a general coordinate
transformation through specification of a rotation matrix defined as follows:

coord.transform= {a11 a12 a13 a21 a22 a23 a31 a32 a33}

where aij (i=row, j=column) are the members of the rotation matrix, and:

coord.translate= {x y z}

specifies a translation vector.

Both coord.transform and coord.translate must be used with either coord.read
or coord.write to indicate the transformation is specifying the transformation for
reading or writing, respectively. When specifying coord.write, the inverse of the
specified transformation is applied when reading. When coord.read is specified, the
inverse transformation is applied when writing.

218 262144=
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coord.ucs, coord.xyz

Reads and writes files in the UCS.

coord.yxz

Same as coord.dfise in two dimensions.

coord.-zyx

Same as coord.dfise in three dimensions.

Arguments: General

use.interpolated.geom.coeff

Switches on the method to be used for interpolating geometric coefficients for TRBDF,
which reduces the number of box method calls by one third.

voronoitriangle

Switches on the internal box method calculation.

Description

This command is used to specify the:

■ Different coordinate systems.

■ Number of threads and the arguments used for parallel processing on shared-memory
computers.

■ Default options on the matrix packages to be used for different equations.

■ Arguments for the Newton method.

■ Different time discretization schemes.

Examples

Use the ILS solver for mechanics in the 2D case:

math flow dim= 2 ils

Use the PARDISO solver with two threads for the PDE system in the 2D case and specify
nested dissection (ND) ordering for PARDISO:

math compute dim= 2 pardiso numThreadsPardiso= 2 scale
pdbSetDouble Pardiso.Ordering 2
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NOTE To run in parallel mode, the solvers PARDISO and ILS must be used
with ND ordering for both the 2D and 3D cases. For example, to specify
ND ordering, use:

pdbSetDouble Pardiso.Ordering 2
pdbSet Math compute 2D ILS.symmOrdering nd

Select the solver ILS for all equations in two dimensions. Print Newton statistics at the end of
each compute command. In the first case, the modified Newton method and the TR-BFDF(2)
methods are used. In the second case, the Euler and the full Newton methods are specified:

math dimension= 2 ils newtonStats= 1
math dimension= 2 ils newtonStats= 1 euler fullNewton
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mgoals

Modifies the default parameters for geometric operations available in the MGOALS module.

Syntax

mgoals
[accuracy=<n>][<m>|<cm>|<um>|<nm>]
[analytic.thickness=<n>][<m>|<cm>|<um>|<nm>]
[aniso.etching.fragment.tol=<n>]
[aniso.etching.protect.materials]
[dx=<n> dy=<n> dz=<n>]
[fill.buried] [fill.buried.interface=<material>]
[fill.buried.match.surrounding]
[force.analytic | force.full.levelset | force.full.levelset.depo |

force.full.levelset.etch]
[fourier.local.diffusivity]
[full.resolution=<n>]
[keep.closed.voids]
[max.number.levelset.cells=<n>]
[min.gas.thickness=<n>][<m>|<cm>|<um>|<nm>]
[min.levelset.size=<n>][<m>|<cm>|<um>|<nm>]
[print.params]
[reinitfrequency=<n>] [reinititerations=<n>]
[remove.floating.regions]
[repair.2d] [repair.2d.deposit] [repair.2d.etch] [repair.2d.photo]
[repair.3d] [repair.3d.deposit] [repair.3d.etch] [repair.3d.photo]
[repair.angle=<n>] [repair.crystal.depo.facets]
[resolution=<n>]
[trapezoidal.algorithm=<n>] [use.brep.2d]
[M-2016.12-SP2 | M-2016.12-SP1 | M-2016.12 | L-2016.03-SP2 | L-2016.03-SP1 |

L-2016.03 | K-2015.06-SP2 | K-2015.06-SP1 | K-2015.06 | J-2014.09-SP2 |
J-2014.09-SP1 | J-2014.09 | I-2013.12-SP2 | I-2013.12-SP1 | I-2013.12 |
H-2013.03-SP2 | H-2013.03-SP1 | H-2013.03 | G-2012.06-SP2 | G-2012.06 |
F-2011.09-SP1 | F-2011.09 | E-2010.12 | D-2010.03]

Arguments

accuracy

Specifies the error that can be tolerated in transferring the new interface definition from the
level-set grid to the simulation grid. There is a compromise between smoothness and the
number of grid points. Smoother grids need more points on curved regions. Default value
and unit: .1.0 5–×10 μm
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analytic.thickness

For etching and deposition steps of layers of thickness of 1 nm or less, an analytic method
performs the etching because thin etches using the level-set method can be prohibitively
CPU and memory intensive. 

For very large or very small structures, a 1-nm cutoff may be inappropriate, so this
argument can be used to modify the thickness where the analytic method is used. Default
unit: .

aniso.etching.fragment.tol

Removes fragments remaining from 3D anisotropic etching. The tolerance measures the
ratio of the volume and the surface of a region. Default: 1.0e-6.

aniso.etching.protect.materials

When switched on, the 3D anisotropic algorithm attempts to protect areas shadowed by
buried materials. Default: false.

dx, dy, dz

Explicitly set the level-set grid spacing in each direction. If set, these arguments override
the automatic setting of dx, dy, and dz, which uses resolution.

fill.buried

For deposition, material is deposited on the surface exposed to the upper gas region. With
fill.buried specified, deposition also occurs inside the buried gas bubbles that may
exist.

fill.buried.interface

Specifies the material to fill gas bubbles at material interfaces. The material must already
be present in the simulation.

NOTE This argument applies only to 3D deposition.

fill.buried.match.surrounding

Similar to fill.buried, but instead of depositing the deposition material in gas bubbles,
this option fills gas bubbles that are completely surrounded by a single material with that
material, removing the bubbles from the domain entirely. Gas bubbles at material interfaces
remain unfilled but can be filled using fill.buried.interface. 

NOTE This argument applies only to 3D deposition.

μm
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force.analytic

When performing isotropic etching or deposition, this argument permits the use of an
analytic algorithm even when a boundary collision will occur. Otherwise, self-intersections
will force the use of the level-set algorithm. For very large structures or very small etching
or deposition thicknesses, the level-set algorithm may consume too much memory and
time.

force.full.levelset, force.full.levelset.depo, force.full.levelset.etch

Defines the general level-set time-stepping algorithm as the default algorithm for both
etching and deposition, or etching only, or deposition only, respectively.

fourier.local.diffusivity

Controls the artificial diffusion parameter. If fourier.local.diffusivity is
specified, the solution is more accurate but the corners are less sharp. For complex Fourier
rates, switch off fourier.local.diffusivity to enhance stability.

full.resolution

Usually, the full-time stepping level-set method is used in situations where more intricate
boundaries will be generated. Default unit: .

The full-time stepping level-set method is needed for Fourier, crystallographic, and
multimaterial etching types, and for etching with shadowing on. This argument allows a
separate resolution setting for these cases. The default value is 0.025 compared to 0.1 for
resolution.

keep.closed.voids

In the case of crystallographic deposition, enclosed voids may continue to grow and fill up.
For efficiency, the algorithm checks for such voids only at the beginning of the deposition.
Specifying this option instructs the algorithm to check for enclosed voids at each
deposition time step, but at the cost of additional computational time.

max.number.levelset.cells

Specifies the maximum number of cells used by the level-set mesh. If this limit is exceeded,
a warning message is issued. Default:  (or  cells).

min.gas.thickness

Minimum thickness of the gas layer at the top of the simulation structure. Default value and
unit: .

μm

1.0 9×10 1000 1000× 1000×

0.1 μm
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min.levelset.size

Specifies the minimum size for the level-set mesh. Usually, the level-set mesh size scales
with the operation according to the resolution factor and the etching or deposition
thickness. However, for thin etching or deposition steps, this may lead to a small level-set
mesh causing excessive memory use and simulation time. Often, it is not necessary (for
thin layers, a mesh size between thickness/2.0 and thickness/3.0 is usually sufficient). This
argument limits the mesh size and, therefore, limits computational expense. Default value
and unit: .

print.params

Prints the current MGOALS parameters.

reinitfrequency

Level-set reinitialization is performed every reinitfrequency time step in level-set
operations. A reinitialization algorithm is run to condition the level-set distance function to
reduce the effect of contour bunching, which can cause etching distances to be less than
expected. The default value is 0, which means that no reinitialization is performed.

reinititerations

The internal reinitialization algorithm reinitializes first the 0 level set and works outwards
from the front with higher numbers of iterations. Default: 1. This argument only comes into
operation if reinitfrequency is nonzero.

remove.floating.regions

Determines whether MGOALS automatically removes regions that are not attached to the
bottom of the structure. Default: true.

repair.2d, repair.2d.deposit, repair.2d.etch, repair.2d.photo
repair.3d, repair.3d.deposit, repair.3d.etch, repair.3d.photo

Controls the default behavior of the boundary repair operation in two and three dimensions.
The options also control whether repairs are enabled in etching and deposition. By default,
boundary repairs are disabled in two dimensions and enabled in three dimensions.

repair.angle

Controls the dihedral angle at which repairs are performed. The algorithm attempts to
repair any surface section with a dihedral angle less than repair.angle. Default value
and unit: .

repair.crystal.depo.facets

During crystallographic deposition, boundary conditions near neutral walls can lead to a
moving front that is perpendicular to the wall, resembling a break in facets. This option

1.0 4–×10 μm

1°
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allows additional control by adding a repair step to make the surface near neutral walls
more smooth.

resolution

Specifies the minimum number of level-set cells across the thickness of a deposited or
etched layer. For example, resolution=0.2 implies five cells. Default: 0.1.

trapezoidal.algorithm

Sets the algorithm used for trapezoidal etching:

• A value of 2 selects the preferred, newer algorithm, which improves the quality of
produced shapes, resulting in better meshes after etching.

• A value of 1 selects the earlier algorithm.

Default: 2.

use.brep.2d

Switches on the brep structure mode for two dimensions when handling structural changes
such as 2D etching and 2D deposition. Default: false.

The boundary representation (brep) structure mode in two dimensions handles structural
changes similarly to how structural changes are handled by default in three dimensions. A
brep of the structure is used and modified rather than the volume mesh.

Using brep reduces runtimes by avoiding unnecessary meshing operations and increases
stability and accuracy by eliminating both boundary simplification and variable
interpolation associated with remeshing between structural modification operations.

M-2016.12-SP2, M-2016.12-SP1, M-2016.12, L-2016.03-SP2, L-2016.03-SP1,
L-2016.03, K-2015.06-SP2, K-2015.06-SP1, K-2015.06, J-2014.09-SP2, 
J-2014.09-SP1, J-2014.09, I-2013.12-SP2, I-2013.12-SP1, I-2013.12, 
H-2013.03-SP2, H-2013.03-SP1, H-2013.03, G-2012.06-SP2, G-2012.06,
F-2011.09-SP1, F-2011.09, E-2010.12, D-2010.03

Sets the backward compatibility of parameters and algorithms to the specified version.
Support is available for all the listed versions except Version D-2010.03, for which there is
only partial support.

Arguments: Deprecated

The following arguments are deprecated since they belong to the deprecated MGOALS mesh
generator: max.box.angle, max.lateral.size, max.neighbor.ratio, minedge,
min.normal.size, normal.growth.ratio, and offsetting.maxlevel.

Instead, use the equivalent Sentaurus Mesh pdb parameters (see Table 17 on page 188).
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The following arguments are deprecated and have no equivalent parameters in Sentaurus Mesh:
maxangle, nlayers, sliver.split, sliver.smooth, and sliver.swap.

It is suggested that you remove these arguments from command files since they may not be
accepted in future releases.

Description

This command allows you to define parameters for MGOALS-related operations.

Examples

Explicitly set the vertical level-set mesh spacing to  and the horizontal level-set mesh
spacing to . Reinitialization of the level-set distance function is performed every five
time steps, and every reinitialization is performed to an internal iteration accuracy of four
iterations:

mgoals dx= 0.01 dy= 0.02 reinitfrequency= 5 reinititerations= 4

0.01 μm
0.02 μm
Sentaurus™ Interconnect User Guide 515
N-2017.09



A: Commands
mobility
mobility

Calculates the mobility enhancement for a planar device type or a 3D FinFET device type.

Syntax

mobility 
device.model= finfet | planar
region.name=<c>
[carrier.type= 0 | 1]
[channel.orient= 1 | 2]
[piezo.coefficients= {P11=<n>, P12=<n>, P44=<n>}]

Arguments

carrier.type

Specifies the carrier type as either electron (0) or hole (1). Default: 0.

channel.orient

Specifies the fin orientation. Use channel.orient=1 for a (110) orientation of the fin.
Use channel.orient=2 for a (100) orientation of the fin. Default: 1.

NOTE If a planar device type is specified, channel.orient and
carrier.type are not required.

device.model

Specifies the type of device as either a planar device or 3D FinFET.

piezo.coefficients

Specifies the piezo coefficients P11, P12, and P44 for the material.

region.name

Specifies the name of the region where the mobility enhancement is calculated.

Description

The mobility command calculates the mobility enhancement for a planar device type or a 3D
FinFET device type.
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Examples

Calculate the mobility enhancement in region Silicon using the planar model and the
specified piezo coefficients:

mobility device.model=planar region.name=Silicon \
piezo.coefficients= {P11=-6.6, P12=1.1, P44=-138.1}
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Specifies the simulation mode.

Syntax

mode
[current | electrostatic] [gas] [mechanics] [thermal]
(
[auto.segment] | 
[bias.type=<c>] |
([capacitance | capacitance= {<c> <c> ...}] |
[resistance | resistance= {<c> <c> ...}] |
[thermal.RC.network= {("<c>[=<power>]") ("<ci> ... <cm>")

[("<cn> ... <cp>")]}] |
[thermal.resistance | thermal.resistance= {<c> <c> ...}]) |
[ground] |
[thermal.global.model=<c>]

)

Arguments

auto.segment

Use with resistance analysis to automatically segment the structure and to place contacts
automatically at conductor–conductor interfaces. If boundary.contacts is specified in
the option command, contacts are also created automatically at the outer boundary of
conductor regions.

bias.type

If no value is set or is set to ground, each contact in the listed contacts is solved with an
unit supply and all the rest are set to ground. If the value is set to !ground, each pair of
contacts in the listed contact is solved with a unit and zero supplies, and all the rest are set
to !ground. This argument can be used for capacitance, resistance, or thermal resistance
simulations. Default: ground.

NOTE The simulation time might increase significantly due to more solving
combinations when the value is set to !ground.

capacitance

Calculates the capacitance matrix for the listed contacts. All unused contacts are grounded
and lumped into one contact called GROUND_RCX. If no contact list is given, that is, only
capacitance is specified, it calculates the capacitance matrix between conducting layers
in the structure.
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NOTE The contact list must consist of only region names or only contact
names.

current, electrostatic

Select current to perform electrical current analysis in conducting regions.

Select electrostatic to perform electrostatic analysis in dielectric regions.

NOTE The current and electrostatic modes cannot be set
simultaneously. All other simulation modes can be set with other
modes.

gas

Sentaurus Interconnect solves the equation for Potential in the materials Gas and
BackMat in the electrostatic and capacitance modes (in the current and
resistance modes, the equation for Potential in those materials is never solved).
If !gas is specified, the equation for Potential in the materials Gas and BackMat is also
not solved in the electrostatic and capacitance modes. Default: true.

ground

If specified, this option grounds all unused contacts during capacitance, resistance, or
thermal resistance extraction. Default: true.

mechanics

Performs stress analysis.

resistance

Calculates the resistance matrix for the listed contacts. All unused contacts are grounded
and lumped into one contact called GROUND_RCX. If no contact list is given, that is, only
resistance is specified, it calculates the resistance matrix between user-defined contacts
in the structure.

NOTE The contact list must consist of only region names or only contact
names.

thermal

Performs thermal analysis in all regions.

thermal.global.model

Extracts the temperature field from the global model, interpolates the field on to the local
refined model, applies the temperature to the outer surfaces of the local model as boundary
conditions, and performs thermal analysis in all regions.
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thermal.RC.network

Calculates the thermal RC networks for the listed contacts. Contacts that are not listed are
excluded from the simulation. The position of the contact groups in the list of contact
names is important:

The first group of contacts must consist of one contact name ("<c>[=<power>]"), which
is the name of the excitation contact. Only one excitation contact must be given. The
optional value <power> can be specified after the name of the excitation contact. It
corresponds to the excitation power (in W) and must be a positive number. Default value
and unit: 1.0e-3 W.

The second group of contacts is a list of ambient contacts ("<ci> ... <cm>"), which
stay at ambient temperature. The ambient temperature is taken from the PDB parameter
EnvTemp [pdbGet EnvTemp], which is 26.844°C by default. At least one ambient
contact must be specified. The list must not include the name of the excitation contact.

The third group is an optional list of floating contacts ("<cn> ... <cp>") for which
interactive-heating thermal RC networks are calculated. They stay at a condition of zero
heat flux. It must not include the name of the excitation contact or the names of any ambient
contacts. If no floating contact is specified, all other contacts except the excitation contact
and the ambient contacts are ignored and only a self-heating thermal RC network for the
excitation contact is calculated.

thermal.resistance

Calculates the thermal resistance matrix for the listed contacts. All unused contacts are
grounded and lumped into one contact called GROUND_RCX. If no contact list is given, that
is only thermal.resistance is specified, it calculates the thermal resistance matrix
between user-defined contacts in the structure.

NOTE The contact list must consist of only region names or only contact
names.

Description

Electric current analysis, electrostatic analysis, mechanics (stress analysis), and thermal
analysis are solved.

Examples

Perform stress analysis and electrical current analysis:

mode mechanics current

Perform stress analysis and thermal analysis:

mode thermal mechanics
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See Also

Chapter 3 on page 45
Chapter 5 on page 121
Chapter 6 on page 131
solve on page 629
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optimize

Optimizes the specified parameters to achieve the required target values.

Syntax

optimize
model.function=<c>
model.parameters= {<c1> <c2> <c3> ...}
(target= <list> | target.file=<c>)
[history=<c>]
[max.iter=<n>]
[min.abs= <list>]
[min.rel= <list>]
[param.init= {<c1>=<n> <c2>=<n> <c3>=<n> ...}]
[param.log= {<c1> <c2> ...}]
[param.lower= {<c1>=<n> <c2>=<n> <c3>=<n> ...}]
[param.upper= {<c1>=<n> <c2>=<n> <c3>=<n> ...}]
[tolerance=<n>]
[weight= <list>]

Arguments

history

Specifies the file where the history of the optimization is stored. The history of the
parameters, the corresponding target results, and the RMS errors are displayed in columns
with each row corresponding to a loop.

max.iter

Specifies the maximum number of iterations allowed in the optimization loop.
Default: 500.

min.abs

Lists the minimum absolute error for each target. If specified, the list must be the same
length as the number of targets. It is the minimum target value for which the absolute error
is used to calculate the target error during optimization. This value is compared with the
absolute target value. The default is given by pdbGetDouble Optimizer min.abs,
which defaults to 1.e-10 for all targets.

min.rel

Lists the minimum relative error for each target. If specified, the list must be the same
length as the number of targets. It is the minimum target ratio for which the relative error
is used to calculate the target error during optimization. This value is compared with the
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ratio of the absolute target value to the maximum absolute target value. The default is given
by pdbGetDouble Optimizer min.rel, which defaults to 1.e-10 for all targets.

model.function

Name of a user-defined Tcl procedure. The arguments of the procedure are those specified
in model.parameters and are in the same order as in model.parameters. The
procedure computes and returns the results of the model.

model.parameters

Lists the names of the parameters to be optimized.

param.init

Lists the initial values of the parameters to be optimized. If not specified, the default value
is 0.5.

param.log

Lists the names of any parameter whose value you want to vary logarithmically during
optimization.

param.lower

Lists the lower bound values of the parameters to be optimized. If not specified, the default
value is 0.0.

param.upper

Lists the upper bound values of the parameters to be optimized. If not specified, the default
value is 1.0.

target

Lists the required target data that the optimization will attempt to achieve by varying the
values of parameters listed in model.parameters.

NOTE If you use target for a fitting problem, you can set up the independent
variable data using a global Tcl variable and use it in your user-defined
Tcl procedure specified by model.function.

You can specify either target or target.file, but not both.
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target.file

Specifies a text file (SIMS data, for example) that can be used to set target values. The file
has two columns of data: The first column contains independent variable data, and the
second column contains the corresponding target data. The independent variable and the
target data must be in pairs. For convenience, the independent variable is saved in a global
Tcl variable named opt.independent.var when loading the target file. You can use it
directly in your used-defined Tcl procedure specified by model.function.

You can specify either target or target.file, but not both.

tolerance

Specifies the root-mean-square (RMS) error for convergence criterion. The optimization
terminates when the RMS error of targets is smaller than tolerance. The default value is
given by pdbGetDouble Optimizer Tolerance, which defaults to 0.1.

weight

Lists the weighting factors for targets. If specified, the list must be the same length as the
number of targets. The weights control the importance of individual targets in calculations
of the error during optimization. For a fitting problem, you do not need to specify weight
because all targets have the same importance.

The default is given by pdbGetDouble Optimizer Weight, which defaults to 1.0 for
all targets.

Description

This command optimizes the specified parameters to achieve the required target values. Before
using the optimize command, you must define a Tcl procedure that computes the results of
the model, given a set of valid model parameters. The result of the command is a Tcl list with
the optimized parameters in the format:

{<c1> <n> <c2> <n> ... rmsError(%) <n> TotalLoops <n>}

Examples

The following example is a procedure for a fitting problem. The global Tcl variable
opt.independent.var was set to store the independent variable data after the input target
file is loaded. You can use it directly in the user-defined Tcl procedure:

fproc optFunc {cja vja mja} {
global {opt.independent.var}
foreach value ${opt.independent.var} {

lappend z [expr $cja/(1+$value/$vja)**$mja]
}
return $z

}
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The optimize command with the above procedure would be:

optimize model.function= optFunc model.parameters= {cja vja mja} \
param.init= {cja=0.2 vja=5. mja=0.5} \
param.lower= {cja=0.1 vja=2. mja=0.1} \
param.upper= {cja=0.4 vja=7. mja=0.9} \
target.file= model.dat \
max.iter= 500 \
tolerance= 0.1 \
history= test.dat
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option

Sets the storage and run options.

Syntax

option
[boundary.contacts]
[current= <list>]
[file.name=<c>]
[lumped.materials= <list>]
[max.optimization.iter=<i>]
[optimization.history.file=<c>]
[optimization.tolerance=<n>]
[param.init= {R1=<n> C1=<n> R2=<n> C2=<n> ...}]
[param.log= {R<i> C<i>}]
[param.lower= {R1=<n> C1=<n> R2=<n> C2=<n> ...}] 
[param.upper= {R1=<n> C1=<n> R2=<n> C2=<n> ...}]
[probe.time= {<n> <n>}]
[resistance= <list>]
[struct= ["not set"] | 

[{
[Adaptive] [alt.maternames] [bnd] [contacts] [csse]
[deform] [deform.scale=<n>]
[FullD] [Gas] [interfaces]
[mshcmd] [pdb] [pdb.only]
[sat] [satfile=<c>] [simplify=<n>]
[tdr=<c>] [tdr.bnd=<c>]
[visual.1D]
([x=<n>][<m>|<cm>|<um>|<nm>]
 [y=<n>][<m>|<cm>|<um>|<nm>]
 [z=<n>][<m>|<cm>|<um>|<nm>]) }] ]

[temperature= <list>]
[thermal.RC.network.size=<i>]
[voltage= <list>]

Arguments

boundary.contacts

Specify this option to create contacts automatically at the outer boundary of conductor
regions in distributed RC simulations. Default: false.

current

List of contacts or pair of circuit element and a node, where total current-versus-time
information will be stored.
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file.name

Name of output file to store data (or use WritePlx on page 681).

lumped.materials

Specifies a list of conductor materials to be merged in a distributed RC simulation.

max.optimization.iter

Maximum number of iterations for fitting the parameters of thermal RC networks.
Default: 500.

optimization.history.file

Specifies the prefix of the file name for storing the optimization logs and used during
thermal RC network extraction. For example, the optimization logs are saved in files with
the following names:

<file_name_prefix>_<ci>-<cj>_opt_sis.log

Here, <ci> is the name of the excitation contact, and <cj> is the name of the response
contact (<ci> can be equal to <cj>).

If this argument is not specified, the optimization logs are not saved.

optimization.tolerance

Specifies the optimization precision (tolerance) for computing the thermal RC network
elements in rms%. Default: (0.1 rms%).

param.init

Specifies a list of initial parameter values for thermal RC network extraction. R<i> are
specified in K/W, and C<i> are specified in J/K. If this argument is not specified, all
R<i> = 1.0 K/W and all C<i> = 1.0e-7 J/K. If some initial values are set manually and
some are not, the remaining parameters, which were not set manually, receive values that
are the default for param.init of the optimize command, that is, 0.5.

param.log

Specifies a list of names of any parameter for thermal RC network extraction whose value
you want to vary logarithmically during optimization. The remaining parameters that are
not specified here are varied linearly. If param.log is not specified, all R<i> and C<i>
are varied logarithmically.

param.lower

Specifies a list of the lower bound values of parameters during thermal RC network
extraction. R<i> are specified in K/W, and C<i> are specified in J/K. If this argument is
not specified, all R<i> = 1.0e-6 K/W and all C<i> = 1.0e-20 J/K. If some lower bound
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values are set manually and some are not, the remaining parameters, which were not set
manually, receive the values that are the default for param.lower of the optimize
command, that is, 0.0.

param.upper

Specifies a list of the upper bound values of parameters during thermal RC network
extraction. R<i> are specified in K/W, and C<i> are specified in J/K. If this argument is
not specified, all R<i> = 1.0e6 K/W and all C<i> = 1.0e4 J/K. If some upper bound values
are set manually and some are not, the remaining parameters, which were not set manually,
receive the values that are the default for param.upper of the optimize command, that
is, 1.0.

probe.time

List of time points the solution will be forced to move through if specified.

resistance

List of pair of contacts where resistance-versus-time information will be stored.

struct

Specifies a list of arguments for the struct command that will be executed at the
simulation times specified by the probe.time argument of the option command. The
names of the saved files will have the suffix _<time>s, where <time> is the current
simulation time (in seconds) in exponential format without a decimal point, consisting of
its first seven significant digits.

If no value is given for the struct argument, the previously specified value will be used.
To completely switch off the struct command that was previously set by an option
command, specify struct= "not set". All standard arguments of the struct
command are supported in the option command. For descriptions of the arguments that
can be listed in the struct argument, see struct on page 643.

NOTE If zero time is specified for probe.time, the corresponding TDR file
saved at time=0 may not have the mechanics solution properly updated
at zero time. For example, internal stresses set by the stressdata
command will not be rebalanced at zero time. Whereas, thermal stresses
will be rebalanced when Mechanics StressHistory 1 is set in the
PDB. In addition, for moving-mesh problems, the mechanics solution
corresponding to the first time step will be saved at zero time.

temperature

List of contacts or circuit nodes where temperature-versus-time information will be stored.
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thermal.RC.network.size

Specifies the number of RC cells in the thermal RC network. Default: 3.

voltage

List of contacts or circuit nodes where total voltage-versus-time information will be stored.

Description

This command stores time-versus-total current, or time-versus-total voltage at contacts, or
time-versus-resistance between pairs of contacts. For circuit simulations, it stores time-versus-
total current between a circuit element and node and time-versus-total voltage at a node. It may
save TDR and SAT files at simulation times equal to probe.time values. In addition, the size
of the thermal RC network and the optimization parameters for extraction of the elements of
the thermal RC networks can be specified.

Examples: Usage for Structure Only

Store time-versus-resistance information between the contacts upper and lower during time-
dependent simulations:

option resistance= { {upper lower} {c1 c2} }

For resistance information of multiple pairs of contacts, use:

option resistance= { {upper lower} }

Store time-versus-total current at the contacts upper and lower, and time-versus-total voltage
at the contacts upper and lower:

option current= {upper lower} voltage= {upper lower}

Store time-versus-total temperature at the contacts tm0 and tm1:

option temperature= {tm0 tm1}

Examples: Usage for Mixed Mode

Store time-versus-total current between the pairs of circuit element r1 and node left, and also
between circuit element V2 and node grnd:

option current= { {r1 left} {V2 grnd} }

Store time-versus-total voltage at the nodes n1 and n2:

option voltage= {n1 n2}
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Store time-versus-temperature at the nodes n1 and n2:

option temperature= {n1 n2}

Force the solution to move through the time points specified:

option probe.time= {0.08<s> 0.2<min>}

Examples: Usage of struct argument

Store TDR files at certain simulation times, and save the test_8000000e-09s_sis.tdr
and test_1200000e-05s_sis.tdr files (without using the PDB) during the corresponding
subsequent solve command:

option probe.time= {0.08<s> 0.2<min>} struct= {tdr=test !pdb}

solve time=1.0<min>

Completely suppress the struct argument in the option command:

option struct= "not set"

See Also

optimize on page 522
struct on page 643
WritePlx on page 681
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paste

Assembles 2D or 3D simulations by incorporating fragments from a TDR file.

Syntax

paste
tdr=<c>
direction= "left" | "right" | "front" | "back"
[Adaptive]

Arguments

Adaptive

If specified, Adaptive switches on adaptive meshing. Parameters for adaptive meshing
are described in Adaptive Mesh Refinement on page 177. The default is the return value of
pdbGet Grid Adaptive.

direction

Selects the side where to paste the incoming simulation. In three dimensions, the new
structure can be pasted on the left, right, front, or back side. In two dimensions, only the
left or right sides are used.

tdr

Name of the file to be imported and pasted into the current simulation.

Description

This command reads a TDR file containing valid geometry and appends it (pastes it) to the
current structure. The new structure is displaced automatically by the correct amount to
properly fit at the specified side, but the structures are not stretched automatically. If the
dimensions of nongas materials at the pasting sides are not the same, the command fails and
quits.

The dimension of all parts must match: You cannot mix two and three dimensions. In addition,
in two dimensions, only the direction values "left" and "right" are supported.

The paste command allows for the assembly of complex 2D or 3D structures by reading the
different pieces from TDR files and putting all of them together.
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Examples

Append the structure from the file propertyx_sis.tdr to the right side (maximum y-
coordinate) of the current structure:

paste tdr= "propertyx" direction= "right"

See Also

Inserting Polygons on page 274
struct on page 643
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pdbDelayDouble

Retrieves an expression for a double parameter that will be evaluated at each time step during
the solution of the thermal and electrical equations.

Syntax

pdbDelayDouble <c> <c> ...

Arguments

<c>

This argument can be any double parameter declared in the parameter database and any
double parameter declared by the user in user-defined models. In all cases, the argument
must be specified with the full hierarchical path for the double parameter.

Description

This command is typically called from Alagator to retrieve a parameter expression. Since
among other things, the temperature can change during a solve step, the evaluation of
Arrhenius expressions must be delayed until the temperature is known. This command
provides this functionality.

Examples

Return an expression for D0 (not a value):

pdbDelayDouble Si B D0
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pdbdiff

Compares the current structure with one from a TDR file.

Syntax

pdbdiff <c> <c>

Arguments

<c>

Specifies the full path or prefix of the TDR files to be compared. The prefix is the file name
without _sis.tdr.

Description

The command reports any differences between the parameters stored and any differences in
value.

Examples

Compare the pdb differences between n1_sis.tdr and n2_sis.tdr:

pdbdiff n1 n2
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pdbExprDouble

Retrieves an expression for a double parameter without evaluating.

Syntax

pdbExprDouble <c> <c> ...

Arguments

<c>

This argument can be any double parameter declared in the parameter database and any
double parameter declared by the user in user-defined models. In all cases, the argument
must be specified with the full hierarchical path for the double parameter.

Description

This command is typically called from Alagator to retrieve a parameter expression. If the
parameter depends on solution names, data fields, and so on, the evaluation of the expression
must be delayed until the solution time. This command provides this functionality.

Examples

Return an expression for Bulk (not a value):

pdbExprDouble Si Mechanics BulkModulus
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pdbGet and Related Commands

All these commands retrieve database parameters:

■ pdbGet 

■ pdbGetArray 

■ pdbGetBoolean 

■ pdbGetDouble 

■ pdbDelayDouble 

■ pdbGetDoubleArray 

■ pdbGetElement 

■ pdbGetFunction 

■ pdbGetString 

■ pdbGetSwitch 

■ pdbGetSwitchString 

Only pdbGet has syntax checking.

Syntax

pdbGet <c> <c> ...

Arguments

<c>

This argument can be any double parameter declared in the parameter database and any
double parameter declared by the user in user-defined models. In all cases, the argument
must be specified with the full hierarchical path for the double parameter.

Description

These commands are used to obtain parameters that reside in the property database, which is
hierarchical and is indicated by passing a series of strings to the command. In the command
file, the command pdbGet must replace all other pdbGet* commands because the type of the
parameter and the syntax are checked automatically.

If a parameter does not exist in the directory, the tool exits and prints a list of parameters that
can be found. Normal aliasing is applied to each string before the parameter is retrieved from
the database.
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The following commands all return 0 if the parameter is not found:

■ pdbGetArray 

■ pdbGetBoolean 

■ pdbGetDouble 

■ pdbDelayDouble 

■ pdbGetDoubleArray 

■ pdbGetElement 

■ pdbGetFunction 

■ pdbGetString 

■ pdbGetSwitch 

The command pdbGetSwitchString returns nothing if the parameter is not found.

These commands have a slight performance advantage and will not exit if a parameter has not
been defined, so they are preferred for Alagator scripting.

The command pdbGetSwitch returns an integer value of a switch, and the command
pdbGetSwitchString returns the string value. For example, if a switch has the choices a, b,
or c, and a is chosen, pdbGetSwitch returns 0, and pdbGetSwitchString returns a.

Examples

Retrieve the current value of StressHistory. The parameter StressHistory is known, but
if it is spelled incorrectly, Sentaurus Interconnect exits and prints a list of known parameters at
the Mechanics level:

pdbGet Mechanics StressHistory

Retrieve StressHistory without syntax-checking. The command returns 0 if not found.
Sentaurus Interconnect exits if there is a type mismatch between StressHistory and
Boolean (which is not the case in this example):

pdbGetBoolean Mechanics StressHistory
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Checks whether the given pdb command is available.

Syntax

pdbIsAvailable <c> <c> ...

Arguments

<c>

Specifies the pdb command.

Description

If the pdb command exists, the pdbIsAvailable command returns 1; otherwise, it returns 0.

Examples

Return 1 if the command "Silicon MyData" is available:

pdbIsAvailable Silicon MyData
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pdbLike

Creates a new pdb parameter like an existing parameter in a material.

Syntax

pdbLike <c> <c> <c>

Arguments

<c>

The first argument must be the name of the material.

The second argument must be the name of the new pdb parameter.

The third argument must be the name of an existing pdb parameter.

Description

This command is used to create a new node in the parameter database where the sub-
parameters of this node are inherited from an existing node in the database. It is typically used
when creating a new solution variable to inherit parameters from an existing solution variable.

Examples

Create a new parameter called MyPotential in silicon:

pdbLike Silicon MyPotential Potential

MyPotential inherits all the parameters defined for Potential in silicon including the user-
defined ones.

See Also

solution on page 626
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pdbSet and Related Commands

All of the following commands set database parameters:

■ pdbSet 

■ pdbSetArray 

■ pdbSetBoolean 

■ pdbSetDouble 

■ pdbSetDoubleArray 

■ pdbSetElement 

■ pdbSetFunction 

■ pdbSetString 

■ pdbSetSwitch 

Only pdbSet has syntax checking.

Syntax

pdbSet <c> <c> ... <value>

Arguments

<c>

This argument can be any parameter declared in the parameter database and any parameter
declared by users in user-defined models. In all cases, the argument must be specified with
the full hierarchical path for the parameter.

<value>

The value associated with the type of the parameter. For example, a double value must be
given for a Double parameter type.

Description

These commands are used to set parameters that reside in the property database, which is
hierarchical and is indicated by passing a series of strings to the command. In the command
file, the command pdbSet must replace all other pdbSet* commands because the type of the
parameter and the syntax are checked automatically. If a parameter does not exist in the
directory, the tool exits and prints a list of parameters that can be found. Normal aliasing is
applied to each string before the parameter is retrieved from the database for all these
commands.
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The following commands all create a new parameter if one does not already exist:

■ pdbSetArray 

■ pdbSetBoolean 

■ pdbSetDouble 

■ pdbSetDoubleArray 

■ pdbSetFunction 

■ pdbSetString 

These commands have a slight performance advantage, and Sentaurus Interconnect does not
exit if a parameter has not been defined, so they are preferred for Alagator scripting. The
property database uses the CGS system of units, except for activation energies [eV].

The command pdbSet checks the type of variable trying to be set and checks that type against
the <value> passed. The command pdbSetDouble takes a double for a value and, similarly,
pdbSetString takes a string and pdbSetBoolean takes a Boolean (1 or 0). The command
pdbSetSwitch will set a value for existing switches. If a switch is not found, a new one will
be created.

The command pdbSetArray defines the array for string data.

The data type DoubleArray has a special format and can be modified in several different ways
depending on the changes required.

The command pdbSetElement modifies the value of one element in an array.

NOTE The arguments for pdbSetDouble, pdbSetDoubleArray, and
pdbSetBoolean must evaluate to numeric data. Calls to procedures or
to the pdbDelayDouble command in the arguments may cause errors
if they are not constructed correctly.

Examples

Set the Emissivity parameter in copper, and exit with a list if it is not found:

pdbSet Copper Emissivity 1

Now, for the non-syntax-checked version:

Set Emissivity, and create Emissivity if it does not already exist (in this example,
Emissivity would exist):

pdbSetDouble Copper Emissivity 1
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Create a new DoubleArray, index 0 = 0.1, and so on:

pdbSetDoubleArray Si MyVar MyArray {0 0.1 1 0.2 3 0.3}
pdbSetArray MyArray {0 abc 1 def 2 ghi}
pdbGetArray MyArray ;# print "0 abc 1 def 2 ghi"
pdbGetElement MyArray 1 ;# print "def"
pdbSetElement MyArray 1 jkl ;# modifies A[1] data from "def" to "jkl"
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pdbUnSet-Related Commands

All these commands unset database parameters:

■ pdbUnSetBoolean 

■ pdbUnSetDouble 

■ pdbUnSetDoubleArray 

■ pdbUnSetString 

Syntax

pdbUnSetBoolean <c> <c> ...

pdbUnSetDouble <c> <c> ...

pdbUnSetDoubleArray <c> <c> ...

pdbUnSetString <c> <c> ...

Arguments

<c>

This argument can be any parameter declared in the parameter database and any parameter
declared by users in user-defined models. In all cases, the argument must be specified with
the full hierarchical path for the parameter.

Description

This command temporarily removes parameters from the parameter database during the
simulation.

Examples

Remove the Derived.Materials list of InGaAs material:

pdbUnSetString InGaAs Derived.Materials
Sentaurus™ Interconnect User Guide 543
N-2017.09



A: Commands
photo
photo

Creates a photoresist layer of the specified thickness outside the mask.

Syntax

photo
[Adaptive] [mask=<c>] [repair] [sde= {<c>}]
[thickness=<n>][<m>|<cm>|<um>|<nm>]

Arguments

Adaptive

If specified, Adaptive switches on adaptive meshing. Parameters for adaptive meshing
are described in Adaptive Mesh Refinement on page 177. The default is the return value of
pdbGet Grid Adaptive.

mask

Name of the mask to be used to create the photoresist. The photoresist is deposited in the
openings of the mask.

repair

In 3D MGOALS mode, small regions are removed automatically by default. Sometimes,
this causes small gas bubbles in the structure or other problems. Use !repair to switch
off the small region removal.

sde

String used to specify parameters and algorithms for 3D simulations using Sentaurus
Structure Editor. By default, mask and thickness are translated into appropriate
Sentaurus Structure Editor commands. If an algorithm is specified using sde, it overwrites
the algorithm used by default for isotropic or anisotropic etching, for example:

photo thickness= 2<um> mask= mask1 sde= {"algorithm" "lopx"}

thickness

Specifies the thickness of the photoresist. Default value and unit: .

Description

The mask must have been defined using a mask command. If the photoresist must be deposited
inside of the mask, the negative argument must be defined in the mask command.

2.0 μm
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Examples

Create a resist layer of  thickness. The resist layer material will appear in open areas of
the mask mask1, that is, it will be the negative of mask1:

photo thickness= 1<um> mask= mask1

Create a resist layer of  thickness. The resist layer will have the same polarity as mask2:

photo mask= mask2

See Also

mask on page 493

1 μm

2 μm
Sentaurus™ Interconnect User Guide 545
N-2017.09



A: Commands
plot.1d
plot.1d

Plots a 1D cross section.

Syntax

plot.1d
[boundary] [clear] [close] [color=<c>] [fix.ratio] [label=<c>]
[max= <list>] [min= <list>]
[name=<c>] [rescale] [symb=<c>] [title=<c>]
[x=<n>][<m>|<cm>|<um>|<nm>]
[y=<n>][<m>|<cm>|<um>|<nm>]
[z=<n>][<m>|<cm>|<um>|<nm>]

Arguments

boundary

Specifies that any material boundaries that are crossed must be drawn in as vertical lines
on the plot. Default: false.

clear

Specifies whether the graphics screen must be cleared before the graph is drawn. Default:
true (the screen is cleared).

close

Closes the plot window.

color

Specifies the line color for the plot. It can be any color supported by X11 hardware and
named in the color database.

fix.ratio

Specifies the x-, y-axis ratio to be fixed. Default: false.

label

Specifies the name of the line in the legend of the plot window. The default is the name of
the current dataset.
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max

List of numeric values that will be the ends of the x- and y-axis. The first argument is the
x-value and the second is the y-value. A single value is always interpreted as the x-value.
The default is the maximum extent of the current structure.

min

List of numeric values that will be the ends of the x- and y-axis. The first argument is the
x-value and the second is the y-value. A single value is always interpreted as the x-value.
The default is the minimum extent of the current structure.

name

Name of a data field. This allows plots to be created without using the select command.
Default: Z_Plot_Var.

rescale

Rescales the plot to fit the entire simulation domain.

symb

Specifies a symbol type to be drawn on the cross-sectional line. Each point is drawn with
the specified symbol. It defaults to no symbol. Whatever character is entered is placed at
each data point on the plot.

title

Specifies the title of the plot window.

x, y, z

Specify the constant values of a line along which sectioning is performed. In one
dimension, these arguments are not necessary. In two dimensions, only one of x or y can
be specified for a given device. Specifying x produces a horizontal slice through the device
and y specifies a vertical slice. An easy way to remember is that the cross section is taken
at the constant value specified. For a 3D simulation, two of these three values must be
specified. Default unit: .

Description

This command plots cross sections vertically or horizontally through the device with
arguments to provide for initialization of the graphics device and plotting of axes. This
command can optionally draw vertical lines whenever a material boundary is crossed.

μm
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Examples

Clear the screen, draw a set of axes, and draw the data along a horizontal cross section at
x = . Each point is drawn with symbol 1:

plot.1d x= 1.0 symb= 1 clear

Draw a horizontal cross section at x =  on the previous set of axis. The line is labeled
Lateral in the legend:

plot.1d x= 2.0 clear label= Lateral

See Also

select on page 609
slice on page 623

1.0 μm
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plot.2d

Plots a 2D xy graphic.

Syntax

plot.2d
[boundary] [clear] [close] [col.bound=<c>] [col.grid=<c>] 
[edges] [faces] [fill] [fix.ratio] [gas] [grid] [label.bound]
[max= <list>] [min= <list>]
[nodes] [rescale] [title=<c>]
[vector=<c>]
[vlength=<n>][<m>|<cm>|<um>|<nm>]
[vmax=<n>][<m>|<cm>|<um>|<nm>]
[x=<n> | y=<n> | z=<n>][<m>|<cm>|<um>|<nm>]

Arguments

boundary

Specifies that the device outline and material interfaces must be drawn. Default: false.

clear

Specifies that the graphics screen must be cleared before the graph is drawn. Default: true
(the screen is cleared).

close

Closes the plot window.

col.bound

Specifies the color of the boundary. Any valid X11 color can be specified.

col.grid

Specifies the color of the grid. Any valid X11 color can be specified.

edges

Prints the edge indices on the plot. Default: false.

faces

Prints the face indices on the plot. Default: false.
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fill

Specifies that the device must be drawn with the proper aspect ratio. If fill is false, the
device is drawn with the proper aspect ratio. If fill is true, the device is expanded to fill
the screen. Default: false.

fix.ratio

By default, the x to y ratio is now fixed. This can be switched off using !fix.ratio.

gas

Specifies that the grid in the gas must also be plotted. Default: false (no gas grid is shown).

grid

Specifies that the numeric grid on which the problem was solved must be drawn. Default:
false.

label.bound

Name of the material in the lower-left corner of the material region.

max

List of numeric values that will be the ends of the x- and y-axis, respectively. The first
argument is the x-value and the second is the y-value. A single value is always interpreted
as the x-value. The default is the maximum extent of the current structure. Default unit:

.

min

List of numeric values that will be the ends of the x- and y-axis, respectively. The first
argument is the x-value and the second is the y-value. A single value is always interpreted
as the x-value. The default is the minimum extent of the current structure. Default unit:

.

nodes

Prints the node indices on the plot. Default: false.

rescale

Rescales the plot to fit the whole simulation domain.

title

Specifies the title of the plot window.

μm
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vector

Name of a vector field. This indicates arrows proportional to the size of the vector and in
the direction of the vector at each node. This argument does not work in 3D simulations.

vlength

Scales the length of the vectors so that the maximum vector has length vlength. Default
value and unit: .

vmax

Use this as the maximum velocity instead of searching for it. Default unit: .

x, y, z

For 2D simulations, these arguments are unnecessary. In three dimensions, one of these
three must be specified to indicate the cutline through the structure. Default unit: .

Description

Usually, this command is used to look at material boundaries and grids; however, it also can be
used to plot a flow field. This command can be executed immediately before a contour
command to allow isoconcentration lines to be plotted in context with the structure.

To obtain standard color and other settings for the plot.2d window, use the following
command from the command line:

unix:> xrdb -merge ${STROOT}/tcad/${STRELEASE}/lib/score/XFloops

Examples

Draw the triangular grid and axis. Each material is plotted in a different color:

plot.2d grid

Draw the material interfaces with the minimum x- and y-values of  and :

plot.2d boundary min= {2 5}

Draw the material interfaces and place symbols at each coordinate in the mesh:

plot.2d boundary diamonds

Plot the Velocity vector field. The maximum arrow drawn will have a length of . The
plot surface will not be cleared:

plot.2d vector= Velocity vlength= 0.1 !clear

0.1 μm

μm

μm

2.0 μm 5.0 μm

0.1 μm
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See Also

bound on page 373
Compatibility on page 380
contour on page 387
select on page 609
slice on page 623
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plot.xy

Prepares an xy plot to draw on.

Syntax

plot.xy
[clear]
[max= <list>] [min= <list>]
[x.axis=<c>] [y.axis=<c>] [x.log] [y.log]

Arguments

clear

Clears the existing plot surface. Default: true.

max

List of numeric values that will be the ends of the x- and y-axis, respectively. The first
argument is the x-value and the second is the y-value. A single value is always interpreted
as the x-value. The default is the maximum extent of the current structure.

min

List of numeric values that will be the ends of the x- and y-axis, respectively. The first
argument is the x-value and the second is the y-value. A single value is always interpreted
as the x-value. The default is the minimum extent of the current structure.

x.axis, y.axis

Specify the labels for the x-axis and y-axis.

x.log, y.log

Specify whether there is a linear or log axis. If x.log or y.log is selected, the logarithm
of the values on the point.xy command are taken. The axis also will have log scale form.

Description

This command configures a 2D plot surface for use with the point.xy command. This
prepares the axis scaling and labels, and controls the log axes.

Using this command and the point.xy command could simulate all other commands in this
section.
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Examples

Prepare a plot area:

plot.xy min= {1 0.0} max= {3600 0.75} x.axis= Time y.axis= Thickness

See Also

point.xy on page 557
select on page 609
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Creates a point, for example, for a mask polygon.

Syntax

point
[clear]
[coord= {

<n>[<m>|<cm>|<um>|<nm>]
<n>[<m>|<cm>|<um>|<nm>]
<n>[<m>|<cm>|<um>|<nm>]}]

[list] [name=<c>]

Arguments

clear

Clears the list of all points. If name is specified, it clears only this point information.

coord

Defines the coordinates of the point. For a 3D point, all three coordinates must be specified.
If only two are defined, a 2D layout point in the yz plane is assumed. Default unit: .

list

Returns the list of currently defined points. If name is given, it prints the information for
this point only.

name

Name of the point.

Description

This command defines a point in three dimensions or a 2D point in the yz plane. It can be used
to construct polygons to define masks.

Examples

Define a 2D point with the coordinates y = 0 and z = –1.5:

point name= p1 coord= {0 -1.5}

μm
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Print the list of defined points:

LogFile [point list]

See Also

mask on page 493
polygon on page 559
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point.xy

Adds a line segment to a plot.

Syntax

point.xy
x=<n> y=<n>
[color=<c>] [move] [name=<c>] [symb=<c>]

Arguments

color

Specifies the color for the line. It can be any color supported by X11 hardware and named
in the color database.

move

Instead of drawing from the last point, the graphics pen is placed at this point without
moving. Using move with symb draws scatter plots.

name

Name of a line, so that points can be added to the line at a later time. The name can be any
valid character string and is used in the plot legend. If the named line does not exist, it is
created.

symb

The first character of this string is used to mark the line. If no symbol is specified, none will
be used. If a symbol is specified once for a line, it is used for all lines. Default: x.

x, y

Specify the values to be added to the plot.

Description

This command adds segments to a specified line on a plot surface using X-windows-based
plotting (plot.1d or plot.2d). The command is used to plot calculated values, data, or direct
outputs from the simulation. The values can be added to any named line.
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Examples

Add x- and y-values to the line named Thickness:

point.xy x= 60.0 y= 0.1 name= Thickness

See Also

interface on page 470
interpolate on page 473
plot.xy on page 553
select on page 609
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Creates a polygon, for example, for a mask.

Syntax

polygon
clear |
list |
(name=<c>

[external.sde] |
[tdr=<c>] [materials= {<mat1> ... matn}] |
[max= {

<y>[<m>|<cm>|<um>|<nm>]
<z>[<m>|<cm>|<um>|<nm>]}]

[min= {
<y>[<m>|<cm>|<um>|<nm>]
<z>[<m>|<cm>|<um>|<nm>]}]

[rectangle] |
[points= {<point1> <point2> ... <pointn>}] [rectangle] |
[tdr=<c>] [regions= {<reg1> ... <regn>}] |
[segments= {

<y_1>[<m>|<cm>|<um>|<nm>]
<z_1>[<m>|<cm>|<um>|<nm>]
<y_2>[<m>|<cm>|<um>|<nm>]
<z_2>[<m>|<cm>|<um>|<nm>]
...
<y_n>[<m>|<cm>|<um>|<nm>]
<z_n>[<m>|<cm>|<um>|<nm>]}]

)
[xy]

Arguments

clear

Clears the list of all polygons. If name is specified, it clears only the named polygon.

external.sde

Creates a polygon from an external Sentaurus Structure Editor structure (see Sentaurus
Structure Editor Interface on page 277).

list

Returns a list of all polygons. If name is given, it returns the information for this polygon
only.
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materials

Specifies a material or list of materials that will be read when using tdr.

max

Maximum point for a rectangular box. It must be used with rectangle to create a
rectangular polygon. The default is the structure bounding box maximum. Default unit:

.

min

Minimum point for a rectangular box. It must be used with rectangle to create a
rectangular polygon. The default is the structure bounding box minimum. Default unit:

.

name

Name of the polygon.

points

Lists the point names used to specify the polygon. A minimum of three must be specified.
The points must have been specified using the point command. The polygon is closed
implicitly by connecting the first and last points.

points also can be used with rectangle to specify a rectangular polygon. In this case,
two points must be given: the minimum and maximum points of the rectangle.

rectangle

Must be specified with max and min to define a rectangular box. Alternatively, two named
points can be given (using points) corresponding to the minimum and maximum of the
rectangle.

regions

Specifies a region or list of regions to be used when reading the polygon when using tdr.

segments

Lists the line segments in the yz plane (or the xy plane when xy is specified) used to specify
a polygon in three dimensions. The polygon is closed implicitly by connecting the first and
last points. A minimum of three segments must be given. Default unit: .

tdr

Name of the file from which to read the polygon. If you use tdr, you must specify xy. It
allows you to use materials and regions to further specify which polygon to be read from
the TDR file.

μm
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xy

Defines the polygon in the xy plane instead of the default yz plane. When using xy, the
segments are defined as {x_1 y_1 ... x_n y_n}, and min and max as x y. You must
use xy when specifying tdr. Specifying xy typically means that the polygon will be used
for insertion rather than for masking.

Description

This command defines a mask or uses the polygon during an insertion. One of the following
must be used to create a polygon:

■ points 

■ rectangle 

■ segments 

■ tdr 

If named points are not given explicitly when forming polygons, they are generated
automatically during the creation of the polygon.

Examples

Create three identical rectangles using points and coordinates:

point name= p1 coord= {0.0 0.0}
point name= p2 coord= {0.0 -0.5}
point name= p3 coord= {0.5 -0.5}
point name= p4 coord= {0.5 0.0}

polygon name= Box1 points= {p1 p2 p3 p4}
polygon name= Box2 points= {p2 p4} rectangle
polygon name= Box3 min= {0.0 -0.5} max= {0.5 0.0} rectangle

Define an L-shaped polygon using 1D line segments:

polygon name= LShape \
segments= {0.0 -1.5 0.0 -0.5 0.5 -0.5 0.5 1.5 1.5 1.5 1.5 -1.5}

Read the aluminum material structure in the file points_bnd.tdr as a polygon called box:

polygon name= "box" xy tdr= "points_bnd.tdr" materials= "Aluminum"

Print the list of polygons that have been defined:

LogFile [polygon list]

Delete Box3:

polygon name= Box3 clear
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See Also

Inserting Polygons on page 274
insert on page 464
mask on page 493
point on page 555
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polyhedron

Creates and stores 3D polyhedra, for later insertion with the insert command or for use with
the profile command.

Syntax

polyhedron
clear |
list |
(

name=<c>
(

brick= {
<minx>[<m>|<cm>|<um>|<nm>]
<miny>[<m>|<cm>|<um>|<nm>]
<minz>[<m>|<cm>|<um>|<nm>]
<maxx>[<m>|<cm>|<um>|<nm>]
<maxy>[<m>|<cm>|<um>|<nm>]
<maxz>[<m>|<cm>|<um>|<nm>]} |

original.polyhedron=<c> |
(polygons= <list> |

min=<n>[<m>|<cm>|<um>|<nm>]
max=<n>[<m>|<cm>|<um>|<nm>]) |

(tdr=<c> [materials= <list>] | [regions= <list>])
)
[bbox | bbox.cm | bbox.um]
[external.sde]
[offset= {<x> <y> <z>}]
([rotate.angles= {<psi> <theta> <phi>}] [rotate.center= {<x> <y> <z>}])
([scale=<n>] [scale.center= {<x> <y> <z>}])
([stretch] [direction= x | -x | y | -y | z | -z] [length=<n>]
[location=<n>])

)

Arguments

bbox, bbox.cm, bbox.um

If bbox is specified, the polyhedron command returns the maximum extents of the
named polyhedron in two points. If bbox.cm is specified, the command returns the
maximum extents of the polyhedron in centimeter. If bbox.um is specified, the command
returns the maximum extents of the polyhedron in micrometer.
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brick

Creates a rectangular prism, given its two corners as <minx> <miny> <minz> and
<maxx> <maxy> <maxz>. Default unit: .

clear

Removes all the previously defined polyhedra from memory.

external.sde

Creates a polyhedron from an external Sentaurus Structure Editor structure (see Sentaurus
Structure Editor Interface on page 277).

list

Lists the currently defined polyhedra.

materials

It is used only with tdr and lists the materials to be included in the file. In addition to
explicit material names, bulk.materials is available to specify all nongas materials.

max

Maximum x-coordinate for extrusion (see polygons). Default unit: .

min

Minimum x-coordinate for extrusion (see polygons). Default unit: .

name

Name of the polyhedron to be created.

offset

Specifies the offset to be applied before saving the named polyhedron.

original.polyhedron

Creates a new polyhedron from the specified original polyhedron before applying the
transformation.

polygons

This argument can be used in two contexts:

• When specifying a list of polygons that form a polyhedron, it builds such a polyhedron.

μm
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• When specifying one planar axis-oriented polyhedron, it extrudes (using min and max)
that polygon in the x-direction to form a polyhedron.

regions

It is used only with tdr and lists which regions of the TDR boundary file are included.

rotate.angles, rotate.center

By default, the location of the rotation center is the geometric center of the polyhedron,
which is {(xmin+xmax)/2 (ymin+ymax)/2.0 (zmin+zmax)/2.0}. The minimum
and maximum coordinates of the polyhedron can be found using the bbox option. You can
redefine the rotation center using the rotate.center argument.

The rotation uses the so-called intrinsic rotation of the Tait–Bryan angles, where <psi>,
<theta>, and <phi> are angles rotated around the x-, y'-, and z''-axis, respectively. For
more information, go to https://en.wikipedia.org/wiki/Euler_angles.

scale, scale.center

If scale is specified, the polyhedron is enlarged or reduced proportionally. By default, the
scale center is the geometric center of the polyhedron, but you can redefine the scale center
using the scale.center argument.

stretch, direction, length, location

If the stretch option is specified, the polyhedron is stretched a specified length, along the
specified direction, at the specified location. By default, direction=x, length=0, and
location=0.

tdr

Name of the TDR boundary file from which to read all the polyhedra.

Description

This command creates a polyhedron and stores it under the name specified. Different
mechanisms can be used to create the polyhedron. It can be read from an existing polyhedron
or from a TDR boundary file; it can be defined as a brick or defined from the beginning using
polygonal faces; it can be created as an extruded polygon. In addition, several transformations
can be applied to the polyhedron, such as offset, rotate, scale, and stretch. When a polyhedron
is defined, it can be used to perform polyhedron insertion using the insert command, or it
can be used as a geometric parameter in the polyhedron argument of the profile command.

NOTE If a polyhedron is created from a TDR file (tdr=<c>) and is intended
for use in the profile command, you must specify either the
materials or regions argument. If no materials or regions are
specified, materials=bulk.materials is required.
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NOTE The final result depends on the order of the transformations, if any. If
offset, rotate, scale, and stretch are all specified in the same
command, Sentaurus Interconnect executes the transformations in the
following sequence starting with offset, then rotate, scale, and
finally stretch.

Examples

Load the polyhedra containing silicon and gas from the boundary file sphere_bnd.tdr with
the name sphere:

polyhedron name= sphere tdr= sphere_bnd.tdr materials= {Silicon Gas}

Create a polyhedron named prism and extrude from x =  to x =  an already
existing polygon called triangle:

polyhedron name= prism polygons= {triangle} min= -6 max= 2

Using the polygons face1, face2, face3, and face4 (they must be correctly defined), build
a polyhedron called tetrahedron:

polyhedron name= tetrahedron polygons= {face1 face2 face3 face4}

Define a rectangular prism (brick shape) called smallPrism by using its two corners, that is,
<minx>= , <miny>= , <minz>= , <maxx>= , <maxy>= ,
<maxz>= :

polyhedron name= smallPrism brick= {-6 -4 -2 -1 4.5 1}

Stretch and scale a prism:

polyhedron name=new_prism original.polyhedron=prism scale=2 stretch \
length= 0.5 direction= -x

Rotate a prism:

polyhedron name= prism polygons= {triangle} min= -6 max= 2 \
rotate.angles= {30 60 90}

See Also

Inserting Polyhedra on page 274
insert on page 464
profile on page 583

6– μm 2 μm

6– μm 4– μm 2– μm 1– μm 4.5 μm
1 μm
566 Sentaurus™ Interconnect User Guide
N-2017.09



A: Commands
power_ramp
power_ramp

Defines a power or power-density profile for use with the supply command.

Syntax

power_ramp
(clear | list | name=<c>)
[current.time=<n>][<hr>|<min>|<s>]
([delNP=<n>[<W>] | delNPD=<n>[<W/cm3>]] | 
[delP=<n>[<W>] | delPD=<n>[<W/cm3>]])
[density.ramprate=<n>[<W/cm3/s>] | ramprate=<n>[<W/s>]]
[hold] [last]
[p.density.final=<n>[<W/cm3>] | p.final=<n>[<W>]]
[power=<n>[<W>] | power.density=<n>[<W/cm3>]]
[reset.init.time]
[time=<n>][<hr>|<min>|<s>]

Arguments

clear

Deletes the global list of power or power-density ramps. When defining profiles, this
operation unites the new definition with any prior profiles of the same name.

current.time

Returns the value of the ramp for the specified time. Default unit: minute.

delNP, delNPD

Specify either:

• delNP to define the maximum power step during a power ramp-down.

• delNPD to define the maximum power-density step during a power-density ramp-
down.

Default unit: W for delNP and  for delNPD.

delP, delPD

Specify either:

• delP to define the maximum power step during a power ramp-up.

• delPD to define the maximum power-density step during a power-density ramp-up.

Default unit: W for delP and  for delPD.

Wcm 3–

Wcm 3–
Sentaurus™ Interconnect User Guide 567
N-2017.09



A: Commands
power_ramp
density.ramprate, ramprate

Specify either:

• density.ramprate to set the power-density change during the simulation. Default
value and unit: .

• ramprate to set the power change during the simulation. Default value and unit:
.

hold

During this segment, allows the solve command the opportunity to specify the time of the
segment.

last

Defines the final component of the power or power-density profile. After this final
component, no more additions to the ramp are permitted.

list

Generates a list of power or power-density profiles. It returns a Tcl list and can be operated
on as such. The default action for commands is to print the return. If no handling is
required, this option prints a list of names of defined power or power-density profiles. If
name is specified, only the power_ramp command is listed along with details about the
ramps.

name

Specifies the name of the parameter used to identify the power or power-density ramp. This
name is specified in a supply command.

p.density.final, p.final

Specify either:

• p.density.final to set the final power density for a power-density ramp-up or
ramp-down.

• p.final to set the final power for a power ramp-up or ramp-down.

Either argument is used if ramprate is not given. The ramp time is calculated
automatically.

power, power.density

Specify either:

• power to set the simulation power rate.

• power.density to set the simulation power-density rate.

0 Wcm 3– s 1–

0 Ws 1–
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reset.init.time

Starts each power or power-density step with the same initial time step.

time

Specifies the simulation time. Default unit: minute.

Description

This command specifies multiple power or power-density ramps and holds. It can be used to
construct a complex power or power-density sequence to be simulated with the solve
command.

Examples

Define the power profile named pr1 with a power rate of :

power_ramp name= pr1 power= 0.1 ramprate= 0.5<W/s> time= 1<s>

Define the power-density profile named pdr1 with a power-density rate of :

power_ramp name= pdr1 power.density= 0.2<W/cm3> ramprate= 0.5<W/cm3/s> \
time= 1<s>

See Also

supply on page 647

0.5 Ws 1–

0.5 Wcm 3– s 1–
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print.1d

Prints values along a 1D cross section.

Syntax

print.1d
[gas] [interfaces] [<material>] [name=<c>] [region=<c>]
[syntax.check.value=<c>]
[x=<n>][<m>|<cm>|<um>|<nm>]
[y=<n>][<m>|<cm>|<um>|<nm>]
[z=<n>][<m>|<cm>|<um>|<nm>]

Arguments

gas

By default, gas values are not reported. This argument allows the gas mesh to be included
in the extracted data.

interfaces

Prints interface data from the field specified by name. Values from all interfaces are
displayed on the screen and are organized by interface. For each point on the interface, a
set of numbers is displayed as follows:

• {x value} in one dimension

• {x y value} in two dimensions

• {x y z value} in three dimensions

where x, y, and z are the coordinates of the interface point, and value is the value of the
specified field.

<material>

Name of the material for which the data fields are printed.

name

Name of a data field. This allows printing without using the select command. The default
is to use the field specified in the most recent select command.

region

Name of the region for which the data fields are printed.
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syntax.check.value

Sets a value to be returned only during syntax-checking mode. Sometimes, the value
returned by a command can cause a false syntax-check error because the value returned by
the command would not be the value during the normal run mode. Setting this value avoids
such problems.

x, y, z

Specify the constant values of a line along which sectioning is performed. In one
dimension, these parameters are not necessary. In two dimensions, only one of x or y can
be specified for a given device. Specifying x produces a horizontal slice through the device
and y specifies a vertical slice. An easy way to remember this is that the cross section is
taken at the constant value specified. For a 3D simulation, two of these three arguments
must be specified. Default unit: .

Description

This command is particularly useful for creating input for another xy plot. A Tcl list is returned
for all values. This allows subsequent processing (for example, integration) of the resulting
profile.

Examples

Print the selected value at x equal to :

print.1d x= 1.0

Print the data field named Arsenic along a vertical line at a lateral position of :

print.1d y= 1.0 name= Arsenic

See Also

plot.1d on page 546
select on page 609
System on page 651

μm

1.0 μm

1.0 μm
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print.data

Writes data in x-, y-, and z-format.

Syntax

print.data
[name=<c>] [NODE | EDGE] [outfile=<c>]
[xlo=<n>][<m>|<cm>|<um>|<nm>] [xhi=<n>][<m>|<cm>|<um>|<nm>]
[ylo=<n>][<m>|<cm>|<um>|<nm>] [yhi=<n>][<m>|<cm>|<um>|<nm>]
[zlo=<n>][<m>|<cm>|<um>|<nm>] [zhi=<n>][<m>|<cm>|<um>|<nm>]

Arguments

name

Name of a data field. This allows printing without using the select command. Default:
Z_Plot_Var.

NODE, EDGE

Specifies either a node-based field or an edge-based field. Default: NODE.

outfile

Name of output file. The file is opened for writing, and any previous content is destroyed.

xlo, ylo, zlo, xhi, yhi, zhi

Specify a 3D bounding box. Only data within these limits is printed. Default value and unit:
.

Description

The file format is the x-position, y-position, and z-position. This command is used primarily to
write a data field for use with more sophisticated 3D plotting tools.

Examples

Print the data field named Boron:

print.data outfile= foo name= Boron

See Also

select on page 609

0 μm
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printCapacitanceMatrix

Prints the capacitance matrix for the listed contacts. 

Syntax

printCapacitanceMatrix
(capacitance.matrix [<c1> <c2>] | charge.matrix | spice.matrix |

spice.total [<c1>])
[<filename>.csv] [<filename>.spi] [simple.print]

Arguments

capacitance.matrix [<c1> <c2>]

Specifies that only capacitance matrix must be displayed and returned. If the contact names
<c1> and <c2> are given, it returns the capacitance value between <c1> and <c2>.

charge.matrix

Specifies that only the charge matrix must be displayed and returned.

<filename>.csv

Specifies the name of the comma-separated value (CSV) file to which information is
written. The file name must include the .csv extension.

<filename>.spi

Specifies the name of the SPICE-formatted file to which information is written. The file
name must include the .spi extension.

simple.print

Displays and returns the results without separators.

spice.matrix

Specifies that only the SPICE matrix must be displayed and returned.

spice.total [<c1>]

Specifies that only the total SPICE values must be displayed and returned. If the contact
name <c1> is specified, it returns the SPICE value at <c1>.
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Description

This command displays and returns the capacitance matrix along with the charge and SPICE
model capacitances. It must be used after capacitance analysis is finished.

Examples

Display and return the capacitance matrix along with the charge and SPICE model
capacitances:

printCapacitanceMatrix

Display the capacitance matrix and return an array of capacitance(contact,contact)
values to userArray:

array set userArray [printCapacitanceMatrix capacitance.matrix]

Display and return the SPICE value for topContact:

printCapacitanceMatrix spice.total topContact

Display and return the values without separators:

printCapacitanceMatrix simple.print

Display and write the capacitance matrix in CSV format to the file cMatrix.csv:

printCapacitanceMatrix capacitance.matrix cMatrix.csv

See Also

Electrostatic Analysis: Capacitance Matrix on page 685
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printRC

Prints the resistance or capacitance netlist in distributed RC simulations.

Syntax

printRC
[exclude.C= <list>]
[<filename>.csv] [<filename>.spi]
[model1 | model2 | model3 | model4]

Arguments

exclude.C

Specifies a list of materials–regions or material–region pairs whose capacitance should be
excluded.

<filename>.csv

Specifies the name of the CSV file to which information is written. The file name must
include the .csv extension.

<filename>.spi

Specifies the name of the SPICE-formatted file to which information is written. The file
name must include the .spi extension.

model1, model2, model3, model4

Selects a model to link resistance and capacitance netlists. Default: model1.

Description

This command displays and returns the linked RC netlist in a distributed RC simulation. It must
be used after the distributed RC analysis is finished.

Examples

Display the linked RC netlist:

printRC

Display and write the linked RC netlist in SPICE format to the file fRC.spi:

printRC fRC.spi
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Display the linked RC netlist excluding capacitance between Cu1 and Cu3, between
Region_1 and Region_3, and between Cu2 and any other regions:

printRC exclude.C= {"Cu1 Cu3" "Region_1 Region_3" "Cu2"}

Display the linked RC netlist with model2:

printRC model2

See Also

Distributed RC Extraction on page 688
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printResistanceMatrix

Prints the resistance matrix for the listed contacts.

Syntax

printResistanceMatrix
(current.matrix [<c1> <c2>] | resistance.matrix | spice.matrix |

spice.total [<c1>])
[<filename>.csv] [<filename>.spi] [simple.print]

Arguments

current.matrix [<c1> <c2>]

Specifies that only the current matrix must be displayed and returned. If the contact names
<c1> and <c2> are given, it returns the current value between <c1> and <c2>.

<filename>.csv

Specifies the name of the CSV file to which information is written. The file name must
include the .csv extension.

<filename>.spi

Specifies the name of the SPICE-formatted file to which information is written. The file
name must include the .spi extension.

resistance.matrix

Specifies that only the resistance matrix must be displayed and returned.

simple.print

Displays and returns the results without separators.

spice.matrix

Specifies that only the SPICE matrix must be displayed and returned.

spice.total [<c1>]

Specifies that only the total SPICE values must be displayed and returned. If the contact
name <c1> is specified, it returns the SPICE value at <c1>.
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Description

This command displays and returns the resistance matrix along with the conductance and
SPICE model resistances. It must be used after resistance analysis is finished.

Examples

Display and return the resistance matrix along with the conductance and SPICE model
resistances:

printResistanceMatrix

Display the resistance matrix and return an array of resistance(contact,contact)
values to userArray:

array set userArray [printResistanceMatrix resistance.matrix]

Display and return the SPICE value for topContact:

printResistanceMatrix spice.total topContact

Display and return the values without separators:

printResistanceMatrix simple.print

Display and write the current matrix in CSV format to the file rMatrix.csv:

printResistanceMatrix current.matrix rMatrix.csv

See Also

Electrical Current Analysis: Resistance Matrix on page 683
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printThermalRC

Computes and prints the parameters of thermal RC networks for the listed contacts, and prints
the thermal impedances to files for the listed contacts.

Syntax

printThermalRC
[{<c1> <c2> <c3>}] [<c>.csv] [<c>.plx] [<c>.spi] [simple.print]

Arguments

{<c1> <c2> <c3>}

Specifies a list of contacts for which the parameters of the thermal RC network will be
extracted and printed to the screen or (as well as thermal impedance versus time curves)
may be saved to files. If not specified, all of the available contacts (that is, the excitation
contact and all the floating contacts specified in the corresponding mode command) are
used. Default: false.

<c>.csv

Specifies the name of the CSV file to which the extracted thermal RC network parameters
are written. The file name must include the .csv extension.

<c>.plx

Specifies the name of the PLX-formatted file to which thermal impedance versus time (in
seconds) curves and thermal RC network model curves are written.

<c>.spi

Specifies the name of the SPICE-formatted file to which the extracted thermal RC network
parameters are written. The file name must include the .spi extension.

simple.print

Specify this option to display the results on screen and put them in the log file without
separators. When this option is not specified, the default is to display the results on screen
and to put the results in the log file with separators.
Sentaurus™ Interconnect User Guide 579
N-2017.09



A: Commands
printThermalRC
Description

This command computes and prints the extracted parameters of thermal RC networks for the
listed contacts. In addition, it prints the thermal impedance versus time (in seconds) curves to
a specified .plx file for the listed contacts.

NOTE This command must be executed in the thermal.RC.network mode
after the corresponding transient thermal analysis is finished.

Examples

Extract parameters of thermal RC networks for all available contacts, and print them to the
screen and to the log file:

printThermalRC

See Also

Thermal Analysis: Thermal RC Network on page 693
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printThermalResistanceMatrix

Prints the thermal resistance matrix for the listed contacts.

Syntax

printThermalResistanceMatrix
(heat.matrix [<c1> <c2>] | resistance.matrix | spice.matrix |

spice.total [<c1>])
[<filename>.csv] [<filename>.spi] [simple.print]

Arguments

<filename>.csv

Specifies the name of the CSV file to which information is written. The file name must
include the .csv extension.

<filename>.spi

Specifies the name of the SPICE-formatted file to which information is written. The file
name must include the .spi extension.

heat.matrix [<c1> <c2>]

Specifies that only the heat matrix must be displayed and returned. If the contact names
<c1> and <c2> are given, it returns the value between <c1> and <c2>.

resistance.matrix

Specifies that only the resistance matrix must be displayed and returned.

simple.print

Displays and returns the results without separators.

spice.matrix

Specifies that only the SPICE matrix must be displayed and returned.

spice.total [<c1>]

Specifies that only the total SPICE values must be displayed and returned. If the contact
name <c1> is specified, it returns the SPICE value at <c1>.
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Description

This command displays and returns the thermal resistance matrix along with the thermal
conductance and SPICE model thermal resistances. It must be used after thermal resistance
analysis is finished.

Examples

Display and return the thermal resistance matrix along with the thermal conductance and
SPICE model thermal resistances:

printThermalResistanceMatrix

Display the thermal resistance matrix and return an array of
thermalresistance(contact,contact) values to userArray:

array set userArray [printThermalResistanceMatrix resistance.matrix]

Display and return the SPICE value for topContact:

printThermalResistanceMatrix spice.total topContact

Display and return the values without separators:

printThermalResistanceMatrix simple.print

Display and write the heat matrix in CSV format to the file tMatrix.csv:

printThermalResistanceMatrix heat.matrix tMatrix.csv

See Also

Thermal Analysis: Thermal Resistance Matrix on page 691
582 Sentaurus™ Interconnect User Guide
N-2017.09



A: Commands
profile
profile

Reads a data file and constructs a data field.

Syntax

profile
name=<c>
[Adaptive] [concentration=<n>] [delay.doping.3d] [gaussian.blur]
[infile=<c>]
[lateral.function= {xlo= {<n> ...} xhi= {<n> ...} sigma= {<n> ...}
LDF.reshaping= {<c> ...}}]

[logarithmic | linear]
[mask=<n>] [mask.discretization.size=<n>]
[<material>] [material.specific]
[max= {<n> <n> <n>}] [min= {<n> <n> <n>}]
[offset= {<n> <n> <n>}][<m>|<cm>|<um>|<nm>]
[polyhedron=<c>]
[region=<c>] [replace | sum]
[x.sigma=<n>] [xcoord=<n>] [xscale=<n>]
[y.sigma=<n>] [ymin=<n>] [yscale=<n>] [z.sigma=<n>]

Arguments

Adaptive

Specifies whether this profile step is performed with adaptive remeshing. This
functionality is not supported when infile is a TDR file, or when the polyhedron
argument is specified. Default: [pdbGet Grid Adaptive].

concentration

Specifies the concentration of the field at the specified xcoord or inside the specified
polyhedron. When it is paired with the xcoord argument, the concentration
argument is a list in which the number of list elements must match that of xcoord. When
it is specified with the polyhedron argument, the concentration argument is a simple
numeric value.

delay.doping.3d

Specifies whether the placement of the dopant concentration is delayed until the next
remeshing step in the 3D simulation. This may be useful if there are several consecutive
profile commands, which can be put together and performed in one adaptive remeshing
step.

This functionality is not supported when infile is a TDR file, or when the polyhedron
argument is specified. Default: false.
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gaussian.blur

Specifies whether the 2D or 3D doping distribution is generated by combining the 1D depth
profile (specified by infile) with 2D mask information (specified by mask). The lateral
distribution is computed by convolving the mask information with the Gaussian function.

infile

Name of the file to be read. If it is an ASCII data file, the file must be in a two-column
format with depth (in ) in column 1 and the variable in column 2. It also will read the
output of the print.1d command, which includes Tcl braces for list processing and the
material name. If it is a TDR file, it must be in the same dimension as the simulated device
structure and requires .tdr as the file extension.

lateral.function

Specifies the lateral straggling (sigma’s) and the lateral distribution function (LDF) for the
profile reshaping (LDF.reshaping) as a function of depth in a piecewise step manner.

The xlo, xhi, and sigma arguments specify that, between xlo and xhi, the lateral
straggling is sigma. These three lists must have exactly the same number of items and must
cover the entire depth of the device. For simplicity, however, if sigma is a constant (that
is, a single value), xlo and xhi can be omitted.

The LDF.reshaping argument specifies the file names of the LDF correction factors
in .plx file format. The first item of the list specifies the file name for the first pair of xlo
and xhi, and the second item specifies the file name for the second pair of xlo and xhi,
and so on (the file names can be repeated if they are the same). For simplicity, however, if
the correction factor is 1 (that is, no correction), the file name can be omitted.

logarithmic, linear

Interpolates data using either logarithmic or linear interpolation. The default is
logarithmic, which is usually more accurate for concentration profiles.

mask

Specifies the name of the mask used for Gaussian blurring.

mask.discretization.size

During computation of the Gaussian convolution, a 2D mask is divided into small slices in
the z-direction. This argument specifies the maximum discretization size for each slice.
Default value and unit: 1e-6 cm.

<material>

Name of the material to which the field profile is applied. See Specifying Materials on
page 18.

μm
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material.specific

By default, when loading a TDR file, interpolation is material specific, so that data is
interpolated from the file only if the material in the existing structure matches.
Use !material.specific to allow interpolation regardless of material.

max

List of numeric values defining the x-, y-, and z- coordinates of the lower-right front corner
of the 1D, 2D, or 3D rectangular box into which the profile is imported. For 1D, 2D, and
3D structures, a list of one, two, or three numbers is required, respectively. The possible
maximum number is used for missing numbers. Default unit: .

min

List of numeric values defining the x-, y-, and z- coordinates of the upper-left back corner
of the 1D, 2D, or 3D rectangular box into which the profile is imported. For 1D, 2D, and
3D structures, a list of one, two, or three numbers is required, respectively. The possible
minimum number is used for missing numbers. Default unit: .

name

Name of the data field. This argument allows for the creation of arbitrary fields, for
example, a field called Measured.

offset

List of numeric values that specify the offsets in the x-, y-, and z-direction, respectively.
The missing values are treated as 0. These values will be subtracted from the x-, y-, and z-
coordinate, respectively, when creating the data field from the imported field. This
argument allows a profile to be shifted. Default value and unit: .

polyhedron

Specifies a name as defined by the following polyhedron command (see polyhedron on
page 563):

polyhedron name=<c> (brick= {...} | original.polyhedron=<c> |
polygons= {...} | tdr=<c>)

If a polyhedron is created by specifying brick, you can use different values of standard
deviations (x.sigma, y.sigma, and z.sigma) in each of the three principal axes.
However, if a polyhedron is created by specified either tdr or polygons, only a single
roll-off function (x.sigma) is allowed. The roll-off is computed using the nearest distance
to the polyhedron.

region

Name of the region to which the profile is applied.

μm

μm

0 μm
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replace, sum

These options specify how a newly added profile concentration is used:

• Specify replace to replace the existing dataset with the new concentration of the same
name inside the polyhedron or in the rectangular box (specified by the min and max
arguments). Outside the polyhedron or the rectangular box, to ensure a smooth
transition, the roll-off profile replaces the existing concentration only if the
concentration of the roll-off profile is greater than the existing concentration.

• Specify sum to add the new concentration to the matching dataset. This is the default.

x.sigma

Standard deviation of erfc falloff from a rectangular box in the x-direction. It must be
specified if a rectangular box or polyhedron is specified. Default unit: .

xcoord

Coordinate in the x-direction where the concentration will be defined. Default unit: .

xscale

The profile command assumes the x-dimension is in micrometers. This argument allows
you to scale the depth dimension if necessary. For example, if the depth is in ångströms,

 must be specified. Default: 1.0.

y.sigma

Standard deviation of erfc falloff from a rectangular box in the y-direction. If it is not
specified, it takes the value of x.sigma. Default unit: .

ymin

Minimum-acceptable value of the data field. Values less than ymin in the data field are set
to ymin. This is useful for data that may approach zero when using logarithmic
interpolation.

yscale

The scaling factor for the y-dimension (usually, the concentration) of the 1D profile.
Default: 1.0.

z.sigma

Standard deviation of erfc falloff from a rectangular box in the z-direction. If it is not
specified, it takes the value of y.sigma. Default unit: .

μm

μm

1 4–×10

μm

μm
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Description

This command provides different ways of introducing dopant concentration into a device:

■ It reads data fields from an ASCII data file or a TDR file, and replaces or adds them to the
structure. It allows you to read a doping profile from a SIMS measurement. In this case, if
the simulated structure is 2D or 3D, the data field is created uniformly in the lateral
direction. This command also allows you to read a field from a TDR file with the same
dimension as the simulated structure. You also can limit the extent of the imported profile
within a rectangular box by specifying min or max, or both. Outside this box, the profile
falls off with a complementary error function (erfc) with standard deviations given by
x.sigma, y.sigma, and z.sigma in the x-, y-, and z-direction, respectively.

■ It places a uniform dopant concentration inside a polyhedron without triggering remeshing.
The dopant and concentration are specified by the name and concentration arguments,
respectively. The polyhedron must be already defined using the polyhedron command:

polyhedron name=<c> (brick= {...} | original.polyhedron=<c> |
polygons= {...} | tdr=<c>)

If a polyhedron is created by specifying brick, you can use different values of standard
deviations (x.sigma, y.sigma, and z.sigma) in each of the three principal axes.
However, if a polyhedron is created by specifying either tdr or polygons, only a single
roll-off function (x.sigma) is allowed. The roll-off is computed using the nearest distance
to the polyhedron.

■ It computes a 2D or 3D dopant distribution by combining a 1D depth profile (specified by
either infile or both the xcoord and concentration arguments) and 2D mask
information. The 1D depth profile is obtained elsewhere (for example, a 1D process
simulation or from a SIMS profile) and is stored in a file specified by infile in ASCII
format. The 2D lateral dopant profile is generated by convolving the mask with a Gaussian
function in two dimensions1, essentially smoothing the sharp edges of the mask. Depth-
dependent lateral straggling and profile reshaping are specified as lists inside the
lateral.function argument. The doping profile placement can be adaptive or
nonadaptive. In three dimensions and with Adaptive specified, you can delay the profile
placement until the next remeshing step by specifying the delay.doping.3d option.

Examples

Read a temperature profile, and scale the depth by  to convert ångström to micrometer:

profile name= Temperature infile= temp.pro xscale= 1.0e-4

See Also

print.1d on page 570

1. For more information, go to https://en.wikipedia.org/wiki/Gaussian_blur.

1 4–×10
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RangeRefineboxes

Creates a set of refinement boxes based on a mask, and a set of range and extent parameters.
All boxes share a set of global refinement settings, but each box can have additional local
refinement settings.

Syntax

RangeRefineboxes
boxes= {

drange=<drange1> [<box-specific_arguments>]
[drange=<drange2> [<box-specific_arguments>]]
...

}
mask=<c>
name=<c>
range=<c>
[<other_arguments>]

Arguments

<box-specific_arguments>

Any argument of the refinebox command. These arguments are applied only to the
individual refinement box. They can overwrite global parameters defined in the
<other_arguments> section.

boxes

A Tcl list containing a set of Tcl lists. Each Tcl list contains specific parameter settings for
one individual refinement box.

drange

Specifies the primary extent of an individual refinement box, which extends from xmin =
range – drange to xmax = range + drange.

mask

Specifies the mask under which the refinement is to be applied.

name

Specifies the root name for the set of refinement boxes. Each individual refinement box
inherits a name of the form <c>_<n>, where <c> is the value of the name argument and
<n> is a counter.
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<other_arguments>

Any valid argument of the refinebox command.

range

Specifies the center of the primary extent for all refinement boxes in the set.

Description

The refinement is applied to the area under the specified mask. The lateral extent is controlled
by the same arguments as in the refinebox command, for example,
mask.edge.refine.extent and mask.edge.mns.

The primary extent is defined by range and drange. The range argument is common to all
refinement boxes. The drange argument can be set for each related refinement box separately.

As optional global default arguments, any argument from the refinebox command is
allowed. These arguments are applied to all refinement boxes of the set. For each individual
refinement box, an additional refinebox command can be set, which can overwrite globally
defined arguments or add new arguments. There are no limits on how many refinement boxes
can be in the set. The individual refinement boxes inherit the root name (specified by the name
argument) with a numeric suffix counter.

NOTE The RangeRefineboxes command makes one call to the refinebox
command per individual refinement box.

NOTE You can use the DeleteRefinementboxes command to remove the
entire set of refinement boxes created with the RangeRefineboxes
command.

Examples

Create a set of refinement boxes:

mask name= M1_p segments= {6 10}
array set moments "model dualpearson rp 0.078379 stdev 0.029416 gamma 0.607428

beta 3.812230 ratio 0.712042 rp2 0.267171 stdev2 0.181446 gamma2 2.819940
beta2 25.463300"

set range $moments(rp)
set sigma $moments(stdev)
eval RangeRefineboxes name= "RM1" mask= "M1_p" range= $range \

boxes= \{ \
{drange= $sigma xrefine= [expr $sigma/4.0] yrefine= [expr $sigma/4.0] \

extend= 0} \
{drange= [expr 4*$sigma] xrefine= $sigma yrefine= $sigma \

extend= [expr 2*$sigma]} \
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{drange= [expr 2*$sigma] mask.edge.mns= [expr $sigma/8.0] \
mask.edge.refine.extent= [expr 2*$sigma] mask.edge.ngr= 1} } \

extend= 1.0 xrefine= 0.5 yrefine= 0.5 info= 2

See Also

DeleteRefinementboxes on page 400
refinebox on page 591

 

mat.lattice.lkmc

Material used for lattice creation in LKMC.

nucleation.material

Material on which nucleation occurs during nonselective epitaxy in LKMC.
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refinebox

Sets the local grid parameters and performs a grid refinement using the MGOALS module.

Syntax

refinebox
[3d] [Adaptive] [clear] [double.side]
[list]
[(mask=<c> extrusion.min=<n> extrusion.max=<n>) [extend=<n>]
([mask.corner.mns=<n>] [mask.corner.ngr=<n>]
[mask.corner.refine.extent=<n>] |
[mask.edge.mns=<n>] [mask.edge.ngr=<n>] [mask.edge.refine.extent=<n>])]

[<material>] [materials= <list>]
[max= <list>] [min= <list>]
[name=<c>]
[print]
[regions= <list>]
[xrefine= <list>][<m>|<cm>|<um>|<nm>]
[yrefine= <list>][<m>|<cm>|<um>|<nm>]
[zrefine= <list>][<m>|<cm>|<um>|<nm>]

[interface.mat.pairs= <list>]
[interface.materials= <list>]
[interface.region.pairs= <list>]
[interface.regions= <list>]
[max.lateral.size=<n>][<m>|<cm>|<um>|<nm>]
[min.normal.size=<n>][<m>|<cm>|<um>|<nm>]
[normal.growth.ratio=<n>]
[offsetting] 
[offsetting.maxlevel=<i>]

[DelPSC
[interface.mat.pairs= <list>]
[interface.materials= <list>]
[interface.region.pairs= <list>]
[interface.regions= <list>]

]

[abs.error= {<field1>=<n> <field2>=<n> ...}]
[def.abs.error=<n>] 
[def.max.asinhdiff=<n>]
[def.max.difference=<n>]
[def.max.dose.error=<n>]
[def.max.gradient=<n>]
[def.max.logdiff=<n>]
[def.rel.error=<n>]
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[max.asinhdiff= {<field1>=<n> <field2>=<n> ...}]
[max.difference= {<field1>=<n> <field2>=<n> ...}]
[max.dose.error= {<field1>=<n> <field2>=<n> ...}]
[max.gradient= {<field1>=<n> <field2>=<n> ...}]
[max.logdiff= {<field1>=<n> <field2>=<n> ...}]
[max.value=<n>] [min.value=<n>]
[refine.add.fields= <list>]
[refine.dir.factor= <list>]
[refine.expr=<c>]
[refine.field.expr= {<field1>=<c> <field2>=<c> ...}
[refine.fields= <list>]
[refine.max.edge= <list>]
[refine.min.edge= <list>]
[refine.rm.fields= <list>]
[refine.type=<c>]
[rel.error= {<field1>=<n> <field2>=<n> ...}]
[target.length=<n>][<um>] [target.length.scaling=<n>]

Arguments

3d

Specifies the refinement box for only three dimensions, or for only one dimension and two
dimensions. The default behavior is to always apply the refinement box. If 3d is specified,
the refinement box only applies to three dimensions. If !3d is specified, the refinement box
only applies to one dimension and two dimensions.

Adaptive

Specifies an adaptive refinement box. Adaptive refinement boxes are used during all
remeshing operations (such as deposit, etch, photo, transform) but will not be used
during solve unless adaptive meshing is switched on (by using pdbSet Grid Adaptive
1).

clear

When used without other arguments, clear deletes all previously defined refinement
boxes. When used with name, only the named refinement box is deleted.

double.side

If !double.side is specified with offsetting, Sentaurus Mesh interprets
interface.mat.pairs and interface.region.pairs in a nonsymmetric fashion.
The default is double.side, that is, the specification of a material or region pair 
is interpreted by Sentaurus Mesh as if the parameters were defined symmetrically for both

 and .

x1 x2⁄

x1 x2⁄ x2 x1⁄
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extend

Optional extension when using a mask-driven refinement. This value can be positive (or
negative) and extends (shrinks) the refinement isotropically in y and z. The original mask
remains unchanged. Default unit: .

extrusion.max, extrusion.min

Maximum and minimum coordinates in the x-axis where the refinement will be applied
when using mask. Default unit: .

list

Lists the defined refinement boxes.

mask

Uses an existing mask name as an extra constraint to where the refinement will be applied.
If the refinement contains another spatial constraint (for example, using min and max), the
final application region is the intersection of the other constraints and the specified
extruded mask.

This argument requires specifying the box length in x (lacked by the mask) using
extrusion.min and extrusion.max, and optionally allows the use of extend, which
allows for the definition of layout (mask)-driven refinements.

mask.corner.mns

Specifies the minimum mesh size near the mask corner (actual edge length may be up to
two times smaller than this setting). This argument must be used with
mask.corner.refine.extent to have an effect. Default unit: .

mask.corner.ngr

Specifies the growth rate of refinement away from the mask corner. This argument must be
used with mask.corner.refine.extent to have an effect. Default value and unit:

 (no growth).

mask.corner.refine.extent

Specifies the distance from the mask corner over which corner-based refinement occurs. It
must be specified to obtain mask corner–based refinement. Default unit: .

mask.edge.mns

Specifies the minimum mesh size near the mask edge (actual edge length may be up to two
times smaller than this setting). This argument must be used with
mask.edge.refine.extent to have an effect. Default unit: .

μm

μm

μm

1.0 μm

μm

μm
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mask.edge.ngr

Specifies the growth rate of refinement away from the mask edge This argument must be
used with mask.edge.refine.extent to have an effect. Default value and unit: 
(no growth).

mask.edge.refine.extent

Specifies the distance from the mask edge over which edge-based refinement occurs. It
must be specified to obtain mask edge–based refinement. Default unit: .

<material>

Limits the refinement box to a particular material. By default, the refinement box applies
to all materials. See Specifying Materials on page 18.

materials

Limits the refinement box to a list of materials. By default, the refinement box applies to
all materials. See Specifying Materials on page 18.

max, min

Limits the extent of the refinement box. Both arguments take a Tcl list of numbers defining
the refinement box extent in the x-, y-, and z-axes. You can specify either one or both min
and max with a Tcl list of one, two, or three numbers for each argument. If one number is
specified, it is taken to be the limit in the x-axis. If two numbers are specified, they set limits
for the x-axis and y-axis. Similarly, three numbers specify a limit in all three axes. Default
unit: .

name

Name of the refinement box.

print

Prints information for all refinement boxes. If name is specified, only the named refinement
box information is printed.

regions

Limits the refinement box to a list of regions. By default, the refinement box applies to all
regions.

xrefine

List of three numbers defining the element sizes in the x-direction at the top, middle, and
bottom of the box. Default unit: .

1.0 μm

μm

μm

μm
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yrefine

List of three numbers defining the element sizes in the y-direction at the left, middle, and
right of the box. Default unit: .

zrefine

List of three numbers defining the element sizes in the z-direction at the front, middle, and
back of the box. Default unit: .

Arguments: Interface Refinement Control

interface.mat.pairs

A set of pairs of materials where interface meshing will be switched on (1st and 2nd, 3rd
and 4th, and so on).

interface.materials

All interfaces that contain any of the materials listed here are refined using the
min.normal.size criterion. By default, no interface refinement is applied.

interface.region.pairs

A set of pairs of regions where interface meshing will be switched on (1st and 2nd, 3rd and
4th, and so on). This region-based interface specification is supported only for Sentaurus
Mesh offsetting, that is, when offsetting also is given.

interface.regions

Used only in conjunction with offsetting or offsetting.maxlevel to switch on
Sentaurus Mesh offsetting or to specify offsetting.maxlevel on a regionwise basis for
Sentaurus Mesh offsetting.

max.lateral.size

Specifies the maximum lateral spacing at the interface. Default unit: .

min.normal.size

Specifies the minimum edge spacing at interfaces for this box. Default unit: .

normal.growth.ratio

Specifies the edge-to-edge growth ratio moving away from an interface.

offsetting

When offsetting is specified along with interface.materials,
interface.mat.pairs, interface.regions, or interface.region.pairs, the

μm

μm

μm

μm
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Sentaurus Mesh offsetting algorithm is used to generate offsetting layers at the given
interface.

offsetting.maxlevel

Specifies the number of offsetting layers at the interface when Sentaurus Mesh offsetting
is used, specified either by material or region using interface.materials or
interface.regions, respectively.

Arguments: Boundary Rediscretization Using DelPSC Algorithm

DelPSC

Specify this option to apply the Delaunay refinement for piecewise smooth complex
(DelPSC) algorithm to rediscretize curved surfaces on the boundary at the beginning of the
Sentaurus Mesh simulation. This is equivalent to the following setting:

pdbSet Grid SnMesh Apply.Brep.DelPSC true

interface.mat.pairs

Restricts the application of the DelPSC algorithm to interfaces specified by pairs of
materials (first and second, third and fourth, and so on). For example:

interface.mat.pairs= {Silicon Oxide}

interface.materials

Restricts the application of the DelPSC algorithm to interfaces of the specified materials.
For example:

interface.materials = {Silicon}

interface.region.pairs

Restricts the application of the DelPSC algorithm to interfaces specified by pairs of regions
(first and second, third and fourth, and so on). For example:

interface.region.pairs= {Substrate field_ox}

interface.regions

Restricts the application of the DelPSC algorithm to interfaces of the specified regions. For
example:

interface.regions= {Substrate}
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Arguments: Adaptive Meshing

abs.error

Sets a field-dependent value of the minimum significant field value.

def.abs.error

Sets the field-independent default value of the minimum significant field value.

def.max.asinhdiff

Sets the field-independent default value of the maximum inverse hyperbolic sine (asinh)
difference criteria.

def.max.difference

Sets the field-independent default value of the maximum absolute difference criteria.

def.max.dose.error

Sets the field-independent default value of the maximum local dose error criteria.

def.max.gradient

Sets the field-independent default value of the maximum gradient criteria.

def.max.logdiff

Sets the field-independent default value of the maximum logarithmic difference criteria.

def.rel.error

Sets the field-independent default value of the required relative change of a field across an
edge.

max.asinhdiff

Sets a field-dependent value of the inverse hyperbolic sine difference criteria.

max.difference

Sets a field-dependent value of the maximum absolute difference criteria.

max.dose.error

Sets a field-dependent value of the maximum local dose error criteria.

max.gradient

Sets a field-dependent value of the maximum gradient criteria.
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max.logdiff

Sets a field-dependent value of the maximum logarithmic difference criteria.

max.value

Maximum interval value for interval refinement.

min.value

Minimum interval value for interval refinement.

refine.add.fields

List of fields to be added to the default list of fields considered for adaptive refinement.

refine.dir.factor

Applies adaptive refinement more strongly in one direction than another. A factor of 1 has
no effect. A factor less than 1 causes smaller edges in that direction.

For example, refine.dir.factor= {0.1 1.0} requests that, for a given adaptive
refinement expression value, edges in the x-direction be 10 times smaller than edges in the
y-direction.

refine.expr

Specifies a refinement expression. It takes any valid Alagator expression that produces a
node-based result.

NOTE Earlier releases required the diff() operator, but now, the diff
operator must not be used. Similar results can be obtained for earlier
releases by removing the diff operator.

refine.field.expr

Sets a field-dependent refinement expression.

refine.fields

Replaces the default list of fields considered for adaptive refinement. Solution variables
and terms can appear in the refine.fields list. (For a description of a term, see term on
page 658.)

refine.max.edge

Sets the direction-dependent maximum edge length.

refine.min.edge

Sets the direction-dependent minimum edge length.
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refine.rm.fields

Removes the specified fields from the default list of fields considered for adaptive meshing.

refine.type

Specifies the type of criteria to apply for adaptive refinement. Allowed values are
interval and error (default).

rel.error

Sets a field-dependent value of the required relative change of the refined field across an
edge.

target.length

Target length for interval refinement. Default unit: .

target.length.scaling

Scaling factor used in the calculation of the effective target length for interval refinement.

Description

This command specifies mesh refinement. The following types of refinement box are available:

■ Standard: Independent xrefine, yrefine, zrefine settings.

■ Interface: Refinement near one or more interfaces.

■ Adaptive: Adaptive refinement on fields.

■ Plane: Planar refinement for crystal boundaries.

■ Bulk mask: Confine refinement to an extruded boundary defined by a mask.

■ Mask edge: Confine refinement to a specified distance from a specified mask.

All refinement boxes can be limited by material or spatially by specifying x-, y-, or z- minimum
or maximum limits.

Examples

Define two refinement boxes:

refinebox min= {-0.25 0.4} max= {0.4 0.6} xrefine= {0.1 0.06 0.1} \
yrefine= {0.1 0.01 0.1} oxide

refinebox min= {0.6 0.6} max= {0.8 0.8} xrefine= {0.1 0.03 0.1} \
yrefine= {0.1 0.03 0.1} silicon

μm
Sentaurus™ Interconnect User Guide 599
N-2017.09



A: Commands
refinebox
Create an adaptive refinement box that applies maximum dose error criteria to the default list
of adaptive species, and effectively switch off relative error criteria, which is on by default:

refinebox adaptive def.rel.error= 100 def.max.dose.error= 5e9

Form the boundary for the refinement by extending (by ) an existing mask called
Mask1 extruded from  to :

polygon name= pol segments= {-.5 -.5 .5 -.5 .5 .5 0 .5 0 0 -.5 0}

mask name= Mask1 polygons= {pol}

refinebox name= "ref1" mask= Mask1 yrefine= {0.05 0.075 0.075} \
extrusion.min= 0 extrusion.max= 0.05 extend= 0.2

See Also

Mesh Refinement on page 170
mask on page 493
mgoals on page 510

0.2 μm
0 μm 0.05 μm
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region

Creates regions, marks substrates, and changes region materials.

Syntax

region
<material>
xlo=<c> [ylo=<c>] [zlo=<c>]
xhi=<c> [yhi=<c>] [zhi=<c>]
[alt.matername=<c>] [bbox | bbox.cm | bbox.um]
[change.material] [cropped.bbox] [exact.name]
[field=<c> concentration=<n>]
[left | right | back | front | top | bottom]
[list | list.bulk | list.gas | list.interface]
[material]
[max= {<n> <n> <n>} min= {<n> <n> <n>}]
[name=<c>] [new.name=<c> point= {<n> <n> <n>}]
[substrate] [syntax.check.value=<c>] [volume] [zero.data]

Arguments

alt.matername

Specifies the name of the material that should be written in the TDR file for regions of the
newly defined material.

For example, when writing the TDR file, if the newly defined material is called
MySilicon and alt.matername=Silicon, Sentaurus Interconnect uses Silicon for
those regions of MySilicon.

This is useful when transferring the structure to device simulation.

bbox, bbox.cm, bbox.um

If specified, the region command returns the maximum extents of the region in two
points. If bbox.cm is specified, it returns the maximum extents of the region in centimeter.
If bbox.um is specified, it returns the maximum extents of the region in micrometer.

change.material

Changes the material of an existing region (must be used with name). Changing the
material of selected regions (to and from gas) can be used to change the structure without
remeshing. Meshes of material gas are ignored in most steps.

concentration

Specifies the value of the field directly. Default unit: .cm 3–
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cropped.bbox

If specified, returns the cropped bounding box of a region that lies within a user-specified
bounding box.

exact.name

Usually when changing the material of a region, all ancestors of the named region (if there
are any) are converted as well as the named region if it exists (see Regionwise Parameters
and Region Name-Handling on page 24).

If exact.name is switched on, only a region whose name exactly matches the name
argument will have its material changed. Default: false.

field

Name of a field to be initialized within this region.

left | right | back | front | top | bottom

If specified, returns the region names on either the left, right, back, front, top, or bottom of
the structure.

list, list.bulk, list.gas, list.interface

Used to obtain a Tcl list of regions:

• list returns a list of all regions.

• list.bulk returns a list of nongas, noninterface regions (that is, all bulk regions).

• list.gas returns a list of gas regions.

• list.interface returns a list of interface regions.

<material>

Material of the region. See Specifying Materials on page 18.

material

If specified, it returns the material name of the named region.

max, min

User-specified bounding box.

name

Name of the region. The name must not contain an underscore (_) or a period (.) because
these characters have special meaning. The name must be different than an existing
material name (see Regionwise Parameters and Region Name-Handling on page 24).
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new.name, point

Used together to change the name of a region, where point must specify a point (a list of
doubles) within a region. The point must not be on or very near a border. The argument
new.name specifies the new name of the region. The name must be different than an
existing material name (see Regionwise Parameters and Region Name-Handling on
page 24).

substrate

Tags a named region as the substrate for subsequent analysis. Setting !substrate clears
the substrate tag. If no region name is specified and !substrate is set, all substrate tags
are cleared.

syntax.check.value

Sets a value to be returned only during syntax-checking mode. Sometimes, the value
returned by a command can cause a false syntax-check error because the value returned by
the command would not be the value during the normal run mode. Setting this value avoids
such problems.

xlo, ylo, zlo, xhi, yhi, zhi

Specify the bounds of the region. The <c> value must be one of the tags created in a
preceding line command.

volume

If specified, the region command returns the volume of the named region. The units will
be in cmD, where D is the simulation dimension.

zero.data

Usually when the material of a region is changed using change.material, all data in that
region is set to 0. Setting !zero.data leaves the data untouched. The default value for this
parameter is taken from pdbGet Grid default.zero.data, which allows a global
setting for this argument.

Description

The region command has different applications:

■ At the beginning of a simulation, the initial regions are created with the region command
in concert with the line command and the init command. The line command defines
where mesh lines go.

■ The region command specifies between which mesh lines the regions are created and
what material the regions will be, and whether this region will be a substrate. It is used to
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change the material of a region at any point in the simulation after the structure has been
initialized.

■ The region command can be used to return a cropped bounding box of a region, specified
within a user-specified bounding box, defined by min and max along with a region name.

Examples

Create a new material MySilicon, and then change the material of a region named bulk to
MySilicon without changing the data:

mater name= MySilicon new.like= Silicon add
region name= bulk MySilicon change.material !zero.data

Change the region Gate to Gas before setting all fields to zero in Gate (zero.data defaults
to true):

region name= Gate Gas change.material

Create a 2D silicon region using the statements from the example for the line command:

region silicon ylo= left yhi= right xlo= surf xhi= back

Return a cropped bounding box of the region bulk that lies within the specified bounding box
defined by min and max:

region name= bulk min= {-5.0 0.0 0.0} max= {5.0 1.0 1.0} cropped.bbox

See Also

integrate on page 467
line on page 481
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resistance

Prints the resistance between two contacts.

Syntax

resistance <c> <c>

Arguments

<c>

Names of the two contacts.

Description

If electrical analysis is not performed, the resistance command returns an error message.

Examples

Display the resistance between electrical contacts C1 and C2:

resistance C1 C2

See Also

Electrical Current Analysis: Resistance Matrix on page 683
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sde

Dispatches commands to Sentaurus Structure Editor (only available for 3D simulations).

Syntax

sde
{<Sentaurus Structure Editor commands>}
[Adaptive] [external] [logfile=<c>] [off] [on]
[polyhedron=<c>] [polyhedron.material=<c>]
[remesh] [SdeCheck]

Arguments

Adaptive

If specified, Adaptive switches on adaptive meshing if remesh is given. Parameters for
adaptive meshing are described in Adaptive Mesh Refinement on page 177. The default is
the return value of pdbGet Grid Adaptive.

external

Puts the Sentaurus Structure Editor interface in external mode, which can be used to create
polyhedra to be inserted into a Sentaurus Interconnect structure using the 3D MGOALS
mode. When the external mode is switched on, all geometry transformations such as
etching and deposition are applied to the external Sentaurus Structure Editor structure (see
Insertion: External Mode on page 276).

logfile

Name of the file that will log all the Scheme commands dispatched to Sentaurus Structure
Editor. The recommended file extension is .scm. The file will contain both the Scheme
commands translated from Sentaurus Interconnect etch, deposit, strip, photo, and
transform commands, and the user-specified Scheme commands inside the sde
command.

The log file can be used for fine-tuning and debugging in a standalone run of Sentaurus
Structure Editor such as:

sde -l mylogfile.scm

off

Switches off the Sentaurus Structure Editor mode if it has been switched on previously. By
default, the Sentaurus Structure Editor mode is off. Operations will be performed by
MGOALS instead.
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on

Switches on Sentaurus Structure Editor for 3D geometry modeling.

polyhedron

Used for external mode only (see external). This polyhedron is used to initialize the
external Sentaurus Structure Editor interface. The material to be used for this polygon is
chosen using polyhedron.material.

polyhedron.material

Selects the material of the polyhedron that is used to initialize the external mode (see
external and polyhedron). Default: Silicon.

remesh

Forces a remesh at the end of the sde command.

<Sentaurus Structure Editor commands>

Any number of sde commands in the Scheme scripting language. You must enclose the
Scheme commands in a pair of braces to protect them from the Tcl command interpreter.
The opening brace must be on the same line as the sde command, for example:

sde {
(sdepe:depo "thickness" 0.01 "type" "iso" "algorithm" "pt"

"max-chamfer-angle" 30 "steps" 1 "material" "Oxide")
(sdeio:save-tdr-bnd "all" "out1_sde.tdr")

}

NOTE Commands to orientate Sentaurus Structure Editor based on Sentaurus
Interconnect settings are sent first through the interface before user
commands. These settings can be deleted if sde:clear is specified.
Therefore, never specify sde:clear in this set of commands.

SdeCheck

Performs a geometry check of every boundary file that is created by Sentaurus Structure
Editor. This helps to detect failures in the geometry-modeling part and prevents the
Sentaurus Interconnect simulation from continuing after an incorrect boundary
representation is found.

Description

This command enables and configures the interface between Sentaurus Interconnect and
Sentaurus Structure Editor. When sde on is specified, all 3D geometry modeling is performed
using Sentaurus Structure Editor. Sentaurus Interconnect will translate geometry-modifying
commands to the Sentaurus Structure Editor language and retrieve the resulting modified
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structure when necessary. The supported commands are deposit, etch, photo, strip, and
transform.

NOTE Scheme commands can be sent directly to Sentaurus Structure Editor
using the sde command, but they must be enclosed in a pair of braces
to prevent syntax errors in the Tcl interpreter. Several Scheme
commands can be specified inside one sde command; each of them
must start on a new line.

Examples

Enable the use of Sentaurus Structure Editor or geometry modeling, specify the log file for the
Scheme commands, and check all boundary files written by Sentaurus Structure Editor:

sde logfile= depo.scm on SdeCheck
pdbSet InfoDefault 1

Create a cuboid in Sentaurus Structure Editor with tapered sidewalls and save the structure to
a TDR file:

sde {
(sdegeo:set-default-boolean "ABA")
(define r1 (sdegeo:create-cuboid (position 0 0.6 0) 

(position 0.2 0.3 0.5) "Silicon" "Silicon_2"))
(define facelist (list (car (find-face-id (position 0.1 0.3 0.25)))

(car (find-face-id (position 0.2 0.5 0.25)))))
(sdegeo:taper-faces facelist (position 0.2 0.3 0.5) (gvector 0 0 1) 5)
(sdeio:save-tdr-bnd "all" "out1_sde.tdr")

}

See Also

For details about Scheme commands, refer to the Sentaurus™ Structure Editor User Guide.
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select

Selects the variable for display in all postprocessing commands.

Syntax

select
[delete] [edge.vector] [element] [element.to.gauss] [interfaces]
[list] [list.all] [<material>] 
([min | max] | [report.location])
[name=<c>] [node.evaluate] [permanent] [present]
[region=<c>] [store] [syntax.check.value=<c>] [value=<c>] [z=<c>]

Arguments

delete

Deletes the data field specified by name.

edge.vector

Computes the weighted field with respect to the edge orientation strongly favoring axis-
oriented edges. Used with adaptive meshing.

element

Computes the field on elements interpolating fields in the z expression if necessary.
If !element is specified and element fields appear in the z expression, those values are
interpolated to the nodes first.

element.to.gauss

Computes the field on Gaussian points from the element data field specified in name. New
data fields on Gaussian points will be created if the data field is not found.

interfaces

Computes the field or minimum or maximum on interfaces as well as bulk. Default: true
(include interfaces).

list

Returns a list of currently defined and named real data fields. This returns a full Tcl list for
use with those commands that require list variables.
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list.all

Returns a list of currently defined and named data fields (for example, real data and vector
data). This returns a full Tcl list for use with commands that require list variables.

<material>

Specifies the material to which the command applies. Different expressions for the data
field initialization in different materials can be used. See Specifying Materials on page 18.

min, max

Used with the name argument. When min or max is specified, the select command
returns the minimum or maximum of the field name. You can limit the query to either a
specific material using <material> or a specific region using region.

name

Name of the new data field. Default: Z_Plot_Var. This name is used by all the commands
when a plot name is not specified. This is a powerful feature, as solution fields also can be
created.

node.evaluate

Computes the divergence of a vector field at a node.

permanent

Returns 1 if the data field is written into permanent storage. If not, it returns 0. 

present

Returns 1 if the data field with the name defined by name exists. If it does not exist, it
returns 0.

region

Name of the region. Specifies the region to which the command applies. Different
expressions for the data field initialization in different regions can be used.

report.location

Works with min and max. Reports the coordinate of the minimum or maximum value of
the selected field.

store

Sets the data field with the name defined by name to be written into permanent storage
when a structure file is output. Default: false.
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syntax.check.value

Sets a value to be returned only during syntax-checking mode. Sometimes, the value
returned by a command can cause a false syntax-check error because the value returned by
the command would not be the value during the normal run mode. Setting this value avoids
such problems.

value, z

Accepts an expression of data fields that are used to build a new data field. The operators
*, /, +, –, and ^ all work as expected. The vector variables are listed here. The data fields
available can be listed using the list argument. In addition to the listed data fields, the x-
and y-coordinates can be specified. Several functions also are available to operate on data
fields:

• abs: Absolute value

• erf: Error function

• erfc: Complementary error function

• exp: Exponential

• log: Logarithm

• log10: Logarithm base 10

• sqrt: Square root

Description

Data can be selected directly in most commands, but it is usually more effective to specify it
with the select command, which allows for manipulation of data fields and also will list all
currently defined data fields. The quantity can be computed on nodes (default) or elements
using the element argument. In either case, if necessary, interpolation will be performed to
obtain the proper value type (to obtain element values from nodal ones or vice versa).

NOTE The select command can be abbreviated to sel.

NOTE The select command always sets or retrieves data in internal units.
Internal units are CGS, for example, pressure is .dyn/cm2
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Examples

Select as the plot variable the base 10 logarithm of the MyData concentration:

select z= log10(MyData)

Select as the plot variable the MyData concentration minus a constant value of :

select z= (MyData - 5.0e14)

Select as the plot variable the difference between the MyData profile and an analytic profile.
This data field will be named MyField. The store argument indicates that the doping field
must be written into any saved structure files:

sel z= (MyData - 1.0e18 * exp ( y * y / 1.0e-8 )) name= MyField store

Set the value of the data field Pressure to  (CGS units are used internally for
mechanics):

sel z= 1.0e9 name= Pressure store

Delete the MyField data field:

select name= MyField delete

Calculate the electric field in a new data field called ElectricField. The store argument
ensures that the new data field is stored to disk in subsequent calls of the struct command:

select z= "-diff(Potential)" edge.vector store name= ElectricField

List all available real data fields:

select list

Calculate the total heat field in a new data field called TotalHeat:

select z= "grad(Temperature)" node.evaluate store name= TotalHeat

See Also

All postprocessing commands

5 14×10

109 dyn/cm2
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Set3DDeviceMeshMode

Sets the meshing parameters for the device simulation of complex 3D structures with curved
surfaces.

Syntax

Set3DDeviceMeshMode

Description

This command is used when remeshing for device simulation of complex 3D structures with
curved surfaces. It adjusts axis-aligned meshes to be more flexible on curved surfaces in three
dimensions. The Set3DDeviceMeshMode command sets the following parameters:

For device simulations requiring a box-method Delaunay mesh:

pdbSet Grid SnMesh DelaunayType boxmethod

For axis-aligned imprinting:

pdbSet Grid SnMesh ImprintCoplanarFacesOnly 1 ;# <boolean>
pdbSet Grid SnMesh ImprintCoplanarityAngle 179.9 ;# <degree>
pdbSet Grid SnMesh ImprintAccuracy 1e-4 ;# <um>
pdbSet Grid SnMesh ImprintCoplanarityDistance 1e-6 ;# <um>

For axis-aligned refinement:

pdbSet Grid SnMesh EdgeProximity 0.2 ;# <unitless> default 0.05
pdbSet Grid SnMesh FaceProximity 0.2 ;# <unitless> default 0.05
pdbSet Grid SnMesh CoplanarityAngle 175 ;# <degree>
pdbSet Grid SnMesh CoplanarityDistance 1e-4 ;# <um>

Examples

Use this command with the DelPSC algorithm to create high-quality triangulation on curved
surfaces:

Set3DDeviceMeshMode
pdbSet Grid SnMesh Apply.Brep.DelPSC 1
pdbSet Grid SnMesh Apply.Brep.DelPSC.Resolution 1e-2 ;# <um>
pdbSet Grid SnMesh Apply.Brep.DelPSC.Accuracy 1e-4 ;# <um>
grid remesh info= 1
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Limitation

Some complex structures have problematic geometric features that the DelPSC algorithm
cannot tolerate. In such cases, you can use the Set3DDeviceMeshMode command without the
DelPSC algorithm, for example:

Set3DDeviceMeshMode
grid remesh info= 1
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Set3DMovingMeshMode

Sets the meshing parameters and relevant parameters for 3D MovingMesh applications.

Syntax

Set3DMovingMeshMode <n>

Arguments

<n>

Specifies the minimum feature size in micrometer. Typically, it is the smallest layer
thickness of all regions.

Description

This command simplifies the setup of moving-boundary problems by setting several
parameters automatically. It checks the size of the structure and sets the appropriate parameters
for the length scale. The argument <n> protects small geometric features from removal by
geometry cleanup.

Examples

Set up fin bending of a  structure with  fin tip:

Set3DMovingMeshMode 0.01

See Also

MovingMesh Algorithm on page 198

0.1 μm 0.01 μm
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SetFastMode

Omits the solution of the thermal and electrical equations to simulate the device geometry
quickly.

Syntax

SetFastMode

Description

This command runs the simulation quickly without simulating thermal and electrical effects.
This can be useful when setting up a command file to confirm quickly that the geometry is
satisfactory before simulating more computationally expensive steps.
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Sets the meshing parameters for 3D mechanics simulations.

Syntax

SetMechanicsMeshMode

Description

This command sets the meshing parameters for 3D mechanics simulation in large structures
such as chip-package interfaces. It switches on the DelPSC algorithm for curved surfaces,
minimizes axis-aligned imprinting on curved surfaces, prefers isotropic elements when
refining surface meshes to conform to volume meshes, and adjusts distance tolerances to
appropriate scales.

After this command is executed, subsequent mesh generation commands (for example,
grid remesh) will generate meshes that are suitable for stress analysis.

NOTE This command only works in 3D simulations.
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SetPerformanceMode

Modifies the automatic time-step control method and the parameters to improve simulation
time.

Syntax

SetPerformanceMode 

Description

Some of the algorithms are experimental and may not be suitable for all applications.
Backward compatibility may not be available from release to release, since algorithms are
refined constantly.

Examples

Change the default time-stepping scheme and the controls to allow more aggressive time-
stepping:

SetPerformanceMode
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SetPlxList

Sets a list of solution and term names to be passed to the WritePlx command.

Syntax

SetPlxList [<solution/term names>]

Arguments

<solution/term names>

Defines the name list to be passed to the WritePlx command.

Description

This command sets the list of fields to be saved in the next call to WritePlx. The list can
contain solutions or term names.

Examples

Write a .plx file with the data fields Temperature and Potential:

SetPlxList {Temperature Potential}
WritePlx T_and_P.plx

See Also

WritePlx on page 681
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SetTDRList

Sets a list of solution or term names to be included when saving TDR format files.

Syntax

SetTDRList
[<solution/term names>]
[Solutions]

Arguments

<solution/term names>

Any known fields listed on the command line are added to files saved with
struct tdr=<c>.

Solutions

Stores all solution variables (necessary for restarting a simulation). Using !Solutions
switches off all default savings (only fields specified by name will be saved to TDR files).
Default: true.

Description

This command stores solution or term names in a TDR format file.
620 Sentaurus™ Interconnect User Guide
N-2017.09



A: Commands
SetTemp
SetTemp

Sets the temperature value.

Syntax

SetTemp
<n>[<C>|<K>]

Arguments

<n>

Specifies the temperature. Default unit: degree Celsius.

Description

This command sets the temperature value. The value also is saved in a TDR file.

Examples

Set the temperature to :

SetTemp 1000.0

1000°C
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SetTS4MechanicsMode

Sets mechanics-related parameters and models to match those of TSUPREM-4.

Syntax

SetTS4MechanicsMode [2008.09 | advanced]

Arguments

2008.09

Used for backward compatibility.

advanced

Sets TSUPREM-4 advanced settings.

Description

This command sets mechanics-related parameters and models in Sentaurus Interconnect to
match TSUPREM-4 settings. This includes:

■ Viscoelastic model and parameters

■ Elastic moduli

■ Stress relaxation factor setting

■ Stress smoothing setting

■ Thermal mismatch coefficients

The above parameters are set to match TSUPREM-4 defaults. The results may differ due to
different numeric methods.
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slice

Extracts a 1D data slice through a 2D to 3D simulation object.

Syntax

slice
[include.interfaces] [<material>]
[mdist] [mx] [my] [mz] [name=<c>]
[only.interfaces]
[p1= <list>]
[p2= <list>]
[side=<c>] [syntax.check.value=<c>]
[value=<n>]
[x=<n>][<m>|<cm>|<um>|<nm>]
[y=<n>][<m>|<cm>|<um>|<nm>]
[z=<n>][<m>|<cm>|<um>|<nm>]

Arguments

include.interfaces

Includes interface values with the returned data. At an interface, the distance coordinate of
the three nodes (two bulk and one interface) will be the same, and the interface value will
be inserted between the two neighboring bulk values.

<material>

Specifies the material. See Specifying Materials on page 18.

mdist, mx, my, mz

Changes the reporting information when interface materials are selected. The interface
distance can be reported as projected along one of the three primary axes (mx, my, mz).
Alternately, it can be reported as the distance along the extracted line (mdist).

name

Name of the data field. Default: Z_Plot_Var.

only.interfaces

Returns interface values exclusively in the returned data. When specified, no bulk values
are returned.
Sentaurus™ Interconnect User Guide 623
N-2017.09



A: Commands
slice
p1, p2

Specify the start point and endpoint for the cutline. Each argument takes a list of numeric
values.

The first, second, and third values in the list are taken as the x-, y-, and z-value, respectively.
The missing value will be treated as zero. These arguments allow the slice command to
extract data along an arbitrary line. The output from the slice command is a list of
(distance, value) pairs, where distance is measured from the p1 point, and value is the
extracted value of the selected quantity along the line.

NOTE Error messages will be generated if p1 and p2 are mixed with x, y, z, or
value.

side

Takes the value from one of the two bulk materials consisting of the interface or ‘interface’
(literally) itself. If side is not specified, ‘interface’ itself is assumed. If side is specified
as one of the bulk materials, the value of the selected quantity for the bulk material at the
interface is returned. This argument is effective only if an interface material is specified.

syntax.check.value

Sets a value to be returned only during syntax-checking mode. Sometimes, the value
returned by a command can cause a false syntax-check error because the value returned by
the command would not be the value during the normal run mode. Setting this value avoids
such problems.

value, x, y, z

Specify a cutline for up to a four-dimensional solid, so that a 2D return is provided. For 1D
simulations, none of these arguments is required. For 2D simulations, one is required. For
3D simulations, two are required. These requirements are reduced by one if an interface
material has been specified. The default unit for x, y, and z is .

Description

This is an extremely powerful data analysis command. It extracts xy data along a slice through
a specified material. It returns a Tcl list of coordinate–value pairs, where the coordinate is the
distance [ ] along the reference segment, and the value is the local value of the argument
specified either with the -name option or, if that is not provided, in the most recent select
command. For example:

select z= Boron
set sliceRet [slice y= 0.5]
foreach { x value } $sliceRet {

LogFile "$x\t$value\n"
}

μm

μm
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This command will print and send to the log file the boron profile in x-coordinate value pairs
at y=0.5.

The command extracts the selected variables as a function of position along a constant line. In
one dimension, the command returns the concentration versus depth, for example. It also can
extract a constant contour of the data selected and returns the coordinates of the
isoconcentration line.

Examples

Return the selected variable as a function of depth at a constant lateral position of :

slice silicon y= 0.01

Return the x- and y-positions of a contour of the selected variable at 16.0:

slice silicon value= 16.0

Return the value of the selected quantity at the silicon side of the interface as a function of
distance from the start of the interface:

slice silicon /oxide mdist side= silicon

Return the boron concentration along a line passing through points (0, 0) and (1, 2):

slice name= Boron p1= {0 0} p2= {1. 2}

See Also

select on page 609
System on page 651

0.01 μm
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Obtains and sets solution parameters for generic solutions using the Alagator language.

Syntax

solution
[add] [damp]
[DiffStep] [linear | logarithmic] [list]
[material.list= <list>]
[name=<c>] [needsolution] [negative]
[nosolve | solve | ifpresent=<c>]
[present] [store] [unit=<c>]

Arguments

add

Creates a new solution.

damp

Applies a damping algorithm to the Newton iteration.

DiffStep

Determines in which solver the solution variable will be solved. DiffStep variables are
solved with the PDE solver.

linear, logarithmic

Use linear or logarithmic extrapolation when extrapolating solution results for the next
time step (see math on page 501).

list

Lists all the currently defined solutions.

material.list

List of materials where the solution variable will be solved. If the list is empty, the solution
variable will be solved only if the equations are set for a specific material.

name

The character string used for the solution. Capitalization is not ignored, for example,
Potential and potential are different. Abbreviations of names are not accepted.
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needsolution

Returns true if the solution must be solved.

negative

Allows the specified solution to have negative values.

nosolve, solve, ifpresent

Only one of these options can be used at a time. They control the solution status for the next
command:

• nosolve means do not solve.

• solve switches on the solution status for the next command.

• ifpresent sets up a conditional solve.

If all the solutions in the specified list also are being solved, this solution is solved.

present

Returns true if the solution is defined and a data field matches the name.

store

Allows the solution command to be stored in a TDR file.

unit

Unit of the solution variable. Default: .

Description

This command creates and modifies solution names, and sets conditions for their inclusion in
the matrix assembly. Solutions also can be listed and checked.

Examples

Create a solution named Potential and always solve for it. Allow the solution to have
negative values and use damping on the Newton iteration updates:

solution name= Potential damp negative solve add

Create a solution name Vac and always solve for it. Do not use damping and do not allow
values to become negative:

solution name= Vac !damp !negative solve add

cm 3–
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Return a list of all solutions:

solution list

Return a Boolean true if Vac has been defined and if there is a data field with the name Vac:

solution name= Vac present

See Also

math on page 501
term on page 658
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solve

Simulates thermal, electrical, and mechanical analyses.

Syntax

solve
(temp.ramp=<c> | time=<n>[<hr>|<min>|<s>] temperature=<n>[<C>|<K>])
[Adaptive]
[delNT=<n>][<C>|<K>] [delT=<n>][<C>|<K>]
[density.increase= <regionName>=<n> | <material>=<n>] [eqnInfo]
[init=<n>][<hr>|<min>|<s>] [isolve]
[maxstep=<n>][<hr>|<min>|<s>]
[minT=<n>][<C>|<K>] [movie=<c>]
[ramprate=<n>][<C/s>|<K/s>|<C/min>|<K/min>]
[reload] [stress.relax]
[t.final=<n>][<C>|<K>] [t.final.profile=<c>] [write.temp.file=<c>]

Arguments

Adaptive

If specified, Adaptive switches on adaptive meshing for this solution step. Parameters for
adaptive meshing are described in Adaptive Meshing During Analysis on page 184. The
default is the return value of pdbGet Grid Adaptive.

delNT

Defines the maximum temperature step during a temperature ramp-down if specified.
Default unit: degree Celsius. It also can be defined globally with the command:

pdbSet Compute delNT <n>

delT

Defines the maximum temperature step during a temperature ramp-up if specified. Default
unit: degree Celsius. It also can be defined globally with the command:

pdbSet Compute delT <n>

density.increase

Value of density increase, which can be specified either per region <regionName>=<n>
or per material <material>=<n>.

eqnInfo

Allows equation updates to be printed to the log file during the Newton iteration.
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init

First time step. The default is 0.0001 s, which is sometimes inappropriate for defect
simulations, particularly in cases of damage. Default unit: minute.

isolve

Switches on or off the initial solve for models that require an equation solved to set the
initial conditions. It is used mainly to initialize SCM circuit nodes.

maxstep

Maximum time step. Default unit: minute.

minT

Minimum simulation temperature. If the simulation temperature falls below this value, the
thermal and electrical solver is switched off. If it occurs during a ramp, the time-stepping
is altered such that the solver switches on or off exactly at this temperature. Default value
and unit: .

movie

Specifies actions that occur during the anneal step. For every time step of the solution, the
character string value of this argument is executed. Do not use the movie argument to
specify operations that can change meshes. For example, movie= {grid remesh} must
not be used.

ramprate

Temperature change during anneal. Default value and unit: .

reload

Allows thermal and electrical equations to be parsed at each time step.

stress.relax

Switches off relaxation of stresses during solution with an inert ambient. Default: true.

t.final

Final temperature for a temperature ramp-up or ramp-down. It is used if ramprate is not
given. The ramp time is calculated automatically. Default unit: degree Celsius.

t.final.profile

Name of the final temperature profile for a local temperature ramp-up or ramp-down. The
temperature at each node is ramped up or down linearly, in the given time, from the current
value to the value specified with the final profile. Default unit: kelvin.

0°C

0°C/s
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temp.ramp

Name of a temperature ramp created with the temp_ramp command.

temperature

Annealing temperature. Default unit: degree Celsius.

time

Annealing time. Default unit: minute.

write.temp.file

Name of the file where the thermal profile created during laser annealing is stored. The
format of the file is two columns: time (in seconds) and temperature (in degree Celsius).
This file can be used to create a temp_ramp to allow subsequent simulations to use the
computed temperature profile without the need to resimulate laser annealing.

Description

The arguments of the solve command set the simulation conditions as well as time-stepping
options. Analysis models and parameter settings are performed with the pdbSet command or
mode command. Temperature ramps are specified by first creating a list of ramping steps using
the temp_ramp command. Then, the ramp is applied with temp.ramp. All temp_ramp
command arguments can be specified with the solve command.

Examples

Perform a simple low-temperature solve for 30 s:

solve time= 30<s> temp= 900

Perform a solve step using the temperature ramp named spike:

solve temp.ramp= spike

Perform a solve step using the current temperature:

solve

See Also

temp_ramp on page 655
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sptopo

Transfers structures and dispatches commands to Sentaurus Topography.

Syntax

sptopo {<Sentaurus Topography commands>}

Arguments

<Sentaurus Topography commands>

Any number of Sentaurus Topography commands. Enclose the commands in a pair of
braces to protect them from interpretation by the Tcl interpreter.

Description

This command transfers the boundary representation of the current structure and dispatches the
commands to Sentaurus Topography. After executing the commands in Sentaurus Topography,
the modified structure is retrieved and remeshed in Sentaurus Interconnect.

NOTE A license for Sentaurus Topography must be available, and a version of
the Sentaurus Interconnect binary with Sentaurus Topography included
must be installed.

Examples

Use Sentaurus Topography to deposit two layers isotropically, that is, oxide with a thickness of
 (5 nm) and polysilicon with a thickness of :

sptopo {
deposit material= Oxide thickness= 0.005
deposit material= PolySilicon thickness= 0.180

}

See Also

Sentaurus™ Topography User Guide 
For 3D operations, see topo on page 660.

0.005 μm 0.18 μm
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stdiff

Compares the current structure with one from a TDR file.

Syntax

stdiff <c>

Arguments

<c>

Specifies the full path or the prefix of a TDR file. The prefix is the file name without
_sis.tdr.

Description

This command reads the external TDR file, interpolates the data onto the current structure,
compares data, and reports if data exceeds the relative error criteria (subject to the absolute
error minimum value).

Examples

Compare field values in the current structure in memory with those contained in the file
n1_sis.tdr:

stdiff n1_sis.tdr
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stressdata

This command:

■ Defines the intrinsic stress of materials for use in stress calculations.

■ Defines boundary or loading conditions for stress analysis.

■ Reports the maximum stress values and their locations.

■ Prints the anisotropic material matrix.

■ Defines edge dislocation settings.

■ Defines submodeling settings.

Syntax

stressdata
[<material> | region=<c>]
[deposit.intrinsic]
[sxxi=<n>][<atm>|<GPa>|<MPa>|<KPa>|<Pa>|<dyn/cm2>]
[syyi=<n>][<atm>|<GPa>|<MPa>|<KPa>|<Pa>|<dyn/cm2>]
[szzi=<n>][<atm>|<GPa>|<MPa>|<KPa>|<Pa>|<dyn/cm2>]
[sxyi=<n>][<atm>|<GPa>|<MPa>|<KPa>|<Pa>|<dyn/cm2>]
[syzi=<n>][<atm>|<GPa>|<MPa>|<KPa>|<Pa>|<dyn/cm2>]
[szxi=<n>][<atm>|<GPa>|<MPa>|<KPa>|<Pa>|<dyn/cm2>]

[syntax.check.value]

[base=<n>][<m>|<cm>|<um>|<nm>]
[sxx1=<n>][<atm>|<GPa>|<MPa>|<KPa>|<Pa>|<dyn/cm2>]
[syy1=<n>][<atm>|<GPa>|<MPa>|<KPa>|<Pa>|<dyn/cm2>]
[szz1=<n>][<atm>|<GPa>|<MPa>|<KPa>|<Pa>|<dyn/cm2>]
[sxx2=<n>][<atm>|<GPa>|<MPa>|<KPa>|<Pa>|<dyn/cm2>]
[syy2=<n>][<atm>|<GPa>|<MPa>|<KPa>|<Pa>|<dyn/cm2>]
[szz2=<n>][<atm>|<GPa>|<MPa>|<KPa>|<Pa>|<dyn/cm2>]

[bc.location= Left | Right | Front | Back | Bottom | <c>]
[bc.proc= {

[dxP=<c>] | [dyP=<c>] | [dzP=<c>] |
[fxP=<c>] | [fyP=<c>] | [fzP=<c>] |
[sxP=<c>] | [syP=<c>] | [szP=<c>] }]

[bc.rotation.axis= {[xa=<n>] | [ya=<n>] | [za=<n>]}]
[bc.value= {

[dx=<n>] | [dy=<n>] | [dz=<n>] | [pressure=<n>] | 
[fx=<n>] | [fy=<n>] | [fz=<n>] |
[mx=<n>] | [my=<n>] | [mz=<n>] |
[pdx=<n>] | [pdy=<n>] | [pdz=<n>] |
[pfx=<n>] | [pfy=<n>] | [pfz=<n>] |
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[rx=<n>] | [ry=<n>] | [rz=<n>]
[sx=<n>] | [sy=<n>] | [sz=<n>] }]

[point.coord= {<n> <n> <n>}]

[number=<n>]
[sxx] [syy] [szz] [sxy] [syz] [szx] [hs] [pr] [ps] [vms]

[print.anisotropic.matrix]
[print.equiv.Poisson.matrix]
[print.equiv.ShearMod.xy] [print.equiv.ShearMod.yz]
[print.equiv.ShearMod.zx]
[print.equiv.YoungsMod.x] [print.equiv.YoungsMod.y]
[print.equiv.YoungsMod.z]

[apply.dislocation]
[dislocation.origin= {<n> <n> <n>}]
[name=<c>]
[para.orient= {<n> <n> <n>}]
[perp.orient= {<n> <n> <n>}]
[saveTDR] [stress.relax]

[opt.maxiter=<n>] [opt.mindnrm=<n>] [opt.mindssq=<n>] [opt.tolerance=<n>]
[optimize.dislocation]
[origin.max= {<n> <n> <n>}]
[origin.min= {<n> <n> <n>}]

[resolved.shear.stress]
[slip.direction= {<n> <n> <n>}]
[slip.plane.normal= {<n> <n> <n>}]

[align.cut=<n>] [global.model=<c>] [max= {<n> <n> <n>}] [min= {<n> <n> <n>}]

Arguments

<material>

Material in which the stress parameters are to be set.

region

Region where the stresses are to be applied.

deposit.intrinsic

Specifies that the intrinsic stress introduced during material deposition or insertion will be
defined.
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sxxi, syyi, szzi, sxyi, syzi, szxi

Intrinsic stresses. Default unit: .

syntax.check.value

Sets a value to be returned only during syntax-checking mode. Sometimes, the value
returned by a command can cause a false syntax-check error because the value returned by
the command would not be the value during the normal run mode. Setting this value avoids
such problems.

Arguments: Width-Dependent Intrinsic Stress

base

Base width. Default unit: .

sxx1, syy1, szz1

Scale factors in linear width-dependent intrinsic stress. Default unit: .

sxx2, syy2, szz2

Scale factors in natural logarithmic width-dependent intrinsic stress. Default unit:
.

Arguments: Boundary or Loading Conditions

bc.location

Specifies the area where the boundary or loading conditions are applied.

Left | Right | Front | Back | Bottom refer to the outer boundary surfaces of
the simulation domain. If bc.location specifies a contact name, the corresponding
contact defined through this contact name must exist. If a point-force boundary condition
is required, bc.location specifies the name of the point-force boundary condition. If a
point-displacement rate boundary condition is required, bc.location specifies the name
of the point-displacement rate boundary condition.

bc.proc

Specifies procedure names for loading conditions. The type can be:

• dxP/dyP/dzP for the name of the displacement rate procedure.

• fxP/fyP/fzP for the name of the total force procedure.

• sxP/syP/szP for the name of the distributed force procedure.

dyn/cm2

μm

dyn/cm2

dyn/cm2
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bc.rotation.axis

Specifies the coordinates of the point around which rotational boundary conditions or
moment boundary conditions are applied. Default unit: cm.

bc.value

Specifies the boundary or loading condition types and values. The type can be:

• dx/dy/dz for the displacement rate (default unit: cm/s).

• pressure for pressure (default unit: ).

• fx/fy/fz for total force (default unit: dyne).

• mx/my/mz for the moment (default unit: dyn cm).

• pdx/pdy/pdz for the point displacement rate (default unit: cm/s).

• pfx/pfy/pfz for point force (default unit: dyne).

• rx/ry/rz for rotational velocity (default unit: rad/s).

• sx/sy/sz for distributed force (default unit: ).

point.coord

Specifies the location where the point force or the point displacement rate is applied.
Default unit: .

Arguments: Maximum Stress List

number

Specifies the number of the largest stress values to report.

sxx, syy, szz, sxy, syz, szx, hs, pr, ps, vms

Specifies from which stress component (sxx, syy, szz, sxy, syz, szx) or which derived
stress (vms is the von Mises stress, ps is the principal stress, hs is the hydrostatic stress,
and pr is the pressure) to extract the maximum stress values. Values for stress components
and principal stresses are computed at element centroid, while values for von Mises
stresses, hydrostatic stresses, and pressures are computed at nodes.

NOTE To extract maximum principal stresses, use:

pdbSet Mechanics Calculate.Principal.Stress 1

dyn/cm2

dyn/cm2

μm
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Arguments: Anisotropic Material Matrix

print.anisotropic.matrix

Prints the anisotropic material matrix.

print.equiv.Poisson.matrix

Prints the equivalent Poisson ratio matrix.

print.equiv.ShearMod.xy

Prints the equivalent shear modulus in the xy plane.

print.equiv.ShearMod.yz

Prints the equivalent shear modulus in the yz plane.

print.equiv.ShearMod.zx

Prints the equivalent shear modulus in the zx plane.

print.equiv.YoungsMod.x

Prints the equivalent Young’s modulus in the x-direction.

print.equiv.YoungsMod.y

Prints the equivalent Young’s modulus in the y-direction.

print.equiv.YoungsMod.z

Prints the equivalent Young’s modulus in the z-direction.

Arguments: Edge Dislocation

apply.dislocation

Indicates that an edge dislocation will be defined.

dislocation.origin

Specifies the location of the dislocation core.

name

Specifies the name of the edge dislocation.

para.orient

Specifies the direction of the edge dislocation.
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perp.orient

Specifies the Burgers vector in the perpendicular direction to the half plane. The magnitude
is the slip distance.

saveTDR

Saves the currently defined edge dislocation into a TDR file for visualization.

stress.relax

Switches on relaxation of stresses after superposing the dislocation-induced stress field.
Default: true.

Arguments: Edge Dislocation–induced Strain Energy Minimization

opt.maxiter

Specifies the maximum number of iterations allowed in the optimization loop. Default:
500.

opt.mindnrm

Specifies the change in norm of the parameter vector for convergence. Default: 5e-3.

opt.mindssq

Specifies the relative change in the sum of the squares for convergence. Default:1e-5.

opt.tolerance

Specifies the tolerance of target errors. Default: 1e-3.

optimize.dislocation

Switches on the elastic strain energy minimization of edge dislocations defined
with !apply.dislocation.

origin.max

List of numbers defining the x-, y-, and z-coordinates of the lower-right front corner of the
bounding box for the location of the edge dislocation core.

origin.min

List of numbers defining the x-, y-, and z-coordinates of the upper-left back corner of the
bounding box for the location of the edge dislocation core.
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Arguments: Resolved Shear Stress

resolved.shear.stress

Switches on the calculation of resolved shear stress.

slip.direction

Specifies the slip direction.

slip.plane.normal

Specifies the normal of the slip plane.

Arguments: Submodeling

align.cut

Specifies the tolerance to be used when performing the cut. When this argument is
specified, the cutting algorithm looks for mask edges close to the min and max coordinates
and snaps these coordinates to the mask-edge coordinates if they are closer than <n> from
each other.

global.model

Specifies the file name of the global model from which to submodel; off is reserved to
switch off submodeling.

max

List of numbers defining the x-, y-, and z-coordinates of the lower-right front corner of the
cutting box in the unified coordinate system (UCS).

min

List of numbers defining the x-, y-, and z-coordinates of the upper-left back corner of the
cutting box in the UCS.

Description

This command provides stress analysis parameters for input and output. Zero is the default
value for all intrinsic stress parameters. Wherever possible, use the deposit command with
specified stresses to apply intrinsic stresses.

Examples

Set the yy component of the intrinsic stress in nitride to :

stressdata nitride syyi= 1.4e10

1.4 10×10 dyn/cm2
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Define the cuboid region for submodeling with the upper-left back corner (–0.6, 0.04, 0.25) and
the lower-right front corner (0.0, 0.16, 0.45), and set the global model to global3d:

stressdata global.model= global3d min= {-0.6 0.04 0.25} max= {0.0 0.16 0.45}
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Completely removes a layer exposed to the top gas region.

Syntax

strip <material> [remesh] [stress.relax]

Arguments

<material>

The specified material, if exposed, is completely removed. See Specifying Materials on
page 18.

remesh

By default, the structure is remeshed in two dimensions after strip. Setting !remesh
prevents remeshing. In three dimensions, the boundary is changed without generating a
mesh, so this argument has no effect in three dimensions. Preventing remeshing can save
time for very large structures.

stress.relax

Specify this option to switch on relaxation of stresses after the removal operation. Default:
false.

Description

In two dimensions, the mesh is regenerated immediately. In three dimensions, only the
boundary is modified and the mesh is regenerated later when necessary.

Examples

Remove all oxide regions exposed to the top gas region:

strip oxide
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struct

Writes files containing the structure or the mesh and solutions.

Syntax

struct
[Adaptive] [alt.maternames] [compress.TDR] [contacts]
[csse] [deform] [deform.scale=<n>]
[FullD] [Gas] [interfaces]
[mshcmd] [pdb] [pdb.only]
[sat] [satfile=<c>] [simplify=<n>]
[tdr=<c>] [tdr.bnd=<c>]
[visual.1D]
([x=<n>][<m>|<cm>|<um>|<nm>]
[y=<n>][<m>|<cm>|<um>|<nm>]
[z=<n>][<m>|<cm>|<um>|<nm>])

Arguments

Adaptive

In three dimensions, meshing is delayed until it is needed; to save a file, a mesh may need
to be created. Adaptive controls whether adaptive meshing is used. The default value is
the return of pdbGet Grid Adaptive.

alt.maternames

If you had chosen alternative names for materials using mater alt.matername=<c> or
region alt.matername=<c>, they are written to the TDR file in addition to the
Sentaurus Interconnect material name.

For example, a Silicon region containing a high concentration of Germanium is given
the alt.matername of SiliconGermanium automatically. When writing a TDR file,
the material name of this region is SiliconGermanium, but the name Silicon is stored
as well, so that when reloading the TDR file, Sentaurus Interconnect again recognizes this
as a Silicon region.

compress.TDR

Applies secondary compression to TDR files. Default: false.

It can also be switched on globally using the command:

pdbSet Compress.TDR 1
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contacts

Writes contacts defined in the contact command into the boundary file. Default: true.

csse

Splits a composite solid shell element (CSSE) into multiple layers for visualization (see
Mechanics Simulations With Composite Solid Shell Element on page 71).

deform

Saves the deformation applied structure. By default, the gas mesh is not saved.

deform.scale

Defines the scale by which the deformation will be magnified in the calculation. Default: 1.

FullD

If FullD is specified, the mesh is extruded to the maximum dimension allowed in the
simulation temporarily before saving the file. After saving the file, the simulation continues
in the same dimension as before.

If !FullD is specified, the saved files contain mesh and data in the dimension currently
used in the simulation.

NOTE When TDR restart files are saved, by default, no extrusion is performed.

Gas

By default, Sentaurus Interconnect writes regions of material gas to TDR files. If !Gas is
specified, regions of material gas are not saved.

interfaces

Saves interface data in TDR files. Specify !interfaces to prevent storing interface data.
Default: true.

mshcmd

When specified with tdr or tdr.bnd, mshcmd writes a command (.cmd) file with
refinement information readable by Sentaurus Mesh.

pdb

Saves pdb parameters along with the geometry and data in a TDR file.

pdb.only

Saves only pdb parameters (without geometry and data) in a TDR file.
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sat

Enforces or prevents the saving of a Sentaurus Structure Editor restart file. This option
works only when Sentaurus Structure Editor is switched on internally or is used as an
external tool.

satfile

When using Sentaurus Structure Editor for 3D geometry-modeling steps, a Sentaurus
Structure Editor restart file is saved by default. The argument satfile defines the file
name. The default file extension is .sat. This argument works only when Sentaurus
Structure Editor is switched on internally or is used as an external tool.

simplify

When saving a 2D or 3D boundary in TDR files, the extracted geometry is simplified
before being saved. The simplify argument defines the maximum deviation of the
simplified boundary from the extracted geometry.

tdr

Saves a file in TDR format. The extension _sis.tdr is added automatically. By default,
all modifications to the parameter database are written to the TDR file to support splitting
and restarting simulations.

By default, TDR files can be used to split and restart simulations. Coordinates and field
values are stored with their unscaled internal values.

For information about the TDR format, refer to the Sentaurus™ Data Explorer User
Guide.

tdr.bnd

Writes a TDR file that contains only the boundary representation.

visual.1D

Applies only to 1D simulations. If specified, Sentaurus Interconnect orders the nodes when
writing them in a TDR file, so that the file can be easily visualized with Sentaurus Visual.

x, y, z

Saves a 2D cross section of a 3D structure, or a 1D cutline of any dimension structure in a
TDR file. Since the file is stored in TDR format, the tdr argument must be used together
with these arguments.

For 1D simulations, none of these arguments is required.

For 2D simulations, to save a 1D cutline, one of these arguments is required.
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For 3D simulations, to save a 1D cutline, two of these arguments are needed. To save a 2D
cross section, one of these arguments is required. The saved 2D cross-section TDR file can
be used to restart a simulation if it is a z-cut. If you want to use other cuts for restarting
simulations, rotate the structure first and then perform a z-cut.

Default unit: .

NOTE Only nodal data, not vector or tensor data, is stored in the saved file.

Description

This command writes the structure and the simulation mesh and field data to one or several
files. The data saved is from the current set of solution values.

Examples

Write a TDR file with the current simulation mesh and data. By default, a restart file is written:

struct tdr= output

Write two files (output_sis.tdr and output_bnd.tdr) and apply secondary compression
to the files:

struct tdr= output compress.TDR

See Also

contact on page 381
integrate on page 467
math on page 501
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supply

Sets the boundary conditions on contacts and the distributed sources on regions.

Syntax

supply
(clear | delete | list | name=<c> | print)
[ charge=<n>[<Coulomb>] |
charge.density=<n>[<C/cm3>] power=<n>[<W>|<mW>|<uW>|<nW>] |
current=<n>[<A>] | current.density=<n>[<A/cm2>] | current.ramp=<c> |
heat.flux=<n>[<W/cm2>] | power.density=<n>[<W/cm3>] | power.ramp=<c> | 
temp.ramp=<c> | temperature=<n>[<C>|<K>]]

[contact.name=<c>]
[heat.transfer=<n><W/cm2/K>]
[region.name=<c>]
[<solution>]
[voltage=<n>[<V>] | voltage.ramp=<c>]

Arguments

charge

Specifies a constant charge supply.

charge.density

Specifies a constant charge density–distributed source.

clear

Deletes all supplies in the system.

contact.name

Adds a supply to the specified contact.

current

Specifies a constant current supply.

current.density

Specifies a constant current density supply.

current.ramp

Specifies a ramping current supply.
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delete

Deletes a specified supply.

heat.flux

Specifies a constant heat flux supply.

heat.transfer

Specifies the heat emission transfer rate at the contact given with the contact.name
argument. If temperature is specified as well, it is used as the environment temperature.

list

Lists the supplies in the system.

name

Name of a supply. The name is always composed of a solution variable name followed by
a contact name or region name.

power

Specifies a constant power supply.

power.density

Specifies a constant power density–distributed source.

power.ramp

Specifies a ramping power or power-density supply. The power-density supply must be
used with a region instead of a contact.

print

Prints information about a specified supply.

region.name

Adds a heat source to the specified region.

<solution>

Specifies the solution name for the supply.

temp.ramp

Specifies a ramping temperature supply.
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temperature

Specifies a constant temperature supply.

voltage

Specifies a constant voltage supply.

voltage.ramp

Specifies a ramping voltage supply.

Description

This command adds, deletes, lists, and prints:

■ Boundary conditions (biases) on contacts.

■ Heat sources on noncontact bulk regions.

Each solution variable can have, at most, one supply object associated with any one contact.
The name of a supply object is generated automatically by concatenating the name of the
pertinent solution variable with the name of the contact or region to which the supply is applied,
for example, TemperatureMyThermalContact.

Examples

Apply a 0.1 mV constant voltage to contact Cont1:

supply contact.name= Cont1 voltage= 1.0e-4<V>

Inject a constant power of 1 mW into thermode therm1:

supply contact.name= therm1 power= 1.0e-3<W>

Add a constant heat source of  to the region named Copper_1:

supply region.name= Copper_1 power.density= 2.0e8<W/cm3>

Add a constant heat emission flux with a rate of  at a contact named thermode
using an environment temperature of 300 K:

supply contact.name= thermode temperature= 300<K> heat.transfer= 1e5

Generate a Tcl list of all supplies in the system:

supply list

Delete all supplies in the system:

supply clear

2 8×10 W/cm3

1 5×10 W/cm2K
Sentaurus™ Interconnect User Guide 649
N-2017.09



A: Commands
supply
Erase the supply affiliated with the solution variable Potential on contact Cont1, that is,
erase any electrical boundary condition set on this contact:

supply delete name= PotentialCont1

Print all information about supply object PotentialCont1:

supply print name= PotentialCont1

See Also

Chapter 5 on page 121
Chapter 6 on page 131
contact on page 381
current_ramp on page 393
temp_ramp on page 655
voltage_ramp on page 679
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System

Adds a circuit element to the simulation.

Syntax

System {
<model> <name> (<electrode> <electrode>) {<parameters>}
Set (<c>=<n>)
Thermal (<c> <c> ...)

}

Arguments

<electrode>

Specifies the electrodes. The parentheses are part of the syntax in this case.

<model>

Specifies the model instance from which the circuit element is derived.

<name>

Name of the circuit element.

<parameters>

Specifies the parameters associated with the circuit element.

Set

Sets Dirichlet boundary conditions on the thermodes.

Thermal

Specifies the nodes to be thermal nodes.

Description

This command allows you to add and to describe a circuit element.

Each System command can specify multiple instances within the braces. A circuit element is
defined by the model instance from which it is derived, a name, its electrodes, and the
parameters associated with the circuit element.
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Examples

Define a resistor r3 derived from model Resistor_pset. The element r3 is placed between
electrodes 1 and 0, and has a resistance of :

System {
Resistor_pset r3 (1 0) {resistance= 1000}

}

1000 Ω
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tclsel

Selects the plot variable for the postprocessing routines.

Syntax

tclsel
[list] [<material>] [name=<c>]
[store] [vec] [z=<c>]

Arguments

list

Returns a list of currently defined and named data fields. The real data fields are listed by
default. Vector data fields can be listed using vec. This returns a Tcl list for use with those
commands that require list variables.

<material>

Specifies the material to which the command applies. Different expressions for the data
field initialization in different materials can be used. See Specifying Materials on page 18.

name

Name of the new data field. Default: Z_Plot_Var.

This is used by all commands when a plot name is not specified. This is a powerful feature,
as solution fields also can be created.

store

Controls whether the data field is written into permanent storage when a structure file is
output. Default: false.

vec

Lists the vector data fields. Default: false.

z

Accepts a Tcl expression that are used to build a new data field. All valid Tcl expressions
can be used in the string. Existing data fields are defined as Tcl variables, and the
expression is evaluated node-by-node with the updated value of the variable. In general,
this argument must be enclosed in braces, so that variable substitution is performed when
the string is parsed.
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Description

This command specifies the plot variable for almost all other plot commands. It is a companion
to the select command, but it differs from the select command in that it accepts any general
Tcl expression. Data fields are made into Tcl variables and can be accessed with standard Tcl
variable methods.

Examples

Select as the plot variable the base 10 logarithm of the arsenic concentration:

tclsel z= {log10($Arsenic)}

Select as the plot variable the phosphorus concentration minus a constant value of :

tclsel z= {($Phosphorus - 5.0e14)}

Select as the plot variable the difference between the phosphorus and an analytic profile. This
data field will be named Doping. The store argument indicates that the doping field must be
written into any saved structure files:

tclsel z= {($Phosphorus - 1.0e18 * exp ( $y * $y / 1.0e-8 ))} \
name= Doping store

List all available real and vector data fields:

tclsel list vec

See Also

All postprocessing commands

5 14×10
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temp_ramp

Defines a temperature profile for use with the solve or supply command.

Syntax

temp_ramp
(clear | list | name=<c>)
[current.time=<n>][<hr>|<min>|<s>]
[delNT=<n>[<C>|<K>] | delT=<n>[<C>|<K>]]
[density.increase= <regionName>=<n> | <material>=<n>]
[hold]
[last]
[ramprate=<n>][<C/s>|<K/s>|<C/min>|<K/min>]
[read.temp.file=<c>]
[reset.init.time]
[t.final=<n>][<C>|<K>]
[temperature=<n>][<C>|<K>] | 
[time=<n>][<hr>|<min>|<s>]

Arguments

clear

Clears the global list of temperature ramps. When defining profiles, the action is to unite
the new definition with any prior profiles of the same name.

current.time

Returns the value of the ramp for the given time. Default unit: minute.

delNT

Defines the maximum temperature step during a temperature ramp-down if specified.
Default unit: degree Celsius. It also can be defined globally with the command:

pdbSet Compute delNT <n>

delT

Defines the maximum temperature step during a temperature ramp-up if specified. Default
unit: degree Celsius. It also can be defined globally with the command:

pdbSet Compute delT <n>

density.increase

Applies densification model where the density increases in percentage. The increase value
can be specified per region <regionName>=<n> (where regionName is the name of an
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existing region in the current structure) or per material <material>=<n> (where
material is the name of a material in the current structure).

 hold

During this segment of the temperature ramp, hold gives the solve command the
opportunity to specify the time of the segment.

last

Defines the final component of the temperature profile. There will be no more additions to
the ramp.

list

Generates a list of temperature profiles. It returns a Tcl list and can be operated on as such.
The default action for commands is to print the return, so if no handling is required, this
prints a list of names of defined temperature profiles. If a name is specified, the
temp_ramp command only is listed along with details about the ramps.

name

Name used to identify the temperature ramp. Use this name in a subsequent solve
command.

ramprate

Temperature change during anneal. Default value and unit: .

read.temp.file

Reads a thermal profile from a file. It must not be used with any other thermal specification.
To create this profile file during laser annealing, use write.temp.file of the solve
command. The format of the file is two columns: time (in seconds) and temperature (in
degree Celsius). Lines beginning with a hash (#) are ignored.

reset.init.time

Starts each annealing step with the same initial time step.

t.final

Final temperature for a temperature ramp-up or ramp-down. It is used if ramprate is not
given. The ramp time is calculated automatically. Default unit: degree Celsius.

temperature

Annealing temperature. Default unit: degree Celsius.

0.0°C/s
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time

Annealing time. Default unit: minute.

Description

This command specifies multiple-step temperature ramps and holds. It can be used to construct
a complex temperature sequence to be simulated with the solve command (by specifying
temp.ramp of the solve command).

Examples

Define the temperature profile named tr1 with a temperature rate of 10 K/s:

temp_ramp name= tr1 temp= 20 ramprate= 10<K/s> time= 100<s>

See Also

solve on page 629
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term

Defines a new subexpression for use in the equation specification of the Alagator language.

Syntax

term
[add] [clear] [delete] [eqn=<c>] [list]
[<material>]
[name=<c>] [print] [store]

Arguments

add

Creates a new term. A term with that name will be overwritten.

clear

Removes a term from the current set if the term exists. Otherwise, it clears the content of
all terms.

delete

Removes a term from the current set.

eqn

The string defines the equation part of the term. The equation must conform to all the
standard constraints of the Alagator language. Terms can be nested; the equation specified
here can refer to other terms. Parsing of the equation is performed during the solve
command, so there is no need for everything to be predefined.

list

Lists all the names of the current terms. This is returned as a Tcl list, so it can be used in
conjunction with all the list functionality.

<material>

If a material is specified, the term becomes specific for this material only. This allows the
same name to have different equations in different materials. See Specifying Materials on
page 18.

name

Reference name for the term. This name is defined and is compared to strings found in the
equation parsing. Capitalization is important, and only exact matches are allowed.
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print

Prints the equation for the term matching the name specified. If no term matches, 0.0 is
returned. If the material name is not given, the first term with the matching name is returned
(for example, you may obtain VTotal in oxide instead of silicon).

store

Allows the term command to be stored in a TDR file.

Description

Terms are never required but can offer substantial computational benefit. Each term is
evaluated only once during assembly, and the results are cached. If multiple equations refer to
a term, the first equation to use it evaluates the expression and the remainder use the cached
values. Terms are usually used for expressions that need to appear in several partial differential
equations.

Terms can be created, searched, and printed, which allow inquiries about terms to be made in
the various callback procedures.

Examples

Create a term named VTotal in silicon only. The keyword VTotal will be replaced with the
subexpression Vacancy+VacancyGbc:

term name= VTotal add silicon eqn= "Vacancy+VacancyGbc" store

Create a term named Noni in silicon only. The equation will be the exponential of Potential
multiplied by $Vti. The normal rules for Tcl string variables and executions apply, so that Vti
must be a currently defined variable. The value will be replaced when the term command is
executed:

term name= Noni add silicon eqn= exp(Potential*$Vti)

Return a list of all the current term names defined:

term list

Return the currently defined equation corresponding to the name Charge:

term name= Charge print

See Also

solution on page 626
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topo

Performs 3D etching and deposition using Sentaurus Topography 3D.

Syntax

topo {<Sentaurus Topography 3D commands>}

Arguments

<Sentaurus Topography 3D commands>

All arguments of the topo command are described in the Sentaurus™ Topography 3D
User Guide.

Description

Physical etching and deposition are available through the interface to Sentaurus
Topography 3D and are executed using the topo command.

Commands entered into the topo command are passed directly to the Sentaurus
Topography 3D library. The exchange of the boundary between Sentaurus Interconnect and
Sentaurus Topography 3D is handled automatically and only when required.

NOTE A licence for Sentaurus Topography 3D must be available, and a version
of the Sentaurus Interconnect binary with Sentaurus Topography 3D
included must be installed.
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transform

Cuts, flips, reflects, rotates, stretches, or translates a structure and currently defined refinement
boxes.

Syntax

transform 
cut [Adaptive] [location=<n>[<m>|<cm>|<um>|<nm>] (left | right | front |

back | up | down)]
[max= {

<n>[<m>|<cm>|<um>|<nm>]
<n>[<m>|<cm>|<um>|<nm>]
<n>[<m>|<cm>|<um>|<nm>]}

min= {
<n>[<m>|<cm>|<um>|<nm>]
<n>[<m>|<cm>|<um>|<nm>]
<n>[<m>|<cm>|<um>|<nm>]}]

[mesh.align] [remesh] |

flip [Adaptive] [location=<n>][<m>|<cm>|<um>|<nm>] |

reflect [Adaptive] [keep.original]
(left | right | front | back) | (ymin | ymax | zmin | zmax) |

rotate [Adaptive] [angle=<n> axis= "X" | "Y" | "Z"] |

stretch [Adaptive] (left | right | front | back)
[length=<n>][<m>|<cm>|<um>|<nm>]
[location=<n>][<m>|<cm>|<um>|<nm>] [remesh] |

translate= {
<n>[<m>|<cm>|<um>|<nm>]
<n>[<m>|<cm>|<um>|<nm>]
<n>[<m>|<cm>|<um>|<nm>]}

[masks]

Arguments: Cut

Adaptive

If specified, Adaptive switches on adaptive meshing if remesh is given. Parameters for
adaptive meshing are described in Adaptive Mesh Refinement on page 177. The default is
the return value of pdbGet Grid Adaptive.
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cut

Selects the cut operation. Crops a structure using either the max and min arguments, or the
location argument.

location (left | right | front | back | up | down)

Specifies the coordinate where the cut will be made. In addition, you must select one of
left, right, front, back, up, or down to specify an axis-aligned cut at the coordinate
given by location. Default value and unit: .

NOTE You cannot use location with the max and min arguments.

max, min

Use these two arguments to specify the new bounding box:

max= {<maxx> <maxy> <maxz>} min= {<minx> <miny> <minz>}

Default unit: .

NOTE You cannot use max and min with the location argument.

mesh.align

By default, MGOALS cuts the structure at the nearest mesh line and does not perform a
remesh. If !mesh.align is specified, MGOALS cuts precisely at the specified
coordinates and remeshes the structure.

remesh

Available only for two dimensions. Forces a remesh after the transformation. However,
remeshing is always possible using the grid remesh command if required.

Arguments: Flip

Adaptive

If specified, Adaptive switches on adaptive meshing. Parameters for adaptive meshing
are described in Adaptive Mesh Refinement on page 177. The default is the return value of
pdbGet Grid Adaptive.

flip

Selects the flip operation (flips from top to bottom). See Flip and Backside Processing on
page 263.

0.0 μm

μm
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location

Selects the x-coordinate about which the structure will be flipped. By default, the middle
of the structure is chosen. Subsequent transform flip commands will, by default, use
the same location for flipping whether the default is used or a chosen location is used.
In three dimensions, the z-coordinate of the rotation is the middle of the structure in the z-
direction. The location of the flip is also the fixed coordinate for mechanics simulations,
which is otherwise at the bottom of the structure when no flip has occurred.

Arguments: Reflection

Adaptive

If specified, Adaptive switches on adaptive meshing. Parameters for adaptive meshing
are described in Adaptive Mesh Refinement on page 177. The default is the return value of
pdbGet Grid Adaptive.

keep.original

Retains the original structure after reflection (having both the original and the reflected
structure), or stores only the reflected structure when disabled with !keep.original.
Default: true.

left, right, front, back

Selects the side of the simulation domain at which the reflection is performed.

reflect

Selects the reflection operation.

ymin, ymax, zmin, zmax

Specifies the location where the reflection is performed:

• ymin is the same as left.

• ymax is the same as right.

• zmin is the same as back.

• zmax is the same as front.

Arguments: Rotation

Adaptive

If specified, Adaptive switches on adaptive meshing. Parameters for adaptive meshing
are described in Adaptive Mesh Refinement on page 177. The default is the return value of
pdbGet Grid Adaptive.
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angle

Rotation angle. It must be one of 90, 180, or 270. Angles leading to structures having gas
in a side are not allowed. This means that for axis= "Y" and axis= "Z", only 180 is
allowed. For axis= "X", 90, 180, or 270 are allowed. Two-dimensional simulations are
extruded into three dimensions and are then rotated.

axis

Rotation axis. It must be the x-axis, y-axis, or z-axis.

rotate

Specifies the rotation operation.

Arguments: Stretch

Adaptive

If specified, Adaptive switches on adaptive meshing. Parameters for adaptive meshing
are described in Adaptive Mesh Refinement on page 177. The default is the return value of
pdbGet Grid Adaptive.

left, right, front, back

Indicates which side of the structure will be moved.

length

Length of stretching. Default value and unit: .

location

The y- or z-coordinate where the structure will be stretched. Default value and unit: .

remesh

Specifies that a remesh will be performed. Default: true.

stretch

Specifies the stretch operation.

Arguments: Translation

translate

Translates the entire structure by specifying a translation vector:

translate= {<translate_x> <translate_y> <translate_z>}

0 μm

0 μm
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Default unit: .

Arguments: Transform Masks

masks

If this option is specified, masks will be transformed as well if present. If the
keep.original option is specified with the reflect option, the reflected mask and the
original mask will be combined into one mask. Otherwise, the reflected masks will replace
the original ones. Default: false.

Description

Previously, the cut and clip commands had slightly different behavior. Now, they are
identical and are referred to as the cut command. All these transformations work in both two
and three dimensions.

Examples

Both commands reflect the structure and refinement boxes to the right side:

transform reflect right
transform reflect ymax

Reflect the structure and refinement boxes to the right side and keep the reflected part only:

transform reflect right !keep.original

Stretch the structure and refinement boxes to the right side. The structure and refinement boxes
left of 0.7 remain unchanged; the structure and refinement boxes to the right of 0.7 will be
moved by 20 nm:

transform stretch location= 0.7 length= 0.02 right remesh

Cut the structure and refinement boxes at y=0.7. The left part will be removed without
remeshing:

transform cut location= 0.7 left !remesh

Cut the structure and refinement boxes at x between  and , and y between 
and :

transform cut min= {0<um> 0<um>} max= {1<um> 3<um>}

Shift the structure and refinement boxes up in the x-direction by :

transform translate= {-1 0 0}

μm

0 μm 1 μm 0 μm
3 μm

1 μm
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Flip the structure and refinement boxes from top to bottom about their midpoint if it is the first
flip, or store the flip location for subsequent flips:

transform flip

Rotate the structure and refinement boxes  in the x-axis:

transform rotate axis= "X" angle= 90

See Also

Handling Stress in Etching and Deposition on page 236
mgoals on page 510

90°
666 Sentaurus™ Interconnect User Guide
N-2017.09



A: Commands
transform.mask
transform.mask

Cuts, flips, reflects, rotates, stretches, or translates a given mask or all masks.

Syntax

transform.mask
(cut | flip | reflect | rotate | stretch)
[angle=<n> axis= "X" | "Y" | "Z"]
[keep.original]
[length=<n>][<m>|<cm>|<um>|<nm>]
[name=<c>] [name.new=<c>]
[[location=<n>][<m>|<cm>|<um>|<nm>]

(left | right | front | back) | (ymin | ymax | zmin | zmax)]
[max= {

<n>[<m>|<cm>|<um>|<nm>]
<n>[<m>|<cm>|<um>|<nm>]
<n>[<m>|<cm>|<um>|<nm>]}]

min= {
<n>[<m>|<cm>|<um>|<nm>]
<n>[<m>|<cm>|<um>|<nm>]
<n>[<m>|<cm>|<um>|<nm>]}]

[translate=
<n>[<m>|<cm>|<um>|<nm>]
<n>[<m>|<cm>|<um>|<nm>]
<n>[<m>|<cm>|<um>|<nm>]}]

Arguments: General

keep.original

Specifies whether to keep the original mask after a reflection operation. This option only
works with the reflect option. The reflected mask and the original mask will be
combined into one mask if specified. Default: true.

name

Name of the mask to apply the transformation.

name.new

Name of the transformed mask. If not specified, the transformed mask will replace the
original one. If specified, a new mask will be created, and the original one will be retained.
Sentaurus™ Interconnect User Guide 667
N-2017.09



A: Commands
transform.mask
Arguments: Cut

cut

Crops the mask to a new bounding box (using max and min), or crops half of the mask
(using either the left, right, front, or back option).

left, right, front, back

Indicates a cut at a location given by location, and specifies which half to remove. These
options must not be used with max and min.

location

Specifies the y- or z-coordinate where the cut is to be performed. The location argument
is used with left, right, front, or back to indicate which direction and side to cut.
Default value and unit: .

max, min

The cut box can be specified by either:

• Both the max and min arguments:

max= {maxx maxy maxz} min= {minx miny minz}

• One of left, right, front, or back to specify an axis-aligned cut at the coordinate
given by the location argument.

Default unit: .

NOTE The max and min arguments must be used together. Do not use them
with any of the left, right, front, or back options.

Arguments: Flip

flip

Flips a mask (top to bottom).

location

Selects the x-coordinate about which the mask will be flipped. By default, the middle of
the structure is chosen. Subsequent transform flip commands will, by default, use the
same location for flipping whether the default is used or a chosen location is used. In
three dimensions, the z-coordinate of the rotation is the middle of the structure in the z-
direction.

0.0 μm

μm
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Arguments: Reflection

left, right, front, back

Selects the side of the simulation domain at which the reflection is performed.

reflect

Indicates that a reflection will be performed.

ymin, ymax, zmin, zmax

Specify the location where the mask reflection is performed:

• ymin is the same as left.

• ymax is the same as right.

• zmin is the same as back.

• zmin is the same as front.

Arguments: Rotation

angle

Rotation angle.

axis

Rotation axis. It must be x, y, or z. If the rotation axis is y or z, the rotation angle must be
180.

rotate

Indicates that a rotation will be performed.

Arguments: Stretch

left, right, front, back

Indicates which side of the mask will be moved.

length

Length of stretching. Default value and unit: .

location

Specifies the y- or z-coordinate where the mask will be stretched. Default value and unit:
.

0 μm

0 μm
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stretch

Indicates that a stretch operation will be performed.

Arguments: Translation

translate

Translates the mask by specifying a translation vector:

translate= {translate_x translate_y translate_z}

Default unit: .

Description

A transformed mask is created and replaces the old one by default. The transformation applies
to all existing masks, except if name is specified. In this case, a transformed mask name also
can be specified using name.new. If name.new is specified, the original mask will be retained,
and a new one will be created. The keep.original option can be used with reflect to
combine the reflected mask and the original mask into one mask.

Examples

Reflect all the current masks to the right side:

transform.mask reflect right

Create a new mask called smask1 by stretching the existing mask mask1 to the right side. The
area left of 0.7 remains unchanged; the structure to the right of 0.7 will be moved by 20 nm:

transform.mask stretch location= 0.7 length= 0.02 right name= mask1 \
name.new= smask1

Cut all the existing masks at y = 0.7. The left part will be removed:

transform.mask cut location= 0.7

Create a new mask named new2 by copying and shifting mask2 up in the x-direction by :

transform.mask translate= {-1 0 0} name= mask2 name.new= new2

Rotate the mask named mask3  around the y-axis without changing its name:

transform.mask rotate axis= "Y" angle= 180 name= mask3

μm

1 μm

180°
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transform.refinement

Reflects, stretches, cuts, flips, rotates, or translates a given refinement box or all refinement
boxes.

Syntax

transform.refinement
(cut | flip | reflect | rotate | stretch)
[angle=<n> axis= "X" | "Y" | "Z"]
[keep.original] 
[length=<n>][<m>|<cm>|<um>|<nm>]
[name=<c>] [name.new=<c>]
[[location=<n>][<m>|<cm>|<um>|<nm>]

(left | right | front | back | up | down) | (ymin | ymax | zmin | zmax)]
[max= {

<n>[<m>|<cm>|<um>|<nm>]
<n>[<m>|<cm>|<um>|<nm>]
<n>[<m>|<cm>|<um>|<nm>]}

min= {
<n>[<m>|<cm>|<um>|<nm>]
<n>[<m>|<cm>|<um>|<nm>]
<n>[<m>|<cm>|<um>|<nm>]}]

[translate=
<n>[<m>|<cm>|<um>|<nm>]
<n>[<m>|<cm>|<um>|<nm>]
<n>[<m>|<cm>|<um>|<nm>]}]

Arguments: General

keep.original

Specifies whether to keep the original after the transformation. When keeping the original
refinement, the original is untouched, and a new one is created by transforming the original
refinement. Otherwise, the refinement itself is transformed.

name

Name of the refinement to apply the transformation.

name.new

Name of the transformed refinement. If not specified, a default name is given.
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Arguments: Cut

cut

Crops the refinement to a new bounding box (using max and min) or crops half of it (using
the left, right, front, back, up, or down arguments).

left, right, front, back, up, down

Indicates a cut at a location given by location, and specifies which half is to be removed.
These arguments must not be used with max and min.

location

Specifies the x-, y-, or z-coordinate where the cut is to be performed. The location
argument is used with left, right, front, back, up, or down to indicate which direction
and side to cut. Default: .

max, min

The cut box can be specified by either:

• Both the max and min arguments:

max= {maxx maxy maxz} min= {minx miny minz}

• One of left, right, front, back, up, or down to specify an axis-aligned cut at the
coordinate given by the location argument.

Default unit: .

NOTE The max and min arguments must be used together. Do not use them
with any of the left, right, front, back, up, or down options.

Arguments: Flip

flip

Flips a refinement (top to bottom).

location

Selects the x-coordinate about which the refinement will be flipped. By default, the middle
of the structure is chosen. Subsequent transform flip commands will, by default, use
the same location for flipping whether the default is used or a chosen location is used.
In three dimensions, the z-coordinate of the rotation is the middle of the structure in the z-
direction.

0.0 μm
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Arguments: Reflection

left, right, front, back

Selects the side of the simulation domain at which the reflection is performed.

reflect

Indicates that a reflection will be performed.

ymin, ymax, zmin, zmax

Specify the location where the refinement reflection is performed:

• ymin is the same as left.

• ymax is the same as right.

• zmin is the same as back.

• zmin is the same as front.

Arguments: Rotation

angle

Rotation angle. It must be 90, 180, or 270. Default unit: degree.

axis

Rotation axis. It must be x, y, or z.

rotate

Indicates that a rotation will be performed.

Arguments: Stretch

left, right, front, back

Indicates which side of the refinement will be moved.

length

Length of stretching. Default value and unit: .

location

Specifies the y- or z-coordinate where the refinement will be stretched. Default value and
unit: .

0 μm

0 μm
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stretch

Indicates that a stretch operation will be performed.

Arguments: Translation

translate

Translates the refinement by specifying a translation vector:

translate= {translate_x translate_y translate_z}

Default unit: .

Description

A new transformed refinement box is created by default, while the old one is kept. This can be
overridden with !keep.original. The transformation applies to all existing refinements,
except if a name is specified. In this case, a transformed refinement name also can be specified
by using name.new.

Examples

Create a set of new refinements as reflections of all the current refinements to the right side:

transform.refinement reflect right

Create a new refinement called sbox1 by stretching the existing refinement box1 to the right
side. The area left of 0.7 remains unchanged; the structure to the right of 0.7 will be moved by
20 nm:

transform.refinement stretch location= 0.7 length= 0.02 right name= box1 \
name.new= sbox1

Cut all the existing refinements at y = 0.7. The left part will be removed:

transform.refinement cut location= 0.7 !keep.original

Create a new refinement new2 by copying and shifting r1 up in the x-direction by :

transform.refinement translate= {-1 0 0} name= r1 name.new= new2

Rotate the refinement refbox  around the y-axis without changing its name:

transform.refinement rotate axis= "Y" angle= 270 name= refbox \
name.new= refbox !keep.original

μm

1 μm

270°
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See Also

Mesh Refinement on page 170
Handling Stress in Etching and Deposition on page 236
refinebox on page 591
transform on page 661
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Translates a named dataset with the specified offset.

Syntax

translate
[<material>]
[min=<n>]
[name=<c>]
[offset= {<n> <n> <n>}]

Arguments

<material>

If a material is specified, the dataset is translated in the specified material only. Otherwise,
the dataset is translated in all materials. See Specifying Materials on page 18.

min

Minimum value to fill the points with undefined value. Default: 0.0.

name

Name of a dataset. Default: Z_Plot_Var.

offset

List of numeric values, where the first, second, and third values in the list are taken as the
x-, y-, and z-value, respectively. The missing value is treated as zero.

Description

This command spatially shifts a profile (dataset) with the specified offset. If a material is
specified, the profile is shifted in the specified material only. Otherwise, the profile is shifted
in all materials. When a profile is shifted, the value at some points may become undefined, in
which case, these points are filled with a minimum value as specified by the min argument.

Examples

Shift the Boron data field with a shifting vector ( , , ):

translate name= Boron offset= {0.01 0.02}

0.01 μm 0.02 μm 0.0 μm
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update_hoop_radial_stress

Calculates the hoop and radial stresses with an axis of symmetry in the x-direction.

Syntax

update_hoop_radial_stress [<n> <n>]

Arguments

<n> <n>

The first value is the y-center and second value is the z-center for the calculation. Default
value and unit: .

Description

This command calculates the hoop stress and the radial stress from a user-specified center
point. The fields are saved under Stress_Theta and Stress_R, respectively. The
calculations are valid when there is rotational symmetry.

Examples

Calculate hoop and radial stresses with an axis of symmetry in the x-direction at 
and :

update_hoop_radial_stress 0.2 0.1

0 μm

y 0.2 μm=
z 0.1 μm=
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update_principal_strain

Calculates the principal strains.

Syntax

update_principal_strain

Description

This command calculates the first, second, and third principal strains, and stores them as the
fields PrincipalStrain1, PrincipalStrain2, and PrincipalStrain3, respectively.

update_principal_stress

Calculates the principal stresses.

Syntax

update_principal_stress

Description

This command calculates the first, second, and third principal stresses, and stores them as the
fields PrincipalStress1, PrincipalStress2, and PrincipalStress3, respectively.
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voltage_ramp

Defines a voltage profile for use with the supply command.

Syntax

voltage_ramp
(clear | list | name=<c>)
[current.time=<n>][<hr>|<min>|<s>]
[delNV=<n>[<V>] | delV=<n>[<V>]]
[hold] [last]
[ramprate=<n>][<V/s>|<V/min>]
[reset.init.time]
[time=<n>][<hr>|<min>|<s>]
[v.final=<n>][<V>]
[voltage=<n>][<V>]

Arguments

clear

Deletes the global list of voltage ramps. When defining profiles, the action is to unite the
new definition with any prior profiles of the same name.

current.time

Returns the value of the ramp for the given time. Default unit: minute.

delNV

Defines the maximum voltage step during a voltage ramp-down if specified.

delV

Defines the maximum voltage step during a voltage ramp-up if specified.

hold

During this segment, allows the solve command the opportunity to specify the time of the
segment.

last

Defines the final component of the voltage profile. There will be no more additions to the
ramp.
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list

Generates a list of voltage profiles. It returns a Tcl list and can be operated on as such. The
default action for commands is to print the return. If no handling is required, this prints a
list of names of defined voltage profiles. If a name is specified, voltage_ramp only is
listed along with details about the ramps.

name

Name of the parameter used to identify the voltage ramp and specify it in a supply
command.

ramprate

Voltage change during simulation. Default value and unit: 0 V/s.

reset.init.time

Starts each voltage step with the same initial time step.

time

Simulation time. Default unit: minute.

v.final

Final voltage for a voltage ramp-up or ramp-down. It is used if ramprate is not given. The
ramp time is calculated automatically.

voltage

Simulation voltage.

Description

This command specifies multiple voltage ramps and holds. It can be used to construct a
complex voltage sequence to be simulated with the solve command.

Examples

Define the voltage profile named vr1 with a voltage rate of 0.5 V/s:

voltage_ramp name= vr1 voltage= 0.1 ramprate= 0.5<V/s> time= 1<s>

See Also

supply on page 647
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WritePlx

Writes a 1D .plx file.

Syntax

WritePlx
<filename>
[<circuit_instances> | <contact_list>]
[current | resistance | voltage]
[include.interfaces]
[<material>]
[only.interfaces]
[x=<n>] [y=<n>] [z=<n>]

Arguments

<circuit_instances>, <contact_list>

List of circuit instances or contact names for which the data will be written to the file. The
list must be a pair of contacts for the resistance option. The circuit instances must be a
pair of a circuit element and a circuit node for the current option if current is being
used for the circuit.

current, resistance, voltage

Specifies the data type to be written to the file (see Storing Time Versus Resistance,
Current, and Voltage on page 327).

<filename>

Name of the output file.

NOTE This must be the first argument on the WritePlx command line.

include.interfaces

Includes interface values with the returned data. At an interface, the distance coordinate of
the three nodes (two bulk and one interface) will be the same, and the interface value will
be inserted between the two neighboring bulk values.

<material>

If a material is specified, only the plot from the given material is created. See Specifying
Materials on page 18.
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only.interfaces

Returns interface values exclusively in the returned data. When specified, no bulk values
are returned.

x, y, z

Specify the cut position. For 1D simulations, no cut specification is necessary. For 2D
simulations, either x or y must be specified. For 3D simulations, two axes must be
specified. It is also possible to shift .plx output files by specifying PlxShift variables.
Default unit: .

Description

This command makes a 1D profile along a given cutline and writes a .plx file of the solutions
and terms given in the list provided by the SetPlxList command. If the list is not provided,
only present solution names are written. If a material is specified, only data from the given
material is used to create the plot.

NOTE The <filename> argument must be the first argument on the
WritePlx command line.

Examples

Write a 1D .plx file at the y =  cutline:

WritePlx 1.5.plx y= 1.5

Shift the axis by  and write a 1D .plx file:

set PlxShift 0.2
WritePlx test.plx

See Also

SetPlxList on page 619

μm

1.5 μm

0.2 μm
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APPENDIX B Resistance, Capacitance, and 
Thermal Resistance

This appendix describes the resistance, capacitance, and thermal
resistance analyses of Sentaurus Interconnect.

Overview

There are different simulation categories in Sentaurus Interconnect depending on the type of
analysis:

■ Electrical current analysis extracts the resistance matrix (see Chapter 6 on page 131).

■ Electrostatic analysis extracts the capacitance matrix (see Chapter 7 on page 143).

■ Thermal analysis extracts the thermal resistance matrix (see Chapter 5 on page 121).

■ Thermal RC analysis calculates the thermal RC networks (see Chapter 5 on page 121).

Resistance, capacitance, and thermal resistance analyses are mutually exclusive, that is, only
one type of analysis can be performed at a time. One exception is that resistance and
capacitance analyses can be performed together for a distributed RC extraction simulation.

Electrical Current Analysis: Resistance Matrix

Sentaurus Interconnect calculates the resistance matrix for the listed contacts by solving the
Laplace equation (Eq. 83, p. 131) without the displacement currents. If no contact information
is given with the mode command, all user-defined contacts are used in the analysis. The
resistances are calculated using:

(128)

where:

■  is the total current.

■  is the conductance.

■  is the voltage difference at the contact with respect to the reference point.

Since  is set to 1 V, the absolute values of total current correspond to the conductance
values. The inverse value of conductance corresponds to resistance. The absolute value of the

I GΔV=

I

G

ΔV

ΔV
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diagonal terms in the matrix always represents the total conductance of the corresponding
contact with respect to all other contacts (as if only that contact is biased and all others are
grounded).

The absolute value of the off-diagonal terms represents the conductances between both
contacts (for currents, the signs change). Figure 104 represents a typical structure where
resistances may be required. 

Figure 104 (Left) Structure formed by two conductors parallel to a plane and (right) 
corresponding schematic for the resistance matrix simulation

The mathematical relationship between the resistances expressed in the schematic and the
corresponding short-circuit resistances calculated by Sentaurus Interconnect is expressed as:

(129)
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(132)
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Electrostatic Analysis: Capacitance Matrix
The matrix should be symmetric. Due to regridding or the solver tolerance, the final results may
not be exactly symmetric.

To calculate the resistance matrix, use the mode command (see mode on page 518), for
example:

mode resistance
mode resistance= { C1 C2 }

The first command calculates the resistance matrix between user-defined contacts in the
structure. The second command calculates the resistance matrix between the contacts C1 and
C2, which are user defined. All other unused contacts are grounded and lumped into one
contact called GROUND_RCX. When the simulation is completed, the resistance matrix is printed
in the log file. To print the resistance matrix, use the printResistanceMatrix command
(see printResistanceMatrix on page 577).

Electrostatic Analysis: Capacitance Matrix

Sentaurus Interconnect calculates the capacitance matrix for the listed contacts by solving the
Poisson equation (Eq. 94, p. 143) with zero charge density in the regions. If no contact
information is given, conductors are treated as contacts. The short-circuit capacitances are
calculated using:

(133)

where:

■  is the total charge.

■  is the capacitance.

■  is the voltage difference at the contact with respect to the reference point.

NOTE The Poisson equation (Eq. 94, p. 143) is not solved in the gas mesh.

Since  is set to 1 V, the absolute values of total charges correspond to the capacitance
values. The absolute value of the diagonal terms in the matrix always represents the total
capacitance of the corresponding contact with respect to all other contacts (as if only that
contact is biased and all others are grounded).

Q CΔV=

Q

C

ΔV

ΔV
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Electrostatic Analysis: Capacitance Matrix
The absolute value of the off-diagonal terms represents the capacitances between both contacts
(for charges, the signs change). Figure 105 represents a typical structure where capacitances
may be required. 

Figure 105 (Left) Structure formed by two conductors parallel to a plane and (right) 
corresponding schematic for the capacitance matrix simulation

The mathematical relationship between the capacitances expressed in the schematic and the
corresponding short-circuit capacitances calculated by Sentaurus Interconnect is expressed as:

(134)

(135)

The matrix should be symmetric. Due to regridding or the solver tolerance, the final results may
not be exactly symmetric.

To calculate the capacitance matrix, use the mode command (see mode on page 518), for
example:

mode capacitance
mode capacitance= { C1 C2 }

The first command calculates the capacitance matrix between conducting layers in the
structure. User-defined contacts are ignored. The second command calculates the capacitance
matrix between the contacts C1 and C2, which are user defined. All other unused contacts are
grounded and lumped into one contact called GROUND_RCX. When the simulation is completed,
the capacitance matrix is printed in the log file. To print the capacitance matrix, use the
printCapacitanceMatrix command (see printCapacitanceMatrix on page 573).
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Floating Conductors

Floating contacts or conductors refer to contacts or conductors with either charge boundary
conditions or charge density–type boundary conditions specified on them (see Applying
Boundary Conditions to Electrodes on page 145). When performing electrostatic analysis,
floating conductors are omitted from the capacitance matrix, and the analysis is performed
assuming 0<C> charge supply on the conductor.

For example, in the previous example, if the charge supply was specified on C2:

supply contact.name = C2 charge=1e-18<Coulomb>

the capacitance matrix would be:

(136)

with the magnitude of charge on C2 ignored and set to zero during the analysis.

Merging Contacts

Contacts, when defined, can be merged before performing an electrostatic or a capacitance
calculation. Merged contacts behave as one and, therefore, supply should be defined on only
one of them.

When merging contacts, either conducting regions or user-defined contacts should be merged,
but they must not be mixed. For example, if contacts are defined as:

contact region=AA name=EA
contact region=BB name=EB
contact region=CC name=EC

the allowed merge syntaxes are:

contact merge= {AA CC}
contact merge= {EA EC}

If only contact merge is specified, regions that are physically in contact with each other are
merged. 

C11 C13

C31 C33

Q11 Q13

Q31 Q33

=
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NOTE When mode capacitance is used with contact merge, ensure that
they both specify either regions or user-defined contacts. For example:

mode capacitance = {AA BB CC}
contact merge = {AA BB}

and:

mode capacitance = {EA EB EC}
contact merge = {EA EB}

are allowed. In addition, the default capacitance mode can only be used 
when merging conducting regions: 

mode capacitance
contact merge = {AA BB}

NOTE Multiple contact merge commands can be used within a given
simulation, that is:

contact merge = {AA BB}
contact merge = {CC DD}

are the same as:

contact merge = {"AA BB" "CC DD"}

To clear previous merge information before a contact merge command,
you must call contact merge clear.

Distributed RC Extraction

Sentaurus Interconnect structures can be segmented automatically for distributed resistance
analysis. Structures are segmented automatically, placing contacts at conductor–conductor
interfaces. Distributed resistance analysis also takes into account user-defined contacts. To
switch on automatic structure segmentation and contact placement, specify the option
auto.segment with the option resistance in the mode command, for example:

mode resistance auto.segment

You can also create contacts automatically at the outer boundary of conductor regions using the
option boundary.contacts of the option command (see Figure 106 on page 689), for
example:

option boundary.contacts
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Figure 106 (Left) Contact placement with user-defined contacts and (right) automatic 
contact placement with outer boundary contacts

In many cases, it is useful to lump several materials, such as a metal with its liner or filler
materials, into one material to simplify the distributed RC extraction. For this reason, you can
use the lumped.materials argument of the option command to lump materials (see
Figure 107), for example:

option lumped.materials= {"Cu1 TaN1" "Cu2 TaN2" "Cu3 TaN3"}

In each list, all materials will be lumped into the first material. In this example, TaN1 will be
lumped into Cu1, TaN2 will be lumped into Cu2, and TaN3 will be lumped into Cu3. 

Figure 107 (Left) Before automatic segmentation and contact placement and (right) after 
automatic segmentation and contact placement

When auto.segment is specified, capacitance analysis can be performed with resistance
analysis as follows:

mode resistance capacitance auto.segment

User-defined contacts
Auto contacts (interface)
Auto contacts (outer boundary)

Cu3

TaN3

Cu1

TaN1

Cu2

TaN2 Auto Contacts

Auto Contacts
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Distributed RC Extraction
With or without automatic structure segmentation, capacitance analysis is distributed to the
active conductor regions. Sentaurus Interconnect calculates capacitance using the total surface
charge on each active conductor region.

At the end of the simulation, the resistance matrix and capacitance matrix are calculated
independently. You can print a linked resistance and capacitance netlist with the printRC
command (see printRC on page 575), for example:

printRC

printRC filename.spi

In the linked RC netlist, resistance for open circuits and capacitance for short circuits are
discarded. Furthermore, any resistance values greater than 1e5  are excluded. You can set
and change this cut-off value with:

pdbSet Solve R.Max.Limit <value>

NOTE When you set R.Max.Limit explicitly, printResistanceMatrix
also uses the value to cut off resistance values during printing.

In addition, you can use exclude.C to exclude certain capacitances specified by material or
region pairs, for example:

printRC exclude.C= {"Cu1 Cu3" "Region_1 Region_3"}

printRC exclude.C= {"Cu1"}

Capacitance between materials Cu1 and Cu3 and between regions Region_1 and Region_3
are excluded in the first command, and capacitance between material Cu1 and any other
materials are excluded in the second command.

To link capacitance and resistance netlists, the capacitance associated with a conductor region
is further distributed to the contacts that are attached to the conductor region, using one of the
following models (default is model1):

■ model1: Capacitance fully divided per contact pairs

■ model2: Capacitance partially divided per region with more contacts

■ model3: Capacitance partially divided per region with fewer contacts

■ model4: Capacitance lumped into one contact pair

For example:

printRC filename.spi model3

Ω
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Figure 108 Examples of using the models to distribute capacitance and to link to the 
resistance netlist

Thermal Analysis: Thermal Resistance Matrix

Sentaurus Interconnect calculates the thermal resistance matrix for the listed contacts by
solving the heat equation (Eq. 73, p. 121) with no time dependency and no distributed heat
sources at ambient temperature, which is defined by the Parameter Database (PDB) parameter
Env.Temp and is set to 26.844°C (300 K) by default. If no contact information is given with
the mode command, all user-defined contacts are used in the analysis. The resistances are
calculated using:

(137)H GΔT=
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where:

■  is the total heat flow.

■  is the thermal conductance.

■  is the temperature difference at the contact with respect to the reference point.

Since  is set to 1 K, the absolute values of total heat correspond to the thermal conductance
values. The inverse value of thermal conductance corresponds to thermal resistance. The
absolute value of the diagonal terms in the matrix always represents the total thermal
conductance of the corresponding contact with respect to all other contacts (as if only that
contact is thermally biased and all others are thermally grounded).

The absolute value of the off-diagonal terms represents the thermal conductances between both
contacts (for heat flows, the signs change). Figure 109 represents a typical structure where
resistances may be required. 

Figure 109 (Left) Structure formed by two conductors parallel to a plane and (right) 
corresponding schematic for the thermal resistance matrix simulation

The mathematical relationship between the thermal resistances expressed in the schematic and
the corresponding short-circuit thermal resistances calculated by Sentaurus Interconnect is
expressed as:

(138)
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(140)

(141)

The matrix should be symmetric. Due to regridding or the solver tolerance, the final results may
not be exactly symmetric.

To calculate the thermal resistance matrix, use the mode command (see mode on page 518), for
example:

mode thermal.resistance
mode thermal.resistance= { C1 C2 }

The first command calculates the thermal resistance matrix between user-defined contacts in
the structure. The second command calculates the thermal resistance matrix between the
contacts C1 and C2, which are user defined. All other unused contacts are grounded and lumped
into one contact called GROUND_RCX. When the simulation is completed, the thermal resistance
matrix is printed in the log file. To print the thermal resistance matrix, use the
printThermalResistanceMatrix command (see printThermalResistanceMatrix on
page 581).

Thermal Analysis: Thermal RC Network

Thermal RC networks are widely used for SPICE and mixed-mode device simulations to
account for self-heating and interactive heating of electronic devices on a chip or in a package.
Unlike thermal networks, which consist of thermal resistances only, thermal RC networks
allow you to simulate the dynamic and transient thermal behavior of electronic devices, in
particular, fast-switching power devices in a package.

A methodology for the automated extraction of such thermal RC networks has been developed
and presented in publications [1][2][3].

Sentaurus Interconnect extracts thermal RC network elements using transient thermal analysis.
Initially, the entire structure is set to the ambient temperature. Step-like power excitation of
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value  (in W) is applied to a specified excitation contact. Some contacts (at least one)
in the structure are maintained at a constant ambient temperature, and the remaining contacts
are floating (that is, the heat flux through them is zero). The time-dependent thermal
impedance of the response contact <cj>  is computed using:

(142)

where  is the averaged temperature of contact <cj> at time , and  is the ambient
contact temperature. The value of the excitation power influences the results when the system
is nonlinear (for example, its materials have nonconstant thermal conductivities or specific
heats).

The parameters of the thermal RC network are extracted for the Foster model using the built-
in optimizer. The following model function is used to fit the thermal impedances:

(143)

where  is the rank (size) of the thermal RC network, and  and  are the values of the
thermal resistance and the thermal capacitance, respectively.

To calculate the values of the elements of thermal RC networks, use the mode command (see
mode on page 518), for example:

mode thermal.RC.network= {"C1" "C2"}

mode thermal.RC.network= {"C1=1.0e-4" "C2" "C3 C4"}

The first command calculates the parameters of the thermal RC network between the excitation
contact C1 and the only response contact C1 (only self-heating is considered), with the ambient
contact C2 and the default excitation power of 1.0e-3 W.

The second command includes the computation of the floating contacts C3 and C4, which will
be used as additional response contacts (interactive heating); therefore, three thermal RC
networks will be computed at the same time. In addition, the excitation power has been set to
1.0e-4 W for this computation.

The thermal impedances are computed during the solution of the transient heat equation
(Eq. 73, p. 121) with no distributed heat sources. To perform this, use the solve command (see
solve on page 629), for example:

solve

solve time=1e-3<s> init=1e-9<s>

Pexcitation

Zj t( )
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-----------------------------------------=
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--------------- 
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 ⋅
i 1=

n

=
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Example: Electrostatic Analysis With Floating Conductor
The first command solves the transient heat equation for the default time from 0 to 1 s, with the
default time-step settings.

The second command changes the final time to 1e-3 s and the initial time step to 1e-9 s. 

NOTE The final time and the time-stepping often require adjustments to better
resolve the time-dependent thermal impedances in a particular structure.

The ambient temperature is taken from the PDB parameter Env.Temp, which is set to
26.844°C (that is, 300 K) by default.

To extract the parameters of the thermal RC network from the precomputed thermal
impedances and to print the extracted parameters to the screen and to specified files, use the
printThermalRC command (see printThermalRC on page 579). This command also can
print the previously computed thermal impedances and the thermal RC network model to a
specified .plx file for control purposes.

To change the thermal RC network size or the optimization parameters, such as the initial and
bounding values of the thermal RC network parameters or the maximum number of iterations
for optimization loops, use the option command before the printThermalRC command
(see option on page 526). This might be necessary to achieve good optimization results.

Example: Electrostatic Analysis With Floating Conductor

The following self-contained example demonstrates electrostatic analysis (calculating the
capacitance matrix) with a floating conductor on a simple structure containing a straight copper
wire embedded in oxide between two metal planes (see Figure 110). The wire is the floating
conductor with zero charge, and the planes are used to calculate the capacitance matrix. 

Figure 110 Copper wire embedded in oxide between two copper planes

# Define the structure
line clear
line x location= 0.0     spacing= 1.0<nm> tag= Bottom
line x location= 2.0<nm> spacing= 1.0<nm> tag= Mid1
line x location= 4.0<nm> spacing= 1.0<nm> tag= Mid2
line x location= 6.0<nm> spacing= 1.0<nm> tag= Mid3

EA

EB

EC

SiO2

Cu

Cu

Cu
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line x location= 8.0<nm> spacing= 1.0<nm> tag= Mid4
line x location= 10.0<nm> spacing= 1.0<nm> tag= Top

line y location= 0.0      spacing= 1.0<nm> tag= Left
line y location= 2.0<nm> spacing= 1.0<nm> tag= YMid1
line y location= 8.0<nm> spacing= 1.0<nm> tag= YMid2
line y location= 10.0<nm> spacing= 1.0<nm> tag= Right

region Copper name=AA xlo=Bottom xhi=Mid1 ylo=YMid1 yhi=YMid2
region Copper name=BB xlo=Mid2   xhi=Mid3 ylo=YMid1 yhi=YMid2
region Copper name=CC xlo=Mid4   xhi=Top ylo=YMid1 yhi=YMid2

region Oxide name=O1 xlo=Bottom xhi=Top ylo=Left yhi=YMid1
region Oxide name=O2 xlo=Mid1   xhi=Mid2 ylo=YMid1 yhi=YMid2
region Oxide name=O3 xlo=Mid3   xhi=Mid4 ylo=YMid1 yhi=YMid2
region Oxide name=O4 xlo=Bottom xhi=Top ylo=YMid2 yhi=Right

init !DelayFullD

# Define contacts
contact region=AA name=EA !replace
contact region=BB name=EB !replace
contact region=CC name=EC !replace

# Define the floating contact with 0 charge
supply contact.name=EB charge=0

# Specify capacitance matrix calculation
mode capacitance

# Start simulation
solve info=2

# Print the capacitance matrix and save results
printCapacitanceMatrix
struct tdr=cap-auto

The capacitance matrix output generated for this example is shown here (the floating wire
conductor is not included in the output):

+------------------------+---------------+---------------+
| Capacitance (Farad)    |               |               |
| Calculation (C)(V)=(Q) | AA            | CC            |
| AA                     |   +7.5052e-17 |   -7.5052e-17 |
| CC                     |   -7.5052e-17 |   +7.5052e-17 |
+------------------------+---------------+---------------+

+--------------------+--------------+--------------+
| Capacitance Matrix |              |              |
| (Farad)            | AA           | CC           |
| AA                 |   7.5052e-17 |   7.5052e-17 |
| CC                 |   7.5052e-17 |   7.5052e-17 |
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+--------------------+--------------+--------------+

+------------------------+----+--------+--------------+
| SPICE Models for Total |    |        |              |
| Capacitance (F)        |    |        |              |
| C_0_0                  | AA | others |   7.5052e-17 |
| C_1_1                  | CC | others |   7.5052e-17 |
+------------------------+----+--------+--------------+

+-------------------------+----+----+--------------+
| SPICE Models for Entire |    |    |              |
| Capacitance Matrix (F) |    |    |              |
| C_0_1                   | AA | CC |   7.5052e-17 |
+-------------------------+----+----+--------------+

To verify this result, the same simulation is performed without floating the wire. Figure 111
shows the resulting circuit model with three capacitors. After floating the wire, these three
capacitors can be reduced to a single capacitor from contact EA to contact EC, and the value of
this equivalent capacitor is 0.07505 fF. 

Figure 111 Circuit model of Figure 110 on page 695 (left) before floating the wire 
and (right) after floating the wire
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